
Rational ® IBM Rational Developer for System z
Version 8.0.1

Host Configuration Reference

SC14-7290-00

���

Rational ® IBM Rational Developer for System z
Version 8.0.1

Host Configuration Reference

SC14-7290-00

���

Note
Before using this document, read the general information under “Documentation notices for IBM Rational Developer for
System z” on page 167.

First edition (December 2010)

This edition applies to IBM Rational Developer for System z Version 8.0.1 (program number 5724-T07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation
Attn: Information Development Department 53NA
Building 501 P.O. Box 12195
Research Triangle Park NC 27709-2195
USA

You can fax your comments to: 1-800-227-5088 (US and Canada)

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

© Copyright IBM Corporation 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this document xi
Summary of changes xii
Description of document content xii

Understanding Developer for System z xii
Security considerations xii
TCP/IP considerations xii
WLM considerations xii
Tuning considerations xiii
Performance considerations xiii
CICSTS considerations xiii
Customizing the TSO environment xiii
Running multiple instances xiii
Troubleshooting configuration problems . . . xiii
Setting up SSL and X.509 authentication . . . xiv
Setting up TCP/IP xiv

Chapter 1. Understanding Developer for
System z 1
Component overview 1
RSE as a Java application 3
Task owners 4
Connection flow 6
CARMA 7

CARMA configuration files 8
Lock daemon 9

Freeing a lock 10
z/OS UNIX directory structure 11

Update privileges for non-system administrators 12

Chapter 2. Security considerations . . 15
Authentication methods 15

User ID and password. 16
User ID and one-time password 16
X.509 certificate 16
JES Job Monitor authentication 16

Connection security 16
Limit external communication to specified ports 17
Communication encryption using SSL 17
Port Of Entry checking 17

Using PassTickets 18
Audit logging 18

Audit control 19
Audit data. 19

JES security 19
Actions against jobs - target limitations 20
Actions against jobs - execution limitations . . . 21
Access to spool files 22

SSL encrypted communication 23
Client authentication using X.509 certificates . . . 24

Certificate Authority (CA) validation 24
(Optional) Query a Certificate Revocation List
(CRL) 25
Authentication by your security software . . . 25
Authentication by RSE daemon. 26

Port Of Entry (POE) checking 27
CICSTS security 27

CRD repository 27
CICS transactions 28
SSL encrypted communication 28

SCLM security 28
Developer for System z configuration files 28

JES Job Monitor - FEJJCNFG. 28
RSE - rsed.envvars 28
RSE - ssl.properties 29

Security definitions 29
Requirements and checklist 30
Activate security settings and classes 31
Define an OMVS segment for Developer for
System z users 32
Define data set profiles 32
Define the Developer for System z started tasks 35
Define JES command security 36
Define RSE as a secure z/OS UNIX server . . . 38
Define MVS program controlled libraries for RSE 38
Define application protection for RSE. 39
Define PassTicket support for RSE 39
Define z/OS UNIX program controlled files for
RSE 40
Verify security settings 40

Chapter 3. TCP/IP considerations . . . 43
TCP/IP ports 43

External communication 43
Internal communication 44
CARMA and TCP/IP ports 44

Multi-stack (CINET) 45
CARMA and stack affinity 45

Distributed Dynamic VIPA 46
Sample setup 47

Chapter 4. WLM considerations 51
Workload classification 51

Classification rules 52
Setting goals 53

Considerations for goal selection 54
STC 55
OMVS 55
JES 56
ASCH 57
CICS 58

Chapter 5. Tuning considerations . . . 59
Resource usage 59

Overview 60

© Copyright IBM Corp. 2010 iii

||

||

||
||

||

||
||
||
||

Address space count 61
Process count 64
Thread count 66

Storage usage. 69
Java heap size limit. 69
Address space size limit 69
Size estimate guidelines 70
Sample storage usage analysis 70

z/OS UNIX file system space usage 75
Key resource definitions 78

/etc/rdz/rsed.envvars. 78
SYS1.PARMLIB(BPXPRMxx) 79

Various resource definitions 81
EXEC card in the server JCL. 81
FEK.#CUST.PARMLIB(FEJJCNFG) 81
SYS1.PARMLIB(IEASYSxx) 82
SYS1.PARMLIB(IVTPRMxx) 82
SYS1.PARMLIB(ASCHPMxx) 82

Monitoring 83
Monitoring RSE 83
Monitoring z/OS UNIX 83
Monitoring the network 85
Monitoring z/OS UNIX file systems 86

Sample setup 86
Thread pool count 86
Determine minimum limits 86
Defining limits 87
Monitor resource usage 88

Chapter 6. Performance considerations 91
Use zFS file systems 91
Avoid use of STEPLIB 91
Improve access to system libraries 91

Language Environment (LE) runtime libraries . . 91
Application development 92

Improving performance of security checking . . . 92
Workload management 93
Fixed Java heap size 93
Java -Xquickstart option 93
Class sharing between JVMs. 94

Enable class sharing 94
Cache size limits. 94
Cache security 95
SYS1.PARMLIB(BPXPRMxx) 95
Disk space. 95
Cache management utilities 95

Chapter 7. CICSTS considerations . . . 97
RESTful versus Web Service 98
Primary versus non-primary connection regions . . 98
CICS resource install logging 98
Application Deployment Manager security 99

CRD repository security 99
Pipeline security 99
Transaction security 99
SSL encrypted communication. 100
Resource security 100

Administrative utility 101
Administrative utility migration notes 105
Administrative utility messages 106

Chapter 8. Customizing the TSO
environment 109
The TSO Commands service 109

Access methods 109
Using the TSO/ISPF Client Gateway access method 110

ISPF.conf 110
Use existing ISPF profiles 110
Using an allocation exec 111
Use multiple allocation execs 111
Multiple ISPF.conf files with multiple Developer
for System z setups 111

Chapter 9. Running multiple instances 113
Identical setup across a sysplex 113
Identical software level, different configuration files 114
All other situations 115

Chapter 10. Troubleshooting
configuration problems 119
Log and setup analysis using FEKLOGS 119
Log files 120

JES Job Monitor logging 121
Lock daemon logging 121
RSE daemon and thread pool logging 121
RSE user logging 122
Fault Analyzer Integration logging 123
File Manager Integration logging 123
SCLM Developer Toolkit logging 123
CARMA logging 123
APPC transaction (TSO Commands service)
logging 124
fekfivpc IVP test logging 124
fekfivpi IVP test logging. 124
fekfivps IVP test logging 125

Dump files 125
MVS dumps. 125
Java dumps 125
z/OS UNIX dump locations 127

Tracing 127
JES Job Monitor tracing 127
RSE tracing 127
Lock daemon tracing 128
CARMA tracing 128
Error feedback tracing 128

z/OS UNIX permission bits 129
SETUID file system attribute 129
Program Control authorization 130
APF authorization 131
Sticky bit 132

Reserved TCP/IP ports 132
Address Space size 134

startup JCL requirements 134
Limitations set in SYS1.PARMLIB(BPXPRMxx) 134
Limitations stored in the security profile . . . 134
Limitations enforced by system exits 134
Limitations for 64-bit addressing 134

Miscellaneous information 135
Error feedback B37 space abend 135
System limits 135
Host Connect Emulator 136

iv IBM Rational Developer for System z: Host Configuration Reference

||
||
||

||

Appendix A. Setting up SSL and X.509
authentication 137
Decide where to store private keys and certificates 137
Create a key ring with RACF 139

(Optional) Using a signed certificate 139
Clone the existing RSE setup 140
Update rsed.envvars to enable coexistence. . . . 141
Update ssl.properties to enable SSL 141
Activate SSL by creating a new RSE daemon . . . 141
Test the connection 142
(Optional) Add X.509 client authentication support 145
(Optional) Create a key database with gskkyman 145
(Optional) Create a key store with keytool. . . . 148

Appendix B. Setting up TCP/IP 151
Hostname dependency 151
Understanding resolvers. 152
Understanding search orders of configuration
information 152
Search orders used in the z/OS UNIX environment 153

Base resolver configuration files 153
Translate tables 153
Local host tables 154

Applying this set up information to Developer for
System z 154

Host address is not resolved correctly 157

Bibliography. 159
Referenced publications 159
Informational publications 162

Glossary 163

Documentation notices for IBM
Rational Developer for System z . . . 167
Copyright license 169
Trademark acknowledgments 169

Index 171

Contents v

vi IBM Rational Developer for System z: Host Configuration Reference

Figures

1. Component overview 1
2. RSE as a Java application 3
3. Task owners. 4
4. Connection flow 6
5. CARMA flow 7
6. Lock daemon flow 9
7. z/OS UNIX directory structure 11
8. TCP/IP ports 43
9. Distributed Dynamic VIPA sample 48

10. WLM classification 51
11. Maximum number of address spaces 62
12. Number of address spaces per client 63
13. Maximum number of processes 65

14. Number of processes per client 66
15. Maximum number of RSE thread pool threads 68
16. Maximum number of JES Job Monitor threads 68
17. Resource usage with 5 logons 72
18. Resource usage with 5 logons (continued) 73
19. Resource usage while editing a PDS member 74
20. z/OS UNIX file system space usage 76
21. Resource usage of sample setup. 89
22. ADNJSPAU - CICSTS administrative utility 103
23. RSEDSSL - RSE daemon user job for SSL 142
24. Import Host Certificate dialog 143
25. Preferences dialog - SSL 144

© Copyright IBM Corp. 2010 vii

||

||

||

viii IBM Rational Developer for System z: Host Configuration Reference

Tables

1. JES Job Monitor console commands 20
2. LIMIT_COMMANDS command permission

matrix 20
3. Extended JESSPOOL profiles 21
4. LIMIT_VIEW browse permission matrix 22
5. SSL certificate storage mechanisms 23
6. Security setup variables 30
7. JES2 Job Monitor operator commands 37
8. JES3 Job Monitor operator commands 37
9. WLM entry-point subsystems 52

10. WLM work qualifiers 52
11. WLM workloads 53
12. WLM workloads - STC. 55
13. WLM workloads - OMVS 55
14. WLM workloads - JES 57
15. WLM workloads - ASCH 57
16. WLM workloads - CICS 58

17. Common resource usage 60
18. User-specific requisite resource usage 60
19. User-specific resource usage 60
20. Address space count 61
21. Address space limits 63
22. Process count 64
23. Process limits 66
24. Thread count 67
25. Thread limits 69
26. Log output directives 77
27. Temporary output directives 78
28. JAVA_DUMP_TDUMP_PATTERN variables 126
29. SSL certificate storage mechanisms 138
30. Local definitions available to resolver 156
31. Referenced publications 159
32. Referenced Web sites 161
33. Informational publications 162

© Copyright IBM Corp. 2010 ix

||

x IBM Rational Developer for System z: Host Configuration Reference

About this document

This document gives background information for various configuration tasks of
IBM® Rational® Developer for System z® itself and other z/OS® components and
products (such as WLM and CICS®).

From here on, the following names are used in this manual:
v IBM Rational Developer for System z is called Developer for System z.
v Common Access Repository Manager is abbreviated to CARMA.
v Software Configuration and Library Manager Developer Toolkit is called SCLM

Developer Toolkit, abbreviated to SCLMDT.
v z/OS UNIX System Services is called z/OS UNIX.
v Customer Information Control System Transaction Server is called CICSTS,

abbreviated to CICS.

For earlier releases, including IBM WebSphere Developer for System z, IBM
WebSphere Developer for zSeries and IBM WebSphere Studio Enterprise Developer,
use the configuration information found in the Host Configuration Guide and
Program Directories for those releases.

This document is part of a set of documents that describe Developer for System z
host configuration. Each of these documents has a specific target audience. You are
not required to read all documents to complete the Developer for System z
configuration.
v Rational Developer for System z Host Configuration Guide (SC23-7658) describes in

detail all planning tasks, configuration tasks and options (including optional
ones) and provides alternative scenarios.

v Rational Developer for System z Host Configuration Reference (SC14-7290) describes
Developer for System z design and gives background information for various
configuration tasks of Developer for System z, z/OS components, and other
products (such as WLM and CICS) related to Developer for System z.

v Rational Developer for System z Host Configuration Quick Start Guide (GI11-9201)
describes a minimal setup of Developer for System z.

v Rational Developer for System z Host Configuration Utility (SC14-7282) describes the
Host Configuration Utility, an ISPF panel application that guides you through
basic and common optional customization steps for Developer for System z.

The information in this document applies to all Rational Developer for System z
v8.0.1 packages including IBM Rational Developer for zEnterprise.

Who should use this document
This document is intended for system programmers configuring and tuning IBM
Rational Developer for System z Version 8.0.1, FMID HHOP801, on their z/OS host
system.

While the actual configuration steps are described in another publication, this
publication lists in detail various related subjects, such as tuning, security setup,
and more. To use this document, you need to be familiar with the z/OS UNIX
System Services and MVS™ host systems.

© Copyright IBM Corp. 2010 xi

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

Summary of changes
This section summarizes the changes for IBM Rational Developer for System z Version
8.0.1 Host Configuration Reference, SC14-7290-00 (updated December 2010).

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

This document contains information previously presented in IBM Rational Developer
for System z Version 7.6.1 Host Configuration Guide, SC23-7658-04.

New information:
v CARMA section in Understanding Developer for System z. See “CARMA” on

page 7.
v General TCP/IP related information. See Chapter 3, “TCP/IP considerations,” on

page 43.
v B37 space abend resolution. See “Error feedback B37 space abend” on page 135.

Removed information:
v The information previously presented in IBM Rational Developer for System z

Version 7.6.1 Host Configuration Guide (SC23-7658-04) is now split into two
documents: IBM Rational Developer for System z Host Configuration Guide
(SC23-7658) and IBM Rational Developer for System z Host Configuration Reference
(SC14-7290).

v Information regarding APPC setup has moved to white paper Using APPC to
provide TSO command services (SC14-7291).

v Setting up INETD

Description of document content
This section summarizes the information presented in this document.

Understanding Developer for System z
The Developer for System z host consists of several components that interact to
give the client access to the host services and data. Understanding the design of
these components can help you make the correct configuration decisions.

Security considerations
Developer for System z provides mainframe access to users on a non-mainframe
workstation. Validating connection requests, providing secure communication
between the host and the workstation, and authorizing and auditing activity are
therefore important aspects of the product configuration.

TCP/IP considerations
Developer for System z uses TCP/IP to provide mainframe access to users on a
non-mainframe workstation. It also uses TCP/IP for communication between
various components and other products.

WLM considerations
Unlike traditional z/OS applications, Developer for System z is not a monolithic
application that can be identified easily to Workload Manager (WLM). Developer
for System z consists of several components that interact to give the client access to

xii IBM Rational Developer for System z: Host Configuration Reference

|

|
|

|
|

|
|

|

|
|

|
|

|

|

|
|
|
|
|

|
|

|

|

|
|
|

the host services and data. Some of these services are active in different address
spaces, resulting in different WLM classifications.

Tuning considerations
RSE (Remote Systems Explorer) is the core of Developer for System z. To manage
the connections and workloads from the clients, RSE is composed of a daemon
address space, which controls thread pooling address spaces. The daemon acts as a
focal point for connection and management purposes, while the thread pools
process the client workloads.

This makes RSE a prime target for tuning the Developer for System z setup.
However, maintaining hundreds of users, each using 16 or more threads, a certain
amount of storage, and possibly one or more address spaces requires proper
configuration of both Developer for System z and z/OS.

Performance considerations
z/OS is a highly customizable operating system, and (sometimes small) system
changes can have a huge impact on the overall performance. This chapter
highlights some of the changes that can be made to improve the performance of
Developer for System z.

CICSTS considerations
This chapter contains information useful for a CICS Transaction Server
administrator.

Customizing the TSO environment
This chapter assists you with mimicking a TSO logon procedure by adding DD
statements and data sets to the TSO environment in Developer for System z.

Running multiple instances
There are times that you want multiple instances of Developer for System z active
on the same system, for example, when testing an upgrade. However, some
resources such as TCP/IP ports cannot be shared, so the defaults are not always
applicable. Use the information in this chapter to plan the coexistence of the
different instances of Developer for System z, after which you can use this
configuration guide to customize them.

Troubleshooting configuration problems
This chapter is provided to assist you with some common problems that you may
encounter during your configuration of Developer for System z, and has the
following sections:
v Log and setup analysis using FEKLOGS
v Log files
v Dump files
v Tracing
v z/OS UNIX permission bits
v Reserved TCP/IP ports
v Address Space size
v APPC transaction and TSO Commands service
v Miscellaneous information

About this document xiii

Setting up SSL and X.509 authentication
This appendix is provided to assist you with some common problems that you
may encounter when setting up Secure Socket Layer (SSL), or during checking or
modifying an existing setup. This appendix also provides a sample setup to
support users authenticating themselves with an X.509 certificate.

Setting up TCP/IP
This appendix is provided to assist you with some common problems that you
may encounter when setting up TCP/IP, or during checking or modifying an
existing setup.

xiv IBM Rational Developer for System z: Host Configuration Reference

Chapter 1. Understanding Developer for System z

The Developer for System z host consists of several components that interact to
give the client access to the host services and data. Understanding the design of
these components can help you make the correct configuration decisions.

The following topics are covered in this chapter:
v “Component overview”
v “RSE as a Java application” on page 3
v “Task owners” on page 4
v “Connection flow” on page 6
v “CARMA” on page 7
v “Lock daemon” on page 9
v “z/OS UNIX directory structure” on page 11

Component overview

Figure 1 shows a generalized overview of the Developer for System z layout on
your host system.
v Remote Systems Explorer (RSE) provides core services, such as connecting the

client to the host and starting other servers for specific services. RSE consists of
two logical entities:

Figure 1. Component overview

© Copyright IBM Corp. 2010 1

– RSE daemon (RSED), which manages connection setup. RSE daemon is also
responsible for running in single server mode. To do so, RSE daemon creates
one or more child processes known as RSE thread pools (RSEDx).

– RSE server, which handles individual client request. An RSE server is active
as a thread inside a RSE thread pool.

v Lock Daemon (LOCKD) provides tracking services for data set locks.
v TSO Commands Service (TSO cmd) provides a batch-like interface for TSO and

ISPF commands.
v JES Job Monitor (JMON) provides all JES related services.
v Common Access Repository Manager (CARMA) provides an interface to interact

with Software Configuration Managers (SCMs), such as CA Endevor.
v SCLM Developer Toolkit (SCLMDT) provides an interface to enhance and

interact with SCLM.
v Application Deployment Manager (ADM) provides various CICS related

services.
v More services are available, which can be provided by Developer for System z

itself or corequisite software.

The description in the previous paragraph and list shows the central role assigned
to RSE. With few exceptions, all client communication goes through RSE. This
allows for easy security related network setup, as only a limited set of ports are
used for client-host communication.

To manage the connections and workloads from the clients, RSE is composed of a
daemon address space, which controls thread pooling address spaces. The daemon
acts as a focal point for connection and management purposes, while the thread
pools process the client workloads. Based upon the values defined in the
rsed.envvars configuration file, and the amount of actual client connections,
multiple thread pool address spaces can be started by the daemon.

2 IBM Rational Developer for System z: Host Configuration Reference

RSE as a Java application

Figure 2 shows a basic view of resource usage (processes and storage) by RSE.

