
Managing
Project Risk

Best Practices
and Tool
Integration
in Software
Development

TO800_Integ-j 8/21/02 10:17 AM Page 1

TO800_Integ-j 8/21/02 10:17 AM Page 2

Managing Project Risk
BEST PRACTICES AND TOOL INTEGRATION IN SOFTWARE DEVELOPMENT

TO800_Integ-j 8/21/02 10:17 AM Page 3

Rational, the Rational logo, Rational Unified Process, RUP, Rational Developer
Network, SoDA, TestFactory, ClearCase, ClearQuest, Rational Rose, RequisitePro,
Rational Suite, AnalystStudio, TestStudio, and Rational Suite ContentStudio,
are trademarks, registered trademarks or services marks of Rational Software
Corporation in the United States and/or other countries. All other names are
used or identification purposes only, and are trademarks or registered trademarks
of their respective companies.

All rights reserved. Made in the U.S.A.
© Copyright 2002 by Rational Software Corporation.
TO800; rev. 8/02. Subject to change without notice.

TO800_Integ-j 8/21/02 10:17 AM Page 4

Preface

Managing Project Risk
BEST PRACTICES AND TOOL INTEGRATION IN SOFTWARE DEVELOPMENT

Developing software can be a risky busi-

ness. For experienced project managers,

this is nothing new; for some time now,

effectively managing risk in software devel-

opment has been recognized as a key fac-

tor in delivering software successfully. But

even dramatic advancements in software

development techniques, architectures,

and platforms proven to be effective in

reducing risk for teams of all sizes and tools

have not stopped many projects from being

cancelled, or delivered late, or from running

over budget. The complexity of the appli-

cations being developed has outpaced the

resources and abilities of many software

development teams. As a result, only a

small fraction of software development

projects are completed on time and within

budget. Project managers and team leaders

— from seasoned veterans to those spear-

heading a project for the first time — are

focusing closely on reducing risk in software

development.

Through years of close work with thousands

of development organizations, Rational

Software has developed a comprehensive

solution that has proven to be effective in

reducing risk for development teams of all

sizes. This solution is based on best prac-

tices of software engineering — including an

iterative development process — and a

tightly integrated set of development tools

that helps teams improve communication

and leverage assets throughout the entire

project lifecycle.

We’ve prepared this guide for project man-

agers and team leaders who understand

the importance of minimizing risk and want

to help their teams realize their full poten-

tial. The content demonstrates the value of

integrated tools in risk management and

guides you step-by-step through a sample

project lifecycle. This guide will help you

understand how Rational’s process, award-

winning tools, and key tool integrations can

work in concert to help you and your team

decrease risk, increase predictability, and

ensure that your next project is delivered on

schedule.

If you have questions or comments, or if

you would like to arrange a demonstration

or evaluation of Rational’s solutions, please

visit us on the Web at www.rational.com.

x

TO800_Integ-j 8/21/02 10:17 AM Page 5

TO800_Integ-j 8/21/02 10:17 AM Page 6

Contents

Section 1:
Iterative Software Development:
Managing Project Risk and Uncertainty .1

Section 2:
Rational Product Integration and Workflow .3

Section 3:
The Rational Approach: Tools and Best Practices .9

Section 4:
Requirements Management .11

Section 5:
Visual Modeling .15

Section 6:
Software Configuration Management .18

Section 7:
Automated Testing .22

Section 8:
Managing Project Risk with Rational .26

Managing Project Risk
BEST PRACTICES AND TOOL INTEGRATION IN SOFTWARE DEVELOPMENT

TO800_Integ-j 8/21/02 10:17 AM Page 7

TO800_Integ-j 8/21/02 10:17 AM Page 8

section 1

Iterative Software Development:
Managing Project Risk and Uncertainty

Today, software projects are initiated with

significant levels of uncertainty:

1. When will code and content be stable?

2. What runtime failures will be uncovered?

3. How do project managers make accurate

project progress forecasts to stakeholders

and the team?

Because of this uncertainty, it is nearly

impossible for project managers to adhere

to a predictable project schedule. Yet, suc-

cessful managers have been able to con-

sistently guide their teams to complete

projects on time by adopting proven tech-

niques for effectively dealing with project

uncertainty — by following best practices

and using integrated tools.

The classic waterfall approach to software

development — in which the project pro-

ceeds sequentially from requirements

analysis through design, coding and test-

ing — postpones addressing risks until late

in the project, when it is much more costly

to make changes and fix problems intro-

duced in earlier phases. In the search for

more predictable projects and risk reduc-

tion, many organizations have found the

waterfall approach unworkable.

