Mainframe Application Testing with Rational Robot

By Pete Jenney and Raymond Gilbert-Griffiths

Version 1.0 – 01-Oct-1999

Table of Contents

4Overview

4Supporting Terminal Emulators

4API Based Support

5Generic Support

5Mainframe Applications and Generic Terminal Emulator Support

6Rational Robot and Terminal Emulation

6Features for supporting Terminal Emulation and mainframe applications

6Verification Points

7Low level keyboard access

7Best Practices for Terminal Emulator Support with Rational Robot

7Getting Started

7Synchronization

8Example

8Example Code – Sending keystrokes to the mainframe

9Example Code – Synchronizing keystrokes with the mainframe

9Example Code – Wait Function

10Validating Screen and Screen Content

10Example Code – Using a screen verification point

11Handling the Locked Terminal Condition

12Example – The unlock terminal code

12Example – Using the Unlock function

12Capturing Text for comparison

13Example – Using the OCR Verification Point

14Generating low level keystrokes with the Robot

14Example – Issuing special keystrokes

15Appendix A – Keyboard mappings

16Appendix B – Buzzwords

18Appendix C – Complete Sample Source Code

21Appendix D – Synchronizing via HLLAPI

21Header Files

21Sample Code

26Appendix E – Mainframe Terminal Emulator Vendors

26Attachmate

26Company Overview

27Rumba

27Company Overview

27NetManage/NetSoft

27Company Overview

27References

Overview

Mainframe computers are still in wide use around the world and there is a certain class of tester for whom testing mainframe applications is a way of life.

Mainframe applications are generally accessed via dedicated terminals that communicate directly with the mainframe. Over the past decade or so, the use of mainframe terminal emulators running on PCs, due to their low cost and ability to leverage common desktop hardware, have gained significant foothold in the market segment that was the realm of the dedicated terminal.

The ability to test mainframe applications via a terminal emulator is an area which is very interesting to just about everyone who uses these software devices and is therefore an area most interesting to testing software vendors, such as Rational.

This paper will describe the best practices for using Rational Robot in conjunction with many popular terminal emulators available in the industry today.

Supporting Terminal Emulators

There are two basic methods for supporting mainframe applications via a terminal emulator, via an API and generically driving the emulator itself. Each method has it’s own set of benefits and associated problems.

API Based Support

Using an API to support a terminal emulator or mainframe session is a very flexible and effective way to execute tests. API’s such as HLLAPI and EHLLAPI (See Glossary) allow terminal emulators and testing tools to programmatically drive a mainframe application and directly manage things such as communication synchronization.

While the mechanism is effective the problems surrounding using APIs are straight forward. Consider an environment where there are several departments, each with their own application on the mainframe and each using their own choice of terminal emulation program. One department uses Rumba, another uses Attachmate Extra and yet another uses NetSoft/Chameleon and they’re all happy and productive.

In this environment any test tool that is used to qualify the applications on the mainframe will have to understand the API that each of these applications uses to expose the HLLAPI/EHLLAPI and therein lies the basic problem. If [when] the API that a terminal emulator publishes to expose the HLLAPI/ELLAPI interface changes, which is likely to happen when the vendor releases a new version of the terminal emulator, the testing tool needs to be updated as well.

Now imagine that each of the terminal emulator vendors does a major release every nine to twelve months, which is consistent in the software industry these days, and imagine that there is a three to six month overlap between the different products release dates. That means that the testing tool used could potentially need to go through a revision every four months to maintain support for all of the terminal emulators in the company.

This is of course the “nightmare” scenario but one that may not be too uncommon in the world. The options that present themselves are to a) use different testing tools for each emulator, b) standardize on a single emulator or c) use a non-API based mechanism for driving mainframe application test sessions.

Generic Support

Generic support for driving mainframe applications means that the mainframe application itself is driven rather than an API. It is generally done using a high level scripting tool that feeds keystrokes to the application in the same manner as a person would do in real life. Using this method a mainframe application may be tested without regard to the terminal emulator being used and any APIs that it might publish. The scripts themselves only need to be updated when the mainframe application under test itself is changed, not when the emulator is changed. The net benefits are that a single tool may be used to test the application and the codebase used to test the application is maintained at a single point. These benefits would tend to alleviate the issues described in the multi-department scenario described in the previous session.

The issues that surround generically supporting mainframe applications are relatively simple and easy to handle and center around the issue of synchronizing the terminal with the mainframe. The following section titled “Mainframe Applications and Generic Terminal Emulator Support” will detail the issue and following that the best practices for managing the process are defined.

Mainframe Applications and Generic Terminal Emulator Support

The main issue with testing character-based applications is one of synchronization. Unlike GUI applications, which have many windows and dialog boxes, a terminal emulator has only one window. The contents of the window change each time the user hits a send key, (a key that causes the mainframe to process any input), but the physical window remains the same. Since Windows does not control this change the testing script must contain some form of synchronization commands in order to drive the application successfully.

The scripts must be instructed to wait until some unique text appears on the screen before proceeding with the next instruction. Care must be taken in identifying this text since emulators tend to be slow in refreshing the screen.

All mainframe applications have a unique screen number, usually located in the top right-hand corner of the screen. It is very tempting to use this unique number as the identifying text. However, it is strongly recommended that, when creating the script, the screen is watched closely and that the last item to appear on the screen is the one that the script should wait for at runtime.

Many emulators have a busy indicator located on the status bar that appears each time a send key is pressed and remains there until the mainframe has completed its task. When this indicator is present the keyboard is locked preventing other keystrokes being sent to the application. Ideally, this indicator should be used as the sole point of synchronization.

