
1

A Field Guide to Effective Requirements Management Under
SEI's Capability Maturity Model

by Dean A. Leffingwell

Copyright ©1996, Rational Software Corporation
All Rights Reserved

Abstract

The Capability Maturity Model, or CMM has emerged as the de-facto industry standard for a
comprehensive software quality process. Deeper and more comprehensive than ISO9000 standards, the
CMM provides a pragmatic, yet disciplined view of software activity which is being widely adopted by
the commercial software marketplace. Central to the CMM is the issue of requirements management.
Requirements management is a key process activity designed to ensure that software products meet the
needs of the customer in both functionality and quality. This article summarized requirements
management under the CMM, and provides useful guidelines for managing requirements consistent with
the CMM.

Background - the SEI's Capability Maturity Model

In November of 1986, the Software Engineering Institute (SEI), located at Carnegie Mellon University, began
developing a process maturity framework to help developers improve their software process1 . In September of
1987, the SEI released a brief description of the process maturity framework which was later amplified in
Watts Humphrey’s book, Managing the Software Process.2 By 1991, this framework evolved into what has
become known as version 1.0 of the Capability Maturity Model, or CMM. In 1994, version 1.1 of the CMM
was released.3

Version 1.1 of the CMM defines five levels of software maturity for an organization and provides a framework
for moving from one level to the next (figure 1). The CMM guides developers through activities designed to
help an organization improve their software process with the goal of achieving repeatability, controllability and
measurability. The CMM has gained considerable credibility in software intensive industries. Adherence to the
CMM and corresponding improvements in software quality have significantly lowered the cost of application
development within large commercial companies.

Figure 1- The
CMM's Five
Capability Maturity
Levels

Level 1Initial

Level 2Repeatable

Level 5Optimizing

Level 3Defined

Level 4Managed

CMM Maturity Levels

2

The CMM provides a framework for process improvement which consists of “key process areas.”
These are organizational activities that influence various aspects of the development process and
resultant software quality. Table 1 illustrates the key process areas of each of the five levels of the
CMM. Not surprisingly, Table 1 shows that the first key process area that must be addressed to move
from the Level 1 to the Level 2 is requirements management

TABLE 1
Levels of the CMM With Key Process Areas

Level Key Process Areas

1. Initial
Ad hoc, even chaotic; success depends solely on
individual heroics and efforts.

not applicable

2. Repeatable
Basic project management to track functionality of
application, and cost and schedule of project

Requirements Management
Software Project Planning
Software Project Tracking and
Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration
Management

3. Defined
The process for management and engineering is
documented, standardized, and integrated, All
projects use an approved, tailored version of the
process.

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

4. Managed
Detailed measures of the software process and
software quality metrics are collected. Both
process and software products are understood and
controlled.

Quantitative Process Management
Software Quality Management

5. Optimizing
Continuous process improvement is enabled by
use of metrics and from piloting innovative ideas
and technologies

Defect Prevention
Technology Change Management
Process Change Management

Return on Investment
The CMM has been in use by many organizations long enough so that meaningful return on investment
statistics are appearing. Organizations like Raytheon4 have proven that
improving their development processes by moving from CMM Level 1 to
Level 3 (discussed later), can lower their cost of rework by up to 50-60%.
Still more dramatically, Lawrence Putnam, founder and CEO of
Quantitative Software Management, which has been in the business of
measuring productivity of software development since 1978, reports
payoffs in the range of 70-100%/year.5 These payoffs provide results in productivity and corresponding
reduction in time to market by as much as a factor of 2-3 times! In an era of increasingly competitive
environments, these improvements to the bottom line cannot be ignored by even the most jaded of
organizations.

CMM Level 3
organizations have
achieved productivity
gains of from 200-300%

3

Getting Started - Requirements Management under CMM Level II
Requirements Management is the first key process area addressed by the CMM and is integral part of
the software development activity.

The purpose of requirements management is to establish a common
understanding between the customer and the software team of the customer's
requirements.

This common understanding serves as the basis of agreement between the customer and the project team,
and as such, is the central document which defines and controls the
activity to follow. Requirements are controlled to establish a baseline
for software engineering management use. Throughout the CMM,
guidelines specify that all activities plans, schedules, and software work products are to be developed and
modified as necessary so as to be consistent with the requirements which are allocated to software. In
this manner, the CMM moves the organization towards an integrated view - wherein both technical
requirements and project plans and activities must be kept consistent with each other. To support this
process, software requirements must be documented and reviewed by software managers and affected
groups including representatives of the customer and user community.

The software requirements specification serves as a central project
document - a defining element with relationships to other elements of
the project plan. The requirements include both technical (the
behavior of the application) and non-technical (other project
requirements including schedule, budget, etc.) requirements. In
addition, acceptance criteria, which are the tests and measures that
will be used to validate that the software meets its requirements, must be established and documented.

In order to accomplish these objectives, adequate resources and funding must be provided for managing
requirements. Members of the software engineering group and other affected groups should be trained to
perform their requirements management activities. Training should cover methods and standards as well
as training activities designed to create an understanding on the part of the engineering team as to the
unique nature and problems of the application domain.