RSE is a Java application, which means that it is active in the z/OS UNIX
environment. This allows for easy porting to different host platforms and
straightforward communication with the Developer for System z client, which is
also a Java application (based on the Eclipse framework). Therefore, basic
knowledge of how z/OS UNIX and Java work is very helpful when you try to
understand Developer for System z.

In z/OS UNIX, a program runs in a process, which is identified by a PID (Process
ID). Each program is active in its own process, so invoking another program
creates a new process. The process that started a process is referenced with a PPID
(Parent PID), the new process is called a child process. The child process can run
in the same address space or it can be spawned (created) in a new address space.
A new process that runs in the same address space can be compared to executing a
command in TSO, while the spawning one in a new address space is similar to
submitting a batch job.

Note that a process can be single- or multi-threaded. In a multi-threaded
application (such as RSE), the different threads compete for system resources as if
they were separate address spaces (with less overhead).

Mapping this process information to the RSE sample in Figure 2, we get the
following flow:

Figure 2. RSE as a Java application

Chapter 1. Understanding Developer for System z 3

1. When the RSED task is started, it executes BPXBATSL, which invokes z/OS
UNIX and creates a shell environment – PID 50331904.

2. In this process, the rsed.sh shell script is executed, which runs in a separate
process (/bin/sh) – PID 67109114.

3. The shell script sets the environment variables defined in rsed.envvars and
executes Java with the required parameters to start the RSE daemon – PID
50331949.

4. RSE daemon will spawn off a new shell in a child process (RSED8) – PID 307.
5. In this shell, the environment variables defined in rsed.envvars are set and

Java is executed with the required parameters to start the RSE thread pool –
PID 308.

Java applications, such as RSE, do not allocate storage directly, but use Java
memory management services. These services, like allocating storage, freeing
storage, and garbage collection, work within the limits of the Java heap. The
minimum and maximum size of the heap is defined (implicitly or explicitly)
during Java startup.

This implies that getting the most out of the available address space size is a
balancing act of defining a large heap size while leaving enough room for z/OS to
store a variable amount of system control blocks (dependent on the number of
active threads).

Task owners

Figure 3. Task owners

4 IBM Rational Developer for System z: Host Configuration Reference

Figure 3 on page 4 shows a basic overview of the owner of the security credentials
used for various Developer for System z tasks.

The ownership of a task can be divided into two sections. Started tasks are owned
by the user ID that is assigned to the started task in your security software. All
other tasks, with the RSE thread pools (RSEDx) as exception, are owned by the
client user ID.

Figure 3 on page 4 shows the Developer for system z started tasks (LOCKD, JMON
and RSED), and sample started tasks and system services that Developer for
System z communicates with. Application Deployment Manager (ADM) is active
inside a CICS region. FMNCAS is the File Manager started task. The USS REXEC
tag represents the z/OS UNIX REXEC (or SSH) service.

RSE daemon (RSED) creates one or more RSE thread pool address spaces (RSEDx)
to process client requests. Each RSE thread pool supports multiple clients and is
owned by the same user as the RSE daemon. Each client has his own threads
inside a thread pool, and these threads are owned by the client user ID.

Depending on actions done by the client, one or more additional address spaces
can be started, all owned by the client user ID, to perform the requested action.
These address spaces can be an MVS batch job, an APPC transaction, or a z/OS
UNIX child process. Note that a z/OS UNIX child process is active in a z/OS
UNIX initiator (BPXAS), and the child process shows up as a started task in JES.

The creation of these address spaces is most often triggered by a user thread in a
thread pool, either directly or by using system services like ISPF. But the address
space could also be created by a third party. For example, File Manager will start a
new address space for each data set (or member) it has to process on behalf of
Developer for System z. z/OS UNIX REXEC or SSH are involved when starting
builds in z/OS UNIX.

The user-specific address spaces end at task completion or when an inactivity
timer expires. The started tasks remain active. The address spaces listed in Figure 3
on page 4 remain in the system long enough to be visible. However, you should be
aware that due to the way z/OS UNIX is designed, there are also several
short-lived temporary address spaces.

Chapter 1. Understanding Developer for System z 5

Connection flow

Figure 4 shows a schematic overview of how a client connects to the host using
Developer for System z. It also briefly explains how PassTickets are used.
1. The client logs on to the daemon (port 4035).
2. RSE daemon authenticates the client, using the credentials presented by the

client.
3. RSE daemon selects an existing thread pool or starts a new one if all are full.
4. RSE daemon passes the client user ID on to the thread pool.
5. The thread pool creates a client specific RSE server thread, using the client user

ID and a PassTicket for authentication.
6. The client server thread binds to a port for future client communication.
7. The client server thread returns the port number for the client to connect to.
8. The client disconnects from RSE daemon and connects to the provided port

number.
9. The client server thread starts other user specific threads (miners), always using

the client user ID and a PassTicket for authentication. These threads provide
the user-specific services requested by the client.

The description above shows the thread-oriented design of RSE. Instead of starting
an address space per user, multiple users are serviced by a single thread pool
address space. Within the thread pool, each miner (a user specific service) is active
in its own thread with the user’s security context assigned to it, ensuring a secure
setup. This design accommodates large number of users with limited resource
usage, but does imply that each client will use multiple threads (16 or more,
depending on the performed tasks).

From a network point of view, Developer for system z acts similar to FTP in
passive mode. The client connects to a focal point (RSE daemon) and then drops

Figure 4. Connection flow

6 IBM Rational Developer for System z: Host Configuration Reference

the connection and reconnects to a port number provided by the focal point. The
following logic controls the selection of the port that is used for the second
connection:
1. If the client specified a non-zero port number in the subsystem properties tab,

then RSE server will use that port for the bind. If this port is not available, the
connection fails.

2. If _RSE_PORTRANGE is specified in rsed.envvars, then RSE server will bind to a
port from this range. If no port is available, the connection fails. Note that RSE
server does not need the port exclusively for the duration of the client
connection. It is only in the time span between the (server) bind and the (client)
connect that no other RSE server can bind to the port.

3. If no limitations are set, RSE server will bind to port 0. The result is that
TCP/IP chooses the port number.

The usage of PassTickets for all z/OS services that require authentication allows
Developer for System z to invoke these services at will without storing the
password or constantly prompting the user for it. Use of PassTickets for all z/OS
services also allows for alternative authentication methods during logon, such as
one-time passwords and X.509 certificates.

CARMA

CARMA (Common Access Repository Manager) is used to access a host based
Software Configuration Manager (SCM), for example CA Endevor® SCM. Figure 5
shows a schematic overview of how a Developer for System z client can access any
supported host-based Software Configuration Manager (SCM).
1. The client has a Common Access Repository Manager (CARMA) plugin.
2. The CARMA plugin communicates with the CARMA miner, active as a

user-specific thread within the RSE thread pool (RSEDx). This communication
is done by way of the existing RSE connection.

3. When the client requests access to a SCM, the CARMA miner will bind to a
TCP/IP port and will start a user-specific CARMA server, with the port

1

SCM SCM

TCP/IP

RSEDx

CARMA miner

RAM

API API

2

3

4

5

TCP/IP
CARMA SERVER

Figure 5. CARMA flow

Chapter 1. Understanding Developer for System z 7

|

|
|
|

|

|

|
|
|
|

|

|
|
|

|
|

number as startup argument. The CARMA server will then connect to this port
and use this path for communication with the client.

4. The CARMA server will load the Repository Access Manager (RAM) that
supports the requested SCM.

5. The RAM deals with the technical details of interacting with the specific SCM,
and presents a common interface to the client.

CARMA configuration files
Developer for System z supports multiple methods to start a CARMA server. Each
method has benefits and drawbacks. Developer for System z also provides
multiple Repository Access Managers (RAMs), which can be divided into two
groups, production RAMs and sample RAMs. Various combinations of RAMs and
server startup methods are available as a preconfigured setup.

All server startup methods share a common configuration file, CRASRV.properties,
which (among other things) specifies which startup method will be used.

CRASTART
The "CRASTART" method starts the CARMA server as a subtask within RSE. It
provides a very flexible setup by using a separate configuration file that defines
data set allocations and program invocations needed to start a CARMA server. This
method provides the best performance and uses the fewest resources, but requires
that module CRASTART is located in LPA.

RSE invokes load module CRASTART, which uses the definitions in crastart*.conf
to create a valid environment to execute batch TSO and ISPF commands.
Developer for System z uses this environment to run the CARMA server, CRASERV.
Developer for System z provides multiple crastart*.conf files, each preconfigured
for a specific RAM.

Batch submit
The "batch submit" method starts the CARMA server by submitting a job. This is
the default method used in the provided sample configuration files. The benefit of
this method is that the CARMA logs are easily accessible in the job output. It also
allows the use of custom server JCL for each developer, which is maintained by the
developer himself. However, this method uses one JES initiator per developer
starting a CARMA server.

RSE invokes CLIST CRASUB*, which in turn submits an embedded JCL to create a
valid environment to execute batch TSO and ISPF commands. Developer for
System z uses this environment to run the CARMA server, CRASERV. Developer
for System z provides multiple CRASUB* members, each preconfigured for a
specific RAM.

8 IBM Rational Developer for System z: Host Configuration Reference

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

Lock daemon

Figure 6 shows a schematic overview of how the lock daemon determines which
Developer for System z client owns a data set lock.
1. The client logs on, which creates a user-specific RSE server thread (USER)

inside a thread pool (RSEDx).
2. RSE server registers a newly-connected user with the lock daemon. The

registration information contains the Address Space Identifier (which is the
ASID of the thread pool), the Task Control Block (TCB) identifier (user-specific),
and the user ID.

3. The client opens a data set in edit, which instructs RSE server to get an
exclusive lock on the data set.

4. The system registers the ASID, TCB and task name (RSEDx) of the requestor as
part of lock process. This information is stored in the Global Resource
Serialization (GRS) queues.

5. An operator (or RSE server on behalf of a client) queries the lock daemon for
the lock status of the data set.

6. The lock daemon scans the GRS queues to learn if the data set is locked.
7. The daemon retrieves the ASID, TCB and task name of the lock owner.
8. The retrieved ASID and TCB are compared against the ASID and TCB combos

of registered clients.
9. The related client user ID is returned to the requestor when a match is found.

Otherwise, the task name retrieved from GRS is returned.

Figure 6. Lock daemon flow

Chapter 1. Understanding Developer for System z 9

With the single-server setup of Developer for System z, where multiple users are
assigned to a single thread pool address space, z/OS lost the ability to track who
owns a lock on a data set or member. System commands stop at address space
level, which is the thread pool.

To address this problem, Developer for System z provides the lock daemon. The
lock daemon can track all dataset/member locks done by RSE users, as well as
locks done by other products, such as ISPF.

RSE server registers a newly-connected user with the lock daemon. The registration
information contains the Address Space Identifier (which is the ASID of the thread
pool), the Task Control Block (TCB) ID (user-specific), and the user ID.

Note that registration is done at connect time only, so all RSE users active before
the lock daemon was started (or restarted) will not be registered.

When the lock daemon receives a dataset query (by means of a modify query
operator command or from the client by way of RSE server), the daemon scans the
system's Global Resource Serialization (GRS) queues. If the ASID and TCB match
that of a registered user, the user ID is returned as lock owner. Otherwise the
jobname/user ID related to the ASID is returned as lock owner.

A console message (FEK513W) with the registration information is displayed if the
registration fails. This allows an operator to match the values against the output of
a DISPLAY GRS,RES=(*,dataset*) operator command in order to find the lock
owner.

Note: Successful registrations are also listed in DD STDOUT of the server if
log_level is set to 2. This is useful to do the manual mapping for successful
registrations that were removed after a restart of the lock daemon.

Freeing a lock
Under normal circumstances, a data set or member is locked when the client opens
it in edit mode, and freed when the client closes the edit session.

Certain error conditions can prevent this mechanism from working as designed. In
this case, the user holding the lock can be canceled using RSE’s modify cancel
operator command, as described in "Operator commands" in the Host Configuration
Guide (SC23-7658). Active data set locks belonging to this user are freed during the
process.

10 IBM Rational Developer for System z: Host Configuration Reference

z/OS UNIX directory structure

Figure 7 shows an overview of the z/OS UNIX directories used by Developer for
System z. The following list describes each directory touched by Developer for
System z, how the location can be changed, and who maintains the data within.
v /usr/lpp/rdz/ is the root path for the Developer for System z product code. The

actual location is specified in the RSED and LOCKD started tasks (variable HOME).
The files within are maintained by SMP/E.

v /etc/rdz/ holds the RSE and miner-related configuration files. The actual
location is specified in the RSED and LOCKD started tasks (variable CNFG). The files
within are maintained by the system programmer.

v /var/rdz/pushtoclient/ holds client configuration files, client upgrade
information, and host-based project information that is pushed to the client upon
connect. The actual location is specified in pushtoclient.properties (variable
pushtoclient.folder). The files within are maintained by a Developer for
System z client administrator.

v /var/rdz/pushtoclient/projects/ holds the host-based project definition files.
The actual location is specified in /var/rdz/pushtoclient/keymapping.xml, which
is created and maintained by a Developer for System z client administrator. The
files within are maintained by a project manager or lead developer.

v /var/rdz/pushtoclient/install/ holds configuration files used to upgrade
clients upon connect. The actual location is specified in /var/rdz/pushtoclient/
keymapping.xml, which is created and maintained by a Developer for System z
client administrator. The files within are maintained by a client administrator.

v /var/rdz/pushtoclient/install/responsefiles/ holds configuration files used
to upgrade clients upon connect. The actual location is specified in

Figure 7. z/OS UNIX directory structure

Chapter 1. Understanding Developer for System z 11

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

/var/rdz/pushtoclient/keymapping.xml, which is created and maintained by a
Developer for System z client administrator. The files within are maintained by a
client administrator.

v /var/rdz/sclmdt/CONFIG/ holds general SCLMDT configuration files. The actual
location is specified in rsed.envvars (variable SCLMDT_CONF_HOME). The files
within are maintained by the SCLM administrator.

v /var/rdz/sclmdt/CONFIG/PROJECT/ holds SCLMDT project configuration files.
The actual location is specified in rsed.envvars (variable SCLMDT_CONF_HOME). The
files within are maintained by the SCLM administrator.

v /var/rdz/sclmdt/CONFIG/script/ holds SCLMDT-related scripts that can be used
by other products. The actual location is not specified anywhere. The files within
are maintained by the SCLM administrator.

v /var/rdz/logs/ holds the logs of RSE daemon and RSE thread pool servers. The
actual location is specified in rsed.envvars (variable daemon.log). The files
within are maintained by RSE.

v /var/rdz/logs/$LOGNAME/ holds the user-specific logs of the RSE server and
miners. The actual location is specified in rsed.envvars (variable user.log and
DSTORE_LOG_DIRECTORY). The files within are maintained by RSE and the miners.

Note: /var/rdz/logs/ requires permission bit mask 777 to allow each client to
create his $LOGNAME directory and store the user-specific log files.

v /var/rdz/WORKAREA/ is used by ISPF’s TSO/ISPF Client Gateway and SCLMDT
to transfer data between z/OS UNIX and MVS based address spaces. The actual
location is specified in rsed.envvars (variable _CMDSERV_WORK_HOME). The files
within are maintained by ISPF and SCLMDT.

Note: /var/rdz/WORKAREA/ requires permission bit mask 777 to allow each client
to create temporary files.

v /tmp/ is used by ISPF’s TSO/ISPF Client Gateway and various miners to store
temporary data. Some IVPs store their output here. The files within are
maintained by ISPF, the miners, and the IVPs. The location can be customized
with the TMPDIR variable in rsed.envvars. It is also the default location for Java
dump files, which can be customized with the _CEE_DUMPTARG variable in
rsed.envvars.

Note: /tmp/ requires permission bit mask 777 to allow each client to create
temporary files.

Update privileges for non-system administrators
The data in /var/rdz/projects/ and /var/rdz/pushtoclient/ is maintained by
non-system administrators, such as project managers, who might not have many
update privileges in z/OS UNIX. Therefore, it is important to understand how
z/OS UNIX sets access permissions during file creation to ensure you have
workable but secure setup.

UNIX standards dictate that permissions can be set for three types of users: owner,
group, and other. Read, write, and execute permissions can be set for each type
individually.

z/OS UNIX sets the UID (user ID) and GID (group ID) to the following values
when a file is created:
v The UID is set to the effective UID of the creating thread.

12 IBM Rational Developer for System z: Host Configuration Reference

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|

v The GID is set to the GID of the owning directory. If security profile
FILE.GROUPOWNER.SETGID is defined in the UNIXPRIV class, then the effective GID
of the creating thread is used by default instead. Refer to UNIX System Services
Planning (GA22-7800) for more details on this.

Each site can set their own default access permission mask, but a common mask
allows read and write permission to the owner, and read permission to group and
other.

Data in /var/rdz/projects/ is created using no specific access permission mask.
The final access permissions should allow read permission for all, and write
permission for the project managers that maintain the data.

Data in /var/rdz/pushtoclient/ is created using the access permission mask
defined in the file.permission directive of pushtoclient.properties. The default
value allows read and write permission for owner and group, and read permission
for other. All have execute permission. The final access permissions should allow
read and execute for all, and write for the Developer for System z client
administrators that maintain the data.

Useful security commands
To ensure that a group of project managers or Developer for System z client
administrators can manage the data in these directories, your security
administrator might have to create a group with a valid OMVS segment for them.
This group is preferably the default group for the involved user IDs. Refer to
Security Server RACF® Command Language Reference (SA22-7687) for more
information on the following sample RACF commands:
ADDGROUP RDZPROJ OMVS(GID(1200))
CONNECT IBMUSER GROUP(RDZPROJ)
ALTUSER IBMUSER DFLTGRP(RDZPROJ)

Useful z/OS UNIX commands
Refer to UNIX System Services Command Reference (SA22-7802) for more information
on the following sample z/OS UNIX commands:
v Use the following z/OS UNIX ls command to display all files within a directory.

ls -lR /var/rdz/pushtoclient/

v Use the following z/OS UNIX chown command to change the owner of a
directory and all files within.
chown –R IBMUSER /var/rdz/pushtoclient/

v Use the following z/OS UNIX chgrp command to assign the group to the
directory and all files within.
chgrp -R RDZPROJ /var/rdz/pushtoclient/

v Use the following z/OS UNIX chmod command to give the owner and group
write permission to the directory and all files within. Other has read permission.
All have execute permission.
chmod -R 775 /var/rdz/pushtoclient/

Sample setup
In the following scenario, all the development project managers, a team of three,
are tasked with being a Developer for System z client administrator.

The security administrator has already assigned a default group (RDZPROJ) with
unique group ID (1200) to the team. Their user IDs do not have special privileges
(like UID 0) in z/OS UNIX. The security administrator has not defined the
FILE.GROUPOWNER.SETGID profile, so z/OS UNIX will use the group ID of the

Chapter 1. Understanding Developer for System z 13

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|
|

|

|
|

|

|
|
|

|

|
|
|

|
|
|
|

directory when creating new files. User ID IBMUSER (with UID 0 and default group
SYS1) was used by the systems programmer to create directory
/var/rdz/pushtoclient.
1. The systems programmer limits /var/rdz/pushtoclient write permissions to

the owner and group:
chmod 775 /var/rdz/psuhtoclient
ls -ld /var/rdz/pushtoclient
drwxrwxr-x 2 IBMUSER SYS1
/var/rdz/pushtoclient

Note: The FEKSETUP job used during customization setup already does this
step.