Once a send key has been pressed a compare should be made that waits for the indicator to appear followed immediately by one that waits for it to disappear. These comparisons can be used throughout the script and saves the need for creating unique compares for every screen in the application.

Rational Robot and Terminal Emulation

Rational Robot has been used by customers to test mainframe applications for many years, and in version 7.5 we added several new capabilities to aid testing mainframe applications in terminal emulators more effectively.

The following section outlines all of the core functionality in the Robot that enables effective mainframe application testing.

Features for supporting Terminal Emulation and mainframe applications

Verification Points

Verification points are Robot functions that capture and save specific states of objects and then compare the same states during a run. In the context of mainframe sessions through a terminal emulator, verification points are used to validate that the expected data, that recorded and saved in the baseline, matches that captured during a run.

Some examples of verification point usage are:

· to ensure that the appropriate screen ID appears as the result of a specific sequence of keystrokes

· to synchronize the terminal with the mainframe based on the appearance and disappearance of specific text or glyphs that indicate that the terminal emulator is busy doing I/O with the host

· to ensure that the numeric or textual result of an operation matches the expected value(s)

· to verify that the color of a specific return value is what was expected; red numbers being negative values for example

The effective use of Robot verification points allows the creation of test scripts that enable the Robot to drive the mainframe application under test and be completely independent of industry and manufacturers APIs.

Window Image Verification points

Allows for the capture of complete windows to be verified against the baseline. Areas of windows may be masked out, leaving specific areas of a window to be compared.

Window Region verification points

Allows the capture of specific portions of windows without masking regions in a window verification point.

OCR Verification points

Allows that capture of text in regions of a window verification point or a window region verification point.

Low level keyboard access

To effectively drive a mainframe application the testing tool must be able to generate all of the required keystrokes and key sequences that the applications use. The new low level keyboard access functionality that ships in Rational Robot 7.5 allows the scripting of specific keystrokes, which are not recordable, to drive a mainframe application.

HLLAPI/EHLLAPI Support

Though it is not the recommended practice, Rational Robot can use the HLLAPI/EHLLAPI provided by terminal emulation vendors. This is demonstrated in Appendix D.

Best Practices for Terminal Emulator Support with Rational Robot

The following section will describe the best practices for supporting mainframe application testing in a generic manner using Rational Robot version 7.5 or higher.

Getting Started

The best way to get started is to record as much of your test session as possible using Rational Robot and then filling in the gaps with the pieces that need synchronization and special key codes.

During the recording process it is an extremely useful habit to insert comments as you go, particularly at points where you’ve pressed special key sequences that will need to be hand coded later on.

Synchronization

Synchronizing the terminal with the mainframe is one of the main problems encountered when creating test scripts for mainframe applications. Proper synchronization is critical to the success of the automated testing effort and failure to gain proper synchronization will result in the automated test tool feeding keystrokes to that mainframe application long before the application is ready for them. This will always result in the terminal locking up and the test failing.

Using Rational Robot to synchronize the terminal with the mainframe is very simple and involves the creation of a single, specific verification point which monitors the terminal emulators busy indicator and uses it to pause playback of scripts when it is active. The net result is that the terminal is synchronized with the application and testing may continue as normal.

The verification point used for synchronization is the Window Region Verification point (RegionVP). It is used because it enables the quick isolation of a specific portion of the window and hence the ability to monitor for specific occurrences of text or glyphs that a terminal emulator may use to indicate a busy status. The RegionVP is significantly faster than a full WindowVP and as such, is a better choice for time sensitive operations such as text that appears and disappears quickly.

Supporting multiple different terminal emulators using this method only requires that new verification points be created for the new emulator and that they be referenced in the code.

Example

The following example uses window region verification points to watch a specific portion of a terminal window status bar for the appearance of a string that indicates that the terminal is busy. Once it’s matched that it waits for it to go away. In this manner the Robot can synchronize itself with the mainframe and avoid a race condition that would cause it to toss keystrokes at a screen that was not ready for new input.

The process for establishing the verification point is to locate a screen where the busy indicator is guaranteed to appear and capture the region using the RegionVP.

The verification point being used in the sample application looks like this in the Robot Image Comparator:

[image: image5.png]Image- Sizes Copture Date
Type: [Baseline Widh: (483 Datz:[335ep03
Scale:[100 Height: 23 Time:[15.43:12
Colr: [True Color HPivels: 11247

24+

[image: image1.png]~=lolx|

Image Comparator - [Terminal Test.W:
Bl Edt Vew Tooks telp

& & & LA
® 2 @ L) =]

Mask/OCR List Difference List
Number® [Left [Top | Right | Bottom | Comment/c [Left* [Top | might [eottom | Descrption

K —|

For Help, press F1 100%

The interesting thing about this region verification point is that it is entirely blank. The captured region will be used by the sample script as a synchronization point and that region will be watched for the occurrence of any text. In this particular emulator the status bar gets the string “X-System” when it is communicating with the host or is otherwise busy.

By watching this region for something to appear and then waiting for that same thing to disappear, the script can synchronize itself with the mainframe.

Example Code – Sending keystrokes to the mainframe

Following is an example of using the user defined DoValidatedKey() function for sending keystrokes to the mainframe application under test and synchronizing prior to continuing with the next operation.

' Select view documents with comments and wait for the appropriate key to show up

 Result = DoValidatedKey("{F1}")

If(Result = 0) Then

 MsgBox("Synchronization Failure!")

