
 1

Applying Requirements Management to
Medical Devices Utilizing Software
by Dean A. Leffingwell, Don R. Widrig and Wayne T. Morrissey

Copyright ©1997 Rational Software Corporation
All Rights Reserved

The Regulation of Medical Device Software
The state of the art in medical device software development has undergone enormous changes in the past decade. In
the last 10-15 years of medical software regulation, the FDA has become aware that there was significant room for
improvement. Indeed, the FDA found that approximately 44 percent of the quality problems that led to voluntary
recalls during this period were attributed to errors or deficiencies that were designed into particular medical devices
rather than having been inserted in the manufacturing phase. Furthermore, it seemed clear that many of these errors
could have been prevented by adequate design controls.1

In an effort to normalize the US standards with the evolving world market places, and in an effort to improve
regulation of medical device development, enabling legislation was passed in 1990 to give the FDA the necessary
scope to regulate the development of medical device software. The enabling legislation, contained in the Safe Medical
Devices Act (SMDA) of 1990, was the impetus for the FDA to drastically revise its oversight into design development
of medical devices containing software.

The major result of passage of the SMDA has been a drastic revision of the old GMP regulations. The new GMP
regulations have only recently been approved and the impact on medical device software is enormous.

In brief, the new GMP regulations, now referred to as the Quality System Regulation (QSR), take effect with a
transition period from June, 1997, through June, 19982. Prior to the end of this transition period, all development of
Class II and Class III medical devices automated with software must be moved to full compliance with the
development process standards outlined in the QSR.

The good news is that the QSR has excellent guidance on the establishment of modern software development
practices. Indeed, these mandated practices have been carefully worked out by the regulations in the QSR so as to
conform to standards which you may be familiar with. QSR was specifically crafted to conform to the IEEE Software
Engineering Standards3 or the worldwide standards such as may be found in ISO 9001, IEC 601 or EN 46001.

Further good news may be found in the QSR in that no specific standard is absolutely required. Thus, you can model
your own development processes after existing standards and you can adjust the model to suit your own particular
development needs.

Since 1984, the FDA has been struggling with the notion of establishing design controls, including safety and
effectiveness, as part of the overall quality process. Now, with the advent of the QSR, a major step has been taken to
insure quality of software development in a medical device. In the next part of this paper, we shall begin exploring
how a Requirements Management tool such as RequisiteProTM can help you efficiently automate many of the tasks
prescribed by the QSR as part of a development process for world-quality medical devices and products.

Part I of the following sections outlines the structure and documentation required for a medical device software
development process. In Part II, we will explore a sample medical device development plan and examine the features
offered by the RequisitePro tool and support that the tool provides in automating and managing the requirements for
the device.

1FDA, Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule; Quality System

Regulation. p 52602.
2Ibid. p 52604.
3 IEEE. IEEE Standards Collection, Software Engineering , IEEE, New York, NY. 1994. The collected set of

standards will be referred to throughout this paper.

 2

Part I. Formulating An Acceptable Development Plan
Beginning in mid-1997, the Quality System Regulation (QSR) mandates the establishment of a wide-ranging and
well-structured plan for the development of software for medical devices that depend on software for their
operation. The key word here is the plan. While the QSR mandates the establishment of a plan, it does not describe
the contents of such a plan or the process by which the software is developed. To obtain this insight, it is necessary
to become familiar with another new FDA guidance document published by the Office for Device Evaluation
(ODE) group, “ODE Guidance for the Content of Premarket Submission for Medical Devices Containing Software
(draft document).” The document is a guidance document and does not have the force of regulation. However, the
document covers a large number of practical suggestions for the development of a plan. We will refer to this
document as the “ODE Guidance” document (OG).

Appendix A of the OG defines a number of distinct stages in the software development lifecycle. Appendix A
defines the following major areas of the lifecycle:

• Requirements Analysis and Specification
• Architectural Analysis and Specification
• Design and Development
• Verification
• Validation
• Configuration Management and Change Control
• Independent Verification and Validation

In this whitepaper, we will explore the highlights of each area in order to establish an overview of the processes and
documents required for each stage. In Part II of this white paper, we will use the RequisitePro toolkit to automate
and support the requirements management activities which support these stages.

Requirements Analysis and Specification
Section A.2 of the OG recognizes the importance of the need to identify and analyze end-user functional and
performance requirements for the product. The Requirements Management team at Rational Software is an industry
leader in this area and has published papers and courses in support of the vital importance of collecting and
analyzing requirements information.4.

In order to organize and manage
this effort, many medical device
projects will probably be well
served by defining and using
three different types of
documents to collect and define
the requirements: the Product
Requirement Document (PRD),
the Software Requirement
Specification (SRS), and the
Hazard Analysis (HA). These documents form the top of an implementation documentation structure that initially
appears as shown in Figure 1.

Product Requirements Document (PRD)
The PRD collects, analyzes, and defines the features of the product and the user needs that the device addresses.
While no widely adopted standard for such a document exists, RequisitePro offers a template for a Product
Requirements Document as a starting point for managing your project’s requirements.

