
Rational ® Developer for System z
8.0.1

Common Access Repository Manager
Developer's Guide

SC23-7660-04

���

Rational ® Developer for System z
8.0.1

Common Access Repository Manager
Developer's Guide

SC23-7660-04

���

Note

Before using this document, read the general information under “Documentation notices for IBM Rational Developer for
System z” on page 107.

Fifth edition (December 2010)

This edition applies to Common Access Repository Manager for version 8.0.1 of IBM Rational Developer for System
z (product number 5724-T07) and to all subsequent releases and modifications until otherwise indicated in new
editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation
Attn: Information Development Department 53NA
Building 501 P.O. Box 12195
Research Triangle Park NC 27709-2195.
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corporation 2000, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Who should read this book v
Conventions used in this book v

Chapter 1. Introduction to CARMA . . . 1
Supported operations 3
Locating the sample files 3

Chapter 2. General concepts 5
Browsing 5
Checking in and out 6
Memory allocation 6
Member contents 8
Character buffers 8
Return codes 9
Logging 9
Custom parameters and return values 10

Chapter 3. Developing a RAM 11
RAM Construction 11

Construction for a PDS 11
Construction of a PDS/E 12

Using the RAM utilities module 12
utilInitMemberList 12
utilGetNextMember 12
utilCloseMemberList 13
utilGetAllMemberInfo 13
utilGetMemberInfo 13
utilSetMemberInfo 14
utilGetAllPDSInfo 14
utilCopyPDStoPDS 14
utilCopyPDStoSDS 15
utilCopySDStoPDS 15
utilCopySDStoSDS 15
utilPutMemberInit 15
utilPutMemberRecs 15
utilPutMemberRec 16
utilPutMemberClose 16
utilExtractMemberInit 16
utilExtractMemberRec 16
utilExtractMemberClose 17

Defining the RAM to CARMA 17
Exporting functions. 17
IDs vs. names 17
RAM predefined data structures 17
Logging 18
Dealing with unsupported operations 18
Handling custom parameters and return values . . 18
CARMA Defined Metadata 19

RAM specified file extension 19
CARMA Version. 20

State functions 21
initRAM 21
terminateRAM 22
reset 22

Browsing functions 22
getInstances 22
getMembers 23
isMemberContainer 24
getContainerContents 24
Create/Delete 25

File transfer functions 27
extractMember 27
putMember 29
Extract to External 31
Binary file transfer 32

Metadata functions 33
getAllMemberInfo 33
getMemberInfo 34
updateMemberInfo 34

Other operations 35
lock 35
unlock 35
check_in 36
check_out 36
performAction 37
getVersionList 37

RAM development using COBOL 38
COBOL RAM program structure 39
Passing values from C to COBOL 41
Passing Data from COBOL to C 43
Dealing with pointer operations 44
Variables shared between programs 46
Handling Custom Action Framework data . . . 46
Differences between the “utility DLL” and the
“COBOL-to-C utility source” 48
Debugging and avoiding abnormal termination 49

Chapter 4. Customizing a RAM API
using the CAF 51
CAF object types 51

RAM 51
Parameter 52
Return value 52
Action 53
Field. 54

Developing the RAM model for a custom RAM . . 54
Creating VSAM records from a RAM model . . . 60

CRADEF 60
CRASTRS 62
SAMP RAM VSAM records 64
VSAM cluster access 66

Chapter 5. Developing a CARMA client 67
Compiling the CARMA client 67
Running the client 67
Storing results for later use 68
Client predefined data structures 68
Logging 71
Handling custom parameters and return values . . 72

© Copyright IBM Corp. 2000, 2010 iii

CARMA Defined Metadata 72
RAM specified file extension 72

Extract to External 73
copyFromExternal 73
copyToExternal 73

State functions 74
initCarma 74
getRAMList 74
getRAMList2 75
initRAM 75
reset 76
terminateRAM 76
terminateCarma 76

Browsing functions 76
getInstances 76
getMembers 77
isMemberContainer 78
getContainerContents 78
Create/Delete 79

File transfer functions 82
extractMember 82
putMember 83
Binary file transfer 85

Metadata functions 86
getAllMemberInfo 86
getFieldsData 87
getFieldsData2 88
getMemberInfo 88
updateMemberInfo 89

Other operations 89
lock 89
unlock 90
checkin 90
checkout 91
performAction 92

getCAFData 92
getCAFData2 93
getVersionList 94

Appendix A. Return codes 97

Appendix B. Action IDs. 99

Appendix C. Sample RAMs 101
PDS RAM 101

RAM Description 101
Navigation Structure 101
Supported actions 101
Unsupported actions 101

SCLM RAM 101
RAM Description 101
Navigation Structure 102
Supported actions 102
Unsupported actions 104

COBOL RAM 104
RAM Description 104
Navigation Structure 104
Supported Capabilities 104

Skeleton RAM 105
RAM Description 105

Documentation notices for IBM
Rational Developer for System z . . . 107
Copyright license 108
Trademark acknowledgments 108

Index 113

iv IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

About this book

This book explains how to develop repository access managers (RAMs) and
Common Access Repository Manager (CARMA) clients. It includes the following
topics:
v How to develop a RAM capable of connecting to a software configuration

manager (SCM)
v How to develop a CARMA client capable of accessing various SCMs through

CARMA using RAMs

You can use this document as a guide to these tasks or as a programming
reference.

Who should read this book
This book is intended for application programmers or anyone who wants to learn
how RAMs and clients are developed.

To use this book as a guide for RAM development, you need to be familiar with
the SCM for which you are developing a RAM. To use this book for CARMA client
development, you need to understand generic SCM concepts.

Conventions used in this book
Throughout this book there are several references to data sets and members that
have the high-level qualifier FEK. Depending on how your CARMA host has been
configured, these data sets may actually have different file names. For example, the
sample library referred to as FEK.SFEKSAMP in this book could actually be named
MYCORP.TEST.SFEKSAMP on your host system. Thus, depending on the configuration
of your host system, the FEK in the data set names referenced in this book may be
replaced with some other string. Contact your system programmer to determine
where these data sets are actually located on your host system.

© Copyright IBM Corp. 2000, 2010 v

vi IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Chapter 1. Introduction to CARMA

CARMA is a library that provides a generic interface to z/OS® software
configuration managers (SCMs). Developers can build on top of CARMA by
developing repository access managers (RAMs) that plug into the CARMA
environment. RAMs define how CARMA should communicate with various SCMs.
For example, a CARMA host (a z/OS host machine with CARMA on it) could be
configured to use one RAM to communicate with IBM® Source Code Library
Manager (SCLM) repositories and another RAM to communicate with your own
custom SCM.

By using CARMA, developers of client software can avoid writing specialized code
for accessing SCMs, and easily allow support for any SCM for which a RAM is
available. CARMA is a DLL stored within an MVS™ PDS. Only z/OS clients can
directly access CARMA. In order to access CARMA from a workstation, a software
bridge between the workstation and host must be developed. This bridge software
must act as a client to the CARMA host and as a server to workstations. IBM
Rational Developer for System z ships with such a software bridge to allow the
CARMA plug-in to access CARMA hosts.

Figure 1 on page 2 illustrates an example CARMA environment.

© Copyright IBM Corp. 2000, 2010 1

CARMA currently ships with four sample RAMs:
v Sample TSO/ISPF PDS RAM - Provides access to the Partition Data Sets (PDS)

through the use of Library Management API of TSO.
v Sample SCLM RAM - Provides access to Software Configuration Library

Manager (SCLM) projects.
v Sample COBOL RAM - Provides example COBOL code which demonstrates

handling of ILC issues specific to COBOL-based RAM development.
v Skeleton RAM - Provides a starting point for RAM developers.

Note: The sample RAMs are provided for the purpose of testing the configuration
of your CARMA environment and as examples for developing your own
RAMs. Do NOT use the provided sample RAMs in a production
environment.

To access your own SCMs using CARMA, you will need to obtain or develop
additional RAMs. See Chapter 2, “General concepts,” on page 5 and Chapter 3,
“Developing a RAM,” on page 11 for more information on developing a RAM to
access your own SCM.

RAM A

CARMA

RAM B

Workstationz/OS Host

PDS RAM SCLM RAM

z/OS Host

SCM A SCM B Some PDS
Some SCLM

Project

z/OS Host (CARMA Host)

CARMA
Client

Software
Bridge

WD/z CARMA
Plug-In

Figure 1. Example CARMA environment

2 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Supported operations
CARMA currently supports the following sets of generic actions:
v Browse an SCM
v Extract an SCM member
v Create an SCM member
v Update an SCM member
v Get SCM member metadata
v Update SCM member metadata
v Copy a member to a PDS or SDS
v Copy a member from a PDS or SDS
v Delete a member or container
v Lock, unlock, check in, and check out a member
v Browse an SCM member's history

Although CARMA supports all of these actions, it is quite possible that a given
SCM may not support one or more of these actions due to its design. Developers
of RAMs accessing such SCMs should follow the guidelines for handling
unsupported operations in “Dealing with unsupported operations” on page 18.

CARMA also provides a framework called the Custom Action Framework (CAF)
for customizing the actions a RAM can perform (see Chapter 4, “Customizing a
RAM API using the CAF,” on page 51 for more information).

Locating the sample files
Sample files have been included in the CARMA host installation packages. After
your CARMA host has been successfully set up, you should be able to find these
sample files as members within the sample library (FEK.SFEKSAMP). The following
table summarizes these members:

Table 1. Sample CARMA development files

Member in FEK.SFEKSAMP Description

CRA390H Header needed for clients

CRA390SD CARMA/390 DLL side deck

CRA#CCLT JCL to compile a CARMA client to a PDS/E

CRA#PCLT JCL to compile a CARMA client to a PDS

CRA#XCLT JCL to run a host-based client

CRACLISA Sample client source code

CRADSDEF C header needed for clients and RAMs

CRAFCDEF C header needed for RAMs

CRASUTIL Source code for the RAM utility functions

CRAHUTIL Header needed for RAM utility functions

CRA$VMSG IDCAMS JCL to REPRO CRAMSG

CRAMSGH Header file common to the sample PDS and SCLM
RAMs

CRAMSGO Object module common to the sample PDS and SCLM
RAMs

Chapter 1. Introduction to CARMA 3

Table 1. Sample CARMA development files (continued)

Member in FEK.SFEKSAMP Description

CRA#CCOB JCL to compile the COBOL Sample RAM to a PDS/E

CRA#PCOB JCL to compile the COBOL Sample RAM to a PDS

CRA#CRAM JCL to compile the Skeleton RAM to a PDS/E

CRA#PRAM JCL to compile the Skeleton RAM to a PDS

CRA#CSLM JCL to compile the sample SCLM RAM to a PDS/E

CRA#PSLM JCL to compile the sample SCLM RAM to a PDS

CRA#CPDS PDS RAM to a PDS/E

CRA#PPDS PDS RAM to a PDS

CRARAMSA Skeleton RAM source code

CRA$VDEF JCL to REPRO CRADEF

CRA#VPDS JCL to REPRO the sample PDS RAM's messages

CRA#VSLM JCL to REPRO the sample SCLM RAM's messages

CRASPDS Source code for the sample PDS RAM

CRA$VSTR JCL to REPRO CRASTRS

CRASSCLM Source code for the sample SCLM RAM

Note: The CRA$*members have been copied to FEK.#CUST.JCL for customization
during the setup of Developer for System z®. Ask your system programmer
for a copy of these customized JCL's to use as a starting point for your own

4 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Chapter 2. General concepts

This section outlines several general concepts that are essential to understanding
how CARMA works. For a more in-depth overview of these concepts, please read
Integrating Source Code Management Systems into WebSphere® Developer for zSeries®

CARMA (SC23-5817-00) located at the IBM Rational Developer for System z library
(http://www.ibm.com/software/awdtools/devzseries/library/)

Browsing
CARMA views all entities within an SCM as Repository Instances (or RIs),
members, and metadata. Repository Instances are the entities at the highest level
within an SCM. For example, the sample PDS RAM uses PDSs as RIs. RIs could be
different libraries of code, different levels of code, or whatever the RAM developer
thinks would make the most sense for CARMA clients. For most SCMs, a RI
should represent a project or component in the SCM. Repository Instances are
more generally referred to as instances during further discussion.

Members are entities contained within instances or other members. Members that
contain other members are known as containers, while members that do not
contain other members are known as simple members.

Figure 2 illustrates a simple hierarchy. "Build" and "Development" are repository
instances, the components are containers, and the source files are simple members.

Build

Container A

Container B

Source File 1

Source File 1

Source File 2

Container C

Source File 1

Source File 3

Source File 2

Development

Container A

Container B

Source File 1

Source File 1

Source File 2

Container C

Source File 1

Source File 3

Source File 2

Instances

Members

Figure 2. Example SCM hierarchy

© Copyright IBM Corp. 2000, 2010 5

Checking in and out
CARMA provides a generic interface across various SCMs, each of which may
handle operations differently. Since it is not possible to predict whether the check
in or check out operation for any given SCM will respectively expect or return a
member's contents, CARMA has been designed such that the check in and check
out actions are flag-setting operations. That is, no member contents are passed to
or returned from the SCM as part of the check in and check out actions.

Certain SCMs might expect the contents of a member to be passed in during a
check in operation for that member. A RAM for such an SCM should handle this
case by storing the member contents in a temporary location before making the
check in call to the SCM.

Similarly, certain SCMs might return the contents of a member during a check out
operation for that member. A RAM for such an SCM should handle this case by
storing the member contents in a temporary location until the client retrieves the
contents.

Memory allocation
Many of the CARMA API functions require that either the RAM or the CARMA
client allocate memory to store function results or parameters that are passed
between the RAM and the CARMA client. For all functions other than
extractMember and putMember, a one dimensional array will need to be allocated by
the RAM and freed by the client to store sets of instance information, member
information, and other information. The following diagram illustrates how the
RAM should allocate this array:

Each element in the array depicted above is of data structure type type. typePtr is
a type pointer (of type type*) that serves as a handle to the newly allocated
memory. In C, this memory can be allocated with the following code:
typePtr = (type*) malloc(sizeof(type) * numElements);

where numElements is the number of array indices that need to be created. The
memory typePtr points to must be freed by the client once it is no longer needed.

The putMember and extractMember functions use two-dimensional arrays to transfer
member contents, with each array row containing one of the member's records. For
extractMember, the RAM should allocate the array and the CARMA client should
free the array. For putMember, the CARMA client should both allocate and free the
array. In both cases, the array should be allocated as illustrated in the following
diagram:

type 0 type 1 type 2 type 3 type 4

typePtr

Figure 3. Simple one dimensional array as would be allocated by a RAM

6 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

charPtrPtr is a pointer to a char pointer (it is of type char**) that serves as a
handle to an array of char pointers (elements of type char*). The data for the
two-dimensional character array is actually stored in a one-dimensional character
array; the idea of rows and columns is purely conceptual. The array of char
pointers is used to provide handles to the first element in each row of the
"two-dimensional" array. Thus, in the illustration, the first row of the
two-dimensional array consists of elements 0a and 0b, with 0a being the first
element of that row; the second row consists of elements 1a and 1b, with 1a being
the first element of that row; and so on.

To allocate a two-dimensional array such as the ones required for the
extractMember and putMember functions, the CARMA client must first create
charPtrPtr. In C, use the following declaration:
char** charPtrPtr;

If the CARMA client is allocating the two-dimensional character array (as is the
case for the putMember function) the array can now be allocated. In C, the CARMA
client should use the following code:
charPtrPtr = (char**) malloc(sizeof(char*) * numRows);
charPtrPtr = (char) malloc(sizeof(char) * numColumns * numRows);
for(i = 0; i < numRows; i++)

(charPtrPtr)[i] = ((*charPtrPtr) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in
the two-dimensional array. The first line allocates the array of char pointers (one
pointer for each row in the two-dimensional array), the second line allocates the
array that holds the data for the two-dimensional array, and the for loop assigns
each of the char pointers in the char pointer array to a row in the two-dimensional
array.

If the RAM is allocating the two-dimensional character array (as is the case for the
extractMember function) an extra step is required before the array can be allocated:
charPtrPtr needs to be passed by reference to the RAM as extractMember's
contents parameter; that is, a pointer to charPtrPtr needs to be passed. This is
necessary so that the client has a handle to the two-dimensional array after the
RAM has allocated the array. Suppose that the RAM receives a parameter named
contents of type char*** in the RAM function that will allocate the
two-dimensional array. The RAM should then allocate the two-dimensional array,
using contents as a handle to the array. In C, the RAM should use the following
code to allocate the two-dimensional array:

charPtr 0

charPtrPtr

charPtr 1 charPtr 2

char 0a char 0b char 1a char 1b char 2a char 2b

Figure 4. Two-dimensional character array as used in extractMember and putMember

Chapter 2. General concepts 7

*contents = (char**) malloc(sizeof(char*) * numRows);
**contents = (char*) malloc(sizeof(char) * numColumns * numRows);
for(i = 0; i < numRows; i++)

(*contents)[i] = ((**contents) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in
the two-dimensional array. The first line allocates the array of char pointers (one
pointer for each row in the two-dimensional array), the second line allocates the
array that holds the data for the two-dimensional array, and the for loop assigns
each of the char pointers in the char pointer array to a row in the two-dimensional
array.

Regardless of who allocated the array, the CARMA client must free the
two-dimensional character array in both the extractMember and putMember
functions. In C, the CARMA client should use code similar to the following:
free(charPtrPtr[0]);
free(charPtrPtr);

This frees the data array before freeing the char pointer array, thus avoiding a
memory leak.

Member contents
The contents of SCM members can be sent between the RAM, CARMA, and the
client all at once or a piece at a time. It is recommended that the contents of large
members be sent a piece at a time to avoid attempting to allocate a larger chunk of
memory than is available.

The contents will be passed to and from the RAM as two-dimensional character
arrays, each row in the array corresponding to a record in the member. As the
RAM writes to or reads from a member, it should place the first member record it
encounters at index 0 in the array, so that the indices of the array and member
match.

CARMA also supports binary transfer of member contents. When binary transfers
are performed, the contents are passed to and from the RAM as one-dimensional
character arrays.

Character buffers
To match the convention for passing strings in MVS, the RAM should expect all
character buffers passed to it to be padded with spaces instead of being
null-terminated. The RAM should also set up any buffers being returned to the
client in the same way. Assuming a buffer length of 30, the string "CARMA
mechanic" would be passed in the format illustrated in Figure 5 instead of the
format illustrated in Figure 6 on page 9 (where "?" represents an unknown
character). Both RAM and client developers should initialize buffers that they have
created to be filled with spaces.

C A R M A m e c h a n i c

Figure 5. Example of correct RAM buffer usage

8 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Return codes
All functions that run successfully should produce a return code of 0. If an error
occurs, RAM developers may return a code based on Table 2 below

Table 2. Return code ranges

Error Type Range

CARMA Errors 4 – 99

Generic RAM Errors 100 – 200

Software Bridge Errors 201 – 500

RAM Specific Errors 501 – 900

TSO Errors 901 – 999

If an error occurs, RAM developers may return a code between 100 and 200 or
between 501 and 900. Codes ranging from 100 to 200 are reserved for generic
errors that all RAMs may face. Codes ranging from 501 to 900 should be used for
any errors that are specific to a certain RAM. Likewise, CARMA may return error
codes between 4 and 99, a software bridge created between CARMA and a
workstation client may return error codes between 201 and 500, and TSO errors
may be flagged by returning error codes between 901 and 999. See Appendix A,
“Return codes,” on page 97 for a list of the predefined error codes. When an error
results in a return code between 501 and 900, the RAM should fill the error buffer
with the details of the error. When an error results in a return code between 100
and 200, CARMA will be able to recognize the error and will put the appropriate
error message in the error buffer. If the RAM provides additional error information
using its error buffer, CARMA will append this information to the error message it
produces.

Logging
CARMA uses its own logging system. Trace levels can be used to filter log
messages generated by CARMA and the RAM. The available trace levels are listed
in the following table:

Table 3. Trace levels. Messages at the "None" trace level are not logged.

Enumeration Trace Level

-1 None

0 Error

1 Warning

2 Information

C A R M A m e c h a n i c \0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

An improvement to CARMA in version 7.1 is the ability for the CARMA client to support null terminated character
buffers (as shown in figure 6). All strings passed to the RAM will still be in the format shown in Figure 5, but the
provided CARMA client will work with both space filled and null terminated character buffers. Before designing
your RAM to provide null terminated character buffers, ensure it will only be used with version 7.1 or later of
CARMA clients, or another appropriate client.
Figure 6. Example of incorrect RAM buffer usage

Chapter 2. General concepts 9

Table 3. Trace levels. Messages at the "None" trace level are not logged. (continued)

Enumeration Trace Level

3 Debug

All messages at or below the chosen level will be logged. For example, if
the"Information" trace level is chosen, the following types of messages will be
logged: information, warning, and error. Additional information on logging is
discussed in “Logging” on page 18 (for RAM development) and “Logging” on
page 71 (for CARMA client development).

