
Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
May 2004

Unifying Systems and Software
Teams: A Holistic Approach to
Systems Development

Dave West
Group Manager
IBM Rational Software

Robert A. Maksimchuk
Industrial Solutions Market Manager
IBM Rational Software

A whitepaper from IBM Rational

This whitepaper describes the IBM Rational Software overall approach
to systems development, covering both important disciplines that must be
undertaken on a systems development project and the specific solution offered
by IBM Rational Software. It highlights the motivations for following this
approach by describing the principal problems it solves.

The approach to systems development described here draws on the work
by Murray Cantor1 regarding Systems Engineering using the IBM® Rational
Unified Process® and by the Rational field organization in applying these
techniques and technologies to solve real world problems. This work includes
a wide variety of projects, ranging from defense programs to e-government
initiatives. The most salient, common feature of these projects has been their
size and complexity. In every case, the focus was on creating not just a software
product, but instead a complete system for supporting a business or mission.

The objective of the paper is to describe how a combined, integrated
approach to building systems, coupled with a platform to build such systems,
enables teams to work in an ever increasingly complex environment.

Introduction
A system is “An integrated set of elements to accomplish a defined objective.

These include hardware, software, firmware, people, information, techniques,

facilities, services, and other support elements.2”

Why should we re-evaluate our approaches and techniques for systems

development? Below are some of the industry drivers for doing so.

• Enterprise Architectures. In 1996, the US Congress passed the

Clinger-Cohen Act, which, among other things, mandated that federal

agencies develop and maintain an enterprise information technology

(IT) architecture. This act brought focus to a growing concern that

government organizations had developed applications that, while

partially successful in meeting a narrow set of needs, could not be

tied together to meet the needs of a broader set of constituencies.

Currently, many of those organizations are engaged in Enterprise

Architecture (EA) efforts intended to enable the interoperability of

a broad range of systems to accomplish expanding missions; these

efforts involve defining those missions clearly and describing how the

 1 Introduction

 2 What is needed in a systems engineer-

ing approach?

 4 Customer Needs - Use Cases and

Requirements

 6 Communication – Architecture, Visual

Modeling, and the UML

 10 Process – System Engineering with the

IBM Rational Unified Process

 11 Conformance to Specification – Testing

 14 Team collaboration – Configuration

and Change Management

 16 Summary

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 1

Contents

1 See Murray Cantor’s articles in The Rational Edge, http://www-106.ibm.com/developerworks/
rational/rationaledge/ (Search the archives under the category “systems development”.)

2 © Copyright 1998 International Council on Systems Engineering; http://www.incose.org

set of interoperating systems will accomplish them.3 Because of the

focus on the whole system, which includes hardware, software, and

people, traditional data or function-centric approaches to specifying

an enterprise architecture are not effective. Their inadequate support

for evolving enterprises becomes even more pronounced after the

architecture is implemented in a working system.

• Increasing software capability. Increased flexibility in software

allows new system capabilities to be easily introduced. Services can be

provided by hardware, people, or—at an ever increasing rate—software.

On a systems development project, it is crucial that the development

team has the right approach and tools that will enable them to make

these design trade-offs. This has increased the complexity of the

environment that analysts, project managers and systems engineers

work in. It has introduced, much earlier in the lifecycle, design

decisions on how a system capability is going to be realized.

• Development lifecycles. While the introduction of iterative and agile

methods for developing systems can create a number of associated

pressures, traditional approaches—the waterfall method in particular—

do not satisfy the need to deliver ‘chunks’ of the system incrementally.

• Project and program failures. Examples of project failure abound.

One particularly significant statistic, according to the Standish Group,

in 1995 the US government spent some $81 billion on cancelled

software projects. This highlights the fact that projects and programs

are failing and at the heart of that failure is their systems development

approach. This has lead to organizations re-evaluating their systems

development capability and looking to standards such as CMMI and

ISO to provide benchmarks of their capability.

What is needed in a systems engineering approach?

“Systems Engineering is an interdisciplinary approach and means to enable

the realization of successful systems. It focuses on defining customer needs
and required functionality early in the development cycle, documenting

requirements, then proceeding with design synthesis and system validation

while considering the complete problem:

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 2

3 “Enterprise Architecture Use across the Federal Government can be Improved,” General
Accounting Office, February 2002, GAO-02-6.