4 Leffingwell, D., and A. Davis, Using Requirements Management to Speed Delivery of Higher Quality

Applications, Rational Software TR0001, 06/96.

Figure 1, Initial Implementation Document Setup

Software Requirements Specification
(SRS)

Hazard Analysis
(HA)

Product Requirements Document
(PRD)

 3

The PRD is commonly initiated through your organization’s marketing department working in conjunction with
clinical specialists. It offers the marketing department a palette to record high-level user needs and establishes the
clinical claims for the device.

It should also serve as the organizing element to focus safety features, conformance to standards, clinical claims, and
even subsequent marketing collaterals.

Software Requirements Specification (SRS)
Typically, the requirement gathering process starts out very abstractly and culminates in a series of high-level
product features. These features are recorded and managed in the PRD discussed above. The SRS is written to
respond to the software-fulfilled behaviors that are specified in the PRD. In mo dern medical devices, software may
occur in an embedded microcontroller that operates the device, software may occur as part of an interface to other
devices, or the device may also contain external, stand-alone, software for post-processing of data. Regardless of the
function of the software, all requirements for the software should be specified in one or more SRS documents.

The software requirements provide a detailed specification of exactly what the software must do, and not how the
software is to be designed or implemented. A list of principles to follow when you are documenting the software
requirements may be found in Chapter 3 of 201 Principles of Software Development5

The key points to recognize when writing the SRS include6:

• The requirements should be complete, consistent, and as unambiguous as practical.

• Every requirement should be traceable back to one or more features in the PRD and traceable forward
to lower level requirements, test cases, and implementation modules.

• Every requirement should be assigned a “tag” so that it can be identified, tracked, and managed as a
separate element of the project.

The IEEE offers an excellent set of discussions and templates for an appropriate SRS. Refer to IEEE 830-1993,
Recommended Practice for Software Requirement Specifications for further information. The RequisitePro tool
incorporates the IEEE recommendation into its basic templates of document styles, thus allowing you to quickly lay
out the document and begin entry of requirements.

Hazard Analysis (HA)
An important early document in the design process is the Hazard Analysis (HA). The FDA is focusing on the HA as
a key element in the improvement of medical device quality. Indeed, the OG devotes section 2.8 entirely to the
question of Risk Management and Ha zard Analysis. A Hazard Analysis is:

“the detailed examination of a device from the user and patient perspectives.
Its purpose is to detect potential design flaws —possibilities of failure that
could cause harm—and to enable manufacturers to correct them before a
device is released for use.”7

As noted, HA requires the designer to consider various classes and types of errors that may occur in the product yet
to be constructed. As each potential hazard is documented and examined, the HA document allows the des igner to
document the potential hazard and then suggest design strategies and specific functional requirements intended to
alleviate the hazard.

5 Davis, A., 201 Principles of Software Development, New York, NY. McGraw-Hill, Inc., 1995.
6 Leffingwell, D., and A. Davis, Using Requirements Management to Speed Delivery of Higher Quality

Applications, Rational Software TR0001, 06/96. p 8.
7 Bill J Wood and Julia W Ermes . Applying Hazard Analysis to Medical Devices, Medical Device &

Diagnostic Industry magazine, 01/93.

 4

With the advent of the draft OG and the CGMP, new and more sophisticated approaches to Risk Analysis have been
added to the traditional Hazard Analysis approaches.

Appendix B of the OG suggests approximately 20 topics which require your scrutiny while conducting the HA. The
FDA has found that these topics pose special risks when applied to the software development for medical products
and are worth consideration for possible inclusion in the HA.

In subsequent stages of the product development lifecycle, the HA document will serve as a living document to
record both the potential hazards and the risk mitigation strategies that have been defined to prevent the hazard from
occurring. System validation will later refer to this document to confirm that all anticipated hazards have been
completely addressed and resolved.

Architectural Analysis and Specification
Appendix A.3 of the OG begins the implementation process. In this phase, the functional and safety requirements
are allocated to the hardware and software aspects of the product. Tradeoff studies may be performed to determine
the most effective implementation approach.

The key document produced in this part of the development lifecycle is the Configuration Management Plan
(CMP). Excellent discussions of the concept, layout, and use of the CMP may be found in existing standards IEEE
828-1990, Standard for Software Configuration Management Plans, and IEEE 1042-1987, Guide to Software
Configuration Management.

The CMP stands outside of the
implementation document tree since
this document is a project-wide
guidance document. The initial
project-wide documentation tree
appears as shown in Figure 2.

Design and Development
Appendix A.4 of the OG discusses the translation of software requirements from the SRS into source code. In order
to standardize the implementation practices, the OG recommends the use of style guides, coding standards, etc.
Walkthroughs and bench testing are recommended practices during this activity. Typically, software is organized
around some type of implementation unit such as modules of code, subroutines, object classes, etc. Thus, another set
of documents is either explicitly or implicitly being built, that of the implementation units.

As the implementation
documentation becomes
available, you should
add it to the
implementation
documentation structure
as shown in Figure 3.

