
Quality, on Time

By Aki Fujimura,
Chief Technology Officer,
New Business Incubation,
Cadence Design Systems, Inc.

A technical discussion on Quality on Time
November, 2003

A technical discussion on Quality on Time
2

Table of Contents

Background..2

Deliver Quality, on Time3

Schedule Is a Probability Distribution3

The Multiplying Probabilities5

One Poor Quality Release9

Software Projects Are Special10

Releasing Quality Software, on Time12

Put Quality First13

Adhere to the Schedule..........................13

Only the Beginning15

Conclusion ..15

About the Author17

How is it that a group of talented, highly motivated, hard working software

engineers consistently produce low-quality software, late? It is the author's view

that schedule management and quality management go hand in hand. This paper

discusses the notion that schedules are probability distributions, and presents

several, practical quality and schedule management techniques.

Background

Software is everywhere these days. Cellular phones, automobiles, dishwashers,

telephone switches, credit card transactions, stock trading, power plants, medical

equipment, packaged software—the world relies on software. And the quality of

everything around us depends upon software quality. The time-to-market for

everything around us depends on timely delivery of software components.

Yet somehow, delivering quality software on time seems to be an impossible task.

Some managers have given up on the notion entirely. They just do "the best they

can." Other managers make a choice between delivering quality and delivering on

time.

For many, the decision is clear: "Quality is important, but I have to deliver

something to the customer ASAP." The customer is willing to tolerate poor quality

and to "work with the vendor" on quality issues.

For some managers, it is the other way around: "Quality cannot be sacrificed at

any cost. The cost of failure is so high that we must take the time to get it right."

These managers care about the right issues, but they soon find that it is difficult to

achieve software quality efficiently. Time-to-market suffers. The competition

releases poor quality software, with greater functionality, earlier. Projected revenue

shortfalls create pressure to release the new product. It is only the most disciplined

organizations that can withstand that pressure and maintain the quality-first

attitude and behavior.

Managing Legacy Integration with IBM Rational Software
3

Deliver Quality, on Time

The only answer to the software quality dilemma is delivering a fit-for-use

product, on time. This involves three steps:

• Quality first: value it, act on it, measure it, and improve it
• Implement the Must-Should-Could technique for schedule management
• Automate software quality to improve phase containment

The first and third steps are discussed widely in many forums; this paper

concentrates on the second step.

Schedule Is a Probability Distribution

The IBM Rational engineering initiative, Quality by Design, referred to in the first

step, enhances the abilities of architects, analysts, developers, testers and

project leads to improve the quality of their work.

Properly managing a project's schedule further improves the ability of the team

to deliver fit-for-use products, on time. First, we must understand the complexity

of the software schedule management problem. The odds are against us!

Most people think of schedule milestones as static dates. Achieving the goal

early would be interpreted as bad scheduling; being late is seen as poor

execution. We must understand that a project schedule milestone is a probability

distribution.

Figure 1 depicts a normal distribution for a schedule milestone. There is no

single date of which one can say, "I am 100% sure that the project will be done

by this date."

Managing Legacy Integration with IBM Rational Software
4

Figure 1. Normal distribution of a schedule milestone

The notion that it is possible to name a date that can be met with certainty is an

approximation of reality. This approximation leads to great misunderstanding and

mismanagement, especially in larger projects.

Figure 2. Most people's view of a deadline

Figure 2 depicts the probability distribution as described by a typical project

engineer for any arbitrary deadline. In an astonishingly high percentage of

software projects, the response is: "There's zero percent chance that we'll be

done a day early, but I think I can make the deadline."

Probability of
Achieving Milestone

Milestone

Time

Probability of
Achieving Milestone

Target Date

Time

Managing Legacy Integration with IBM Rational Software
5

In reality, nothing has a distribution curve like the one in Figure 2. The real

distribution is more like the one in Figure 3.