2. The systems programmer makes RDZPROJ the owning group:
chgrp RDZPROJ /var/rdz/pushtoclient
ls –ld /var/rdz/pushtoclient
drwxrwxr-x 2 IBMUSER RDZPROJ
/var/rdz/pushtoclient

This concludes the setup required to limit /var/rdz/pushtoclient write
permissions to the systems programmer (IBMUSER) and the project managers
(RDZPROJ).

14 IBM Rational Developer for System z: Host Configuration Reference

|
|
|

|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

Chapter 2. Security considerations

Developer for System z provides mainframe access to users on a non-mainframe
workstation. Validating connection requests, providing secure communication
between the host and the workstation, and authorizing and auditing activity are
therefore important aspects of the product configuration.

The security mechanisms used by Developer for System z servers and services rely
on the file system it resides in being secure. This implies that only trusted system
administrators should be able to update the program libraries and configuration
files.

The following topics are covered in this chapter:
v “Authentication methods”
v “Connection security” on page 16
v “Using PassTickets” on page 18
v “Audit logging” on page 18
v “JES security” on page 19
v “SSL encrypted communication” on page 23
v “Client authentication using X.509 certificates” on page 24
v “Port Of Entry (POE) checking” on page 27
v “CICSTS security” on page 27
v “SCLM security” on page 28
v “Developer for System z configuration files” on page 28
v “Security definitions” on page 29

Note: Remote Systems Explorer (RSE), which provides core services such as
connecting the client to the host, consists of 2 logical entities:
v RSE daemon, which manages connection setup, and is started as a started

task or long running user job.
v RSE server, which handles individual client request, and is started as a

thread in one or more child processes by RSE daemon.

Refer to Chapter 1, “Understanding Developer for System z,” on page 1 to learn
about basic Developer for System z design concepts.

Authentication methods
Developer for System z supports multiple ways to authenticate a user ID provided
by a client upon connection.
v User ID and password
v User ID and one-time password
v X.509 certificate

Note that the authentication data provided by the client is only used once, during
initial connection setup. Once a user ID is authenticated, the user ID and
self-generated PassTickets are used for all actions that require authentication.

© Copyright IBM Corp. 2010 15

User ID and password
The client provides a user ID and matching password upon connection. The user
ID and password are used to authenticate the user with your security product.

User ID and one-time password
Based upon a unique token, a one-time password can be generated by a
third-party product. One-time passwords improve your security setup as the
unique token cannot be copied and used without the user's knowledge, and an
intercepted password is useless because it is valid only once.

The client provides a user ID and the one-time password upon connection, which
is used to authenticate the user ID with the security exit provided by the third
party. This security exit is expected to ignore the PassTickets used to satisfy
authentication requests during normal processing. The PassTickets must be
processed by your security software.

X.509 certificate
A third party can provide one or more X.509 certificates that can be used for
authenticating a user. When stored on secure devices, X.509 certificates combine a
secure setup with ease of use for the user (no user ID or password needed).

Upon connection, the client provides a selected certificate, and optionally a selected
extension, which is used to authenticate the user ID with your security product.

Note that this authentication method is only supported by the RSE daemon
connection method, and that SSL must be enabled.

JES Job Monitor authentication
Client authentication is done by RSE daemon (or REXEC/SSH) as part of the
client's connection request. Once the user is authenticated, self-generated
PassTickets are used for all future authentication requests, including the automatic
logon to JES Job Monitor.

In order for JES Job Monitor to validate the user ID and PassTicket presented by
RSE, JES Job Monitor must be allowed to evaluate the PassTicket. This implies the
following:
v Load module FEJJMON, by default located in load library FEK.SFEKAUTH, must be

APF authorized.
v Both RSE and JES Job Monitor must use the same application ID (APPLID). By

default both servers use FEKAPPL as APPLID, but this can be changed by the
APPLID directive in rsed.envvars for RSE and in FEJJCNFG for JES Job Monitor.

Note: Previous clients (version 7.0 and older) communicate directly with JES Job
Monitor. For these connections, only the user ID and password
authentication method is supported.

Connection security
Different levels of communication security are supported by RSE, which controls
all communication between the client and Developer for System z services:
v External (client-host) communication can be limited to specified ports. This

feature is disabled by default.

16 IBM Rational Developer for System z: Host Configuration Reference

v External (client-host) communication can be encrypted using SSL. This feature is
disabled by default.

v Port Of Entry (POE) checking can be used to allow host access only to trusted
TCP/IP addresses. This feature is disabled by default.

Limit external communication to specified ports
The system programmer can specify the ports on which the RSE server can
communicate with the client. By default, any available port is used. This range of
ports has no connection with the RSE daemon port.

To help understand the port usage, a brief description of RSE's connection process
follows:
1. The client connects to host port 4035, RSE daemon.
2. The RSE daemon creates an RSE server thread.
3. The RSE server opens a host port for the client to connect. The selection of this

port can be configured by the user, either on the client in the subsystem
properties tab (this is not recommended) or through the _RSE_PORTRANGE
definition in rsed.envvars.

4. The RSE daemon returns the port number to the client.
5. The client connects to the host port.

Note: The process is similar for the (optional) alternative connection method using
REXEC/SSH, which is described in "(Optional) Using REXEC (or SSH)" in
the Host Configuration Guide (SC23-7658).

Communication encryption using SSL
All external Developer for System z data streams that pass through RSE can be
encrypted using Secure Socket Layer (SSL). The usage of SSL is controlled by the
settings in the ssl.properties configuration file, as described in “SSL encrypted
communication” on page 23.

The Host Connect Emulator on the client connects to a TN3270 server on the host.
The usage of SSL is controlled by TN3270, as documented in the Communications
Server IP Configuration Guide (SC31-8775).

The Application Deployment Manager client uses the CICS TS Web Service or the
RESTful interface to invoke the Application Deployment Manger host services. The
usage of SSL is controlled by CICS TS, as documented in RACF Security Guide for
CICS TS.

Port Of Entry checking
Developer for System z supports Port Of Entry (POE) checking, which allows host
access only to trusted TCP/IP addresses. The usage of POE is controlled by the
definition of specific profiles in your security software and the
enable.port.of.entry directive in rsed.envvars, as described in “Port Of Entry
(POE) checking” on page 27.

Note that activating POE will impact other TCPIP applications that support POE
checking, such as INETD.

Chapter 2. Security considerations 17

Using PassTickets
After logon, PassTickets are used to establish thread security within the RSE server.
This feature cannot be disabled. PassTickets are system generated passwords with
a lifespan of about 10 minutes. The generated PassTickets are based upon the DES
encryption algorithm, the user ID, the application ID, a time and date stamp, and a
secret key. This secret key is a 64 bit number (16 hex characters) that must be
defined to your security software.

To help understand the PassTicket usage, a brief description of RSE's security
process follows:
1. The client connects to host port 4035, RSE daemon.
2. The RSE daemon authenticates the client, using the credentials presented by the

client.
3. The RSE daemon creates a unique client ID and an RSE server thread.
4. The RSE server generates a PassTicket and creates a security environment for

the client, using the PassTicket as password.
5. The client connects to the host port returned by the RSE daemon.
6. The RSE server validates the client using the client ID.
7. The RSE server uses a newly generated PassTicket as password for all future

actions requiring a password.

The actual password of the client is no longer needed after initial authentication
because SAF-compliant security products can evaluate both PassTickets and regular
passwords. RSE server generates and uses a PassTicket each time a password is
required, resulting in a (temporary) valid password for the client.

Using PassTickets allows RSE to set up a user-specific security environment at will,
without the need of storing all user IDs and passwords in a table, which could be
compromised. It also allows for client authentication methods that do not use
reusable passwords, such as X.509 certificates.

Security profiles in the APPL and PTKTDATA classes are required to be able to use
PassTickets. These profiles are application specific and thus do not impact your
current system setup.

PassTickets being application specific implies that both RSE and JES Job Monitor
must use the same application ID (APPLID). By default both servers use FEKAPPL
as APPLID, but this can be changed by the APPLID directive in rsed.envvars for
RSE and in FEJJCNFG for JES Job Monitor.

You should not use OMVSAPPL as application ID, because it will open the secret key
to most z/OS UNIX applications. You should also not use the default MVS
application ID, which is MVS followed by the system's SMF ID, because this will
open the secret key to most MVS applications (including user batch jobs).

Attention: The client connection request will fail if PassTickets are not set up correctly.

Audit logging
Developer for System z supports audit logging of actions that are managed by the
RSE daemon. The audit logs are stored as text files in the daemon log directory,
using the CSV (Comma Separated Value) format.

18 IBM Rational Developer for System z: Host Configuration Reference

Audit control
Multiple options in rsed.envvars influence the audit function, as documented in
"Defining extra Java startup parameters with _RSE_JAVAOPTS" in the Host
Configuration Guide (SC23-7658).
v The audit function is enabled/disabled by the enable.audit.log option.
v The audit defaults are controlled by the audit.* options.
v The location of the audit log files is controlled by the daemon.log option.
v The code page used for writing the audit log is controlled by the

_RSE_HOST_CODEPAGE directive, as documented in "rsed.envvars, RSE
configuration file" in the Host Configuration Guide (SC23-7658).

The modify switch operator command can be used to manually switch to a new
audit log file, as documented in "Operator commands" in the Host Configuration
Guide (SC23-7658).

A warning message is sent to the console when the file system holding the audit
log files is running low on free space. This console message (FEK103E) is repeated
regularly until the low space issue is resolved. Refer to "Console messages" in the
Host Configuration Guide (SC23-7658) for a list of console messages generated by
RSE.

Audit data
A new audit log file is started after a predetermined time or when the modify
switch operator command is issued. The old log file is saved as
audit.log.yyyymmdd.hhmmss, where yyyymmdd.hhmmss is the date/timestamp when
this log was closed. The system date/timestamp assigned to the file indicates the
creation of the log file. The combination of the two dates shows the time period
covered by this audit log file.

The following actions are logged:
v System access (connect, disconnect)
v JES spool access (submit, display, hold, release, cancel, purge)
v Data set access (read, write, create, delete, rename, compress, migration, recall)
v Execution of TSO commands

Each logged action is stored (with a date/timestamp) using the CSV (Comma
Separated Value) format, which can be read by an automation or data analysis tool.

Audit log files have permission bit mask 640 (-rw-r-----), which means that the
owner (RSE daemon z/OS UNIX uid) has read and write access, and the owner’s
(default) group has read access. All other access attempts are denied, unless it is
done by a super user (UID 0) or somebody with sufficient permission to the
SUPERUSER.FILESYS profile in the UNIXPRIV class.

JES security
Developer for System z allows clients access to the JES spool through the JES Job
Monitor. The server provides basic access limitations, which can be extended with
the standard spool file protection features of your security product. Operator
actions (Hold, Release, Cancel, and Purge) against spool files are done through an
EMCS console, for which conditional permits must be set up.

Chapter 2. Security considerations 19

Actions against jobs - target limitations
JES Job Monitor does not provide Developer for System z users full operator access
to the JES spool. Only the Hold, Release, Cancel, and Purge commands are
available, and by default, only for spool files owned by the user. The commands
are issued by selecting the appropriate option in the client menu structure (there is
no command prompt). The scope of the commands can be widened, using security
profiles to define for which jobs the commands are available.

Similar to the SDSF SJ action character, JES Job Monitor also supports the Show
JCL command to retrieve the JCL that created the selected job output, and show it
in an editor window. JES Job Monitor retrieves the JCL from JES, making it a
useful function for situations in which the original JCL member is not easily
located.

Table 1. JES Job Monitor console commands

Action JES2 JES3

Hold $Hx(jobid)

with x = {J, S or T}

*F,J=jobid,H

Release $Ax(jobid)

with x = {J, S or T}

*F,J=jobid,R

Cancel $Cx(jobid)

with x = {J, S or T}

*F,J=jobid,C

Purge $Cx(jobid),P

with x = {J, S or T}

*F,J=jobid,C

Show JCL not applicable not applicable

The available JES commands listed in Table 1 are by default limited to jobs owned
by the user. This can be changed with the LIMIT_COMMANDS directive, as
documented in "FEJJCNFG, JES Job Monitor configuration file" in the Host
Configuration Guide (SC23-7658).

Table 2. LIMIT_COMMANDS command permission matrix

Job owner

LIMIT_COMMANDS User Other

USERID (default) Allowed Not allowed

LIMITED Allowed Allowed only if explicitly
permitted by security
profiles

NOLIMIT Allowed Allowed if permitted by
security profiles or when the
JESSPOOL class is not active

JES uses the JESSPOOL class to protect SYSIN/SYSOUT data sets. Similar to SDSF,
JES Job Monitor extends the use of the JESSPOOL class to protect job resources as
well.

If LIMIT_COMMANDS is not USERID, then JES Job Monitor will query for permission to
the related profile in the JESSPOOL class, as shown in the following table.

20 IBM Rational Developer for System z: Host Configuration Reference

Table 3. Extended JESSPOOL profiles

Command JESSPOOL profile Required access

Hold nodeid.userid.jobname.jobid ALTER

Release nodeid.userid.jobname.jobid ALTER

Cancel nodeid.userid.jobname.jobid ALTER

Purge nodeid.userid.jobname.jobid ALTER

Show JCL nodeid.userid.jobname.jobid.JCL READ

Use the following substitutions in the preceding table:

nodeid NJE node ID of the target JES subsystem

userid Local user ID of the job owner

jobname Name of the job

jobid JES job ID

If the JESSPOOL class is not active, then there is different behavior for the LIMITED
and NOLIMIT value of LIMIT_COMMANDS, as described in the "LIMIT_COMMANDS
command permission matrix table" in "FEJJCNFG, JES Job Monitor Configuration
file" in the Host Configuration Guide (SC23-7658). The behavior is identical when
JESSPOOL is active, since the class, by default, denies permission if a profile is not
defined.

Actions against jobs - execution limitations
The second phase of JES spool command security, after specifying the permitted
targets, includes the permits needed to actually execute the operator command.
This execution authorization is enforced by the z/OS and JES security checks.

Note that Show JCL is not an operator command such as the other JES Job Monitor
commands (Hold, Release, Cancel, and Purge), so the limitations below do not
apply because there is no further security check.

JES Job Monitor issues all JES operator commands requested by a user through an
extended MCS (EMCS) console, whose name is controlled with the CONSOLE_NAME
directive, as documented in "FEJJCNFG, JES Job Monitor configuration file" in the
Host Configuration Guide (SC23-7658).

This setup allows the security administrator to define granular command execution
permits using the OPERCMDS and CONSOLE classes.
v In order to use an EMCS console, a user must have (at least) READ authority to

the MVS.MCSOPER.console-name profile in the OPERCMDS class. Note that if no
profile is defined, the system will grant the authority request.

v In order to execute a JES operator command, a user must have sufficient
authority to the JES%.** (or more specific) profile in the OPERCMDS class. Note
that if no profile is defined, or the OPERCMDS class is not active, JES will fail the
command.

v The security administrator can also require that a user must use JES Job Monitor
when executing the operator command by specifying WHEN(CONSOLE(JMON)) on
the PERMIT definition. The CONSOLE class must be active for this setup to work.
Note that the CONSOLE class being active is sufficient; no profiles are checked for
EMCS consoles.

Chapter 2. Security considerations 21

Assuming the identity of the JES Job Monitor server by creating a JMON console
from a TSO session is prevented by your security software. Even though the
console can be created, the point of entry is different (JES Job Monitor versus TSO).
JES commands issued from this console will fail the security check, if your security
is set up as documented in this publication and the user does not have authority to
JES commands through other means.

Note that JES Job Monitor cannot create the console when a command must be
executed if the console name is already in use. To prevent this, the system
programmer can set the GEN_CONSOLE_NAME=ON directive in the JES Job Monitor
configuration file or the security administrator can define security profiles to stop
TSO users from creating a console. The following sample RACF commands prevent
everyone (except those permitted) from creating a TSO or SDSF console:
v RDEFINE TSOAUTH CONSOLE UACC(NONE)

v PERMIT CONSOLE CLASS(TSOAUTH) ACCESS(READ) ID(#userid)

v RDEFINE SDSF ISFCMD.ODSP.ULOG.* UACC(NONE)

v PERMIT ISFCMD.ODSP.ULOG.* CLASS(SDSF) ACCESS(READ) ID(#userid)

Note: Without being authorized for these operator commands, users will still be
able to submit jobs and read job output through the JES Job Monitor, if they
have sufficient authority to possible profiles that protect these resources
(such as those in the JESINPUT, JESJOBS and JESSPOOL classes).

Refer to Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on operator command protection.

Access to spool files
JES Job Monitor allows browse access to all spool files by default. This can be
changed with the LIMIT_VIEW directive, as documented in "FEJJCNFG, JES Job
Monitor configuration file" in the Host Configuration Guide (SC23-7658).

Table 4. LIMIT_VIEW browse permission matrix

Job owner

LIMIT_VIEW User Other

USERID Allowed Not allowed

NOLIMIT (default) Allowed Allowed if permitted by
security profiles or when the
JESSPOOL class is not active

To limit users to their own jobs on the JES spool, define the "LIMIT_VIEW=USERID"
statement in the JES Job Monitor configuration file, FEJJCNFG. If the users need
access to a wider range of jobs, but not all, use the standard spool file protection
features of your security product, such as the JESSPOOL class.

When defining further protection, keep in mind that JES Job Monitor uses SAPI
(SYSOUT application program interface) to access the spool. This implies that the
user needs at least UPDATE access to the spool files, even for browse functionality.
This requisite does not apply if you run z/OS 1.7 (z/OS 1.8 for JES3) or higher.
Here READ permission is sufficient for browse functionality.

Refer to Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on JES spool file protection.

22 IBM Rational Developer for System z: Host Configuration Reference

SSL encrypted communication
External (client-host) communication can be encrypted using SSL (Secure Socket
Layer). This feature is disabled by default and is controlled by the settings in
ssl.properties. Refer to "(Optional) ssl.properties, RSE SSL encryption" in the Host
Configuration Guide (SC23-7658).

RSE daemon and RSE server support different mechanisms to store certificates due
to architectural differences between the two. This implies that SSL definitions and
certificates are required for both RSE daemon and RSE server. A shared certificate
can be used if RSE daemon and RSE server use the same certificate management
method.

Table 5. SSL certificate storage mechanisms

Certificate storage
Created and
managed by RSE daemon RSE server

key ring SAF compliant
security product

supported supported

key database z/OS UNIX's
gskkyman

supported /

key store Java's keytool / supported

Note: SAF-compliant key rings are the preferred method for managing certificates.

SAF-compliant key rings can store the certificate’s private key either in the
security database or by using ICSF (Integrated Cryptographic Service
Facility), the interface to System z cryptographic hardware.

ICSF is recommended for the storage of the private keys associated with
digital certificates, because it is a more secure solution than non-ICSF
private key management. ICSF ensures that private keys are encrypted
under the ICSF master key and that access to them is controlled by general
resources in the CSFKEYS and CSFSERV security classes. In addition,
operational performance is improved because ICSF utilizes the hardware
Cryptographic Coprocessor.

RSE daemon uses System SSL functions to manage SSL encrypted communications.
This implies that SYS1.SIEALNKE must be program controlled by your security
software and available to RSE via LINKLIST or the STEPLIB directive in
rsed.envvars.

