
Introducing the PurifyPlus Family:

· PurifyPlus for Windows

· PurifyPlus for UNIX

· PurifyPlus for Linux

· PurifyPlus RealTime
Product version 2002 Release 2

Last revision: August 2, 2002

High level overview:
A. Intro – an introduction to the document
B. Pains in software development
C. Rational’s Runtime Analysis Solution
D. Summary
Table Of Contents:

A) Intro
B) Software development pains
1. Reliability problems

2. Performance and scalability problems

3. Durability problems

C) Rational’s solution for Runtime Analysis
1. What is Rational PurifyPlus?
2. What runtime analysis capabilities are available in Rational PurifyPlus and on what platforms?
2.1
High level overview of runtime capabilities
3.
What are the differences between PurifyPlus for Linux, PurifyPlus for UNIX and PurifyPlus for Windows?
3.1
Technology overview
3.1.1
Technology for C/C++ applications
3.1.2
Technology for Java applications
3.1.3
Technology for Visual Basic applications
3.1.4
Technology for .NET managed code applications
3.1.5
User interface and product integrations
3.2
In depth comparison of runtime analysis features
3.2.1
Memory Profiling
Memory error checking and profiling for C/C++ applications
Memory profiling for Java
Memory profiling for .NET managed code applications
3.2.2
Performance profiling
3.2.3
Thread profiling
3.2.4
Code coverage analysis
3.2.5
Runtime Trace
3.3
What are the differences in licensing models between the members of PurifyPlus Family?
D) Summary
A) Intro:
The purpose of this document is to introduce the Rational PurifyPlus Family of products. Some of you may have already gained experience with PurifyPlus on the UNIX and the Windows platforms, but now this Family has grown to other platforms: Linux (with PurifyPlus for Linux) and various other host and embedded targets (with PurifyPlus RealTime). The problems in software development that the PurifyPlus Family of tools help to solve are the same on all supported platforms; however, the approach to these problems may vary depending on the operating system. Even PurifyPlus for Windows and PurifyPlus for UNIX don’t share the same scope of capabilities across their target platforms. In this document you will first find an introduction to runtime analysis and the description of pains in software development targeted with this practice. This introduction to runtime analysis is then accompanied with the high level overview of the technical concepts of the PurifyPlus Family, followed with a detailed, in-depth comparison of the Family products.

This document is created for all people who work with PurifyPlus on a daily basis, both within and outside Rational. If you have any questions about this document, please send an e-mail to support@rational.com and we will try to help you.

Yours truly,

PurifyPlus Team

B) Software development pains

What are the pains in software development that can be addressed with the help of runtime analysis tools (differentiated by language when relevant)?

Runtime analysis is the practice aimed at understanding application behavior using data collected during its execution. Often associated with debugging, runtime analysis can also be used with any variety of testing methods to proactively uncover and diagnose:

· Reliability problems

· Performance and scalability problems

· Durability problems
1. Reliability problems
The C/C++ programming language allow programmers to directly access and manipulate memory allocated by the application, thus creating an environment in which memory corruption errors and memory leaks can occur.
Examples of memory corruption errors are dangling pointers to freed memory, array bounds writes and reads, uninitialized memory reads, etc. Such corruption can lead to unpredictable, incorrect application behavior, typically ending in a crash.
Parts of an application that were not executed can hide memory and performance related problems, not to mention defects in functionality. In order for the application and its components to be thoroughly evaluated for all aspects of quality, all components of the application need to be exercised thoroughly. Execution paths for each use case simulated by a test suite must be clearly marked to ensure untested methods and uncovered lines of code are known.

What sequence of events occur as the application executes? Does it call the correct methods and do these methods execute in the correct order? What objects are created, when are they destructed, how do they interact, were there any exceptions raised? Only in trivial applications is it easy to follow the exact execution path and quickly spot the call chains that were not expected in the design of the application. Wrong execution paths can lead to both malfunctioning of the developed application and to performance and scalability problems.