Figure 3. Reality of how people schedule under pressure

Since most well meaning, hard working engineers give the first conceivable

deadline as the due date, it is most likely that the probability of meeting that date

is less than 20%. What the engineer is really saying is, "It's a 20% schedule, but

I'll make it an 80% schedule through sheer determination and hard work." What

we ought to strive for is an 80% probability schedule, where the probability of

finishing early is greater than the probability of finishing late. Yet getting 80%

schedules from every individual is a difficult task.

Successful software organizations grow. As the customer base and the software

infrastructure surrounding it matures, products become subproducts of larger

entities. The integrated whole becomes the goal rather than the individual tools.

At this stage, software organizations, regardless of talent and track record, often

stumble. This is because even 80% schedules don't scale in larger projects.

The Multiplying Probabilities

Let us take a look at a ten-person software project with a six month

development schedule. The product is entering version 3.0, a significant

enhancement over version 2.0 released last year. The motivated and hard

working engineers are talented graduates of top schools. The seasoned

manager understands the technology and is well aware of the competitive

threats. She works well with the marketing department and the customers to

define the new version. Simultaneously, she works with the engineers to extend

the product architecture, define numerous programming tasks, minimize

interdependencies and interfaces, and produces a bottoms-up, 80% schedule

that matches customer expectations.

Probability of
Achieving Milestone

Possible Date

20% Chance

Time

Managing Legacy Integration with IBM Rational Software
6

Each person in the group is assigned several tasks over the six months. The

manager works hard to fit in every feature she can and still make the scheduled

deadline. The schedule takes into consideration vacations, holidays, and other

anticipated time off. Every one of the tasks must be completed before the project

is considered successful.

In most software projects, team members work on projects largely independently

from each other. Managers try to ensure that this is the case. Also, particularly in

successful and fast growing organizations, the tasks assigned to each individual

require that particular individual to complete the work. Last minute reassignment

is typically not possible, either because of lack of expertise or ownership

reasons. For the sake of simplicity, we will assume that the probability of Andy

making his six-month schedule is independent of the probability of anyone else

making their schedules. This situation is illustrated in Figure 4.

Figure 4. Multiplying probabilities in a multi-person project

For a ten person team, the probability of this software project being on time is

thus 80% multiplied by 80% multiplied by... and so on, 10 times. Before the

project even starts, we know the probability that every task on the schedule will

be completed before the deadline is only 10.7%!

If schedule reliability is the paramount issue, then the manager can insist on

99% schedules from each individual. But this will produce an unacceptably long

schedule and will not even be sufficient to overcome the multiplying probabilities

for large projects. For example, a 99% schedule produced by a team of 100

engineers makes for only a 37% chance of meeting the overall schedule. We

Milestone

Andy

Beth

Clyde

Denise

On-time Probability (10 person = 10%)
(20 person = 1%)

80%

80%

80%

80%

Managing Legacy Integration with IBM Rational Software
7

should recall that most people actually make 20% schedules and hope to make

up the rest with sheer determination and hard work.

Scheduling to 20% and working more to make up the rest can at best produce

80% schedules, but never a 99% schedule.

Figure 5. Someone is late

Lacking an alternative, our example project proceeds on the 80% plan.

Inevitably, someone in the project is late. It is not because someone is

inexperienced, incompetent, or lazy. Simply by the law of probability, someone

will be late. What happens then, in a typical software project is that the team and

the manager recognize an opportunity to turn the delay into a benefit for the

customers. Everyone else has to wait for the person who is late anyway. There

are plenty of small additional tasks that can enhance this release. The well-

intentioned manager reschedules the release and fills everyone's plate to the

maximum extent possible. But the manager knows the value of quality. So with

the help of the Quality Assurance manager, she slips the final release date line

early with the development schedule to ensure ample time for system testing,

documentation, and release engineering (Figure 6).

Milestone Release

Andy

Beth

Clyde

Denise

QA

DOC

REL

Managing Legacy Integration with IBM Rational Software
8

Figure 6. Project is rescheduled to get the most done given the delay

Of course, the multiplying probabilities are still in effect in this newly rescheduled

project. Someone is late again. It may be the same person. It may be someone

different. Even if everyone were equally competent and equally hard working,

the law of probability is against everyone completing on time.