Custom parameters and return values
Both custom parameters and return values are referenced by elements in void
pointer arrays. Since parameters and return values can be of various data types,
pointers to them are typecast to void* and then stored in a single array. Each such
array holds either the custom parameter or the custom return values, but never
both. The following diagram illustrates the structure of an example custom
parameter array:

where params is a pointer to a void array and each voidPtr in the array is a void
pointer that points to a parameter. Custom return value arrays should be similarly
structured.

The number of elements that should be in a custom parameter or return value
array is dependent upon the CAF information in the CARMA VSAM clusters (see
“Creating VSAM records from a RAM model” on page 60). Since it is the
responsibility of the RAM developer to include information on the custom
parameters and return values in the VSAM clusters, the RAM developer should
already know how many elements to include in the custom parameter and return
value arrays. CARMA client developers can use the getCAFData or getCAFData2
CARMA function to retrieve information on the custom actions, parameters, and
return values for a RAM (see “getCAFData” on page 92 for more information).
Using this information, CARMA client developers can determine how many
custom parameters and return values are required for each RAM action.

voidPtr 0

params

voidPtr 1 voidPtr 2 voidPtr 3 voidPtr 4

BOB

2.532
12 CARMA

42
string

double
int string

int

Figure 7. Custom parameter array example. Each element in the array is a pointer to a
parameter. The value of each parameter is shown and labeled with its data type.

10 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Chapter 3. Developing a RAM

Repository access managers (RAMs) provide CARMA with access to specific SCMs.
A RAM is a dynamically linked library (DLL) that exports entry points for all API
functions that it implements. An API function reference is included at the end of
this chapter.

Most RAM functions have the following pattern:
1. Determine what instance and/or member the request applies to
2. Contact the SCM to carry out the requested operation
3. Allocate any memory necessary to return the result
4. Fill the allocated memory with the result
5. Return the result to CARMA

You can use the skeleton RAM source file, CRARAMSA (located in the sample library),
as a starting point for your RAM if you are developing your RAM in C. Keep in
mind that your RAM must follow the state, memory allocation, and API
implementation guidelines given in this document; otherwise, serious problems
could develop: CARMA might not communicate properly with the RAM; memory
leaks could develop; or, in the worst case, CARMA or the RAM could abnormally
end. Specifically, read the following sections carefully:
v “Memory allocation” on page 6
v “State functions” on page 21

RAM Construction
RAM construction is a process that deviates from the construction process of a
normal load module or program object. Because of the requirements of DLL
support, the process of creating the RAM for a PDS requires more effort than that
for a PDS/E.

Construction for a PDS
The process for creating a RAM in a PDS requires the usage of the pre-linker. The
steps outlined in creating a RAM for a PDS are as follows:
1. Compile
2. Pre-Link
3. Link

The compile step requires that each source be given the proper compile options for
producing DLL object code. The pre-link step involves feeding the object code into
the pre-linker. The output of the pre-linker is object code that is valid input for the
linker. The pre-linker will create a side deck that may be required input for the
linker for resolving external references. The final link step requires object code and
side decks that are created by the previous steps as input.

To assist in performing compilations involving C, the JCL procedure CRACPL is
provided in the CARMA sample library. Sample JCL for creating a RAM in a PDS
is also provided in the members CRA#CRAM and CRA#PRAM. CRA#CRAM
compiles to PDS/E, and CRA#PRAM can compile to either PDS or PDS/E. Only
CRA#PRAM (or other compile to PDS JCL) requires CRACPL.

© Copyright IBM Corp. 2000, 2010 11

Construction of a PDS/E
The process for creating a RAM in a PDS/E involves two steps. The output of this
process is a program object.
1. Compile
2. Bind

The first step involves using the compiler to generate the object code for the RAM.
After the object code for all sources has been created, it may be fed to the binder
as input for generating the RAM program object.

The process of creating a RAM in a PDS/E is simpler than that for a PDS. Example
JCL is provided for creating the PDS, SCLM, and COBOL RAMs in a PDS/E. The
sample JCL makes use of standard procedures for performing the processes of
compiling and binding.

Notes:

1. RAMs written in C are only intended for use with the z/OS XL C compiler
2. RAMs written in COBOL are only intended for use with the Enterprise COBOL

for z/OS compiler.

Using the RAM utilities module
The RAM utility functions are provided as sample source that may be compiled for
usage by any RAM designed to work with CARMA. It provides access to methods
that are frequently required by RAM designers and are often called several times
within a single RAM. Using the RAM utilities module and its library of functions,
developers will be able to save a great deal of time and simplify performing
CARMA operations on PDS members.

The following methods are included in the RAM utilities module:

utilInitMemberList
This method initializes a list of PDS members for the specified PDS. It must be
called before calls to utilGetNextMember are made. A call to utilCloseMemberList
must also be made before the next call to utilInitMemberList if
utilInitMemberList returns 0 for success.
int utilInitMemberList(char pds[44], int* count, void** tempDataPtr)

char pds[44] Input The specified PDS to list
members for

int* count Output The number of members in
the PDS

void** tempDataPtr Output State information stored for
use by the module, created
by this call

utilGetNextMember
This method places the next member in the PDS specified by utilInitMemberList
into member. utilGetNextMember returns 0 for success, 1 for no members remaining
and any other value on an error. utilCloseMemberList should be called when
finished reading the member list to prevent memory leaks. If utilGetNextMember
returns something other than 0 or 1, you do not have to call utilCloseMemberList.
int utilGetNextMember(char member[8], void** tempDataPtr)

12 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char member[8] Output The next member in the PDS
(space filled if no members
exist)

void** tempDataPtr Output State information stored for
use by the module, modified
by this call

utilCloseMemberList
This method cleans up the PDS member list created by utilInitMemberList. It
should be called before another utilInitMemberList is called.
void utilCloseMemberList(void** tempDataPtr)

void** tempDataPtr Input State information stored for
use by the module, cleaned
up by this call

utilGetAllMemberInfo
This method returns the following ISPF-maintained metadata available for the
given PDS member. This metadata includes:
v Dataset
v Version
v Modification Level
v Creation Date
v Modification Data
v Modification Time
v Current® Size
v Initial Size
v Number of Records Modified
int utilGetAllMemberInfo(char pds[44], char member[8], memberInfo* output)

char pds[44] Input The PDS which contains the
member

char member[8] Input The member name

memberInfo* output Output Member information is
placed in this structure

utilGetMemberInfo
This method returns a piece of ISPF-maintained metadata available for the given
PDS member, including the types listed in the “utilGetAllMemberInfo" method.
int utilGetMemberInfo(char pds[44], char member[8], char* info, int ukey)

char pds[44] Input The PDS which contains the
member

char member[8] Input The member name

Chapter 3. Developing a RAM 13

char* info Output A buffer large enough to
contain the info.
U_ISPF_MI_SIZE[ukey] will
tell the size needed for a
given key. It will not be
NULL terminated, but the
space should be filled to the
size specified in
U_ISPF_MI_SIZE.

int ukey Input Key for information wanted.
See RAM Utilities Module
header file for a complete list
of keys.

utilSetMemberInfo
This method allows all ISPF-maintained metadata to be set. The metadata that may
be set includes the types listed in the "utilGetAllMemberInfo" method.
int utilSetMemberInfo(char pds[44], char member[8], char info[10], int ukey)

char pds[44] Input The PDS which contains the
member

char member[8] Input The member name

char info[10] Input The new information.
Ukey_ZLLIB and Ukey_ZLMSEC
are not supported

int ukey Input Key for information wanted.
See RAM Utilities Module
header file for a complete list
of keys.

utilGetAllPDSInfo
This method returns all ISPF metadata available for the given PDS.
int utilGetAllPDSInfo(char pds[44], pdsInfo* output)

char pds[44] Input The PDS to get all
information about

pdsInfo* output Output PDS information will be
placed in this structure

utilCopyPDStoPDS
int utilCopyPDStoPDS(char fromInstanceID[44], char frommemberID[8],

char toInstanceID[44], char tomemberID[8])

char fromInstanceID[44] Input The PDS to copy from

char frommemberID[8], Input The PDS member to copy

char toInstanceID[44] Input The PDS to copy to

char tomemberID[8] Input The PDS member to replace
(or create if it does not exist)

14 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

utilCopyPDStoSDS
int utilCopyPDStoSDS(char fromInstanceID[44], char frommemberID[8],

char toInstanceID[44])

char fromInstanceID[44] Input The PDS to copy from

char frommemberID[8], Input The PDS member to copy

char toInstanceID[44] Input The SDS to copy to (this
must exist)

utilCopySDStoPDS
int utilCopySDStoPDS(char fromInstanceID[44],char toInstanceID[44],

char tomemberID[8])

char fromInstanceID[44] Input The SDS to copy from

char toInstanceID[44] Input The PDS to copy to

char tomemberID[8] Input The PDS member to replace
(or create if it does not exist)

utilCopySDStoSDS
int utilCopySDStoSDS(char fromInstanceID[44], char toInstanceID[44])

char fromInstanceID[44] Input The SDS to copy from

char toInstanceID[44] Input The SDS to copy to (this
must exist)

utilPutMemberInit
Will initiate a put to a PDS member. Call utilPutMemberRecs or utilPutMemberRec
until all the required records are put.
int utilPutMemberInit(char pds[44], char member[8], int* lrecl)

char pds[44] Input The target PDS

char member[8] Input The target PDS member

int* lrecl Output The lrecl, or record size for
the given PDS. (For VB, this
will be the max record size.)

utilPutMemberRecs
Put multiple records of a fixed length.
int utilPutMemberRecs(char** contents, int numRecords)

char** contents Input 2-D array of records (of size
lrecl) to be put.

int numRecords Input The number of records in a
members contents

Chapter 3. Developing a RAM 15

utilPutMemberRec
Put a single record of variable length.
int utilPutMemberRec(char* contents, int length)

char* contents Input A single record to be put

int length Input The length of the record to
be put. (maximum of lrecl)

utilPutMemberClose
Must be called for every utilPutMemberInit, except in the case of an error
condition in utilPutMemberInit, utilPutMemberRec, or utilPutMemberRecs.
int utilPutMemberClose()

utilExtractMemberInit
Setup the PDS member to extract from.
int utilExtractMemberInit(char pds[44], char member[8], int* lrecl

int* recFM, int* numRecords)

char pds[44] Input The source PDS

char member[8] Input The source PDS member

int* lrecl Output The lrecl, or record size for
the given PDS. (For VB, this
will be the max record size.)

int* recFM Output A Flag representing record
format. Choices are
U_RECFM_VB, U_RECFM_FB, and
U_RECFM_U.

int* numRecords Output The number of records in the
PDS member. Because this
uses ISPF statistics to
determine the number of
records, the maximum value
is 65535 and this will only be
accurate if the statistics are
correct.
utilExtractMemberRec
returns 1 if out of records,
and should be used to
accurately determine when
to stop extracting.

For a value of 65535, the PDS member could actually have more records.

utilExtractMemberRec
Extract's the next record.

Returns 0 for success, and 1 for no more records.
int utilExtractMemberRec(char* record, int* length)

char* record Output A char buffer of size lrecl,
where the next record will be
extracted to.

16 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int* length Output The number of char's written
to record.

A return value of 1 says that there are no more records, and no records were
returned on this call.

utilExtractMemberClose
Must be called for every utilExtractMemberInit, except in the case of an error
condition in utilExtractMemberInit or utilExtractMemberRec
int utilExtractMemberClose()

Additional information on the methods listed above can be found in the RAM
utilities module header file.

Defining the RAM to CARMA
CARMA keeps its RAM information in several VSAM clusters, which must be
populated with records for each of the RAMs in the environment. Refer to
Chapter 4, “Customizing a RAM API using the CAF,” on page 51 to learn how to
insert the appropriate records for your RAM into these VSAM clusters. If you do
not need to customize your RAM API, the only record you need to include in the
VSAM cluster is the record for your RAM; you will not need to add parameter,
return value, or action records.

Exporting functions
When CARMA attempts to load a RAM, it expects to be able to load the RAM API
functions explicitly using the C dllqueryfn function. If using C, a #pragma export
statement such as the one below is used to export each RAM function. The
following example exports the initRAM function:
#pragma export(initRAM)

IDs vs. names
When a member, instance, or other type of data is being returned from the RAM to
CARMA, both its ID and display name are typically returned. The ID should
uniquely identify the entity to the RAM. It would be wise to return a member's
absolute path (starting at the top-level container) in the ID field so that the
member can easily be accessed by the RAM when future requests are made. The
display name is simply the name that should be displayed on the client.

RAM predefined data structures
Most RAM functions use predefined structures to pass information back to
CARMA.

The Descriptor structure consists of a 64-byte name character field and a 256-byte
ID character field. It is used to describe instances, containers, and simple members.
The KeyValPair structure consists of a 64-byte key field and a 256-byte value field.
It is used for metadata key-value pairs. These structures are summarized in Table 4
on page 18 and Table 5 on page 18.

Chapter 3. Developing a RAM 17

Table 4. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display Name

Table 5. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

CRAFCDEF, a C header file in the sample library, must be included in the code for
your RAM before you can use these data structures.

Logging
CARMA provides RAMs with a pointer to a logging function, a pointer to a log
file, and a trace level (see Table 3 on page 9) at initialization. The trace level should
be used to filter out some messages that may not interest users. The logging
function takes a 16-byte sender character buffer, a 256-byte message character
buffer, and the log file pointer that is passed in at initialization. An example call in
C follows:
if(traceLevel > 1)

(*writeToLog)("MyRAM", "Gathering instances", logPtr);

The job spool will indicate the name of the log created.

Dealing with unsupported operations
If you are developing a RAM that communicates with an SCM that does not
support a CARMA operation, you should inform the client that it is disabled by
appropriately modifying your RAM's CAF information (see Chapter 4,
“Customizing a RAM API using the CAF,” on page 51). You may assume that
CARMA clients will not invoke actions marked as disabled. However, you should
still account for the possibility of a client invoking a disabled action by taking one
of the two following actions:
1. Do not implement the function for the disabled action and do not include a

pragma export statement for the function. This will cause CARMA to return a
return code of 38 to any client that requests that operation from your RAM.

2. Implement the function for the disabled action to simply return a return code
of 107. Include the #pragma export statement for the function as you normally
would.

Handling custom parameters and return values
Custom parameters are passed to the RAM using the void** params parameter.
params is an array of void pointers that point to variables of several types. If these
custom parameters have been defined as required parameters for a given function
in the CARMA VSAM clusters (See Chapter 4, “Customizing a RAM API using the
CAF,” on page 51 for more information), it should be assumed that the client has
set up the params properly. To retrieve the parameters, simply typecast the
variables in params back to their proper types. Notice how params uses a char* for
strings instead of a char**. Use the following C code as an example:

18 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int param0;
char param1[30];
double param2;

param0= *((int*) params[0]);
memcpy(param1, params[1], 30);
param2 = *((double*) params[2]);

A pointer to an unallocated custom return values array is passed to the RAM as
void*** customReturn. If custom return values are defined in the CARMA VSAM
clusters, the RAM must allocate memory for customReturn and fill it appropriately.
Because the client must free the memory created in the RAM, it is important RAM
developers allocate memory for each return value seperately. The following C code
demonstrates returning an int, a string, and a double:
/* These are defined at the top */
int* return0;
char* return1;
double* return2;

/* Program body */

return0 = malloc(sizeof(int));
*return0 = 5;
return1 = malloc(sizeof(char) * 10);
memcpy(return1, "THE STRING", 10);
return2 = malloc(sizeof(double));
*return2 = 3.41;
/* Allocate and fill the return value structure */
customReturn = malloc(sizeof(void) * 3);
(*customReturn)[0] = (void*) return0;
(*customReturn)[1] = (void*) return1;
(*customReturn)[2] = (void*) return2;

If no custom return values are defined in the CARMA VSAM clusters,
customReturn should be set to NULL.

CARMA Defined Metadata

RAM specified file extension
The RAM provides the ability to suggest file extensions for CARMA resources in
CARMA clients that use the RAM. File extensions provide the client with insight
into the appropriate editor to use with a specific CARMA resource. Allowing the
RAM to specify the file extension eliminates the need for the user to specify
extensions on every resource.

File extensions can be acquired from three different sources:
v The RAM
v The client
v A parent container

The RAM can be configured to suggest file extensions to the client that can be used
in conjunction with CARMA resources. For example, assuming the RAM metadata
property "carma.file-extension" is set to "foo", and the client is set to look to the
RAM for an extension. The file name for the CARMA resource "Name" would be
displayed in the client as "Name.foo". This is because CARMA will look to the
RAM for a file extension if the client is configured to accept an extension from the

Chapter 3. Developing a RAM 19

RAM. By default, the RAM does not suggest the file extension. However, it can be
assumed that the client will provide an extension if one is not already provided by
the RAM.

Table 6. RAM suggested file extension

Display Name

RAM Metadata
Property
(carma.file-
extension)

Client Extension
Property (set to
accept the RAM's
suggestion) File Name in Client

Name .foo <unset> Name.foo

Once the RAM has specified the file extension however, it is then up to the
discretion of the client to either accept the suggested file extension or use one
defined within the client. In the example provided in Table 6, the extension
provided by the RAM was "foo", so the CARMA resource "Name" was displayed
within the client as "Name.foo". Now assuming that the client has been set to not
use the extension provided by the RAM and apply one of its own. The file
"Name.foo" would be altered to display "Name.ext" where "ext" is the new
extension specified within the client. In the event that the display name already
has a file extension associated with it, the client can not remove the extension from
the display name; it can only append a new extension to the existing file name.

Table 7. Client specified file extension. Client overrides the RAM suggested file extension
and applies its own.

Display Name

RAM Metadata
Property
(carma.file-
extension)

Client Extension
Property (set to
ignore the RAM's
suggestion) File Name in Client

Name .foo .ext Name.ext

Name.foo <unset> .ext Name.foo.ext

In the event that a file extension is not predefined within the RAM metadata
property (carma.file-extension = <unset>), a CARMA resource will then direct itself
to the client for an extension. If the client does not specify a file extension either,
the CARMA resource will then inherit the default extension of its parent container.

Table 8. Inheritance of file extension. A file extension is not specified at any level, so the
resource inherits an extension from its parent. An extension of "dft" represents the default
extension of a parent as dictated by the CARMA client.

Display Name

RAM Metadata
Property
(carma.file-
extension)

Client Extension
Property File Name in Client

Name <unset> <unset> Name.dft

CARMA Version
The RAM provides the ability to track all available versions of CARMA members
through the use of a specific metadata key: carma.version. By providing the
carma.version key in the member info list, CARMA can provide specific
functionality for versioned resources. For example, CARMA members that support
version tracking may differ from members that do not support version tracking.
The actions available on version enabled members depend on the SCM the

20 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

member originates from as well as the RAM used to connect to the SCM. It is up
to the RAM developer to decide which actions to enable such as making versions
editable, read-only, or providing access to past versions. When CARMA performs
functions on members that have been version enabled, by default, the functions
will always reference the most recent version of a member unless otherwise
specified.

The use of the member info key does not uniquely identify the CARMA member.
Each versioned CARMA member must have a unique member ID in order to
indicate which version is being acted upon specifically. For example, a CARMA
member with ID “member1” has 2 versions – version 1 and version 2. The member
versions can be uniquely identified by appending a version number to the ID. See
the example in Table 9. The RAM must be able to uniquely identify the member
version based on the ID in order to provide functionality to support versioned
members – such as checkin, extractMember, performAction, etc.

Table 9. CARMA member versioning example.

Member Version Example Member ID

Version 1 member1_v1

Version 1.1 member1_v1.1

Version 2 member1_v2

For detailed information on calling version lists for CARMA members, refer to the
section “getVersionList” on page 37.

State functions
The RAM has three state functions: initRAM, terminateRAM, and reset, as
illustrated in Figure 8. initRAM initializes the global variables of the RAM and
establishes the connection to the repository. It cannot be called again within a
session until the RAM has been terminated. reset restores the repository
connection to its initial state. It can be called at any time except immediately after
terminateRAM. terminateRAM can also be called at any time, but the only function
that can be successfully called immediately after terminateRAM is initRAM.

initRAM
int initRAM(Log_Func logFunc, FILE* log, int traceLev,

char locale[8], char codepage[5], char error[256])

Uninitialized Initialized Working

terminateRAM

terminateRAM reset

initRAM

reset

non-state
function non-state

function

Figure 8. RAM state diagram

Chapter 3. Developing a RAM 21

Log_Func logFunc Input A function pointer to the
CARMA logging function.
This should be stored for use
in other RAM functions.

FILE* log Input A file pointer to the CARMA
log. This should be stored for
use along with the logging
function.

int traceLev Input The logging trace level to be
used throughout the session.

char locale[8] Input Tells CARMA the locale of
the strings that will be
returned to the client

char codepage[5] Input Tells CARMA the code page
of the strings that will be
returned to the client

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

initRAM must be called before all other RAM operations occur. It should be used to
initialize the SCM connection and to set up any global variables used within the
program. Among these global variables should be ones used to store the three
variables passed into this function.

terminateRAM
void terminateRAM(char error[256])

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

terminateRAM should be used to close the SCM connection, and to free any
resources used by the RAM (such as memory and files).

reset
int reset(char buffer[256])

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

reset is used to restore the SCM connection to its initial state.

