

Getting Started
Introduction . xiv

1. Introduction to Languages and Notations. 1
Benefits of a Specification Language. 2

General about the SDL Language . 3
Modularity . 3
Object Oriented Design . 3
Graphical and Textual Notations . 4
Application Areas . 4

More about SDL . 4
Theoretical Model . 4
Structure . 5
Communication . 6
Behavior . 7
Data. 7
Type Concept . 8

The Message Sequence Chart Language . 9
History . 9
Plain MSC . 9
High-Level MSC . 10
Graphical and Textual Notations . 11
Application Areas . 11

Object Model Notation . 12
Class . 12
Relations and Multiplicity . 13
Objects . 14

State Chart Notation . 15
State . 15
Transition . 15
Start and Termination Symbol . 16
Substates . 16

ASN.1 – Abstract Syntax Notation One. 17

The TTCN Notation . 17
TTCN – Tree and Tabular Combined Notation . 18

Tool Support . 18

References . 19

2. Introduction to the SDL Suite. 21
About the SDL Suite. 22
April 2009 IBM Rational SDL and TTCN Suite 6.3 i

IBM Rational . 22
The SDL Suite . 22

Overview of the SDL Suite. 23
Architecture . 23
Starting the SDL Suite tools . 23
Batch Facilities . 25
Licensing Mechanism. 25
Common Tools . 26
The SDL Suite Graphical Tools . 27
Other SDL Suite Tools and Back-End Facilities . 28

Information Management . 32
SDL Diagrams . 32
MSC Diagrams . 33
High-Level MSC Diagrams . 33
Textual SDL and MSC Formats . 33
Object Model Diagrams . 34
State Chart Diagrams . 34
Text Documents . 34
The System File . 34
The Link File . 35
Control Unit Files . 35
Source Management . 36
Target Management . 36

PCs and Workstations. 37
User Interface . 37
Supported UNIX Systems . 37

3. Tutorial: The Editors and the Analyzer . 39
Purpose of This Tutorial . 40

The Demon Game. 41
Behavior of the Demon Game . 41

Starting the SDL Suite . 42
Some Preparatory Work . 42
Starting the SDL Suite . 43
The Organizer Window . 44

Preferences . 46
What You Will Learn . 46
What Are Preferences for? . 46
Displaying and Changing Preferences . 46
Help Preferences. 47
Setting the Default Printer . 48
ii IBM Rational SDL and TTCN Suite 6.3 April 2009

Setting the Drawing Area Size . 49
Saving the Preferences . 49

Creating an SDL Structure . 51
What You Will Learn . 51
Customizing the Organizer Chapters . 51
Creating a System Diagram . 54
Saving the Newly Created System Diagram . 66
Saving the Diagram Structure . 70
More About Saving . 71

Printing the System Diagram . 72
What You Will Learn . 72
How to Print . 72

Checking the System Diagram . 74
What You Will Learn . 74
Running the Analyzer. 74
Looking for Analysis Errors . 76
Correcting Analysis Errors . 77

Creating a New Block Diagram . 79
What You Will Learn . 79
Creating a Block Diagram from the Organizer . 79
Editing the Block Diagram. 83
Working with Multiple Diagrams . 88
Working with Multiple Windows. 89
Resulting Organizer View . 91
Checking the Syntax of the Block Diagram . 91

Creating a Block Diagram From a Copy . 91
What You Will Learn . 91
Creating the Block DemonBlock . 92

Creating a Process Diagram . 96
Editing the Process Demon . 96
Editing the Process Game. 103
Editing the Process Main . 106

More About the Organizer . 107
What You Will Learn . 107
Tree View . 108
Expand / Collapse. 108
Rearranging Diagrams . 109
Diagram Pages . 110
Printing the System. 110

Analyzing the Complete System . 112
April 2009 IBM Rational SDL and TTCN Suite 6.3 iii

What You Will Learn . 112
Enabling Semantic Analysis . 112

Managing Message Sequence Charts . 114
What You Will Learn . 114
Inserting an MSC into the Organizer . 114
Editing an MSC . 118

Using the Index Viewer . 124
What You Will Learn . 124
Starting the Index Viewer. 124
Finding a Definition . 125
Finding References . 127

So Far.... 128

Appendix A: The Definition of the SDL-88 DemonGame 129

Appendix B: The MSC for the DemonGame . 134

4. Tutorial: The SDL Simulator . 135
Purpose of This Tutorial . 136

Generating and Starting a Simulator. 137
What You Will Learn . 137
Generating the Simulator . 137
Starting the Simulator . 139

Executing Transition by Transition . 141
What You Will Learn . 141
Executing the Start Transitions. 141
Sending Signals from the Environment . 143

Viewing the Internal Status . 148
What You Will Learn . 148
Restarting the Simulator . 148
Viewing Process and Signal Queues . 149
Viewing Variables and Process Instances . 151
Other Viewing Options. 153

Dynamic Errors. 153
What You Will Learn . 153
Finding a Dynamic Error . 153

Using Different Trace Values. 155
What You Will Learn . 155
Setting Trace Values. 155
Executing Symbol by Symbol . 157
Hiding Uninteresting Transitions . 158

Looking at the External Behavior. 159
iv IBM Rational SDL and TTCN Suite 6.3 April 2009

What You Will Learn . 159
Setting Trace and Signal Logging . 159
Adding Buttons for Common Commands . 160
Playing the Game . 161
Examining the Signal Log File. 162

Using Breakpoints . 163
What You Will Learn . 163
Setting Up the System . 163
Setting a Symbol Breakpoint . 164
Setting a Transition Breakpoint . 165

Changing the System . 168
What You Will Learn . 168
Some Preparations . 169
Creating a Process . 170
Changing the State of Timers . 172

Generating Message Sequence Charts . 173
What You Will Learn . 173
Initializing the MSC Trace . 173
Tracing the Execution in the MSC . 175
Trace-Back to SDL Diagrams . 179
Ending the MSC Trace . 180

The Coverage Viewer . 181
What You Will Learn . 181
Starting the Coverage Viewer . 181
Using the Coverage Viewer . 181
Augmenting the Coverage . 184
Looking at Coverage Details . 185
Exiting the Simulator UI . 186

So Far.... 186

5. Tutorial: The SDL Explorer . 187
Purpose of This Tutorial . 188

Generating and Starting an SDL Explorer . 189
What You Will Learn . 189
Quick Start of an SDL Explorer . 190
Basics of an SDL Explorer . 192

Navigating in a Behavior Tree . 193
What You Will Learn . 193
Setting Up the Exploration . 193
Using the Navigator . 194

More Tracing and Viewing Possibilities . 200
April 2009 IBM Rational SDL and TTCN Suite 6.3 v

What You Will Learn . 200
Using the View Commands . 200
Using MSC Trace . 201
Going to a State Using Path Commands . 202

Validating an SDL System . 203
What You Will Learn . 203
Performing a Bit State Exploration . 203
Examining Reports . 205
Exploring a Larger State Space . 207
Restricting the State Space . 210
Checking the Validation Coverage. 212
Going to a State Using User-Defined Rules . 213
Performing a Random Walk . 215

Verifying a Message Sequence Chart. 216
What You Will Learn . 216
Verifying a System Level MSC . 216
Exiting the SDL Explorer UI . 220

Using Test Values. 221
What You Will Learn . 221
Using the Automatic Test Value Generation . 221
Changing the Test Values Manually . 224
Exiting the SDL Explorer . 225

So Far.... 225

6. Tutorial: Applying SDL-92 to the DemonGame . 227
Purpose of This Tutorial . 228

Applying SDL-92 to the DemonGame. 229

Some Preparatory Work . 229

Creating a Process Type from a Process. 233
What You Will Learn . 233
Changing into a Process Type . 233
Inserting Gates and Virtual Transitions . 236
The Organizer Structure . 239

Redefining the Properties of a Process Type . 240
What You Will Learn . 240
The Process Type JackpotGame. 240
Changes to the Block GameBlock . 242
Changes to Process Main and System DemonGame . 243
Simulating the JackpotGame . 244

Adding Properties to a Process Type . 246
vi IBM Rational SDL and TTCN Suite 6.3 April 2009

What You Will Learn . 246
The Process Type DoubleGame . 246
Simulating the DoubleGame . 249

Combining the Properties of Two Process Types . 250
What You Will Learn . 250
Working with the Type Viewer . 250
How to Work-Around the Lack for Multiple Inheritance 252

Using Packages and Block Types. 255
What You Will Learn . 255
Package – a Reusable Component . 255
Creating a Package . 256
Using a Package . 259

Reusing Packages . 260
What You will Learn . 260
The Package AdvancedFeatures. 261
Block Type AdvancedGameBlock . 262
Redefined Process Type Main . 263
Creating the System AdvancedDemonGame . 264

Conclusion . 265

More Exercises... . 265

Appendix: Diagrams for the DemonGame Using Packages 266

7. Cmicro Targeting Tutorial . 269
Prerequisites / Abbreviations Used. 270

Introduction . 271
General . 271
Integrations . 271
Target Tester Communication . 271

Prerequisites to the Example . 272
The Pager System . 272
Delivered Files . 273

Targeting. 274
Preparations - File Structure . 274
Using the Targeting Expert . 274
Step 1: Select the Desired Component . 275
Step 2: Select the Type of Integration . 277
Step 3: Configure the Build Process. 287
Step 4: Make the Component . 288

Use of the SDL Target Tester. 289
Differences between SDL Simulator and SDL Target Tester 289
April 2009 IBM Rational SDL and TTCN Suite 6.3 vii

Restrictions in this Tutorial . 289
Testing the Pager System . 290

Run Target EXE without Tester . 294

8. Tutorial: Using ASN.1 Data Types . 297
Introduction. 298

Implementation of ASN.1. 298
Abstract Syntax. 299
Transfer Syntax. 299

Creating the Abstract Syntax . 300
Adding ASN.1 Modules to your Project . 300
Importing ASN.1 Modules . 303
Assigning Values to the Data Types. 305

Creating the Transfer Syntax . 307
Introduction . 307
Generating Template Files - the Organizer . 311
Editing the Generated Files - the Organizer . 313
Generating Template Files - Targeting Expert . 318
Editing the Generated Files - Targeting Expert . 319

Compiling Your Application . 321
Using the edited files - Organizer. 321
Using the edited files - Targeting Expert . 322

Running Your Application . 323

Appendix A. 324

9. Tutorial: Using SDL-2000 features . 331
Purpose of this Tutorial . 332

Introduction. 332
Support in the SDL Suite . 332
Why SDL-2000?. 332

Graphical Design of Data Types. 333
Class Symbols. 333
Association and Aggregation Lines . 333

Creating an SDL Structure . 336
Working with Class Symbols . 336
Working with Lines . 337
Moving Symbols and Lines . 338
Saving the Diagram . 338

Editing a Diagram. 339
Case Sensitivity . 340
viii IBM Rational SDL and TTCN Suite 6.3 April 2009

Limitations . 340
Edit the Diagram. 340

Viewing a Class . 342
Limitations . 342
View the Definition . 342

Textual Algorithms. 343
Textual Algorithms. 343

Operators without Parameters and Operators without Return Results 343

Limitations . 344

An Example of Using Class Symbols. 344

10. Tutorial: Threaded Integration . 347
Introduction . 348

Prerequisites . 348

Description of Example System . 349
The SDL System. 349
The Target Application. 349

Preparations . 352
Copy the Example System . 352
Open the System. 352

Drawing a Deployment Diagram . 353
What You Will Learn . 353
Starting the Deployment Editor . 353
Deploying an SDL System . 353

Using the Targeting Expert. 358
What You Will Learn . 358
Starting the Targeting Expert . 358
Selecting Target Platform. 358
Configuring C Code Generation. 360
Compiling and Linking. 363
The Target System . 366

Running the System . 367
What You Will Learn . 367
An Overview of the System . 367
Using the System . 368
April 2009 IBM Rational SDL and TTCN Suite 6.3 ix

x IBM Rational SDL and TTCN Suite 6.3 April 2009

IBM Rational SDL Suite 6.3

Getting Started
This edition applies to IBM Rational SDL Suite 6.3 and IBM Rational TTCN Suite 6.3 and to all subsequent
releases and modifications until otherwise indicated in new editions.

Copyright Notice
© Copyright IBM Corporation 1993, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the products,
services, or features discussed in this document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any reference to an IBM product, pro-
gram, or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send written license inquir-
ies to the following:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied war-
ranties in certain transactions. Therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials
for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incur-
ring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange
of information between independently created programs and other programs (including this one) and (ii) the mu-
tual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, pay-
ment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
xii IBM Rational SDL Suite 6.3 Getting Started April 2009

Any performance data contained herein was determined in a controlled environment. Therefore, the results ob-
tained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the ca-
pabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.
If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Additional legal notices are described in the legal_information.html file that is included in your software instal-
lation.

Copyright License
This information contains sample application programs in source language, which illustrate programming tech-
niques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application pro-
grams conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as
follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copy-
right IBM Corp. _enter the year or years_.

Trademarks
See http://www.ibm.com/legal/copytrade.html.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at www.ibm.com/legal/copy-
trade.html.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product or service names may be trademarks or service marks of others.
April 2009 IBM Rational SDL Suite 6.3 Getting Started xiii

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

Introduction

About this Manual

This volume, Getting Started, contains a guide that will assist you in
getting familiar with the SDL Suite environment.

We start by giving an introduction to the SDL Suite and the supported
languages. Then follows a number of chapters with hands-on tutorials
on how to use the tools included in the SDL Suite, including a first look
at object-oriented analysis and design. These tutorials use the same sim-
ple example (DemonGame), and can be followed without any previous
knowledge of the SDL Suite.

The remaining chapters contain a number of more advanced tutorials on
how to use ASN.1 data types and Cmicro targeting in practice.

All tutorials build on the knowledge gained in the previous tutorials, so
you should practice them in the order they are included.

Documentation Overview

A general description of the documentation can be found in “Documen-
tation” on page viii in the Release Guide.

Typographic Conventions

The typographic conventions that are used in the documentation are de-
scribed in “Typographic Conventions” on page x in the Release Guide.

How to Contact Customer Support

Detailed contact information for IBM Rational Customer Support can
be found in “How to Contact Customer Support” on page iv in the Re-
lease Guide.
xiv IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
1 Introduction to
Languages and Notations
This chapter begins with a brief introduction to SDL; the language,
its history, its main concepts and application areas.

Next follows an introduction to the MSC language (including High
level MSC), the Object Model notation and State Chart notation,
and the ASN.1 notation.

For the sake of completeness, we have included a brief introduction
to the TTCN notation. More information can be found in chapter 1,
Introduction to Languages and Notations, in the Getting Started.

After reading this chapter, you may want to deepen your
knowledge of SDL. In chapter 1, Object Oriented Design Using SDL,
in the Methodology Guidelines, you will find information about how
to take advantage of the SDL-92 language in an SDL Suite environ-
ment.

Also, a list of recommended literature dealing with various lan-
guage topics is enclosed at the end of this chapter; see “References”
on page 19.
al SDL Suite 6.3 Getting Started gs-s0 1

Chapter 1 Introduction to Languages and Notations
Benefits of a Specification Language
It is widely accepted that the key to successfully developing a system is
to produce a thorough system specification and design. This task re-
quires a suitable specification language, satisfying the following needs:

• A well-defined set of concepts.

• Unambiguous, clear, precise, and concise specifications.

• A basis for verifying specifications with respect to completeness
and correctness.

• A basis for determining whether or not an implementation conforms
to the specifications.

• A basis for determining the consistency of specifications relative to
each other.

• Use of computer-based tools to create, maintain, verify, simulate
and validate specifications.

• Computer support for generating applications without the need of
the traditional coding phase.

The SDL Suite fulfills all the demands outlined in the list above.
2 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 General about the SDL Language
General about the SDL Language
SDL (Specification and Description Language) is a standard language
for specifying and describing systems1. It has been developed and stan-
dardized by ITU-T in the recommendation Z.100.

The development of SDL started in 1972 after a period of research
work. The first version of the language was issued in 1976 and it has
been followed by new versions every fourth year. The latest versions
expanded the language considerably, and today SDL is a “complete”
language in all senses.

In the SDL Suite, there is full support of SDL including some of the
SDL-96 concepts. For more information about the SDL support in the
SDL Suite, see “Compatibility with ITU SDL” on page 2 in chapter 1,
Compatibility Notes, in the Release Guide.

Modularity
An SDL specification/design (a system) consists of a number of inter-
connected modules (blocks). A block can recursively be divided into
more blocks forming a hierarchy of blocks. The channels define the
communication paths through which the blocks communicate with each
other or with the environment. Each channel usually contains an un-
bounded FIFO queue that contain the signals that are transported on the
channel. The behavior of the leaf blocks is described by one or more
communicating processes. The processes are described by extended fi-
nite state machines.

Object Oriented Design
SDL furthermore supports object-oriented design by a type2 concept
that allows specialization and inheritance to be used for most of the SDL
concepts, like blocks, processes, data types, etc. The obvious advantage
is the possibility to design compact systems and to reuse components
which in turn reduces the required effort to maintain a system.

1. No distinction is made in SDL between the terms “specification” and “descrip-
tion”, although they generally have different meanings in SDL applications.

2. SDL has adopted the term type which corresponds to the term class used in many
of the OO notations and programming languages.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 3

Chapter 1 Introduction to Languages and Notations
Graphical and Textual Notations
SDL gives a choice of two equivalent syntactic forms; a Graphical Rep-
resentation (SDL/GR) and a textual Phrasal Representation (SDL/PR).
The SDL Suite supports both notations.

Application Areas
Currently, SDL is mainly known within the telecommunication indus-
try, but it also has broader areas of application and is now gaining ac-
ceptance within the real-time software industry. The application areas
may be summarized as follows:

• Type of system described by SDL: Real-time, interactive, distribut-
ed.

• Type of information provided by SDL: Behavior and structure.

• Level of abstraction supported by SDL: From system overview to
functional detail.

More about SDL

Theoretical Model
The basic theoretical model of an SDL system consists of a set of ex-
tended finite state machines (FSM) that run in parallel. These machines
are independent of each other and communicate with discrete signals.

An SDL system consists of the following components:

• Structure
– hierarchical decomposition with system, block, process, and

procedure as the main building blocks
• Communication

– asynchronous signals with optional signal parameters
– remote procedure calls for synchronous communication

• Behavior
– processes

• Data
– abstract data types that can be inherited, generalized and spe-

cialized
– ASN.1 data types according to Z.105

• Type Concept
– describing type hierarchies with inheritance, generalization and

specialization
4 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More about SDL
Structure
Figure 1 shows the four main hierarchical levels in SDL: system, block,
process, and procedure.

In addition, there is a service concept that can be used within processes.
Procedures can be used in both processes and services.

Figure 1: The architectural view of an SDL system

......
System Example

Bl1

Bl2

C1

.....

C2

C3

.....

.....

Block Bl1
......

Proc1

Proc2

(1,1)

(0,5)

R1

R2

R3

.....

.....

.....

Process Proc2
......

 (0,5)

State1

Pr1

....

Pr1

Procedure Pr1
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 5

Chapter 1 Introduction to Languages and Notations
Communication

In SDL, there is no global data. This approach requires that information
between processes, or between processes and the environment, must be
sent with signals and optional signal parameters. Signals are sent asyn-
chronously, that is, the sending process continues executing without
waiting for an acknowledgment from the receiving process.

Synchronous communication is possible via a shorthand, remote proce-
dure call. This shorthand is transformed to signal sending with an extra
signal for the acknowledgment.

Figure 2: Sending signals between two processes

Block Bl1

SIGNAL

Proc1
Proc2

(1,1) (1,1)R1 R2
.....

Sig1

Sig1(Integer);

Signal declaration

Signal listSending process Receiving

Proc1 Proc2

Sig1
(5)

Sig1
(Number)

DCL
Number Integer;

Output symbol Input symbol

process
6 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More about SDL
Behavior
The dynamic behavior in an SDL system is described in the processes.
The system/block hierarchy is only a static description of the system
structure. Processes in SDL can be created at system start, or created
and terminated dynamically at runtime. More than one instance of a
process can exist. Each instance has a unique process identifier (PId).
This makes it possible to send signals to individual instances of a pro-
cess. The concept of processes and process instances that work autono-
mously and concurrently makes SDL a true real-time language.

Data
The abstract data types concept used within SDL is very well suited to
a specification language. An abstract data type is a data type with no
specified data structure. Instead, it specifies a set of values, a set of op-
erations allowed on the data type and a set of equations that the opera-
tions must fulfil. This approach makes it very simple to map an SDL
data type to data types used in other high-level languages.

Alternatively, ASN.1 types can be used in SDL. This is useful when
specifying or implementing telecommunication applications that make
use of ASN.1. ITU-T Recommendation Z.105 defines how ASN.1 is
used in combination with SDL. For more information on ASN.1, see
“ASN.1 – Abstract Syntax Notation One” on page 17.

Figure 3: Creation of a new process instance at runtime

Process Proc2
......

 (0,5)

State1

Pr1

....

Create request
(creation of a new
process instance
of type Pr1)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 7

Chapter 1 Introduction to Languages and Notations
Type Concept
The object-oriented concepts of SDL give you powerful tools for struc-
turing and reuse. The concept is based on type definitions. All structural
building blocks can be typed. Type definitions can be placed anywhere
in the system, and also in packages outside the system.

One of the major benefits of using an object oriented language is the
possibility to create new objects by adding new properties to existing
objects, or to redefine properties of existing objects. This is what is
commonly referred to as specialization.

In SDL, specialization of types can be accomplished in two ways:

• A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process type, add new
processes to a block type, etc.

• A subtype may redefine virtual types and virtual transitions defined
in the supertype. It is possible to redefine the contents of a transition
in a process type, to redefine the contents/structure of a block type,
etc.

Figure 4: Abstract Data Type example

NEWTYPE Boolean
 LITERALS
True, False;
 OPERATORS
 "NOT"
:Boolean -
>Boolean;
 "="
:Boolean,Boolea
n ->Boolean;

 AXIOMS
 "NOT"(True)
=False;

"NOT"(False)

Set of equations that the
OPERATORS must ad-
here to

Set of values

Set of allowed operations
(OPERATORS)
8 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Message Sequence Chart Language
The Message Sequence Chart Language

History
During the last years, ITU has made a considerable effort in standardiz-
ing a formal language which defines Message Sequence Charts (MSC).
In the summer of 1992, a first version of the MSC recommendation
Z.120 was published.

As defined in the recommendation Z.120, the MSC language offers a
powerful complement to SDL in describing the dynamic behavior of an
SDL system. Its graphical representation is well suited for presenting a
complex dynamic behavior in a clear and unambiguous way which is
easy to understand.

There is an extended version of the MSC standard, called MSC’96, as
defined in the current Z.120. In the SDL Suite, there is support for the
most important MSC’96 extensions. See “Compatibility with ITU
MSC” on page 5 in chapter 1, Compatibility Notes, in the Release Guide
for more information.

Plain MSC
An MSC describes one or more traces from one node to another node of
an abstract communication tree generated from an SDL specification.

Basically, the information interchange is carried out by sending mes-
sages from one instance to another (see Figure 5). In an SDL specifica-
tion, those messages would coincide with the signals which are sent
from one process and consumed in another process. The instances
would correspond to any part of the specification (an SDL system, a
block or a process).

An MSC can reference another MSC using an MSC reference symbol.
MSC references can for example be used to have one MSC describing
an initialization sequence and then reference this MSC from a number
of other MSCs.

The reference symbol may not only refer to an MSC but can also con-
tain MSC reference expressions that reference more than one MSC.
This construct gives a very compact MSC representation and it also pro-
vides an excellent means for reusability of certain MSCs.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 9

Chapter 1 Introduction to Languages and Notations
By using inline operator expressions, several MSC scenarios can be
composed in a single diagram. The same structures of events can be ex-
pressed as with MSC reference symbols.

High-Level MSC
A high-level MSC (HMSC) provides a means to graphically define how
a set of MSCs can be combined. Contrary to plain MSCs, instances and
messages are not shown within an HMSC, but it focus completely on
the composition aspects. HMSCs can be hierarchically structured, i.e. it
is possible to refine HMSCs by other HMSCs. The power of the MSC
language is considerably improved with the new concepts introduced
with HMSCs. It is e.g. much easier to specify a main scenario together
with all accompanying exceptions.

Figure 5: An example of a simple Message Sequence Chart

Message Instance
10 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Message Sequence Chart Language
Graphical and Textual Notations
The MSC language supports two notations which are equivalent. Be-
sides the graphical notation (MSC-GR), a textual notation (MSC-PR) is
standardized since the autumn of 1994.

Application Areas
Among the various application areas, we have selected the following:

• Producing documents with the purpose of defining the requirements
of a system.

• Facilitating the design phase, by identifying and documenting a
multitude of dynamic cases before starting designing with SDL.

• Presenting the execution of a simulation as a graphical output which
is easy to understand and which can later on be verified against a
reference. Message Sequence Charts can be verified against an SDL
system using the SDL Suite.

• Presenting the execution trace of an SDL system during an interac-
tive simulation and generation of reports.

Figure 6: Example of an HMSC

 Disconnected

Connection_Request

 Wait_For_Response

Connection_Confirm Connection_Rejected

 Connected
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 11

Chapter 1 Introduction to Languages and Notations
Object Model Notation
The object model notation used in the SDL Suite is an adaptation of the
notations used in OMT (Object Modeling Technique) and UML (Uni-
fied Modeling Language). The OMT/UML notation is a commonly ac-
cepted graphical notation that is used for drawing diagrams that de-
scribe objects and the relations between them.

Class
The most important concept in an object model is the class definition.
A class is a description of a group of similar objects that share the prop-
erties defined by the class. The properties of a class are described with
attributes and operations. The object model notation for a class is exem-
plified in Figure 7, where the second class definition also shows how to
define attributes and operations.

Classes may inherit attributes and operations from other classes, known
as specialization and generalization. The object model notation for this
is shown in Figure 8.

Figure 7: A collapsed class symbol and a class symbol
with attributes and operations

Class1

attrib1
attrib2:atype

op1
op2 (arg1: type1): resulttype

Class1
12 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Object Model Notation
Relations and Multiplicity
Classes may be physically or logically related to each other. This is
shown in the object model by means of associations as shown in
Figure 9. An association may have a name and/or the endpoints of the
association may be labeled by the role of this endpoint.

Aggregation is special kind of association, indicating a “consists of” re-
lation. It has its own notation as shown in Figure 10.

Figure 8: inheritance between classes

Figure 9: Associations between classes

SuperClass

SubClass1 SubClass2

Class1

Class2 Class3

AssociationName

Class3sRole

Class1sRole
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 13

Chapter 1 Introduction to Languages and Notations
The endpoints of associations and aggregations may have a multiplicity
according to the following:

• No multiplicity (exactly one)
• * (zero or more)
• 0,1 (zero or one)
• 1..* (one or more)
• 1..3,6,10..* (several intervals: 1, 2, 3, 6, 10 or more)

Objects
Besides class definitions, object models may also contain objects (in-
stances) and their relations. The relation that exists between objects are
links, which corresponds to associations for classes. The object symbol
has one field containing the object name and a reference to the class
(“name:class”), and an attribute field where constant or default values
can be assigned to the object attributes. See Figure 11.

Figure 10: Aggregation

Figure 11: Objects related by links

Assembly

Part1 Part2

1..* *

c:ctrl

d1:door d2:door

DoorToCtrl DoorToCtrl

nr=1 nr=2

nrof doors=2
14 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 State Chart Notation
State Chart Notation
The state chart notation used in the SDL Suite is a subset of the nota-
tions used in OMT (Object Modeling Technique) and UML (Unified
Modeling Language).

A state chart model is suitable to use together with class and object
models. The descriptions of the behavior of a class in a class diagram is
collected into a state chart which describes the dynamic view of the
model by means of states and transitions between states.

State
A state symbol describes the name of the class, state variables, and in-
ternal activities. Internal activities are taking place upon entering the
state, while in the state and when exiting the state. Activities are de-
scribed by specifying events and associated actions. Figure 12 shows a
collapsed state and a state with events.

Transition
A transition symbol is an arrow which typically connects two state sym-
bols. A transition is triggered by an event together with a condition, and
a transition then executes an action; see Figure 13.

Figure 12: A collapsed state symbol and a state symbol
with events

State1

State1

entry / action1
exit / action2
do / action3
event1 / action1
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 15

Chapter 1 Introduction to Languages and Notations
Start and Termination Symbol
The start symbol denotes the starting point of a state machine described
by a state chart and the termination symbol denotes the point of termi-
nation of a state machine. Figure 14 shows a simple state machine, de-
scribing the behavior of a door, including start and termination symbols.

Substates
States may be refined into nested diagrams of sub-states, or hierarchical
states. The state represents a simplification of more complex behavior
expressed in the nested diagram.

Figure 13: The transition from state1 to state2 is triggered by the event
my_event and the condition that attr1 is less than attr2

Figure 14: A simple state chart with a start symbol and a termination symbol

Figure 15: A state with substates

state1

state2

my_event(param1) [attr1 < attr2] / my_action^object1.notify)

Unlocked

Locked

DoorOpen

Unlock Lock

CloseOpen

shutdown

state2

state1

substate2

substate1

event3

event1

event2
16 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 ASN.1 – Abstract Syntax Notation One
ASN.1 – Abstract Syntax Notation One
ASN.1 (ITU-T Recommendation X.680-683) is a generic notation stan-
dardized by ISO and ITU for the specification of data types and values.
The general idea behind ASN.1 is to describe data type information in-
dependent of the transfer format.

The original use of ASN.1 has been the information description in high-
level protocols like FTAM, CMIP, MHS, DS, VT, etc. Today it is also
frequently used in numerous other telecommunication protocols and ap-
plications.

ASN.1 data types and values can be defined in modules that can be used
in TTCN and in SDL. This makes it possible to use the data types of an
application both in the SDL specification and in the TTCN test suite,
which assures consistency between the information transferred in the
system specification and the test specification.

The TTCN Notation
As the use of standards within the world of Information Technology and
Telecommunications has increased tremendously during the last de-
cade, so has the need for methods and tools that support the verification
and validation of both the standards and their actual implementations.

This need has been addressed by ISO and ITU in the “Framework and
Methodology for Conformance Testing of Implementations of OSI and
ITU Protocols”. The framework has for some time had the status of an
international standard as ISO/IEC 9646 (or X.290).

The standard introduces the concept of abstract test suites (consisting of
abstract test cases). This is a description of a set of tests that should be
executed for a system. The tests should be described using a black-box
model, i.e. only control and observation using the available interfaces.

The abstract tests are to be described using a formal language rather
than using informal natural language. As part of the standard the lan-
guage TTCN is defined in order to describe the abstract tests.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 17

Chapter 1 Introduction to Languages and Notations
TTCN – Tree and Tabular Combined Notation
With TTCN a test suite is specified. This is a collection of various test
cases together with all the declarations and components it needs.

Each test case is described as an event tree. In this tree behaviors like
“First we send A, then either B or C will be received, if it was B we will
send D...” are described. The new version of TTCN allows several event
trees to be running concurrently.

TTCN is abstract in the sense of being independent of the actual test
systems. This means that a test suite in TTCN for one application (pro-
tocol, system...) can be used in any test environment for that applica-
tion.

The use of TTCN has increased tremendously during the last years. This
has been augmented by the significant amount of TTCN test suites re-
leased by various standardization bodies. TTCN is however not only
used in standardization work. The language is very suitable for all kinds
of functional testing for communicating systems. This has led to a wide
usage also within the industry.

The specifications of the messages being sent and received can be de-
fined using either the built-in form of TTCN or by using ASN.1.

Tool Support
IBM Rational has been a firm supporter of SDL for a long time. We co-
operate with ITU in the on-going work of improving the language and
with ETSI in using SDL for defining protocol standards. We initiate and
participate in international research programs on how to use the lan-
guage in different application areas (such as the European Community
programs RACE, ESPRIT and EUREKA). Our experience and know-
how in these areas is put to practice when we develop software engi-
neering tools that support the languages.

A tool for a specification language must be able to create, maintain, and
analyze a specification. It is also fundamental that the tool can simulate,
validate and generate application code to other high level languages.

The SDL Suite can do all of this.
18 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 References
References
[1] ITU Recommendation Z.100:
Specification and Description Language (SDL)
1994, ITU, General Secretariat - Sales Section,
Places des Nations, CH-1211 Geneva 20

[2] Annex A, B, C1, C2 D, E, F1, F2 and F3 to Z.100, as above

[3] ITU Recommendation Z.120:
Message Sequence Charts (MSC)
1992, ITU General Secretariat - Sales Section
Place des Nations, CH-1211 Geneva 20

[4] Jan Ellsberger, Dieter Hogrefe, Amardeo Sarma:
SDL – Formal Object-oriented Language for Communicating Systems.
Prentice Hall Europe (1997)
ISBN 0-13-632886-5

[5] A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed, J.R.W.
Smith:
Systems Engineering Using SDL-92.
Elsevier (1994)
ISBN 0-444-89872-7

[6] Ferenc Belina, Dieter Hogrefe, Amardeo Sarma:
SDL with Applications from Protocol Specification.
Prentice Hall International (UK) Ltd. (1991)
ISBN 0-13-785890-6

[7] Belina, Hogrefe:
The CCITT Specification and Description Language SDL
Computer Networks and ISDN System.
North-Holland, Amsterdam (1988/1989)

[8] Bræk, Gorman, Haugen, Melby, Møller-Pedersen, Sanders:
TIMe - The Integrated Method
SINTEF 1998
http://www.sintef.no/time

[9] Færgemand, Marques (editors):
SDL 89: The language at work.
Proceedings of the Fourth SDL Forum,
North Holland, Amsterdam (1989)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 19

Chapter 1 Introduction to Languages and Notations
[10] Færgemand, Reed (editors):
SDL 91: Evolving Methods.
Proceedings of the Fifth SDL Forum,
North-Holland, Amsterdam (1991)

[11] Færgemand, Sarma (editors):
SDL 93: Using Objects.
Proceedings of the Sixth SDL Forum,
North-Holland, Amsterdam (1993)

[12] Haugen, Møller-Pedersen:
Tutorial on object-oriented SDL.
SISU Project Report 91002
Norwegian Computer Center
PO Box 114, N-0314 Oslo 3, Norway

[13] Behcet Sarikaya:
Principles of Protocol Engineering and Conformance Testing.
Simon & Schuster International (1992)

[14] Sarraco, Smith, Reed:
Telecommunications system engineering using SDL.
North-Holland, Amsterdam (1989)

[15] K.J. Turner (editor):
Using Formal Description Techniques -
An Introduction to Estelle, LOTOS and SDL.
John Wiley & Sons (1992)

[16] ITU Recommendation X.680-683
Abstract Syntax Notation One (ASN.1)
1994, ITU, General Secretariat- Sales Section,
Places des Nations, CH-1211 Geneva 20

[17] ITU Recommendation Z.105
SDL Combined with ASN.1 (SDL/ASN.1)
1995, ITU, General Secretariat- Sales Section,
Places des Nations, CH-1211 Geneva 20
20 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
2 Introduction to the SDL
Suite
This chapter contains a brief introduction to the SDL Suite and to
the functionality of its components.

After reading this chapter, you may want to familiarize yourself
with the SDL Suite: starting the tools, proceeding with a small ex-
ample, or reading about what is new in this release in comparison
to earlier versions. You are then recommended to study the follow-
ing chapters:

• For a beginner’s tutorial on the SDL Suite: chapter 3, Tutorial:
The Editors and the Analyzer, in this volume.

• For news compared to previous versions: chapter 2, Release
Notes, in the Release Guide.
al SDL Suite 6.3 Getting Started gs-s0 21

Chapter 2 Introduction to the SDL Suite
About the SDL Suite

IBM Rational
The SDL Suite is developed and marketed by IBM Rational. Our com-
pany has been a firm supporter of the SDL, MSC and UML languages
for a long time. We cooperate with ITU and OMG in the ongoing work
of improving the languages and with ETSI in defining international
standards in the field of communication protocols.

We initiate and participate in international research programs on how to
use the languages in different application areas (such as the European
Community programs RACE, ESPRIT and EUREKA, as well as the
Swedish national IT program).

Our experience and know-how in these areas is put to practice when we
develop software engineering tools that support the languages.

The SDL Suite
Tools for design and specification languages must be able to create,
maintain, and verify a specification with respect to the language syntax
and semantics. It is also fundamental that the tools can simulate, vali-
date and generate application code to other high level languages.

To be able to perform a complete development cycle, the tool should
support early analysis phases, and the move from object-oriented anal-
ysis to SDL design.

The tool should be able to export and import information from other
SDL tools. Major documentation standards or de-facto standards should
be supported.

The tool should provide an intuitive and consistent graphical user inter-
face which reduces learning time and makes it easy to work with the
tool. Besides the graphical user interface, a batch facility should allow
to process a large amount of information without user interaction.

A powerful, context-sensitive Help facility should be provided, freeing
you from time-consuming browsing through user documentation in
search for the topic of interest.

The SDL Suite can do all of this, and much more.
22 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Overview of the SDL Suite
Overview of the SDL Suite

Architecture
The SDL Suite is a member of a wider tool family, which also includes
the TTCN Suite and Logiscope.

The SDL Suite consist of a number of separate tools that process infor-
mation. The tools are integrated using a selective broadcast integration
mechanism, making it possible to design a highly integrated system
from separate tools. This approach also makes it possible to add new
tools without creating any conflicts with the existing tools. In addition,
the integration between two separate tools can be easily enhanced, and
tools can communicate with each other over a network.

The interface that ties the tools and editors is called The PostMaster.
The parts of the Postmaster interface that are of interest for the users,
are documented so that you can read about how to integrate your own
tools with SDL Suite.

Starting the SDL Suite tools
The SDL Suite components are normally started by using the sdt start
script in the bin directory of the installation. This script can take a num-
ber of options:

• sdt -reuse

If there is a running SDL Suite session, then the Organizer from that
session is displayed. If there is no running SDL Suite session, then
a new session is started.

• sdt <system file>

Starts the SDL Suite components and loads the specified system
file.

• sdt <diagram file>

Starts the SDL Suite components and loads the specified diagram
file in an editor.

• sdt <archive file> [<unpack directory>]
Starts the SDL Suite components, unpacks the specified archive
file, and loads any system file found in the archive file. The archive
file is unpacked in the specified unpack directory. If no directory is
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 23

Chapter 2 Introduction to the SDL Suite
specified, then the Organizer will display a dialog, asking for a di-
rectory to unpack in.

• On UNIX,sdt -fg
Normally, the sdt start script immediately gives the user a new com-
mand line prompt for other commands. When sdt -fg or is used, the
start script will wait until the SDL Suite is closed down before giv-
ing the user a new command line prompt.

• sdt -noclients

This variant starts the Postmaster without starting any clients/appli-
cations such as the Organizer. Later, Postmaster clients can be start-
ed and attached to the postmaster. To attach to an existing postmas-
ter, start a client with -post. Read more about this in “Run-Time
Considerations” on page 515 in chapter 10, The PostMaster.

• sdt -grdiff [-notmoved] v1.ssy v2.ssy [[-original

o.ssy] -mergeto r.ssy]

Starts the SDL Suite components and immediately invokes the
Compare Diagrams operation (see “Compare Diagrams” on page
2027 in chapter 43, Using the SDL Editor and “Compare Diagrams”
on page 1690 in chapter 39, Using Diagram Editors), comparing the
SDL diagram files v1.ssy and v2.ssy. The command can also be
used to compare HMSC or MSC diagrams. The use of the -not-
moved option corresponds to setting the option Ignore moved or re-
sized objects to off. (Note that if you use the -n option on UNIX it
will be processed by the X window system) Normally this means
that moved and resized symbols will not be detected as being differ-
ent. When the operation is finished, the SDL Suite is closed down.
If the -mergeto option is used, the Merge Diagrams operation is
used instead. (See “Merge Diagrams” on page 2028 in chapter 43,
Using the SDL Editor and “Merge Diagrams” on page 1690 in chap-
ter 39, Using Diagram Editors) and the merge result diagram is
saved in r.ssy. If the -original option is used as well, then the merge
operation tries to auto-merge differences using the o.ssy file as a
guide for deciding how to merge v1.ssy and v2.ssy. o.ssy should
point out an original diagram file version that both v1.ssy and v2.ssy
are derived from. When using -grdiff to start a merge operation from
another tool (such as a configuration management tool), combine -
grdiff with -fg to have the other tool wait with processing the merge
result file until after the merge operation is finished.
24 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Overview of the SDL Suite
• sdt -sdtdiff v1.sdt v2.sdt [-mergeto r.sdt]

Starts the SDL Suite components and immediately invokes the
Compare System operation (see “Compare System” on page 74 in
chapter 2, The Organizer, comparing the system files v1.sdt and
v2.sdt. When the operation is finished, the SDL Suite is closed
down. If the -mergeto option is used, the user will be prompted to
save the merge result when the operation is finished, and r.sdt is
used as a proposed file name.

Batch Facilities
The Batch Facilities are commands that you type from the OS prompt.
These facilities take advantage of the Postmaster and pass messages to
the tools, ordering the individual tools to process information as re-
quired. The batch facilities support the following operations:

• Printing (to file or to printer)

• Analyzing (typically syntactic and semantic check of an SDL sys-
tem)

• Making (for instance building an application for target environ-
ment)

• Comparing SDL, MSC or HMSC diagrams (with a textual report)

Licensing Mechanism
The software license server controls the licensing of the tools included
in SDL Suite. This is performed through a floating license mechanism
based on a third party software, FLEXnet Publisher™. The current li-
cense numbers along with a key are stored on a text file, which is dis-
tributed at installation of the software. This provides a flexible way of
upgrading licences and adding new license agreements, as well as al-
lowing you to keep track of the actual usage of the tools you have pur-
chased.

FLEXnet supports multiple tools (even from different tool manufactur-
ers) sharing the same license server, so IBM Rational should not cause
any problems when installing it into your computer environment.

For increased flexibility in the use of licenses and to prevent started but
unused tools from holding licenses, an optional timeout feature can be
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 25

Chapter 2 Introduction to the SDL Suite
enabled. This will automatically release licenses when a user has been
idle during a selectable interval.

For more information on license mechanisms, see chapter 6, Under-
standing IBM Rational Licenses, in the Installation Guide.

Common Tools
The SDL Suite shares a set of tools common to SDL Suite and TTCN
Suite:

• The Organizer features a graphical view of all diagrams and docu-
ments making up a system. This may include SDL hierarchies, Mes-
sage Sequence Charts, Object Model diagrams, State Charts, High-
level MSCs, TTCN documents and text documents. The view may
be freely organized into chapters and modules according to your
preference.

Furthermore, the Organizer manages the other tools, taking advan-
tage of their respective functionality when needed and thus provid-
ing the feeling of a truly integrated tool set.

• The Link Manager and The Entity Dictionary maintains and visual-
izes Implinks and Endpoints. Implinks (short for implementation
links) are used to trace the implementation and design decisions for
concepts and objects between different phases in the development
process. The link endpoints are texts and objects created in the edi-
tors described below. The Link Manager and the Entity Dictionary
can be started from all of the editors.

• The Preference Manager allows you to set up or change the behav-
ior of the tools by customizing the values of preference parameters.
It is possible to specify whether a customized behavior should be
project-wide or even company-wide, or if an individual user should
be allowed to customize some behavior.

• When you are Printing Documents and Diagrams, there are various
options that allow you to customize the printouts so that they fit in
your documentation environment. Except for when you print TTCN
documents, it is possible to generate, PostScript, encapsulated Post-
Script, FrameMaker™, Interleaf™ and web files. In Windows, you
can also print to any printer you have set up in Microsoft Windows.
26 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Overview of the SDL Suite
• The on-line help provides access to help on tools, windows, dialogs
and commands. The on-line help is in HTML-format, featuring hy-
pertext links and navigation support. The PostScript files that were
used when printing this manual are also enclosed in the distribution.
You are free to produce additional hard-printed copies of the man-
ual pages that are of interest.

• The PostMaster implements the integration mechanism that ties the
tools together. The public parts of the PostMaster interface are doc-
umented, allowing you to integrate your own tools with SDL Suite
and TTCN Suite tools and the information they manage.

The SDL Suite Graphical Tools
The SDL Suite comprises the following graphical tools:

• The diagram editors are used for creating, editing and printing Ob-
ject Model, State Charts, Message Sequence Charts and High-level
Message Sequence Charts diagrams.

The OM Editor uses the full graphical notations of OMT/UML. It
keeps track of all class and object definitions with the same name in
a scope of OM diagrams, and supports the merging of these defini-
tions for maintaining a combined view of a class. The SC and
HMSC editors work in a similar way.

The MSC Editor uses the graphical notation defined in the standard
Z.120. Also, it can serve as a powerful graphical trace tool when you
simulate and validate a system specified in SDL. MSCs can also be
verified for consistency with an SDL system when you use the SDL
Explorer.

• The SDL Editor is used for creating, editing and printing specifica-
tions and descriptions using the graphical SDL notation defined in
the standard Z.100. The SDL Editor also performs various syntax
checks at editing time.

– Advanced functions include a context-sensitive grammar help
and signal dictionary. When you edit an SDL diagram, the sig-
nal dictionary is automatically updated to contain all SDL sig-
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 27

Chapter 2 Introduction to the SDL Suite
nals that you add to a system and provides immediate access to
them.

– The SDL Editor can also display Overview Diagrams of the
SDL system, where the diagrams are displayed in a nested fash-
ion.

• The SDL Type Viewer visualizes the impact of the inheritance and
specialization mechanisms in your SDL-92 system. The Type
Viewer produces a graphical tree that is of great assistance to under-
stand and take full advantage of the SDL types1 that you have de-
fined in an SDL system.

• The SDL Index Viewer presents listings of definitions and cross-ref-
erences in a clear and easy-to-understand graphical notation. The
Index Viewer is provided with filtering and navigation functions,
with a trace-back to the source SDL or MSC diagrams.

• The SDL Coverage Viewer is a test coverage and profiling tool that
displays the results of a simulation or validation as a graphical tran-
sition or symbol tree. The tool can present an overview of the sys-
tem, coverage or a detailed view on a part of the system.

Other SDL Suite Tools and Back-End Facilities
The following additional tools and facilities are available:

• The Text Editor is used for creating, editing and printing ASCII text
documents. The text documents can be textual requirements, use
cases and other textual documentation used in the development pro-
cess. The Text Editor can also be used for writing ASN.1 or C code
to be linked to the SDL system.

• The ADT Library (library of Abstract Data Types) features a num-
ber of general ADTs that provide the basic services that are often
needed when you design an SDL system. The ADT library is dis-
tributed in source code so you can tailor the ADTs to fit your spe-
cific requirements, if needed.

• The SDL Analyzer performs several functions. It performs syntactic
and semantic analysis of your SDL descriptions, generates error re-
ports and warnings in appropriate cases, and has the ability to pro-

1. The SDL term type corresponds to the term class, used in many OO notations
28 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Overview of the SDL Suite
duce information about definitions and cross references in an SDL
system. The Analyzer also converts SDL information from the
Graphical Representation (SDL/GR) to the textual Phrase Repre-
sentation (SDL/PR). The reverse conversion is also possible, allow-
ing you for instance to import PR files from other tools supporting
SDL.

• The Cadvanced/Cbasic SDL to C Compiler transforms your SDL
system into a number of C source files that are compiled and linked
with an SDL Suite run-time library. The C code can be used for a
number of purposes, depending on what libraries are available in
your configuration (see below). The SDL to C Compiler is available
in a Cbasic (for simulation and validation purposes), and a Cad-
vanced (for building any kind of application) version.

• The SDL Simulator library allows you to make an executable pro-
gram, a simulator, which helps you to understand and debug the be-
havior of a system specification. The simulator can be controlled
from a graphical user interface (SimUI).

You can choose to focus on the external view of a system specifica-
tion, where you are interested in the signal interface, or on the inter-
nal behavior of a system specification. The execution of a simulator
can be traced in a graphical mode in the source SDL diagrams and
can be logged graphically in terms of Message Sequence Charts.
Target simulation is also supported.