Once again, there is a need to reschedule. But this time, things are a little

different. It has been a while since the start of the project when the product was

defined. New operating systems have been released. Better hardware has

become available. Competition has created new demands on the feature set.

Customers have seen what is possible and have become more demanding.

There has been a reorganization in the division, and the new general manager

wants a different kind of release than was originally planned.

So this time, a fairly massive rescheduling is done. This release is slightly

different from the original plan, but it is better and more in line with today's

requirements. Of course, the schedule pressure is greater than ever. Everyone

is called upon to put in 110%. Everyone's schedule is filled to the last day with

new tasks. Everyone is excited about the new charter. The engineers are happy

to work on new things rather than working to perfect the last 20% of their earlier

tasks. Everyone feels good and charges ahead. But someone is late again. No

one is at fault. Everyone tried hard. But the law of probability wins again, and

someone is late.

Andy

Beth

Clyde

Denise

QA

DOC

REL

Milestone Old Release
New Date New Release

Try to get more done

Managing Legacy Integration with IBM Rational Software
9

Unlike last time, however, all the good intentions to put quality first cannot win

against the need to release version 3.0. There may be revenue pressures. There

may be customer organizations questioning "make or buy." There may be the

board of directors getting tired of hearing about yet another delay. There may be

pressure from the press and the analyst community. In any case, releasing the

software becomes more important than giving the back-end processes ample

time to assure quality. The "back-end squeeze" occurs, and the quality of the

product suffers.

In addition, the constant reprioritization and schedule slips have consistently

delayed full testing of any of the functions. The proverbial "last 20% that takes

80% of the effort" has accumulated throughout the multiple schedule delays.

Without the discipline and the rigor of the release process, the quality of the

software continues to decline to the point where recovery takes tremendous

energy and effort. Because the tedious "last 20%" work accumulates at the end,

engineering morale quickly decays in long hard hours of debugging and rework.

Even when the product is released, the work is not over. If the product is

released without adequate testing, it can contain obvious flaws created in the

last minute rush and inconsistencies from changing product goals during the

development cycle. It doesn't serve any one customer particularly well. It has

low reliability. Performance characterization hasn't even begun to be a priority.

And it is late.

One Poor Quality Release

The entire software organization is now in trouble. Every single department will

slowly decline in productivity, increase in cost, and stop innovating. The

customer support organization suffers first. The call rate triples. What used to be

"I love the software" now becomes "Did you test it before you gave it to us? Do

you know that it took me three tries in four hours to reach you?" Morale of the

group plummets, and product knowledge declines as people get burned out.

Trust is fragile. A broken trust caused by late delivery or poor quality is very

difficult to mend. The pride in representing the organization declines rapidly.

The development organization feels the pain. Minor releases are required more

frequently now. For every bug found by a customer, there is tremendous

A technical discussion on Quality on Time
10

overhead. Not only must the bug be fixed, tested, and released, but

workarounds must be found and delivered. The workaround and the eventual fix

must be documented. Every support person must be educated on each fix. And

with every fix, the customer needs hand-holding.

The next release must be built, but the last release still needs attention. Even

the parts that are working have temporary "hacks" that the engineers know

"have to be rewritten." The code was developed at tremendous speed during the

release because it was written in a highly personalized way. It wasn't written for

someone else to understand it; that would have taken much more time than the

business conditions allowed. The managers have a tough choice: either keep

their best people on the maintenance task, or have them spend their time

training others on their code. In the pressure of "the customer needs the fix

tomorrow," it is rarely possible to train others.

What was once a thriving and innovative organization turns into a typical

software maintenance shop that spends 80% of its time fixing rather than

creating. Lack of innovation leads to employee turnover, which leads to further

decline in productivity. Lack of innovation also causes a decline in new product

revenue, which in turn will cause a slow death for the organization.

