
Telelogic Logiscope

CodeReducer 
- Identifying Code Similarities

Version 6.5



Before using this information, be sure to read the general information under “Notices” section, on 
page 42.

This edition applies to VERSION 6.5, TELELOGIC LOGISCOPE (product number 5724V81) and to all 
subsequent releases and modifications until otherwise indicated in new editions. 
© Copyright IBM Corporation 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP 
Schedule Contract with IBM Corp.

Telelogic Logiscope CodeReducer – Identifying Code Similarities ii



Table of Contents
1. Basic concepts..................................................................................................................................... 3

1.1. Why using Logiscope CodeReducer?..........................................................................................3
1.2. Differences vs. similarities.......................................................................................................... 5
1.3. Search mechanism....................................................................................................................... 6

2. Getting started with Logiscope CodeReducer..................................................................................... 9
2.1. Use Case 1: Reducing code redundancies within a project......................................................... 9
2.2. Use Case 2: Tracking new code in the new version of a project............................................... 20
2.3. Use Case 3: Searching a Reference Code..................................................................................28

3. Command Line Mode........................................................................................................................34
3.1. Logiscope create........................................................................................................................ 34
3.2. Logiscope batch......................................................................................................................... 37

4. Reference Guide................................................................................................................................ 39
4.1. General settings......................................................................................................................... 39
4.2. Display settings..........................................................................................................................41

Telelogic Logiscope CodeReducer – Identifying Code Similarities iii



Telelogic Logiscope CodeReducer – Identifying Code Similarities iv



Telelogic Logiscope

About this manual

Audience
This reference manual in intended for  Telelogic®  Logiscope™  CodeReducer  users 
such  as  software  developers,  project  managers  or  quality  engineers  who  want  to 
identify source code similarities in order to factorize them.

Overview
Section 1 explains the basic concepts of code similarities, and presents several situations 
where enhances control over the source code.

Section 2 focuses on several real life use cases, detailing how the projects are created, 
and the results analyzed.

Section 3 details each parameter and its impact on the search results.

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned from the 
Telelogic Support site to the IBM Rational Software Support site. During this transition 
phase, your product support location depends on your customer history.

Product support
● If you are a heritage customer, meaning you were a Telelogic customer prior to 

November 1, 2008, please visit the Logiscope Support Web site.

Telelogic  customers  will  be  redirected  automatically  to  the  IBM  Rational 
Software Support site after the product information has been migrated.

● If  you are  a  new Rational  customer,  meaning  you did  not  have  Telelogic-
licensed products prior to November 1, 2008, please visit  the  IBM Rational 
Software Support site.

Before you contact Support, gather the background information that you will need 
to describe your problem. When describing a problem to an IBM software support 
specialist,  be  as  specific  as  possible  and  include  all  relevant  background 
information so that the specialist  can help you solve the problem efficiently. To 
save time, know the answers to these questions: 
• What software versions were you running when the problem occurred? 

• Do you have logs, traces, or messages that are related to the problem? 

• Can you reproduce the problem? If so, what steps do you take to reproduce it? 

• Is  there  a  workaround  for  the  problem?  If  so,  be  prepared  to  describe  the 
workaround.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 1



Telelogic Logiscope

Other information 
For  Rational  software  product  news,  events,  and  other  information,  visit  the  IBM 
Rational Software Web site.

 

2  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

1. Basic concepts

1.1. Why using Logiscope CodeReducer?

A few real-life examples ...

When managing projects involving abundant source code, there are situations where an advanced 
comparison tool is required:

– A new version for your software has been developed, based on the previous version.

What proportion of older code has been reused as-is, which one has been modified, and to what  
extent?

– Your development team has to follow coding rules, but also use certain preferred algorithms, 
and avoid others considered non-optimal or unsafe.

How can you ensure that the preferred algorithms have been used (and where), and the 
forbidden ones have not been used?

– A subcontractor just delivered the latest version of a development package.

How can you verify what changes were made since the last version, excluding indentation,  
commentaries, identifiers names and functions order?
How can you detect if some functions have the exact same algorithm as old ones, you already 
paid for?

– A critical defect in a big project has been discovered, and the faulty code is being fixed.

How can you verify if the faulty code appears somewhere else in the project's thousands of files,  
in the same form or a similar one? Unless you fix the problem thoroughly, it is bound to appear 
again and generate another critical defect.

– A project was branched into two entities some years ago, and has now to be merged into a single 
project again.

How can you evaluate the overlapping of the two projects, and plan the merging, factorization 
and modularization?

All these situations can be addressed by Logiscope CodeReducer. 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 3



Telelogic Logiscope

Logiscope CodeReducer's rationale
CodeReducer is a code similarity search tool, that can satisfy different needs:

– Search for all similar pieces of code in a given set of files,

– Search for code similar to a reference code in a given set of files,

– Comparison of source code files,

– Search for differences between two versions of a set of source code files.

In all these situations, CodeReducer identifies similar constructions, and provides you with 
information that can help you factorize and reduce your source code size.

Immediate benefits of this factorization are:

– Reduction of maintenance effort and cost on a smaller source code,

– Reduction of bugs possibilities,

– Improvement of code understandability when similar parts have been factorized,

– Ease of implantation of factorized code in other developments.

In addition, similarities searching allow powerful control on the source code:

– Find what the real modifications are between two versions,

– Look for already developed and tested code, saving effort and money.

4  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

1.2. Differences vs. similarities

Difference tools
Average difference tools are used to list what was removed, added, or left unchanged between two 
files. 

This simple function can be useful when comparing two relatively close versions of a source file, 
but it quickly fails to give useful information on drastically different files, or even files where 
simple structural modifications were performed.