The OG recommends
that the developer
maintain a strict audit
trail between the
implementation units
and the specifications
and HA for that
implementation. We
will discuss how to do this in Part II when we discuss traceability.

Figure 2, Initial Project Documentation Setup

Configuration Management Plan
(CMP)

Project Documentation

Figure 3, Implementation Documentation

Implementation Unit #1
(functions, modules, objects, etc)

Implementation Unit #2
(functions, modules, objects, etc)

Software Requirements Specification
(SRS)

Hazard Analysis
(HA)

Product Requirements Document
(PRD)

Implementation Documentation

 5

Verification
Appendix A.5 of the OG covers the Verification activities. The IEEE defines “verification” as:

“The process of evaluating a system or component to determine whether the
products of a given phase satisfy the conditions imposed at the start of that
phase.”8

That is, the Verification activity is largely a paper-based activity that requires you to confirm that each stage of the
development (e.g., a software implementation of one or more requirements) conforms to the requirements defined
in the previous stage. In order to have a method to perform this Verification, you need a plan.

A well-organized project will include a Verification and Validation Plan (VVP). As usual, the IEEE offers excellent
guidance for setting up a VVP in IEEE 1012-1987, IEEE Standard for Software Verification and Validation and
IEEE 1059-1993, IEEE Software Guide
for Verification and Validation Plans.
Note that the VVP is a project-wide
document that establishes the rules for
Verification testing (as well as Validation
testing). Thus, this document can “stand
to the side” as a project document,
similar to the Configuration
Management Plan (CMP) mentioned
earlier. The project documentation tree
then appears as shown in Figure 4.

The OG recommends that the developer maintain a strict audit trail between the Verification activities and the
product specifications and HA for that implementation. We shall return to this topic in Part II when we discuss
traceability.

Validation

In a similar manner, Appendix A.6 of the OG recommends various Validation activities. The IEEE defines
“validation” as:

“The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified
requirements.”9

In other words, you need to confirm that the implemented component actually works to specification. Normally, the
major means to satisfy this activity is testing. Once again, a Validation plan is needed. Traditionally, the Validation
plan is included as part of the V&V plan (VVP) discussed earlier.

Validation activities go hand in hand with testing. But, what does a good test plan look like? Fortunately, the IEEE
has an answer. IEEE 829-1983, IEEE Standard for Software Test Documentation provides extensive coverage on
the establishment of a test methodology, conducting tests, reporting results, and resolving anomalies.

8 IEEE. IEEE Standard Glossary of Software Engineering Terminology, IEEE Standards Collection, Software

Engineering, IEEE, New York, NY. 1994.
9 Ibid.

Figure 4, Project Documentation

Configuration Management Plan
(CMP)

Verification & Validation Plan
(VVP)

Project Documentation

 6

Note that software testing should
confirm the correctness of the units
under test from two perspectives:
1) the unit meets the
implementation element’s
specification and, 2) the unit meets
its governing requirements. That is,
the tests should not only confirm
correct operation of the unit, they
should also confirm that the
original specifications have been
met. The test documents form part
of the implementation
documentation. Allowing for test
documents, the implementation
documentation tree should appear as in Figure 5.

The OG recommends that the developer maintain a strict audit trail between the Validation/testing activities and the
specifications and HA for that implementation. This audit trail is provided via the mechanism of requirements
traceability.

Configuration Management and Change Control
Appendix A.7 of the OG specifies issues relating the change management. Note that you have already allowed for a
Configuration Management Plan (CMP) in an earlier step. Now, you need to make sure that the CMP is
comprehensive in the area of managing change.

Change is the norm in modern software development projects. To manage change effectively, you must:

• Recognize that changes come from many sources and know what those sources are

• Create an explicit process that will review and analyze all requests for change

• Baseline your system so that you can recognize changes that occur

Fortunately, these issues are well structured in the CMP you have developed earlier. In Part II of this paper, we will
consider techniques and mechanisms for analyzing and managing the impact of change.

Independent Verification and Validation
Appendix A.8 of the OG recommends Verification and Validation (V&V) activities that are performed by
“outsiders.” Typically, those people immersed in the day-to-day minutia of actually implementing a software project
are prone to “blind spots” which may conceal a potential problem with the medical product’s design or
implementation. Thus, the FDA recommends the use of technically qualified people to conduct independent reviews
of the project. In principle, these reviews are no different than the V&V activities you have performed yourself.
Indeed, it is quite efficient to have the outside reviewers be familiar with the current VVP but you should expect
these reviewers to add and revise the VVP as new areas are explored.

As in the case of earlier V&V activities, you should plan on maintaining an audit trail between the V&V activities
(and related documents) and the top-level specifications and HA. We shall return to this topic in Part II when we
discuss traceability.