If no competitor does better in the meanwhile, the organization will have time to

recover: put quality back in order, address process and cultural issues, and get

back on track to being a successful, growing entity. But if someone else does, a

low quality release can be the beginning of the end.

This is how a group of highly motivated, well intentioned, and talented software

developers and managers end up producing low quality software, late.

Software Projects Are Special

Delivery quality on time can be hard to achieve. But it is possible with the right

tools and attitude. It is just as possible, practical, and necessary to fix this

problem in software design as it was in automotive or semiconductor design.

However, software engineering does have some differences.

A technical discussion on Quality on Time
11

In addition to the generic difficulties of any engineering project, software projects

have unique characteristics:

• Relatively little manufacturing in the back-end
• The next version is built on top of the current version
• An illusion of ability to change at the last minute

Manufacturing is a relatively small part of the software process for most

organizations. This is deceptively convenient. Releasing software involves more

than just completing the code. Support engineers must be trained.

Documentation that is consistent with the code must be completed and printed.

For Independent Software Vendors, marketing literature must be finished. Sales

people must be trained.

If manufacturing took more time, all of these other activities could happen while

manufacturing was ramping, well after code development is completed. But this

is not the case for most software organizations. Many of these activities that

depend on a certain deployment date must proceed in parallel with the final

code development and testing. This causes a dependency that often leads to

increased pressure to release on time without quality.

In software, release-to-release reuse is very high. Typically, the next version of

the software is built on top of the current version. This compounds the quality

problem.

It is impossible to create a quality release by adding functionality on top of a

release that was not of high quality. Many organizations that get into the quality

quandary try to work on enhancements in parallel with fixing defects. But

working on enhancements is difficult because the developer can never be sure

whether the problem in the code was caused by his or her changes or whether

it was already in the code. In retrospect, it would often have been better to

rebuild the whole system from scratch. But at each individual decision point, it

never seems right to redo the whole thing when a patch can be made in much

less time.

A technical discussion on Quality on Time
12

The biggest barrier to delivering fit-for-use software on time is the illusion that

software changes are easy to make. This is true at the beginning of the

development process. But during the late stages of the development process,

software changes are just as complex as any hardware changes.

In the beginning, it is important to take advantage of the flexibility of software.

Make lots of changes. Try different things. The gray line between prototype and

production should be considered an advantage by software engineers and

managers.

But applying this same approach near the end of the project is a disaster in the

making for both quality and time-to-market. That the code itself is easy to

change creates an unfortunate illusion that the product as a whole is easy to

change. It is not. Code is only a small portion of what is required to deliver a

software product to a customer. In order for the customers to take advantage of

the change, it must be documented, incorporated in training material, taught to

the support engineers, and presented to all representatives of the product. As

the product release date approaches, these other aspects of releasing a product

to the customer must take over as the dominant considerations.

In addition, the laws of probability apply in making changes. No engineer is more

than 99% certain of any given change. The compiler, the static analyzers,

regression tests, code reviews, Purify, and other techniques are fully deployed,

especially towards the end of the release cycle, to minimize mistakes. But still,

no change is more than 99% certain. The probability that one of the changes

turns out to be wrong is calculated by raising 99% to the power of the number of

changes made. With one hundred changes, the overall probability of something

going wrong is 63%. For this reason, it is critical that engineers gradually take

their hands off the code as the release date approaches.

Releasing Quality Software, on Time

It is possible. The first step is having the entire organization believing in it and

understanding its tremendous benefits. Everyone, starting with top management,

must agree that, must agree that meeting the release date with a highly fit-for-

use product is the goal, and that a late quality release is second best.

Organizations must stand firm and not release products that fail to meet the

A technical discussion on Quality on Time
13

internal quality standards. This point must be emphasized and re-emphasized by

management through training and, most importantly, through action.

Put Quality First

A common practice among software engineering management is to have

incentives based on software release dates. Theoretically, the software product

doesn't reach the release milestone until it has achieved its quality goals. This

type of incentive can create a conflict with the need to release only quality code.

Smaller organizations can manage this conflict by carefully framing the incentive

milestone statements to include their quality goals.

