
IBM WebSphere Host On-Demand Version 8.0

Host On-Demand Macro Programming
Guide

SC31-6378-00

���

IBM WebSphere Host On-Demand Version 8.0

Host On-Demand Macro Programming
Guide

SC31-6378-00

���

Note
Before using this information and the product it supports, read the information in Appendix B, “Notices”, on page 181.

First Edition (September 2003)

This edition applies to Version 8.0 of IBM(R) WebSphere Host On-Demand (IBM Host Access Client Package for
Multiplatforms V4.0, program number 5724–F69) and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
About the other Host On-Demand documentation vii
Conventions used in this book. viii

Part 1. Macro basics 1

Chapter 1. Introduction 3
Host On-Demand macros 3

Definition of a macro 3
Advantages of macros 3
Unsophisticated users 3
Sophisticated users 3
Programming features 3
Samples 4

Deploying macros 4
Using macros to integrate your enterprise
applications. 4
Host Access Toolkit 4
Macros and security 5
This book focuses on 3270 applications 5

Chapter 2. Macro components 7
Overview 7
Macro Manager 7

Macro Manager toolbar 7
Macro Editor 8
Code Editor 9

Macro runtime 10
Macro object 10
Definitions of other terms. 11

Chapter 3. Recording and playing back
a simple macro 13
Recording a simple macro 13
Playing back a simple macro 16
Assigning the macro to a key combination 17

Chapter 4. Macro structure 19
Macro script 19

XML elements 19
Conceptual view of a macro script. 20
Introduction to the Macro tab 21

The macro screen and its subcomponents 23
Application screen 23
Macro screen 24
Conceptual view of a macro screen 25
Introduction to the Screens tab 26

Part 2. Developing macros 29

Chapter 5. Data types, operators, and
expressions 31
Choosing a macro format 31

The basic macro format versus the advanced
macro format 31
Representation of strings and special characters,
treatment of operator characters 31
Converting your macro to a different format . . 33

Standard data types 33
Boolean data 33
Integers. 34
Doubles 34
Strings 34

Fields 34
The value null 35
Arithmetic operators and expressions. 35

Operators and expressions 35
Where arithmetic expressions can be used . . . 35

String concatenation operator (+) 36
Operators and expressions 36

Conditional and logical operators and expressions 36
Conditional expression can include complex
terms 37
Where conditional expressions can be used . . . 37

Automatic data type conversion 37
Effect of context 37
Conversion to boolean. 37
Conversion to integer 38
Conversion to double 38
Conversion to string 38
Conversion errors 38

Equivalents 38
Significance of a negative value for a row or column 39

Chapter 6. How the macro runtime
processes a macro screen 41
Overview 41

Scenario used as an example 41
Stages in processing a macro screen 42
Closer look at stage 1 42
Overview of the entire process (all 3 stages) . . 42
Conclusion of the overview 43

Stage 1: Determining the next macro screen to be
processed 43

Adding macro screen names to the list of valid
next screens (step 1(a)) 43
Screen recognition (step 1(b)) 45
Removing the names of candidate macro screens
from the list of valid next screens (step 1(c)) . . 47

Stage 2: Making the successful candidate the new
current macro screen 47
Stage 3: Performing the actions in the new current
macro screen 47

Inserting a delay after an action 48
Repeating the processing cycle 48
Terminating the macro. 48

© Copyright IBM Corp. 2003 iii

Chapter 7. Screen description and
recognition 49
Terms defined 49
Introduction to the Description tab 50

Sample Description tab 50
Recorded descriptions 52

What information is recorded 52
Why the recorded descriptions work 52
Recorded descriptors provide a framework . . . 53

Evaluation of descriptors 53
Practical information 53
Overview of the process 53
Evaluation of individual descriptors 54
Default combining method 54
The uselogic attribute 56

The descriptors 57
Overview 57
Field Counts and OIA descriptor 57
String descriptor (<string> element) 61
Cursor descriptor (<cursor> element) 65
Attribute descriptor (<attrib> element) 65
Condition descriptor (<condition>) element . . 66
Custom descriptor (<customreco> element) . . . 66

Variable update action (<varupdate> element) . . . 67
Processing a Variable update action in a
description 67
Variable update with the uselogic attribute . . . 67

Chapter 8. Macro actions 69
In general 69

The actions by function 69
How actions are performed 69
Specifying parameters for actions 70

Introduction to the Actions tab 70
Sample Actions tab 70
Creating a new action 71

The actions 73
Box selection action (<boxselection> element) . . 73
Comm wait action (<commwait> element) . . . 73
Conditional action (<if> element and <else>
element) 75
Extract action (<extract> element) 77
Input action (<input> element) 82
Message action (<message> element) 84
Mouse click action (<mouseclick> element) . . . 85
Pause action (<pause> element) 86
Perform action (<perform> element) 86
PlayMacro action (<playmacro> element) . . . 88
Print actions (<print> element) 90
Prompt action (<prompt> element) 92
Run program action (<runprogram> element) . . 95
Trace action (<trace> element) 96
Variable update action (<varupdate> element) . . 97
Xfer action (<filexfer> element) 100

Chapter 9. Screen Recognition, Part 2 103
Valid next screens 103
Entry screens, exit screens, and transient screens 105

Entry screens 105
Exit screens 106

Transient screens 106
Timeout settings for screen recognition 107

Screen recognition 107
Timeout Between Screens (Macro tab) 108
Timeout (Links tab) 108

Recognition limit (General tab of the Screens tab) 108
Determining when the recognition limit is
reached 109
Action when the Recognition limit is reached 109

Chapter 10. Actions, Part 2: Timing
issues 111
Pause after an action 111

Speed of processing actions 111
Pause Between Actions (Macro tab) 111
Set Pause Time (General tab of the Screens tab) 111
Adding a pause after a particular action . . . 112

Screen completion 112
Recognizing the next macro screen too soon . . 112
The ordinary TN3270 protocol 113
Solutions 113
Attributes that deal with screen completion . . 114

Chapter 11. Variables and imported
Java classes. 117
Introduction to variables and imported types . . . 117

Advanced macro format required. 117
Scope of variables 117
Introduction to the Variables tab 118

Issues you should be aware of. 122
Deploying Java libraries or classes 122
Variable names and type names 123
Transferring variables from one macro to
another 123
Field variables 123

Using variables 124
When variables are initialized 124
Using variables belonging to a standard type 124
Using variables belonging to an imported type 125
Comparing variables of the same imported type 126

Calling Java methods 126
Where method calls can be used 126
Syntax of a method call 126
How the macro runtime searches for a called
method 126

Converting numbers to and from the local national
language format 127

Examples 128

Chapter 12. The graphical user
interface 129
Updating fields in the Macro Editor 129

Using the session window 129
Using the marking rectangle 129
Using the session window’s text cursor. . . . 129
Error in specifying a string 130

Using the Code Editor 130
Copy and paste a script from this guide into the
Code Editor 130

iv IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Part 3. The macro language 133

Chapter 13. Features of the macro
language 135
Use of XML 135

XML syntax in the Host On-Demand macro
language 135
Code Editor 136

Hierarchy of the elements 136
Inserting comments into a macro script. 137

Format of comments 137
Comment errors 137
Examples of comments 137

Debugging macro scripts with the <trace> element 138
Using the Host Access Toolkit product with macros 138

Chapter 14. Macro language elements 143
Specifying the attributes 143

XML requirements. 143
Advanced format in attribute values. 143
Typed data 143

<actions> element 144
General 144
Attributes 144
XML samples 144

<attrib> element 145
General 145
Attributes 145
XML samples 145

<boxselection> element 145
General 145
Attributes 146
XML samples 146

<comment> element 146
General 146
Attributes 146
XML samples 146

<commwait> element 147
General 147
Attributes 147
XML samples 147

<condition> element 147
General 147
Attributes 148
XML samples 148

<create> element 148
General 148
Attributes 148
XML samples 148

<cursor> element 149
General 149
Attributes 149
XML samples 149

<custom> element 149
General 149
Attributes 150
XML samples 150

<customreco> element 150
General 150
Attributes 150

XML samples 151
<description> element 151

General 151
Attributes 151
XML samples 151

<else> element 151
General 151
Attributes 152
XML samples 152

<extract> element 152
General 152
Attributes 152
XML samples 153

<filexfer> element 153
General 153
Attributes 153
XML samples 154

<HAScript> element 154
General 154
Attributes 154
XML samples 155

<if> element. 156
General 156
Attributes 156
XML samples 156

<import> element 157
General 157
Attributes 157
XML samples 157

<input> element 158
General 158
Attributes 158
XML samples 158

<message> element 159
General 159
Attributes 159
XML samples 159

<mouseclick> element 159
General 159
Attributes 159
XML samples 159

<nextscreen> element. 159
General 159
Attributes 160
XML samples 160

<nextscreens> element 160
General 160
Attributes 160
XML samples 160

<numfields> element 160
General 160
Attributes 161
XML samples 161

<numinputfields> element 161
General 161
Attributes 161
XML samples 161

<oia> element 161
General 161
Attributes 161
XML samples 162

Contents v

<pause> element 162
General 162
Attributes 162
XML samples 162

<perform> element 162
General 162
Attributes 163
XML samples 163

<playmacro> element 163
General 163
Attributes 163
XML samples 164

<print> element 164
General 164
Attributes 164
XML samples 165

<prompt> element. 165
General 165
Attributes 165
XML samples 166

<recolimit> element 166
General 166
Attributes 166
XML samples 166

<runprogram> element 167
General 167
Attributes 167
XML samples 167

<screen> element 167
General 167
Attributes 167
XML samples 168

<string> element 168
General 168
Attributes 168
XML samples 169

<trace> element 169
General 169
Attributes 169
XML samples 170

<type> element. 170
General 170
Attributes 170
XML samples 170

<vars> element 170
General 170
Attributes 171
XML samples 171

<varupdate> element 171
General 171
Attributes 171
XML samples 171

Chapter 15. Sample macro code . . . 173
Copy CICS transaction records into Excel
spreadsheet or DB2 database 173

Introduction 173
Steps for running Excel sample (Sun Java 2
plug-in, Windows only) 173
Steps for running DB2 sample 175

Appendix A. Additional information 177
The default combining rule for multiple descriptors
in one macro screen 177

Statement of the rule 177
Mnemonic keywords for the Input action 177

Appendix B. Notices 181

Appendix C. Trademarks 183

vi IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

About this book

The Macro Programming Guide guide helps you write better Host On-Demand
macros. This book is written for Host On-Demand macro developers and ordinary
users. There are three parts.

Part 1, “Macro basics”, on page 1 describes basic concepts, introduces the tools, and
gives a step-by-step description of how to record and play back a simple macro.

Part 2, “Developing macros”, on page 29 describes in detail the capabilities of the
Host On-Demand macro system.

Part 3, “The macro language”, on page 133 describes the XML macro language.

The Macro Programming Guide is also available on the Host On-Demand CD-ROM
and at the Host On-Demand Web InfoCenter at
http://www.ibm.com/software/webservers/hostondemand/library/v8infocenter/

About the other Host On-Demand documentation
In addition to the Macro Proramming Guide, Host On-Demand also provides other
sources of information to help you use the product. To access the documentation
described here, go to the Host On-Demand library page at
http://www.ibm.com/software/webservers/hostondemand/library.html . Most of
the documentation is also included on the Host On-Demand product or Toolkit
CD-ROMs.
v Online Help. The Online Help is the primary source of information for

administrators and users after Host On-Demand installation is complete. It
provides detailed steps on how to perform Host On-Demand tasks. A table of
contents and an index help you locate task-oriented help panels and conceptual
help panels. While you use the Host On-Demand graphical user interface (GUI),
help buttons bring up panel-level help panels for the GUI.

v Programming, Installing, and Configuring Host On-Demand. Written for system
administrators, this book helps you to plan for, install, and configure the Host
On-Demand program.

v Program Directory. The program directory instructs you on how to install Host
On-Demand on the z/OS and OS/390 platforms.

v Readme file. This file, readme.html, contains product information that was
discovered too late to include in the product documentation.

v Web Express Logon Reference. This book provides a step-by-step approach for
understanding, implementing, and troubleshooting Web Express Logon. It offers
an overview of Web Express Logon, two scenario-based examples to help you
plan for and deploy Web Express Logon in your own environment, as well as
several APIs for writing customized macros and plug-ins.

v Host Printing Reference. After you configure host sessions, use the Host Printing
Reference to enable your users to print their host session information to a local
or LAN-attached printer or file.

v Session Manager API Reference. This book provides JavaScript APIs for managing
host sessions and text-based interactions with host sessions.

© Copyright IBM Corp. 2003 vii

http://www.ibm.com/software/webservers/hostondemand/library/v8infocenter/
http://www.ibm.com/software/webservers/hostondemand/library.html

v Programmable Host On-Demand. This book provides a set of Java APIs that allows
developers to integrate various pieces of the Host On-Demand client code, such
as terminals, menus, and toolbars, into their own custom Java applications and
applets.

v Toolkit Getting Started. This book explains how to install and configure the Host
On-Demand Toolkit, which is shipped with the Host Access Client Package, but
is installed from a different CD-ROM than the Host On-Demand base product.
The Host On-Demand Toolkit complements the Host On-Demand base product
by offering Java beans and other components to help you maximize the use of
Host On-Demand in your environment.

v Host Access Beans for Java Reference. This book is part of the Host On-Demand
Toolkit. It serves as a reference for programmers who want to customize the
Host On-Demand environment using Java beans and create macros to automate
steps in emulator sessions.

v Host Access Class Library Reference. This book is part of the Host On-Demand
Toolkit. It serves as a reference for programmers who want to write Java applets
and applications that can access host information at the data stream level.

v J2EE Connector Reference. This book is part of the Host On-Demand Toolkit. It
serves as a reference for programmers who want to write applets and servlets
that access Java 2 Enterprise Edition (J2EE) compatible applications.

v Host On-Demand Redbooks. The Host On-Demand Redbooks complement the
Host On-Demand product documentation by offering a practical, hands-on
approach to using Host On-Demand. Redbooks are offered ″as is″ and do not
always contain the very latest product information. For the most up-to-date list
of all Host On-Demand Redbooks, visit the Host On-Demand library page at
http://www.ibm.com/software/webservers/hostondemand/library.html.

Conventions used in this book
The following typographic conventions are used in the Macro Programming Guide:

Table 1. Conventions used in this book

Convention Meaning

Monospace Indicates text you must enter at a command prompt and values you must use literally,
such as commands, functions, and resource definition attributes and their values.
Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the name of a file
for file_name). Italics also indicates emphasis and the titles of books.

Return Refers to the key labeled with the word Return, the word Enter, or the left arrow.

> When used to describe a menu, shows a series of menu selections. For example, “Click
File > New” means “From the File menu, click the New command.”

When used to describe a tree view, shows a series of folder or object expansions. For
example, “Expand HODConfig Servlet > Sysplexes > Plex1 > J2EE Servers >
BBOARS2” means:

1. Expand the HODConfig Servlet folder

2. Expand the Sysplexes folder

3. Expand the Plex1 folder

4. Expand the J2EE Servers folder

5. Expand the BBOARS2 folder

Java 1 In this book, Java 1 means implemented in a Java 1.1.x JVM.

Java 2 In this book, Java 2 means implemented in a 1.3 and later JVM.

viii IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

http://www.ibm.com/software/webservers/hostondemand/library.html

This graphic is used to highlight notes to the reader.

This graphic is used to highlight tips for the reader.

About this book ix

x IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Part 1. Macro basics

© Copyright IBM Corp. 2003 1

2 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 1. Introduction

Host On-Demand macros

Definition of a macro
A Host On-Demand macro is a XML script that allows a Host On-Demand client to
interact automatically with a host application running on a terminal emulator
session (a 3270 Display session, a 5250 Display session, a VT Display session, or a
CICS Gateway session). A Host On-Demand macro is usually written to perform a
specific task or set of tasks involving a single host application.

Advantages of macros
Compared to a human operator, a macro interacts with a host application more
quickly and with a smaller risk of error. A macro does not require that the person
who runs it be trained in operating the host application. A macro can in many
instances run unattended. A macro can be used again and again. A macro can be
copied and distributed to multiple users. And most importantly, a macro can serve
as a part of a broader solution to a customer requirement that involves both host
applications and workstation applications.

Unsophisticated users
An unsophisticated user can create a basic macro for automating a tedious or
time-consuming interaction with a host application. The user navigates the host
application to the screen at which he or she wishes to start, selects the Record
Macro icon, and performs a task using the host application. For each application
screen that the user visits, Host On-Demand records an impression of the
application screen and the user’s input to the application screen. When the user
plays back the recorded macro starting at the same application screen as before,
Host On-Demand recognizes each host application screen based on the previously
recorded impression and repeats the actions that the human operator previously
performed.

Sophisticated users
A more sophisticated user can add to or improve a recorded macro using the Host
Access Macro Editor (Macro Editor). This tool, which is available by clicking an
icon on the session panel, provides a graphical user interface (consisting of input
fields, text boxes, checkboxes, and so on) with which a user can modify or add
features to each screen interaction with the host application. Besides allowing a
user to edit and enhance the macro’s screen recognition behavior and user input,
the Macro Editor provides features that allow a user to add more intelligent
behavior to the macro, such as choosing between alternate paths through an
application, skipping a screen that should not be processed, or backing up to a
previous screen. And there are more powerful capabilities including the ability to
read and process data from the session screen, to notify the operator of status, to
prompt the operator for an important decision, to download or upload files from
the host, and to automate the printing of application screens.

Programming features
The Macro Editor also provides programming features. A user with programming
experience can add functionality to a Host On-Demand macro by creating and

© Copyright IBM Corp. 2003 3

manipulating variables, using arithmetic and logical expressions, writing
if-then-else conditions, chaining to another macro, calling Java methods stored in
external Java libraries, launching native applications, and writing trace information.

The Code Editor, a text editor that is launched from the Macro Editor, allows the
user to view and modify the XML elements that make up the macro script, and
also to cut and paste text through the system clipboard.

Samples
This book contains macro code samples throughout. The chapter Chapter 15,
“Sample macro code”, on page 173 contains an example of a macro that reads
entries from a sample CICS database and writes them into a Microsoft Excel
spreadsheet.

Deploying macros
The Host On-Demand Deployment Wizard includes settings that enable system
administrators to deploy macros to users in server libraries located at Web
locations or on LAN or CD-ROM drives.

For more information see ″Creating and deploying server macro libraries″ in the
document Planning, Installing, and Configuring Host On-Demand.

A local user can save a macro in a session configuration or a user directory if
permitted.

Using macros to integrate your enterprise applications
You can use Host On-Demand macros to integrate your Telnet-accessible
applications with your workstation applications. Macros provide a path for data to
flow into or out of your Telnet-accessible applications.

Host On-Demand includes two programming interfaces that allow you to drive
macros:
v Programmable Host On-Demand

This is a set of Java APIs that allows developers to integrate various pieces of
the Host On-Demand client code, such as terminals, menus, and toolbars, into
their own custom Java applications and applets.
For more information see the document Programmable Host On-Demand in the
Host On-Demand documentation.

v Session Manager APIs
Session Manager APIs are JavaScript APIs for managing host sessions and
text-based interactions with host sessions.
For more information see the document Session Manager API Reference in the
Host On-Demand documentation.

Host Access Toolkit
The Host Access Toolkit is a separate product that provides programmatic control
of the Host On-Demand client and other features, includes Java APIs for launching
and interacting with Host On-Demand macros.

4 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Macros and security
Because a macro is an easily transportable, unencrypted, text-based representation
of interactions between a user and a host application, you should consider
protecting your macros as valuable pieces of intellectual property.

In particular, you should consider not storing passwords or other sensitive data in
a macro script. Instead, you can design the macro so that it obtains sensitive
information from an outside source, for example by prompting the user for a
password or by obtaining data from a host or local application.

This book focuses on 3270 applications
Although macros can be used with 3270 Display sessions, with 5250 Display
sessions, with VT Display sessions, and with CICS Gateway sessions, this book
focuses almost entirely on 3270 Display sessions and 3270 host applications.

Chapter 1. Introduction 5

6 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 2. Macro components

Overview
This chapter describes the components that you will encounter as you use the
macro capabilities of Host On-Demand. Here is an overview of the main
components:
v Macro Manager. This a broad term that refers to all the user interfaces in Host

On-Demand that allow you to work with macros. The Macro Manager consists
of three main user interfaces:
– Macro Manager toolbar. This is a toolbar with icons for commonly used

macro functions, such as Record a Macro, Play Macro, Edit Macro Properties,
and others. See “Macro Manager toolbar” in this chapter.

– Macro Editor. This is the main user interface for editing a macro script. See
“Macro Editor” on page 8 in this chapter.

– Code Editor. This is a text editor that you lets you directly edit the XML
language of a macro script. See “Code Editor” on page 9 in this chapter.

v Macro runtime. This is the program module that plays macros. See “Macro
runtime” on page 10.

v Macro object. This is the underlying Java object that provides macro capabilities.
See “Macro object” on page 10.

The remaining sections of this chapter describe these components in more detail.
The final section of this chapter defines other macro terms that you might
encounter in this book.

Macro Manager
The Macro Manager is the umbrella term for all the macro user interfaces. There
are three main interfaces: the Macro Manager toolbar, the Macro Editor, and the
Code Editor.

Macro Manager toolbar
The Macro Manager toolbar is a toolbar that contains icons for common macro
operations. All of these icons can be used by macro developers, while at least one
of the icons is also for users of macros (the Play macro icon). Figure 1 shows the
Macro Manager toolbar. (For the purpose of illustration, this figure is inaccurate in
one respect: it shows all the buttons on the toolbar enabled at the same time.)

To view the Macro Manager toolbar follow these steps:
1. Start a Host On-Demand client.
2. Start a terminal emulator session (3270 Display session, 5250 Display session,

VT session, or CICS Gateway session).
3. Click View > Macro Manager

Figure 1. Macro Manager toolbar

© Copyright IBM Corp. 2003 7

Depending on your company’s configuration of the display session, you might
notice that a few of the icons on the Macro Manager toolbar also appear on the
main toolbar. This placement is for extra convenience and should not cause you
any concern. The icons work the same no matter which toolbar they appear on.

Here is a quick summary of the function of each part of the Macro Manager
toolbar, from left to right. You will learn more about each of these functions later
in the book.
v Currently selected macro. This white text field at the left side of the toolbar is

not an input field but a text field in which the Macro Manager displays the
name of the currently selected macro. Here the currently selected macro is
ispf_usp.mac.

v Select a macro. This icon is the big downward-pointing arrowhead. Click this
icon to select a current macro for playing, editing, copying, or deleting.

v Edit current macro properties. Click this icon to bring up the Macro Editor. See
“Macro Editor”

v Delete current macro from list. Click this icon to delete the currently selected
macro.

v Play macro. Click this icon to play the currently selected macro.
v Record macro. Click this icon to record a new macro.
v Stop playing or recording macro. Click this icon to end playing or recording a

macro.
v Pause playing or recording macro. Click this icon to temporarily suspend the

playing or recording of a macro.
v Add a prompt.
v Add a Smart Wait.
v Add an Extraction.

To step through the process of recording and playing back a simple macro, see
Chapter 3, “Recording and playing back a simple macro”, on page 13.

Macro Editor
The Macro Editor (the full name is the Host Access Macro Editor) is a graphical
user interface (with buttons, input fields, list boxes, and so on) for editing the parts
of a macro. Figure 2 on page 9 shows the Macro Editor.

8 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

You will probably use the Macro Editor for most of your macro development. It is
more powerful (in terms of managing data more easily) than the Code Editor
described in the next subsection, although it cannot do everything that the Code
Editor can do.

To bring up the Macro Editor go to the Macro Manager toolbar.
1. Click the Select a macro icon to select a macro to edit.
2. Click the Edit current macro properties icon to edit the macro with the Macro

Editor.

Code Editor
Both the Macro Editor and the Code editor edit macros. Both tools read from and
write to the same type of underlying macro source, an XML script. However, each
tool is better for certain tasks.

The Macro Editor provides a graphical user interface that is powerful and
user-friendly. It is the superior tool for creating and editing macros.

On the other hand, the Code Editor provides a text editor interface that allows you
to edit directly the XML elements of which a macro is made. Figure 3 on page 10
shows the Code Editor displaying a macro script.

Figure 2. Macro Editor

Chapter 2. Macro components 9

You should use the Code Editor for more technical editing tasks, such as:
v Modifying a few attributes of the XML elements that the Macro Editor does not

provide access to.
v Looking at the XML elements to check your understanding of how a macro will

execute.
v Debugging a macro.
v Cutting and pasting XML code from other sources using the Windows clipboard.

To bring up the Code Editor:
1. Use the Macro Editor to open the file that you want to edit.
2. Click Code Editor in the row of buttons at the bottom of the Macro Editor

window.

Macro runtime
The macro runtime is the program module that plays back a macro when a user
clicks the Play Macro icon. Specifically, the macro runtime reads the contents of the
current macro script and generates the macro playback.

Macro object
The Macro object is the Java instance that provides the capabilities underlying the
Macro Manager Toolbar, the Macro Editor, the Code Editor, and the macro runtime.

The IBM Host Access Toolkit, a separately purchased product, provides
programming access to the Macro object through the many methods in the Macro
class. This book does not describe how to use IBM Host Access Toolkit.

Figure 3. Code Editor

10 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Definitions of other terms
Here are the definitions of a few other terms that you will encounter in this book.

Table 2. Definitions of terms

action An action is an instruction that specifies some activity that the
macro runtime is to perform when it plays back the macro (such
as sending a sequence of keys to the session window, displaying
a prompt in a popup window, capturing a block of text from the
screen, and other actions). You can edit or create actions in the
Macro Editor. You can view and modify individual action
elements in the Code Editor. See Chapter 8, “Macro actions”, on
page 69.

application screen An application screen is a meaningful arrangement of characters
displayed on the Host On-Demand session window by a host
application. See “Application screen” on page 23.

descriptor A descriptor is an instruction that describes one characteristic of
an application screen. You can edit or create descriptors in the
Macro Editor. You can view and modify individual descriptor
elements in the Code Editor. See “Introduction to the Description
tab” on page 50.

macro screen A macro screen is a set of instructions that tells the macro
runtime how to manage a particular visit to a particular
application screen. See “Macro screen” on page 24.

macro script A macro script is an XML script in which a macro is stored. You
can edit a macro script directly using the Code Editor or
indirectly using the Macro Editor. When you play a macro, the
macro runtime executes the instructions in the script. See “Macro
script” on page 19.

valid next screen A valid next screen is a macro screen that, during macro
playback, is a valid candidate to be the next macro screen to be
processed. See “Closer look at stage 1” on page 42.

Chapter 2. Macro components 11

12 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 3. Recording and playing back a simple macro

The purpose of this chapter is to give you a hands-on introduction to the Macro
Manager by stepping through three basic tasks:
v Recording a simple macro.
v Playing back the recorded macro.
v Assigning the playback of the macro to a particular key combination.

You can follow these same steps yourself by starting a Host On-Demand 3270
Display session, connecting to an MVS system, and logging on to TSO. The ISPF
Primary Option Menu is the first application screen to appear after you log on (see
Figure 5 on page 14).

Be sure to get permission from your systems administrator before doing this, and
have an experienced ISPF user sitting next to you, if necessary.

Recording a simple macro
This section shows you how to record a very simple macro. This macro changes
the application screen from the ISPF Primary Option Menu to the Data Set List
Utility screen (passing through the Utility Selection Panel screen on the way).

Before recording this macro, assure that:
v The ISPF Primary Option Menu is displayed on the session window. See

Figure 5 on page 14.
v The Macro Manager toolbar is displayed above the session window. Figure 4

shows the Macro Manager toolbar (this is the same illustration that is displayed
in Figure 1 on page 7).

If the Macro Manager toolbar is not displayed on your system, click View >
Macro Manager.

For more information on the Macro Manager toolbar, see “Macro Manager toolbar”
on page 7.

To record the macro follow these steps:
1. Is TSO displaying the ISPF Primary Options screen? If not, then go to the ISPF

Primary Options screen. See Figure 5 on page 14.
2. Click the Record macro icon to start recording. (This icon displays a single dot

over an image of a cassette.)
3. The Record Macro window appears. Follow these steps:

a. Click New.
b. Type a name in the Name field, such as ispf_ex1.
c. Type a description in the Description field, such as Simple macro.
d. Under Save To, click Personal Library.

Figure 4. Macro Manager toolbar

© Copyright IBM Corp. 2003 13

e. Click OK.
f. The Record Macro window disappears.

4. The ISPF Primary Option Panel is still displayed. See Figure 5.

In the figure above, Host On-Demand is displaying the application screen and
waiting for user input in the same way that it always does. But at the same
time, the Macro object is waiting to record the user input when it occurs.
There are two visual cues in the figure above that show that a macro is being
recorded:
v In the status line at the bottom of the session panel is displayed the

message Recording macro.
v On the Macro Manager toolbar the five icons on the right are enabled (Stop

Macro, Pause Macro, and the three Add-A icons), while the five icons on
the left are temporarily disabled. See Figure 5.

5. Click on the Option line near the top of the application screen. The Option
line is the fourth line of the ISPF Primary Options Menu and begins at the left
side of the screen with the label Option ===>. You should see the text cursor
appear at the location that you clicked. Is the cursor displayed on the Option
line? If not, then click again.

6. Type 3 and the enter key. As the figure above shows, 3 is the selection for
Utilities.

7. The application screen changes to the Utility Selection Panel. See Figure 6 on
page 15.

Figure 5. The ISPF Primary Option Menu

14 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

In the figure above, ISPF has automatically placed the text cursor on the
Option line of this menu. On your screen, is the text cursor on the Option
line? If not then click on the Option line to move the text cursor there.

8. Type 4 followed by the enter key. As the figure above shows, 4 is the selection
for Dslist.

9. The application screen changes to the Data Set List Utility. See Figure 7 on
page 16.

Figure 6. The Utility Selection Panel application screen

Chapter 3. Recording and playing back a simple macro 15

10. Click the Stop playing or recording macro icon to stop recording. This icon is
the one that displays a black square with the image of a cassette below it. The
five icons on the right side of the Macro Manager toolbar become disabled,
and the five icons on the left side become enabled.

11. Recording is complete. The Data Set List Utility screen is displayed, as in
Figure 7.

Some observations:
v You clicked the Record macro icon to start recording.
v You entered input (a mouse click and some keystrokes) just as you normally

would when using the application, and the host application, ISPF, displayed the
application screens and responded to the user input as it normally does.

v The Macro object recorded the application screens (or rather, a few identifying
characteristics of each application screen) and recorded the mouse clicks and
keystrokes as you entered them.

v You clicked the Stop recording or playing macro icon to stop recording the
macro.

Playing back a simple macro
This section shows how to play back the macro that you just recorded. Before you
start, go back to ISPF Primary Option Menu. This is the starting point for this
macro.
1. Verify that the application screen is the ISPF Primary Option Menu. See

Figure 5 on page 14.
2. Select a macro to run. If you have just recorded the macro used in this

example, then the name of the macro is displayed in the currently selected

Figure 7. The Utility Selection Panel application screen

16 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

macro field (the white text field on the left of the Macro Manager toolbar.) If
not, then follow these steps to make that macro the currently selected macro:
v On the Macro Manager toolbar click Select a Macro. This icon is the large

downward-pointing arrowhead.
v The Available Macros window appears.
v Under Macro Location click Personal Library.
v Under Macro List, click the name, such as ispf_ex1.mac, that you assigned to

the macro recorded in the previous section of this chapter.
v Click OK

3. Verify that the name of the macro that you want to run is displayed as the
currently selected macro.

4. Play the selected macro by clicking the Play macro icon. (This icon displays a
small rightward-pointing arrowhead over the image of a cassette).

5. You should see the application screen change quickly to the Utility Selection
Panel screen and then to the Data Set List Utility screen. Also, during the
playback the icons on the left side of the Macro Manager toolbar are briefly
disabled. After the playback is complete these icons are re-enabled.

6. Playback is complete.

Some observations:
v You had to position the application to a particular application screen before

playing the macro. As is almost always the case with a simple macro, the
starting point for playing back the macro is the point at which you started
recording the macro. After all, this user input makes sense only in a certain
context, the context in which it was recorded.

v You played the macro by:
– Clicking the Select a macro icon and then selecting a particular macro.
– Clicking Play macro to play the selected macro.

v While the macro played, the Macro runtime re-created the mouse click and
keystrokes that it recorded earlier. The application responded as it normally
does. The application could not tell the difference between a human entering
input and the Macro runtime entering input during playback.

v By playing back the macro, you were able to accomplish the action of moving
from one ISPF menu through another to a third menu quickly and accurately.

Assigning the macro to a key combination
Host On-Demand allows you to assign a macro to a particular keystroke
combination. To assign the macro that you just recorded to a keystroke
combination, follow these steps:
1. Click Edit > Preferences > Keyboard. The Keyboard window appears.
2. Click the Key Assignment tab.
3. In the Category listbox select Macros.
4. In the list of macros select the name of the macro to which you want to assign

a key, such as ispf_ex1.mac .
5. Click Assign a Key. The message Press a key is displayed.
6. Type Ctrl+i. After you type this key sequence, the label Ctrl+I is displayed

beside the macro name.
7. Click Save to save this assignment.
8. Click OK to close the Keyboard window.

Chapter 3. Recording and playing back a simple macro 17

To play back the macro using the assigned key combination, follow these steps:
1. Position the application to the starting point for this macro, which is the ISPF

Primary Option Menu.
2. Press Ctrl+i.
3. The macro is played back.

18 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 4. Macro structure

This chapter has two purposes, first to describe the general structure of a macro as
it can be seen in an XML macro script, and second to show some of the
connections between the Macro Editor and specific XML elements in the macro
script.
v “Macro script” describes the <HAScript> element and its connections with the

Macro tab of the Macro Editor.
v “The macro screen and its subcomponents” on page 23 describes the <screen>

element and its connections with the Screens tab of the Macro Editor.

Macro script
A macro script is an XML script used to store a Host On-Demand macro. You can
view and edit the XML text of a macro script by using the Code Editor (shown in
“Code Editor” on page 9). The Macro Editor displays the same information that
you see in the Code Editor, but the Macro Editor displays the information in a
more user-friendly format, using listboxes, checkboxes, input fields, and the other
controls of the graphical user interface (see “Macro Editor” on page 8).

Learning a little about the XML elements of the macro language will greatly
increase your understanding of important topics, including the following:
v How to use the Macro Editor.
v How macro playback works.
v How to build effective macros.

Therefore this book frequently refers not only to the input fields, buttons, and
listboxes of the Macro Editor but also to the corresponding XML elements in which
the same information is stored.

XML elements
To understand macro scripts you do not need to learn a great deal about XML, just
the basics of the syntax. If your knowledge of XML syntax needs brushing up, you
can learn more about it in “XML syntax in the Host On-Demand macro language”
on page 135. However, almost all of what you need to know is covered in this

subsection.

As you probably know already, an XML script consists of a collection of XML
elements, some of which contain other XML elements, in much the same way that
some HTML elements contain other HTML elements. However, unlike HTML,
XML allows a program developer to define new XML elements that reflect the
structure of the information that the developer wishes to store. The Host
On-Demand macro language contains approximately 35 different types of XML
elements for storing the information needed to describe a macro. This macro
language is described at length in Part 3, “The macro language”, on page 133.

This book, when referring to an XML macro element, uses the element name
enclosed in angle brackets. Examples: <HAScript> element, <screen> element.

Figure 8 on page 20 shows an example of an XML element:

© Copyright IBM Corp. 2003 19

The <SampleElement> element shown in the figure above contains the key
components of every macro element. The first line is the begin tag. It consists of a
left angle bracket (<), followed by the name of the XML element (SampleElement),
followed by attribute definitions, followed by a right angle bracket (>). The second
line consists of an ellipsis (...) that is not part of XML syntax but is used in the
figure above to indicate the possible presence of other elements inside the
<SampleElement> element. The third line is the end tag. It contains the name of
the element enclosed in angle brackets with a forward slash after the first angle
bracket (</Sample Element>).

In the begin tag, the attributes are specified by using the attribute name (such as
attribute1), followed by an equals sign (=), followed by an attribute value enclosed
in quotation marks (such as ″value1″). Any number of attributes can occur in the
begin tag.

If the macro element does not contain other XML elements then it can be written
in the shorthand fashion shown in Figure 9:

In the figure above the <SampleElement> element is written with a left angle
bracket (<) followed by the name (SampleElement), followed by the attributes,
followed by a forward slash and a right angle bracket (/>). Thus the entire XML
element is written within a single pair of angle brackets.

Conceptual view of a macro script
A macro script consists of a single <HAScript> element that can contain up to
three major types of subelements:
v One <import> element. (Optional)
v One <vars> element. (Optional)
v One or more <screen> elements.

Figure 10 on page 21 shows a conceptual view of a sample macro script containing
three <screen> elements.

<SampleElement attribute1="value1" attribute2="value2">
...
</SampleElement>

Figure 8. Sample XML element

<SampleElement attribute1="value1" attribute2="value2" />

Figure 9. Sample XML element written in the shorthand format

20 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The figure above shows an <HAScript> element (HAScript) that contains instances
of the major types of subelements: an <import> element (Import), a <vars>
element (Variables), and three <screen> elements (Screen1, Screen2, and Screen3).

All macro scripts are structured like this, except that most have more screens. If
there were 50 screens in the above macro, then the diagram above would look
much the same, except that after Screen3 there would be additional screens:
Screen4, Screen5, and so on, up to Screen50. (However, the order in which the
screens are stored does not necessarily represent the order in which the screens are
executed when the macro is played.)

The <HAScript> element is the master element of a macro script. (HAScript stands
for Host Access Script.) It encloses the entire macro and also contains, in its begin
tag, attributes that contain information applicable to the entire macro, such as the
macro’s name. For an example of an <HAScript> element see Figure 12 on page 23.

The <import> element is used to import Java classes and is optional. Importing
Java classes is an advanced topic that is not discussed until “Creating an imported
type for a Java class” on page 121.

The <vars> element is used to declare and initialize variables belonging to one of
the standard data types (boolean, integer, double, string, or field). Using standard
variables is an advanced topic that is not discussed until Chapter 11, “Variables
and imported Java classes”, on page 117.

The <screen> element is used to define a macro screen. The <screen> element is
the most important of the elements that occur inside the <HAScript>. As you can
see in Figure 10 above, a macro script is composed mostly of <screen> elements
(such as Screen1, Screen2, and Screen3 in the figure). Also, most of the other kinds
of XML elements in a macro script occur somewhere inside a <screen> element.

Introduction to the Macro tab
For the purpose of getting you acquainted with the Macro Editor, this section
consists of a very simple comparison between the Macro tab of the Macro Editor
and the <HAScript> element described in the previous section.

The Macro Editor has four tabs: Macro, Screens, Links, and Variables. The first tab,
the Macro tab, corresponds very closely to the <HAScript> element. In fact, the
Macro tab is the graphical user interface for some of the information that is stored
in the attributes of the begin tag of the <HAScript> element.

Figure 10. Conceptual view of a macro script

Chapter 4. Macro structure 21

Therefore, as the <HAScript> element is the master element of a macro script and
contains in its attributes information that applies to the entire macro (such as the
macro name), similarly the Macro tab is the first tab of the Macro Editor and
provides access to some of the same global information.