• Operations

• Performance

• Test

• Manufacturing

• Cost & Schedule

• Training & Support

• Disposal

Systems Engineering integrates all the disciplines and specialty groups into a

team effort forming a structured development process that proceeds from

concept to production to operation. Systems Engineering considers both the

business and the technical needs of all customers with the goal of providing a

quality product that meets the user needs.4”
This definition embodies the following important notions:

• Customer Needs - A system engineering approach must encompasses

everything that needs to be considered when describing how a system

supports an organization’s mission or business process.

• Communication - A system engineering approach is about and

communicating ideas, information, and processes across the team. A

systems engineering approach must provide a method of abstraction

that allows communication about each system element to all its

stakeholders, as well as a mechanism to map the requirements of each

business process to that abstraction.

• Process and project realities – Because systems are being developed

in the “real” world, with pressures of time and cost, ensuring your

development approach does not incur massive overhead to projects is

very important.

• Conformance to system specification – One vital objective in

systems development is that the components and elements of your

system conform to the system specification and architecture.

• Team collaboration – Any approach to systems development must

enable a large or small group of people to work together effectively

and to work effectively with other such groups in a distributed

environment.

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 3

4 © Copyright 1996-1999 International Council on Systems Engineering;
http://www.incose.org/whatis.html

Given all these areas to be considered, the case for a “holistic” approach

to systems engineering is compelling. By holistic we mean an approach that

considers the full range of disciplines involved in systems development:

requirements, analysis, design, and implementation and that integrates

those disciplines into one process. Moreover, this approach must include

a mechanism that allows the systems to be tested and the results to be

communicated to stakeholders.

Customer Needs - Use Cases and Requirements

The primary responsibility of any system is to fulfill the mission or business

goals of the organization. A system must therefore be developed in the context

of a set of requirements from different stakeholders, including:

• Users concerned with functionality and performance (e.g. radar

operators for a military system).

• Decision makers concerned with the cost of deployment and

ownership, including maintenance (e.g., the program management

office for a military system).

• Investors concerned with how a given system will better serve their

business and provide competitive advantage (e.g., a government

department sponsoring a military system).

The requirements from each of these stakeholders must be factored into the

systems architecture, and they must be verified in the final design. These will

include various non-functional requirements such as:

• Usability – How easy is the system to use?

• Maintainability – What is the system maintenance cycle? How quickly

can a defect be resolved?

• Extendibility – How flexible and how “changeable” should it be?

• Scalability – How many users? How many locations?

• Reliability – How often is the system going to work as planned?

• Performance – What response time/throughput/etc. should be

expected in different situations?

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 4

• Supportability – What is needed to maintain the system and in what

environment?

• Cost of manufacture and deployment – What is the acceptable cost

of production and then replication?

• Operational cost – How much will it cost to keep the system working?

The answers to these questions become requirements that must be satisfied in

the context of system behavior. And this system behavior is described in a set

of use cases.

Use cases describe the behavior of a system as it applies to the various

users who interact with that system; in use-case terms, these users are called

the “actors.” With its clear focus on actors, the use case has become the de

facto mechanism for describing the functional requirements of computer

systems for a number of reasons:

• The use case describes the behavior of the system from the customer’s

(i.e. actor’s) viewpoint. (In fact, the customer may be another external

system or system operator.) This approach allows the functional

requirements to be described as requirements only, thus avoiding the

tendency to describe how the system realizes these requirements.

Because use cases describe requirements from the customer’s

perspective, it is easy to review them with the customer.

• Because a use case comprises a set of paths ranging from the normal

transaction, when everything works correctly, to a description of the

infrequent ‘very unhappy’ path, it is natural to deliver the system in

increments that support these scenarios. This approach lends itself

very nicely to iterative development, with the development team

delivering chunks of system that support particular scenarios, which

make sense to the customer.

• The use case describes an end-to-end set of transactions that are of

value to the customer. The key phrase here—“of value”—means that the

use case is not an arbitrary partitioning of functionality, but is instead a

transaction that provides value to the customer (see Figure 1).

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 5

Figure 1: A Typical Business-Level Use-
Case Diagram for a Retail System Project5

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 6

• A use case may span time periods and include many subsystems

and components. It will act as the “context glue,” ensuring that all

system elements fit together to deliver value. One major benefit of

this approach is that the use cases define the system integration tests,

enabling the system to be developed from that same context.

Combining use cases with traditional textual requirements allows systems

projects to exploit the benefits of both of these requirements representations.