• The SDL Explorer library allows you to make an SDL Explorer, an
advanced “self-exploring” simulator that may be used for finding
errors and inconsistencies in an SDL system and for verifying that
a system is consistent with a Message Sequence Chart. The Explor-
er can be controlled from a graphical user interface (ExpUI).

• The Performance Library allows you to create a performance model
of your SDL system that you run on your host computer. The library
is optimized with respect to performance, so that a large amount of
statistical data can be produced during a reasonable execution time.

• The Cadvanced SDL to C Compiler can be used for Building an Ap-
plication for both host and target environments. Predefined Appli-
cation libraries are available for specific host environments. The
Master Library is the SDL Suite run-time library in source code for-
mat, which can be customized to fit different needs and operating
systems.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 29

Chapter 2 Introduction to the SDL Suite
Integration with Operating Systems supports most of the commer-
cially available real-time operating systems. You can also build ap-
plications where the runtime library schedules the system and sets
the real-time pace.
30 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Overview of the SDL Suite
• The Cmicro SDL to C Compiler is designed to meet the needs of
small to mid-range microcomputer controlled applications. It trans-
lates an SDL system into optimized and compact C code with highly
reduced memory requirements. The Cmicro SDL to C Compiler is
part of the Cmicro Package which in addition consists of the Cmicro
Library and the SDL Target Tester. The Cmicro Package can be or-
dered separately.

– The Cmicro Library is the “virtual SDL machine” needed to
build an executable from the generated Cmicro Code.

– The SDL Target Tester allows testing and debugging of the gen-
erated SDL system while it is running on a target. A prerequisite
is a communications link to a host system. The SDL Target
Tester is an optional part of the Cmicro Package.

• TTCN Test Suite Generation is provided by two features: TTCN
Link and Autolink. They provide a means to check the consistency
between an SDL system managed by the SDL Suite and a test spec-
ification, expressed in TTCN1 managed by the TTCN Suite. TTCN
Link generates the declarations of the test specification automatical-
ly. In the TTCN Suite, there is direct access to the SDL system spec-
ification and you can interactively build test cases. Autolink is a fea-
ture of the SDL Explorer, and can generate entire test suites from an
SDL specification.

1. TTCN stands for Tree and Tabular Combined Notation. It is an ISO standard that
is used to describe a test specification.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 31

Chapter 2 Introduction to the SDL Suite
Information Management
In order to properly use SDL Suite, you need to understand the basics
for how the information is organized.

SDL Diagrams
The SDL Suite primarily handles SDL information in the graphical rep-
resentation, SDL/GR. The major advantage that follows this approach
is that you are free to apply any graphical style guide to your diagrams
since the SDL Suite lets you position symbols and shape lines the way
you like.

Each SDL diagram consists of a number of diagram pages. An SDL di-
agram page may contain references to other SDL diagrams. This allows
you to build a hierarchical structure which adheres to the SDL syntax
rules. See Figure 16.

Each diagram stored on its own individual file. An SDL structure is
built up from a number of these SDL files. These files are logically tied
together by the SDL Suite components, in order to constitute a coherent
SDL structure. This process is managed by the Organizer. The SDL
Suite can manage several separate SDL structures at the same time.

You may also include SDL/PR files into an SDL/GR structure. Trans-
formation of SDL/GR to SDL/PR and vice versa is supported.

Figure 16: Organization of SDL information

Diagram

Page

Diagram

Page

Diagram

Idle

On

Compare_On

Page

Block Process
32 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Information Management
MSC Diagrams
Message Sequence Charts are mainly handled in the graphical represen-
tation, MSC/GR.

In contrast to SDL diagrams, MSCs are not paginated and cannot build
a hierarchical structure. However, an MSC diagram can reference other
MSCs (or HMSCs, see below), but without implying any structure be-
tween them.

MSC diagrams may be managed as entities of their own. The Organizer
also supports including MSCs in an SDL structure using the concept of
associated documents.

SDL Suite allows reading and writing of MSCs expressed in the textual
form, MSC/PR. Both the instance-oriented and event-oriented forms
are supported, according to the recommendation.

High-Level MSC Diagrams
In contrast to “plain” MSCs, High-level MSCs (HMSCs) are paginated,
but they cannot build a hierarchical structure visible in the Organizer.
However, an HMSC diagram can reference other HMSCs or MSCs, but
without implying any structure between them.

Textual SDL and MSC Formats
SDL Suite has the ability to read and write SDL and MSC textual files,
SDL/PR and MSC/PR. The primary purpose is to enable importing and
exporting of SDL and MSC information, rather than to provide an alter-
native storage format, since the layout and exact appearance of a dia-
gram is lost when stored in PR format and read back again.

SDL Suite also use the PR formats as temporary storage formats when
processing information.

SDL/GR diagrams can be converted to and from CIF (Common Inter-
change Format) files, by using CIF converters supplied with the SDL
Suite. CIF is an extension to SDL/PR that also stores the graphical lay-
out information. However, CIF files cannot be managed directly by the
SDL Suite.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 33

Chapter 2 Introduction to the SDL Suite
Object Model Diagrams
Object Model (OM) diagrams may be managed as entities of their own,
or grouped together using the concept of modules in the Organizer.

OM diagrams are paginated, but does not contain any structure informa-
tion. However, a scope concept is used to allow the same object class to
be defined in more than one OM page or diagram. All diagrams and
pages within the scope are considered when the complete definition of
a class is needed. OM diagram belong to the same scope if they are man-
aged in the same module in the Organizer.

State Chart Diagrams
State Chart (SC) diagrams are paginated, but does not contain any struc-
ture information, nor any references to other diagrams. They are always
managed as entities of their own.

Text Documents
SDL Suite and TTCN Suite handles text documents in the form of plain
ASCII files. SDL Suite and TTCN Suite uses the file extension of text
files to determine the type of text file. SDL Suite and TTCN Suite rec-
ognizes text files as C header, ASN.1 or as plain text files.

Text documents are managed as entities of their own, but C header and
ASN.1 specifications can be linked to the rest of the system by using the
concept of dependency links. In this way, these text documents can be
analyzed and translated to SDL/PR format.

A text document can also be a build script, containing commands to
control the analyze and code generation process in detail.

The System File
Once SDL Suite is up and running, you may work on individual docu-
ments, regarding them as individual objects of their own. However, this
requires that you keep track of each individual file.

When the amount of documents increases, this process tends to become
rather complicated, in particular when introducing inheritance and spe-
cialization between SDL diagrams, and dependency links between dif-
ferent document types.
34 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Information Management
To cope with this problem and as a means to ensure the consistency of
a document structure, the system file is introduced. The system file is
managed by the Organizer.

Document Structure

The system file holds the information about the SDL structure and all
other documents included in a system. It also keeps track of the file
bindings, i.e. what file a particular document is stored on, and the de-
pendency links between the documents. When working on your docu-
ments, the Organizer keeps track of the changes you apply and updates
the system file accordingly.

A graphical approach is used, in order to display the contents of the sys-
tem file in the Organizer. Documents may be freely organized into
chapters and modules (within chapters) to keep related documents to-
gether.

Connections between documents in different chapters, modules and
SDL structures can be made in the form of associations and dependency
links.

Options

In addition to the properties mentioned above, the system file may store
information about what options you have set up for the document struc-
ture that is managed by the system file. Typically, analysis and code
generation options are stored in the system file.

The Link File
The Link Manager keeps track of all link endpoints and implementation
links in the system. This link database is stored on a separate link file,
which is referenced from the system file.

Control Unit Files
Control unit files facilitate multiuser support when you work with an
SDL system. They contain structure information for a subset of a docu-
ment system and are suitable for configuration management (revision
control). If control unit files exist, they are referenced from the system
file.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 35

Chapter 2 Introduction to the SDL Suite
Source Management
Since SDL Suite operates on files, you may use any revision handling
system for checking out work copies of your SDL diagram files to your
work directory (this task needs to be performed outside the SDL Suite).

The SDL Suite may also be configured to manage multiple versions of
your source documents, by binding a document to any suitable file in
your file system.

Teh SDL Suite provides mechanisms for an easy rebinding of docu-
ments. These file binding mechanisms allow you to keep track of mul-
tiple versions of your source documents with a minimum of effort.

Target Management
Virtually all of the output information that is produced with the SDL
Suite consists of files, most of them use a text-based format (for in-
stance SDL/PR files and C files).

You may specify default locations for files that are generated. Also, you
may specify the level of granularity, allowing you to generate multiple
files or one file only.

Furthermore, the SDL Suite features an SDL-Make mechanism that
minimizes the turnaround time, by computing the passes the tool must
run in response to a modification of a source diagram.
36 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 PCs and Workstations
PCs and Workstations

User Interface
On UNIX workstations, the SDL Suite is implemented as X Window
applications, using the Motif widget set. On PCs, the SDL Suite is de-
signed as Microsoft Windows applications (Windows 2000 and XP). At
present, some features are not available on the PC platform.

Since the SDL Suite is supported on different systems, there may be
slight differences in the appearance of the tools between environments.
However, the functionality is identical as long as the underlying system
and the OS allow it.

All SDL Suite and TTCN Suite graphical applications follow the same
style guide, described in chapter 1, User Interface and Basic Opera-
tions, in the User´s Manual.

Supported UNIX Systems
Full compatibility between the SDL Suite on PCs and the SDL Suite on
UNIX workstations ensures that future upgrading of your computers to-
wards workstations is possible, and allows heterogeneous network so-
lutions with, for instance, PCs connected to a UNIX based file server.

On workstation environments, the following architectures and operat-
ing systems are supported:

• Sun SPARCstation (Solaris)

For more information about the supported platforms, see chapter 1,
Platforms and Products, in the Installation Guide.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 37

Chapter 2 Introduction to the SDL Suite
38 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
3 Tutorial: The Editors and
the Analyzer
The SDL Suite products are used for designing and specifying sys-
tems, in particular real-time systems. The SDL Suite supports the
Specification and Description Language (SDL) as recommended by
ITU (the Z.100 recommendation). The SDL Suite also supports the
definition of Message Sequence Charts (MSCs), as well as parts of
the Unified Modeling Language (UML) notation. For full support
of the UML language you should use IBM Rational Tau/Developer.

This tutorial assumes that you are already familiar with SDL and
have some brief notions about Message Sequence Charts.

We will demonstrate, by using a simple SDL system as example, the
basic editing and analysis functionality that is available. You will
practice various “hands-on” exercises that will get you more famil-
iar with the SDL Editor and the MSC Editor, as well as the SDL
Analyzer.

In order to learn how to use these tools, read through this entire
chapter. As you read, you should perform the exercises on your
computer system as they are described.
al SDL Suite 6.3 Getting Started gs-s0 39

Chapter 3 Tutorial: The Editors and the Analyzer
Purpose of This Tutorial
The purpose of this tutorial is to make you familiar with the user inter-
face and the essential editing functionality in the SDL Suite. This tuto-
rial is designed as a guided tour through the SDL Suite, where a number
of hands-on exercises should be performed on your computer as you
read this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not a tutorial on SDL.

This tutorial addresses primarily persons with no or little experience of
the SDL Suite.

Once you have completed the exercises in this tutorial, you may want to
continue with the tutorials that are presented in:

• chapter 4, Tutorial: The SDL Simulator,
• chapter 5, Tutorial: The SDL Explorer, and
• chapter 6, Tutorial: Applying SDL-92 to the DemonGame.

Note: Platform differences

It is possible to run the tutorials on UNIX as well as on Windows
platforms. Should there be any differences between the platforms,
this is indicated in the text with the markers “on UNIX”, “Windows
only”, etc. This is also indicated in the platform-specific screen
shots.

When such platform indicators are found, please pay attention only
to the instructions and screen shots that are valid for your platform.
40 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Demon Game
The Demon Game
The example that has been chosen in this tutorial is a simplified version
of the “Demon game”, which is a well known example in the SDL com-
munity, since it is, among other things, used as example in the SDL rec-
ommendation.

The SDL definition of the Demon game may be found in SDL/GR form
later in this chapter (see “Appendix A: The Definition of the SDL-88
DemonGame” on page 129). The definition of the behavior of the De-
mon game is probably not the simplest way of describing the game, but
it has been selected since it is good for demonstrating the facilities of
simulation and validation.

Behavior of the Demon Game
Seen from the environment, the behavior of the system is as follows.
The system accepts four different types of signals, Newgame,
Endgame, Probe, and Result, where the first two signals are used to start
and end a game. Only one game at a time can be played, that is,
Newgame signals will be ignored when a game is in progress and
Endgame will be ignored if there is no game in progress.

The game in itself is very simple. A “demon,” which in the system is
represented by the process Demon, changes the status of the system ev-
ery now and then between winning and losing. This is represented by
the states Winning and Losing in the process Game. The user is to guess
when the status is winning. If the user probes (outputs the signal Probe),
when the status is winning, he wins one point. If the user probes when
the status is losing he loses one point. The system responds to a Probe
signal by either a Win or a Lose signal. To see the current score the user
can issue a Result signal, which will be answered by a Score signal con-
taining an integer parameter giving the current score.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 41

Chapter 3 Tutorial: The Editors and the Analyzer
Starting the SDL Suite

Some Preparatory Work
This tutorial assumes that the SDL Suite has been installed correctly,
according to the instructions in the Installation Guide.

The directory $telelogic/sdt/examples/demongame (on UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon-

game (in Windows), is created during installation and is the directory
that contains the complete example, that you may look at whenever you
feel insecure or want to “shortcut” an exercise.

In order not to modify these completed example files, you should create
a dedicated directory for the purpose of this tutorial.

On UNIX, follow this instruction:

1. Create a new subdirectory in your home directory:

mkdir ~/demongame

In the remainder of this tutorial, we will assume this name for your
personal tutorial directory.

In Windows, follow these instructions:

1. Create a local directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\demongame on

Note: Installation directory

On UNIX, the installation directory is pointed out by the environ-
ment variable $telelogic. If this variable is not set in your UNIX
environment, you should ask your system manager or the person re-
sponsible for the SDL Suite environment at your site for instructions
on how to set this variable correctly.

In Windows, the installation directory is assumed to be
C:\IBM\Rational\SDL_TTCN_Suite6.3 throughout this tutori-
al. If you cannot find this directory on your PC, you should ask your
system manager or the person responsible for the SDL Suite envi-
ronment at your site for the correct path to the installation directory.
42 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Starting the SDL Suite
your PC. In the remainder of this tutorial, we will assume this name
for your personal tutorial directory.

Starting the SDL Suite
On UNIX, to start the SDL Suite environment:

1. Change directory to your demongame directory:

cd ~/demongame

2. Now, type:

sdt

In Windows, to start the SDL Suite in a manner suitable for this tutorial
you should create and use a shortcut icon:

1. Locate the executable SDL Suite file sdt.exe (or just sdt) in
C:\IBM\Rational\SDL_TTCN_Suite6.3\bin\wini386. (See the
note “Installation directory” on page 42 if you cannot find this di-
rectory.)

2. Create a shortcut icon to this file on the Windows desktop.

3. From the new icon’s popup menu, select Properties. In the dialog,
select the Shortcut tab at the top.

4. In the Start in field, enter the path to your new directory, i.e.
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\demongame

5. Click OK to close the dialog.

6. Double-click the shortcut icon.

Note: Do not use space characters in Windows

In Windows, SDL Suite does not support file or directory names that
contain space characters. Make sure you do not use such names.

Note:

If the command sdt is not found, you first have to set up your
$path variable correctly. Consult your system manager or the per-
son that is responsible for the SDL Suite environment at your site.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 43

Chapter 3 Tutorial: The Editors and the Analyzer
The Organizer Window
When you have started the SDL Suite, the Organizer window is dis-
played (see Figure 17 and Figure 18). The Organizer is the main tool
from which you have access to the tools in SDL Suite.

The Organizer also displays the Welcome window, where you may read
the licensing agreement for SDL Suite and TTCN Suite. The window is
always placed on top of the Organizer window and disappears as soon
as you perform any action in the Organizer (you may also click the Con-
tinue button).

You are now ready to start working.

Figure 17: The Organizer window (on UNIX)
44 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Starting the SDL Suite

Figure 18: The Organizer window (in Windows)

Note: Screen shots

As you can see, screen shots of the Organizer window are shown for
each platform, UNIX and Windows. From now on, screen shots will
only be shown for one of the platforms, provided they contain the
same information for both platforms. This means that the layout
and appearance of screen shots may differ slightly from what you
see on your computer screen.

Only if a screen shot differs in an important aspect between the plat-
forms will two separate screen shots be shown.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 45

Chapter 3 Tutorial: The Editors and the Analyzer
Preferences

What You Will Learn
• To set up and save preferences

• The basics of the graphical user interface in the SDL Suite, operated
from the mouse and the keyboard. You will learn to:

– Use graphical lists
– Use pull-down menus
– Use pop up menus
– Use quick buttons
– Use the status bar
– Use option menus
– Use text fields
– Use slide bars
– Use keyboard accelerators

What Are Preferences for?
Before starting creating your first SDL diagram, you should set up some
preferences to match your computer environment. These preferences af-
fect the default behavior of the SDL Suite tools and should be adjusted
to convenient values in order to have SDL Suite function properly (most
options may be set as preferences). When SDL Suite is installed, the
factory settings are used as preference settings. Your system manager
may have already prepared the environment for you; good advice is to
check this anyway.

At least the following should be checked:

• The help preferences
• The printer preferences
• The drawing area size
• The platform mode.

Displaying and Changing Preferences
To view and possibly change the preferences:

1. From the Organizer’s Tools menu, select the Preference Manager
command. The Preference Manager window is displayed:
46 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Preferences
Your next task will be to check and, if required, modify a few prefer-
ences.

Help Preferences
The SDL Suite supports a context-sensitive online help facility that you
may use at any moment to request help on a window, on a command, on
a dialog etc.

On UNIX the online help is in HTML-format and you may use Firefox,
Netscape Navigator or Internet Explorer as help viewer. You can
change the help viewer by setting a preference.

To set up the Help preferences:

1. Locate the icon titled Help and double-click it.

– You can also right-click the icon and select Expand from the
pop up menu.

This will expand the list structure below and make the Help prefer-
ences visible.

2. Locate the preference HelpViewer.

To the right of the preference icon you can see the current value, the
currently saved value and an explanatory text.

Figure 19: The Preference Manager window
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 47

Chapter 3 Tutorial: The Editors and the Analyzer
3. Change the preference by selecting the HelpViewer icon and then
selecting a new viewer in the option menu at the bottom of the win-
dow. (You may need to ask your system manager if you do not
know what viewer to use). The icon will turn gray, which means that
the preference has been changed and needs to be saved.

4. Depending on your choice of viewer, you should now check that the
command used when starting the help viewer is correct, according
to your computer environment:

– Locate and select the icon titled , NetscapeCommand or
InternetExplorerCommand. The current value is shown to the
right. If it is not correct, change the text in the text field at the
bottom of the window. (You may need to ask your system man-
ager about the correct value.)

5. Collapse the Help icon by double-clicking it.

You have now learned how to work with graphical lists. Graphical lists
are used extensively throughout the tools; they may hold as many levels
as required (the Preference Manager uses three levels of indentation, as
seen on the screen).

Some tools also support a vertical tree as an alternative to a graphical
list. The functionality is identical, only the presentation differs. You
will acquaintance yourself with a graphical tree later in this tutorial.

Setting the Default Printer
In this tutorial, you will learn how to print diagrams. Before you start
printing, you should check and, if needed, set up your print preferences
in accordance to your computer environment.

To set up the Print preferences:

1. Locate the Print icon. Expand it.

2. Locate the PrinterCommand preference. Adjust it to an adequate
value (if required, ask your system manager). You may specify any
suitable operating system command, for instance sending the result-
ing printouts to a printer queue (the command lpr) or previewing

a PostScript file in a pre-viewer such as Ghostview1.

1. Ghostview: A user interface for ghostscript. 1992 Timothy O. Theisen.
48 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Preferences
3. Locate the PaperFormat preference. The SDL Suite supports a
number of predefined paper sizes on the option menu (A4, A3, US
Letter and US Legal). You may also specify an arbitrary UserDe-
fined value, in which case you also need to specify the preferences
UserDefinedWidth and UserDefinedHeight; these values are ex-
pressed in millimeters.

4. Adjust, if required, the preferences MarginUpper, MarginLower,
MarginLeft and MarginRight. These preferences govern how much
space in millimeters will be reserved for the margins on the printed
pages; you may use this space for including headers and footers in
your printouts.

– To adjust these preferences, select them and drag the slider for
a coarse adjustment. Terminate by clicking left or right of the
slide bar or on the arrows to adjust in smaller steps.

5. Adjust, if required, the preference Landscape to on or off (this pref-
erence specifies the orientation, landscape or portrait).

Setting the Drawing Area Size
When editing SDL diagrams, the pages are assigned a predefined size.
You should specify the default size to match the size of the printer pages
and the printer margins that you defined in the previous exercise.

1. Locate the SDL Editor icon (at the very top), expand it and inspect
the preferences PageWidth and PageHeight.

2. If required, adjust these preferences to suitable values.

Saving the Preferences
You should now save your preference settings for future sessions.

1. Select the Save command from the File menu.

– Alternatively, you may click the quick button for Save. Quick
buttons are located in a tool bar which may be found immedi-
ately beneath the menu bar. Quick buttons are mouse accelera-
tors for frequent commands and are available in all SDL Suite
and TTCN Suite tools, not only in the Preference Manager.

– You may “preview” the functionality that a quick button pro-
vides by pointing on the quick button; the status bar (situated at
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 49

Chapter 3 Tutorial: The Editors and the Analyzer
the bottom of the window) displays an explanatory text. If you
let the mouse pointer rest on the quick button, a short “tool tip”
text is also displayed just below the button.

– Another possibility is to type the keyboard accelerator for the
Save command, by pressing <Ctrl+S>. This is indicated imme-
diately to the right of the menu choice Save.

2. You will receive a warning that the preferences you have changed
will not take effect until the individual tools are restarted (exited and
started again). Just click OK to acknowledge this.

Your preferences are now saved on file for the current (and for fu-
ture) sessions.

3. Close the Preferences window by selecting the Exit command from
the File menu.

This concludes your Preference session. You may of course at any mo-
ment go back to the Preference Manager and adjust other preferences.
50 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
Creating an SDL Structure
You are now ready to create your first SDL diagrams.

What You Will Learn
• To customize the Organizer chapters
• To create an SDL structure
• To add a system root node
• To create a system diagram
• To add a page
• To edit a system diagram
• To save a diagram on file
• To save a diagram structure on a system file
• To work with dialogs (modal and modeless)
• To work with tree structures

Customizing the Organizer Chapters
When the SDL Suite is started, the Organizer displays two icons that
symbolizes the system file and the source directory for your diagrams.
The system file will be explained later. The source directory is where
the SDL Suite components will look for existing diagrams, and save
newly created diagrams. (The source directory can of course be
changed.)

The source directory should already be set to the directory that you start-
ed the SDL Suite from (~/demongame (on UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\demongame (in Win-
dows)).

By default, the Organizer also shows 5 areas in its window:

• Analysis Model
• Used Files
• SDL System Structure
• TTCN Test Specification
• Other Documents.

These areas are known as chapters. You may use the chapters to hold a
number of diagrams and documents; the actual use is a matter of person-
al taste and the default is to be regarded as a suggestion. As you will de-
sign a rather simple system, we suggest that you start by removing the
chapters Analysis Model, Used Files and TTCN Test Specification.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 51

Chapter 3 Tutorial: The Editors and the Analyzer
To remove the chapters:

1. Select the chapter Analysis Model.

2. Select the menu choice Remove from the Edit menu. (You may also
press the button on the keyboard.)

– A dialog opens – confirm the removal by clicking the Remove
button in the dialog.

3. Repeat the steps above for the chapters Used Files and TTCN Test
Specification.

You may also rename the remaining two chapters:

1. Select the chapter SDL System Structure.

2. Select the Edit menu choice from the Edit menu. (You may also
double-click the chapter.)

3. In the dialog that opens, make sure the option Edit chapter symbol
is selected and click the Edit button.

Figure 20: Confirming to remove a chapter

Figure 21: Editing the chapter symbol
52 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
4. Change the document name in the opened Edit dialog; for instance
to My first SDL system. Do not change the document type in-
dicated by the Organizer button and the option menu value Chapter.

– On UNIX, you may note that the cursor changes to the shape of a
question mark as soon as it points on the parent Organizer win-
dow. This convention has been adopted to indicate that a dialog
must be closed before any other operation is allowed to take
place in the tool. Dialogs that need to be answered before pro-
ceeding further are called modal dialogs.

5. Turn off (uncheck) the option Show in editor.

6. Terminate by clicking the OK button.

– If you like, also rename the Other Documents chapter. This
chapter will be used later in this tutorial to hold diagrams that
are not part of the SDL system but that you will want to keep
track of.

Figure 22: Naming the chapter
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 53

Chapter 3 Tutorial: The Editors and the Analyzer
Creating a System Diagram

Adding a Root Node

You will now create an SDL system, working in a top-down fashion:

1. Make sure the chapter My first SDL system is selected.

2. Select the Add New command from the Edit menu. The Add New di-
alog opens, prompting you to specify the name and type of diagram
to add.

3. Specify the New document type as SDL, and specify the SDL dia-
gram type as System, as depicted above.

– If the SDL diagram type shows something else than System and
thus needs to be changed, click the option menu to adjust it.

4. Specify the New document name as DemonGame (the default name,
Untitled, disappears).

– You may need to point and possibly click with the cursor on the
text field to set the focus on it.

5. Make sure the Show in editor button is turned off.

Figure 23: Adding a new diagram
54 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
6. Click the OK button.

– The dialog disappears and the Organizer window is updated
with a root node — system DemonGame. Note that the diagram
is identified as being [unconnected], meaning that there is no
connection to a physical file.

Creating the System Diagram

You have so far created an Organizer diagram structure, consisting of
one reference to an SDL system diagram (the referred diagram does
however not yet exist).

Your next task is to create the system diagram:

1. Select the DemonGame SDL system diagram icon. See Figure 24.

2. From the Edit menu, select the menu choice Edit.

– You may also press the right mouse button while pointing on
the icon — a popup menu appears — select the sub-menu Edit
and the menu choice Edit.

– Another way to edit the diagram is to double-click the icon with
the left mouse button.

3. The Edit dialog opens, suggesting to create a new diagram and to
Show the diagram in editor. (The dialog is very similar to the Add
New dialog you just used.) Accept the suggestion by clicking OK.

Figure 24: The new root node
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 55

Chapter 3 Tutorial: The Editors and the Analyzer
The SDL Suite responds by displaying the SDL Editor window, show-
ing the upper left corner of page 1 of the system diagram DemonGame.

The SDL Editor is the tool you use when editing the contents of the di-
agrams. The SDL Editor is also used for building the diagram structure
that is displayed in the Organizer window.

Figure 25: Prompting to create a new diagram
56 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
Your next task is to fill in the contents of the diagram. Figure 27 shows
the appearance of the diagram when completed and printed on paper. As
you can see, the diagram consists of two block reference symbols
(GameBlock and DemonBlock), a channel conveying the signals be-
tween the blocks (C3) and two channels conveying the signals to and
from the environment (C1 and C2). There is also a text symbol where
the signal declarations may be found.

Figure 26: The SDL Editor window (on UNIX)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 57

Chapter 3 Tutorial: The Editors and the Analyzer
The next pages describe in detail how you proceed to add the symbols
and texts to the diagram.

Customizing the SDL Editor Window

Before you start editing, you may want to resize the editor window. You
may also hide and show various sub-windows using the command
Window Options from the View menu.

Figure 27: The system diagram

System DemonGame 1(1)

SIGNAL
Newgame, Probe, Result, Endgame,
Win, Lose, Score(Integer), Bump;

GameBlock

DemonBlock

C1

Newgame, Probe,
Result, Endgame

C2

Win, Lose, Score
C3
Bump
58 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
• You can hide and show the editor Tool bar, Status bar, printed Page
breaks and the grid points.

• You may also hide and show the text window and the symbol menu
by clicking on the provided quick buttons. You will however need
these windows soon.

Placing Block Reference Symbols

Figure 28: The window options

1. Start editing the diagram by inserting the two block reference sym-
bols (GameBlock and DemonBlock).

To place a block reference symbol:

– Click on the block symbol in the symbol menu. On UNIX, the
symbol menu is located to the extreme right of the window. In
Windows, the symbol menu is a separate window always placed
on top of the SDL Editor window (if the two windows overlap).

If you are not sure what symbol to use, point to or select a sym-
bol in the symbol menu – its type is displayed in the Status Bar
at the bottom of the SDL Editor window.

– Move the mouse into the drawing area. The symbol “floats” and
follows the mouse. Click to position the symbol where you want
it to be. No overlap between symbols is allowed. (In case sym-
bols are overlapping, an alert sound is emitted and you have to
repeat the operation.)

The
block
sym-
bol
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 59

Chapter 3 Tutorial: The Editors and the Analyzer
2. Once you have placed the symbol, type the name of the block:
GameBlock or DemonBlock

– You can type in text directly at the cursor’s position. The cursor
position can be set by clicking on the text in the symbol. How-
ever, you cannot select (highlight) text directly in the symbol.

– Before you have started text editing, the text cursor is not flash-
ing. Pressing <Delete> at this stage deletes the whole selected
symbol. Once text editing has started, the text cursor is flashing
and pressing <Delete> only deletes a character.

– You may see a red underlining appearing in the text, if you enter
a name that has incorrect syntax according to SDL. This is the
general way to indicate textual syntax errors in the SDL Editor.

– When you edit text, you may also take advantage of the text win-
dow, which allows you select text by dragging. On UNIX, the text
windows is located below the drawing area. In Windows, the
text windows is a separate window always placed on top of the
SDL Editor window (similar to the symbol menu).

– No matter where you enter the text, the text is always displayed
both in the symbol and in the text window.

– You may also note that the Organizer diagram structure is auto-
matically updated to reflect the insertion of the diagram refer-
ence symbol (once the symbol is de-selected).

Note: Aborting and undoing

• To abort the insertion of a symbol after you have moved the
mouse into the drawing area, just press <Esc>.

• If you happen to perform a command or operation that you wish
not had taken place, you should immediately select the Undo
command from the Edit menu.
60 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
Moving and Resizing Symbols

To move a block:

• Select and drag the block with the mouse to the desired location.
(Remember, no overlap with other symbols is allowed).

After you place the blocks where you want them, you may resize them:

• Point to one of the symbol’s corners, and drag. You must be fairly
close to the corner. If this method fails, first select the symbol with
a click and then repeat the procedure while pointing to a selection
square.

Drawing Channels between Blocks

To draw a channel from block DemonBlock to block GameBlock:

1. Select the DemonBlock symbol. A “handle” appears.

2. Drag the handle (i.e. press the mouse button while pointing on the
handle, and start moving the mouse while keeping the mouse button
pressed).

3. As soon as mouse motion has begun the editor responds by drawing
a line; from now on you may release the button while moving the
mouse.

4. Move the mouse until it points to the GameBlock symbol. Click the
mouse button; the channel is connected at both ends.

– You may move the channel’s endpoints individually by drag-
ging them. Select the channel first if the endpoint is difficult to
“hit” with the mouse.

– You will notice a tiny selection square at the middle of some
lines drawn in the SDL Editor. This can be used to create
“breakpoints” on the line, thus dividing the line into different
line segments. You will not use this feature in this tutorial.

Figure 29: A block symbol’s “handle”

A “handle”
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 61

Chapter 3 Tutorial: The Editors and the Analyzer
The SDL Editor creates two text attributes associated to the channel.
These text fields are displayed as selection rectangles which you use
when entering the name of the channel and the list of the signals the
channel is to convey. Initially, when the text attributes are empty, a red
underlining is shown to indicate that this is not allowed according to the
syntax rules of SDL.

To fill in the name of the channel C3:

• Type it directly, immediately after the channel has been drawn. (If
the channel has become de-selected, select it again.)

To fill in the signal Bump into the signal list text field:

1. Click on the text field surrounded with two brackets ‘[]’. (Click in
the space between the brackets.)

2. Type the name of the signal. Note that the brackets are adjusted au-
tomatically to fit the size of the text.

3. You may move the text attributes to new locations, if desired. Sim-
ply drag them with the mouse.

Drawing Channels to the Environment

To draw a channel from a block to the environment (e.g. C2):

1. Select the block.

2. Start by dragging the handle, and terminate by clicking on the frame
symbol (the rectangle that encloses the diagram, see Figure 32 on
page 64).

Figure 30: The channel’s text attributes with red underling

The two blocks have been aligned horizontally to more easily distinguish the two
text attributes.
62 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
3. Fill in the name and the signals.

– Note that, as you type the signal list, the red underlining changes
and shows if and where the text is not syntactically correct ac-
cording to SDL. As soon as you have entered the signal names
separated with commas, the red underlining disappears and
shows that the text now is syntactically correct!

– The SDL Editor allows you to leave a text containing syntax er-
rors. However, it is not possible to build an SDL system that
contains syntax errors.

Drawing a Channel from the Environment

To draw a channel from the environment to a block (e.g. C1):

1. Start by drawing the channel from the block to the environment, as
you just learned.

2. Make sure the channel is still selected.

3. Then, select the command Redirect from the Edit menu. Fill in the
name and signals the usual way.

– You may press <Return> to insert line breaks within the signal
list, if it becomes too long.

Drawing a Text Symbol

The diagram also contains a text symbol with the required signal decla-
rations.

1. Pick the text symbol in the symbol menu (the top symbol), insert it
into the drawing area and fill in the contents as shown in Figure 27.
The built-in syntax check is even more evident in this case.

2. When the contents of the text symbol are changed, the editor auto-
matically resizes the text symbol to fit the text. You may resize it by
dragging the lower right corner, or toggle between its minimized
and maximized sizes by double-clicking the symbol. Try this.

– The selection squares at the other three corners of the text sym-
bol are gray. This means that the symbol cannot be resized by
dragging any of these corners.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 63

Chapter 3 Tutorial: The Editors and the Analyzer
Resizing the Text Window

If the text window is too small to bring all the text in view, you may re-
size it. In Windows, this is done in the same way as any normal window.
On UNIX, this is done by dragging the sash up or down; the sash is the
small square situated to the right and above the text window menu bar;
the text window is a pane of the SDL Editor window.

Other Items in the System Diagram

Except for SDL symbols, a diagram also contains the following:

Package Reference Symbol

The package reference is used to refer to included SDL packages. This
simple example does not include any packages. Just leave it empty.

Figure 31: The SDL Editor’s sash (UNIX only)

Figure 32: Other symbols

You may drag the sash up or down to resize the text window

Kernel
heading

Page num-
bering

Frame

Additional
heading
symbol

Package refer-
ence symbol
64 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
The Kernel Heading

The kernel heading is automatically assigned its contents by the editor
to reflect the type and the name of the diagram being edited. The kernel
heading is editable, but you are not going to alter its contents in this tu-
torial.

Additional Heading Symbol

The additional heading symbol is not defined further according to
Z.100. In the SDL Editor, it looks like a dashed text symbol. The sym-
bol is editable and may be resized the same way as you learned for re-
sizing text symbols, but it cannot be moved. Its intended use in the SDL
Editor is, among others, to define inheritance and specialization and to
specify formal parameters. You will not use this symbol in this first tu-
torial.

Frame

The frame surrounds the objects that are contained in your diagram.
You may want to resize the frame to create a more compact diagram:
simply drag any corner to do this.

Page Numbering

The page numbering is updated automatically, and reflects the name of
the page and the total number of pages. It is not editable.

Note:

The frame is not the same as the paper border!
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 65

Chapter 3 Tutorial: The Editors and the Analyzer
Saving the Newly Created System Diagram
In this exercise, you will learn the commands that store SDL diagrams
on files.

1. You should now have two windows on the screen, the Organizer
window and the SDL Editor window.

– To find the Organizer window, you may at any time select the
command Show Organizer from the SDL Editor’s Tools menu,
or click the Show Organizer quick button.

2. Before you save anything, open the Organizer’s View Options dia-
log from the View menu.

Figure 33: The Organizer’s View options
66 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
3. Make sure the options are in accordance to Figure 33 and click the
Apply button. This makes, among other things, the file and directory
names visible in the Organizer.

– The list in the dialog is a multiple selection list. When you click
on an item in the list (in Windows while holding down the
<Ctrl> key), its selected state is toggled without affecting any
other item. This makes it possible to select any number of items
in the list. In Windows, if you by mistake click on an item with-
out using the <Ctrl> key, you may press Default to get back
to the default settings.

– To close the View Options dialog, click the Close button. This
kind of dialog is modeless, meaning that it remains open until
you decide it is longer needed and close it. You are not forced to
close a modeless dialog to continue working with the tool, in op-
posite to modal dialogs, such as the Add New dialog which you
used for creating a new system (see Figure 23 on page 54).

4. Look at the resulting Organizer view. The system diagram icon is
drawn with a gray pattern, which shows that the diagram is modified
and not saved. The name of the diagram (i.e. DemonGame) is
shown in bold face, to indicate that the diagram is currently open in
an editor. The text to the right of the icon reads [unconnected]
which is a convention adopted to show that a diagram has no current
binding to a file.

There are two other diagram icons, which are [unconnected]
These represent the references to the block diagrams that you added
when editing the system diagram.

Figure 34: A modified, unconnected diagram (DemonGame)

GameBlock [unconnected]

DemonBlock [unconnected]

DemonGame [unconnected]
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 67

Chapter 3 Tutorial: The Editors and the Analyzer
5. Now, go back to the SDL Editor and save the SDL diagram by se-
lecting the Save menu choice from the File menu.

– To locate the SDL Editor window from the Organizer, you may
double-click the icon for the system diagram again, which sim-
ply raises the SDL Editor window.

6. A file selection dialog is displayed. This is a generic dialog that
opens whenever you are prompted to specify a file (to open, to save,
etc.). The title of the dialog shows the nature of the operation, Save
in this case.

On UNIX, this dialog works as follows:

– The Filter field is preset to *.ssy, which is the default file ex-
tension for files that contain SDL system diagrams. To list other
files, you have to change the contents of the Filter field and
click the Filter button (but do not do this now).

– The right list shows a list of files that match the file filter. It
should be empty since you have not created any diagrams yet.

– The left list shows the directory structure from the root node of
the file system down to the current directory. You may double-
click here in order to navigate in your directory structure (do not
use this list now).

Figure 35: A file selection dialog (on UNIX)
68 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
In Windows, this dialog works as follows:

– The Files of type field is preset to *.ssy, which is the default
file extension for files that contain SDL system diagrams. To list
other files, you have to change the contents of the File name
field and click the OK button (but do not do this now).

– The list shows a list of files that match the file filter. It should be
empty since you have not created any diagrams yet.

– The Look in list shows the directory structure from the root node
of the file system down to the current directory. You may click
here in order to navigate in your directory structure (do not use
this list now).

7. The SDL Editor suggests a file name to store the diagram on:
DemonGame.ssy. You may change to any file name; we assume
however in this tutorial that you accept the suggested file name.

So, simply click the OK button to accept the file name. The diagram
is now stored on file. If you look at the title of the SDL Editor win-
dow, you may see that the diagram has been saved on file.

Figure 36: A file selection dialog (in Windows)

Figure 37: The SDL Editor window title
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 69

Chapter 3 Tutorial: The Editors and the Analyzer
This information is also available in the Organizer structure, where the
file name has changed from [unconnected] to DemonGame.ssy.

Saving the Diagram Structure
You have, so far, saved the system diagram. You should also save the
Organizer’s view options and diagram structure for future sessions. If
you look at the Organizer’s window title, you notice an ending asterisk.
This asterisk denotes that the Organizer’s view or structure information
has been modified and needs to be saved.

The System File

The Organizer saves its view, along with a number of options, on a ded-
icated file called the system file1. System files are used as a means to
maintain the consistency of an SDL structure and provide immediate
access to the diagrams that are defined in the structure.

The system file is represented by its own icon at the top of the Organizer
view, a rectangle with “SDT” in it. Even though the system file has not
yet been saved, the Organizer has assigned a file name for it.

Figure 38: The diagram structure after saving the diagram

1. A system file may contain information related to any kind of SDL structure, not
necessarily an SDL system. The term system file is a general term.

GameBlock [unconnected]

DemonBlock [unconnected]

DemonGame rw DemonGame.ssy
70 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
To save the system file:

1. Select the Save command from the Organizer’s File menu. The Or-
ganizer responds by issuing the Save dialog.

2. The tool suggests a file name to store the information on:
demongame.sdt (system files are by default assigned the extension
.sdt). Accept the suggestion by clicking the Save button.

Once a system file has been created, the diagram structure and the Or-
ganizer options are saved for future sessions. You Open an existing sys-
tem file from the Organizer’s File menu.

More About Saving
For the purpose of this tutorial, you have learned how to save individual
diagrams and how to save the system file. There are however other
handy ways to save everything with one single command. Two of these
methods are listed below.

– You may click the Save All button in the Organizer’s Save dia-
log (see Figure 39).

– You may click the quick button for Save on the Organizer’s tool
bar. This button orders a global and silent save of all diagrams
(no prompting will be issued unless special cases need your at-
tention), including the diagram structure. (The SDL Editor’s
quick button for Save saves the current diagram only.)

Figure 39: The Organizer’s Save dialog
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 71

Chapter 3 Tutorial: The Editors and the Analyzer
Printing the System Diagram

What You Will Learn
• To print one SDL diagram
• To adjust print options
• To scale a printout

How to Print
You have now drawn your first SDL diagram. It may be convenient to
print the diagram before proceeding with the remaining exercises. On
UNIX, we assume that your computer environment includes a PostScript
printer. If not, you may skip this exercise.

To print the diagram:

1. Raise the SDL Editor window.

2. Select the Print command from the File menu. The Print dialog is
opened.

– You may instead click the quick button for Print.

Figure 40: The Print dialog
72 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Printing the System Diagram
3. If you have set up your preferences adequately, the dialog should be
preset with the correct options. If not, you need to check and possi-
bly modify at least the:

– Paper format option menu

– Destination Format: if you do not have access to a PostScript
printer in Windows, you may select MSW Print.

– Execute command (governed by the preference
PrinterCommand).

4. Once the settings look OK, order the printout by clicking the Print
button. On UNIX, a PostScript file will be generated on /tmp and the
file will be piped to the Execute command that you have specified.
In Windows, a print file will be generated by using the Execute com-
mand that you have specified to print it, or by using the default
printer driver if you have selected MSW Print format.

If the file is sent to a printer queue, the printer should respond al-
most immediately. If you are not satisfied with the size of the result-
ing printout, you may scale it as follows:

– Click the Setup button. The Print Setup dialog is opened.

– Adjust the scale to the value of your choice and click OK.

– Order the printout once more by clicking Print.

Figure 41: The Print Setup dialog
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 73

Chapter 3 Tutorial: The Editors and the Analyzer
Checking the System Diagram

What You Will Learn
• To invoke the Analyzer
• To set analysis options
• To work with the Organizer Log window
• To locate and correct syntax errors

Running the Analyzer
You should now check the syntax of the system diagram you created be-
fore proceeding further by creating the remaining diagrams. To do this,
you will use the Analyzer tool, a back-end tool which is fully integrated
with the Organizer.

1. Select the SDL system diagram icon in the Organizer diagram struc-
ture. Then, from the Organizer’s Generate menu, select the Analyze
command.

2. If you had (perhaps accidentally) modified any diagram, the Orga-
nizer first prompts you to save modified diagrams (by issuing the
Save dialog, see Figure 39 on page 71) — in which case you should
click the Save All button to make sure everything is OK.

3. Once the Save dialog is closed, the Analyzer dialog is opened.
74 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Checking the System Diagram
4. Adjust the options in accordance to Figure 42, i.e.

– Macro expansion off
– Syntactic analysis on
– Semantic analysis off
– Adjust, if required, the error limit slide bar to a reasonable val-

ue. This parameter defines how many errors and warnings the
Analyzer will report before aborting the analysis.

Figure 42: The Analyzer Options dialog
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 75

Chapter 3 Tutorial: The Editors and the Analyzer
5. Click the Analyze button. The Analyzer now starts processing the
input with the options as specified in the options dialog. When it is
finished, the Organizer status bar should read something with the
essence “Analyzer done”, possibly appended with extra informa-
tion.

6. The Organizer is provided with a textual window where important
information is logged. By default, the Organizer Log window is
raised as soon as information classified as “warning” or “error” is
reported. If the window does not appear automatically after the anal-
ysis is complete, open the window manually. (Use the Organizer
Log command from the Organizer’s Tools menu to show the win-
dow, or the provided quick button).

Looking for Analysis Errors
The diagnostics that are reported by the Analyzer are appended to the
Organizer Log (together with other important messages). Look at the
tail of the log for the report summary, which should look something
like:

--

Number of warnings: <diagram dependent>
+ Analysis completed

(You may need to scroll down the Organizer Log window to bring the
tail into view.)

The text “Number of warnings” or “Number of errors” shows how
many syntactic warnings or errors that were detected in the diagram (if
no warnings or errors were found, then these lines are missing altogeth-
er).

1. For the purpose of this exercise, you may need to introduce a syn-
tactic error into the diagram. You may for instance remove one of
the separating commas in the signal list of channel C1 (but make
sure there is a space separating the signals).

– Such a syntactic error will be detected already in the SDL Editor
and marked with a red underline, but we will show how the error
is reported by the Analyzer.

2. Save everything and repeat the analysis.
76 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Checking the System Diagram
Correcting Analysis Errors
Your Organizer log should now report an error looking something like:

#SDTREF(SDL,/opt/home/tmi/demongame/DemonGame.ssy(1)
,131(25,50),3,8) (on UNIX)
#SDTREF(SDL,C:\IBM\Rational\SDL_TTCN_Suite6.3\work\d
emongame\DemonGame.ssy(1),131(25,50),3,8) (in
Windows)
ERROR 312 Syntax error in rule SIGNALLIST, symbol
Name found but one of the following expected:
, ; comment
Result Endgame;
 ?

How to Interpret the Error Message

Let us spend a few moments on explaining the contents of this error.

• The first part (#SDTREF...) is a reference to the source diagram,
page, symbol, line number and finally a position within a line of text
where the error was found. All references produced by the Analyzer
adhere to this format in its whole or partially; the reference may in
some circumstances be less precise than in the example above, de-
pending on the Analyzer’s ability to locate the exact source of error.

• The second part (ERROR 312...) contains the error number and an
explanatory text, telling you, in this case that a comma, a semicolon
or a comment was expected.

• The last part (Result Endgame) along with the ‘?’ character shows
more specifically where the error occurred, in this case the comma
should be inserted between the signals Result and Endgame.

To display the diagram and symbol where the error was found, you may
use a handy facility:

1. Select, by dragging the mouse, the lines of text containing the error
message.

Figure 43: Selecting the error message
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 77

Chapter 3 Tutorial: The Editors and the Analyzer
2. Select the command Show Error form the Tools menu.

– Alternatively, you may click the Show error quick button.

3. The symbol where the error was found is immediately selected in
the SDL Editor. The more information the reference holds, the more
precise the selection. Correct the error (insert the comma).

4. To correct the next error, simply click the Show error button again.

5. Save the diagram and repeat the analysis until the Analyzer does not
report any errors. If you feel uncertain about how to interpret and
correct the errors, look at the printout for the system diagram for a
reference (see Figure 27 on page 58).

– You may clear the Organizer Log window at any time, for in-
stance between subsequent passes to make it easier to read the
contents of the log. Use the Clear Log command from the Edit
menu for this, or the provided quick button.

– For repeated analysis passes using the same options, you can use
the Analyze quick button in the Organizer.

You have now designed your first SDL diagram using the SDL Suite.
You have also verified that the diagram is syntactically correct accord-
ing to the Z.100 recommendation. Congratulations!
78 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram
Creating a New Block Diagram

What You Will Learn
• To create and draw a block diagram
• To request signal dictionary support
• To work with multiple diagrams using the SDL Editor
• To open new windows on a page
• To work with multiple SDL Editor windows
• To perform syntax check on a block diagram

Creating a Block Diagram from the Organizer
In this exercise, you will create a block diagram, starting from the Or-
ganizer.