Figure 11 shows the Macro Editor with the Macro tab selected.

In the figure above you can see that the Macro tab has input fields for Macro
Name, Description, and other information, along with several checkboxes. You
should notice two fields:
v The Macro Name field contains the name that you assign to the macro. This is

the same name that you will select when you want to edit the macro or run the
macro.

v The Use Variables and Arithmetic Expressions In Macro checkbox determines
whether the Macro object uses the basic macro format or the advanced macro
format for this macro. In the figure above this checkbox is not selected,
indicating that the basic macro format will be used (see “Choosing a macro
format” on page 31).

Figure 12 on page 23 shows a sample <HAScript> element that contains the same
information as is shown on the Macro tab in Figure 11, as well as some additional
information. In the Code Editor an <HAScript> element is written on a single line,
but here the element is written on multiple lines so that you can see the attributes.

Figure 11. Macro tab of the Macro Editor

22 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

In the <HAScript> element in the figure above you should notice that there is an
attribute corresponding to each input field of the Macro tab shown in Figure 11 on
page 22. For example, the name attribute in the <HAScript> element
(name="ispf_ex1") corresponds to the Macro Name field on the Macro tab.
Similarly, the usevars attribute in the <HAScript> element (usevars="false")
corresponds to the Use Variables and Arithmetic Expressions checkbox on the
Macro tab.

The macro screen and its subcomponents
This section describes the macro screen and its major subcomponents. The
definition of macro screen depends on another term that needs defining,
application screen.

Application screen
An application screen is a meaningful arrangement of characters displayed on the
Host On-Demand session window by a host application.

As you probably realize, you are already very familiar with the concept of an
application screen. An example of an application screen is the ISPF Primary Option
Menu, which is displayed in Figure 13 on page 24. (This same application screen is
displayed in Figure 5 on page 14.)

<HAScript
name="ispf_ex1"
description=" "
timeout="60000"
pausetime="300"
promptall="true"
author=""
creationdate=""
supressclearevents="false"
usevars="false"
ignorepauseforenhancedtn="false"
delayifnotenhancedtn="0">

...

</HAScript>

Figure 12. A sample <HAScript> element

Chapter 4. Macro structure 23

In the figure above you can see that this application screen has menu selections
displayed in a row across the top (Menu, Utilities, Compilers, Options, and so on),
function key assignments displayed in a row across the bottom (F1=Help,
F2=Split, and so on), a title near the top (ISPF Primary Option Menu), a list of
options along the left side (0 through V), and an input field in which to type an
option number or letter (Option ===>). When the user provides input, for example
by typing a 3 (for Utilities) followed by the enter key, the ISPF application removes
all these visible items from the session window and displays a different application
screen.

Macro screen
A macro screen is a set of instructions that tell the macro runtime how to manage a
visit to a particular application screen. A macro screen includes:
v A description of a particular application screen.
v The actions to take when visiting this particular application screen.
v A list of the macro screens that can validly occur after this particular application

screen.

Although the concept is not very intuitive at this point, there might be in the same
macro several macro screens that refer to the same application screen. Because of
the way macro screens are linked to one another, the macro runtime might visit the
same application screen several times during macro playback, processing a
different macro screen at each visit.

Also, one macro screen might refer to more than one application screen. When
several application screens are similar to each other, a macro developer might build
a macro screen that handles all of the similar application screens.

Figure 13. A sample application screen, the ISPF Primary Option Menu

24 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Nevertheless, each macro screen corresponds to some application screen. When
you record a macro, the Macro object creates and stores a macro screen for each
application screen that you visit during the course of the recording. If you visit the
same application screen more than once, the Macro object creates and stores a
macro screen for each visit. Similarly, when you play back a recorded macro, the
macro runtime processes a single macro screen for each application screen that it
visits during the course of the playback.

Conceptual view of a macro screen
A macro screen consists of a single <screen> element that contains three required
subelements:
v One <description> element. (Required)
v One <actions> element. (Required)
v One <nextscreens> element. (Required, except in an Exit Screen)

Each of the subelements is required, and only one of each can occur.

Figure 14 shows a conceptual view of a <screen> element:

The figure above shows a <screen> element (Screen1) that contains the three
required subelements: a <description> element (Description), an <actions> element
(Actions), and a <nextscreens> element (Valid Next Screens).

All <screen> elements are structured in this way, with these three subelements. (A
fourth and optional type of subelement, the <recolimit> element, is discussed later
in this book.)

The <screen> element is the master element of a macro screen. It contains all the
other elements that belong to that particular macro screen, and it also contains, in
its begin tag, attributes that contain information applicable to the macro screen as a
whole, such as the macro screen’s name.

The <description> element contains descriptors that enable the macro runtime to
recognize that the <screen> element to which the <description> element belongs is
associated with a particular application screen. The descriptors and the
<description> element are described in Chapter 7, “Screen description and
recognition”, on page 49.

The <actions> element contains various actions that the macro runtime performs
on the application screen, such as reading data from the application screen or
entering keystrokes. The actions and the <actions> element are described in
Chapter 8, “Macro actions”, on page 69.

Figure 14. Conceptual view of a <screen> element

Chapter 4. Macro structure 25

The <nextscreens> element (Valid Next Screens in Figure 14 on page 25) contains a
list of the screen names of all the <screen> elements that might validly occur after
the current macro screen. The <nextscreens> element and the elements that it
encloses are described in Chapter 9, “Screen Recognition, Part 2”, on page 103.

Introduction to the Screens tab
This section shows some of the ways in which the Screens tab of the Macro Editor
is related to the XML <screen> element described in the previous section. Figure 15
shows the Macro Editor with the Screens tab selected:

In the figure above, notice that the Screens tab contains:
v A Screen Name listbox at the top of the tab.
v Three subordinate tabs, labeled General, Descriptions, and Actions.

Currently the General tab is selected.

You should notice that there are two Screen Name fields on the Screens tab:
v The Screen Name field at the top of the Screens tab is a listbox that contains the

names of all the macro screens in the macro.
v The Screen Name field at the top of the General subtab is an input field in

which you can type the name that you want to assign to the currently selected
screen.

In the Screen Name listbox at the top of the Screens tab, you click the name of the
macro screen that you want to work on (such as Screen1), and the Macro Editor
displays in the subtabs the information belonging to that macro screen. For
example, in Figure 15 the listbox displays the macro screen name Screen1 and the
subtabs display the information belonging to Screen1. If the user selected another

Figure 15. Screens tab of the Macro Editor

26 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

macro screen name in the listbox, perhaps Screen10, then the Macro Editor would
display in the subtabs the information belonging to macro screen Screen10.

In the Screen Name input field under the General tab, you type the name that you
want to assign to the currently selected macro screen. A screen name such as
Screenx, where x stands for some integer (for example, Screen1), is a temporary
name that the Macro object gives to the macro screen when it creates the macro
screen. You can retain this name, or you can replace it with a more descriptive
name that is easier to remember. (When all your macro screens have names such as
Screen3, Screen10, Screen24, and so on, it is difficult to remember which macro
screen does what.)

You have probably already noticed that the subtabs General, Description, and
Actions on the Screens tab correspond to the main parts of the XML <screen>
element described in the previous section. Specifically,
v The General subtab presents the information stored in the attributes of a

<screen> element.
v The Description subtab presents the information stored in the <description>

subelement of a <screen> element.
v The Actions subtab presents the information stored in the <actions> subelement

of a <screen> element.

But what about the <nextscreens> subelement? For usability reasons the
information belonging to the <nextscreens> element is presented in a higher-level
tab, the Links tab. You can see the Links tab immediately to the right of the
Screens tab in Figure 15 on page 26.

Figure 16 shows the XML begin tag and end tag of a sample <screen> element
named Screen1:

In the figure above, the ellipsis (...) is not part of the XML text but indicates that
the required elements contained inside the <screen> element have been omitted for
simplicity. You should notice that the attributes in the begin tag correspond to
fields on the General tab in Figure 15 on page 26. For example, the name attribute
(name="Screen1") corresponds to the Screen Name input field on the General tab,
and the entryscreen attribute (entryscreen="true") corresponds to the Entry
Screen listbox on the General tab.

Figure 17 on page 28 shows the XML text for the entire <screen> element including
the enclosed elements:

<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">
...
</screen>

Figure 16. Begin tag and end tag of a <screen> element

Chapter 4. Macro structure 27

In the figure above you should notice that the <screen> element contains the
required <description>, <actions>, and <nextscreens> elements.

<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
</description>
<actions>

<mouseclick row="4" col="15" />
<input value="3[enter]" row="0" col="0" movecursor="true"

xlatehostkeys="true" encrypted="false" />
</actions>
<nextscreens timeout="0" >

<nextscreen name="Screen2" />
</nextscreens>

</screen>

Figure 17. Sample XML <screen> element

28 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Part 2. Developing macros

© Copyright IBM Corp. 2003 29

30 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 5. Data types, operators, and expressions

Choosing a macro format

The basic macro format versus the advanced macro format
You must choose the format that you want your macro to be stored in: either the
basic macro format or the advanced macro format.

The basic macro format is the default format. It supports a basic level of function
but it does not include support for expression evaluation, variables, or some other
features supported by the advanced macro format. Nevertheless, you should
choose the basic macro format initially unless you already know that you are going
to use expressions and variables. You can easily switch your macro to the
advanced macro format later on. (In contrast, if you start out with the advanced
macro format it is much more difficult to switch your macro to the basic macro
format.)

You indicate which format you want with the Use Variables and Arithmetic
Expressions in Macro checkbox on the Macro tab of the Macro Editor:
v Clear this checkbox to select the basic macro format (default).
v Set this checkbox to select the advanced macro format.

The basic macro format:
v Allows you to enter literal values, including integers, doubles, boolean (true or

false), and strings.

In contrast the advanced macro format:
v Likewise allows you to enter literal values, including integers, doubles, boolean

(true or false), and strings.
v Allows string concatenation using the ’+’ string operator.
v Allows arithmetic expressions.
v Allows conditional expressions.
v Allows variables.
v Allows imported Java variable types and methods

Representation of strings and special characters, treatment of
operator characters

You must write strings and the two special characters single quote (’) and
backslash (\) differently in the macro depending on whether you have chosen the
basic macro format or the advanced macro format. Also, some characters that are
ordinary characters in the basic macro format are used as operators in the
advanced macro format.

However, these rules affect only input fields located on the following tabs:
v Description tab of the Screens tab
v Actions tab of the Screens tab
v Variables tab

© Copyright IBM Corp. 2003 31

The input fields that are affected on these tabs are as follows:
v Of course, text input fields on the surface of the tab, such as the Number of

Fields text input field on the Field Counts and OIA window of the Description
tab.

v But also, the text input field in the window that pops up when you select the
<Expression> entry in a listbox on the tab, such as the <Expression> entry in the
Ignore Case listbox on the String descriptor window.

For input fields on all other tabs than those listed above, always use the rules for
the basic macro format.

The following two sections describe these differing rules.

In the basic macro format, rules for representation of strings,
etc.
If you have chosen the basic macro format, use the following rules for input fields
on the Description tab, Actions tab, and Variables tab:
v Strings must be written without being enclosed in single quotes. Examples:

apple
banana
To be or not to be
John Smith

v The single quote (’) and the backslash (\) are represented by the characters
themselves without a preceding backslash. Examples:
New Year’s Day
c:\Documents and Settings\User

v The following characters or character sequences are not treated as operators: +, -,
*, /, %, ==, !=, >, <, >=, <=, &&, ||, !.

In the advanced macro format, rules for representation of
strings, etc.
If you have chosen the advanced macro format, use the following rules for input
fields on the Description tab, Actions tab, and Variables tab:
v All strings must be written enclosed in single quotes. Examples:

’apple’
’banana’
’To be or not to be’
’John Smith’

v The single quote (’) and the backslash (\) are represented by the characters
themselves preceded by a backslash. Examples:
’New Year\’s Day’
c:\\Documents and Settings\\User

v The following characters or character sequences are treated as operators:
– String concatenation operators: +
– Arithmetic operators: +, -, *, /, %
– Conditional operators: ==, !=, >, <, >=, <=
– Logical operators: &&, ||, !

32 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Converting your macro to a different format

Converting your macro to the advanced macro format
You can easily convert your macro from the basic macro format to the advanced
macro format, just by checking the ″Use Variables and Arithmetic Expressions in
Macro″ checkbox on the Macro tab. As a result the Macro object does the
following:
v It enables all the advanced features for your macro.
v It automatically converts, in all input fields where conversion is required, all the

strings in your macro and all occurrences of the two special characters single
quote (’) and backslash (\) from their basic representations to their advanced
representations.

That is, the Macro object will find all the strings in your macro and surround them
with single quotes, and the Macro object will change all occurrences of ’ and \ to
\’ and \\. Also, any operator characters will be treated as operators.

Converting your macro to the basic macro format
Converting your macro from the advanced macro format to the basic macro format
can be very difficult. There are no automatic conversions when you uncheck the
″Use Variables and Arithmetic Expressions in Macro″ checkbox. The only automatic
result is that the Macro object:
v Disables all the advanced features for the macro.

You yourself must change, one at a time, by hand, all the representations of strings
and of the two special characters back to the basic representations. Also, you will
have to delete any instances where advanced features have been used in the
macro. If you do not do so then you might encounter errors or unexpected results
when you try to save or run the script. Any remaining operator characters will be
treated as literal characters rather than as operators.

Standard data types
The Macro object supports the following standard data types:
v boolean
v integers
v doubles
v strings

These types are described in the subsections below.

Boolean data
The boolean values true and false can be written with any combination of
uppercase and lower case letters (such as True, TRUE, FALSE, falsE, and so on).

An example of a input field that requires a boolean value is the Entry Screen field
on the General tab of the Screens tab. Enter true to set the condition to true or
false to set the condition to false.

Boolean values are not strings
The boolean values are not strings and therefore never need to be enclosed in
single quotes. To repeat, whether you use the basic macro format or the advanced
macro format, booleans are always written true and false, not ’true’ and
’false’.

Chapter 5. Data types, operators, and expressions 33

However, string values are converted to boolean values in a boolean context (see
“Conversion to boolean” on page 37). Therefore with the advanced macro format
you could enter the string ’true’ in a boolean field, because the Macro Editor
would convert the string ’true’ to the boolean value true.

Integers
Integers are written without commas or other delimiters. Examples:
10000
0
-140

Integer constants
The Macro Editor has a number of integer constants that are written using all
uppercase characters. These values are treated as integers not strings. Examples:
v NOTINHIBITED
v FIELD_PLANE
v COLOR_PLANE

Doubles
Doubles are written without commas or other delimiters. Examples:
3.1416
4.557e5
-119.0431

Strings
A string is any sequence of characters and can include leading, trailing, or
intervening blank characters. Strings in some input fields must be represented
differently depending on whether the macro has been set to use the basic macro
format or the advanced macro format. See “Representation of strings and special
characters, treatment of operator characters” on page 31.

The following examples use the representation for the advanced macro format:
’apple’
’User4’
’Total number of users’
’ This string has 3 leading blanks.’
’This string has 3 trailing blanks. ’

Here are the same examples using the representation for the basic macro format.
apple
User4
Total number of users

This string has 3 leading blanks.
This string has 3 trailing blanks.

Notice that with the basic macro format trailing blanks are still allowed but are
difficult to detect. If in doubt see the representation of the string in the Code
Editor.

Fields
See “Field variables” on page 123.

34 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The value null
The value null is a reserved word, not a string. When used in place of an object
belonging to an imported Java class, it has the same meaning as it does in the Java
language.

Do not use null to signify an empty string. To signify an empty string, use a pair
of single quotes (’’) in the advanced macro format, or nothing at all in the basic
macro format. If you use the value null in a string context (for example, by
assigning it to a string variable), then the Macro Editor or the macro runtime will
convert the value null to the string ’null’.

Arithmetic operators and expressions
In order to use arithmetic expressions you must first check the ″Use Variables and
Arithmetic Expressions in Macro″ checkbox on the Macro tab (see “Representation
of strings and special characters, treatment of operator characters” on page 31).

Operators and expressions
The arithmetic operators are:

Table 3. Arithmetic operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

In an arithmetic expression the terms are evaluated left to right. The order of
precedence of the operators is: *, /, %, +, -. For example, the result of :
4 * 2 + 16 / 8 - 1 * 2

is 8. You can use parentheses to indicate the order in which you want expressions
to be evaluated:
(4 * 2) + (16 / 8) - (1 * 2) evaluates to 8
but
4 * ((2 + 16) / (8 - 1)) * 2 evaluates to 20.571

Where arithmetic expressions can be used
You can use an arithmetic expression almost anywhere that you can use an
arithmetic value. Examples:
v As a parameter for a screen. For example,

– To specify a recognition limit for a screen.
– To specify a pause time for a screen.

v As a parameter for a descriptor. For example,
– To specify a row or column in cursor descriptor.
– To specify the number of fields in a numeric field count descriptor.
– To specify a row, column, or attribute value in an attribute descriptor.
– As a term in a conditional descriptor.

Chapter 5. Data types, operators, and expressions 35

v As a parameter in an action. For example,
– To specify a row or column in a mouse click action.
– To specify a row or column in a box selection action.
– As the number of milliseconds in a pause action.
– To specify a value in a variable update action.
– As a term in a conditional action.

v As an initial value for a variable.

String concatenation operator (+)
You can use the string concatenation operator ’+’ only if you check the ″Use
Variables and Arithmetic Expressions in Macro″ checkbox on the Macro tab. See
“The basic macro format versus the advanced macro format” on page 31.

Operators and expressions
The string operators are shown in the table below.

Table 4. Arithmetic operators

Operator Operation

+ Concatenate

You can write a string expression containing multiple concatenations. The
following examples use the string representation required for the advanced format
(see “Representation of strings and special characters, treatment of operator
characters” on page 31).
Expression: Evaluates to:

’Hello ’ + ’Fred’ + ’!’ ’Hello Fred!’
’Hi’ ’There’ (Error, a + operator is required to concatenate strings)
’Hi’ + ’There’ ’HiThere’

Conditional and logical operators and expressions
The conditional operators are:

Table 5. Conditional operators

Operator Operation

== Equal

!= Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

The logical operators are:

Table 6. Logical operators

Operator Operation

&& AND

|| OR

! NOT

36 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

If you are entering && in an HTML or XML editor you might have to enter
&&

In a conditional expression the terms are evaluated left to right. The order of
precedence of the operators is the same order in which they are listed in the tables
above. You can use parentheses to indicate the order in which you want
expressions to be evaluated. Examples:
Expression: Evaluates to:

(4 > 3) true
!(4 > 3) false
(4 > 3) && (8 > 10) false
(4 > 3) || (8 > 10) true

Conditional expression can include complex terms
A conditional expression can contain arithmetic expressions, variables, and calls to
methods of imported Java classes.

Where conditional expressions can be used
Conditional and logical operators can be used only in two contexts:
v The Condition field of a conditional descriptor
v The Condition field of a conditional action

Automatic data type conversion

Effect of context
If an item of data belongs to one standard data type (boolean, integer, double, or
string) but the context requires a different standard data type, then when the data
is evaluated (either when the Macro Editor saves the data or else when the macro
runtime plays the macro) it is automatically converted to the standard data type
required by the context, if possible.

Examples of context are:
v The Condition field of a Condition descriptor (expects a boolean value)
v The Message Text field of a Message action (expects a string value)
v The Value field of a Variable update action when the variable is a field variable

(expects a location string)
v The Row value of an Input action (expects an integer value)

However, if the data cannot be converted to the new data type (for example, the
string 123apple cannot be converted to an integer) then an error occurs. The Macro
Editor displays an error message. The macro runtime stops the macro playback
and displays an error message.

The following subsections discuss the conversions that can occur for each standard
data type.

Conversion to boolean
The string ’true’ (or ’TRUE’, ’True’, and so on) in a boolean context is converted
to boolean true. Any other string in a boolean context (including ’false’, ’1’,
’apple’, and any other) is converted to boolean false.
’true’ (in an input field that requires a boolean) converts to true
’apple’ (in an input field that requires a boolean) converts to false

Chapter 5. Data types, operators, and expressions 37

Conversion to integer
A string in valid integer format and occurring in an integer context converts to
integer.
’4096’ converts to 4096
’-9’ converts to -9

Conversion to double
A string in valid double format occurring in a double context converts to double.
’148.3’ converts to 148.3

An integer combined with a double results in a double:
10 + 6.4 evaluates to 16.4

Conversion to string
A boolean, integer, or double in a string context converts to a string. (Remember,
the boolean values true and false are not strings. See “Boolean data” on page 33.)
’The result is ’ + true evaluates to ’The result is true’
FALSE (in an input field that requires a string) converts to ’FALSE’
’The answer is ’ + 15 evaluates to ’The answer is 15’
22 (in an input field that requires a string) converts to ’22’
(’4.5’ == .45e1) evaluates to true
14,52 (in an input field that requires a string) evaluates to’14,52’

Conversion errors
If the context requires a conversion but the format of the data is not valid for the
conversion then the Macro Editor displays an error message. If the error occurs
while a macro is playing then the macro runtime display an error message and
terminates the macro with a run-time error.
’123apple’ in an integer context Error
’22.7peach’ in a double context Error

Equivalents
Any context that accepts an immediate value of a particular standard data type
also accepts any entity of the same data type.

For example, if an input field accepts a string value, such as ’Standard Dialog’, it
also accepts:
v An expression that evaluates to a string.
v A value that converts to a string.
v A string variable.
v A call to an imported method that returns a string.

Similarly, if an input field accepts a boolean value (true or false), it also accepts:
v An expression that evaluates to a boolean value.
v A value that converts to a boolean value.
v A boolean variable.
v A call to an imported method that returns a boolean.

Recognizing this flexibility in the macro facility will help you write more powerful
macros.

38 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Significance of a negative value for a row or column
In the String descriptor and in several other descriptors and actions, a negative
value for a row or column of the session window indicates an offset from the last
row or the last column of the session window. The macro runtime calculates the
row or column location as follows:
actual row = (number of rows in text area) + 1 + (negative row offset)
actual column = (number of columns in text area) + 1 + (negative column offset)

For example, if the session window has 24 rows of text then a row coordinate of -1
indicates an actual row coordinate of 24 (calculated as: 24 + 1 - 1). Similarly if the
session window has 80 columns of text then a column coordinate of -1 indicates an
actual column coordinate of 80 (calculated as 80 + 1 - 1).

The row calculation above ignores the OIA row. For example, if the session
window is 25 rows high, it has only 24 rows of text.

The advantage of this convention is that if you want to specify a rectangle at the
bottom of the session window, then this calculation gives the right result whether
the session window has 25, 43, or 50 rows. Similarly, if you want to specify a
rectangle at the right side of the session window, then this calculation gives the
right result whether the session window has 80 columns or 132 columns.

The following tables shows the results for a few calculations:

Table 7. Negative value for row

Negative value for
row:

Actual value in
session window with
24 columns of text
(OIA row is ignored):

Actual value in
session window with
42 columns of text
(OIA row is ignored):

Actual value in
session window with
49 columns of text
(OIA row is ignored):

-1 24 42 49

-2 23 41 48

-3 22 40 47

Table 8. Negative value for column

Negative value for column: Actual value in session
window with 80 columns:

Actual value in session
window with 132 columns:

-1 80 132

-2 79 131

-3 78 130

Whether you make use of this convention or not, you should at least remember
that a rectangular area with coordinates of (1,1) and (-1,-1) means the entire text
area of the session window.

Chapter 5. Data types, operators, and expressions 39

40 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 6. How the macro runtime processes a macro screen

This section describes the activities that occur when the macro runtime processes a
macro screen. Although this topic is tedious to read about it is important, and
sooner or later you are likely to have a question about it. You might want to read
through the the first part of this chapter (the Overview) now and skip the
remaining parts until you have a specific question.

Overview

Scenario used as an example
As an example, this chapter uses a scenario from a macro recorded in a previous
chapter, Chapter 3, “Recording and playing back a simple macro”, on page 13. This
macro contains only two macro screens, Screen1 and Screen2.

The scenario begins at the point at which the macro runtime has performed all the
actions in Screen1 and is ready to search for the next macro screen to be processed.

Screen1 is the macro screen that handles the ISPF Primary Option Menu (see
Figure 5 on page 14). Table 9 shows a conceptual view of the contents of Screen1:

Table 9. Contents of macro screen Screen1

XML element contained in <screen>
element Screen1:

Contents of XML element:

<description> Descriptors:

v The input inhibited indicator is cleared
(input is not inhibited).

<actions> Actions:

1. Move the text cursor to row 4 and
column 16.

2. Type ’3[enter]’.

<nextscreens> Names of macro screens that can validly
occur after this macro screen:

v Screen2

Screen2 is the macro screen that handles the Utility Selection Panel (see Figure 6 on
page 15). Table 10 shows a conceptual view of the contents of Screen2:

Table 10. Contents of macro screen Screen2

XML element contained in <screen>
element Screen2:

Contents of XML element:

<description> Descriptors:

v The input inhibited indicator is cleared
(input is not inhibited).

v There are 80 fields.

v There are 3 input fields.

© Copyright IBM Corp. 2003 41

Table 10. Contents of macro screen Screen2 (continued)

XML element contained in <screen>
element Screen2:

Contents of XML element:

<actions> Actions (the host application pre-positions
the text cursor in the correct input field):

1. Type ’4[enter]’.

<nextscreens> Names of macro screens that can validly
occur after this macro screen:

v (None. This is the last macro screen in the
macro.)

Stages in processing a macro screen
During macro playback the macro runtime loops through the same three stages of
activity again and again until the macro terminates:

Closer look at stage 1
Stage 1 requires a more detailed explanation than stage 2 or 3. Stage 1 itself
contains three steps:

Each of these steps involves the list of valid next screens.

The list of valid next screens is just a list that can hold macro screen names. The
macro runtime creates this list at the beginning of macro playback (before playing
back the first macro screen), and discards this list after macro playback is complete.
Initially the list is empty (except possibly for transient screens, which are described
later in this chapter).

During macro playback, each time the macro runtime needs to determine the next
macro screen to be processed, it performs the three steps 1(a), 1(b), and 1(c) using
the list of valid next screens.

Overview of the entire process (all 3 stages)
In stage 1 the macro runtime determines the next macro screen to be processed. As
stated in the previous section, stage 1 includes three steps.

In step 1(a) the macro runtime collects the names of macro screens that can occur
after the current macro screen, and adds these names to the list of valid next

1. Determine the next macro screen to be processed.

2. Make the selected macro screen the new current macro screen.

3. Perform the actions in the new current macro screen’s <actions> element.

Figure 18. Stages in processing a macro screen

v 1(a) Add the names of candidate macro screens to the list of valid next screens.

v 1(b) Do screen recognition to match one of the candidate macro screens to the actual
application screen that is currently displayed in the session window.

v 1(c) Remove the names of candidate macro screens from the list of valid next screens.

Figure 19. Three steps in stage 1

42 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

screens. There may be just one such screen on the list or several. In the example
scenario, the macro runtime would look in the <nextscreens> element of Screen1,
find one name (Screen2), and add that name to the list (see Table 9 on page 41).

In step 1(b), the macro runtime periodically checks each macro screen on the list to
determine whether it matches the application screen.

There is a time factor here. Because of an action that the macro runtime has just
performed in the current macro screen (in Screen1, typing ’3[enter]’ as the last
action of the <actions> element), the host application is in the process of changing
the session window so that it displays the new application screen (the Utility
Selection Panel) instead of the old application screen (ISPF Primary Option Menu).
However, this change does not occur immediately or all at once. The change takes
some hundreds of milliseconds and may require several packets of data from the
host.

Therefore, during step 1(b), every time the OIA line or the session window’s
presentation space is updated, the macro runtime again checks the macro screen
(or screens) named in the list of valid next screens to determine whether one of
them matches the application screen in its current state.

Eventually the session window is updated to the extent that the macro runtime is
able to match one of the macro screens on the list to the application screen.

In step 1(c), the macro runtime removes all the macro screen names from the list of
valid next screens (except transient screens if any).

In stage 2, the macro runtime makes the selected macro screen (the one that
matched the application screen in step 1(b)) the new current macro screen.

Finally, in stage 3, the macro runtime performs the actions in the <actions> element
of Screen2.

Conclusion of the overview
At this point, if you are reading this book for the first time, you might want to
skip the rest of this chapter and begin the next chapter. Later, if you have a
question about how the macro runtime processes a macro screen, you can return to
this chapter to learn more.

The rest of this chapter describes the same processing sequence as in the overview
but provides more information about each step.

Stage 1: Determining the next macro screen to be processed
As stated earlier, stage 1 contains three steps: adding macro screen names to the
list of valid next screens, doing screen recognition, and removing the macro screen
names from the list of valid next screens.

Adding macro screen names to the list of valid next screens
(step 1(a))

In this step the macro runtime places the names of candidate macro screens on the
list of valid next screens.

Chapter 6. How the macro runtime processes a macro screen 43

Valid next screens
When a host application has displayed an application screen in the session
window, and a user input has occurred, then usually only a few application
screens (frequently just one) can occur next.

In the example scenario, the current macro screen is Screen1, the current
application screen is the ISPF Primary Option menu, and the input is ’3’ plus the
enter key (see Table 9 on page 41). In this context, only one application screen can
occur next, the Utility Selection Panel. Therefore the name of only one macro
screen needs to be added to the list of valid next screens: Screen2.

But wait a minute, you say. The ISPF Primary Option Menu has about 30 different
possible inputs (15 options, 6 menu selections, and 8 function keys). There should
be 30 names of macro screens on the list, not just 1.

The reason that the list of valid next screens usually has only one or a few names
on it is that the macro is executing a series of instructions that are aimed at
accomplishing some specific task. In Screen1, the instructions are aimed at getting
from the ISPF Primary Option Menu to the Utility Selection Panel. The necessary
actions have been performed to make this transition occur (’3[enter]’) and the
macro screen is now just waiting for the expected application screen to appear.

How the macro runtime selects the names of candidate macro
screens
This section describes how the macro runtime selects the macro screen names that
it places on the list of valid next screens. There are two cases:
v For the very first macro screen to be played back, the macro runtime selects the

name of any macro screen in the macro that is marked as an entry screen.
v For all subsequent macro screens being played back, the macro runtime uses the

names that it finds in the <nextscreens> element of the current macro screen.

First macro screen: When macro playback begins, the list of valid next screens is
empty (except possibly for transient screens, see “Transient screens” on page 45).

To get candidates for the first macro screen to be processed, the macro runtime
searches the entire macro, finds each macro screen that is marked as an entry
screen, and adds the names of these macro screens to the list.

The entry screen setting (an attribute of the <screen> element) exists for exactly
this purpose, to mark macro screens that can occur as the first screen to be
processed.

When a macro is recorded, the Macro object by default marks just the first macro
screen to be recorded as an entry screen. After recording is complete, the macro
developer can mark (or unmark) any macro screen as an entry screen, and there
can be multiple entry screens.

Entry screens are described in more detail in “Entry screens” on page 105.

If no macro screen is marked as an entry screen, then the macro runtime uses all
the macro screens in the macro as candidates for the first macro screen to be
processed.

44 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Subsequent macro screens: For subsequent macro screens (including the one
immediately after the first macro screen), the macro runtime finds the names of the
candidate macro screens listed in the <nextscreens> element of the current macro
screen.

In the example scenario, Screen1 is the current macro screen, and its <nextscreens>
element contains the name of one macro screen, Screen2 (see Table 9 on page 41).
Therefore the macro runtime adds Screen2 to the list.

However many macro screen names are listed in the <nextscreens> element, the
macro runtime adds all of them to the list of valid next screens.

During macro recording, when the Macro object begins to record a new macro
screen, it stores the name of that new macro screen (such as Screen2) in the
<nextscreens> element of the macro screen that it has just finished recording (such
as Screen1). Therefore each macro screen (except the last) of a recorded macro has
the name of one macro screen stored in its <nextscreens> element.

Subsequently a macro developer can add or delete the name of any macro screen
in the macro to or from the <nextscreens> element of any macro screen.

The <nextscreens> element is described in more detail in “Valid next screens” on
page 103.

Transient screens: A transient screen is a screen that can occur at any point in the
macro, that occurs unpredictably, and that always needs to be cleared. An example
of a transient screen is an error screen that appears in response to invalid input.

The Macro object does not mark any macro screen as a transient screen during
macro recording. However, subsequently the macro developer can mark any macro
screen as a transient screen.

When macro playback begins, the macro runtime searches the macro, finds each
macro screen that is marked as a transient screen, and adds the name of each
transient macro screen to the list of valid next screens. These names remain on the
list for the duration of the macro playback.

For more information on transient screens see “Transient screens” on page 106.

Screen recognition (step 1(b))
In this step the macro runtime matches one of the macro screens named in the list
of valid next screens to the current application screen.

This process is called screen recognition because the macro runtime recognizes one
of the macro screens on the list as corresponding to the application screen that is
currently displayed in the session window.

Overview of evaluation
The macro runtime evaluates the candidate macro screens in the order in which
their names appear in the list of valid next screens.

If the macro runtime finds that one of the candidates matches the application
screen, then the macro runtime immediately stops evaluating and goes on to the
next step of removing the candidate names from the list (step 1(c)). The matching
screen becomes the next macro screen to be processed (stage 2).

Chapter 6. How the macro runtime processes a macro screen 45

However, if the macro runtime evaluates each macro screen named in the list
without finding a match, then the macro runtime stops evaluating, temporarily,
and does nothing further until the session window is updated.

Re-doing the evaluation
While the macro runtime is working on screen recognition, the host application is
working on updating the session window with the new application screen. In the
example scenario, the host application is updating the session window so that it
displays the Utility Selection Panel (see Table 9 on page 41 and Table 10 on
page 41). This process takes some hundreds of milliseconds and may require
several packets of data from the host.

This situation explains why the macro runtime temporarily stops working on
screen recognition until the screen is updated. If screen recognition has failed, the
reason may be that the new application screen is incomplete. Therefore the macro
runtime waits.

Each time that the OIA line is updated or the presentation space of the session
window is updated, the macro runtime again makes a pass through the list of
valid next screens, trying to find a match to the current application screen. If no
match occurs then the macro runtime waits again.

The macro runtime may go through several cycles of waiting and re-evaluating
before screen recognition succeeds.

Eventually enough of the new application screen arrives so that the macro runtime
can match one of the macro screens named in the list to the new application
screen.

Determining whether a macro screen matches the application
screen
The macro runtime determines whether a macro screen matches the current
application screen by comparing individual descriptors in the macro screen to the
current session window.

In the example scenario, the macro runtime find the name Screen2 on the list of
valid next screens, retrieves Screen2, looks at its descriptors, and compares the
descriptors with the session window.

Each macro screen contains a <description> element that itself contains one or
more descriptors. A descriptor is a statement of fact about the session window
(application screen in its current state) that can be either true or false. In the
example scenario, Screen2 contains three descriptors:
v The input inhibited indicator is cleared (input is not inhibited).
v There are 80 fields in the session window.
v There are 3 input fields in the session window.

When there are several descriptors in a <description> element, as here, the method
that the macro runtime uses to evaluate the descriptors (as boolean true or false)
and to combine their results into a single result (true or false) depends on some
additional configuration information that is not described here.

However, in the example scenario, Screen2 is configured in the default manner, so
that the macro runtime evaluates each of the three descriptors in turn. If all three
are true, then the macro runtime concludes that the overall result is true, and that
Screen2 matches the current application screen.

46 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

For more information about evaluating descriptors see “Evaluation of descriptors”
on page 53.

Two recognition features

Timeout setting for screen recognition: You can set a timeout value that causes
the macro runtime to terminate the macro if screen recognition does not occur
before the timer expires (see “Timeout settings for screen recognition” on page 107).

Recognition limit: You can set a recognition count that causes the macro runtime
to terminate the macro or to jump to a specified macro screen if the macro runtime
recognizes a macro screen, such as ScreenA, a number of times equal to the count
(see “Recognition limit (General tab of the Screens tab)” on page 108).

Removing the names of candidate macro screens from the list
of valid next screens (step 1(c))

After screen recognition has succeeded, the macro runtime immediately begins its
next task, which is cleaning up the list of valid next screens (step 1(c)).

This is a simple step. The macro runtime removes the names of all the candidate
macro screens, whether recognized or not, from the list of valid next screens.

If the list contains the names of transient screens, those names remain on the list
(see “Transient screens” on page 106).

Stage 2: Making the successful candidate the new current macro
screen

Stage 2 is simple. In stage 2 the macro runtime makes the successful candidate
macro screen the new current macro screen.

In the example scenario, the macro runtime makes Screen2 the new current macro
screen. The session window displays the new application screen, the Utility
Selection Panel (see Table 9 on page 41 and Table 10 on page 41).

The macro runtime immediately begins stage 3.

Stage 3: Performing the actions in the new current macro screen
In stage 3 the macro runtime performs the actions in the new current macro
screen’s <actions> element. If the new current macro screen does not contain an
<actions> element or if the <actions> element is empty, then the macro runtime
skips this stage.

Each macro screen typically contains an <actions> element that contains one or
more actions to be performed. An action is an instruction that causes some type of
activity, such as sending a sequence of keys to the session window, displaying a
prompt in a popup window for the user, capturing a block of text from the screen,
or some other activity.

In the example scenario Screen2 contains only one action:
v Type ’4’ followed by the enter key.

Chapter 6. How the macro runtime processes a macro screen 47

Screen2 does not need an action to position the text cursor in the correct input
field because the Utility Selection Panel automatically positions the text cursor
there.

If the <actions> element contains multiple actions, the macro run time performs
each macro action in turn in the order in which it occurs in the <actions> element.

For more information on actions see Chapter 8, “Macro actions”, on page 69.

Inserting a delay after an action
Because the macro runtime executes actions much more quickly than a human user
does, unforeseen problems can occur during macro playback that cause an action
not to perform as expected, because of a dependency on a previous action.

To avoid this type of problem, the macro runtime by default inserts a delay of 300
milliseconds after every action in every macro screen (see “Pause Between Actions
(Macro tab)” on page 111). Therefore, by default, after performing each action of
any type, the macro runtime waits 300 milliseconds.

You should leave this feature enabled, although you can disable it if you want. You
can change the delay from 300 milliseconds to some other value.

If you want to change the duration of the delay for a particular macro screen, you
can do so (see “Set Pause Time (General tab of the Screens tab)” on page 111).

Also, for any particular action, you can increase the delay by adding a Pause
action after the action (see “Pause action (<pause> element)” on page 86).

Repeating the processing cycle
After the macro runtime has performed all the actions in the <actions> element of
the current macro screen, the macro runtime immediately begins the processing
cycle again, starting with step 1(a), and using the candidate macro screens listed in
the <nextscreens> element of the new current macro screen.

Terminating the macro
The macro runtime terminates the macro when it finishes processing a macro
screen that is marked as an exit screen.

In the example scenario Screen2 is marked as an exit screen (see Table 10 on
page 41).

The exit screen setting (an attribute of the <screen> element) exists for exactly this
purpose, to mark macro screens that terminate the macro.

When a macro is recorded, the Macro object by default marks the last macro screen
to be recorded as an exit screen. After recording is complete, the macro developer
can mark (or unmark) any macro screen as an exit screen, and there can be
multiple exit screens.