File Header

Block 1

Instruction 1

Block 2

File Header

Block 1

Instruction 3

Block 2
Source file, version 1 Source file, version 2

For example, when comparing version 1 and version 2 of this file, a difference tool will provide the 
following results:

– Both files are identical until the end of Block 1

– Instruction 1 was removed

– Instruction 3 was added

– Block 2 section is unchanged

File Header

Block 1

Instruction 3

Block 2

File Header

Comments 

Block 1

Rewritten Instruction 3

Block 2
Source file, version 2 Source file, version 5

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 5



Telelogic Logiscope

Now suppose that in version 5 of the file from previous example, several modifications were made:

– comments have been added throughout the source code,

– several variables have been renamed,

– “Instruction 3” has been reformatted to improve its readability.

In this situation, a difference tool will list all those modifications, and declare version 2 and version 
5 as different, whereas the code is functionally the same.

Difference tools work well as long as the files are not too different.

Logiscope CodeReducer and similarities
Logiscope CodeReducer is able to compare source code basing its search on similarities, meaning 
code “with the same basis”, but not necessarily identical.

Consider the following source codes:

// Here is a comment
for (i=0;i<5;++i) {

j = j+1;
}

for (j=5;
j<10;
++j) {
// Here is another kind of comment

k = k+1;
}

A source code extract A similar source code extract
 

Similarity comparison is not based on variable names, comments, indentation or code presentation, 
which means that:

– A classical difference tool will find that all lines are different between those two code snippets

– CodeReducer will find that they are fully similar

Logiscope CodeReducer does not look for identical, but similar code.

1.3. Search mechanism
For each supported language, CodeReducer uses a search mechanism based on an internal list of 
tokens.

These tokens are not only the elementary elements, but also the way to manage the search precision.

6  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

Tokens in Logiscope CodeReducer
A token is a structural element (control structure, structure and instructions delimiters, assignments, 
operators).
It is used to build an internal visualization of the source code, which is the basis for similarities 
search.

For all languages, tokens are broken down into categories:

– Category 1  : Control structures (if, else, loops, switch, procedures, packages, classes),

– Category 2  : Blocks (begin, end, {}),

– Category 3  : Assignments,

– Category 4  : Operators (+, -, *,  ...),

– Category 5  : Parenthesis and instructions terminators.

Important note:

Since CodeReducer is a similarities search tool, and not a difference tool, 
identifiers (variable, function names) are not considered as tokens.

Tokens and precisions
CodeReducer associates tokens to a precision: 
– The higher the precision, the more tokens will be considered when looking for similarities.
– A given precision considers all tokens for this precision and lower ones too.

The tokens categories are naturally associated to search precisions.
Category 1 is associated to precision 1, Category 2 to precision 2, etc ...

The search results granularity is linked to the precision:
– Precision 1: Detection of similar algorithms,
– Precision 2: Precision 1 + detection of similar code structure,
– Precision 3: Precision 2 + detection of same number of variables assignments in code blocks,
– Precision 4: Precision 3 + detection of similar expressions,
– Precision 5: Precision 4 + detection of same number of instructions with similar contents.

Notes:

– For all precisions, a code portion can only qualify as similar to another one if it contains at least 
three “Category 1” (or “Precision 1”) tokens.

– Whatever the precision, identifiers are never use to evaluate code similarity.

– For precision 3: the number of assignments are detected, but the associated expressions can 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 7



Telelogic Logiscope

differ.

– For precision 4: similar expressions are detected, but other instructions (like sub-procedure call) 
can appear in the similar code.

– Always remember that raising the precision can reveal similarities that were not visible with a 
lower precision, because the set of tokens associated to different precisions are not subsets one 
of another.

8  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

2. Getting started with Logiscope CodeReducer
The situations described in this section refer to real-life problems to which Logiscope CodeReducer 
provides a solution.

For each problem, a step-by-step explanation will detail how to setup and use Logiscope 
CodeReducer, and how to analyze its results.

Before you start
In this session, you will use examples of source code files provided in the  samples folder of the 
Logiscope installation directory.

As a precaution to keep original files safe, it is recommended to copy the samples subdirectory into 
a working directory of your own. 

In  addition,  you  will  create  Logiscope  projects  and  associated  repositories:  i.e.  sets  of  files 
containing internal data used by Logiscope. It is recommended to a create a dedicated directory to 
store these data: e.g. a folder named Logiscope\CodeReducer.

The examples provided are considered to be on a Windows platform, but they can easily be adapted 
to a UNIX (Solaris or Linux) one.

2.1. Use Case 1: Reducing code redundancies within a project
The project development team has been renewed, and some critical knowledge about the source 
code has been lost in the process.

To avoid starting from scratch, and avoid unnecessary work, the first task is to identify the project's 
redundancies, and factorize them when possible.

In this example, you will use the C language “Mastermind” sample provided with the Logiscope 
standard distribution, and go through all the steps necessary to detect code redundancies.

Step 1: Start a Logiscope Studio Session
To begin a Logiscope Studio session:

On UNIX (i.e. Solaris or Linux):

➢ launch the vcs binary .
-   Start . 

On Windows:

➢ click the  Start button  and select  the  Telelogic  Logiscope <version> item in  Telelogic 
Programs Group.

The  Logiscope  splash  screen  is  first  displayed  and  then  the  Logiscope  Studio main  window 
appears.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 9



Telelogic Logiscope

Step 2: Create a Logiscope project
First, you shall define a Logiscope project which mainly consists in:

• the list of source files to be analysed,

• applicable source code parsing options according to the compilation environment, 

• the verification modules to be activated on the source code files and the associated controls.

➢ In the File menu, select the New... command.

The Logiscope project creation wizard is invoked, and guides you through the process of defining a 
project.

The first dialog box prompts you to define the Project name and  location.

➢ In the Project name: pane, enter the name for the new Logiscope project to be created. In 
the context of the guided tour, type “MastermindSimilaritiesSearch”.