1. Locate the Organizer window and double-click the icon named
GameBlock. In a similar fashion as when creating the system dia-
gram, you will get the Edit dialog (see Figure 25 on page 56). Make
sure the Show in editor option is on and click the OK button.

Next, the Add Page dialog is opened. The dialog is used to specify
the type of page (process or block interaction). The page name can
also be specified. Decide if you want the pages to be autonumbered.
(1, 2,... N). This functionality is enabled by default.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 79

Chapter 3 Tutorial: The Editors and the Analyzer
2. Make sure the Process Interaction Page button is on and click OK.

The SDL Editor opens a window on page 1 of the newly created block
diagram. The block diagram editor window is similar to the system di-
agram window; only the symbol menu differs.

Figure 45 shows the appearance of the finished block GameBlock when
printed. As you may see, the diagram contains two process reference
symbols, five signal routes, three connection points and a text symbol
with a signal declaration.

Figure 44: Prompting to add a page
80 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram
You should now draw the block diagram as depicted in Figure 45. You
add the symbols and lines in a similar fashion as when editing the sys-
tem diagram. Please spend a minute reading the three sub-sections be-
low before starting drawing the diagram, in order to familiarize yourself
with the new concepts that are introduced and how you manage them.

Process Name and Number of Instances

When you add a process reference symbol, you should specify the num-
ber of instances by appending the text directly after the name of the pro-
cess reference symbol. The number of instances is the text between pa-
rentheses ‘()’.

Signal Routes

Signal routes are drawn in a similar way as channels. When you select
a process reference symbol, two “handles” are displayed.

Figure 45: The block GameBlock

Block GameBlock 1(1)

SIGNAL
GameOver;

Main(1,1)

Game(0,1)

C1
R1

Newgame,
Endgame

R5

GameOver

R2
Probe,
Result

C2
R3

Win, Lose, Score

C3
R4

Bump
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 81

Chapter 3 Tutorial: The Editors and the Analyzer
• The left handle is used for drawing signal routes, in a similar fashion
as channels.

• The right handle is used for drawing create requests. It is not used
in this tutorial.

Connection Points

When you draw signal routes to / from the frame symbol, you should
not only fill in the name and signal list, but also take advantage of
graphical connection points to establish connections between the signal
routes and the parent system diagram, i.e. connecting the signal routes
to the channels. When you draw a signal route to the frame, an addition-
al text object is created close to the frame symbol. In this text object, the
name of the corresponding channel is entered. See Figure 47.

To edit a connection point:

• Simply select it and enter its textual contents.

Figure 46: The two handles of a process reference symbol

Figure 47: Graphical connection point

The figure depicts a signal route (R1) in the block diagram and the referencing sys-
tem diagram with the connected channel (C1).

The handle for create
requests

The handle for signal
routes

A graphical connection point
82 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram
Editing the Block Diagram
Now, draw the diagram as described in the following steps:

1. Start by adding the process reference symbol “Main(1,1)”.

– As when drawing the system diagram, all text you enter is sub-
ject to an immediate syntax analysis. Errors are indicated by a
red underlining, which disappear as soon as you have entered
the complete text according to the SDL syntax.

– Remember that before text editing has started, the text cursor is
not flashing. Pressing <Delete> at this stage deletes the whole
selected symbol, instead of just a typed character.

2. Draw a signal route from the environment to the process (use the
Redirect command). Enter the name of the signal route: R1.

Using the Signal Dictionary for Individual Signals

You are now to specify the name of the signals to be conveyed on the
signal route R1. The SDL Editor has the ability to assist you in reusing
the signals that are already defined in the SDL structure (i.e. defined in
the system diagram, since you are working in a top-down fashion!),
with a facility known as the signal dictionary.

1. Select the signal list text field.

2. Select the command Signal Dictionary from the Window menu. The
Signal Dictionary window is displayed. If necessary, move it so that
you can see the signal list in the Editor window.

Note:

To function properly, the Signal Dictionary utility requires that the
input SDL diagrams are syntactically correct. If not, you need to go
back to the previous exercise (see “Correcting Analysis Errors” on
page 77) and run the Analyzer in order to correct any errors.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 83

Chapter 3 Tutorial: The Editors and the Analyzer

3. Look at the left list in the Signal Dictionary window. The first sec-
tion starts with the separator Up. This section includes the signals
that are available by looking one level up in the diagram structure
(i.e. in the parent diagram, system DemonGame).

4. In this section, the first item identifies the System DemonGame, as
expected:

Figure 48: The Signal Dictionary window (on UNIX)

The exact appearance of the list to the left depends on the graphical capabilities
available on your terminal.

Figure 49: The Up separator (on UNIX)

Figure 50: The Up separator (in Windows)

Figure 51: The item symbolizing the system DemonGame (on UNIX)
84 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram

5. Since you are editing a signal route from the system diagram to the
block diagram, you should look for all icons/lines symbolizing
channels from the parent diagram, i.e. IN channels.

– You should find exactly one channel that matches the criteria:
C1. The remaining channels are either internal (C3) or are not
directed into the current diagram (C2).

6. Beneath the channel all the signals that it conveys are listed. Click
on the signal named Newgame:

7. From the Edit menu, select the command Insert. The signal list in
the SDL Editor is immediately updated.

– Alternatively, you may double-click the signal in the list.

Figure 52: The item symbolizing the system DemonGame (in Windows)

Figure 53: The icon symbolizing a channel from the parent
diagram to the current diagram (on UNIX)

Figure 54: The line specifying a channel from the parent
diagram to the current diagram (in Windows)

Figure 55: The Newgame signal (on UNIX)

Figure 56: The Newgame signal (in Windows)

Note: Undoing the operation

If you happen to insert the signal into the wrong text field (such as
the signal route name), you may select the Undo command from the
Signal Dictionary’s Edit menu. (The SDL Editor’s Text Window
has no Undo facility).
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 85

Chapter 3 Tutorial: The Editors and the Analyzer
8. Insert the required comma and a newline in the Editor window
(move the signal list if needed).

9. Double-click the signal Endgame in the Signal Dictionary.

10. The channel in the Signal Dictionary also gives a suggestion about
how to fill in the connection point: C1. Select the connection point
text field in the diagram and double-click the channel in the Signal
Dictionary.

Using the Signal Dictionary for Multiple Signals

1. In the SDL Editor window, add the process reference symbol:
Game(0,1).

2. Draw the signal route R3 from Game to the frame symbol.

When you are to enter the signal list for R3, you do not need to enter
the signals one by one as for R1, since the channel C2 is not split up
into multiple signal routes, in the way that C1 becomes R1 and R2
(see your printout or Figure 27 on page 58). Instead, you may insert
all signals with one single operation:

3. Select the channel C2 in the Signal Dictionary. The right list is up-
dated to list all signals conveyed on the channel. Insert them with
the Insert command (or double-click the channel C2).
86 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram

You are now somewhat familiar with the Signal Dictionary utility.

Figure 57: Selecting a channel in the Signal Dictionary
window lists all signals (on UNIX)

Figure 58: Selecting a channel in the Signal Dictionary
window lists all signals (in Windows)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 87

Chapter 3 Tutorial: The Editors and the Analyzer
Completing the Diagram

1. Fill in the remaining parts of the diagram using your preferred meth-
od. When done, you may close the Signal Dictionary window (use
the Close command from the File menu).

2. Once you are finished with the block GameBlock, save everything,
for instance by clicking on the Organizer’s Save quick button. Ac-
cept the default file name suggested by the Save dialog.

Working with Multiple Diagrams
You have now created two SDL diagrams. Both diagrams are currently
opened by the SDL Editor; however only the diagram currently being
edited is visible in a window.

The SDL Editor provides a menu named Diagrams where all diagrams
and pages currently opened by the editor are listed.

1. Click on the Diagrams menu. It should now list two diagrams:

Each of these menu choices correspond to a diagram and page cur-
rently opened by the SDL Editor. The file the diagram is stored on
is also displayed to the right of the diagram name.

Now, bring the diagram for the system DemonGame into view:

2. Select the menu choice

System DemonGame/1 DemonGame.ssy1

The system diagram is instantly displayed. (The block diagram is
now hidden.)

– The menu choices Back and Forward can also be used to switch
between diagrams and pages. The SDL Editor keeps track of

Figure 59: The Diagrams menu

1. The exact appearance of the menu choice depends on the directory structure you
are working on.
88 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a New Block Diagram
which pages you have edited and you can go back and forward
in this list, in much the same way as for visited Web pages in a
Web browser. There are also two quick buttons for this.

Working with Multiple Windows
So far, you have only worked with one single window on a page. The
SDL Editor allows you to open new windows on the same diagram,
which makes it possible to work on multiple views on a page. This is
also called instantiating a window.

To open a new window on a page:

1. Make sure the page whose window is to be instantiated is the page
currently in view in the SDL Editor. If not, use the Diagrams menu.

2. From the Window menu, select the command New Window. A new
window showing the current page is instantly displayed (see
Figure 60).

3. You may now use any window to work on the page. Any change
causes both windows to be simultaneously updated. Try this, for in-
stance by moving a symbol!

4. You probably need one window only for this tutorial, since the dia-
grams you are working on in this tutorial are small, on purpose.
Close any of the two windows with the Close Window command
from the Window menu.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 89

Chapter 3 Tutorial: The Editors and the Analyzer
Figure 60: Two windows of the same page
90 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Block Diagram From a Copy
Resulting Organizer View
Save everything. The resulting Organizer View should now look like:

Checking the Syntax of the Block Diagram
You may now want to use the Analyzer to check the syntax of the block
diagram you just created.

To analyze the block GameBlock, do as follows:

1. Select the icon for the block GameBlock to specify the block as in-
put to the Analyzer.

2. Select the command Analyze and analyze the block diagram.

– Note that the Analyze dialog lets you select which part(s) of the
system you wish to analyze. Make sure the top text in the dialog
says Analyze Block GameBlock before clicking Analyze.

3. Proceed as for the system diagram, i.e.

– Look for any syntax errors in the Organizer Log.

– Correct these errors.

– Repeat the procedure if required (see “Correcting Analysis Er-
rors” on page 77 if you do not remember how to do this).

Creating a Block Diagram From a Copy

What You Will Learn
• To create a diagram from an existing copy
• To save a diagram on a new file

Figure 61: The resulting Organizer view

My first SDL system

Main [unconnected]

Game [unconnected]

GameBlock rw GameBlock.sbk

DemonBlock [unconnected]

DemonGame rw DemonGame.ssy
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 91

Chapter 3 Tutorial: The Editors and the Analyzer
Creating the Block DemonBlock
You created the block GameBlock from the Organizer by double-click-
ing the symbol. You may also do this from within the SDL Editor, by
double-clicking on diagram reference symbols.

To create the block DemonBlock:

1. Locate the block reference symbol DemonBlock in the SDL Editor.
Double-click on the reference symbol. A dialog is opened.

You will now create the diagram by using a copy of an existing file.
The installation contains a number of SDL examples, among which
the diagrams that build up the DemonGame example may be found.
These diagrams are by default stored in a subdirectory to the instal-
lation directory. The name of the directory should be
$telelogic46/sdt/examples/demongame (on UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\de-

mongame (in Windows).

Your next task is to specify the location of the file that contains the
block DemonBlock. This file is named DemonBlock.sbk

Figure 62: Prompting to create the block DemonBlock
92 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Block Diagram From a Copy
2. Make sure the Copy existing file button is turned on.

3. Then, either:

– Type in the file name, including the directory path (according
to above),

or

– Click on the folder button to the right of the text field. A file se-
lection dialog (with the title Select File to Copy for Block De-
monBlock) is displayed.

– In the dialog, navigate in the directory structure until you have
located the directory where the diagrams are stored (see the di-
rectory path above). On UNIX, you double-click the directory
names in the left list and find any block diagram files in the right
list. In Windows, you select directories from the Look in box or
double-click directories in the list.

– Select the file DemonBlock.sbk that appears in the list and
click OK.

Note:

You may need to contact your system manager to find out the exact
location of the directory mentioned above. If you fail in finding the
directory with the DemonGame example, do not give up! You may
always create the remaining diagrams with the New option, and de-
sign them with the SDL Editor in a hand-drawn fashion, as you
learned in the previous exercises.

Note: Accessing files on other disks

In Windows, you may use so-called UNC paths to access network
disks by using the syntax \\disk\directory\ when typing the
path to file names.

On UNIX, the possibility to change to the [root] directory using the
file selection dialog may or may not work properly, depending on
your computer system and network file system. You may need to
type in a leading slash (‘/’), followed by a name, then click OK in
order to access files that are stored on another disk than the one you
are currently working on (but try first to double-click the [root] di-
rectory).
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 93

Chapter 3 Tutorial: The Editors and the Analyzer
4. Close the Edit dialog by clicking on the OK button. The SDL Editor
shows the diagram in a window. The diagram when printed should
look like Figure 63.

5. Now, save the diagram from the SDL Editor (use the Save quick
button). A file selection dialog is displayed, with the suggested file
name DemonBlock.sbk.

6. Accept the suggestion by clicking the OK button. The resulting Or-
ganizer’s diagram structure should be as follows:

Figure 63: The block DemonBlock

Figure 64: The resulting Organizer list

Block DemonBlock 1(1)

Demon(1,1)C3
R1

Bump

My first SDL system

Main [unconnected]

Game [unconnected]

GameBlock rw GameBlock.sbk

Demon [unconnected]

DemonBlock rw DemonBlock.sbk

DemonGame rw DemonGame.ssy
94 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Block Diagram From a Copy
You may use the method described above to take a copy of an existing
diagram for any diagram in the remainder of this tutorial. However, we
recommend that you draw the diagrams from scratch to get yourself ac-
quainted with all editing features of the SDL Editor. How to draw a pro-
cess diagram (described next) is somewhat different from drawing a
block diagram.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 95

Chapter 3 Tutorial: The Editors and the Analyzer
Creating a Process Diagram
You have now created the structural elements of your SDL system. This
structure needs now to be completed with the implementation, i.e. the
process flow charts that describe the behavior of the system.

In the previous exercises, you have learned how to create new diagrams,
either from the Organizer or from the SDL Editor, so we will not focus
on these details any more. Feel free to double-click icons in the Orga-
nizer or in the SDL Editor, or to use the Organizer Edit command, de-
pending on your preference.

In the next exercise, you will instead learn how to use the SDL Editor
for drawing process diagrams. Let us start with the process Demon,
which is depicted in Figure 65.

Editing the Process Demon

Figure 65: The process Demon

Process Demon 1(1)

Timer T;
Generate

Set
(Now+1, T) T

Generate Bump

Set
(Now+1, T)

-

96 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Diagram
On the next pages, you will find suggestions about how to use the SDL
Editor to draw the diagram.

What You Will Learn
• To add symbols with the double-click facility
• To work with the clipboard functions
• To insert symbols in a flow
• To request grammar help

Creating the Diagram

1. Edit the Demon diagram. When you are prompted to add a page,
make sure that you specify a page with the type set to Graph Page.

2. When the SDL Editor responds by displaying the (empty) diagram,
you notice that the appearance of the symbol menu is different; it
now contains the symbols that are allowed on a flow diagram (such
as state and input symbols).

Figure 66: Specifying page type to graph page
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 97

Chapter 3 Tutorial: The Editors and the Analyzer
The diagram consists of two branches of symbols (see Figure 65 on
page 96). When you append symbols to a branch, the editor may auto-
matically interconnect the symbols with flow lines.

You may select to enter the text into each symbol once the symbol has
been inserted, or insert all symbols and then edit the text, or a mix of
both methods.

Figure 67: The SDL Editor window for flow diagrams (on UNIX)
98 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Diagram
Creating the Left Branch with Grammar Help

To create the left branch:

1. Select the start symbol in the symbol menu and place it in the draw-
ing area at a suitable location.

– Remember that when you point to or select a symbol in the sym-
bol menu, its type is displayed in the Status Bar at the bottom of
the SDL Editor window. Use this if you are not sure what sym-
bol to pick.

2. Double-click the task symbol in the symbol menu. An empty task
symbol should now be appended to the start symbol.

When you are to edit the task symbol containing the statement that
sets the timer, let us assume, for the purpose of this exercise, that
you do not have the grammar for the Set statement in mind.

The SDL Editor provides a context-sensitive facility, the Grammar
Help window, that assists you in entering correct SDL expressions.
You will now use it in order to fill in a correct set expression.

3. Select the command Grammar Help from the Windows menu. The
SDL Editor responds by displaying the Grammar Help window.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 99

Chapter 3 Tutorial: The Editors and the Analyzer
– The left list shows a number of “use cases”, each of them iden-
tified with their name. The first one is the GRAMMAR for the
selected object.

– The top of the right list shows a number of references to the
Z.100 definition.

– Beneath the Z.100 references are listed the formal textual
(SDL/PR) expressions that are legal to add to the symbol. (The
formal expressions need of course to be replaced by the actual
values that are used in your context).

4. The use case you are to use is the set of a timer, so locate the item
titled Set in the left list and select it.

– The right list is updated to reflect the formal grammar for the ex-
pression: “SET(Now+Expr, TimerName)”.

Figure 68: The Grammar Help window
100 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Diagram
5. Insert the formal text into the task symbol by selecting the Insert
command from the Edit menu. The task symbol is immediately up-
dated.

– You may also double-click the Set item in the list.

6. Now, change the generic names Expr and TimerName to their actual
values (1 and T, respectively).

– You use the SDL Editor’s text window for this. Drag for in-
stance the mouse over the text to be changed and type in the new
text to substitute it with.

You have now learned the basics about how to work with the Gram-
mar Help.

7. To finish the left branch, double-click a state symbol and enter the
text: Generate

Figure 69: The grammar for a Timer Set

Figure 70: Edit the text in the text window (on UNIX)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 101

Chapter 3 Tutorial: The Editors and the Analyzer
Creating the Right Branch

To create the right branch:

1. Copy the newly added state symbol to the clipboard. You find the
clipboard commands, e.g. Copy, on the Edit menu or on the pop up
menu that is activated with the right mouse button.

2. Paste the state symbol. Following Paste, you should specify the lo-
cation of the new symbol; move the mouse until you point to a suit-
able location and terminate with a click with the left mouse button.

3. Append an input symbol with a double-click. Enter the text: T

4. Append the output of the signal Bump with a double-click and enter
the text Bump.

5. Copy the task symbol with the text “SET (Now+1, T)” to the clip-
board. But, do not paste right now.

6. Point to the output symbol Bump. Press the right mouse button and
select the Insert Paste command. This pastes and connects the task
symbol.

7. Terminate the branch by double-clicking a state symbol and typing
a hyphen (-).

8. Finally, add a text symbol and type in the declaration of the timer T.

9. If desired, resize the frame symbol.

10. Save the diagram with the file name Demon.spr.

This concludes the editing of the process Demon.
102 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Diagram
Editing the Process Game
First, create the process diagram Game in the usual way. In this exer-
cise, you will learn some other editing functions:

What You Will Learn
• To edit parallel flow branches
• To interconnect symbols

You may proceed editing the process diagram in Figure 71, as will be
described below:

Figure 71: The process Game

Process Game 1(1)

DCL
Count Integer;

Count:=0

Losing

Probe

Lose

Count:=
Count-1

-

Bump

Winning

Bump

Losing

Probe

Win

Count:=
Count+1

-

*

Result

Score
(Count)

-

GameOver
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 103

Chapter 3 Tutorial: The Editors and the Analyzer
Editing the Start Transition

1. Insert the start symbol, the following task symbol and the state sym-
bol Losing.

2. You will now insert two input symbols in parallel. To do this, first
make sure the state symbol is selected. Then, press <Shift> and
double-click two input symbols (<Shift> must be kept pressed
while you do this).

3. Release <Shift> and select the left input symbol.

4. Fill in the name of the input symbol (Probe), and complete the left
branch.

5. Select the right input symbol, fill in the name (Bump) and complete
the branch without bothering about the subbranch that starts with
the input of the signal Probe in the state Winning.

6. Select the Probe input symbol in the left branch. On the Edit menu,
use the Select Tail command to extend the selection to the end of the
branch.

7. Copy the selection and Paste it. Move the selection (which appears
as a set of symbols) to a suitable place and paste it with a click with
the left mouse button. If Paste fails (because of insufficient space or
overlap), an alert sound is issued — please try again.

8. Change the text in the input symbol from Lose to Win.

9. Change the text in the task symbol to Count:=Count+1.

10. To interconnect the state symbol Winning with the input symbol
Probe: select the state symbol – a handle appears –

drag the handle while pressing the mouse and release the mouse
when it points to the input Probe symbol. A line is drawn between
the symbols:

Figure 72: The selected state and its handle
104 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Diagram
11. Conclude the diagram by drawing the remaining parts and saving
the diagram.

Figure 73: The two branches are connected

Figure 74: Remaining parts to edit
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 105

Chapter 3 Tutorial: The Editors and the Analyzer
Editing the Process Main
The process Main is the last diagram to create and edit. If you find this
tedious, you may skip this exercise and create the diagram as a copy
from the files that are enclosed in the distribution (how to do this is de-
scribed in section “Creating a Block Diagram From a Copy” on page
91). Figure 75 shows the appearance of the diagram to create.

Figure 75: The process Main

Process Main 1(1)

DCL
GameP Pid;

Game_Off Game_On

Newgame Endgame

Game GameOver

GameP:=
Offspring

GameP:=
null

Game_On Game_Off
106 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More About the Organizer
More About the Organizer
When you are ready with the diagram, save everything. The diagram
structure in the Organizer Window should now look like this:

In this tutorial, you have only browsed through a minor part of the avail-
able functionality. You may for instance customize the Organizer to dis-
play the information using different view options.

What You Will Learn
• To work with vertical trees
• To expand and collapse the diagram structure
• To rearrange diagrams in an Organizer structure
• To display directories and pages
• To print the entire system

Figure 76: The resulting diagram structure

My first SDL system

Main rw Main.spr

Game rw Game.spr

GameBlock rw GameBlock.sbk

Demon rw Demon.spr

DemonBlock rw DemonBlock.sbk

DemonGame rw DemonGame.ssy
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 107

Chapter 3 Tutorial: The Editors and the Analyzer
Tree View
1. Bring up the View Options dialog (see Figure 33 on page 66), click

on the Vertical tree radio button and click on Apply. The Organizer
window changes its presentation mode:

2. Apply the Indented list mode again.

Expand / Collapse
You may make parts of the diagram structure invisible (and visible
again) with the Expand and Collapse commands from the View menu.
(Expand is available on collapsed nodes only (indicated by the small tri-
angle), while Collapse is available on expanded nodes that have a sub-
structure).

Figure 77: A vertical tree structure

My first SDL system

Main
rw

Main.spr

Game
rw

Game.spr

GameBlock
rw

GameBlock.sbk

Demon
rw

Demon.spr

DemonBlock
rw

DemonBlock.sbk

DemonGame
rw

DemonGame.ssy
108 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More About the Organizer
1. Collapse the block GameBlock. The subtree for the block
GameBlock is reduced to the node, with a small triangle added.

2. Expand the subtree again (use Expand Substructure).

Rearranging Diagrams
The Organizer lets you rearrange the order of appearance of symbols.

You can either do that with arrow keys (<Up>, <Down>, <Left> and
<Right>) or with the quick buttons Move up and Move down.

Say that you want to rearrange the order of appearance of the blocks
DemonBlock and GameBlock:

1. Select the block GameBlock.

2. Click once on the quick button Move down, alternatively press
<Shift> and type the <Down> arrow key. The result becomes:

3. Change back to the original order of the diagrams.

Figure 78: A collapsed node

Figure 79: Rearranged GameBlock and DemonBlock

My first SDL system

GameBlock rw GameBlock.sbk

Demon rw Demon.spr

DemonBlock rw DemonBlock.sbk

DemonGame rw DemonGame.ssy

My first SDL system

Demon rw Demon.spr

DemonBlock rw DemonBlock.sbk

Main rw Main.spr

Game rw Game.spr

GameBlock rw GameBlock.sbk

Demongame rw DemonGame.ssy
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 109

Chapter 3 Tutorial: The Editors and the Analyzer
Diagram Pages
1. In the View Options dialog, turn the Page symbols item on.

2. Apply the options – the result becomes a list where the SDL pages
are made visible.

Printing the System
The Organizer lets you print all diagrams that are included in the system
with a single command. You may also include a table of contents:

1. De-select all diagram symbols, or select the system diagram.

2. Click the quick button for Print. This opens the Organizer’s Print di-
alog.

3. Turn the Table of contents toggle button on and click on Print to or-
der a global printout of all SDL diagrams, including a table of con-
tents (see Figure 81).

Figure 80: Diagram pages are displayed

My first SDL system

1

1

1

Main rw Main.spr

1

Game rw Game.spr

GameBlock rw GameBlock.sbk

1

1

Demon rw Demon.spr

DemonBlock rw DemonBlock.sbk

DemonGame rw DemonGame.ssy
110 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More About the Organizer
You have now created and printed your first complete SDL system us-
ing the SDL Suite. Your next task is to check the complete system with
respect to SDL syntax and semantics.

Figure 81: Including a table of contents
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 111

Chapter 3 Tutorial: The Editors and the Analyzer
Analyzing the Complete System

What You Will Learn
• To perform syntactic and semantic analysis on the whole system
• To generate files containing definitions and cross references

Enabling Semantic Analysis
To analyze the system, you should also enable the semantic checker. To
do this:

1. Select the system diagram icon.

2. Use the Analyze command from the Generate menu.

3. Adjust the analyzer options according to the picture below:

Figure 82: Including semantic analysis
112 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Analyzing the Complete System
– Make sure the Analyzer generates a file with cross references,
by turning the toggle button Generate a cross reference file on.
You will need this file in a later exercise in this tutorial.

– The semantic Analyzer has some other options, each one of
these individually activated with a toggle button. They have no
impact on this tutorial.

4. Click the Analyze button.

5. When the Organizer status bar reads “Analyzer done”, look at the
Organizer Log for any errors reported by the Analyzer.

6. If required, correct the errors and repeat the procedure. How to lo-
cate errors in the source SDL diagrams was described in a previous
exercise, see “Looking for Analysis Errors” on page 76 and “Cor-
recting Analysis Errors” on page 77.

7. The tail of the Organizer log should contain the following output
when the system is syntactically and semantically correct:

+ Analysis started
Conversion of SDL to PR started
Conversion to PR completed
Syntactic analysis started
Syntactic analysis completed
Semantic analysis started
Semantic analysis completed
+ Analysis completed

Terminate this exercise by saving everything. You may also want to
print the diagrams again (see “Printing the System” on page 110 for how
to do this).
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 113

Chapter 3 Tutorial: The Editors and the Analyzer
Managing Message Sequence Charts
Besides the SDL tools, SDL Suite and TTCN Suite also support the
Z.120 recommendation, also known as Message Sequence Charts
(MSC). You should have a basic understanding of MSC symbols to ful-
ly understand this exercise.

In this tutorial we will demonstrate some application areas of MSCs.

• First, an MSC may be used for describing the requirements on the
dynamic behavior of a system, viewed as a “black box” which re-
ceives external stimuli (corresponding to SDL signals issued from
the environment) and respond by sending SDL signals to the envi-
ronment.

• MSCs may also help you to understand a problem, by offering a way
of presenting, in graphical form, some use cases which have been
identified, before proceeding with the design in SDL.

• Generating MSCs as the result of a simulation of a system also pro-
vides a mean to understand the dynamic behavior and verify it
against the expected behavior.

• Finally, MSCs can be input to an SDL Explorer where you can ver-
ify that the scenario that the MSC is describing may actually occur
and under what circumstances.

What You Will Learn
• To add MSCs to the diagram structure
• To associate SDL diagrams and MSCs
• To create MSCs
• To edit MSCs

Inserting an MSC into the Organizer
To create an MSC, you use the Organizer, where the MSC will be man-
aged as an Other Document. In this exercise, we will create an MSC
where you will describe the dynamic behavior of the system
DemonGame. You will also use this MSC as a reference when simulat-
ing and validating the system (this is done in later exercises).
114 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Managing Message Sequence Charts
To create an MSC:

1. Select the Organizer chapter Other Documents.

2. From the Edit menu, select the command Add New, or click the
quick button for this.

3. The Add New dialog is opened, prompting you to specify a diagram
name and type.

Adjust the dialog options as in Figure 83 above:

– Set New document type to MSC

– Change the name to DemonGame.

– Show in editor should be turned on

4. Click the OK button. An MSC icon appears in the Organizer’s Other
Documents chapter; the lower part of your Organizer window
should look like Figure 84, once the MSC Editor is started (you may
have to raise the Organizer window if the MSC Editor covers it).

Figure 83: Specifying the name and type of the diagram to add
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 115

Chapter 3 Tutorial: The Editors and the Analyzer
The MSC you have inserted into the Organizer is intended to de-
scribe the behavior of the system and you will associate it with the
system diagram. The association will be visible in the Organizer.

5. Make sure the MSC icon is selected and select the Associate com-
mand from the Edit menu. A dialog is displayed.

6. Select the system DemonGame item in the list and click OK.

7. Look at the resulting Organizer structure. In addition to the MSC
icon in the Other Documents chapter, an MSC Link icon appears,
connected to the system diagram icon. If you select it, the Organiz-
er’s status bar informs you about the link to the actual MSC.

– If you do not see any MSC Link icon, check the Organizer’s
View Options, turn the option Association Symbols on and click
Apply.

Figure 84: The Organizer structure with an MSC added

Figure 85: Associating an MSC with an SDL diagram

Other Documents

DemonGame [unconnected]
116 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Managing Message Sequence Charts
Figure 86: Association between the System diagram and the associated MSC

My first SDL system

DemonGame

Main rw Main.spr

Game rw Game.spr

GameBlock rw GameBlock.sbk

Demon rw Demon.spr

DemonBlock rw DemonBlock.sbk

DemonGame rw DemonGame.ssy

Other Documents

DemonGame [unconnected]
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 117

Chapter 3 Tutorial: The Editors and the Analyzer
Editing an MSC
1. Raise the MSC Editor window for the newly added MSC symbol.

The window of the MSC Editor looks similar to the SDL Editor
window, but provides of course a different symbol menu and differ-
ent set of commands and quick-buttons.

Figure 87: The MSC Editor window (on UNIX)
118 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Managing Message Sequence Charts
Your next task is to use the MSC Editor to create the following diagram:

Figure 88: The MSC for the system DemonGame

Game
process Game

Demon
process Demon

Main
process Main

Environment

/* This MSC describes one simple interchange of signals
where the user starts one game, guesses once, wins
and terminates the game */

Winning

Losing

MSC DemonGame

GameOverGameOver

EndgameEndgame

Score

(1)

Score

(1)

WinWin

ResultResult

ProbeProbe

BumpBump

TT

NewgameNewgame
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 119

Chapter 3 Tutorial: The Editors and the Analyzer
The MSC basically consists of four instances (the vertical lines starting
with a rectangle), a number of messages (the horizontal lines ending
with an arrow), a create process (the dashed horizontal line), a timer (the
symbol starting with an hourglass and ending with an arrow) and two
condition symbols (with the shape of a hexagon). You also find a text
symbol, containing a textual comment in it.

How to Draw the MSC

We suggest that you draw the MSC as described below. If you are un-
sure what symbol in the symbol menu to use, select or point to a symbol
and look at the description in the Status Bar.

1. Start by entering the text symbol and fill in its contents. (This is
done in the same way as with the SDL Editor).

2. Then, insert the three instances with the instance name Environ-
ment, Main and Demon:

– To insert an instance, locate the instance head symbol in the
symbol menu, select it and place it into the drawing area as
shown in Figure 88; as soon as you insert an instance head, the
MSC Editor automatically appends an instance axis (with an in-
finite length).

– Type in the text to assign the instance name (Environment,
Main, Demon)

– To assign the instance kind (process Main, process Demon),
select the small rectangle located immediately above the in-
stance head symbol and type in the text.

– If you are not satisfied with the placement of an instance head,
you may drag the symbol to a new location.

Figure 89: The text attributes associated to an instance head

...and the instance name here.

Enter the instance kind here...
120 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Managing Message Sequence Charts
3. Once the three instances are added, insert the message Newgame:

– Select the message symbol in the symbol menu

– Move the pointer into the diagram. You will notice that a circle
indicates a start position outside an instance axis.

– Click once on the instance axis Environment to define the start
of the message.

– Move the pointer towards the instance axis Main. The message
arrow follows the pointer, and a filled circle now indicates an
end position outside an instance axis.

– Click a second time on the instance axis Main to specify the end
of the message.

– Type in the name of the message (Newgame).

– If you are not satisfied with the placement of a message, you
may move it up or down by dragging the mouse. You may also
move only the start or end position of the message along the in-
stance axis.

4. The instance Game is dynamically created. To add Game, you use
the create process symbol. You insert it in a similar fashion as a
message:

– Select the create process symbol in the symbol menu.

– Click once on the instance axis Main to specify the source of the
create process symbol.

– Click a second time to specify the location of the instance head.
A process create and an instance head with its axis are inserted.

– Fill in the instance kind and instance name fields (after you have
selected the instance head).

– If desired, you may move the instance head symbol.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 121

Chapter 3 Tutorial: The Editors and the Analyzer
5. Continue by adding the first condition symbol to the instance axis
Game:

– Select the condition symbol in the symbol menu, and move the
pointer to the instance axis. Click to insert the symbol and fill in
the name of the condition: Losing.

– The condition symbol may now be moved vertically along the
instance axis.

6. Add a timer to the instance axis Demon:

– Select the timer symbol in the symbol menu.

– Click once on the instance axis to specify the base of the timer
symbol.

– Move the pointer downwards and click a second time on the
same instance axis to locate the end of the timer (the end must
reside below the source).

– Enter the name of the timer: T

– You may drag the start or endpoint to resize the timer symbol, if
required. You may also drag the symbol to move it up or down.

7. Insert the message Bump.

8. Add the second condition symbol, Winning, to the instance axis
Game.

9. Add the remaining messages. The message Score also contains a pa-
rameter with the value 1. To enter the parameter value, select the
lower of the two selection rectangles and type in the text 1.

10. Conclude the editing of the MSC by adding a process stop symbol.

– Select the symbol in the symbol menu.

– Place it by a click on the instance axis Game, below the last mes-
sage.

Figure 90: The text attributes associated to a message
122 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Managing Message Sequence Charts
11. Before leaving the MSC Editor, you should save the MSC. When
saving the newly created diagram, the editor suggests the file name
DemonGame.msc. Accept the suggested file name by clicking the
OK button.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 123

Chapter 3 Tutorial: The Editors and the Analyzer
Using the Index Viewer
In this exercise, you will practice on the Index Viewer. The Index View-
er is a dedicated tool that presents a graphical view of the definitions
and references to SDL entities available in an SDL system. It manages
virtually all SDL information related to a system and has a number of
facilities for navigating back to the source SDL diagrams.

A prerequisite to this exercise is an up-to-date cross reference file con-
taining the definitions and references, which was generated when you
last performed a semantic analysis of the system.

If you have changed any of the SDL diagrams since the last analysis of
the system, you should regenerate the file. Perform a new semantic
analysis and make sure the option Generate a cross reference file is on
(see Figure 82 on page 112).

What You Will Learn
• To start the Index Viewer
• To look for definitions
• To look for references

Starting the Index Viewer
1. You start the tool with the Index Viewer command from the Orga-

nizer’s Tools menu and its sub-menu SDL. Select the sub-menu SDL
and the menu choice Index Viewer.

– As an alternative, you may click the quick button for the Index
Viewer. You will then be prompted to save unsaved diagrams.
The SDL system is then analyzed and a new cross reference file
is generated automatically.

2. The Index Viewer window is displayed. Start by opening the newly
created file DemonGame.xrf (unless you used the quick button, in
which case the file is automatically opened).

3. The Index Viewer reads the file, interprets the content and displays
it in graphical form.
124 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Index Viewer

– Some definitions are predefined in the SDL Suite environment
(the ones containing PACKAGE Predefined). They are not of in-
terest for the purpose of this tutorial.

In the next exercise, you will use the Index Viewer to identify all possi-
ble situations where a certain signal may be sent or received. We will
also look for the definition of the signal.

Finding a Definition
Let us look for the definition of the signal Probe. By default, the defini-
tions in the window are sorted alphabetically, but you do not need to
scroll the window manually to find a definition.

Figure 91: The Index Viewer window
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 125

Chapter 3 Tutorial: The Editors and the Analyzer
There is a Search quick button that can be used to find any text in the
window. However, if you want to search for the name of a definition,
there is an even faster way.

1. Simply start keying in the name “Probe”. When you start typing, a
search is started on the names that are displayed in bold face. As you
type each letter on the keyboard, the status bar at the bottom of the
window indicates what text is being searched for, and the window
scrolls to show the first matched name. After a few keystrokes, the
Index Viewer window shows the signal Probe selected:

The selected row shows the icon for a signal, the name and type of
the definition (“Probe SIGNAL”) and which diagram the signal is
defined in (“SYSTEM DemonGame”).

We now wish to see where the signal is defined.

2. Make sure the Probe icon still is selected.

Figure 92: Finding the signal Probe
126 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Index Viewer
3. From the Tools menu, select the command Show Definition.

– You can also double-click the icon.

An SDL Editor window is displayed on the diagram for the system
DemonGame. The text symbol containing the declaration (i.e. the
definition) of the signal is selected.

Finding References
Below the Probe icon in the Index Viewer, all uses (references) of the
Probe signal are listed, including the icons for the SDL entities in which
the signal has been referred. The information displayed in Figure 92
should be interpreted as:

• The signal is conveyed on one channel,
• The signal may be input in two states,
• The signal is conveyed on one signal route.

To conclude this exercise, you will now locate the places where the sig-
nal is input.

1. Select the input icon.

2. The Tools menu should now contain the two menu choices
Show Use 1 and Show Use 2.

3. Select the menu choice Show Use 1– an input symbol is selected in
an SDL Editor window, showing the diagram for the process Game.

4. Select the menu choice Show Use 2 – the second input symbol is se-
lected, also in process Game. These are the two situations where the
signal may be input.

5. Double-click the signal route icon. The signal route containing the
Probe signal is selected in an SDL Editor window.

– If you double-click an icon with more than one reference, the se-
lection in the SDL Editor is automatically changed to the next
occurrence. You may try this with the input icon.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 127

Chapter 3 Tutorial: The Editors and the Analyzer
So Far...
You should now have learned how to use the basic functions in the SDL
Suite – creating, managing, editing and printing SDL diagrams – and
how to create Message Sequence Charts in the MSC Editor. You have
also practiced on syntactic and semantic checks on your SDL diagrams.
Finally, you have acquainted yourself with the Index Viewer.

Your next task will be to “animate” your first SDL system by simulating
it. A number of exercises are prepared in the next tutorial, starting with
“Purpose of This Tutorial” on page 136.
128 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A: The Definition of the SDL-88 DemonGame
Appendix A: The Definition of the SDL-88
DemonGame

System DemonGame 1(1)

SIGNAL
Newgame, Probe, Result, Endgame,
Win, Lose, Score(Integer), Bump;

GameBlock

DemonBlock

C1

Newgame, Probe,
Result, Endgame

C2

Win, Lose, Score
C3
Bump
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 129

Chapter 3 Tutorial: The Editors and the Analyzer
Block DemonBlock 1(1)

Demon(1,1)C3
R1

Bump

Process Demon 1(1)

Timer T;
Generate

Set
(Now+1, T) T

Generate Bump

Set
(Now+1, T)

-

130 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A: The Definition of the SDL-88 DemonGame
Block GameBlock 1(1)

SIGNAL
GameOver;

Main(1,1)

Game(0,1)

C1
R1

Newgame,
Endgame

R5

GameOver

R2
Probe,
Result

C2
R3

Win, Lose, Score

C3
R4

Bump
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 131

Chapter 3 Tutorial: The Editors and the Analyzer
Process Game 1(1)

DCL
Count Integer;

Count:=0

Losing

Probe

Lose

Count:=
Count-1

-

Bump

Winning

Bump

Losing

Probe

Win

Count:=
Count+1

-

*

Result

Score
(Count)

-

GameOver
132 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A: The Definition of the SDL-88 DemonGame
Process Main 1(1)

DCL
GameP Pid;

Game_Off Game_On

Newgame Endgame

Game GameOver

GameP:=
Offspring

GameP:=
null

Game_On Game_Off
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 133

Chapter 3 Tutorial: The Editors and the Analyzer
Appendix B: The MSC for the DemonGame

Game
process Game

Demon
process Demon

Main
process Main

Environment

/* This MSC describes one simple interchange of signals
where the user starts one game, guesses once, wins
and terminates the game */

Winning

Losing

MSC DemonGame

GameOverGameOver

EndgameEndgame

Score

(1)

Score

(1)

WinWin

ResultResult

ProbeProbe

BumpBump

TT

NewgameNewgame
134 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
4 Tutorial: The SDL
Simulator
The SDL Simulator is the tool that you use for testing the behavior
of your SDL systems. In this tutorial, you will practice “hands-on”
on the DemonGame system.

To be properly assimilated, this tutorial therefore assumes that you
have gone through the exercises that are available in chapter 3, Tu-
torial: The Editors and the Analyzer.

In order to learn how to use the Simulator, read through this entire
chapter. As you read, you should perform the exercises on your
computer system as they are described.
al SDL Suite 6.3 Getting Started gs-s0 135

Chapter 4 Tutorial: The SDL Simulator
Purpose of This Tutorial
The purpose of this tutorial is to make you familiar with the essential
simulation functionality in the SDL Suite. Typically, simulation means
executing the system under user control; stepping, setting breakpoints,
examining the system, processes and variables, sending signals and
tracing the execution, as you would do with a debugger, but applied on
the SDL domain.

This tutorial is designed as a guided tour through the SDL Suite, where
a number of hands-on exercises should be performed on your computer
as you read this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not a tutorial on SDL.

It is assumed that you have performed the exercises in chapter 3, Tuto-
rial: The Editors and the Analyzer before starting with the tutorial on
the simulator.

Note: C compiler

You must have a C compiler installed on your computer system in
order to simulate an SDL system. Make sure you know which
C compiler(s) you have access to before starting this tutorial.

Note: Platform differences

This tutorial, and the others that are possible to run on both the
UNIX and Windows platform, are described in a way common to
both platforms. In case there are differences between the platforms,
this is indicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running the SDL Suite in your en-
vironment. Only if a screen shot differs in an important aspect be-
tween the platforms will two separate screen shots be shown.
136 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating and Starting a Simulator
Generating and Starting a Simulator
Once you have designed and analyzed a complete SDL system, it is pos-
sible to simulate the system, i.e. to interactively inspect and check its ac-
tual behavior. To be able to simulate the DemonGame system, you must
first generate an executable simulator and then start the simulator with
a suitable user interface.

What You Will Learn
• To generate an executable simulator
• To start the simulator user interface
• To start a simulator from the user interface

Generating the Simulator
To generate an executable simulation program, do as follows:

1. Make sure the system diagram icon is selected in the Organizer.

2. Select the Make command from the Generate menu. The Make di-
alog is opened:

Note:

In order to generate a simulator that behaves as stated in the exercis-
es, you should use the SDL diagrams that are included in the distri-
bution instead of your own diagrams. To do this:

• On UNIX: Copy all files from the directory
$telelogic/sdt/examples/demongame

to your work directory ~/demongame.

• In Windows: Copy all files from the directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\exam-

ples\demongame

to your work directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\demongame.

If you generate a simulator from the diagrams that you have created
yourself, the scheduling of processes (i.e. the execution order) may
differ.

If you choose to copy the distribution diagrams, you must then re-
open the system file demongame.sdt from the Organizer.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 137

Chapter 4 Tutorial: The SDL Simulator

Figure 93: The Make dialog (on UNIX)

Figure 94: The Make dialog (in Windows)
138 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating and Starting a Simulator
3. Adjust the options in accordance to the figure, i.e.
– Analyze & generate code on
– Makefile and Generate makefile on
– Compile & link on
– Use standard kernel on. Make sure that a Simulation kernel is

specified to the right; if not, select it from the option menu.

4. Click the Make button.

5. Select the Organizer log from the Tools menu. Check that no errors
occurred. The Organizer’s status bar should read “Analyzer done”
and the Organizer Log should report no errors between the “Make
started” and “Make completed” messages.

6. If errors were reported, bring up the Make dialog again, but click the
Full Make button instead. This time, no errors should be reported.

– Another problem could be with the C compiler used on your
system. If you still receive errors, try changing to a Simulation
kernel reflecting your C compiler, e.g. gcc-Simulation or Mi-
crosoft Simulation, and repeat the Make process.

Starting the Simulator
The generated simulator is now stored on a file called
demongame_xxx.sct (on UNIX) or demongame_xxx.exe (in Win-
dows) in the directory from which you started the SDL Suite (the _xxx
suffix is platform or kernel/compiler specific). The simulator contains a
monitor system that provides a set of commands which can be used to
control and monitor the execution of the simulator.

It is possible for you to execute the simulator directly from an OS
prompt, in which case you have to enter all commands to the monitor
system textually using a simple command-line interface.

The SDL Suite provides a user-friendly graphical interface to the sim-
ulator that is started from the Organizer.

1. From the Tools menu, select the sub-menu SDL and the command
Simulator UI. The Simulator UI window is opened:
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 139

Chapter 4 Tutorial: The SDL Simulator
The text area to the right informs you that no simulator is running.
The text area displays the textual input/output from the monitor sys-
tem, such as entered commands, the results of commands, and error
messages.

2. To start a simulator, select Open from the File menu, or click the
Open quick button.

3. In the file selection dialog, the generated simulator file described
above should be listed. Select it and click OK or Open.

4. The text area of the Simulator UI greets you with a welcome mes-
sage to acknowledge that the simulator has been started:

Welcome to SDL SIMULATOR. Simulating system Demongame.

When a simulator is started, the static process instances in the system
are created (in this case Main and Demon), but their initial transitions
are not executed. The process in turn to be executed is the Main process.

The Simulator UI is now ready to accept commands to the monitor sys-
tem. Whenever it is possible to enter a command, the prompt Command:
is issued in the text area.

Figure 95: The main window of the Simulator UI (on Windows)
140 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Executing Transition by Transition
Executing Transition by Transition

What You Will Learn
• To enter commands textually
• To show the next symbol to be executed
• To interpret printed trace and graphical trace
• To execute the next transition
• To issue commands using buttons
• To send signals from the environment

Executing the Start Transitions
In this exercise, you will execute the start transitions in the process in-
stances of the system. First, however, we must set the amount of trace
information that we want printed during execution. The command
Set-Trace is used for setting the textual trace level.

For now, you will enter commands textually by using the text field
Command: just below the text area; this field is called the input line.

1. Click in the input line to place the cursor. Enter the command
set-trace 6 and hit <Return>. The value 6 specifies that we
want full information about the actions that are performed during
the transitions. The entered command is moved to the text area and
the simulator monitor confirms the trace setting; the text area should
now show:

Welcome to SDL SIMULATOR. Simulating system Demongame.

Command : set-trace 6
Default trace set to 6

Command :

A graphical trace (GR trace) is also available, which means that the
execution is traced in the SDL diagrams by selecting the next sym-
bol to be executed. GR trace is by default off when you start the sim-
ulation.

2. To enable the GR trace, enter the command set-gr-trace 1. The
value 1 specifies that the next symbol to be executed will be dis-
played in an SDL Editor each time the monitor system is entered.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 141

Chapter 4 Tutorial: The SDL Simulator
3. To have an SDL Editor window appear now, enter the command
show-next-symbol. An SDL Editor window appears, showing the
diagram for the process Main with its start symbol selected (this is
the next symbol in turn to be executed). This SDL Editor window
will be used for graphically tracing the execution of the simulator
during your simulation session.

4. If needed, move and resize the Simulator UI and SDL Editor win-
dows so that they both are completely visible and fit on the screen
together. A few useful advice are:

– Before resizing the SDL Editor, you may hide the symbol menu
and the text window by using the quick buttons. The editor win-
dow will not be used for editing any diagrams, only viewing
them.