Exit screens are described in more detail in “Exit screens” on page 106.

48 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 7. Screen description and recognition

This chapter discusses:
v The terms descriptor, screen recognition, and screen description
v The Description tab
v How the Macro Facility records a description of an application screen
v How to combine multiple descriptors
v The various types of descriptors

Terms defined
A descriptor is an XML element that occurs in the <description> element of a
macro screen and that states an identifying characteristic of the application screen
that the macro screen corresponds to.

For example, a macro screen named ScreenB might contain a String descriptor
(<string> element) that states that row 3 of the application screen contains the
string ISPF Primary Option Menu. During macro playback, when the macro
runtime is determining which macro screen to process next, and when ScreenB is a
candidate, the macro runtime compares the descriptor in ScreenB with the actual
application screen. If the descriptor matches the actual application screen (row 3 of
the application screen really does contain the string), then the macro runtime
selects ScreenB as the next macro screen to be processed.

Screen recognition is the process that the macro runtime performs when it attempts
to match a candidate macro screen to the current application screen.

As you may remember from Chapter 6, “How the macro runtime processes a
macro screen”, on page 41, when the macro runtime needs to determine the next
macro screen to be processed, the macro runtime places the names of candidate
macro screens (usually found in the <nextscreens> element of the current macro
screen) onto a list of valid next screens. Then, as the host application updates the
session window with the new application screen, the macro runtime compares the
descriptors of each macro screen on the list with the new application screen.
Eventually the application screen is updated to the extent (for example, the string
ISPF Primary Option Menu appears in row 3) that the macro runtime can match
one of the macro screens on the list to the application screen. The matched macro
screen becomes the next macro screen to be processed (see “Overview of the entire
process (all 3 stages)” on page 42).

Screen description is the process of adding descriptors to the <description>
element of a macro screen. You engage in screen description when you go to the
Description tab of a macro screen and create or edit a descriptor (such as the String
descriptor in the previous example). Likewise, the Macro object during macro
recording creates one or more descriptors for each new macro screen that it creates
(see “Recorded descriptions” on page 52).

© Copyright IBM Corp. 2003 49

Introduction to the Description tab

Sample Description tab
The Description tab on the Screens tab of the Macro Editor gives you access to the
information stored inside the <description> element of a macro screen. Figure 20
shows a sample Description tab:

In the figure above, the Screens tab of the Macro Editor is selected. The name of
the currently selected screen, Screen2, is displayed in the Screen Name field at the
top of the Screens tab. Below the Screen Name field are the General, Description,
and Actions subtabs. The Description tab is selected.

As you look at Description tab in the figure above, you can see that it has an
upper area and a lower area.

The upper area contains controls that operate on a single descriptor element
considered as a whole. In particular, the Descriptor listbox situated in the upper
left corner of the Description tab contains the name of the currently selected
descriptor. In the figure above, the currently selected descriptor is a Field Counts
and OIA descriptor at the top of the list. (Descriptors do not have names. Field
Counts and OIA is the type of the descriptor.)

The lower area of the Description tab displays the contents of the currently
selected descriptor. Because the currently selected descriptor is a Fields Counts and
OIA descriptor, the lower area of the Description tab presents the contents
appropriate to that type of descriptor. If the user created and selected another type
of descriptor, such as a String descriptor, then the lower area would present the
contents appropriate to a String descriptor.

Figure 20. Description tab

50 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Looking more closely at the lower area of the Description tab in Figure 20 on
page 50, you can see that the Field Counts and OIA descriptor contains three tests
of identity:
v The screen contains 80 fields (the Number of Fields field is set to 80).
v The screen contains 3 input fields (the Number of Input Fields field is set to 3).
v The screen has the input inhibited indicator cleared (the Wait for OIA to Become

Uninhibited listbox is set to true).

The macro runtime will apply these three tests of identity when it tries to match
this macro screen to an application screen.

Caution: Although the Macro Editor presents the Fields Counts and OIA descriptor
as a single descriptor containing three tests, in fact the macro language defines
these three tests as three separate and independent descriptors. See “Field Counts
and OIA descriptor” on page 57.

The lower area of the Description tab in Figure 20 on page 50 also displays, for
each of these three tests in the Field Counts and OIA descriptor, two more fields,
labeled Option and Inverse Descriptor. You can ignore these two fields for now.
They are described in the section “Default combining method” on page 54.

Creating a new descriptor
Looking again at the Descriptor listbox in Figure 20 on page 50, you should notice
that only the first entry is an actual descriptor. The remaining selections, which are
all enclosed in angle brackets and all begin with the word new, are for creating new
descriptors. Here is the list from Figure 20 on page 50:

For example, if you clicked <new string descriptor>, the Macro object would create
a new String descriptor and place it at the start of the list. The lower area of the
Description tab would allow you to fill out the various fields that belong to a
String descriptor (such as a row and column location and a character string). The
Descriptor listbox would then look like this:

In the figure above, the currently selected descriptor is now the String descriptor
at the top of the list (the 3,29 stands for row 3, column 29). The Field Counts and
OIA descriptor is now second on the list.

Fields Counts and OIA
<new string descriptor>
<new cursor descriptor>
<new attribute descriptor>
<new condition descriptor>
<new variable update>

Figure 21. Contents of the Descriptor listbox with one actual descriptor

String descriptor(3, 29)
Fields Counts and OIA
<new string descriptor>
<new cursor descriptor>
<new attribute descriptor>
<new condition descriptor>
<new variable update>

Figure 22. Contents of the Descriptor listbox with two actual descriptors

Chapter 7. Screen description and recognition 51

For information on how the macro runtime handles multiple descriptors, as in the
figure above, see “Evaluation of descriptors” on page 53.

Recorded descriptions

What information is recorded
During macro recording the Macro object adds one or more descriptors to the new
<description> element of each new macro screen that it creates.

For the first macro screen of the macro being recorded, the Macro object creates
only one descriptor, a Field Counts and OIA descriptor with the following
contents:
v The Number of Fields is set to blanks (meaning, ignore the number of fields).
v The Number of Input Fields is set to blanks (meaning, ignore the number of

input fields).
v The Wait for OIA to Become Uninhibited field is set to true.

Therefore, when the recorded macro is played back (without having been revised
in any way), the macro runtime matches the first macro screen to its corresponding
application screen based entirely on whether the input inhibited indicator is
cleared.

For every other application screen of the macro after the first application screen,
the Macro object likewise creates only one descriptor, a Field Counts and OIA
descriptor, but with different contents:
v The Number of Fields is set to the actual number of fields in the application

screen (can be 0).
v The Number of Input Fields is set to the actual number of input fields in the

application screen (can be 0).
v The Wait for OIA to Become Uninhibited field set to true.

Therefore, when the recorded macro is played back (without having been revised
in any way), the macro runtime matches every macro screen after the first one to
its corresponding application screen based on whether the input inhibited indicator
is cleared, whether the count of fields in the macro screen’s description matches
the number of fields in the application screen, and whether the count of input
fields in the macro screen’s description matches the number of input fields in the
application screen.

Why the recorded descriptions work
The recorded descriptions work rather well for at least three reasons.

First, the three parts of the Field Counts and OIA descriptor can be applied
unfailingly to every possible application screen. That is, every application screen
has some number of fields (perhaps the number is 0), some number of input fields
(perhaps 0), and an input inhibited indicator that is either set or cleared.

Second, the combination of a Number of Fields descriptor and a Number of Input
Fields descriptor provides a pretty reliable description of an application screen,
because application screens typically contain many fields. For example, the Utility
Selection Panel shown in Figure 6 on page 15 currently contains 80 fields of all
types, 3 of which are input fields. The ISPF Primary Option Menu shown in
Figure 5 on page 14 currently contains 116 fields of all types, 3 of which are input
fields. When application screens contain many fields, there is less chance of the

52 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

macro runtime confusing two application screens with one another because each
contains the same number of fields and the same number of input fields.

Third, and perhaps most important, during screen recognition the macro runtime
compares the new application screen to a short list (usually a very short list) of
macro screens called valid next screens (see “Closer look at stage 1” on page 42).
Therefore a single macro screen need not be differentiated from every other macro
screen in the macro, only from the other screens in the list of valid next screens.
Frequently the list consists of a single macro screen.

Recorded descriptors provide a framework
Macro recording is a very useful feature because it quickly provides a framework
for your macro. However, for some macro screens the recorded description might
not be sufficient to allow the macro runtime to reliably distinguish one application
screen from another similar application screen. In such cases you should improve
the recorded description.

Often the most straightforward way to improve a recorded description is to add a
String descriptor. For example, if the macro screen is for the Utility Selection Panel
shown in Figure 6 on page 15, then you might add a String descriptor specifying
that the application screen contains the string ’Utility Selection Panel’
somewhere in row 3. Of course you are not limited to using a String descriptor.
Some situations might require that you use one or more of the other descriptors
(such as a Cursor descriptor, Attribute descriptor, or Condition descriptor) to
assure that the application screen is correctly recognized.

Evaluation of descriptors
This section describes in detail how the macro runtime determines whether a
macro screen matches an application screen.

Practical information
Before you read through the following subsections, here are the you should be
aware of the following facts:
v In most macro screens the <description> element contains more than one

descriptor. (Remember that the Field Counts and OIA descriptor can include up
to three independent descriptors. See “Field Counts and OIA descriptor” on
page 57.)

v The default settings in the Description tab are that all descriptors are required
(the Optional setting of each descriptor is false) and that the default combining
rule is used.

v The most common scenario that you will encounter is that all descriptors are
required. (That is, if you have defined three descriptors, you want all three of
them to be true in order for the macro screen to be recognized.) If you are facing
this scenario, then you should use the default settings.

v If you are faced with a scenario that is more complicated than the default
scenario, then you should use the uselogic method.

Overview of the process
Here is an overview of the process.
1. The macro runtime evaluates each descriptor individually and arrives at a

boolean result for that descriptor, either true or false.

Chapter 7. Screen description and recognition 53

2. The macro runtime then combines the boolean results of the individual
descriptors to determine whether the description as a whole is true (the macro
screen matches the application screen) or false. To combine the results of the
individual descriptors the macro runtime uses either the default combining
method or the uselogic method.
a. With the default combining method:

1) The macro runtime inverts the boolean result of any descriptor that has
the Inverse Descriptor option set to true.

2) The macro runtime combines the boolean results of the individual
descriptors using:
v The setting of the Optional option for each descriptor.
v The default rule for combining descriptors.

b. In contrast, with the uselogic method:
1) The macro runtime ignores the settings for Inverse Descriptor and

Optional.
2) The macro runtime combines the results of individual descriptors using

a rule that you provide in the uselogic attribute.

Evaluation of individual descriptors
For each individual descriptor in the macro description, the macro runtime
evaluates the descriptor and arrives at a boolean result of true or false.

For example, if the descriptor is a String descriptor, then the macro runtime looks
in the application screen at the row and column that the descriptor specifies, and
compares the string at that location with the string that the descriptor specifies. If
the two strings match, then the macro runtime assigns a value of true to the String
descriptor. If the two strings do not match then the macro assigns a value of false
to the String descriptor.

Usually a macro screen contains more than one descriptor.

However, if a macro screen contains only one descriptor (and assuming that the
descriptor does not have the Inverse Descriptor option set to true) then if the
single descriptor is true the entire description is true, and the macro runtime
recognizes the macro screen as a match for the application screen. In contrast, if
the single descriptor is false, then the entire description is false, and the macro
screen is not recognized.

Default combining method
If you have more than one descriptor in a <description> element, then you must
use either the default combining method described in this section or the uselogic
attribute described in “The uselogic attribute” on page 56.

When to use the default combining method
The default combining method is appropriate for only two scenarios:
v You want the description as a whole to be true only if ALL the individual

descriptors are true (this is the most common scenario); or
v You want the description as a whole to be true if AT LEAST ONE of the

individual descriptors is true.

You should not use the default method for any other scenario, unless you
thoroughly understand how the default combining method works.

54 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The default combining method uses:
v The boolean result for each individual descriptor (see “Evaluation of individual

descriptors” on page 54).
v The value of the Inverse Descriptor option in each individual descriptor.
v The value of the Optional option in each individual descriptor.
v The default combining rule.

Inverse Descriptor
Every descriptor has an Inverse Descriptor option that is set to false (the default)
or true. You can see the Inverse Descriptor option as a listbox below and to the
right of the Number of Fields input field in Figure 20 on page 50. The macro
language uses the invertmatch attribute of the descriptor element to store this
option.

By default this option is false, so that it has no effect on the evaluation of the
descriptor.

If this setting is true, then the macro runtime inverts the boolean result that it
obtains from evaluating the descriptor, changing true to false or false to true.

For example, if the macro runtime determines that a String descriptor is true (the
string in the descriptor matches the screen in the application window), but the
String descriptor has the Inverse Descriptor option set to true, then the macro
runtime changes the String descriptor’s result from true to false.

Optional
Every descriptor has an Optional option that is set to either false (the default) or
true. You can see this option as a listbox below the Number of Fields input field in
Figure 20 on page 50. The macro language uses the optional attribute of the
descriptor element to store this option

The Optional option states how a individual descriptor’s result is to be treated
when the macro runtime uses the default combining rule to combine the boolean
results of the descriptors. By default this option is set to false, signifying that the
descriptor’s result is required rather than optional.

Default combining rule
As stated earlier, the default combining rule is appropriate for only two scenarios:
v You want the description as a whole to be true only if ALL the individual

descriptors are true (this is the most common scenario); or
v You want the description as a whole to be true if AT LEAST ONE of the

individual descriptors is true.

If you want the description as a whole to be true only if ALL the descriptors are
true, then set the Optional setting of all the descriptors in the description to false
(the default setting).

In contrast, if you want the description as a whole to be true if AT LEAST ONE of
the descriptors is true, then set the Optional setting of all of the descriptors in the
description to true.

You should not use the default combining rule in any other scenario where you
have multiple descriptors in one macro screen, unless you understand the rule and
its implications thoroughly. For more information see “The default combining rule
for multiple descriptors in one macro screen” on page 177.

Chapter 7. Screen description and recognition 55

Also, you should not set the Optional settings of multiple descriptors in one macro
screen differently (some true, some false) unless you understand the rule and its
implications thoroughly.

The uselogic attribute
The uselogic attribute of the <description> element allows you to define more
complex logical relations among multiple descriptors than are available with the
default combining method described in the previous section.

If you use the uselogic attribute, then the macro runtime ignores the Inverse
Descriptor settings and the Optional settings in the individual descriptors.

You have to add the uselogic attribute to the <description> element manually
using the the Code Editor. The Macro Editor does not provide a control for this.

The value of the uselogic attribute is a simplified logical expression whose terms
are 1-based indexes of the descriptors that follow. Figure 23 shows an example of a
<description> element that contains a uselogic attribute (some of the attributes of
the <string> element are omitted for clarity):

In the figure above the value of the uselogic attribute is:
(1 and 2) or (!1 and 3)

This logical expression is not a regular logical expression (as described in
“Conditional and logical operators and expressions” on page 36) but rather a
simplified style of logical expression used only in the uselogic attribute. The rules
for this style of logical expression are:
v The numerals 1, 2, 3, and so on stand for the boolean results of, respectively, the

first, second, and third descriptors in the <description> element (<oia>, <string>,
and <cursor> in the figure above). You can use any numeral for which a
corresponding descriptor exists. For example, if a <description> element has
seven descriptors, then you can use 7 to refer to the boolean result of the
seventh descriptor, 6 to refer to the boolean result of the sixth descriptor, and so
on.

v Only the following logical operators are allowed:

Table 11. Logical operators for the uselogic attribute

Operator: Meaning:

and Logical AND

or Logical OR (inclusive)

! Logical NOT (inversion)

v You can use parentheses () to group terms.
v The following entities are not allowed:

– Arithmetic operators and expressions

<description uselogic="(1 and 2) or (!1 and 3)" />
<oia status="NOTINHIBITED" optional="false" invertmatch="false"/>
<string value="'Foreground' row="5" col="8"/>
<cursor row="18" col="19" optional="false" invertmatch="false"/>

</description>

Figure 23. Example of the uselogic attribute of the <description> element

56 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

– Conditional operators and expressions
– Variables
– Calls to Java methods

In the example in Figure 23 on page 56 the macro runtime will determine that the
description as a whole is true if:
v The result of the first descriptor is true and the result of the second descriptor is

true (1 and 2); or
v The result of the first descriptor is false and the result of the third descriptor is

true (!1 and 3).

Remember that if you use the uselogic attribute, then the macro runtime ignores
the Inverse Descriptor settings and the Optional settings in the individual
descriptors.

The descriptors

Overview
Each type of descriptor is stored as an individual XML element situated within the
<description> element of one macro screen.

You do not have to understand all the types of descriptors at first. Instead you
should begin by becoming familiar with just two types:
v The Fields Counts and OIA descriptor (actually contains 3 individual

descriptors)
v The String descriptor

These types of descriptors are sufficient to reliably describe many and perhaps
even most application screens. However, if these types are not sufficient, then you
should turn for help to one of the other types of descriptors.

Table 12 lists all the types of descriptors and shows the number of descriptors of
each type that are allowed to exist in one macro screen (more specifically, in one
<description> element belonging to one <screen> element):

Table 12. Types of descriptors, how many of each type allowed

Type of descriptor: Number of this type of descriptor allowed
per macro screen:

Field Counts and OIA 1 (required)

String descriptor 0 or more

Cursor descriptor 0 or 1

Attribute descriptor 0 or more

Condition descriptor 0 or more

The following subsections describe each type of descriptor in detail.

Field Counts and OIA descriptor

Required
The Field Counts and OIA descriptor is required and must be unique. That is,
every Description tab (<description> element) must contain one and only one Field
Counts and OIA descriptor.

Chapter 7. Screen description and recognition 57

This fact should not cause you any trouble in practice, for the following reasons:
v Although the Field Counts and OIA descriptor itself is required, only one of the

three tests that it contains is required. Therefore the actual requirement is that
every Description tab must contain one and only one Wait for OIA to Become
Uninhibited descriptor.

v The Macro Editor and the Code Editor enforce these rules and will not let you
mistakenly include more than one Field Counts and OIA descriptor in a
Description tab (or <description> element). For example,
– The Delete button on the Description tab does not have any effect when you

try to delete the Field Counts and OIA descriptor.
– The Descriptor listbox on the Description tab does not contain a <new> entry

for the Field Counts and OIA descriptor.

Presents three separate and independent descriptors as if one
For user friendliness and for certain design reasons that are not discussed here, the
Macro Editor presents the Field Counts and OIA descriptor as one descriptor (see
Figure 20 on page 50). However, in fact each of the three parts of the Field Counts
and OIA descriptor on the Description tab of the Macro Editor corresponds to a
separate and independent descriptor in the underlying XML macro language.
Specifically:
v The Number of Fields setting is stored as a <numfields> descriptor.
v The Number of Input Fields setting is stored as a <numinputfields> descriptor.
v The Wait for OIA to Become Uninhibited setting is stored as an <oia> descriptor.

Table 13 lists these three types of descriptors and shows how many of each can
occur within a <description> element:

Table 13.

Type of descriptor: Number of this type of descriptor allowed
per macro screen (that is, per <description>
element):

<oia> 1 (required)

<numfields> 1 (optional)

<numinputfields> 1 (optional)

As the table above shows, only one of each type of these descriptors can occur in a
<description> element. The <oia> descriptor is required, but the <numfields>
descriptor and the <numinputfields> descriptor are optional. The Macro Editor
enforces these rules.

You can reinforce these ideas in your mind by looking at a Field Counts and OIA
descriptor first as it appears on the Description tab of the Macro Editor and then in
the Code Editor. Figure 20 on page 50 shows a Field Counts and OIA descriptor on
the Description tab of the Macro Editor. The settings of the three parts of the Field
Counts and OIA descriptor are set as follows:
Number of Fields: 80
Number of Input fields: 3
Wait for OIA to Become Uninhibited: true

But if you look at the corresponding <description> element with the Code Editor,
you see the following:

58 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The XML code fragment above shows that the <description> element contains
three separate and independent descriptors, each corresponding to one of the three
parts of the Field Counts and OIA descriptor.

Now suppose if you will that you change the Field Counts and OIA descriptor
settings to be as follows:
Number of Fields: (blank)
Number of Input fields: (blank)
Wait for OIA to Become Uninhibited: true

Setting the first two fields to blank tells the Macro Editor that these items are not
to be included in the script. If you look again at the corresponding <description>
element with Code Editor you now see:
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
</description>

The XML code fragment above shows that the <description> element now contains
only one descriptor, an <oia> descriptor corresponding to the Wait for OIA to
Become Uninhibited setting in the Field Counts and OIA descriptor.

Treatment during screen recognition
During screen recognition, when the macro runtime evaluates individual
descriptors and combines the boolean results, the macro runtime treats the <oia>
descriptor, the <numfields> descriptor (if it is present), and the <numinputfields>
descriptor (if it is present) each as a separate and independent descriptor, one like
any other descriptor.

For more information about evaluating multiple descriptors see “Evaluation of
descriptors” on page 53

Wait for OIA to Become Uninhibited descriptor (<oia> element)
Table 14 on page 60 shows:
v The three permissible settings for the Wait for OIA to Become Uninhibited

listbox.
v The corresponding values used in the <oia> element.
v How the macro runtime evaluates the setting.

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<numfields number="80" optional="false" invertmatch="false" />
<numinputfields number="3" optional="false" invertmatch="false" />

</description>

Figure 24. A <description> element with three descriptors

Chapter 7. Screen description and recognition 59

Table 14. Valid settings for the descriptor Wait for OIA to Become Uninhibited

Setting on the Description
tab:

Value of the status
attribute in the <oia>
element:

Meaning:

true NOTINHIBITED If the input inhibited
indicator in the session
window is cleared (that is,
input is not inhibited) then
the macro runtime evaluates
the descriptor as true.
Otherwise the macro runtime
evaluates the descriptor as
false.

false DONTCARE The macro runtime always
evaluates the descriptor as
true.

<Expression> ’NOTINHIBITED’,
’DONTCARE’, or any
expression that evaluates to
one of these strings.

The macro runtime evaluates
the expression and then
interprets the resulting
string.

In almost all scenarios you can accept the default setting for this descriptor, which
is true (on the Description tab) and NOTINHIBITED (in the macro language).
Then, during screen recognition:
v If the input inhibited indicator in the session window is set (that is, input is

inhibited), then the macro runtime will evaluate this descriptor as false.
v But if the input inhibited indicator is cleared (that is, input is not inhibited), then

the macro runtime will evaluate this descriptor as true.

These are the results that you would want and expect. You typically do not want
the macro runtime to recognize the macro screen and immediately start processing
its actions while the input inhibited indicator is still set. An important timing issue
is involved here, which you should read about separately (see “Screen completion”
on page 112). But no matter how you resolve that issue, you should almost always

leave this descriptor at the default setting, which is true.

However, if you have a scenario in which you want the macro runtime to ignore
the input inhibited condition, then set this descriptor to false on the Description
tab (the equivalent setting in the macro language is DONTCARE).

Number of Fields descriptor (<numfields> element)
The Number of Fields descriptor specifies a particular number of 3270 (or 5250)
fields. You can use an integer in the Number of Fields input field, or any entity
that evaluates to an integer (such as a variable, an arithmetic expression, or a call
to an external Java method).

During screen recognition the macro runtime:
1. Evaluates this descriptor and obtains an integer result.
2. Counts the number of fields in the application screen (in its current state).
3. Compares the two numbers.

If the two numbers are equal then the macro runtime evaluates this descriptor as
true. Otherwise the macro runtime evaluates this descriptor as false.

60 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

When the macro runtime counts the fields in the session window it counts all
types of 3270 (or 5250) fields, including input fields.

If you do not want to use this descriptor then set the Number of Fields input field
to blank.

Number of Input Fields descriptor (<numinputfields> element)
The Number of Input Fields descriptor is very similar to the Number of Fields
descriptor described in the previous section. The difference is that the Number of
Input Fields descriptor specifies a number of 3270 (or 5250) input fields, whereas
the Number of Fields descriptor specifies a number of fields of all types, including
input fields.

You can use an integer in the Number of Input Fields field, or any entity that
evaluates to an integer (such as a variable, an arithmetic expression, or a call to an
external Java method).

During screen recognition the macro runtime:
1. Evaluates this descriptor and obtains an integer result.
2. Counts the number of input fields in the application screen (in its current state).
3. Compares the two numbers.

If the two numbers are equal then the macro runtime evaluates this descriptor as
true. Otherwise the macro runtime evaluates this descriptor as false.

If you do not want to use this descriptor then set the Number of Input Fields field
to blank.

Counting fields in the session window during macro
development
When you are editing a Field Counts and OIA descriptor and you want to set the
Number of Fields field and the Number of Input Fields field to the correct values,
you can use the Current button beside each input field to count the fields in the
application screen for you.

To use this feature follow these steps:
1. Click on the session window to activate it (see “Using the session window” on

page 129).
2. In the session window, go to the application screen corresponding to the macro

screen that you are working on.
3. In the Description tab select the Field Counts and OIA descriptor.
4. On the Description tab click the Current button immediately to the right of the

Number of Fields input field. The Macro Editor counts the number of fields in
the current application screen and then displays the count in the input field.

5. On the Description tab click the Current button immediately to the right of the
Number of Input Fields input field. The Macro Editor counts the number of
input fields in the current application screen and then displays the count in the
input field.

String descriptor (<string> element)
The String descriptor specifies the following information:
v A sequence of characters (the string).
v A rectangular area of text on the session window.

Chapter 7. Screen description and recognition 61

The macro runtime searches inside the entire rectangular area of text for the string
you specify. If the macro runtime finds the string inside the rectangular area of
text, then it evaluates the string descriptor as true. If not, then it evaluates the
string descriptor as false.

Specifying the rectangular area
You define the rectangular area of text by specifying the row and column
coordinates of opposite corners. The default values for these coordinates are (1,1)
and (-1,-1), indicating the entire text area of the session window (for the
significance of negative values such as -1,-1, see “Significance of a negative value
for a row or column” on page 39). You can use an integer or any entity that
evaluates to an integer (such as a variable, an arithmetic expression, or a call to an
external Java method).

The rectangular area can be just large enough to contain the string, or much larger
than the string. For example, suppose that the application screen that you want to
match to the macro screen has the string ’Terminal and user parameters’ in the
rectangular area (6,20), (6,37). This rectangular area is exactly large enough to
contain the string. If the application screen always has this string at this location,
then you might specify the exact rectangular area.

However, suppose that the application screen that you want to match to the macro
screen has the same string, ’Terminal and user parameters’, located somewhere
on it, but that you cannot predict which row of the application screen will contain
the string. In this case you could specify the rectangular area (1,1), (-1,-1),
indicating that the macro runtime should search every row of the application
screen for the identifying string.

For the string value you can use a string or any entity that evaluates to a string
(such as a variable, an expression, or a call to an external Java method). The string
must be in the form required by the macro format that you have chosen, either
basic or advanced (see “Error in specifying a string” on page 130).

During screen recognition the macro runtime:
1. Evaluates the row and column values and obtains an integer result for each

value.
2. Evaluates the string value and obtains a string result.
3. Looks for the string anywhere within the rectangular block of text in the

application screen (in its current state) specified by the row and column values.

If the the macro runtime finds the string within the rectangular block of text then
the macro runtime evaluates this descriptor as true. Otherwise the macro runtime
evaluates this descriptor as false.

How the macro runtime searches the rectangular area (Wrap
option)
If the Wrap option is set to false (the default setting), then the macro runtime
searches each row of the rectangular area separately. This method works well when
the entire string is contained within one row. For example, if the string is Utility
Selection Panel and the rectangular area is (1,1), (24,80), then the macro runtime
searches for the string as follows:
1. Get the first row of the rectangular area. Determine whether the string occurs

in the this row. If it does not, then search the next row.
2. Get the second row of the rectangular area. Determine whether the string

occurs in this row. If it does not, then search the next row.

62 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

3. And so on.

In contrast, if the Wrap option is set to true then the macro runtime searches for
the string as follows:
1. Get all the lines of the rectangular area and concatenate them all in order.
2. Determine whether the string occurs in the concatenated string.

If the string you are searching for can wrap from one line to the next of the session
window, then you should set the Wrap option to true. Do not confuse this option
with the Unwrap attribute of the Extract action, which is based on fields rather
than blocks of text (see “Unwrap Text option” on page 80).

The following description provides an example in which the Wrap option is set to
true.

Figure 25 shows rows 14 through 18 of an application screen:

In the rows above, the first character of each row is a blank space. For example, in
row 14, the the first two characters are ’ 6’, that is, a blank space followed by the
numeral 6. Suppose that you want to set up a String descriptor that checks for the
following rectangular block of text on this application screen:
Hardcopy
Transfer
Outlist
Commands
Reserved

The steps in setting up the String descriptor for this multi-row block are as follows:
1. Create a new String descriptor.
2. Set the values in the Row and Column fields. The row and column location of

the upper left corner of the text rectangle above is (14, 5) and the row and
column location of the lower right corner is (18, 12).

3. Set the string value. The string value is:
’HardcopyTransferOutlist CommandReserved’

4. Set the Wrap option to true.
5. Leave all the other options set to the default.

Notice that in step 3 above the five rows are concatenated as a single string,
without any filler characters added (such as a newline or space at the end).
However, the string does contain a blank space after ’Outlist’ because that blank
space does fall within the boundaries of the rectangle.

Using an extracted string in a String descriptor: If you use an Extract action to
read text from the screen into a string variable (see “Extract action (<extract>
element)” on page 77) then in a subsequent screen you can use the string variable
in the String input field of a String descriptor.

6 Hardcopy Initiate hardcopy output
7 Transfer Download ISPF Client/Server or Transfer data set
8 Outlist Display, delete, or print held job output
9 Commands Create/change an application command table
* Reserved This option reserved for future expansion

Figure 25. Rows 14–18 of an application screen

Chapter 7. Screen description and recognition 63

For example, in ScreenA you might read a company name from the session
window into a string variable named $strTmp$, using an Extract action. Then in
ScreenB you could use $strTmp$ as the string to be searched for in a String
descriptor.

You can do this when extracting multiple lines of text if you have the Wrap option
set to true.

The ’*’ string in a new String descriptor
When you create a new String descriptor the Macro Editor places the string ’*’
into the String input field as an initial, default value. Just erase this initial string
and fill in the string that you want. The asterisk (*) does not mean anything or
have any function. The initial string could say ’Default string value’ and have the
same effect.

Easy method for filling in the parameters
When you are editing a String descriptor and you want to specify the correct text
rectangle and text string, you can use the marking rectangle to set these values. To
use this feature follow these steps:
1. In the Descriptions tab, select the String descriptor that you want to edit.
2. Click on the session window to activate it (see “Using the session window” on

page 129).
3. In the session window, go to the application screen corresponding to the macro

screen that you are working on.
4. In the session window, use the marking rectangle to mark the block of text that

you want to use in the String descriptor (see “Using the marking rectangle” on
page 129).
v When you complete the marking rectangle in the session window, the Macro

Editor automatically copies the row and column values for the corners of the
rectangle into the Start Row, Start Column, End Row, and End Column input
fields in the String descriptor window on the Description tab.

5. In the session window, click Edit > Copy.
6. In the String descriptor window, click the String field. Move the text cursor in

the String field to the position at which you want to add the string.
7. Click Ctrl-v.
8. If you captured a rectangle containing more than one row of text from the

session window, then the string requires further editing. Read the description
below of how to edit the string.

When you click Ctrl-v the Macro Editor does the following:
v Copies the text from the rectangular block in the session window into the String

field.

However, if you captured more than one row of text (as in the example in “How
the macro runtime searches the rectangular area (Wrap option)” on page 62), then
the paste operation inserts an extra space after each row of text except the last.
Edit the String field to remove these extra spaces. In the example in “How the
macro runtime searches the rectangular area (Wrap option)” on page 62, the String
field contains the following string before editing:
’Hardcopy Transfer Outlist Command Reserved’

Notice that the string is too long (by 4 characters) to fit in the rectangle of the
specified size (5 rows, 8 columns), and that an extra blank space has been inserted
after each row. You should edit the string to the following value:

64 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

’HardcopyTransferOutlist CommandReserved’

Multiple String descriptors in the same <description> element
The Macro Editor does not prevent you from creating more than one String
descriptor in the same <description> element. You should use as many String
descriptors as you need in order to create a reliable description.

You can even define two different strings for the same rectangular block of text in
the same <description> element. You might do this if the application screen
corresponding to your macro screen displays different strings in the same location
at different times. However, if you do define two different strings for the same
rectangular block of text, you should be careful to indicate that both of the strings
are not required (both are optional).

Cursor descriptor (<cursor> element)
The Cursor descriptor specifies a row and column location on the application
screen, such as row 10 and column 50. For either the row value or the column
value you can use an integer or any entity that evaluates to an integer (such as a
variable, an arithmetic expression, or a call to an external Java method).

During screen recognition the macro runtime:
1. Evaluates the row value and obtains an integer result.
2. Evaluates the column value and obtains an integer result.
3. Looks at the row and column location of the text cursor in the application

screen (in its current state).
4. Compares the row and column location in the descriptor with the row and

column location of the text cursor in the application screen.

If the two locations are the same then the macro runtime evaluates this descriptor
as true. Otherwise the macro runtime evaluates this descriptor as false.

When you are editing a Cursor descriptor and you want to specify the correct row
and column values, you can use the Current button. The Current button is situated
immediately to the right of the Row and Column fields in the Cursor descriptor
window.

To use this feature follow these steps:
1. Click on the session window to activate it (see “Using the session window” on

page 129).
2. In the session window, go to the application screen corresponding to the macro

screen that you are working on.
3. In the session window, use the mouse or the keyboard to set the text cursor to

the location that you want.
4. In the Cursor descriptor window click Current.

When you click Current the Macro Editor does the following:
v Finds the location of the text cursor in the current session window and sets the

Row and Column values to that location.

Attribute descriptor (<attrib> element)
The attribute descriptor specifies a 3270 or 5250 attribute and a row and column
location on the application window.

Chapter 7. Screen description and recognition 65

During screen recognition the macro runtime compares the specified attribute (such
as 0x3) to the actual attribute at the row and column specified. If the attributes are
the same, then the macro runtime evaluates the descriptor as true. Otherwise the
macro runtime evaluates the descriptor as false.

This descriptor can be useful when you are trying to differentiate between two
application screens that are very similar except for their attributes.

Specifying an attribute
Before you specify an attribute, use the Data Plane listbox to select the data plane
in which the attribute that you are looking for occurs. If you select <Expression>
then you must specify an expression (such as a variable named $strDataPlane$)
that resolves at runtime to one of the data plane strings in the listbox
(FIELD_PLANE, COLOR_PLANE, or EXFIELD_PLANE).

Use the Row and Column input fields to specify the Row and Column location on
the application screen of the attribute that you are looking for.

You can use any one of three methods to specify an attribute value:
v Click the session window and move the text cursor to the row and column

location of an attribute like the one that you want specify in the Attribute
descriptor, then click Current in the Macro Editor; or

v Click Edit Attributes and use the controls on the popup window; or
v Type the value into the Attribute Value input field (for example, 0x3).

Condition descriptor (<condition>) element
The Condition descriptor specifies a conditional expression that the macro runtime
evaluates during screen recognition, such as $intNumVisits$ == 0. For more
information on conditional expressions see “Conditional and logical operators and
expressions” on page 36.

During screen recognition the macro runtime:
v Evaluates the conditional expression and obtains a boolean result.

If the conditional expression evaluates to true then the macro runtime evaluates
this descriptor as true. Otherwise the macro runtime evaluates this descriptor as
false.

The Condition descriptor increases the flexibility and power of screen recognition
by allowing the macro runtime to determine the next macro screen to be processed
based on the value of one or more variables or on the result of a call to a Java
method.

Custom descriptor (<customreco> element)
The Custom descriptor allows you to call custom description code.

To use a Custom descriptor you need the separate Host Access Toolkit product.

To create a Custom descriptor you must use the Code Editor to add an
<customreco> element to the <description> element of the macro screen. For more
information on this element see “<customreco> element” on page 150.

66 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Variable update action (<varupdate> element)
The final type of entry that can occur in the Descriptor listbox is the Variable
update entry, which is not a descriptor at all, but rather an action that the macro
language allows to occur inside a <description> element.

The Variable update action in a <description> element performs the very same
type of operation that it performs in an <actions> element, which is to store a
specified value into a specified variable.

For information about creating a Variable update action see “Variable update action
(<varupdate> element)” on page 97.

Processing a Variable update action in a description
You should be aware of how the macro runtime processes one or more Variable
update actions when they occur in a <description> element:
1. The macro runtime performs all the Variable update actions immediately, as if

they were first in sequence.
2. The macro runtime then evaluates the remaining items (descriptors) in the

description as usual and arrives at an overall boolean result. The Variable
update actions have no effect on the boolean result.

As you might remember, the macro runtime can go through the screen recognition
process a number of times before matching a macro screen to an application screen
(see “Re-doing the evaluation” on page 46). Therefore, if a <description> element
contains one or more Variable update actions, then the macro runtime will perform
the Variable update actions each time that it evaluates the <description> element.

For example, suppose that a macro is being played back, that the screen name
ScreenB is on the list of valid next screens, and that ScreenB contains a
<description> element like the one shown in Figure 26:

Each time that the macro runtime tries to match ScreenB to the current application
screen:
1. The macro runtime sees the <varupdate> action and performs it, storing the

value true into $boolUpdate$.
2. The macro runtime evaluates the <oia> descriptor and the <attrib> descriptor

and arrives at a boolean result for the entire <description> element.

Variable update with the uselogic attribute
If you want the macro runtime to perform a Variable update action in a
<description> element in some other sequence than first, you can change the order
of execution by using the <description> element’s uselogic attribute instead of the
default combining rule (see “The uselogic attribute” on page 56).

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<varupdate name="$boolUpdate$" value="true" />
<attrib value="0x4" row="1" col="1" plane="COLOR_PLANE" optional="false"

invertmatch="false" />
</description>

Figure 26. The <description> element of ScreenB

Chapter 7. Screen description and recognition 67

When a Variable update action is used in a uselogic attribute:
v The macro runtime performs the Variable update action in the same order in

which it occurs in the uselogic attribute.
v The macro runtime always evaluates the Variable update action to true.

68 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 8. Macro actions

In general

The actions by function
Here is a list of all the actions, grouped according to function.
v Interaction with the user:

– Box selection
– Input (keystrokes and key-activated functions, such as copy to clipboard)
– Message
– Mouse click
– Prompt

v Getting data from the application
– Extract
– Transfer (file transfers between host and client, either upload or download)
– Variable update

v Waits
– Comm wait
– Pause

v Programming
– Conditional
– Perform (call a Java method)
– Play macro (chain to another macro)
– Run program (launch a program on the client operating system)
– Variable update

v System
– Print extract
– Print start
– Print end
– Run program (launch a program on the client operating system)

v Debug
– Trace

How actions are performed

The runtime context
As you may remember from Chapter 6, “How the macro runtime processes a
macro screen”, on page 41, when the macro runtime has selected a new current
macro screen, the macro runtime immediately begins to perform the actions in the
<actions> element of that macro screen.