➢ Then select its Location: i.e. the directory where the Logiscope project (i.e. a “.ttp” file) and 
the associated Logiscope repository will be created; the Logiscope repository is a folder in 
which Logiscope internal analysis result files are generated.
You can either keep the proposed default location or enter a the directory you lay have 
prepared as recommended in the Before You Start section: c:\Logiscope\CodeReducer 

Note: By default, the project name is automatically added to the specified location. This 
implies that a subdirectory named <ProjectName> is automatically created.

➢ Validate the project name and location by pressing “OK”.

10  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

The next screen lets you decide what modules are associated to the project, and the language of the 
source files.

➢ Select the Project Language:  i.e. the programming language in which are written the 
source code files to be analysed. 
For the Mastermind project, select C.

➢ Select the Project Modules:  i.e. the verification modules to be activated on the source files 
of the project . 
For the guided tour, select only CodeReducer 

Notes: At least one module should be selected. The TestChecker module cannot be selected 
with another module. 

➢ Validate the project type definition by pressing “Next >”.

• For more details on the QualityChecker and RuleChecker modules, please refer to Telelogic 
Logiscope RuleChecker and QualityChecker Getting Started. 

•
For more details on the  TestChecker module, please refer to Telelogic Logiscope - 
TestChecker Getting Started. 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 11



Telelogic Logiscope

The Project Source Files dialog box allows to specify what source files are to be analysed and 
where they are located.
The sources for this Use Case are located in the samples\C\Mastermind folder of your Logiscope 
installation directory.

➢ Source files root directory:  Browse to select the directory where the “Mastermind” source 
files are located: C:\Program Files\Telelogic\Logiscope_6.5\samples\C\Mastermind.

➢ The Directories choice allows to select the list of repertories covering the application source 
files.

-    Include all subdirectories means that selected files will be searched for in every 
sub-directory of the source file root directory.

-    Do not include subdirectories means that only files included in the application 
directory will be selected.

-   Customize subdirectories to include allows the user to select the list of directories 
that include application files through a new page.

Keep the default setting.

➢ Suffixes choices allow to specify applicable source, header and inline file extensions needed 
in the above selected directories. Extensions shall be separated with a semi-colon.
Keep the default values.

➢ Validate the project name and location by pressing “Next >”.

12  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

The following dialog box allows you to select some key settings of  CodeReducer. They 
significantly impact the nature and number of the similarities found.

➢ Search configuration: Several type of scenarios are proposed according to the type of 
language.
Keep the default choice: i.e. C similar functions

➢ Search options: This section allows to specify the precision: i.e the set of tokens that will 
be considered for identifying similarities in the code.
Keep all default settings.

➢ Validate the CodeReducer Settings by pressing “Next >”.

The following dialog box completes the CodeReducer setting by defining how the similarities 
results should be filtered and displayed.

➢ Sort criteria: Keep the default value: i.e. Sort by similarities length.

➢ In the Result filters: 

○ Check “Show only the top 10 similarities” in order to limit this first investigation to the 
most significant similarities found.

○ Check “Similarities cover at least X tokens” and type the value “20” assuming that you 
only want to display similarities with at least 20 tokens, discarding small similarities that 
would not qualify for a function factorization 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 13



Telelogic Logiscope

➢ Validate the CodeReducer Display Settings by pressing “Next >”.

The final screen summarizes the project main attributes. 

➢ Just click on “Finish” to finalize the creation process.

14  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

Step 3: Build the Logiscope project
Now that the project is fully defined, it can be “built”: i.e. parsing the project source files and 
extract all necessary information to identify code similarities.

➢ To build the project, simply use the appropriate menu item: “Project – Build”.

A  new  Build  tab  is  added  in  the  Output Window next  to  Messages.  Several  messages  are 
displayed while parsing the source files and then loading the data showing that the build process is 
in progress.

As soon as the Project [...] loaded. message is displayed in the Messages tab, the project 
is built i.e. all the source files have been analysed and associted results generated and loaded. 

Step 4: Analyse the code similarities found
After the build is completed, results can be displayed. 

➢ Click on the “Displays CodeReducer Similarities Tree” icon, or choose the “Browse – 
Reducer – Similarities Tree” menu item.

The results are displayed as a dynamic tree, which nodes are associated to all similarities found in 
the project.
Each similarity node contains leaves associated to the location of the occurrences of similarities.

In our example, one similarity has been found, hence producing one node in the tree.
This similarity (called “Similarity-1”):

– is 24 tokens long (which is greater than the 20 tokens limit we specified in the project settings),

– has two occurrences, located in the “player.c” and “machine.c” file.

➢ In the Similarity Tree tab, double-click on the “Similarity-1” node. 

A new window is displayed  showing the two files where a similarity occurrence was found in two 
distinct panes, one for each occurrences involved. The similar code is highlighted in blue.

Here two observations can be done:

– The two similar codes have different comments and line count. This is normal, since similarities 
are not based on presentation attributes.

– Apart from the presentation attributes, the code is very similar, meaning a factorization is 
possible. 
Factorizing the code between these two functions means twice as few possible defects and 
maintenance effort.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 15



Telelogic Logiscope

➢ Click on the <ESC> key to close the window and be back to Logiscope Studio. 

This simple example shows how you can easily look for similarities in a source code in 
order to find factorizable code, and improve the maintainability of the project source files.

Step 5: Change the CodeReducer Settings

The previous results have been obtained with the default settings of CodeReducer. They have been 
tuned for providing quick results. However, the most impressive results on this application are 
obtained with an other search configuration and a different precision level.

➢ Click on the  “Project – Settings... ” menu item.

The Logiscope Settings dialog box is open.  

➢ Select the  “CodeReducer ”tab

You can now change the similarities search configuration to find different type of similar code in 
the application.

➢ In the “Search configuration” sections, select the “C similarities everywhere” scenario,

➢ In the “Search options” sections, select the higher precision level: 5 to get very similar 

16  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

code.

➢ Select now the  “Output”tab. 