2. Performance and scalability problems
Bad performance of an application is also known as the “ultimate bug”. Usually, bad performance is understood as the side effect of an inefficient algorithm in the application, but it can also happen due to some logical error (e.g. calling a certain method too often) or due to bad synchronization of the components of the application. The consequences of performance related problems can reflect in poor usability of the application, but also in malfunctioning, or inability to accommodate a need for introducing new features, or to allow a larger number of users to access the application simultaneously. The software development activity associated to solving performance and scalability problems is often referred to as “profiling”. Successful profiling demands both a detailed and high-level understanding of how the application behaves, and how that differs from the way it was expected to behave.

Multithreading allows developers to split the execution of the application in a number of virtually parallel sequences that enable a much smoother and faster application. For example, your favorite office programs render newly selected spellcheck toolbars while you’re writing the text. However multithreading is demanding because, without care, the application can become the unsuspecting victim of intermittent hangs, data corruption or performance degradation due to deadlocks, race conditions and thread starvation.

3. Durability problems

Memory leaks occur when memory is allocated in the dynamic storage (heap) but is not explicitly released back to the system by the application, resulting in unnecessary memory overhead. This can slow performance due to virtual memory swapping/thrashing, and eventually cause unpredictable, incorrect application behavior when memory is exhausted.

In Java and .NET managed code, classic memory corruption leaks errors are not possible due to the automatic memory management (i.e. garbage collection) that controls all the memory allocation and cleans from memory all unused objects lacking that are no longer referenced. Furthermore, in Java and .NET managed applications, it is not possible to directly access the objects and structures in memory thus preventing memory access corruption errors like array bounds violations (ABW – Array Bounds Write or ABR – Array Bounds Read), known to occur in native C/C++ applications. However, a developer can mistakenly leave a reference to an object in memory while believing that this object will be cleared. Such an error can result in excessive memory overhead and is therefore referred to as a memory leak as well, with the same results: degraded performance and eventual incorrect operation.

C) Rational’s solution for Runtime Analysis

1. What is Rational PurifyPlus?

PurifyPlus is a Family of Rational solutions providing runtime analysis functionality to software developers and testers. The PurifyPlus Family consists of the following members:

· Rational PurifyPlus for UNIX

· Rational Purify for UNIX
· Rational Quantify for UNIX
· Rational PureCoverage for UNIX

· Rational PurifyPlus for Windows

· Rational Purify for Windows
· Rational Quantify for Windows
· Rational PureCoverage for Windows
· Rational PurifyPlus for Linux
· Rational PurifyPlus RealTime
PurifyPlus for Linux and PurifyPlus RealTime are the newest members of the PurifyPlus Family, first released with v2002 Release 2in August 2002.

The idea behind the Rational PurifyPlus Family is to provide the best and the most complete runtime analysis solution available on the market. The development activities covered with the PurifyPlus Family of products are the following:

· Memory corruption detection and memory profiling in native C/C++ applications
· Memory profiling in Java and .NET managed code applications

· Performance Profiling

The development activity that deals with isolating and analyzing the performance hotspots of an application with the intention of removing dominant hotspots and improving the overall performance of the application is called performance profiling. This activity answers questions like: “Where is my application slow?” and helps answer questions like “Why is it slow?” and “How can I improve the performance?”.

· Thread Profiling

Thread profiling inspects and prevents intermittent hangs, data corruption or performance degradation due to deadlocks, race conditions and thread starvation. It is important to synchronize the threads carefully and to find a way to detect and analyze multithreading conditions as they occur.

· Code coverage analysis

· Runtime tracing

2. What runtime analysis capabilities are available in the Rational PurifyPlus Family of products, sorted by platform?
2.1 High level overview of runtime capabilities:

Terms used in the table:

.NET – managed code, e.g. Visual C#, Visual Basic.NET and managed Visual C++ 7

Java – Java 2 SE SDKs

VB – Visual Basic 6.0 p-code and native compiled VB executables

	
	