– Check and, if required, adjust the SDL Editor’s option Always
new window to off. (Use the command Editor Options on the
View menu for this).

– You may reduce the width of the Simulator UI window some-
what, which only affects the width of the text area. You may
also reduce the height, but you should make sure that all buttons
in the left part of the window are still visible.

– During this simulator tutorial, you will not need to see the con-
tents of the Organizer window. You may cover it, or minimize
it by using the window system.

To determine the transition in turn to be executed, you can look in
the editor window. The start state of process Main is selected and
the next state symbol is Game_Off. To execute this (empty) transi-
tion, you will use the command Next-Transition.

5. Execute the command Next-Transition by simply entering n-t in
the input line. All commands may be abbreviated as long as the ab-
breviation is unique among all available commands.

The start transition of Main is now traced in two ways:

– In the text area, the textual trace information of the transition
contains the process instance, the name of the initial state, and
the current value of the simulation time. It ends with the Next-
state action, giving the name of the resulting process state:
142 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Executing Transition by Transition
*** TRANSITION START
* PId : Main:1
* State : start state
* Now : 0.0000
*** NEXTSTATE Game_Off

– In the SDL Editor, the GR trace selects the next symbol to be ex-
ecuted. Since this is the start state of the process Demon, that di-
agram is loaded into the editor.

The next transition is the start transition of Demon, which contains
the setting of a timer. To execute it, you can use another feature of
the command interface:

6. Place and click the pointer on the input line and press the arrow key
<Up>. The command you entered previously appears (n-t). Execute
it by pressing <Return>.

– You can use the <Up> and <Down> arrow keys repeatedly on
the input line to show previously entered commands. This fea-
ture is commonly known as a command history. You may also
edit a command before it is executed, for instance by changing
the value of a parameter.

The start transition of Demon executes. Also, the SDL Editor sets
the selection on the text symbol where the declaration of the timer
T is found. This is a convention adopted in the SDL Suite to show
that the next event to take place in the system, if no signal is sent
from the environment, is the expire of a timer.

Note that the printed trace also contains the action of setting the tim-
er T.

Sending Signals from the Environment
To make something of interest happen in the system you have to send
signals from the environment into the system. We will start by sending
the signal Newgame to the Main process. For this, you can use the com-
mand Output-Via, which takes as parameters a signal name, the param-
eters of the signal (none in this case), and a channel name.

In this exercise, however, you will execute commands using buttons in-
stead of entering them textually on the input line. The command buttons
are arranged into different “modules” in the left part of the Simulator
UI. You can “preview” the command that is executed by a button by se-
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 143

Chapter 4 Tutorial: The SDL Simulator
lecting it and move the mouse pointer away from the button before you
release the mouse. The associated command is then listed in the Status
Bar at the bottom of the window.

1. Locate the button module Send Signal and click on the Send Via but-
ton.

This button executes the Output-Via command, as is shown in the
text area. A dialog is opened, asking for the value of the first param-
eter, the signal name. The list contains all signals possible to send
from the environment:

2. Select the signal Newgame and click the OK button.

3. Another dialog is opened, asking for the channel name.

Figure 96: Sending the signal Newgame
144 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Executing Transition by Transition
4. As there is only one channel from the environment to the system,
you do not have to select it explicitly. Simply click the OK button.

The signal is now sent, which is confirmed in the text area. The GR
trace shows that the next symbol to execute is the input of Newgame
(in process Main).

5. Execute the next transition by using the button Transition in the
module Execute (this executes the Next-Transition command). The
printed trace information shows the actions of the executed transi-
tion up until the state Game_On. Note that the start of the transition
is described by the combination of a state (Game_Off) and the input
of a signal (Newgame):

*** TRANSITION START
* PId : Main:1
* State : Game_Off
* Input : Newgame
* Sender : env:1
* Now : 0.0000
* CREATE Game:1
* ASSIGN GameP := Game:1
*** NEXTSTATE Game_On

Since the process Game was created in the transition, the GR trace
shows that the next symbol to execute is the start state of Game.

Figure 97: Selecting the channel to send via
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 145

Chapter 4 Tutorial: The SDL Simulator
This clearly demonstrates the difference between printed trace and
GR trace:

– The printed trace describes what happened in the previously ex-
ecuted transition, including the initial state and the reached state
of the process.

– The GR trace shows what will happen next, if the system is left
on its own. The start symbol of the next transition is selected,
which may be in a different process diagram.

6. Execute the start transition of Game with the Transition button. The
Game process reaches the state Losing, and the GR trace changes
back to the Demon process. The SDL Editor selection shows again
the text symbol with the declaration of the timer T.

7. Execute the next transition, in order to have the timer expire. This
transition is a timer output, i.e., a timer that sends its signal to the
process which earlier executed the Set action. A timer output is also
considered to be a transition. Note that the simulation time has now
been updated to 1:

*** TIMER signal was sent
* Timer : T
* Receiver : Demon:1
*** Now : 1.0000

8. Execute another transition. The start of this transition is described
by the combination of the Generate state and the input of the timer
T. The signal Bump is now sent to the Game process:

*** TRANSITION START
* PId : Demon:1
* State : Generate
* Input : T
* Sender : Demon:1
* Now : 1.0000
* OUTPUT of Bump to Game:1
* SET on timer T at 2.0000
*** NEXTSTATE Generate

The GR trace shows the next symbol to be the input of Bump in
Game. In the process diagram, note that after the input of Bump, the
Game process will be in the state Winning awaiting either the input
of another Bump or the input of a Probe signal.
146 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Executing Transition by Transition
9. Execute the next transition to put the process Game in the state Win-
ning. The GR trace switches back to the Demon process and indi-
cates the next default behavior which is the expire of the timer T.
However, you will instead send the signal Probe from the environ-
ment:

10. Send the Probe signal by using the Send Via button as before. The
GR trace switches back to the Game process.

11. Execute the next transition. The Probe signal is consumed and the
signal Win is output to the environment. The process returns to the
state Winning and awaits a new Bump (or Probe) signal.

*** TRANSITION START
* PId : Game:1
* State : Winning
* Input : Probe
* Sender : env:1
* Now : 1.0000
* OUTPUT of Win to env:1
* ASSIGN Count := 1
*** NEXTSTATE Winning

We have now shown how you can use the commands Next-Transition
and Output-Via to reach a certain point or state in the simulation.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 147

Chapter 4 Tutorial: The SDL Simulator
Viewing the Internal Status
In this exercise we will introduce some of the available commands for
viewing the internal status of the system. With the graphical user inter-
face, it is also possible to continuously view the internal status without
having to execute commands manually.

In the previous exercise, you learned how to interpret the available trac-
es. We will not focus on these details anymore, unless we need to point
out some important aspect.

What You Will Learn
• To restart the simulator without leaving the Simulator UI
• To use the Command and Watch windows
• To view and interpret the process ready queue
• To view the signal input port of a process
• To view variable values
• To examine process instances
• To view active timers

Restarting the Simulator
Before continuing, you need to restart the simulation from the begin-
ning and set the trace level:

1. Select the Restart command from the File menu.

2. A dialog informs you that the current simulation will terminate.
Confirm this by clicking OK. The text area is cleared and the simu-
lator is now reset.

3. Set the trace level to 6 and the GR trace level to 1, as before. The
easiest way to do this is to use the up arrow key on the input line to
find the previous Set-Trace 6 and Set-GR-Trace 1 commands and
then hit <Return>.

– The Simulator UI remembers all previous commands entered on
the input line in the same session, even if you have started a new
simulator.
148 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Viewing the Internal Status
Viewing Process and Signal Queues
To view the internal status continuously, the Command window is used.
This window shows, if your preferences are set up adequately, the pro-
cess ready queue and a list of all processes.

This information is displayed in separate “modules” in the Command
window by executing suitable monitor commands (List-Ready-Queue
and List-Process). These modules are similar to the button modules in
the main window.

1. Select Command Window from the View menu to open the Com-
mand window. Resize the window so that both command modules
become visible (see Figure 98). Move the window so that you can
still see the SDL Editor window and use the main window.

Figure 98: The Command window
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 149

Chapter 4 Tutorial: The SDL Simulator

The command modules show the following information:

– The List-Ready-Queue command displays the process ready
queue, i.e., an ordered list of all processes that are ready to exe-
cute a transition. The list contains an entry number (the position
in the queue), the process instance, its current state, the number
of signals in its input port, and the name of the signal that will
cause the next transition. At this stage, both processes (Main and
Demon) are to execute their start transition, so no signals are
listed.

– The List-Process command displays a list of all active processes
in the system. It shows the same information as the List-Ready-
Queue command above (with the exception of the additional
“env” process, which represents the environment). At this stage,
the two lists are identical.

2. Execute the next transition and note the changes in the Command
window. The Main process is removed from the ready queue since
it needs a signal input (Newgame) to execute the next transition, but
this signal has not yet been sent. The process list shows the new
state of Main (Game_Off).

3. Execute the next transition. The ready queue is now empty since the
Demon process needs an input of the timer signal T, but this timer
has not yet expired.

Note:

Whether the Command window shows any commands or not is pref-
erence dependent. If the window does not show these command
modules at start-up, you may add the commands using the Add Com-
mand menu choice from the Command menu and specify each of the
commands to add. See Figure 99.

Figure 99: Specifying a command to add
150 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Viewing the Internal Status
4. Send the signal Newgame from the environment. The Command
window shows that Newgame has entered the signal input port of
Main, thus adding Main to the ready queue.

5. You may also print a list of all signals in the input port of the process
in turn to execute. The command for this is not available through a
command button. Instead, locate the menu Examine in the menu bar
and select the Input Port command. For each signal an entry number
(the position in the signal queue), the signal name, and the sender of
the signal is printed. The asterisk before the entry number of New-
game indicates that this signal will be consumed by the process in
the next transition.

Viewing Variables and Process Instances
Apart from the Command window, you can also continuously monitor
variable values by using the Watch window. We will now monitor the
variable GameP in process Main to see how its value changes as the pro-
cess Game is started and later stopped.

1. Open the Watch window by selecting Watch Window from the View
menu. If needed, move it so that you can also see the contents of the
Command window.

2. In the Watch window, select Add from the Watch menu to add a
variable to the list of variables to display.

3. In the dialog, you have to specify both the process (within parenthe-
sis) and the variable name. Enter (Main) GameP and click OK.

4. The value null should now be displayed in the Watch window:

Figure 100: Adding a variable to watch
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 151

Chapter 4 Tutorial: The SDL Simulator
If necessary, resize the window so that the value becomes visible.

5. Execute the next transition and check that the value of GameP in the
Watch window changes to the value Game:1 as the process Game is
created. Game is also added to the lists printed in the Command
window.

6. You can examine the newly created Game process. The information
is printed by giving the command Examine-PId (enter ex-pid on
the input line) and contains the current values of Parent, Offspring,
and Sender. Parent is Main:1, as expected.

7. Send the signal Endgame from the environment. Notice that Main
is added to the ready queue, but after Game.

8. Execute the next transition, which is the start transition of Game.

9. You can now examine the Main process, since it is the next to exe-
cute. Give the command Examine-PId again and compare the values
printed with those from the Game process.

10. Execute the two next transitions to stop the Game process. Notice
that the value of GameP is reset to null and that Game no more is
listed in the Command window.

Figure 101: Adding GameP to the Watch window
152 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Dynamic Errors
Other Viewing Options
There are a number of other viewing commands available in the Exam-
ine menu. You can list the active timers in the system, check the param-
eters of signal and timer instances, etc. We will conclude this exercise
by showing that the system is not idle, even though the ready queue is
now empty.

1. Check that the timer T is still active by choosing Timer List in the
Examine menu. The timer’s name, corresponding process instance,
and expiration time is printed.

2. Execute the next transition. Try to examine the timer instance by
giving the command Examine-Timer-Instance (enter
ex-tim-ins on the input line). You are informed that the timer
queue is empty, i.e. the timer T is no longer active.

Dynamic Errors

What You Will Learn
• To recognize and interpret a dynamic error
• To find the SDL symbol last executed
• To continue an interrupted transition

Finding a Dynamic Error
In this exercise, a dynamic error in the Demongame system will be de-
tected. The error is found by simply executing the first four transitions
of the system:

1. Select the Restart command from the File menu.

2. Set the trace level to 6.

3. We will not use graphical trace in this exercise. So, exit the current-
ly open SDL Editor from its File menu.

4. As you will not need the Command and Watch windows, close them
by selecting Close All from the View menu.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 153

Chapter 4 Tutorial: The SDL Simulator
5. Execute the four next transitions until a warning message is printed
in the text area:

********************* WARNING ********************
Warning in SDL Output of signal Bump
Signal sent to NULL, signal discarded
Sender: Demon:1
TRANSITION
 Process : Demon:1
 State : Generate
 Input : T
 Symbol :
#SDTREF(SDL,c:\IBM\Rational\SDL_TTCN_Suite6.3\work\...
TRACE BACK
 Process : Demon
 Block : DemonBlock
 System : Demongame
**

The message indicates that there was no receiver for the Bump sig-
nal sent from the Demon process. This is quite true, as no process
instance of type Game has been created. The definition of the De-
mon game is thus not correct, as it is actually requires that the user
always has a game running, when Bump signals are sent. A better
(and correct) solution would be to direct the Bump signals from De-
mon to Main, which then retransmits the signal to the instance of the
Game process, if it exists.

6. When no GR trace is in effect, you can still see where the error oc-
curred. Choose Prev Symbol in the Show menu. This opens an SDL
Editor and selects the last symbol that was executed. In this case, the
output of Bump in the Demon process.

After a dynamic error has occurred it is, of course, possible to con-
tinue the simulation, both to execute more transitions and to exam-
ine the status of the system. Note that the execution was stopped di-
rectly after the symbol in which the dynamic error occurred, i.e. the
transition was interrupted.

7. To execute the interrupted transition to its end, issue a Next-Transi-
tion command as usual. In the printed trace you can see that no sig-
nal was sent in the erroneous output statement.
154 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Different Trace Values
Using Different Trace Values
The amount of trace information printed during transitions is set by the
command Set-Trace. So far, you have used this command to set the
trace value to 6. The higher the trace value you set, the more informa-
tion is printed.

You can also define trace values for different parts of the system. In this
way, blocks, process types, process instances, etc. can have different
trace values. If a process does not have a trace value defined, the value
for the enclosing block is used. If the block does not have a defined val-
ue, the value for the next enclosing structure is used, etc. The system al-
ways have a trace value defined, which initially is 4.

In this exercise, you will use these facilities to run the demon game and
only print trace information for transitions executed by the processes
Main and Game. The process Demon will not be traced. This is accom-
plished by setting the trace value for the system to 0 and the value for
the block GameBlock to 6.

The GR trace value will be set to 1 throughout this exercise.

What You Will Learn
• To set trace values for different parts of a system
• To list the current trace values
• To execute the next SDL symbol only
• To execute a sequence of transitions until trace is printed

Setting Trace Values
The command Set-Trace actually takes two parameters, the name of a
unit and a trace value, and assigns the trace value to the unit. To easily
specify the unit, you will now execute Set-Trace by using a menu, in-
stead of entering it on the input line.

1. First, restart the simulator. If needed, resize and move the SDL Ed-
itor window that is open.

2. Locate the Trace menu and select the Text Level : Set entry. In the
first dialog, select the unit System Demongame and click OK. In the
second dialog, select the trace value 0. Note that all possible trace
values (0-6) have a short explanation.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 155

Chapter 4 Tutorial: The SDL Simulator
3. In a similar way, set the trace value for the block GameBlock to 6.

4. The menu choice SDL Level : Set can be used to set the GR trace
value in the same way. Use it to set the trace value for the system
DemonGame to 1.

5. Check that you have set the correct trace values by using the menu
choices Text Level : Show and then SDL Level : Show. The follow-
ing information should be printed:

Default 4 = All SDL actions
System Demongame : 0 = No trace
Block GameBlock : 6 = All SDL actions + Result +
Parameters

Default 0 = GR trace off
System Demongame 1 = Show next symbol when entering
monitor

Figure 102: Setting the trace 0 for System DemonGame
156 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Different Trace Values
Executing Symbol by Symbol
To clearly see that the Demon process is not traced in the text area, we
will follow the execution in smaller steps than complete transitions. The
smallest execution step possible is one SDL symbol at a time. The com-
mand Step-Symbol is used for this.

1. First, send the Newgame signal from the environment.

2. Execute the start symbol of Main by clicking the button Symbol (in
the Execute module). Note that the printed trace does not include in-
formation about the next state (Game_Off) since that symbol has
not yet been executed (it is selected to be executed next):

*** TRANSITION START
* PId : Main:1
* State : start state
* Now : 0.0000

3. Execute the next symbol with the Symbol button. Now, the printed
trace gives information about the Game_Off state being reached:

*** NEXTSTATE Game_Off

4. The execution now continues in the Demon process. Execute the
three symbols in the start transition of Demon. Note that no trace is
printed in the text area, since Demon is not part of the block Game-
Block.

5. Continue executing the symbols in the Main and Game processes
until the Demon process is entered again (you will need to press the
Symbol button a number of times; watch the SDL Editor window for
monitoring the execution). Note that trace is printed for each sym-
bol.

6. When the Demon process is entered, you can continue to execute
symbol by symbol, or you may execute the complete transition by
using the Transition button as usual. No trace is printed.

7. Stop executing when you are back in the Game process.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 157

Chapter 4 Tutorial: The SDL Simulator
Hiding Uninteresting Transitions
If you would continue to execute transition by transition at this point,
trace would only be printed while executing the Game process. But, you
would still have to manually execute the “silent” transitions in the De-
mon process. To avoid this, you can use another command,
Next-Visible-Transition. This command executes a sequence of tran-
sitions; it stops after it has reached a process with a trace value greater
than 0, i.e., when the first “visible” transition is executed. In this way,
transitions by uninteresting parts of the system are hidden.

1. Execute the command by choosing Until Trace in the Execute
menu. The execution does not stop until the Game process is entered
again and the state Winning (or Losing) is reached. Trace is then
printed for the last executed transition.

2. Repeat the command a number of times. The printed trace shows
that you are now switching between the states Losing and Winning
in the Game process. The execution in the Demon process is hidden
in the printed trace.

You should note, however, that the GR trace only shows the Demon
process. Remember that the GR trace selects the next symbol to be
executed, which is always in the Demon process when the Game
process has reached the state Winning or Losing. If you want to
check where in the Game process you are, do as follows:

3. Choose Prev Symbol in the Show menu to select the last executed
symbol. This should be a state symbol, Winning or Losing, in the
Game process.
158 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Looking at the External Behavior
Looking at the External Behavior

What You Will Learn
• To use the signal log facility
• To add command buttons to the Simulator UI
• To execute transitions up to a certain time value

Setting Trace and Signal Logging
During this exercise, you will look at the external behavior of the sys-
tem, which is the same as actually playing the Demon game. To achieve
this, we will set the system trace to 1. This means that you will see only
signals sent to the environment and none of the actions performed dur-
ing transitions. In order to log the external behavior on a file, you will
also use the signal log facility.

1. As usual, restart the simulator.

2. Set the trace value for the system to 1.

3. To log the signals sent to and from the environment, enter the com-
mand signal-log in the input line and hit <Return>. (This com-
mand has no associated button or menu choice.)

The Signal-Log command takes two parameters, which are now
asked for in dialogs. The first parameter is a unit name. All signals
sent to, from or through the specified unit will be logged to file.

4. Instead of selecting one of the units in the list, enter the unit name
env in the dialog’s text field and click OK. This is the way to spec-
ify the environment of the system.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 159

Chapter 4 Tutorial: The SDL Simulator
The second parameter is a the name of a file name to which infor-
mation about the signals will be written. A file selection dialog is
opened.

5. In the File field, enter the file name signal.log and click OK.

Adding Buttons for Common Commands
When you are playing the Demon game, you are sending signals to the
system from the environment. You will start by sending the signal New-
game. Since this is an action often performed in the simulation of this
system, we will first define a new button that executes the proper com-
mand. In this way, you only need to click the button to send the signal.

1. In the Send Signal module, select Add from the Group menu to the
far right:

Figure 103: Specifying the environment

Figure 104: Adding a new button to a module
160 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Looking at the External Behavior
2. In the dialog, enter Newgame as the button label, but do not hit
<Return>. Enter output-via newgame - as the command defi-
nition.

– The ‘-’ as the last parameter to Output-Via indicates the default
value, in this case for the channel parameter. Specifying ‘-’ as a
parameter is the same as just clicking OK in the corresponding
parameter dialog.

3. Click Apply. The new button appears in the module, and the dialog
is ready for another button definition.

4. Since sending the Probe signal also is a common action, add a but-
ton Probe in the same way as above.

5. If you wish, add buttons for the signals Result and Endgame in the
same way. Finally, close the dialog with the OK button.
(If the Error message “Button label must not be empty” occur, just
ignore the message.)

Playing the Game
You are now ready to start playing the game. You will use the new but-
tons to send signals to the game, and the command Proceed-Until to ex-
ecute transitions up to the next point in time when you want to send a
signal.

1. Send the signal Newgame with a click on the Newgame button.

2. Execute transitions until the time is 5.5 by selecting Until Time (in
the Execute menu). Enter the value 5.5 in the dialog. This executes
the command Proceed-Until 5.5. This will execute all transi-
tions up to the point in time when the simulation time first becomes
equal to the specified time value.

Figure 105: Adding a button
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 161

Chapter 4 Tutorial: The SDL Simulator
3. Send a Probe signal.

4. Execute transitions until the time is 10.3. Note the output of the sig-
nal Win or Lose to the environment.

5. Send a Probe signal again. Then, send another Probe signal. The two
signals will enter the input port of the Game process. Check this by
selecting Input Port in the Examine menu:

Input port of Game:1
Entry Signal name Sender
*1 Probe env:1
 2 Probe env:1

6. Send the signal Result. Use the button if you have defined one; oth-
erwise, use the Send Via button or enter the command on the input
line.

7. Execute transitions until the time is 13.5. Note the output of the sig-
nals Lose or Win (one for each Probe) and Score to the environment.

Examining the Signal Log File
1. Exit the simulation by choosing Stop Sim in the Execute menu. This

is needed to finish the signal logging. The Simulator UI itself is not
closed by this command.

2. Examine the file signal.log from outside the simulator. The file
contains a specification of all signals sent to and from the environ-
ment. It should look like this:

Signal log for system Demongame with unit Process
env on file ...
0.0000 Newgame from env:1 to Main:1
5.5000 Probe from env:1 to Game:1
5.5000 Win from Game:1 to env:1
10.3000 Probe from env:1 to Game:1
10.3000 Probe from env:1 to Game:1
10.3000 Result from env:1 to Game:1
10.3000 Lose from Game:1 to env:1
10.3000 Lose from Game:1 to env:1
10.3000 Score from Game:1 to env:1
Parameter(s) : -1
162 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Breakpoints
Using Breakpoints
The facility of a simulator demonstrated in this exercise is the break-
point. A breakpoint can be used to stop the execution and activate the
monitor system at a certain point of interest. There are four kinds of
breakpoints; symbol, transition, output and variable. The first two kinds
will be explained in the following.

What You Will Learn
• To set a breakpoint on an SDL symbol
• To set a breakpoint on a transition
• To list all defined breakpoints
• To graphically trace each executed SDL symbol
• To get a textual SDT reference to an SDL symbol
• To continuously execute the system

Setting Up the System
To see where a breakpoint is reached, you will start the execution of the
system with the Go command. This command continuously executes
transitions until an error occurs, a breakpoint is reached, or the system
is completely idle. You should first set up the system in a way suitable
for continuous execution:

1. Restart the simulator.

2. Set the trace value for the system to 0 to avoid trace information be-
ing printed during execution (you may use the Text level : Set entry
from the Trace menu to do this) .

3. Set the GR trace value for the system to 2. Each SDL symbol will
then be selected in the SDL Editor as it is executed, allowing you to
follow the execution even though no trace is printed.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 163

Chapter 4 Tutorial: The SDL Simulator
Setting a Symbol Breakpoint
A symbol breakpoint is set at a specific SDL symbol in the process dia-
grams. Symbol breakpoints are checked before symbols are executed,
i.e. the symbol is not executed when the breakpoint is reached. We will
now show how to set a breakpoint on the first task symbol in the Game
process, i.e. the initializing of the variable Count to 0.

1. First, send the signal Newgame (using the new button). This is very
important, as otherwise the Game process will not be created and
the breakpoint will never be reached!

2. In the SDL Editor, bring up the Game process diagram from the
Diagrams menu.

– If, for some reason, this diagram is not included in the menu,
you have to open it explicitly. Either click the Open quick button
and select the file Game.spr, or double-click the Game diagram
icon in the Organizer window.

3. In the Simulator UI, choose Connect sdle in the Breakpoint menu
(you may have to resize the window to see the menu). This estab-
lishes a connection between the Simulator and the SDL Editor. As
a consequence, a new menu Breakpoints appears in the SDL Edi-
tor’s menu bar (you may have to resize the window to see the
menu).

4. Go back to the SDL diagram and select the task symbol “Count:=0”.
Then, select the second command Set Breakpoint from the new
Breakpoints menu in the editor (the one without trailing dots). The
symbol breakpoint is now defined.

A red “stop” sign is added to the task symbol to indicate the break-
point. Back in the Simulator UI, the definition of the symbol break-
point is printed.

5. Start executing the system by pressing the Go button in the Execute
module. Note how the SDL symbols are selected in rapid succession
as they are executed. Finally, the breakpoint is reached and the ex-
ecution stops. The symbol where the breakpoint was set is next to
be executed.
164 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Breakpoints
Setting a Transition Breakpoint
A transition breakpoint is set at a specific transition in the system. Tran-
sition breakpoints are checked before transitions are executed, i.e. the
transition is not executed when the breakpoint is reached. We will set a
breakpoint in the Demon process, when it is in the state Generate and
receives the timer T.

1. To define the breakpoint, choose Transition in the Breakpoint menu
of the Simulator UI. This command takes a number of parameters.
In the dialogs that appear:

2. Select the Demon process and click OK:

3. Leave the instance number empty and click OK:

4. Do not specify a service name; simply click OK:

Figure 106: Specifying the process

Figure 107: Leave the instance number empty
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 165

Chapter 4 Tutorial: The SDL Simulator
5. Select the Generate state and click OK:

6. Select the timer T and click OK:

Figure 108: Do not specify a service name

Figure 109: Specifying the state Generate
166 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Breakpoints
7. Simply click OK in the remaining dialogs:

To omit selecting a parameter value is interpreted so that any value,
name or number, will match this parameter. In this case, any in-
stance of Demon and any sender will match the breakpoint.

Figure 110: Specifying the timer T

Figure 111: Leaving the remaining dialogs empty
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 167

Chapter 4 Tutorial: The SDL Simulator
8. To see how the new breakpoint was defined, list all breakpoints with
the Show entry in the Breakpoint menu:

1
Process name : Demon
Instance : any
Service name : any
State : Generate
Input : T
Sender name : any
Sender instance : any
Stop each time

9. Resume execution of transitions by clicking the Go button. When
the breakpoint is reached, you can see that the current state of the
system matches the breakpoint definition:

Breakpoint matched by transition
PId : Demon:1
State : Generate
Input : T
Sender : Demon:1
Now : 1.0000

Changing the System
There are a number of commands in the simulator monitor that change
the behavior of the system. These commands should be used with care,
since it is no longer the original system that is simulated after such a
command has been issued. These commands are still useful, especially
in debugging situations, for making minor changes so that it is possible
to continue the simulation after an error has been detected. They can
also be used to force the system into certain situations, that otherwise
would require a large number of transitions to be attained.

What You Will Learn
• To change and add commands in the Command window
• To create a process manually
• To change the process scope
• To change the value of a process variable
• To change the state of a process
• To set and reset a timer manually
168 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Changing the System
Some Preparations
In the following two exercises, you will be changing processes and tim-
ers. Before continuing, you will set up the simulation and the Simulator
UI in a suitable way.

1. Restart the simulator.

2. Open the Command window through the View menu. You will now
change the commands executed in the Command window. The List-
Process command is to be replaced by Examine-PId, and a new
command, List-Timer, will be added.

3. In the List-Process command module, select Edit from the
Command menu to the far right. (This menu works in the same way
as the Group menu in the button modules.)

4. In the dialog, change the command to examine-pid and click OK.

5. Go to the Command window’s menu bar and select Add Command
from the Command menu. In the dialog, enter the command
list-timer and click OK.

6. A new command module is added to the window. Resize the win-
dow so that all three modules are visible.

– You may also reduce the number of text lines displayed in a
module by selecting Size from the module’s Command menu. In
a dialog, you can set the number of lines with a slider.

7. Set the system trace value to 6 to get full trace.

8. Execute the two first transitions so the processes Main and Demon
are started.

9. If the GR trace in the SDL Editor window makes it difficult to see
the output in the Command window, set the system GR trace to 0.

Figure 112: Adjusting the number of lines
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 169

Chapter 4 Tutorial: The SDL Simulator
Creating a Process
In this exercise, we will put the system in the state it would be in after
the reception of a Newgame signal. This will be accomplished without
actually sending the signal. Instead, we will manually create an instance
of process type Game, using the Create command.

1. Create the Game process by selecting the Create Process entry (in
the Change menu). Select the process Game, and click OK.

2. In the next dialog, select the parent process Main and click OK. This
sets up the Parent-Offspring link between the process instances.

To complete the actions taken when a Newgame signal is received,
you must also set the GameP variable in Main, and put Main in the
state Game_On. This is done with the commands Assign-Value and
Nextstate. However, these commands operate on the process next
to execute, which at this stage is Game, as can be seen in the ready
queue printed in the Command window.

Figure 113: Creating the process Game from process Main
170 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Changing the System
Therefore, you first have to change the current process, also known
as the process scope.

3. Change the scope by selecting Set Scope in the Examine menu. Se-
lect the process Main in the dialog and click OK.

The Examine-PId command in the Command window shows that
Main is the current process. The variable GameP must be set to the
value of Offspring in Main. In the Command window, check that
this value is Game:1.

4. Assign the GameP variable by selecting Variable in the Change
menu. In the dialogs that follow, select the variable GameP, and en-
ter the PId value Game:1.

5. To put the Main process in the correct state, use the State entry in
the Change menu. Select the state Game_On and click OK.

The system is now in exactly the state it would be in after the recep-
tion of a Newgame signal. Even though you have changed the pro-
cess scope, the next transition to be executed is still the start transi-
tion of Game. (You can check this by viewing the process ready
queue. See Figure 114 on page 171.)

Figure 114: The Ready Queue

 Next process to execute is Game.

Figure 115: Process Main is the current process

The Offspring of the current process is Game:1.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 171

Chapter 4 Tutorial: The SDL Simulator
6. Execute the next transition and check that the Game process is start-
ed.

Changing the State of Timers
In this exercise, we will execute Set and Reset actions on timers directly
in the monitor system. At this stage, the timer T is active, as it has been
set by the Demon process. You can check this by looking at the List-
Timer module in the Command window.

1. Reset the timer by choosing Reset Timer in the Change menu. Select
the timer T and click OK.

2. Try to execute the next transition and note the message printed:

No process instance scheduled for a transition

The system is now completely idle, i.e., there are no transitions in
the system that can be executed. The Command window shows that
both the ready queue and the timer queue is empty. To restart the
system you must perform a set operation on timer T in process De-
mon.

3. Choose Set Timer in the Change menu, select the timer T and enter
a time value of 10.

4. Execute the next transition and check that the timer was set at time
10 (look at the trace in the main window).

*** TIMER signal was sent
* Timer : T
* Receiver : Demon:1
*** Now : 10.0000

Figure 116: The timer T is active
172 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating Message Sequence Charts
Generating Message Sequence Charts
In this exercise, we will demonstrate the power of Message Sequence
Charts as a method of illustrating, in a graphical way, the dynamic be-
havior of the system. This can easily be done when simulating the sys-
tem by using MSC trace. MSC trace transforms some of the SDL events
that take place into MSC events; typically sending of signals and dy-
namic creation of processes. The trace can then be graphically logged
in an MSC Editor during the execution.

Earlier in this tutorial, you drew a Message Sequence Chart which illus-
trated a simple sequence of messages. We will now run the simulator
and generate the MSC trace of the events which actually take place.

What You Will Learn
• To start and stop logging of MSC events
• To trace back from an MSC to an SDL diagram

Initializing the MSC Trace
1. Restart the simulation.

2. Make sure the GR trace is disabled to avoid having the SDL Editor
window being updated and raised (select the SDL Level : Show entry
in the Trace menu and verify that system GR trace is 0).

By default, the MSC trace is enabled for the entire system. You
must, however, explicitly start the interactive logging of MSC
events:

3. Choose MSC Trace : Start in the Trace menu. A dialog is issued,
where you are prompted to specify the amount of symbols to include
in the MSC trace. You will include states in the MSC trace, so select
1 and click OK.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 173

Chapter 4 Tutorial: The SDL Simulator
4. An MSC Editor is opened, displaying an MSC diagram named
“SimulatorTrace.” If needed, move and resize the window to make
it fit on the screen together with the Simulator UI.

– Before resizing the MSC Editor, you may hide the symbol menu
and the text window by using the quick buttons. You should not
edit the generated MSC, so there is no need for these windows.

Initially, the system has three active instances, the processes
Main_1_1 and Demon_1_2, as well as env_0 which has been in-
troduced in order to represent the environment to the system:

Figure 117: Specifying to include states in the MSC trace

Figure 118: The initial appearance of the MSC
174 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating Message Sequence Charts
Tracing the Execution in the MSC
1. Send the signal Newgame from the environment. This is now dis-

played in the MSC Editor as a message sent from the instance
env_0.

At this stage, the message is connected to the instance Main_1_1,
since it has not yet been consumed. Instead, the message is tempo-
rarily drawn as a “lost” message, indicated by the filled circle. You
may also see the text “Main_1_1” associated with the circle, indi-
cating the intended receiver of the message.

2. Execute the next transition. A condition symbol with the text
Game_Off appears on the instance axis for the process Main. This
symbol shows that the process has started executing and has reached
the corresponding SDL state, Game_Off.

3. Execute the next transition. The timer T is set in the Demon process.
The vertical coordinate is incremented downwards in the MSC, en-
hancing the impression of an absolute order of events. Also, a con-
dition symbol with the text Generate is drawn on the instance axis.

4. Execute the next symbol only (use the Symbol button). The Main
process consumes the Newgame message; the filled circle disap-
pears. Note that the start point and the end point of the message have
different vertical positions, since the timer T was set after the mes-
sage was sent.

5. Execute the next symbol. An instance of the Game process is creat-
ed, thus adding a new instance head and instance axis. The MSC
should now look like this:

Figure 119: The sent Newgame signal

Figure 120: The Condition symbol

Game_Off
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 175

Chapter 4 Tutorial: The SDL Simulator
6. Execute the next transition by clicking the Transition button twice.
The second transition causes the Game process to enter the state
Losing.

7. Execute the next three transitions. The timer signal T is consumed
and the signal Bump is sent and consumed. The Game process is
now in the state Winning. Note how the signal interchange is shown
in the MSC.

8. Next we illustrate a message which is consumed immediately. Send
the signal Probe from the environment and execute the next transi-
tion. First, the message Probe is displayed (marked with filled cir-
cle), then it is redrawn, keeping its horizontal alignment.

9. The system responds with the signal Win.

10. Send the signal Result and execute the next transition. In the MSC,
you can see that the message Score has the parameter 1.

11. End the game by sending the Endgame signal and execute the next
two transitions. The Game process is stopped.

Figure 121: The MSC after creating the Game process
176 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating Message Sequence Charts
The MSC should now look like in the figures below. (You may note a
dotted horizontal line in the MSC diagram on screen. This indicates
where a page break will occur if you would print out the diagram.)

Compare this diagram with the one in Figure 88 on page 119. You will
notice differences between the hand-drawn and the generated diagram.
These discrepancies are quite natural, since it is impossible to predict
the dynamic behavior of a system just by looking at the SDL diagrams.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 177

Chapter 4 Tutorial: The SDL Simulator
Figure 122: The finished MSC 1(2)
178 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating Message Sequence Charts
Trace-Back to SDL Diagrams
From the generated MSC diagram, you may obtain a trace back to the
SDL source diagrams.

1. From the MSC Editor’s Window menu, select Info Window. A win-
dow is opened, containing information about the graphical object
which is currently selected. (The amount and type of information
depends on what sort of object you have selected.)

Figure 123: The finished MSC 2(2)

Game_Off

Winning

GameOverGameOver

EndgameEndgame

Score

(1)

Score

(1)

Winning

Winning

ResultResult

WinWin

ProbeProbe
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 179

Chapter 4 Tutorial: The SDL Simulator
2. Select a few different objects in the MSC Editor and note how the
information in the Info window changes.

3. Select the message Bump and click on the button Show SDL Symbol
in the Info window. An SDL Editor is opened, in which the symbol
corresponding to the actions of sending or consuming the SDL sig-
nal Bump is selected:

– If you have selected the message Bump by clicking on a point
which is closer to the start point of the message than to the end
point, the corresponding SDL output symbol will be selected.

– Otherwise, the corresponding SDL input symbol will be select-
ed.

Ending the MSC Trace
1. Stop the logging of MSC events by selecting the MSC Trace : Stop

entry in the Trace menu.

2. In the MSC Editor, save the generated MSC diagram under the file
name SimulatorTrace.msc.

3. Exit the MSC Editor.

Figure 124: The Info window

The window shows information related to the message Bump.
180 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Coverage Viewer
The Coverage Viewer
In this final exercise of the SDL Simulator, you will learn to use the
Coverage Viewer. The Coverage Viewer is a graphical tool that shows
how much of a system has been covered during a simulation in the terms
of executed transitions or symbols. By checking the system coverage,
you can for instance see what parts of the system that have not been ex-
ecuted in the simulation so far.

What You Will Learn
• To create a coverage file
• To start the Coverage Viewer
• To interpret and change the coverage tree information
• To open a more detailed coverage chart
• To exit the Simulator UI

Starting the Coverage Viewer
1. Restart the simulator.

2. Send the signal Newgame. Execute seven (7) transitions until the
printed trace shows that the Game process is in the state Winning.

3. Send the signal Probe and execute the next transition.

Let us see how much of the system we have executed so far. By sim-
ply starting the Coverage Viewer from the Simulator UI, the current
coverage information is displayed.

4. Select Coverage from the Show menu. The main window of the
Coverage Viewer is opened.

Using the Coverage Viewer
1. If a symbol coverage tree is displayed, switch to a transition cover-

age tree by clicking on the Tree Mode quick button.

2. To see all of the transition coverage tree, click on the All Nodes
quick button.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 181

Chapter 4 Tutorial: The SDL Simulator
– Since the coverage tree is quite large, you may maximize the
window (by using the window manager) while working with the
Coverage Viewer. When returning to the Simulator UI, you can
simply restore the size of the window to its original size.

– Alternatively, you may also zoom out the window contents with
a number of clicks on the quick button.

The coverage tree shows the diagram structure of the Demongame
system. Beneath each process diagram (Main, Game, Demon), you
see all possible transitions in that process, defined by a state and the
possible signal inputs from that state. The start transitions are repre-
sented by an SDL start symbol.

The number below each symbol in the tree is the number of times
the symbol has been executed so far. In addition, each symbol is
filled with a gray pattern to indicate to what extent it has been exe-
cuted. Parts of the system that never have been executed have a zero

Figure 125: A transition coverage tree

Only a part of the tree is depicted.

Transition Coverage Tree
Information from:

/tmp/sdtsim6922.cov

Newgame
1

Game_Off
1

Endgame
0

Game_On
0

Main
2 (0 - 1)

Start
1

Probe
0

Result
0

GameOver
0

Bump
1

Losing
1 (0 - 1)

Probe
1

Result
0

GameOver
0

Bump
0

Winning
1 (0 - 1)

Game
3 (0 - 1)

GameBlock
5 (0 - 1)

Demongame
7 (0 - 1)
182 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Coverage Viewer
value and “empty” symbols. Parts that have been completely tra-
versed by the execution so far have a non-zero value and completely
filled symbols.

From the displayed tree, you can find out the following information:

– In the states Losing and Winning, one out of four transitions
have been executed. Thus, these state symbols are filled to 1/4.

– In the Main process, two out of three transitions have been exe-
cuted. Thus, the process symbol is filled to 2/3.

– In the Demon process and the block DemonBlock, all transi-
tions have been executed at least once. Thus, these symbols are
completely filled.

– In the system as a whole, a little more than half of all possible
transitions have been executed.

3. To only see those transitions that never have been executed, click on
the Least quick button. You can now see which signals must be sent
in which states to execute the rest of the system

– The Least quick button actually shows those symbols that have
been executed the least number of times. The symbols that are
dashed are present only to make the structure complete.

4. In the same way, to only see those transitions that have been execut-
ed at least once, click on the Most quick button. You can now see
which signals have been sent so far in the system.

– The Most quick button actually shows those symbols that have
been executed the most number of times. In this case, no transi-
tion has been executed more than once.

5. To see the whole tree again, click on the All Nodes quick button. If
you want to see a transition in the SDL Editor, just double-click on
one of the signal input symbols or start state symbols. Try this!
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 183

Chapter 4 Tutorial: The SDL Simulator
The Coverage Viewer can also show a symbol coverage tree, i.e.
how many times each SDL symbol in the process diagrams have
been executed:

6. Switch to a symbol coverage tree by clicking on the Tree Mode
quick button. Beneath each process diagram, you will now see a
small icon for each SDL symbol. To see which SDL symbol an icon
represents, double-click the small icon.

7. Switch back to a transition coverage tree and go back to the Simu-
lator UI.

Augmenting the Coverage
1. Execute three more transitions to put the Game process in the state

Losing again.

2. Send the signal Result. Execute four more transitions to return to
state Winning.

3. Send the signal Endgame. Execute two more transitions to stop the
Game process.

4. Check the current system coverage in the Coverage Viewer by se-
lecting Coverage from the Show menu.

5. Change to a transition coverage tree and show All Nodes. As you
can see, the Main process has now been completely executed. The
Losing and Winning states are also more filled.

6. To see what transitions have still not been executed, you can click
the Least quick button. If, however, you click the Most quick button
you will only see the most executed transition (and other symbols),
i.e. the input of timer T, not all transitions that have been executed.

7. To see more of the tree, select Increase Tree from the Tree menu.
The input of Bump should now be added. Select the command again
and all remaining executed transitions should be added.
184 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 The Coverage Viewer
Looking at Coverage Details
1. Select the system diagram in the Coverage Viewer. From the Tools

menu, select Show Details, or click the quick button for this. The
Coverage Details window is opened.

The displayed coverage chart shows how many transitions that have
been executed a certain number of times. The chart should contain
four bars:

2. Select the bars one at a time and look at the text in the Status Bar at
the bottom of the window. You will now see how many transitions
that have been executed 0, 1, 2 and 3 times. To see which transitions
that have not been executed at all, do as follows:

3. Select the “zero bar” furthest to the left. Click the Show Editor quick
button. The SDL Editor is opened, showing the three transitions in
the Game process that remain to be executed.

– If the transitions can be found in more than one diagram, a con-
firmation dialog is issued between each diagram that is opened.
Simply click OK to see the transitions in the next diagram.

4. Select another symbol in the coverage tree in the main window. The
Coverage Details window is now updated to show the coverage
chart for that symbol.

Figure 126: The Coverage Details window

Transition coverage chart for
System DemonGame

Total number of executed transitions: 14
11 of 14 transitions (79 %) have been covered

3 of 14 transitions (21 %) have not been covered

(no of times)

(no of transitions)

9

0 3
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 185

Chapter 4 Tutorial: The SDL Simulator
5. “Play around” in the Coverage Viewer as much as you like. You
should note, however, that the Demongame system is a bit too sim-
ple to give full justice to the power of the Coverage Viewer.

Exiting the Simulator UI
You will now close down the Simulator UI.

1. First, exit the Coverage Viewer from the File menu.

2. Then, exit the Simulator UI from the File menu. You will be asked
whether to save the changes to the sets of variables in the Watch
window, commands in the Command window, and buttons in the
button area. If you choose to save them (with the suggested file
names), they will become the default the next time you start the
Simulator UI from the same directory.

So Far...
You have now learned how to “animate” an SDL system by generating,
executing and tracing a simulator.

If your configuration includes the SDL Explorer tool, we suggest that
you proceed with the exercises on the SDL Explorer. These exercises
start in chapter 5, Tutorial: The SDL Explorer.

In all cases, the example you have been practising on, the system De-
monGame, is rather simple. To deepen your knowledge of the SDL
Suite, you may practise on a number of exercises that illustrate the ad-
vantages of SDL-92 when adopting an object-oriented design method-
ology. These exercises are described in chapter 6, Tutorial: Applying
SDL-92 to the DemonGame.
186 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
5 Tutorial: The SDL
Explorer
The SDL Explorer is the tool that you use for validating the behav-
ior of your SDL systems, using state space exploration techniques.
In this chapter, you will practice “hands-on” on the DemonGame
system.

To be properly assimilated, this tutorial therefore assumes that you
have gone through the exercises that are available in chapter 3, Tu-
torial: The Editors and the Analyzer as well as chapter 4, Tutorial:
The SDL Simulator.

In order to learn how to use the Explorer, read through this entire
chapter. As you read, you should perform the exercises on your
computer system as they are described.
al SDL Suite 6.3 Getting Started gs-s0 187

Chapter 5 Tutorial: The SDL Explorer
Purpose of This Tutorial
The purpose of this tutorial is to make you familiar with the essential
validation functionality in the SDL Suite. With validation we mean ex-
ploring the state space of an SDL system with powerful methods and
tools that will find virtually any kind of possible run-time errors that
may be difficult to find with regular simulation and debugging tech-
niques.

This tutorial is designed as a guided tour through the SDL Suite, where
a number of hands-on exercises should be performed on your computer
as you read this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not a tutorial on SDL.

It is assumed that you have performed the exercises in chapter 3, Tuto-
rial: The Editors and the Analyzer as well as chapter 4, Tutorial: The
SDL Simulator before starting with the tutorial on the SDL Explorer.

Note: C compiler

You must have a C compiler installed on your computer system in
order to validate an SDL system. Make sure you know what C com-
piler(s) you have access to before starting this tutorial.

Note: Platform differences

This tutorial, and all tutorials that are possible to run on both the
UNIX and Windows platform, are described in a way common to
both platforms. In case there are differences between the platforms,
this is indicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running the SDL Suite in your en-
vironment. Only if a screen shot differs in an important aspect be-
tween the platforms will two separate screen shots be shown.
188 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating and Starting an SDL Explorer
Generating and Starting an SDL Explorer
In addition to simulating a system, it is also possible to validate the sys-
tem using the SDL Explorer. An explorer can be used to automatically
find errors and inconsistencies in a system, or to verify the system
against requirements.

In the same way as for a simulator, you must generate an executable ex-
plorer and start it with a suitable user interface.

What You Will Learn
• To quickly generate and start an executable explorer

Note:

In order to generate an explorer that behaves as stated in the exercis-
es, you should use the SDL diagrams that are included in the distri-
bution instead of your own diagrams. To do this:

• On UNIX: Copy all files from the directory
$telelogic/sdt/examples/demongame

to your work directory ~/demongame.

• In Windows: Copy all files from the directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\exam-

ples\demongame

to your work directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\demongame.

If you generate an explorer from the diagrams that you have created
yourself, the scheduling of processes (i.e. the execution order) may
differ.

If you choose to copy the distribution diagrams, you must then re-
open the system file demongame.sdt from the Organizer.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 189

Chapter 5 Tutorial: The SDL Explorer
Quick Start of an SDL Explorer
An explorer can be generated and started in the same way as described
earlier for the simulator, i.e., by using the Make dialog and the Tools
menu in the Organizer. However, we will now show a quicker way.