➢ In the “Sort criteria” section, select  “sort by number of occurrences”,

➢ Keep  the “Result filters” to focus on the most interesting similarities.

➢ click on  the “OK” button to save the new CodeReducer settings.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 17



Telelogic Logiscope

As the project settings have been changed, the project shall be (re-)built to take into account these 
new configuration. 

➢ Simply use the appropriate menu item: “Project – Build” or click on the corresponding 
icon.

➢ As soon as the build process is finished, refresh the “Similarities” tab by clicking on the 
“Similarities Tree” icon or activate the “Browse – Reducer -  Similarities Tree” menu 
item. 

You can now discover much more similarities in the code than at the function level as shown in the 
previous step .

Indeed, the Similarity-1 corresponds to some code that occurs 6 times in the overall Mastermind 
application. Factorizing this section of code would significantly improve the level of maintainability 
of the source code.  

But the most impressive finding relates to Similarity-2 node where a section of 159 identical tokens 
has been found 3 times in the code by CodeReducer. 

➢ Expand the   Similarity-2 node to locate these 3 occurrences.
 

 

The similarities are all located in the machine.c file and correspond to pieces of code of about 60 
lines of code. 

If you double-click on the “Similarity-2” node to open the corresponding code, you will discover 
that such a similarity may result from a large “Copy -Paste” action ... That is definitively a bad 
coding practice regarding code maintainability requirements. 

CodeReducer helps you to find the code in just a few seconds. However, note that this search 
configuration may require a significant time to complete the analysis for a consequent volume of 
code. 

18  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

Step 6: Generate a report

➢ Click on the “Displays CodeReducer Similarities HTML Report” icon, or choose the 
“Browse – Reducer – Similarities Report” menu item.

An  HTML format is automatically generated where the similarities data are presented in tabular 
form as shown on the next page. You  can browse within to get access to all results.

The report has been saved in the reports.dir folder in the  Logiscope Repository. 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 19



Telelogic Logiscope

2.2. Use Case 2: Tracking new code in the new version of a project
A sub-contractor has delivered a new version for a development package, announcing that the 
whole source code had to be reworked in order to meet the requirements. 

A series of functional tests validated the package, but you would like to verify what the actual 
changes brought by this new version are. 

In this second Use Case, you will use both the C language “Mastermind” and “Mastermind_v2” 
samples provided with Logiscope, and compare these two versions.

The Mastermind_v2 sample is a copy of the Mastermind project, where the following modifications 
have been applied:

– The master.c and master.h files have been renamed newmaster.c and newmaster.h.
The “#include master.h” directives have also been replaced by “#include newmaster.h”

– Likewise, the machine.c and machine.h files have been renamed engine.c and engine.h.
The “#include machine.h” directives have also been replaced by “#include engine.h”

– In the file engine.c:

– the “machine_read_file” function has been renamed “machineReadFile”, and its location in 
the file have been changed,

– the “machine_plays” function has been  renamed “machinePlays”, and its references in all 
the project are updated accordingly.

– In file newMaster.c, all internal variables have now different names

– In file newMaster.h, the constants MAX_TRY, MAX_TRY_MAC, BLACK, WHITE have been 
renamed, impacting several files.

– In file player.c, all comments have been removed, indentation is now different.

– In file util.c, functions are declared in a new order.

– In file score.c, internal variables are now declared in a new order

– In file base.c and base.h, function “format_output” has been renamed “to_screen”, impacting 
227 calls in the project.

–

Step 1: Create a new Logiscope project in an existing Workspace.
When creating a project, Logiscope always associates it to a workspace, with the same name.
So, the previous use case led to the creation of the “MastermindSimilaritiesSearch” workspace, 
which contains the “MastermindSimilaritiesSearch” project.

If you have closed the Logiscope Studio session started in the previous use case. 

➢ Start a new session as in Section 2.1 Step 1

➢ Open the “MastermindSimilaritiesSearch” workspace created while performing the Use 
Case 1 by using either the “File > Open ...” command or the “File > Recent Worspaces ...” 
command. 

Once the workspace is created:

20  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

➢ In the File menu, select the New... command.

The Logiscope project creation wizard starts as already seen in the previous Use Case (see §2.1).

The first dialog box prompts you to define the Project name and  location.

➢ In the Project name:  type MastermindNewVersion.
➢ Then select its Location: : c:\Logiscope\CodeReducer 

But in this context:

➢ Tick the Add to current worskspace option. Indeed to allow comparing two projects, they 
shall be in the same Logiscope workspace.

➢ Validate the project name and location by pressing “OK”.

As explained in section 2.1:

➢ In the Logiscope Project Definition dialog box, select C as the Project Language and 
CodeReducer as the project Module and  Click “Next >”.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 21



Telelogic Logiscope

➢ Validate the project definition by pressing “Next >”.

➢ In the Project Source Files dialog box,   browse to select Source files root directory: i.e. 
the directory where the version 2 of the  “Mastermind” source files are located as the 
C:\Program Files\Telelogic\Logiscope_6.5\samples\C\Mastermind_v2.

➢ Validate by pressing “Next >”.

22  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

In the CodeReducer Settings dialog box:

➢ Search configuration: Select “C similarities everywhere” as you will search for similarities 
every where in the code ... not only similar functions as seen in the first Use Case;

➢ Search options: keep all default options but check the box Compute data for project 
comparison as you definitively want to compare the two project.

➢ Validate by pressing “Next >”.

➢ In the next dialog box, just check the display filter Ignore similarities within the same file

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 23



Telelogic Logiscope

➢ Validate by pressing “Next >”.

➢ In the Logiscope Project Summary screen, just click on “Finish” to finalize the creation 
process.

Note: You also can add a previously created project into the current workspace by selecting it and 
using the contextual menu command “Insert Project ... “. 

Step 2: Build the project
As done in the Use Case 1, you shall now extract the information from the source code files of the 
active project: i.e. the project in bold in the workspace.