Level Of Concern
The issue of the Level Of Concern is independent of the lifecycle segments mentioned above. Level Of Concern
(LOC) is of particular interest in the OG. Simp ly put, LOC is concerned with the identification of the consequences
of device failures and their relationship to patient safety. That is, if the device fails, will it seriously harm the patient,
offer minor harm to the patient, or present minimal harm to the patient? LOC is a complex issue that is not

Figure 5, Implementation Documentation (with Testing)

Unit #1Test Protocols Unit #1 Test Results

Implementation Unit #1
(functions, modules, objects, etc)

Unit #2 Test Protocols Unit #2 Test Results

Implementation Unit #2
(functions, modules, objects, etc)

Software Requirements Specification
(SRS)

Hazard Analysis
(HA)

Product Requirements Document
(PRD)

Implementation Documentation

 7

completely resolved in the draft OG and, in fact, resulted in a series of suggested draft approaches which the FDA
may take for final publication of the OG. 10

Traditional approaches to LOC tend to aggregate all of the device aspects into a single LOC assessment. In the
traditional approach, the most safety-critical features of the device are considered and used to establish an LOC
assessment. The disadvantage of the aggregation approach is that a single high-safety aspect of the device forces a
high LOC which, in turn, forces the entire device and all its component parts to be treated as a high LOC issue. In
fact, such devices typically exhibit many features that are not a high LOC and which could be developed on a much
more relaxed LOC basis.

In order to avoid wasting resources in the development of low-LOC portions of the product, we will become more
selective in the handling of requirements that may have different LOCs. In this manner, we can manage portions o f
the project differently in a manner consistent with the assigned LOC for each segment.

To effectively segment the project, we will assess and assign LOCs on a feature -by-feature basis at the PRD level
and a requirement-by-requirement basis at the SRS (and HRS) level. As we shall see in Part II, RequisitePro
provides a feature, requirement attributes, for the handling and management of different LOCs in the project.

10 FDA/ODE, ODE Guidance for the Content of Premarket Submission for Medical Devices Containing

Software (draft 1.3, 12 Aug 1996). Attachment 2.

 8

Part II. Implementing Software Requirements Management As
Part Of Your Development Plan

The Project
To demonstrate the possibilities offered by the RequisitePro Requirements Management tool, we will examine
software development processes in an abbreviated medical product development project. The device under
consideration is an imaginary device referred to as a Reverse Angioplasty Pump (RAP).

Create A Product Requirements Document (PRD)
To properly define the clinical and marketing features for the product, the RequisitePro tool is used to create a
Product Requirement Document (PRD). RequisitePro provides a template for this document which can be modified
to suit your specific device needs. RequisitePro interacts seamlessly with Word to allow you to create the initial
PRD. In addition, the tool allows the document editors to identify specific Product Requirements (PRs) within the
document. A small extract from the PRD appears as shown in Figure 6.

Notice that the RequisitePro tool allows you to automatically highlight requirements via a double-underline or via a
user defined style. Highlighting is a powerful visual aid that is recommended to help the document reader quickly
focus on specific behavioral issues, performance issues, safety issues, etc.

Figure 6 identifies both hardware and software features but, to simplify this white paper, we shall treat all of the
features as leading to software requirements. There is no loss of generality in doing so, but a real project would
probably make a more refined distinction between hardware and software features (and the documents that record
the features).

RequisitePro automatically assigned a unique identifier (PR4, PR5, etc) to each product requirement as it was
identified; thus conforming to the FDA guidance referred to in Part I.

Figure 6, Extract from PRD

•••

Electrical Signal Requirements

General ECG Input Requirements

The Model 750 system shall accept either a low level 5 lead signal
or a high level signal from an external monitor for proper
triggering.

Signal monitoring shall meet the parts of AAMI standards EC-13
and ECGC specifically listed in this document

Electrical Power Input Requirements

AC Input Power

The Model 750 shall accept the following AC input line voltages:

Nominal Low Limit High Limit Frequency
110 VAC 88.0 VAC 132.0 VAC 47 - 63 Hz
220 VAC l95.0 VAC 275.0 VAC 47 - 63 Hz

Requirement
IDs

 9

RequisitePro should also be used to assign and maintain a set of attributes and values for each PR in the PRD.

For now, we will use the Attribute feature to classify the Level Of Concern (LOC) on a feature-by-feature basis. As
each feature is defined, we will insert an attribute value, the Concern attribute that we have d efined for PRs. We can
use RequisitePro to define this attribute and a list of acceptable values. Then, as the features are defined, you can
assess the LOC and record your assessment in the Concern attribute for the feature. RequisitePro offers easy-to-use
selection and sorting capabilities to later select only features that have a selected LOC, or some other combination of
attributes and attribute values that is of interest to the team.

At any point in the project, RequisitePro can be used to print the document or display a data view that provides a
current listing of all PRs defined. Optionally, this view can be filtered or sorted based upon various attributes that are
of interest from a particular perspective. An example of such a view is shown in Table 1.

Table 1, Extract of Sample PRs from PRD

Requirements Status Concern Difficulty Class
••• ••• ••• ••• •••
PR4: General ECG Input Requirements
The Model 750 system shall accept
either a low level 5 lead signal or a high
level signal from an external monitor for
proper triggering.