Browsing functions

getInstances
Retrieves the list of instances available in the SCM
int getInstances(Descriptor** records, int* numRecords, void** params,

void*** customReturn, char filter[256],
char error[256])

22 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Descriptor** records Output This should be allocated and
filled with the IDs and
names of the available
instances.

int* numRecords Output The number of records that
have been allocated and
returned

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char filter[256] Input This can be passed from the
client to filter out sets of
instances.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Operation:

1. Query the SCM for its list of instances, possibly applying a filter.
2. Allocate the records array. If developing a RAM in C, use the following code:

records = (Descriptor) malloc(sizeof(Descriptor) * *numRecords);

3. Fill the records array with the IDs and names.

If it is not possible to query the SCM for instances, it may be useful to have the
client pass in a list of known instances using the filter buffer. The RAM should
then check the list and return the instances in the records array. The instances can
be hard-coded if they are constant for the SCM.

getMembers
Retrieves the list of members within an instance
int getMembers(char instanceID[256], Descriptor** members,

int* numRecords, void** params, void*** customReturn,
char filter[256], char error[256]);

char instanceID[256] Input The instance for which the
members should be returned

Descriptor** members Output This should be allocated and
filled with the IDs and
names of the members
within the instance.

int* numRecords Output The number of members for
which the array has been
allocated

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

Chapter 3. Developing a RAM 23

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char filter[256] Input This can be passed from the
client to filter out sets of
members.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Operation:

1. Query the SCM for the given instance's members, possibly applying a filter.
2. Allocate the members array. If developing a RAM in C, use the following code:

*members = malloc(sizeof(Descriptor) * *numRecords);

3. Fill the members array with the IDs and names of the members.

isMemberContainer
Sets isContainer to true if a member is a container; false if not
int isMemberContainer(char instanceID[256], char memberID[256],

int* isContainer, void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member being checked

char memberID[256] Input The member that is being
checked

int* isContainer Output Should be set to 1 if the
member is a container; 0 if
not

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Set *isContainer to 1 if the member is a container, or 0 if it is not a container.

getContainerContents
Retrieves the list of members available within a container
int getContainerContents(char instanceID[256], char memberID[256],

Descriptor** contents, int* numMembers,
void** params, void*** customReturn,
char filter[256], char error[256])

24 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char instanceID[256] Input The instance containing the
container

char memberID[256] Input The container's ID

Descriptor** contents Output Should be allocated and
filled with the IDs and
names of the members
within the container

int* numRecords Output The number of members for
which the array has been
allocated

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char filter[256] Input This can be passed from the
client to filter out sets of
members.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Operation:

1. Query the SCM for the given container's members, possibly applying a filter.
2. Allocate the contents array. If developing a RAM in C, use the following code:

*contents = malloc(sizeof(Descriptor) * *numMembers);

3. Fill the contents array with the IDs and names of the members.

Create/Delete
Create and delete provides functionality to create and delete both members and
containers within a CARMA environment.

createMember
Creates a new member
int createMember(char instanceID[256], char memberID[256], char name[64],

char parentID[256], int* lrecl, char recFM[4], void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member being created

char memberID[256] Output The ID of the member that is
being created

char name[64] Input/Output ID of the member being
created

char parentID[256] Input ID of parent container (If no
parent exists, space must be
filled)

Chapter 3. Developing a RAM 25

int* lrecl Output The number of columns in
the data set and array

char recFM[4] Output Contains the data set's record
format (FB, VB, ect)

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

createContainer
Creates a new container
int createContainer(char instanceID[256], char memberID[256], char name[64],

char parentID[256], void** params, void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
container being created

char memberID[256] Output The ID of the container that
is being created

char name[64] Input/Output ID of the container being
created

char parentID[256] Input ID of parent container (If no
parent exists, space must be
filled)

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

delete
Deletes a member or container
int delete(char instanceID[256], char memberID[256], int force, void** params,

void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member or container being
deleted

26 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char memberID[256] Input The ID of the member that is
being deleted

int force Input Used to force a delete. A
value of 1 will force a delete

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The delete function may be used to delete both members and containers, however,
it should not be used to delete a RAM Instance.

File transfer functions

extractMember
Retrieves a member's contents
int extractMember(char instanceID[256], char memberID[256],

char*** contents, int* lrecl, int* numRecords,
char recFM[4], int* moreData, int* nextRec,
void** params, void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
extracted

char*** contents Output Will be allocated as a
two-dimensional array to
contain the member's
contents

int* lrecl Output The number of columns in
the data set and array

int* numRecords Output The number of records in the
data set or the number of
rows in the array

char recFM[4] Output Will contain the data set's
record format (FB, VB, etc.)

int* moreData Output Set the value of the variable
to which this points as 1 if
extract should be called
again (because there is still
more data to be extracted).
Otherwise, assign the value
to which it points as 0

Chapter 3. Developing a RAM 27

int* nextRec Input/Output Input: The member record
where the RAM should
begin extracting

Output: The first record in
the data set that wasn't
extracted if *moreData is set
to 1; otherwise, undefined

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

extractMember returns the contents of the data set in a two-dimensional array. The
function is designed to support sending the data in chunks, so that the array does
not have to be allocated to the entire size of the file. The records in the data sets
are considered to be indexed with the first record being record 0.

Operation:

1. Determine how many records are in the data set, what lrecl and the record
formats are, and set *lrecl and recFM.
a. If the *numRecords - nextRec is greater than RAM's data chunk size, set

*numRecords to the data chunk's number of records, and set *moreData to 1;
finally, allocate the array.

b. Otherwise, set *numRecords to *numRecords - *nextRec and allocate the
array. If developing a RAM in C, use the following code:

*contents = (char**) malloc(sizeof(char*) * (*numRecords));
**contents = (char*) malloc(sizeof(char) * (*lrecl) * (*numRecords));
for(i = 0; i < *numRecords; i++)

(*contents)[i] = ((**contents) + (i * (*lrecl)));

2. Fill the array with the expected set of records. Ensure that the records are not
null-terminated. If there is more data to return, set *nextRec to the 0-based
index of the next record.

Example

Setup: The member contains 26 records, each containing the next alphabetic
character, starting with "A" in record 0. Its *lrecl value is 5, its recFM value is
“FB”, and the RAM's data chunk size is 10.

Figure 9 on page 29 shows what extractMember should return for each call needed
to extract all the contents.

28 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

putMember
Updates a member's contents or creates a new member if the specified memberID
does not exist within the instance
int putMember(char instanceID[256],

char memberID[256], char** contents, int lrecl,
int* numRecords, char recFM[4], int moreData,
int nextRec, int eof, void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
updated/created

char** contents Input Contains the new member
contents

int lrecl Input The number of columns in
the data set and array

int* numRecords Input/Output The number of records in the
data set or the number of
rows in the array

char recFM[4] Input Contains the data set's record
format (FB, VB, etc.)

int moreData Input Will be 1 if the client has
more chunks of data to send;
0 otherwise

int nextRec Input The record in the data set to
which the 0th record of the
contents array maps

First Call Second Call Third Call

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

*lrecl = 5
*numRecords = 10
*moreData = 1
*nextRec = 10

*lrecl = 5
*numRecords = 10
*moreData = 1
*nextRec = 20

*lrecl = 5
*numRecords = 6
*moreData = 0
*nextRec = X

Figure 9. Example of return values for subsequent calls to extractMember. Notice that during the third call, *nextRec
has a listed value of X. This means that the value of *nextRec is not significant and will not need to be altered.

Chapter 3. Developing a RAM 29

int eof Input If 1, denotes that the last row
of the array should mark the
last row in the data set; 0
otherwise

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Like extractMember, putMember supports the data being sent in chunks. putMember
should also support clients that wish to pass data chunks that are not in sequential
order. For example, a client may send records 10 through 19, 20 through 29, and
then 0 through 9. The RAM should handle such a situation and properly update
the member, or return an error code and fill the error buffer with a string stating
that it cannot handle such a situation.

numRecords describes how many records the client would like to update/write on
input, and the RAM should set it to the number of records that were actually
written for output. If there is a difference between the two, the client will attempt
to put in the members that were not written. Therefore, after receiving a response
from the RAM, the client will set nextRec to the new numRecords value plus
nextRec on its next putMember call.

For putMember, nextRec tells the RAM where to begin writing the contents buffer
that has been passed in. For example, if nextRec is 0, the RAM should start at the
beginning of the member.

moreData signifies that the client will be calling putMember again with another
chunk. It is up to the RAM developer to decide how to handle a situation where
moreData is set and the next call to the RAM is not a call to the putMember function
providing the next chunk of data. In such a case, the RAM might simply return an
error. Alternatively, it could handle the problem and move on.

eof signifies that the current contents buffer contains the last records of a member.
If a 40-record member needed to be shortened to 5 records, eof would be set to 1
when the 5th record were being passed in. This should never be set when moreData
equals 1.

See the source for the Skeleton RAM and the sample PDS RAM for more help (see
“Locating the sample files” on page 3 for information on how to find these source
files).

Operation:

1. Ensure that the lrecl, numRecords, and nextRec values that were passed in are
valid.

30 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

2. Open up the dataset and write from record nextRec to record nextRec +
numRecords.

3. If eof is specified, ensure that all records starting with the record at index
nextRec + numRecords are removed.

4. If moreData is equal to 0, close the data set. If moreData is equal to 1, either
leave the data set open if its state cannot be maintained between calls, or close
the data set and make sure that it can be reopened to the appropriate place
with the values being passed in next time putMember is called.

Extract to External
CARMA provides RAM's with the ability to extract files from an SCM into a
normal host environment of PDSs and Sequential files.

copyFromExternal
Copies a member from a PDS or an SDS.
int copyFromExternal(char instanceID[256], char memberID[256], char external[256],

void** params, void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the member being copied

char memberID[256] Input The ID of the member being copied

char external[256] Input The location to copy from. Either a PDS member or
an SDS member. Examples: FEK.#CUST.EXT.STOR
FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom parameters (see
“Handling custom parameters and return values” on
page 18)

void*** customReturn Output Used to reference an array of custom return values
(see “Handling custom parameters and return
values” on page 18)

char error[256] Output If an error occurs, this should be filled with a
description of the error.

copyToExternal
Copies a member to a PDS or an SDS.
int copyToExternal(char instanceID[256], char memberID[256], char target[256],

void** params, void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the member being copied

char memberID[256] Input The ID of the member being copied

char target[256] Input The location to copy to. Either a PDS member or an
SDS member. Examples: FEK.#CUST.EXT.STOR
FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom parameters (see
“Handling custom parameters and return values” on
page 18)

void*** customReturn Output Used to reference an array of custom return values
(see “Handling custom parameters and return
values” on page 18)

char error[256] Output If an error occurs, this should be filled with a
description of the error.

Chapter 3. Developing a RAM 31

Binary file transfer
To successfully transfer files containing binary data without incurring any
corruption, the RAM uses a designated set of functions to extract and put binary
members from an SCM. Once a binary member has been extracted from an SCM,
the RAM then hands the member to CARMA390, which continues to pass it along
until the member reaches the user’s machine. At each stage of the transfer process,
the member is recognized as containing binary data, and no changes are applied to
the member because they would result in corruption of the data.

extractBinMember
Retrieves a binary member's contents.
int putBinMember(char instanceID [256], char memberID [256],

char** contents, int* length, int* moreData, int start,
void** params, void*** customReturn, char error [256])

char instanceID[256] Input The instance containing the
member being extracted.

char memberID[256] Input The ID of the member that is
being extracted.

char** contents Output Pointer to the member’s
contents

int* length Output The length of the member’s
contents.

int* moreData Output If extract should be called
again because there is more
data, set the value of the
variable to which this points
to 1, otherwise assign the
value to which it points to 0.

int start Input The byte location of the file
to start extracting from.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

putBinMember
Updates a binary member’s contents or creates a new member if the specified
memberID does not exist within the instance.
int putBinMember(char instanceID [256], char memberID [256],

char* contents, int length, int moreData, int start,
void** params, void*** customReturn, char error [256])

char instanceID[256] Input The instance containing the
member being
updated/created.

32 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char memberID[256] Input The ID of the member that is
being updated/created.

char* contents Input Contains the new members
contents.

int length Input Pointer to the length of data
to be written.

int moreData Input Will be 1 if the client has
more chunks of data to send;
0 otherwise.

int start Input The byte location of the file
to start putting data.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Metadata functions

getAllMemberInfo
Retrieves all of a member or instance’s metadata
int getAllMemberInfo(char instanceID[256], char memberID[256],

KeyValPair** metadata, int* num, void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The ID of the instance
containing the member

char memberID[256] Input The ID of the member for
which metadata is being
returned. The ID may be
empty (set as all spaces) if
member info is to be
retrieved for the instance
instead of a specific member.

KeyValPair** contents Output This should be allocated and
filled with all the metadata
key-value pairs for the
specified member

int* num Output The number of key-value
pairs for which the array has
been allocated

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

Chapter 3. Developing a RAM 33

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Operation:

1. Query the SCM for the given member's metadata.
2. Allocate the contents array. If developing a RAM in C, use the following code:

*metadata = malloc(sizeof(KeyValPair) * *num);

3. Fill the contents array with the key-value pairs.

getMemberInfo
Retrieves a specific piece of a member or instance’s metadata.
int getMemberInfo(char instanceID[256], char memberID[256],

char key[64], char value[256], void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The ID of the instance
containing the member

char memberID[256] Input The ID of the member whose
metadata is being retrieved If
set as all spaces, the
metadata for the instance
should be returned.

char key[64] Input The key for the value to be
returned

char value[256] Output The requested value

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

getMemberInfo returns the value of the specified key for the given member.

updateMemberInfo
Updates a specific piece of a member or instance’s metadata
int updateMemberInfo(char instanceID[256], char memberID[256],

char key[64], char value[256], void** params,
void*** customReturn, char error[256])

34 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char instanceID[256] Input The ID of the instance
containing the member

char memberID[256] Input The ID of the member whose
metadata is being set. If set
as all spaces, the metadata
for the instance should be set

char key[64] Input The key for the value to be
set

char value[256] Input The value to set

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

updateMemberInfo attempts to update a member's metadata (specified by the given
key) with the given value.

Other operations

lock
Locks the member
int lock(char instanceID[256], char memberID[256], void** params,

void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
locked

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

unlock
Unlocks the member

Chapter 3. Developing a RAM 35

int unlock(char instanceID[256], char memberID[256], void** params,
void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
unlocked

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

check_in
Checks in the member. This only consists of setting a flag to mark that it is
checked in.
int check_in(char instanceID[256], char memberID[256], void** params,

void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
checked in

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

check_out
Checks out the member. This only consists of setting a flag to mark that it is
checked out.
int check_out(char instanceID[256], char memberID[256], void** params,

void*** customReturn, char error[256])

char instanceID[256] Input The instance containing the
member

36 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char memberID[256] Input The ID of the member being
checked out

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

performAction
Performs the action identified in the actionID by using the parameters given and
the return values in customReturn (when applicable).
int performAction(int actionID, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

int actionID Input The custom action that is
being requested, as defined
in the CRADEF VSAM.

char instanceID[256] Input The instance the action is
being performed on. If this
and memberID are both set
to all spaces, this indicates
the action should be
performed on the RAM.

char memberID[256] Input The member the action is
being performaed on. If this
is set to all spaces, this
indicates the action should be
performed on the instance.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this should
be filled with a description of
the error.

getVersionList
Provides a list of versions available for a given member
int getVersionList(char instanceID[256], char memberID[256],

VersionIdent** versions, int* num, void** params,
void*** customReturn, char error[256])

Chapter 3. Developing a RAM 37

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to get a list of
versions for

int* num Output The number of versions

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this should
be filled with a description of
the error.

VersionIdent will be identified by the following struct:
typedef struct {
char memberID[256]; /*A versioned memberID, such as

baseMemberID_VerNum*/
char versionKey[64]; /* A way to refer to the version, such as

“1.2.3”...should be the same as the value
for the carma.version metadata key*/

char comments[256]; /* RAM supplied comments on the version,
could be timestamp, changes, etc.. */

} VersionIdent;

The version list should be a complete ordered version list, but the RAM Developer
can chose to use a ‘versioned’ ID for the current version, or to use the unchanging
ID. As an example, current version of a member might be accessible via
“location(Member)” or “location(Member)_1.4” where the file is on version 1.4.
The RAM developer could therefore choose to return either
“location(Member)_1.4” or “location(Member)” as the newest version in the list.

When returning a list of members through browsing functions, such as getMembers,
the memberIDs returned SHOULD NOT include the version. Changing the memberID
for a member prevents a CARMA client from properly tracking that member.

In order to support versioning, RAM Developers should handle CARMA calls
when presented with a ‘versioned’ ID for the memberID.

If a RAM developer wants to support versioning for some, but not all of the
members, a return code of 130, which stands for “Member does not support
versioning” can be used.

RAM development using COBOL
While the C programming language is a sufficient choice for the development of
most RAMs, you may occasionally find it beneficial to develop a RAM in COBOL.
Be warned that while there are certain advantages to using COBOL for RAM
development, there are also certain disadvantages as well:

Advantages of RAM development in COBOL

38 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

v Code between functions is more clearly separated, enforcing stringent
design and mandating a careful inventory of shared resources between
RAM program functions.

v Since COBOL is heavily associated with the host, the facilities for
COBOL development may be more readily available on your system.

v Since string manipulation in COBOL does not rely on NULL delimiters,
protection exceptions are less likely than they would be during C
development.

v RAMs that involve the incorporation of business logic implementation or
heavy amounts of data shuffling are simpler to develop in COBOL.

v COBOL code has the property of being self-documenting.

Disadvantages of RAM development in COBOL

v Dynamic structures used by CARMA are cumbersome to deal with in
COBOL.

v Usage of additional C-style facilities involves adding C code to
COBOL-to-C source.

v Data typing available within C is not available in COBOL. You must
exercise more care when dealing with pointers.

CARMA ships with a sample RAM developed in COBOL, appropriately called the
sample COBOL RAM. This sample COBOL RAM requires the COBOL-to-C source
in order to function properly. You may use this RAM as a starting point for your
own RAM written in COBOL, but the provided sample COBOL RAM should not
be used in a production environment.

Note: In order to use the sample COBOL RAM, you must update the Custom
Action Framework (CAF) information in the VSAM clusters. Details on how
to accomplish this can be found in the IBM Rational Developer for System z
Host Configuration Guide (SC31-6930-02).

COBOL RAM program structure

Coding the program ID
RAMs developed in C implement CARMA RAM API functions, such as initRAM or
getMembers. RAMs developed in COBOL implement each of these functions as
individual COBOL programs (called RAM function programs). At compile time, the
source code for each program is concatenated and compiled into a single DLL.
Each program ID is exported to a definition side deck if the DLL is compiled to a
PDS. The program ID of each RAM function program should match the name of
the RAM function implemented by that program.

Note: This matching should be case-sensitive. For instance, the following code
would define the program that implements the getInstances RAM function:

PROGRAM-ID. ’getInstances’.

The linkage section
Within a COBOL RAM function program, the linkage section is used for defining
parameter values, establishing addressability to pointer values passed as
parameters, and referencing the integer value returned by the RAM function.

Each parameter being passed to the RAM function should be defined as a 77-level
item. Although these parameters cannot be grouped as 77-level items, it is

Chapter 3. Developing a RAM 39

recommended that they be defined adjacent to each other in the same sequence
that they are passed to the program (for clarity, locality of reference, and
readability).

Note: To help ease development, an example copy book with pre-defined
parameters for use in a linkage section can be found in the sample library
member CRACPY05..

For example, you could use the following code to define the parameters for the
getInstances RAM function program:

77 ARG-RECORDS POINTER.
77 ARG-NUMRECS PIC S9(9) BINARY.
77 ARG-PARAMS POINTER.
77 ARG-RETURNS POINTER.
77 ARG-FILTER PIC X(256).
77 ARG-ERROR PIC X(256).
77 INT-RVAL PIC S9(9) BINARY.

Note: The items used in the above procedure division are displayed as they are
defined in the copy book.

77-level items should also be defined for areas referenced by pointers that are not
dynamic in size. For instance, a definition should exist for referencing the 256-byte
error buffer. Use the following definition for this error buffer:
77 ERROR-BUFFER PIC X(256).

The linkage section should also contain a reference to the integer value being
returned from the RAM function (the return code). Define this integer using the
following code:
77 INT-RVAL PIC S9(9) BINARY.

Addressability to the return code need not be established. It may simply be used
as if it were defined within the working storage section.

Defining the procedure division
Parameters should be established with a USING phrase so that they can be made
available to the COBOL program. Since parameters can be passed by reference or
value, you should determine which method is most appropriate for your
parameters depending upon the coding practices in use.