➢ Activate the command “Project – Build”.

Step 3: Display the results
After the build is completed, the projects comparison results can be displayed and interpreted.

➢ Click on the “Displays CodeReducer Project Comparison Tree”, or choose the “Browse – 
Reducer – Projects Comparison” menu item.

Results are displayed as a dynamic tree, project comparison creates two kinds of nodes:

– Homonymous:
These nodes are associated to files having the same name in both projects. They are broken 
down into three categories:

– Strictly identical files,

– Files only different because of additional comments or spaces,

– Similar files, within a given similarity ratio,

24  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

– Other:
These are files that do not have the same name, but contain similar code.

In the example, there are no more fully identical files between the two versions, nor any 
different because of different comments and spaces.

All files are just similar.

As shown in the above result window, even if some files have been modified, Logiscope 
CodeReducer indicates a similarity ratio of 100% for homonymous files, as well as for some files 
with different names. This means that:

– All homonymous files are structurally identical, no functional modification was actually 
made,

– The “Other”: i.e. not homonymous files result show that “newmaster.c” and “master.c” are 
identical, as well as “machine.c” and “engine.c”

With a single build on the project, you reach the conclusion that the new version is exactly similar 
to the previous one.

Logiscope CodeReducer found that

the new version has the same functional source code as the previous version.

As a matter of fact, if you had compared all files in pairs with a traditional “difference tool”, you 
would have (after some manual processing time) reached a rather different conclusion.

A “difference tool” found that

all files from the new version have different source code from the previous one.

Note: In the Tree tab, double-clicking on any Similarity node will display an overview of the 
similarity occurrences, as shown in Use Case 1

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 25



Telelogic Logiscope

Step 5: Generate a report

➢ Click on the  “Displays CodeReducer Projects Comparison HTML Report” icon, or choose 
the “Browse – Reducer – Projects Comparison Report” menu item.

The result is displayed in HTML format, and the project comparison summary is presented in 
tabular form.

➢ On the left frame, click on   “More than 80% similar” menu item.

The list of corresponding files is now displayed as shown on the next page.

This example shows the capabilities of Logiscope CodeReducer when looking for functional 
differences between two versions of the same project.

  

26  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 27



Telelogic Logiscope

2.3. Use Case 3: Searching a Reference Code
A particular algorithm used in your product has been rewritten.

You would like to check if other parts of the product are using the same old algorithm, and replace 
them by the new version.

In this example, you will reuse the project defined in Use Case 1.

Step 1: Modify project settings
➢ In the File View tab select  the project  MastermindSimilaritiesSearch and activate the 

contextual menu command “Set as Active project”.

➢ Activate the command  “Project – Settings”.

➢ Click on the “CodeReducer” tab.

All CodeReducer Settings can be modified for a new search for instance using a different precision 
level or a new scenario.

➢ In Search configuration; select the “C similarities everywhere” scenario.

28  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

➢ Click now on the “Output” tab.

The CodeReducer Display Settings can also be modified:

➢ In Sort criteria: select the “sort by number of similarities in sequences” option.

➢ Uncheck all Result filters, if any.

➢ Click “Ok” to validate the modifications.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 29



Telelogic Logiscope

Step 2: Rebuild the project
Now that the settings have been altered, the project has to be built again, so that these new 
parameters values are taken into account.

➢ Activate the command “Project – Build”.

Step 3: Look for reference code
After the build is completed, looking for a reference source code is fairly easy.

Suppose you have to modify the code in file “player.c”, at line 22, so that the 'if' structure nested in 
the 'for' loop is followed by an 'else' statement.
  for (x = 0; x < 4; x++)
    if (guesses[cur].pegs[x].color == code.pegs[x].color)
      {

/* guess color = code color */
code.pegs[x].used = guesses[cur].pegs[x].used = BLACK;
guesses[cur].blacks++;
PDEBUG(0,guesses[cur].blacks);
printf("b");

      }
Original code

  for (x = 0; x < 4; x++)
{
    if (guesses[cur].pegs[x].color == code.pegs[x].color)

      {
/* guess color = code color */
code.pegs[x].used = guesses[cur].pegs[x].used = BLACK;
PDEBUG(0,guesses[cur].blacks);
guesses[cur].blacks++;
printf("b");

} else 
{

printf(“'if' condition failed for loop index %d”, x);
}

      }
Code after modification (added code is in red boldface)

The problem here is to look for other similar “if nested in a for loop” structures in the project.
This search is achieved in two steps:

30  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

1. Identify the reference code

2. Look for similar code

➢ To identify the reference code: simply select the code in file player.c, from line 22 to 30.

➢ To look for similar code, click on the “Searching code similar to selected one”, or choose 
the “Browse – Reducer – Searching Code” menu item.

Results are displayed as a dynamic tree, which nodes are associated to all occurrences of similar 
code portions found in the project.

In our example six similar portions of code were found, hence producing six nodes in the tree:

➢ In the Tree tab, double-click on the “Similar pieces of code” root to display an overview of 
the similarity occurrences.

.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 31



Telelogic Logiscope

This overview shows the first five code portions similar to the reference code.

To access to each one of the similar code portions, just click on its associated node in the result tree.
For example, clicking on the tree's first node displays the following window:

32  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

Now that all source code similar to the reference have been found, you can modify them as needed.

Conclusion
This example showed how one can pinpoint code similar to a given reference in two easy steps, 
allowing effortless propagation of an algorithm modification.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 33



Telelogic Logiscope

3. Command Line Mode

3.1. Logiscope create
Logiscope projects: i.e. “.ttp” file are usually built using Logiscope Studio as described in chapter 
Project Settings or in the Logiscope RuleChecker & QualityChecker Getting Started documentation.

The logiscope create tool builds Logiscope projects from a standalone command line or within 
makefiles (replacing the compiler command) .