1. Make sure the system diagram icon is selected in the Organizer.

2. Click the Explore quick button. The following things will now hap-
pen, in rapid succession:

– An executable explorer is generated. Messages similar to when
generating a simulator are displayed in the Status Bar, ending
with “Analyzer done.” This is the same action as manually using
the Make dialog and selecting an explorer kernel. If you like,
you can verify that an explorer kernel has been used by looking
at the tail of the Organizer log.

– A graphical user interface to the explorer is started. The status
bar of the Organizer will read “Explorer UI started.” This is the
same action as manually selecting Explorer UI from the Tools
menu.

– The generated explorer is started. The Explorer UI shows the
message “Welcome to SDL EXPLORER.” This is the same ac-
tion as manually using the Open quick button and selecting the
executable explorer (named demongame_xxx.val (on UNIX),
or demongame_xxx.exe (in Windows), where the _xxx suffix
is platform or kernel/compiler specific).

Note:

If you receive errors from the Make process (in the Organizer Log
window) or if no Explorer is started, do as follows:

• Open the Make dialog and change to a Validation kernel reflect-
ing the C compiler used on your computer system, e.g.
gcc-Validation or Microsoft Validation.

• Click the Full Make button and check that no errors where re-
ported.

• Click the Explore quick button again. An Explorer should now
be started as described above.
190 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Generating and Starting an SDL Explorer
The Explorer UI looks like this:

As you can see, the graphical user interface of an explorer is very simi-
lar to a simulator GUI, which you have learned to use in the previous
exercises. However, the button modules to the left are different and a
few extra menus are available.

An explorer contains the same type of monitor system as a simulator.
The only difference is the set of available commands.

When an explorer is started, the static process instances in the system
are created (in this case Main and Demon), but their initial transitions
are not executed. The process in turn to be executed is the Main process.
You can check this by viewing the process ready queue:

1. Locate the button module View in the left part of the window, and
click the Ready Q button. The first entry in the ready queue is Main,
waiting to execute its start transition.

– If the View module appears to be empty, you have to click the
toggle button to the left of the module’s name. The button mod-
ule is then expanded. You may collapse and expand any button
module by using these toggle buttons:

Figure 127: The main window of the Explorer UI
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 191

Chapter 5 Tutorial: The SDL Explorer
– The buttons in the View module execute the same type of com-
mands as those in the Simulator UI.

2. If required, resize the Explorer UI window so that all button mod-
ules are visible. You may also reduce the width of the text area. In
the exercises to come, you will have a number of windows open at
the same time.

Basics of an SDL Explorer
Before you start working with the explorer exercises, you should have
an understanding about the basic concepts of the SDL Explorer.

• When examining an SDL system using the explorer, the SDL sys-
tem is represented by a structure called a behavior tree. In this tree
structure, a node represents a state of the complete SDL system. The
collection of all such system states is known as the state space of the
system.

• By moving around in the behavior tree, you can explore the behav-
ior of the SDL system and examine each system state that is encoun-
tered. This is called state space exploration, and it can be performed
either manually or automatically.

• The size and structure of the behavior tree is determined by a num-
ber of state space options in the explorer. These options affect the
number of system states generated for a transition in an SDL process
graph, and the number of possible branches from a state in the be-
havior tree.

Figure 128: A collapsed button module

Expand/
collapse
button
192 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Navigating in a Behavior Tree
Navigating in a Behavior Tree
In this first exercise, we will explore the state space of the Demongame
system by manually navigating in the behavior tree. The explorer will
then behave in a way similar to when running a simulator. However,
there are also important differences, which will be pointed out.

By default, the explorer is set up in a way that results in a state space as
small as possible. In this set-up, a transition between two states in the
behavior tree always corresponds to a complete transition in the SDL
process graphs. Also, the number of possible branches from a state is
limited to a minimum.

What You Will Learn
• To use the Navigator tool
• To get printed trace and GR trace

Setting Up the Exploration
When interactively exploring the behavior tree, an explorer tool called
the Navigator is used.

1. Start the Navigator by clicking the Navigator button in the Explore
module. The Navigator window is opened:

Figure 129: The Navigator tool
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 193

Chapter 5 Tutorial: The SDL Explorer
The Navigator shows part of the behavior tree around the current
system state. In general, the upper box represents the behavior tree
transition leading to the current state, i.e., the transition that just has
been executed. The boxes below represent the possible tree transi-
tions from the current state. They are labelled Next 1, Next 2, etc.
and have not yet been executed.

Since the system now is in its start state, there is no up node. The
only next node is the start transition of Main.

2. To be able to see the printed trace familiar from simulation, open the
Command window from the View menu. (The trace is not printed in
the main window of the explorer.)

3. To switch on GR trace of SDL symbols, select Toggle SDL Trace
from the Commands menu in the Explorer window; SDL trace is
now enabled. However, an SDL Editor will not be opened until the
first transition is executed.

Using the Navigator
1. In the Navigator, execute the next transition by double-clicking on

the Next 1 node. The following happens, in order:

– In the Navigator, the Up 1 node shows the just executed transi-
tion, while the Next 1 node shows the next possible transition,
the start transition of Demon. You have now moved down to a
system state in the next level of the behavior tree.

– An SDL Editor is opened and the symbols that were just execut-
ed becomes selected. Note the difference compared to the sim-
ulator, where the SDL Editor instead selects the next symbol to
be executed.

Figure 130: The last and next transition
194 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Navigating in a Behavior Tree
– The Command window shows the printed trace for the executed
transition, the start transition of Main (you may have to scroll or
resize the window to see the trace):

2. If needed, move and resize all opened windows to make them com-
pletely visible and still fit on the screen together.

3. Double-click the Next 1 node to execute the next transition. The
start transition of Demon is traced in the Command window and in
the SDL Editor.

At this stage, neither of the two active processes can continue with-
out signal input: Main awaits the signal Newgame from the environ-
ment, and Demon awaits the sending of the timer signal T. These are
the two transitions from the current state now shown in the Naviga-
tor as Next 1 and Next 2. As you can see, the transitions in the boxes
are described by the same type of information as in a printed trace.

This means that the explorer gives information of all possible tran-
sitions from the current system state, even though they have not
been executed yet. (This information cannot easily be obtained
when running a simulator.)

Figure 131: The printed trace for the executed transition

Figure 132: Transition descriptions in the Navigator
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 195

Chapter 5 Tutorial: The SDL Explorer
4. Send the timer signal by double-clicking the Next 2 node. The Com-
mand window tells us that the timer signal is sent and the Navigator
shows that the next transition is the input of the timer T.

5. Execute the next transition by double-clicking the Next 1 node. This
is where the dynamic error in the Demongame system occurs, as ex-
plained in the simulator tutorial earlier (see “Dynamic Errors” on
page 153 in chapter 4, Tutorial: The SDL Simulator). Instead of
showing the next transition, the Navigator displays the error mes-
sage in the next box.

– The error message can also be found in the tail of the Command
window, if you scroll the Print-Trace module.

We cannot go further down this branch of the behavior tree, since a
reported error by default truncates the tree at the current state. In-
stead, we will back up to the state where we could select the output
of Newgame.

6. Double-click the Up 1 node to go back to the previous state. Repeat
this action again to go to the state we were in after step 3 above. This
way of backing up in the execution is not possible when running a
simulator, as you may have noticed when running the Simulator tu-
torial.

Figure 133: The dynamic error

Figure 134: The tail of the Print-Trace module
196 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Navigating in a Behavior Tree
You should also note that the Next 2 node is marked with three as-
terisks “***”. This is used to indicate that this is the transition we
have been backing up through:

7. Execute the Next 1 transition instead. The printed trace shows that
the signal Newgame was sent from the environment. The Main pro-
cess is ready to receive the signal. Note that you do not have to send
the signal yourself; this is taken care of automatically by the explor-
er.

8. Execute the next transition. The printed trace and the SDL trace
show that Main now is in the state Game_On. The Navigator dis-
plays the start transition of the newly created Game process.

9. Execute the start transition of Game. The Navigator will now show
the different signal inputs that are required to continue execution:
Endgame, Probe, Result, and the timer T.

Figure 135: Marking a transition that has been backed through

Figure 136: Signal inputs required for continued execution

Three
asterisks
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 197

Chapter 5 Tutorial: The SDL Explorer
If the number of transitions from a state is large, it may be difficult
to see them all in the Navigator when a tree structure is used. To
overcome this problem, you can change the display to a list struc-
ture.

10. Click the Toggle Tree quick-button to see how the list structure
looks like. Now it is easier to see the possible signals.

11. Change back to the tree structure.

We will not continue further down in the behavior tree in this exer-
cise. Figure 138 on page 199 shows the part of the behavior tree we
have explored so far. The nodes in the figure represent states of the
complete SDL system. Each node lists the active process instances
that have changed since the previous system state, what process
state they are in and the content of their input queues. The arrows
between the nodes represent the possible tree transitions. They are
tagged with a number and the SDL action that causes the transition.
The arrow numbers are the same numbers as printed in the Next
nodes in the Navigator.

Note that this is a somewhat different view of the behavior tree com-
pared to the Navigator. In the Navigator, the nodes represent the tree
transitions and the process states are not shown.

Figure 137: The list structure
198 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Navigating in a Behavior Tree
Figure 138: A Demongame behavior tree

Main
start

–

Demon
start

–

1

1 2

1 1

output Newgame output timer T

input Newgame input timer T

1start process

start process

Node notation:

No.SDL action

transition

1start process

error!

output
Newgame

output

output
Probe

output
Result

1 2 3 4
timer T

Main
Game_Off

–

Demon
Generate

–

Main
Game_Off
Newgame

Demon
Generate

T

Main
Game_On

–

Game
start

–

Demon
Generate

–

Game
Losing

–

Process
State

Queue
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 199

Chapter 5 Tutorial: The SDL Explorer
More Tracing and Viewing Possibilities
In this exercise, we will take a look at some of the additional tracing and
viewing possibilities of the SDL Explorer.

What You Will Learn
• To print a complete trace from the start state
• To use the view commands
• To use the MSC trace facility
• To go to a state by using the path commands

Using the View Commands
1. Make sure you are still in the same state as after the last step in the

previous exercise.

To see a complete printed trace from the start state to the current
state, you can use the Print-Trace command. As parameter, it takes
the number of levels back to print the trace from.

2. On the input line of the Explorer UI, enter the command pr-tr 9
(you can use any large number). The trace is printed in the text area
of the main window. This trace gives an overview of what has hap-
pened in the SDL system so far.

3. The SDL Explorer supports the same viewing possibilities as the
SDL Simulator. Click the Timer List button in the View module to
list the active timer set by the Demon process.

4. Examine the GameP variable in the Main process by first setting the
scope to the Main process (click the Set Scope button and select the
Main process), and then clicking the Variable button and selecting
the GameP variable.

– You may also use the Watch window in the explorer to contin-
uously monitor the values of variables.
200 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 More Tracing and Viewing Possibilities
Using MSC Trace
In addition to textual and graphical traces, the SDL Explorer can also
perform an MSC trace.

1. First, turn off SDL trace by selecting Toggle SDL Trace from the
Commands menu. Then, turn on MSC trace from the same menu.
An MSC Editor is opened, showing a Message Sequence Chart for
the trace from the start state to the current state.

– You may also close down the SDL Editor to avoid having too
many windows on-screen.

2. When the MSC appears, execute, with a double-click, one of the
signal transitions in the Navigator, e.g. Probe. The message is ap-
pended to the MSC (but it is not yet consumed).

3. Go up a few levels in the Navigator.

Figure 139: The current MSC trace

Game_3

Game

Demon_2
Demon

Main_1
Main

env_0

Losing

Game_On

Generate

Game_Off

MSC ExplorerTrace

NewgameNewgame

T(1.0000)T(1.0000)

text 'Explorer trace
generated by
SDL Explorer 4.0';
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 201

Chapter 5 Tutorial: The SDL Explorer
Note how the selection in the MSC Editor changes to reflect the
MSC event corresponding to the current state!

4. Go down again, but select a different path than before, i.e., send one
of the other signals.

Note how the MSC diagram is redrawn to show the new behavior of
the system!

5. Toggle MSC trace off in the Commands menu. Unless other MSC
diagrams were opened, the MSC Editor is closed.

Going to a State Using Path Commands
You can use the commands Print-Path and Goto-Path to return to a
state where you have been before.

1. Execute the command Print-Path from the input line. The output
represents the path taken in the behavior tree from the start state to
the current state.

Command : print-path
1 1 1 1 1 3 0

– The numbers in the path are the same as the transition numbers
in the Navigator, and the arrow numbers shown in Figure 138 on
page 199.

2. Go up a few levels in the Navigator.

3. In the text area, locate the path printed by the Print-Path command
above (you may have to scroll the text area). On UNIX, select the
numbers in the path with the mouse by dragging the mouse to the
end of the line. Make sure you select the final zero.

4. In the input line, enter goto-path and the path printed by the
Print-Path command. On UNIX, paste in the path numbers by posi-
tioning the mouse pointer at the end of the entered text and clicking
the middle mouse button.

5. Hit <Return> to execute the command. You now end up in the pre-
vious state.

– If you make an error while entering the path numbers, you can
clear the input line by using the <Down> arrow key and try
again.
202 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
Validating an SDL System
In the previous exercises, we have navigated manually in the behavior
tree. We have also found an error situation by studying the Navigator
and the printed trace in the Command window.

In this exercise, we will show how to find errors and possible problems
by automatically exploring the state space of the Demongame system.
This is referred to as validating an SDL system.

What You Will Learn
• To perform an automatic state space exploration
• To examine reported errors using the Report Viewer
• To change state space and exploration options
• To restrict the state space without affecting the behavior
• To check the system coverage of an exploration
• To use user-defined rules
• To perform a random walk exploration

Performing a Bit State Exploration
Automatic state space exploration can be performed using different al-
gorithms. The algorithm called bit state exploration can be used to effi-
ciently validate reasonably large SDL systems. It uses a data structure
called a hash table to represent the system states that are generated dur-
ing the exploration.

An automatic state space exploration always starts from the current sys-
tem state. Since we want to explore the complete Demongame system,
we must first go back to the start state of the behavior tree.

1. Go to the top of the tree by clicking the Top button in the Explore
module.

2. Start a bit state exploration by clicking the Bit-State button. After a
few seconds, a tool called the Report Viewer is opened. We will
soon describe this window; in the meantime, just move it away from
the main window.

3. For a small system such as Demongame, the exploration is finished
almost immediately and some statistics are printed in the text area.
They should look something like:
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 203

Chapter 5 Tutorial: The SDL Explorer
** Starting bit state exploration **
Search depth : 100
Hash table size : 1000000 bytes

** Bit state exploration statistics **
No of reports: 1.
Generated states: 2569.
Truncated paths: 156.
Unique system states: 1887.
Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 3642
Collision risk: 0 %
Max depth: 100
Current depth: -1
Min state size: 68
Max state size: 124
Symbol coverage : 100.00

Of the printed information, you should note the following:

– Search depth : 100

The search depth limits the exploration; it is the maximum
depth, or level, of the behavior tree. If this level is reached dur-
ing the exploration, the current path in the tree is truncated and
the exploration continues in another branch of the tree. It is pos-
sible to change the search depth by setting an option in the SDL
Explorer UI.

– No of reports: 1.

The exploration found one error situation. This error will be ex-
amined in the next exercise.

– Truncated paths: 156.

The maximum depth was reached 156 times, i.e., there are parts
of the behavior tree that were not explored. This is a normal sit-
uation for SDL systems with infinite state spaces. Demongame
is such a system, since the game can go on forever.

– Collision risk: 0 %

The risk for collisions was very small in the hash table that is
used to represent the generated system states. If this value is
greater than zero, the size of the hash table may have to be in-
creased by setting an option; otherwise, some paths may be trun-
cated by mistake. This situation will not occur in this tutorial.
204 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
– Symbol coverage : 100.00

All SDL symbols in the system were executed during the explo-
ration. If the symbol coverage is not 100%, the validation cannot
be considered finished. This situation will occur in a later exer-
cise.

Examining Reports
The error situations reported from a state space exploration can be ex-
amined in the Report Viewer. The Report Viewer window displays the
reports in the form of boxes in a tree structure.

• The top box shows how many reports there are (in this case only
one).

• On the next level in the report tree, there is one box for each type of
report, stating the number of reports of that type.

• On the next level, it is possible to see the actual reports. However,
this level of the tree is by default collapsed, indicated by the small
triangle icon below the report type boxes.

Figure 140: The Report Viewer

Number of
reports

Report
type

Collapsed
box indicator
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 205

Chapter 5 Tutorial: The SDL Explorer
1. To expand the report, double-click on the report type box Output.
You will now see a box reporting the error we have found manually
earlier. In addition, the tree depth of the error situation is shown.

If you look in the Navigator and Command windows, you can see
that the SDL Explorer is still in the start state of the system, even
though a state space exploration has been performed. We will now
go to the state where the error has occurred.

2. Double-click the report box in the Report Viewer. The following
things will now happen:

– The printed trace of the error situation is displayed in the text
area of the Explorer UI and in the Command window.

– The Navigator moves to the error state and displays the error.

– An MSC Editor is opened, showing the MSC trace to the current
state. You can see that the signal Bump was not received by any
process, since the Game process has not yet been created. You
should move the MSC Editor window so that it does not cover
the other windows.

Once you have used the Report Viewer to go to a reported situation,
you can easily move up and down the path to this state. Simply use
the Up and Down buttons in the Explore module, instead of double-
clicking a node in the Navigator:

3. Move up two steps by using the Up button. Of the two transitions
possible from this state, the one that is part of the path leading to the
error is indicated by three asterisks “***” (see Figure 135 on page
197). This is the transition chosen when using the Down button.

Figure 141: An expanded report
206 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
4. Move up to the top of the tree (click the Top button in the Explore
module). Move down again to the error by using the Down button
repeatedly.

Note that you do not have to chose which way to go when the tree
branches. The path to the error is remembered by the explorer until
you manually chose another transition.

Exploring a Larger State Space
We will now run a more advanced bit state exploration, with a different
setting of the state space options. This will make the state space much
larger, so that more error situations can be found.

1. Go back to the top of the behavior tree (use the Top button).

2. In the Options1 menu, select Advanced. This sets a number of the
available state space options in one step, as you can see by the com-
mands executed in the text area:

Command : def-sched all

Command : def-prio 1 1 1 1 1

Command : def-max-input-port 2
Max input port length is set to 2.

Command : def-rep-log maxq off
No log for MaxQueueLength reports

Note that the Navigator now shows two possible transitions from
the start state; this is an immediate effect of the larger state space.

3. In addition, we will increase the search depth of the exploration
from 100 (the default) to 300. From the Options2 menu, select Bit-
State: Depth. In the dialog, enter 300 and click OK.

Figure 142: Specifying Depth = 300
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 207

Chapter 5 Tutorial: The SDL Explorer
Since the behavior tree becomes much larger with these option set-
tings, the exploration will take longer to finish. We will therefore
show how to stop the exploration manually.

4. Start a new bit state exploration. In the text area, a status message is
printed every 20,000 transitions that are executed. Stop the explora-
tion after one of the first status messages by pushing the Break but-
ton in the Explore module. The text area should now display some-
thing like this:

*** Break at user input ***

** Bit state exploration statistics **
No of reports: 2.
Generated states: 50000.
Truncated paths: 1250.
Unique system states: 21435.
Size of hash table: 8000000 (1000000 bytes)
No of bits set in hash table: 41557
Collision risk: 0 %
Max depth: 300
Current depth: 235
Min state size: 68
Max state size: 168
Symbol coverage : 100.00

Note the following differences in the printed information compared
to the previous exploration:

– No of reports: 2.

The exploration found an additional error situation. This is an
effect of more transitions being able to execute from each state
in the behavior tree.

– Max depth: 300
Current depth: <number>
The exploration was at the printed depth in the behavior tree at
the moment it was stopped. However, since the exploration uses
a depth-first algorithm, the maximum depth of 300 was reached
at an earlier stage. The exploration may be continued from the
current depth if you wish to explore the remaining parts of the
behavior tree.

Note:

If the exploration finishes by itself before you have had a chance to
stop it manually, redo this exercise from step 1. on page 207 but in-
crease the search depth even more, e.g. 400 or 500.
208 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
5. In the Report Viewer, open the two report type boxes to see both re-
ports with a double-click on each. The Report Viewer window
should now look something like:

6. For now, just note on which depth each of the reported situations oc-
curred; do not double-click any of the reports. (The depths may be
different from the ones shown in the figure.)

7. Continue the exploration by clicking the Bit-State button again. A
dialog is opened, asking if you would like to continue the interrupt-
ed exploration or restart it from the beginning.

Figure 143: The two reports as displayed in the window

Figure 144: Continuing the exploration
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 209

Chapter 5 Tutorial: The SDL Explorer
8. In the dialog, select Continue and click OK. Wait for the exploration
to finish by itself.

9. In the Report Viewer, open the two reports again. Note that the
depth values have changed. This is because only one occurrence of
each report is printed; the one found at the lowest depth so far.

10. Go to the state where an unsuccessful create of the Game process
was reported (double-click the Create report).

11. To see what caused the unsuccessful create, look at the MSC trace.

At the receipt of the last Newgame signal, the Main process at-
tempts to create a Game process. However, the already active Game
process has not yet consumed the previous GameOver signal, and
has therefore not been terminated. Since you cannot have more than
one instance of the Game process in the Demongame system, the
process create could not be executed!

Restricting the State Space
The SDL Explorer makes it possible to limit the state space in several
different ways. We will now explore one of these methods that in many
cases is very efficient. This is done by using the Define-Variable-
Mode command.

This command is used to instruct the Explorer to ignore certain vari-
ables when matching states during the state space exploration. The

Figure 145: The report about an unsuccessful process create
210 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
mode can for each variable be set to either “Skip” or “Compare”. The
implication of setting the mode to “Skip” is that the search may be
pruned even if a new state is encountered during the search. This hap-
pens if the only difference between the new state and a previously vis-
ited state is that the values of some of the skipped variables are different.

We will now apply this to our DemonGame system. The variable Count
in the Game process keeps track of the current score for the game, and
the value of this variable does not have any real impact on the behavior
of the system. So, we will now instruct the explorer to ignore this vari-
able when performing a search.

1. Go to the top of the tree by clicking on the Top button.

2. Enter the command define-variable-mode in the command line
in the Explorer UI, select the Game process in the first dialog, the
Count variable in the second dialog and Skip in the last dialog. You
have now instructed the Explorer to ignore the Count variable.

3. Start a bit state exploration by clicking on the Bit-State button. (Se-
lect to Restart the exploration if a dialog is opened.)

4. When the search stops compare it with the previous exploration.
The only difference between the two explorations is that the second
one ignores the Count variable. However, while the first exploration
took a long time to finish, the second one only took a few seconds!
The printed statistics show very small numbers in comparison.

The lesson to learn from this is that it in many cases it is possible to dras-
tically reduce the time needed for explorations by checking the vari-
ables in the system. Look for variables that do not have any impact on
the behavior (i.e. that does not influence decision statements or the ex-
pression used in an “output to” statement). Also look for variables that
do not change their value during the exploration. This can for example
be arrays that are initialized at system start up but then never changes
(or at least not changed in the intended exploration). The mode for these
types of variables should be set to “Skip”.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 211

Chapter 5 Tutorial: The SDL Explorer
Checking the Validation Coverage
If the symbol coverage after an automatic state space exploration is less
than 100%, the Coverage Viewer can be used to check what parts of the
system that have not been executed. To attain a symbol coverage less
than 100% for the Demongame system, we will set up the exploration
in a special way.

1. Go to the top of the tree.

2. First, we need to restore the smaller, default state space. Select De-
fault from the Options1 menu. Note that the Navigator changes back
to display only a single possible transition from the top node.

3. To avoid reaching all system states, we will reduce the search depth
of the exploration from 100 to just 10. Use the Bit-State: Depth
menu choice from the Options2 menu and specify a maximum depth
of 10.

4. Start a bit state exploration. The printed statistics should now in-
form you that the symbol coverage is about 82%.

– If the symbol coverage still is 100%, select Reset from the
Options1 menu and repeat steps 3 and 4 above.

5. To find out which parts of the Demongame system that have not
been reached, open the Coverage Viewer from the Commands
menu.

A symbol coverage tree is displayed, showing all symbols which
have not been executed yet.

6. Change to a transition coverage tree by clicking the Tree Mode
quick-button.
212 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System

You can now see that none of the transitions from the state Winning
in the Game process has been executed. To explore this part of the
system in the explorer, you can go to the state Winning and start a
new exploration from there. How to do this is explained in the fol-
lowing exercises.

Going to a State Using User-Defined Rules
To go to a particular system state, you could use the Navigator to man-
ually find the state by studying the transition descriptions and the print-
ed trace in the Command window. This can be both tedious and diffi-
cult, especially for larger systems than Demongame. Instead, we will
show an easier way: by using a user-defined rule.

When performing state space exploration, the explorer checks a number
of predefined rules in each system state that is reached. It is when such
a rule is satisfied that a report is generated.

Figure 146: The transition coverage tree
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 213

Chapter 5 Tutorial: The SDL Explorer
In this exercise, we will show how to define a new rule to be checked
during state space exploration. The rule will be used to find the state
Winning in the Game process.

1. Make sure you still are at the top of the behavior tree.

2. Define a new rule by selecting Define Rule from the Commands
menu. In the dialog that appears, enter the rule definition
state(Game:1)=Winning

This very simple rule says that the state of the process instance
Game:1 must be equal to Winning. By defining the rule, a report
will be generated when a state space exploration reaches a state that
satisfies the rule.

3. Start a bit state exploration. Since we have not changed any of the
options since the last exploration the same statistics will be printed,
with the exception that an additional report is generated.

4. From the Report Viewer, go to the reported situation where the user-
defined rule was satisfied. You have now reached the first place in
the behavior tree where the Game process is in the state Winning.

5. We now instruct the explorer to use this state as the root of the be-
havior tree. To do this, enter the command define-root on the in-
put line and select Current in the dialog.

We can now change options, define a new rule or load an MSC. These
new settings will then be used in all explorations based on the new root.
Also all list/goto-path commands will use the path from the new root
and the MSC trace will give the trace from the new root.

6. Before continuing, do not forget to clear the user-defined rule. To
do this, enter the command clear-rule on the input line.

Figure 147: Specifying a new rule
214 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Validating an SDL System
In our case we will only clear the rule and start another type of state
space exploration from this state; a random walk.

Performing a Random Walk
Apart from bit state exploration, there is another exploration method
known as random walk. A random walk simply explores the behavior
tree by repeatedly choosing a random path down the tree. This is mainly
useful for SDL systems where the state space can be very large. But also
for a small system like Demongame, it can be as effective as other ex-
ploration methods.

1. Start a random walk exploration from the current state by clicking
the Random Walk button. From the printed statistics, you can see
that the symbol coverage now has become 100%.

2. Load the Coverage Viewer with the new coverage information by
selecting Show Coverage Viewer from the Commands menu.
Change to transition coverage and display the whole tree. Note that
all transitions have executed a large number of times. When the ex-
ploration selects a random path down the tree, there is no mecha-
nism to avoid that already explored paths are explored once more.
Therefore, the same transition may be executed any number of times

3. Exit the Coverage Viewer from the File menu.

4. Reset the system by selecting Reset from the Options1 menu. You
are now back at the top of the tree, and the root of the tree is reset to
the original root, the start state of the system.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 215

Chapter 5 Tutorial: The SDL Explorer
Verifying a Message Sequence Chart
Another main area of use for an SDL Explorer is to verify a Message
Sequence Chart. To verify an MSC is to check if there is a possible ex-
ecution path for the SDL system that satisfies the MSC. This is done by
loading the MSC and performing a state space exploration set up in a
way suitable for verifying MSCs.

What You Will Learn
• To verify an MSC

Verifying a System Level MSC
In this exercise, we will verify one MSC made on the system level, i.e.,
an MSC that only defines signals to and from the environment. The
name of the MSC file is SystemLevel.msc and is located in the same
directory as the remaining files for the DemonGame example. The MSC
is shown in the figure below.
216 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Verifying a Message Sequence Chart
1. Reset the system. This time do it by choosing Restart in the File
menu. Choose “No” if you are asked to save options. The Restart
command will actually terminate the running Explorer and start it
again.

2. Start an MSC verification by clicking the Verify MSC button. A file
selection dialog is opened, in which you select the MSC to verify.

3. Select SystemLevel.msc and click OK. A state space exploration
is now started, which is guided by the loaded MSC.

In the printed statistics, note that the exploration is completed with-
out any truncated paths. This is because the loaded MSC restricts
the size of the behavior tree; only the parts dealing with the events
in the MSC are executed. The maximum depth of it is not more than
20.

Note the line that tells if the MSC was verified or violated:

** MSC SystemLevel verified **

Figure 148: A system level MSC

Environment Demongame

MSC SystemLevel

EndgameEndgame

Score

(1)

Score

(1)

ResultResult

WinWin

ProbeProbe

NewgameNewgame
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 217

Chapter 5 Tutorial: The SDL Explorer
In this case the MSC was verified, i.e., the behavior described in the
MSC was indeed possible. In the Report Viewer, however, one (or
two) of the reports is a violation of the loaded MSC, while the other
one is a verification of the MSC. The exploration may very well find
states that violate the MSC; it is the existence of states that verify
the MSC that determines the result of the verification.

4. Go to the state where the MSC was verified. The printed trace in the
Command window shows that the Main process has received the
Endgame signal, and sent the GameOver signal to the Game pro-
cess:

* OUTPUT of GameOver. Receiver: Game:1
* Signal GameOver received by Game:1

5. Take a look at the MSC trace and compare it with the loaded MSC
in Figure 148 on page 217. Note that the loaded MSC only defines
signals to and from the environment and therefore is less detailed
than the MSC trace. An MSC trace in the explorer is always made
on the process level.

Figure 149: Violations and verifications of the MSC
218 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Verifying a Message Sequence Chart
Figure 150: The MSC trace

The trace in the figure does not show the condition symbols that indicates the state
of the processes.

Game_6
Game

Demon_4
Demon

Main_3
Main

env_0

Game_6

MSC ExplorerTrace

GameOverGameOver

EndgameEndgame

Score

(1)

Score

(1)

ResultResult

WinWin

ProbeProbe

T(1.0000)T(1.0000)

BumpBump

T(1.0000)T(1.0000)

Newgame

Explorer trace
generated by
SDL Explorer 4.0
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 219

Chapter 5 Tutorial: The SDL Explorer
Exiting the SDL Explorer UI
The first part of the SDL Explorer tutorial is now finished. Close the ex-
plorer windows in the following way:

1. To close the Navigator and the Report Viewer, click the Close quick
button in these windows.

2. To close the Command window, select Close from the File menu.

3. Exit the Explorer UI from the File menu. You may be asked in a di-
alog whether to save changes to the Explorer options.

4. If you select Yes and click OK, the option settings are saved in a file
called .valinit (on UNIX), or valinit.com (in Windows). This
file is read each time the Explorer UI is started from the same direc-
tory, or when the explorer is restarted or reset from the Explorer UI.
You should select No and click OK.

Figure 151: Saving changed options
220 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Test Values
Using Test Values
In this final exercise we will explore the test value feature in the Explor-
er. This feature is used to control the way the environment interacts with
the system during state space exploration. In practise, the test values de-
fine what signals will be sent from the environment to the system, in-
cluding the exact values of their parameters.

In this part of the Explorer tutorial we will use another SDL system, the
Inres system.

1. Copy the Inres system from the installation to a working directory
of your own. Copy all files from the directory
$telelogic/sdt/examples/inres (on UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\exam-
ples\inres (in Windows).

What You Will Learn
• To examine and use the automatically generated test values
• To manually change the test values

Using the Automatic Test Value Generation
When the Explorer is started, test values for a number of SDL sorts are
automatically generated. For example, all integer parameters will have
the test values -55, 0 or 55. We will now take a look at the automatically
generated test values for the Inres system.

1. Open the Inres system file from the Organizer’s File menu. If any
part of the existing DemonGame system needs saving, you are first
prompted to do so before the Open file dialog appears. Locate the
file inres.sdt that you have copied and open it.

2. Generate and start an Explorer for the system by clicking on the Ex-
plore quick button; see “Quick Start of an SDL Explorer” on page
190 for more information. If you are asked in a dialog whether to
start a new Explorer UI or use an existing one, select the existing ex-
plorer in the list and click OK.

3. Expand the Test Values button module in the Explorer UI and make
the window bigger so you can see all the buttons.

The button module contains four rows of buttons. The top three but-
tons List Value, Def Value And Clear Value make it possible to de-
fine test values for each sort (data type) in the SDL system. The
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 221

Chapter 5 Tutorial: The SDL Explorer
middle row with the buttons List Par, Def Par and Clear Par han-
dles test values for specific signal parameters. The bottom rows han-
dles test values for entire signals.

4. Click on the List Value button to see what default test values have
been generated. The following values should be listed:

Sort integer:
0
-55
55

Sort Sequencenumber:
zero
one

Sort IPDUType:
CR
CC
DR
DT
AK

As you can see, there were test values defined for the predefined sort
integer and for two system specific enumerated sorts Sequencenum-
ber and IPDUType. For enumerated types, all the values will by de-
fault be used as test values if there are 10 or less values. Note that
only sorts that appear on parameters to signals to or from the envi-
ronment are listed.

5. Click on the List Signal button to see what signals will be sent to the
system based on the test values for the sorts.

You should now see a list of signals similar to the following. Note
that there might be differences in the parameters to the MDATreq
signal since this is computed using a random function that is de-
pending on the compiler used.

ICONreq
IDATreq(0)
IDATreq(-55)
IDATreq(55)
IDISreq
MDATreq((. CR, zero, -55 .))
MDATreq((. CR, zero, -55 .))
MDATreq((. CC, one, 55 .))
MDATreq((. AK, one, 55 .))
MDATreq((. CR, one, 55 .))
MDATreq((. DT, one, -55 .))
MDATreq((. CC, one, 0 .))
222 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Test Values
MDATreq((. CC, one, -55 .))
MDATreq((. AK, one, 55 .))
MDATreq((. DR, one, 0 .))

The signals ICONreq and IDISreq have no parameters so there will
only be one signal definition for each of these signals. The IDATreq
signal has one integer parameter, and as you can see there will be
three test values for this signal, one for each of the test values for the
integer sort.

The MDATreq signal takes a parameter that is a structure with three
fields: one IPDUType, one Sequencenumber and one integer.
Whenever the Explorer finds a structure, it tries to generate test val-
ues for the sort based on all combination of test values for each field.
However, if the number of test values is larger than a maximum val-
ue, a randomly chosen subset is used instead. The maximum num-
ber is by default 10, but can be changed with the Define-Max-Test-
Values command.

The consequence of this is that for the MDATreq signal, 10 differ-
ent randomly chosen parameter values are generated.

Now, let us check how the test values influence the behavior of the
system during state space exploration.

6. Start the Navigator by clicking on the Navigator button in the Ex-
plore button module.

7. Double-click on the down node 4 times (until there is more than one
alternative down node).

You should now have a choice between 11 different down nodes
that each one represents an input from the environment to the SDL
system. If you check the inputs more carefully, you will see that
these 11 inputs correspond to the test values defined for the signals
ICONreq and MDATreq.

This is the way the test values have an impact on the state space ex-
ploration. Whenever a signal can be sent from the environment to
the system, the Explorer uses the test values defined for the signal
to determine what parameters to use when sending the signal.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 223

Chapter 5 Tutorial: The SDL Explorer
Changing the Test Values Manually
Now, we will use the other commands in the Test Values button module
to manually change the test values.

1. Click on the Top button in the Explore module to return to the start
state in the state space.

First we will change the test values for integer to only test the values
1 and 99.

2. Click on the Clear Value button, select the integer type in the dialog
and give the value ‘-’ (a dash) in the value dialog. Dash indicates
that we would like to remove all test values currently defined for the
sort.

Note that the Explorer tries to recompute test values for various
sorts and signals when you have changed the test values for integer.
Since integer is used in a number of other sorts and signals, the Ex-
plorer is now unable to compute test values for these sorts and sig-
nals.

3. Check the signal definitions that now is used by clicking on the List
Signal button. The current signal definitions should now be:

ICONreq
IDISreq

Since there are no test values for integer, only the signals that does
not contain integer parameters are listed. In this case this means that
only ICONreq and IDISreq would have been sent to the system from
the environment if you would start an exploration.

4. Click on the Def Value button, select integer in the sort dialog and
give the value 1 in the value dialog.

5. Click on the Def Value button once more. Select integer in the sort
dialog again, but this time give the value 99 in the value dialog.

6. Click on the List Signal button to check the signal definitions and
make sure that the signals with integer parameters are once again on
the list. This time with the test values 1 and 99.
224 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 So Far...
ICONreq
IDATreq(1)
IDATreq(99)
IDISreq
MDATreq((. AK, zero, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. DR, one, 1 .))
MDATreq((. DR, zero, 99 .))
MDATreq((. AK, zero, 1 .))
MDATreq((. AK, one, 99 .))
MDATreq((. AK, zero, 99 .))
MDATreq((. AK, one, 1 .))
MDATreq((. CR, one, 1 .))

You have now explored some on the most frequently used test value
features in the Explorer. There are also possibilities to set test values for
specific parameters and to enumerate all signal definitions manually.
You can find more information about this in the section “Defining Sig-
nals from the Environment” on page 2445 in chapter 53, Validating a
System, in the User´s Manual.

Exiting the SDL Explorer
To exit the Explorer follow the same steps as before:

1. Select Exit from the File menu.

2. Choose Yes when asked whether you want to save the new options
or not. To select Yes in this dialog implies that commands that rec-
reates your new test value definitions will be saved in the file
.valinit (on UNIX) or valinit.com (in Windows).

So Far...
By practicing this and the previous tutorials, you have learned the basics
of the SDL Suite and we hope you have enjoyed the “tour”. The exam-
ples you have been practising on, the DemonGame and Inres systems,
are however rather simple. To deepen your knowledge about the SDL
Suite components, you may practise on a number of exercises that illus-
trate the advantages of SDL-92 when adopting an object-oriented de-
sign methodology. These exercises are described in chapter 6, Tutorial:
Applying SDL-92 to the DemonGame.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 225

Chapter 5 Tutorial: The SDL Explorer
226 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
6 Tutorial: Applying SDL-
92 to the DemonGame
This tutorial will teach you how to take advantage of the object-ori-
ented extensions that have been added to SDL, also known as SDL-
92. The example that has been selected for this purpose is the well
known DemonGame, which you should have already practiced on,
in the previous tutorials presented in chapter 3, Tutorial: The Edi-
tors and the Analyzer and chapter 4, Tutorial: The SDL Simulator.

In order to learn how to take advantage of the object oriented ex-
tensions in SDL, read through this entire chapter. As you read, you
should perform the exercises on your computer system as they are
described.
al SDL Suite 6.3 Getting Started gs-s0 227

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Purpose of This Tutorial
The purpose of this tutorial is to make you familiar with the essential
object-oriented SDL functionality in the SDL Suite tools. This tutorial
is designed as a guided tour through the SDL Suite, where a number of
hands-on exercises should be performed on your computer as you read
this chapter.

We have on purpose selected a simple example that should be easy to
understand. It is assumed that you have a basic knowledge about SDL
— this chapter is not a tutorial on SDL.

The example is DemonGame, which was used in the earlier tutorials in
this volume. It is assumed that you have performed the exercises in
chapter 3, Tutorial: The Editors and the Analyzer as well as chapter 4,
Tutorial: The SDL Simulator before starting with this tutorial.

Note: Platform differences

This tutorial, and the others that are possible to run on both the
UNIX and Windows platform, are described in a way common to
both platforms. In case there are differences between the platforms,
this is indicated by texts like “on UNIX”, “Windows only”, etc.
When such platform indicators are found, please pay attention only
to the instructions for the platform you are running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running the SDL Suite in your en-
vironment. Only if a screen shot differ in an important aspect be-
tween the platforms will two separate screen shots be shown.
228 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Applying SDL-92 to the DemonGame
Applying SDL-92 to the DemonGame
In the previous tutorials, you have practiced using some of the basic lan-
guage elements in SDL; all of these elements were already defined in
the non-object-oriented version of SDL, known as SDL-88.

To introduce SDL-92 to you, we have prepared a number of exercises
in which you will add features to the DemonGame. You will do this by
redefining and adding properties to the process Game in an object-ori-
ented fashion.

We will introduce the following SDL-92 language constructs:

• Process types
– Inheriting process types and adding properties
– Virtual and redefined process types
– Virtual and redefined transitions

• Packages
– Using packages
– Reusing packages

• Block types
– Inheriting block types and adding properties.

Some Preparatory Work
Instead of continue working on the original DemonGame system, we
suggest you to continue from a version that is better designed for intro-
ducing SDL-92. The changes that have been made are the following:

• All signals from the environment (Newgame, Endgame, Probe,
Result) are now directed to the administrating process Main, that
will send them further to the Game process, if there is such a pro-
cess.

• The Bump signal is also sent to the process Main, which in turn
transfers it to the Game process. This eliminates the annoying be-
havior when a signal is sent to a nonexisting receiver.

Note:

In this chapter, the term SDL-92 denotes the object-oriented SDL
that was introduced in the 1992 version of the language. These ob-
ject-oriented features remain unchanged in SDL-96.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 229

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
• Signal routes and signal lists have been updated to reflect the new
routing of signals.

• The internal signal GameOver is really not necessary and is there-
fore replaced by the signal EndGame.

From the user’s point of view, the system will show the same function-
ality as before, but is more robust.

The new versions of the block GameBlock and the process Main are de-
picted below, in Figure 152 and Figure 153.

To use the new version:

1. Make a new empty directory sdl92 of your own (under
~/demongame on UNIX, and under
C:\IBM\Rational\SDL_TTCN_Suite6.3\work in Windows).

2. Copy all files in the directory
$telelogic/sdt/examples/demongame/sdl92/process_type
(on UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon
game\sdl92\process_type (in Windows), to this new directory.

3. Start the SDL Suite and open the system file demongame.sdt in
this new directory with the Organizer. (You will find copies of the
diagrams building up the complete system).

You should recognize the system DemonGame, with the modifications
as described above.

Note: Installation directory

On UNIX, the installation directory is pointed out by the environ-
ment variable $telelogic. If this variable is not set in your UNIX
environment, you should ask your system manager or the person re-
sponsible for the SDL Suite environment at your site for instructions
on how to set this variable correctly.

In Windows, the installation directory is assumed to be
C:\IBM\Rational\SDL_TTCN_Suite6.3 throughout this tutori-
al. If you cannot find this directory on your PC, you should ask your
system manager or the person responsible for the SDL Suite envi-
ronment at your site for the correct path to the installation directory.
230 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Some Preparatory Work
Nearly all versions of the diagrams shown in the following exercises are
available in the directory you created above. You can either draw a di-
agram to learn how to use SDL-92 in the SDL Editor, or copy (or con-
nect to) the pre-made version of the diagram if you do not wish to do
this.

Figure 152: The block GameBlock, redesigned

The exact layout of your diagrams may differ slightly from the above.

Block GameBlock 1(1)

Main(1,1)

Game(0,1)

C1
R1

Newgame,
Endgame,
Probe,
Result

R5

EndGame,
Probe,
Result,
Bump

R2

Win,Lose,Score
C2

C3
RBump

Bump
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 231

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame

Figure 153: The process Main, redesigned

The exact layout of your diagrams may differ slightly from the above.

Process Main 1(1)

DCL
GameP Pid;

Game_Off

Newgame

Game

GameP:=
Offspring

Game_On

Game_On

Bump

Bump
TO GameP

Game_On

Probe

Probe
TO GameP

Game_On

Result

Result
TO GameP

Game_On

Endgame

EndGame
TO GameP

GameP:=
null

Game_Off
232 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Type from a Process
Creating a Process Type from a Process

What You Will Learn
• To change a process diagram to a process type
• To refer to and instantiate a process type
• To interconnect the process type with a block and other processes

(types), using gates
• To define transitions as virtual

Changing into a Process Type
To facilitate the introduction of new features, we will start by general-
izing the process Game, by changing it to a process type, that you later
on will be in a position to specialize or redefine.

1. Open the process Game and change the diagram type from process
to process type, simply by selecting the diagram heading symbol
and editing the text in it to say “Process Type Game”.

2. From the SDL Editor’s File menu, save the diagram Process Type
Game on a new file, e.g. new_game.spt using the Save As com-
mand. Edit the file name in the file selection dialog and click OK.
(The existing *.spt files are copies of the complete system that
comes with the examples in the SDL Suite.)

3. Raise the Organizer window.

Figure 154: Changing the diagram type
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 233

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
You may notice that the reference symbol has been changed to
Process Type Game, and marked as having no reference in the par-
ent diagram. Also, the old process Game is marked as unconnected.
Do not bother about that for the moment – it will be replaced by an
instantiation symbol, which will be explained later.

4. Open the diagram block GameBlock. Change it so that the process
reference Game is changed to an instantiation of the process type
Game. The syntax is: “Game(0,1):Game” (You are allowed to add
newlines to have the text fit into the symbol.)

– Before you have started text editing, the text cursor is not flash-
ing. Pressing <Delete> at this stage deletes the whole selected
symbol. Once text editing has started, the text cursor is flashing
and pressing <Delete> only deletes a character.

5. As soon as you deselect the symbol, one text rectangle appears for
each connection point to the signal routes. Name the connections
points for instance G2 and G5:

Figure 155: Invalid reference as shown in the Organizer
234 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Type from a Process
6. Also add a process type reference symbol with the name Game. The
block diagram should now look like this:

7. Save the block diagram on a new file, e.g. new_gameblock.sbk
(use Save As as before).

Figure 156: Naming the connection points

Figure 157: The resulting block

Block GameBlock 1(1)

Main(1,1)

Game(0,1):Game

Game

C1
R1

Newgame,
Endgame,
Probe,
Result

R5

EndGame,
Probe,
Result,
Bump

R2

Win,Lose,Score
C2

C3
RBump

Bump

G5
G2
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 235

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Inserting Gates and Virtual Transitions
You will now finish the process type Game. You are recommended to
do this by following the editing instructions described below. If you
prefer, you can instead connect to the finished version of the diagram
(see “Connecting to the Finished Diagram” on page 238), but you
should in any case read through the text below.

Editing the Process Type Diagram

1. Go back to the process type Game in the SDL Editor. The connec-
tion to the signal routes must be defined using gate symbols, named
in accordance to the connection points you just defined.

2. Gate symbols are to be connected to the frame symbol. If you want
to connect gates to the left or top of the frame, you must first select
the frame and drag it down and/or right.

Figure 158: Adjusting the frame symbol

Select the
frame and
drag.
236 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Type from a Process
3. For each of the gates G2 and G5, add a gate symbol and fill in the
name and the signal list.

– The gate symbol is the one who looks like an arrow. Remember
that the Status Bar displays the type of a symbol when you point
to or select it in the symbol menu.

– To direct a gate to the frame, you must add a gate, then Redirect
it. (Gates can also be made bidirectional.)

– You may use the New Window command to bring both the
Process Type Game and the Block GameBlock into view at the
same time, then Copy and Paste the text between the diagrams.

– You may also take advantage of the Signal Dictionary window,
and Insert the signals from the block GameBlock (Up).

4. Also make the start transition as well as the input of the signals
Probe and Bump virtual by adding the text “VIRTUAL” before the
name of the signal.

– By doing this, you will later on be able to change the properties
of the game in a smooth way.

The changes to the resulting diagram should now look something like
this:
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 237

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Connecting to the Finished Diagram

The finished Game process type diagram is also available as the file
game.spt. If you instead of drawing the diagram wish to use this file,
do as follows:

1. In the SDL Editor, close the Game process type diagram.

2. In the Organizer, select the diagram Process Type Game, and then
select Connect from the Edit menu.

Figure 159: The resulting process type Game

Process Type Game 1(1)
DCL
Count Integer;

VIRTUAL *

Count:=0 Result EndGame

Losing Score
(Count)

VIRTUAL
Probe

VIRTUAL
Bump -

Lose Winning

Count:=
Count-1

VIRTUAL
Bump

VIRTUAL
Probe

- Losing Win

Count:=
Count+1

-

G2

Win,
Lose,
Score

G5

Probe,
Result,
EndGame,
Bump
238 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating a Process Type from a Process
3. Select the option To an existing file. Change the filename to
game.spt, or select this file by using the folder button.