The RSE user ID (STCRSE in the sample commands below) needs authorization to
access his key ring and the related certificates when SAF-compliant key rings are
used for either RSE daemon or RSE server.
v RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

v RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

v PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ACCESS(READ) ID(stcrse)

v PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(stcrse)

v SETROPTS RACLIST(FACILITY) REFRESH

Refer to Appendix A, “Setting up SSL and X.509 authentication,” on page 137 for
more details on activating SSL for Developer for System z.

Chapter 2. Security considerations 23

Client authentication using X.509 certificates
RSE daemon supports users authenticating themselves with an X.509 certificate.
Using SSL encrypted communication is a prerequisite for this function, as it is an
extension to the host authentication with a certificate used in SSL.

RSE daemon starts the client authentication process by validating the client
certificate. Some key aspects that are checked are the dates the certificate is valid
and the trust-worthiness of the Certificate Authority (CA) used to sign the
certificate. Optionally, a (third party) Certificate Revocation List (CRL) can also be
consulted.

After RSE daemon validates the certificate, it is processed for authentication. The
certificate is passed on to your security product for authentication, unless
rsed.envvars directive enable.certificate.mapping is set to false, at which point
RSE daemon will do the authentication.

If successful, the authentication process will determine the user ID to be used for
this session, which is then tested by RSE daemon to ensure it is usable on the host
system where RSE daemon is running

The last check (which is done for every authentication mechanism, not just X.509
certificates) verifies that the user ID is allowed to use Developer for System z.

If you are familiar with the SSL security classifications used by TCP/IP, the
combination of these validation steps match the “Level 3 Client authentication”
specifications (the highest available).

Certificate Authority (CA) validation
Part of the certificate validation process includes checking that the certificate was
signed by a Certificate Authority (CA) you trust. In order to do so, RSE daemon
must have access to a certificate that identifies the CA.

When using the gskkyman key database for your SSL connection, the CA
certificate must be added to the key database.

When using an SAF key ring (which is the advised method), you must add the CA
certificate to your security database as a CERTAUTH certificate with the TRUST or
HIGHTRUST attribute, as shown in this sample RACF command:
v RACDCERT CERTAUTH ADD(dsn) HIGHTRUST WITHLABEL(’label’)

Note that most security products already have the certificates for well known CA’s
available in their database with a NOTRUST status. Use the following sample
RACF commands to list the existing CA certificates and mark one as trusted based
on the label assigned to it.
v RACDCERT CERTAUTH LIST

v RACDCERT CERTAUTH ALTER(LABEL(’HighTrust CA’)) HIGHTRUST

Note: The HIGHTRUST status is required if you rely on RACF authenticating the
user based upon the HostIdMappings extension in the certificate. Refer to
“Authentication by your security software” on page 25 for more
information.

Once the CA certificate is added to your security database, it must be connected to
the RSE key ring, as shown in this sample RACF command:

24 IBM Rational Developer for System z: Host Configuration Reference

v RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’HighTrust CA’)
RING(rdzssl.racf))

Refer to Security Server RACF Command Language Reference (SA22-7687) for more
information on the RACDCERT command.

Attention: If you rely on RSE daemon instead of your security software to authenticate a
user you must be cautious not to mix CAs with a TRUST and HIGHTRUST status in your
SAF key ring or gskkyman key database. RSE daemon is not able to differentiate between
the two, so certificates signed by a CA with TRUST status will be valid for user ID
authentication purposes.

(Optional) Query a Certificate Revocation List (CRL)
If desired, you can instruct RSE daemon to check one or more Certificate
Revocation List(s) (CRL) to add extra security to the validation process. This is
done by adding CRL-related environment variables to rsed.envvars. Refer to
"(Optional) ssl.properties, RSE SSL encryption" in the Host Configuration Guide
(SC23-7658).
v GSK_CRL_SECURITY_LEVEL
v GSK_LDAP_SERVER
v GSK_LDAP_PORT
v GSK_LDAP_USER
v GSK_LDAP_PASSWORD

Refer to the Cryptographic Services System Secure Sockets Layer Programming
(SC24-5901) for more information on these and other environment variables used
by z/OS System SSL.

Note: Be careful when specifying other z/OS System SSL environment variables
(GSK_*) in rsed.envvars, as they might change the way RSE daemon
handles SSL connections and certificate authentication.

Authentication by your security software
RACF performs several checks to authenticate a certificate and return the
associated user ID. Note that other security products might do this differently.
Refer to your security product documentation for more information on the
initACEE function used to do the authentication (query mode).
1. RACF checks if the certificate is defined in the DIGTCERT class. If so, RACF

returns the user ID that was associated with this certificate when it was added
to the RACF database.
Certificates are defined to RACF using the RACDCERT command, as in the
following example:
RACDCERT ID(userid) ADD(dsn) TRUST WITHLABEL(’label’)

2. If the certificate is not defined, RACF checks to see if there is a matching
certificate name filter defined in the DIGTNMAP or DIGTCRIT classes. If so, it
returns the user ID associated with the most specific matching filter.

Note: It is advised not to use name filters for certificates used by Developer for
System z, as these filters map all certificates to a single user ID. The
result is that all your Developer for System z users will log on with the
same user ID.

Chapter 2. Security considerations 25

3. If there is no matching name filter, RACF locates the HostIdMappings
certificate extension and extracts the embedded user ID and host name pair. If
found and validated, RACF returns the user ID defined within the
HostIdMappings extension.
The user ID and host name pair is valid if all these conditions are true:
v The CA certificate used to sign this certificate is marked as HIGHTRUST in

the DIGTCERT class.
v The user ID stored in the extension has a valid length (1 to 8 characters).
v The user ID assigned to RSE daemon has (at least) READ authority to the

IRR.HOST.hostname profile in the SERVAUTH class, where hostname is the host
name stored in the extension. This is usually a domain name, such as
CDFMVS08.RALEIGH.IBM.COM.

The definition of the HostIdMappings extension in ASN.1 syntax is:
id-ce-hostIdMappings OBJECT IDENTIFIER::= {1 3 18 0 2 18 1}
HostIdMappings::= SET OF HostIdMapping
HostIdMapping::= SEQUENCE{

hostName IMPLICIT[1] IA5String,
subjectId IMPLICIT[2] IA5String,
proofOfIdPossession IdProof OPTIONAL

}
IdProof::= SEQUENCE{

secret OCTET STRING,
encryptionAlgorithm OBJECT IDENTIFIER

}

Note: A HostIdMappings extension is not honored if the target user ID was
created after the start of the validity period for the certificate containing
the HostIdMappings extension. Therefore, if you are creating user IDs
specifically for certificates with HostIdMappings extensions, make sure
that you create the user IDs before the certificate requests are submitted.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for
more information on X.509 certificates, how they are managed by RACF, and
how to define certificate name filters. Refer to Security Server RACF Command
Language Reference (SA22-7687) for more information on the RACDCERT
command.

Authentication by RSE daemon
Developer for System z can do basic X.509 certificate authentication without
relying on your security product. Authentication done by RSE daemon requires a
user ID and host name to be defined in a certificate extension, and is only
activated if the enable.certificate.mapping directive in rsed.envvars is set to
FALSE.

This function is intended to be used if your security product does not support
authenticating a user based upon an X.509 certificate, or if your certificate would
fail the test(s) done by your security product (for example, the certificate has a
faulty identifier for the HostIdMappings extension and there is no name filter or
definition in DIGTCERT).

The client will query the user for the extension identifier (OID) to use, which is by
default the HostIdMappings OID, {1 3 18 0 2 18 1}.

RSE daemon will extract the user ID and host name from it using the format of the
HostIdMappings extension. This format is described in “Authentication by your
security software” on page 25.

26 IBM Rational Developer for System z: Host Configuration Reference

The user ID and host name pair is valid if all these conditions are true:
v The user ID stored in the extension has a valid length (1 to 8 characters).
v The user ID assigned to RSE daemon has (at least) READ authority to the

IRR.HOST.hostname profile in the SERVAUTH class, where hostname is the host
name stored in the extension. This is usually a domain name, such as
CDFMVS08.RALEIGH.IBM.COM.

Attention: It is up to the security administrator to ensure that all CAs known to RSE
daemon are highly trusted, because RSE daemon cannot check if the one who signed the
client certificate is highly trusted or just trusted. See “Certificate Authority (CA) validation”
on page 24 for more information on accessible CA certificates.

Port Of Entry (POE) checking
Developer for System z supports Port Of Entry (POE) checking, which allows host
access only to trusted TCP/IP addresses. This feature is disabled by default and
requires the definition of the BPX.POE security profile, as shown in the following
sample RACF commands:
v RDEFINE FACILITY BPX.POE UACC(NONE)

v PERMIT BPX.POE CLASS(FACILITY) ACCESS(READ) ID(STCRSE)

v SETROPTS RACLIST(FACILITY) REFRESH

Note:

v RSE must be configured to use POE by uncommenting the
“enable.port.of.entry=true” option in rsed.envvars, as documented in
"Defining extra Java startup parameters with _RSE_JAVAOPTS" in the
Host Configuration Guide (SC23-7658).

v The RSE user ID STCRSE requires UID(0) when this profile is not defined
and POE checking is enabled in rsed.envvars.

v Defining BPX.POE will impact other TC/PIP applications that support POE
checking, such as INETD.

v Security zones (EZB.NETACCESS.** profiles, which are IP address ranges)
should be set up in the SERVAUTH class to use the full strength of POE
checking.

Refer to Communications Server IP Configuration Guide (SC31-8775) for more
information on network access control using POE checking.

CICSTS security
Developer for System z allows, through Application Deployment Manager, CICS
administrators to control which CICS resource definitions are editable by the
developer, their default values, and the display of a CICS resource definition by
means of the CICS Resource Definition (CRD) server. Refer to Chapter 7, “CICSTS
considerations,” on page 97 for more information on the required CICS TS security
definitions.

CRD repository
The CRD server repository VSAM data set holds all the default resource definitions
and must therefore be protected against updates, but developers must be allowed
to read the values stored here.

Chapter 2. Security considerations 27

CICS transactions
Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources. When the transaction is
attached, CICS resource security checking, if enabled, insures that the user ID is
authorized to run the transaction ID.

SSL encrypted communication
The Application Deployment Manager client uses CICS TS Web Services or the
RESTful interface to invoke the CRD server. The usage of SSL for this
communication is controlled by the CICS TS TCPIPSERVICE definition, as
documented in and RACF Security Guide for CICS TS.

SCLM security
The SCLM Developer Toolkit service offers optional security functionality for the
Build, Promote, and Deploy functions.

If security is enabled for a function by the SCLM administrator, SAF calls are made
to verify authority to execute the protected function with the caller’s or a surrogate
user ID.

Refer to SCLM Developer Toolkit Administrator’s Guide (SC23-9801), for more
information on the required SCLM security definitions.

Developer for System z configuration files
There are several Developer for System z configuration files whose directives
impact the security setup. Based upon the information in this chapter, the security
administrator and systems programmer can decide what the settings should be for
the following directives.

JES Job Monitor - FEJJCNFG
v LIMIT_COMMANDS={USERID | LIMITED | NOLIMIT}

Define against which jobs actions can be done (excluding browse and submit).
For more information, see “Actions against jobs - target limitations” on page 20.

v LIMIT_VIEW={USERID | NOLIMIT}

Define which spool files can be browsed. For more information, see “Access to
spool files” on page 22.

v APPLID={FEKAPPL | *}

Application ID used for PassTicket creation/validation. For more information,
see “Using PassTickets” on page 18.

Note: Details on these and other FEJJCNFG directives are available in "FEJJCNFG,
JES Job Monitor configuration file" in the Host Configuration Guide
(SC23-7658).

RSE - rsed.envvars
v (_RSE_JAVAOPTS) -DDENY_PASSWORD_SAVE={true | false}

Deny users to save their host password on the client. For more information, see
"Defining extra Java startup parameters with _RSE_JAVAOPTS" in the Host
Configuration Guide (SC23-7658).

v (_RSE_JAVAOPTS) -DDSTORE_IDLE_SHUTDOWN_TIMEOUT=value

28 IBM Rational Developer for System z: Host Configuration Reference

Timer to disconnect idle clients. For more information, see "Defining extra Java
startup parameters with _RSE_JAVAOPTS" in the Host Configuration Guide
(SC23-7658).

v (_RSE_JAVAOPTS) -DAPPLID={FEKAPPL | *}

Application ID used for PassTicket creation/validation. For more information,
see “Using PassTickets” on page 18.

v (_RSE_JAVAOPTS) -Denable.port.of.entry={true | false}

Enable Port Of Entry checking. For more information, see “Port Of Entry (POE)
checking” on page 27.

v (_RSE_JAVAOPTS) -Denable.certificate.mapping={true | false}

Use your security product to authenticate users with an X.509 certificate. For
more information, see “Client authentication using X.509 certificates” on page 24.

v (_RSE_JAVAOPTS) -Ddaemon.log={/var/rdz/logs | *}

Location of the audit log files. For more information, see “Audit logging” on
page 18.

v (_RSE_JAVAOPTS) -Daudit.log.mode={RW.R. | * }

File access permission mask of the audit log files. For more information, see
"Defining extra Java startup parameters with _RSE_JAVAOPTS" in the Host
Configuration Guide (SC23-7658).

Note: Details on these and other rsed.envvars directives are available in
"rsed.envvars, RSE configuration file" in the Host Configuration Guide
(SC23-7658).

RSE - ssl.properties
v daemon_keydb_file={SAF key ring name | gskkyman key database name}

Location of the RSE daemon certificate. For more information, see “SSL
encrypted communication” on page 23.

v daemon_key_label=certificate label

Name of the RSE daemon certificate. For more information, see “SSL encrypted
communication” on page 23.

v server_keystore_file={SAF key ring name | Java key store name}

Location of the RSE server certificate. For more information, see “SSL encrypted
communication” on page 23.

v server_keystore_label=certificate label

Name of the RSE server certificate. For more information, see “SSL encrypted
communication” on page 23.

v server_keystore_type={JKS | JCERACFKS | JCECCARACFKS}

Type of key store used (Java key store or SAF key ring). For more information,
see “SSL encrypted communication” on page 23.

Note: Details on these and other ssl.properties directives are available in
"(Optional) ssl.properties, RSE SSL encryption" in the Host Configuration
Guide (SC23-7658).

Security definitions
Customize and submit sample member FEKRACF, which has sample RACF and
z/OS UNIX commands to create the basic security definitions for Developer for
System z.

Chapter 2. Security considerations 29

|

|
|
|

FEKRACF is located in FEK.#CUST.JCL, unless you specified a different location when
you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See "Customization
setup" in the Host Configuration Guide (SC23-7658) for more details.

Refer to the RACF Command Language Reference (SA22–7687), for more information
on RACF commands.

Note:

v For those sites that use CA ACF2TM for z/OS, please refer to your product
page on the CA support site (https://support.ca.com) and check for the
related Developer for System z Knowledge Document, TEC492389. This
Knowledge Document has details on the security commands necessary to
properly configure Developer for System z.

v For those sites that use CA Top Secret® for z/OS, please refer to your
product page on the CA support site (https://support.ca.com) and check
for the related Developer for System z Knowledge Document, TEC492091.
This Knowledge Document has details on the security commands
necessary to properly configure Developer for System z.

The following sections describe the required steps, optional configuration and
possible alternatives.

Requirements and checklist
To complete the security setup, the security administrator needs to know the
values listed in Table 6. These values were defined during previous steps of the
installation and customization of Developer for System z.

Table 6. Security setup variables

Description

v Default value

v Where to find the answer Value

Developer for System z
product high-level qualifier

v FEK

v SMP/E installation

Developer for System z
customization high-level
qualifier

v FEK.#CUST

v FEK.SFEKSAMP(FEKSETUP),
as described in
"Customization setup" in
the Host Configuration
Guide (SC23-7658).

JES Job Monitor started task
name

v JMON

v FEK.#CUST.PROCLIB(JMON),
as described in "PROCLIB
changes" in the Host
Configuration Guide
(SC23-7658).

RSE daemon started task
name

v RSED

v FEK.#CUST.PROCLIB(RSED),
as described in "PROCLIB
changes" in the Host
Configuration Guide
(SC23-7658).

30 IBM Rational Developer for System z: Host Configuration Reference

Table 6. Security setup variables (continued)

Description

v Default value

v Where to find the answer Value

Lock daemon started task
name

v LOCKD

v FEK.#CUST.PROCLIB(LOCKD),
as described in "PROCLIB
changes" in the Host
Configuration Guide
(SC23-7658).

Application ID v FEKAPPL

v /etc/rdz/rsed.envvars, as
described in "Defining
extra Java startup
parameters with
_RSE_JAVAOPTS" in the
Host Configuration Guide
(SC23-7658)

The following list is an overview of the required actions to complete the basic
security setup of Developer for System z. As documented in the sections below,
different methods can be used to fulfill these requirements, depending on the
desired security level. Refer to the previous sections for information on the security
setup of optional Developer for System z services.
v “Activate security settings and classes”
v “Define an OMVS segment for Developer for System z users” on page 32
v “Define data set profiles” on page 32
v “Define the Developer for System z started tasks” on page 35
v “Define JES command security” on page 36
v “Define RSE as a secure z/OS UNIX server” on page 38
v “Define MVS program controlled libraries for RSE” on page 38
v “Define application protection for RSE” on page 39
v “Define PassTicket support for RSE” on page 39
v “Define z/OS UNIX program controlled files for RSE” on page 40
v “Verify security settings” on page 40

Activate security settings and classes
Developer for System z utilizes a variety of security mechanisms to ensure a secure
and controlled host environment for the client. In order to do so, several classes
and security settings must be active, as shown with the following sample RACF
commands:
v Display current settings

– SETROPTS LIST

v Activate facility class for z/OS UNIX and digital certificate profiles
– SETROPTS GENERIC(FACILITY)
– SETROPTS CLASSACT(FACILITY) RACLIST(FACILITY)

v Activate started task definitions
– SETROPTS GENERIC(STARTED)
– RDEFINE STARTED ** STDATA(USER(=MEMBER) GROUP(STCGROUP) TRACE(YES))
– SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

Chapter 2. Security considerations 31

v Activate console security for JES Job Monitor
– SETROPTS GENERIC(CONSOLE)
– SETROPTS CLASSACT(CONSOLE) RACLIST(CONSOLE)

v Activate operator command protection for JES Job Monitor
– SETROPTS GENERIC(OPERCMDS)
– SETROPTS CLASSACT(OPERCMDS) RACLIST(OPERCMDS)

v Activate application protection for RSE
– SETROPTS GENERIC(APPL)
– SETROPTS CLASSACT(APPL) RACLIST(APPL)

v Activate secured signon using PassTickets for RSE
– SETROPTS GENERIC(PTKTDATA)
– SETROPTS CLASSACT(PTKTDATA) RACLIST(PTKTDATA)

v Activate program control to ensure that only trusted code can be loaded by RSE
– RDEFINE PROGRAM ** ADDMEM(’SYS1.CMDLIB’//NOPADCHK) UACC(READ)
– SETROPTS WHEN(PROGRAM)

Note: Do not create the ** profile if you already have a * profile in the
PROGRAM class. It obscures and complicates the search path used by your
security software. In this case, you must merge the existing * and the
new ** definitions. IBM recommends using the ** profile, as
documented in Security Server RACF Security Administrator's Guide
(SA22-7683).