Command Line Mode
When started from a standard command line, The create tool creates a new project file with the 
information provided on the command line.

For a complete description of the command line options, please refer to the Command Line Options 
paragraph.

When used in this mode, there are two different ways for providing the files to be included into the 
project:

Automatic search
This is the default mode where the tool automatically searches the files in the directories.

Key options having effect on this modes are:

-root <root_dir> : the root directory where the tool will start the search for source files. This 
option is not mandatory, and if omitted the default is to start the search in the current directory.

-recurse : if present indicates to the tool that the search for source files has to be recursive, 
meaning that the tool will also search the subdirectories of the root directory.

File list
In this mode, the tool will look for the –list option which has to be followed by a file name. This 
provided file contains a list of files to be included into the project. The file shall contain one 
filename per line.

Example: Assuming a file named filelist.lst containing the 3 following lines: 
/users/logiscope/samples/C/mstrmind/master.c
/users/logiscope/samples/C/mstrmind/player.c
/users/logiscope/samples/C/mstrmind/machine.c

Using the command line: 
create aProject.ttp -rule -reducer –lang c –list filelist.lst
will create a new Logiscope  C project file named aProject.ttp containing 3 files: master.c, player.c 

34  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

and machine.c on which RuleChecker and CodeReducer modules will be activated.

Makefile Mode
When launched from makefiles, create is designed to intercept the command line usually passed to 
the compiler and uses the arguments to build the Logiscope project.

The project makefiles must be  modified in order to launch  create  instead of the compiler. In this 
mode, the name of the project file (“.ttp” file) has to be an absolute path, otherwise the process will 
stop.

When used inside a Makefile, create uses the same options as in command line mode, except for:

-root, -recurse, -list : which are not available in this mode

-- : which introduces the compiler command.

The following lines can be introduced in a Makefile to build a Logiscope project file :
CREATE=create /users/projects/myProject.ttp -rule -reducer –lang c
CC=$(CREATE) -- gcc
CPP=$(CC) -E
...

In this mode, the project file building process is as follows:

1. create is invoked for each file by the make utility, instead of the compiler.

2. When create is invoked for a file it adds the file to the project, with appropriate 
preprocessor options if any, then Create starts the normal compilation command which will 
ensure that the normal build process will continue.

3. At the end of the make process, the Logiscope project is completed and can be used either 
using Logiscope Studio or with the batch tool (see next section).

Note: Before executing the makefile, first clean the environment in order to force a full  
rebuild and to ensure that the create will catch all files.

Options
The create options are the following:

create -lang c

<ttp_file> name of a Logiscope project to be created
(with the .ttp extension).
Path has to be absolute if the option -- is used.

[-root <directory>] where <directory> is the starting point of the
source search. Default is the current directory.
This option is exclusive with -list option.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 35



Telelogic Logiscope

[-recurse] if present the source file search is done recursively in
subfolders.  

[-list <list_file>] where <list_file> is the name of a file containing the list 
of filenames to add to the project (one file per line).
This option is exclusive with -root option.

[-repository <directory>] where <directory> is the name of the directory where
Logiscope internal files will be stored.

[-source <suffixes>] where <suffixes> is the list of accepted suffixes for 
source file to be placed in project folder "Source Files"
(default is "*.c;*.C")

[-no_compilation] avoid compiling the files if the -- option is used 

[--] when used in a makefile, introduces the compilation
command with its arguments.

-reducer to select the CodeReducer verification module

[-precision <value>] where <value> is the desired precision for similarities 
search. Accepted value is an integer between 1 and 5.

[-percent <value>] where <value> is the desired percentage of similarities to 
retain files. 
Accepted value is an integer between 0 and 100.

[-multi] if present, project comparison will be activated when the 
current project is part of a workspace containing two 
projects.

[-config <config-id>] where <config-id> is the identifier of one of the 
configuration available for the current language.
Possible values are 
- (c-function | c-everywhere ) for C language
- (cpp-class | cpp-function | cpp-everywhere ) for C++ 

language
- (java-class | java-package | java-function | 
java-everywhere ) for Java language
- (ada-package | ada-function | ada-everywhere ) for Ada 

language

[-sort <sort-id>] where <sort-id> is the identifier of one of the sort 
algorithm available. 
Possible values are (nb-occur | length).

[-filter <filter-id>]* where <filter-id> is the identifier of one of the filter 
algorithm available. 
Possible values are (percent-a-file | top-10 | percent-file | 
length | same-file ).

[-percent-a-file <filter-value>] where <filter-value> is the integer value for the 
'percent-a-file' filter.

[-percent-file <filter-value>] where <filter-value> is the integer value for the 

36  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

'percent-file' filter.

[-length <filter-value>] where <filter-value> is the integer value for the 
'length' filter.

3.2. Logiscope batch
Logiscope batch is a tool designed to work with Logiscope in command line to: 

● parse the source code files specified in a Logiscope project: i.e. “.ttp” file,

● generate reports in HTML and/or CSV format automatically.

Note that before using batch, a  Logiscope project shall have been created:

● using Logiscope  Studio, refer refer to Section 1 or to  Telelogic Logiscope RuleChecker  & 
QualityChecker Getting Started documentation,

● or using Logiscope create, refer to the previous section.

Once the Logiscope project  is created, batch is ready to use.

Options
The batch command line options are the following:

batch

<ttp_file> name of a Logiscope project.

[-tcl <tcl_file>] name of a Tcl script to be used to generate the 
reports instead of the default Tcl scripts.

[-o <output_directory>] directory where the all reports are generated.

[-external <violation_file>]* name of the file to be added into the import project 
folder.
This option can be repeated as many times as 
needed. 
This option is only significant for RuleChecker 
module for which the external violation importation
mechanism is activated 

[-nobuild] generate reports without rebuilding the project. 
The project must have been built at least once 
previously.