Approved Moderate High Diagnostic

PR5: Signal monitoring shall meet the
parts of AAMI standards EC-13 and
ECGC specifically listed in this
document

Approved Critical High

PR6: The Model 750 shall accept the
following AC input line voltages:

Approved Critical Medium Ease of
Use

••• ••• ••• •••

Create A Software Requirements Specification (SRS)
In a similar manner, you can use RequisitePro to create, edit, and maintain the Software Requirements Specification
(SRS) for the product based upon templates provided for this purpose. A small extract of the document appears as
shown in Figure 7.

Figure 7, Extract from SRS

External Communications Device Interface

The modem port shall be initialized on system power up or system reset.

Upon initialization, the modem port is prepared for transmission of
diagnostic data at 14.4k baud.

Protocol shall be no parity, 8 data bits, 1 stop bit.

The modem shall also be initialized to "auto answer".

Upon command from the front end, the system assembles and initiates
transmission of a frame of diagnostic data to the modem port.

•••

 10

As in the case of the PRD, we have chosen to highlight the Software Requirements (SRs). A s before, RequisitePro
automatically assigned a unique identifier (SR1, SR2, etc) to each software requirement as it was identified, thus
conforming to the FDA guidance referred to in Part I.

RequisitePro should also be used to assign and maintain a set of attributes and values for each requirement in the
SRS. Note that the attributes and their values can be independently assigned for each type of requirement. Note that
we have implemented the Level Of Concern issue via the same attribute concept as used in the PRD but we have
chosen to define other attributes differently than the PRD attributes. A sample view of SRs and some of their
attributes is shown in Table 2.

Table 2, Extract of Sample SRs from SRS

Requirements Status Concern Priority Assigned to
SR1: The modem port shall be initialized
on system power up or system reset.

Approved Minor Low Team B

SR2: Upon initialization, the modem port
is prepared for transmission of
diagnostic data at 14.4k baud.

Approved Minor Medium Team C

SR3: Protocol shall be no parity, 8 data
bits, 1 stop bit.

Proposed Minor Medium Team B

SR4: The modem shall also be initialized
to "auto answer".

Approved Minor High Team B

SR5: Upon command from the front end,
the system assembles and initiates
transmission of a frame of diagnostic
data to the modem port.

Proposed Moderate High Team B

••• ••• ••• ••• •••

As in the case of the PRD, you can use RequisitePro’s query engine to sort, extract, and manage SRs that have a
specified set of attribute values.

Create A Hazard Analysis
In a similar manner, you can use RequisitePro to create, edit, and maintain the Hazard Analysis (HA) for the
product. Using RequisitePro, a Word document detailing the software (and possibly hardware) safety requirements
should be created.

Once the PRD, HA, and SRS have been generally completed (it is not necessary to wait until the “final” versions
are approved), you
should begin the
process of relating
the documents. The
objective is to
understand how the
elements of one
document relate to
the elements of
another document as
shown in Figure 8.

The individual elements of each document should be linked to appropriate elements in the other document. That is,
you should now relate each SR entry in the SRS to its governing PR entry in the PRD. Or, conversely, you should
match each PR entry to all of its governed SR entries. Notice that this matching may be one-to-many, many-to-one,
or many-to-many.

Figure 8, Initial Traceability

Software Requirements Specification
(SRS)

Hazard Analysis
(HA)

Product Requirements Document
(PRD)

 11

In a similar manner, the HA entries should be linked into their respective relationships. RequisitePro does n ot
require a strict hierarchical structure for the relationships. Therefore, both “vertical” relationships such as PR-to-SR
and “horizontal” relationships such as HA -to-SR are permitted. Non-hierarchical relationships are a normal part of
most development projects and no special characteristics should be implied by non-hierarchical relationships.

Regardless of the relationship, it is important to link associated items together. This linking process is referred to as
traceability.

Traceability

A significant factor in quality software implementation is the ability to trace the implementation through the stages
of specification, architecture, design, implementation, and V&V. Indeed, the ability to track relationships and relate
these relationships to the issue of change management forms a key thread throughout the new OG11. In addition, the
Design Controls section of the new CGMP12, Subpart C of CGMP, makes repeated references to the need to be able
to trace the relationship between various work products within the lifecycle of the product’s development. IEEE
provides two working definitions of traceability:13

1) “The degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another;
for example, the degree to which the requirements and design of a given
software component match.”

2) “The degree to which each element in a software development product
establishes its reason for existing; for example, the degree to which each
element in a bubble chart references the requirement it satisfies.”

A key element of traceability is the definition of what is meant by a “traceability relationship.” In RequisitePro, it is
convenient to define the relationship in terms of a simple ”traced to” and “traced-from” model. For example, we can
easily imagine that one or more Software Requirements (SRs) are created in the system in order to support a given
feature specified as a Product Requirement (PR). Thus, we can say that an SR is traced-from one or more PRs.
Additional meaning can be placed on the relationship from the context of the requirement types that are created. For
example, a SR that is traced to a Test Case requirement type, would infer that t he software requirement is “tested-
by” the test case that it is “traced-to.” A class description that is traced-from a SR requirement would imply that the
requirement is “implemented-by” the referenced class. In RequisitePro, there is no limit to the number and types of
requirement types that can be defined. In addition, requirements of a given type can appear within any document.
For example, it is not necessary that only requirements of type SR reside within a document that describes software
requirements .