After the macro runtime has performed all the actions, it immediately goes on to
the next step of determining the next macro screen to be processed.

© Copyright IBM Corp. 2003 69

The macro screen context
Within a single macro screen, the macro runtime performs the actions in the order
in which they occur in the <actions> element. This is the same order in which you
haved ordered the actions in the Action listbox.

You are not required to create any actions for a macro screen. If there is no
<actions> element or if the <actions> element is empty, then the macro runtime
will go straight to the next section of macro screen processing, which is selecting
the next macro screen to be processed.

Specifying parameters for actions
In specifying the parameters of an action, remember that, in general, any context
that accepts an immediate value of a particular standard data type also accepts any
entity of the same data type. For example, if an input field accepts a string value,
then it also accepts an expression that evaluates to a string, a value that converts to
a string, a string variable, or a call to an imported method that returns a string (see
“Equivalents” on page 38).

However, there are a few fields in which you cannot use variables (see “Using the
value that the variable holds” on page 124).

Introduction to the Actions tab

Sample Actions tab
The Actions tab on the Screens tab of the Macro Editor allows you to create and
edit actions. When you create an action in the Actions tab, the Macro Editor inserts
the new action into the <actions> element of the currently selected screen.
Figure 27 on page 71 shows a sample Actions tab:

70 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

In the figure above, the Screens tab of the Macro Editor is selected. The name of
the currently selected screen, Screen1, is displayed in the Screen Name field at the
top of the Screens tab. Below the Screen Name field are the General, Description,
and Actions subtabs. The Actions tab is selected.

As you look at the Actions tab in the figure above, you can see that, like the
Description tab, it has an upper area and a lower area.

The upper area contains controls that operate on a single action element considered
as a whole. In particular, the Action listbox situated in the upper left corner of the
Actions tab contains the name of the currently selected action. In the figure above,
there is no currently selected action, because no action has been created yet.

The lower area of the Actions tab displays the contents of the currently selected
action, if any. If the currently selected descriptor is an Input action, then the lower
area of the Actions tab presents the contents appropriate to that type of action. If
the user creates or selects another type of action, such as an Extract action, then the
lower area presents the contents appropriate to an Extract action.

Creating a new action
Looking again at the Actions listbox in Figure 27, you should notice that it does
not yet contain any actions. The selections, which are all enclosed in angle brackets
and all begin with the word new, are for creating new actions. As you can see in
Figure 27, the displayable part of the Actions listbox is not tall enough to show the
whole list at once. Here is the entire list:

Figure 27. Actions tab

Chapter 8. Macro actions 71

For example, if you clicked <new input action>, the Macro object would create a
new Input action and place it at the top of the list. The lower area of the Actions
tab would allow you to fill out the various fields that belong to an Input action
(such as the input key sequence). The new Input item would be in the selected
area of the Actions listbox, and the list part of the listbox would then look like this:

When the macro runtime processes this macro screen, it will perform the actions in
the same order in which they are listed in the Actions listbox. To change the order
of the actual actions, click the Change Order button to the right of the Actions
listbox.

<new input action>
<new extract action>
<new prompt action>
<new message action>
<new pause action>
<new xfer action>
<new comm wait action>
<new trace action>
<new mouse click action>
<new box select action>
<new run program>
<new variable update action>
<new play macro action>
<new perform action>
<new conditional action>
<new print start action>
<new print extract action>
<new print end action>

Figure 28. Contents of the list of an Actions listbox with no actions created

Input action1(0,0)
<new input action>
<new extract action>
<new prompt action>
<new message action>
<new pause action>
<new xfer action>
<new comm wait action>
<new trace action>
<new mouse click action>
<new box select action>
<new run program>
<new variable update action>
<new play macro action>
<new perform action>
<new conditional action>
<new print start action>
<new print extract action>
<new print end action>

Figure 29. Contents of the list of an Actions listbox with one actual action

72 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The actions

Box selection action (<boxselection> element)
The Box selection action draws a marking rectangle on the session window,
simulating the action in which an actual user clicks on the session window, presses
mouse button 1, and drags the mouse to create a marking rectangle.

Specifying row and column values
In the lower area of the Actions tab, specify the row and column locations of the
corners of the marking rectangle that you want to create or edit. Or, if the Box
selection action is the currently selected action in the Actions listbox, you can click
and drag the mouse over the session window to create the marking rectangle that
you want to create. When you have completed the marking rectangle on the
session window, the Macro Editor writes the row and column value of the corners
of the marking rectangle into the appropriate Row and Column input fields of the
Box selection action.

You can type a negative number (such as -1) into the Row (Bottom Corner) input
field and into the Column (Bottom Corner) input field to specify a relative offset
from the last row and last column of the session window. For example, if the
session window is 24 by 80 and you specify corners of (1, 1) and (-4, -10), then the
macro runtime will draw a marking rectangle with the coordinates (1, 1) and (21,
71) (see “Significance of a negative value for a row or column” on page 39).

Erasing the marking rectangle
If you draw a marking rectangle and then click the session window anywhere
outside the boundaries of the marking rectangle, the session window erases the
marking rectangle. However, when the macro runtime is playing a macro, a Mouse
click action does not erase an existing marking rectangle.

To erase a marking rectangle in a macro you have two choices:
v Draw a new marking rectangle in a different location .When you draw a new

marking rectangle the old one is erased.
v Use the Code Editor to set the type attribute of the <boxselection> element to

DESELECT. For the DESELECT option the macro runtime ignores the row and
column coordinates and just erases the existing marking rectangle if there is one.

Example
See “Copy and paste example” on page 85.

Comm wait action (<commwait> element)
The Comm wait action waits until the communication status of the session changes
to some state that you have specified in the action. For example, you might create
a Comm wait action to wait until the session was completely connected.

How the action works
When the macro runtime starts to perform a Comm wait action, it looks at the
communication status specified in the Comm wait action and compares it to the
actual communication status of the session. If the two statuses match, then the
macro runtime concludes that the Comm wait action is completed, and the macro
runtime goes on to perform the next action.

However, if the two statuses do not match, then the macro runtime does no further
processing, but just waits for the communication status that is specified in the
Comm wait action to actually occur in the session.

Chapter 8. Macro actions 73

You can specify in the Comm wait action a timeout value in milliseconds that
causes the macro runtime to end the Comm wait action when the timeout value
has expired. That is, the macro runtime terminates the action when the timeout
value has expired, even if the communication status that the macro runtime has
been looking for has not been reached.

After a Comm wait action, you probably want to use some other action, such as an
Extract action, to check some characteristic of the application screen that will
indicate to you whether the session has actually reached the communication status
that you wanted, or whether the Comm wait action ended because of a timeout.

Specify a communication status that is persistent
As the session connects or disconnects, the communication status typically moves
quickly through some states (such as pending active, then active, then ready) until
it reaches a particular state at which it remains stable for some time (such as
workstation id ready). In most situations you want to specify that persistent,
ending state in the Comm wait action. See the next section for a list of persistent
states.

(If instead you specified some transitional state such as pending active, then the
session might pass through that state and go on to the next state before the macro
runtime gets a chance to perform your Comm wait action. Therefore when the
macro runtime does perform your Comm wait action it will be waiting
interminably for some state that has already occurred.)

Communication states
You can specify any of the states listed in the Connection Status listbox. Table 15
lists the name and significance of each state:

Table 15. Communication states

Communication state: Significance:

Connection Initiated Initial state. Start Communications issued.

Connection Pending Active Request socket connect.

Connection Active Socket connected. Connection with host.

Connection Ready Telnet negotiation has begun.

Connection Device Name Ready Device name negotiated.

Connection Workstation ID Ready Workstation ID negotiated.

Connection Pending Inactive Stop Communications issued.

Connection Inactive Socket closed. No connection with host.

The stable states (that is, the ones that usually persist for more than a few seconds)
are:
v Connection Inactive - Here the session is completely disconnected.
v Connection Workstation ID Ready - Here the session is completely connected.

If you select <Expression> in the Connection Status listbox, then you must specify
an expression that resolves to one of the keywords that the macro runtime expects
to find in the value attribute of the <commwait> element (see “<commwait>
element” on page 147). For example, you might specify a variable named
$strCommState$) that resolves to CONNECTION_READY.

Examples

74 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Conditional action (<if> element and <else> element)
The Conditional action contains the following items:
v A conditional expression that the macro runtime evaluates to true or false.
v A list of actions that the macro runtime performs if the condition evaluates to

true. (Optional)
v A list of actions that the macro runtime performs if the condition evaluates to

false. (Optional)

The Conditional action provides the functions of an if-statement or of an if-else
statement.

Specifying the condition
You should specify in the Condition field the conditional expression that you want
the macro runtime to evaluate. The conditional expression can contain logical
operators and conditional operators and can contain terms that include arithmetic
expressions, immediate values, variables, and calls to Java methods (see
“Conditional and logical operators and expressions” on page 36).

Condition is True (<if> element)
Use the Condition is True tab to specify the actions that you want to be performed
if the condition evaluates to true.

The Condition is True tab contains controls that are almost identical to the controls
for the Actions tab. Specifically:
v The Action listbox on the Condition is True tab allows you to create and edit

actions in the same way that the Action listbox on the Actions tab does.
v The Delete button and the Change Order button on the Condition is True tab

allow you to delete or reorder actions in the same way that the Delete button
and the Change Order button on the Actions tab do.

v The lower area of the Condition is True tab allows you to edit the values of the
currently selected action in the same way that lower area of the Actions tab
does.

Use these controls on the Condition is True tab to create and edit the actions that
you want the macro runtime to perform if the condition is true.

For example, you might set the Condition field to the name of a variable, such as
$boolResult$, into which a previous operation has stored its result. If the value of
$boolResult$ is true, you might want to a perform a Message action that displays a
status message to the user. Therefore, in the Condition is True tab you would
create a Message action that contains the status message that you want to display.

During macro playback the macro would evaluate the condition, $boolResult$. If
the value is true then the macro runtime would perform the Message action that
you had defined in the Condition is True tab. If the value is false then the macro
runtime would skip over the Message action and over all the other actions (if any)
that you had defined in the Condition is True tab.

<commwait value="CONNECTION_READY" timeout="10000" />

Figure 30. Example of Comm wait action

Chapter 8. Macro actions 75

Condition is false (<else> element)
Use the Condition is False tab to specify the actions that you want to be performed
if the condition evaluates to false.

Like the Condition is True tab, the Condition is False tab contains controls that are
almost identical to the controls for the Actions tab. Use these controls on the
Condition is False tab to create and edit the actions that you want the macro
runtime to perform if the condition is false.

Condition action not allowed within a Condition action
The Macro Editor does not allow you to create a Condition action inside the
Condition is True tab or inside the Condition is False tab. Therefore you cannot
have the equivalent of an if-statement nested inside another if-statement, or of an
if-statement nested inside an else-statement. The Code Editor enforces the same
rules.

Example
The following code fragment prompts the user for input. If the input string is the
string true, the code fragment displays a message window with the message ″You
typed TRUE″. If the input string is any other string, the code fragment displays a
message window with the message ″You typed FALSE″. This example uses the
following actions: Prompt action, Condition action, and Message action.

You can copy this code fragment from this document into the system clipboard,
and then from the system clipboard into the Code Editor. Because this code is a
fragment, you will have to copy it into a macro screen in an existing macro script.
You will also have to create a string variable named $strData$. To create the
variable, add the follow lines after the <HAScript> begin tag and before the first
<screen> element:
<vars>

<create name="$strData$" type="string" value="" />
</vars>

After you save the script in the Macro Editor, you can edit it either with the Macro
Editor or with the Code Editor.

You should notice the following facts about this example:
v The example consists of one code fragment containing an <actions> element and

the actions inside it.
v The first action is a Prompt action that displays a message window and copies

the user’s input into the variable $strData$, without writing the input into an
input field in the session window.

v The first part of the condition action (the <if> element) contains the condition,
which is simply $strData$.

v Because $strData$ is a string variable in a boolean context, the macro runtime
tries to convert the string to a boolean value (see “Automatic data type
conversion” on page 37). If the user’s input is the string ’true’ (in upper, lower,
or mixed case), then the conversion is successful and the condition contains the
boolean value true. If the user’s input is any other string, then the conversion
fails and the condition contains the boolean value false.

v If the condition is true, then the macro runtime performs the action inside the
<if> element, which is a Message action displaying the message You typed
TRUE. Then, having exhausted all the actions to be performed when the
condition is true (just one action here), the macro runtime skips over the <else>
action and continues as usual.

76 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v In contrast, if the condition is false, then the macro runtime skips over the
actions in the <if> element and begins performing the actions in the <else>
element, which include one Message action that displays the message You typed
FALSE. After performing all the actions in the <else> action, then the macro
runtime continues as usual.

Extract action (<extract> element)
The Extract action captures text from the session window and stores the text into a
variable. This action is very useful and is the primary method that the Macro
object provides for reading application data (short of using programming APIs
from the toolkit).

If you have the IBM Host Access Toolkit product, then you can use the Extract
action to read data from any of the available data planes. For more information see
“Using the Toolkit to capture data from any data plane” on page 82.

Capturing text
The most common use of the Extract action is to capture text that is being
displayed in the session window. This operation does not require the IBM Host
Access Toolkit.

Here is an overview of the steps to follow. Each step is described in more detail in
the following subsections.
1. Set the Continuous Extract option, if necessary
2. Specify an area on the session window that you want to capture.
3. Specify an extraction name.
4. Specify TEXT_PLANE as the data plane.
5. Specify a variable in which you want the text to be stored.

Set the Continuous Extract option: If you want to capture a rectangular block of
text, then set the Continuous Extract option to false (this is the default value). For
more information, see “Capturing a rectangular area of the session window” on
page 79.

In contrast, if you want to capture a continuous sequence of text that wraps from
line to line, then set the Continuous Extract option to true. For more information,
see “Capturing a sequence of text from the session window” on page 79.

Specify the area of the session window: To specify the area of the session
window that you want to capture, you can either use the marking rectangle to

<actions>
<prompt name="’Type true or false’" description="" row="0" col="0"

len="80" default="" clearfield="false" encrypted="false"
movecursor="true" xlatehostkeys="true" assigntovar="$strData$"
varupdateonly="true" />

<if condition="$strData$" >
<message title="" value="’You typed TRUE’" />

</if>
<else>

<message title="" value="’You typed FALSE’" />
</else>

</actions>

Figure 31. Sample code fragment showing a Condition action

Chapter 8. Macro actions 77

gather the row and column coordinates, or else you can type the row and column
coordinates of the text area into the Row and Column fields on the Extract action
window.

Whichever method you use, the macro runtime will interpret the values differently
depending on whether the Continuous Extract option is set to false or true (see
“Set the Continuous Extract option” on page 77).

If you are using the marking rectangle (see “Using the marking rectangle” on
page 129) then the macro runtime writes the row and column coordinates of the
upper left corner of the marking rectangle into the first pair of Row and Column
values (labeled Top Corner on the Extract action window) and the row and column
coordinates of the lower right corner into the second pair of Row and Column
values (labeled Bottom Corner).

If you enter the Row and Column values yourself, then type the first set of row
and column coordinates into the first pair of Row and Column values (labeled Top
Corner on the Extract action window) and type the second set of coordinates into
the second pair of Row and Column values (labeled Bottom Corner). You can use
the text cursor on the session window as an aid to determine the coordinates that
you want (see “Using the session window’s text cursor” on page 129).

In the Row (Bottom Corner) input field you can enter -1 to signify the last row of
the data area on the session window. This feature is helpful if your users work
with session windows of different heights (such as 25, 43, 50) and you want to
capture data down to the last row. Similarly for the Column (Bottom Corner) input
field you can enter -1 to signify the last column of the data on the session window
(see “Significance of a negative value for a row or column” on page 39).

Specify an extraction name: You must specify an extraction name, such as
’Extract1’. However, you will not use this name for any purpose unless you are
using the IBM Host Access Toolkit product.

Specify TEXT_PLANE as the data plane: In the Data Plane listbox click
TEXT_PLANE. This is the default.

Specify the variable in which you want the text to be stored: Set the checkbox
labeled Assign Text Plane to a Variable and enter the name of the variable into
which you want the text to be stored. You have to use this method to store the
captured text unless you are using the IBM Host Access Toolkit product.

The text is returned as a string. In most cases you will probably want to store the
string in a string variable, so that some other action in your macro can process the
string.

However, if you specify a variable of some other standard data type (boolean,
integer, double) then the macro runtime will convert the string to the format of the
variable, if possible. For example, if the text on the screen is 1024 and the variable
is an integer variable then the macro runtime will convert the string 1024 to the
integer 1024 and store the value in the integer variable. If the format is not valid
for converting the string to the data type of the variable then the macro runtime
will terminate the macro with a run-time error. For more information about data
conversion see “Automatic data type conversion” on page 37.

78 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Treatment of nulls and other undisplayable characters
Text captured from the TEXT_PLANE does not contain any nulls (0x00) or other
undisplayable characters. Any character cell on the display screen that appears to
contain a blank space character will be captured as a blank space character.

Capturing a rectangular area of the session window
When the Continuous Extract option is false (this is the default value), the macro
runtime treats the two pairs of Row and Column values as the upper left and
lower right corners (inclusive) of a rectangular block of text. The rectangular block
can be as small as one character or as large as the entire application window.

The macro runtime:
v Initializes the result string to an empty string.
v Reads the rectangular block of text row by row, concatenating each row to the

result string.
v Stores the result string in the specified variable.

As an example, suppose that the first 40 characters of rows 16, 17, and 18 of the
session window are as follows:
.8..Outlist.....Display, delete, or prin
.9..Commands....Create/change an applica
.10.Reserved....This option reserved for

and suppose that the macro runtime is about to perform an Extract action with the
following settings:
v Continuous Extract is false.
v The row and column pairs are (16, 5) (the ’O’ of Outlist) and (18, 12) (the ’d’ of

’Reserved’).
v The extraction name is ’Extract1’.
v The data plane is TEXT_PLANE.
v The string variable $strTmp$ is the variable in which the result string is to be

stored.

Because the Continuous Extract option is false, the macro runtime treats the row
and column pairs as marking a rectangular block of text, with the upper left corner
at row 16 and column 5 and the lower right corner at row 18 and column 12.

The macro runtime initializes the result string to an empty string. Then the macro
runtime reads the rectangular block of text one row at a time (’Outlist.’,
’Commands’, ’Reserved’), concatenating each row to the result string. Finally the
macro runtime stores the entire result string into the result variable $strTmp$. The
variable $strTmp$ now contains the following string:
’Outlist.CommandsReserved’

Capturing a sequence of text from the session window
When the Continuous Extract option is true, the macro runtime treats the two pairs
of Row and Column values as the beginning and ending positions (inclusive) of a
continuous sequence of text that wraps from line to line if necessary to get from
the beginning position to the ending position. The sequence of text can be as small
as one character or as large as the entire application window.

The macro runtime:
v Initializes the result string to an empty string.

Chapter 8. Macro actions 79

v Reads the continuous sequence of text from beginning to end, wrapping around
from the end of one line to the beginning of the next line if necessary.

v Stores the result string in the specified variable.

For example, suppose that rows 21 and 22 of the session window contain the
following text (each row is 80 characters):
........Enter / on the data set list command field for the command prompt pop-up
or ISPF line command..

and suppose that the macro runtime is about to perform an Extract action with the
following settings:
v Continuous Extract is true.
v The row and column pairs are (21, 9) (the ’E’ of ’Enter’) and (22, 20) (the ’d’ of

’command’).
v The extraction name is ’Extract1’.
v The data plane is TEXT_PLANE.
v The string variable $strTmp$ is the variable in which the result string is to be

stored.

Because the Continuous Extract option is true, the macro runtime treats the row
and column pairs as marking the beginning and end of a sequence of text, with the
beginning position at (21, 9) and the ending at (22, 20).

The macro runtime initializes the result string to an empty string. Then the macro
runtime reads the sequence of text from beginning to end, wrapping around from
the last character of row 21 to the first character of row 22. Finally the macro
runtime stores the entire result string into the result variable $strTmp$. The
variable $strTmp$ now contains the following string of 92 characters (the following
text is hyphenated to fit on the page of this document, but actually represents one
string without a hyphen):
’Enter / on the data set list command field for the com-
mand prompt pop-up or ISPF line command’

In contrast, if the Continuous Extract option is set to false in this example,
$strTmp$ would contain a string of 24 characters, ’Enter / on tline command’.

Unwrap Text option
This option was originally intended to be used with the IBM Host Access Toolkit
product and only when the Continuous Extract option was set to false. However,
you can also use it without the toolkit, and you can use it with the Continuous
Extract option set either to false or true.

When you set Unwrap Text to true, the macro runtime uses not only the row and
column pairs in the Extract window but also the field boundaries in the session
window in determining the data to collect. The macro runtime returns an array of
strings (if you are using the toolkit) or a single string of concatenated strings (if
you are not using the the toolkit).

Do not confuse the Unwrap Text option with the Wrap option of the String
descriptor, which is based on a rectangular block of text rather than fields (see
“How the macro runtime searches the rectangular area (Wrap option)” on page 62).

When Unwrap Text is true and Continuous Extract is false: When Continuous
Extract is false, the row and column pairs represent the corners of a rectangular

80 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

block of text. When you set Unwrap Text to true, the macro runtime reads each
row of the rectangular block of text and processes each field in the row as follows:
v If the field begins outside the row and continues into the row, then the macro

runtime ignores the field.
v If the field begins inside the row and ends inside the row, then the macro

runtime includes the field’s contents in the result.
v If the field begins inside the row and ends outside the row, then the macro

runtime includes the contents of the entire field (including the part outside the
rectangular block of text) in the result.

The intent of the Unwrap Text option is to capture the entire contents of a field as
one string even if the field wraps from one line to the next.

For example, suppose that the session window is 80 characters wide and that rows
9, 10, 11, and 12 of the session window are as follows:
...Compress or print data set.......
..Reset statistics..
..Catalog or display
information of an entire data set...

Suppose also that the following text areas in the lines above are fields:
Compress or print data set
Reset statistics
Catalog or display information of an entire data set

Finally, suppose that:
v Continuous Extract is false (this is the default setting).
v Unwrap Text is true.
v The marking rectangle has its upper left corner at row 9 and column 63 (the ’n’

of ’print’) and its lower right corner at row 11 and column 73 (the ’ ’ after ’or’).
v The extraction name is ’Extract1’.
v The data plane is TEXT_PLANE.

If you are using the IBM Host Access toolkit the macro runtime returns the
following array of strings as the return value of the toolkit method: ’Reset
statistics’, ’Catalog or display information of an entire data set’. The
macro runtime:
v Skips ’Compress or print data set’ because the field begins outside the

marking rectangle.
v Returns ’Reset statistics’ because the field begins within the marking

rectangle.
v Returns ’Catalog or display information of an entire data set’ because the

field begins inside the marking rectangle, even though the field wraps to the
next line.

If you are not using the toolkit, the macro runtime concatenates the individual
strings and stores them as a single string into the variable that you specified in the
Extract window. In this example the macro runtime stores the string ’Reset
statisticsCatalog or display information of an entire data set’ into the
variable.

When Unwrap Text is true and Continuous Extract is true: When Continuous
Extract is true, the row and column pairs represent the beginning and ending

Chapter 8. Macro actions 81

locations of a continuous sequence of text that wraps from line to line if necessary.
When you then set Unwrap Text to true, the macro runtime processes the
continuous sequence of text as follows:
v If the field begins outside the sequence and continues into the sequence, then

the macro runtime ignores the field.
v If the field begins inside the sequence and ends inside the sequence, then the

macro runtime includes the field’s contents in the result.
v If the field begins inside the sequence and ends outside the sequence, then the

macro runtime includes the contents of the entire field (including the part
outside the continuous sequence) in the result.

Using the Toolkit to capture data from any data plane
You can use the Java APIs from the IBM Host Access Toolkit product to access data
from any data plane, including the TEXT_PLANE.

The data planes, together with the type of data associated with each plane, are:
v TEXT_PLANE - The characters displayed on the screen.
v FIELD_PLANE - 3270 or 5250 field attributes
v COLOR_PLANE - 3270 or 5250 color attributes
v EXFIELD_PLANE - 3270 or 5250 extended attributes
v DBCS_PLANE - Double byte character set characters
v GRID_PLANE - Double byte character set grid information

To access the extracted data using the Toolkit, you will need to implement the
MacroRuntimeListener class and register yourself with the Macro bean. For every
Extract action, the Macro bean will fire data to you in a MacroExtractEvent by
calling your macroExtractEvent() method. Use the get methods of the
MacroExtractEvent to access the data.

Input action (<input> element)
The Input action sends a sequence of keystrokes to the session window. The
sequence can include keys that display a character (such as a, b, c, #, &, and so on)
and also action keys (such as [enterreset], [copy], [paste], and others).

This action simulates keyboard input from an actual user.

Location at which typing begins
Use the Row and Column fields to specify the row and column location in the
session window at which you want the input sequence to begin. For example, if
you specify row 23 and column 17 in the Input action, and you specify Hello
world as the String value of the Input action, then (assuming that the location you
have specified lies within an input field) the macro runtime will type the key
sequence Hello world on the session window starting at row 23 and column 17.

If you specify a row or column location of 0, then the macro runtime will type the
key sequence beginning at the actual row and column location of the text cursor
on the session window when the Input action is performed. You should not specify
a row or column of 0 unless the context is one in which the location of the text
cursor does not matter (for example, with a [copy] action key) or unless you can
predict where the text cursor will be located (for example, if a Mouse click action
has just moved the text cursor to a specific location, or if the application has
positioned the text cursor as part of displaying the application screen).

82 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Input errors
During macro playback, the session window reacts to a key input error in the same
way as it would react if an actual user had typed the key.

For example, if an Input action sends a key that displays a character (such as a, b,
c, #, & and so on) to the session when the text cursor is not located in a 3270 or
5250 input field, then the session will respond by inhibiting the key input and
displaying an error symbol in the Operator Information Area, just as it would with
a keystroke typed by an actual user.

Input string
The String field is an input field in which you specify the key sequence that you
want the action to perform.

To specify a key that causes a character to be displayed (such as a, b, c, #, &, and
so on), type the key itself.

To specify a key from the Actions Keys listbox, scroll the list to the key you want
(such as [backspace]) and click Insert Action Key. The name of the key enclosed
by square brackets appears at the next input position in the String field. Please
notice that the keys in the Action Keys listbox are not listed alphabetically
throughout. You might have to keep scrolling down the list to find the key you
want.

Another way to specify an action key is just to type the name itself into the String
input field, surrounded by square brackets (for example, [backspace]).

The following copy/paste keys occur in the Action Keys list for a 3270 Display
Session:
[copy] [mark right]
[copyappend] [mark up]
[cut] [paste]
[mark down] [pastenext]
[mark left] [unmark]

For other keys see “Mnemonic keywords for the Input action” on page 177.

Translate Host Action Keys
The Translate Host Action Keys field indicates whether the macro runtime is to
interpret action key names (such as [copy], [enterreset], [tab], and so on) in the
input sequence as action keys or as literal sequences of characters. The default is
true (interpret the action key names as action keys).

For example, suppose that the input key sequence is ’[up][up]Hello world’ and
that the text cursor is at row 4, column 10. If the Translate Host Actions Keys value
is true, then in performing this input sequence the macro runtime will move the
text cursor up two rows and then type Hello world beginning at row 2, column 10.
In contrast, if the Translate Host Actions Keys value is false, then the macro
runtime will type [up][up]Hello World beginning at row 4, column 10.

Move Cursor to End of Input
When the Translate Host Action Keys field is set to true (the default), then the
Macro Editor also sets the Move Cursor to End of Input listbox to true and
disables it. Even though the listbox is disabled, its value is still set to true.

Chapter 8. Macro actions 83

If you set the Translate Host Action Keys listbox to false, then the Move Cursor to
End of Input listbox is enabled and you can set it to false, true, or an expression
that is evaluated at runtime.

When the value of this listbox is true (the default), then the macro runtime moves
the text cursor in the same way that it would be moved if an actual user were
entering keyboard input. For example, if the key is a text character, such as ’a’,
then the macro runtime types the character on the session window and then moves
the text cursor to the first character position after the ’a’. Similarly, if the key is
[tab], then the macro runtime moves the text cursor to the next tab location.

In contrast, if the value of the Move Cursor to End of Input listbox is false, then
the macro runtime does not move the text cursor at all. The text cursor remains in
the same position as it occupied before the macro runtime performed the Input
action.

Example
See “Copy and paste example” on page 85.

Message action (<message> element)
The Message action displays a popup window that includes a title, a message, and
an OK button. The macro runtime does not terminate the action until the user
clicks OK.

You can use this message in many scenarios, such as the following:
v To display an instruction, error message, or status message to the user.
v To suspend execution of the macro until the user has performed some action.
v To display values for debugging.

Displaying the message caption and message text
You should specify in the Message Title input field the caption that you want to be
displayed in the caption bar of the message window.

You should specify in the Message Text input field the text that you want to be
displayed inside the message window.

Because both input fields expect a string as the input value, you can specify any
entity that evaluates to a string (see “Equivalents” on page 38). If you use an
arithmetic expression then the expression itself can contain immediate values,
variables, arithmetic expressions, and calls to Java methods (see “Arithmetic
operators and expressions” on page 35).

You can also use the data type conversion rules (see “Automatic data type
conversion” on page 37) and the string concatenation operator (see “String
concatenation operator (+)” on page 36). For example, if you want to display the
value of an integer variable named $intResult$, then you can specify in the
Message Text input field the following string:
’The result is ’ + $intResult$ + ’.’

If the value of $intResult$ is 204, then the macro runtime displays in the message
box the following text:
The result is 204.

84 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Mouse click action (<mouseclick> element)
The Mouse click action simulates a user mouse click on the session window. As
with a real mouse click, the text cursor jumps to the row and column position
where the mouse icon was pointing when the click occurred.

Specifying row and column
In the lower area of the Actions window, specify the row and column location on
the session window where you want the mouse click to occur. Or, you can click on
the session window itself, and the Macro Editor updates the values in the Row and
Column fields to reflect the new location of the text cursor.

Copy and paste example
The following example shows how to mark a block of text in the session window,
copy it to the system clipboard, and paste it back into the session window at a
new location. This example uses the following action elements: Box selection
action, Input action, Mouse click action, and Pause action.

You can copy the text of this macro script from this document into the system
clipboard, and then from the system clipboard into the Code Editor (see “Copy
and paste a script from this guide into the Code Editor” on page 130). After you
save this script in the Macro Editor, you can edit it either with the Macro Editor or
with the Code Editor.

You should notice the following facts about this example:
v The example consists of one entire macro script named COPY PASTE.
v The following actions occur in the <actions> element:

– The <boxselection> action draws a marking rectangle.
– A <pause> action waits one-half second so that when the macro is played

back, the user can see what is happening.
– An <input> action types a [copy] action, which copies the marked area to the

clipboard.
– A <mouseclick> action sets the cursor to the location where the paste will

take place.
– An <input> action types a [paste] key, which pastes the contents of the

clipboard to the new location on the session window.
v This macro is written to be run from the ISPF Primary Option Menu (see

Figure 5 on page 14). The macro copies the text Spool Display and Search
Facility from row 18 to the system clipboard, and then pastes the text from the
clipboard to the Option ===> input field in line 4.

v If this example does not paste properly when you run it, make sure that the
target area that you have specified lies within a 3270 or 5250 input field. The
Host On-Demand client does not let you paste text into a protected field in the
application screen.

Chapter 8. Macro actions 85

Pause action (<pause> element)
The Pause action waits for a specified number of milliseconds and then terminates.

More specifically, the macro runtime finds the <pause> element, reads the duration
value, and waits for the specified number of milliseconds. Then the macro runtime
goes on to perform the next item.

Uses for this action are:
v Any situation in which you want to insert a wait.
v Waiting for the host to update the session window. For more information see

“Screen completion” on page 112.
v To add delay for debugging purposes.

You should type the number of milliseconds in the Duration input field. The
default is 10000 milliseconds (10 seconds).

Perform action (<perform> element)
The Perform action invokes a method belonging to a Java class that you have
imported (see “Creating an imported type for a Java class” on page 121).

You can invoke a method in many other contexts besides the Perform action.
However, the Perform action is useful in certain scenarios, for example, when you
want to invoke a method that does not return a value.

Some of the contexts, other than the Perform action, in which you can invoke a
method are as follows:

<HAScript name="COPY PASTE" description=" " timeout="60000" pausetime="300"
promptall="true" author="" creationdate="" supressclearevents="false"
usevars="false" >

<screen name="Screen1" entryscreen="true" exitscreen="true"
transient="false">

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

</description>
<actions>

<boxselection type="SELECT" srow="18" scol="19"
erow="18" ecol="51" />

<pause value="500" />
<input value="[copy]" row="0" col="0" movecursor="true"

xlatehostkeys="true" encrypted="false" />
<mouseclick row="4" col="15" />
<input value="[paste]" row="0" col="0" movecursor="true"

xlatehostkeys="true" encrypted="false" />
</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>

</HAScript>

Figure 32. Sample code COPY PASTE

86 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v You can invoke a method and assign the return value to a variable by using the
Update variable action. The variable that receives the return value can be either
a variable belonging to a standard type (boolean, integer, string, double) or a
variable belonging to an imported type (for example, a variable named
$objTmp$ that belongs to the imported type Object, based on the Java class
Object).

v You can invoke a method and use the return value as a parameter in a macro
action by specifying the method call in the field for the parameter. For example,
in the Row parameter of an Extract action you can use a method call that
returns an integer value. The macro runtime sees that the parameter is a method
call, invokes the method, and uses the integer return value as the value of the
Row parameter.

v You can invoke a method as part of any expression by using the method call as
a term in the expression. When the macro runtime evaluates the expression, it
sees that the term is a method call, invokes the method, and uses the value of
the method (for example, a string) as the value of the term.

v You can invoke a method and use the return value as the initial value of a
variable that you have just declared.

In general, outside the Perform action, you can invoke a method in any context in
which the value returned by the method is valid.

Invoking the method
Type the method call into the Action to Perform field. You must enclose a method
call in dollar signs ($), just as you would a variable (see “Syntax of a method call”
on page 126). The macro runtime will invoke the method. See also “How the

macro runtime searches for a called method” on page 126.

Examples
The following examples show how to invoke a method using the Perform action.
You should notice the following facts about these examples:
v In Example 1, the Perform action calls the update() method on the variable

$importedVar$. Notice that:
– The entire method call is enclosed in dollar signs ($).
– In the context of a method call, the variable name itself (importedVar) is not

enclosed in dollar signs ($).
– A variable passed as a parameter to a method must be enclosed in dollar

signs ($) as usual ($str$).
– A string passed as a parameter to a method must be enclosed in single quotes

as usual (’Application’).
v In Example 2, the Perform action calls a static method.
v In Example 3, the Perform action calls the close() method belonging to the class

to which the variable belongs, such as java.io.FileInputStream.
v In Example 4, the Perform action calls the createZipEntry() method belonging to

the class to which the variable belongs, such as java.util.zip.ZipInputStream.
v In Example 5, the Perform action calls the clear() method belonging to the class

to which the variable belongs, such as java.util.Hashtable.

Chapter 8. Macro actions 87

PlayMacro action (<playmacro> element)
The PlayMacro action launches another macro.

When the macro runtime performs a PlayMacro action, it terminates the current
macro (the one in which the PlayMacro action occurs) and begins to process the
specified macro screen of the target macro. This process is called chaining. The
calling macro is said to ″chain to″ the target macro. There is no return to the
calling macro.

You must specify in the PlayMacro action the name of the target macro and,
optionally, the name of the macro screen in the target macro that you want the
macro runtime to process first.

You can have the macro runtime transfer all of the variables with their contents
from the calling macro to the target macro.

Adding a PlayMacro action
Outside of a Condition element:
v You can add only one PlayMacro action to a macro script, and that PlayMacro

action must be the last action in the Actions list (<actions> element) of the macro
script.

Inside a Condition element:
v You can add one PlayMacro action to the Condition is True branch (<if>

element), and that PlayMacro action must be the last action in the branch (<if>
element).

v You can also add one PlayMacro action to the Condition is False branch (<else>
element), and that PlayMacro action must be the last action in the branch
(<else> element).

You can have as many Condition elements in the macro as you like, with each
Condition element containing one PlayMacro action in its Condition is True branch
and one PlayMacro action in its Condition is False branch.

The Macro Editor and the Code Editor enforce these rules.

<actions>
<!-- Example 1 -->
<perform value="$importedVar.update(5, ’Application’, str)$" />

<!-- Example 2 -->
<perform value="$MyClass.myInit(’all’)$" />

<!-- Example 3 -->
<perform value="$fip.close()$" />

<!-- Example 4 -->
<perform value="$zis.createZipEntry($name$)$" />

<!-- Example 5 -->
<perform value="$ht.clear()$" />

</actions>

Figure 33. Examples of the Perform action

88 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Target macro file name and starting screen
Use the Macro Name field to specify the name of the target macro. If you are
chaining macros in a Server Library, you must specify the name of the macro file
rather than the name of the macro.

You cannot call a macro that resides in a different location than the calling macro.
Specifically:
v A macro in the Current Session can call only macros that are in the Current

Session.
v A macro in the Personal Library can call only macros that are in the Personal

Library.
v A macro in a Server Library can call only macros that are in that Server Library.

Use the Start Screen Name listbox to select the macro screen in the target macro
that you want the macro runtime to process first:
v If you want to start the target macro at its usual start screen, then select the

DEFAULT entry in the Start Screen Name listbox, or provide an expression
that evaluates to the value *DEFAULT*.

v If you want to start the target macro at some other screen, then select the name
of that screen in the Start Screen Name listbox.

Transferring variables
You can have the macro runtime transfer to the target macro all the variables that
belong to the calling macro, including the contents of those variables, by setting
the Variable Transfer listbox to Transfer (the default is No Transfer).

This transferring of variables and their contents allows you to use variables to pass
parameters from the calling macro to the target macro.

After the target macro gets control, it can read from and write to the transferred
variables in the same way that it reads from and writes to variables that it has
declared itself.

For example, if MacroA currently has two integer variables named StartRow and
StartCol, with values of 12 and 2, and then MacroA launches MacroB with a
PlayMacro action, then MacroB will start out having variables StartRow and
StartCol with values of 12 and 2.

Even if the transferred variable belongs to an imported type and contains a Java
object, the target macro can still refer to the transferred variable and call methods
on the Java object, or can write some other object into that transferred variable.

Requirements for transferring variables: The target macro must have selected the
advanced macro format (see “Choosing a macro format” on page 31).

Restriction: Please notice the following restriction on all types of transferred
variables:
v You cannot use the transferred variable in the Initial Value field of the Variables

tab of the target macro.

Additional information: If the target macro creates a variable with the same
name and type as a transferred variable, then the macro runtime uses the created
variable rather than the transferred variable.

Chapter 8. Macro actions 89

When the target macro needs to import a type: In the target macro, if you want
to use a transferred variable that belongs to an imported type, then you do not
need to import that same type in the target macro. Examples of operations where
you do not need to import the type are as follows:
v Using the transferred variable as the value of an attribute.
v Calling a method on the transferred variable.