	Windows
	Solaris
	HP-UX
	Linux
	AIX*
	Embedded

	Memory corruption detection
	C/C++
	YES
	YES
	YES
	NO
	NO
	NO

	Memory leak detection
	C/C++
	YES
	YES
	YES
	YES
	YES
	YES

	
	Java
	YES
	NO
	NO
	YES
	YES
	YES

	
	.NET
	YES
	-
	-
	-
	-
	-

	Performance profiling
	C/C++
	YES
	YES
	YES
	YES
	YES
	YES

	
	Java
	YES
	YES
	NO
	YES
	YES
	YES

	
	.NET
	YES
	-
	-
	-
	-
	-

	
	VB
	YES
	-
	-
	-
	-
	-

	Thread analysis
	C/C++
	YES
	NO
	NO
	YES
	YES
	YES

	
	Java
	YES
	NO
	NO
	YES
	YES
	YES

	
	.NET
	YES
	-
	-
	-
	-
	-

	
	VB
	YES
	-
	-
	-
	-
	-

	Runtime Tracing
	C/C++
	NO
	NO
	NO
	YES
	YES
	YES

	
	Java
	NO
	NO
	NO
	YES
	YES
	YES

	
	.NET
	NO
	-
	-
	-
	-
	-

	Code coverage
	C/C++
	YES
	YES
	YES
	YES
	YES
	YES

	
	Java
	YES
	NO**
	NO
	YES
	YES
	YES

	
	.NET
	YES
	-
	-
	-
	-
	-

	
	VB
	YES
	-
	-
	-
	-
	-

*IBM AIX platform is supported in PurifyPlus RealTime. Although P+RealTime is designed for embedded targets, it can also support native software testing as well – necessary, for example, if the customer wants to test his/her code within a simulator. Rational does not have a PurifyPlus solution explicitly for the AIX platform, but since P+RealTime supports AIX as an install platform, P+RealTime can be used to test native applications on AIX as well.
** Code coverage analysis for Java on Solaris to enter Beta in PurifyPlus for UNIX in September 2002 (Status August 2002)

3. Rational has four PurifyPlus editions, each targeting a particular host environment. Although all tackle runtime analysis, the methods used are not always the same from one product to the next. What are the differences between PurifyPlus for Linux, PurifyPlus RealTime, PurifyPlus for UNIX and PurifyPlus for Windows?

PurifyPlus for Linux and PurifyPlus RealTime share the same code base, the same user interface and provide the same set of capabilities. PurifyPlus for UNIX, PurifyPlus for Windows and PurifyPlus for Linux/RealTime do NOT share the same code base, nor the same user interface nor the same set of capabilities on their respective platforms. All, however, help overcome the pains of software development. Here is the in-depth overview of features of the different PurifyPlus Family members:

Glossary:

Runtime analysis:
A practice aimed at understanding application behavior using data collected during its execution

PUT:
Program Under Test – the application being examined by the runtime analysis tool

Instrumentation:
The process of inserting additional instructions into source code, object files, executable images, or byte streams of the tested PUT in order to collect data from the instrumented application PUT during runtime

OCI:
Object Code Insertion – Rational patented technology for performing runtime analysis of native applications. The instrumentation is performed on object files or executable files, depending on the platform, and doesn’t require source code or re-compilation

BCI:
Byte Code Insertion – Rational’s technology of instrumenting Java byte code and .NET Intermediate Language with the purpose of collecting runtime analysis data during the execution of the instrumented code.

SCI:
Source Code Insertion – runtime analysis technology that instruments source files; requires compilation.

TDP:
Target Deployment Port – Enables usage of runtime analysis functionality on embedded targets

JVM:
Java Virtual Machine

J2ME:
Java 2 Micro Edition

J2SE:
Java 2 Standard Edition

J2EE:
Java 2 Enterprise Edition

JVMPI:
Java Virtual Machine Profiling Interface – A public interface to the JVM that enables collection of runtime analysis data for Java programs running through the JVM

.NET CLR:
.NET Common Language Runtime

3.1 Technology overview:

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Rational’s runtime analysis solution for UNIX operating systems. Based on OCI and BCI technology.
	Rational’s runtime analysis solution for Windows operating systems. Based on OCI and BCI technology.
	Rational’s runtime analysis solution for Linux operating systems. Based on SCI technology.
	Rational’s runtime analysis solution for embedded development environments and target platforms. Based on SCI technology.