From an overall business perspective, the

success of many organizations is becom-

ing increasingly dependent on the success

or failure of the software they build —

regardless of whether it is intended to be

packaged and sold, to be used internally,

or to drive business transactions. In this

environment, managing risk is not only a

sound development practice, but also a

vital business practice.

What Is Risk in Software Development?

Software development teams encounter

many different kinds of risks. By definition,

risk involves an exposure to potential haz-

ards. It is uncertainty that underlies risk.

Factoring in this uncertainty and examining

the unknown and ill-defined is accom-

plished by creating and prioritizing a set of

risks based on what is known about the

project. For example, after an early risk

assessment you might conclude:

Risk 1: Requirements evolve over a project.

Project scope creep is inevitable

Risk 2: We have no straightforward way of

integrating our developments assets.

There’s lots of manual rework

Risk 3: We know that we will be using XML

extensively, but we have only one develop-

er with XML experience

With little effort, you can probably think of a

few important risks that your current soft-

ware development project is facing. Of

course, the order of the items on the risk

list, as well as the items themselves, will

change over time. The important thing is to

take steps to address risk and uncertainty

as soon as possible, before you spend a

lot of time, effort, and money on a flawed

approach.

Reducing Risk Through
Best Practices

In contrast to the waterfall approach

to software development, an iterative

approach seeks to identify project risks —

both technical and business-related —

early in the lifecycle, when it is possible to

address them most efficiently. The iterative

1

TO800_Integ-j 8/21/02 10:17 AM Page 9

development process is driven by continu-

ous discovery, invention, and implementa-

tion, during which the project team com-

pletes development of project artifacts in a

predictable and repeatable way, iteration

by iteration. An iterative process enables

your team to mitigate risks earlier because

it unearths and tests for problems earlier.

As you progress through the initial itera-

tions, you exercise many aspects of the

project, including tools, off-the-shelf soft-

ware, your process, and the skill sets of

individuals on your team.

The main advantage of iterative software

development is that it increases the pre-

dictability of the schedule, the final product

and the entire process. As an additional

dividend, it can also be expected to pro-

duce higher quality products — that satisfy

the real needs of end-users — because the

requirements can evolve along with the

design and the implementation. In fact,

developing software iteratively is one of six

best practices of software engineering that

are commonly used throughout the industry

by successful organizations. This time-

tested approach to software development

is embodied in the Rational Unified

Process®, Rational’s comprehensive frame-

work for software development. It is a

cornerstone of Rational’s complete solu-

tion, which combines best practices,

unified tools, and services that accelerate

implementation.

Integrated Tools Pave the Way

Adopting an iterative development

approach does not necessarily mean the

project manager will have an easier job. In

some situations, iterative development

requires more careful planning and will like-

ly place an additional burden on project

managers. But the benefits of iterative

development far outweigh the costs,

especially when the development team is

equipped with a set of tightly integrated,

team-based tools that support the entire

lifecycle. With Rational’s integrated tools,

software development artifacts, such as

requirements specifications, architectural

and design models, and test cases, can be

leveraged and reused repeatedly, and all

team members have clearer, more reliable

mechanisms for conveying and under-

standing project details. Integrated tools

help teams of analysts, developers, and

testers work closely together, by providing

an infrastructure that allows each team

member access to common project

requirements, defects, test cases, and

more. In addition, tool integration increas-

es the return on investment by enabling

round-trip engineering and synchronization

of requirements, design elements, and test

artifacts. In short, Rational’s broad array of

integrated tools work together to minimize

project risk and ensure successful project

delivery in several vitally important areas:

• Increased productivity and efficiency

• Faster development cycles and

improved ability to meet deadlines

• Improved team communication

• Increased quality

• Simplified project management

2

Rational Software Best Practices

> Develop Iteratively – to identify
and eliminate risks before they
threaten your project.

> Manage Requirements – to
ensure resilience in the face of
inevitable change.

> Use Component Architectures – to
make your architecture tangible
to all practitioners.

> Model Visually – to attain and
preserve a high-quality architecture.

> Continuously Verify Quality – to
ensure quality throughout the
development life cycle.

> Manage Change – to enable effi-
cient parallel development within
teams and across the enterprise.

TO800_Integ-j 8/21/02 10:17 AM Page 10