RequisitePro offers a simple user-guided procedure to “point and click” through the relationships that may exist
between two elements of the lifecycle. After you have defined the relationships between the PRs and the SRs,
RequisitePro can display a matrix version of the relationships between the PRs and the SRs as shown in the
example of Figure 9.

Interpretation of the traceability matrix in Figure 9 is straightforward. For example, consider the intersection of PR8
(Remote Data Communications…) and SR1 (The modem port…). At the intersecting cell, the arrow “È” indicates
that there is a relationship that traces from PR8 to SR1, meaning that SR1 is derived from, or in some way satisfies
the feature defined as PR8.

11 FDA/ODE, ODE Guidance for the Content of Premarket Submission for Medical Devices Containing

Software (draft 1.3, 12 Aug 1996).
12 FDA, Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule; Quality System

Regulation. Subpart C, pp 52657-52658.
13 IEEE. IEEE Standard Glossary of Software Engineering Terminology, IEEE Standards Collection,

Software Engineering, IEEE, New York, NY. 1994.

 12

After using RequisitePro to establish all known relationships, an instructive Requirements Management activity,
strongly supported by the FDA guidance, is to examine the traceability matrix for two potential indications of error:

1. If the inspection of a row fails to detect any traceability relationships (no “arrows”), then a possibility
exists that there is no software requirement (SR) yet defined to respond to a feature required in the
PRD. This may be acceptable if, for example, the feature is to be implemented in other than software
(e.g., “The case shall be of non-breakable plastic.”). Nevertheless, empty rows are potential red flags
and should be checked carefully. RequisitePro has a facility to automate this type of inspection.

2. If the inspection of a column fails to detect any traceability relationships, then a possibility exists that
a software requirement has been included for which there is no known product feature that requires it.
This may indicate a misunderstanding on the role of the SR or it may indicate a weakness in the
original PRD, or it may indicate dead code or code that is not in support of the system requirement. In
any case, careful checking is required.

In addition to providing a set of tools to query the relationships you have established, RequisitePro also provides a
simple means to store the queries and recall them later. This feature allows you to re -visit the relationships at a later
time, perhaps after changes have been made, and quickly re-query the relationships to detect potential trouble spots.

Simple and obvious application of the above techniques will enable you to relate many elements of your project.
You should strongly consider linking and relating:

• PRs to SRs

• SRs to Implementation Units

• Implementation Units to Test Plans/Specs/Results

• SRs to Test Plan/Specs/Results

• Hazard Analysis elements (HAs) to PRs, SRs, Implementation Units, and Tests

Figure 9, Abbreviated Traceability Matrix: PR-SR

 13

After linking the various elements of the various documents together as suggested above, you should have a
relationship setup similar to Figure 10.

RequisitePro also provides the ability to display the full set of
traceability relationships within a project. Figure 11 provides an
example of such a “tree” view. Notice that the (partial) tree view
allows you to simultaneously view all of the relationships in your
project. You should use the tree view to help you comprehend the
overall relationships within your project.

For example, the tree view of Figure 11 reveals that PR3 (a
Product Requirement or feature) links to SR1 (a Software
Requirement) which, in turn, links to TST4 (a Test
Specification).

Once you have linked the elements together, RequisitePro will
maintain the linkages for you. You may then use the full power
of RequisitePro to examine relationships between the project
elements as you desire. A key Requirements Management
activity that you will perform regularly is to use the traceability
relationships to examine the impact of changes proposed and
implemented in your project. This type of activity is referred to in
the OG and in the QSR as Change Management.

Change Management
Change Management practices help you to understand and
manage three important project development aspects:

1. If an element is proposed for a change (e.g., a single Product Requirement), what are the work
consequences of that change? In other words, Change Management helps you address the question of
how to determine the amount of rework that may be required if an element is to be changed. The
amount of work to effect a change may have significant impact on your project resource planning and
workload planning.

2. If an element is proposed for a change, what are the other elements of the system that may be
impacted by the change? This topic is of key concern both to your project planning and to the FDA.
Experience has taught us that it is inevitably the case that a change to the software will “ripple” into
other areas with potentially negative consequences. This is such an important matter in the design and

Figure 10, Document/Element Relationships

Unit #1Test Protocols Unit #1 Test Results

Implementation Unit #1
(functions, modules, objects, etc)

Unit #2 Test Protocols Unit #2 Test Results

Implementation Unit #2
(functions, modules, objects, etc)

Software Requirements Specification
(SRS)

Hazard Analysis
(HA)

Product Requirements Document
(PRD)

Implementation Documentation

Figure 11, Abbreviated View
of Traceability Tree

 14

implementation of reliable medical products that the FDA specifically calls for an organized change
management procedure as part of the design process.1415

3. Active projects inevitably take wrong turns. It is certain that your project will arrive at a point at
which you would like to be able to “roll back” a requirement and examine a previous revision of the
requirement. In addition, it would be helpful to remember how and why the requirement was
changed. In other words, an audit trail of each requirement is extremely valuable. Not only is this
helpful to the project, auditability is also mandated by the FDA as part of the design process.