 Exit Function

 End If

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=LID001;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for LID001 failed")

 End If

 ...

Example Code – Synchronizing keystrokes with the mainframe

The following function takes the passed key sequence and sends it to the application under test and then calls the WaitForIOComplete() function to return.

Function DoValidatedKey(Key As String) As Integer

 InputKeys(Key)

' Wait for the validation proves

 If(WaitForIOComplete() = 0) Then

 DoValidatedKey = 0

 UnlockTerminalSession

 Exit Function

 End If

 DoValidatedKey = 1

End Function

Example Code – Wait Function

The following function uses the defined verification points to establish synchronization with the mainframe. The same verification point is used in both of the calls below with the only difference being the expected result of the operation. The first call expects the verification point to fail and it will wait for up to 5 seconds until it does. As the verification point was recorded as a blank region, the verification point will fail if anything pops up there.

The second call to the verification point expects to succeed and will wait up to 5 seconds until it does. As the verification point was recorded as a blank region, it will fail if anything is there and will succeed when the region becomes blank again.

Function WaitForIOComplete() As Integer

 Dim Result As Integer

' Watch this region for text to appear; ExpectedResult=FAIL

 Result = RegionVP (CompareImage, "", "VP=Wait for Busy

 Region;Coords=214,547,703,570;Wait=.1,5;ExpectedResult=FAIL")

 If(Result = 0) Then

 WaitForIOComplete = 0

 Exit Function

 End if

' Now watch and wait for the region text to disappear; ExpectedResult=PASS'

 Result = RegionVP (CompareImage, "", "VP=Wait for Busy

 Region;Coords=214,547,703,570;Wait=.1,5;ExpectedResult=PASS")

 If(Result = 0) Then

 WaitForIOComplete = 0

 Exit Function

 End if

' Mark the function as complete and return

 WaitForIOComplete = 1

End Function

Validating Screen and Screen Content

Verifying that the proper screen has appeared is key to the success of the testing process and it is quite a simple matter as mainframe applications always have a unique ID associated with each screen in an application.

Validating this may be done with either a WindowVP or a RegionVP with the same effect however the WindowVP will allow for the capture of multiple items within a window within a single verification point call while a RegionVP will not. For that reason the WindowVP will be of more utility and it’s use recommended.

The process for creating the screen comparisons is to create the verification points during the initial recording process and then mask out the portions of the screen surrounding the screen ID. There should be one verification point for each screen to be validated.

The verification point being used in the sample application looks like this in the Robot Image Comparator:

 [image: image2.png]~=lolx|

Image Comparator - [Terr
Bl Edt Vew Tooks telp

& Bt & LA
® 2 @

Mask/OCR List Difference List
Number® [Loft | Top | Right | Eottom | Commen | Left* | Top | Right | Eottom | Description
2 3 0 so A
3 w3 2 s

R — | i)

Example Code – Using a screen verification point

While the Robot is playing back the test script it will call the WindowVP and if the screen matches it will succeed, otherwise it will fail. The recording process does not insert any error handling code so if you wish to branch on a failure you’ll need to add code to do it, The following example code catches failures and throws up a Message Box indicating that there has been a failure. While the results are always logged it is sometimes useful to halt the process this way, particularly during the debugging process.

...

' Login to the system

 Result = DoValidatedKey ("PROFS{ENTER}")

 Result = WindowVP (CompareImage, "Caption=(Untitled)-RUMBA Mainframe Display”,

 "VP=PROFS Main;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for PROFS Main Failed")

 End If

...

Handling the Locked Terminal Condition

If the mainframe application under test cannot accept input as fast as it’s being sent or synchronization is lost for some reason, the terminal emulator will be locked and will not accept any further input. In this case the terminal emulator must be unlocked before any further processing can occur.

Terminal emulators will always have some indicator on them which identify its locked state and using a WindowVP and masking out the regions around the area that identifies the locked state.

The verification point being used in the sample application looks like this in the Robot Image Comparator:

[image: image3.png]Prass ons of tle Fallauing keys.

n
it
)

Cantgmor ryinranace
Boa Sher

B Bont1ente>

$oaE For 1 Dosuwmenes
Sontan Infosnacion

L MINTINNGE [F2I008 [FIIINUALD RISERRCH LISISYS IKFO
(F [E€oa

The green/shaded portions of the screen are those that are masked out and therefore not used during the image compare, it is only the “X –f” at the bottom which is interesting to us at this point as it is the code that this particular emulator uses to inform the user that the terminal session is locked and must be unlocked before any further interaction with the host can occur.

Example – The unlock terminal code

The following example code uses the defined WindowVP to determine if the terminal is locked. If it is, it issues the unlock keystrokes and returns true (1) , otherwise it returns false (0).

Function UnlockTerminalSession() As Integer

Dim Result As Integer

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=Locked Terminal Code;ExpectedResult=FAIL")

 If(Result = 1) Then

 InputKeys "{LeftShift}{F11}"

 UnlockTerminalSession = 1

 End If

 UnlockTerminalSession = 0

End Function

Example – Using the Unlock function

The following example code issues a synchronized key request and then waits for the I/O to complete. If the WaitForIOComplete() function fails it calls the UnlockTerminalSession()to make sure that processing can continue after the failure.