[-clean] before starting the build, the Logiscope build 
mechanism removes all intermediate files and 
empties the import project folder when the external 
violation importation mechanism is activated.

[-addin <addin> options] where addin nis the name of the addin to be 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 37



Telelogic Logiscope

activated and options the associated options 
generating the reports. 

[-table] generate tables in predefined html reports instead of 
slices or charts. By default, slices or charts are 
generated (depending on the project type).
This option is available only on Windows as on 
Unix there are no slices or charts, only tables are 
generated.
This option is only significant for RuleChecker 
module

[-noframe] generate reports with no left frame.

[-v] display the version of the batch tool.

[-h] display help and options for batch.

[-err <log_err_folder>] directory where troubleshooting files batch.err and 
batch.out should be put. By default, messages are 
directed to standard output and error.

Examples of use
Considering a previously created Logiscope project named MyProject.ttp where:  

● RuleChecker, QualityChecker and CodeReducer verification modules have been activated,

● the  Logiscope Repository is  located in the folder MyProject/Logiscope, 

(Refer to the previous section or to the RuleChecker  & QualityChecker Getting Started
documentation to learn how creating a Logiscope project).  

Executing the command on a command line or in a script:
batch MyProject.ttp
will:

● perform the parsing of  all source files specified in the Logiscope project MyProject.ttp,

● run the standard TCL script QualityReport.tcl located in <log_install_dir>/Scripts to 
generate the standard  QualityChecker HTML report named MyProjectquality.html in the 
default  MyProject/Logiscope/reports.dir  folder.

● run the standard TCL script RuleReport.tcl located in <log_install_dir>/Scripts to generate 
the standard RuleChecker HTML report named MyProjectrule.html in the default 
MyProject/Logiscope/reports.dir  folder.

● run the standard TCL script Reducer_report.tcl located in <log_install_dir>/Scripts to 
generate the standard CodeReducer HTML reports named testfilescomparison.html and 
testsimilarities.html in the default MyProject/Logiscope/reports.dir  folder.

38  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

4. Reference Guide
This section lists all CodeReducer parameters, with their values and effects.

Important note: 

Whenever a parameter is changed, 
the project must be rebuilt to take it into account.

This means that if you change a parameter, and don't rebuild the project, the displayed results will 
be those of the previous parameters values.

4.1. General settings

Search configuration
All project configurations are based on the same assumption:
To be even considered by the search engine, a code portion must contains at least three “Category 
1” tokens, and additional tokens depending on the search precision level.

This parameter has an effect on the search algorithm's scope, as described below.

Search configuration
Value Effect on the search algorithm's scope
C similar functions Scopes are associated to each function source code.
C similarities everywhere This thorough (and thus longer) search mode bases its search on 

the whole source code.
Java similar packages Scopes are associated to each package source code.
Java similar classes Scopes are associated to each class source code.
Java similar functions See “C similar functions”.
Java similarities everywhere See “C similarities everywhere”.
C++ similar classes See “Java similar classes”.

Note: This search mode only applies to the classes definitions.
C++ similar functions See “C similar functions”.
C++ similarities everywhere See “C similarities everywhere”.
Ada similar packages See “Java similar packages”.
Ada similar procedures Scopes are associated to each procedure source code.
Ada similarities everywhere See “C similarities everywhere”.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 39



Telelogic Logiscope

Search options
Precision

Value Effect
1 to 5

(default is 3)

The precision determines which kind of tokens the search 
algorithm must consider when looking for similarities.

Choosing a lower or higher precision will produce a coarse-
grained or fine-grained result, respectively.

Computes data for projects comparison
Value Effect
Checked or unchecked (default) If checked, data necessary for project comparison will be 

produced when building the project.
Note about projects comparison:

– To activate the projects comparison feature, the workspace must contain two projects exactly,

– You should only check this parameter for one of the projects only, or the search will be 
performed twice,

– When building the project in which this parameter is checked, CodeReducer will compare both 
projects, and provide similarity results between projects.

% of similarities at least between files
Value Effect
Between 0 and 100 

(default is 80)

This threshold is the percentage of similarities two files must 
reach to be considered similar.

This parameter only has effect on the file and project comparison 
features, not on the “Display similarities” feature.

40  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

4.2. Display settings

Sort criteria
Sort criteria

Value Effect
Sort on number of similarities 
for sequences (default)

This sort option will order the similarities by counting the 
number of times the similar code portion has been found.

Sort on similarities length This sort option orders the similarities by counting the number of 
tokens they contain.

Result filters
Result filters

Value Effect
Similarities are at least x% of 
one file

For a similarity to be added to the result, it must contain at least 
x% of tokens in at least one of the files it appears in.

Similarities are at least x% of 
each file

For a similarity to be added to the result, it must contain at least 
x% of tokens in each files it appears in.

Shows only the top 10 Restricts the number of results to the ten most relevant ones.
Similarities are at least X 
tokens

Similarities must be at least X tokens long to be added to the 
result.

The higher this threshold is, the fewer similarities will be found.
Ignore similarities when limited 
to only one file

Discard similarities that were found within the same file.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 41



Telelogic Logiscope

Notices

This information was developed for products and services offered in the U.S.A. 
IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this 
document  in  other  countries.  Consult  your  local  IBM  representative  for 
information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or 
imply  that  only  that  IBM  product,  program,  or  service  may  be  used.  Any 
functionally equivalent product, program, or service that does not infringe any 
IBM intellectual property right may be used instead. However, it is the user's 
responsibility  to  evaluate  and verify  the operation of  any  non-IBM product, 
program, or service. 
IBM may have patents or pending patent applications covering subject matter 
described in this document. The furnishing of this document does not grant you 
any license to these patents. You can send written license inquiries to: 

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A. 