However, in the target macro, if you want to use the name of an imported type,
then you must import that type. Examples of operations where you must import
the type:
v Declaring a new variable of the imported type.
v Creating a new instance of the imported type.
v Calling a static method of the imported type.

Examples
The following example shows a PlayMacro action:

Print actions (<print> element)
The Print actions allow you to print text from the session window of a 3270
Display session. You can print the entire application screen, or you can print a
rectangular area of text from the application screen. You can use the same printer
setup options and most of the same page setup options that are available for a
3270 Printer session.

You can use the Print actions only with a 3270 Display session.

The Print actions do not create a host print session. Rather, the Print actions print
data that is displayed in the 3270 Display session window (screen print).

The Print actions are:
v Print Start
v Print Extract
v Print End

The Print Start action instantiates a print bean object for the current macro and sets
the Printer Setup options and the Page Setup options for the bean. The Print
Extract action sends text to the print bean. The Print End action terminates the
print bean.

Although the Macro Editor presents Print Start, Print Extract, and Print End as
separate types of action, in fact the Macro object stores all three using the <print>
element.

Print Start
The Print Start action instantiates a print bean object for the current macro using
the Printer Setup options and the Page Setup options that you specify.

<actions>
<playmacro name="TargetMacro" startscreen="*DEFAULT*"

transfervars="Transfer" />
</actions>

Figure 34. Example of the PlayMacro action

90 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Before performing a Print Start action, the macro runtime checks to see if a print
bean already exists for the current macro. If so, then the macro runtime terminates
the existing print bean and then performs the Print Start action to instantiate a new
print bean.

Printer Setup and Page Setup: Click Printer Setup to set the printer setup options
for the new print bean. You can control the same printer setup options as are
available for a 3270 Printer session, including Printer destination (Windows Printer,
Other Printer, or File), Printer Definition Tables, and Adobe PDF output for the File
destination.

Click Page Setup to set the page setup options for the new print bean. You can
control the same page setup options that are available for a 3270 Printer session
and that also are appropriate for the 3270 Display datastream (LU2), including
Font, treatment of nulls (0x00), and Printer-Font Code Page.

The Printer Setup options and the Page Setup options that you specify for a print
bean for the current macro do not affect the printer setup options and page setup
options for:
v A print bean in a macro running on another 3270 Display session.
v Any ZipPrint in any 3270 Display session.
v Any File > Print Screen operation in any 3270 Display session.
v A 3270 Printer session.

However, if your print destination is a Windows printer, and you use the Microsoft
Windows Print Setup dialog to make configuration changes to that Windows
printer, such as an orientation of Landscape rather than Portrait, then those
particular configuration changes will affect any Host On-Demand printing activity
that uses that Windows printer, including:
v A print bean in a macro running on any 3270 Display session.
v ZipPrint in any 3270 Display session.
v Printing from any 3270 Printer session.

Assign Return Code to a Variable: If you want to verify that the Print Start
action is successful, then click Assign Return Code to a Variable and select a
variable to hold the return code from the Print Start action.

Print Extract
The Print Extract action copies the text from a rectangular area of the 3270 Display
session window that you specify and prints the text using the current print bean.

Before performing a Print Extract action, the macro runtime checks to see if a print
bean has been started for the current macro. If not, then the macro runtime
performs a Print Start action with the default printer setup options and the default
page setup options, and then performs the Print Extract action.

Specifying the area to be printed: To specify the area of the session window that
you want to print, you can either use the marking rectangle to gather the row and
column coordinates, or else you can type the row and column coordinates of the
text area into the Row and Column fields on the Extract action window.

If you are using the marking rectangle (see “Using the marking rectangle” on
page 129) then the macro runtime writes the row and column coordinates of the
upper left corner of the marking rectangle into the first pair of Row and Column

Chapter 8. Macro actions 91

values (labeled Top Corner on the Extract action window) and the row and column
coordinates of the lower right corner into the second pair of Row and Column
values (labeled Bottom Corner).

If you enter the Row and Column values yourself, then type the first set of row
and column coordinates into the first pair of Row and Column values (labeled Top
Corner on the Extract action window) and type the second set of coordinates into
the second pair of Row and Column values (labeled Bottom Corner). You can use
the text cursor on the session window as an aid to determine the coordinates that
you want (see “Using the session window’s text cursor” on page 129).

In the Row (Bottom Corner) input field you can enter -1 to signify the last row of
the data area on the session window. This feature is helpful if your users work
with session windows of different heights (such as 25, 43, 50) and you want to
capture data down to the last row. Similarly for the Column (Bottom Corner) input
field you can enter -1 to signify the last column of the data on the session window
(see “Significance of a negative value for a row or column” on page 39).

Assign Return Code to a Variable: If you want to verify that the Print Extract
action is successful, then click Assign Return Code to a Variable and select a
variable to hold the return code from the Print Extract action.

Print End
The Print End action terminates the current print bean if one exists. If a current
print bean does not exist then the action has no effect.

Assign Return Code to a Variable: If you want to verify that the Print End action
is successful, then click Assign Return Code to a Variable and select a variable to
hold the return code from the Print End action.

Prompt action (<prompt> element)
The Prompt action provides a powerful way to send immediate user keyboard
input into the 3270 or 5250 application or into a variable.

The Prompt action displays on top of the session window a prompt window that
contains a message, an input field, and an OK button. After the user types text into
the input field and clicks OK, the Prompt action uses the input in one or both of
the following ways:
v The Prompt action types the input into an input field of the session window.
v The Prompt action interprets the input as a string and stores the input into a

variable.

A typical use of this action, but by no means the only use, is to permit the user to
provide a password. Many scenarios require that a macro log on to a host or start
an application that requires a password for access. Because a password is sensitive
data and also typically changes from time to time, you probably do not want to
code the password as an immediate value into the macro.

With the Prompt action, you can display a message that prompts the user for a
password and that lets the user type the password into the input field. After the
user clicks OK, the macro runtime types the input into the session window at the
row and column location that you specify. The input sequence can include action
keys such as [enterreset], so that if the user types MyPassword[enterreset] the
macro runtime not only can type the password into the password field but also can

92 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

type the key that completes the logon or access action. (Or, you can put the action
key into an Input action that immediately follows the Prompt action.)

Displaying the prompt window

Parts of the prompt window: You should type the prompt text (such as ’Please
type your password:’) into the Prompt Name field, not into the Prompt Text field.
(The Prompt Text field is an optional field than you can use to store a note
containing details about the particular Prompt action.)

The macro runtime displays a prompt window with the following characteristics:
v The prompt window appears on top of the session window and is located in the

center of the system’s desktop window.
v The caption of the prompt window is always Prompt.
v The message that you typed into the Prompt Name field is displayed in the

center of the prompt window, followed by an input field.
v A button row across the bottom of the prompt window contains three buttons:

– The OK button causes the macro runtime to process the contents of the input
field.

– The Cancel button halts the macro.
– The Help button displays help text explaining how to use the prompt

window.

Default Response: In the Default Response field, which is optional, you can type
the text of a default response that you want to appear in the input field of the
prompt window when the prompt window is displayed. If the user does not type
any keyboard input into the input field of the prompt window, but rather just
clicks OK to indicate that input is complete, then the macro runtime processes the
default response that is contained in the input field.

For example, if the user normally uses ApplicationA but sometimes uses
ApplicationB, you could type ApplicationA into the Default Response field. When
the macro runtime performs the Prompt action, the prompt window appears with
the text ApplicationA already displayed in the input field. The user either can click
OK (in which case the macro processes ApplicationA as the contents of the input
field) or else type ApplicationB into the input field and then click OK (in which
case the macro processes ApplicationB as the contents of the input field).

Password Response: If you set the Password Response listbox to true (the default
is false) then when the user types each key into the input field of the prompt
window, the macro runtime displays an asterisk (*) instead of the character
associated with the key.

For example, with the Password Response listbox set to true (or resolving to true
at runtime) then if the user types ’Romeo’ the macro runtime displays ***** in the
input field.

Processing the contents of the input field

Response Length: The value in the Response Length field specifies not the size of
the input field, but the number of characters that the macro runtime allows the
user to type into the input field.

For example, if you set the Response Length field to 10, then the macro runtime
allows the user to type only 10 characters into the input field.

Chapter 8. Macro actions 93

Action keys and Translate Host Action Keys: Both you (in the Default Response
input field) and the user (in the input field of the Prompt window) can use action
keys (such as [enterreset], [copy], and so on) as you would in the String field of an
Input action (see “Input string” on page 83).

The Translate Host Action Keys listbox and its effect are exactly like the Translate
Host Action Keys listbox in the Input action (see “Translate Host Action Keys” on
page 83). If you set this listbox to true, which is the default value, then the macro
runtime interprets an action key string (such as [copy]) as an action key rather
than as a literal string.

Handling the input sequence in the session window
Use the Row and Column fields to specify the row and column position on the
session window at which you want the macro runtime to start typing the input
sequence. To have the macro runtime start typing the input sequence at the current
position of the text cursor, you can set either or both of the Row and Column
fields to 0. As with the Input action, the row and column position must lie within
a 3270 or 5250 input field at runtime, or else the session window responds by
inhibiting the input and displaying an error symbol in the Operator Information
Area, just as it responds to keyboard input from an actual user.

You can have the macro runtime clear the contents of the input field before typing
begins, by setting the Clear Host Field listbox to true.

The Move Cursor to End of Input field has the same function and effects as the
button of the same name in the Input action (see “Move Cursor to End of Input”
on page 83).

You can have the macro runtime not display the input sequence in the input field
by setting the Don’t Write to Screen listbox to true. This field is enabled only when
the Assign to a Variable checkbox is selected.

Assigning the input sequence to a variable
You can have macro runtime store the input sequence into a variable by selecting
the Assign to a Variable listbox.

In the popup window for specifying a new variable, you can specify the name of a
variable that the current macro inherits from another macro, or you can specify the
name of a new variable that you want to create in the current macro. If you want
to create a new variable in the current macro, select the Create variable in this
macro checkbox and select the type of the new variable.

The macro runtime stores the input sequence as a string, and consequently you
might want to specify a string variable as the variable to receive the input.
However, if the variable is of some other type than string, then the macro runtime
will try to convert the input to the data type of the target variable according to the
usual rules (see “Automatic data type conversion” on page 37).

The promptall attributes
You can have the macro runtime combine the popup windows from all <prompt>
elements into one large prompt window and display this large prompt window at
the beginning of the macro playback, by setting the promptall attribute of the
<HAScript> element to true (see “<HAScript> element” on page 154).

The promptall attribute in the <actions> element works similarly (see “<actions>
element” on page 144).

94 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Run program action (<runprogram> element)
The Run program action launches a native application and optionally waits for it
to terminate. You can provide input parameters for the application and store the
return code in a variable.

You can launch any application that can be run by the system runtime.

The Run program action has many uses, such as the following:
v Launching a native application that prepares data that the macro needs, or that

uses data that the macro has prepared.
v Launching a native application that prepares the workstation (for example, by

making a network connection) for an action that the macro is about to initiate.
v Launching a native application that detects the status of a system condition and

then reports the status back to the macro.

Launching the native application
You should specify in the Program input field the complete path and name of the
file that launches the native application, for example:
’c:\\Program Files\\MyApp\\bin\\myapp.exe’

You should notice in the example above that a single backslash character (\)is
represented by two backslash characters (\\). The reason is that in the advanced
macro format the backslash is a special character and therefore must be
represented by a backslash + the character itself (see “In the advanced macro
format, rules for representation of strings, etc.” on page 32).

You should specify in the Parameters field any parameters that should be passed
to the native application.

Waiting for the native application to terminate
If you want the macro runtime to wait until the native application has terminated,
set the Wait for Program listbox to true. The default is false (the macro runtime
does not wait).

Capturing the return code
You can capture the status code returned by the native application in a variable by
selecting the Assign Exit Code to Variable checkbox and specifying the name of a
variable.

Example of launching a native application
The following example launches a native application, waits for it to terminate, and
then displays the return code from the application in a message window. This
example uses the following action elements: Run program action, Message action.

You can copy the text of this macro script from this document into the system
clipboard, and then from the system clipboard into the Code Editor (see “Copy
and paste a script from this guide into the Code Editor” on page 130). After you
save this script in the Macro Editor, you can edit it either with the Macro Editor or
with the Code Editor.

You should notice the following facts about this example:
v The example consists of one entire macro script named RUN PROGRAM.
v The following actions occur in the <actions> element:

– The <runprogram> element launches a native application, waits for it to
return, and stores the return code into $intReturn$.

Chapter 8. Macro actions 95

– A message action displays the value in $intReturn$ in a message window.

Trace action (<trace> element)
The Trace action sends a trace message to a trace destination that you specify, such
as the Java console.

Use the Trace Handler listbox to specify the trace destination to which you want
the trace message sent:
v Select Host On-Demand trace facility to send the trace message to the Host

On-Demand Trace Facility.
v Select User trace event to send the trace message to a user trace handler.
v Select Command line to send the trace message to the Java console.

Use the Trace Text input field to specify the string that you want to send to the
trace destination.

Example
The following example shows how to send trace messages to the Java console. This
example uses the following action elements: Trace and Variable update.

You can copy the text of this macro script from this document into the system
clipboard, and then from the system clipboard into the Code Editor (see “Copy
and paste a script from this guide into the Code Editor” on page 130). After you
save this script in the Macro Editor, you can edit it either with the Macro Editor or
with the Code Editor.

You should notice the following facts about this example:
v The example consists of one entire macro script named TRACE.
v The <create> element creates a string variable named $strData$ and initializes it

to an original value of ’Original value’.

<HAScript name="g1" description=" " timeout="60000" pausetime="300"
promptall="true" author="" creationdate="" supressclearevents="false"
usevars="true" ignorepauseforenhancedtn="false"
delayifnotenhancedtn="0">

<vars>
<create name="$intReturn$" type="integer" value="0" />

</vars>
<screen name="Screen1" entryscreen="true" exitscreen="true" transient="false">

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

</description>
<actions>

<runprogram exe=
"’c:\\Program Files\\Windows NT\\Accessories\\Wordpad.exe’"
param="’c:\\tm\\new_file.doc’" wait="true"
assignexitvalue="$intReturn$" />

<message title="" value="’Return value is ’+$intReturn$" />
</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>
</HAScript>

Figure 35. Sample code RUN PROGRAM

96 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v The first action is a Trace action with the Trace Text set to ’The value is’ +
$strData$.

v The second action is a Variable update action that sets the variable $strData$ to
a new value of ’Updated value’.

v The third action is another Trace action identical with the first Trace action.

This script causes the macro runtime to send the following data to the Java
console:
The value is +{$strData$ = Original value}
The value is +{$strData$ = Updated value}

In the trace output above you should notice that instead of just displaying the
value of $strData$, the Debug action displays both the variable’s name and its
value inside curly braces {}.

User trace event
To take advantage of the User trace event setting, you need the separate Host
Access Toolkit product. You should implement the MacroRuntimeListener interface.
The macro runtime sends an event to MacroRuntimeListeners for the following
types of occurrences:
v Macro error
v Macro state change
v Trace action. The event is a MacroTraceEvent.
v Prompt action.
v Message action.
v Extract action.

Variable update action (<varupdate> element)
The <varupdate> element stores a value into a variable. You must specify:
v The name of a variable
v The value that you want to store into the variable.

<HAScript name="TRACE" description=" " timeout="60000" pausetime="300"
promptall="true" author="" creationdate="" supressclearevents="false"
usevars="true" ignorepauseforenhancedtn="false"
delayifnotenhancedtn="0">

<vars>
<create name="$strData$" type="string" value="’Original value’" />

</vars>
<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

</description>
<actions>

<trace type="SYSOUT" value="’The value is ’+$strData$" />
<varupdate name="$strData$" value="’Updated value’" />
<trace type="SYSOUT" value="’The value is ’+$strData$" />

</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>

Figure 36. Sample code TRACE

Chapter 8. Macro actions 97

During macro playback the macro runtime performs the Variable update action by
storing the specified value into the specified variable.

You can also use the Variable update action in a <description> element (see
“Processing a Variable update action in a description” on page 67).

The value can be an arithmetic expression and can contain variables and calls to
imported methods. If the value is an expression, then during macro playback the
macro runtime evaluates the expression and stores the resulting value into the
specified variable.

The Variable update action works like an assignment statement in a programming
language. In a Java program you could write assignment statements such as:
boolVisitedThisScreen = true;
intVisitCount = intVisitCount + 1;
dblLength = 32.4;
strAddress ="123 Hampton Court";

With the Variable update action you type the left side of the equation (the variable)
into the Name field on the Variable Update window and type the right side of the
equation (the value) into the Value field on the same window. To create the
equivalents of the Java assignment statements above, you would write:

Table 16. Examples of variable names and values

In the Name input field: In the Value input field:

$boolVisitedThisScreen$ true

$intVisitCount$ $intVisitCount$+1

$dblLength$ 32.4

$strAddress$ ’123 Hampton Court’

The value that you provide must belong to the correct data type for the context or
be convertible to that type (see “Automatic data type conversion” on page 37).

The great usefulness of the Variable update action is due to the facts that:
v The entity in the Value field can be an expression, and
v Expressions are not evaluated until the action is performed.

For more information on expressions see Chapter 5, “Data types, operators, and
expressions”, on page 31.

Variable update action with a field variable
Using a Variable update action to update a field variable is a convenient way of
reading the contents of a 3270 or 5250 field in the session window and storing the
field’s contents as a string into a variable.

A field variable is a type of string variable. A field variable contains a string, just
as a string variable does, and you can use a field variable in any context in which
a string variable is valid. However, a field variable differs from a string variable in
the way in which a string is stored into the field variable. The string that a field
variable contains is always a string that the macro runtime has read from a 3270 or
5250 field in the current session window.

When you use the Variable update action to update a string variable, you specify
the following information in the Variable update window:

98 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v The name of the field variable, such as $fldTmp$.
v A location string, such as ’5,11’. (A location string is a string containing two

integers separated by a comma that represent a row and column location on the
session window.)

When the macro runtime performs the Variable update action, the macro runtime:
1. Recognizes that the variable is a field variable.
2. Looks at the location string that is to be used to update the field variable.
3. Finds in the current session window the row and column location specified by

the location string.
4. Finds in the current session window the 3270 or 5250 field in which the row

and column location occurs.
5. Reads the entire contents of the 3270 or 5250 field, including any leading and

trailing blanks.
6. Stores the entire contents of the field as a string into the field variable.

You can then use the field variable in any context in which a string is valid. For
example, you can concatenate the field variable with another string, as in the
following:
’The field\’s contents are’+ $fldPrintOption$

As an example, suppose that the session window contains a 3270 or 5250 field with
the following characteristics:
v It begins at row 5, column 8.
v It ends at row 5, column 32.
v It contains the string ’Print VTOC information’.

You set up a Variable update action with the following values:
v In the Name field of the Variable update window you type the name of a field

variable that you have just created, $fldData$.
v In the Value field you type a location string, ’5,11’. Notice that you have to

specify only one row and column location, and that it can be any row and
column location that lies within the field.

When the macro runtime performs this Variable update action, the macro runtime
reads the entire contents of the field and stores the contents as a string into
$fldData$. The field variable $fldData$ now contains the string ’Print VTOC
information’.

Reading part of a field: When you are using a field variable in a Variable update
action, you can specify a location string that contains two locations. Use this
feature if you want to read only part of the contents of a field.

Type the first and second locations into the Value field with a colon (:) between
them. For example, if the first location is 5,14 and the second location is 5,17, then
you would type ’5,14:5,17’.

When you specify two locations:
v The first location specifies the first position in the field to read from.
v The second location specifies the last position in the field to read from.

As an example, suppose that the session window contains a 3270 or 5250 field with
the following characteristics:

Chapter 8. Macro actions 99

v It begins at row 5, column 8.
v It ends at row 5, column 32.
v It contains the string ’Print VTOC information’.

and suppose that you set up a Variable update action with the following values:
v In the Name field of the Variable update window you type the name of a field

variable that you have just created, $fldData$.
v In the Value field you type a location string, ’5,14:5,17’. Here you are

specifying both a beginning location and an ending location within the field.

When the macro runtime performs this Variable update action, the macro runtime
reads the string ’VTOC’ from the field (beginning at the position specified by the
first location string and continuing until the position specified by the second
location string) and stores the string ’VTOC’ into $fldData$.

If the second location lies beyond the end of the field, the macro runtime reads the
string beginning at the first location and continuing until the end of the field. The
macro runtime then stores this string into the field variable.

Xfer action (<filexfer> element)
The Xfer action (pronounced ″transfer action″ or ″file transfer action″) transfers a
file from the workstation to the host or from the host to the workstation.

Basic parameters
In the Tranfer Direction listbox you must specify whether you want the file to go
from the workstation to the host (Send) or from the host to the workstation
(Receive). If you select Expression, then you must specify an expression (for
example, a variable named $strDirection$) that at runtime resolves to either Send
or Receive.

Table 17 shows the values that you should use in the Host-File Name field and the
PC-File Name field:

Table 17. Host-File Name field and PC-File Name field

Transfer Direction: Host-File Name field: PC-File Name field:

Send The name that you want
assigned to the file when it
reaches the host. For
example, in a 3270 Display
session, ’trace1 txt a’

The name of the file that you
want to send to the host. For
example,
’e:\\tm\\trace1.txt’.

Receive The name of the file that you
want to receive at the
workstation. For example,
’january archive a’

The name that you want
assigned to the file after it
reaches the client. For
example,
’d:\\MyData\\january.arc’

Remember that if you are using the advanced macro format the backslash \ is a
special character that must be written ’\\’(see “In the advanced macro format,
rules for representation of strings, etc.” on page 32).

Advanced parameters
In the Clear Before Transfer field, in most cases you should use true for 3270
Display sessions and false for 5250 Display sessions.

You should set the Timeout field to the number of milliseconds that you want the
macro runtime to wait before terminating the transfer. The default is 10000

100 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

milliseconds (10 seconds). This Timeout field saves the user from the situation in
which the macro hangs because it is trying to transfer a file over a session that has
suddenly been disconnected. You might need to use a greater value for very long
files or if your connection is slow.

You should use the Options field for any additional parameters that your host
requires. These parameters are different for each type of host system.

You should use the PC Code-page field to select the code page (mapping table)
that you want the macro runtime to use in translating characters from the
workstation’s character set to the host’s character set and vice versa. You should
select the same code-page number (such as 437) that is specified in the session
configuration.

Parameters for BIDI sessions (Arabic or Hebrew)
There are additional parameters for BIDI sessions (Arabic or Hebrew) that you can
set with the Code Editor (“Attributes” on page 153).

Examples
The following example shows an Xfer action:

<actions>
<filexfer direction="send" pcfile="’c:\\myfile.txt’" hostfile="’myfile text A0’"

clear="true" timeout="10000" pccodepage="437" />
</actions>

Figure 37. Example of the Xfer action

Chapter 8. Macro actions 101

102 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 9. Screen Recognition, Part 2

Valid next screens
As you may remember from Chapter 6, “How the macro runtime processes a
macro screen”, on page 41, the macro runtime typically finds the names of macro
screens that are candidates for becoming the next macro screen to be processed by
looking in the <nextscreens> element of the current macro screen. That is, the
macro screen contains within itself a list of the macro screens that can validly be
processed next. (Entry screens and transient screens are exceptions, see “Entry
screens, exit screens, and transient screens” on page 105.)

In the Macro Editor, the Links tab provides the user interface for storing the names
of candidate macro screens into the <nextscreens> element of a macro screen.
Figure 38 show a sample Links tab:

In the figure above, the Screen Name listbox at the top of the tab contains a list of
all the macro screens in the entire macro. The currently selected macro screen is
Screen1. On the right, the Valid Next Screens listbox contains a list of candidate
macro screens for Screen1 (Do not confuse this listbox, which contains the names
in the <nextscreens> element of Screen1, with the list of valid next screens that the
macro runtime uses when a macro is played back). On the left, the Available
Screens listbox contains a list of the names of all other macro screens .

Although the figure above shows only one screen in the Available Screens list, that
is because this figure is from a macro with only two macro screens in it, Screen1

Figure 38. Sample Links tab

© Copyright IBM Corp. 2003 103

and Screen2. Instead, imagine a macro of twenty screens, and suppose that you
want to add macro screens to the <nextscreens> list of a new macro screen,
ScreenR. You would follow these steps:
1. On the Links tab, expand the Screen Name listbox and scroll down until you

find ScreenR.
2. Select ScreenR.
3. Because ScreenR is a new screen, there are no macro screen names listed in the

Valid Next Screens list on the right.
4. On the left, the Available Next Screens listbox contains the names of all the

macro screens in the macro.
5. Select a screen that you want to add to the list for ScreenR. Suppose that you

select ScreenS.
6. After selecting ScreenS, click the right arrowhead button between the two

listboxes. ScreenS is added to the listbox on the right, and removed from the
listbox on the left.

7. In the same way, move the names of any other macro screens that you want to
the Valid Next Screens listbox for ScreenR.

8. Suppose that you move a total of three screen names: ScreenS, ScreenG, and
ScreenY.

When you are done, ScreenR, the currently selected macro screen, has the names of
three macro screens in its list of valid next screens.

In the Code Editor, you would see the names of the valid next macro screens,
ScreenS, ScreenG, ScreenY, stored inside ScreenR as shown in Figure 39:

The figure above shows the <screen> element for ScreenR, with the name attribute
set to "ScreenR". Inside are the three primary structural elements of a <screen>
element: the <description> element, the <actions> element, and the <nextscreens>
element. The contents of the <description> element and the <actions> element are
not shown but are indicated with an ellipsis (...). The <nextscreens> element
contains three <nextscreen> elements, and each <nextscreen> element contains the
name of one of the valid next screens: ScreenS, ScreenG, and ScreenY.

For more information about runtime processing see Chapter 6, “How the macro
runtime processes a macro screen”, on page 41.

<screen name="ScreenR" entryscreen="true" exitscreen="false" transient="false">
<description>

...
</description>
<actions>

...
</actions>
<nextscreens>

<nextscreen name="ScreenS"/>
<nextscreen name="ScreenG"/>
<nextscreen name="ScreenY"/>

</nextscreens>
</screen>

Figure 39. Macro screen ScreenR with <nextscreens> element

104 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Entry screens, exit screens, and transient screens
You can use the entry screen, exit screen, and transient screen settings to mark
macro screens that you want the macro runtime to treat in a special way. In the
Macro Editor, you make these settings on the General tab of the Screens tab. At the
top of the tab, under the Screen Name field, are listboxes for Entry Screen, Exit
Screen, and Transient Screen. For each of these listboxes, you must specify a
boolean value (the default is false) or an expression that evaluates to a boolean
value.

In the Code Editor, these settings appear as attributes of the <screen> element. In
Figure 39 on page 104, above, you can see these three attributes in the <screen>
element for ScreenR: entryscreen, exitscreen, and transient.

Entry screens
Set Entry Screen to true if you want the macro screen to be considered as one of
the first macro screens to be processed when the macro is played back. You might
have only one macro screen that you mark as a entry screen, or you might have
several.

When the macro playback begins, the macro runtime searches through the macro
script and finds all the macro screens that are designated as entry screens. Then
the macro runtime adds the names of these entry macro screens to the runtime list
of valid next screens. Finally the macro runtime tries in the usual way to match
one of the screens on the list to the current session window.

When the macro runtime has matched one of the entry macro screens to the
session window, that macro screen becomes the first macro screen to be processed.
Before performing the actions in the first macro screen, the macro runtime removes
the names of the entry macro screens from the runtime list of valid next screens.

Macro with several entry screens
One of the situations in which you might have several entry screens in the same
macro is when a host application begins with a series of application screens one
after another, such as application screen A, followed by application screen B,
followed by application screen C. For instance, screen A might be a logon screen,
screen B a screen that starts several supporting processes, and screen C the first
actual screen of the application.

In this situation, you might want the user to be able to run the macro whether the
user was at application screen A, B, or C.

Entry screen can also be a normal screen
If you mark a screen as an entry screen, it can still participate in the macro as a
normal screen and be listed in the <nextscreens> lists of other macro screens.

For example, you might have a host application that has a central application
screen with a set of menu selections, so that each time you make a menu selection
the application goes through several application screens of processing and then
returns to the original central application screen.

In this situation, suppose that macro ScreenA is the macro screen corresponding to
the central application screen. Therefore:
v ScreenA could be an entry screen, because the macro could start at the central

application screen.

Chapter 9. Screen Recognition, Part 2 105

v ScreenA could also appear in the <nextscreens> element of other macro screens,
because after each task the application returns to the central application screen.

Exit screens
Setting Exit Screen to true for a macro screen causes the macro runtime to
terminate the macro after it has performed the actions for that macro screen. That
is, after the macro runtime performs the actions, and before going on to screen
recognition, the macro runtime looks to see if the current macro screen has the exit
screen indicator set to true. If so, then the macro runtime terminates the macro.
(The macro runtime ignores the <nextscreens> element of an exit screen.)

Therefore you would set Exit Screen to true for a macro screen if you wanted the
macro screen to be a termination point for the macro.

You can have any number of exit screens for a macro. Here are some examples of
situations in which there could be several exit screens.
v A macro might have one normal termination point and several abnormal

termination points, which could be reached if an error occurred.
v A macro might allow you to stop at a certain point in the processing, or to keep

going, so that there would be several normal termination points.

Transient screens
A transient macro screen is used to process an application screen that has the
following characteristics:
v The application screen occurs unpredictably during the flow of the application.

It might occur at several points or it might not occur at all.
v The only action that needs to occur for the application screen is that it needs to

be cleared.

An example of such an application screen is an error screen that the application
displays when the user enters invalid data. This error screen appears at
unpredictable times (whenever the user enters invalid data) and as a macro
developer the only action that you want to take for this error screen is to clear it
and to get the macro back on track.

When the macro runtime prepares to play back a macro, at the point where the
macro runtime adds the names of entry screens to the runtime list of valid next
screens, the macro runtime also adds the names of all macro screens marked as
transient screens (if any) to the end of the list.

The names of these transient screens remain on the runtime list of valid next
screens throughout the entire macro playback. Whenever the macro runtime adds
the names of new candidate macro screens (from the <nextscreens> element of the
current macro screen) to the list, the macro runtime adds these new candidate
names ahead of the names of the transient screens, so that the names of the
transient screens are always at the end of the list.

Whenever the macro runtime performs screen recognition, it evaluates the macro
screens of all the names on the list in the usual way. If the macro runtime does not
find a match to the application screen among the candidate macro screens whose
names are on the list, then the macro runtime goes on down the list trying to
match one of the transient macro screens named on the list to the application
screen.

106 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

If the macro runtime matches one of the transient macro screens to the current
application screen, then the macro runtime does not remove any names from the
list. Instead, the macro runtime performs the actions in the transient macro screen
(which should clear the unexpected application screen) and then goes back to the
screen recognition process that it was pursuing when the unexpected application
screen occurred.

Example of handling of transient screen
Suppose that the macro runtime is doing screen recognition and that it has the
names of three macro screens on the list of valid next screens: ScreenB and
ScreenD, which are the names of candidate screens, and ScreenR, which is the
name of a transient screen. The macro runtime performs the following steps:
1. When the session window’s presentation space is updated, the macro runtime

evaluates the names on the list of valid next screens in the usual way.
2. Suppose that an unexpected application screen has occurred, so that neither

ScreenB nor ScreenD matches the current application screen, but that ScreenR
does match the current application screen.

3. Because a transient screen has been recognized, the macro runtime does not
remove any names from the list of valid next screens.

4. The macro runtime makes ScreenR the current macro screen to be processed.
5. The macro runtime performs the actions in ScreenR. These actions clear the

unexpected application screen.
6. The macro runtime ignores the <nextscreens> element, if any, in ScreenR.
7. The macro runtime returns to the previous task of screen recognition in step 1

above. The list of valid next screens has not changed. This time, suppose that
an expected application screen is displayed and that the macro runtime finds
that ScreenD matches it. Therefore:
a. The macro runtime makes ScreenD the next macro screen to be processed.
b. The macro runtime removes the names ScreenB and ScreenD from the list of

valid next screens. The name ScreenR remains on the list.
c. The macro runtime begins processing the actions in ScreenD.

Timeout settings for screen recognition
This section discusses the scenario in which the macro runtime cannot advance
because it cannot match a screen on the list of valid next screens to the current
application screen. There are two fields that let you set a timeout value that
terminates the macro if screen recognition does not succeed before the timeout
expires:
v Timeout Between Screens field on the Macro tab.
v Timeout field on the Links tab.

Screen recognition
As you know, after the macro runtime has performed all the actions in the
<actions> element of a macro screen, then the macro runtime attempts to match
one of the screens on the list of valid next screens to the new application screen
(see Chapter 6, “How the macro runtime processes a macro screen”, on page 41).

Sometimes, unforeseen circumstances make it impossible for the macro runtime to
match any of the macro screens on the list of valid next screens to the application
screen. For example, a user might type an input sequence that takes him to an
application screen unforeseen by the macro developer. Or, a systems programmer

Chapter 9. Screen Recognition, Part 2 107

might have changed the application screen so that it no longer matches the
description in the <description> element of the corresponding macro screen.

When such a scenario occurs, the result is that the macro appears to hang while
the macro runtime continually and unsuccessfully attempts to find a match.

Timeout Between Screens (Macro tab)
The Timeout Between Screens checkbox and input field are located on the Macro
tab and specify a timeout value for screen recognition. By default, if the checkbox
is enabled, this value applies to each and every macro screen in the macro.
However, you can change the value for a particular macro screen by using the
Timeout field on the Links tab (see the next section).

Whenever the macro runtime starts to perform screen recognition, it checks to
determine whether the Timeout Between Screens value is set for the entire macro
and whether a Timeout value is set for the macro screen. If a timeout value is set,
then the macro runtime sets a timer to the number of milliseconds specified by the
timeout value. If the timer expires before the macro runtime has completed screen
recognition, then the macro runtime terminates the macro and displays a message
such as the following:

Please notice that this message displays the name of the macro and the name of
the screen that was being processed when the timeout occurred. For example, if
the screen specified in this message is ScreenA, then the macro runtime had
already performed all the actions in ScreenA and was trying to match a macro
screen in the Valid Next Screens list for ScreenA to the application screen.

To use the Timeout Between Screens field, select the checkbox and type a value for
the number of milliseconds to wait before terminating the macro. By default the
checkbox is checked and the timeout value is set to 60000 milliseconds (60
seconds).

Timeout (Links tab)
The Timeout input field on the Links tab specifies a timeout value for screen
recognition for a particular macro screen. If this value is non-0, then the macro
runtime uses this value as a timeout value (in milliseconds) for screen recognition
for this macro screen, instead of using the value set in the Timeout Between
Screens field on the Macro tab.

If the timer expires before the macro runtime has completed screen recognition,
then the macro runtime displays the message in Figure 40.

Recognition limit (General tab of the Screens tab)
The recognition limit is not an attribute in the begin tag of the <screen> element
but rather a separate element (the <recolimit> element) that optionally can occur
inside a <screen> element, on the same level as the <description>, <actions>, and
<nextscreens> elements.

Macro timed out: (Macro=ispf_ex2, Screen=screen_address_type)

Figure 40. Error message for screen recognition timeout

108 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The Set Recognition Limit checkbox and the Screens Before Error input field are
located on the General tab of the Screens tab (see Figure 15 on page 26). By default
the Set Recognition limit checkbox is cleared and the input field is disabled. If you
select the checkbox, then the Macro Editor sets the default value of the Screens
Before Error input field to 100. You can set the value to a larger or smaller
quantity.

The recognition limit allows you to take some sort of action if the macro runtime
processes a particular macro screen too many times. If the macro runtime does
process the same macro screen a large number of times (such as 100), then the
reason is probably that an error has occurred in the macro and that the macro is
stuck in an endless loop.

When the recognition limit is reached, the macro runtime either terminates the
macro with an error message (this is the default action) or starts processing
another macro screen that you specify.

You should notice that the recognition limit applies to one particular screen and
that by default it is absent. You can specify a recognition limit for any macro
screen, and you can specify the same or a different recognition limit value for each
macro screen in which you include it.

Determining when the recognition limit is reached
The macro runtime keeps a recognition count for every macro screen that includes
a <recolimit> element. When macro playback begins the recognition count is 0 for
all macro screens.

Suppose that a macro includes a macro screen named ScreenB and that ScreenB
contains a <recolimit> element with a recognition limit of 100. Each time the macro
runtime recognizes ScreenB (that is, each time the macro runtime selects ScreenB as
the next macro screen to be processed), the macro runtime performs the following
steps:
1. The macro runtime detects the presence of the <recolimit> element inside

ScreenB.
2. The macro runtime increments the recognition count for ScreenB.
3. The macro runtime compares the recognition count with the recognition limit.
4. If the recognition count is less than the recognition limit, then the macro

runtime starts performing the action elements of ScreenB as usual.
5. However, if the recognition count is greater than or equal to the recognition

limit, then the macro runtime performs the action specified by the <recolimit>
element. In this case macro runtime does not process any of the action elements
in ScreenB.

Action when the Recognition limit is reached
The default action when the recognition limit is reached is that the macro runtime
displays an error message such as the following and then terminates the macro:
Recolimit reached, but goto screen not provided, macro terminating.

If you want the macro runtime, as a recognition limit action, to go to another
macro screen, then you must use the Code Editor to add a goto attribute to the
<recolimit> element and specify the name of the target macro screen as the value
of the attribute (see “<recolimit> element” on page 166).

Chapter 9. Screen Recognition, Part 2 109

If you use the goto attribute, the macro runtime does not terminate the macro but
instead starts processing the macro screen specified in the attribute.

You can use the target macro screen for any purpose. Some possible uses are:
v For debugging.
v To display an informative message to the user before terminating the macro.
v To continue processing the macro.

110 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 10. Actions, Part 2: Timing issues

This chapter describes several timing issues involved in processing actions and the
resources available for dealing with these issues.

Pause after an action
This section discusses the scenario in which an action does not perform as
expected because a previous action has side effects that have not completed.

There are two settings that let you add a pause after actions during runtime:
v Pause Between Actions on the Macro tab
v Set Pause Time on the General tab of the Screens tab

Speed of processing actions
Because the macro runtime executes actions much more quickly than a human user
does, unforeseen problems can occur during macro playback that cause an action
not to perform as expected, because of a dependency on a previous action.

One example is a keystroke that causes the application screen to change. If a
subsequent action expects the application screen to have already changed, but in
fact the application screen is still in the process of being updated, then the
subsequent action can fail.

Timing-dependent errors between actions can occur in many other situations, if the
macro runtime performs each action immediately after the preceding action.

Pause Between Actions (Macro tab)
The Pause Between Actions field on the Macro tab causes the macro runtime to
wait a specified number of milliseconds after every action in the entire macro. That
is, after the macro runtime performs an action, the macro runtime checks the Pause
Between Actions setting to see if it is enabled. If so, then macro runtime waits the
specified number of milliseconds, then goes on to perform the next action.

By default this checkbox is enabled and the timeout value is set to 300
milliseconds. Therefore the macro runtime will wait for 300 millliseconds after
every action that it performs.

Notice that this wait is added after every action of every macro screen. Therefore
this one setting allows you avoid this type of problem without having to change
each macro screen that might have a problem.