Function DoValidatedKey(Key As String) As Integer

 InputKeys(Key)

' Wait for the validation proves

 If(WaitForIOComplete() = 0) Then

 DoValidatedKey = 0

 UnlockTerminalSession

 Exit Function

 End If

 DoValidatedKey = 1

End Function

Capturing Text for comparison

In some cases, particularly those in cases where the playback screen resolution is different in that the test was coded in, it may be better to read the actual text rather than the screen image. Note: As a general rule it is better not to change the screen resolution between recording/coding and playback but the OCR verification point will help in situations where this type of testing is required.
The process for capturing text is the same as that for setting up a WindowVP or a RegionVP with the addition of selecting the actual text to extract. The way you do it is to set up the verification point and mask out everything that is not interesting for the comparison and then press the new OCR Region button and select the text to extract.

The OCR engine is sensitive to foreground and background colors and you should take care that the options are set appropriately. Also, OCR as a general rule may not extract the exact text that’s on the screen so you may see some text that doesn’t match the image on the screen. The thing to understand is that it will make the same error every time so the comparison will do the right thing each time its done, regardless of whether it accurately matches the screen image or not.

The verification point being used in the sample application looks like this in the Robot Image Comparator:

[image: image4.png]Bl Edt Vew Tooks telp

& & & LA

Mask/OCR List Difference List
tumber* [Left [1op [Right [Bottom (mwwervl/(j teft* [Top [Right [Bottom [Description
1 a7 2 42 2% WallL DaTa.

3 oo om ez W .

X o & e a .

The practice of extracting text from a screen image can validate specific text values which the comparator can work with. If the values change the comparison will fail in exactly the same manner as an image compare would except that the difference list would reflect the text change rather than an image region change in the difference list.

OCR verification points are naturally a bit slower than standard image comparisons and therefore should only be used in non-timing critical circumstances.

Example – Using the OCR Verification Point

The following example code calls a WindowVP which contains an OCR verification point to verify that the Screen ID is the proper one

...

' Check the actual text value of the screen ID/Demonstration purposes only

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=Verify PROFS;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for Verify PROFS failed")

 End If

...

Generating low level keystrokes with the Robot

Mainframe terminals may use some specific key sequences which mean special things to the mainframe application, for example:

	Key
	PC Mapping

	ENTER

	Return or Enter

	RESET

	Left Control

	
	

	PA1
	PageUp

	PA2

	PageDown

	PA3

	Shift Ctrl F3

	CLEAR

	Scroll Lock

	SYS REQ

	SysReq

	ATTENTION

	Shift SysReq

	
	

	DUP

	Ctrl D

	FIELD MARK
	Ctrl F

	
	

	ERASE TO EOF

	End

	ERASE FIELD

	Shift End

	ERASE INPUT

	Shift Ctrl Delete

	
	

	MOVE TO END OF INPUT

	Ctrl Tab

	MOVE TO NEXT WORD

	Ctrl Right Arrow

	MOVE TO PREVIOUS WORD

	Ctrl Left Arrow

In addition, the mainframe may assign different meanings to the left and right CTRL, SHIFT, ALT and numeric keypad number keys.

In many cases, Rational Robot cannot record the appropriate sequences however, they may be scripted directly. While this requires that portions of the terminal session be coded rather than recorded, it does enable the test to be richly scripted using the InputKeys function to the desired effect.

During the recording process it is an extremely useful habit to insert comments as you go, particularly at points where you’ve pressed special key sequences that will need to be hand coded later on. It is also useful to begin each of your comments with a specific keyword, such as SpecialKey, that you can search for when it comes tome to do some editing. Once you’ve completed the process it becomes a simple matter to go back into the script and enter the specific sequences identified in the comment.

Example – Issuing special keystrokes

The following example Issues a set of keystrokes which would not normally be recorded by Rational Robot.

 ...

If(Result = 1) Then

 InputKeys "{LeftShift}{F11}"

 End If

...

Appendix A – Keyboard mappings

	Key
	Robot Mapping

	Modifiers

	CTRL
	{Ctrl}

	Right CTRL
	{RightCtlr}

	Left CTRL
	{LeftCtrl}

	ALT
	{Alt}

	Right ALT
	{RightAlt}

	Left ALT
	{LeftAlt}

	SHIFT
	{Shift}

	Right Shift
	{RightShift}

	Left SHIFT
	{LeftShift}

	Lock Keys

	CAPS Lock
	{CapsLock}

	NUM Lock
	{NumLock}

	SCROLL Lock
	{ScrollLock}

	Extended Keys

	Extended Delete
	{ExtDelete}

	Extended Insert
	{ExtInsert}

	Extended End
	{ExtHome}

	Extended Page Up
	{ExtEnd}

	Extended Page Up
	{ExtPgUp}

	Extended Page Down
	{ExtPgDn}

	Extended Left Arrow
	{ExtLeft}

	Extended Right Arrow
	{ExtRight}

	Extended Up Arrow
	{ExtUp}

	Extended Down Arrow
	{ExtDown}

	Numeric Keypad
	

	Numeric *
	{Num*}

	Numeric /
	{Num/}

	Numeric +
	{Num+}

	Numeric ~ (Same as Numeric Enter}
	{Num~}

	Numeric Enter
	{NumEnter}

	Numeric 0
	{Num0}

	Numeric 1
	{Num1}

	Numeric 2
	{Num2}

	Numeric 3
	{Num3}

	Numeric 4
	{Num4}

	Numeric 5
	{Num5}

	Numeric 6
	{Num6}

	Numeric 7
	{Num7}

	Numeric 8
	{Num8}

	Numeric 9
	{Num9}

	Numeric .
	{Num.}

	Numeric -
	{Num-}

	Numeric Delete
	{NumDelete}

	Numeric Insert
	{NumInsert}

	Numeric Home
	{NumHome}

	Numeric End
	{NumEnd}

	Numeric Page Up
	{NumPgUp}

	Numeric Page Down
	{NumPgDn}

	Numeric Left Arrow
	{NumLeft}

	Numeric Right Arrow
	{NumRight}

	Numeric Up Arrow
	{NumUp}

	Numeric Down Arrow
	{NumDown}

Appendix B – Buzzwords

HLLAPI

Short for High Level Language Application Program Interface, an IBM API that allows a PC application to communicate with a mainframe computer. HLLAPI requires a PC to run 3270 emulation software and then defines an interface between a PC application and the emulation software. This API is also called screen-scraping because the approach uses characters that would otherwise be displayed on a terminal screen.