The following example procedure division for the getInstances declaration
illustrates how you might designate parameters to be passed.
PROCEDURE DIVISION USING BY VALUE ARG-RECORDS

BY REFERENCE ARG-NUMRECS
BY VALUE ARG-PARAMS
BY VALUE ARG-RETURNs
BY REFERENCE ARG-FILTER
BY REFERENCE ARG-ERROR
RETURNING INT-RVAL.

Since each RAM function returns an integer value, the RETURNING phrase is used to
specify that an integer value is being returned from the COBOL program.

Note: The order specified in the procedure division must also match the order
defined in the API prototype.

40 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Ending the program
Since each COBOL RAM function program serves the purpose of a C RAM
function, each RAM function program should be terminated with an END PROGRAM
directive. When compiling a COBOL RAM DLL, the COBOL source programs are
provided to the COBOL compiler as a series of concatenated DD statement. Failing
to provide END PROGRAM directives will cause programs to be treated as nested,
which will yield compiler error messages.

Passing values from C to COBOL
Function arguments passed from a C program into a COBOL RAM function
program must be handled in a maner that is appropriate to the method by which
they are being passed. More information on this topic can be found in the guide:
Language Environment® Writing Interlanguage Communication Applications. For specific
information on passing values between languages, refer to Chapter 4,
Communicating between C and COBOL. All examples within this section refer to
behavior in which equivalent data types must be defined without the use of
#pragma in the calling C program.

There are two ways of using parameters that have been passed from C. Parameters
can be included with the USING BY VALUE phrase or the USING BY REFERENCE phrase
of the procedure division header.

Receiving basic C data types passed by value
As a general rule, arguments of basic C data types such as int, double, float, or
long that are passed into the C function by value should be received with the BY
VALUE phrase in the COBOL program's procedure division. For information on each
basic C data type passed BY VALUE and how it should be defined as a linkage
section item, refer to z/OS V1R8.0-V1R9.0 Language Environment Writing
Interlanguage Communication Applications (SA22-7563-05), Chapter 4
"Communicating between C and COBOL", Table 11. "Supported Data Types Passed
by Value (Direct) without #pragma".

Arguments that are passed from C using pointers (such as strings in the form of
character arrays) received BY VALUE must be manually dereferenced using the SET
operator. Alternatively, arguments that use pointers may also be received with the
BY REFERENCE procedure division phrase in the receiving COBOL program,
provided that there is no possibility for the passed pointer to have a NULL value.
More information about this technique can be found in “Avoiding Dereferencing
(Receiving C data types BY REFERENCE)” on page 42, located later in this section

Example: Receiving an integer BY VALUE.

In this example the COBOL program is receiving a parameter that is defined as
type int in C.

First, a linkage section entry must be defined for the incoming integer value.
77 IN-INTEGER PIC S9(9) BINARY.

Then, we must add the correct information to the PROCEDURE DIVISION statement to
make the incoming integer available to the program.
PROCEDURE DIVISION USING BY VALUE IN-INTEGER.

Within the COBOL program, IN-INTEGER may be used as if it were any other item
in storage.

Chapter 3. Developing a RAM 41

Example 2: Receiving Character Arrays BY VALUE.

Most of the C RAM API functions receive a space-padded C character array of 256
bytes called a memberID. In C, this array is passed by reference using a pointer.

When receiving a character array BY VALUE, the COBOL program receives a copy of
the pointer that points to the storage location holding the characters. This pointer
must be dereferenced manually before the string can be used within the COBOL
program.

Define the item in the linkage section as a POINTER.
77 IN-MEMBERID POINTER.

You must also define a second item in the linkage section for dereferencing the
pointer.
77 DEREFERENCED-MEMBERID PIC X(256)

Ensure that the PROCEDURE DIVISION receives the memberID properly.
PROCEDURE DIVISION USING BY VALUE IN-MEMBERID

Then, before working with the memberID, use the SET operator to dereference
IN-MEMBERID.
SET ADDRESS OF DEREFERENCED-MEMBERID TO IN-MEMBERID.

5. Now DEREFERENCED-MEMBERID may be used as though it were defined in the
working storage section:
MOVE 'MEMBER1’ TO DEREFERENCED-MEMBERID.

Avoiding Dereferencing (Receiving C data types BY
REFERENCE)
In receiving a parameter with the BY REFERENCE phrase, the COBOL program will
take care of dereferencing operations provided that the item is defined properly in
the linkage section. This is useful in avoiding dereferencing operations, but risky in
cases where a NULL pointer may be passed into the receiving COBOL program.

Note: A COBOL program that receives a NULL pointer for an argument received
BY REFERENCE will be likely to ABEND with a protection exception 0C4.

Example: Receiving character arrays BY REFERENCE.

In this example, memberID will be received BY REFERENCE from CARMA.

First, a linkage section entry must be defined to match the character array being
passed.
77 IN-MEMBERID PIC X(256).

The PROCEDURE DIVISION statement must reflect that this item is being received BY
REFERENCE.
PROCEDURE DIVISION USING BY REFERENCE IN-MEMBERID.

IN-MEMBERID can now be used as if it were any other item defined in working
storage.
MOVE 'MEMBER1’ TO IN-MEMBERID.

42 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Knowing when to receive BY REFERENCE
The following situations describe when it is appropriate for the COBOL program
to receive parameters BY REFERENCE:
v The item being received is passed from C as a pointer to a simple data type that

does not require multiple levels of dereferencing. (e.g. int *, char *, double *).
v The item being received is being passed into COBOL via a pointer and its value

in the calling program is allowed to be changed by the called program.
v The item being received is a pointer that is guaranteed not to be NULL.

Knowing when to receive BY VALUE
The following situations describe when it is appropriate for the COBOL program
to receive parameters BY VALUE:
v The item coming into COBOL is being passed by value from C (the item is not

being passed via a pointer and its value in the calling program should not be
modified).

v The item coming into COBOL is a type of pointer that will require multiple
levels of dereferencing.

v The item coming into COBOL is a pointer that may potentially have a NULL
value and must be validated before usage in order to prevent an exception
(particularly 0C4).

v Any pointer coming into COBOL that requires manual dereferencing using the
SET operator.

v Any pointers to C functions.
v Any incoming value that is a pointer and will need to have pointer arithmetic

performed upon it.

Passing Data from COBOL to C
When calling C DLL functions from within COBOL, the method by which
parameters are passed from the COBOL program must carefully match the data
types of each of the parameters in the prototype for the receiving C function. This
is necessary in order to avoid problems such as abnormal termination. The general
rule is that if a C function receives an argument that is not a pointer, it should be
passed from COBOL using the BY VALUE phrase. If the argument is a pointer, it
should be passed using the BY REFERENCE phrase.

Passing COBOL items as basic C function arguments
Basic C data types found within function prototypes should be passed by value
from the calling COBOL program. In the following example, a C function is
invoked that accepts two arguments that are basic C data types from the calling
COBOL program.

C function prototype:
int callme(int a, double b);

Working storage items as they should be defined in the calling COBOL program:
01 FUNC-ARG1 PIC S9(9).
01 FUNC-ARG2 COMP-2.
01 RETVAL PIC S9(9) BINARY.

An example of the CALL statement in the COBOL program.
CALL “callme” USING BY VALUE FUNC-ARG1 FUNC-ARG2 RETURNING RETVAL.

Chapter 3. Developing a RAM 43

Passing COBOL items into C functions by reference
C functions frequently receive arguments for reference modification. The most
prevalent example of this is a C-style string modification where a character array is
received via a copy of a pointer to the original string. Items may be passed from
COBOL to C for reference modification using the BY REFERENCE phrase inside the
CALL statement. The following example demonstrates such a situation.

Example:

C function prototype of receiving function:
int receiveString(char inString[256]);

Definitions for the working storage item being passed as an argument and the
return value:
01 THE-STRING PIC X(256).
01 RETVAL PIC S9(9) BINARY.

The CALL statement in the COBOL program:
CALL “receiveString” USING BY REFERENCE THE-STRING RETURNING RETVAL.

Example 2: A C function that receives a pointer to an integer from the calling
COBOL program:

C function prototype:
int changeInt(int * fromCOBOL);

Working storage entries in the calling COBOL:
01 THE-INT PIC S9(9) BINARY.
01 RETVAL PIC S9(9) BINARY.

The CALL statement in the COBOL program:
CALL “changeInt” USING BY REFERENCE THE-INT RETURNING RETVAL.

Dealing with pointer operations

Simple pointer operations
For most parameters passed to COBOL RAM function programs, a small amount
of pointer dereferencing code may need to be implemented using the SET operator.
For example, most programs will receive a pointer to a 256-byte buffer for a
detailed error message. Before you can fill this buffer though, it must be
dereferenced using the SET operator. For smaller items, dereferencing can be
avoided by USING BY REFERENCE.

As an example, the following code demonstrates how to establish addressability to
the error buffer. The pointer to the error buffer is passed by value to the procedure
division for getInstances and is defined in the linkage section as follows:
77 GIP-ERROR POINTER.

Later in the linkage section, a 77-level item is defined for dereferencing and
performing operations on the error buffer:
77 ERROR-BUFFER PIC X(256).

Then, within the procedure division we establish addressability to the error buffer
after verifying that GIP-ERROR is not NULL:

44 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

SET ADDRESS OF ERROR-BUFFER TO GIP-ERROR.

Now we can treat the error buffer as we would any normal 256-byte alphanumeric
field. In this case, the error buffer is a 256-byte non-NULL-terminated string.

Complex pointer operations
For pointers with multiple levels of indirection, dereferencing operations can be
complicated. The COBOL code to perform such dereferencing operations would
require multiple 77-level items with a SET operation for each level of indirection. To
complicate matters, dynamically allocated structures are difficult to access without
knowing an absolute maximum size for the structure.

Instead of attempting complex pointer operations in COBOL, it is highly
recommended that code of this nature be implemented in a modular fashion by
using the COBOL-to-C source. Currently functions are implemented for memory
allocation and contents buffer data insertion and retrieval. You may find it helpful
to add to this code as necessary and use it for more complex operations.

Pointer Arithmetic
Alternatively, complex pointer operations can be performed within COBOL, but
decrease code readability and maintainability. To deal with dynamic structures,
pointer arithmetic is necessary. Pointer arithmetic is achieved through the use of
redefines. To create a pointer that may be manipulated through pointer arithmetic,
use code similar to the following within the working storage section:
01 SOME-POINTER POINTER.
01 SOME-POINTER-MANIP REDEFINES SOME-POINTER.

05 ADD-TO-ME PIC S9(9) BINARY.

After defining the pointer, you can manipulate it as necessary using the redefined
version. The following code would change the pointer to point to the next
structure in a contiguously allocated chunk of memory containing multiple
structures.
ADD SIZE-OF-STRUCTURE TO ADD-TO-ME.
SET ADDRESS OF STRUCTURE TO SOME-POINTER.

Memory Allocation
Certain RAM functions, such as extractMember and getAllMemberInfo, require that
the RAM allocate memory. This memory is later freed by CARMA, which uses C's
free function to deallocate the memory. For this reason, a RAM implemented in
COBOL must use C's malloc function or the Language Environment service
CEEGTST to allocate memory. The COBOL-to-C source has a C function called
CMALLOC to provide access to malloc from within COBOL code. The CMALLOC
function accepts as an argument an integer representing the requested number of
bytes and returns a pointer to the portion of memory that was allocated. It is the
RAM developer's responsibility to ensure that the pointer is not NULL before
attempting to use the allocated memory.

The following sample call to CMALLOC illustrates its use:
01 MALLOC-SIZE PIC S9(9) BINARY.
01 VOID-POINTER-RETURNED POINTER.
MOVE 80 TO MALLOC-SIZE.
CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

RETURNING VOID-POINTER-RETURNED.

The Language Environment callable service CEEGTST is also available for
dynamically acquiring storage. For more information on this service and other

Chapter 3. Developing a RAM 45

services provided by Language Environment refer to z/OS V1R9.0 Language
Environment Programming Reference (SA22-7562-09).

Variables shared between programs
Global variables that need to be shared between RAM function programs may be
declared as external. The following example illustrates how to declare variables
using the EXTERNAL keyword in the working storage entry of the initRAM function
program:
01 SHARED-VARIABLES EXTERNAL.

05 LOG-FUNCTION-POINTER FUNCTION-POINTER.
05 TRACELEVEL PIC S9(9) BINARY.
05 FILE-POINTER POINTER.
05 LOCALE PIC X(8).
05 CODEPAGE PIC X(5).

In the sample code above, the global variables have their values set within the call
to initRAM. Later, when terminateRAM is called, these values are displayed to show
that they are persistent and shared.

This type of definition should be used for values that need to be shared across
calls to different RAM function programs. If a working storage item will only be
accessed by one RAM function program, do not declare it as an external item.
Working storage items that do not need to be modified by other RAM function
programs should not be made external.

Handling Custom Action Framework data
The Custom Action Framework (CAF) allows you to expand upon the existing
function programs of your COBOL RAM by implementing new custom actions
that are designed to meet the needs of your CARMA client.

Handling Custom actions
Custom actions may be created by using the sample COBOL source file (CRACOB16,
located in the sample library) as an example for implementing the performAction
RAM function. Within the performAction RAM function program, use an EVALUATE
statement to selectively execute code based upon ARG-ACTIONID:
EVALUATE ARG-ACTIONID

WHEN 119
CALL ’ESREVER’ USING BY VALUE ARG-PARAMS ARG-RETURNS

BY REFERENCE ARG-ERROR RETURNING RETCODE
IF RETCODE NOT = 0

MOVE RETCODE TO INT-RVAL
EXIT PROGRAM

END-IF
WHEN OTHER

MOVE RC-UNSUPPORTED TO INT-RVAL
EXIT PROGRAM

END-EVALUATE.

Handing Custom Parameters without using COBOL-to-C Utility
Functions
Custom parameters can be retrieved through two dereferencing operations. After
ensuring that the pointer passed to the RAM program is not NULL, establish
addressability to the array of pointers. Then dereference each pointer to access each
custom parameter that it refers to. The following excerpt from the linkage section
for theperformAction RAM function program describes the fields as they are
defined for dealing with two custom parameters:

46 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

77 PA-PARAMS POINTER.

01 PARAMS.
05 PARAM1 POINTER.
05 PARAM2 POINTER.

01 CUSTOM-PARAM1 PIC S9(9) BINARY.
01 CUSTOM-PARAM2 PIC X(8).

First establish addressability to the custom parameter pointer list using the
following code:
SET ADDRESS OF PARAMS TO PA-PARAMS.

Then establish addressability to individual parameters.
SET ADDRESS OF CUSTOM-PARAM1 TO PARAM1.
SET ADDRESS OF CUSTOM-PARAM2 TO PARAM2.

The custom parameters can now be used as if they were normal fields in the
working storage section. Also, it is assumed that the procedure division statement
has specified that PA-PARMS is being used BY VALUE.

Note: The above example code does not include the checks for NULL pointers that
you should include in your code.

Handling Custom Returns without using COBOL-to-C Utility
Functions
Accessing custom return values within a COBOL RAM requires more caution than
dealing with custom parameters. For custom returns to be established, a series of
concise steps must be followed. The following code outlines linkage section items
that are used to reference a list of two custom returns. It is assumed that the
procedure division statement has specified that PA-PARMS is being used BY VALUE:
77 PA-RETURNS POINTER.
01 RETURNS-LV2 POINTER.
01 RETURNS-LV3.

05 RETURN1 POINTER.
05 RETURN2 POINTER.

01 CUSTOM-RETURN1 PIC X(8).
01 CUSTOM-RETURN2 PIC S9(9) BINARY.

Begin by dereferencing the first level of indirection:
SET ADDRESS OF RETURNS-LV2 TO PA-RETURNS.

Then allocate the memory necessary for the array of pointers to the custom
parameters:
COMPUTE MALLOC-SIZE =

SIZE-OF-POINTER * NUM-CUSTOM-RETURNS
END-COMPUTE.
CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

RETURNING RETURN-POINTER.

Now set the second level pointer to point at that block of memory.
SET RETURNS-LV2 TO RETURN-POINTER.

Next, establish addressability to the list of pointers to return values that you have
just allocated:
SET ADDRESS OF RETURNS-LV3 TO RETURNS-LV2.

Chapter 3. Developing a RAM 47

Allocate the necessary memory for the custom parameters:
* Allocate space for 8 byte string
MOVE 8 TO MALLOC-SIZE.
CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

RETURNING RETURN1.

*Allocate space for integer
MOVE 4 TO MALLOC-SIZE.
CALL "CMALLOC" USING BY VALUE MALLOC-SIZE

RETURNING RETURN2.

Note: This code automatically sets the list of pointers within a RETURNING phrase.
As such, it is not necessary to set these pointers manually.

Finally, establish addressability to the return values and set them accordingly.
SET ADDRESS OF CUSTOM-RETURN1 TO RETURN1.
SET ADDRESS OF CUSTOM-RETURN2 TO RETURN2.
MOVE 'COBOLRAM’ TO CUSTOM-RETURN1.
MOVE 42 TO CUSTOM-RETURN2.

Note: See the COBOL RAM sample source for documentation and examples on
how to use the COBOL-to-C utility functions.

Differences between the “utility DLL” and the “COBOL-to-C
utility source”

Within the CARMA documentation there are references to a “utility DLL” and
“COBOL-to-C utility source”. There is potential for confusion between these two
items.

The "utility DLL” name is a misnomer. The provided “utility DLL” is a set of C
source code found within the member CRASUTIL within the CARMA SFEKSAMP
library. No compiled DLL form of this source is provided. The source is intended
to provide various utility functions in C that can be shared by various RAM
implementations. These functions implement tasks that RAM developers may
frequently need to perform within their code. This code is provided by the
CARMA development team to ease the process of RAM development. You can
compile the source as a DLL, or as object code and include it in the linking process
for any RAM. In either case, the code is intended to be compiled with the compiler
options for producing DLL code (for example: RENT,DLL). In creating the sample
RAMs provided with CARMA, the utility object code was linked into the final
module.

The other utility source provided, the COBOL-to-C utility source, is also C code
found in the member CRACOBC1 of the SFEKSAMP library. This source is
provided as a set of C functions accessible to COBOL RAM developers to simplify
tasks that are cumbersome to implement in COBOL. The provided functions also
make it possible to access the CARMA log, which is difficult from COBOL due to
the CARMA RAM API specification for the format of the initRAM function.

Both the “utility DLL” and the “COBOL-to-C utility” are provided to developers as
unsupported sample code with the intent of simplifying the task of RAM
development. C developers will likely only consider using the “utility DLL” to
develop a RAM and COBOL developers should consider utilizing both in order to
simplify the development process.

48 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Debugging and avoiding abnormal termination
There are multiple techniques and coding practices available to facilitate COBOL
RAM development.

Displaying values to help debug your COBOL RAM
The DISPLAY verb can be used to inspect the values of program variables,
parameters being passed, and buffers being filled. Moreover, DISPLAY statements
can be most useful if they are inserted to trace the execution path. Most
importantly, note that the displayed values for pointers are shown in decimal, not
in hexadecimal. Output from the use of the DISPLAY verb will display in the
CARMA job spool.

NULL pointers
Attempting to dereference a NULL pointer will almost certainly result in a
protection exception. This effectively will result in not only the termination of the
RAM, but also of CARMA. To avoid such an abnormal termination, all pointer
values should be checked for NULL values. Further documentation is provided
about pointers and checking for NULL values within Enterprise COBOL for z/OS
Language Reference.

Properly exiting your RAM function programs
Conventionally STOP RUN is used to end the execution of a program written purely
in COBOL. However, coding STOP RUN within a COBOL RAM will terminate both
CARMA and the COBOL RAM. Avoiding STOP RUN statements is recommended
unless circumstances require this sort of behavior. You should use EXIT PROGRAM
instead of STOP RUN to leave execution of the COBOL RAM and return to CARMA
processing.

Chapter 3. Developing a RAM 49

50 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Chapter 4. Customizing a RAM API using the CAF

The Custom Action Framework (CAF) is used by RAM developers to describe to
CARMA clients how their RAM APIs differ from the standard RAM API. The CAF
allows a RAM API to define the following differences between its API and the
standard RAM API:
v Additional ("custom") actions
v Disabled standard actions
v Additional ("custom") parameters to standard actions
v Additional ("custom") return values to standard actions
v Fields describing metadata that should be displayed on the client

These differences are defined using CAF information. CAF information can be
thought of as a contract between a RAM and the CARMA clients using that RAM;
the RAM is guaranteed to run properly as long as CARMA clients follow the
RAM's CAF information. Before attempting to define a RAM's CAF information,
you may want to create a conceptual model of your RAM's CAF information. This
will help you plan how you will define your RAMs CAF information in the
CARMA VSAM clusters. This chapter provides a practical example of how to
create such a model for a RAM and how to then define the CAF information for
the RAM using that model.

Before you can follow the example, you should first understand the basic CAF
object types. The example RAM model is designed using these objects.

CAF object types
There are five types of objects used in CAF information: RAMs, parameters, return
values, actions, and fields.