4. Click Connect and check the new file connection in the Organizer.

The Organizer Structure
1. Save everything. The resulting Organizer list should now resemble:

Note the presence of an instantiation symbol, looking like a normal
symbol, but with the generic “X:Y” (meaning instance:type) nota-
tion in it. The instantiation symbol denotes that the type is actually
instantiated somewhere in the diagram.

Instantiation symbols in the Organizer cannot be used for navigat-
ing into the system hierarchy with a double click, since they do not
refer to diagrams. (You can use them from within the SDL Editor
with the support from the Type Viewer tool, which you will practice
on later in this tutorial).

2. Terminate by analyzing the system. Correct any syntactic or seman-
tic errors that are reported.

Figure 160: Resulting Organizer view

Chapter Diagram Structure

x:y Process Instance Game (0,1) : Game

Process Main rw old_main.spr

Process Type Game rw new_game.spt

Block GameBlock rw new_gameblock.

Process Demon rw demon.spr

Block DemonBlock rw demonblock.sbk

System DemonGame rw old_demongame
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 239

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Redefining the Properties of a Process
Type

What You Will Learn
• To have a process type inherit properties from another process type
• To redefine transitions in a process type

The Process Type JackpotGame
So far, you have redesigned the original functionality of the system
DemonGame, using a slightly different design. Next step will be to add
a feature that allows you to win the “jackpot”, with a probability of
10%. The jackpot is arbitrarily set to increase the score by 10. A simple
implementation of this could be to create a pseudo random number gen-
erator that returns a sequence of numbers from 0 to 9, and to check the
random number upon the reception of the signal Probe.

It should also be possible to specify what kind of game to start at run-
time, meaning that we need an additional input signal from the environ-
ment, NewJackpotGame, that will start the JackpotGame; that new sig-
nal requires additions to the process Main and the system diagram.

The JackpotGame is implemented as a process type that inherits the
properties of the process type Game, and adds the random number fea-
ture by redefining the transitions that handle the signal Bump. The pseu-
do random generator is activated upon each reception of the signal
Bump. See below.
240 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Redefining the Properties of a Process Type
• Create the diagram above and save it on a new file
(new_jackpotgame.spt for instance). Then close the diagram in
the SDL Editor (Close Diagram from the File menu).

– This diagram is also available as the file jackpotgame.spt, if
you wish to make a copy (or use it as is) instead of drawing the
diagram.

Figure 161: The process type JackpotGame

INHERITS Game ;

Process Type JackpotGame 1(1)

DCL
Pseudo_Random INTEGER;

Winning Losing

REDEFINED
Probe

REDEFINED
Bump

Pseudo_Random=0
Pseudo_Random:=

(Pseudo_Random+7)
MOD 10

Count :=
Count+1

Count :=
Count+10 Winning

Win REDEFINED
Bump

-
Pseudo_Random:=

(Pseudo_Random+4)
MOD 10

Losing

FALSE

TRUE
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 241

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Changes to the Block GameBlock
To make the process type JackpotGame available from the parent block,
you simply add a process reference symbol and a process instantiation
symbol, as you did before with the process type Game. You also add a
signal NewJackpotGame to the signal list to the process Main.

• Update the existing diagram GameBlock according to above and
save it on file.

– This version of the diagram is also available as the file
gameblock2.sbk. To use it instead of drawing the diagram,
close the GameBlock diagram in the SDL Editor, and connect
the GameBlock diagram in the Organizer to the new file. (Use
Connect in the Edit menu and the option To an existing file.)

Figure 162: The block GameBlock

Block GameBlock 1(1)

Main(1,1)

Game(0,1):Game
JackpotGame(0,1):
JackpotGame

Game JackpotGame

C1
R1

Newgame,
NewJackpotGame,
Endgame,
Probe,
Result

RBump

Bump
C3

R5

Probe,
Result,
EndGame,
Bump

JR5

Probe,
Result,
EndGame,
Bump

G5 G5
C2

R2

Win, Lose, Score
G2

G2

JR2Win, Lose, Score

C2
242 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Redefining the Properties of a Process Type
Changes to Process Main and System
DemonGame
The process Main and the system DemonGame need to be extended
with the declaration of the signal NewJackpotGame and the code to re-
ceive the signal and create an instance of the game JackpotGame:

1. Update the diagrams Main and DemonGame according to the figure
above and save them on file. You may want to save the diagrams on
new files, e.g. new_demongame.ssy and new_main.spr.

– This version of the Main diagram is also available as the file
main2.spr, if you wish use it instead of editing the diagram. In
the Organizer, connect the diagram to the new file (from the Edit
menu).

– The DemonGame diagram has to be edited manually – do
not re-connect it to an existing file.

2. In the Organizer, make sure that the process type diagram Jackpot-
Game is connected to the file new_jackpotgame.spt that you
created earlier. (If not, use Connect in the Edit menu and the option
To an existing file.)

The resulting Organizer list should now look like this:

Figure 163: The extensions to process Main and system DemonGame

Game_Off

NewJackpotGame

JackpotGame

GameP:=
Offspring

Game_On

Signal
Newgame, NewJackpotGame,
Probe,
Result,Endgame,
Bump,
Win,Lose,Score(INTEGER);

C1

Newgame,
NewJackpotGame,
Probe,
Result,Endgame

Code added
to process
Main to han-
dle the new
signal...

...declaration of new
signal and addition to
signal list on C1 in
DemonGame
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 243

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Simulating the JackpotGame
To understand the resulting system, you may want to spend a few min-
utes simulating it.

1. First analyze the system and generate a simulator, as you learned
from the tutorial on the simulator. Then open the generated simula-
tor in the Simulator UI.

2. We suggest that you check the following features:

– It should be possible to start one instance of Game or of
JackpotGame at run-time using the NewGame/NewJackpot-
Game signals, but not to have two games running at the same
time. (Use the command output-via to send the signals New-
JackpotGame, Newgame and EndGame via C1, in order to start
and stop the game).

– Even if we do not have any game started, the signal Bump no
longer causes any dynamic error, since there is always a receiver
(Main).

– Turn the graphical MSC trace on, to visualize how the signalling
is done. Also turn the graphical SDL trace on. Verify that the ex-
ecution takes place in the graphs for both the process types
Game and JackpotGame, even if you have started a Jackpot-
Game! (You may have to execute at symbol level to catch this.)

Figure 164: JackpotGame added to Organizer list

x:y Process Instance Game (0,1) : Game
x:y Process Instance JackpotGame (0,1) : JackpotGame

Process Main rw new_main.spr

Process Type Game rw new_game.spt

Process Type JackpotGame rw new_jackpotgame.spt

Block GameBlock rw new_gameblock.sbk

Process Demon rw demon.spr

Block DemonBlock rw demonblock.sbk

System DemonGame rw new_demongame.ssy

Chapter Diagram Structure
244 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Redefining the Properties of a Process Type
3. Play the game in a realistic way.

– First, create a button in the Simulator UI with the name Probe,
that sends the signals Probe and then Result, then resumes the
execution with the command Go. Each time you click this but-
ton, the Score is returned. (The button definition should contain
output-to Probe Main; output-to Result Main; go)

– Then, set the trace for the system to 1, meaning that only signals
to/from the environment are traced. If required, turn all graphi-
cal traces off, in order to speed up the execution:
set-gr-trace 0; stop-msc-log

– Send the signal NewJackpotGame and run the simulator:
output-to NewJackpotGame Main; go

– Click repeatedly the Probe button and watch the trace. You
should win 10 points every now and then.

4. Stop the execution with the Break button.

Figure 165: Defining the button Probe
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 245

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Adding Properties to a Process Type

What You Will Learn
• To inherit a process type and add properties
• To use dashed gates.

The Process Type DoubleGame
Even with a “jackpot” feature, winning “a lot” with the DemonGame
takes some time... Suppose now that you would like to add a function
that doubles the “stake” of the game, whenever you want, so that you
have the possibility to win more.

A way to do this is to:

1. Create a process type DoubleGame, that inherits the properties of
the process type Game, with the following additions:

– Declaration of a variable Stake of type integer.

– Initialization of Stake to 1, by redefining the start transition.

– Reception of a signal DoubleStake that doubles the value of
Stake.

– Redefinition of the transitions Winning and Losing to add/de-
duct the current Stake from the score Count.

2. The resulting graph is depicted below. Create it in the same way as
you have learned from the previous exercises, and save it on the file
new_doublegame.spt. Then close the diagram in the SDL Editor
(Close Diagram from the File menu).

– This diagram is also available as the file double.spt, if you
wish to make a copy (or use it as is) instead of drawing the dia-
gram.
246 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Adding Properties to a Process Type
3. Add a process type reference symbol DoubleGame, and a process
instantiation symbol with the text “DoubleGame (0,1):Double-
Game” to the block diagram GameBlock; see below.

– This version of the diagram is also available as the file
gameblock3.sbk. To use it instead of drawing the diagram,
close the GameBlock diagram in the SDL Editor, and connect
the GameBlock diagram in the Organizer to the new file.

Note:

The diagram contains a dashed gate symbol G5, where the signal
DoubleStake is conveyed. You use dashed gates to refer to gates that
are already defined in the supertype (the type that you inherit from),
to distinguish from situations where you have to add a new gate.

To dash a gate:

• Make sure the gate is selected.

• Select the Dash command from the Edit menu of the SDL Editor
(this command toggles between Dash/Undash).

Figure 166: The process type DoubleGame

INHERITS Game;

Process Type DoubleGame 1(1)

DCL
Stake INTEGER;

*

DoubleStake

Stake:=Stake*2

-

Losing

REDEFINED
Probe

Lose

Count:=
Count-Stake

-

REDEFINED

Count:=0,
Stake:=1

Losing

Winning

REDEFINED
Probe

Win

Count:=
Count+Stake

-

G5

DoubleStake
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 247

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
4. Also add the signals NewDoubleGame and DoubleStake to the sig-
nal list on the signal route R1, and DoubleStake to the signal list to
the process DoubleGame; see below.

5. Add the new signals NewDoubleGame and DoubleStake at the sys-
tem level (in the DemonGame diagram), both in the signal declara-
tion, and in the signal list on the channel C1.

– You have to make these changes yourself.

Figure 167: The resulting block GameBlock

Block GameBlock 1(1)

Main(1,1)

Game(0,1):Game
JackpotGame(0,1):
JackpotGame

DoubleGame(0,1):
DoubleGame

Game JackpotGame DoubleGame

C1
R1

Newgame,
NewJackpotGame,
NewDoubleGame,
Endgame,
Probe,
Result,
DoubleStake

R5

Probe,
Result,
EndGame,
Bump

G5
R2

Win,
Lose,
Score

G2C2

JR5

Probe,
Result,
EndGame,
Bump

G5

JR2Win, Lose, Score

G2

C2

DR5
Probe,
Result,
EndGame,
Bump,
DoubleStake

G5

DR2Win, Lose, Score

G2

C2

C3
RBump

Bump
248 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Adding Properties to a Process Type
6. Extend the process Main with the code to receive the signal
DoubleStake, and the code to receive the signal NewDoubleGame
and create an instance of the game DoubleGame; see below.

– This version of the Main diagram is also available as the file
main3.spr, if you wish use it instead of editing the diagram. In
the Organizer, connect the diagram to this file.

7. If needed in the Organizer, connect the process type diagram Dou-
bleGame to the file new_doublegame.spt that you created earlier.

Simulating the DoubleGame
You may simulate the DoubleGame in a similar way as the
JackpotGame (the DoubleGame is started with the signal
NewDoubleGame).

1. To play the game in a realistic way, also add a button Double to the
Simulator UI, with the text “Double” and the command
Output-to DoubleStake Main; go

2. Try for instance the following tactic: whenever your score is nega-
tive, double the stake.

Figure 168: New code in process Main

Game_On

DoubleStake

DoubleStake
TO GameP

Game_On

Game_Off

NewDoubleGame

DoubleGame

GameP:=
Offspring

Game_On

Code added
to process
Main to han-
dle the new
signals.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 249

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Combining the Properties of Two Process
Types

What You Will Learn
• To work with the Type Viewer (the “class browser” in the SDL

Suite)
• To inherit process types in more than one level

So far, you have created a basic version of the game (the supertype pro-
cess type Game), and extended it as two subtypes (the process types
JackpotGame and DoubleGame). To assist you in understanding the in-
heritance and instantiation of types, the SDL Suite is provided with a
“class browser”, the Type Viewer.

Working with the Type Viewer
1. Open the Type Viewer with the command Type Viewer from the Or-

ganizer’s Tools > SDL menu.

The Type Viewer is started and displays two windows: the main
window, where all types are listed, and the Type Trees, where the
inheritance and instantiation of the types is visualized.
250 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Combining the Properties of Two Process Types
The main window displays a list of all types and instances that exist in
your current system. When selecting an object in the main window, the
Type Trees window is updated to show the inheritance tree for that type.

Figure 169: The two windows of the Type Viewer
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 251

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Figure 170 shows an inheritance tree for the process types Game,
JackpotGame and DoubleGame. We have one level of inheritance, as
depicted above. You can also note that the Type Viewer keeps track
about the types that have been instantiated somewhere in the SDL sys-
tem.

– You may go to the source SDL graphs and find the declarations
and instantiations of the types by double clicking the symbols in
the Type Viewer.

How to Work-Around the Lack for Multiple
Inheritance
Say that you would like to design a new game where both the “jackpot”
and the “double” features are supported. As SDL-92 does not support
multiple inheritance, we cannot simply create a SuperGame that inherits
JackpotGame and DoubleGame. Instead, we will have to inherit from,
i.e. reuse, the JackpotGame or the DoubleGame, and then redefine/add
some of the properties. (The idea is to rewrite as little code as possible).

Which one should we reuse as is? The code for the DoubleGame seems
to be still valid for the SuperGame. So, let us inherit that process type,
and redefine some of the properties in accordance to the JackpotGame.

Figure 170: The inheritance tree for the process type Game

_______________Inheritance tree_______________

x:y

Process Instance
Game(0,1)

x:y

Process Instance
JackpotGame(0,1)

Process Type
JackpotGame

x:y

Process Instance
DoubleGame(0,1)

Process Type
DoubleGame

Process Type
Game
252 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Combining the Properties of Two Process Types
To create the SuperGame:

1. Open the process type JackpotGame in the SDL Editor, and Save As
on a new file, e.g. new_supergame.spt

– This diagram is also available as the file supergame.spt, if
you wish to make a copy (or use it as is) instead of drawing the
diagram. In that case, continue with step 6. below.

2. Rename the diagram to process type SuperGame.

3. Change the inheritance from “INHERITS Game” to “INHERITS
DoubleGame”.

4. Update the contents of the graph, in order to:

– Change the branch Winning/Probe so that you add Stake instead
of 1 to Count when winning, and reward you with 10 times the
value of Stake when winning the jackpot.

– Redefine the transition Losing/Probe so that you deduct Stake
instead of 1 from Count.

Figure 171: The changes to the process type SuperGame

Winning

REDEFINED
Probe

Pseudo_Random=0

Count :=
Count+Stake

Win

-

Count :=
Count+

(10*Stake)

Losing

REDEFINED
Bump

Pseudo_Random:=
(Pseudo_Random+7)

MOD 10

Winning

REDEFINED
Bump

Pseudo_Random:=
(Pseudo_Random+4)

MOD 10

Losing

Losing

REDEFINED
Probe

Lose

Count:=
Count-Stake

-

FALSE

TRUE
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 253

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
5. If the Process Type JackpotGame has become unconnected in the
Organizer, re-connect it to the file used earlier
(new_jackpotgame.spt).

6. Also add a process type reference symbol with the name
SuperGame in the diagram GameBlock. In the Organizer, then con-
nect the newly added process type diagram SuperGame to the file
new_supergame.spt that you created earlier.

7. You may check the impact of the changes above in the Type View-
er. Save everything and the select Update from the Type Viewer’s
File menu (since the Type Viewer does not automatically update its
content when you make changes to a diagram). Your inheritance
tree should now look like this:

8. If you want to be able to play the SuperGame, you must also add a
process instantiation symbol “SuperGame(0,1):SuperGame” in the
GameBlock, and add a signal NewSuperGame that starts the game
(in a similar fashion as you did in the JackpotGame and the Double-
Game). Do not forget to update the system diagram.

– These versions of the diagrams are also available as the files
gameblock.sbk and demongame.ssy, if you wish use them
instead of editing the diagrams. In the Organizer, connect the di-
agrams to the new files. A complete and final system file,
demongame_sdl92.sdt, is also available, with connections to
the final SDL diagrams.

Figure 172: The process type SuperGame, added

_______________Inheritance tree_______________

x:y

Process Instance
Game(0,1)

x:y

Process Instance
JackpotGame(0,1)

Process Type
JackpotGame

x:y

Process Instance
DoubleGame(0,1)

Process Type
SuperGame

Process Type
DoubleGame

Process Type
Game
254 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Packages and Block Types
Using Packages and Block Types

What You Will Learn
• To create a package diagram
• To use a package in a system
• To refer to and instantiate a block type
• To define a process type as virtual

Package – a Reusable Component
Packages are used to make type definitions available in different sys-
tems, and to make components reusable. You will take advantage of the
package concept by developing two versions of the DemonGame, one
that has only the basic “Probe” feature, and one that also includes the
“Jackpot” and “DoubleStake” features.

The idea here is to develop a package “BasicFeatures” that is used in the
basic version and that is reusable to 100% in the advanced version.

Using packages to their full extent in this example requires not only the
process Game to be transformed to a process type (as you have done in
the previous exercises, when creating the JackpotGame, DoubleGame
and SuperGame), but also to transform the process Main and the block
GameBlock to reusable process type and block type, respectively.

You have probably noticed that the process type Main also requires to
be extended for each feature that we add (“jackpot”, “double”, etc.), so
it would be a good idea to make a reusable type of it. This has already
been prepared for you, so your task will be to add the required “glue” to
build the two packages.

1. Start by copying the files gameblock.sbt and main.spt from
the directory
$telelogic/sdt/examples/demongame/sdl92/packages (on
UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon
game\sdl92\packages (in Windows) to the same directory you
created earlier for this tutorial.

– All diagrams in the remaining exercises are available in the
above directory. You may choose to copy them if you do not
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 255

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
want to draw all diagrams, and then connect the created diagram
symbols in the Organizer to the corresponding files.

Creating a Package
To create a package:

1. Select the Add New command from the Organizer’s Edit menu. In
the Add New dialog, specify document type as SDL Package, and
document name as BasicFeatures.

As you click OK, a new diagram structure is created in the Organiz-
er with the package diagram as root diagram. (The Organizer sup-
ports managing multiple structures in the same system file.)

The newly created package should contain the generic properties for
the DemonGame; namely:

– The declaration of the signal interface between the “basic”
DemonGame and the environment, as well as a process type
Main that supports the signal interface.

– The definition of the process type Game with the basic function-
ality.

– A block type that contains the process types.

Figure 173: Adding a new package Basic Features
256 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Packages and Block Types
2. With the SDL Editor, move the declaration of the signals from the
system diagram to the package diagram. Also add the process type
reference symbol Game and the block type reference symbol
BasicGameBlock to the package diagram. See below.

3. Save the package diagram on a file, e.g. basicfeatures.sun

4. With the Organizer, connect the block type BasicGameBlock to the
recently copied file gameblock.sbt (the diagram is depicted in
Figure 175).

– Note that the process type Main is declared as VIRTUAL. This
is essential since we are going to add properties to Main, and
need to address signals from the environment to Main, without
changing its name to e.g. “SuperMain” (compare to how you did
for the process type Game that was specialized into
JackpotGame, etc.). By defining a process type as VIRTUAL,
we can later add properties without changing its name, using the

Figure 174: The package BasicFeatures

Package BasicFeatures 1(1)

Signal
Newgame,
Probe,
Result,Endgame,
Bump,
Win,Lose,Score(INTEGER);

Game

BasicGameBlock
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 257

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
keyword REDEFINED (you will practice that in a few mo-
ments, in “Redefined Process Type Main” on page 263).

5. You should also connect the process type Main to the copied file
main.spt (This may already have been done if you had Expand
Substructure turned on in the Connect dialog in the previous step.)

Figure 175: The block type BasicGameBlock

Block Type BasicGameBlock 1(1)

VIRTUAL Main

Main(1,1):
Main

Game(0,1):
Game

G1

Newgame,
Endgame,
Probe,
Result

R1
Newgame,
Endgame,
Probe,
Result

G1
G3

RBump

Bump

G3

Bump
G5

R5
Probe,
Result,
EndGame,
Bump

G5

G2

R2

Win, Lose, Score

G2 Win, Lose, Score
258 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using Packages and Block Types
Using a Package
To use a package, you add a USE statement to the package reference
symbol (looking like a text symbol immediately outside the frame sym-
bol).

1. To create a version of the DemonGame that has the basic features,
add a USE statement to the system diagram. Also remember to in-
stantiate the block type BasicGameBlock (which is contained in the
package). See below.

– You may want to save the system diagram on a new file, e.g.
basicdemongame.ssy

2. In the Organizer, Disconnect the old GameBlock from the system
structure. The resulting Organizer view should now be something
like this (the order of appearance of symbols may differ):

Figure 176: USE of packages

USE BasicFeatures;

System BasicDemongame 1(1)

GameBlock:
BasicGameBlock

DemonBlock

C1

Newgame,
Probe,
Result,Endgame

G1

C2

Win,Lose,Score
G2

C3
Bump

G3
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 259

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
3. Terminate the exercise by analyzing the resulting system.

Reusing Packages
When developing the version of the DemonGame that has all features,
you create a package AdvancedFeatures that contains the additional fea-
tures and that will reuse the package BasicFeatures.

What You will Learn
• To reuse a package in another package
• To inherit a block type
• To redefine a process type

Figure 177: System BasicDemonGame using package BasicFeatures

Note:

You may analyze the package (by selecting the package symbol in
the Organizer as input to the Analyzer before ordering the Analyze
command), in which case a partial semantic analysis will be done
on the package. (The Analyzer will not check the consistency be-
tween the package and the system that uses it.)

A complete semantic analysis requires the system diagram to be se-
lected before ordering Analyze.

Chapter Diagram Structure

x:y Process Instance Game (0,1) : Game

x:y Process Instance Main (1,1) : Main

Virtual Process Type Main rw main.spt

Block Type BasicGameBlock rw gameblock.sbt

Process Type Game rw new_game.spt

Package BasicFeatures rw basicfeatures.sun

x:y Block Instance GameBlock : BasicGameBlock

Process Demon rw demon.spr

Block DemonBlock rw demonblock.sbk

System BasicDemongame rw basicdemongame.ssy
260 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Reusing Packages
The Package AdvancedFeatures
1. Create the package AdvancedFeatures in a similar fashion as the

package BasicFeatures (see Figure 173 on page 256).

– You should now have two package structures in the Organizer,
BasicFeatures and AdvancedFeatures.

The package AdvancedFeatures must do the following:

2. Use the package BasicFeatures.

3. Add the declarations of the new signals.

4. Add references to the process types JackpotGame, etc.

5. Add a reference to a block type AdvancedGameBlock (which inher-
its the block type BasicGameBlock and in turn refers to a redefined
process type Main).

6. Save the package diagram on the file advancedfeatures.sun

Figure 178: The package AdvancedFeatures

USE BasicFeatures;

Package AdvancedFeatures 1(1)

Signal
DoubleStake,
NewJackpotGame,
NewDoubleGame,
NewSuperGame;

JackpotGame

DoubleGame

AdvancedGameBlock
SuperGame
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 261

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Block Type AdvancedGameBlock
The diagram contains a reference to a REDEFINED process type Main,
and a dashed instantiation symbol Main.

Figure 179: Block type AdvancedGameBlock

INHERITS BasicGameBlock;

Block Type AdvancedGameBlock 1(1)

Main

DoubleGame (0,1):
DoubleGame

JackpotGame(0,1):
JackpotGame

SuperGame (0,1):
SuperGame

REDEFINED
Main

G1

Newgame,
NewJackpotGame,
NewDoubleGame,
Endgame,
Probe, Result,
DoubleStake,
NewSuperGame

AR1

Newgame,
NewJackpotGame,
NewDoubleGame,
Endgame,
Probe, Result,
DoubleStake,
NewSuperGame

G1

DR5

Probe,
Result,
EndGame,
Bump,
DoubleStake

G5

G5

DR2

Win, Lose, Score

G2

G2

Win,
Lose,
Score

JR5
Probe,
Result,
EndGame,
Bump

G5

G5

JR2

Win,
Lose,
Score

G2

SR5
Probe,
Result,
EndGame,
Bump,
DoubleStake

G5

G5

SR2

Win, Lose, Score

G2
262 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Reusing Packages
• The block type AdvancedGameBlock is already provided on the file
advancedgameblock.sbt. Copy that file from the directory
$telelogic/sdt/examples/demongame/sdl92/packages (on
UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon

game\sdl92\packages (in Windows), and use the Organizer to
connect the diagram to the file.

Redefined Process Type Main
The REDEFINED process type Main inherits implicitly from the
VIRTUAL process type Main in the package BasicFeatures, and adds
the code to receive the signals that command the new features.

• The REDEFINED process type Main is also provided on the file
advancedmain.spt in the directory
$telelogic/sdt/examples/demongame/sdl92/packages (on
UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon

game\sdl92\packages (in Windows). Copy the file and use the
Organizer to connect the diagram to the file.

Figure 180: The redefined process type Main

REDEFINED Process Type Main 1(1)

Game_Off

NewJackpotGame

JackpotGame

GameP:=
Offspring

Game_On

NewDoubleGame

DoubleGame

GameP:=
Offspring

Game_On

NewSuperGame

SuperGame

GameP:=
Offspring

Game_On

Game_On

DoubleStake

DoubleStake
TO GameP

Game_On

G1

NewJackpotGame,
NewDoubleGame,
DoubleStake,
NewSuperGame

G5

DoubleStake
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 263

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Creating the System AdvancedDemonGame
Creating the system is now fairly simple.

1. Add a New SDL system in the Organizer. Say you name the system
AdvancedDemonGame and save it as demongameadvanced.ssy

2. With the SDL Editor, Copy the contents of the system
BasicDemonGame and Paste them into the new system.

3. Have the system USE AdvancedFeatures in addition to
BasicFeatures.

4. Change the reference from the block type BasicGameBlock to
AdvancedGameBlock.

5. Update the signal list C1 with the new signals JackpotGame, etc.
The system is now complete. Analyze it and simulate it if you find
it meaningful.

Figure 181: The system AdvancedDemonGame

USE BasicFeatures;
USE AdvancedFeatures;

System AdvancedDemongame 1(1)

AdvancedGameBlock:
AdvancedGameBlock

DemonBlock

C1

Newgame,
NewJackpotGame,
NewDoubleGame,
Probe,
Result,Endgame,
DoubleStake,
NewSuperGame

G1

C2

Win,Lose,Score
G2

C3
Bump

G3
264 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Conclusion
Conclusion
The SDL-92 session of this tutorial has shown how to design a (small)
SDL system so that the result becomes reusable components, which in
turn reduces the effort needed to maintain and extend the functionality.

The tutorial also illustrates the need to design the system properly in or-
der to introduce the OO paradigm in a smooth way.

To verify that you have assimilated the SDL-92 tutorial, you should
now be ready to add new features on your own, without having to re-
write the whole system.

More Exercises...
As a “menu” of new features that can be introduced, we suggest that you
try to extend the AdvancedDemonGame with the following:

1. Memorization of “highest score ever” since system start (there
should be only one highest score, common for all types of games).

2. A “hall of fame” that memorizes the name of the player that reaches
the “highest score ever”. (The name is assumed to be provided by
the environment).

3. A “gameover” function that checks if the current score is less than
an arbitrary value of, say -100, and disables the game so that the
player needs to restart it entirely.

Good luck!

Note:

A suggestion for a solution for the exercises above can be found in
the directory:
$telelogic/sdt/examples/demongame/sdl92/exercises (on
UNIX), or
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\demon

game\sdl92\exercises (in Windows)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 265

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
Appendix: Diagrams for the DemonGame
Using Packages

Figure 182: Hierarchical structure

Chapter Diagram Structure (basic)

Process Type Game rw game.spt

x:y Process Instance Game (0,1) : Game

x:y Process Instance Main (1,1) : Main

Virtual Process Type Main rw main.spt

Block Type BasicGameBlock rw gameblock.sbt

Package BasicFeatures rw basicfeatures.sun

x:y Block Instance GameBlock : BasicGameBlock

Process Demon rw demon.spr

Block DemonBlock rw demonblock.sbk

System BasicDemongame rw basicdemongame.ssy

Chapter Diagram Structure (advanced)

Process Type JackpotGame rw jackpotgame.spt

Process Type DoubleGame rw double.spt

x:y Process Instance DoubleGame (0,1) : DoubleGame

x:y Process Instance JackpotGame (0,1) : JackpotGame

Process Instance Main

x:y Process Instance SuperGame (0,1) : SuperGame

Redefined Process Type Main rw advancedmain.spt

Block Type AdvancedGameBlock rw advancedgameblock.sbt

Process Type SuperGame rw supergame.spt

Package AdvancedFeatures rw advancedfeatures.sun

x:y Block Instance AdvancedGameBlock : AdvancedGameBlock

Process Demon rw demon.spr

Block DemonBlock rw demonblock.sbk

System AdvancedDemongame rw demongameadvanced.ssy
266 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix: Diagrams for the DemonGame Using Packages
(The inheritance tree for the process type Game is displayed in
Figure 170 on page 252.)

Figure 183: Inheritance tree for the block type and process type Main

_______________Inheritance tree_______________

x:y

Block Instance
GameBlock

x:y

Block Instance
AdvancedGameBlock

Block Type
AdvancedGameBlock

Block Type
BasicGameBlock

_______________Inheritance tree_______________

x:y

Process Instance
Main(1,1)

Redefined Process Type
Main

Virtual Process Type
Main
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 267

Chapter 6 Tutorial: Applying SDL-92 to the DemonGame
268 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
7 Cmicro Targeting
Tutorial
This tutorial takes you through the first steps of targeting. Current-
ly this tutorial is designed for using a a Microsoft Visual C compiler
in Windows, and gcc or cc on UNIX.
al SDL Suite 6.3 Getting Started gs-s0 269

Chapter 7 Cmicro Targeting Tutorial
Prerequisites / Abbreviations Used
Before you run this tutorial, you should be familiar with the SDL Suite
tools, especially the Organizer, the SDL Analyzer and the SDL Simula-
tor. If you have not already done so, you are recommended to go
through the previous tutorials in this volume.

The following notations and directories concern the rest of this tutorial:

• <installation> denotes the installation directory, which is called
<systemdrive>:\IBM\Rational\SDL_TTCN_Suite6.3 in Win-
dows and $telelogic on UNIX.

• In this tutorial there is a mixed use of the path separation characters
‘/’ and ‘\’, as several steps in Windows and on UNIX only differ in
these.

• Although “directories” are sometimes called “folders” in Windows,
this tutorial always uses the expression “directory”.

You will find this tutorial placed in the directories:

<installation>\sdt\examples\cmicrotutorial\wini386
<installation>/sdt/examples/cmicrotutorial/sunos5

• The Cmicro Library can be found in the directories:

<installation>\sdt\sdtdir\wini386\cmicro
<installation>/sdt/sdtdir/sunos5sdtdir/cmicro

For a description of the Cmicro Library please view chapter 66, The
Cmicro Library, in the User´s Manual.
270 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Introduction
Introduction

General
This tutorial is divided into three sections. In the first section you will
take a small SDL system and generate it with the SDL Analyzer. You
will learn about configuration possibilities using the Targeting Expert
and how to create environment functions. Finally, you will build the tar-
get application.

In the second section you will test it and learn something about how to
use the SDL Target Tester.

In the third section you will learn how to remove the Target Tester
source from the target application.

Integrations
Targeting may be implemented using the following methods:

• Bare integration:

The SDL system is running on a bare target, scheduled by the Cmi-
cro Kernel without any other operating system (OS).

• Light integration:

The SDL system (scheduled by the Cmicro Kernel) is running as
one task in an OS, possibly using functions of the OS.

• Tight integration:

All the SDL process instance sets (and other tasks) are scheduled by
the OS of the target.

In this tutorial you will be doing a light integration as the target appli-
cation is executed as an independent OS task, where the SDL processes
are scheduled by the Cmicro Kernel.

Target Tester Communication
The communication between the Target Tester and the target applica-
tion is done using sockets (localhost, port 9000 as default) in this tuto-
rial.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 271

Chapter 7 Cmicro Targeting Tutorial
Prerequisites to the Example

The Pager System
The SDL system that will be used for this tutorial is a pager system. A
pager is a small hand-held device used for contacting people. It contains
a radio receiver which is capable of receiving signals on a certain fre-
quency consisting of short messages and telephone numbers.

The pager has also a sort of databank with a limited capacity for storing
messages as well as a keypad and a display which serve as the interface
to the user. The user has the option of scrolling through, reading and de-
leting the messages that are displayed on the small screen.

The keypad consists of three buttons; one for scrolling to the right, one
for scrolling to the left and one for deleting. The pager emits a sound
when a new message has arrived and also when the user makes an error
or tries to do something which is not allowed. For example, trying to de-
lete a message when the databank is empty or scrolling too far in a cer-
tain direction would be instances of illegal actions. Naturally, the pager
can only hold a certain amount of messages and therefore at some point
eventually fills up.

When the pager has reached its capacity a warning message is given for
2 seconds before the received message is displayed.

The SDL Overview shows the pager system divided into blocks and
processes.
272 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Prerequisites to the Example
Delivered Files
The files needed for this tutorial can be found in the directory:

<installation>/sdt/examples/cmicrotutorial/<platform>/p
ager

The project directory pager includes a sub directory called system.
The directory system contains the SDL/GR files of the Pager system.

Figure 184: An overview of the system Pager

Process Description

Database The process Database manages the array of
messages that makes up the pager’s memory. It
can store messages, retrieve them and delete
them while maintaining order in the databank.

PagerCtrl PagerCtrl basically handles all the input and
output of the system. It receives input from the
user via the keypad, messages from the radio re-
ceiver and information from the database re-
garding the status of saving and deleting.

Keypad The process Keypad converts the input from the
user into a signal and sends it to PagerCtrl.

Block Pager

System Pager SDL Overview

Keypad
(1,1)

 PagerCtrl

Database
(1,1)

 (1,1)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 273

Chapter 7 Cmicro Targeting Tutorial
Furthermore, there is a directory prepared in parallel to the system
directory. Here you can find an environment file env.c which can be
used if you are not interested in programming the environment on your
own.

Targeting

Preparations - File Structure
1. Create a new empty directory <cmicrotutorial> in your home

directory or on your local hard disk. This directory will be denoted
by <MyTutorial> in the following.

2. Copy the directory
<installation>/sdt/examples/cmicrotutori-
al/<platform>/pager
(including all files and subdirectories) to your new <MyTutorial>

directory and remove all write protections.

3. In the Organizer, open the Pager system (Pager.sdt) found in
<MyTutorial>/pager/system.

Using the Targeting Expert
1. Select the system symbol in the Organizer view.

2. Start the Targeting Expert from the Generate menu. The Targeting
Expert will generate a default partitioning diagram model (see “Par-
titioning Diagram Model File” on page 2971 in chapter 59, The Tar-
geting Expert) and will check the directory structure.

3. As the target directory specified in the Organizer does not exist yet,
you will be prompted if it should be created. Press the Yes button.

A sub-directory structure is added in the target directory afterwards by
the Targeting Expert. For further information see “Target Sub-Directo-
ry Structure” on page 2996 in chapter 59, The Targeting Expert.

Note:

If the Targeting Expert is started the very first time a welcome win-
dow is displayed. Just press the Close button and proceed. The wel-
come window will be shown any time you start the Targeting Expert
again until you select the “Do not show again at startup” check box.
274 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
The work flow of the Targeting Expert is divided into four steps.

• Step 1: Select the Desired Component
• Step 2: Select the Type of Integration
• Step 3: Configure the Build Process
• Step 4: Make the Component

The very first time you are using the Targeting Expert, an assistant is
automatically started showing you how to proceed. When you have
closed the assistant, you can always re-start it by choosing the menu op-
tion Help > Assistant.

The Help Viewer will be displayed and show the appropriate manual
page if you click on one of the numbered boxes.

Step 1: Select the Desired Component
• Click on the component in the partition diagram model.

The complete SDL system is (per default) generated into the com-
ponent “component”.

Hint:

The component can be given any name you like if the system is de-
ployed using the Deployment Editor. For more detailed information
on how to deploy a system, see chapter 40, The Deployment Editor,
in the User´s Manual.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 275

Chapter 7 Cmicro Targeting Tutorial
Background Information

• More details about partitioning diagram models can be found in
“Partitioning Diagram Model File” on page 2971 in chapter 59, The
Targeting Expert.

• For further information concerning the selectable entries in the par-
titioning diagram model, please see “Targeting Work Flow” on
page 2926 in chapter 59, The Targeting Expert.

Figure 185: The Targeting Expert’s main window
276 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
Step 2: Select the Type of Integration
1. Press the left most combo box in the integration tool bar of the main

window (or click the component entry in the partitioning diagram
model using the right mouse button). This is shown in Figure 186.

2. A tree structure containing all the pre-defined integrations is shown
in the popup menu displayed. Select Light Integrations > Applica-
tion TEST.

The SDL system is now checked for correctness and the automatic con-
figuration is done.

After the SDL to C compiler has finished, the Targeting Expert:

• generates the file env.c and lists all the SDL signals from and to the
environment (see event log). A manual adaptation is needed for
each signal before the generated files and the library files can be
compiled. This is necessary as the Targeting Expert only generates
a skeleton with the used signals.

Figure 186: Popup menu in the Targeting Expert

Hint:

Although only the automatic configuration files sdl_cfg.h and
ml_mcf.h are needed the SDL to C compiler also generates the files:
component.c, component.ifc, and component.sym.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 277

Chapter 7 Cmicro Targeting Tutorial
How to edit the env.c, is described in “Edit the Environment File”
on page 279.

• generates default Target Tester options (file sdtmt.opt)

• generates a default manual configuration (file ml_mcf.h)

Background Information

If you want to do an integration not given in the SDL Suite distribution,
please select the entry <user defined> in the integration popup menu.
Then you are able to do all settings needed for the used hardware. You
are also able to set up your own integration accessible in the integration
popup menu.

The contents of the files:

• component.c

Describes the SDL system’s behavior in C functions.

• component.ifc

The header file for the environment functions. E.g. it provides PIDs
and type definitions for signals.

• component.sym

Provides information on SDL symbols. Necessary for tracing the
SDL system with the SDL Target Tester.

• sdl_cfg.h

The automatic configuration file for the Cmicro Kernel. For in-
stance, if you use a timer, the file contains a define, which turns the
timer implementation on.

Hint:

After the integration has been selected the Targeting Expert auto-
matically sets the default compiler. The default compiler’s name is
taken from the preferences.

If a different compiler is required than the one set as default in the
preferences, it is possible to change this in the integration tool bar’s
combo box.
278 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
Edit the Environment File

In this section you will learn how to fill in the environment functions in
the file env.c.

1. Select the menu Edit > Edit Environment File to open the file
env.c

2. Find the lines from the global section:

/* BEGIN User Code (global section)*/
/* It is possible to define some global variables here */
/* or to include other header files. */

Hint:

There is also a prepared env.c. You can copy it from directory:
<MyTutorial>/pager/prepared into
<MyTutorial>/pager/target/pager._0/Application_TEST.

Do not forget to remove the write protection!

Note the differences between the prepared and generated file.

Note:

In the following section the Targeting Expert starts a text editor. Per
default the built-in editor is used. This can be changed in the Tools
> Customize menu.

Caution!

In the file env.c, you should only edit code between the lines:

/* BEGIN User Code ... */
/* END User Code ... */

The reason is:

If the Targeting Expert needs to generate the file a second time, the
code in these sections will be read in and copied to the new file. Only
the code between the mentioned lines will be unchanged.

Do NOT edit lines with the text:

/* BEGIN User Code ... */
/* END User Code ... */
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 279

Chapter 7 Cmicro Targeting Tutorial
This tutorial describes a console application. It will use the screen
and the keyboard to communicate with the user. It is necessary to
include the used header file(s).

For a better style some defines are used. Further some global vari-
ables and functions have to be implemented. The functions are
called, if there should be something simulated in the environment,
like a display. After the line
/* or to include other header files. */

 the following code needs to be inserted:

#if defined(MICROSOFT_C)
 #include <conio.h>
#else
 #include <stdio.h>
#endif

#define key_was_pressed 1
#define key_not_pressed 0

int KeySignalPresent = 0;
char LastKeyPressed;

xInitEnv()

3. We like to have a welcome message displayed when the system is
started. This can be done like this in the function xInitEnv()

printf("-------- Welcome to Pager system--------\n\n");
printf("get message : 0 to 4\n");
printf("scroll right: r\n");
printf("scroll left : l\n");
printf("delete : d\n\n");

 The code must be inserted between

/* BEGIN User Code (init section) */

 and

/* END User Code (init section) */

xInEnv()

4. Now you have to handle the data from the environment. In this tu-
torial it means you have to handle the input from the keyboard!
280 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
The possible handling of the data:

If a key has been pressed the digits 0-4 are recognized as a message
and the letters ’r’, ’l’ and ’d’ are the commands for scrolling and de-
leting.

Please go to the code position of the function xInEnv() with the
following lines:

/* BEGIN User Code (variable section)*/
/* It is possible to define some variables here */
/* or to insert a functionality which must be polled */

Below these lines insert the following code:

char my_inkey;

KeySignalPresent = key_not_pressed;

#if defined(XMK_UNIX)
 my_inkey = 0;
 if((my_inkey = getchar_unlocked()) != 0)
 {
 KeySignalPresent=key_was_pressed;
 }
#elif defined(MICROSOFT_C)
 if (kbhit())
 {
 my_inkey=_getch();
 KeySignalPresent=key_was_pressed;
 }
#endif

if (KeySignalPresent==key_was_pressed)
{
 if ((my_inkey == 'r') ||
 (my_inkey == 'l') ||
 (my_inkey == 'd') ||
 ((my_inkey>='0')&&(my_inkey<='4')))
 LastKeyPressed = my_inkey;
 else
 LastKeyPressed=0;
}
else
 LastKeyPressed = 0;

Caution!

Do not use blocking functions in the environment file.

The environment is polled with every cycle of the Cmicro Kernel.
That is the reason why it is not allowed to use blocking functions
like getchar(). These kind of functions stop the kernel making it
unable to process events in the SDL system, for example expired
timers.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 281

Chapter 7 Cmicro Targeting Tutorial
5. Find the following lines of code in the function xInEnv()

/* BEGIN User Code <ScrollRight>_1 */
 if (i_have_to_send_signal_ScrollRight)
/* END User Code <ScrollRight>_1 */

In step 2 we implemented the variable LastKeyPressed. In step 4
we assigned it the value of my_inkey which has the value of the last
key pressed. Modify the if() statement into:

if (LastKeyPressed == 'r')

6. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ScrollRight,0));

The process type ID which should receive the signal ScrollRight
needs to be inserted. To get an overview of the process type IDs
look at the dialog window that has pop-ed up by the Targeting Ex-
pert. All the used process type IDs are given here.

Select the XPTID_Keypad entry in this dialog to copy it into the
clipboard. Then paste it into the env.c as shown below.

GLOBALPID(XPTID_Keypad,0));

The function returns, and the signal is treated.

7. Find the following lines in the function xInEnv()

/* BEGIN User Code <ScrollLeft>_1 */

Figure 187: Process type ID dialog
282 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
 if (i_have_to_send_signal_ScrollLeft)
/* END User Code <ScrollLeft>_1 */

Modify the if() statement to:

if (LastKeyPressed == 'l')

8. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ScrollLeft,0));

Copy the XPTID_keypad as described in step 6.

GLOBALPID(XPTID_Keypad,0));

9. Find the following lines of code in the function xInEnv()

/* BEGIN User Code <Delete>_1 */
 if (i_have_to_send_signal_Delete)
/* END User Code <Delete>_1 */

Modify the if() statement to:

if (LastKeyPressed == 'd')

10. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_Delete,0));

Copy the XPTID_keypad as described in step 6.

GLOBALPID(XPTID_Keypad,0));

11. Because we do not use a real target hardware, but simulate the Pager
system, we have to predefine some messages.
Find the following lines of code in the function xInEnv()

/* BEGIN User Code <ReceivedMsg>_1 */
if (i_have_to_send_signal_ReceivedMsg)
/* END User Code <ReceivedMsg>_1 */

Modify the if() statement to:

if ((LastKeyPressed>='0')&&(LastKeyPressed<='4'))

This if-statement checks whether the key hit on the keyboard was
one of the defined keys or not.

12. Go to the next empty “User Code” section and insert following lines:

char *p;
 xmk_var.Param1.MyText = (SDL_Charstring)NULL;

 switch(LastKeyPressed)
 {
 case '0':
 p = " Hello user";

 xmk_var.Param1.TelNumber = 12345;
 break;

 case '1':
 p = " How do you feel doing targeting?";
 xmk_var.Param1.TelNumber = 555555;
 break;
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 283

Chapter 7 Cmicro Targeting Tutorial
 case '2':
 p = " Targeting is all so easy!";
 xmk_var.Param1.TelNumber = 987654;
 break;

 case '3':
 p = " I only wanted to check if it works.";
 xmk_var.Param1.TelNumber = 45454;
 break;

 case '4':
 p = " ... and it works very fine!";
 xmk_var.Param1.TelNumber = 911911;
 break;

 default :
 break;
 }
 xAss_SDL_Charstring(&(xmk_var.Param1.MyText), p,
XASS_AC_ASS_FR);

In this part the messages to the equivalent numbers 0-4 are stored.
With the switch statement it is decided which one is handed over to
the environment.

The line xmk_var.Param1.MyText = (SDL_Charstring)NULL;

means that the element MyText of the parameter message which is a
parameter of the signal ReceivedMsg is set to null.

The Signal ReceivedMsg and the parameter message are declared in
the SDL system.

The line xAss_SDL_Charstring(&(xmk_var.Param1.MyText), p,
XASS_AC_ASS_FR); allocates memory for the pointer p.

13. Find the following line of code in the function xInEnv()

GLOBALPID(Who_should_receive_signal_ReceivedMsg,0));

Modify the statement as showed below.

GLOBALPID(XPTID_PagerCtrl,0));

Note:

This way of “receiving” messages is of course just a helper function
because we do not use a real interface here!

Note:

If an SDL charstring is mapped to an array of char in C, the first
character in this array (index 0) is for internal use only, i.e. the text
message should start at index 1. This is done by having a space in
front of the text in the implementation shown above.
284 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
xOutEnv()

14. Find the following code section:

case CurrentMsg :
 {
 /* BEGIN User Code <CurrentMsg>_1 */
/* Use (yPDP_CurrentMsg)xmk_TmpDataPtr to access
the signal's parameters */
/* ATTENTION: the data needs to be copied. Otherwise it */
/* will be lost when leaving xOutEnv */
 /* END User Code <CurrentMsg>_1 */

 /* BEGIN User Code <CurrentMsg>_2 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that
*/
 /* signal is consumed
*/
 /* END User Code <CurrentMsg>_2 */
 }

This code fragment handles the signal CurrentMsg. The chosen
message is displayed on the screen (telnumber, message, current
message position and the total number of messages). Insert the fol-
lowing code after: /* Do your environment actions here. */

printf("\r ");
printf("\rCurrentMessage: %6d %s (%d/%d)",
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.TelNumber,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText+1,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param1,
 ((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param2);
xFree(&(((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText));

The line
xFree(&(((yPDP_CurrentMsg)xmk_TmpDataPtr)->Param3.MyText));

frees the memory allocated in the kernel when sending the signal.