Elements Impacted By Change
Once you have established the traceability relationships for your project, RequisitePro allows you to use the
traceability linkages as a Change Management tool. Let us examine the feature by inspecting the Traceability Matrix
previously shown in Figure 9. What if it became necessary to change the wording of PR8 (Remote Data
Communication…) to reflect a revised statement of the product feature desired. After using Word/RequisitePro to
edit PR8 in the PRD, we find that the Traceability Matrix previously shown in Figure 9 has been automatically
altered by RequisitePro and now appears as shown in Figure 12.

In Figure 12, notice the diagonal bars that now intersect the traceability arrows in the row corresponding to PR8.
These bars are referred to as “suspect links” and are inserted automatically by RequisitePro to warn you that
changing PR8 may have an impact on SR1, SR2, SR4, SR5, and SR6.

As the project evolves, you will find that changes are proposed for v arious aspects of the project. These changes can
occur anywhere, from the top-level PRD through specification, implementation, and testing. Whenever a change
occurs, RequisitePro will automatically insert the Suspect Link markers to warn you of possible relationships
affected by the change. As you inspect the potential interactions, you may find that the affected elements either are
affected by the change or they are not. Your Change Management activities usually will involve one of two steps:

14 FDA, … Quality System Regulation. Subpart C, p 52657.
15 FDA/ODE, ODE Guidance…, Appendix A.7.

Figure 12, Abbreviated Traceability Matrix After PR8 Altered

 15

1. If the affected link is not impacted by the change (e.g., the change to PR8 does not impact SR1), you
need only use RequisitePro to clear the Suspect Link. Note that subsequent later changes to PR8 may
again set the Suspect Link at some future time.

2. If the affected link is impacted by the change, you may need to rework the affected element. For
example, the proposed change to PR8 may require a re -specification of SR2. After editing SR2, you
will discover that RequisitePro has automatically added additional Suspect Links to warn you of the
potential interactions linked to changing SR2 (e.g., PR4, General ECG…). Then, those interactions
will need to be examined for changes, etc.

RequisitePro actually offers the Change Management capability throughout multiple levels of tra ceability
relationships. That is, changing a PR entry in the PRD may impact several SRs in the SRS, which may, in turn,
impact several Implementation Units, which may, in turn, impact one or more Test Plans. RequisitePro also tracks
the traceability linkages on a bi-directional basis. For example, changing a Test Plan specification may cause you to
look back to the Implementation Units (IU) for potential impact. In turn, changing an IU may require a re -inspection
of affected SRs and may even require a re-inspection of the top-level PRs, which are ultimately linked via the
traceability relationships you established.

In all cases, RequisitePro tracks through the traceability links and inserts the Suspect Link markers wherever
appropriate. This powerful facility provides an easy way for you to track the impact of changes in your project.

Change History Audit Trail
RequisitePro offers a powerful facility for maintaining an audit trail of changes. The most useful part of this feature
is the automatic tracking of changes made to individual requirements. RequisitePro manages each and every
requirement separately, regardless of the document containing the requirement. Thus, all changes you make to each
requirement will be captured automatically by RequisitePro and these changes can be recalled for later inspection
and review.

The change history captures the current statement of the requirement including the current values of all of the
requirement’s attributes. By capturing all of the current requirement parameters, you can use the history as a
compact way of viewing all of the requirement’s parameters. This is similar to the usual attribute views offered by
other facilities in RequisitePro.

The change history also allows you to view a chronological history of all prior changes to the requirement, including
its attributes. RequisitePro automatically captures all changes to the text of the requirement and changes to the
values for the requirement’s attributes.

Whenever RequisitePro detects a change, the background for the change is automatically captured. In addition,
RequisitePro includes an automatic capture of the author of the change (i.e, the person making the change with
RequisitePro) and the date and time of the change. Then, at any future time, the chronology of the change as well as
the change author can be viewed as part of the history record.

In addition, RequisitePro allows you to enter a change description to document the change. Typically, you might
enter a sentence or two to explain why the change was made, make references to project memos regarding the
change, etc. Documenting the change will provide a satisfactory rationale and cross-reference so that later inspection
of the history can adequately recall the motivation for the change. This will be a key element in FDA review of
those changes that affect the clinical claims, efficacy and safety of the device.

 16

A sample printout of a partial SRS requirement history (SR7) is shown in Figure 13. Note that the change history is
arranged in reverse chronological order and records both changes to the text (change #1.0006 vs #1.0005) and
changes to the values of selected attributes (change #1.0005). Text changes can be very tiny such as the change in
capitalization of the word “cpu” in the example text of 1.0005 and 1.0006. Nevertheless, the minuscule changes are
considered a change and are logged appropriately by RequisitePro.

