

Software Development in
IBM

Canada
Toronto,Ottawa

Montreal, Victoria

Edinburgh
London / Staines
Milton Keynes

Haifa
Rehovot

China
Beijing

Shanghai
Yamato

Taiwan

Paris
PornichetBeaverton

Kirkland
Seattle

Foster City
San Francisco
SVL/San Jose

Almaden
Agoura Hills

Irving
El Segundo
Costa Mesa
Las Vegas

Andover
Bedford, MA
Bedford, NH

Essex Junction, VT
Lexington

Westborough
Westford

Cambridge

Cork
Dublin
Galway

India
Bangalore

Pune
Hyderabad
Gurgaon

Cairo

Rome

Gold Coast
Sydney

Canberra

Fairfax
Raleigh

Charlotte
Lexington, KY

Atlanta
Boca Raton

Tampa

Perth

Krakow
Warsaw

Sao Paulo

Malaysia

DelftStockholm

Pittsburg
Poughkeepsie
Somers
Yorktown Heights
Hopewell Junction

Rochester, MN
Boulder
Denver

Lenexa, KA
Tucson
Phoenix
Austin
Dallas

Boeblingen

Hursley
Warwick
York

Southbury
New York City
Princeton
Hawthorne
Endicott

US
Canada
Latin America
EMEA
AP

Total

US
Canada
Latin America
EMEA
AP

Total

16,100
3,400

260
4,820
8,420

33,000
Moscow

El Salto, MX

A Global Team of IBM Software Developers

Zurich

IBM Software Group Developer Community Growth

13,400
15,100

17,600
19,700 19,400

22,700 23,100
25,100

25 Labs

78 Labs
Developer Population

7,527 developers from 54 acquisitions since 2001
4,200 developers through organic growth
Acquired and retained 40 Lab locations world-wide since 2001

2001 2002 2003 2004 2005 2006 2007 Apr 2008

IBM Software Development Transformation

AGILEAGILE

ITERATIVEITERATIVE

WATERFALLWATERFALLWaterfall development
• Rigid, late feedback, slow

reaction to market changes

Iterative development
• Customized RUP, community

source and component reuse,
emphasis on consumability

1980’s

1990’s

Present

Rigid

Continuous
Learning

and
Adaptive
Planning

Agile / Lean development
• Global reach, SOA, agile

practices, outside-in
development, tools and not rules

Development Governance Principles

Lightweight
central

mechanisms

Support
for

Communities

Tools,
not

Rules

Centralized
development

services

Diversity and Complexity Requires Teams
to be More Effective and Adaptive

New project

50+ developers

Small team
Simple application
Co-located
Minimal need for documentation

Maturing projects
Multi-platform
Growing in complexity
Remote or offshore work
Greater need for coordination & handoffs

Mature projects
Complex, multi-platform applications
Distributed teams
Need for scalability, reproducibility, and
traceability

Organizational
Drivers
Team Size

Geographical Distribution
Organizational Distribution

Entrenched process, people, policy

Technical and
Regulatory Drivers

Compliance
Governance

Application complexity

Agility at Scale
“Incremental to deal with uncertainty”

“Process to deal with complexity”

Development Transformation – Driving Change

Outside-in Design

Componentization
and

Reuse

Agile Development

Communities
and

Community Source

Outside-In Development

Outside-in development is about focusing on the business
stakeholders who are affected by your software, and about
applying that focus to the entire software cycle

The Four “Must Do’s”
1. Focus on the stakeholders
2. Develop business scenarios
3. Use iterations
4. Remember that both iterations and final product need

to be consumable by the target stakeholders and users

Agile Software Engineering
Iterative, typically time-boxed as short iterations
About frequent, even constant, validation
with stakeholders
Highly focused on mitigating risks
Adaptive; comfortable with change & reprioritization
Communication intensive (e.g., daily Scrums)
Aimed at making incremental progress; working
software is the measure
Disciplined, scaleable, and workable across sites

A good agile project will build something that meets
customers needs but may be different from original plans

Components for Product Integration and
Simplification

Integrated, Consistent Products

Product consistency
Product interaction in solutions
Ease of use
Agile product construction
Simplified code base
Less redundancy

Reusable, Flexible Components
Identified convention/standard
Packaged function
Flexible construction
Best practices
Developer ecosystem
Community source

Standards

What integration
problem are
we trying to solve?

What components
do we need?

What conventions
exist or do we
need to develop?

What
conventions
are supported
or implied?

When/where do
we drive these
Into products?

Do we have
components that
fit or are we
creating some?
(through
re-factoring)

Component Reuse in IBM
WebSphere

Application Server
technology has been

reused and/or bundled
with 126 other product

offerings

DB2
technology has been

reused and/or bundled
with 175 other product

offerings

WebSphere Portal
technology has been

reused and/or bundled
with 15 other product

offerings

Informix IDS
technology has been

reused and/or bundled
with 39 other product

offerings

Cloudscape
technology has been

reused and/or bundled
with 253+ other product

offerings

Community Source in IBM Facilitates Reuse
Key Features:

Access Control
Product builds, fixes and test
drivers
Discussion Forums
Reference information
Defect Reporting
Feature Requests
Code Storage and Version Control
Project Management

1,208 active
projects and

26,149
registered users

Benefits
Reuse over reinvention
Improving information flow
Leveraging broader IBM
Improving quality through
peer reviews and user
feedback
Deliver more function on
shorter schedule
Most valuable assets get
the most attention
Facilitate development