Set Pause Time (General tab of the Screens tab)
If you want a longer or shorter pause time between actions for a particular macro
screen, or if you have only a few macro screens in which the wait interval between
actions is important, then you can use the Set Pause Time setting on the General
tab of the Screens tab.

By default this checkbox is disabled.

© Copyright IBM Corp. 2003 111

If you enable this setting, then the macro runtime waits for the specified number of
milliseconds after each action in this particular macro screen.

For example, if for ScreenA you select the Set Pause Time checkbox and set the
value to 500 milliseconds, then the macro runtime waits 500 milliseconds after each
action in ScreenA.

When the macro runtime processes a macro screen with Set Pause Time enabled, it
ignores the setting of the Pause Between Actions option on the macro tab, and uses
only the value in the Set Pause Time setting.

Adding a pause after a particular action
If you need a longer pause after one particular action in a macro screen, you can
add a Pause action after the action. The wait that you specify in the Pause action is
in addition to any wait that occurs because of a Pause Between Actions or a Set
Pause Time.

Screen completion

Recognizing the next macro screen too soon
Suppose that you have a macro screen, ScreenB, with the following bug: the macro
runtime starts processing the actions in ScreenB before the host has completely
finished displaying the new application screen. Although this timing peculiarity
might not pose a problem for you in most situations, suppose that in this instance
the first action in ScreenB is an Extract action that causes the macro runtime to
read data from rows 15 and 16 of the application screen. Unfortunately the macro
runtime performs this action before the host has had time to write all the new data
into rows 15–16.

Analyzing this problem, you verify that:
v The session is a 3270 Display session using the default connectivity, TN3270.
v The following sequence of actions occurs:

1. In processing the previous macro screen, the macro runtime performs an
Input action that causes an enter key to be sent to the host.

2. The host receives the enter key and sends the first block of commands and
data for the new application screen.

3. The client receives the first block and processes it, thereby updating some
parts but not all of the host application screen. In particular, rows 15 and 16
of the application screen have not yet been updated.

4. Meanwhile the macro runtime has started trying to recognize a valid next
macro screen that matches the new application screen.

5. As a result of the changes in the application screen from the first block of
commands and data, the macro runtime recognizes macro ScreenB as the
next macro screen to be processed.

6. The macro runtime performs the first action element in ScreenB, which is an
Extract action that reads data from rows 15 and 16 of the application screen.

7. The client receives a second block of commands and data from the host and
processes it, thereby updating other parts of the application screen, including
rows 15 and 16.

In short, as a result of this timing problem the macro runtime has read rows 15
and 16 of the new application screen before the host could finish update them.

112 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The ordinary TN3270 protocol
The reason for this problem is that the unenhanced TN3270 protocol does not
include a way for a host to inform a client that the host application screen is
complete. (TN3270 implements a screen-oriented protocol, 3270 Data Stream, over
a character-oriented connection, Telnet). Therefore, the host cannot send several
blocks of data to the client and then say, ″OK, the application screen is now
complete – you can let the user enter data now.″ Instead, each block arrives
without any indication about whether it is the last block for this application screen.
From the client’s point of view, something like the following events occur:
1. A block of commands and data arrives. The client sets the input inhibit

indicator, processes the block, and displays the new data on the specified parts
of the session window. The client then clears the input inhibit indicator and
waits.

2. 30 milliseconds pass.
3. Another block of commands and data arrives. The client processes the block as

in step 1 above. This block causes a different part of the screen to be updated.
The client waits.

4. 50 milliseconds pass.

This process continues until the host has completely displayed a new host
application data screen. The client still waits, not knowing that the host application
screen is complete. (For more information, see Chapter 6, “How the macro runtime
processes a macro screen”, on page 41).

This process does not present problems for a human operator, for various reasons
that are not important here.

However, this process does present problems for the macro runtime during screen
recognition. Recall that during screen recognition the macro runtime tries to match
the application screen to one of the valid next macro screens every time the screen
is updated and every time an OIA event occurs (see “Re-doing the evaluation” on
page 46). Therefore the macro runtime might find a match before the screen is
completely updated. For example, a String descriptor might state that recognition
occurs if row 3 of the application screen contains the characters ″ISPF Primary
Option Menu″. When the host has updated row 3 to contain these characters, then
the macro runtime determines that a match has occurred, regardless of whether the
host has finished updating the remainder of the application screen.

Solutions
There are three approaches to solving this problem:
v Add more descriptors to the description.
v Insert a delay after the Input action that sends an enter key (see step 1 in

“Recognizing the next macro screen too soon” on page 112).
v Use the contention-resolution feature of TN3270E.

The following subsections describe these solutions.

Add more descriptors
This approach works sometimes but can be awkward and unreliable. You add
enough descriptors to the description part of ScreenB so that the macro runtime
will not recognize the ScreenB until the critical portion of the application screen
has been updated.

Chapter 10. Actions, Part 2: Timing issues 113

Insert a delay after the input action
Inserting a delay is the best solution if the session is an ordinary TN3270 session or
if the session is a TN3270E session without contention-resolution. That is, after the
Input action (in ScreenA in our example) that causes the host to send a new
application screen, insert a pause of several hundred milliseconds or longer. This
delay allows enough time for the host to update the application screen before the
macro runtime starts processing the actions in the next macro screen (ScreenB).

In this scenario there are several ways to insert a pause after the Input action:
v Increase the Pause Between Actions delay. However, the Pause Between Actions

delay is inserted after every action in every macro screen of the macro.
v Increase the Set Pause Time for ScreenA. This method is a good one. You are

increasing the pause time after every action in ScreenA, so that only ScreenA is
affected.

v Add a Pause action to ScreenA immediately after the Input action. This method
is also good. You are inserting a pause exactly where it is needed.

v Add a Pause action as the first action of ScreenB. You might prefer this method
in certain scenarios. However, using this method, if there are several macro
screens that can occur after ScreenA (such as ScreenB, ScreenC, ScreenD), and if
the screen completion problem occurs for each of these following macro screens,
then you must to insert a Pause as the first action for each of these following
macro screens. It is easier to use the method in the previous bullet and insert a
Pause Action in one macro screen, ScreenA.

If your macro has to run both on ordinary TN3270 sessions and also on TN3270E
sessions with contention-resolution enabled, the XML macro language has several
attributes that can help you. See “Attributes that deal with screen completion”.

Use the contention-resolution feature of TN3270E
TN3270E (Enhanced) is an enhanced form of the TN3270 protocol that allows users
to specify an LU or LU pool to which the session will connect and that also
supports the Network Virtual Terminal (NVT) protocol for connecting to servers in
ASCII mode (for example, in order to log on to a firewall).

Contention-resolution mode is an optional feature of TN3270E, supported by some
but not all TN3270E servers, that solves the client’s problem of not knowing when
the host has finished updating the application screen. If the client is running a
TN3270E session and is connected to a server that supports contention-resolution,
then the macro runtime does not recognize a new macro screen until the host has
finished updating the application screen.

In Host On-Demand you can set a 3270 Display session to use TN3270E rather
than TN3270 by clicking the appropriate radio button on the Connection
configuration window of the 3270 Display session configuration panel.

This panel does not contain an option for setting contention-resolution support,
because Host On-Demand detects contention-resolution mode automatically, if the
host supports it, when the TN3270E session is started.

Attributes that deal with screen completion
Host On-Demand has three element attributes that address problems that the
macro developer encounters when trying to support a single version of a macro to
run on both the following environments:

114 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v A non-contention-resolution environment (the macro is being run by clients
connected to a TN3270 server or to a TN3270E server without contention
resolution; consequently some macro screens might require a Pause action to
allow time for the host to update the application screen).

v A content-resolution enviroment (the macro is being run by clients connected to
a TN3270E server with contention resolution; consequently no macro screen
requires a Pause action to allow time for for the host to update the application
screen).

You will have to add these attributes using the Code Editor.

ignorepauseforenhancedtn=true/false
The ignorepauseforenhancedtn parameter of the <HAScript> element, when set to
true, causes the macro runtime to skip Pause actions (<pause> elements) during
macro playback if the session is running in a contention-resolution environment.
You can use this attribute if you developed a macro to run in a
non-contention-resolution environment (you inserted Pause actions) and you now
want the macro to also run in a contention-resolution environment without
unnecessary delays (you want the Pause actions to be ignored).

With this attribute set to true, the macro runtime processes Pause actions (waits the
specified number of milliseconds) in a non-contention-resolution environment but
ignores Pause actions in a contention-resolution environment.

Notice, however, that setting this attribute to true causes the macro runtime to skip
all Pause actions (<pause> elements) in the macro, not just the pauses that have
been inserted in order to time for the application screen to be updated. The next
subsection addresses this secondary problem.

ignorepauseoverrideforenhancedtn=true/false
The ignorepauseoverrideforenhancedtn parameter of the <pause> element, when
set to true in a particular <pause> element, causes the macro runtime to process
that <pause> element (wait for the specified number of milliseconds) even if the
ignorepauseforenhancedtn attribute is set to true in the <HAScript> element.

Set this attribute to true in a <pause> element if you want the <pause> element
always to be performed, not skipped, even in a contention-resolution environment
with the ignorepauseforenhancedtn attribute set to true in the <HAScript>
element.

delayifnotenhancedtn=(milliseconds)
The delayifnotenhancedtn parameter of the <HAScript> element, when set to a
non-zero value, causes the macro runtime to automatically pause the specified
number of milliseconds whenever the macro runtime receives a notification that
the OIA (Operator Information Area) has changed.

You can use this attribute if you developed a macro in a contention-resolution
environment (you did not need to insert Pause actions) but you now want the
macro to run also in a non-contention-resolution environment (some macro screens
might need a Pause action to allow time for the application screen to be
completed).

With this attribute set to true, then when the macro is run in a
non-contention-resolution environment the macro runtime inserts a pause for the
specified number of milliseconds each time it receives a notification that the OIA
has changed. For example, if you specify a pause of 200 milliseconds then the
macro runtime waits for 200 milliseconds every time the OIA changes.

Chapter 10. Actions, Part 2: Timing issues 115

The cumlative effect of the macro runtime pausing briefly after each notification of
a change to the OIA is that the application screen is completed before the macro
runtime begins processing the actions of the new macro screen. The macro runtime
inserts these extra pauses only when it detects that the session is running in a
non-contention-resolution environment.

A limitation of this attribute is that the macro runtime adds these extra pauses
during every screen, not just during screens in which screen update is a problem.
However, the additional time spent waiting is small. And more importantly, this
attribute lets you quickly adapt the macro to a non-contention resolution
environment, without having to test individual screens and insert a pause action in
each screen with a screen update problem.

116 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 11. Variables and imported Java classes

Introduction to variables and imported types
Variables help you to add programming intelligence to macros. With a variable you
can store a value, save a result, keep a count, save a text string, remember an
outcome, or do any number of other programming essentials.

You can create a variable that belongs to any of the standard data types (string,
integer, double, boolean, and field).

You can also create a variable that belongs to an imported type representing a Java
class. You can then create an instance of the class and call a method on the
instance. This capability opens the door to the abundant variety of functionality
available through Java class libraries, including libraries in the Java Runtime
Environment (JRE) libraries, libraries in the Host Access Toolkit product, classes or
libraries that you yourself implement, or Java classes and libraries from other
sources.

Advanced macro format required
Using variables requires that you use the advanced macro format for your macro
(see “Choosing a macro format” on page 31). Therefore, if you want to add
variables to a macro that is in the basic macro format, you must decide whether to
convert the macro to the advanced macro format. If you have an old macro in the
basic macro format that many users rely on and that works perfectly, you might
want to leave the macro as it is.

However, remember that all recorded macros are recorded in the basic macro
format. So, if you have recently recorded a macro and are beginning to develop it
further, then you might simply not have gotten around to switching to the
advanced macro format.

The Macro Editor addresses both these situations by popping up a window with
the following message when you start to define a variable in a macro that is still in
the basic macro format:

Click Yes if you are building a macro in which you plan to use variables, or No if
you have a macro in the basic macro format that you do not want to convert.

Scope of variables
The scope of every variable is global with respect to the macro in which the
variable is created. That is, every variable in a macro is accessible from any macro
screen in the macro. All that an action or a descriptor in a macro screen has to do
to access the variable is just to use the variable name.

You are attempting to use an advanced macro feature. If you choose to continue,
your macro will automatically be converted to advanced macro format. Would you
like to continue?

Figure 41. Reminder message

© Copyright IBM Corp. 2003 117

For example, suppose that you have a variable named $intPartsComplete$ that you
initialize to 0. You might use the variable in the following ways as the macro
proceeds:
1. ScreenC completes Part 1 of a task and increments $intPartsComplete$ using a

Variable update action.
2. ScreenG completes Part 2 of a task and increments $intPartsComplete$ using a

Variable update action.
3. ScreenM has a Conditional action that tests whether 1 or 2 parts have been

completed so far. Depending on the result, the macro expects either ScreenR or
ScreenS as the next macro screen to be processed.

4. ScreenS completes Part 3 of a task and increments $intPartsComplete$ using a
Variable update action.

5. ScreenZ displays the value of $intPartsComplete$ using a Message action.

In the example above, actions in several different macro screens were able to read
from or write to the variable $intPartsComplete$.

Introduction to the Variables tab
Because a variable belongs to the entire macro, and not to any one screen, it seems
appropriate that there is a separate high-level tab for Variables. The Variables tab
allows you to:
v Create a variable
v Remove a variable
v Import a Java class as a new variable type

To create a variable belonging to a standard data type, use the Variables tab in the
Macro Editor. Figure 42 shows a sample Variables tab:

Figure 42. Variables tab

118 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

In the figure above, the Variables tab of the Macro Editor is selected. The name of
the currently selected variable, $strUserName$, is displayed in the Variables listbox.
Three other fields contain information that the macro runtime needs to create this
variable: the Name input field, the Type listbox, and the Initial Value input field.

The Variables listbox contains the names of all the variables that have been created
for this macro. It allows you to select a variable to edit or to remove, and it also
contains a <new variable> entry for creating new variables.

Notice that the entry of the currently selected variable is contained in parentheses
after another string:
Variable1($strUserName$)

The string Variable1 is a setting that shows how many variables you have created.
It is not saved in the macro script. The real name of the variable is $strUserName$,
and you should use this name alone throughout the macro wherever you use the
variable.

You have probably noticed that the variable name $strUserName$ is enclosed in
dollar signs ($). This is a requirement. You must enclose the variable name in
dollar signs ($) wherever you use it in the macro.

The Name input field displays the name of the currently selected variable,
$strUserName$. You can change the name of the variable by typing over the old
name. Mostly you should use this field only for assigning a name to a newly
created variable. Although you can come back later at any time and change the
name of this variable (for example to $strUserFirstName$), remember that you
might have already used the variable’s old name elsewhere in the macro, in some
action or descriptor. If you change the name here in the Variables tab, then you
must go back to every place in the macro where you have you used the variable
and change the old variable name to the new variable name.

You can choose any variable name you like, although there are a few restrictions
on the characters you can choose (see “Variable names and type names” on
page 123). You do not have to choose names that begin with an abbreviated form
of the data type (such as the str in the string variable $strUserName$), as this book
does.

The Type listbox lists the available types for variables and lets you select the type
that you want to use for a new variable. The standard types are string, integer,
double, boolean, and field. Also, whenever you import a Java class, such as
java.util.Hashtable, as an imported type the Type listbox picks up this imported
type and adds it to the list of available types, as shown in Figure 43:

You should use this listbox for assigning a type to a newly created variable. You
can come back later and change the variable’s type to another type, but, as with

string
integer
double
boolean
field
java.util.Hashtable

Figure 43. Contents of the Type listbox after an imported type has been declared

Chapter 11. Variables and imported Java classes 119

variable names, remember that you might have already used the variable
throughout the macro in contexts that require the type that you initially selected. If
so, you must go to each of those places and make sure that the context in which
you are using the variable is appropriate for its new type.

The Initial Value input field allows you to specify an initial value for the variable.
The Macro Editor provides the following default values, depending on the type:

Table 18. Default initial values for variables

Type of variable: Default initial value:

string No string

integer 0

double 0.0

boolean false

field (No initial value)

(imported type) null

To specify a new initial value just type over the default value.

The Remove button removes the currently selected variable.

The Import button and the Import popup window are discussed in “Creating an
imported type for a Java class” on page 121.

Creating a new variable
To create a new variable in the Macro Editor, first click the <new variable> entry at
the end of the Variable listbox. The Macro Editor creates a new variable and
assigns to it some initial characteristics that you should modify to fit your needs.
The initial values are:
1. An initial name (such as $a1$).
2. An initial type (string).
3. An initial value, which depends on the type (see Table 18).

Now you should set the values that you want for the new variable. For example, if
you are creating an integer variable that is for counting screens and that should
have an initial value of 1, then you might set the initial values as follows:
1. In the Name input field, type the name $intScreenCount$.
2. In the Type listbox, select the integer data type.
3. In the Initial Value field, type 1.

Besides the Variables tab, the Macro Editor provides access, in several convenient
locations, to a popup window for creating new variables. For example, in the
Variable update action, the Name listbox contains not only all the names of
variables that you have already created but also a <New Variable> entry. Click this
entry to bring up the popup window for creating a new variable. Variables created
using this popup window are equivalent to variables created in the Variables tab.

In the Code Editor, you create a new variable using a <create> element. There is a
containing element called <vars> that contains all the variables in the macro script,
and there is a <create> element for each variable. Figure 44 on page 121 shows a
<vars> element that contains five <create> elements:

120 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

In the figure above the <vars> element creates one variable from each of the
standard data types (string, integer, double, boolean, and field). You should notice
that the attributes of each <create> element match the fields on the Variables tab:
the name attribute contains the variable name, the type attribute contains the type,
and the value field contains the initial value.

You must put all variable creations (<create> elements) inside the <vars> element.
The <vars> element itself must appear after the <import> element, if any (see the
next section), and before the first macro screen (<screen> element).

Creating an imported type for a Java class
The way that a Host On-Demand macro imports a Java class is through an
imported type. That is, you must first create an imported type and associate it with
a particular Java class. You have to do this only once per Java class per macro.
Follow these steps to create an imported type:
1. On the Variables tab, click the Import button. The Import popup window

appears.
2. In the Imported Types listbox, select the entry <new imported type>.
3. Type the Class name for the type, such as java.util.Hashtable. You must type

the fully qualified class name, including the package name if any.
4. Type a Short Name, such as Hashtable. If you do not specify a short name then

the Macro Editor uses the fully qualified class name as the short name. If you
do specify a short name then you can use either the short name or the fully
qualified class name when you refer to the imported type.

5. Click OK.

To create a variable belonging to this imported type, create the variable in the
normal way, but select the imported type as the type of the variable. Follow these
steps to create a variable of the imported type:
1. In the Variables listbox, click the <new variable> entry at the end. The Macro

Editor displays the default initial values in the usual way, including a name
(such as $a1$), a type (string), and an initial value (blank).

2. In the Name input field, type the name that you want, such as ht.
3. In the Type listbox, select the imported type, such as Hashtable (if you

specified a short name when you imported the type) or java.util.Hashtable
(if you accepted the default short name, which is the same as the fully qualified
class name).

4. In the Initial Value field, you can either leave the field blank (which results in
an initial value of null) or specify a method that returns an instance of the
class, such as $new Hashtable()$ (using the short name) or $new
java.util.Hashtable()$ (using the fully qualified class name).

Notice that the constructors are enclosed in dollar signs ($). You must use dollar
signs around every call to a Java method, just as you must use dollar signs around

<vars>
<create name="$strAccountName$" type="string" value="" />
<create name="$intAmount$" type="integer" value="0" />
<create name="$dblDistance$" type="double" value="0.0" />
<create name="$boolSignedUp$" type="boolean" value="false" />
<create name="$fldFunction$" type="field" />

</vars>

Figure 44. Sample <vars> element

Chapter 11. Variables and imported Java classes 121

the name of a variable. (The reason is that the enclosing dollar signs tell the macro
runtime that it needs to evaluate the item.)

Going back to the Import popup window, the Imported Types listbox allows you
to create new types and to edit or delete the types that you have already created.
To create a new type, click the <new imported type> entry at the end of the list. To
edit a type, select the type in the Imported Types listbox and modify the values in
the Class and Short Name input fields. To remove a type, select the type and click
Remove.

When you specify a short name, you can use any name, with certain restrictions
(see “Variable names and type names” on page 123).

In the Code Editor, you create an imported type using a <type> element. There is a
containing element called <import> that contains all the imported types in the
macro script, and there is a <type> element for each imported type. Figure 45
shows an <import> element that declares an imported type, followed by a <vars>
element that creates and initializes a variable belonging to the imported type:

In the figure above the <import> element contains one <type> element, which has
a class attribute (containing the fully qualified class name, java.util.Hashtable)
and a name attribute (containing the short name, Hashtable). The <vars> element
contains one <create> element, which as usual specifies a name (ht), a type
(Hashtable), and an initial value (which here is not null but rather is a call to a
constructor that returns an instance of the class, $new Hashtable(40)$).

If you are using the Code Editor, you must put all imported types (<type>
elements) inside the <import> element. The <import> element itself must appear
after the <HAScript> element (see “<HAScript> element” on page 154) and before
the first macro screen (<screen> element).

Issues you should be aware of

Deploying Java libraries or classes
When the macro runtime finds a call to a Java method, the macro runtime searches
the classpath for the class and the method invoked.

If the class belongs to the Java API, then it is already in the classpath (because
Host On-Demand requires Java to run) and you do not have to take any action to
deploy it.

<import>
<type class="java.util.Hashtable" name="Hashtable" />

</import>

<vars>
<create name=ht type="Hashtable" value="$new Hashtable(40)$" />

</vars>

Figure 45. Imported type and variable of that type

122 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

All other Java classes must be deployed by you to a location where the macro can
find them. Depending on the environment, you can deploy the Java classes as class
files or as libraries containing Java classes.

For more information on deploying Java libraries and classes, see ″Deploying
customer-supplied Java archives and classes″ in Planning, Installing, and Configuring
Host On-Demand.

Variable names and type names
The rules for variable names are as follows:
v A variable name can contain only the alphanumeric characters, underscore (_),

or hyphen (-).
v Case is significant (for example, strTmp and strtmp are two different names).
v A variable name cannot be the same as the short name or the fully qualified

class name of an imported type.

The rules for type names are as follows:
v A type name can contain only the alphanumeric characters, underscore (_),

hyphen (-), or period (.).
v Case is significant.

Transferring variables from one macro to another
The PlayMacro action, in which one macro ″chains to″ another macro (a call
without return), allows you to transfer all the variables and their values belonging
to the calling macro to the target macro. The target macro has access both to its
own variables and to the transferred variables (see “PlayMacro action
(<playmacro> element)” on page 88).

Field variables
A field variable is a type of string variable. It holds a string, just as a string
variable does, and you can use it in any context in which a string variable is valid.

However, a field variable differs from a string variable in the way in which a
string is stored into the field variable. The string that a field variable contains is
always a string that the macro runtime reads from a 3270 or 5250 field in the
current session window. To get the macro runtime to read this string from the 3270
or 5250 field, you have to create a Variable update action that specifies:
1. The name of the field variable (such as $fldFilename$).
2. A location string (a string containing a pair of integers separated by a comma,

such as ’5,11’).

When the macro runtime performs the Variable update action it takes the following
steps:
1. Looks in the session window at the row and column value specified by the

location string.
2. Finds the 3270 or 5250 field in which the row and column value is located.
3. Reads the entire contents of the field.
4. Stores the entire contents of the field as a string into the field variable.

For more information, see “Variable update action with a field variable” on
page 98.

Chapter 11. Variables and imported Java classes 123

Using variables

When variables are initialized
The macro runtime assigns initial values to variables at the start of the macro
playback, before processing any macro screen.

Using variables belonging to a standard type

Using the value that the variable holds
A variable that belongs to a standard type (string, integer, double, boolean) can be
used in much the same way as an immediate value of the same type (such as ’Elm
Street’, 10, 4.6e-2, true):
v Except for the restrictions listed later in this subsection, a variable of standard

type can be used in any input field (in the Macro Editor) or attribute (in the
Code Editor) in which an immediate value of the same data type can be used.
For example, if an input field (such as the Message Text field on the Message
action window) requires a string value, then the field likewise accepts a string
variable. See “Equivalents” on page 38.

v Variables can be used with operators and expressions in the same ways that
immediate values of the same types are used. See “Operators and expressions”
on page 35.

v The value of a variable occurring in a context different from the type of the
variable is converted, if possible, to a value of the correct type, in the same way
that an immediate value of the same type is converted. See “Automatic data
type conversion” on page 37.

However, you cannot use a variable in certain contexts. In the Macro Editor, you
cannot use a variable in the following contexts:
v Any field on the General tab.
v The Screen Name field on the Screens tab.
v The value of any field in the PlayMacro action window.

In the Code Editor, you cannot use a variable in the following contexts:
v The name of an attribute of any element.
v The value of any attribute of an <HAScript> element.
v The value of the name attribute of a <screen> element.
v The value of the uselogic attribute of the <description> element.
v The name of a macro screen in a <nextscreen> element.
v The value of any attribute of a <playmacro> element.

Writing a value into a variable belonging to a standard type
You can write a value into a variable belonging to a standard type in the following
ways:
v Assign an initial value when you create the variable.
v Use a Variable update action to assign a value to the variable.
v Use the Prompt action to get user input and assign it to the variable.
v Use the Extract action to read data from the session window and assign it to the

variable.
v Use an action that writes a return code value into a variable (such as the Run

program action and the Print actions).

124 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Restrictions: You cannot assign one of the following values to a variable of
standard type:
v The value null. (Exception: If you assign the value null to a string variable, it is

converted to the string ’null’).
v A call to a void method.
v A call to a method that returns an array.

Writing a Java object into a variable of standard type: If you write a Java object
into a variable of standard type, then the macro runtime calls the toString() method
of the imported type and then attempts to assign the resulting string to the
variable.

Using variables belonging to an imported type

Using the value that the variable holds
You can use the value contained in a variable belonging to an imported type in the
following ways:
v You can assign the variable to another variable of the same type using the

Variable update action.
v You can call a Java method on the variable (see “Calling Java methods” on

page 126). If the Java method returns a value belonging to a standard type
(string, integer, double, boolean), then you can use the result as you would use
any value of that type.

Restrictions
You cannot assign the following types of data to a variable of imported type:
v A value or variable belonging to a standard type (string, integer, double,

boolean, field).
v A instance of, or a variable belonging to, a different imported type (unless it is a

superclass of the imported type).
v An array of instances of objects returned by a method called on a variable of

imported type.

If your macro attempts to assign one of these invalid types of values to a variable
of imported type then the Macro runtime generates a runtime error and halts the
macro

Writing into the variable belonging to an imported type
You can write a value into a variable of imported type in the following ways:
v You can assign a value to the variable when you create it.
v You can assign a value to the variable using the Variable update action.

You can assign the following types of values to a variable belonging to an
imported type:
v An instance of the same type. This instance can be either in a variable of the

same type, or from a call to a method that returns an instance of the same type.
v The value null. To signify the value null, you can use one of the following:

– The keyword null.

– A blank input field (if you are using the Macro Editor), such as the Initial
Value field on the Variables tab, or the Value field on the Variable update
window.

– An empty attribute (if you are using the Code Editor), as in the value
attribute of the following <create> element:

Chapter 11. Variables and imported Java classes 125

<create name=ht type="Hashtable" value="" />

Comparing variables of the same imported type
In any conditional expression (for example, in the Condition field of a conditional
action) in which you are comparing two variables of the same imported type, you
should implement a comparison method (such as equals()) in the underlying class
rather than using the variables themselves. For example,
$htUserData.equals($htPortData$)$

If instead, you compare the variables themselves (for example $htUserData$ ==
$htPortData$), then:
1. The macro runtime, for each variable, calls the toString() method of the

underlying Java class and gets a string result
2. The macro runtime compares the two string results and gets a boolean result.
3. The macro runtime sets the result of the condition to the boolean result

obtained in step 2.

This will probably not yield the outcome that you expect from comparing the two
variables.

Calling Java methods

Where method calls can be used
You can call a method in any context in which the value returned by the method is
valid. For example, in an Input action you can set the Row value to the integer
value returned by a method, such as:
$importedVar.calculateRow()$

Also, you can use the Perform action to call a method when you do not need the
return variable of the method or when the method has no return value (void) (see
“Perform action (<perform> element)” on page 86).

Syntax of a method call
To call a method belonging to an imported class, use the same syntax that you
would use in Java. However, in addition, you must also enclose a method call in
dollar signs ($), just as you would a variable. Examples:
$new FileInputStream(’filename’)$
$fis.read()$

An immediate string value (such as ’Elm Street’) passed as a parameter to a
method must be enclosed in single quotes, as usual.

How the macro runtime searches for a called method
When you add a method call (such as $prp.get("Group Name")$) to a macro
script, the Macro Editor does not verify that a called method or constructor exists
in the class to which the variable belongs. That check is done by the macro
runtime when the call occurs.

The method must be a public method of the underlying Java class.

When the macro runtime searches in the Java class for a method to match the
method that you have called, the macro runtime maps macro data types (boolean,
integer, string, field, double, imported type) to Java data types as shown in

126 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Table 19:

Table 19.

If the method parameter belongs to this
macro data type:

Then the macro runtime looks for a Java
method with a parameter of this Java data
type:

boolean boolean

integer int

string String

field String

double double

imported type underlying class of the imported type

The macro runtime searches for a called method as follows:
1. The macro runtime searches for the class specified in the imported type

definition (such as java.util.Properties).
2. The macro runtime searches in the class for a method with the same method

signature (name, number of parameters, and types of parameters) as the called
method.

3. If the search succeeds, then the macro runtime calls the method.
4. If the search fails, then the macro runtime searches in the class for a method

with the same name and number of parameters (disregarding the types of the
parameters) as the called method.
a. If the macro runtime finds such a method, it calls the method with the

specified parameters.
b. If the call returns without an error, the macro runtime assumes that it has

called the right method.
c. If the call returns with an error, the macro runtime searches for another

method.
d. The search continues until all methods with the same name and number of

parameters have been tried. If none was successful, then the macro runtime
generates a runtime error.

Converting numbers to and from the local national language format
Different locales represent numbers in different ways. For example, depending on
the locale, a decimal number such as 1234.56 is represented as 1,234.56, 1234.56, or
1234,56. Similarly, depending on the locale, a negative number such as –78 is
represented as –78 or 78–.

To allow macros to represent numeric strings in locale-specific formats, Host
On-Demand provides two conversion methods:
v $FormatStringToNumber(value)$ converts a string in the local format to a

number.
v $FormatNumberToString(value)$ converts a number to a string in the local

format.

In using these methods you must follow the same rules as with any other method,
except that you do not have to import a Java class for these methods. Either of

Chapter 11. Variables and imported Java classes 127

these two methods can call the other as its input parameter. The output of these
methods is converted according to the format of the system locale for the current
Host On-Demand session.

Examples
The following example shows an <input> element that converts the value 3.24 to a
string in the local format and sends that string as the input sequence to be typed
into the session window at row 1 and column1:
<input value="$FormatNumberToString(3.24)$" row="1" col="1"

movecursor="true" "xlatehostkeys=true" />

The following example shows a fragment in which a string variable num, which
contains a string representation of a number in the local format, is converted to a
number, then the number is multiplied by 1000, and the numeric result is
converted to a string in the local format:
$FormatNumberToString(1000 * $FormatStringToNumber($num$)$)$

The following example contains two elements:
v An <extract> element reads a string representation of a number, which may be

positive (such as ’78’) or negative (such as ’–78’ or ’78–’, depending on the
locale) from the session window and assigns it to a string variable.

v An <if> element converts the string to a number and then tests whether the
number is negative.

<extract name="’Extract’" planetype="TEXT_PLANE" srow="1" scol="1"
erow="1" ecol="10" unwrap="false" assigntovar="$value$" />

<if condition="$FormatStringToNumber($value$)$ < 0 "
...

</if>

128 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 12. The graphical user interface

Updating fields in the Macro Editor

Using the session window
Even though the Macro Editor window appears on top of the session window, you
can still use the session window.

Drag the Macro Editor window to one side of the screen so that you can see the
area on the session window that you want to work with. Then click on the session
window to make it the current window. (The Macro Editor might still overlap part
of the session window.)

Using the marking rectangle
There are several situations in which you can use the marking rectangle to mark
an area of the session window, including:
v Marking a rectangular block of text for a String descriptor.
v Marking the area to be captured by an Extract action.
v Marking the area to be marked by a Box selection action.
v Marking the area to be printed by a Print Extract action.

To mark an area with the marking rectangle, follow these steps:
1. Drag the Macro Editor window to one side of the screen so that you can see

the area on the session window that you want to work with. Then click on the
session window.

2. Click the mouse on one corner of the area of the session window that you want
to mark. You should see the text cursor jump to that row and column position.

3. Hold down the left mouse button and move the mouse. You should see a
yellow marking rectangle that changes shape as you move the mouse.

4. Adjust the marking rectangle to surround the area of text that you want to
capture, then release the left mouse button.

5. The yellow marking rectangle snaps into place at the nearest character row
and column boundaries.

6. The yellow marking rectangle remains visible until you click again on the
session window.

7. If you want to mark a different area, start over with step 2 above.

Using the session window’s text cursor
Some actions and descriptors require you to enter a pair of row and column
coordinates. Some examples are:
v The Row and Column input fields of the Extract action.

To determine a row and column location on the session window using the text
cursor:
1. Drag the Macro Editor window to one side of the screen so that you can see

the area on the session window that you want to work with. Then click on the
session window to make it the current window. (The Macro Editor might still
overlap part of the session window.)

© Copyright IBM Corp. 2003 129

2. Use the arrow keys to move the text cursor to the row and column location
that you are interested in.

3. The row and column numbers are displayed in the lower right hand corner of
the session window, in the format row/column (for example, 04/17).

4. Click the Macro Editor window to make it the current window.
5. Enter the row value (such as 4) in the Row input field and the column value

(such as 17) in the Column input field.

Error in specifying a string
In input fields that require a string, you must specify the string in the manner
required by the format that you have selected for the macro, either the basic macro
format or the advanced macro format (see “Representation of strings and special
characters, treatment of operator characters” on page 31).

For example, if you have selected the advanced macro format, but you specify a
string that is not surrounded with single quotes (such as Terminal parameters),
then the Macro Editiro will display an error message like the following:
String -- Invalid expression -- Resetting to previous value.

To avoid getting this error message, specify the string surrounded with single
quotes (such as ’Terminal parameters’).

In contrast, if you have selected the basic macro format, but you specify a string
that is surrounded with single quotes, then you will not get an error message, but
the Macro Editor will treat the single quotes as part of the string.

Using the Code Editor

Copy and paste a script from this guide into the Code Editor
This section tells you how to copy a macro script from this document to the Code
Editor. This text assumes that you are copying an entire macro script, beginning
with <HAScript> and ending with </HAScript>. Follow these steps.
1. Start a 3270 Display session and let it connect.
2. Record a simple macro to use as a holder for the script:

a. Click Record Macro
b. When the Record Macro window appears:

1) Click New
2) Type a name in the Name field, such as sample1.
3) Under Save To click Personal Library
4) Click OK

c. The status line on the 3270 Display session window should say, ″Recording
macro″.

d. Click Stop playing or recording macro.
3. Edit the macro script that you just recorded.

a. The name of the file for the macro that you just recorded should appear in
the window on the left side of the Macro Manager toolbar, such as
sample1.mac.

b. Click Edit current macro properties to start the Macro Editor.
c. When the Macro Editor appears then follow these steps:

1) Click Code Editor to start the Code Editor.

130 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

2) Use the mouse to mark the lines of code that you want to delete.
a) Which lines to mark for deletion delete depends on the contents of

the text that you want to paste into the Code Editor.
b) However, this example assumes that you want to paste a complete

macro script into the Code Editor.
c) Therefore, in this example you should use the mouse to mark all the

lines in the Code Editor for deletion.
3) Type the Delete key to delete the marked area.
4) Copy the entire text of a macro script from this document to the system

clipboard, using whichever method you are accustomed to.
5) Make the Code Editor the active window.
6) Use Ctrl-v to paste the macro script into the Code Editor
7) Click OK to close the Code Editor.

d. Click Save to save the macro script and close the Macro Editor
4. The name of the file for the macro that you just edited should appear in the

window on the left side of the Macro Manager toolbar, such as sample1.mac.
5. Click Play Macro to run the macro.

If you wish to edit this macro, then you can do so either with the Macro Editor or
the Code Editor.

Chapter 12. The graphical user interface 131

132 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Part 3. The macro language

© Copyright IBM Corp. 2003 133

134 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 13. Features of the macro language

Use of XML

XML syntax in the Host On-Demand macro language
A Host On-Demand macro is stored in an XML script using the XML elements of
the Host On-Demand macro language. This section describes some of the
conventions of XML and gives examples from the Host On-Demand macro
language:
v XML code is made up of elements. The Host On-Demand macro language

contains about 35 XML elements.
v Element names in the macro language are not case-sensitive, except in the sense

that you must write an element in the same combination of upper and lower
case in both the begin tag and the end tag. All of the following are correct (the
ellipsis ″...″ is not part of the XML text but is meant to indicate that the element
contains other elements):
<screen> ... </screen>
<Screen> ... </Screen>
<scrEen> ... </scrEen>

However, customarily the master element is spelled HAScript and the other
elements are spelled with all lower case.

v Each XML element has a begin tag and an end tag, as shown in the examples
below from the Host On-Demand macro language.:
<HAScript> ... </HAScript>
<import> ... </import>
<vars> ... </vars>
<screen> ... </screen>

v Optionally you can combine the begin tag and end tag of an XML element into
one tag. This option is useful when the XML element includes attributes but not
other elements. For example,
<oia ... />
<numfields ... />

v An element can contain attributes of the form attribute_name=″attribute_value″.
For example:
<oia status="NOTINHIBITED" optional="false" invertmatch="false"/>
<numfields number="80" optional="false" invertmatch="false"/>

You can use a pair of empty double quote characters (that is, two double quote
characters with nothing in between) to specify that the attribute is not set to a
value.
<HAScript name="ispf_ex1" description="" timeout="60000" ... author="" ...>

...
</HAScript>

v An element can include other entire elements between its begin tag and end tag,
in much the same way that HTML does. In the example below a <description>
element contains two elements: an <oia> element and a <numfields> element.
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false">
<numfields number="80" optional="false" invertmatch="false"/>

</description>

© Copyright IBM Corp. 2003 135

Code Editor
You can edit the XML text of a macro script directly with the Code Editor (see
“Code Editor” on page 9).

You can cut and paste text between the Code Editor and the system clipboard. This
is a very important feature, because it allows you to transfer text between the Code
Editor and other XML editors or text editors.

Hierarchy of the elements
Figure 46 lists the begin tags of all the XML elements in the Host On-Demand
macro language. This list is not valid in terms of XML syntax and does not
indicate where more than one element of the same type can occur. However, the
indentation in this list does shows which XML elements occur inside other XML
elements. For example, the first element in the list, the <HAScript> element, which
is not indented at all, is the master element and contains all the other elements.
The second element, the <import> element, occurs inside an <HAScript> element
and contains a <type> element. And so on.

The hierarchy of the elements and the corresponding structure of the macro script
are discussed in numerous places in this document. In particular, see the following
sections:

<HAScript> Encloses all the other elements in the script.
<import> Container for <type> elements.