RAM
RAMs provide CARMA with access to specific SCMs. CAF information for your
RAM includes the following:

Name The RAM's name

Description
A short description of the RAM

RAM ID
A numeric identifier for the RAM between 0 and 99

Programming Language
The programming language the RAM was written in (C, COBOL, or PL/I)

RAM DLL name
The name of the RAM DLL

Version
The version number of the RAM

Repository version
The repository version that the RAM was designed to work with

© Copyright IBM Corp. 2000, 2010 51

CARMA version
The CARMA version the RAM was designed to work with

Parameter
Parameters are values passed to an action from the CARMA client. They are
defined per-RAM; thus, once a parameter has been defined, its parameter ID can
be used in the parameter list of any action defined for that RAM. This can be
useful if many of the actions for a RAM require the same parameters.

CAF information for your RAM will include the following information about each
parameter:

Name The parameter's name

Description
A short description of the parameter

Parameter ID
A numeric identifier for the parameter between 000 and 999 (3 bytes).

RAM ID
The ID of the RAM the parameter belongs to

Type The data type of the parameter. Choose from the following list of standard
programming data types: int, long, double, and string.

Length
A numeric value that is specified differently based on the parameter type:

Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the parameter

string The field width of the parameter

Constant
Whether or not the parameter will always contain the same value

Default value
The parameter's default value. This is not optional information.

Prompt
The prompt that should be displayed by CARMA clients when requesting
a value for the parameter from users

Return value
Return values are the result of an action called by CARMA. They are defined
per-RAM; thus, once a return value has been defined, its return value ID can be
used in the return value list of any action defined for that RAM. This can be useful
if many of the actions for a RAM require the same return values.

CAF information for your RAM will include the following information about each
return value:

Name The return value's name.

Description
A short description of the return value.

52 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Return value ID
A numeric identifier for the return value between 000 and 999 (3 bytes).

RAM ID
The ID of the RAM the return value belongs to (2 bytes).

Type The data type of the return value. Choose from the following list of
standard programming data types: int, long, double, and string.

Length
A numeric value that is specified differently based on the return value
type:

Parameter Type Specification Instructions

int Arbitrary (this value does not matter)

long Arbitrary (this value does not matter)

double The precision of the return value

string The field width of the return value

Constant
Whether or not the parameter will always contain the same value

Default value
The default value of the parameter

Prompt
The prompt that should be displayed by CARMA clients when requesting
from users a value for the parameter

Action
All RAMs have a standard set of actions defined within the RAM API. You can use
the CAF to modify these standard actions to use additional input parameters, to
use additional return values, or to be hidden from CARMA (essentially disabling
the actions).

Note: Although it is not possible to specify to the CAF that a default parameter in
a standard action be removed, such a parameter can simply be ignored in
the implementation of that action if passed to the action by a CARMA client.

You can also declare new ("custom") actions. Each declared custom action must
have an assigned ID (called its action ID). When a CARMA client attempts to
invoke a custom action in a RAM, CARMA will first call the RAM's performAction
function, passing the action ID (provided by the CARMA client) of the custom
action as a parameter. The performAction function should then attempt to call the
function for the custom action with the specified action ID.

Note: It is the responsibility of the RAM developer to handle the case where an
invalid action ID is provided to the RAM's performAction function. A
reasonable way of handling this case would be to return an error to the
client along with a detailed error message.

CAF information for your RAM will include the following information about each
action (for disabled actions, only the RAM and action IDs are required):

Name The action's name

Chapter 4. Customizing a RAM API using the CAF 53

Description
A short description of the action

Action ID
A numeric identifier for the action between 0 and 999. Action IDs between
0 and 79 override standard actions (see Appendix B, “Action IDs,” on page
99 for a full listing of the IDs for the standard actions). Action IDs between
80 and 99 are reserved for use by CARMA. Use an ID between 100 and 999
to define a custom action.

RAM ID
The ID of the RAM the action belongs to

Parameter list
A list of the IDs for the parameters the action uses. If you are overriding a
standard action, you only need a list of those parameters that are being
added to the list of standard parameters. If you are defining a custom
action, you must list the IDs of all the parameters required by the action
except the instance and member IDs, which are passed by default to every
custom action.

Return value list
A list of the IDs for the return values the action returns. If you are
overriding a standard action, you only need a list of those return values
that are being added to the list of standard return values. If you are
defining a custom action, you must list the IDs of all the return values
being returned by the action except for the action's return code, which
must always be returned by every custom action.

Field
Fields describe metadata of particular interest to users. CAF information for Fields
includes the following:

Name The localized displayable name for the field.

Metadata Key
The metadata key to provide to the getMemberInfo function for the field to
be displayed.

Default value
The localized displayable value for the field if no value is returned by a
call to getMemberInfo.

Description
A localized displayable description of the metadata.

Developing the RAM model for a custom RAM
Suppose we want to create a RAM named SAMP RAM that is capable of accessing
an SCM solution named Sample SCM. Assume that Sample SCM operates in a
manner that would cause SAMP RAM to have the following differences from a
standard CARMA RAM:
v Provides no support for checking out files
v Its lock action returns the lock type in addition to the return values for the

standard CARMA lock action
v It has a "lock instance" action, which locks an instance within the SCM. This

action requires the following parameters:
1. Instance ID

54 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

2. Reason

and returns the following values:
1. Lock type
2. Return code

v Has a "disenflaguate" action, which removes a flag from a member within the
SCM. This action requires the following parameters:
1. Instance ID
2. Member ID
3. Reason

and returns the following values:
1. Return code

v Has a "concatenate" action, which concatenates the contents of two members
within the SCM. This action requires the following parameters:
1. Target instance ID
2. Target member ID
3. Destination instance ID
4. Destination member ID

and returns the following values:
1. New instance ID
2. New member ID
3. Return code

In order to fully support the functionality of Sample SCM, we will use the CAF to
customize our RAM API. We would need to create three new custom actions (for
the lock instance, disenflaguate, and concatenate operations) and override two of
the standard actions (lock and check out).

Assume for this example that we are developing the first version of SAMP RAM
(version 1.0), that it is being designed to access Sample SCM version 1.4 and work
with CARMA version 2.5, and that it will be written in C and compiled into a DLL
named SAMPRAM. For this example we will assign SAMP RAM a RAM ID of 1.

Note: We will assume that SAMPRAM, the RAM's DLL, is stored in the common PDS
that contains all of the RAMs available on the CARMA host. See “RAM
Construction” on page 11 to learn where a RAM's DLL should be stored.

We now have all the information about the RAM needed for the SAM RAM model
(see “RAM” on page 51). The following table summarizes this information:

Table 10. Information about SAMP RAM

Name SAMP RAM

Description
Provides CARMA access to instances of

Sample SCM

RAM ID 1

Programming Language C

RAM DLL Name SAMPRAM

Version 1.0

Repository Version 1.4

Chapter 4. Customizing a RAM API using the CAF 55

Table 10. Information about SAMP RAM (continued)

CARMA Version 2.5

At this time, you may find it helpful to tabulate the information (as described in
“Action” on page 53) for all of the actions that need to be created or overridden.
The following tables summarize this information. Note that the action ID for the
lock action matches the action ID of the standard lock action (see Appendix B,
“Action IDs,” on page 99) in order to ensure that the original lock action is
overridden. The disabled check out action is similarly assigned an ID
corresponding to the standard check out action.

Table 11. Information about SAMP RAM's lock instance action

Name Lock instance

Description Locks an instance within the SCM

Action ID 100

RAM ID 1

Parameter List
Instance ID

Reason

Return Value List
Return code

Lock type

Table 12. Information about SAMP RAM's disenflaguate action

Name Disenflaguate

Description
Removes a flag from a member within the

SCM

Action ID 101

RAM ID 1

Parameter List
Instance ID
Member ID

Reason

Return Value List Return code

Table 13. Information about SAMP RAM's concatenate action

Name Concatenate

Description
Concatenates the contents of two members

within the SCM

Action ID 102

RAM ID 1

Parameter List

Destination instance ID
Destination member ID

Target instance ID
Target member ID

Return Value List
Return code

New instance ID
New member ID

56 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Table 14. Information about SAMP RAM's lock action. Note that we do not provide a
description for this action, since the description from the standard action is already available
to the client. You may override the existing description by specifying a new one in the
VSAM clusters, but the client may or may not use the updated description.

Name Lock

Description

Action ID 10

RAM ID 1

Parameter List
Instance ID
Member ID

Return Value List
Return code

Lock type

Table 15. Information about SAMP RAM's check out action. Since this action is disabled, we
do not need to include a description, parameter list, or return value list.

Name Check out

Description (Disabled)

Action ID 13

RAM ID 1

Parameter List
(Disabled)

Return Value List

Since the instance and member IDs are passed by default to all actions (see the
description of “Parameter list” in “Action” on page 53), only three additional
parameters need to be defined for the custom actions (lock instance, disenflaguate,
and concatenate) and the lock action: reason, target instance ID, and target member
ID. For the concatenate action, we can map destination instance ID and destination
member ID respectively to the default parameters instance ID and member ID.

We can now list all of the parameters needed for the SAMP RAM model. The
following tables summarize this information. Note that the parameters are assigned
parameter IDs sequentially, starting with 0 for the first parameter.

Name Reason

Description Reason why the action should be performed

Parameter ID 0

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt
Why are you requesting that the action be

performed?

Name Target instance ID

Chapter 4. Customizing a RAM API using the CAF 57

Description
ID of the instance containing the member

whose contents should be appended to the
end of the given member

Parameter ID 1

RAM ID 1

Type String

Length 15

Constant No

Default Value None

Prompt
Which instance contains the member that
you want to concatenate with the selected

member?

Name Target member ID

Description
ID of the member whose contents should be
appended to the end of the given member

Parameter ID 2

RAM ID 1

Type String

Length 30

Constant No

Default Value None

Prompt
Which member's contents do you want to

append to the end of the selected member?

Only three additional return values need to be defined for SAMP RAM, since the
return code is already returned by default (see the description of “Return value
list” in “Action” on page 53). The following tables summarize the return value
information needed for our SAM RAM model. Again, note that the return values
are assigned return value IDs sequentially, starting with 0 for the first return value.

Name Lock type

Description The lock type being applied to the member

Return Value ID 0

RAM ID 1

Type Int

Length 4

Name New instance ID

Description
The instance in which the action's results

have been placed

Return Value ID 1

RAM ID 1

Type String

Length 30

58 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Name New member ID

Description
The member containing the results of the

action

Return Value ID 2

RAM ID 1

Type String

Length 30

With all of the information necessary to define SAMP RAM to the CAF neatly
tabulated, we can represent the information visually. Figure 10 illustrates the
relationship between the actions, parameters, and return values used in SAMP
RAM. Before setting up the clusters for a RAM, you may find it helpful to develop
a similar diagram.

Parameter 0
Name: Reason

Type: string
Length: 30
Constant: N

Parameter 1
Name: Target Instance ID

Type: string
Length: 15
Constant: N

Parameter 2
Name: Target Member ID

Type: string
Length: 30
Constant: N

Return Value 0
Name: Lock Type

Type: int
Length: 4

Return Value 1
Name: New Instance ID

Type: string
Length: 30

Return Value 2
Name: New Member ID

Type: string
Length: 30

Action 10
Name: Lock

Action 100
Name: Lock Instance

Action 101
Name: Disenflaguate

Action 102
Name: Concatenate

Disabled Action 13
Check OutRAM 1

Figure 10. Visual representation of the SAMP RAM model. Only information relevant to the relationship between the
objects is shown.

Chapter 4. Customizing a RAM API using the CAF 59

Creating VSAM records from a RAM model
Now that we have a model for the SAMP RAM, we can easily define SAMP
RAM's CAF information. To do this, it is first necessary to understand where and
how the CAF information is stored. There are two CAF key-sequenced VSAM
clusters that store all of the CAF information: CRADEF and CRASTRS. As CARMA is
loaded, it discovers the RAMs available to it (as well as their corresponding
actions, parameters, and return values) by reading CRADEF, which contains
information about the capabilities of the RAMs available. As necessary, CARMA
tries to determine if a user's preferred language is available for a given RAM by
checking CRASTRS, which contains locale-specific information for the RAMs.

CRADEF
CRADEF stores all the language-independent CAF data (data that does not need to
be translated from one locale to another), using English characters from code page
00037. It contains records for each of the CAF object types (RAMs, actions,
parameters, and return values), using a record width of 1032 bytes. However, only
action records may actually make use of all 1032 bytes; the other record types
simply fill the unused bytes with spaces. CRADEF uses an 8-byte key and reserves
the remaining 1024 bytes for data. Table A summarizes the composition of a
generic record in CRADEF:

Table 16. CRADEF record format

1032-Byte Record

(8 bytes)
Key

(1024 bytes)
Data

Record keys
CRADEF record keys are composed of the following fields:
1. (1 byte) The type character ("A" for action, "D" for disabled action, "P" for

parameter, "R" for RAM, "T" for return value, and "F" for field)
2. (2 bytes) The two-digit RAM ID left-padded with 0s (a unique identification

number between "00" and "99")
3. (3 bytes) The three-digit secondary ID left-padded with 0s. For all RAMs, this

should be ″000″. For standard actions you should use the
predefined action ID, and for custom actions you should use a custom action
ID greater than or equal to ″100″. For parameters, return values
and fields, you should use sequential IDs starting at ″000″.

4. (2 bytes) Unused (reserved for future use). Fill these bytes with spaces.

The following table summarizes the CRADEF key format.

Table 17. CRADEF key format. The number of bytes reserved for each field is specified in
parentheses. Fields marked as "Unused" should be filled entirely with spaces.

8-Byte Key

(1 byte)
Type

(2 bytes)
RAM ID

(3 bytes)
Secondary ID

(2 bytes)
Unused

Record data
The rest of the bytes in each record are used for the record data. These 1024 bytes
contain different fields depending on the record type:

RAM

60 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

1. (8 bytes) The version number of the RAM. This value may be displayed
to users by CARMA clients.

2. (8 bytes) The programming language the RAM is written in. Select from
the following list of valid values: "C", "COBOL", "PLI" (alternatively,
"PL1" may be used).

3. (8 bytes) The version number of the repository that the RAM is
compatible with. This value may be displayed to users by CARMA
clients.

4. (8 bytes) The version number of CARMA that the RAM is compatible
with. This value may be displayed to users by CARMA clients.

5. (8 bytes) The name of the RAM DLL

Action

Note: The combined width of fields (1) and (3) below should be less than
or equal to 1023.

1. (0 to 1023 bytes) A list of the parameter IDs used by the action. The IDs
listed should be separated by commas. Do not use a trailing comma at
the end of the list.

2. (1 byte) The pipe character, "|". This symbol is used to denote the
separation between the parameter ID list and the return value ID list.

Note: This character must be included even if either the parameter ID
list or the return value ID list is empty. However, it should not
be included if both the parameter ID list and return value ID list
are empty.

3. (0 to 1023 bytes) A list of the return value IDs used by the action. The
IDs listed should be separated by commas. Do not use a trailing
comma at the end of the list.

Disabled action
(1024 bytes) Empty spaces. No data is required for disabled actions.

Parameter

1. (16 bytes) The data type of the parameter. Choose from the following
available values: "INT", "LONG", "DOUBLE", "STRING".

2. (16 bytes) The length of the parameter. This is either a precision (for
parameters of type "DOUBLE") or field width (for parameters of type
"STRING"). Specify this value numerically (for example, as "12" instead
of "twelve"). Use an arbitrary value if the parameter type is neither
"DOUBLE" nor "STRING".

3. (1 byte) A "Y" or "N" to indicate whether this parameter does or does
not (respectively) have a constant value.

Return value

1. (16 bytes) The data type of the return value. Choose from the following
available values: "INT", "LONG", "DOUBLE", "STRING".

2. (16 bytes) The length of the return value. This is either a precision (for
return values of type "DOUBLE") or field width (for return values of
type "STRING"). Specify this value numerically (for example, as "12"
instead of "twelve"). Use an arbitrary value if the return value type is
neither "DOUBLE" nor "STRING".

Field (64 bytes) The Metadata Key used to identify the metadata to be displayed.

Chapter 4. Customizing a RAM API using the CAF 61

Optionally, this can be left all spaces, then the Name value (taken from the
CRASTRS VSAM) will be used for the Metadata Key.

Identifier
(1024 bytes) A unique RAM identifier used to identify the RAM. If a
unique ID is provided, the RAM will be selected by its unique ID, and the
ramId field will be ignored.

The following table summarizes the CRADEF data formats for each of the CAF object
types.

Table 18. CRADEF data formats for each CAF object type (the "Type" column lists the abbreviated type characters
instead of the full type names). The number of bytes reserved for each field is specified in parentheses (a "*"
indicates a variable-length field). Fields marked as "Unused" should be filled entirely with spaces.

Type 1024-Byte Data

R
(8 bytes)

RAM Version

(8 bytes)
Programming

Language

(8 bytes)
Repository Version

(8 bytes)
CARMA Version

(8 bytes)
DLL Name

A
(* bytes)

Parameter ID List
(1 byte)

List Separator Pipe
(* bytes)

Return Value ID List

D
(1024 bytes)

Unused

P
(16 bytes)

Type
(16 bytes)

Length
(1 byte)
Constant

T
(16 bytes)

Type
(16 bytes)

Length

F
(64 bytes)

Metadata Key

I
(1024 bytes)

Identifier

CRASTRS
CRASTRS stores all the language-dependent CAF data (data that needs to be
translated from one locale to another, such as descriptions and messages). The
languages are indexed within the VSAM cluster based on an eight-character locale
(for example, “EN_US ” or “FR_FR ”) and a five-character code page (for example,
“00037”). As a CARMA client initializes CARMA, the client provides CARMA a
locale and code page, which CARMA attempts to locate in CRASTRS. If the specified
locale and code page combination is not available in the CARMA environment,
CARMA will use the default locale (“EN_US”) and code page (“00037”) and return
an error to the client.

When a client request the list of available RAMs, CARMA will reference CRASTRS to
attempt to compose a list of the RAMs that are available in the client’s requested
locale and code page. By convention, if a RAM record is available in a given locale,
it is expected for its actions, parameters, and return values to also be available in
that same locale.

CRASTRS allows strings of a non-fixed length (previously, CRASTRS used a record
width of 2101 bytes composed of a 21-byte key and 2080 bytes for data). Strings
are separated by a single non-space character used for delimiting strings
throughout the file. You can set the delimiting character when you configure the

62 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

CRASTRS file. If you do not set the delimiting character, the default is the
horizontal tab character (0x05 in EBCDIC)

If CRASTRS contains a record with the key “000000000000000000000” (twenty-one
zeros), CARMA uses the non-fixed string format in the entire VSAM file. If CRASTRS
does not contain this record key, CARMA uses the fixed-width string format for
the entire VSAM file.

Note: Longer strings are limited to the previous length limits if older function calls
are used.

Note: Disabled actions do not need records in CRASTRS since they have no string to
be translated.

Record keys
CRASTRS record keys are composed of the following fields:
1. (8 bytes) The locale of the record (for example, “EN_US ”)
2. (5 bytes) The code page of the record (for example, “00037”)
3. (8 bytes) The key to the CRADEF record to which this CRASTRS record corresponds

The following table summarizes the CRASTRS key format.

Table 19. CRASTRS key format. The number of bytes reserved for each field is specified in
parentheses.

21-Byte Key

(8 byte)
Locale

(5 bytes)
Code Page

(8 bytes)
Record Key

Record data
The rest of the record is used for the record data. The record data contains
different fields depending on the record type In previous versions, this record data
was limited to 2080 bytes. When CRASTRS contains a record with the key
“000000000000000000000” (twenty-one zeros). this limit no longer applies.

RAM, action, and return type

1. The name of the CAF object this record corresponds to (Previously
limited to 16 bytes)

2. A description of the CAF object this record corresponds to (Previously
limited to 1024 bytes)

Parameter

1. The name of the parameter this record corresponds to (Previously
limited to 16 bytes)

2. The default value of the parameter this record corresponds to
(Previously limited to 16 bytes)

3. The prompt the client should display when requesting a value for the
parameter this record corresponds to (Previously limited to 1024 bytes)

4. A description of the parameter this record corresponds to (Previously
limited to 1024 bytes)

Field

1. The name corresponding to this metadata. To use this localized name as
the Metadata Key, leave the Metadata Key blank in CRADEF. Leaving

Chapter 4. Customizing a RAM API using the CAF 63

this blank will cause the name to be the Metadata Key defined in
CRADEF. (Previously limited to 128 bytes)

2. The default value to display if no value is provided by the RAM for a
given member for the Metadata Key. (Previously limited to 256 bytes)

3. A description of the metadata shown in this field. (Previously limited to
1024 bytes)

All information in the data section should be in the locale and code page specified
in the key. The following table summarizes the CRASTRS data formats for each of
the CAF object types.

Table 20. CRASTRS data formats for each CAF object type (the "Type" column lists the
abbreviated type characters instead of the full type names). Note that the disabled action
type has not been included in this table because CRASTRS should not have any records for
disabled actions.

Type Data

A
R
T

Name Description

P Name Default Value Prompt Description

F Name Default Value Description

SAMP RAM VSAM records
Building on our earlier SAMP RAM example, we can define records for SAMP
RAM in CRADEF as shown in the following table.