TP Monitor

Short for transaction processing monitor, a program that monitors a transaction as it passes from one stage in a process to another. The TP monitor's purpose is to ensure that the transaction processes completely or, if an error occurs, to take appropriate actions.

TP monitors are especially important in three-tier architectures that employ load balancing because a transaction may be forwarded to any of several servers. In fact, many TP monitors handle all the load balancing operations, forwarding transactions to different servers based on their availability.

EHLLAPI

Short for Direct Emulator High-Level Language Application Programming Interface allows C programs to interact with 3270 terminal sessions. A program written with this interface can define sessions, connect to host computers, and do all the things a human operator can do. It can perform any well-defined sequence of 3270 session activities. It can automate a series of file uploads and downloads, query a mainframe database and copy selected data, and monitor mainframe performance or activity. It can copy data from one mainframe session to another and it can transfer files between workstations and a mainframe using the host-based file transfer program.

CICS
Short for Customer Information Control System, a TP monitor from IBM that was originally developed to provide transaction processing for IBM mainframes. It controls the interaction between applications and users and lets programmers develop screen displays without detailed knowledge of the terminals being used.

CICS is also available on non-mainframe platforms including the RS/6000, AS/400 and OS/2 -based PCs.

LU6.2

Short for Logical Unit type 6.2, IBM's open networking standard and API enhancement to SNA. Supports peer-to-peer communication and program to program communications.

A logical unit is a session on a terminal and defines the operations and responses for one half-session, which may be a terminal or a program on a PC or mainframe that communicates with another half-session elsewhere.

Sometimes called APPC. Short for Advanced Program to Program Communications.
VTAM

Short for Virtual Telecommunications Access Method, the software component that controls communications in Systems Network Architecture (SNA) networks. VTAM supports several network protocols, including SDLC and Token Ring.

MVS

Short for Multiple Virtual Storage, the operating system for older IBM mainframes. MVS was first introduced in 1974 and continues to be used, though it has been largely superseded by IBM's newer operating system, OS/390.

3270

The type of fixed-function computer terminals used with IBM mainframe computers.

5250

The type of fixed-function computer terminal used with IBM's AS/400 minicomputers.

AS/400

Short for Application System/400, a line of IBM minicomputers introduced in 1988 and still popular today. Whereas most other minicomputer vendors have seen their market eroded by PCs and client/server systems, IBM has had reasonable success with its AS/400 series.

OS/400

The Operating System for the AS/400

VT 100

VT 100 is a particular standard of Terminal Emulation.

Batch Processing

Executing a series of non-interactive jobs all at one time. The term originated in the days when users entered programs on punch cards. They would give a batch of these programmed cards to the system operator, who would feed them into the computer.

Usually, batch jobs are stored up during working hours and then executed during the evening or whenever the computer is idle. Batch processing is particularly useful for operations that require the computer or a peripheral device for an extended period of time. Once a batch job begins, it continues until it is done or until an error occurs. Note that batch processing implies that there is no interaction with the user while the program is being executed.

The opposite of batch processing is transaction processing or interactive processing. In interactive processing, the application responds to commands as soon as you enter them.

Appendix C – Complete Sample Source Code

The following script is one which effectively drives a mainframe application using Rational Robot. Portions of this script will be called out in the following section to demonstrate the specific functionality that enables mainframe application testing via a terminal emulation program running on a PC. All of the following code is generic enough to be applied to most any terminal emulation package available with the recording of new verification points.

'\/\

'

' Initially Recorded: 8/31/1999 2:05:19 PM

' Script Name: Terminal Test

' Author: Pete Jenney

' Copyright (c) 1999 by Rational Software

'

' Verification Points:

' Screen VP

' AAA000
 - Validate first menu screen (RegionVP)

' FID001
 - Validate Search Screen {RegionVP)

' Verify PROFS - Validate PROFS Main Screen
 (OCR/RegionVP)

' LID001
 - Validate document list screen (RegionVP)

' VID000-1
 - Validate 1st document screen (RegionVP)

' VID000-2
 - Validate 1st document screen (RegionVP)

'

' Synchronization VP

' Wait for Busy Region - Wait for "BUSY" Text appearance (Uses

' Expected=Pass/Fail)

' Locked Terminal Code - Look for a "TERMINAL LOCKED" code (WindowVP)

'

'\/\

'===

' UnlockTerminalSession()

'

' Send the appropriate keys to unlock the emulator after

' an error. Most emulators will lock up if keys are being

' sent too quickly. This function checks to see if the codes

' indicating a lock are in the status bar and then sends the

' appropriate keystrokes to unlock it.

