javadoc – The Java API Documentation Generator

A_ Syntax.

javadoc [options] [packagename(s)] [sourcefile(s)] [@files]

B_ Definition.

javadoc is a parser for a set of Java source files, and produces a set of HTML files describing the public classes, the protected classes, the inner classes, the interfaces, the constructors, the methods and the fields according to the API comment tags the sources contain.

C_ Output Files.

By default, javadoc formats its output into the standard HTML-API documentation style by using its standard doclet. This is achieved by omitting the –doclet command-line option.

This standard doclet generates the following HTML pages.

1) Basic Pages:

- one class.html file per class.java source file;

- one package-summary.html page per package parsed;

- optionally, one overview-summary.html page for the complete set of source files.

2) Cross-References:

- one class hierarchy for the complete set of source files: overview-tree.html;

- one class hierarchy per package: package-use.html;

- one “use” page per package (package-use.html), as well as one per class (class-use\class_name.html) describing which package, class, method, constructor or field is used as part of the given package or class;

- one page, deprecated-list.html, to list all deprecated names;

- one page, serialized-form.html, to inform about serializable and externalizable classes;

- a set of index-*.html pages.

3) Support Pages:

- one help page, help-doc.html;

- one general index.html page;

- several *-frame.html pages to support displaying HTML frames;

- a plain, unformatted text, package-list file;

- a style sheet, stylesheet.css.

4) A \doc-file folder to contain any meta data, such as images, but it is not parsed by javadoc.

D_ javadoc Tags.

In order to output this set of HTML files, javadoc parses the source files in search of documentation comments containing javadoc tags.

This is a documentation comment:

/**

 * This is a documentation comment.

 *

 */
These are the special tags as of JDK1.2 (no new introduction with JDK1.3):

@author; @deprecated; @exception/@throws; link; @param; @return; @see; @serial; @serialData; @since; @version
@author name_text

Adds an “Author” entry to the generated docs when the –author option is used. You can specify one name per @author tag or multiple names per tag.

back
@deprecated deprecated_text

Adds a comment indicating that this API should no longer be used.

Example:

/**

 * @deprecated As of JDK1.1 replaced by {@link #setBounds(int, int, int, int, int)}

 */

back
@exception/@throws class_name description

The @throws and @exception tags are synonyms. The class_name is the name of the exception that may be thrown by the method.

back
{@link package#class_member label}

Inserts an inline link that points to the documentation for the specified name in the Java language.

Example:

Use the {@link #getComponentAt(int, int) getComponentAt} method.

back
@param parameter_name description

Adds a parameter to the “Parameters” section. The description may be continued on several lines.

back
@return description

Adds a “Return” section with the description text describing the return type and valid range.

back
@see reference

Adds a “See Also” heading with a link or text entry pointing to reference. The @see tag has three variations:

· @see “string”
Example:

@see “The Java Programming language”

Output:

See Also: “The Java Programming language”

· @see label

Example:

@see Java Spec

Output:

See Also: Java Spec

· @see package.class#member label
Example:

/**

 * @see String#equals(Object) equals

 */

Output:

See Also: equals

back
@since since_text

Adds a “Since” heading with the specified since_text to the generated documentation.

Example:

@since JDK1.3

back
@serial field_description

Used for a default serializable field.

back
@serialField field_name field_type field_description

Documents an objectStreamField component of a Serializable class’ serialPersistentField member.

back
@serialdata data_description

Documents the type and order of data in the serialized form.

back
@version version_text

Adds a “Version” subheading with the specified version_text to the generated docs when the –version option is used.

back
The following table shows where to use the tags, where O.D.T. = “Overview Documentation Tags”, P.D.T. = “Package Documentation Tags”, C. & I.D.T. = “Interface and Class Documentation Tags”, F.D.T. = “Field Documentation Tags” and C. & M.D.T. = “Constructor and Method Documentation Tags”:

	
	O.D.T.
	P.D.T.
	C. & I.D.T.
	F.D.T.
	C. & M.D.T.

	@author
	
	
	x
	
	

	@deprecated
	
	x
	x
	x
	x

	@exception / @throws
	
	
	
	
	x

	{@link}
	x
	x
	x
	x
	x

	@param
	
	
	
	
	x

	@return
	
	
	
	
	x

	@see
	x
	x
	x
	x
	x

	@serial
	
	
	
	x
	

	@serialData
	
	
	
	
	x

	@serialField
	
	
	
	x
	

	@since
	x
	x
	x
	x
	

	@version
	
	
	x
	
	

	
	
	
	Example 1
	Example 2
	Example 3

Example using all the tags.

E_ javadoc command-line options.

1) Visibility.

-package

Shows packages, protected and public classes and members.

-private

Shows all classes and members.

-protected (default)

Shows only public and protected classes and members.

-public

Shows only public classes and members.

2) Locating the files to be processed.

-classpath classpathlist

Used to override the operating system’s CLASSPATH.

-sourcepath sourcepathlist

Used to locate the java source files.

3) Miscellaneous.

-overview path\file_name

Specifies the location of the file used to generate the documentation’s overview-summary.html file.

-verbose

Prints additional messages while javadoc is running.

-doclet doclet_name

Specifies a custom doclet.

F_ Standard doclet command-line options.

-d directory

Specifies the destination directory for the HTML files.

-use

Includes one “Use” page per class/package.

-version

Used to process the @version tag.