Business & Software Development Process

IPD – Integrated Product
Development process

Structured, end-to-end process
for managing business
investment decisions and
development efforts

Methodology for defining,
developing, qualifying,
delivering, and supporting
offerings
Business life-cycle model for
any type of offering

IRUP – IBM (Internal)
Rational Unified Process

Customization of the Rational
Unified Process to address the
specific needs of IBM internal
software development

Underlying set of philosophies
and practices for successful
software development
Software development life-cycle
model for the development of
software

IBM Using Rational Unified Process = IRUP

IPD Phases: Concept Plan Develop Qualify Launch Lifecycle

Time

Content
and

Structure

Disciplines
Business Modeling

Requirements
Analysis & Design

Implementation
Test

Deployment
Configuration and

Change Management
Project Management

Environment

IBM Development Tool Evolution

Duplicate Efforts
Many toolsets

Multiple versions of SCMs
Multiple solutions

(1980’s)

Iterative Development
Transition to Rational Suite

Hybrid environment containing
Rational plus common toolset

(1990’s to present)

Conventional Process
One CMVC version

Common toolset
Shared solutions

(1990’s)

Improving Time to Value

Tooling based on
Jazz Framework

Rational products deployed to the “Right Team” at
the “Right Time”
Top adoption enablers

• Executive and technical commitment
• Dedicated deployment engineers for Team Products (CC, CQ)
• Support for internal IBM for ALL Rational tools
• Rational Knowledge Sharing Center Web Site

– Education – online training, forums
– Best practices
– Downloads
– Beta support

Internal Adoption of Rational Solution

Rational Software Development Team
Using Rational Tools for Rational Development

Rational Unified Process

Rational Asset Manager

Rational ClearCase

Rational ClearQuest

Rational Team Concert

Rational RequisitePro

Used by
60+ Rational
development

efforts

600
users

Rational
Software Architect
Rational Build Forge
Rational Manual Tester
Rational Functional
Tester
Rational Performance
Tester

DB2 V9 Development
on schedule

highest quality
Challenge

Deliver high quality
product, on schedule,
leveraging collaborative
development effort of

1,000 developers,
spanning 12 labs,
in 8 countries

Solution
Rational ClearCase
for configuration
management
Rational ClearQuest
for change management

deployed worldwide
as a standardized
platform for cross-site
development

IBM Tivoli Rome Lab Increases Productivity

Challenge
Increase productivity of
development and testing teams
Improve quality of products

Solution
Rational Unified Process
Rational Software Architect
Rational Functional Tester
Rational Method Composer

Benefit
30% increase in developer
productivity
Requirements and design
defects cut in half
Test productivity increased
by 20%, while test coverage
increased by 30%
20% of all functional testing
automated

Rome

Overall, 200% ROI on
first product release
using Rational Tools

WebSphere Application Server Development

Using the Right Tools
Rational Unified Process for
“use cases” best practices
Build tools, using Rational Build
Forge

Rational Application
Developer for code modeling and
development tools
Automated GUI testing with
Rational Functional Tester

Stress testing with Rational
Performance Tester

China
Canada
Germany
India

Israel
Japan
UK
USA

900+ Developers

325 separate build images
900+ builds per week
200 automated build tests
50,000 Java cert tests
35,000 function tests
1,100+ customer scenarios

4.1M+ New LOC

Tivoli Storage Manager Testing
reduced

test effort by 90%
from 5 days 3 hrsSolution

Rational Functional
Tester for automating
test bucket

quickly assess and
baseline overall
quality for new
product builds and
maintenance releases

Challenge
Development cycle of
12 months for major
release and quarterly
for maintenance put
significant strain on
test team
Needed to automate
test process to reduce
cycle time and human
error

Best Practices for Distributed Development Success

Architecture
Blueprint
Outside-in
Development
Agile / Lean
approaches
Modeling and
Componentization
Fostering
Communities and
sharing Best
Practices

Discipline, adaptive
development
approaches
Continuous
stakeholder
feedback to
understand
changing needs
Time-boxed
iterations
Eliminate waste,
increase visibility

Tools, not Rules
Community source
Shared asset
repository
Best practices
Common
components
Clearing House
for dependency
management

Lightweight central
governance
mechanisms
Development
Steering Committee
Architectural Board
Culture of sharing
and reuse
Developer Web site
Centralized
development
services

Sound
Development
Governance
Principles

Enable for
Success

Execute
Agile / Lean

for Productivity

Guiding
Principles for

Software
Development++ ++ ==

THANK
YOU

THANK
YOU

	Slide Number 1
	Slide Number 2
	A Global Team of IBM Software Developers
	IBM Software Group Developer Community Growth
	IBM Software Development Transformation
	Development Governance Principles
	Diversity and Complexity Requires Teams to be More Effective and Adaptive
	Development Transformation – Driving Change
	Outside-In Development
	Agile Software Engineering
	Components for Product Integration and Simplification
	Component Reuse in IBM
	Community Source in IBM Facilitates Reuse
	Business & Software Development Process
	IBM Using Rational Unified Process = IRUP
	IBM Development Tool Evolution
	Internal Adoption of Rational Solution
	Rational Software Development Team
	DB2 V9 Development
	IBM Tivoli Rome Lab Increases Productivity
	WebSphere Application Server Development
	Tivoli Storage Manager Testing
	Best Practices for Distributed Development Success
	Slide Number 24
	Slide Number 25