'===

Function UnlockTerminalSession() As Integer

Dim Result As Integer

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=Locked Terminal Code;ExpectedResult=FAIL")

 If(Result = 1) Then

 InputKeys "{LeftShift}{F11}"

UnlockTerminalSession = 1

 End If

 UnlockTerminalSession = 0

End Function

'===

' WaitForIOComplete()

'

' Wait on the "Busy" message in the status bar.

'

' The first call waits until the "Busy" message appears and

' the next waits until it goes away.

'

' This mechanism is effective when synchronizing a user request

' with the mainframe's response. Most terminal emulators will

' have a similar mechanism for communicating the mainframes I/O

' status and can be considered reliable.

'==='

Function WaitForIOComplete() As Integer

 Dim Result As Integer

‘ Watch this region for text to appear; ExpectedResult=FAIL

 Result = RegionVP (CompareImage, "", "VP=Wait for Busy

Region;Coords=214,547,703,570;Wait=.1,5;ExpectedResult=FAIL")

 If(Result = 0) Then

 WaitForIOComplete = 0

 Exit Function

 End if

' Now watch and wait for the region text to disappear; ExpectedResult=PASS'

 Result = RegionVP (CompareImage, "", "VP=Wait for Busy

Region;Coords=214,547,703,570;Wait=.1,5;ExpectedResult=PASS")

 If(Result = 0) Then

 WaitForIOComplete = 0

 Exit Function

 End if

' Mark the function as complete and return

 WaitForIOComplete = 1

End Function

'===

' DoValidateKey()

'

' Send the passed keys to the application and then call

' WaitOnIOComplete(). When this call completes the transfer

' will be complete and user processing may continue.

'===

Function DoValidatedKey(Key As String) As Integer

 InputKeys(Key)

' Wait for the validation proves

 If(WaitForIOComplete() = 0) Then

 DoValidatedKey = 0

 UnlockTerminalSession

 Exit Function

 End If

 DoValidatedKey = 1

End Function

'===

' Main()

'

' Exercise the mainframe application via an emulator

'===

Sub Main

 Dim Result As Integer

 StartApplication """D:\Terminal Emulator\TERMINAL.EXE"""

 Window SetContext, "Caption=Testbed for Windows V1.00", ""

 MenuSelect "Session->Connect..."

 Window SetContext, "Caption=Testbed for Windows V1.00 Connected", ""

' Login to the system

 Result = DoValidatedKey ("QA{ENTER}")

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=AAA000;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for AAA000 Failed")

 End If

' Select the memo/e-mail document archive

 DoValidatedKey("{F4}")

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=FID001;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for FID001 Failed")

 End If

' Enter the text to search for

 InputKeys "{TAB}{TAB}{TAB}{TAB}{TAB}london"

' Select the menu and wait for the appropriate key to show up

 Result = DoValidatedKey("{F2}")

' Check the actual text value of the screen ID/Demonstration purposes only

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=Verify PROFS;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for Verify PROFS failed")

 End If

' Select view documents with comments and wait for the appropriate key to show up

 Result = DoValidatedKey("{F1}")

If(Result = 0) Then

 MsgBox("Synchronization Failure!")

 Exit Function

 End If

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=LID001;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for LID001 failed")

 End If

 ' Select the first message and wait for the appropriate key to show up

 Result = DoValidatedKey("{F1}")

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=VI000-1;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for VI000-1 failed")

 End If

' Jump back to the item selection window

 Result = DoValidatedKey("{ESCAPE}")

' Select the second message and wait for the appropriate key to show up

 Result = DoValidatedKey("{F2}")

 Result = WindowVP (CompareImage, "Caption=Testbed for Windows V1.00 Connected",

 "VP=VI000-2;Wait=2,30")

 If(Result = 0) Then

 MsgBox ("Wait for VI000-2 failed")

 End If

 Window CloseWin, "", ""

End Sub

Appendix D – Synchronizing via HLLAPI

Rational Robot may be used to synchronize with mainframe applications using the HLLAPI interface provided by the various terminal emulator vendors. This code needs to be implemented for any terminal emulator that will be supported. As described in the previous pages, this mechanism requires significant maintenance by the end user and is not the recommended best practice.

The following code implements HLLAPI Support for the IBM Client Access/400 Emulator. The code is for demonstration purposes and will need to be modified for the intended environment though it is known to work with Access/400.

Header Files

'**** IBM Elite/400 (hllELIT4.sbh).

Global gCursorRow as Integer

Global gCursorCol as Integer

Global gHLLData as String

Global gHLLLength as Long

Global gHLLReturnCode as Long

Global gHLLFunc as Long

Global gDummy as Long

Declare Function hllapi Lib "PCSHLL32.DLL" (Func As Long, _

 ByVal DataString As String, Length As Long, RetC As Long) as Long

'**** General HLLAPI (HLLAPI.sbh)

Declare Sub SetSession BasicLib "HLLAPI" (pSession as String)

Declare Function GetSession BasicLib "HLLAPI" () As String

Declare Sub SysConnect BasicLib "HLLAPI" ()

Declare Sub SysReset BasicLib "HLLAPI" ()

Declare Sub SysWait BasicLib "HLLAPI" ()