A use case gives “transactional” context for the textual requirements and

provides a great mechanism to structure the delivery of meaningful system

increments. The textual requirements permit stakeholders to describe the

system in their natural language.

Communication – Architecture, Visual Modeling, and the UML

Enterprise and Systems Architecture

The system architecture is “the fundamental and unifying system structure

defined in terms of system elements, interfaces, processes, constraints, and

behaviors.6” This definition can be used to plan development, manage risk,

and drive that development to completion. Notice that the description of a

5 UML For Mere Mortals; Robert A. Maksimchuk and Eric J. Naiburg; Addison-Wesley; 2004
6 System Architecture Working Group; INCOSE, 1996; http://www.incose.org

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 7

system’s architecture is very closely linked to the definition of an enterprise

architecture as “... a ‘blueprint’ that documents all the information systems

within the enterprise, their relationships, and how they interact to fulfill

the enterprise’s mission.7” This is intentional. An enterprise architecture is

always a system, but a systems architecture is not always an enterprise. The

term enterprise defines the scope of the system and its completeness. Thus to

create an enterprise architecture requires an organization to create a complete

definition of the system(s), for a particular context.

One of the primary challenges with enterprise architectures is the

amount of time required up front in their creation. When trying to create an

architecture that serves so many stakeholders’ needs, the final product often

takes too long to create and does not sufficiently serve anyone. Experience

would indicate that an iterative and incremental approach to EA creation is

crucial—and at the heart of that creation is the system architecture.

The system’s architecture needs to provide enough detail to enable the

system to be created. Some would argue that, realistically, a system should

be described in enough detail to enable enterprise architecture activities

to be undertaken on it; activities such as resource planning, IT portfolio

management, etc. But, not all projects require such activities and thus a

system’s architecture should be complete enough to satisfy its stakeholders

and to enable a system to be created.

Modeling Architectural Views

There are two primary dimensions to systems architecture:

• Viewpoint – A view of the architecture for a particular set of

stakeholders that addresses a set of quality concerns.

• Model level – UML models that describe the various levels of design

maturity.

The development of the system’s architecture typically begins with modeling.

The systems architect initially creates the context model, then moves on

to logical analysis and design, and finally into implementation (the various

model levels). Throughout this progression, it is possible to view the system

model from different perspectives, such as enterprise workers, information,

7 Ingredients for Building Effective Enterprise Architectures; Dave West, Kurt Bittner, and Eddie
Glenn; Nov. 2002. http://www.therationaledge.com/content/nov_02/f_enterpriseArchitecture_dw.jsp

physical structure, and so forth (see Figure 2). This approach enables the

architect to define and structure the system and at the same time allows

stakeholders to view the architecture as it relates to their concerns.

Subsystems

A subsystem is a logical chunk of the system with a defined set of services.

These services are the only thing that another subsystem can depend on.

When used collectively, they provide the functionality described in the use

cases. In other words, use cases are realized by a collection of subsystems

providing services (see Figure 3).

Figure 2: Views. Different views exist
depending on your viewpoint and level of
your model

������

�����������

�������������

�������

��������

������

��������������

������� ����������� �������� ������� ���������

�����

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 8

Figure 3: Diagram of a Subsystem and
its Dependencies Each subsystem defines a
set of services that collectively provide the
functionality described by the use cases.

Figure 4: A Locality Diagram Indicates
Specific Connections Between Localities

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 9

Localities

The “locality” is a mechanism to describe the logical locations to which the

system processing is deployed, from an engineering viewpoint. Subsystem

services are allocated to particular localities, which, in turn, can be realized

via physical processes. Locality diagrams consist of two elements:

• Localities – A collection of computing and storage resources that can

host processing.

• Connections – Information paths between physical localities.

By associating non-functional requirements such as quality, reliability,

and performance to a locality, it is then possible to logically describe the

specification for each location. In the case of connections, the locality is a

great place to attribute throughput and management requirements to the

system’s architecture. Figure 4 shows an example of locality design, indicating

specific connections between localities.

Use-Case Flowdown

This is an analysis/logical design-level activity used to derive functional

requirements and associate them to the system elements. The primary

outcomes of this activity are:

• A use-case survey for the subsystems

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 10

• A survey of the hosted subsystem use cases for localities

• A survey of the realized subsystem use cases for processes.

The first step in performing the use-case flowdown is to develop the use-case

descriptions, in which the system is treated as a black box. Then using typical

object-oriented analysis and design techniques, candidate subsystems are

established. Next, the subsystems are examined with regard to how they fulfill

the use case, adding white box descriptions of what the subsystem needs to.