	Supported development platforms:

SPARC Solaris 2.6, 7,8
PA-RISC HP-UX 10.20, 11.0, 11.i
	Supported development platforms:

Intel x86 Windows NT4 sp6a
Windows 2000 (all)

Windows XP Professional
	Supported development platforms:

Intel x86 Red Hat Linux 7.0, 7.2
SuSe Linux 7.2, 7.3
	Supported development platforms:

Intel x86 Windows NT4 sp6, Windows 2000 Pro, Windows XP Pro
SPARC Solaris 2.6, 7, 8
PA-RISC HP-UX 10.2, 11.i
PowerPC AIX 4.3, 5L (v5.1)
Intel x86 Red Hat Linux 7.0, 7.2
SuSe Linux 7.2, 7.3

	Supported target platforms:

The same as the listed development platforms.
	Supported target platforms:

The same as the listed development platforms.
	Supported target platforms:

The same as the listed development platforms.
	Supported target platforms:

Wide range of target platforms available through custom TDPs including IBM AIX and 8- to 64-bit runtimes. For more information about the TDP technology, check the PurifyPlus RealTime User Guide and Reference Manual.

	3.1.1. Technology for C/C++ applications

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Instruments object files, requires linking.

The whole PUT has to be instrumented, no selective instrumentation available.

	Instruments executable files, doesn’t require re-linking, or recompiling of the PUT.

For performance profiling and code coverage tThe instrumentation type can be changed per executable moduleDLL. Selective instrumentation per executable module available for performance profiling and code coverage.

	Instruments source files. Requires compiling and linking of the PUT. Selective instrumentation per source file.
	Instruments
source files. Requires compiling and linking of the PUT. Selective instrumentation per source file.

	Supported compilers:

On Sun: through Forte 7 (CC 5.4) and GCC 2.95.3

On HP-UX: cc/aCC 3.31 and 3.33, GCC through 2.95.3, GNUPro 98r2
	Supported compilers:

Visual C++ 6.0

Visual C++ 7.0
	Supported compilers:

All ANSI-compliant GNU C/C++ compilers on supported platforms
	Supported compilers:

All ANSI-compliant C/C++ compilers

	Full 64 bit support for memory corruption detection, memory leak detection and performance profiling for Solaris 7, 8 and HP-UX 11.0 and above. Code coverage analysis to enter beta in September (Status August 2002)
	Technology preview of PurifyPlus for 64-bit Windows available.
	Not supported
	Not supported

	3.1.2. Technology for Java applications

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	JVMPI and BCI based data collection. Pre-filtering per Java package, selective instrumentation in the technology preview stage. Supports J2SE and J2EE.
	JVMPI and BCIbased data collection. Pre-filtering per Java package, selective instrumentation in the technology preview stage. Supports J2SE and J2EE.
	Selective source code instrumentation for performance profiling, runtime tracing and code coverage analysis / JVMPI based data collection for memory profiling.
	Selective source code instrumentation for performance profiling, runtime tracing and code coverage analysis / JVMPI based data collection for memory profiling.

	Supported JVMs:

Java 2 compatible JVMs

· J2SE SDK 1.2.2 and later

· J2EE SDK 1.2.2. and later
	Supported JVMs:

Java 2 compatible JVMs

· J2SE SDK 1.2.2 and later

· J2EE SDK 1.2.2. and later

	Supported JVMs:

Java 2 compatible JVMs

· J2SE SDK 1.3.1 and later

	Supported JVMs:

Java 2 compatible JVMs

· J2ME SDK 1.3.1 and later

· J2SE SDK 1.3.1 and later

	Supported Java Application servers:

· IBM WebSphere 4

· BEA Web Logic 5.1 and later

· Apache Tomcat 4.x and later

	Supported Java Application servers:

· IBM WebSphere 4

· BEA Web Logic 5.1 and later

· Apache Tomcat 4.x and later

	· Not supported

	· Not supported

	3.1.3. Technology for Visual Basic applications

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Not applicable.
	OCI for native compiled applications.

Performance profiling and code coverage of p-code through the VB runtime profiling interface.
	Not applicable.
	Not applicable.

	3.1.4. Technology for .NET managed code applications

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Not applicable.
	Data collection through.NET CLR profiling interfaces plus BCI.
ASP.NET Profiling Agent for ASP.NET Web Services.
	Not applicable.
	Not applicable.