<type> Declares an imported data type (Java class).
<vars> Container for <create> elements.

<create> Creates and initializes a variable.
<screen> Screen element, contains info about one macro screen.

<description> Container for descriptors.
<attrib> Describes a particular field attribute.
<cursor> Describes the location of the cursor.
<customreco> Refers to a custom recognition element.
<numfields> Describes the number of fields in the screen.
<numinputfields> Describes the number of input fields in the screen.
<string> Describes a character string on the screen.
<varupdate> Assigns a value to a variable.

<actions> Container for actions.
<boxselection> Draws a selection box on the host application screen.
<commwait> Waits for the specified communication status to occur.
<custom> Calls a custom action.
<extract> Copies data from the host application screen.
<else> Allows you to insert an else-condition.
<filexfer> Uploads or downloads a file.
<if> Allows you to insert an if-condition.
<input> Sends keystrokes to the host application.
<message> Displays a message to the user.
<mouseclick> Simulates a mouse click.
<pause> Waits for the specified amount of time.
<perform> Calls a Java method that you provide.
<playmacro> Calls another macro.
<prompt> Prompts the user for information.
<trace> Writes out a trace record.
<varupdate> Assigns a value to a variable.

<nextscreens> Container for <nextscreen> elements.
<nextscreen> Contains the name of a valid next macro screen.

<recolimit> Takes action if recognition limit is reached.

Figure 46. Hierarchy of elements in the Host On-Demand macro language

136 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

v For the <HAScript> element see “Conceptual view of a macro script” on page 20.
v For the <screen> element see “Conceptual view of a macro screen” on page 25.

For descriptions of individual elements see Chapter 14, “Macro language elements”
, on page 143.

Inserting comments into a macro script
You can insert a comment anywhere inside an <HAScript> element by using
XML-style comment brackets <!-- --> around the text of your comment.

Comments are useful for:
v Organizing a macro script by providing descriptive text.
v Documenting a macro script by explaining complexities.
v Debugging a macro script by commenting out executable elements in order to

determine which remaining element is causing a problem.

Format of comments
When you save a macro script, the Code Editor re-formats your comments if
necessary to make them conform to the following format:
v Each comment starts on a new line.
v Each comment is indented the same number of spaces as the element following

it.

No matter where you place a comment, the Code Editor will arrange it according
to this scheme (see “Examples of comments”).

Comment errors
The Code Editor will display an error message in the following situations:
v Nested comments
v A comment that comments out part of an executable element.

Also, you cannot use comment brackets <!-- --> outside the <HAScript> element.
If you do so then the Code Editor will discard those comment brackets and the
surrounded text when it saves the script.

Examples of comments
Here are some examples of the use of comment brackets <!-- --> to insert
comments:
<!--
A multi-line comment that comments on
the following <screen> element
-->
<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">

<!-- A comment on the following <description> element -->
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
</description>

<! A comment on the following <actions> element -->
<actions>

<mouseclick row="4" col="16" />
<input value="3[enter]" row="0" col="0" movecursor="true"

xlatehostkeys="true" />

Chapter 13. Features of the macro language 137

</actions>
<!--
BEGIN
An accidental comment that surrounds part of
a <nextscreens> element, thereby corrupting
the macro script.
You will get an error when you try to save
this macro script
<nextscreens timeout="0" >

<nextscreen name="Screen2" />
END of accidental comment
-->
</nextscreens>
</screen>

Debugging macro scripts with the <trace> element
When you are debugging, you can use the <trace> element to send text and values
to a trace output destination. In particular, if you include the name of a variable in
the output, then the macro runtime will display both the name and the value of
the variable in the output, enclosed in curly braces {}. Here is an example:

The code shown in the figure above prints the following text to the Java console:

Notice that the <trace> action displays each variable in curly brackets {} that
contain both the variable name and the contents of the variable.

Using the Host Access Toolkit product with macros
The separate Host Access Toolkit product includes classes that allow you to
dynamically create macro variables, perform macro actions, and run macros. This
section contains an example of using the Host Access Toolkit product.

Figure 49 on page 139 shows the first version of a macro that prompts for the
user’s ID and password, logs on to a host, and says Welcome! This version of the
macro does not use the Host Access Toolkit:

<vars>
<create name="$var1$" type="string" value="’original’" />
</vars>
.
.
<actions>
<trace type="SYSOUT" value="’Before update: ’+$var1$" />
<varupdate name="$var1$" value="’updated’" />
<trace type="SYSOUT" value="’After update: ’+$var1$" />
</actions>

Figure 47. Example of using the <trace> element

Before update: +{$var1$ = original}
After update: +{$var1$ = updated}

Figure 48. Output from example of using the <trace> element

138 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Assume that you want to use this macro in a Host Access Beans program and that
you want to store the user ID into a variable and save it for later use (for example,
in the Welcome message). You can do this directly by modifying the macro, but
one reason for writing a program for this is to avoid having to maintain many
different macros for different situations. You could instead have a basic version of
the macro and use a program to modify it depending on the situation. The
following is an example of how you can do this in Java:

<HAScript name="Logon" description="" timeout="60000" pausetime="300"
promptall="true" author="" creationdate="" supressclearevents="false"
usevars="true" >

<screen name="Screen1" entryscreen="true" exitscreen="false" transient="false">

<description>
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

</description>

<actions>
<prompt name="’UserID:’" description="" row="20" col="16" len="8"

default="" clearfield="false" encrypted="false" movecursor="true"
xlatehostkeys="true" assigntovar="" varupdateonly="false" />

<input value="’[tab]’" row="0" col="0" movecursor="true"
xlatehostkeys="true" encrypted="false" />

<prompt name="’Password:’" description="" row="21" col="16" len="8"
default="" clearfield="false" encrypted="true" movecursor="true"
xlatehostkeys="true" assigntovar="" varupdateonly="false" />

<input value="’[enter]’" row="0" col="0" movecursor="true"
xlatehostkeys="true" encrypted="false" />

</actions>
<nextscreens timeout="0" >

<nextscreen name="Screen2" />
</nextscreens>

</screen>

<screen name="Screen2" entryscreen="false" exitscreen="true" transient="false">
<description>

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<numfields number="7" optional="false" invertmatch="false" />
<numinputfields number="1" optional="false" invertmatch="false" />

</description>
<actions>

<message title="" value="’Welcome!’" />
</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>

</HAScript>

Figure 49. Sample macro that prompts for user’s ID and password

Chapter 13. Features of the macro language 139

Suppose that you now want to add a second message to the actions for Screen2. In
this message, you want to display the time and date, which you extract from the
screen. You would add the following lines before macro.setParsedMacro(ms):

Note that at the point when the attribute containing the variable(s) is associated
with the MacroScreens, you must have already created the variable (through one of
the createVariable() methods). For example, this code sequence would also be
valid:

// Assume macro is an instantiated Macro with the appropriate listeners set up.
// (See the Javadoc for the Macro bean and the Macro variables demo program,
// MacroVariablesDemo.java, in the Host Access Toolkit samples directory
// for details.)
// Assume macroString is a String containing the previous macro script

macro.setMacro(macroString);
MacroScreens ms = macro.getParsedMacro();
ms.createVariableString("$userid$", null); //creates a variable $userid$ with

//initial value of ""
MacroScreen mscrn = ms.get(0); //get the first screen
MacroActions mas = mscrn.getActions(); //get the actions from the first screen
MacroActionPrompt map = (MacroActionPrompt)mas.get(0); //get the first prompt action
map.setAssignToVar("$userid$"); //assign the prompt response to the variable $userid$
MacroScreen mscrn2 = ms.get(1); //get the second screen
MacroActions mas2 = mscrn2.getActions(); //get the actions from the second screen
MacroActionMessage mam = (MacroActionMessage)mas2.get(0); //get the message action
mam.setMessage("’Welcome ’ + $userid$ + ’!’"); //change the message to now be a

//personalized message using $userid$
macro.setParsedMacro(ms); //reset the macro with the updated MacroScreens
macro.play(); //play the macro with the changes for variables

Figure 50. Java code to modify a Variable update action and a Prompt action

//create a variable $datetimestamp$ with initial value ""
ms.createVariableString("$datetimestamp$", null);

//create new extract to get date and time from second row of screen
MacroActionExtract mae = new MacroActionExtract(2, 35, 2, 71, "’datetimeextract’");

//assign the date and time string to $datetimestamp$
mae.setAssignToVar("$datetimestamp$");

//add the extract after the first message
mas2.add(mae);

//create a new message to display the date and timestamp
MacroActionMessage mam2 = new MacroActionMessage(

"’You have logged on at ’ + $datetimestamp$", "’Date Time Stamp’");

//add the message after the extract
mas2.add(mam2);

Figure 51. Adding a second message

140 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

The above sequence is valid because $datetimestamp$ is created before the
MacroActionExtract is added to the MacroActions (which are already associated
with the MacroScreens because they were pulled from the MacroScreens
originally). If the createVariable() method was called at the end of the sequence
above, you would have an invalid sequence because the variable $datetimestamp$
would not have been available at the time that the MacroActionExtract and
MacroActionMessage were added to the MacroActions and associated with the
MacroScreens.

The default value of the MacroScreens method isUseVars() is false. However, if you
call one of the createVariable() methods on your MacroScreens, isUseVars() will
return true automatically. If you don’t create any variables, but want to have your
attributes scanned for variables and arithmetic anyway (e.g. you might be writing
a chained child macro that has no variables of its own but is anticipating some
from the parent), you must call setUseVars(true) on your MacroScreens.

Attributes that can now take variables or expressions as arguments have
setAttribute(String) and either getAttributeRaw() or isAttributeRaw() methods
available. If you wanted to use an expression now to represent the row attribute
for a MacroActionInput, you could call setRow(″$rowvar$ + 1″). Subsequently
calling getRow() would return the evaluated value of this expression (an integer),
whereas calling getRowRaw() would return ″$rowvar$ + 1.″ Note that if you do
the following you will get a NumberFormatException:

This is because mai has not yet been associated with any MacroScreens with
isUseVars() returning true. Therefore, ″$rowvar$ + 1″ is being treated as a string
rather than a variable plus one. Note also that if you had call the setAttribute()
methods to set up variables and expressions after the object containing these
attributes have been associated with the MacroScreens, you will likely experience a
savings in processing time as the attributes would otherwise need to be reparsed
for variables/expressions at the point when they are added to the MacroScreens.

The VariableException class is available for catching exceptions such as illegal
expressions (e.g., ″45 *″) or illegal arithmetic operands (e.g., ″’3a’ * 2″).

A sample program that uses programmed macros, MacroVariablesDemo.java, can
be found in the Host Access Toolkit samples directory.

MacroActionExtract mae = new MacroActionExtract(2, 35, 2, 71, "’datetimeextract’");
mae.setAssignToVar("$datetimestamp$");
ms.createVariableString("$datetimestamp$", null);
mas2.add(mae);
MacroActionMessage mam2 = new MacroActionMessage("’You have logged on at ’ +

$datetimestamp$", "’Date Time Stamp’");
mas2.add(mam2);

Figure 52. Alternate code sequence

MacroActionInput mai = new MacroActionInput();
mai.setRow("$rowvar$ + 1");
int row = mai.getRow();

Figure 53. Code that causes a NumberFormatException

Chapter 13. Features of the macro language 141

142 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 14. Macro language elements

Specifying the attributes

XML requirements
In the macro language the value of every attribute must be enclosed in double
quotes. For example, in the following <mouseclick> element the values of the row
and col attributes are enclosed in double quotes:
<mouseclick row="4" col="51" />

Advanced format in attribute values
As you may remember, even if a macro is in the advanced format, not all input
fields in the Macro Editor expect a string to be placed in single quotes (’’) (see
“Representation of strings and special characters, treatment of operator characters”
on page 31). Specifically, the advanced format affects input fields only on the

following tabs of the Macro Editor:
v Description tab of the Screens tab
v Actions tab of the Screens tab
v Variables tab

Similarly, in the macro language, when you provide a string value for an attribute
that corresponds to one of these input fields that is affected by the advanced
format, you must enter the string in the advanced format. For example, in the
<message> element the strings for both attributes must be written enclosed in
single quotes, if the macro is in the advanced format:
<message title="’Instructions’" value="’Check the java console’" />

However, if an attribute does not correspond to one of the input fields affected by
the advanced format, then you should not write the value enclosed in single
quotes, even if the macro is in the advanced formt. For example, the name
attribute of the <screen> element should never be enclosed in single quotes:
<screen name="Screen1" entryscreen="true" exitscreen="true" transient="false" >

...
</screen>

In the descriptions in this chapter of macro language elements, this book indicates
such attributes (attributes that are unaffected by the advanced format) by not
specifying a data type. For example, the description of the name attribute of the
<screen> element is ″Required″ rather than as ″Required string″.

Typed data
Most attributes require a particular type of data: boolean, integer, string, double, or
imported. For these attributes, the same rules apply as in the Macro Editor:
v The consequences of selecting the basic macro format or advanced macro format

(see “Choosing a macro format” on page 31).
v The rules for representing strings and special characters, and for treating

operator characters (see “Representation of strings and special characters,
treatment of operator characters” on page 31).

v The rules for equivalent entities (see “Equivalents” on page 38).

© Copyright IBM Corp. 2003 143

v The rules for data type conversion (see “Automatic data type conversion” on
page 37).

v The rules for arithmetic operators and expressions (see “Arithmetic operators
and expressions” on page 35).

v The rules for the string concatenation operator (see “String concatenation
operator (+)” on page 36).

v The rules for conditional and logical operators and expressions (see “Conditional
and logical operators and expressions” on page 36).

v The rules for representing variables (see “Introduction to the Variables tab” on
page 118).

v The rules for calling methods on imported variables (see “Calling Java methods”
on page 126).

<actions> element

General
The <actions> element, the <description> element, and <nextscreens> element are
the three primary structural elements that occur inside the <screen> element (see
“Conceptual view of a macro screen” on page 25).

The <actions> element contains elements called actions (such as simulating a
keystroke, capturing data, and others) that the macro runtime performs during
macro playback (see Chapter 8, “Macro actions”, on page 69).

Attributes
promptall

Optional boolean (the default is false). If this attribute is set to true then
the macro runtime, before performing any of the actions inside the
<actions> element, collects user input for any <prompt> elements inside
the element. More specifically:
1. The macro runtime searches the <actions> element to find any

<prompt> elements that occur within it.
2. The macro runtime displays the prompts for all the <prompt> elements

immediately (all the prompts are combined into one popup).
3. The macro runtime collects the user input for all the popup windows.
4. The macro runtime now performs all the elements in the <actions>

element as usual, in sequence.
5. When the macro runtime comes to a <prompt> action, it does not

display the popup window for user input, but instead performs the
<prompt> action using the input from step 3 above.

The promptall attribute of the <HAScript> element performs the same
function for all the <prompt> elements in one macro (see “<HAScript>
element” on page 154).

XML samples

144 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<attrib> element

General
The <attrib> element is a descriptor that states the row and column location and
the value of a 3270 or 5250 attribute (see “Attribute descriptor (<attrib> element)”
on page 65).

Attributes
plane Required. The data plane in which the attribute resides. The valid values

are:
v FIELD_PLANE
v COLOR_PLANE
v DBCS_PLANE
v GRID_PLANE
v EXFIELD_PLANE
v Any expression that evaluates to one of the above.

value Required. A hexadecimal value in the format 0x37. The value of the
attribute.

row Required integer. The row location of the attribute in the data plane.

col Required integer. The column location of the attribute in the data plane.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<boxselection> element

General
The <boxselection> element draws a marking rectangle on the session window,
simulating the action in which a user clicks on the session window, holds down
mouse button 1, and drags the mouse to create a marking rectangle (see “Box
selection action (<boxselection> element)” on page 73).

<actions promptall="true">
...

</actions>

Figure 54. Examples for the <actions> element

<attrib value="0x3" row="4" col="14" plane="COLOR_PLANE"
optional="false" invertmatch="false" />

Figure 55. Examples for the <attribute> element

Chapter 14. Macro language elements 145

Attributes
srow Required integer. The row coordinate of the starting corner of the marking

rectangle.

scol Required integer. The column coordinate of the starting corner of the
marking rectangle.

erow Required integer. The row coordinate of the ending corner of the marking
rectangle.

ecol Required integer. The column coordinate of the ending corner of the
marking rectangle.

type Optional (default SELECT). Specify SELECT to draw a marking rectangle
or DESELECT to remove a marking rectangle.

XML samples

<comment> element

General
The <comment> element inserts a text comment as a subelement within a <screen>
element. Limitations are:
v You cannot use a <comment> element outside a <screen> element.
v You cannot use more than one <comment> element inside the same <screen>

element. If you do so then the Code Editor will discard all the <comment>
elements inside that <screen> element except the last one.

v No matter where in the <screen> element you place the <comment> element,
the Code Editor will move the comment up to be the first element within the
<screen> element.

A better method for inserting comments
A more flexible method for inserting a comment is to use the XML-style comment
brackets <!-- -->. See “Inserting comments into a macro script” on page 137.

Attributes
None.

XML samples

<boxselection srow="6" scol="16" erow="7" ecol="73" type="SELECT" />

Figure 56. Examples for the <boxselection> element

146 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<commwait> element

General
The <commwait> action waits for the communication status of the session to
change to some specified value (see “Comm wait action (<commwait> element)”
on page 73). You must specify a timeout value.

Attributes
value Required. The communication status to wait for. The value must be one of

the following (see “Communication states” on page 74):
v CONNECTION_INIT
v CONNECTION_PND_ACTIVE
v CONNECTION_ACTIVE
v CONNECTION_READY
v CONNECTION_DEVICE_NAME_READY
v CONNECTION_WORKSTATION_ID_READY
v CONNECTION_PND_INACTIVE
v CONNECTION_INACTIVE

timeout
Required integer. A timeout value in milliseconds. The macro runtime
terminates the action if the timeout expires before the specified
communication status occurs.

XML samples

<condition> element

General
The <condition> element specifies a conditional expression that the macro runtime
evaluates during screen recognition. If the expression evaluates to true then the
macro runtime evaluates the descriptor as true. If the expression evaluates to false
then the macro runtime evaluates the descriptor as false (see “Condition descriptor
(<condition>) element” on page 66).

<screen name="Screen2" entryscreen="false" exitscreen="true"
transient="false">

<comment>This comment provides information about this macro screen.
</comment>
...

</screen>

Figure 57. Examples for the <comment> element

<commwait value="CONNECTION_READY" timeout="10000" />

Figure 58. Examples for the <commwait> element

Chapter 14. Macro language elements 147

For more information on conditional expressions see “Conditional and logical
operators and expressions” on page 36.

Attributes
value Required expression. The conditional expression that the macro runtime is

to evaluate. This conditional expression can contain arithmetic expressions,
variables, return values from Java method calls, and other conditional
expressions.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<create> element

General
The <create> element creates and initializes a variable (see “Creating a new
variable” on page 120).

The <create> element must occur inside a <vars> element.

Attributes
name Required. The name that you assign to the variable. There are a few

restrictions on the spelling of variable names (see “Variable names and
type names” on page 123).

type Required. The type of the variable. The standard types are string, integer,
double, boolean, field. You an also define an imported type representing a
Java class (see “Creating a new variable” on page 120).

value Optional. The initial value for the variable. If you do not specify an initial
value then the default initial value depends on the variable type (see
Table 18 on page 120).

XML samples

<description>
<! Check the value of a variable -->
<condition value="$intPartsComplete$ == 4"

optional="false" invertmatch="false" />

<!-- Check the return value of a Java method -->
<condition value="$htHashTable.size()$!= 0"$

optional="false" invertmatch="false" />
</description>

Figure 59. Examples for the <condition> element

148 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<cursor> element

General
The <cursor> element is a descriptor that states the row and column location of the
text cursor on the session window (see “Cursor descriptor (<cursor> element)” on
page 65).

Attributes
row Required integer. The row location of the text cursor.

col Required integer. The column location of the text cursor.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<custom> element

General
The <custom> element allows you to invoke a custom Java program from inside
the <actions> element of a macro screen. However, you must use the separate Host
Access Toolkit product.

Here is an overview of the process:
1. Suppose that you have a Java program that you want to invoke as an action

during the processing of a macro screen’s <actions> element.

<HAScript ... usevars="true" ... >
<import>

<type class="java.util.Properties" name="Properties" />
</import>

<vars>
<create name="prp" type="Properties" value="$new Properties()$" />
<create name="$strAccountName$" type="string" value="" />
<create name="$intAmount$" type="integer" value="0" />
<create name="$dblDistance$" type="double" value="0.0" />
<create name="$boolSignedUp$" type="boolean" value="false" />
<create name="$fldFunction$" type="field" />

</vars>
...

</HAScript>

Figure 60. Examples for the <create> element

<cursor row="4" col="14" optional="false" invertmatch="false" />

Figure 61. Examples for the <cursor> element

Chapter 14. Macro language elements 149

2. In the Code Editor, add the following line to the <actions> element at the
location at which you want to invoke the custom Java program:
<custom id="’MyProgram1’" args="’arg1 arg2 arg3’" />

3. Follow the instructions in the MacroActionCustom class of the Host Access
Toolkit product. You will create a class that implements
MacroCustomActionListener. The execute() method will be called with an
event when the macro runtime performs the <custom> action in step 2.

Attributes
id Required. An arbitrary string that identifies the custom Java program that

you want to run.

args Optional. The arguments that you want to pass to the custom Java
program.

XML samples

<customreco> element

General
This <customreco> element allows you to call out to custom description code. To
use the <customreco> element you must have the separate Host Access Toolkit
product.

The steps for creating a custom descriptor are as follows:
1. Choose a string to identify the custom description, such as

MyCustomDescriptor01. An identifier is required because you can have several
types of custom descriptions.

2. Implement the ECLCustomRecoListener interface. In the doReco() method:
a. Add code to check the identification string to verify that it is yours.
b. Add your custom description code.
c. Return true if the custom description is satisfied or false if it is not.

3. Use the Code Editor to add a <customreco> element to the <description>
element of the macro screen. The <customreco> element must specify the
identifier you chose in step 2.

The macro runtime performs the <customreco> element after performing all the
other descriptors.

Attributes
id Required string. The identifier that you have assigned to this custom

description.

optional
Optional boolean (the default is false). See “Optional” on page 55.

<custom id="’MyProgram1’" args="’arg1 arg2 arg3’" />
<custom id="’MyProgram2’" args="’arg1 arg2’" />

Figure 62. Examples for the <custom> element

150 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<description> element

General
The <actions> element, the <description> element, and the <nextscreens> element
are the three primary structural elements that can occur inside the <screen>
element (see “Conceptual view of a macro screen” on page 25).

The <description> element contains elements called descriptors, each of which
states an identifying characteristic of an application screen (see Chapter 7, “Screen
description and recognition”, on page 49). The macro runtime uses the descriptors
to match the macro screen to an application screen.

Attributes
uselogic

Optional boolean. Allows you to define more complex logical relations
among multiple descriptors than are available with the default combining
method (see “The uselogic attribute” on page 56).

XML samples

<else> element

General
The <else> element contains a sequence of macro actions and must occur
immediately after an <if> element. The macro runtime evaluates the conditional
expression in the <if> element. Then:
v If the conditional expression is true:

– The macro runtime performs the sequence of macro actions in the <if>
element; and

– The macro runtime skips the following <else> element if there is one.
v If the conditional expression is false:

– The macro runtime skips the sequence of macro actions in the <if> element;
and

<customreco id="’MyCustomDescriptor01’" optional="false" invertmatch="false" />

Figure 63. Examples for the <customreco> element

<description uselogic="true">
...

</actions>

Figure 64. Examples for the <description> element

Chapter 14. Macro language elements 151

– The macro runtime performs the macro actions in the following <else>
element if there is one.

The Macro object uses the <if> element, and if necessary the <else> element, to
store a Conditional action (see “Conditional action (<if> element and <else>
element)” on page 75).

Attributes
None.

XML samples

<extract> element

General
This <extract> action captures data from the session window (see “Extract action
(<extract> element)” on page 77).

Attributes
For more information on the use of all these attributes see “Extract action
(<extract> element)” on page 77.

name Required string. A name to be assigned to the extracted data. This name is
useful only if you are using the IBM Host Access Toolkit product.

planetype
Required. The plane from which the data is to be extracted. To access a
data plane other than the TEXT_PLANE you need the IBM Host Access
Toolkit product (see “Using the Toolkit to capture data from any data
plane” on page 82). Valid values are:
v TEXT_PLANE
v FIELD_PLANE
v COLOR_PLANE
v EXFIELD_PLANE
v DBCS_PLANE
v GRID_PLANE

srow Required integer. The row of the first pair of row and column coordinates.

scol Required integer. The column of the first pair of row and column
coordinates.

erow Required integer. The row of the second pair of row and column
coordinates.

<if condition="(var_int > 10)">
...

</if>
<else>

...
</else>

Figure 65. Examples for the <else> element

152 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

scol Required integer. The column of the second pair of row and column
coordinates.

unwrap
Optional boolean. Setting this attribute to true causes the macro runtime to
capture the entire contents of any field that begins inside the specified
rectangle. See “Unwrap Text option” on page 80.

continuous
Optional boolean. Setting this attribute to true causes the macro runtime to
interpret the row-column coordinates as the beginning and ending
locations of a continuous sequence of data that wraps from line to line if
necessary. If this attribute is set to false then the macro runtime interprets
the row-column coordinates as the upper left and lower right corners of a
rectangular area of text. See “Capturing a sequence of text from the session
window” on page 79.

assigntovar
Optional variable name. Setting this attribute to a variable name causes the
macro runtime to store the text plane data as a string value into the
variable. If the variable is of some standard type other than string (that is,
boolean, integer, or double) then the data is converted to that standard
type, if possible. If the data cannot be converted then the macro terminates
with a run-time error (see “Specify the variable in which you want the text
to be stored” on page 78).

XML samples

<filexfer> element

General
The <filexfer> action transfers a file from the workstation to the host or from the
host to the workstation (see “Extract action (<extract> element)” on page 77).

Attributes
direction

Required. Use send to transfer a file from the workstation to the host, or
receive to transfer a file from the host to the workstation.

pcfile Required string. The name of the file on the workstation (see “Basic
parameters” on page 100).

hostfile
Required string. The name of the file on the host (see “Basic parameters”
on page 100).

clear Required boolean. Set to true for a 3270 Display session or false for a 5250
Display session (see “Advanced parameters” on page 100).

timeout
Required integer. A timeout value in milliseconds (the default value is

<extract name="’Get Data’" srow="1" scol="1" erow="11" ecol="11"
assignto="$strText$" />

Figure 66. Examples for the <extract> element

Chapter 14. Macro language elements 153

10000 milliseconds). The macro runtime terminates the transfer if this
timeout expires before the file is transferred.

options
Optional string. Any additional parameters required by your host system.

pccodepage
Optional integer, such as 437. The PC code page to use in mapping
characters from the workstation’s character set to the host’s character set
and vice versa. The default value is the code page specified in the session
configuration.

hostorientation
Optional. For BIDI sessions only (Arabic and Hebrew). Specifies whether
text orientation for the host file is right-to-left or left-to-right.

pcorientation
Optional. For BIDI sessions only (Arabic and Hebrew). Specifies whether
text orientation for the PC file is right-to-left or left-to-right..

pcfiletype
Optional. For BIDI sessions only (Arabic and Hebrew). Specifies whether
the PC file type is visual or implicit.

lamalefexpansion
Optional boolean. For BIDI sessions only (Arabic only). Specifies whether
Lam-Alef expansion is on.

lamalefcompression
Optional boolean. For BIDI sessions only (Arabic only). Specifies whether
Lam-Alef compression is on.

XML samples

<HAScript> element

General
The <HAScript> element is the master element of a macro script. It contains the
other elements and specifies global information about the macro (see “Conceptual
view of a macro script” on page 20).

Attributes
name Required. The name of the macro.

description
Optional. Descriptive text about this macro. You should include here any
information that you want to remember about this macro.

timeout
Optional integer. The number of milliseconds allowed for screen
recognition. If this timeout value is specified and it is exceeded, then the

<filexfer direction="send" pcfile="’c:\\myfile.txt’"
hostfile="’myfile text A0’"
clear="true" timeout="10000" pccodepage="437" />

Figure 67. Examples for the <filexfer> element

154 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

macro runtime terminates the macro and displays a message (see “Timeout
Between Screens (Macro tab)” on page 108). By default the Macro Editor
sets this value to 60000 milliseconds (60 seconds).

pausetime
Optional integer. The number of milliseconds of delay after each action is
performed (see “Pause Between Actions (Macro tab)” on page 111). By
default the Macro Editor sets this value to 300 milliseconds.

promptall
Required boolean. If this attribute is set to true then the macro runtime,
before performing any action in the first macro screen, collects user input
for all the <prompt> elements inside the entire macro, combining the
individual prompts into one large prompt. The promptall attribute of the
<actions> element performs a similar function for all the <prompt>
elements in one <actions> element (see “<actions> element” on page 144).

author Optional. The author or authors of this macro.

creationdate
Optional. Information about the dates and versions of this macro.

suppressclearevents
Optional boolean (default false). Advanced feature that determines whether
the system should ignore screen events when a host application sends a
clear screen command immediately followed by an end of record indicator
in the data stream. You might want to set this value to true if you have
screens in your application flow that have all blanks in them. If there is a
valid blank screen in the macro and clear commands are not ignored, it is
possible that a screen event with all blanks will be generated by clear
commands coming from an ill-behaved host application. This will cause a
screen recognition event to be processed and the valid blank screen will
match when it shouldn’t have matched.

usevars
Required boolean (default false). If this attribute is set to true then the
macro uses the advanced macro format (see “Choosing a macro format” on
page 31).

ignorepauseforenhancedtn
Optional. 3270 Display sessions only. If this attribute is set to true then the
macro runtime skips all <pause> elements if the session is a TN3270E
session running in contention-resolution mode (see “Attributes that deal
with screen completion” on page 114). To re-enable a particular <pause>
element see the ignorepauseoverrideforenhancedtn attribute of the
<pause> element.

delayifnotenhancedtn
Optional. 3270 Display Sessions only. This attribute specifies a value in
milliseconds and has an effect only when the session is not a TN3270E
session running in contention-resolution mode. In that situation, this
attribute causes the macro runtime to add a pause of the specified duration
each time the macro runtime receives a notification that the OIA indicator
has changed (see “Attributes that deal with screen completion” on
page 114).

XML samples

Chapter 14. Macro language elements 155

<if> element

General
The <if> element contains a conditional expression and a sequence of macro
actions. The macro runtime evaluates the conditional expression in the <if>
element. Then:
v If the conditional expression is true:

– The macro runtime performs the sequence of macro actions in the <if>
element; and

– The macro runtime skips the following <else> element if there is one.
v If the conditional expression is false:

– The macro runtime skips the sequence of macro actions in the <if> element;
and

– The macro runtime performs the macro actions in the following <else>
element if there is one.

The Macro object uses the <if> element, and if necessary the <else> element, to
store a Conditional action (see “Conditional action (<if> element and <else>
element)” on page 75).

Attributes
condition

Required. A conditional expression. The conditional expression can contain
logical operators and conditional operators and can contain terms that
include arithmetic expressions, immediate values, variables, and calls to
Java methods (see “Conditional and logical operators and expressions” on
page 36).

XML samples

<HAScript name="ispf_ex2" description="ISPF Sample2" timeout="60000"
pausetime="300" promptall="true" author="Owner"
creationdate="Sun Jun 08 12:04:26 PDT 2003"
supressclearevents="false" usevars="true"
ignorepauseforenhancedtn="false"
delayifnotenhancedtn="0">

...
</HAScript>

Figure 68. Examples for the <HAScript> element

156 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<import> element

General
The <import> element, the <vars> element, and the <screen> element are the three
primary structural elements that occur inside the <HAScript> element (see
“Conceptual view of a macro script” on page 20).

The <import> element is optional. It contains <type> elements each of which
declares an imported type based on a Java class (see “Creating an imported type
for a Java class” on page 121).

The <import> element must occur after the <HAScript> begin tag and before the
<vars> element.

Attributes
None.

XML samples

<vars>
<create name="$condition1$" type="string"/>
<create name="$condition2$" type="boolean" value="false"/>
<create name="$condition3$" type="integer"/>

</vars>
<screen>

<description>
...

</description>
<actions promptall="true">

<extract name="Get condition 1" srow="2" scol="1" erow="2"
ecol="80" assigntovar="$condition1$"/>

<extract name="Get condition 2" srow="3" scol="1" erow="3"
ecol="80" assigntovar="$condition2$"/>

<extract name="Get condition 3" srow="4" scol="1" erow="4"
ecol="80" assigntovar="$condition3$"/>

<if condition=
"(($condition1$!=’’)&&
($condition2$)||($condition3$ < 100))">

...
</if>
<else>

...
</else>

</actions>
</screen>

Figure 69. Examples for the <if> element

Chapter 14. Macro language elements 157

<input> element

General
The <input> element sends a sequence of keystrokes to the session window. The
sequence can include keys that display a character (such as a, b, c, #, &, and so on)
and also action keys (such as [enterreset], [copy], [paste], and others) (see “Input
action (<input> element)” on page 82).

Attributes
value Required string. The sequence of keys to be sent to the session window

(see “Input string” on page 83).

row Optional integer (default is the current position of the text cursor). Row at
which typing begins (see “Location at which typing begins” on page 82).

col Optional integer (default is the current position of the text cursor). Column
at which typing begins (see “Location at which typing begins” on page 82).

movecursor
Optional boolean (default is true). Setting this attribute to true causes the
macro runtime to move the text cursor to the end of the input (see “Move
Cursor to End of Input” on page 83).

xlatehostkeys
Optional boolean (default is true). Setting this attribute to true causes the
macro runtime to interpret the name of an action key (such as [enter]) as
an action key rather than as a character sequence (see “Translate Host
Action Keys” on page 83).

XML samples

<HAScript >
<import>

<type class="java.util.Properties" name="Properties" />
</import>

<vars>
<create name="prp" type="Properties" value="$new Properties()$" />

</vars>
...
</HAScript>

Figure 70. Examples for the <import> element

<input value="’3[enter]’" row="4" column="14" movecursor="true"
xlatehostkeys="true" />

Figure 71. Examples for the <input> element

158 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<message> element

General
The <message> element displays a popup window that includes a title, a message,
and an OK button. The macro runtime waits until the user clicks OK before going
on to the next action (see “Message action (<message> element)” on page 84).

Attributes
title Optional string (the default is the macro name). A string to be displayed in

the caption bar of the popup window.

value Required string. The message to be displayed in the popup window.

XML samples

<mouseclick> element

General
The <mouseclick> element simulates a mouse click on the session window by the
user. As with a real mouse click, the text cursor jumps to the row and column
position where the mouse icon was pointing when the click occurred (see “Mouse
click action (<mouseclick> element)” on page 85).

Attributes
row Required integer. The row of the row and column location on the session

window where the mouse click occurs.

col Required integer. The column of the row and column location on the
session window where the mouse click occurs.

XML samples

<nextscreen> element

General
The <nextscreen> element specifies the name of a <screen> element (macro screen)
that the macro runtime should consider, among others, as a candidate to be the
next macro screen to be processed (see “Valid next screens” on page 103).

The <nextscreen> element must occur within a <nextscreens> element.

<message title="’Ready’" value="’Ready to process. Click OK to proceed.’" />

Figure 72. Examples for the <message> element

<mouseclick row="20" col="16" />

Figure 73. Examples for the <mouseclick> element

Chapter 14. Macro language elements 159

Attributes
name Required. The name of the <screen> element that is a candidate to be the

next macro screen to be processed.

XML samples
<!--
The effect of the following <nextscreens> element and its contents
is that when the macro runtime finishes performing the actions in
the current screen, it adds ScreenS and ScreenG to the runtime list of
valid next screens.
-->
<nextscreens>

<nextscreen name="ScreenS">
<nextscreen name="ScreenG">

</nextscreens>

<nextscreens> element

General
The <actions> element, the <description> element, and the <nextscreens> element
are the three primary structural elements that occur inside the <screen> element
(see “Conceptual view of a macro screen” on page 25).

The <nextscreens> element contains <nextscreen> elements, each of which states
the name of a macro screen that can validly occur after the current macro screen
(see Chapter 9, “Screen Recognition, Part 2”, on page 103).

Attributes
timeout

Optional integer. The value in milliseconds of the screen recognition
timeout. The macro runtime terminates the macro if it cannot match a
macro screen whose name is on the runtime list of valid next screens to the
application screen before this timeout expires (see “Timeout settings for
screen recognition” on page 107).

XML samples
<!--
The effect of the following <nextscreens> element and its contents
is that when the macro runtime finishes performing the actions in
the current screen, it will attempt to recognize ScreenS and ScreenG.
-->
<nextscreens>

<nextscreen name="ScreenS">
<nextscreen name="ScreenG">

</nextscreens>

<numfields> element

General
The <numfields> element is a descriptor that states the number of 3270 or 5250
fields of all types that exist in the session window (see “Number of Fields
descriptor (<numfields> element)” on page 60).

160 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Attributes
number

Required integer. The number of fields in the session window.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean (the default is false). See “Inverse Descriptor” on page 55.

XML samples

<numinputfields> element

General
The <numinputfields> element is a descriptor that states the number of 3270 or
5250 input fields that exist in the session window (see “Number of Input Fields
descriptor (<numinputfields> element)” on page 61).

Attributes
number

Required integer. The number of fields in the session window.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean (the default is false). See “Inverse Descriptor” on page 55.

XML samples

<oia> element

General
The <oia> element is a descriptor that describes the state of the input inhibited
indicator in the session window (see “Wait for OIA to Become Uninhibited
descriptor (<oia> element)” on page 59).

Attributes
status Required. The value can be:

v NOTINHIBITED

<numfields number="10" optional="false" invertmatch="false" />

Figure 74. Examples for the <numfields> element

<numinputfields number="10" optional="false" invertmatch="false" />

Figure 75. Examples for the <numinputfields> element

Chapter 14. Macro language elements 161

The macro runtime evaluates the descriptor as true if the input inhibited
indicator is cleared, or false if the input inhibited indicator is set.

v DONTCARE
The macro runtime always evaluates the descriptor as true.

v An expression that evaluates to either NOTINHIBITED or DONTCARE
The macro runtime evaluates the expression and then, depending on the
result, evaluates the descriptor as usual.

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<pause> element

General
The <pause> element waits for the specified number of milliseconds (see “Pause
action (<pause> element)” on page 86).

Attributes
value Optional integer. The number of milliseconds to wait. If you do not specify

this attribute then the Macro object will add the attribute ″value=10000″ (10
seconds) to the element when it saves the script.

ignorepauseoverrideforenhancedtn
Optional boolean (the default is false). For 3270 Display sessions only.
Setting this attribute to true causes the macro runtime to process the
<pause> element even if the ignorepauseforenhancedtn attribute of the
<HAScript> element is set to true (see “Attributes that deal with screen
completion” on page 114).

XML samples

<perform> element

General
The <perform> element invokes a method belonging to a Java class that you have
imported (see “Creating an imported type for a Java class” on page 121).