The additional elements of subsystem, locality, and process are added to the

flow, describing what the subsystem should do, where it should be done, and

on what process. This process is repeated to elaborate further details as you

proceed through the different model levels.

An important point to note is that the approach described above “builds

up” the candidate architecture by adding in more information. It does not

employ use cases to decompose requirements. Do not confuse use case

flowdown with functional decomposition.

Visual modeling provides the development team with a way of both

abstracting the problem and communicating its solution to other key

stakeholders, and the UML provides an industry standard language for these

models. The UML encourages a component-based approach to structuring the

architecture. Components in the form of subsystems enable the development

team to clearly partition the system into chunks that exhibit high cohesion,

meaning that the system chunks make sense from a change perspective, and

low coupling meaning that each component is not heavily dependent on other

components to perform its function, which ensures a robust architecture for

the future.

Process – System Engineering with the IBM Rational Unified Process

The IBM Rational Unified Process, or RUP, provides a framework for systems

development. The key principles of RUP for systems development are:

• Architecture - RUP fosters a modular, component-based architecture.

It advocates use of the UML for defining the systems architecture,

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 11

which encourages methodical system design, development, and

validation.

• Concurrent Design – The ability to develop a system with many

different people in parallel is crucial for success. By providing a

clear set of artifacts and process steps, it is possible to organize large

groups of individuals. The architecture focus of the RUP encourages

an environment that has structure and a team that mirrors that

architecture, thus providing clear lines of responsibility among the

components.

• Iterative Development – RUP advocates an iterative approach.

Each iteration8 mitigates risk by delivering functionality. As a key

“best practice” advocated by RUP, risk management starts with

the Inception phase, where risks regarding scope and functionality

requirements are identified. Then, as the project moves through its

lifecycle, additional risks regarding architecture, manufacturing, and

deployment are identified and managed. This iterative approach

enables a team to work effectively on incrementally building a system,

while decreasing the overall risk profile.

• Change Management – By combining an architecture-centric

approach with an iterative lifecycle, RUP provides a framework that

supports change. On all projects changes will occur, and a good

process actively manages those changes, providing guidance on how to

document, implement, and test them. Given the size and complexity

of most systems, it is important to manage the impact of change and

to continually evaluate what components are affected and how that

change will play out across the entire system architecture.

Conformance to Specification – Testing

Once you have defined the requirements of the system, designed and

developed the system components in the context of the system architecture, it

is crucial that you test these components. This is made even more important

when you are working in an iterative and incremental fashion. Incremental

development hastens testing, validation and verification in the lifecycle by

7 “Iteration” refers to a working version of the system under development, however early or late
in the development process. For a general introduction to the principles of iterative development
in terms of RUP, see “What is the Rational Unified Process?” at http://www-106.ibm.com/
developerworks/rational/rationaledge/ (Search the archives under the category “Rational Unified
Process”.)

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 12

making it happen early and happen throughout the development. As defined

in the RUP testing applies to a number of core practices:

• Finding and documenting defects in system quality

• Generally advising about perceived system quality

• Proving and validating the assumptions made in the systems

architecture and the requirements through concrete demonstration

• Validating the system functions as defined

• Validating that the requirements have been implemented

Defect Observation and Reporting

Because of the iterative nature of the Rational approach to systems

development, the system is tested throughout the lifecycle. Even in

early iterations, aspects of the system are tested. It is important that the

observations that are found are documented and that every deliverable is

considered to be worth reporting upon. Many times an aspect of the system

does not work at the end of the project because it did not work at the

beginning and it was assumed that a defect was documented and was being

worked on.

The process of defect reporting must be made a natural process and

not a massive overhead impact. The Rational approach provides, with the

application of ClearQuest, a mechanism to enter defects on a web form or via

a native application. These observations, which then may become defects, can

happen in two forms of testing, formal testing against some sort of specification

and exploratory testing. In the case of formal testing it is crucial to associate

any defects against the specification that is being tested against, and in the

context of, a particular test plan. For exploratory testing it is vital to have the

ability to capture as much information as possible about the situation.

Measuring System Quality

Typically, the thoroughness with which systems are tested is proportional to

the consequences if the system fails. There are diminishing returns of testing

every system path in every context. It is therefore important to consider what

aspects of the system to test and from that decide what the associated risk is

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 13

of not testing all aspects. There are two primary artifacts that are crucial in

helping the Quality Assurance professional make those decisions: the use case

and the systems architecture.