Attention: Some products, such as FTP, require being program controlled if "WHEN
PROGRAM" is active. Test this before activating it on a production system.

v (Optional) Activate X.509 HostIdMappings and extended Port Of Entry (POE)
support
– SETROPTS GENERIC(SERVAUTH)
– SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)

Define an OMVS segment for Developer for System z users
A RACF OMVS segment (or equivalent) that specifies a valid non-zero z/OS UNIX
user ID (UID), home directory, and shell command must be defined for each user
of Developer for System z. Their default group also requires an OMVS segment
with a group ID.

Replace in the following sample RACF commands the #userid, #user-identifier,
#group-name and #group-identifier placeholders with actual values:
v ALTUSER #userid

OMVS(UID(#user-identifier) HOME(/u/#userid) PROGRAM(/bin/sh) NOASSIZEMAX)
v ALTGROUP #group-name OMVS(GID(#group-identifier))

Although it is advised not to do so, you can use the shared OMVS segment
defined in the BPX.DEFAULT.USER profile of the FACILITY class to fulfill the OMVS
segment requirement for Developer for System z.

Define data set profiles
READ access for users and ALTER for system programmers suffices for most
Developer for System z data sets. Replace the #sysprog placeholder with valid user
IDs or RACF group names. Also ask the system programmer who installed and
configured the product for the correct data set names. FEK is the default high-level
qualifier used during installation and FEK.#CUST is the default high-level qualifier
for data sets created during the customization process.

32 IBM Rational Developer for System z: Host Configuration Reference

v ADDGROUP (FEK) OWNER(IBMUSER) SUPGROUP(SYS1)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - HLQ STUB’)

v ADDSD ’FEK.*.**’ UACC(READ)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v PERMIT ’FEK.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
v SETROPTS GENERIC(DATASET) REFRESH

Note:

v You are strongly advised to protect FEK.SFEKAUTH and FEK.SFEKLPA against
updates since these data sets are APF authorized.

v The sample commands in this publication and in the FEKRACF job assume
that EGN (Enhanced Generic Naming) is active. This allows the usage of
the ** qualifier to represent any number of qualifiers in the DATASET class.
Substitute ** with * if EGN is not active on your system. Refer to Security
Server RACF Security Administrator's Guide (SA22-7683) for more
information on EGN.

Some of the optional Developer for System z components require additional
security data set profiles. Replace the #sysprog, #ram-developer and #cicsadmin
placeholders with valid user IDs or RACF group names:
v If SCLM Developer Toolkit’s long/short name translation is used, then users

require UPDATE access to the mapping VSAM, FEK.#CUST.LSTRANS.FILE.
– ADDSD ’FEK.#CUST.LSTRANS.*.**’ UACC(UPDATE)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - SCLMDT’)
– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– SETROPTS GENERIC(DATASET) REFRESH

v CARMA RAM (Repository Access Manager) developers require UPDATE access to
the CARMA VSAMs, FEK.#CUST.CRA*.
– ADDSD ’FEK.#CUST.CRA*.**’ UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - CARMA’)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)
– SETROPTS GENERIC(DATASET) REFRESH

v If Application Deployment Manager’s CRD server (CICS Resource Definition) is
used, then CICS administrators require UPDATE access to the CRD repository
VSAM.
– ADDSD ’FEK.#CUST.ADNREP*.**’ UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#cicsadmin)
– SETROPTS GENERIC(DATASET) REFRESH

v If Application Deployment Manager’s manifest repository is defined, then all
CICS Transaction Server users require UPDATE access to the manifest repository
VSAM.
– ADDSD ’FEK.#CUST.ADNMAN*.**’ UACC(UPDATE)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– SETROPTS GENERIC(DATASET) REFRESH

Use the following sample RACF commands for a more secure setup where READ
access is also controlled.
v uacc(none) data set protection

– ADDGROUP (FEK)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - HLQ STUB’)
OWNER(IBMUSER) SUPGROUP(SYS1)"

Chapter 2. Security considerations 33

– ADDSD ’FEK.*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKAUTH’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKLOAD’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.SFEKPROC’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.PARMLIB’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.CNTL’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

– ADDSD ’FEK.#CUST.LSTRANS.*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - SCLMDT’)

– ADDSD ’FEK.#CUST.CRA*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - CARMA’)

– ADDSD ’FEK.#CUST.ADNREP*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)

– ADDSD ’FEK.#CUST.ADNMAN*.**’ UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z - ADN’)

v permit system programmer to manage all libraries
– PERMIT ’FEK.*.** CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKAUTH CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKLOAD CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.SFEKPROC CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.PARMLIB CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CNTL CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(ALTER) ID(#sysprog)

v permit clients to access the load and exec libraries
– PERMIT ’FEK.SFEKAUTH’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.SFEKLOAD’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.SFEKPROC’ CLASS(DATASET) ACCESS(READ) ID(*)
– PERMIT ’FEK.#CUST.CNTL’ CLASS(DATASET) ACCESS(READ) ID(*)

Note: No permits are needed for FEK.SFEKLPA, as all code that resides in LPA is
accessible by everyone.

v permit JES Job Monitor to access the load & parameter library
– PERMIT ’FEK.SFEKAUTH’ CLASS(DATASET) ACCESS(READ) ID(STCJMON)
– PERMIT ’FEK.#CUST.PARMLIB’ CLASS(DATASET) ACCESS(READ) ID(STCJMON)

v (optional) permit clients to update the long/short name translation VSAM for
SCLMDT
– PERMIT ’FEK.#CUST.LSTRANS.*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(*)

v (optional) permit RAM developers to update the CARMA VSAMs for CARMA
– PERMIT ’FEK.#CUST.CRA*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#ram-developer)

v (optional) permit CICS users to read the CRD repository VSAM for Application
Deployment Manager
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(READ) ID(*)

v (optional) permit CICS administrators to update the CRD repository VSAM for
Application Deployment Manager
– PERMIT ’FEK.#CUST.ADNREP*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(#cicsadmin)

34 IBM Rational Developer for System z: Host Configuration Reference

v (optional) permit CICS users to update the manifest repository VSAM for
Application Deployment Manager
– PERMIT ’FEK.#CUST.ADNMAN*.**’ CLASS(DATASET) ACCESS(UPDATE) ID(*)

v (optional) permit CICS TS server to access the load library for bidi and
Application Deployment Manager
– PERMIT ’FEK.SFEKLOAD’ CLASS(DATASET) ACCESS(READ) ID(#cicsts)

v (optional) permit DB2® server to access the exec library for DB2 stored
procedure builder
– PERMIT ’FEK.SFEKPROC’ CLASS(DATASET) ACCESS(READ) ID(#db2)

v activate security profiles
– SETROPTS GENERIC(DATASET) REFRESH

When controlling READ access to system data sets, you must provide Developer for
System z servers and users permission to READ the following data sets:
v CEE.SCEERUN

v CEE.SCEERUN2

v CBC.SCLBDLL

v ISP.SISPLOAD

v ISP.SISPLPA

v SYS1.LINKLIB

v SYS1.SIEALNKE

v REXX.V1R4M0.SEAGLPA

Note: When you use the Alternate Library for REXX product package, the default
REXX runtime library name is REXX.*.SEAGALT. instead of REXX.*.SEAGLPA, as
used in the sample above.

Define the Developer for System z started tasks
The following sample RACF commands create the JMON, RSED, and LOCKD started
tasks, with protected user IDs (STCJMON, STCRSE, and STCLOCK respectively) and
group STCGROUP assigned to them. Replace the #group-id and #user-id-*
placeholders with valid OMVS IDs.
v ADDGROUP STCGROUP OMVS(GID(#group-id))

DATA(’GROUP WITH OMVS SEGMENT FOR STARTED TASKS’)
v ADDUSER STCJMON DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - JES JOBMONITOR’)

OMVS(UID(#user-id-jmon) HOME(/tmp) PROGRAM(/bin/sh) NOASSIZEMAX
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v ADDUSER STCRSE DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - RSE DAEMON’)
OMVS(UID(#user-id-rse) HOME(/tmp) PROGRAM(/bin/sh) ASSIZEMAX(2147483647)
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v ADDUSER STCLOCK DFLTGROUP(STCGROUP) NOPASSWORD NAME(’RDZ - LOCK DAEMON’)
OMVS(UID(#user-id-lock) HOME(/tmp) PROGRAM(/bin/sh) NOASSIZEMAX)
NOTHREADSMAX)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v RDEFINE STARTED JMON.* DATA(’RDZ - JES JOBMONITOR’)
STDATA(USER(STCJMON) GROUP(STCGROUP) TRUSTED(NO))

v RDEFINE STARTED RSED.* DATA(’RDZ - RSE DAEMON’)
STDATA(USER(STCRSE) GROUP(STCGROUP) TRUSTED(NO))

v RDEFINE STARTED LOCKD.* DATA(’RDZ - LOCK DAEMON’)
STDATA(USER(STCLOCK) GROUP(STCGROUP) TRUSTED(NO))

v SETROPTS RACLIST(STARTED) REFRESH

Note:

Chapter 2. Security considerations 35

v Ensure that the started tasks user IDs are protected by specifying the
NOPASSWORD keyword.

v Ensure that RSE server has a unique OMVS uid due to the z/OS UNIX
related privileges granted to this uid.

v RSE daemon requires a large address space size (2GB) for proper
operation. You should set this value in the ASSIZEMAX variable of the
OMVS segment for user ID STCRSE. This to ensure that RSE daemon will
get the required region size, regardless of changes to MAXASSIZE in
SYS1.PARMLIB(BPXPRMxx).

v RSE also requires a large number of threads for proper operation. You can
set the limit in the THREADSMAX variable of the OMVS segment for user ID
STCRSE. This ensures that RSE will get the required thread limit, regardless
of changes to MAXTHREADS or MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx).
Refer to Chapter 5, “Tuning considerations,” on page 59 to determine the
correct value for the thread limit.

v User ID STCJMON is another good candidate for setting THREADSMAX in the
OMVS segment, because JES Job Monitor uses a thread per client
connection.

You might want to consider making the STCRSE user ID restricted. Users with the
RESTRICTED attribute cannot access protected (MVS) resources they are not
specifically authorized to access.
ALTUSER STCRSE RESTRICTED

To ensure that restricted users do not gain access to z/OS UNIX file system
resources through the “other” permission bits, you must define the
RESTRICTED.FILESYS.ACCESS profile in the UNIXPRIV class with UACC(NONE). Refer to
Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on restricting user IDs.

Attention: If you use restricted user IDs, you must explicitly add the permission to access
a resource with the TSO PERMIT or the z/OS UNIX setfacl commands. This includes
resources where the Developer for System z documentation uses UACC (such as the **
profile in the PROGRAM class) or where it relies on common z/OS UNIX conventions (such as
everyone having read and execute permission for Java libraries). Test this before activating
it on a production system.

Define JES command security
JES Job Monitor issues all JES operator commands requested by a user through an
extended MCS (EMCS) console, whose name is controlled with the CONSOLE_NAME
directive, as documented in "FEJJCNFG, JES Job Monitor configuration file" in the
Host Configuration Guide (SC23-7658).

The following sample RACF commands give Developer for System z users
conditional access to a limited set of JES commands (Hold, Release, Cancel, and
Purge). Users only have execution permission if they issue the commands through
JES Job monitor. Replace the #console placeholder with the actual console name.
v RDEFINE OPERCMDS MVS.MCSOPER.#console UACC(READ)

DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)
v RDEFINE OPERCMDS JES%.** UACC(NONE)
v PERMIT JES%.** CLASS(OPERCMDS) ACCESS(UPDATE) WHEN(CONSOLE(JMON)) ID(*)
v SETROPTS RACLIST(OPERCMDS) REFRESH

Note:

36 IBM Rational Developer for System z: Host Configuration Reference

v Usage of the console is permitted if no MVS.MCSOPER.#console profile is
defined

v The CONSOLE class must be active for WHEN(CONSOLE(JMON)) to work, but
there is no actual profile check in the CONSOLE class for EMCS consoles.

v Do not replace JMON with the actual console name in the
WHEN(CONSOLE(JMON)) clause. The JMON keyword represents the
point-of-entry application, not the console name.

Attention: Defining JES commands with universal access NONE in your security software
might impact other applications and operations. Test this before activating it on a
production system.

Table 7 and Table 8 show the operator commands issued for JES2 and JES3, and the
discrete security profiles that can be used to protect them.

Table 7. JES2 Job Monitor operator commands

Action Command OPERCMDS profile Required access

Hold $Hx(jobid)

with x = {J, S or T}

jesname.MODIFYHOLD.BAT
jesname.MODIFYHOLD.STC
jesname.MODIFYHOLD.TSU

UPDATE

Release $Ax(jobid)

with x = {J, S or T}

jesname.MODIFYRELEASE.BAT
jesname.MODIFYRELEASE.STC
jesname.MODIFYRELEASE.TSU

UPDATE

Cancel $Cx(jobid)

with x = {J, S or T}

jesname.CANCEL.BAT
jesname.CANCEL.STC
jesname.CANCEL.TSU

UPDATE

Purge $Cx(jobid),P

with x = {J, S or T}

jesname.CANCEL.BAT
jesname.CANCEL.STC
jesname.CANCEL.TSU

UPDATE

Table 8. JES3 Job Monitor operator commands

Action Command OPERCMDS profile Required access

Hold *F,J=jobid,H jesname.MODIFY.JOB UPDATE

Release *F,J=jobid,R jesname.MODIFY.JOB UPDATE

Cancel *F,J=jobid,C jesname.MODIFY.JOB UPDATE

Purge *F,J=jobid,C jesname.MODIFY.JOB UPDATE

Note:

v The Hold, Release, Cancel, and Purge JES operator commands, and the
Show JCL command, can only be executed against spool files owned by
the client user ID, unless LIMIT_COMMANDS= with value LIMITED or NOLIMIT
is specified in the JES Job Monitor configuration file. Refer to “Actions
against jobs - target limitations” on page 20 for more information on this.

v Users can browse any spool file, unless LIMIT_VIEW=USERID is defined in
the JES Job Monitor configuration file. Refer to “Access to spool files” on
page 22 for more information on this.

v Without being authorized for these operator commands, users will still be
able to submit jobs and read job output through JES Job Monitor, if they
have sufficient authority to possible profiles that protect these resources
(such as those in the JESINPUT, JESJOBS and JESSPOOL classes).

Chapter 2. Security considerations 37

Assuming the identity of the JES Job Monitor server by creating a JMON console
from a TSO session is prevented by your security software. Even though the
console can be created, the point of entry is different (JES Job Monitor versus TSO).
JES commands issued from this console will fail the security check, if your security
is set up as documented in this publication and the user does not have authority to
the JES commands through other means.

Define RSE as a secure z/OS UNIX server
RSE requires UPDATE access to the BPX.SERVER profile to create/delete the security
environment for the client’s thread. If this profile is not defined, UID(0) is required
for RSE.
v RDEFINE FACILITY BPX.SERVER UACC(NONE)

v PERMIT BPX.SERVER CLASS(FACILITY) ACCESS(UPDATE) ID(STCRSE)

v SETROPTS RACLIST(FACILITY) REFRESH

Attention: Defining the BPX.SERVER profile makes z/OS UNIX as a whole switch from
UNIX level security to z/OS UNIX level security, which is more secure. This might impact
other z/OS UNIX applications and operations. Test this before activating it on a production
system. Refer to UNIX System Services Planning (GA22-7800) for more information on the
different security levels.

Define MVS program controlled libraries for RSE
Servers with authority to BPX.SERVER must run in a clean, program-controlled
environment. This implies that all programs called by RSE must also be program
controlled. For MVS load libraries, program control is managed by your security
software.

RSE uses system (SYS1.LINKLIB), Language Environment®’s runtime (CEE.SCEERUN*)
and ISPF’s TSO/ISPF Client Gateway (ISP.SISPLOAD) load library.
v RALTER PROGRAM ** UACC(READ) ADDMEM(’SYS1.LINKLIB’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’CEE.SCEERUN’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’CEE.SCEERUN2’//NOPADCHK)

v RALTER PROGRAM ** UACC(READ) ADDMEM(’ISP.SISPLOAD’//NOPADCHK)

v SETROPTS WHEN(PROGRAM) REFRESH

Note: Do not use the ** profile if you already have a * profile in the PROGRAM class.
It obscures and complicates the search path used by your security software.
In this case, you must merge the existing * and the new ** definitions. IBM
recommends using the ** profile, as documented in Security Server RACF
Security Administrator's Guide (SA22-7683).

The following additional (prerequisite) libraries must be made program controlled
to support the use of optional services. This list does not include data sets that are
specific to a product that Developer for System z interacts with, such as IBM
Debug Tool.
v Alternate REXX runtime library (for SCLM Developer Toolkit)

– REXX.*.SEAGALT

v System load library (for SSL encryption)
– SYS1.SIEALNKE

v File Manager listener load library (for File Manager integration)
– FMN.SFMNMODA

38 IBM Rational Developer for System z: Host Configuration Reference

Note: Libraries that are designed for LPA placement also require program control
authorizations if they are accessed through LINKLIST or STEPLIB. This
publication documents the usage of the following LPA libraries:
v ISPF (for TSO/ISPF Client Gateway)

– ISP.SISPLPA

v REXX runtime library (for SCLM Developer Toolkit)
– REXX.*.SEAGLPA

v Developer for System z (for CARMA)
– FEK.SFEKLPA

Define application protection for RSE
During client logon, RSE daemon verifies that a user is allowed to use the
application.
v RDEFINE APPL FEKAPPL UACC(READ) DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)
v SETROPTS RACLIST(APPL) REFRESH

Note:

v As described in more detail in “Define PassTicket support for RSE,” RSE
supports the usage of an application ID other than FEKAPPL. The APPL class
definition must match the actual application ID used by RSE.

v The client connection request will succeed if the application ID is not
defined in the APPL class.

v The client connection request will only fail if the application ID is defined
and the user lacks READ access to the profile.

Define PassTicket support for RSE
The client’s password (or other means of identification, such as an X.509 certificate)
is only used to verify his identity upon connection. Afterwards, PassTickets are
used to maintain thread security.

PassTickets are system-generated passwords with a lifespan of about 10 minutes.
The generated PassTickets are based upon a secret key. This key is a 64 bit number
(16 hex characters). Replace in the sample RACF commands below the key16
placeholder with a user-supplied 16 character hex string (characters 0-9 and A-F).
v RDEFINE PTKTDATA FEKAPPL UACC(NONE) SSIGNON(KEYMASKED(key16))

APPLDATA(’NO REPLAY PROTECTION – DO NOT CHANGE’)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v RDEFINE PTKTDATA IRRPTAUTH.FEKAPPL.* UACC(NONE)
DATA(’RATIONAL DEVELOPER FOR SYSTEM Z’)

v PERMIT IRRPTAUTH.FEKAPPL.* CLASS(PTKTDATA) ACCESS(UPDATE) ID(STCRSE)
v SETROPTS RACLIST(PTKTDATA) REFRESH

RSE supports the usage of an application ID other than FEKAPPL. Uncomment and
customize the "APPLID=FEKAPPL" option in rsed.envvars to activate this, as
documented in "Defining extra Java startup parameters with _RSE_JAVAOPTS" in
the Host Configuration Guide (SC23-7658). The PTKTDATA class definitions must match
the actual application ID used by RSE.