Configuration Management and Change Management
The powerful change history feature exists at three levels within a RequisitePro project:

1. At the finest level of detail, the change history records all changes to each individual requirement
within the project. This is the level of detail exhibited in Figure 13.

2. At a middle level of detail, RequisitePro, used in integration with popular industry configuration
management tools, including PVCS and Visual Source Safe, automatically maintains a similar
change history for each document that is known to the project.

3. At the most general level of detail, RequisitePro, used in conjunction with configuration management
tools, automatically maintains a similar change history for the entire project. In this mode,
RequisitePro also provides security of access to prevent unauthorized changes to crucial project
documents. At the project level, RequisitePro also maintains a built-in project archiving feature to
allow you to “snapshot” the project at a particular plateau of development..

With these features, RequisitePro provides an automatic and seamless integration to common applications that will
assist you in the Configuration Management tasks which are critical to managing high assurance software projects.

Figure 13, SR7 Change History

(rest of history truncated for this example)

 17

Conclusion
With the advent of the latest FDA regulations, the medical device manufacturer is being faced with more stringent
guidelines governing the processes employed in the development of medical devices and medical device software.
It can be expected that this trend will continue. The price of poor design control appears not only in the failure to
pass FDA review, but also is experienced in products that don’t meet customer expectations, project delays that
overshoot schedules by half with associated cost overruns, and in the most extreme case, termination of the project.

In parallel, we are developing increasingly complex systems that require better understanding of the components
that make up the project. Rising customer demands are making a systematic approach to design control an absolute
must. Understanding requirements management processes and utilizing these in the building of medical devices is
the fundamental building block in a successful approach to the design, test, and management of projects.

By combining the ability to import and retrieve requirement documents in their original form and by tying this to a
central repository that includes the requirements, specifications, attributes and the traceability links between them, a
controlled mechanism for assuring the consistency and quality of the design is established. Through the use of
RequisitePro, the project team can manage the device design process, improve team communications, define project
baselines more clearly, and manage resources more efficiently. In addition, RequisitePro provides automated
support for requirements traceability and change management, thus reducing development cost and improving
resultant quality by eliminating many of the error prone manual activities.

Incorporating RequisitePro into a medical device team’s design control process provides a more automated means
to develop products that are delivered on time, within budget, that satisfy the customer’s true needs, and assure
patient safety.

 18

Suggested Reading
Software Requirements - Objects, Functions, & States, Davis, Alan M., Englewood Cliffs, NJ: Prentice Hall, 1993.

Exploring Requirements - Quality Before Design, Gause, Donald C., and G. Weinberg, New York, NY Dorset House
Publishing, 1989

For information on how to order these books, or for addresses of the available internet forums discussing
requirements management, please contact Rational Software Corporation, 4900 Pearl East Circle, Suite 106,
Boulder, CO 80301, phone (303) 444-3464, fax (303) 444-3413, e-mail: information@rational.com

 19

Glossary of Abbreviations
510(k) The shorthand reference to the body of governing legislation that covers the application to market medical

devices which are similar to pre -existing devices already in the marketplace. Used in a manner similar to
“401(k)” when referring to a federally regulated company savings plan.

CDRH Center for Devices and Radiological Health

CGMP Current Good Manufacturing Practices

CMP Configuration Management Plan

FDA Food & Drug Administration

EU European Union

GMP Good Manufacturing Practices

HA Hazard Analysis

HRS Hardware Requirement Specification

IEC International Electrotechnical Commission

IU Implementation Unit

IEEE Institute of Electrical and Electronic Engineers

ISO International Standards Organization

LOC Level Of Concern

MDA Medical Device Amendments

ODE Office of Device Evaluation

OG “Office of Device Evaluation Guidance for the Content of Premarket Submission for Medical Devices
Containing Software (draft document)”

PRD Product Requirements Document

QSR Quality System Regulation

SMDA Safe Medical Device Act

SRS Software Requirement Specification

V&V Verification and Validation

VVP Verification and Validation Plan

 20

Bibliography
Davis, Alan M. Software Requirements - Objects, Functions, & States. Englewood Cliffs, NJ: Prentice Hall, 1993.

Davis, Alan M. 201 Principles of Software Development. New York, NY: McGraw-Hill, Inc., 1995.

FDA. Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule; Quality System Regulation.
Washington, DC: GPO, 1997.

FDA/ODE. ODE Guidance for the Content of Premarket Submission for Medical Devices Containing Software.
Washington, DC: GPO, (draft 1.3, 12 Aug 1996).

Gause, Donald C., and G. Weinberg. Exploring Requirements - Quality Before Design. New York, NY: Dorset
House Publishing, 1989.

IEEE. IEEE Standards Collection, Software Engineering. IEEE: New York, NY. 1994.

Leffingwell, D., and A. Davis, Using Requirements Management to Speed Delivery of Higher Quality Applications.
Rational Software TR0001, 06/96.

Wood, Bill J, and Julia W Ermes. “Applying Hazard Analysis to Medical Devices”, Medical Device & Diagnostic
Industry magazine, 01/93.