15. Find the following code in the function xOutEnv():

case ServiceMsg :
 {
 /* BEGIN User Code <ServiceMsg>_1 */
 /* Use (yPDef_Close*)xmk_TmpDataPtr to access
 the signal's parameters */
 /* ATTENTION: the data needs to be copied.
 Otherwise it */

Caution!

The function xOutEnv() provides a pointer named:
xmk_TmpDataPtr. The data referenced by this pointer is valid only
as long as the function xOutEnv() is processed.

If you need to treat the data after leaving the function, copy it to vari-
ables defined by you.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 285

Chapter 7 Cmicro Targeting Tutorial
 /* will be lost when leaving xOutEnv */
 /* END User Code <ServiceMsg>_1 */

 /* BEGIN User Code <ServiceMsg>_2 */
 /* Do your environment actions here. */

 xmk_result = TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <ServiceMsg>_2 */
 }

The code fragment handles the signal ServiceMsg. The handling of
the data is same as in the step before. So insert the following code
after: /* Do your environment actions here. */

printf("\r ");
printf("\rServiveMessage: %s",
 ((yPDP_ServiceMsg)xmk_TmpDataPtr)->Param1+1);
xFree(&(((yPDP_ServiceMsg)xmk_TmpDataPtr)->Param1));

16. Find the following code section in the function xOutEnv():

case ShortBeep :
 {
 /* BEGIN User Code <ShortBeep>_1 */
 /* END User Code <ShortBeep>_1 */

 /* BEGIN User Code <ShortBeep>_2 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <ShortBeep>_2 */
 }
 break ;

The code fragment handles the signal ShortBeep. A beep sounds
when the pager receives a message or you do something which is not
allowed. After the code /* BEGIN User Code <ShortBeep>_1 */
insert

putchar(07);

17. Find the following code section in the function xOutEnv():

case LongBeep :
 {
 /* BEGIN User Code <LongBeep>_1 */
 /* END User Code <LongBeep>_1 */

 /* BEGIN User Code <LongBeep>_2*/
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code <LongBeep>_2*/
 }
 break ;

Insert the following code after
/* BEGIN User Code <LongBeep>_1 */

putchar(07);
286 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Targeting
putchar(07);

Closing the Environment

In this tutorial there is no need to close the environment. In other cases,
e.g. microprocessor hardware, it is probably necessary to do so.

Have a look in the file env.c, find code like this in the function xClo-
seEnv():

/* BEGIN User Code (close section) */
/* Do the actions here to close your environment */
/* END User Code (close section) */

Insert any code you need to have here.

Step 3: Configure the Build Process
1. Press the items below the Application TEST in the partitioning

diagram. If it is necessary to add or remove settings for your job,
you can edit the settings.

2. Click Save to close the dialog.

For this section of the tutorial there it is not necessary to modify any-
thing, though we will do some modifications later in section “Run Tar-
get EXE without Tester” on page 294.

Background Information

Short description of the different areas:

• Compiler / Linker / Make

In this area it is possible to configure all the settings used for the
Compiler, Linker and Make tools.

Something special regarding Additional Compiler. For example,
you have to use an ANSI C- compiler to compile the generated files,
and it is necessary to link the objects with the object from one file,
which needs to be compiled with a C++ compiler. In this instance
you could enter the regarding file and the used compiler in the sec-
tion Additional Compiler.

 For more information see: “Configure Compiler, Linker and Make”
on page 2930 in chapter 59, The Targeting Expert.

• Target Library
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 287

Chapter 7 Cmicro Targeting Tutorial
In this area it is possible to set defines and values to scale the target
library. For more information see “Configure and Scale the Target
Library” on page 2946 in chapter 59, The Targeting Expert.

All settings will be stored in the file ml_mcf.h.

• Target Tester

In this area it is possible to set defines and values to scale the func-
tionality of the tester. For more information see “Configure the SDL
Target Tester (Cmicro only)” on page 2947 in chapter 59, The Tar-
geting Expert.

All settings will be stored in the file ml_mcf.h.

• Host Connection

In this area it is possible to set the parameter of the connection to the
host. For example, it contains the description of the message coding
and the name of the executable, etc. The configuration of the Host
Connection is always stored in the file sdtmt.opt. This file is man-
datory for the SDL Target Tester. For more information see: “Con-
figure the Host (Cmicro only)” on page 2948 in chapter 59, The Tar-
geting Expert.

Step 4: Make the Component
1. In the dialog which is displayed by default (when the Application

TEST is selected) you have to select two check boxes. Analyze /
Generate Code and Environment functions.

2. Click on the button Full Make to start the code generation and make.

After the SDL to C compiler has finished the code generation, the Tar-
geting Expert will re-generate the env.c (and keep your modifications).
Afterwards it generates a makefile with the given settings and the code
will be compiled and linked.

The Targeting Expert then starts the SDL Target Tester.
288 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Use of the SDL Target Tester
Use of the SDL Target Tester

Differences between SDL Simulator and SDL
Target Tester
The difference compared to the SDL Simulator is that the generated
SDL system is running on a target hardware and is sending messages to
the host system on which the SDL Target Tester’s host part is running.

In this Cmicro tutorial, the SDL Target Tester’s host part is running on
the host as well as the generated SDL system (target).

Restrictions in this Tutorial
It is possible to use all the features supported by Cmicro (e.g. signal pri-
orities, error checks, tester) except the preemptive Cmicro Kernel. This
is due to the concept behind Cmicro which is designed for small targets
on a stand-alone hardware (bare integration).

Figure 188: Communication links between the processes

UI

sdtmtFile

process 1 process 2 process 3

Cmicro Library with Kernel

Cmicro Tester
Target Library

target executable

other trace

HOST

Socket Interface
Socket

Gateway

like MSC trace
or SDL trace
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 289

Chapter 7 Cmicro Targeting Tutorial
Background Information

• To get information on how it works with a real target hardware, see
chapter 66, The Cmicro Library, in the User´s Manual.

• If you want to edit the makefile, or have a look into it, please use the
menu Edit > Makefile in the Targeting Expert. For more informa-
tion please view chapter 59, The Targeting Expert, in the User´s
Manual.

Testing the Pager System

Running the SDL Target Tester

The SDL Target Tester could be started automatically from the Target-
ing Expert or by:

• selecting Tools > SDL > SDL Target Tester in the menu of the Tar-
geting Expert.

• pressing the quick button in the quick button bar.

After it has been started the following steps have to be done (in the giv-
en order)

1. Start the communication with the executable by pushing the button
StartGateway in the Communication group or with the menu Exe-
cute > StartGateway.

2. Go back to the Targeting Expert and select the menu entry
Tutorial > Start target (Windows) or respectively
Tutorial > Start target (UNIX)

Hint:

The menu Tutorial is a configurable menu not available if working
on other SDL systems. Please refer to “Configurable Menus” on
page 2905 in chapter 59, The Targeting Expert, in the User´s Man-
ual for more information on how to create your own menu entries.

Note:

In Windows the target application is started in a separate command
prompt window.

On UNIX the target application is started in a separate xterm.
290 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Use of the SDL Target Tester
3. Now the communication between SDL Target Tester and target is
established. The SDL Target Tester displays the message Start
with “Go Forever”. The corresponding button is located in the
Execute group. Press the button.

All messages of the target application are displayed in the UNIX
shell or DOS command prompt where it was started. The pager will
display its start-up message which was implemented in “xInitEnv()”
on page 280.

4. You can “receive” messages by pressing the keys 0, 1, 2, 3, 4 and
scroll with the keys r and l. To delete a message press d.
See “xInEnv()” on page 280 on how the environment was imple-
mented.

5. The pager displays the last received message, the number of the cur-
rent message and the total number of received messages. Now you
can scroll, delete and receive new messages. If you receive a new
message while the maximum amount of messages(3) is reached, the
pager saves the message temporary and displays the warning:
Memory full, please free memory to get new messages
for about 2 seconds.

6. Press the d key on your keyboard, the last message is then deleted
and the received message is displayed.

SDL Target Tester Commands

The SDL Target Tester has button groups. Each button represents a
Tester command. You can use the buttons or the command line at the
bottom of the Tester to enter a command. If you enter help in the com-
mand line you will see a list of SDL Target Tester commands.

In the following some Tester commands are explained briefly. For more
information, see chapter 67, The SDL Target Tester.

Tracing the SDL System -> MSC Editor

Similar to the SDL Simulator GUI it is possible to generate MSC traces
while testing the system with the SDL Target Tester.

Note:

To exit the target application press CTRL+C on the keyboard.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 291

Chapter 7 Cmicro Targeting Tutorial
• In the Trace group you can select the Start MSC button, for exam-
ple, to start the MSC trace.

• Now you can select between output via display or output to a file.

Tracing the SDL System -> SDL Editor

It is possible to trace the target system with the SDL Editor.

• You can start the trace with the command line of the SDL Target
Tester by typing start-sdle, or by using the button Start SDLE.

The MSC trace and SDL trace functions are powerful tools for under-
standing the system.

Target Information

To get more information about target configuration, you must open the
Configuration Group in the button area of the SDL Target Tester and
press Target to get the current target configuration.

To get information about the kernel, you have to open the Examine
Group. If you press Queue you will get information about the current
state of the internal queue of your system. You will see the peak hold
and the amount of signals of your current system. By pressing the other
buttons in the Examine Group, you will get more information of the run-
ning system.

Memory

With the ?memory command you can see how the current memory state
is.

1. Start the Pager system as described in “Running the SDL Target
Tester” on page 290.

2. Type ?memory (the short command ?m can also be used) on the
command line. You can check the memory pool size, the current
memory fill and so on.

Now we will see how the memory is handled in the Pager system. No-
tice that the current amount of blocks in pool is four and the peak hold
is five.

3. Switch to the target application and press a key (1-4) to get a mes-
sage.
292 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Use of the SDL Target Tester
4. Go back to the Target Tester and execute the ?m command again.
This time you can see that two more blocks are allocated. If you de-
lete the last message the memory should be freed again and show
four blocks.

Breakpoints and Queues

To debug the system you can use the Breakpoints button group. You can
set a breakpoint on a signal input or a process state. If a breakpoint was
reached you can continue the system with the button Continue.

1. Restart the target as described in “Running the SDL Target Tester”
on page 290.

2. Expand the Breakpoints group and select Break input.

3. Now you can choose a process ID. In this example we take the Key-
pad ID.

4. A signal ID list is shown afterwards, select the delete signal.

5. Breakpoint on input is set is shown in the text area now,
switch to the target application window and insert some messages
first, then press d. Nothing happens.

6. Switch to the Tester again. Now you can use the ?memory com-
mand or look how the Queue looks like (?queue).

7. Press Continue after you have examined the system state.

As the system will be halted every time the signal delete is to be con-
sumed in process Keypad, it is probably useful to delete the break-
point(s) by entering the command BA.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 293

Chapter 7 Cmicro Targeting Tutorial
Run Target EXE without Tester
It is also possible to run the target executable without starting the Target
Tester. Following has to be done first:

1. Exit the target application and the Target Tester if not already done.

2. Switch back to the Targeting Expert.

In the following there is a description what has to be done to remove the
Target Tester source code form the target application.

1. Press the entry Target Tester below Application TEST in the
Partitioning Diagram Model. As you can see all the selected Target
Tester flags are disabled, i.e. it is not possible to switch them off be-
cause the pre-defined integration selected prevents doing so.

To get access to these flags, the Targeting Expert provides a so
called “Advanced Mode”. (For details see “Advanced Mode” on
page 2924 in chapter 59, The Targeting Expert, in the User´s Man-
ual.

2. Select the menu entry Tools > Customize and a dialog pops up. Se-
lect the check box Advanced Mode and press the dialog’s OK but-
ton.

3. In the dialog displayed when the Application TEST entry is se-
lected in the Partitioning Diagram Model, you have to select the Ex-
ecution tab. Press the None radio button in the Test application
group box.
This is done to disable the execution of the Target Tester after the
target application has been successfully build.

4. Select Target Tester in the Partitioning Diagram Model and de-
select the Use the Target Tester check box. Press OK in all fol-
lowing windows. (Depending flags are switched off). After the last

Caution!

The Advanced Mode is now switched on each time you enter the
Targeting Expert again. Make sure you switch off the Advanced
Mode to take advantage of the restrictions given with all the other
pre-defined integration settings.
294 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Run Target EXE without Tester
dialog has been executed, all check boxes on the Tester tab should
be un-selected now.

5. Press the Save button below the dialog.

6. Now press the Make button. (All the files are compiled again be-
cause the ml_mcf.h has been modified.)

When compile and link is completed, the target can be started via the
menu Tutorial > Start target and can be used now without SDL Target
Tester.

Hint:

A new manual configuration file ml_mcf.h is generated with all
the Target Tester flags undefined.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 295

Chapter 7 Cmicro Targeting Tutorial
296 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
8 Tutorial: Using ASN.1
Data Types
This tutorial describes how to use ASN.1 types and values in the
SDL Suite. You will learn how to import and use ASN.1 modules in
your SDL diagrams, how to generate code and how to encode and
decode your ASN.1 types using BER or PER encoding.

The tutorial contains all steps from creating ASN.1 data types to the
implementation of the ASN.1 data types in your source code.

To illustrate the functionality and the work flow, small examples
are presented throughout the tutorial. The SNMP protocol is used
as a base to illustrate how ASN.1 could be applied on a typical
SNMP stack.

In order for you to fully take advantage of this tutorial, you should
be familiar with the SDL Suite and the basics of ASN.1.

Additional information regarding ASN.1 types and its usage togeth-
er with the SDL Suite can be obtained in:

• chapter 2, Data Types, in the Methodology Guidelines

• chapter 13, The ASN.1 Utilities, in the User´s Manual

• chapter 57, Building an Application, in the User´s Manual

• chapter 58, ASN.1 Encoding and De-coding in the SDL Suite, in
the User´s Manual
al SDL Suite 6.3 Getting Started gs-s0 297

Chapter 8 Tutorial: Using ASN.1 Data Types
Introduction
The Abstract Syntax Notation One (ASN.1) is a notation language that
is used for describing structured information that is intended to be trans-
ferred across some type of interface or communication medium. It is es-
pecially used for defining communication protocols.

As ASN.1 is widely popular, the SDL Suite allows you to translate
ASN.1 data types to SDL and to encode/decode ASN.1 data types.

By using ASN.1 data types in the implementation of your application,
you will optimize your development process. The following list dis-
plays some of the advantages of ASN.1:

• ASN.1 is a standardized, vendor-, platform- and language indepen-
dent notation.

• A vast number of telecommunication protocols and services are de-
fined using ASN.1. This means that pre-defined ASN.1 packages
and modules are available and can be obtained from standardization
organizations, RFCs, etc. For instance, the ASN.1 data types defin-
ing SNMP are available in RFC 1157.

• When ASN.1 data types are transmitted over computer networks,
their values must be represented in bit-patterns. Encoding and de-
coding rules determining the bit-patterns are already defined for
ASN.1. The SDL Suite supports BER and PER encoding.

• ASN.1 enables extensibility. This means that it simplifies compati-
bility of systems that have been designed and implemented large
time frames apart.

• The SDL Suite and the TTCN Suite can share common data types
by specifying these in a separate ASN.1 module.

Implementation of ASN.1
When importing ASN.1 data types to your SDL system, you need to
translate the ASN.1 definitions to SDL. The SDL Suite does this for you
using a tool called ASN.1 Utilities. This tool is automatically invoked
when you analyze your SDL system.

However, having the ASN.1 data types translated to SDL is not enough
to include them in your application. If you are going to transfer applica-
tion-generated information on computer networks, the values of the
298 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Introduction
data types must be encoded. When transferring signals in or out of your
SDL system, you must also create the interface between the environ-
ment and the system.

Thus, the process of implementing ASN.1 data types can be divided into
three separate steps:

1. Creating the abstract syntax

2. Creating the transfer syntax

3. Compiling the application

The definitions of the abstract syntax and the transfer syntax is present-
ed below.

Abstract Syntax
The basic idea is to transport some type of information between two
nodes using protocol messages. The abstract syntax is defined as the set
of all possible messages that can be transported. To create the abstract
syntax you must:

• design some form of data structure defined in a high-level program-
ming language, for instance ASN.1.

• define the possible set of values that the data structure can take.

Transfer Syntax
The transfer syntax is the set of bit patterns that represents the abstract
syntax messages with each bit pattern representing just one value. The
rules determining the bit-patterns are called the encoding rules.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 299

Chapter 8 Tutorial: Using ASN.1 Data Types
Creating the Abstract Syntax
When creating the abstract syntax you must perform the following
tasks:

• Adding ASN.1 modules to your project

• Importing the ASN.1 modules in your SDL diagrams.

• Assigning values to the data types.

Adding ASN.1 Modules to your Project
An ASN.1 module is a file containing the ASN.1 data type definitions.
If you are implementing a standard communication protocol, it is very
likely that pre-defined ASN.1 modules are available. The modules can
be obtained from standardization organizations, RFCs, etc. In
Example 7 on page 324 and the following examples ASN.1 modules
that define data structures for SNMP protocol are presented, RFC1155-
SMI based on RFC 1155, RFC1157-SNMP based on RFC 1157 and
RFCxxxx-MIBs containing references to different objects from various
Managed Information Bases.

Should a pre-defined module not be available for your type of applica-
tion, you must create your own module. ASN.1 modules can be created
in a simple text editor. It must contain a header and a footer. Definitions
should be inserted inside, for example:

MyModule DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

-- Definitions should be inserted here, for example,

T-Age ::= INTEGER (0 .. 150)

T-City ::= ENUMERATED { moscow, malmo, new-york }

MyType ::= SEQUENCE {
 name VisibleString,
 surname VisibleString,
 age T-Age OPTIONAL,
 city T-City DEFAULT moscow
}

-- Other definitions etc.

END
300 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Abstract Syntax
The header of the module can contain global settings for the module. In
the example above we use AUTOMATIC TAGS which can be omitted
but is a recommended flag if you need to generate encode/decode pro-
cedures for this module.

For more details please see adequate ASN.1 literature for instructions
and guidelines on creating ASN.1 modules.

Regardless how you obtain the ASN.1 modules, you must add the mod-
ule to your project before the SDL Suite can include the data types.

Follow the instructions below to add the ASN.1 module to your project.

1. Save your ASN.1 module in a subdirectory to your project. Make
sure that you append the .asn file extension to the saved module.

2. Open the Organizer and select the chapter where you want to in-
clude the module. This is done by clicking the chapter marker, for
instance the Other Documents marker, see Figure 189 on page 301.

3. From the Edit menu, select the Add Existing... command. The Add
Existing window opens.

Figure 189: Selection of chapter marker
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 301

Chapter 8 Tutorial: Using ASN.1 Data Types
4. Click the folder image button in order to find your ASN.1 module.
The Select file to add window opens.

5. Select the directory you want to search and change the search filter,
by typing *.asn in the Filter field. Click the Filter button. The avail-
able ASN.1 modules are now displayed in the Files window. Select
module and click the OK button. The Select file to add window clos-
es.

6. The selected module is now displayed in the Add Existing window.
Just click the OK button to add the module to your system. The
module should now be visible in the Organizer in your selected
chapter.

The ASN.1 modules are now added to your project.

Example 1: Adding ASN.1 modules to SDL project –––––––––––––––

In the SNMP example, the three modules RFC1155_SMI,
RFC1157_SNMP and RFCxxxx-MIBs have been added to the
project.

Figure 190: The Add Existing window
302 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Abstract Syntax
––

Importing ASN.1 Modules
After the modules have been added to the project, they must be made
available to the SDL system. This is done by importing the modules to
the SDL system file. When the modules have been imported, the ASN.1
data types can be used as regular SDL types.

Follow the instructions below to import the modules in the SDL dia-
grams:

1. From the Organizer, open the system file, <system_name>.ssy.

2. Add use of the added modules in the package reference frame,
which is located outside the system frame. (See Figure 192).

3. Save the diagram.

Figure 191: View of added ASN.1 modules
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 303

Chapter 8 Tutorial: Using ASN.1 Data Types
Example 2: Importing ASN.1 modules ––––––––––––––––––––––––––

In the SNMP example, the three modules RFC1155_SMI,
RFC1157_SNMP and RFCxxxx-MIBs have been imported.

––

4. ASN.1 modules are imported when you Analyze an SDL system
that uses these modules.

5. For each ASN.1 module an SDL package with the same name is cre-
ated. It contains corresponding SDL definitions. SDL packages are
saved into *.pr file in the target folder, for example:

use RFC1155_SMI/
 newtype ObjectName,
 newtype ObjectSyntax,
 newtype NetworkAddress,
 newtype IpAddress,
 newtype TimeTicks;
/*#SDTREF(TEXT,D:\Work\asn_snmp\RFC1157-SNMP.asn)*/

package RFC1157_SNMP; /*#ASN.1 'RFC1157_SNMP'*/

syntype Message_INLINE_0 = Integer endsyntype;

synonym version_1 Message_INLINE_0 = 0;

/*#SDTREF(TEXT,D:\Work\asn_snmp\RFC1157-SNMP.asn,10,1)*/
newtype Message struct
 version Message_INLINE_0;

Figure 192: View of the imported ASN.1 modules
304 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Abstract Syntax
 community Octet_string;
 data PDUs;
endnewtype;

…

/*#SDTREF(TEXT,D:\Work\asn_snmp\RFC1157-SNMP.asn,123,1)*/
newtype VarBind struct
 name ObjectName;
 value ObjectSyntax;
endnewtype;

/*#SDTREF(TEXT,D:\Work\asn_snmp\RFC1157-SNMP.asn,130,1)*/
newtype VarBindList
 String (VarBind, emptystring)
endnewtype;

endpackage RFC1157_SNMP;

6. SDL analogues of ASN.1 types and values from generated packages
can be referenced from the SDL system.

Assigning Values to the Data Types
When the modules are imported to the SDL system, you are free to de-
clare signal parameters and variables of ASN.1 data types. The param-
eters and variables are treated as regular SDL parameters and variables,
and you assign values to them in the same manner as you normally do.

For the SNMP example signals snmp_request(Message) and
snmp_reply(Message) are declared and they carry information that cor-
responds to the Message ASN.1 type. Value for the type Message is
constructed in the SDL process, see Example 3.

Example 3: Assigning values to variables ––––––––––––––––––––––

dcl reply, request Message;
dcl vb VarBind;
dcl data PDUs;

synonym sysDescr_val Object_identifier = sysDescr // (. 0 .);
vb := (. sysDescr_val, simple : empty : NULL .);
data!get_request := (. 1001, 0, 0, (. vb .) .);
request := (. version_1, comPublic, data .);

Message, VarBind, PDUs, sysDescr and version_1 are types and
values imported from ASN.1 modules. sysDescr is defined in the
ASN.1 module RFCxxxx-MIBs.asn and it points to an object type
corresponding to a textual description of the network entity.
sysDescr // (. 0 .) points to the value of the sysDescr object type and
denotes a string with the real description of the network entity. By
sending a get_request with sysDescr // (. 0 .) in the 'name' field and
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 305

Chapter 8 Tutorial: Using ASN.1 Data Types
an empty 'value' field, network entity supporting SNMP should re-
turn the same get_request with the 'value' field holding the string
with the description.

When your variables have been assigned values, you have created
the abstract syntax.

When the variable request has been declared, you can use it in the
SDL diagram as a regular SDL variable. Figure 193 on page 306
shows how request is used as the argument of a signal that is sent
from the SDL system to the environment.

––

Figure 193: Usage of the request variable
306 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
Creating the Transfer Syntax
The SDL Suite offers several ways to create the transfer syntax. The
available coding access interfaces are:

• Basic SDL interface

• Extended SDL interface

• C code interface

In this tutorial, only the C code interface will be covered. For a complete
description of ASN.1 encoding and decoding, please see chapter 58,
ASN.1 Encoding and De-coding in the SDL Suite, in the User´s Manual.

Using the C code interface, the transfer syntax can be created either us-
ing the Organizer’s make dialog or using the Targeting Expert. Both
methods are presented in this tutorial. When using the Targeting Expert,
you can select to use the Cadvanced SDL to C Compiler or the Cmicro
SDL to C Compiler when creating the transfer syntax. Both methods
will be covered as well.

This section starts with a short introduction and the actual instructions
are presented in:

• “Generating Template Files - the Organizer” on page 311

• “Generating Template Files - Targeting Expert” on page 318

Introduction
To be able to transfer the abstract syntax between two nodes in network,
you must first create the transfer syntax. The transfer syntax represen-
tation is then transmitted in a protocol buffer.

When creating the transfer syntax you must perform the following
tasks:

• Generating template files

• Editing the generated template files

The template files must be generated in order for you to include the
ASN.1 data types in the compilation and code generation processes.
The template files extract information from your SDL system and create
a skeleton. Often these template files do not contain sufficient informa-
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 307

Chapter 8 Tutorial: Using ASN.1 Data Types
tion to meet the demands of the application and therefore you must edit
the templates. The template files that are generated cover the following
areas:

• the environment functions

• the make process

However, the SDL Suite needs additional information in order to create
the environment file. Before the generation you must determine which
encoding/decoding schemes to use and you must create type nodes files.

Environment Functions

The environment is defined as all devices or functions that are needed
by the application but not specified within the SDL system. By sending
signals to the environment, the SDL system wants certain tasks to be
performed. This could be for instance:

• reading or writing information to a file

• sending or receiving messages across the network

• reading or writing information on hardware ports or sockets

However, the SDL system only controls events that occur within the
system. It does not specify how signals leaving the system are handled
by the environment. This is why you must provide an interface between

Note: Environment File

There are several ways to create the environment file. This tutorial
shows how to auto-generate the file. However, you can also make
your own file from scratch. This procedure is more advanced and is
only partially covered.

Note: Type Nodes

The type nodes are auto-created by ASN.1 Utilities and must not be
edited.

Note: The Make process

The template makefile is only created if you are using the Make di-
alog. The default makefile of the Targeting Expert handles all nec-
essary make functionality.
308 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
the SDL system and the environment. This interface is made up by the
environment functions.

The SDL Suite is rather helpful and can generate a template environ-
ment file that includes a skeleton of the environment functions. The en-
vironment file is written in C code and by editing this file you can spec-
ify the behavior of signals from the SDL system and of signals going in
to the SDL system.

An environment header file or system interface header file can also be
created. This file contains all type definitions and other external defini-
tions that are necessary in order to implement the environment func-
tions.

Encoding/Decoding

When creating the transfer syntax, the messages that will be transferred
must be encoded and the incoming messages must be decoded. The type
of encoding rules to apply is specified in the environment file. This
means that the encoding/decoding function calls must be included in the
environment file.

Figure 194: The environment functions

Note: Environment files

There are several ways to create the environment file. You can:

• auto-create the file. This procedure is covered in this tutorial.

• make your own file from scratch. This is a more advanced pro-
cedure and is only partially covered in this tutorial.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 309

Chapter 8 Tutorial: Using ASN.1 Data Types
The SDL Suite supports the standard BER and PER encoding/decoding
schemes, but it also allows you to use a user specified encoding scheme.
ASCII encoding is available in the SDL Suite as well, but it does not
support encoding of ASN.1 types.

Type Nodes

To include the ASN.1 data types in your application, they must be trans-
lated into a form that the SDL Suite understands. Within the SDL Suite,
this translation is handled by the ASN.1 Utilities.

The ASN.1 Utilities tool is invoked automatically when the SDL system
is analyzed and it allows you to:

• perform syntactic and semantic analysis of your ASN.1 modules

• generate SDL code from the ASN.1 modules

• generate type information for encoding and decoding using BER or
PER

This means that when you are using the ASN.1 utilities, you create type
nodes. A type node is a static variable that describes the properties and
characteristics of an ASN.1 data type, including tag information needed
by BER/PER encoders and decoders. The variable is named
yASN1_<type_name>.

All nodes are generated in files named
<asn1module_name>_asn1coder.c and declarations to access them
in files named <asn1module_name>_asn1coder.h.

Make Process

The default makefile in the SDL Suite, determines the relationship be-
tween source files, header files, object files and libraries in your project.

Note:

The type nodes are auto-created by ASN.1 Utilities and must not be
edited.

Note: Make dialog only

This section is only valid if you build and analyze your project using
the Organizer’s make dialog.
310 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
However, the default makefile does not include the generated files in the
make process. To include the environment files and the type node files
in the make process, you must generate a template makefile that will be
appended to the default makefile, see Figure 195. The template make-
file can be generated by the SDL Suite.

Generating Template Files - the Organizer
Follow the instructions below to generate environment files, type node
files and the template makefile using the Organizer’s Make dialog:

1. Click the SDL system symbol in the Organizer.

2. From the Generate menu, select the Make... command. The SDL
Make window opens.

3. Specify your options in the make dialog according to the following
list:

– Select Analyze & generate code

– From the Code generator drop-down list, select Cadvanced

– Select Generate environment header file

– Select Generate environment functions

– Select Generate ASN.1 coder, to invoke ASN.1 Utilities.

– From the Use standard kernel drop-down list, select Application

Figure 195: The make process
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 311

Chapter 8 Tutorial: Using ASN.1 Data Types
4. Specify your target directory where the generated files will be
stored.

Figure 196 shows the Make dialog with the selected options.

5. Press the Full Make button.

In your target directory, you will now find the generated files including:

• <system_name>_env.c

This is the environment skeleton file.

• <system_name>.ifc

This is the environment header file.

Note:

Make sure that you de-select the Compile & link option as you only
want to generate the template files.

Figure 196: The Make dialog - generating template files

Note:

Encode and decode calls are only generated if the Generate ASN.1
coder option is enabled in the make dialog.
312 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
• <system_name>_env.tpm

This is the template makefile.

• <asn1module_name>_asn1coder.c

<asn1module_name>_asn1coder.h

These files are the type nodes created by the ASN.1 utilities.

Editing the Generated Files - the Organizer
As the generated files only consist of skeleton functions, you must edit
the files to suit the functionality of your application.

1. Edit the environment file <system_name>_env.c file using any
text editor. In the skeleton file, macros are included but they are not
defined. To define the required functionality, either create a
<system_name>_env.h file and define all macros there, or replace
the macros with the required code directly in the
<system_name>_env.c file. Example 4 on page 314 shows the up-
dated SNMP environment file.

2. Save the environment file.

3. Edit the template makefile <system_name>_env.tpm if necessary.

4. Save the template makefile.

5. Make copies of the edited files and save the copies in a different
folder.

Note:

Make a habit of making a copy of the environment file and the tem-
plate makefile after they have been edited. Otherwise the edits will
be overwritten, if the files are re-generated from the Make dialog by
mistake.

Notes:

• In order to transfer the information on the network, you must
add socket commands to an appropriate header file.

• If you want to use more than one encoding scheme, for instance
BER and PER, you must enter the appropriate encoding function
calls in the environment file
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 313

Chapter 8 Tutorial: Using ASN.1 Data Types
Example 4: Environment Functions ––––––––––––––––––––––––––––

The SNMP get_request message should be encoded by BER DEFI-
NITE and then sent to the network entity by UDP protocol to port
161 which is the default port for the SNMP requests. BER encode
and decode function calls are automatically generated to the envi-
ronment functions. This code should then be updated with the sock-
et function calls and with choosing correct BER dialect.

The following code is part of the environment file for the Windows
platform (#include <WinSock.h>) and displays the function that
handles the out signals.

char* data;
int datalen, i;
tBuffer Buf = 0;
struct sockaddr_in manager_addr, agent_addr;

XENV_OUT_START
/* Signals going to the env via the channel Signal_env */

/* Signal snmp_request */
IF_OUT_SIGNAL(snmp_request,"snmp_request")
 /* Encoding message to the buffer */
 BufInitBuf(Buf, bms_SmallBuffer);
 ERSetRule(Buf, er_BER | er_Definite);
 BufInitWriteMode(Buf);
 BEREncode(Buf, (tASN1TypeInfo *)&yASN1_Message,(void
*)&((yPDef_snmp_request *)(*SignalOut))->Param1);
 BufCloseWriteMode(Buf);

 /* Sending message to the network */
 BufInitReadMode(Buf);
 datalen = BufGetDataLen(Buf);
 data = BufGetSeg(Buf, datalen);
 agent_addr.sin_family = AF_INET;
 agent_addr.sin_port = htons(161);
 agent_addr.sin_addr.s_addr = inet_addr("192.168.0.20"); /*
ip address of any network entity, a good entity for test is
network printer */
 i = sendto(manager_sock, data, datalen, 0, (struct
sockaddr *) &agent_addr, sizeof (agent_addr));
 BufCloseReadMode(Buf);
 BufCloseBuf(Buf);
RELEASE_SIGNAL
END_IF_OUT_SIGNAL(snmp_request,"snmp_request")

/* Signal Init */
IF_OUT_SIGNAL(Init,"Init")
 WSADATA wsdata;
 WORD wVersionRequested;
 wVersionRequested = MAKEWORD(2,2);

/* Registering in the socket library */
 if(WSAStartup(wVersionRequested, &wsdata) != 0)

exiterr("Init", "WSAStartup");

 /* Creating manager socket */
 if ((manager_sock = socket(AF_INET, SOCK_DGRAM,
IPPROTO_UDP)) == -1)

exiterr("Init", "socket");
314 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
 manager_addr.sin_family = AF_INET;
 manager_addr.sin_port = htons(162);
 manager_addr.sin_addr.s_addr = INADDR_ANY;
 /* Binding manager socket to <local IP>:162 */
 if (bind(manager_sock, (struct sockaddr *) &manager_addr,
sizeof (manager_addr)) == SOCKET_ERROR)

exiterr("Init", "bind");
RELEASE_SIGNAL
END_IF_OUT_SIGNAL(Init,"Init")
/* Signal Close */
IF_OUT_SIGNAL(Close,"Close")
OUT_SIGNAL1(Close,"Close")
XENV_BUF(BufInitWriteMode(Buf));
OUT_SIGNAL2(Close,"Close")
XENV_BUF(BufCloseWriteMode(Buf));
RELEASE_SIGNAL
END_IF_OUT_SIGNAL(Close,"Close")
}

––

Encoder and Decoder function calls

As stated earlier, it is not necessary to auto-create the environment file.
By copying another environment file or by writing it from scratch, you
can customize the environment file for your needs. If you do so you
must use the correct syntax of the encoding and decoding functions.

The syntax of the BER function calls is:

BER_ENCODE (Buffer, &Typenode, &Signalparameter)
BER_DECODE (Buffer, &Typenode, &Signalparameter)

The syntax of the PER function calls is:

PER_ENCODE (Buffer, &Typenode, &Signalparameter)
PER_DECODE (Buffer, &Typenode, &Signalparameter)

Example 5: Encoding and Decoding function calls –––––––––––––––

The following function calls are being used in the SNMP example:

BER_ENCODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_request *)(*SignalOut))->Param1));

BER_DECODE(Buf, (tASN1TypeInfo *)&yASN1_Message,
(void *)&((yPDef_snmp_reply *)SignalIn)->Param1))

––

After the snmp message has been sent to an active network entity to port
161, the SDL system should change the state and start waiting for a re-
ply with the values requested, see Figure 197.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 315

Chapter 8 Tutorial: Using ASN.1 Data Types
Decoding incoming signals

Before the SDL system can receive and use the information that is en-
capsulated in the incoming environment signals, a number of tasks must
be performed in the environment file. Most of them are automatically
generated to the environment file by the SDL Suite, but some must be
handled manually.

Figure 197: Waiting for the response
316 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
The following list defines the steps involved in the decoding process.
You must perform step 1 manually, while steps 2 through 4 are gener-
ated by the SDL Suite:

1. Extract the encoded information from the protocol-specific packet
and transfer it to a data buffer. This should be implemented in C
code in the environment file. In our case this is receive bytes from
the socket and save them into the buffer.

2. Allocate memory for the signal structure. Special functions for that
are automatically generated into the environment file by SDL Suite.

3. Call BER_DECODE function. The function is defined in the decod-
ing library and handles the actual decoding process.

4. The decoded signal is sent to the SDL system. This is performed by
the SDL_Output function.

The following code is part of the environment file for the Windows plat-
form (#include <WinSock.h>) and displays the function that handles
incoming signals.

/* Signal snmp_reply */
if (manager_sock != -1)
{

datalen = recv(manager_sock, reply, sizeof(reply), 0);
if (datalen == SOCKET_ERROR)

exiterr("snmp_reply", "recv");
else
{

BufInitBuf(Buf, bms_SmallBuffer);
BufInitWriteMode(Buf);
BufPutSeg(Buf, reply, datalen);
BufCloseWriteMode(Buf);
ERSetRule(Buf, er_BER | er_Definite);
BufInitReadMode(Buf);
IN_SIGNAL1(snmp_reply,"snmp_reply")
BERDecode(Buf, (tASN1TypeInfo *)&yASN1_Message,

(void *)&((yPDef_snmp_reply *)SignalIn)->Param1);
IN_SIGNAL2(snmp_reply,"snmp_reply")
BufCloseReadMode(Buf);
BufCloseBuf(Buf);

}
}

April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 317

Chapter 8 Tutorial: Using ASN.1 Data Types
Generating Template Files - Targeting Expert
Follow the instructions below to generate environment files, type node
files and the template makefile using the Targeting Expert.

1. From the Generate menu, select the Targeting Expert command.
The SDL Targeting Expert window opens.

2. From the drop-down menu located above the Partitioning Diagram
Model frame, select Light Integrations and the desired SDL to C
Compiler. It is possible to used either Cadvanced or Cmicro. The
pre-defined alternative specifies the type of compiler needed for the
generation.

3. Select the SDL to C Compiler tab.

4. In the General box, select Analyze/generate code.

5. In the Environment box, select:

– Environment functions

– Environment header file

6. Select the Communication tab. In the Coders box, select the Gener-
ate ASN.1 coder functions check box.

7. Press the Full Make button. This generates the environment file.

In your target directory, you will now find the generated files including:

• <system_name>_env.c (Cadvanced)
env.c (Cmicro)
This is the environment skeleton file.

• <system_name>.ifc

This is the environment header file.

• <asn1module_name>_asn1coder.c

<asn1module_name>_asn1coder.h

These files are the type nodes created by the ASN.1 utilities.

Note:

Encode and decode calls are only generated if the Coder functions...
option is enabled.
318 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating the Transfer Syntax
Editing the Generated Files - Targeting Expert
As the generated files only consist of skeleton functions, you must edit
the files to suit the functionality of your application.

1. Rename the environment file.

2. Edit the environment file <system_name>_env.c file according to
your needs. In the skeleton file, macros are included but they are not
defined. To define the required functionality, either create a
<system_name>_env.h file and define all macros there, or replace
the macros with the required code directly in the
<system_name>_env.c file.

3. Save the environment file.

Example 6: Environment functions - Cmicro ––––––––––––––––––––

The following code is part of the environment file skeleton and dis-
plays the function that handles the out signals.

 switch (xmk_TmpSignalID)
 {
 case snmp_request :
 {
 /* BEGIN User Code */
 /* Use (yPDP_snmp_request)xmk_TmpDataPtr to access the signal's
parameters */
 /* ATTENTION: the data needs to be copied. Otherwise it */
 /* will be lost when leaving xOutEnv */
 /* This section can be used to encode outgoing data with the
selected coder functions.
 ** Please remove the comments and send the data with your
communications interface!
 ** (<SendViaCommunicationsInterface(data, datalen)> must be
replaced)

Note:

Make a habit of making a copy of the environment file after it has
been edited. Otherwise the edits will be overwritten, if the file is re-
generated by mistake.

Notes:

• In order to transfer the information on the network, you must
add socket commands to an appropriate header file.

• If you want to use more than one encoding scheme, for instance
BER and PER, you must enter the appropriate encoding function
calls in the environment file
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 319

Chapter 8 Tutorial: Using ASN.1 Data Types
 char* data;
 int datalen;

 BufInitWriteMode(Buf);
 XENV_ENC(PER_ENCODE(Buf, (tASN1TypeInfo *)
&yASN1_z_RFC1157_SNMP_0_Message,
 (void *) &((yPDef_snmp_request *)xmk_TmpDataPtr)-
>Param1));
 BufCloseWriteMode(Buf);
 BufInitReadMode(Buf);
 datalen = BufGetDataLen(Buf);
 data = BufGetSeg(Buf, datalen);
 <SendViaCommunicationsInterface(data, datalen)>;
 BufCloseReadMode(Buf);
 */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;

 case Init :
 {
 /* BEGIN User Code */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;

 case Close :
 {
 /* BEGIN User Code */
 /* Do your environment actions here. */
 xmk_result = XMK_TRUE; /* to tell the caller that */
 /* signal is consumed */
 /* END User Code */
 }
 break ;

 default :
 xmk_result = XMK_FALSE;/* to tell the caller that */
 /* signal is NOT consumed */
 /* and to be handled by */
 /* the Cmicro Kernel ... */
 break ;
 }

––
320 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Compiling Your Application
Compiling Your Application
After you have created the transfer syntax, you are ready to compile and
build your application, including the edited environment file and the
template makefile. Follow the appropriate instructions as presented in:

• “Using the edited files - Organizer” on page 321

• “Using the edited files - Targeting Expert” on page 322

Using the edited files - Organizer
Please follow the instructions below:

1. Click the SDL system symbol in the Organizer

2. From the Generate menu, select the Make... command. The SDL
Make window opens.

3. Change your options in the make dialog according to 0 following
list:

– Select Analyze & generate code

– From the Code generator drop-down list, select Cadvanced

– De-select Generate environment header file

– De-select Generate environment functions

– De-select Generate ASN.1 coder

– Select the Makefile button

– Select Generate makefile and use template and enter the gener-
ated template makefile /<new_name>_env.tmp in the
text field.

– Select Compile & link

– From the Use standard kernel drop-down list, select Applica-
tion.

Figure 198 on page 322 shows the Make dialog with the selected
options.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 321

Chapter 8 Tutorial: Using ASN.1 Data Types
4. Specify your target directory where the generated files will be
stored.

5. Press the Full Make button.

Using the edited files - Targeting Expert
Please follow the instructions below:

1. Select the SDL to C Compiler tab.

2. In the Environment box, de-select the Environment functions option
and the Environment header file option.

3. Press the Full Make button.

Figure 198: The Make dialog - Compiling
322 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Running Your Application
Running Your Application
Your application acts as snmp agent. It connects to some network entity,
sends request to snmp port and receives reply with the requested infor-
mation.

If you have chosen the network printer as your network entity and im-
plemented additional debug print, you might get a log like this for the
sysDescr request:

snmp_request : Sending request #1001
snmp_request :
snmp_request : datalen = 40
snmp_request : BER encoded = 30 26 2 1 0 4 6 70 75 62 6c 69 63 a0 19 2 1 2 2 1
0 2 1 0 30 e 30 c 6 8 2b 6 1 2 1 1 1 0 5 0
snmp_request : Sending this message to SNMP agent 192.168.0.20:161...
snmp_request : 40 bytes sent
snmp_reply :
snmp_reply : Receiving data from socket...
snmp_reply : Received 131 bytes reply from SNMP agent
snmp_reply : BER encoded = 30 81 80 2 1 0 4 6 70 75 62 6c 69 63 a2 73 2 1 2 2 1
0 2 1 0 30 68 30 66 6 8 2b 6 1 2 1 1 1 0 4 5a 48 50 20 45 54 48 45 52 4e 45 54
20 4d 55 4c 54 49 2d 45 4e 56 49 52 4f 4e 4d 45 4e 54 2c 52 4f 4d 20 42 2e 32 35
2e 30 31 2c 4a 45 54 44 49 52 45 43 54 2c 4a 44 31 32 30 2c 45 45 50 52 4f 4d 20
56 2e 32 38 2e 37 32 2c 43 49 44 41 54 45 20 30 37 2f 32 30 2f 32 30 30 34
snmp_reply : Received in SDL process snmp_process
snmp_reply : Received 1 values for request # 1001

snmp_reply : Value #1 = HP ETHERNET MULTI-ENVIRONMENT,ROM
B.25.01,JETDIRECT,JD120,EEPROM V.28.72,CIDATE 07/20/2004
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 323

Chapter 8 Tutorial: Using ASN.1 Data Types
Appendix A

Example 7: The RFC1157-SNMP ASN.1 Module ––––––––––––––––––

RFC1157-SNMP DEFINITIONS ::= BEGIN
IMPORTS
 ObjectName, ObjectSyntax, NetworkAddress, IpAddress, TimeTicks
 FROM RFC1155-SMI;

-- top-level message

Message ::=
 SEQUENCE {
 version INTEGER { version-1(0) }, -- version-1 for this RFC
 community OCTET STRING, -- community name, for example,
"private" or "public"
 data PDUs --ANY-- -- e.g., PDUs if trivial
authentication is being used
 }

comPublic OCTET STRING ::= '7075626C6963'H
comPrivate OCTET STRING ::= '70726976617465'H

-- protocol data units

PDUs ::=
 CHOICE {
 get-request GetRequest-PDU,
 get-next-request GetNextRequest-PDU,
 get-response GetResponse-PDU,
 set-request SetRequest-PDU,
 trap Trap-PDU
 }

-- the individual PDUs and commonly used data types will be defined later

GetRequest-PDU ::= -- Used to retrieve a piece of management information
 [0] IMPLICIT
 SEQUENCE {
 request-id RequestID,
 error-status ErrorStatus, -- always 0
 error-index ErrorIndex, -- always 0
 variable-bindings VarBindList
 }

GetNextRequest-PDU ::= -- Used iteratively to retrieve sequences of management
information
 [1] IMPLICIT
 SEQUENCE {
 request-id RequestID,
 error-status ErrorStatus, -- always 0
 error-index ErrorIndex, -- always 0
 variable-bindings VarBindList
 }

GetResponse-PDU ::= -- Used by the agent to respond with data to requests from
the manager
324 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A
 [2] IMPLICIT
 SEQUENCE {
 request-id RequestID,
 error-status ErrorStatus,
 error-index ErrorIndex,
 variable-bindings VarBindList
 }

SetRequest-PDU ::= -- Used to initialize and make a change to a value of the
network element
 [3] IMPLICIT
 SEQUENCE {
 request-id RequestID,
 error-status ErrorStatus, -- always 0
 error-index ErrorIndex, -- always 0
 variable-bindings VarBindList
 }

Trap-PDU ::= -- Trap == Asynchronous event report from the agent running on the
managed system (sent without being asked)
 -- Used to report an alert or other asynchronous event about a
managed system.
 -- Asynchronous event reports are called notifications in later
versions of SNMP
 [4] IMPLICIT
 SEQUENCE {
 enterprise OBJECT IDENTIFIER, -- type of object
generating trap, see sysObjectID in [5]
 agent-addr NetworkAddress, -- address of object
generating trap
 generic-trap INTEGER { -- generic trap type
 coldStart(0),
 warmStart(1),
 linkDown(2),
 linkUp(3),
 authenticationFailure(4),
 egpNeighborLoss(5),
 enterpriseSpecific(6)
 },
 specific-trap INTEGER, -- specific code, present
even if generic-trap is not enterpriseSpecific
 time-stamp TimeTicks, -- time elapsed between
the last (re)initialization of the network entity and the generation of the trap
 variable-bindings VarBindList -- "interesting"
information
 }

-- request/response information

RequestID ::=
 INTEGER

ErrorStatus ::=
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2),
 badValue(3),
 readOnly(4),
 genErr(5)
 }
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 325

Chapter 8 Tutorial: Using ASN.1 Data Types
ErrorIndex ::=
 INTEGER

-- variable bindings

VarBind ::=
 SEQUENCE {
 name ObjectName,
 value ObjectSyntax
 }

VarBindList ::=
 SEQUENCE OF
 VarBind

END

––
326 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A
Example 8: The RFC1155-SMI ASN.1 Module ––––––––––––––––––––

RFC1155-SMI DEFINITIONS ::= BEGIN
EXPORTS -- EVERYTHING
 internet, directory, mgmt, experimental, private, enterprises,
 ObjectName, ObjectSyntax, SimpleSyntax,
 ApplicationSyntax, NetworkAddress, IpAddress,
 Counter, Gauge, TimeTicks, Opaque;

-- the path to the root

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }

-- names of objects in the MIB

ObjectName ::= OBJECT IDENTIFIER

-- syntax of objects in the MIB

ObjectSyntax ::= CHOICE {
 simple SimpleSyntax,
 application-wide ApplicationSyntax
 }

SimpleSyntax ::= CHOICE {
 number INTEGER,
 string OCTET STRING,
 object OBJECT IDENTIFIER,
 empty NULL
 }

simple-value SimpleSyntax ::= empty : NULL

ApplicationSyntax ::= CHOICE {
 address NetworkAddress,
 counter Counter,
 gauge Gauge,
 ticks TimeTicks,
 arbitrary Opaque

 -- other application-wide types, as they are
 -- defined, will be added here
 }

-- application-wide types

 NetworkAddress ::=
 CHOICE {
 internet
 IpAddress
 }

 IpAddress ::=
 [APPLICATION 0] -- in network-byte order
 IMPLICIT OCTET STRING (SIZE (4))

 Counter ::=
 [APPLICATION 1]
 IMPLICIT INTEGER (0..4294967295)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 327

Chapter 8 Tutorial: Using ASN.1 Data Types
 Gauge ::=
 [APPLICATION 2]
 IMPLICIT INTEGER (0..4294967295)

 TimeTicks ::=
 [APPLICATION 3]
 IMPLICIT INTEGER (0..4294967295)

 Opaque ::=
 [APPLICATION 4] -- arbitrary ASN.1 value,
 IMPLICIT OCTET STRING -- "double-wrapped"

 END

––
328 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Appendix A
Example 9: The RFCxxxx-MIBs ASN.1 Module –––––––––––––––––––

RFCxxxx-MIBs DEFINITIONS ::= BEGIN
 IMPORTS
 mgmt, enterprises, NetworkAddress, IpAddress, Counter, Gauge, TimeTicks
 FROM RFC1155-SMI;

mib OBJECT IDENTIFIER ::= { mgmt 1 } -- 1.3.6.1.2.1

system OBJECT IDENTIFIER ::= { mib 1 } -- 1.3.6.1.2.1.1
interfaces OBJECT IDENTIFIER ::= { mib 2 }
at OBJECT IDENTIFIER ::= { mib 3 }
ip OBJECT IDENTIFIER ::= { mib 4 }
icmp OBJECT IDENTIFIER ::= { mib 5 }
tcp OBJECT IDENTIFIER ::= { mib 6 }
udp OBJECT IDENTIFIER ::= { mib 7 }
egp OBJECT IDENTIFIER ::= { mib 8 }
printmib OBJECT IDENTIFIER ::= { mib 43 } -- 1.3.6.1.2.1.43

-- sysDescr OBJECT-TYPE
-- SYNTAX DisplayString (SIZE (0..255))
-- ACCESS read-only
-- STATUS mandatory
-- DESCRIPTION "A textual description of the entity. This value should include
the full name and version
-- identification of the system's hardware type, software
operating-system, and networking
-- software. It is mandatory that this only contain printable
ASCII characters."

sysDescr OBJECT IDENTIFIER ::= { system 1 }
DisplayString ::= OCTET STRING

END

––
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 329

Chapter 8 Tutorial: Using ASN.1 Data Types
330 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
9 Tutorial: Using
SDL-2000 features
This tutorial describes how to use the SDL-2000 features in the SDL
Suite.