You should not use OMVSAPPL as application ID, because it will open the secret key
to most z/OS UNIX applications. You should also not use the default MVS
application ID, which is MVS followed by the system’s SMF ID, because this will
open the secret key to most MVS applications (including user batch jobs).

Chapter 2. Security considerations 39

|
|

|
|

Note:

v If the PTKTDATA class is already defined, verify that it is defined as a
generic class before creating the profiles listed above. The support for
generic characters in the PTKTDATA class is new since z/OS release 1.7,
with the introduction of a Java interface to PassTickets.

v Substitute the wildcard (*) in the IRRPTAUTH.FEKAPPL.* definition with a
valid user ID mask to limit the user IDs for which RSE can generate a
PassTicket.

v Depending on your RACF settings, the user defining a profile may also be
on the access list of the profile. It is advised that you remove this
permission for the PTKTDATA profiles.

v JES Job Monitor and RSE must have the same application ID to allow JES
Job Monitor to evaluate the PassTickets presented by RSE.

v If the system has a cryptographic product installed and available, you can
encrypt the secured signon application key for added protection. In order
to do so, use the KEYENCRYPTED keyword instead of KEYMASKED. Refer to
Security Server RACF Security Administrator's Guide (SA22-7683) for more
information on this.

Attention: The client connection request will fail if PassTickets are not set up correctly.

Define z/OS UNIX program controlled files for RSE
Servers with authority to BPX.SERVER must run in a clean, program-controlled
environment. This implies that all programs called by RSE must also be program
controlled. For z/OS UNIX files, program control is managed by the extattr
command. To execute this command, you need READ access to
BPX.FILEATTR.PROGCTL in the FACILITY class, or be UID(0).

RSE server uses RACF’s Java shared library (/usr/lib/libIRRRacf.so).
v extattr +p /usr/lib/libIRRRacf.so

Note:

v Since z/OS 1.9, /usr/lib/libIRRRacf.so is installed program controlled
during SMP/E RACF install.

v Since z/OS 1.10, /usr/lib/libIRRRacf.so is part of SAF, which ships with
base z/OS, so it is available also to non-RACF customers.

v The setup might be different if you use a security product other than
RACF. Consult the documentation of your security product for more
information.

v The SMP/E install of Developer for System z sets the program control bit
for internal RSE programs.

v Use the ls -Eog z/OS UNIX command to display the current status of the
program control bit (the file is program controlled if the letter p shows in
the second string).
$ ls -Eog /usr/lib/libIRRRacf.so
-rwxr-xr-x aps- 2 69632 Oct 5 2007 /usr/lib/libIRRRacf.so

Verify security settings
Use the following sample commands to display the results of your security-related
customizations.
v Security settings and classes

40 IBM Rational Developer for System z: Host Configuration Reference

– SETROPTS LIST

v OMVS segment for users
– LISTUSER #userid NORACF OMVS

– LISTGRP #group-name NORACF OMVS

v Data set profiles
– LISTGRP FEK

– LISTDSD PREFIX(FEK) ALL

v Started tasks
– LISTGRP STCGROUP OMVS

– LISTUSER STCJMON OMVS

– LISTUSER STCRSE OMVS

– LISTUSER STCLOCK OMVS

– RLIST STARTED JMON.* ALL STDATA

– RLIST STARTED RSED.* ALL STDATA

– RLIST STARTED LOCKD.* ALL STDATA

v JES command security
– RLIST CONSOLE JMON ALL

– RLIST OPERCMDS MVS.MCSOPER.JMON ALL

– RLIST OPERCMDS JES%.** ALL

v RSE as a secure z/OS UNIX server
– RLIST FACILITY BPX.SERVER ALL

v MVS program controlled libraries for RSE
– RLIST PROGRAM ** ALL

v Application protection for RSE
– RLIST APPL FEKAPPL ALL

v PassTicket support for RSE
– RLIST PTKTDATA FEKAPPL ALL SSIGNON

– RLIST PTKTDATA IRRPTAUTH.FEKAPPL.* ALL

v z/OS UNIX program controlled files for RSE
– ls -E /usr/lib/libIRRRacf.so

Chapter 2. Security considerations 41

42 IBM Rational Developer for System z: Host Configuration Reference

Chapter 3. TCP/IP considerations

Developer for System z uses TCP/IP to provide mainframe access to users on a
non-mainframe workstation. It also uses TCP/IP for communication between
various components and other products.

The following topics are covered in this chapter:
v “TCP/IP ports”
v “Multi-stack (CINET)” on page 45
v “Distributed Dynamic VIPA” on page 46

TCP/IP ports

Figure 8 shows the TCP/IP ports that can be used by Developer for System z. The
arrows show which party does the bind (arrowhead side) and which one connects.

External communication
Define the following ports to your firewall protecting the z/OS host, as they are
used for client-host communication (using the tcp protocol):
v RSE daemon for client-host communication setup, default port 4035.

Communication on this port can be encrypted using SSL.
v RSE server for client-host communication. By default, any available port is used,

but this can be limited to a specified range with the _RSE_PORTRANGE definition in
rsed.envvars. Communication on this port can be encrypted using SSL.

Figure 8. TCP/IP ports

© Copyright IBM Corp. 2010 43

|

|

|
|
|

|

|

|

|

v (optional) Either INETD service for remote (host-based) actions in z/OS UNIX
subprojects:
– REXEC (z/OS UNIX version), default port 512.
– SSH (z/OS UNIX version), default port 22. Communication on this port is

encrypted using SSL.
v (optional) TN3270 Telnet service for the Host Connect Emulator, default port 23.

Communication can be encrypted using SSL (default port 992). The default port
assigned to the TN3270 Telnet service depends on whether or not the user
chooses to use encryption.

v (optional) Either or both CICSTS application interfaces for Application
Deployment Manager:
– RESTful interface, default port 5130.
– Web Services interface, default port 5129. Communication on this port can be

encrypted using SSL.

Note: During a remote debug session for Cobol, PL/I or Assembler, IBM Debug
Tool for z/OS is invoked. This product communicates directly with the
client. This communication is initiated on the host, and connects to port 8001
on the client.

Internal communication
Several Developer for System z host services run in separate threads or address
spaces and are using TCP/IP sockets as communication mechanism. All these
services use RSE for communicating with the client, making their data stream
confined to the host only. For some services any available port will be used, for
others the system programmer can choose the port or port range that will be used:
v JES Job Monitor for JES-related services, default port 6715. The port can be set in

the FEJJCNFG configuration member.
v Lock daemon for data set lock-related services, default port 4036. The port can

be set in the rsed.envvars configuration member.
v (optional) File Manager Integration for interacting with IBM File Manager,

default port 1960. The port is set during File Manger customization and is
repeated in the FMIEXT.properties configuration member.

v (optional) CARMA communication, default port range 5227-5326 (100 ports).
The port range can be set in the CRASRV.properties configuration file.

v (optional) The APPC version of the TSO Commands service uses any socket
available to communicate with the lock manager (which enqueues MVS data sets
for clients). You cannot set a specific port range to be used.

CARMA and TCP/IP ports
CARMA (Common Access Repository Manager) is used to access a host based
Software Configuration Manager (SCM), for example CA Endevor® SCM. In most
cases, like for RSE daemon, a server binds to a port and listens for connection
requests. CARMA however uses a different approach, as the CARMA server is not
active yet when the client initiates the connection request.

When the client sends a connection request, the CARMA miner, which is active as
a user thread in a RSE thread pool, will find a free port in the range specified in
the CRASRV.properties configuration file and binds to it. The miner then starts the
CARMA server and passes the port number, so that the server knows to which
port to connect. Once the server is connected, the client can send requests to the
server and receive the results.

44 IBM Rational Developer for System z: Host Configuration Reference

So from a TCP/IP perspective, RSE (by way of the CARMA miner) is the server
that binds to the port, and the CARMA server is the client connecting to it.

If you use the PORT or PORTRANGE statement in PROFILE.TCPIP to reserve the port
range used by CARMA, note that the CARMA miner is active in a RSE thread
pool. The jobname of the RSE thread pool is RSEDx, where RSED is the name of the
RSE started task and x is a random single digit number, so wildcards are required
in the definition.
PORTRange 5227 100 RSED* ; Developer for System z - CARMA

Multi-stack (CINET)
z/OS Communication Server allows you to have multiple TCP/IP stacks
concurrently active on a single system. This is referred to as a CINET setup.

If Developer for System z is not active on the default stack, then selected
Developer for System z functions might fail. Using stack affinity is a sure way to
resolve this. Stack affinity instructs Developer for System z to use only a specific
TCP/IP stack (instead of every available TCP/IP stack, which is the default for the
started tasks).

Stack affinity is set for the Developer for System z started tasks by uncommenting
and customizing the _BPXK_SETIBMOPT_TRANSPORT directive in the FEJJCNFG and
rsed.envvars configuration files. Refer to the related sections in "Chapter 2 Basic
Customization" of the Host Configuration Guide (SC23-7658) for more details on
customizing these configuration files.

CARMA and stack affinity
CARMA (Common Access Repository Manager) is used to access a host-based
Software Configuration Manager (SCM), for example CA Endevor® SCM. To do so,
CARMA starts a user-specific server, which needs additional configuration to
enforce stack affinity.

Similar to the Developer for System z started tasks, stack affinity for a CARMA
server is set with the _BPXK_SETIBMOPT_TRANSPORT variable, which must be passed
on to LE (Language Environment). This can be done by adjusting the startup
command in the active crastart*.conf or CRASUB* configuration file.

Note:

v The exact name of the configuration file that holds the startup command
depends on various choices made by the systems programmer who
configured CARMA. Refer to "Chapter 3. (Optional) Common Access
Repository Manager (CARMA)" in the Host Configuration Guide
(SC23-7658) for more information on this.

v _BPXK_SETIBMOPT_TRANSPORT specifies the name of the TCP/IP stack to be
used, as defined in the TCPIPJOBNAME statement in the related
TCPIP.DATA.

v Coding a SYSTCPD DD statement does not set the requested stack
affinity.

crastart*.conf
Replace the following part:
... PARM(&CRAPRM1. &CRAPRM2.)

Chapter 3. TCP/IP considerations 45

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|

with this (where TCPIP represents the desired TCP/IP stack):
... PARM(ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP") / &CRAPRM1. &CRAPRM2.)

Note: CRASTART does not support line continuations, but there is no limit on the
accepted line length.

CRASUB*
Replace the following part:
... PARM(&PORT &TIMEOUT)

with this (where TCPIP represents the desired TCP/IP stack):
... PARM(ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIP") / &PORT &TIMEOUT)

Note: Job submission limits line length to 80 characters. You can break a longer
line at a blank () and use a plus (+) sign at the end of the first line to
concatenate 2 lines.

Distributed Dynamic VIPA
Distributed DVIPA (Dynamic Virtual IP Addressing) allows you to concurrently
run identical Developer for System z setups on different systems in your sysplex,
and have TCP/IP, optionally with the help of WLM, distribute the client
connections among these systems.

There are several ways you can configure a distributed DVIPA, but Developer for
System z does impose some restrictions on these options.
v RSE daemon owns the port that is defined for distributed DVIPA, but the actual

work happens in the RSE server, which is active as a thread in another address
space. Therefore, you cannot use the SERVERWLM distribution method to do load
balancing across your systems, because WLM will give advice based on statistics
for RSE daemon, not RSE server.

v The client only knows the DVIPA address used by the Sysplex Distributor for
RSE daemon. The Sysplex Distributor will pass the connection request to one of
the available RSE daemons, which in turn will start an RSE server thread that
will bind to a port on that system. When the client connects to this port, it will
use the DVIPA address again, not the actual system address, so you must ensure
that the Sysplex Distributor redirects the new connection to the correct system.
Therefore, Developer for System z requires the definition of SYSPLEXPORTS in the
VIPADISTRIBUTE statement to ensure that the ports used by the RSE server
threads are unique within the sysplex.

Note:

– The usage of SYSPLEXPORTS implies that the EZBEPORT structure must be
defined in your coupling facility.

– The usage of SYSPLEXPORTS implies that TCP/IP will select an
ephemeral port. This implies that you cannot reserve ports for these
connections in your TCP/IP profile with the PORT and PORTRANGE
directives.

There are also some restrictions within Developer for System z when using
distributed DVIPA:
v To ensure that the Developer for System z client will not interfere with the

correct port selection by TCP/IP, you should enable the deny.nonzero.port
directive in rsed.envvars.

46 IBM Rational Developer for System z: Host Configuration Reference

|

|

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

v The usage of SYSPLEXPORTS implies that TCP/IP will ensure that a unique port is
used for each connection. This implies that when using _RSE_PORTRANGE in
rsed.envvars, you must specify a range that is big enough to hold all your
concurrently active users. In a single system setup, Developer for System z tends
to use the same port for all connections, so the default range is small.

v All participating Developer for System z servers must have an identical setup.
You should share /usr/lpp/rdz and /etc/rdz among all participating systems.
You should also share /var/rdz/projects, /var/rdz/pushtoclient, and
/var/rdz/sclmdt, if these directories are used. Note that /var/rdz/WORKAREA and
/var/rdz/logs must be unique for each system.

JES Job Monitor, Lock daemon, CARMA and other Developer for System z servers
only interact with the local RSE, and thus do not require a DVIPA setup.

Distributed DVIPAs are defined by the VIPADEFine and VIPABackup keywords of
the VIPADynamic block in your TCP/IP profile. The VIPADISTribute keyword adds
the required Sysplex Distributor definitions. Distributed DVIPA requires that all
participating stacks are sysplex-aware, which is done via the SYSPLEXRouting and
DYNAMICXCF keywords of the IPCONFIG block in your TCP/IP profile. Refer to
Communications Server: IP Configuration Reference (SC31-8776) for more details on
these directives.

Refer to MVS Setting Up a Sysplex (SA22-7625) and Communication Server: SNA
Network Implementation Guide (SC31-8777) for more information on setting up the
EZBEPORTS structure in your coupling facility.

Sample setup
In the following sample setup there are two z/OS systems, SYS1 and SYS2, which
are part of a sysplex. System SYS1 is defined as the system that normally hosts the
Sysplex Distributor for the Developer for System z distributed DVIPA.

After defining the distributed DVIPA, Developer for System z can be started on the
systems to allow load balancing client connections across the systems. JES Job
Monitor and the Lock daemon only interact with the local RSE, and thus do not
require a DVIPA setup. Clients will connect to port 4035 on IP address 10.10.10.1.

Chapter 3. TCP/IP considerations 47

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

System SYS1 – TCP/IP profile
IPCONFIG

SYSPLEXRouting
; SYSPLEXROUTING is required as this stack needs sysplex communication

DYNAMICXCF 9.9.9.1 255.255.255.0 1
; DYNAMICXCF defines device/link with home address 9.9.9.1 as needed

IGNORERedirect

VIPADYNAMIC
VIPADEFINE 255.255.255.0 10.10.10.1

; VIPADEFINE defines 10.10.10.1 as main DVIPA on SYS1 for RDz
VIPADISTRIBUTE DEFINE

; VIPADISTRIBUTE makes 10.10.10.1 a distributed DVIPA, must match SYS2
SYSPLEXPORTS ; RDz prereq
DISTMETHOD ROUNDROBIN ;
10.10.10.1 ; DVIPA address used by RDz clients
PORT 4035 ; port used by RDz clients
DESTIP 9.9.9.1 9.9.9.2 ; RDz active on SYS1 and SYS2

ENDVIPADYNAMIC

System SYS2 – TCP/IP profile
IPCONFIG

SYSPLEXRouting
; SYSPLEXROUTING is required as this stack needs sysplex communication

DYNAMICXCF 9.9.9.2 255.255.255.0 1
; DYNAMICXCF defines device/link with home address 9.9.9.2 as needed

TCP/IP 9.9.9.1 TCP/IP 9.9.9.2
DVIPA

10.10.10.1SD

XCF

SYS1 SYS2

RSE RSE

/var/rdz/logs
/var/rdz/WORKAREA

/etc/rdz
/var/rdz/sclmdt

/var/rdz/pushtoclient

/var/rdz/logs
/var/rdz/WORKAREA

Figure 9. Distributed Dynamic VIPA sample

48 IBM Rational Developer for System z: Host Configuration Reference

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

IGNORERedirect

VIPADYNAMIC
VIPABACKUP 255.255.255.0 10.10.10.1

; VIPABACKUP defines 10.10.10.1 as backup DVIPA on SYS2 for RDz
VIPADISTRIBUTE DEFINE

; VIPADISTRIBUTE makes 10.10.10.1 a distributed DVIPA, must match SYS1
SYSPLEXPORTS ; RDz prereq
DISTMETHOD ROUNDROBIN ;
10.10.10.1 ; DVIPA address used by RDz clients
PORT 4035 ; port used by RDz clients
DESTIP 9.9.9.1 9.9.9.2 ; RDz active on SYS1 and SYS2

ENDVIPADYNAMIC

Chapter 3. TCP/IP considerations 49

|
|
|
|
|
|
|
|
|
|
|
|
|

|

50 IBM Rational Developer for System z: Host Configuration Reference

Chapter 4. WLM considerations

Unlike traditional z/OS applications, Developer for System z is not a monolithic
application that can be identified easily to Workload Manager (WLM). Developer
for System z consists of several components that interact to give the client access to
the host services and data. As described in Chapter 1, “Understanding Developer
for System z,” on page 1, some of these services are active in different address
spaces, resulting in different WLM classifications.

The following topics are covered in this chapter:
v “Workload classification”
v “Setting goals” on page 53

Workload classification

Figure 10 shows a basic overview of the subsystems through which Developer for
System z workloads are presented to WLM.

Application Deployment Manager (ADM) is active within a CICS region, and will
therefore follow the CICS classification rules in WLM.

Figure 10. WLM classification

© Copyright IBM Corp. 2010 51

RSE daemon (RSED), Lock daemon (LOCKD) and JES Job Monitor (JMON) are
Developer for System z started tasks (or long-running batch jobs), each with their
individual address space.

As documented in “RSE as a Java application” on page 3, RSE daemon spawns a
child process for each RSE thread pool server (which supports a variable number
of clients). Each thread pool is active in a separate address space (using a z/OS
UNIX initiator, BPXAS). Because these are spawned processes, they are classified
using the WLM OMVS classification rules, not the started task classification rules.

The clients that are active in a thread pool can create a multitude of other address
spaces, depending on the actions done by the users. Depending on the
configuration of Developer for System z, some workloads, such as the TSO
Commands service (TSO cmd) or CARMA, can run in different subsystems.

The address spaces listed in Figure 10 on page 51 remain in the system long
enough to be visible, but you should be aware that due to the way z/OS UNIX is
designed, there are also several short-lived temporary address spaces. These
temporary address spaces are active in the OMVS subsystem.

Note that while the RSE thread pools use the same user ID and a similar job name
as the RSE daemon, all address spaces started by a thread pool are owned by the
user ID of the client requesting the action. The client user ID is also used as (part
of) the job name for all OMVS based address spaces stated by the thread pool.

More address spaces are created by other services that Developer for System z
uses, such as File Manager (FMNCAS) or z/OS UNIX REXEC (USS build).

Classification rules
WLM uses classification rules to map work coming into the system to a service
class. This classification is based upon work qualifiers. The first (mandatory)
qualifier is the subsystem type that receives the work request. Table 9 lists the
subsystem types that can receive Developer for System z workloads.