Requirements are managed and controlled and serve as the basis for
software plans, work products, and activities. Changes to the requirements
are reviewed and incorporated into the project plans. The impact of change
must be assessed and negotiated with the affected groups. In order to
provide feedback on the results of these activities, and in order to verify
compliance, the CMM provides guidelines for measurements and analysis as well as activities for
verifying implementation. Suggested measures include:

1. Status of each of the allocated requirements

2. Change activity of the requirements, cumulative number of
changes

3. Total number of changes which are open, proposed,
approved, and incorporated into the baseline.

Software requirements
must be documented.

Software requirements
must be controlled to
establish a baseline for
engineering and
management use.

Members of the team must
be trained to perform their
requirements management
activities.

Measures should be
established including status
of each requirement.

4

Continuous Improvement - Requirements Management Under
CMM Level III
One of the most enlightened aspects of the CMM is its understanding that the process of requirements
management is not simply a-document-it-up-front-and-go waterfall model. With the CMM,
requirements are living entities at the very center of the application development process. Not
surprisingly, the process of effective requirements management appears at virtually all levels of the
process model and within many key process areas. As an organization moves to Level 3, the focus is on
managing software activities based on a defined and documented standard practice. Key process areas
for Level III include Organization Process Focus, Organization Process Definition, Training Program,
Integrated Software Management, Software Product Engineering, Intergroup Coordination, and Peer
Reviews. The Software Product Engineering Key Practice is designed to cause an organization to
integrate all software engineering activities to produce high quality software products effectively and
efficiently. The Software Engineering Key Practice states that

" The software requirements are developed, maintained, documented, and
verified by systematically analyzing the requirements according to the projects
defined software process."

The analysis process is necessary to ensure that the requirements make sense, that they are clearly stated,
complete and unambiguous, consistent with each other, and testable.
Various analysis techniques are suggested including simulations, modeling,
scenario generation, and functional and object-oriented decomposition. The
results of this process will be a better understanding of the requirements of
the application, which are then reflected in revised requirements
documentation. In addition, the group responsible for system and acceptance testing also analyzes the
requirements to ensure testability.

The resulting software requirements document is reviewed and approved by the affected parties to make
sure that the points of view represented by these parties is included in the requirements. Reviewers
include customers and end users, project management and software test
personnel.

In order to manage change in a controlled way, the CMM also calls for
placing the software requirements document under configuration
management control.

Requirements Traceability
"Consistency is maintained across software work products, including the
software plans, process descriptions, allocated requirements, software design,
code, test plans, and test procedures."

Under the CMM, all worthwhile software work products are documented, and the documentation must
be maintained and readily available. The software requirements, design,
code, and test cases are traced to the source from which they were derived
and to the products of the subsequent engineering activity. Requirements
Traceability provides a means of analyzing impact before a change is
made, as well as a way to determine what components are affected upon
processing of a change. Traceability also provides the mechanism
whereby the adequacy of test coverage can be readily determined.

Requirements must be
analyzed to determine
completeness, consistency
and testability.

The software requirements
document should be placed
under configuration
management.

Software requirements,
design, code, and test cases
are traced from the source
and to the products of the
subsequent activity.

5

All approved changes are tracked to completion. The documentation tracing the allocated requirements
is also managed and controlled. Measurements are made to determine the functionality and quality of the
software products and to determine the status of the software activity. Example measurements include:

1. Status of each allocated requirement throughout the lifecycle

2. Change activity of the allocated requirements

3. Allocated requirements summarized by category

Managing Change
The CMM recognizes that change is an integral part of software activity. Indeed, we all now
understand that the concept of "freezing the spec" is as old and obsolete as the generation of
computers to which we tried to apply this philosophy. In place of frozen specifications, we now
strive for a stable baseline of requirements which are well elicited, documented, and placed into
systems which provide support for managing change. Specifically, the CMM calls for:

1. As understanding of the software improves, changes to the
software work products and activities are proposed, analyzed
and incorporated as appropriate.

2. Where changes to the requirements are needed, they are
approved and incorporated before any work products or activities are changed.

3. The project determines the impact of change before the change is made.

4. Changes are negotiated and communicated to the effected
groups.

5. All changes are tracked to completion.

Summary
The CMM provides a comprehensive view of the activities which must be applied to improve
software quality and increase productivity. Requirements Management is an integral part of this
process wherein requirements serve as living entities which are at the center of development
activity. Once elicited, requirements are documented and managed with the same degree of care
that we provide to our code work products. This process puts the team in control of their project
and helps them manage both the project and its scope. Lastly, actively managing changing
requirements keeps the project under control and helps assure the reliable, repeatable production of
high quality software products.

The project determines the
impact of change before
the change is made.

All changes are tracked to
completion.

6

Bibliography

1 Paulk, M., et al, “Capability Maturity Model , Version 1.1”, IEEE Software, 10, 4 (July 1993), pp. 18-

27.
2 Humphrey, W.S., Managing the Software Process, Reading Mass,Addison Wesley, 1989
3 Paulk, M., et al, “Capability Maturity Model for Software, Version 1.1,” Software Engineering

Institute, Pittsburgh, PA, SEI-93-TR-024
4 Humphrey, W., et al., “Software Process Improvement at Hughes Aircraft,” IEEE Software, 8, 4

(July 1991), pp. 11-23.
5 Putnam, Lawrence, "The Economic Value of Moving Up the SEI Scale", Managing System

Development, July 1994.