-author

Used to process the @author tag.

-splitindex

Splits the index alphabetically.

-windowtitle title

Specifies the title to be placed in the HTML <title> tag.

-bottom text

Specifies the text to be used at the end of each output file.

-link docURL

Used to point to another javadoc-generated documentation.

-helpfile path\file_name

Used to override the default help-doc.html help file.

G_ Useful links.

Javadoc Tool Home Page: http://java.sun.com/j2se/javadoc/
Doclet API: http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/doclet/index.html
DocCheck, the doc check doclet, is a tool available from Sun for checking doc comments.

H_ Examples.

Example 1

/**

 * A class representing a window on the screen.

 * For example:

 * <pre>

 * Window win = new Window(parent);

 * win.show();

 * </pre>

 *

 * @author Sami Shaio

 * @version %I%, %G%

 * @see java.awt.BaseWindow

 * @see java.awt.Button

 */

class Window extends BaseWindow {

 ...

}
back
Example 2

/**

 * The X-coordinate of the component.

 *

 * @see #getLocation()

 */

int x = 1263732;
back
Example 3

/**

 * Returns the character at the specified index. An index

 * ranges from <code>0</code> to <code>length() - 1</code>.

 *

 * @param index the index of the desired character.

 * @return the desired character.

 * @exception StringIndexOutOfRangeException

 * if the index is not in the range <code>0</code>

 * to <code>length()-1</code>.

 * @see java.lang.Character#charValue()

 */

public char charAt(int index) {

 ...

}
back
Example 4

/**

 * Graphics is the abstract base class for all graphics contexts

 * which allow an application to draw onto components realized on

 * various devices or onto off-screen images.

 * A Graphics object encapsulates the state information needed

 * for the various rendering operations that Java supports. This

 * state information includes:

 *

 * The Component to draw on

 * A translation origin for rendering and clipping coordinates

 * The current clip

 * The current color

 * The current font

 * The current logical pixel operation function (XOR or Paint)

 * The current XOR alternation color

 * (see setXORMode)

 *

 * <p>

 * Coordinates are infinitely thin and lie between the pixels of the

 * output device.

 * Operations which draw the outline of a figure operate by traversing

 * along the infinitely thin path with a pixel-sized pen that hangs

 * down and to the right of the anchor point on the path.

 * Operations which fill a figure operate by filling the interior

 * of the infinitely thin path.

 * Operations which render horizontal text render the ascending

 * portion of the characters entirely above the baseline coordinate.

 * <p>

 * Some important points to consider are that drawing a figure that

 * covers a given rectangle will occupy one extra row of pixels on

 * the right and bottom edges compared to filling a figure that is

 * bounded by that same rectangle.

 * Also, drawing a horizontal line along the same y coordinate as

 * the baseline of a line of text will draw the line entirely below

 * the text except for any descenders.

 * Both of these properties are due to the pen hanging down and to

 * the right from the path that it traverses.

 * <p>

 * All coordinates which appear as arguments to the methods of this

 * Graphics object are considered relative to the translation origin

 * of this Graphics object prior to the invocation of the method.

 * All rendering operations modify only pixels which lie within the

 * area bounded by both the current clip of the graphics context

 * and the extents of the Component used to create the Graphics object.

 *

 * @author
Sami Shaio

 * @author
Arthur van Hoff

 * @version
%I%, %G%

 * @since JDK1.0

 */

public abstract class Graphics {

 /**

 * Draws as much of the specified image as is currently available

 * with its northwest corner at the specified coordinate (x, y).

 * This method will return immediately in all cases, even if the

 * entire image has not yet been scaled, dithered and converted

 * for the current output device.

 * <p>

 * If the current output representation is not yet complete then

 * the method will return false and the indicated {@link ImageObserver}

 * object will be notified as the conversion process progresses.

 *

 * @param img the image to be drawn

 * @param x the x-coordinate of the northwest corner of the

 * destination rectangle in pixels

 * @param y the y-coordinate of the northwest corner of the

 * destination rectangle in pixels

 * @param observer the image observer to be notified as more of the

 * image is converted. May be <code>null</code>

 * @return <code>true</code> if the image is completely

 * loaded and was painted successfully;

 * <code>false</code> otherwise.

 * @see Image

 * @see ImageObserver

 * @since JDK1.0

 */

 public abstract boolean drawImage(Image img, int x, int y,

 ImageObserver observer);

 /**

 * Dispose of the system resources used by this graphics context.

 * The Graphics context cannot be used after being disposed of.

 * While the finalization process of the garbage collector will

 * also dispose of the same system resources, due to the number

 * of Graphics objects that can be created in short time frames

 * it is preferable to manually free the associated resources

 * using this method rather than to rely on a finalization

 * process which may not happen for a long period of time.

 * <p>

 * Graphics objects which are provided as arguments to the paint

 * and update methods of Components are automatically disposed

 * by the system when those methods return. Programmers should,

 * for efficiency, call the dispose method when finished using

 * a Graphics object only if it was created directly from a

 * Component or another Graphics object.

 *

 * @see #create

 * @see #finalize

 * @see Component#getGraphics

 * @see Component#paint

 * @see Component#update

 * @since JDK1.0

 */

 public abstract void dispose();

 /**

 * Disposes of this graphics context once it is no longer referenced.

 * @see #dispose

 * @since JDK1.0

 */

 public void finalize() {

dispose();

 }

}
back