Table 9. WLM entry-point subsystems

Subsystem type Work description

ASCH The work requests include all APPC transaction programs scheduled by
the IBM-supplied APPC/MVS transaction scheduler, ASCH.

CICS The work requests include all transactions processed by CICS.

JES The work requests include all jobs that JES2 or JES3 initiates.

OMVS The work requests include work processed in z/OS UNIX System
Services forked children address spaces.

STC The work requests include all work initiated by the START and MOUNT
commands. STC also includes system component address spaces.

Table 10Table 2 lists additional qualifiers that can be used to assign a workload to a
specific service class. Refer to MVS Planning: Workload Management (SA22-7602)
for more details on the listed work qualifiers.

Table 10. WLM work qualifiers

ASCH CICS JES OMVS STC

AI Accounting Information x x x x

52 IBM Rational Developer for System z: Host Configuration Reference

Table 10. WLM work qualifiers (continued)

ASCH CICS JES OMVS STC

LU LU Name (*) x

PF Perform (*) x x

PRI Priority x

SE Scheduling Environment Name x

SSC Subsystem Collection Name x

SI Subsystem Instance (*) x x

SPM Subsystem Parameter x

PX Sysplex Name x x x x x

SY System Name (*) x x x

TC Transaction/Job Class (*) x x

TN Transaction/Job Name (*) x x x x x

UI User ID (*) x x x x x

Note: For the qualifiers marked with (*), you can specify classification groups by
adding a G to the type abbreviation. For example, a transaction name group
would be TNG.

Setting goals
As documented in “Workload classification” on page 51, Developer for System z
creates different types of workloads on your system. These different tasks
communicate with each other, which implies that the actual elapse time becomes
important to avoid time-out issues for the connections between the tasks. As a
result, Developer for System z tasks should be placed in high-performance service
classes, or in moderate-performance service classes with a high priority.

A revision, and possibly an update, of your current WLM goals is therefore
advised. This is especially true for traditional MVS shops new to time-critical
OMVS workloads.

Note:

v The goal information in this section is deliberately kept at a descriptive
level, because actual performance goals are very site-specific.

v To help understand the impact of a specific task on your system, terms
like minimal, moderate and substantial resource usage are used. These are
all relative to the total resource usage of Developer for System z itself, not
the whole system.

Table 11 lists the address spaces that are used by Developer for System z. z/OS
UNIX will substitute "x" in the "Task Name" column by a random 1-digit number.

Table 11. WLM workloads

Description Task name Workload

JES Job Monitor JMON STC

Lock daemon LOCKD STC

RSE daemon RSED STC

Chapter 4. WLM considerations 53

Table 11. WLM workloads (continued)

Description Task name Workload

RSE thread pool RSEDx OMVS

ISPF Client Gateway (TSO Commands service and
SCLMDT)

<userid>x OMVS

TSO Commands service (APPC) FEKFRSRV ASCH

CARMA (batch) CRA<port> JES

CARMA (crastart) <userid>x OMVS

CARMA (ISPF Client Gateway) <userid> and <userid>x OMVS

MVS build (batch job) * JES

z/OS UNIX build (shell commands) <userid>x OMVS

z/OS UNIX shell <userid> OMVS

File Manager task <userid>x OMVS

Application Deployment Manager CICSTS CICS

Considerations for goal selection
The following general WLM considerations can help you to properly define the
correct goal definitions for Developer for System z:
v You should base goals on what can actually be achieved, not what you want to

happen. If you set goals higher than necessary, WLM moves resources from
lower importance work to higher importance work which might not actually
need the resources.

v Limit the amount of work assigned to the SYSTEM and SYSSTC service classes,
because these classes have a higher dispatching priority than any WLM
managed class. Use these classes for work that is of high importance but uses
little CPU.

v Work that falls through the classification rules ends up in the SYSOTHER class,
which has a discretionary goal. A discretionary goal tells WLM to just do the
best it can when the system has spare resources.

When using response time goals:
v There must be a steady arrival rate of tasks (at least 10 tasks in 20 minutes) for

WLM to properly manage a response time goal.
v Use average response time goals only for well controlled workloads, because a

single long transaction has a big impact on the average response time and can
make WLM overreact.

When using velocity goals:
v You usually cannot achieve a velocity goal above 90% for various reasons. For

example, all the SYSTEM and SYSSTC address spaces have a higher dispatching
priority than any velocity-type goal.

v WLM uses a minimum number of (using and delay) samples on which to base
its velocity goal decisions. So the less work running in a service class, the longer
it will take to collect the required number of samples and adjust the dispatching
policy.

v Reevaluate velocity goals when you change your hardware. In particular,
moving to fewer, faster processors requires changes to velocity goals.

54 IBM Rational Developer for System z: Host Configuration Reference

STC
All Developer for System z started tasks, RSE daemon, Lock daemon and JES Job
Monitor, are servicing real-time client requests.

Table 12. WLM workloads - STC

Description Task name Workload

JES Job Monitor JMON STC

Lock daemon LOCKD STC

RSE daemon RSED STC

v JES Job Monitor
JES Job Monitor provides all JES related services such as submitting jobs,
browsing spool files and executing JES operator commands. You should specify
a high-performance, one-period velocity goal, because the task does not report
individual transactions to WLM. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be minimal to moderate.

v Lock daemon
The lock daemon queries the GRS enqueue tables upon client and operator
request, and matches the result against known Developer for System z users.
You should specify a high-performance, one-period velocity goal, because the
task does not report individual transactions to WLM. Resource usage is expected
to be minimal.

v RSE daemon
RSE daemon handles client logon and authentication, and manages the different
RSE thread pools. You should specify a high-performance, one-period velocity
goal, because the task does not report individual transactions to WLM. Resource
usage is expected to be moderate, with a peak at the beginning of the workday.

OMVS
The OMVS workloads can be divided into two groups, RSE thread pools and
everything else. This because all workloads, except RSE thread pools, use the client
user ID as base for the address space name. (z/OS UNIX will substitute "x" in the
"Task Name" column by a random 1-digit number.)

Table 13. WLM workloads - OMVS

Description Task name Workload

RSE thread pool RSEDx OMVS

ISPF Client Gateway (TSO
Commands service and
SCLMDT)

<userid>x OMVS

CARMA (crastart) <userid>x OMVS

CARMA (ISPF Client
Gateway)

<userid> and <userid>x OMVS

z/OS UNIX build (shell
commands)

<userid>x OMVS

z/OS UNIX shell <userid> OMVS

File Manager task <userid>x OMVS

v RSE thread pool

Chapter 4. WLM considerations 55

An RSE thread pool is like the heart and brain of Developer for System z.
Almost all data flows through here, and the miners (user specific threads) inside
the thread pool control the actions of most other Developer for System z related
tasks. You should specify a high-performance, one-period velocity goal, because
the task does not report individual transactions to WLM. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be substantial.

The remaining workloads will all end up in the same service class due to a
common address space naming convention. You should specify a multi-period goal
for this service class. The first periods should be high-performance, percentile
response time goals, while the last period should have a moderate-performance
velocity goal. Some workloads, such as the ISPF Client Gateway, will report
individual transactions to WLM, while others do not.
v ISPF Client Gateway

The ISPF Client Gateway is an ISPF service invoked by Developer for System z
to execute non-interactive TSO and ISPF commands. This includes explicit
commands issued by the client as well as implicit commands issued by
Developer for System z, such as getting a PDS member list. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be minimal.

v CARMA
CARMA is an optional Developer for System z server that is used to interact
with host based Software Configuration Managers (SCMs), such as CA Endevor®

SCM. Developer for System z allows for different startup methods for a CARMA
server, some of which become an OMVS workload. Resource usage depends
heavily on user actions, and will therefore fluctuate, but is expected to be
minimal.

v z/OS UNIX build
When a client initiates a build for a z/OS UNIX project, z/OS UNIX REXEC (or
SSH) will start a task that executes a number of z/OS UNIX shell commands to
perform the build. Resource usage depends heavily on user actions, and will
therefore fluctuate, but is expected to be moderate to substantial, depending on
the size of the project.

v z/OS UNIX shell
This workload processes z/OS UNIX shell commands that are issued by the
client. Resource usage depends heavily on user actions, and will therefore
fluctuate, but is expected to be minimal.

v IBM File Manager
Although not Developer for System z address spaces, the spawned File Manager
child processes are listed here because they can be started upon request of a
Developer for System z client, and these tasks use the same naming convention
as Developer for System z tasks. These File Manager tasks process non-trivial
MVS data set actions, such as formatted editing of a VSAM file. Resource usage
depends heavily on user actions, and will therefore fluctuate, but is expected to
be minimal to moderate.

JES
JES-managed batch processes are used in various manners by Developer for
System z. The most common usage is for MVS builds, where a job is submitted
and monitored to determine when it ends. But Developer for System z could also
start a CARMA server in batch, and communicate with it using TCP/IP.

56 IBM Rational Developer for System z: Host Configuration Reference

Table 14. WLM workloads - JES

Description Task name Workload

CARMA (batch) CRA<port> JES

MVS build (batch job) * JES

v CARMA
CARMA is an optional Developer for System z server that is used to interact
with host based Software Configuration Managers (SCMs), such as CA Endevor®

SCM. Developer for System z allows for different startup methods for a CARMA
server, some of which become a JES workload. You should specify a
high-performance, one-period velocity goal, because the task does not report
individual transactions to WLM. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be minimal.

v MVS build
When a client initiates a build for an MVS project, Developer for System z will
start a batch job to perform the build. Resource usage depends heavily on user
actions, and will therefore fluctuate, but is expected to be moderate to
substantial, depending on the size of the project. Different moderate-
performance goal strategies can be advisable, depending on your local
circumstances.
– You could specify a multi-period goal with a percentile response time period

and a trailing velocity period. In this case, your developers should be using
mostly the same build procedure and similar sized input files to create jobs
with uniform response times. There must also be a steady arrival rate of jobs
(at least 10 jobs in 20 minutes) for WLM to properly manage a response time
goal.

– A velocity goal is best suited for most batch-jobs, because this goal can handle
highly variable execution times and arrival rates.

ASCH
In the current Developer for System z versions, the ISPF Client Gateway is used to
execute non-interactive TSO and ISPF commands. Due to historical reasons,
Developer for System z also supports executing these commands via an APPC
transaction. You should note that the APPC method is deprecated.

Table 15. WLM workloads - ASCH

Description Task name Workload

TSO Commands service
(APPC)

FEKFRSRV ASCH

v TSO Commands service
The TSO Commands service can be started as an APPC transaction by
Developer for System z to execute non-interactive TSO and ISPF commands.
This includes explicit commands issued by the client as well as implicit
commands issued by Developer for System z, such as getting a PDS member list.
You should specify a multi-period goal for this service class. For the first
periods, you should specify high-performance, percentile response time goals.
For the last period, you should specify a moderate-performance velocity goal.
Resource usage depends heavily on user actions, and will therefore fluctuate, but
is expected to be minimal.

Chapter 4. WLM considerations 57

CICS
Application Deployment Manager is an optional Developer for System z server
that is active inside a CICS Transaction Server region.

Table 16. WLM workloads - CICS

Description Task name Workload

Application Deployment
Manager

CICSTS CICS

v Application Deployment Manager
The optional Application Deployment Manager server, which is active inside a
CICSTS region, allows you to securely offload selected CICSTS management
tasks to developers. Resource usage depends heavily on user actions, and will
therefore fluctuate, but is expected to be minimal. The type of service class you
should use depends on the other transactions active in this CICS region, and is
therefore not discussed in detail.

WLM supports multiple types of management that you can use for CICS:
v Managing CICS toward a region goal

The goal is set to a service class that manages the CICS address spaces. You can
only use an execution velocity goal for this service class. WLM uses the JES or
STC classification rules for the address spaces but does not use the CICS
subsystem classification rules for transactions.

v Managing CICS toward a transaction response time goal
A response time goal can be set in a service class assigned to a single transaction
or a group of transactions. WLM uses the JES or STC classification rules for the
address spaces and the CICS subsystem classification rules for transactions.

58 IBM Rational Developer for System z: Host Configuration Reference

Chapter 5. Tuning considerations

As explained in Chapter 1, “Understanding Developer for System z,” on page 1,
RSE (Remote Systems Explorer) is the core of Developer for System z. To manage
the connections and workloads from the clients, RSE is composed of a daemon
address space, which controls thread pooling address spaces. The daemon acts as a
focal point for connection and management purposes, while the thread pools
process the client workloads.

This makes RSE a prime target for tuning the Developer for System z setup.
However, maintaining hundreds of users, each using 16 or more threads, a certain
amount of storage, and possibly 1 or more address spaces requires proper
configuration of both Developer for System z and z/OS.

The following topics are covered in this chapter:
v “Resource usage”
v “Storage usage” on page 69
v “z/OS UNIX file system space usage” on page 75
v “Key resource definitions” on page 78
v “Various resource definitions” on page 81
v “Monitoring” on page 83
v “Sample setup” on page 86

Resource usage
Use the information in this section to estimate the normal and maximum resource
usage by Developer for System z, so you can plan your system configuration
accordingly.

When you use the numbers and formulas presented in this section to define the
values for system limits, be aware that you are working with fairly accurate
estimates. Leave enough margin when setting the system limits to allow resource
usage by temporary and other tasks, or by users connecting multiple times to the
host simultaneously. (For example, by way of RSE and TN3270).

Note:

v The information is limited in scope to services accessed through RSE that
are provided by Developer for System z itself. For example, resource
usage of TN3270 is not documented (not accessed through RSE), nor is
the resource usage of the programs called during remote (host-based)
builds of MVS or z/OS UNIX projects (not provided by Developer for
System z).

v Adding third-party extensions to Developer for System z can increase the
resource usage counters.

v All services have short-lived "housekeeping" tasks, which use resources
during their execution, and which may run sequential or parallel to each
other. The resources used by these tasks are not documented.

v Where useful, user-specific resource usage of requisite software, such as
the ISPF Client Gateway, is documented.

v The numbers presented here can change without prior notification.

© Copyright IBM Corp. 2010 59

Overview
The following tables give an overview of the number of address spaces, processes,
and threads used by Developer for System z. More details on the numbers
presented here can be found in the next sections:
v “Address space count” on page 61
v “Process count” on page 64
v “Thread count” on page 66

Table 17 gives a general overview of the key resources used by the Developer for
System z started tasks. These resources are allocated only once. They are shared
among all Developer for System z clients.

Table 17. Common resource usage

Started task Address spaces Processes Threads

JMON 1 1 3

LOCKD 1 3 10

RSED 1 3 11

RSEDx (a) 2 10

Note: (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 61 to determine the actual number of RSE
thread pool address spaces.

Table 18 gives a general overview of the key resources used by requisite software.
These resources are allocated for each Developer for System z client that invokes
the related function.

Table 18. User-specific requisite resource usage

Requisite software Address spaces Processes Threads

ISPF Client Gateway 1 2 4

APPC 1 1 2

File Manager 1 1 2

Table 19 gives a general overview of the key resources used by each Developer for
System z client when executing the specified function. Non-numeric values, such
as ISPF, are a reference to the corresponding value in Table 18.

Table 19. User-specific resource usage

User action
Address
spaces

User ID

Processes

User ID

Threads

User ID RSEDx JMON

Logon - - - 16 1

Timer for idle
timeout

- - - 1 -

Expand
PDS(E)

ISPF ISPF ISPF - -

Open data set ISPF ISPF ISPF - -

60 IBM Rational Developer for System z: Host Configuration Reference

Table 19. User-specific resource usage (continued)

User action
Address
spaces

User ID

Processes

User ID

Threads

User ID RSEDx JMON

TSO
command

ISPF ISPF ISPF - -

z/OS UNIX
shell

1 1 1 6 -

MVS build 1 - - - -

z/OS UNIX
build

3 3 3 - -

CARMA
(batch)

1 1 2 1 -

CARMA
(crastart)

1 1 2 4 -

CARMA
(ispf)

4 4 7 5 -

SCLMDT ISPF ISPF ISPF - -

File Manager
Integration

ISPF + FM ISPF + FM ISPF + FM - -

Fault
Analyzer
Integration

- - - - -

Note: ISPF can be substituted by APPC, except for SCLM Developer Toolkit.

Address space count
Table 20 lists the address spaces that are used by Developer for System z, where
“u” in the “Count” column indicates that the amount must be multiplied by the
number of concurrently active users using the function. z/OS UNIX will substitute
“x” in the “Task Name” column by a random 1-digit number.

Table 20. Address space count

Count Description Task name Shared Ends after

1 JES Job Monitor JMON Yes Never

1 Lock daemon LOCKD Yes Never

1 RSE daemon RSED Yes Never

(a) RSE thread pool RSEDx Yes Never

lu ISPF Client Gateway (TSO
Commands service and SCLMDT)

<userid>x No 15 minutes or user logoff

lu TSO Commands service (APPC) FEKFRSRV No 60 minutes or user logoff

lu CARMA (batch) CRA<port> No 7 minutes or user logoff

lu CARMA (crastart) <userid>x No 7 minutes or user logoff

4u CARMA (ispf) (1)<userid> or (3)<userid>x No 7 minutes or user logoff

(b) Simultaneous ISPF Client Gateway
usage by 1 user

<userid>x No Task completion

1u MVS build (batch job) * No Task completion

Chapter 5. Tuning considerations 61

Table 20. Address space count (continued)

Count Description Task name Shared Ends after

3u z/OS UNIX build (shell
commands)

<userid>x No Task completion

1u z/OS UNIX shell <userid> No User logoff

(c) File Manager <userid>x No Task completion

Note:

v (a) There is at least one RSE thread pool address space active. The actual
number depends on:
– The minimum.threadpool.process directive in rsed.envvars. The default

value is 1.
– The number of users that can be serviced by one thread pool. The

default settings aim for 60 users per thread pool.

Note: If the single.logon directive is active, then there will be at least 2
thread pools started, even if minimum.threadpool.process is set to
1. The default setting for single.logon in rsed.envvars is active.

v (b) Developer for System z has multiple threads active per user. In the
event that the ISPF Client Gateway address space has not finished serving
the request of one thread when another thread sends a request, ISPF will
start up a new Client Gateway to process the new request. This address
space ends after task completion.

v (c) The File Manager listener starts an address space per object that must
be manipulated, for example a VSAM. This address space stays active
until Developer for System z signals that the object is no longer needed,
for example by closing the VSAM.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

Use the formula in Figure 11 to estimate the maximum number of address spaces
used by Developer for System z.

Where
v “3” equals the number of permanent active server address spaces.
v “A” represents the number of RSE thread pool address spaces.
v “N” represents the maximum number of concurrent users.
v “x” is one of the following values, depending on the selected configuration

options.

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 No No Yes

Figure 11. Maximum number of address spaces

62 IBM Rational Developer for System z: Host Configuration Reference

|
|
|

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 No Yes No

1 Yes Yes No

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

1 CARMA (crastart)

4 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 1 when a MVS build is performed. These address spaces end when the

related build task (a batch job) completes.
– Add 3 when a z/OS UNIX build is performed. Note that the actual number

may be higher, depending on the needs of the programs invoked. These
address spaces end when the related build task completes.

– Add 1 for each concurrent interaction with IBM File Manager. These address
spaces end when the requested object is no longer needed.

v “2 + N*0.01” adds a buffer for temporary address spaces. The required buffer
size might differ at your site.