The use cases describe the system in terms of the ‘black box’ behavior. It

is written from the actor’s perspective and does not describe how the system

implements that behavior. Because use cases and the flows that they comprise

are used as the primary driver for an iteration, testing the ‘end to end’ flow

enables a QA professional to have a good idea about system quality. It enables

them to judge how much functionality is being delivered and how well it

works. Because the iteration occurs in the context of the risk, it is possible to

map the risks to the quality measures and thus get a good feel for the system.

For example, we have delivered x number of use cases and got y number of

defects, but there are r number of risks still outstanding, thus the we really do

not know what the quality is because we have not addressed all the risks.

The system architecture defines services and components that comprise

the system. Testing those services in isolation, outside the context of the

use case, provides a certain measure of quality. But having these services

exercised in the context of a use case, enables those services to be tested

against a specification of the customer’s requirements.

A Process for Testing

Testing should be an integrated part of the overall systems development

process. Having a clearly defined mission for testing, coupled with the right

input artifacts from the other disciplines, enables testing to be a natural part

of the process. Iterative development drives testing earlier in the lifecycle

and encourages metrics on quality to be part of the reporting process even in

the early phases of the lifecycle. Figure 5 depicts the testing discipline in the

RUP. It highlights that the process of testing must be continually measured as

well as the actual testing of the system and its components.

Independent Verification and Validation (IV&V)

Verification is traditionally the process that assesses whether the system was

built correctly against its specification and answers the system question ‘was

the system built right?’. Validation is concerned whether the system solves

the problem that it was

intended to and answers

the simple question ‘was

the right system built?’.

As increments are

delivered, each is tested

in the context of its

specification (verification)

with defects being

described against that

specification. By making

the iteration available to

the customer and because

the delivered functionality

is a somewhat complete

‘slice’ of the system, as

defined in a use case

flow, it is possible for

them judge if the iteration

supports their particular

need. Step by step, the

system is built thus

enabling management to

have a true picture of the

results of IV&V throughout.

Team collaboration – Configuration and Change Management

At any given time, a system can be described as being in various states: for

example, its current state (how the system is working today) or various future

states, often including a long term and a short term profile. Being able to

manage this myriad of configurations for system definition is crucial, since it

becomes harder and harder for the systems developer to keep a clear picture

of the working configuration in mind.

Figure 5: The testing discipline from
the RUP

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 14

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 15

Since the development of a system is a team activity, this challenge

increases geometrically. The team may include people that are both inside

and outside the boundary of one organization, in many locations, and involved

in many activities. It is crucial that each team member can be working both

in the same development process and from the same ‘virtual’ repository. We

have already talked about process, and how having the whole team work from

one development process, in the form of the RUP for Systems Engineering

(a.k.a. RUP SE), is crucial in terms of knowing what their role is responsible

for, what each artifact looks like, and what the dependencies are.

RUP SE is a configurable process, a process description, templates,

guidelines and examples. It does not ‘force’ a team to abide by its tenets.

For many development teams that is a good thing, allowing a team to make

decisions themselves as to what they should do based on their experience

and expertise, but still having the foundation of a shared knowledgebase. But,

in one area this can prove problematic. That area is change management.

It is important that team work to the same change process, that the states

an artifact goes through are well known, and that state model is ‘enforced’

on the project. Coupling this state model with a shared repository that every

team member can see, is at the heart of the IBM Rational solution for systems

development.

IBM Rational provides an integrated solution that integrates change

management of artifacts with a clearly defined and enforced process. Unified

Change Management (UCM) is a workflow for automating change across the

software lifecycle and across distributed, multi-functional development teams.

At the heart of UCM is the ability to associate steps with a particular change

request. Then when you check in and check out artifacts you can associate

them with that step. Thus you work in the context of a “change record”.

UCM helps managers reduce risk by coordinating and prioritizing the

activities of the team and by ensuring that they work with the right sets of

artifacts. Extending across the lifecycle to accommodate all project domain

information—requirements, visual models, code, and test artifacts—it helps

teams effectively “baseline” requirements along with code and test assets.

Once you have the infrastructure of a repository and an integrated

activity-oriented change management process, the next step is to link

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 16

this change process into the development process. By linking change

requests to requirements it is possible for a program management office to

manage change on a baselined set of requirements. By making the change

management recording system available to users of the system, this allows

them to add comments on a particular release (or iteration). This works

particularly well when considering a system that has many user stakeholders.