	3.1.5. User interface and product integrations

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Stand-alone GUI, command line.
	Stand-alone GUI, command line. Full Visual Studio 6 and Visual Studio.NET integration.
	Stand-alone GUI, command line.
	Stand-alone GUI, command line.

Various IDE integrations including Microsoft Visual Studio 6 and TI Code Composer Studio 2.0 and 2.1.

	Code coverage data can be collected together with memory corruption and memory leak data

	Code coverage can be collected together with memory corruption and memory leak data

	Simultaneous data collection of memory leak, performance, code coverage and runtime trace data.
	Simultaneous data collection of memory leak, performance, code coverage and runtime trace data.

	Integrations:

· Rational ClearCase

· Raitonal ClearQuest
	Integrations:

· ClearCase

· ClearQuest

· Rational Robot

· Rational TestFactory

· Rational VisualTest

· Rational Rose RealTime

	Integrations:

· ClearCase

· ClearQuest

	Integrations:

· ClearCase

· ClearQuest

· Rose RealTime

· TestManager

	Data files can be saved as proprietary binary formatted files, or ASCII files.
	Data files can be saved as proprietary binary formatted files, or ASCII files.
	Data files can be saved in HTML format.
	Data files can be saved in HTML format.

3.2. In-depth comparison of runtime analysis features:

Abbreviations of memory corruption and memory leak errors:

E/W stands for Error/Warning detected by the product

	ABR: Array Bounds Read

ABW: Array Bounds Write

ABWL - Late Detect Array Bound Write On The Heap

BSR: Beyond Stack Read

BSW: Beyond Stack Write

COM – Com Api/Interface Failure

COR – Core Dump

EXC: Continued Exception

EXH: Handled Exception

EXI: Ignored Exception

EXU: Unhandled Exception

FFM – Freeing Freed Memory

FIM – Freeing Invalid Memory

FIU– File In Use

FMM – Freeing Mismatched Memory

FMR: Free Memory Read

FMW: Free Memory Write

FMWL – Late Detect Free Memory Write On The Heap
	FUM – Freeing Unallocated Memory

FIM: Freeing Invalid Memory

HAN – Invalid Handle Use

HIU – Handle In Use

ILK – Com Interface Leak

IPR: Invalid Pointer Read

IPW: Invalid Pointer Write

MAF – Memory Allocation Failure

MIU – Memory In Use

MLK – Memory Leak

NPR - Null Pointer Read

NPW - Null Pointer Write

ODS – Output Debug String

PAR – Bad System Api Parameter

PLK – Potential Memory Leak

SIG – Signal Received

UMC – Uninitialized Memory Copy

UMR – Uninitialized Memory Read

	3.2.1 Memory error checking and memory profiling

	Memory error checking and profiling in C/C++ applications

	E/W
	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	ABR
	yes
	yes
	-
	-

	ABW
	Yes
	Yes
	-
	-

	ABWL
	-
	Yes
	Yes
	Yes

	BSR
	Yes
	Yes
	-
	-

	BSW
	Yes
	Yes
	-
	-

	COM
	-
	Yes
	-
	-

	COR
	Yes
	Yes
	Yes
	Yes

	EXC
	Yes
	Yes
	-
	-

	EXH
	Yes
	Yes
	-
	-

	EXI
	Yes
	Yes
	-
	-

	EXU
	Yes
	Yes
	-
	-

	FFM
	Yes
	Yes
	Yes
	Yes

	FIM
	-
	Yes
	Yes
	Yes

	FIU
	Yes
	-
	Yes
	Yes

	FMM
	Yes
	Yes
	-
	-

	FMR
	Yes
	Yes
	-
	-

	FMW
	Yes
	Yes
	-
	-

	FMWL
	-
	Yes
	Yes
	Yes

	FUM
	Yes
	Yes
	Yes
	Yes

	FIM
	Yes
	Yes
	-
	-

	HAN
	Yes
	Yes
	-
	-

	HIU
	-
	Yes
	Yes
	Yes

	ILK
	-
	Yes
	-
	-

	IPR
	Yes
	Yes
	-
	-

	IPW
	Yes
	Yes
	-
	-

	MAF
	Yes
	Yes
	Yes
	Yes

	MIU
	Yes
	Yes
	Yes
	Yes

	MLK
	Yes
	Yes
	Yes
	Yes

	NPR
	Yes
	Yes
	-
	-

	NPW
	Yes
	Yes
	-
	-

	ODS
	-
	Yes
	
	