Declare Function ReadPS BasicLib "HLLAPI" (pRow As Integer, _

 pCol As Integer, pLen As Integer) As String

Declare Function CheckPS BasicLib "HLLAPI" (pRow As Integer, _

 pCol As Integer, pCheckStr As String) As Integer

Declare Function SetCursor BasicLib "HLLAPI" (pRow As Integer, _

 pCol As Integer) As Integer

Declare Function GetCursor BasicLib "HLLAPI" () As Integer

Declare Function GetPosi BasicLib "HLLAPI" () As Integer

Declare Function Search BasicLib "HLLAPI" (pTarget as String) As Integer

Declare Function SendKey BasicLib "HLLAPI" (pKey As String) As Integer

Declare Function ResetKey BasicLib "HLLAPI" () As Integer

Declare Function FieldExit BasicLib "HLLAPI" () As Integer

Declare Function KeyEnter BasicLib "HLLAPI" () As Integer

Declare Function FieldMinus BasicLib "HLLAPI" () As Integer

Declare Function FKey BasicLib "HLLAPI" (pKeyNum As Integer) As Integer

Declare Function F11 BasicLib "HLLAPI" () As Integer

Sample Code

OPTION EXPLICIT

Global gSessionID As String

Const cHLLConnect = 1

Const cHLLResetSys = 21

Const cHLLWaitForSys = 4

Const cHLLSetCursor = 40

Const cHLLGetCursor = 7

Const cHLLReadPS = 8

Const cHLLSendKey = 3

'** Select one Specific Emulator Include File

'--

'** IBM's Client Access/400

'****$Include: "hllCLAC4.sbh"

'** Elite/400.

'$Include: "hllELIT4.sbh"

'** External Declares

'--

'** Internal Routine Forward Declares

'--

Declare Function SendKey(pKey As String) As Integer

Declare Function ReadPS(pRow As Integer, pCol As Integer, pLen As Integer) _

As String

'--

Sub SetSession(pSession as String)

 gSessionID = pSession

End Sub

'--

Function GetSession() As String

 GetSession = gSessionID

End Function

'--

Sub SysConnect()

 gHLLData = GetSession

 gHLLLength = Len(GetSession)

 gHllReturnCode = 0

 gHLLFunc = cHLLConnect

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 'MsgBox "Could Not ConnectSys to Session", 0 + 16

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 End If

 If (gHllReturnCode <> 0) Then

 MsgBox "gHllReturnCode = " & gHllReturnCode

 MsgBox "Could Not ConnectSys to Session", 0 + 16

 End If

End Sub

'--

Sub SysReset()

 gHLLData = ""

 gHLLLength = 0

 gHllReturnCode = 0

 gHLLFunc = cHLLResetSys

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 MsgBox "Error when Trying ResetSys()", 0 + 16

 End If

End Sub

'--

Sub SysWait()

 gHLLData = ""

 gHLLLength = 0

 gHllReturnCode = 0

 gHLLFunc = cHLLWaitForSys

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying WaitForSys()", 0 + 16

 End If

End Sub

'--

Function SetCursor(pRow As Integer, pCol As Integer)

 gHLLData = ""

 gHLLLength = 0

 gHllReturnCode = (pRow - 1) * 80 + pCol

 gHLLFunc = cHLLSetCursor

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Cursor", 0 + 16

 End If

End Function

'--

Function GetCursor()

 gHLLData = ""

 gHLLLength = 0

 gHllReturnCode = 0

 gHLLFunc = cHLLGetCursor

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Cursor", 0 + 16

 End If

 gCursorRow = (gHLLLength/80) + 1

 gCursorCol = gHLLLength Mod 80

 GetCursor = 0

End Function

'--

Function GetPosi()

 gHLLData = ""

 gHLLLength = 0

 gHllReturnCode = 0

 gHLLFunc = cHLLGetCursor

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Cursor", 0 + 16

 End If

 gHLLData = GetSession & "P"

 gHllReturnCode = gHLLLength

 gHLLLength = 0

 gHLLFunc = 99 '** What is 99??

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 If (gHllReturnCode = 0) Or (gHllReturnCode > 9997) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Posi", 0 + 16

 End If

 gCursorRow = gHLLLength

 gCursorCol = gHllReturnCode

 GetPosi = 0

End Function

'---

'

' Searches the current presentation space for a String

' Returns the Return Code = 0 for successful

' Returns the Return Code = 24 for unsuccessful

'

'---

Function Search(pTarget as String) As Integer

 Dim Row, Col

 gHLLData = ""

 gHLLFunc = 6 '** What is 6??
 gHLLLength = Len(pTarget)

 '**gHllReturnCode = (Row - 1) * 80 + Col

 gHllReturnCode = 0

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 Select case gHllReturnCode

 Case 0 ' OK
 Case 1 ' No session

 MsgBox "Search: No Session", 16

 Case 2 ' Parameter error
 MsgBox "Search: Parameter error", 16

 Case 7 ' Invalid PS position
 MsgBox "Search: Invalid PS position", 16

 Case 9 ' System error
 MsgBox "Search: System error", 16

 Case 24 'OK

 Case Else ' Unknown result code
 MsgBox "ReadPS: Unknown return code " & gHllReturnCode, 16

 End Select

End Function

'--

'

' Returns a string of length pLen from the current presentation space

' at start position given by pRow and pCol

'

'--

Function ReadPS(pRow As Integer, pCol As Integer, pLen As Integer) As String

 Dim TheString$, TheChar$, OutString$

 Dim TheCharVal

 Dim cntin As Integer, cntout As Integer

 gHLLData = Space$(pLen*8)

 gHLLFunc = cHLLReadPS

 gHLLLength = pLen * 2

 gHllReturnCode = (pRow - 1) * 80 + pCol

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 Select Case gHllReturnCode

 Case 0 ' OK
 Case 1 ' No session
 MsgBox "ReadPS: No Session", 16

 Case 2 ' Parameter error
 MsgBox "ReadPS: Parameter error", 16

 Case 4 ' Data retrieved, awaiting host
 Case 5 ' Data retrieved, keyboard locked
 Case 7 ' Invalid PS position