In order for you to fully take advantage of this tutorial, you should
be familiar with the SDL Suite and the SDL Editor functionality.

This tutorial is independent from the Demon game example pre-
sented in the tutorial on the editors and the Analyzer.

You can find additional information on how to use the SDL-2000
features in “Working with Classes” on page 1942 in chapter 43, Us-
ing the SDL Editor, in the User´s Manual.
al SDL Suite 6.3 Getting Started gs-s0 331

Chapter 9 Tutorial: Using SDL-2000 features
Purpose of this Tutorial
The purpose of this tutorial is to make you familiar with the SDL-2000
support in SDL Suite.

Introduction

Support in the SDL Suite
The SDL Suite supports the following SDL-2000 related features:

• Graphical design of data types (using class symbols)

• Textual algorithms

• Case sensitivity

• Operators without parameters

• Operators without return results.

Why SDL-2000?
The useful features in UML are included in SDL to facilitate the trans-
port from UML to SDL.
332 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Graphical Design of Data Types
Graphical Design of Data Types
SDL Suite offers the following graphical data type design features:

• Class Symbols

• Association Lines

• Aggregation Lines

• The Browse & Edit Class dialog, see Editing a Diagram.

• The Class Information dialog, see Viewing a Class.

Class Symbols
With class symbols you can graphically design data types. The SDL ed-
itor handles class symbols much the same way as other SDL symbols.

A class symbol has three separate text fields:

• name field (1)

• attribute field (2)

• operator field (3)

The properties of a class symbol can be set in the preference manager in
the same way as for other SDL symbols, except for case sensitivity, see
“Case Sensitivity” on page 340. The size of the class symbol is adjusted
to the size of the text, and you cannot change them manually. Class
symbols cannot be collapsed or expanded.

Association and Aggregation Lines
There are two types of lines:

• Association lines

Figure 199 Class symbol

1
2
3

April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 333

Chapter 9 Tutorial: Using SDL-2000 features
• Aggregation lines

Association Lines

An association links two types using UML notation. The types are:

• Block types

• Process types

• Data types

• Interfaces

Association lines can be both redirected and bidirected. Single associa-
tion lines (unidirectional associations) have a name and a role name.
Double association lines (bidirectional associations) have a name and
two role names.

Aggregation Lines

Aggregations use the same format as associations.

Aggregations are used to indicate that a class is a subset of another class
or a part-of relationship, e.g. a steering wheel is a subset of or a part of
a car. Aggregations can only be single directed.

Figure 200

Figure 201: Example of an association line
334 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Graphical Design of Data Types
Figure 202: Example of an aggregation line.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 335

Chapter 9 Tutorial: Using SDL-2000 features
Creating an SDL Structure
In this section you will create a small example and perform a number of
actions to learn what possibilities and limitations there are in the
SDL-2000 support in the SDL Suite.

Working with Class Symbols
1. Start the SDL Editor.

2. Place a class symbol in the diagram.

You place symbols the same way as other SDL symbols, see “Plac-
ing Block Reference Symbols” on page 59 in chapter 3, Tutorial:
The Editors and the Analyzer. You can move symbols but not resize
them.

3. Name the class symbol Person.

All class symbols with the same class name are treated as a single,
merged class. See “Limitations” on page 340 for more information
on naming issues.

4. Fill out the attribute and operator fields.

Figure 203:SDL diagram with class symbols
336 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Creating an SDL Structure
5. Place two more class symbols in the diagram and name them Com-
pany and Xid.

6. Fill out the attribute and operator fields.

Working with Lines
1. Click the class symbol Person. Two handles appears.

2. Select the square association handle and drag it to the class symbol
Company. The editor draws a line while you are dragging. You drag
lines the same way as lines in other SDL diagrams, see “Drawing
Channels between Blocks” on page 61 in chapter 3, Tutorial: The
Editors and the Analyzer.

3. Click the mouse button when you have reached the class symbol
Company. The line is connected at both ends.

4. Name the association line and the role.

The name of an association is often a verb phrase and the role often has
a noun as a name.

Figure 204

Association Aggregation
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 337

Chapter 9 Tutorial: Using SDL-2000 features
5. Bidirect the line by selecting Bidirect from the Edit menu.

6. Give the second role a name.

7. Select the diamond shaped aggregation handle and drag it to the
class symbol Xid.

8. Name the aggregation line and the role.

Moving Symbols and Lines
You move symbols and lines the same way as in other SDL diagrams,
see “Moving and Resizing Symbols” on page 61 in chapter 3, Tutorial:
The Editors and the Analyzer.

Saving the Diagram
1. Save the diagram by the menu choice Save, by clicking the Save but-

ton or by <Ctrl> s.

The file is saved with the extension .ssy.

Figure 205

Association name

Role name
338 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Editing a Diagram
Editing a Diagram
The Browse & Edit Class dialog lets you view and edit the complete
definition of a class to ensure consistency between the attributes and op-
erators.

The dialog consists of two parts. The above part is where you browse
classes and all occurrences of each class. In the below part you can edit
the name, attributes and operators of a class.

All symbols that belong to the class you select in the Browse & Edit
Class dialog will be affected by the changes you make in the dialog. If
you want to edit the content in only one class symbol, you have to select
the single symbol and edit the content in that symbol. For detailed in-
formation on how to edit class information, see“Browse & Edit Class
Dialog” on page 1943 in chapter 43, Using the SDL Editor.

Figure 206: The Browse & Edit Class dialog

Browse part

Editing part
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 339

Chapter 9 Tutorial: Using SDL-2000 features
Case Sensitivity
Case sensitivity applies to class symbols and it cannot be turned off in
the Preference Manager, though case sensitivity for other symbols in the
SDL editor can be switched off.

Class sensitivity applies to both the name field and the attribute field as
well as the operator field.

If two classes have the same name but different cases (for example Per-
son and person), they will be treated as two separate classes in the
Browse & Edit Class dialog and will not be merged into a single class
when generating code.

For a detailed description, see “Set-Case-Sensitive” on page 2486 in
chapter 54, The SDL Analyzer.

Limitations
You can edit a class in this dialog when you have selected a single class
symbol, but the dialog is not available if you select more than one class
symbol.

If the class name contains incorrect syntax the dialog will not be dis-
played.

You cannot add syntax errors to your classes as the values you enter are
syntactically checked.

Incorrect text in a symbol is not displayed in the dialog.

Edit the Diagram
1. Double-click the class Xid or select the class Xid and then select

Class.. on the Edit menu.

The Browse & Edit Class dialog is displayed with the class name
and its attributes or operators filled in.

If there are more than one class with the same name, attributes or
operators for all classes with the same name will be shown in the di-
alog.
340 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Editing a Diagram
2. Select class Person from the Classes drop down menu. The content
of the attributes and operators fields changes to that of the class
Person.

3. Change the name of the class Person to Employed in the Class
Name field and click OK.

The class name has changed to Employed in the diagram.

4. Open the Browse & Edit Class dialog again and select either of the
radio buttons Attributes or Operators to edit or view the attributes
or operators of the class Employed.

The list of the attributes or operators is displayed in the field below
the radio buttons.

5. You can now edit the information in the Name, Parameters, Sort
and Body Code fields.

The Parameters and Body Code fields are for operators only.

6. Click OK.

The dialog is closed and all appropriate class symbols in the current
SDL diagram are updated.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 341

Chapter 9 Tutorial: Using SDL-2000 features
Viewing a Class
The Class Information dialog lets you view the complete textual (PR)
definition of a class in read-only format. If you want to edit the diagram,
see “Editing a Diagram” on page 339.

For detailed information on how to view class information, see “Class
Information” on page 1942 in chapter 43, Using the SDL Editor.

Limitations
The dialog is not available if you select more than one class symbol.

View the Definition
1. Rename two or more classes with identical names (for testing of the

Class information dialog).

2. Select one of the classes and then select Class Information on the
Window menu.

The Class Information dialog, with the PR code for all classes with
the same name, is displayed.

3. Select the Show Next Symbol button.

The next symbol, which is described by the line on which the cursor
is placed, is displayed.

Figure 207: The Class Information dialog
342 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Textual Algorithms
The number in brackets shows the number of symbols that are de-
scribed by this line in the current diagram. You can browse through
all symbols, one by one, with the Show Next Symbol button.

4. If you decide that you want to edit the class, select the Edit Class
button and the Browse & Edit Class dialog for that class is dis-
played.

Textual Algorithms

Textual Algorithms
SDL Suite supports textual descriptions of algorithms. Algorithms can
be expressed within a Task symbol, e.g. if-then-else, loops and deci-
sions. For a detailed description of this feature, see “Algorithms in
SDL” on page 137 in chapter 3, Using SDL Extensions.

Operators without Parameters and
Operators without Return Results

SDL Suite supports operators with no parameters or no return value. For
example, an alternative to an assignment statement could be that an op-
erator application statement invokes a non value returning operator.

For a detailed description of operators and parameters, see “Operators”
on page 81 in chapter 2, Data Types.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 343

Chapter 9 Tutorial: Using SDL-2000 features
Limitations
The following limitations are worth noticing:

• Inheritance lines are not supported.

• Comments added to a class symbol will not appear in the generated
PR code.

• CIF code generation for class symbols is not supported.

• If the same association has been drawn in several places, all instanc-
es have to be edited to change the association.

• Navigating from a class symbol is possible only by using
Tools>Navigate, since double-clicking a class symbol will open the
Browse & Edit Class dialog.

An Example of Using Class Symbols

The operator definition must be added in the Body Code part of the
Browse & Edit Class dialog. It might look like this:

operator retired returns Boolean { /*start of user defined
body code*/
return age > 64;
/* End of user defined body code */}

The above graph will then generate the following PR code.

newtype Person struct
 employer Own_Company;
 a_Company Ref_Company;
 id Ref_XId;

Figure 208 Graphical representation of a data structure
344 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 An Example of Using Class Symbols
 age Integer;
 name CharString;
 operators
 retired: -> Boolean;
 operator retired returns Boolean {/*start of user defined
body code*/
return age > 64
/* End of user defined body code */}
endnewtype;
newtype Ref_Person Ref(Person); endnewtype;
newtype Own_Person Own(Person); endnewtype;
newtype Oref_Person Oref(Person); endnewtype;
newtype XId struct
 idName CharString;
 idNo Integer;
endnewtype;
newtype Ref_XId ref(XId); endnewtype;
newtype Own_XId own(XId); endnewtype;
newtype Oref_XId oref(XId); endnewtype;
newtype Company struct
 employee Oref_Person;
 a_Person Ref_Person;
 name CharString;
endnewtype;
newtype Ref_Company Ref(Company); endnewtype;
newtype Own_Company Own(Company); endnewtype;
newtype Oref_Company Oref(Company); endnewtype;
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 345

Chapter 9 Tutorial: Using SDL-2000 features
346 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

April 2009 IBM Ration

Chapter
10 Tutorial: Threaded
Integration
The Threaded Integration model provides a powerful template for
integrating generated C code with an operating system. In this tu-
torial, you will practice building applications using this model. You
will get hands-on experience by building the SDL system “Mobile”,
which is an implementation of a small GSM system.

This tutorial requires basic knowledge of the SDL Suite editors, the
Organizer and the Targeting Expert. Brief knowledge of SDL and
integration with operating systems will also help your understand-
ing. Before working with this tutorial, it is recommended that you
read through chapter 64, Integration with Operating Systems.

To get the most out of this tutorial, read the entire chapter. As you
progress, perform the exercises on your computer as described.
al SDL Suite 6.3 Getting Started gs-s0 347

Chapter 10 Tutorial: Threaded Integration
Introduction
The purpose of this tutorial is to make you familiar with the Threaded
Integration model. After reading the tutorial, you should have a basic
understanding of how to build a “threaded” executable and how to inte-
grate it with external code.

This tutorial is designed as a guided tour through the build tools in the
SDL Suite. You will get acquainted with the Deployment Editor and the
Targeting Expert.

Prerequisites

Windows

• C compiler

• Resource compiler

Solaris / Linux

• C compiler

• Motif (Library for GUI widgets) version 2.1 or later

Note: Platform differences

This tutorial, and the others that are possible to run on both the So-
laris, Linux and Windows platforms, are described in a way com-
mon to both platforms. In case there are differences between the
platforms, this is indicated by texts like “on Solaris”, “on Unix”,
“Windows only”, etc. When such platform indicators are found,
please pay attention only to the instructions for the platform you are
running on.

Normally, screen shots will only be shown for one of the platforms,
provided they contain the same information for both platforms. This
means that the layout and appearance of screen shots may differ
slightly from what you see when running the SDL Suite in your en-
vironment. Only if a screen shot differs in an important aspect be-
tween the platforms will two separate screen shots be shown.
348 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Description of Example System
Description of Example System

The SDL System

Functional Description

The example system is a model of a GSM system. The implementation
is restricted to the high-level layers of the GSM standard. The following
functionality is implemented:

• User PIN code verification (PIN code is one digit only)

• Tracking of mobile phones through VLR and HLR databases

• Freedom of movement for mobile phones by base station switching

• Control of the IMEI code of a mobile phone

• Billing service to keep track of elapsed time and cost for phone calls

Implementation Description

The system is implemented in a modular way. Each functional entity is
implemented as a block type. The block types are organized in a pack-
age, called “GSM”.

The SDL system uses the GSM package and instantiates its block types.
The “Mobile” system has four MobileStation block instances, four
BaseTransceiverStation block instances and two MobileSwitching-
Center block instances. The MobileStation instances are named as mo-
bile phone owners. The names are Marie, John, ParisPizza and Lyon-
Pizza. The BaseTransceiverStation instances are named Lyon11,
Lyon12, Paris11 and Paris12, indicating their location.

The Target Application

Deployment

The Mobile system is partitioned into five executable files. Each Mo-
bileStation block instance is built as an executable and the remaining
block instances (Proxy, BaseTranscieverStation, BaseStationControl-
ler, MobileSwitchingCenter and Database) execute together in one ex-
ecutable.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 349

Chapter 10 Tutorial: Threaded Integration
The Graphical User Interface

A graphical user interface (GUI) is provided for the MobileStation
block. It is delivered as C source code to be compiled and linked when
building each of the four mobile phone executable files. The interface
resembles that of a typical mobile phone. A simple menu system, con-
taining a phone book and a billing report, is provided. The user can
switch base station from the option menu in the bottom of the window.
The GUI is shown in Figure 209.

TCP/IP Communication

The executable files of the target application communicate by sending
signals via TCP/IP. The communication is handled by the SDL Suite
TCP/IP communication module, which is delivered as C source code. It
is compiled and linked into each of the executables.

To be able to locate the receiver of a signal, the TCP/IP module needs
the host name and TCP port number of the receiving executable. This
information must be supplied through a routing function, which is man-
ually implemented in C.

The mobile system is delivered with default routing functions. This will
enable you to run all executables on your computer without giving any
routing information manually.

Figure 210 shows a UML component diagram of the executable files in
the deployed mobile system. Each executable file sets up a TCP/IP serv-
er, listening on a specific TCP port number. This number is used by re-

Figure 209: The Mobile Phone GUI
350 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Description of Example System
mote executables for addressing SDL signals. The TCP/IP server is il-
lustrated by the interface on each component. The dashed arrows indi-
cate a flow of signals from one component to another.

Figure 210: A Component Diagram Showing the Deployed Mobile System
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 351

Chapter 10 Tutorial: Threaded Integration
Preparations

Copy the Example System
In order to allow experimentation, you should copy the example system
from the SDL Suite installation into a working directory of your prefer-
ence:

UNIX

Copy all files from the directory
$telelogic/sdt/examples/mobile

to a working directory, e.g. ~/mobile.

Windows

Copy all files from the directory
C:\IBM\Rational\SDL_TTCN_Suite6.3\sdt\examples\mobile

to a working directory, e.g.
C:\IBM\Rational\SDL_TTCN_Suite6.3\work\mobile.

Open the System
Open the system file Mobile.sdt from the Organizer.
352 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Drawing a Deployment Diagram
Drawing a Deployment Diagram
In order to build a threaded executable, you must supply information
about the threads of the application. For each thread, you must specify
which SDL instance sets that should run inside it. Finally, you may want
to partition your SDL system into several executable files.

This information is modeled using Deployment Diagrams. These are
edited using the Deployment Editor. The Deployment Diagram pro-
vides a way to model deployment of SDL systems independently of the
target platform.

What You Will Learn
• To start the Deployment Editor
• To deploy an SDL system onto executable files and threads

Starting the Deployment Editor
• Double-click the deployment symbol “network_depl” in the Orga-

nizer. The Deployment Editor is launched with the selected dia-
gram.

Deploying an SDL System
The Deployment Diagram features:

• Partitioning of SDL systems

• Organization of SDL instance sets within executable files

• Organization of SDL instance sets within threads (Threaded Inte-
gration only)
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 353

Chapter 10 Tutorial: Threaded Integration
A deployment diagram has five symbols: the node, the component, the
thread, the object and the comment symbols. Each symbol is described
in Table 1.

Table 1 Deployment Diagram Symbols

The symbols are connected using compositions. When a symbol is se-
lected in a diagram, a handle is shown at its bottom. Click the handle to
create a composition link. Click the symbol you wish to connect to.

The name of each symbol can be edited from the diagram area. Some of
the symbols contain additional information, which is edited from the
Symbol Details dialog box.

The network_depl deployment diagram is shown in Figure 211.

Symbol Name Description

Node A computational resource, i.e. a
computer

Component An executable file which contains
SDL instance sets

Thread A point of execution. The symbol is
used for threaded integrations only

Object An SDL instance set, i.e. a system,
block or process instance set
354 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Drawing a Deployment Diagram
The diagram shows five components, each representing an executable
file. All components are attached to one node. Each component has one
or many threads. Each thread has one or many objects attached to it, re-
flecting the SDL instance sets that execute inside it.

For instance, the “JohnMS” component contains one thread, “T”. The
thread has one object attached to it, called “JohnMS”. The object re-
flects an SDL instance set in the network SDL system. Look at the Or-
ganizer window and compare the block instance sets shown in the sys-
tem with the objects in the deployment diagram.

The Symbol Details Dialog Box

The dialog box is opened in one of the following ways:

• Double-click a diagram symbol

Figure 211: The network_depl Deployment Diagram
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 355

Chapter 10 Tutorial: Threaded Integration
• Right-click a diagram symbol. Select Symbol Details... in the pop-
up menu.

Component

Double-click the component named “John”. The symbol details dialog
box will appear. The dialog box is shown in Figure 212.

The integration model can be selected from a drop-down list in the dia-
log box. The selected integration model controls the code generation pa-
rameters for the executable file that is generated from the component.
Three integration models can be selected: Light, Threaded and Tight.

For the “John” component, the selected integration model is “Thread-
ed”. The information filled in the other text boxes is not used for code
generation.

Thread

Click the thread symbol “T”. The dialog box will change its content to
reflect that of the thread. The new appearance of the dialog box is shown
in Figure 213.

For a thread, four parameters can be set for performance-tuning of the
generated executable:

Figure 212: The Symbol Details dialog box for Component “John”

Figure 213: The Symbol Details Dialog Box for Thread “T”
356 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Drawing a Deployment Diagram
• Stack Size

• Thread Priority

• Queue Size

• Max Signal Size

The values of these parameters are specific to the target operating sys-
tem. If no values are given, default values are used. All threads in the
network_depl deployment diagram use default values.

Object

Click the object symbol “JohnMS”. The dialog box will change its con-
tent to reflect that of the object. The new appearance of the dialog box
is shown in Figure 214.

For an object, two parameters are mandatory to fill in:

• Stereotype

• Qualifier

The stereotype is the type of SDL instance set. The possible values are
“system”, “block” and “process”. “JohnMS” is a block, which is reflect-
ed in the stereotype text box.

The qualifier is used to identify the SDL instance set. Locate the
“JohnMS” block in the Organizer window. The block instance set is lo-
cated directly under the “network” system. This renders the qualifier
“network/johnMS”.

The network_depl diagram is complete. The next step is to build execut-
able files from the diagram.

Figure 214: The Symbol Details Dialog Box for Object “JohnMS”
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 357

Chapter 10 Tutorial: Threaded Integration
More information on the Deployment Editor is available in chapter 40,
The Deployment Editor, in the User´s Manual.

Using the Targeting Expert

What You Will Learn
• To start the Targeting Expert
• To build executable files from a deployment description
• To configure C code generation from the Targeting Expert GUI
• To configure your compiler and linker from the Targeting Expert

GUI

Starting the Targeting Expert
The deployment diagram should be used as input to the Targeting Ex-
pert.

Right-click the network_depl diagram symbol in the Organizer and se-
lect Targeting Expert from the pop-up menu.

The deployment diagram will be analyzed. If any errors are found, the
Organizer Log pops up and shows an error message. You can locate the
error in the deployment diagram by clicking on the “Show error” button
in the Organizer Log toolbar.

The Targeting Expert is launched.

Selecting Target Platform
The initial appearance of the Targeting Expert window is shown in
Figure 215.
358 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Targeting Expert
The left part of the window, called Partitioning Diagram Model, shows
a filtered view of the deployment diagram. The nodes and components
are represented.

For each component, do the following:

1. Select the component in the Partitioning Diagram Model window.

2. Click the drop-down list containing “SELECT INTEGRATION”. A
menu with available integrations is opened. As the component has
“Threaded” as integration (selected in the Deployment diagram),
this is the only available selection.

Figure 215: The Targeting Expert When First Opened
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 359

Chapter 10 Tutorial: Threaded Integration
3. Select the platform in the sub-menu.

– Windows: Select Win32 Threaded (CAdvanced)

– Solaris: Select Solaris Threaded (CAdvanced)

– Linux: Select Linux Threaded (CAdvanced)

4. A dialog-box will pop up, asking if the SDL system should be auto-
matically generated. Click Yes.

The Targeting Expert window now looks as in Figure 216.

Configuring C Code Generation
The Targeting Expert GUI for C code generation has four tabs. These
are SDL to C Compiler, Communication, Environment Header File and
Execution. All these tabs contain widgets for configuring the code gen-
eration for an executable.

Figure 216: Components with Selected Integration Models
360 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Targeting Expert
Each of the executable files that will be built have communication
through external code. All executables use the TCP/IP communication
module and the mobile phone executables (John, Marie, ParisPizza and
LyonPizza) use a GUI. The external code is connected to the SDL sys-
tem through environment functions. The generation of environment
functions must be configured manually.

The Targeting Expert features a wizard for easy configuration of the
TCP/IP module. When activating the wizard, all the necessary environ-
ment functions will be generated by default.

The TCP/IP wizard dialog box is shown in Figure 217.

The TCP/IP module needs routing information to send signals to the
correct recipient. A C header file with the routing function declaration
must be included. The routing function definition must be given in a C
source file. The TCP port number for incoming signals must also be giv-
en. This number is used by routing functions in remote executables
sending signals to this executable.

For each of the components, do the following:

1. Click the name of the integration in the left sub-window.

– Windows: Click Win32 Threaded

– Solaris: Click Solaris Threaded

– Linux: Click Linux Threaded

Figure 217: The TCP/IP Wizard
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 361

Chapter 10 Tutorial: Threaded Integration
2. Select the Communication tab.

3. Click in the TCP/IP check box in the Signal Sending group. The
TCP/IP Wizard is opened.

4. Click in the check box Include routing header file.

5. Click the file button to the right of the header file text box. A file
selection dialog box is opened.

6. Select the routing header file in your working directory.

– If you build the John, Marie, ParisPizza or LyonPizza execut-
able, select router.h.

– If you build the Switch executable, select switchrouter.h.

7. Click Open.

8. Click the file button to the right of the source file text box. A file
selection dialog box is opened.

9. Select the routing source file in your working directory.

– If you build the John, Marie, ParisPizza or LyonPizza execut-
able, select router.c.

– If you build the Switch executable, select switchrouter.c.

10. Click Open.

11. Enter the server port number of the executable you are building. En-
ter a port number according to Table 2.

Table 2 TCP Server Port Numbers for the Executables

12. Click OK in the TCP/IP wizard dialog box.

Executable TCP Port Number

Marie 4949

John 5959

ParisPizza 7979

LyonPizza 8989

Switch 6969
362 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Targeting Expert
The code generation configuration is now finished.

Compiling and Linking
The Targeting Expert Compiler/Linker/Make section contains six tabs:
Compiler, Source Files, Additional Compiler, Linker, Library Manager
and Make. The section is shown in Figure 218.

Figure 218: The Targeting Expert Compiler/Linker/Make Section
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 363

Chapter 10 Tutorial: Threaded Integration
Compiling and Linking the Switch Executable

To configure the compilation and linking of the Switch executable, do
the following:

1. Click Compiler/Linker/Make for Switch in the Partitioning diagram
Model window.

2. In the Include text box, add -I../../../../../ After the addition, the text
box will look as shown in Figure 219.

3. Click the Save button.

4. Click Target Library for Switch in the Partitioning diagram Model
window.

5. In the Kernel tab, click in the following check boxes:

– Show errors on stdout. Setting this option renders log messages
if errors are encountered during execution.

– Text trace. Setting this option renders textual traces on stdout
during execution.

6. Click the Save button.

7. Click the Full Make button. The SDL system is analyzed, code is
generated and a makefile is generated and executed.

You will now have an executable file named switch. The file extension
will be .exe on Windows and .sct on Unix.

Compiling and Linking the MobileStations

To configure the compilation and linking of the MobileStation executa-
bles, do the following:

1. Click Compiler/Linker/Make for MobileStation in the Partitioning
Diagram Model window.

2. In the Include text box, add -I<your working directory>, e.g.
-I/home/mobile . After the addition, the text box will look as
shown in Figure 219.

Figure 219: The Include Text Box with an Additional -I flag
364 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Using the Targeting Expert
3. Add the following flags in the Library Flag text box:

– -DXMAIN_NAME=SDL_Main

– -DXEXTENV_INC=”<gui.h>”

– -DMARIE, -DJOHN, -DPARISPIZZA or -DLYONPIZZA, depending
on which executable you are configuring

The XMAIN_NAME flag is used to rename the main function in the gener-
ated SDL system. A main function is provided in the GUI source code.
The SDL main function, renamed SDL_Main, will be started in a thread
from the new main function.

XEXTENV_INC is a flag for using environment code together with the
TCP/IP module. The gui.h file contains definitions of some macros in
the generated environment file.

4. Click the Source Files tab. A list of the external files to compile is
shown.

5. Click the Add button. A dialog box is shown.

6. Select gui.c in the working directory. Click Open. The file is added
to the file list.

7. Windows only: The GUI must be compiled using a resource com-
piler.

– Click the Additional Compiler tab.

– Enter rc in the Compiler Name text box.

– Enter -l 0x41d %I -fo %o %s in the Options text box.

– Add the file gui.rc to the list of files to compile by clicking the
Add button and select gui.rc from your working directory.

– Enter .res in the Object Extension text box.

– Click on the Make tab.

– Change from Microsoft nmake (using temporary re-
sponse file) to Microsoft nmake in the Make tool drop
down list.

8. Click the Linker tab.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 365

Chapter 10 Tutorial: Threaded Integration
9. Enter the following in the Options text box:

– Windows: Change -subsystem:console to -subsystem:windows

– Unix: Add -lXm -lXt -lX11 between -lpthread and -L/usr/lib.

10. Click the Save button.

11. Click the Full Make button. The SDL system is analyzed, code is
generated and a makefile is generated and executed.

You will now have an executable file. The file extension will be .exe on
Windows and .sct on Unix.

The Target System
The generated executable files are located in a directory structure creat-
ed by the Targeting Expert. The Targeting Expert uses the target direc-
tory given in the Organizer as root.

In the mobile system, target is given as target directory. The generated
target directory structure is shown in Figure 220.

The executable files are located in the platform-specific directories
(Win32_threaded and Solaris/Linux

Figure 220: The Generated Target Directory Structure
366 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Running the System
_threaded, respectively). The object files are located in subdirectories
of the platform directories.

Running the System

What You Will Learn
• To run the executable files generated from Targeting Expert
• Use the mobile system

An Overview of the System
Figure 221 shows the run-time architecture of a MobileStation execut-
able.

The SDL system interacts with the outside world through its environ-
ment. The GUI message loop is run in a thread of execution of its own.
The TCP/IP server thread executes the same way. The environment
threads interact with the SDL system by inserting signals. This is done
by calling the SDL kernel function SDL_Output.

Figure 221: Run-time architecture of a MobileStation Executable
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 367

Chapter 10 Tutorial: Threaded Integration
When a signal is sent from the SDL system to the environment, it is in-
terpreted either as GUI feedback or is sent to an external receiver via
TCP/IP.

Using the System
Start the mobile system in the following order:

1. Start the Marie, John, ParisPizza and LyonPizza executables. A
GUI will pop up for each of them.

2. Start the Switch executable. Switch will initialize the MobileStation
executables by sending signals. You will see that the On buttons on
the mobile phone windows become enabled.

To make a call, do the following:

1. Click the On button on the MobileStations. You will be prompted to
enter a PIN code. The correct PIN codes are shown in Table 3.

Table 3 MobileStation PIN Codes

2. Click OK. “PIN OK” will be displayed. You are now ready to make
a call.

3. Click OK. The menu system of the GUI is activated. Select “Phone
Book” by pressing the “<“ and “>” buttons and click OK.

4. Select a name from the list and click OK. If the receiving MobileS-
tation is on, its display will show “Incoming Call”.

5. Click OK on the receiving MobileStation. A call is established.

6. Click OK on the calling party and the receiving party when you
wish to finish the conversation.

The system has more features not described in this manual. Experiment
to discover its secrets!

Executable PIN Code

Marie 1

John 2

ParisPizza 3

LyonPizza 4
368 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

 Running the System
The tutorial is finished. To get more detailed information about the
Threaded integration and the TCP/IP module, please read chapter 64,
Integration with Operating Systems, in the User´s Manual.
April 2009 IBM Rational SDL Suite 6.3 Getting Started gs-s0 369

Chapter 10 Tutorial: Threaded Integration
370 gs-s0 IBM Rational SDL Suite 6.3 Getting Started April 2009

A

Abstract Syntax Notation One (ASN.1): 17
AccessControl System (example): 272
Aggregation between classes (OM notation): 13
Aggregation lines: 333
ASN.1: 17
Association lines: 333
Associations between classes (OM notation): 13
B

Batch facilities: 25
Behavior tree, example: 199
Block (SDL concept): 5
C

Cadvanced SDL to C Compiler (SDL Suite): 29
Cbasic SDL to C Compiler (SDL Suite): 29
CIF format: 33
Class notation (OM notation): 12
Class symbols: 333

an example: 344
case sensitivity: 340
edit a diagram: 339
limitations: 344
viewing a class: 342

Cmicro Library: 270
Command

next-transition: 142
output-via: 143
set-gr-trace: 141
Set-Trace: 141
show-next-symbol: 142

Control unit file: 35
D

Data types in SDL: 7
Demon Game system (example): 41, 129
DP symbols

Node: 354
Thread: 354

G

Generalization (OM notation): 12
H

High-level MSC (HMSC): 10
HMSC (MSC concept): 10
HMSC diagrams: 33
April 2009 IBM Rational SDL and TTCN Suite 6.3 371

I

Inheritance of classes (OM notation): 12
Instance (MSC concept): 9
Integration

Bare: 271
Light: 271
Tight: 271

Integration mechanism in SDL & TTCN Suite: 23
L

Licenses: 25
Link file: 35
M

Message Sequence Charts (MSC): 9
Messages (MSC concept): 9
MSC: 9
MSC diagrams: 33
MSC instance (MSC concept): 9
MSC language: 9
MSC message (MSC concept): 9
MSC reference (MSC notation): 9
MSC/GR: 11
MSC/PR: 11, 33
Multiplicity (OM notation): 14
N

Notations
Abstract Syntax Notation One (ASN.1): 17
Message Sequence Charts (MSC): 9
Object Model (OMT/UML): 12
Specification and Description Language (SDL): 3
State Chart: 15
Tree and Tabular Combined Notation (TTCN): 17

O

Object Model diagrams: 34
Object Model notation: 12
Object notation (OM notation): 14
Object-orientation in SDL: 8
OM diagrams: 34
OM notation: 12
OMT notation: 12
P

PId (SDL concept): 7
Preferences: 46
372 IBM Rational SDL and TTCN Suite 6.3 April 2009

Displaying and Changing: 46
Help: 47
Saving: 49
Setting the default printer: 48
Setting the drawing area size: 49

Procedure (SDL concept): 5
Process (SDL concept): 5
Process Diagram, creating: 96
R

Remote procedure (SDL concept): 6
S

SC diagrams: 34
SC notation: 15
SDL: 3
SDL diagrams: 32
SDL language: 3
SDL Simulator

Find dynamic errors: 153
Restart: 148
Send signal: 143
Starting and Generating: 137, 353
Trace value: 155
Using breakpoints: 163
View internal status: 148

SDL Suite overview: 23
SDL Suite, starting: 23, 43
SDL Target Tester: 289
SDL, Creating a structure: 51
SDL/PR: 33
Service (SDL concept): 5
Signal (SDL concept): 6
Specialization (OM notation): 12
Specification and Description Language (SDL): 3
Start notation (SC notation): 16
State Chart diagrams: 34
State Chart notation: 15
State notation (SC notation): 15
System (SDL concept): 5
System diagram, checking: 74
System diagram, print: 72
System file: 34
T

Termination notation (SC notation): 16
Test case (TTCN concept): 17
Test suite (TTCN concept): 17
April 2009 IBM Rational SDL and TTCN Suite 6.3 373

Text documents: 34
Tool overview (SDL Suite and TTCN Suite): 26
Tool overview (SDL Suite): 27
Transition (SC notation): 15
Tree and Tabular Combined Notation (TTCN): 17
TTCN: 17
TTCN language: 17
Types in SDL: 8
U

Unified Modeling notation: 12
Z

Z.100: 3
Z.120: 9
374 IBM Rational SDL and TTCN Suite 6.3 April 2009

	Getting Started
	IBM Rational SDL Suite 6.3
	Copyright Notice
	Introduction
	About this Manual
	Documentation Overview
	Typographic Conventions
	How to Contact Customer Support

	1 Introduction to Languages and Notations
	Benefits of a Specification Language
	General about the SDL Language
	Modularity
	Object Oriented Design
	Graphical and Textual Notations
	Application Areas

	More about SDL
	Theoretical Model
	Structure
	Communication
	Behavior
	Data
	Type Concept

	The Message Sequence Chart Language
	History
	Plain MSC
	High-Level MSC
	Graphical and Textual Notations
	Application Areas

	Object Model Notation
	Class
	Relations and Multiplicity
	Objects

	State Chart Notation
	State
	Transition
	Start and Termination Symbol
	Substates

	ASN.1 – Abstract Syntax Notation One
	The TTCN Notation
	TTCN – Tree and Tabular Combined Notation

	Tool Support
	References

	2 Introduction to the SDL Suite
	About the SDL Suite
	IBM Rational
	The SDL Suite

	Overview of the SDL Suite
	Architecture
	Starting the SDL Suite tools
	Batch Facilities
	Licensing Mechanism
	Common Tools
	The SDL Suite Graphical Tools
	Other SDL Suite Tools and Back-End Facilities

	Information Management
	SDL Diagrams
	MSC Diagrams
	High-Level MSC Diagrams
	Textual SDL and MSC Formats
	Object Model Diagrams
	State Chart Diagrams
	Text Documents
	The System File
	Document Structure
	Options

	The Link File
	Control Unit Files
	Source Management
	Target Management

	PCs and Workstations
	User Interface
	Supported UNIX Systems

	3 Tutorial: The Editors and the Analyzer
	Purpose of This Tutorial
	The Demon Game
	Behavior of the Demon Game

	Starting the SDL Suite
	Some Preparatory Work
	Starting the SDL Suite
	The Organizer Window

	Preferences
	What You Will Learn
	What Are Preferences for?
	Displaying and Changing Preferences
	Help Preferences
	Setting the Default Printer
	Setting the Drawing Area Size
	Saving the Preferences

	Creating an SDL Structure
	What You Will Learn
	Customizing the Organizer Chapters
	Creating a System Diagram
	Adding a Root Node
	Creating the System Diagram
	Customizing the SDL Editor Window
	Placing Block Reference Symbols
	Moving and Resizing Symbols
	Drawing Channels between Blocks
	Drawing Channels to the Environment
	Drawing a Channel from the Environment
	Drawing a Text Symbol
	Resizing the Text Window
	Other Items in the System Diagram

	Saving the Newly Created System Diagram
	Saving the Diagram Structure
	The System File

	More About Saving

	Printing the System Diagram
	What You Will Learn
	How to Print

	Checking the System Diagram
	What You Will Learn
	Running the Analyzer
	Looking for Analysis Errors
	Correcting Analysis Errors
	How to Interpret the Error Message

	Creating a New Block Diagram
	What You Will Learn
	Creating a Block Diagram from the Organizer
	Process Name and Number of Instances
	Signal Routes
	Connection Points

	Editing the Block Diagram
	Using the Signal Dictionary for Individual Signals
	Using the Signal Dictionary for Multiple Signals
	Completing the Diagram

	Working with Multiple Diagrams
	Working with Multiple Windows
	Resulting Organizer View
	Checking the Syntax of the Block Diagram

	Creating a Block Diagram From a Copy
	What You Will Learn
	Creating the Block DemonBlock

	Creating a Process Diagram
	Editing the Process Demon
	What You Will Learn
	Creating the Diagram
	Creating the Left Branch with Grammar Help
	Creating the Right Branch

	Editing the Process Game
	What You Will Learn
	Editing the Start Transition

	Editing the Process Main

	More About the Organizer
	What You Will Learn
	Tree View
	Expand / Collapse
	Rearranging Diagrams
	Diagram Pages
	Printing the System

	Analyzing the Complete System
	What You Will Learn
	Enabling Semantic Analysis

	Managing Message Sequence Charts
	What You Will Learn
	Inserting an MSC into the Organizer
	Editing an MSC
	How to Draw the MSC

	Using the Index Viewer
	What You Will Learn
	Starting the Index Viewer
	Finding a Definition
	Finding References

	So Far...
	Appendix A: The Definition of the SDL-88 DemonGame
	Appendix B: The MSC for the DemonGame

	4 Tutorial: The SDL Simulator
	Purpose of This Tutorial
	Generating and Starting a Simulator
	What You Will Learn
	Generating the Simulator
	Starting the Simulator

	Executing Transition by Transition
	What You Will Learn
	Executing the Start Transitions
	Sending Signals from the Environment

	Viewing the Internal Status
	What You Will Learn
	Restarting the Simulator
	Viewing Process and Signal Queues
	Viewing Variables and Process Instances
	Other Viewing Options

	Dynamic Errors
	What You Will Learn
	Finding a Dynamic Error

	Using Different Trace Values
	What You Will Learn
	Setting Trace Values
	Executing Symbol by Symbol
	Hiding Uninteresting Transitions

	Looking at the External Behavior
	What You Will Learn
	Setting Trace and Signal Logging
	Adding Buttons for Common Commands
	Playing the Game
	Examining the Signal Log File

	Using Breakpoints
	What You Will Learn
	Setting Up the System
	Setting a Symbol Breakpoint
	Setting a Transition Breakpoint

	Changing the System
	What You Will Learn
	Some Preparations
	Creating a Process
	Changing the State of Timers

	Generating Message Sequence Charts
	What You Will Learn
	Initializing the MSC Trace
	Tracing the Execution in the MSC
	Trace-Back to SDL Diagrams
	Ending the MSC Trace

	The Coverage Viewer
	What You Will Learn
	Starting the Coverage Viewer
	Using the Coverage Viewer
	Augmenting the Coverage
	Looking at Coverage Details
	Exiting the Simulator UI

	So Far...

	5 Tutorial: The SDL Explorer
	Purpose of This Tutorial
	Generating and Starting an SDL Explorer
	What You Will Learn
	Quick Start of an SDL Explorer
	Basics of an SDL Explorer

	Navigating in a Behavior Tree
	What You Will Learn
	Setting Up the Exploration
	Using the Navigator

	More Tracing and Viewing Possibilities
	What You Will Learn
	Using the View Commands
	Using MSC Trace
	Going to a State Using Path Commands

	Validating an SDL System
	What You Will Learn
	Performing a Bit State Exploration
	Examining Reports
	Exploring a Larger State Space
	Restricting the State Space
	Checking the Validation Coverage
	Going to a State Using User-Defined Rules
	Performing a Random Walk

	Verifying a Message Sequence Chart
	What You Will Learn
	Verifying a System Level MSC
	Exiting the SDL Explorer UI

	Using Test Values
	What You Will Learn
	Using the Automatic Test Value Generation
	Changing the Test Values Manually
	Exiting the SDL Explorer

	So Far...

	6 Tutorial: Applying SDL- 92 to the DemonGame
	Purpose of This Tutorial
	Applying SDL-92 to the DemonGame
	Some Preparatory Work
	Creating a Process Type from a Process
	What You Will Learn
	Changing into a Process Type
	Inserting Gates and Virtual Transitions
	Editing the Process Type Diagram
	Connecting to the Finished Diagram

	The Organizer Structure

	Redefining the Properties of a Process Type
	What You Will Learn
	The Process Type JackpotGame
	Changes to the Block GameBlock
	Changes to Process Main and System DemonGame
	Simulating the JackpotGame

	Adding Properties to a Process Type
	What You Will Learn
	The Process Type DoubleGame
	Simulating the DoubleGame

	Combining the Properties of Two Process Types
	What You Will Learn
	Working with the Type Viewer
	How to Work-Around the Lack for Multiple Inheritance

	Using Packages and Block Types
	What You Will Learn
	Package – a Reusable Component
	Creating a Package
	Using a Package

	Reusing Packages
	What You will Learn
	The Package AdvancedFeatures
	Block Type AdvancedGameBlock
	Redefined Process Type Main
	Creating the System AdvancedDemonGame

	Conclusion
	More Exercises...
	Appendix: Diagrams for the DemonGame Using Packages

	7 Cmicro Targeting Tutorial
	Prerequisites / Abbreviations Used
	Introduction
	General
	Integrations
	Target Tester Communication

	Prerequisites to the Example
	The Pager System
	Delivered Files

	Targeting
	Preparations - File Structure
	Using the Targeting Expert
	Step 1: Select the Desired Component
	Background Information

	Step 2: Select the Type of Integration
	Background Information
	Edit the Environment File
	Closing the Environment

	Step 3: Configure the Build Process
	Background Information

	Step 4: Make the Component

	Use of the SDL Target Tester
	Differences between SDL Simulator and SDL Target Tester
	Restrictions in this Tutorial
	Background Information

	Testing the Pager System
	Running the SDL Target Tester
	SDL Target Tester Commands

	Run Target EXE without Tester

	8 Tutorial: Using ASN.1 Data Types
	Introduction
	Implementation of ASN.1
	Abstract Syntax
	Transfer Syntax

	Creating the Abstract Syntax
	Adding ASN.1 Modules to your Project
	Importing ASN.1 Modules
	Assigning Values to the Data Types

	Creating the Transfer Syntax
	Introduction
	Environment Functions
	Encoding/Decoding
	Type Nodes
	Make Process

	Generating Template Files - the Organizer
	Editing the Generated Files - the Organizer
	Encoder and Decoder function calls
	Decoding incoming signals

	Generating Template Files - Targeting Expert
	Editing the Generated Files - Targeting Expert

	Compiling Your Application
	Using the edited files - Organizer
	Using the edited files - Targeting Expert

	Running Your Application
	Appendix A

	9 Tutorial: Using SDL�2000 features
	Purpose of this Tutorial
	Introduction
	Support in the SDL Suite
	Why SDL-2000?

	Graphical Design of Data Types
	Class Symbols
	Association and Aggregation Lines
	Association Lines
	Aggregation Lines

	Creating an SDL Structure
	Working with Class Symbols
	Working with Lines
	Moving Symbols and Lines
	Saving the Diagram

	Editing a Diagram
	Case Sensitivity
	Limitations
	Edit the Diagram

	Viewing a Class
	Limitations
	View the Definition

	Textual Algorithms
	Textual Algorithms

	Operators without Parameters and Operators without Return Results
	Limitations
	An Example of Using Class Symbols

	10 Tutorial: Threaded Integration
	Introduction
	Prerequisites
	Windows
	Solaris / Linux

	Description of Example System
	The SDL System
	Functional Description
	Implementation Description

	The Target Application
	Deployment
	The Graphical User Interface
	TCP/IP Communication

	Preparations
	Copy the Example System
	UNIX
	Windows

	Open the System

	Drawing a Deployment Diagram
	What You Will Learn
	Starting the Deployment Editor
	Deploying an SDL System
	The Symbol Details Dialog Box

	Using the Targeting Expert
	What You Will Learn
	Starting the Targeting Expert
	Selecting Target Platform
	Configuring C Code Generation
	Compiling and Linking
	Compiling and Linking the Switch Executable
	Compiling and Linking the MobileStations

	The Target System

	Running the System
	What You Will Learn
	An Overview of the System
	Using the System