	PAR
	Yes
	Yes
	-
	-

	PLK
	Yes
	Yes
	Yes
	Yes

	SIG
	yes
	yes
	Yes
	Yes

	UMC
	yes
	yes
	-
	-

	UMR
	yes
	yes
	-
	-

	
	Library load/unload
	Library load/unload
	-
	-

	
	Fiber start/stup
	Fiber start/stup
	-
	-

	
	Thread start/stop
	Thread start/stop
	-
	-

	

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Some user defined memory allocators are supported.

	User defined memory allocation is not supported.

Memory corruption and leak detection in third party modules when source code is not available.
	User defined memory allocation is not supported.

	Supports user defined memory allocators.

	
	
	
	

	Memory profiling for Java

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Not available.
	Number and size of instances allocated per method. Number and size of objects per GC generation. Graphical view of objects and references in memory.
	Number and size of instances allocated per method. Number and size of objects per GC generation.
	Number and size of instances allocated per method. Number and size of objects per GC generation.

	
	Snapshot of memory profiling data:

· Manual

· Triggered by APIs from within code

	Snapshot of memory profiling data:

· Manual

· Triggered by APIs from within code

· Triggered by GC intervention

· Triggered by method entry, or return

	Snapshot of memory profiling data:

· Manual

· Triggered by APIs from within code

· Triggered by GC intervention

· Triggered by method entry, or return

	Not available.
	Available reports:

Thread status

Overall memory usage

Call Graph

Table View

Object View

Function Detail View

Object and Reference Graph
	Available reports:

Table view with Function view and Object view, and when using Runtime Tracing overall Memory Usage is displayed.
	Available reports:

Table view with Function view and Object view, and when using Runtime Tracing overall Memory Usage is displayed.

	Memory error checking and profiling for .NET applications

	Not applicable.
	Number and size of instances allocated per method. Number and size of objects per GC generation. Graphical view of objects and references in memory.
	Not applicable.
	Not applicable.

	Not applicable.
	Snapshot of memory profiling data:

· Manual

· Triggered by APIs from within code

	Not applicable.
	Not applicable.

	Not applicable.
	Available reports:

Thread status

Overall memory usage

Call Graph

Table View

Object View

Function Detail View

Object and Reference Graph
	Not applicable.
	Not applicable.

	3.2.2 Performance profiling

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Method and line level performance profiling tool. Doesn’t require source files, but needs debug information for line level performance data.
	Method and line level performance profiling tool. Doesn’t require source files, but needs debug information for line level performance data.
	Method level performance profiling tool. Requires source files.
	Method level performance profiling tool. Requires source files.

	Supported languages:

C/C++, Java (on Solaris)
	Supported languages:

C/C++, Java, VB, .NET
	Supported languages:

C/C++, Java
	Supported languages:

C/C++, Java

	Granularity:

· Thread
· Function

· Line (basic blocks for C/C++, line blocks for Java)
	Granularity:

· Thread
· Function

· Line (basic blocks for C/C++, line blocks for Java)
	Granularity:

· Function

	Granularity:

· Function

	1. Timing methods:

· Instruction counting (OCI): repeatable per-thread data that excludes profiler overhead and memory effects.

· OS thread-virtualized timers for user/user+kernel/elapsed time (BCI).
	2. Timing methods:

· Instruction counting (OCI): repeatable per-thread data that excludes profiler overhead and memory effects.

· CPU cycle counter (OCI)

· OS thread-virtualized timers for user/user+kernel/elapsed time (BCI).
	3. Timing methods:

· CPU cycle counter
	4. Timing methods:

The available timing methods are platform dependent.