For larger organizations, more long-term objective setting is realistic, and

infrastructural support for more elaborate measurements are practical. For them,

the incentive goals should be based on achieving the break-even time by

measuring "time to money" instead of measuring time to market, the incentive

incorporates the effects of the quality of the release. Low quality releases will

cost the organization more after the release than before. High quality releases

will be accepted faster, and benefits of the release will be realized more quickly.

Adhere to the Schedule

Once quality becomes the top priority of the management team, the next step is

to realize that quality releases are only possible if the projects are reliably on

schedule. In order to maintain software quality, it is critical for management to

consistently demonstrate the virtues of schedule adherence.

Management and other influencers of software projects often comment on the

specifications of the product after they see the nearly completed product. The

late changes that result are always well intentioned, but are often harmful to

both the schedule and the quality of the product. This management behavior

encourages "feature creep." It promotes the hero-oriented culture that works

hard to create the first 80% that can be done by an individual working overnight,

but never has time to complete the last 20% that must be done by the whole

team by working diligently over months of elapsed time. The right solution is

usually to get this release out on time, and then to make the change or addition

in the next release.

A technical discussion on Quality on Time
14

One way for the management to reinforce the value of schedules is to

implement the "Must-Should-Could" (M-S-C) method of Dr. Robert Fulks then

Chief Technologist of Cadence Design and currently a board member and

technical advisor to Pittsburgh Simulation. Noticing that building slack time into

schedules only causes productivity to decrease, the M-S-C system balances the

desire to drive productivity with the need to create realistic schedules.

In the M-S-C system, when a project is first scheduled, the tasks in the project

are broken up into Must items, Should items, and Could items. Only the Must

items are committed to the customers. Must items are scheduled first. The

schedule commitment is made so that the last scheduled item for each person is

a Should. In this way, even though the probability of completing every Should

item on the list is low, the probability of completing every Must item is high.

Could items are scheduled for each engineer after the scheduled completion

milestone such as "functionality freeze." Since properly scheduled projects will

have 80% of the tasks end ahead of time, it should theoretically be possible to

complete many of the smaller Could items prior to the milestone. Every Should

and Could item must be selected in such a way that each item can be in or out

of the release in the last weeks approaching the milestone date. For example,

multiple items that depend on each other to be completed are either all Musts or

all in the next release. As another example, an item that has a large impact on

the overall look and feel of the product is likely to have too many documentation

and other impacts to be a Should or a Could item.

In this system, the traditional "slack" is replaced by real tasks whose benefit to

the customer are clear. Everyone involved understands that building quality on

schedule is more important than getting every single feature into the release.

The project teams strive for an early completion of the Must items so that a few

Should items can be in the release. The usual caution is taken to ensure that the

entire production required for the item, not just the code, can be completed

before Should items are developed. Having the list of potential Should items

available from the beginning of the project allows for better planning on the part

of the documentation team and other staff.

Over time, statistics for actual completion of planned Must, Should, and Could

items are collected. The organization strives for 100% completion of Must items

by the deadline, and approximately 80% completion of Should items by the

A technical discussion on Quality on Time
15

deadline. Pure Software deploys the M-S-C system. Projects that achieved

Quality on Time had the goal of completing only the Must items, but actually

completed 20-50% of the Should items. Projects that were not on time

completed many of the Should items and even some of the Could items before

the function freeze.

Only the Beginning

Making quality a top priority and believing in schedule adherence is only the

beginning. Continuous improvement principles must be patiently and persistently

applied. Metrics must be implemented and constantly updated. Flexible

processes must be installed and documented. Templates of standard documents

and checklists for standard milestones must be created and maintained. A

frequent process review meeting must be used to remind everyone to think

about improving the organizational competence, not just the products.

Quality Assurance must be empowered both to check for quality prior to the

release and to improve the organization's ability to build in quality. At every

project milestone, a specific set of quality goals should be established and

measured.