Table 21. SAMP RAM records (one per row) in CRADEF. Each cell represents a field. Refer to
“CRADEF” on page 60 to determine the widths for these fields.

Key Data

A 01 010 000 |

A 01 100 000 | 000

A 01 101 | 000

A 01 102 001,002 | 001,002

D 01 013

P 01 000 STRING 30 N

P 01 001 STRING 15 N

P 01 002 STRING 30 N

R 01 000 1.0 C 1.4 2.5 SAMPRAM

T 01 000 INT 4

T 01 001 STRING 30

T 01 002 STRING 30

Please refer to FEK.SFEKVSM2(CRAINIT) for an example of the proper column
format. This sequential data set is used to initialize CRADEF during CARMA
installation. Initially, it contained records for the sample PDS RAM, the sample
SCLM RAM, and Skeleton RAM. However, depending on the configuration of your
host, FEK.SFEKVSM2(CRAINIT) may have been modified if RAMs have been added
or removed from your CARMA environment.

64 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

To add a RAM to the CRADEF cluster, you should add its records to
FEK.SFEKVSM2(CRAINIT). Ensure that all record keys are in alpha-numeric order so
that the data set can be successfully REPROed. You should use the JCL script
located at FEK.#CUST.JCL(CRA$VDEF) to REPRO FEK.SFEKVSM2(CRAINIT).

Now we need to define the locale-specific records in CRASTRS. Assume that SAMP
RAM needs support for English and Brazilian Portuguese. We can define records
for SAMP RAM in CRASTRS as shown in the following table.

Table 22. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 62
to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The
data for these records are optional, since these records correspond to standard actions that have been overridden.
CARMA will provide the client with the default name and description for these overridden standard actions.

Key Data

EN_US 00037 A01010

EN_US 00037 A01100 Lock Instance Locks the instance

EN_US 00037 A01101 Disenflaguate Removes a flag

EN_US 00037 A01102 Concatenate Concatenates two data sets

EN_US 00037 P01000 Reason Why not?

Why do you
want me to
perform the

action?

The reason
for

performing
the action

EN_US 00037 P01001
Target

Instance ID
MyInstance

In which
instance is
the member
located?

The instance
containing

the member to
be

concatenated

EN_US 00037 P01002
Target Member

ID
MyMember

Which member
would you
like to

concatenate?

The member to
be

concatenated

EN_US 00037 R01000 Sample RAM An example RAM

EN_US 00037 T01000 Lock Type
The type of lock the SCM put

on the member

EN_US 00037 T01001 New Instance ID
The concatenation's instance

ID

EN_US 00037 T01002 New Member ID The concatenation's member ID

PT_BR 01047 A01010

PT_BR 01047 A01100 Bloquear Instƒncia Bloqueia a instƒncia

PT_BR 01047 A01101 Tirar sinalizador Remove um sinalizador

PT_BR 01047 A01102 Concatenar
Concatena dois conjuntos de

dados

PT_BR 01047 P01000 Motivo Por que nÆo?

Por que você
deseja que eu

execute a
a‡Æo?

O motivo para
executar a

a‡Æo

PT_BR 01047 P01001
ID de

Instƒncia de
Destino

MyInstance

Em qual
instƒncia o
membro está
localizado?

A instƒncia
que cont‚m o
membro a ser
concatenado

Chapter 4. Customizing a RAM API using the CAF 65

Table 22. SAMP RAM records (one per row) in CRASTRS. Each cell represents a field. Refer to “CRASTRS” on page 62
to determine the widths for these fields. Note that the records that have a key ending with A01010 have no data. The
data for these records are optional, since these records correspond to standard actions that have been overridden.
CARMA will provide the client with the default name and description for these overridden standard
actions. (continued)

Key Data

PT_BR 01047 P01002
ID do Membro
de Destino

MyMember
Qual membro
você deseja
concatenar?

O membro a
ser

concatenado

PT_BR 01047 R01000 RAM de Amostra Um RAM de exemplo

PT_BR 01047 T01000 Tipo de Bloqueio
O tipo de bloqueio que SCM

coloca no membro

PT_BR 01047 T01001 Novo ID de Instƒncia
O ID de instƒncia de

concatena‡Æo

PT_BR 01047 T01002 Novo ID do Membro
O ID do membro de

concatena‡Æo

Please refer to FEK.SFEKVSM2(CRASINIT) for an example of the proper column
format. This sequential data set is used to initialize CRASTRS during CARMA
installation. Like FEK.SFEKVSM2(CRAINIT), initially, it contained the strings for the
sample PDS RAM, the sample SCLM RAM, and Skeleton RAM. Depending on the
configuration of your host, FEK.SFEKVSM2(CRASINIT) may also have been modified
if RAMs have been added or removed from your CARMA environment.

To add a RAM to the CRASTRS cluster, you should add its records to
FEK.SFEKVSM2(CRASINIT). Ensure that all record keys are in alpha-numeric order so
that the data set can be successfully REPROed. You should use the JCL script
located at FEK.#CUST.JCL(CRA$VSTR) to REPRO FEK.SFEKVSM2(CRASINIT).

VSAM cluster access
When editing VSAM clusters, ensure that no clients are accessing CARMA.
CARMA may exhibit abnormal behavior if the VSAM cluster changes while it is
operating. It is recommended that only system administrators and RAM
developers have write access to the VSAM clusters, but that all users have read
access.

66 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Chapter 5. Developing a CARMA client

CARMA clients can be designed to work specifically with a RAM, can provide a
generic interface for any RAM to use, or can do a combination of the two. A good
example of a generic client that can also be modified to work specifically with
certain RAMs is IBM Rational Developer for System z. Rational Developer was
designed to support the basic functions all RAMs have in common, so a RAM
fitting perfectly into the CARMA RAM API specification would work with Rational
Developer right out of the box. Rational Developer also provides extension points
with which RAM developers can customize the client for their RAM(s). On the
other end of the spectrum, a very specific, non-interactive client could be written
to simply run maintenance operations through a RAM.

CARMA clients can make use of some or all of the basic CARMA API functions.
The only functions that are required to be implemented are initCarma, initRAM,
and terminateCarma. terminateRAM is not required because terminateCarma will
take care of cleaning up the RAMs if it is called and CARMA still has RAMs
loaded. However, special care should be taken with the memory that is passed to
and from CARMA. Often, the RAM will allocate memory that the client is required
to free. Please read through “Storing results for later use” on page 68 and
“Memory allocation” on page 6 carefully, as memory leaks and abnormal program
termination can easily result from not following the recommendations on handling
memory for each function.

Compiling the CARMA client
CARMA clients can include the CARMA DLL's side deck during compilation
(causing the CARMA DLL to be loaded implicitly) or can be compiled without the
side deck (causing the CARMA DLL to be loaded explicitly). The example client
(CRACLISA in the sample library) implicitly loads the CARMA DLL. The JCL code to
compile a client that will implicitly load the CARMA DLL is in the sample file
named CRACLICM.

Running the client
When running a CARMA client, you must ensure that CARMA and all its RAMs
have the resources they require available to them. CARMA requires access to its
message VSAM cluster (CRAMSG), the CAF VSAM clusters (CRADEF and CRASTRS),
and the PDS containing the RAMs. Browse the JCL used to run clients (CRACLIRN,
located in the sample library) to see the DD statements CARMA requires (CRASTRS,
CRAMSG, and CRADEF) and how the CARMA DLL and the PDS containing all RAMs
are added to the STEPLIB DD statement. RAMs should document any resources they
require. For example, the sample PDS RAM and sample SCLM RAM each require
a message cluster to be available, so the JCL used to run the client should be
modified so that the RAM can access these resources. Failure to provide CARMA
or the RAMs with access to their required resources may result in abnormal
behavior.

When providing resources to RAMs, the TSO/ISPF message libraries should also
be considered. RAMs may use the TSO/ISPF messages if errors occur. By default,
the JCL used to run a client will provide the RAMs with the English (00037 code
page) version of these messages. The JCL should be edited appropriately if the
RAM should return TSO/ISPF messages to the client in a different language.

© Copyright IBM Corp. 2000, 2010 67

Storing results for later use
The client should store the results for most operations executed during a CARMA
session, especially the results from browsing functions such as getMembers and
getInstances. All instances, simple members, and containers have both an ID and
a display name. The display name is what the client should display to the user.
The display name for an entity should be given in the context of that entity's
instance and, if applicable, all parent containers needed to reach that entity. The ID
defines the entity to the RAM uniquely. For example, the entity's ID could simply
contain its absolute path. Alternatively, the RAM could use a hashing function to
obtain the entity's absolute path from the ID. The ID should be stored by the client
so that it can be passed back to the RAM as needed. For example, a user might
obtain a list of members within an instance and then check to see if one of those
members is a container.

The other pieces of data that might need to be stored by the client (if they are not
already known) are metadata keys, RAM CAF information, and names. The RAM
CAF information is required by virtually every function that uses a RAM to carry
out an operation. The CAF information that is required may be as simple as the ID
of the RAM the action should be run by.

Client predefined data structures
Most RAM functions use predefined structures to pass information back to
CARMA and then the RAM. Some structures pass information about a RAM, while
others are used for communication to and from the RAM. It is the responsibility of
the Client to free memory used by these structures, including any character arrays
of undefined length. These arrays will be null-terminated in the normal C style.

When running an action against CARMA, the client should see if the action's
respective Action structure exists for the RAM being worked with. If so, it should
then use the Action structure and related Parameter structures to call the action.
After the action is complete, the client should use the returnValue structures
related to the action called to properly parse the action's response.

The applicable structures are summarized in the following tables. These structures
are available in the CRADSDEF header file located in the sample library. These
structures are almost always allocated by the RAM, so it is unlikely that the client
will ever have to initialize any of their buffers. However, the client will have to
free any memory that is allocated by the RAM.

The RAMRecord and RAMRecord2 structures consist of an integer RAM ID, a 16–byte
name character field, and several other character fields that describe the RAM.

Table 23. RAMRecord and RAMRecord2 data structures

Field
Description

RAMRecord RAMRecord2

int id int id Unique ID to describe the
RAM

char name[16] char* name Display name

char version[8] char* version RAM version

char reposLevel[8] char* reposLevel The level of the SCM the
RAM accesses.

68 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Table 23. RAMRecord and RAMRecord2 data structures (continued)

Field
Description

RAMRecord RAMRecord2

char language[8] char* language Language in which the RAM
is written

char CRALevel[8] char* CRALevel The level of CARMA for
which the RAM was

designed.

char moduleName[8] char* moduleName Name of the RAM module to
load

char description[2048] char* description Displayed as a RAM
description by the client.

not applicable char* uniqueId Specifies a unique RAM ID.

The Descriptor structure consists of a 64–byte name character field and a 256–byte
ID character field. It is used to describe instances, containers, and simple members.

Table 24. Descriptor data structure

Field Description

char id[256] Unique ID to describe the entity

char name[64] Display name

The KeyValPair structure consists of a 64–byte key field and a 256–byte value field.
It is used for metadata key-value pairs.

Table 25. KeyValPair data structure

Field Description

char key[64] An index

char value[256] The data

The Action and Action2 structures consist of an integer ID, a 16-byte name, a
pointer to an integer array to store the IDs of the parameters related to the action,
an integer storing the number of parameters associated with the action, a pointer
to an integer array to store the IDs of the return values related to the action, an
integer storing the number of return values associated with the action, and a
1024-byte description.

Table 26. Action and Action2 data structures

Field
Description

Action Action2

int id int id A numeric identifier for the
action between 0 and 999.

Action IDs between 0 and 79
override standard actions,

while IDs between 100 and
999 to define custom actions.
Action IDs between 80 and
99 are reserved for use by

CARMA.

char name[16] char* name The action's name

Chapter 5. Developing a CARMA client 69

Table 26. Action and Action2 data structures (continued)

Field
Description

Action Action2

int* paramArr int* paramArr A list of the IDs for the
parameters the action uses

int numParams int numParams The number of elements in
the paramArr array

int* returnArr int* returnArr A list of the IDs for the
return values the action

returns

int numReturn int numReturn The number of elements in
the returnArr array

char description[1024] char* description A short description of the
action

The Parameter and Parameter2 structures consist of an integer ID, a 16-byte name,
a 16-byte type, a 16-byte default value, an integer length, an integer specifying
whether it is constant (a value of 1 indicates that it is), a 1024-byte prompt, and a
1024-byte description.

Table 27. Parameter and Parameter2 data structures

Field
Description

Parameter Parameter2

int id int id A numeric identifier for the
parameter between 0 and 999

char name[16] char* name The parameter's name

char type[16] char* type The data type of the
parameter ("INT", "LONG",
"DOUBLE", or "STRING")

char defaultValue[16] char* defaultValue The parameter's default
value

int length int length The precision of the
parameter (if it is of the

"DOUBLE" type) or the field
width of the parameter (if it
is of the "STRING" type). If

the parameter is of some
other type, then this value

can be ignored.

int isConstant int isConstant Whether or not the
parameter will always
contain the same value

char prompt[1024] char* prompt The prompt that the CARMA
client should display when
requesting a value for the

parameter from users

char description[1024] char* description A short description of the
parameter

The returnValue and returnValue2 structures consist of an integer ID, a 16-byte
name, a 16-byte type, an integer length, and a 1024-byte description.

70 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Table 28. returnValue and returnValue2 data structures

Field Description

returnValue returnValue2

int id int id A numeric identifier for the
return value between 0 and

999

char name[16] char* name The return value's name

char type[16] char* type The data type of the return
value ("INT", "LONG",

"DOUBLE", or "STRING")

int length int length The precision of the return
value (if it is of the

"DOUBLE" type) or the field
width of the return value (if

it is of the "STRING" type). If
the return value is of some
other type, then this value

can be ignored.

char description[1024] char* description A short description of the
return value

The Field and Field2 structures consist of an integer ID, a 64-byte member key, a
128-byte name, a 256-byte default value, and a 1024-byte description.

Table 29. Field and Field2 data structures

Field Description

Field Field2

int id int id A numeric identifier for the
field value between 0 and

999

char memberKey[64] char* memberKey The metadata key to provide
to the getMemberInfo

function for the field to be
displayed.

char name[128] char* name The localized displayable
name for the field.

char defaultValue[256] char* defaultValue The localized displayable
value for the field if no value

is returned by a call to
getMemberInfo.

char description[1024] char* description A localized displayable
description of the metadata.

Logging
CARMA and RAMs will write messages to a log per CARMA session. When
initializing CARMA, a trace level should be passed to it. The trace levels are
shown in Table 3 on page 9. Logging can be disabled by sending CARMA a trace
level of -1.

Chapter 5. Developing a CARMA client 71

Handling custom parameters and return values
Custom parameters are passed to the RAM using the void** params parameter.
params is an array of void pointers that point to variables of several types. The
getCAFData or getCAFData2 function will return the Custom Action Framework
information for all RAM functions. Call this before running any other RAM
functions to determine what custom parameters and return values the RAM
functions use. Required custom parameters must be passed to the RAM using the
params parameter. If there are no required custom parameters, set params to NULL.
To fill params, simply assign the void pointers in the array to each custom
parameter. Use the following C code as an example:
int param0 = 5;
char* param1 = "HELLO";
double param2 = 4.3234;
void** params = (void**) malloc(sizeof(void*) * 3);
params[0] = (void*) ¶m0;
params[1] = (void*) param1; /*the char pointer should not be dereferenced*/
params[2] = (void*) ¶m2;

/* Function call goes here....*/

free(params);

CARMA clients must pass a void*** parameter into all RAM functions defined to
return custom return values. You may simply pass a pointer to a void** variable
that you define. Once the custom return values have been returned, they can be
unpacked as demonstrated in the following C code. It is the responsibility of the
client to free the custom returns:
/* Declared at top */
int return0;
char return1[15];
void ** returnVals = NULL;

/* Call the CARMA function with &returnVals for custom returns */

/* Unpack the void** (returnVals) */
return0 = *((int*) returnVals[0]);
memcpy(return1, (char*) returnVals[1], 15);

/*Free each return, and the array*/
free(returnVals[0]);
free(returnVals[1]);
free(returnVals);

CARMA Defined Metadata

RAM specified file extension
When using a CARMA client, CARMA resources can automatically obtain
suggested extensions from the metadata property which is specified by the RAM.
This is done to eliminate the need to have the user set the extension on every
CARMA resource. In some cases however, an extension may not be specified by
the RAM requiring the client to provide a default extension. In instances such as
this, the client should be configured to ignore the file extension provided by the
RAM and instead, utilize an extension specified from within the client. Examples
of how the client can override a RAM specified file extension can be found in
“RAM specified file extension” on page 19.

72 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Extract to External
CARMA provides clients with the ability to extract files from an SCM into a
normal host environment of PDSs and Sequential files.

copyFromExternal
Copies a member from a PDS or an SDS.
int copyFromExternal(int ramID, char instanceID[256], char memberID[256],

char external[256], void** params, void*** customReturn, char error[256])

int ramID Input Tells CARMA which RAM should be worked on. This
ID was obtained after running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the member being copied

char memberID[256] Input The ID of the member being copied

char external[256] Input The location to copy from. Either a PDS member or an
SDS member. Examples: FEK.#CUST.EXT.STOR
FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom parameters (see
“Handling custom parameters and return values” on
page 72)

void***
customReturn

Output Used to reference an array of custom return values (see
“Handling custom parameters and return values” on
page 72)

char error[256] Output If an error occurs, this should be filled with a
description of the error.

copyToExternal
Copies a member to a PDS or an SDS.
int copyToExternal(int ramID, char instanceID[256], char memberID[256],

char target[256], void** params, void*** customReturn, char error[256])

int ramID Input Tells CARMA which RAM should be worked on. This
ID was obtained after running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the member being copied

char memberID[256] Input The ID of the member being copied

char target[256] Input The location to copy to. Either a PDS member or an
SDS member. Examples: FEK.#CUST.EXT.STOR
FEK.#CUST.EXT.PDS(MEMBER)

void** params Input Pointer to an array of custom parameters (see
“Handling custom parameters and return values” on
page 72)

void***
customReturn

Output Used to reference an array of custom return values (see
“Handling custom parameters and return values” on
page 72)

char error[256] Output If an error occurs, this should be filled with a
description of the error.

Chapter 5. Developing a CARMA client 73

State functions
CARMA expects certain functions to be run in order. These state functions and
their expected order are:
1. initCARMA — CARMA initializes several global variables; the session log, and

the locale to be used for the session with this function. This function should not
be called a second time unless a terminateCarma call is made first.

2. getRAMList or getRAMList2 — This should be called before loading any RAMs,
but clients may cache the RAM list and ignore this function if desired.
However, there is little performance benefit in doing this, because CARMA will
run the function as it needs the list itself.

3. initRAM — This must be called for each RAM before attempting to run any of
that RAM's functions. Once this is run, CARMA will keep a pointer to the
RAM until termination. RAMs should not be re-initialized without first
terminating them.

4. reset — This may be called if the user wants to reload the SCM environment
because a change has occurred. It will tell the RAM to restore itself to its initial
state.

5. terminateRAM — This function does not have to be called. Each loaded RAM's
terminateRAM function will be called by terminateCarma if terminateCarma is
called first. Once terminateRAM is called, each RAM must be re-initialized using
the initRAM function before any other function can be called for that RAM.