 MsgBox "ReadPS: Invalid PS position", 16

 Case 9 ' System error

 MsgBox "ReadPS: System error", 16

 Case Else ' Unknown result code
 MsgBox "ReadPS: Unknown return code " & gHllReturnCode, 16

 End select

 OutString$ = ""

 cntin = 1

 cntout = 0

 Do

 TheChar$ = Mid$(gHLLData, cntin,1)

 If ASC(TheChar$) < 128 then

 If ASC(TheChar$) = 0 then

 TheChar$ = " "

 End If

 cntout = cntout + 1

 OutString$ = OutString$ & TheChar$

 End If

 cntin = cntin + 1

 Loop Until (cntout = pLen) or (cntin = pLen * 2)

 ClipBoard.SetText OutString$

 ReadPS = OutString$

End Function

'--

Function CheckPS(pRow As Integer, pCol As Integer, pCheckStr As String) As Integer

 If ReadPS(pRow, pCol, Len(pCheckStr)) = pCheckStr Then

 CheckPS = 1

 Else

 CheckPS = 0

 End If

End Function

'--

Function SendKey(pKey As String) As Integer

 gHLLData = pKey

 gHLLLength = Len(gHLLData)

 gHllReturnCode = 0

 gHLLFunc = cHLLSendKey

 gDummy = hllapi(gHLLFunc, byval gHLLData, gHLLLength, gHllReturnCode)

 SendKey = gHllReturnCode

End Function

'--

Function FieldExit()

 gHLLData = "@A@E"

 gHllReturnCode = SendKey(gHLLData)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Field Exit", 0 + 16

 End If

End Function

'--

Function EnterKey()

 gHLLData = "@E"

 gHllReturnCode = SendKey(gHLLData)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying ENTER", 0 + 16

 End If

End Function

'--

Function ResetKey()

 '**MenuSelect "Tools->PowerKeys..."

 '**Window SetContext, "Caption=PowerKeys", ""

 '**PushButton Click, "Text=Reset"

 '**Window CloseWin, "", ""

 gHLLData = "@R"

 gHllReturnCode = SendKey(gHLLData)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Reset" & _

 gHLLFunc & " | " & gHLLData & " | " & gHLLLength & " | ", 0 + 16

 End If

End Function

'--

Function FKey(pKeyNum As Integer)

 Dim Hll$

 If pKeyNum < 10 Then

 Hll$ = "@" + Str(pKeyNum)

 End If

 If pKeyNum > 10 Then

 Hll$ = "@" + Chr(Asc("a") + pKeyNum - 10)

 End If

 gHLLData = Hll$

 gHllReturnCode = SendKey(gHLLData)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Reset", 0 + 16

 End If

End Function

'--

Function FieldMinus()

 gHLLData = "@A@-"

 gHllReturnCode = SendKey(gHLLData)

 If (gHllReturnCode <> 0) Then

 MsgBox "Code " & gHllReturnCode & " when Trying Field Minus", 0 + 16

 End If

End Function

'--

Function F11()

 '**gHLLData = "@b"

 FKey 11

End Function

Appendix E – Mainframe Terminal Emulator Vendors

There are several very fine terminal emulation packages available today for the Windows desktop environment. Rather than exploring each and every one of them in turn, we will examine the two that have the largest market share.

Attachmate

Company Overview

Attachmate is the leading supplier of enterprise information access and management software and services to major corporations and government agencies worldwide. Eighty percent of the Fortune 500 and Global 2000 companies trust Attachmate® products to manage access to their mission-critical host applications and databases.

www.attachmate.com/
Attachmate is the largest of the emulator suppliers with the lion’s share of the market. One of their largest customers is CIGNA Corp, a Fortune 500 company, www.cigna.com who have in excess of 10,000 Attachmate Extra users.

Recently, Attachmate released a new version of their emulator that caused some testing tools to stop working with it. One tool vendor took 3 months to resolve the problem.

Robot’s OCR technology means that changes to the emulator will not effect the running of test scripts and verification points because Robot does not rely on the API.

Rumba

Company Overview

RUMBA software products from Wall Data offer powerful host access solutions for Web-to-Host, Server-Based (Thin Client), and PC-to-Host environments, enabling users to quickly access mission-critical applications and data residing on virtually any host system.

www.rumba.com/
RUMBA is probably the second largest player in the field and has a big following.

In certain cases RUMBA does not display a busy indicator. In this case it will use a keyboard buffer to allow “type ahead” by the user. In cases such as this Robot will need to wait until each individual screen change occurs.

NetManage/NetSoft

Company Overview

NetManage, Inc. develops and markets PC networking software for medium and large businesses. Today the company's products are used in 90 percent of Fortune 100 organizations and in more than 55 countries. The company is headquartered in Cupertino, California, with additional offices in the United States, Israel, France, Germany, Italy, Japan, Spain, and the United Kingdom.

www.netmanage.com/
References

Using Rational Robot, Copyright © 1998 by Rational Software

SQA Basic Language Reference, Copyright © 1998 by Rational Software

Target Text

Masked Region

Watched Region at the bottom of the screen and yes, it’s blank

Absolute size of the captured region

Region to extract text from.

Window region mask

Extracted Text

Region to compare

Masked out area (Ignored)

-- 28 --
Copyright © 1999 By Rational Software

All rights resrved