Phase containment should be measured and continuously improved. Phase

containment is the degree to which a defect created is discovered and fixed in

the same phase. It is always more costly to fix defects after a project milestone

than it is to fix them before that milestone. If a defect can be detected and fixed

in unit test by the individual developer, it should happen before the code is

integrated and made available to other developers. If a defect can be detected

and fixed during system test, it should happen before code is released for test

deployment. If a defect can be detected and fixed during test deployment, it

should happen before general deployment. Maximizing phase containment is the

essence of Automated Software Quality tools. (This is the subject of an

upcoming paper.)

Conclusion

Achieving an on-time release of excellent software is hard work, and it is even

harder to maintain it in a successful and growing organization. But it is possible

and it must be done. Although engineering software products is different from

engineering automobiles or semiconductor devices, the lessons learned from the

quality panic of the 1970's are directly applicable to the software industry.

A technical discussion on Quality on Time
16

Specifically, the discipline of quality systems applied to other industries should

directly be applied to software towards the last third of the product development

cycle. In the first two-thirds, the flexibility allowed in software should be

maximized while applying special schedule management techniques such as

the M-S-C system.

The ability to consistently produce software that is stable and of high quality,

by the ordained release date is fundamental to all software organizations.

Quality is the foundation that will start the upward cycle of positive change for

every software organization.

A technical discussion on Quality on Time
17

About the Author

Aki Fujimura serves as a Cadence Chief Technology Officer and is responsible

for Cadence's innovation cycle, bringing advanced new technologies into new

products and new businesses.

Before his appointment as CTO, Fujimura served as general manager of Design

for Manufacturing, IC Solutions. Fujimura came to Cadence for the second time

in June 2002, with the acquisition of Simplex Solutions, where he was president,

chief operating officer and a director of the board. Before joining Simplex, he

was vice president and a director on the board of Pure Software, which was

acquired by Rational Software. Fujimura holds a B.S. and M.S. in electrical

engineering and computer science from the Massachusetts Institute of

Technology.

Cadence® Design has a deep-rooted relationship with IBM. Cadence is an

Advanced IBM Business Partner and has collaborated with IBM to support IBM

foundry technologies with EDA tools and solutions, design services and IP

development. In September 2002, IBM and Cadence established a new series of

agreements. These agreements extend the licensing of Cadence EDA tools by

IBM for both internal and external design projects.

TP000

© Rational is a wholly owned subsidiary of the IBM
Corporation. (c) Copyright Rational Software
Corporation, 2003. All rights reserved.

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Printed in the United States of America 05-03
All Rights Reserved. Made in the U.S.A.

IBM and the IBM logo and WebSphere are
trademarks of International Business Machines
Corporation in the United States, other countries,
or both.

Rational and the Rational logo are trademarks or
registered trademarks of Rational Software
Corporation in the United States, other countries
or both.

Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States , other
countries, or both.

Other company, product or service names may be
trademarks or service marks of others.

The IBM home page on the Internet can be found
at ibm.com

IBM software integrated solutions

IBM Rational supports a wealth of other offerings from IBM software. IBM software solutions can give
you the power to achieve your priority business and IT goals.

• DB2® software helps you leverage information with solutions for data enablement, data management, and
data distribution.

• Lotus® software helps your staff be productive with solutions for authoring, managing, communicating, and
sharing knowledge.

• Tivoli® software helps you manage the technology that runs your e-business infrastructure.

• WebSphere® software helps you extend your existing business-critical processes to the Web.

• Rational® software helps you improve your software development capability with tools, services, and best
practices.

Rational software from IBM

Rational software from IBM helps organizations create business value by improving their software
development capability. The Rational software development platform integrates software engineering best
practices, tools, and services. With it, organizations thrive in an on demand world by being more
responsive, resilient, and focused. Rational's standards-based, cross-platform solution helps software
development teams create and extend business applications, embedded systems and software products.
Ninety-eight of the Fortune 100 rely on Rational tools to build better software, faster. Additional
information is available at www.rational.com and www.therationaledge.com, the monthly e-zine for the
Rational community.