For license inquiries regarding double-byte character set (DBCS) information, 
contact  the  IBM Intellectual  Property  Department  in  your  country  or  send 
written inquiries to: 

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan 

The following paragraph does not apply to the United Kingdom or any 
other  country  where  such  provisions  are  inconsistent  with  local  law: 
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 
THE  IMPLIED  WARRANTIES  OF  NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
Some  states  do  not  allow disclaimer  of  express  or  implied  warranties  in 
certain transactions. Therefore, this statement may not apply to you. 
This information could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will 
be  incorporated  in  new  editions  of  the  publication.  IBM  may  make 
improvements  and/or  changes  in  the  product(s)  and/or  the  program(s) 
described in this publication at any time without notice. 
Any references in this information to non-IBM Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of those 
Web sites. The materials at those Web sites are not part of the materials for 

42  Telelogic Logiscope CodeReducer – Identifying Code Similarities



Telelogic Logiscope

this IBM product and use of those Web sites is at your own risk. 
IBM may use or distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation to you. 
Licensees of  this  program who wish to  have information about  it  for  the 
purpose of enabling: (i) the exchange of information between independently 
created programs and other programs (including this one) and (ii) the mutual 
use of the information which has been exchanged, should contact: 

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and 
conditions, including in some cases, payment of a fee. 
The licensed program described in this document and all licensed material 
available  for  it  are  provided  by IBM under  terms  of  the  IBM Customer 
Agreement, IBM International Program License Agreement or any equivalent 
agreement between us. 
Any  performance  data  contained  herein  was  determined  in  a  controlled 
environment. Therefore, the results obtained in other operating environments 
may  vary  significantly.  Some  measurements  may  have  been  made  on 
development-level systems and there is no guarantee that these measurements 
will  be  the  same  on  generally  available  systems.  Furthermore,  some 
measurements may have been estimated through extrapolation. Actual results 
may vary. Users of this document should verify the applicable data for their 
specific environment. 
Information concerning non-IBM products was obtained from the suppliers of 
those  products,  their  published  announcements  or  other  publicly available 
sources. IBM has not tested those products and cannot confirm the accuracy 
of  performance,  compatibility  or  any  other  claims  related  to  non-IBM 
products.  Questions  on  the  capabilities  of  non-IBM  products  should  be 
addressed to the suppliers of those products.
This information contains examples of data and reports used in daily business 
operations. To illustrate them as completely as possible, the examples include 
the  names  of  individuals,  companies,  brands,  and  products.  All  of  these 
names are fictitious and any similarity to the names and addresses used by an 
actual business enterprise is entirely coincidental. 
If  you are  viewing  this  information  softcopy,  the  photographs  and  color 
illustrations may not appear. 

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 43



Telelogic Logiscope

Copyright license
This information contains sample application programs in source language, 
which illustrate programming techniques on various operating platforms. You 
may copy, modify, and distribute these sample programs in any form without 
payment  to  IBM,  for  the  purposes  of  developing,  using,  marketing  or 
distributing application programs conforming to the application programming 
interface  for  the  operating  platform  for  which  the  sample  programs  are 
written. These examples have not been thoroughly tested under all conditions. 
IBM,  therefore,  cannot  guarantee  or  imply  reliability,  serviceability,  or 
function of these programs. 
Each copy or any portion of these sample programs or any derivative work, 
must include a copyright notice as follows: 
© (your company name) (year). Portions of this code are derived from IBM 
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. 

Trademarks

IBM,  the  IBM  logo,  ibm.com,  Telelogic,  Telelogic  Synergy,  Telelogic  Change, 
Telelogic  DOORS,  Telelogic  Tau,  Telelogic  DocExpress,  Telelogic  Rhapsody, 
Telelogic  Statemate,  and  Telelogic  System  Architect  are  trademarks  or  registered 
trademarks of International Business Machines Corporation in the United States, other 
countries, or both, are trademarks of Telelogic, an IBM Company, in the United States, 
other countries, or both. These and other IBM trademarked terms are marked on their 
first occurrence in this information with the appropriate symbol (® or ™), indicating US 
registered or common law trademarks owned by IBM at the time this information was 
published. Such trademarks may also be registered or common law trademarks in other 
countries. A current list of IBM trademarks is available on the Web at

 www.ibm.com/legal/copytrade.html.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, FrameMaker, and PostScript  are 
trademarks of Adobe Systems Incorporated or its subsidiaries and may be registered in 
certain jurisdictions.

AIX and Informix  are  trademarks  or  registered trademarks  of  International  Business 
Machines Corporation in the United States, other countries, or both.

HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. 
in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Macrovision  and  FLEXnet  are  registered  trademarks  or  trademarks  of  Macrovision 
Corporation.

Microsoft,  Windows,  Windows  2003,  Windows  XP,  Windows  Vista  and/or  other 
Microsoft products referenced herein are either trademarks or registered trademarks of 

44  Telelogic Logiscope CodeReducer – Identifying Code Similarities

http://www.ibm.com/legal/copytrade.html


Telelogic Logiscope

Microsoft Corporation.

Netscape  and  Netscape  Enterprise  Server  are  registered  trademarks  of  Netscape 
Communications Corporation in the United States and other countries.

Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks of 
Sun Microsystems, Inc. in the United States and other countries.

Pentium is a trademark of Intel Corporation.

UNIX is  a registered trademark of The Open Group in  the United States and other 
countries.

Other company, product or service names may be trademarks or service marks of others.

 Telelogic Logiscope CodeReducer – Identifying Code Similarities 45


	1. Basic concepts
	1.1. Why using Logiscope CodeReducer?
	1.2. Differences vs. similarities
	1.3. Search mechanism

	2. Getting started with Logiscope CodeReducer
	2.1. Use Case 1: Reducing code redundancies within a project
	2.2. Use Case 2: Tracking new code in the new version of a project
	2.3. Use Case 3: Searching a Reference Code

	3. Command Line Mode
	3.1. Logiscope create
	3.2. Logiscope batch

	4. Reference Guide
	4.1. General settings
	4.2. Display settings