6. terminateCarma — This should always be called when exiting the CARMA
session. It will handle cleaning up all of the RAMs that are currently loaded.
Once this is called, initCarma must be run again before attempting to call any
other CARMA function.

initCarma
Will set up the CARMA environment, session log, and session locale
int initCarma(int traceLev, char locale[5], char error[256])

int traceLev Input The trace level for the
current session. See
“Logging” on page 71 for
more information.

char locale[5] Input Five character, non-null
terminated buffer containing
the locale for which all
displayable strings should be
set

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

If this function is not called, a default locale of "EN_US" and a default trace level
of 0 will be used.

getRAMList
Retrieves the list of available RAMs from CARMA
int getRAMList(RAMRecord** records, int *numRecords, char error[256])

74 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

RAMRecord** records Output Will contain an array of
RAMRecord data structures to
be used for display
information about the RAMs
and accessing them with
other functions

int* numRecords Output The number of RAMRecord
data structures contained in
the records array

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The list of RAMs that is returned is dependent on the locale that was passed into
initializeCarma. All RAMs stored within the CARMA environment that have
display strings for the specified client locale will be returned.

getRAMList2
Retrieves the list of available RAMs from CARMA
int getRAMList2(RAMRecord2** records, int *numRecords, char error[256])

RAMRecord2** records Output Will contain an array of
RAMRecord2 data structures to
be used for display
information about the RAMs
and accessing them with
other functions

int* numRecords Output The number of RAMRecord2
data structures contained in
the records array

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The list of RAMs that is returned is dependent on the locale that was passed into
initializeCarma. All RAMs stored within the CARMA environment that have
display strings for the specified client locale will be returned.

initRAM
Initializes a RAM. CARMA will store a pointer to the RAM for quick future access.
int initRAM(int RAMid, char locale[8], char codepage[5], char error[256])

int RAMid Input Tells CARMA which RAM
should be initialized. This ID
was obtained after running
getRAMList or getRAMList2.

char locale[8] Input Tells CARMA the locale of
the strings that should be
returned to the client

char codepage[5] Input Tells CARMA the code page
of the strings that should be
returned to the client

Chapter 5. Developing a CARMA client 75

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

reset
Tells the RAM to reset itself to its initial state
int reset(int RAMid, char error[256])

int RAMid Input Tells CARMA which RAM
should be reset. This ID was
obtained after running
getRAMList or getRAMList2.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

terminateRAM
Tells the RAM to clean up its environment. CARMA will release the RAM module.
int terminateRAM(int RAMid, char error[256])

int RAMid Input Tells CARMA which RAM
should be terminated. This
ID was obtained after
running getRAMList or
getRAMList2.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

terminateCarma
Will clean up the CARMA environment, including the environments of any loaded
RAMs
int terminateCarma(char error[256])

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Browsing functions

getInstances
Retrieves the list of instances available in the SCM
int getInstances(int RAMid, Descriptor** RIrecords,int* numRecords,

void** params, void*** customReturn, char filter[256],
char error[256])

76 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

Descriptor** RIrecords Output This will be allocated and
filled with the IDs and
names of instances.

int* numRecords Output The number of records that
have been allocated and
returned

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char filter[256] Input This can be passed from the
client to filter out sets of
instances.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Note: Be sure to free the RIrecords array

getMembers
Retrieves the list of members available within the specified instance
int getMembers(int RAMid, char instanceID[256],

Descriptor** memberArr, int* numRecords, void** params,
void*** customReturn, char filter[256], char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance for which the
members should be retrieved

Descriptor** memberArr Output This will be allocated and
filled with the IDs and
names of instances.

int* numRecords Output The number of records that
have been allocated and
returned in the array

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

Chapter 5. Developing a CARMA client 77

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char filter[256] Input This can be passed from the
client to filter out sets of
members.

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Note: Be sure to free the memberArr array.

isMemberContainer
Sets isContainer to true if the member is a container; false if not
int isMemberContainer(int RAMid, char instanceID[256],

char memberID[256], int* isContainer,
void** params, void*** customReturn,
char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member that may be a
container

int* isContainer Output Set this to 1 if the member is
a container; 0 if not.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

getContainerContents
Retrieves the list of members within a container
int getContainerContents(int RAMid, char instanceID[256],

char memberID[256], Descriptor** contents,
int* numMembers, void** params,
void*** customReturn, char filter[256],
char error[256])

78 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The container for which the
members are being retrieved

Descriptor** contents Output This will be allocated and
filled with the IDs and
names of the members
within the container.

int* numRecords Output The number of member
records that have been
allocated and returned in the
array

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char filter[256] Input This can be passed from the
client to filter out sets of
members

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Note: Be sure to free the contents array.

Create/Delete
Create and delete provides functionality to create and delete both members and
containers within a CARMA environment.

createMember
Creates a new member
int createMember(int RAMid, char instanceID[256], char memberID[256], char name[64],

char parentID[256], int* lrecl, char recFM[4], void** params,
void*** customReturn, char error[256]);

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member being created

Chapter 5. Developing a CARMA client 79

char memberID[256] Output The ID of the member that is
being created

char name[64] Input/Output ID of the member being
created

char parentID[256] Input ID of parent container (If no
parent exists, space must be
filled)

int* lrecl Output The number of columns in
the data set and array

char recFM[4] Output Contains the data set'record
format (FB, VB, ect)

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

To account for specific RAM naming conventions, a client calls create by requesting
a certain name. The RAM can then provide a unique memberID, lrecl, recFM and an
appropriate displayable name back to the client.

If the client requests the name "bob," for example, the RAM might return a
memberID of "BOB" as well as a displayable name of "BOB". If the member "bob"
already exists, it might return "BOB2", or instead return an error saying it can not
create the requested member.

parentID is the memberID for the parent of the member being created. If the
member being created does not have a parent (it is directly under the repository
instance), parentID should be left blank (all spaces).

A RAM does not have to create a member when createMember is called, but can
just provide the proper memberID, lrecl, recFM, and displayable name to the client.
It is the client's responsibility to make a call to putMember with the new memberID in
order to create a concrete member. RAMs should support adding a member with
no records (even if they have to create a single blank record for the member).

createContainer
Creates a new container
int createContainer(int RAMid, char instanceID[256], char memberID[256],

char name[64], char parentID[256], void** params, void*** customReturn,
char error[256]);

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

80 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

char instanceID[256] Input The instance containing the
container being created

char memberID[256] Output The ID of the member that is
being created

char name[64] Input/Output ID of the container being
created

char parentID[256] Input ID of parent container (If no
parent exists, space must be
filled)

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

To account for specific RAM naming conventions, a client calls create by requesting
a certain name. The RAM can then provide a unique memberID, lrecl, recFM and an
appropriate displayable name back to the client.

If the client requests the name "bob," for example, the RAM might return a
memberID of "BOB" as well as a displayable name of "BOB". If the container "bob"
already exists, it might return "BOB2", or instead return an error saying it can not
create the requested container.

parentID is the memberID for the parent of the container being created. If the
container being created does not have a parent (it is directly under the repository
instance), parentID should be left blank (all spaces).

Unlike the createMember function, when createContainer is called, the container
should always be created immediately by the RAM, unless an error occurs.

delete
Deletes a member or container
int delete(int RAMid, char instanceID[256], char memberID[256], int force,

void** params, void*** customReturn, char error[256]);

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member or container being
deleted

char memberID[256] Input The ID of the member that is
being deleted

Chapter 5. Developing a CARMA client 81

int force Input Used to force a delete. A
value of 1 will force a delete

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The force parameter can be set to 1 to tell a RAM to delete a member it normally
would not, such as a non-empty container. If a RAM can delete an item, but it
requires a force parameter to do so, it can send a certain return code, along with
an appropriate error, to inform the client. The client can then offer a user the
option of deleting with the force parameter.

Optionally, the client could also allow the user to set the force parameter before
calling delete.

The delete function may be used to delete both members and containers, however,
it should not be used to delete a RAM Instance.

File transfer functions

extractMember
Retrieves a member's contents
int extractMember(int RAMid, char instanceID[256],

char memberID[256], char*** contents, int* lrecl,
int* numRecords, char recFM[4], int* moreData,
int* nextRec, void** params, void*** customReturn,
char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
extracted

char*** contents Output Will be allocated as
two-dimensional array to
contain the member's
contents

int* lrecl Output The number of columns in
the data set and array

82 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int* numRecords Output The number of records in the
data set or the number of
rows in the array

char recFM[4] Output Will contain the data set's
record format (FB, VB, etc.)

int* moreData Output Set the value of the variable
to which this points as 1 if
extract should be called
again (because there is still
more data to be extracted).
Otherwise, assign the value
to which it points as 0.

int* nextRec Input/Output Input: The member record
where the RAM should
begin the extraction

Output: The first record in
the data set that was not
extracted if *moreData is set
to 1; otherwise, undefined

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The contents buffer is a two-dimensional character array that will be filled by the
RAM and returned to the client. For the first extractMember call, nextRec must be
0. The RAM may choose to return the data in chunks of records. Extract should be
called until moreData is 0. If moreData is 1, extractMember needs to be called again,
and the extraction from the member will start with the record indexed by the value
of nextRec returned on the previous call. The RAM will need the client to pass that
value of nextRec back in for the following call.

See Chapter 3, “Developing a RAM,” on page 11 for an example of extractMember's
operation from the RAM's point of view.

Note: Be sure to free contents properly. It has been allocated as a large contiguous
data chunk, so it should be freed in the following manner (the example is in C):
for(i = 0; i < numRecords; i++)

free(contents[i]);
free(contents);

putMember
Updates a member's contents or creates a new member if the specified memberID
does not exist within the instance

Chapter 5. Developing a CARMA client 83

int putMember(int RAMid, char instanceID[256],
char memberID[256], char** contents, int lrecl,
int* numRecords, char recFM[4], int moreData,
int nextRec, int eof, void** params, void*** customReturn,
char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member

char memberID[256] Input The ID of the member being
updated/created

char** contents Input Contains the new member
contents

int lrecl Input The number of columns in
the data set and array

int* numRecords Input/Output The number of records in the
data set or the number of
rows in the array

char recFM[4] Input Contains the data set's record
format (FB, VB, etc.)

int moreData Input Will be 1 if the client has
more chunks of data to send;
0 otherwise

int nextRec Input The record in the data set to
which the 0th record of the
contents array maps

int eof Input If 1, denotes that the last row
of the array should mark the
last row in the data set; 0
otherwise.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

The client may choose a chunk size for the function or attempt to pass the whole
file's contents at once. The client may also choose to jump around within a file. For
example, records 0 through 15 could be passed first, 40 through 50 next, and then
16 through 39. However, not all RAMs may handle non-sequential data chunks
such as this properly.

84 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

If sending data in chunks, moreData should be 1 on every call until the final one,
during which it should be 0. nextRec should always be set to the first record to be
updated in the member. Remember that this uses a 0-based index. eof is used to
specify that the member record at nextRec + numRecords should be the last one in
the updated member. For example, if that sum is 15 and there are currently 30
records in the member, records 16 through 29 will be deleted by the RAM after it
updates through record 15.

See the source for the sample client (CRACLISA in the sample library) for more help.

Note: The contents buffer should be allocated before the call in a manner similar to
the following (the example is in C):

contents = (char**) malloc(sizeof(char*) * (numRecords));
contents = (char) malloc(sizeof(char) * (lrecl) * (numRecords));
for(i = 0; i < numRecords; i++)

(contents)[i] = ((*contents) + (i * (lrecl)));

and should be freed after the call in a manner similar to the following (the
example is in C):

free(contents[0])
free(contents);

Binary file transfer

extractBinMember
Retrieves a member's contents.
int putBinMember(int RAMid, char instanceID [256], char memberID [256],

char** contents, int* length, int* moreData, int start,
void** params, void*** customReturn, char error [256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member being extracted.

char memberID[256] Input The ID of the member that is
being extracted.

char** contents Output Pointer to the member’s
contents

int* length Output The length of the member’s
contents.

int* moreData Output If extract should be called
again because there is more
data, set the value of the
variable to which this points
to 1, otherwise assign the
value to which it points to 0.

int start Input The byte location of the file
to start extracting from.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

Chapter 5. Developing a CARMA client 85

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

putBinMember
Updates a member’s contents or creates a new member if the specified memberID
does not exist within the instance.
int putBinMember(int RAMid, char instanceID [256], char memberID [256],

char* contents, int length, int moreData, int start,
void** params, void*** customReturn, char error [256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance containing the
member being
updated/created.

char memberID[256] Input The ID of the member that is
being updated/created.

char* contents Input Contains the new members
contents.

int length Input Pointer to the length of data
to be written.

int moreData Input Will be 1 if the client has
more chunks of data to send;
0 otherwise.

int start Input The byte location of the file
to start putting data.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Metadata functions

getAllMemberInfo
Retrieves all metadata for the given member

86 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int getAllMemberInfo(int RAMid, char instanceID[256],
char memberID[256], KeyValPair** metadata,
int* num, void** params, void*** customReturn,
char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The ID of the member for
which metadata is being
returned. The ID may be
empty if member info is to
be retrieved for the instance
instead of a specific member.

KeyValPair** metadata Output This will be allocated and
filled with the keys and
values of the metadata.

int* num Output The number of metadata
KeyValPair structs allocated
and returned in the array

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Note: Be sure to free the metadata array.

getFieldsData
Retrieves the fields data for the given RAM. The fields provide suggestions for
metadata that should be displayed to the user.
int getFieldsData(int RAMid, Field** fields, int * numFields, char error[256])

int RAMid Input Tells CARMA which RAM to
gather fields for. This ID was
obtained after running
getRAMList.

Field** fields Output This will be allocated and
filled with the id, metadata
key, name, default value, and
description for each field.

Chapter 5. Developing a CARMA client 87

int * numFields Output The number of Field structs
allocated and filled in the
array.

char error[256] Output In an error occurs this
should be filled with a
description of the error.

Note: Be sure to free the fields array.

getFieldsData2
Retrieves the fields data for the given RAM. The fields provide suggestions for
metadata that should be displayed to the user.
int getFieldsData2(int RAMid, Field2** fields, int * numFields, char error[256])

int RAMid Input Tells CARMA which RAM to
gather fields for. This ID was
obtained after running
getRAMList2.

Field2** fields Output This will be allocated and
filled with the id, metadata
key, name, default value, and
description for each field.

int * numFields Output The number of Field structs
allocated and filled in the
array.

char error[256] Output In an error occurs this
should be filled with a
description of the error.

Note: Be sure to free the fields array.

getMemberInfo
Retrieves a specific piece of metadata for the given member
int getMemberInfo(int RAMid, char instanceID[256],

char memberID[256], char key[64], char value[256],
void** params, void*** customReturn, char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member for which
metadata is being retrieved

char key[64] Input The key of the metadata
value to be retrieved

char value[256] Output The value being retrieved

88 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

updateMemberInfo
Updates a specific piece of metadata for the given member
int updateMemberInfo(int RAMid, char instanceID[256],

char memberID[256], char key[64], char value[256],
void** params, void*** customReturn,
char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member for which
metadata is being set

char key[64] Input The key of the metadata
value to be set

char value[256] Input The value being set

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Other operations

lock
Locks the member
int lock(int RAMid, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

Chapter 5. Developing a CARMA client 89

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to be locked

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

unlock
Unlocks the member
int unlock(int RAMid, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to be unlocked

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

checkin
Check in the member. This only sets a flag. A putMember call is expected
immediately after this call.
int checkin(int RAMid, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

90 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to be checked
in

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

checkout
Check out the member. This only sets a flag. A extractMember call is expected
immediately after this call.
int checkout(int RAMid, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to be checked
out

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

Chapter 5. Developing a CARMA client 91

performAction
Instructs the specified RAM to perform the action identified in the actionID by
using the parameters given and the return values in customReturn (when
applicable).
int performAction(int RAMid, int actionID, char instanceID[256], char memberID[256],

void** params, void*** customReturn, char error[256])

int RAMid Input Tells CARMA which RAM
should be worked on. This
ID was obtained after
running getRAMList or
getRAMList2

int actionID Input The custom action that is
being requested, as defined
in the CRADEF VSAM.

char instanceID[256] Input The instance the action is
being performed on. The ID
may be blank if the action is
expected to be performed on
the RAM itself instead of a
specific instance or member.

char memberID[256] Input The member the action is
being performed on. The ID
may be blank if the action is
expected to be performed on
an instance or on the RAM
itself instead of a specific
member.

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 72)

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 72)

char error[256] Output If an error occurs, this should
be filled with a description of
the error.

getCAFData
Retrieves the CAF data for the requested RAM
int getCAFData(int RAMid, Action** actions, int* numActions,

int** disabledActions, int* numDisabled,
Parameter** params, int* numParams,
returnValue** returnVals, int* numReturn,
char error[256])

Table 30.

int RAMid Input Tells CARMA for which
RAM the CAF data should
be pulled. This ID was
obtained after running
getRAMList.

92 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Table 30. (continued)

Action** actions Output This will be allocated and
filled with the custom
actions for the given RAM.

int* numActions Output The number of actions being
returned

int** disabledActions Output This will be allocated and
filled with the disabled
actions for the given RAM.

int* numDisabled Output The number of disabled
actions being returned

Parameter** params Output This will be allocated and
filled with the custom
parameters for the given
RAM

int* numParams Output The number of parameters
being returned

returnValue** returnVals Output This will be allocated and
filled with the custom return
values for the given RAM.

int* numReturn Output The number of return values
being returned

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

See Chapter 4, “Customizing a RAM API using the CAF,” on page 51 for more
information on the types of data that may be returned. The data that is returned
should be stored for the remainder of the session so that it can be checked before
any function call for the respective RAM.

getCAFData2
Retrieves the CAF data for the requested RAM
int getCAFData2(int RAMid, Action2** actions, int* numActions,

int** disabledActions, int* numDisabled,
Parameter2** params, int* numParams,
returnValue2** returnVals, int* numReturn,
char error[256])

Table 31.

int RAMid Input Tells CARMA for which
RAM the CAF data should
be pulled. This ID was
obtained after running
getRAMList2.

Action2** actions Output This will be allocated and
filled with the custom
actions for the given RAM.

int* numActions Output The number of actions being
returned

Chapter 5. Developing a CARMA client 93

Table 31. (continued)

int** disabledActions Output This will be allocated and
filled with the disabled
actions for the given RAM.

int* numDisabled Output The number of disabled
actions being returned

Parameter2** params Output This will be allocated and
filled with the custom
parameters for the given
RAM

int* numParams Output The number of parameters
being returned

returnValue2** returnVals Output This will be allocated and
filled with the custom return
values for the given RAM.

int* numReturn Output The number of return values
being returned

char error[256] Output If an error occurs, this
should be filled with a
description of the error.

See Chapter 4, “Customizing a RAM API using the CAF,” on page 51 for more
information on the types of data that may be returned. The data that is returned
should be stored for the remainder of the session so that it can be checked before
any function call for the respective RAM.

getVersionList
Provides a list of versions available for a given member
int getVersionList(char instanceID[256], char memberID[256],

VersionIdent** versions, int* num, void** params,
void*** customReturn, char error[256])

int RAMid Input Tells CARMA for which
RAM the CAF data should
be pulled. This ID was
obtained after running
getRAMList or getRAMList2.

char instanceID[256] Input The instance the member is
within

char memberID[256] Input The member to get a list of
versions for

VersionIdent** versions Output A list of all versions of the
member available. This
should be an ordered list,
with the ‘newest’ version
first, and the oldest version
last.

int* num Output The number of versions

void** params Input Pointer to an array of custom
parameters (see “Handling
custom parameters and
return values” on page 18)

94 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

void*** customReturn Output Used to reference an array of
custom return values (see
“Handling custom
parameters and return
values” on page 18)

char error[256] Output If an error occurs, this should
be filled with a description of
the error.

VersionIdent will be identified by the following struct:
typedef struct {
char memberID[256]; /*A versioned memberID, such as

baseMemberID_VerNum*/
char versionKey[64]; /* A way to refer to the version, such as

“1.2.3”...should be the same as the value
for the carma.version metadata key*/

char comments[256]; /* RAM supplied comments on the version,
could be timestamp, changes, etc.. */

} VersionIdent;

The version list will be a complete ordered version list, but the RAM Developer
can chose to use a ‘versioned’ ID for the current version, or to use the unchanging
ID. As an example, current version of a member might be accessible via
“location(Member)” or “location(Member)_1.4” where the file is on version 1.4.
The RAM developer could therefore choose to return either
“location(Member)_1.4” or “location(Member)” as the newest version in the list.

When returning a list of members through browsing functions, such as getMembers,
RAMs SHOULD NOT include the version in the memberID. Changing the memberID
for a member prevents CARMA clients from properly tracking that member.

In order to support versioning, RAM Developers should handle CARMA calls
when presented with a ‘versioned’ ID for the memberID.

Clients should support the return code of 130, which stands for “Member does not
support versioning”

Clients can support a variety of calls against versioned members, such as the file
transfer functions and the metadata functions.

Chapter 5. Developing a CARMA client 95

96 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Appendix A. Return codes
Return Code Description

20 Internal error

22 No RAMs defined for this locale

24 CRADEF could not be opened for reading

25 CRASTRS could not be opened for reading

26 No records found in CRADEF

28 CRADEF read error

30 (placeholder)

32 Invalid CRADEF record found

34 Requested RAM not found

36 Could not load RAM module

38 Could not load pointer to RAM function

40 Requested RAM RAM name has not been
loaded

42 Invalid CRASTRS record found

44 CARMA has not been initialized

46 Failed attempting to load the RAM list

48 Out of memory

50 Record in CRADEF does not have equivalent
in CRASTRS for this locale

52 Action references unknown parameter

54 Action references unknown return type

56 CRASTRS read error

58 Neither the specified locale or the default
locale (EN_US, codepage 00037) could be

found in CRASTRS

60 CRAMSG not found

62 CRAMSG read error

64 CRADEF error: Action 16 can not have custom
parameters and/or returns

66 Invalid type specified in VSAM record

68 Invalid default value in VSAM record

101 Could not allocate memory

102 TSO/ISPF Library functions not available

103 Invalid member identifier

104 Cannot allocate (out of space)

105 Member not found

106 Instance not found

107 Function not supported

108 Member is not a container

© Copyright IBM Corp. 2000, 2010 97

Return Code Description

109 Invalid parameter value

110 Member cannot be updated

111 Member cannot be created

112 Not authorized

113 Could not initialize

114 Could not terminate

115 Resource out of sync

116 File locked

117 Specified next record out of range

118 Unsupported record format

119 Invalid LRECL

120 Invalid metadata key

121 Cannot update property value

122 Invalid metadata value

123 Property value is read-only

124 Requested member is empty

125 Empty instance

126 No members found

127 Reset error

128 Delete error

129 Member/Version is readOnly

130 Member does not support versioning

197 (encapsulated ISPF/LMF error message)

198 Unable to access log file

199 Unknown RAM error

222 Error retrieving Custom Action Framework
parameter list

223 Missing an expected Custom Action
Framework parameter

224 Unknown data type specified for Custom
Action Framework parameter

225 Error retrieving Custom Action Framework
return values

98 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Appendix B. Action IDs
Action ID Action Name

0 initRam

1 terminateRam

2 getMembers

3 extractMember

4 putMember

5 getAllMemberInfo

6 getMemberInfo

7 updateMemberInfo

8 isMemberContainer

9 getContainerContents

10 lock

11 unlock

12 checkIn

13 checkOut

14 getInstances

15 reset

16 performAction

17 createMember

18 createContainer

19 delete

20 copyToExternal

21 copyFromExternal

22 putBinMember

23 extractBinMember

24 getVersionList

80 initCarma

81 terminateCarma

82 getRAMList

83 getCAFData

© Copyright IBM Corp. 2000, 2010 99

100 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Appendix C. Sample RAMs

This appendix functions as a resource for the sample RAMs that are shipped with
the Common Access Repository Manager (CARMA). The sample RAMs are
provided for the purpose of testing the configuration of your CARMA environment
and as examples for developing your own RAMs. Do NOT use the provided
sample RAMs in a production environment.