Managing their input is crucial for improving the quality of the final system

and reducing the chaos of 1000s of change requests that are never mapped to

new functions or releases.

Change management is often thought of as the boring part of systems

development—a necessary evil. Having an automated and integrated change

management process that fits into your whole systems development approach

makes change management a real enabler for a successful iterative and

incremental process.

Summary
A system is more than just software; it is a combination of people, software,

and hardware that is unified in pursuit of a common objective. Proper

development of a system requires thinking about how things should operate

to support a particular business objective or mission. As described above, IBM

Rational’s approach to systems development is holistic, providing a unified

process along with integrated tools. This approach can be broadly split into

several areas: use cases and requirements; architecture, visual modeling

and the UML; process for systems engineering; and configuration and

change management. In each of these areas, IBM Rational provides thought

leadership and tools, leveraging modern solutions to solve modern problems.

Building systems is not an easy activity. With the increased flexibility

demanded by customers, coupled with a large team, many stakeholders and

the pressure of numerous industry drivers, life on a systems project has a

unique set of challenges. This whitepaper introduces a holistic approach to

systems development. This holistic approach enables development projects

to reduce the overall risk of delivery by having clearly integrated artifacts

throughout the development process. With the clear set of best practices

embodied in RUP—practices that have been used on numerous systems and

software projects—this approach can yield success for even the most complex

system development projects.

Unifying Systems and Software Teams:
A Holistic Approach to Systems Development
Page No. 17

About the Authors
Dave West is a Group Manager at IBM Rational Software based in Lexington

Massachusetts. At Rational, Dave has held a number of positions including

technical engagement manager and product manager responsible for the

Rational Unified Process product. Dave has worked as a consultant in many

large organizations and programs providing practical support in the areas

of project management, software architecture, and systems design. Dave has

authored many whitepapers and articles on subjects ranging from developing

component based systems to re-engineering the business. In his current role

Dave runs a team responsible for developing industry solutions.

Robert A. Maksimchuk is a veteran systems engineer with over 25 years of

hardware and software systems development experience in a widely diverse

group of industries. For most of his career, Mr. Maksimchuk’s focus has been

using his object-oriented (OO) expertise to help numerous companies employ

OO techniques to solve their business problems. He is co-author of the book

UML for Database Design (ISBN 0-201-72163-5) and the upcoming UML for
Mere Mortals, and has also written articles for various trade magazines. As

an Evangelist, Product Manager, and Industrial Solutions Market Manager

for IBM Rational, Mr. Maksimchuk has traveled worldwide, speaking in

numerous technology forums and leading workshops and seminars on UML

and OO development.

IBM software integrated solutions
IBM Rational supports a wealth of other

offerings from IBM software. IBM software

solutions can give you the power to achieve

your priority business and IT goals.

• DB2® software helps you leverage

information with solutions for data

enablement, data management, and

data distribution.

• Lotus® software helps your staff

be productive with solutions

for authoring, managing,

communicating, and sharing

knowledge.

• Tivoli® software helps you manage

the technology that runs your

e-business infrastructure.

• WebSphere® software helps you

extend your existing business-

critical processes to the Web.

• Rational® software helps you

improve your software development

capability with tools, services, and

best practices.

www.ibm.com

© Copyright IBM Corporation 2003, 2004.

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
5-04
All Rights Reserved

IBM, the IBM logo, Rational, Rational Unified Process, Rational Rose, and RUP are trademarks of Interna-
tional Business Machines Corporation in the United States, other countries, or both.

Other company, product and service names may be the trademarks or service marks of others.

This publication was developed for products and/or services offered in the United States. IBM may not
offer the products, features or services discussed in this publication in other countries. The information
may be subject to change without notice. Consult your local IBM business contact for information on the
products, features and services available in your area.

All statements regarding IBM’s future directions and intent are subject to change or withdrawal without
notice and represent goals and objectives only.

IBM hardware products are manufactured from new parts, or new and used parts. Regardless, our war-
ranty terms apply. This equipment is subject to FCC rules. It will comply with the appropriate FCC rules
before final delivery to the buyer. Information concerning non-IBM products was obtained from the sup-
pliers of these products. Questions on the capabilities of the non-IBM products should be addressed with
the suppliers.

G507-1003-00