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

Figure 76. Examples for the <oia> element

<pause timeout="5000">

Figure 77. Examples for the <pause> element

162 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

You can invoke a method in many other contexts besides the <perform> element.
However, the <perform> element is useful when you want to invoke a method that
does not return a value (see “Perform action (<perform> element)” on page 86).

Attributes
value Required. You must enclose a method call in dollar signs ($), just as you

would a variable (see “Syntax of a method call” on page 126). You should
specify the parameters, if any, of the method call in the same format that
you would use if you were creating a Perform action in the Macro Editor.

XML samples

<playmacro> element

General
The <playmacro> element terminates the current macro and launches another
macro (see “PlayMacro action (<playmacro> element)” on page 88). This process is
called chaining macros.

There are restrictions on where in the <actions> element you can place a
<playmacro> element (see “Adding a PlayMacro action” on page 88).

If you are using the Host Access Toolkit then you need to perform the following
actions:
v Use the MacroManager bean or implement your own MacroIOProvider class.

Only managed macros can be chained.
v Assign a name to the macro. Macros are chained by macro name.

Attributes
name Required. The name of the target macro. The target macro must reside in

the same location as the calling macro (see “Target macro file name and
starting screen” on page 89).

startscreen
Optional. The name of the macro screen (<screen> element) at which you
want the macro runtime to start processing the target macro. Use the value
DEFAULT or omit this parameter to have the macro runtime start at the
usual starting screen of the target macro.

transfervars
Required. Setting this attribute to Transfer causes the macro runtime to
transfer the variables belonging to the calling macro to the target macro
(see “Transferring variables” on page 89). The default is No Transfer.

<!-- Call the update() method associated with the class to which
importedVar belongs (such as mypackage.MyClass).

-->
<perform value="$importedVar.update(5, ’Application’, str)$" />

Figure 78. Examples for the <perform> element

Chapter 14. Macro language elements 163

XML samples

<print> element

General
The <print> element provides printing functions. Three primary print actions
(start, extract, and end) are specified through the action attribute (see “Print
actions (<print> element)” on page 90).

Attributes
action Required. The print action to be performed. Must be one of the following:

start, extract, end.
v start:

The macro runtime instantiates a print bean object for the current macro
using the Printer Setup options and Page Setup options that you specify
(see “Print Start” on page 90).
Because of the great number of printer setup options and page setup
options, and because changing one option might require several other
options to be adjusted, you should not use the macro language to
specify printer setup options and page setup options. Instead, use the
Macro Editor to create a Print start action and use the Printer Setup and
Page Setup windows to specify these options (see “Printer Setup and
Page Setup” on page 91).

v extract:
The macro runtime copies the text from a rectangular area of the session
window that you specify and sends the text to the current print bean
(see “Print Extract” on page 91).

v end:
The macro runtime terminates the print bean if one exists (see “Print
End” on page 92).

srow Required integer when action is extract. The row of the first pair of row
and column coordinates for the rectangular area of text to be printed.

scol Required integer when action is extract. The column of the first pair of
row and column coordinates for the rectangular area of text to be printed.

erow Required integer when action is extract. The row of the second pair of
row and column coordinates for the rectangular area of text to be printed.

ecol Required integer when action is extract. The column of the second pair of
row and column coordinates for the rectangular area of text to be printed.

assigntovar
Optional variable. Specifies the name of a variable to contain the return
code from the print action.

<playmacro name="ispf_ex1.mac" startscreen="ScreenA"
transfervars="Transfer" />

Figure 79. Examples for the <playmacro> element

164 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

XML samples
<print action="start" assigntovar="$intReturnCode$" />
<print action="extract" srow="1" scol="1" erow="-1" ecol="-1" />
<print action="end" />

<prompt> element

General
The <prompt> element displays a popup window prompting the user for input,
waits for the user to click OK, and then sends the input to the session window (see
“Prompt action (<prompt> element)” on page 92).

Attributes
name Optional string. The text that is to be displayed in the popup window,

such as ’Enter your response here:’ (see “Parts of the prompt window”
on page 93).

description
Optional string. A description of this action. This description is not
displayed (see “Parts of the prompt window” on page 93).

row Required integer. The row on the session window at which you want the
macro runtime to start typing the input from the user.

col Required integer. The column on the session window at which you want
the macro runtime to start typing the input from the user (see “Handling
the input sequence in the session window” on page 94).

len Required integer. The number of characters that the user is allowed to
enter into the prompt input field (see “Response Length” on page 93).

default
Optional string. The text to be displayed in the input field of the popup
window. If the user does not type any input into the input field but just
clicks OK, the macro runtime will send this default input to the session
window (see “Default Response” on page 93).

clearfield
Optional boolean. Setting this attribute to true causes the macro runtime,
before sending the input sequence to the session window, to clear the input
field of the session window in which the row and column location occur
(see “Handling the input sequence in the session window” on page 94).

encrypted
Optional boolean. Setting this attribute to true causes the macro runtime,
when the user types a key into the input field of the window, to display an
asterisk (*) instead of the character associated with the key (see “Password
Response” on page 93).

movecursor
Optional boolean. Setting this attribute to true causes the macro runtime to
move the cursor to the end of the input (see “Handling the input sequence
in the session window” on page 94).

xlatehostkeys
Optional boolean. Setting this attribute to true causes the macro runtime to

Chapter 14. Macro language elements 165

interpret the names of action keys (such as [enter]) as action keys rather
than as sequences of characters (see “Action keys and Translate Host
Action Keys” on page 94).

assigntovar
Optional variable name. Setting this attribute to a variable name causes the
macro runtime to store the input into the variable whose name you specify
here (see “Assigning the input sequence to a variable” on page 94).

varupdateonly
Optional boolean. Setting this attribute to true causes the macro runtime to
store the input into a variable and not to send it to the session window
(see “Handling the input sequence in the session window” on page 94).
This attribute takes effect only if the assigntovar attribute is set to true.

XML samples

<recolimit> element

General
The <recolimit> element is an optional element that occurs within a <screen>
element, at the same level as the <description>, <actions>, and <nextscreens>
elements (see “Recognition limit (General tab of the Screens tab)” on page 108).

The <recolimit> element allows you to take action if the macro runtime processes
the macro screen in which this element occurs more than some specified number of
times.

Attributes
value Required integer. The recognition limit. If the macro runtime recognizes the

macro screen this many times, then the macro runtime does not process the
actions of this macro screen but instead performs the specified action.

goto Optional string (the default is for the macro runtime to display an error
message and terminate the macro). The name of a macro screen that you
want the macro runtime to start processing when the recognition limit is
reached.

XML samples

<prompt name="’ID’" row="1" col="1" len="8" description="’ID for Logon’"
default="’guest’" clearfield="true" encrypted="true"
assigntovar="$userID$" varupdateonly="true"/>

Figure 80. Examples for the <prompt> element

<recolimit value="1" goto="RecoveryScreen1" />

Figure 81. Examples for the <recolimit

166 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

<runprogram> element

General
The <runprogram> element launches a native application and optionally waits for
it to terminate. You can provide input parameters for the application and store the
return code into a variable (see “Run program action (<runprogram> element)” on
page 95).

Attributes
exe Required string. The path and name of the native application (see

“Launching the native application” on page 95).

param Optional string. Any arguments that should be specified when the native
application is launched.

wait Optional boolean. Setting this attribute to true causes the macro runtime to
wait until the native application terminates.

assignexitvalue
Optional variable. The name of a variable into which the return value from
native application should be stored.

XML samples

<screen> element

General
The <screen> element, the <import> element, and the <vars> element are the three
primary structural elements that occur inside the <HAScript> element (see
“Conceptual view of a macro script” on page 20).

Multiple screen elements can occur inside a macro. One <screen> element contains
all the information for one macro screen (see “The macro screen and its
subcomponents” on page 23).

The <screen> element contains three primary structural elements: the <actions>
element, the <description> element, and <nextscreens> (see “Conceptual view of a
macro screen” on page 25).

Attributes
name Required. The name of this <screen> element (macro screen). The name

must not be the same as the name of an already existing <screen> element.

<runprogram exe=
"’c:\\Program Files\\Windows NT\\Accessories\\Wordpad.exe’"
param="’c:\\tm\\new_file.doc’" wait="true"
assignexitvalue="$intReturn$" />

<message title="" value="’Return value is ’+
$intReturn$" />

Figure 82. Examples for the <runprogram> element

Chapter 14. Macro language elements 167

entryscreen
Optional boolean (the default is false). Setting this attribute to true causes
the macro runtime to treat this <screen> element as a valid beginning
screen for the macro (see “Entry screens” on page 105).

exitscreen
Optional boolean (the default is false). Setting this attribute to true causes
the macro runtime to treat this <screen> element as a valid ending screen
for the macro (see “Exit screens” on page 106).

transient
Optional boolean (the default is false). Setting this attribute to true causes
the macro runtime to treat this <screen> element as a screen that can
appear at any time and that always needs to be cleared (see “Transient
screens” on page 106).

pause Optional integer (the default is -1). Specifying a value in milliseconds for
this attribute causes the macro runtime, for this <screen> element, to
ignore the default pause time between actions (set using the pausetime
attribute of the <HAScript> element) and to use this value instead (see “Set
Pause Time (General tab of the Screens tab)” on page 111).

XML samples

<string> element

General
The <string> element is a descriptor that specifies a sequence of characters and a
rectangular area of the session window in which the sequence occurs (see “String
descriptor (<string> element)” on page 61).

The sequence of characters can occur anywhere in the rectangular block.

Attributes
value Required string. The sequence of characters.

row Optional integer (the default is to search the entire screen). The row
location of one corner of a rectangular block of text.

col Optional integer. The column location of one corner of a rectangular block
of text.

<screen name="ScreenB" entryscreen="false" exitscreen="false"
transient="false">

<description>
...

</description>
<actions>

...
</actions>
<nextscreens>

...
</nextscreens>

</screen>

Figure 83. Examples for the <screen> element

168 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

erow Optional integer. The row location of the opposite corner of a rectangular
block of text.

ecol Optional integer. The column location of the opposite corner of a
rectangular block of text.

casesense
Optional boolean (the default is false). Setting this attribute to true causes
the macro runtime to do a case-sensitive string compare.

wrap Optional boolean (the default is false).
v Setting this attribute to false causes the macro runtime to search for the

sequence of characters in each separate row of the rectangular block of
text. If the sequence of characters wraps from one row to the next, the
macro runtime will not find it.

v Setting this attribute to true causes the macro runtime to check for the
sequence of characters occurring in any row or wrapping from one row
to the next of the rectangular block of text (see “How the macro runtime
searches the rectangular area (Wrap option)” on page 62).

optional
Optional boolean (the default is false). See “Optional” on page 55.

invertmatch
Optional boolean. See “Inverse Descriptor” on page 55.

XML samples

<trace> element

General
The <trace> element sends a trace message to a trace destination that you specify,
such as the Java console (see “Trace action (<trace> element)” on page 96).

Attributes
type Required. The destination for the trace data. The destination must be one

of the following:
v HODTRACE: The Host On-Demand Trace Facility.
v USER: A user trace handler.
v SYSOUT: The Java console.

value Required string. The string that is to be sent to the trace destination.

<!-- The string must occur in one specific area of a single row -->
<string value="’Utility Selection Panel’" row="3" col="28"

erow="3" ecol="51" casesense="false" wrap="false"
optional="false" invertmatch="false" />

<!-- The string can occur in any single row of the session area -->
<string value="’Utility Selection Panel’" row="1" col="1"

erow="-1" ecol="-1" casesense="false" wrap="false"
optional="false" invertmatch="false" />

Figure 84. Examples for the <string> element

Chapter 14. Macro language elements 169

XML samples

<type> element

General
The <type> element declares an imported type (such as Properties) that represents
a Java class (such as java.util.Properties). After you have declared the type, you
can create variables based on the type, create an instance of the Java class, and call
methods on the instance (see “Creating an imported type for a Java class” on
page 121).

A type can also be used for directly calling static methods (no need to instantiate).

The <type> element must occur inside a <import> element.

Attributes
class Required. The fully qualified class name of the class being imported,

including the package name if any (such as java.util.Properties).

name Optional. A short name (such as Properties) that you can use elsewhere in
the macro to refer to the imported type. If you do not specify a short
name, then the short name is the same as the fully qualified class name.
There are a few restrictions on the spelling of type names (see “Variable
names and type names” on page 123).

XML samples
<import>

<type class="java.util.Date" name="Date"/>
<type class="java.io.FileInputStream"/>
<type class="com.ibm.eNetwork.beans.HOD.HODBean" name="HODBean"/>
<type class="myPackage.MyClass" name="MyClass"/>

</import>

<vars> element

General
The <vars> element, the <import> element, and the <screen> element are the three
primary structural elements that occur inside the <HAScript> element (see
“Conceptual view of a macro script” on page 20).

The <vars> element is optional. It contains <create> elements, each of which
declares and initializes a variable (see “Creating a new variable” on page 120). The
<vars> element must occur after the <import> element and before the first
<screen> element.

To use variables, you must set the usevars element in <HAScript> to true.

<trace type="SYSOUT" value="’The value is ’+$strData$" />

Figure 85. Examples for the <trace> element

170 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Attributes
None.

XML samples

<varupdate> element

General
The <varupdate> element causes the macro runtime to store a specified value into
a specified variable. The value can be an immediate value, a variable, a call to a
Java method, or an arithmetic expression that can contain any of these values. If
the value is an expression, then during macro playback the macro runtime
evaluates the expression and stores the resulting value into the specified variable
(see “Variable update action (<varupdate> element)” on page 97).

You can also use the <varupdate> action in a <description> element (see “Variable
update action (<varupdate> element)” on page 97).

For more information on variables see Chapter 11, “Variables and imported Java
classes”, on page 117.

Attributes
name Required. The name of the variable.

value Required string. The value or expression to be assigned to the variable.

XML samples

<HAScript ... usevars="true" >
<import>

<type class="java.util.Properties" name="Properties" />
</import>

<vars>
<create name="prp" type="Properties" value="$new Properties()$" />
<create name="$strAccountName$" type="string" value="" />
<create name="$intAmount$" type="integer" value="0" />
<create name="$dblDistance$" type="double" value="0.0" />
<create name="$boolSignedUp$" type="boolean" value="false" />
<create name="$fldFunction$" type="field" />

</vars>
...

</HAScript>

Figure 86. Examples for the <vars> element

Chapter 14. Macro language elements 171

<type>
<type class="mypackage.MyClass" name="MyClass" />
<type class="java.util.Hashtable" name="Hashtable" />
<type class="java.lang.Object" name="Object" />

</type>

<vars>
...

</vars>

<screen>
<description>
...
</description>
<actions>

<varupdate name="$var_boolean1$" value="false" />
<varupdate name="var_int1" value="5" />
<varupdate name="$var_double1$" value="5" />
<varupdate name="$var_string1$" value="’oak tree’" />
<varupdate name="var_field1" value="4,5" />

<!-- null keyword -->
<varupdate name="$var_importedMC1$" value="null" />
<!-- Equivalent to null keyword for an imported type -->
<varupdate name="$var_importedMC2$" value="" />

<varupdate name="$var_importedMC4$"
value="$new MyClass(’myparam1’, ’myparam2’)$" />

<varupdate name="$var_importedMC5$"
value="$var_importedMC4$" />

<varupdate name="$var_importedMC6$"
value="$MyClass.createInstance(’mystringparam1’)$" />

<varupdate name="$var_boolean2$"
value="$var_importedMC4.isEmpty()$" />

<varupdate name="var_int2"
value="$($var_importedMC4.getHashtable()$).size()$" />

<varupdate name="$var_double2$"
value="$var_importedMC4.getMeters()$" />

<varupdate name="$var_string2$"
value="$var_importedMC4.toString()" />

</actions>
</screen>

Figure 87. Examples for the <varupdate> element

172 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Chapter 15. Sample macro code

Copy CICS transaction records into Excel spreadsheet or DB2
database

Introduction
NOTE: This sample requires Microsoft Excel or IBM DB2.

This sample macro reads transaction records from the CICS transaction amnu,
which is a very small sample database, and writes the records into an Excel
spreadsheet or IBM DB2.

The files for this sample are stored in the following directory, where <install>
stands for the Host On-Demand installation directory, and where xx stands for
your language id (such as en):
<install>\HOD\xx\doc\macro\samples\amnu

The files in this sample are the following:
v amnu.mac, amnudb2.mac

These are the macro files. The first one is for use with the Excel spreadsheet. The
second is for use with DB2.

v amnu.xls
This is the Excel spreadsheet.

v EditDB.java, EditDB.jar
EditDB.java is a Java source file containing source code for the EditDB class. The
macro uses the EditDB class to write to the spreadsheet or database.
EditDB.class is compiled with Java 2 and stored in the EditDB.jar. EditDB.jar is a
Java 2 JAR file.

Steps for running Excel sample (Sun Java 2 plug-in, Windows
only)

1. Configure Java security policy
You will need to grant certain permissions for the Host On-Demand applet in
order to run this sample. You can alter the .java.policy file by using policytool
or you can create a new policy file and specify this file in the plug-in Java
Runtime Parameters(-Djava.security.policy=PolicyFileName).
Your new policy file should contain the following and should be located in
your local home directory.
grant {

permission java.lang.RuntimePermission
"accessClassInPackage.sun.jdbc.odbc";

permission java.util.PropertyPermission
"file.encoding", "read"; };

If you want to change .java.policy (and not set the parameter above in your
plug-in), launch the policytool executable in the bin directory of your Java
plug-in install and set the permissions specified in the lines above.

2. Set up the Excel spreadsheet as an ODBC data source

© Copyright IBM Corp. 2003 173

a. On your Windows machine, go to Settings->Control Panel->Administrative
Tools->Data Sources(ODBC).

b. Click Add...
c. Select Microsoft Excel Driver (*.xls).
d. Hit Finish.
e. Give a data source name of amnu and give any description you desire (or

leave it blank).
f. Use the Select Workbook button to find the spreadsheet provided in this

example. Hit OK.
g. Deselect the Read Only option for this source. You may need to hit an

Options>> button to find this option.
h. Hit OK. You now have the amnu.xls spread sheet available as the ODBC

data source amnu.

.
3. Create a new Deployment Wizard page that gives the Host On-Demand client

access to the EditDB class.
a. Start Deployment Wizard.
b. On the Additional Options page, click ″Advanced Options...″
c. On the Add HTML Parameters panel, add a parameter with Name

″AdditionalArchives″ and Value ″amnu″

4. Place amnu.jar in your Host On-Demand publish directory
5. Open your newly created page in a web browser and start your CICS session.

USING AMNU:
The transaction amnu is a small sample database that is provided with CICS.
To start amnu, follow these steps:
a. Log onto CICS
b. At the CICS prompt, type amnu and type enter.

The amnu menu comes up in the upper left quadrant of the session window
and displays operator instructions.

To see if there are any records in the database, follow these steps:
a. In the ENTER TRANSACTION: field, type abrw

b. Leave the NUMBER field blank.
c. Type enter.

The amnu transaction displays the first 4 records. Follow the instructions on the
screen to browse the database.

If the database is empty, you need to add records to it before you run the
macro. To add records to the database, follow these steps:
a. In the ENTER TRANSACTION: field, type aadd

b. In the NUMBER FIELD, enter a number for the record that you want to
add, such as 40.

c. Type enter.
d. Follow the instructions on the screen to provide information for the new

record.
6. Load amnu.mac into your session.

a. If it is not already visible, display the Macro Manager toolbar by selecting
View->Macro Manager on the session toolbar.

174 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

b. Click on the Edit current macro properties icon.
c. Click on the Import... button on the Macro Editor.
d. Browse to the location of amnu.mac and open it.
e. Hit Save to save the macro to your current session and close the Macro

Editor.
7. Navigate to the amnu menu screen and hit the Play macro icon.

You will be prompted to enter a record number. Enter a number of a
transaction that you have entered or that you saw when you browsed through
the database in step 5. Hit OK. The application screen will display the contents
of the record corresponding to the number that you entered. You will be
prompted again to ask if you would like to save the record on the screen to
your database. The default response is ″Y.″ Hit OK. You will again be prompted
to Enter a transaction number. You could continue to enter as many record
numbers as you like (and you will be notified if you enter an invalid number),
but this time hit Q to quit. Hit OK to close the prompt, and OK again to
dismiss the message ″Good Bye!″ The macro will end, and amnu.xls will open.
You should see the contents of the record you just saved inside the spreadsheet.
Hopefully this sample will get you thinking about the powerful ways in which
you can put macros to use for your business. Note that this sample can easily
be modified, for example to write to a different kind of database (see below for
directions on writing to DB2) or to read from the local database and write to
the amnu database. Note that this sample was designed to be short and simple,
not a lesson in best practices of Java or macro coding. For example, you may
have noticed that we are connecting to and disconnecting from the local
database every time we write a record out. This could be avoided by writing
″connect″ and ″disconnect″ macros that are linked to the amnu macro such that
there is only one connect and one disconnect for each macro play.

If you look inside the Excel macro amnu.mac, you’ll see that it is using the driver
sun.jdbc.odbc.JdbcOdbcDriver to connect to the Excel spreadsheet. If this class is
not in your classpath, the sample will not run properly. This class is included in
the Sun Java 2 plug-ins but not in IBM plug-ins.

Steps for running DB2 sample
If you are using an IBM plug-in and do not have the sun.jdbc.odbc package in
your classpath, you can instead run this sample with IBM DB2.
1. Create a DB2 database. Call the database ″AMNU″ and create a table

″CUSTRECS″ with columns ″NAME″, ″ADDRESS″, ″PHONE″, ″DATE″,
″AMOUNT″ and ″COMMENT″.

2. Put appropriate DB2 drivers in your classpath. Rather than using
sun.jdbc.odbc.JdbcOdbcDriver, we will now use
COM.ibm.db2.jdbc.net.DB2Driver to connect to our local database. This and
other needed classes are found in db2java.zip, which was likely placed in
\SQLLIB\java when you installed DB2. There are different ways of getting
these needed files in your classpath, depending on your setup.

3. Edit the macro for your DB2 database.
a. In the line:

<create name="$database$" type="DB"
value="$new DB(’jdbc:db2://hostname:6789/AMNU’,
’COM.ibm.db2.jdbc.net.DB2Driver’)$" />

change hostname to the name of your machine running DB2.
b. Find the following two perform actions:

Chapter 15. Sample macro code 175

<perform value="$database.setUserID(’db2admin’)$" />
<perform value="$database.setPassword(’db2admin’)$" />

and modify them with and ID and Password that will connect to your DB2
database.

4. Follow steps 3-7 above, this time importing AMNUDB2.mac.

Note some differences in the two macros:
v The syntax of the table name in the SQL query is different. For Excel:

[CUSTRECS$]

For DB2:
CUSTRECS

v As mentioned before, we are using a different driver to connect to the database.
v This time we needed to use EditDB’s setUserID and setPassword methods to

specify the appropriate ID and Password to connect to the database.
v This macro does not launch the local database when you are done making your

additions. You can verify that the records were properly added by performing a
″Select * from CUSTRECS″ query on the database.

176 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Appendix A. Additional information

The default combining rule for multiple descriptors in one macro
screen

Statement of the rule
Here is the rule:
1. Evaluate all the required descriptors (that is, descriptors for which the Optional

field is set to false).
a. If all are true, then the screen matches.
b. Otherwise, go to step 2.

2. Start evaluating the optional descriptors (descriptors for which the Optional
field is set to true).
a. If any optional descriptor is true, then the screen matches.
b. Otherwise, keep evaluating optional descriptors.

3. If you reach here, then the macro screen does not match the application screen.

Mnemonic keywords for the Input action
This section contains the mnemonic keywords for the Input action and the type of
session or essions in which the mnemonic is supported. Session support for a
given mnemonic is denoted by an X, along with any special notes that apply to the
function.

Table 20. Keywords for the Input action

Function: Keyword: 3270: 5250: VT: CICS:

Attention [attn] x x x

Alternate
view

[altview] x3 x3 x3

Backspace [backspace] x x x1 x

Backtab [backtab] x x x

Beginning of
Field

[bof] x x x

Clear [clear] x x x1 x

Cursor Down [down] x x x1 x

Cursor Left [left] x x x1 x

Cursor Right [right] x x x1 x

Cursor Select [cursel] x x x1 x

Cursor Up [up] x x x1 x

Delete
Character

[delete] x x x1, 2 x

Display
SO/SI

[dspsosi] x3 x3 x3

Dup Field [dup] x x x

Enter [enter] x x x x

© Copyright IBM Corp. 2003 177

Table 20. Keywords for the Input action (continued)

Function: Keyword: 3270: 5250: VT: CICS:

End of Field [eof] x x x1, 2 x

Erase EOF [eraseeof] x x x

Erase Field [erasefld] x x x

Erase Input [erinp] x x x

Field Exit [fldext] x

Field Mark [fieldmark] x x

Field Minus [field-] x

Field Plus [field+] x

F1 [pf1] x x x x

F2 [pf2] x x x x

F3 [pf3] x x x x

F4 [pf4] x x x x

F5 [pf5] x x x x

F6 [pf6] x x x x

F7 [pf7] x x x x

F8 [pf8] x x x x

F9 [pf9] x x x x

F10 [pf10] x x x x

F11 [pf11] x x x x

F12 [pf12] x x x x

F13 [pf13] x x x x

F14 [pf14] x x x x

F15 [pf15] x x x x

F16 [pf16] x x x x

F17 [pf17] x x x x

F18 [pf18] x x x x

F19 [pf19] x x x x

F20 [pf20] x x x x

F21 [pf21] x x x

F22 [pf22] x x x

F23 [pf23] x x x

F24 [pf24] x x x

Help [help] x

Home [home] x x x1, 2 x

Insert [insert] x x x1, 2 x

Keypad 0 [keypad0] x

Keypad 1 [keypad1] x

Keypad 2 [keypad2] x

Keypad 3 [keypad3] x

Keypad 4 [keypad4] x

178 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Table 20. Keywords for the Input action (continued)

Function: Keyword: 3270: 5250: VT: CICS:

Keypad 5 [keypad5] x

Keypad 6 [keypad6] x

Keypad 7 [keypad7] x

Keypad 8 [keypad8] x

Keypad 9 [keypad9] x

Keypad Dot [keypad.] x

Keypad Enter [keypadenter] x

Keypad
Comma

[keypad,] x

Keypad
Minus

[keypad-] x

New Line [newline] x x x

PA1 [pa1] x x x

PA2 [pa2] x x x

PA3 [pa3] x x x

Page Up [pageup] x x x1, 2 x

Page Down [pagedn] x x x1, 2 x

Reset [reset] x x x x

System
Request

[sysreq] x x x

Tab Field [tab] x x x1 x

Test Request [test] x

1. VT supports this function but it is up to the host application to act on it.
2. Supported in VT200 mode only.
3. The function is only available in a DBCS session.

The following table shows the bidirectional keywords for the Input action.

Table 21. Bidirectional keywords for the Input action

Function: Keyword: 3270: 5250: VT: CICS:

Auto Push [autopush] x x

Auto Reverse [autorev] x x

Base [base] x x

BIDI Layer [bidilayer]

Close [close] x

CSD [csd] x x

End Push [endpush] x x

Field Reverse [fldrev] x x x

Field Shape [fieldshape] x x

Final [final] x x

Initial [initial] x x

Isolated [isolated] x x

Appendix A. Additional information 179

Table 21. Bidirectional keywords for the Input action (continued)

Function: Keyword: 3270: 5250: VT: CICS:

Latin Layer [latinlayer] x x

Middle [middle] x x

Push [push] x x

Screen
Reverse

[screenrev] x x x

180 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or region or send inquiries, in
writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country or region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003 181

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Corporation
Department T01
Building B062
P.O. Box 12195
Research Triangle Park, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee. The licensed program described in this
document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

182 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

Appendix C. Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are registered
trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2003 183

184 IBM WebSphere Host On-Demand Version 8.0: Host On-Demand Macro Programming Guide

����

Printed in U.S.A.

SC31-6378-00

	Contents
	About this book
	About the other Host On-Demand documentation
	Conventions used in this book

	Part 1. Macro basics
	Chapter 1. Introduction
	Host On-Demand macros
	Definition of a macro
	Advantages of macros
	Unsophisticated users
	Sophisticated users
	Programming features
	Samples

	Deploying macros
	Using macros to integrate your enterprise applications
	Host Access Toolkit
	Macros and security
	This book focuses on 3270 applications

	Chapter 2. Macro components
	Overview
	Macro Manager
	Macro Manager toolbar
	Macro Editor
	Code Editor

	Macro runtime
	Macro object
	Definitions of other terms

	Chapter 3. Recording and playing back a simple macro
	Recording a simple macro
	Playing back a simple macro
	Assigning the macro to a key combination

	Chapter 4. Macro structure
	Macro script
	XML elements
	Conceptual view of a macro script
	Introduction to the Macro tab

	The macro screen and its subcomponents
	Application screen
	Macro screen
	Conceptual view of a macro screen
	Introduction to the Screens tab

	Part 2. Developing macros
	Chapter 5. Data types, operators, and expressions
	Choosing a macro format
	The basic macro format versus the advanced macro format
	Representation of strings and special characters, treatment of operator characters
	In the basic macro format, rules for representation of strings, etc.
	In the advanced macro format, rules for representation of strings, etc.

	Converting your macro to a different format
	Converting your macro to the advanced macro format
	Converting your macro to the basic macro format

	Standard data types
	Boolean data
	Boolean values are not strings

	Integers
	Integer constants

	Doubles
	Strings

	Fields
	The value null
	Arithmetic operators and expressions
	Operators and expressions
	Where arithmetic expressions can be used

	String concatenation operator (+)
	Operators and expressions

	Conditional and logical operators and expressions
	Conditional expression can include complex terms
	Where conditional expressions can be used

	Automatic data type conversion
	Effect of context
	Conversion to boolean
	Conversion to integer
	Conversion to double
	Conversion to string
	Conversion errors

	Equivalents
	Significance of a negative value for a row or column

	Chapter 6. How the macro runtime processes a macro screen
	Overview
	Scenario used as an example
	Stages in processing a macro screen
	Closer look at stage 1
	Overview of the entire process (all 3 stages)
	Conclusion of the overview

	Stage 1: Determining the next macro screen to be processed
	Adding macro screen names to the list of valid next screens (step 1(a))
	Valid next screens
	How the macro runtime selects the names of candidate macro screens

	Screen recognition (step 1(b))
	Overview of evaluation
	Re-doing the evaluation
	Determining whether a macro screen matches the application screen
	Two recognition features

	Removing the names of candidate macro screens from the list of valid next screens (step 1(c))

	Stage 2: Making the successful candidate the new current macro screen
	Stage 3: Performing the actions in the new current macro screen
	Inserting a delay after an action

	Repeating the processing cycle
	Terminating the macro

	Chapter 7. Screen description and recognition
	Terms defined
	Introduction to the Description tab
	Sample Description tab
	Creating a new descriptor

	Recorded descriptions
	What information is recorded
	Why the recorded descriptions work
	Recorded descriptors provide a framework

	Evaluation of descriptors
	Practical information
	Overview of the process
	Evaluation of individual descriptors
	Default combining method
	When to use the default combining method
	Inverse Descriptor
	Optional
	Default combining rule

	The uselogic attribute

	The descriptors
	Overview
	Field Counts and OIA descriptor
	Required
	Presents three separate and independent descriptors as if one
	Treatment during screen recognition
	Wait for OIA to Become Uninhibited descriptor (<oia> element)
	Number of Fields descriptor (<numfields> element)
	Number of Input Fields descriptor (<numinputfields> element)
	Counting fields in the session window during macro development

	String descriptor (<string> element)
	Specifying the rectangular area
	How the macro runtime searches the rectangular area (Wrap option)
	The '*' string in a new String descriptor
	Easy method for filling in the parameters
	Multiple String descriptors in the same <description> element

	Cursor descriptor (<cursor> element)
	Attribute descriptor (<attrib> element)
	Specifying an attribute

	Condition descriptor (<condition>) element
	Custom descriptor (<customreco> element)

	Variable update action (<varupdate> element)
	Processing a Variable update action in a description
	Variable update with the uselogic attribute

	Chapter 8. Macro actions
	In general
	The actions by function
	How actions are performed
	The runtime context
	The macro screen context

	Specifying parameters for actions

	Introduction to the Actions tab
	Sample Actions tab
	Creating a new action

	The actions
	Box selection action (<boxselection> element)
	Specifying row and column values
	Erasing the marking rectangle
	Example

	Comm wait action (<commwait> element)
	How the action works
	Specify a communication status that is persistent
	Communication states
	Examples

	Conditional action (<if> element and <else> element)
	Specifying the condition
	Condition is True (<if> element)
	Condition is false (<else> element)
	Condition action not allowed within a Condition action
	Example

	Extract action (<extract> element)
	Capturing text
	Treatment of nulls and other undisplayable characters
	Capturing a rectangular area of the session window
	Capturing a sequence of text from the session window
	Unwrap Text option
	Using the Toolkit to capture data from any data plane

	Input action (<input> element)
	Location at which typing begins
	Input errors
	Input string
	Translate Host Action Keys
	Move Cursor to End of Input
	Example

	Message action (<message> element)
	Displaying the message caption and message text

	Mouse click action (<mouseclick> element)
	Specifying row and column
	Copy and paste example

	Pause action (<pause> element)
	Perform action (<perform> element)
	Invoking the method
	Examples

	PlayMacro action (<playmacro> element)
	Adding a PlayMacro action
	Target macro file name and starting screen
	Transferring variables
	Examples

	Print actions (<print> element)
	Print Start
	Print Extract
	Print End

	Prompt action (<prompt> element)
	Displaying the prompt window
	Processing the contents of the input field
	Handling the input sequence in the session window
	Assigning the input sequence to a variable
	The promptall attributes

	Run program action (<runprogram> element)
	Launching the native application
	Waiting for the native application to terminate
	Capturing the return code
	Example of launching a native application

	Trace action (<trace> element)
	Example
	User trace event

	Variable update action (<varupdate> element)
	Variable update action with a field variable

	Xfer action (<filexfer> element)
	Basic parameters
	Advanced parameters
	Parameters for BIDI sessions (Arabic or Hebrew)
	Examples

	Chapter 9. Screen Recognition, Part 2
	Valid next screens
	Entry screens, exit screens, and transient screens
	Entry screens
	Macro with several entry screens
	Entry screen can also be a normal screen

	Exit screens
	Transient screens
	Example of handling of transient screen

	Timeout settings for screen recognition
	Screen recognition
	Timeout Between Screens (Macro tab)
	Timeout (Links tab)

	Recognition limit (General tab of the Screens tab)
	Determining when the recognition limit is reached
	Action when the Recognition limit is reached

	Chapter 10. Actions, Part 2: Timing issues
	Pause after an action
	Speed of processing actions
	Pause Between Actions (Macro tab)
	Set Pause Time (General tab of the Screens tab)
	Adding a pause after a particular action

	Screen completion
	Recognizing the next macro screen too soon
	The ordinary TN3270 protocol
	Solutions
	Add more descriptors
	Insert a delay after the input action
	Use the contention-resolution feature of TN3270E

	Attributes that deal with screen completion
	ignorepauseforenhancedtn=true/false
	ignorepauseoverrideforenhancedtn=true/false
	delayifnotenhancedtn=(milliseconds)

	Chapter 11. Variables and imported Java classes
	Introduction to variables and imported types
	Advanced macro format required
	Scope of variables
	Introduction to the Variables tab
	Creating a new variable
	Creating an imported type for a Java class

	Issues you should be aware of
	Deploying Java libraries or classes
	Variable names and type names
	Transferring variables from one macro to another
	Field variables

	Using variables
	When variables are initialized
	Using variables belonging to a standard type
	Using the value that the variable holds
	Writing a value into a variable belonging to a standard type

	Using variables belonging to an imported type
	Using the value that the variable holds
	Restrictions
	Writing into the variable belonging to an imported type

	Comparing variables of the same imported type

	Calling Java methods
	Where method calls can be used
	Syntax of a method call
	How the macro runtime searches for a called method

	Converting numbers to and from the local national language format
	Examples

	Chapter 12. The graphical user interface
	Updating fields in the Macro Editor
	Using the session window
	Using the marking rectangle
	Using the session window's text cursor
	Error in specifying a string

	Using the Code Editor
	Copy and paste a script from this guide into the Code Editor

	Part 3. The macro language
	Chapter 13. Features of the macro language
	Use of XML
	XML syntax in the Host On-Demand macro language
	Code Editor

	Hierarchy of the elements
	Inserting comments into a macro script
	Format of comments
	Comment errors
	Examples of comments

	Debugging macro scripts with the <trace> element
	Using the Host Access Toolkit product with macros

	Chapter 14. Macro language elements
	Specifying the attributes
	XML requirements
	Advanced format in attribute values
	Typed data

	<actions> element
	General
	Attributes
	XML samples

	<attrib> element
	General
	Attributes
	XML samples

	<boxselection> element
	General
	Attributes
	XML samples

	<comment> element
	General
	A better method for inserting comments

	Attributes
	XML samples

	<commwait> element
	General
	Attributes
	XML samples

	<condition> element
	General
	Attributes
	XML samples

	<create> element
	General
	Attributes
	XML samples

	<cursor> element
	General
	Attributes
	XML samples

	<custom> element
	General
	Attributes
	XML samples

	<customreco> element
	General
	Attributes
	XML samples

	<description> element
	General
	Attributes
	XML samples

	<else> element
	General
	Attributes
	XML samples

	<extract> element
	General
	Attributes
	XML samples

	<filexfer> element
	General
	Attributes
	XML samples

	<HAScript> element
	General
	Attributes
	XML samples

	<if> element
	General
	Attributes
	XML samples

	<import> element
	General
	Attributes
	XML samples

	<input> element
	General
	Attributes
	XML samples

	<message> element
	General
	Attributes
	XML samples

	<mouseclick> element
	General
	Attributes
	XML samples

	<nextscreen> element
	General
	Attributes
	XML samples

	<nextscreens> element
	General
	Attributes
	XML samples

	<numfields> element
	General
	Attributes
	XML samples

	<numinputfields> element
	General
	Attributes
	XML samples

	<oia> element
	General
	Attributes
	XML samples

	<pause> element
	General
	Attributes
	XML samples

	<perform> element
	General
	Attributes
	XML samples

	<playmacro> element
	General
	Attributes
	XML samples

	<print> element
	General
	Attributes
	XML samples

	<prompt> element
	General
	Attributes
	XML samples

	<recolimit> element
	General
	Attributes
	XML samples

	<runprogram> element
	General
	Attributes
	XML samples

	<screen> element
	General
	Attributes
	XML samples

	<string> element
	General
	Attributes
	XML samples

	<trace> element
	General
	Attributes
	XML samples

	<type> element
	General
	Attributes
	XML samples

	<vars> element
	General
	Attributes
	XML samples

	<varupdate> element
	General
	Attributes
	XML samples

	Chapter 15. Sample macro code
	Copy CICS transaction records into Excel spreadsheet or DB2 database
	Introduction
	Steps for running Excel sample (Sun Java 2 plug-in, Windows only)
	Steps for running DB2 sample

	Appendix A. Additional information
	The default combining rule for multiple descriptors in one macro screen
	Statement of the rule

	Mnemonic keywords for the Input action

	Appendix B. Notices
	Appendix C. Trademarks