· CPU cycle counter on Intel

· OS process/task timers for user/user+kernel/elapsed time

	Data collected:

· Number of calls to each function

· Times for function total, min, max, avg and function+descendants

· Timed dynamic callgraph per thread

· Time per source line
	Data collected:

· Number of calls to each function

· Times for function total, min, max, avg and function+descendants

· Timed dynamic callgraph per thread

· Time per source line
	Data collected:

· Number of calls to each function

· Times for function total, avg and function+descendants

	Data collected:

· Number of calls to each function

· Times for function total, avg and function+descendants

	Data views:

· Function list

· Function detail: function list of call pairs for callers and callees

· Annotated source: time on each line and line+descendants

· Callgraph: hierarchical visualization of app performance
	Data views:

· Function list

· Function detail: function list of call pairs for callers and callees.

· Annotated source: time on each line and line+descendants.

· Call graph: hierarchical visualization of app performance

· Thread state log

· Detailed difference and summary view from multiple runs
	Data views:

· Pie chart displaying most time consuming functions

· Function list: sortable list of all functions and their timing data – F, F+D, avg

	Data views:

· Pie chart displaying most time consuming functions

· Function list: sortable list of all functions and their timing data – F, F+D, avg

	3rd-party support:

Time spent in 3rd party functions is recorded for each 3rd party function., including transition between components. Optionally, function call activity within a component can be recorded as well.
	3rd-party support:

Time spent in 3rd party functions is recorded for each 3rd party function, including transition between components. Optionally, function call activity within a component can be recorded as well.
	3rd-party support:

Time for calls to 3rd party functions is included in calling function’s time but is not recorded separately
	3rd-party support:

Time for calls to 3rd party functions is included in calling function’s time but is not recorded separately

	3.2.3 Thread profiling

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Data collection per thread basis, call graph.
	Current status of threads, graphical representation of threads and their status, data collection per thread basis, call graph
	Current status of threads, graphical representation of threads and their status, data collection per thread basis
	Current status of threads, graphical representation of threads and their status, data collection per thread basis

	Supported languages:

C/C++, Java (on Solaris)
	Supported languages:

C/C++, Java, VB, .NET
	Supported languages:

C/C++, Java
	Supported languages:

C/C++, Java

	3.2.4 Code coverage analysis

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Method and line level code coverage. Requires symbolic debugging information for line level coverage
	Method and line level code coverage. Requires symbolic debugging information for line level coverage.
	Method, line, procedure, block, call and condition coverage. Requires source files.
	Method, line, procedure, block, call and condition coverage. Requires source files.

	Supported languages:

C/C++
	Supported languages:

C/C++, Java, VB, .NET
	Supported languages:

C/C++, Java
	Supported languages:

C/C++, Ada, Java

	Granularity and views:

· Function

· Line - basic blocks for native applications

· Line – line and basic blocks for Java

· Color coded display of source code coverage

· Display of dead, executed and partially executed portions of the code
	Granularity and views:

· Function

· Line - basic blocks for native applications and VB p-code

· Line – line and basic blocks for Java and .NET

· Color coded display of source code coverage

· Display of dead, executed and partially executed portions of the code
	Granularity and views:

· Color coded display of source code coverage

· Nine incremental source code coverage levels - up to and including MC/DC - fulfills the most stringent certification standards

· Display of dead, executed and partially executed portions of the code
	Granularity and views:

· Color coded display of source code coverage

· Nine incremental source code coverage levels - up to and including MC/DC - fulfills the most stringent certification standards

· Display of dead, executed and partially executed portions of the code

· Full traceability between test case and covered source code

	Capabilities overview

Integration testing:

· Function/procedure entries

Module testing:

· Statement block coverage

· Loop coverage

· Basic condition

Merging of data from multiple runs

	Capabilities overview

Integration testing:

· Function/procedure entries

Module testing:

· Statement block coverage

· Loop coverage

· Basic condition

Auto-merge of data from multiple runs

	Capabilities overview

Integration testing:

· Function/procedure entries

· Function/procedure entries and exits

· Call-pair

Module testing:

· Statement block coverage

· Decision coverage

· Loop coverage

· Basic condition

Checks compliance with safety-critical testing requirement standards such as DO-178B Level A:

· Modified condition/decision coverage (MC/DC)

· Multiple conditions

	Capabilities overview

Integration testing:

· Function/procedure entries

· Function/procedure entries and exits

· Call-pair

Module testing:

· Statement block coverage

· Decision coverage

· Loop coverage

· Basic condition

Checks compliance with safety-critical testing requirement standards such as DO-178B Level A:

· Modified condition/decision coverage (MC/DC)

· Multiple conditions

	3.2.5 Runtime tracing

	PurifyPlus for UNIX
	PurifyPlus for Windows
	PurifyPlus for Linux
	PurifyPlus RealTime

	Not available.
	Not available.
	Graphical representation of method calls, object lifetime and raised exceptions in a UML sequence diagram, created dynamically during runtime.
	Graphical representation of method calls, object lifecycle and raised exceptions in a UML sequence diagram, created dynamically during runtime.

	Not available.
	Not available.
	Supported languages:

C++, Java
	Supported languages:

C++, Java

	Not available.
	Not available.
	Data view:

· UML sequence diagram

· Correlation of trace info with source code.

	Data view:

· UML sequence diagram

· Correlation of trace info with source code.

	Not available.
	Not available.
	Capabilities overview:

· Real-time UML sequence-diagram generation during application execution

· Object life-cycle information such as creation, termination or concurrent access is displayed as a UML sequence diagram.

· Multiple search and filter options

· Raised exceptions and jump tracing display

· Time-stamped event sequencing highlights poor performance

· Both off-line and on-the-fly tracing without run-time interruption

· Class and instance explorer
	Capabilities overview:

· Real-time UML sequence-diagram generation during application execution

· Object life-cycle information such as creation, termination or concurrent access is displayed as a UML sequence diagram.

· Multiple search and filter options

· Raised exceptions and jump tracing display

· Time-stamped event sequencing highlights poor performance

· Both off-line and on-the-fly tracing without run-time interruption

· Class and instance explorer

3.3 What are the differences in licensing models between the members of PurifyPlus Family?
Each PurifyPlus edition within the PurifyPlus Family comes with its own product license. There are four main products each coming with its own license. P+UNIX, P+Linux and P+RealTime are available with floating license, or named user license, P+Windows comes with floating license, or node locked license. The prices for the licenses defer differ between the main PurifyPlus editions:

	Main productPlatform
	Floating license
	Named user license
	Node locked license

	Rational PurifyPlus for UNIX license
	YES
	YES
	NO

	Rational PurifyPlus for Windows license
	YES
	NO
	YES

	Rational PurifyPlus for Linux license
	YES
	YES
	NO

	Rational PurifyPlus RealTime license
	YES
	YES
	NO

The constituent pPoint products are still available on UNIX and on Windows and they are available with named user license on UNIX and with node locked license on Windows.

	Point product
	Floating license
	Named user license
	Node locked license

	Rational Purify for UNIX
	NO
	YES
	NO

	Rational Quantify for UNIX
	NO
	YES
	NO

	Rational PureCoverage for UNIX
	NO
	YES
	NO

	Rational Purify for Windows
	NO
	NO
	YES

	Rational Quantify for Windows
	NO
	NO
	YES

	Rational PureCoverage for Windows
	NO
	NO
	YES

D) Summary:

Rational PurifyPlus Family is a set of tools used to perform runtime analysis. Each member of the Family has a unique set of specifications and strengths. There is one common line connecting all the Family members, however: on every platform, Rational PurifyPlus is the leading industrial-strength application for runtime analysis and we believe that the PurifyPlus package is stronger than any competitive product available out there. As this new release shows, we are continually working to evolve and grow our runtime analysis product line, producing a feature set that surpasses the competition for the capture and resolution best addresses development pains.

If you have more questions, or if you would just like to send us your feedback on this document or on the PurifyPlus Family in general, please send an e-mail to ask_purifyplus@rational.com and we will try to answer your question within 24 hours.

Thank you!

The Rational PurifyPlus team

�PAGE \# "'Page: '#'�'" ��Can this box (and much of the column) simply say “Same as PurifyPlus for Linux” so the reader doesn’t have to do a mental diff of the text?

�PAGE \# "'Page: '#'�'" ��Also snapshots and detailed differencing and summing of data from multiple runs.

11