PDS RAM

RAM Description
The Partitioned Data Set (PDS) RAM allows you to access a PDS associated with
TSO users by leveraging ISPF services. In this case, the TSO/ISPF services are the
SCM and the repository is the user's PDS.

Navigation Structure
Within the PDS RAM, CARMA displays a list of all the PDS data sets that are
available to you on a particular connection. Each PDS can then be expanded to
display a collection of Sequential Data Sets (SDS), also called members which make
up each PDS.

Supported actions
The following actions are currently only available for files with a record format of
"Fixed Block".
v Extract
v Upload Local File
v Replace Local File

Unsupported actions
The following CARMA actions are unsupported by the PDS RAM, since it does not
have version control capabilities:
v Lock
v Unlock
v Check Out
v Check In

SCLM RAM

RAM Description
The Software Configuration Library Manager (SCLM) sample RAM is another
demonstration of CARMA’s ability to interface with Source Code Managers
(SCM's). The purpose of this appendix is to give the RAM developer an
understanding of CARMA's SCLM RAM implementation. The SCLM RAM
interfaces with an IBM Software Configuration and Library Manager (SCLM).

IBM SCLM provides an API like ISPF that provides for the dialog manager. In
addition, SCLM interfaces with ISPF library management services for most of its

© Copyright IBM Corp. 2000, 2010 101

functions. ISPF/SCLM creates and accesses variables, lists, and reports as a result
of the API calls that it makes. For a full description of all the ISPF/SCLM
programming services, refer to the Software Configuration Library Manager
Reference, z/OS Version 1 Release 7.0, and also the ISPF services manual for
detailed information on ISPF library management services. CARMA leverages both
the ISPF library management services and SCLM services in the SCLM sample
RAM.

Navigation Structure
Within the SCLM RAM, CARMA displays a selected SCLM project that is available
to you on a particular connection. Each SCLM project can then be expanded to
display the groups and types associated with the project.

Supported actions
The SCLM sample RAM employs the core functions of ISPF and SCLM in
CARMA's User Interface. This functionality enables users to send requests to the
SCLM RAM on the z/OS host and then display the results at their workstation.
The following is a list of SCLM functions that can be invoked from a member’s
selection in the CARMA UI.

Table 32. Basic Functions

Function Name Description

LOCK This is a stand alone function that enables a user to lock a member or
add an access key to limit or restrict access to it by other users. This
function can be enabled by right-clicking an SCLM member in the

CARMA UI and selecting Lock from the context menu.

UNLOCK This function will unlock a member that has been locked by removing
the access key. It can be accessed by right-clicking the locked member

in the CARMA UI and selecting Unlock from the context menu.

DELETE This function will delete all traces of an SCLM member, including all
text and any metadata, from an SCLM project. This function can be
accessed by right-clicking an SCLM member in the CARMA UI and

selecting Delete from the context menu.

The following functions are custom actions that are specific to SCLM RAM content.
They can be accessed by right-clicking an SCLM member from the CARMA UI and
selecting Custom from the context menu.

Note: The custom commands below will prompt users for additional parameters.

Table 33. Custom Actions

Service Name Description

MIGRATE The MIGRATE service creates or updates the SCLM accounting
information for members in a development library. Pattern matching is

not provided at this time.

BUILD The BUILD service compiles, links, and integrates software components
according to the project’s architecture definition. Before a member is

built however, the member’s dependency information must exist in the
project database. For this reason, either the STORE or SAVE services for a
member must be completed successfully before the BUILD service can

be preformed.

102 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Table 33. Custom Actions (continued)

Service Name Description

PROMOTE The PROMOTE service moves data, or promotes data through the project
database according to the project’s architecture definition and project
definition. Before SCLM can promote a member, it must have a blank

access key in addition to having successfully completed the BUILD
service. If a member has an access key, you must call the UNLOCK

service to reset the access key before you can promote the member.

DELETE The DELETE service deletes database components. You can delete an
entire member, its associated accounting records, and build map, just
the accounting records and the build map, or simply the member’s

build map.

EDIT The EDIT service is not like SCLM's edit. This service is instead used to
announce the intent of an edit. The user will be prompted for the

development group to move the member to. A refresh is required so
the user can select the member at development level by double

clicking on member. At is point; the source code will appear in the
UI’s edit panel.

The following are services of the SCLM API that the SCLM RAM uses to provide
functionality.

Table 34. Integrated SCLM Services

Service Name Description

SCLMINFO The SCLMINFO service is used by CARMA’s getmembers function to
retrieve all SCLM groups and types stored in ISPF variables for later

retrieval from getContainer.

SAVE The SAVE service locks and parses a member then proceeds to store
that member’s statistical, dependency, and historical information all in

one service call. The SAVE service called within CARMA’s putMember
function calls the LOCK, PARSE, and STORE SCLM services.

The following SCLM services maintain session integrity within existing CARMA
functions.

Table 35.

Service Name Description

INIT The INIT service initializes an SCLM ID. During this process, it also
initializes the specified project definition.

START The START service initializes an SCLM services session. It generates an
application ID that identifies the services session.

END The END service stops an SCLM service session and frees an
application ID generated by the START service. Each START service

invocation needs a matching END service invocation. This service also
calls the FREE service to free any SCLM IDs associated with the given

application ID that have not been explicitly freed.

FREE The FREE service frees an SCLM ID generated by the INIT service.
Each INIT service invocation needs a matching FREE service invocation.
After freeing the SCLM ID, SCLM closes all project data sets and frees

the project definition specified on the INIT service.

Appendix C. Sample RAMs 103

Unsupported actions
The SCLM RAM does not support the following actions. Attempting to execute
any of these actions will result in an error dialog.
v Check Out

To gain exclusive access to a source file for editing, use the Lock action. Other
users will still be able to access the source file by extracting it from the
repository, but they will not be permitted to check in their updates to this file
until you have unlocked the file.

v Check In
To allow another user to edit a source file, use the Unlock action.

COBOL RAM

RAM Description
The COBOL RAM is an implementation of the PDS RAM written in COBOL. It is
comprised of a DLL resulting from linking compiled COBOL and C source. The
COBOL RAM provides functionality for browsing PDS assets in the same manner
as the PDS sample RAM. Some of the functionality present in the PDS RAM is not
implemented, but skeleton programs are provided for implementing additional
functionality.

Navigation Structure
Within the COBOL RAM, CARMA display a list of all the PDS instances available
under the user's high-level qualifier on the CARMA host. Each instance can then
be expanded to display the list of members that make up each instance.

Supported Capabilities
The following functions are already configured on the sample COBOL RAM.
Depending on what your COBOL RAM will be supporting, additional functions
may need to be implemented.
v extractMember

Extracts a member in the same manner as the PDS RAM.. The function is coded
such that extracting from any member associated with an instance of the COBOL
RAM will return the records from a dataset referenced by the DD CBLIN. This
DD must be added to the CARMA start-up CLIST for extractMember to work.

v putMember

Stores a PDS member to the PDS instance specified.
v getInstances

Provides a list of PDS instances.
v getMembers

Returns the list of members associated with a PDS instance.
v initRAM

Sets global variables and demonstrates the COBOL-to-C logging function.
v performAction

Contains sample code for performing a custom action. The sample
for performAction accepts custom parameters and then provides them as custom
returns in reverse order. Information for configuring the CAF to use the custom
action may be found within the program documentation for performAction.

104 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

For more detailed information, see “RAM development using COBOL” on page 38

Skeleton RAM

RAM Description
The Skeleton RAM is the most basic out of all of the samples. It provides a simple
framework that can be used to developed a RAM that will meet your needs. This
RAM should be used as a starting point for developing your own custom RAM.

Appendix C. Sample RAMs 105

106 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Documentation notices for IBM Rational Developer for System
z

© Copyright IBM Corporation - 2010

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation

© Copyright IBM Corp. 2000, 2010 107

3039 Cornwallis Road, PO Box 12195
Research Triangle Park, NC 27709
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademark acknowledgments
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

108 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Rational® are trademarks of International Business Machines Corporation and
Rational Software Corporation, in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, or other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Documentation notices for IBM Rational Developer for System z 109

110 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

Readers’ Comments — We'd Like to Hear from You

Developer for System z
Common Access Repository Manager Developer's Guide
8.0.1

Publication No. SC23-7660-04

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088 (US and Canada)

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC23-7660-04

SC23-7660-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg. 503
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

Index

A
action IDs 99

B
binary file transfer 32
browsing 5
browsing functions

Create/Delete 25
getContainerContents 24, 78
getInstances 22, 76
getMembers 23, 77
isMemberContainer 24, 78

C
C to COBOL

passing values 41
CAF

object types
action 53
field 54
parameter 52
RAM 51
return value 52

using to customize RAM API 51
CARMA

defined metadata 19
introduction 1

CARMA defined metadata 72
character buffers 8
checking in 6
checking out 6
COBOL RAM

ending the program 41
linkage section 39
procedure division, defining 40
program id, coding 39
program structure 39

COBOLto C
data, passing 43

compiling
CARMA client 67

compiling a RAM 11
Construction, PDS 11
Construction, PDS/E 12
copyFromExternal 31
copyToExternal 31
CRADEF 60
CRARAMCM 11
CRASTRS 62
Create/Delete 25
Create/Delete functions

createContainer 26, 80
createMember 25, 79
delete 26, 81

createContainer 26, 80
createMember 25, 79
creating

VSAM records 60

Custom actions 46
custom parameters 10, 18, 72
custom RAM 54
Custom returns 47
Custome parameters 46
customizing

RAM API 51

D
data structure

Action 69
Action2 69
descriptor 69
Field 71
Field2 71
KeyValPair 69
parameter 70
parameter2 70
RAMRecord 68
RAMRecord2 68
returnValue 70
returnValue2 70

data structures
Descriptor 18
KeyValPair 18
predefined 17

data structures, predefined
client 68

Debugging 49
defined metadata 19
defining

RAM to CARMA 17
delete 26, 81
Dereferencing, Avoiding 42
Descriptor 18
developing

CARMA client 67
RAM model 54

developing a RAM 11

E
exporting functions 17
extract to external 31
extractBinMember 32, 85
extractMember 27, 82

F
file extension

client specified 20
inheritance 20
RAM specified 19
RAM suggested 20

file transfer functions
binary file transfer 32

extractBinMember 32
putBinMember 32

binary, extractBinMember 85

file transfer functions (continued)
binary, putBinMember 86
extractMember 27, 82
putMember 29, 83

functions
browsing 22, 76
Create/Delete 79
exporting 17
file transfer 27, 82
logging 18
metadata 33
state 74
State 21

G
general concepts

browsing 5
character buffers 8
checking in 6
checking out 6
custom parameters 10
logging 9
member contents 8
memory allocation 6
return codes 9
return values 10

generic actions 3
getAllMemberInfo 33, 86
getContainerContents 24, 78
getFieldsData 87
getFieldsData2 88
getInstances 22, 76
getMemberInfo 34, 88
getMembers 23, 77
getRAMList 74
getRAMList2 75

I
IDs vs. names 17
INFILE 11
inheritance of file extension 20
initCarma 74
initRAM 21, 75
isMemberContainer 24, 78

K
KeyValPair 18

L
locating

sample files 3
logging 9, 71

function 18

© Copyright IBM Corp. 2000, 2010 113

M
member contents 8
member operations, other

check_in 36
check_out 36
getVersionList 37
lock 35
performAction 37
unlock 35

memory allocation 6, 45
metadata

CARMA defined 72
metadata functions

getAllMemberInfo 33, 86
getFieldsData 87
getFieldsData2 88
getMemberInfo 34, 88
updateMemberInfo 34, 89

metadata, defined 19
methods

utilities module
utilCloseMemberList 13
utilCopyPDStoPDS 14
utilCopyPDStoSDS 15
utilCopySDStoPDS 15
utilCopySDStoSDS 15
utilExtractMemberClose 17
utilExtractMemberInit 16
utilExtractMemberRec 16
utilGetAllMemberInfo 13
utilGetAllPDSInfo 14
utilGetMemberInfo 13
utilGetNextMember 12
utilInitMemberList 12
utilPutMemberClose 16
utilPutMemberInit 15
utilPutMemberRec 16
utilPutMemberRecs 15
utilSetMemberInfo 14

N
names vs. IDs 17
Null pointers 49

O
one dimensional array 6
operations, other

checkin 90
checkout 91
getCAFData 92
getCAFData2 93
getVersionList 94
lock 89
performAction 92
unlock 90

operations, pointer 44
other member operations

check_in 36
check_out 36
getVersionList 37
lock 35
performAction 37
unlock 35

other operations
checkin 90
checkout 91
getCAFData 92
getCAFData2 93
getVersionList 94
lock 89
performAction 92
unlock 90

OUTFILE 11

P
PDS construction 11
PDS/E construction 12
pointer arithmetic 45
pointer operations 44
predefined data structures 17

client 68
putBinMember 32, 86
putMember 29, 83

R
RAM

compiling 11
defining to CARMA 17
developing 11
function pattern 11
predefined data structures 17
samples 2
specified file extension 19
utilities module 12

RAM development
using COBOL 38

RAM model 54
RAM specified file extension 72
record format

CRADEF 60
CRASTRS 62

repository access managers
See RAM

reset 22, 76
return codes 9, 97
return values 10, 18, 72
running the CARMA client 67

S
SAMP RAM 64
sample file locations 3
sample RAMs 2
SCM hierarchy 5
shared variables 46
state functions

getRAMList 74
getRAMList2 75
initCarma 74
initRAM 21, 75
reset 22, 76
terminateCarma 76
terminateRAM 22, 76

storing results 68
supported operations 3
SYSDEFSD 11
SYSLIB 11

T
terminateCarma 76
terminateRAM 22, 76
Termination, abnormal 49
trace levels 9
two-dimensional character array 6

U
unsupported operations 18
updateMemberInfo 34, 89
utilCloseMemberList 13
utilCopyPDStoPDS 14
utilCopyPDStoSDS 15
utilCopySDStoPDS 15
utilCopySDStoSDS 15
utilExtractMemberClose 17
utilExtractMemberInit 16
utilExtractMemberRec 16
utilGetAllMemberInfo 13
utilGetAllPDSInfo 14
utilGetMemberInfo 13
utilGetNextMember 12
utilInitMemberList 12
utilities module

methods
utilCloseMemberList 13
utilCopyPDStoPDS 14
utilCopyPDStoSDS 15
utilCopySDStoPDS 15
utilCopySDStoSDS 15
utilExtractMemberClose 17
utilExtractMemberInit 16
utilExtractMemberRec 16
utilGetAllMemberInfo 13
utilGetAllPDSInfo 14
utilGetMemberInfo 13
utilGetNextMember 12
utilInitMemberList 12
utilPutMemberClose 16
utilPutMemberInit 15
utilPutMemberRec 16
utilPutMemberRecs 15
utilSetMemberInfo 14

utilities module, RAM 12
utilPutMemberClose 16
utilPutMemberInit 15
utilPutMemberRec 16
utilPutMemberRecs 15
utilSetMemberInfo 14

V
variables, shared 46
VSAM cluster access 66
VSAM records

SAMP RAM 64

114 IBM Rational Developer for System z: Common Access Repository Manager Developer's Guide

����

Program Number: 5724-T07

Printed in USA

SC23-7660-04

	Contents
	About this book
	Who should read this book
	Conventions used in this book

	Chapter 1. Introduction to CARMA
	Supported operations
	Locating the sample files

	Chapter 2. General concepts
	Browsing
	Checking in and out
	Memory allocation
	Member contents
	Character buffers
	Return codes
	Logging
	Custom parameters and return values

	Chapter 3. Developing a RAM
	RAM Construction
	Construction for a PDS
	Construction of a PDS/E

	Using the RAM utilities module
	utilInitMemberList
	utilGetNextMember
	utilCloseMemberList
	utilGetAllMemberInfo
	utilGetMemberInfo
	utilSetMemberInfo
	utilGetAllPDSInfo
	utilCopyPDStoPDS
	utilCopyPDStoSDS
	utilCopySDStoPDS
	utilCopySDStoSDS
	utilPutMemberInit
	utilPutMemberRecs
	utilPutMemberRec
	utilPutMemberClose
	utilExtractMemberInit
	utilExtractMemberRec
	utilExtractMemberClose

	Defining the RAM to CARMA
	Exporting functions
	IDs vs. names
	RAM predefined data structures
	Logging
	Dealing with unsupported operations
	Handling custom parameters and return values
	CARMA Defined Metadata
	RAM specified file extension
	CARMA Version

	State functions
	initRAM
	terminateRAM
	reset

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents
	Create/Delete
	createMember
	createContainer
	delete

	File transfer functions
	extractMember
	Example

	putMember
	Extract to External
	copyFromExternal
	copyToExternal

	Binary file transfer
	extractBinMember
	putBinMember

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other operations
	lock
	unlock
	check_in
	check_out
	performAction
	getVersionList

	RAM development using COBOL
	COBOL RAM program structure
	Coding the program ID
	The linkage section
	Defining the procedure division
	Ending the program

	Passing values from C to COBOL
	Receiving basic C data types passed by value
	Avoiding Dereferencing (Receiving C data types BY REFERENCE)
	Knowing when to receive BY REFERENCE
	Knowing when to receive BY VALUE

	Passing Data from COBOL to C
	Passing COBOL items as basic C function arguments
	Passing COBOL items into C functions by reference

	Dealing with pointer operations
	Simple pointer operations
	Complex pointer operations
	Pointer Arithmetic
	Memory Allocation

	Variables shared between programs
	Handling Custom Action Framework data
	Handling Custom actions
	Handing Custom Parameters without using COBOL-to-C Utility Functions
	Handling Custom Returns without using COBOL-to-C Utility Functions

	Differences between the “utility DLL” and the “COBOL-to-C utility source”
	Debugging and avoiding abnormal termination
	Displaying values to help debug your COBOL RAM
	NULL pointers
	Properly exiting your RAM function programs

	Chapter 4. Customizing a RAM API using the CAF
	CAF object types
	RAM
	Parameter
	Return value
	Action
	Field

	Developing the RAM model for a custom RAM
	Creating VSAM records from a RAM model
	CRADEF
	Record keys
	Record data

	CRASTRS
	Record keys
	Record data

	SAMP RAM VSAM records
	VSAM cluster access

	Chapter 5. Developing a CARMA client
	Compiling the CARMA client
	Running the client
	Storing results for later use
	Client predefined data structures
	Logging
	Handling custom parameters and return values
	CARMA Defined Metadata
	RAM specified file extension

	Extract to External
	copyFromExternal
	copyToExternal

	State functions
	initCarma
	getRAMList
	getRAMList2
	initRAM
	reset
	terminateRAM
	terminateCarma

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents
	Create/Delete
	createMember
	createContainer
	delete

	File transfer functions
	extractMember
	putMember
	Binary file transfer
	extractBinMember
	putBinMember

	Metadata functions
	getAllMemberInfo
	getFieldsData
	getFieldsData2
	getMemberInfo
	updateMemberInfo

	Other operations
	lock
	unlock
	checkin
	checkout
	performAction
	getCAFData
	getCAFData2
	getVersionList

	Appendix A. Return codes
	Appendix B. Action IDs
	Appendix C. Sample RAMs
	PDS RAM
	RAM Description
	Navigation Structure
	Supported actions
	Unsupported actions

	SCLM RAM
	RAM Description
	Navigation Structure
	Supported actions
	Unsupported actions

	COBOL RAM
	RAM Description
	Navigation Structure
	Supported Capabilities

	Skeleton RAM
	RAM Description

	Documentation notices for IBM Rational Developer for System z
	Copyright license
	Trademark acknowledgments

	Readers’ Comments — We'd Like to Hear from You
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