Use the formula in Figure 12 to estimate the maximum number of address spaces
used by a Developer for System z client (not counting the undocumented
temporary address spaces).

Where
v "x" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of address spaces (Figure 11 on page
62).

v "y" depends on the selected configuration options and is documented for the
formula to calculate the maximum number of address spaces (Figure 11 on page
62).

v “z” is 0 by default, but can increase depending on user actions, as documented
for the formula to calculate the maximum number of address spaces (Figure 11
on page 62).

The definitions in Table 21 can limit the actual number of address spaces.

Table 21. Address space limits

Location Limit Affected resources

rsed.envvars maximum.threadpool.process Limits the number of RSE thread pools

IEASYMxx MAXUSER Limits the number of address spaces

Figure 12. Number of address spaces per client

Chapter 5. Tuning considerations 63

Table 21. Address space limits (continued)

Location Limit Affected resources

ASCHPMxx MAX Limits the number of APPC initiators for
TSO Commands service (APPC)

Process count
Table 22 lists the number of processes per address space that is used by Developer
for System z. “u” In the “Address Spaces” column indicates that the amount must
be multiplied by the number of concurrently active users using the function.

Table 22. Process count

Processes
Address
spaces Description User ID

1 1 JES Job Monitor STCJMON

3 1 Lock daemon STCLOCK

3 1 RSE daemon STCRSE

2 (a) RSE thread pool STCRSE

2 (b) ISPF Client Gateway (TSO Commands service
and SCLMDT)

<userid>

1 1u TSO Commands service (APPC) <userid>

1 1u CARMA (batch) <userid>

1 1u CARMA (crastart) <userid>

1 1u CARMA (ispf) <userid>

1 3u z/OS UNIX build (shell commands) <userid>

1 1u z/OS UNIX shell <userid>

1 (c) File Manager <userid>

(5) (u) SCLM Developer Toolkit <userid>

Note:

v (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 61 to determine the actual number of RSE
thread pool address spaces.

v RSE daemon and all RSE thread pools use the same user ID.
v (b) In normal situations, and when using the default configuration

options, there is 1 ISPF Client Gateway active per user. The actual number
can vary, as described in “Address space count” on page 61.

v (c) The File Manager listener uses a process per object that must be
manipulated, for example a VSAM. This process stays active until
Developer for System z signals that the object is no longer needed, for
example by closing the VSAM.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v (u) SCLMDT processes run in the ISPF Client Gateway address space, and
thus do not have a value for the address space count.

v SCLMDT processes are temporary and end at task completion, but
multiple processes can be active simultaneously for a single user. Table 22
lists the maximum number of concurrent SCLMDT processes.

64 IBM Rational Developer for System z: Host Configuration Reference

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

v A z/OS UNIX build uses three processes in total, each running in their
own address space.

v All listed processes stay active until the related address space ends, unless
noted otherwise.

Use the formula in Figure 13 to estimate the maximum number of processes used
by Developer for System z.

Where
v “7” equals the number of processes used by permanent active server address

spaces.
v “A” represents the number of RSE thread pool address spaces.
v “N” represents the maximum number of concurrent users.
v “x” is one of the following values, depending on the selected configuration

options.

X SCLMDT TSO by way of Client Gateway TSO by way of APPC

1 No No Yes

2 No Yes No

7 Yes Yes No

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

1 CARMA (crastart)

4 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 1 when a z/OS UNIX shell is opened. This process stays active until the

user logs off.
– Add 3 when a z/OS UNIX build is performed. Note that the actual number

may be higher, depending on the needs of the programs invoked. These
processes end when the related build task completes.

– Add 1 for each concurrent interaction with IBM File Manager. These processes
end when the requested object is no longer needed.

v "10 + N*0.05" adds a buffer for temporary processes. The required buffer size
might differ at your site.

Use the formula in Figure 14 on page 66 to estimate the maximum number of
processes used by a Developer for System z client (not counting the undocumented

Figure 13. Maximum number of processes

Chapter 5. Tuning considerations 65

temporary processes).

Where
v "x" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of processes (Figure 13 on page 65).
v "y" depends on the selected configuration options and is documented for the

formula to calculate the maximum number of processes (Figure 13 on page 65).
v “z” is 0 by default, but can increase depending on user actions, as documented

for the formula to calculate the maximum number of processes (Figure 13 on
page 65).

v “s” is 1 when SCLM Developer Toolkit is used, or 0 otherwise.

The definitions in Table 23 can limit the actual number of processes.

Table 23. Process limits

Location Limit Affected resources

BPXPRMxx MAXPROCSYS Limits the total number of processes

BPXPRMxx MAXPROCUSER Limits the number of processes per z/OS
UNIX UID

Note:
v RSE daemon and the RSE thread pools use the same user ID. Since RSE daemon

starts a new thread pool whenever needed, the number of processes for this user
ID can grow. So MAXPROCUSER must be set to accommodate this growth, which
can be formulated as “3 + 2*A”.

v The MAXPROCUSER limit is per unique z/OS UNIX user ID (UID). Multiply the
estimated per-user process count by the number of concurrently active clients if
your users share the same UID.

Thread count
Table 24 on page 67 lists the number of threads used by selected Developer for
System z functions. "u" In the "Threads" columns indicates that the amount must
be multiplied by the number of concurrently active users using the function. The
thread count is listed per process, as limits are set at this level.
v RSEDx: These threads are created in the RSE thread pool, which is shared by

multiple clients. All threads ending up in the same thread pool must be added
together to get the total count.

v Active: These threads are part of the process that actually does the requested
function. Each process is a stand-alone unit, so there is no need to sum the
thread counts, even if they are assigned to same user ID, unless noted otherwise.

v Bootstrap: Bootstrap processes are needed to start the actual process. Each has 1
thread, and there can be multiple consecutive bootstraps. There is no need to
sum the thread counts.

Figure 14. Number of processes per client

66 IBM Rational Developer for System z: Host Configuration Reference

Table 24. Thread count

Threads User ID Description

RSEDx Active Bootstrap

- 3 + 1u - STCJMON JES Job Monitor

- 10 2 STCLOCK Lock daemon

- 11 2 STCRSE RSE daemon

10 (a) + 16u - 1 (a) STCRSE RSE thread pool

- 4u (b) 1u (b) <userid> ISPF Client
Gateway (TSO
Commands service
and SCLMDT)

- 2u - <userid> TSO Commands
service (APPC)

1u 2u - STCRSE and
<userid>

CARMA (batch)

4u 2u - STCRSE and
<userid>

CARMA (crastart)

5u 4u 3u STCRSE and
<userid>

CARMA (ispf)

- 1u (d) 2u <userid> z/OS UNIX build
(shell commands)

6u 1u - STCRSE and
<userid>

z/OS UNIX shell

- 2u (c) - <userid> File Manager

- (5) - <userid> SCLM Developer
Toolkit

1u - - STCRSE Timer for idle
timeout

Note:

v (a) There is at least 1 RSE thread pool address space active. Refer to
“Address space count” on page 61 to determine the actual number of RSE
thread pool address spaces.

v (b) In normal situations, and when using the default configuration
options, there is 1 ISPF Client Gateway active per user. The actual number
can vary, as described in “Address space count” on page 61.

v (c) There is one user-specific process (with the listed thread count) per
interaction with IBM File Manager. These processes end when the
requested object is no longer needed.

v SCLMDT requires an ISPF Client Gateway address space. SCLMDT shares
the address space with the TSO Commands service.

v Depending on the selected action, SCLMDT can use multiple single-thread
processes that end at task completion. Table 24 lists the maximum number
of concurrent SCLMDT threads.

v Most MVS data set-related actions use the TSO Commands service, which
can be active in the ISPF Client Gateway or an APPC transaction,
respectively.

Chapter 5. Tuning considerations 67

v (d) A z/OS UNIX build invokes different build utilities, which might be
multi-threaded. Table 24 on page 67 lists the minimum number of
concurrent z/OS UNIX build threads.

v All listed threads stay active until the related process ends, unless noted
otherwise.

Use the formula in Figure 15 to estimate the maximum number of threads used by
a RSE thread pool. Use the formula in Figure 16 to estimate the maximum number
of threads used by JES Job Monitor.

Where
v "N" represents the maximum number of concurrent users in this thread pool or

JES Job Monitor. The default settings aim for 60 users per thread pool.
v "x" is one of the following values, depending on the selected configuration

options.

X SCLMDT
TSO by way of
Client Gateway TSO by way of APPC Timeout

0 No No Yes No

0 No Yes No No

0 Yes Yes No No

1 No No Yes Yes

1 No Yes No Yes

1 Yes Yes No Yes

v “y” is one of the following values, depending on the selected configuration
options.

Y

0 No CARMA

1 CARMA (batch)

4 CARMA (crastart)

5 CARMA (ispf)

v “z” is 0 by default, but can increase depending on user actions:
– Add 6 when a z/OS UNIX shell is opened. These threads stay active until the

user logs off.
v "20 + N*0.1" adds a buffer for temporary threads. The required buffer size might

differ at your site.

Figure 15. Maximum number of RSE thread pool threads

Figure 16. Maximum number of JES Job Monitor threads

68 IBM Rational Developer for System z: Host Configuration Reference

The definitions in Table 25 can limit the actual number of threads in a process,
which is mostly of importance for the RSE thread pools.

Table 25. Thread limits

Location Limit Affected resources

BPXPRMxx MAXTHREADS Limits the number of threads in a process.

BPXPRMxx MAXTHREADTASKS Limits the number of MVS tasks in a process.

BPXPRMxx MAXASSIZE Limits the address space size, and thus the storage
available for thread related control blocks.

rsed.envvars Xmx Sets the maximum Java heap size. This storage is
reserved and thus no longer available for thread
related control blocks.

rsed.envvars maximum.clients Limits the number of clients (and thus their
threads) in an RSE thread pool.

rsed.envvars maximum.threads Limits the number of client threads in a RSE thread
pool.

FEJJCNFG MAX_THREADS Limits the number of threads in JES Job Monitor.

Note: The value for maximum.threads in rsed.envvars must be lower than the
value for MAXTHREADS and MAXTHREADTASKS in BPXPRMxx.

Storage usage
RSE is a Java application, which implies that storage (memory) usage planning for
Developer for System z must take two storage allocation limits into consideration,
Java heap size and Address Space size.

Java heap size limit
Java offers many services to ease coding efforts for Java applications. One of these
services is storage management.

Java’s storage management allocates large blocks of storage and uses these for
storage requests by the application. This storage managed by Java is called the
Java heap. Periodic garbage collection (defragmentation) reclaims unused space in
the heap and reduces its size.

The maximum Java heap size is defined in rsed.envvars with the Xmx directive. If
this directive is not specified, Java uses a default size of 64 MB.

Each RSE thread pool (which services the client actions) is a separate Java
application, and thus has a personal Java heap. Note that all thread pools use the
same rsed.envvars configuration file, and thus have the same Java heap size limit.

The thread pool’s usage of the Java heap depends heavily on the actions done by
the connected clients. Regular monitoring of the heap usage is required to set the
optimal heap size limit. Use the modify display process operator command to
monitor the Java heap usage by RSE thread pools.

Address space size limit
All z/OS applications, including Java applications, are active within an address
space, and are thus bound by address space size limitations.

Chapter 5. Tuning considerations 69

The desired address space size is specified during startup, for example with the
REGION parameter in JCL. However, system settings can limit the actual address
space size. Refer to “Address Space size” on page 134 to learn more about these
limits.
v MAXASSIZE in SYS1.PARMLIB(BPXPRMxx)

v ASSIZEMAX in the OMVS segment of the user ID assigned to the started task
v system exits IEFUSI and IEALIMIT

RSE thread pools inherit the address space size limits from RSE daemon. The
address space size must be sufficient to house the Java heap, Java itself, common
storage areas, and all control blocks the system creates to support the thread pool
activity, such as a TCB (Task Control Block) per thread. Note that some of this
storage usage is below the 16 MB line.

You should monitor the actual address space size before changing any settings that
influence it, like changing the size of the Java heap or the amount of users
supported by a single thread pool. Use your regular system monitoring software to
track the actual storage usage by Developer for system z. If you do not have a
dedicated monitoring tool, then basic information can be gathered with tools like
the SDSF DA view or TASID (an as-is system information tool available via the
ISPF "Support and downloads" webpage).

Size estimate guidelines
As stated before, the actual storage usage by Developer for system z is heavily
influenced by user activity. Some actions use a fixed amount of storage (for
example, logon), while others are variable (for example, listing data sets with a
specified high-level qualifier).
v Use a 2 GB address space for RSE to allow room for the Java heap and all the

system control blocks.
v The sample rsed.envvars setup aims for 60 users per thread pool.

– maximum.clients=60

– maximum.threads=1000 (10+16*60 = 970, so 1000 allows for 61 clients)
v The sample rsed.envvars setup lets the Java heap grow up to 256 MB. This

allows for 60 clients using an average of 4 MB per client (60*4 = 240).

Note that RSE displays the current Java heap and address space size limit during
startup in console message FEK004I.

Use either of the following scenarios if monitoring shows that the current Java
heap size is insufficient for the actual workload:
v Increase the maximum Java heap size with the Xmx directive in rsed.envvars.

Before doing so, ensure that there is room in the address space for the size
increase.

v Decrease the maximum number of clients per thread pool with the
maximum.clients directive in rsed.envvars. RSE will still support the same
number of clients, but the clients will be distributed among more thread pools.

Sample storage usage analysis
The displays in the following figures show some sample resource usage numbers
for a default Developer for system z setup with these modifications.
v single.logon is disabled to stop RSE from creating at least 2 thread pool address

spaces

70 IBM Rational Developer for System z: Host Configuration Reference

|
|

v The maximum Java heap size is set to 10 MB, as a small maximum will result in
a bigger percentile usage and the heap size limits will be reached sooner.

Chapter 5. Tuning considerations 71

Max Heap Size=10MB and private AS Size=1,959MB

startup

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(7%) Clients(0)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2740 72
LOCKD 1.60 28.7M 14183
RSED 4.47 32.8M 15910
RSED8 1.15 27.4M 12612

logon 1

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 81
LOCKD 1.64 28.8M 14259
RSED 4.55 32.8M 15980
RSED8 3.72 55.9M 24128

logon 2

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(23%) Clients(2)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 2944 86
LOCKD 1.66 28.9M 14268
RSED 4.58 32.9M 16027
RSED8 4.20 57.8M 25205

logon 3

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(37%) Clients(3)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 3020 91
LOCKD 1.67 29.0M 14277
RSED 4.60 32.9M 16076
RSED8 4.51 59.6M 26327

logon 4

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(41%) Clients(4)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.02 3108 96
LOCKD 1.68 29.0M 14286
RSED 4.61 32.9M 16125
RSED8 4.77 62.3M 27404

Figure 17. Resource usage with 5 logons

72 IBM Rational Developer for System z: Host Configuration Reference

Figure 17 on page 72 and Figure 18 show a scenario where 5 clients log on to an
RSE daemon with a 10 MB Java heap.
v A thread pool (RSED8) is in a dormant state upon startup, using about 27 MB,

of which 0.7 MB is in the Java heap (7% of 10 MB).
v The thread pool becomes active when the first client connects, using another 27

MB plus 2 MB for each client that connects.
v Part of this 2MB per connection will be in the Java heap, as the increase in heap

usage shows.
v However, there is no real pattern in the heap usage, because it depends on Java

mechanisms that estimate the required storage and allocate more than needed.
Intermittent garbage collection frees up storage, making trends even harder to
detect.

v Internal mechanisms that limit the number of connections per thread pool to
ensure sufficient heap size for the active threads result in the fifth connection
being created in a new thread pool (RSED9). These internal safety nets are
normally not invoked when using a properly configured setup, because other
limits would be reached first (most likely the maximum.clients one in
rsed.envvars).

logon 5

BPXM023I (STCRSE)
ProcessId(268) Memory Usage(41%) Clients(4)
ProcessId(33554706) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.03 3184 101
LOCKD 1.69 29.1M 14295
RSED 4.64 32.9M 16229
RSED8 4.78 62.4M 27413
RSED9 4.60 56.6M 24065

Figure 18. Resource usage with 5 logons (continued)

Chapter 5. Tuning considerations 73

Figure 19 shows a scenario where 1 client logs on to an RSE daemon with a 10 MB
Java heap and edits a PDS member.

Max Heap Size=10MB and private AS Size=1,959MB

startup

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(7%) Clients(0)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2736 71
LOCKD 1.73 30.5M 14179
RSED 4.35 32.9M 15117
RSED8 1.43 27.4M 12609

logon

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 80
LOCKD 1.76 30.6M 14255
RSED 4.48 33.0M 15187
RSED8 3.53 53.9M 24125

expand large MVS tree (195 data sets)
BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 0.01 2864 80
LOCKD 1.78 30.6M 14255
RSED 4.58 33.1M 16094
RSED8 4.28 56.1M 24740

expand small PDS (21 members)
BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
IBMUSER2 0.22 2644 870
JMON 0.01 2864 80
LOCKD 1.78 30.6M 14255
RSED 4.61 33.1M 16108
RSED8 4.40 56.2M 24937

open medium sized member (86 lines)

BPXM023I (STCRSE)
ProcessId(212) Memory Usage(13%) Clients(1)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
IBMUSER2 0.22 2644 870
JMON 0.01 2864 80
RSED 4.61 33.1M 16108
RSED8 8.12 62.7M 27044

Figure 19. Resource usage while editing a PDS member

74 IBM Rational Developer for System z: Host Configuration Reference

v The catalog search that results in 195 data set names used about 2MB of storage,
all due to system activity, because the Java heap usage does not increase.

v Opening a 21-member PDS uses hardly any memory in the thread pool, but the
display shows that TSO Commands service was invoked. There is a new address
space active (IBMUSER2), which uses the region size assigned to this user ID in
TSO. This address space stays active for a specified amount of time so it can be
reused for future requests by the TSO Commands service.

v Opening a member shows similar numbers as expanding a high-level qualifier.
The Java heap usage stays the same, but there is a 6.5 MB storage increase due
to system activity.

z/OS UNIX file system space usage
Most of the Developer for System z related data that is not written to a DD
statement ends up in a z/OS UNIX file. The system programmer has control over
which data is written and where it goes. However, there is no control over the
amount of data written.

The data can be grouped in the following categories:
v Problem analysis (log and system dump files), for which many details are

documented in Chapter 10, “Troubleshooting configuration problems,” on page
119

v Auditing, as documented in “Audit logging” on page 18
v Temporary data

As documented in Chapter 10, “Troubleshooting configuration problems,” on page
119, Developer for System z writes the RSE-related host logs to the following z/OS
UNIX directories:
v /var/rdz/logs for the RSE started task logs
v /var/rdz/logs/$LOGNAME for user logs

By default, only error and warning messages are written to the logs. So if all goes
as planned, these directories should hold only empty or nearly-empty files (not
counting audit logs).

You can enable logging of informational messages, preferably under direction of
the IBM support center, which increases the size of log files noticeably.

Chapter 5. Tuning considerations 75

Figure 20 shows the minimal z/OS UNIX file system space usage when using
debug level 2 (informational messages).
v The started task logs use 34 KB after startup and grow slowly when users log

on, log off, or operator commands are issued.
v A client log directory uses 11 KB after logon and grows at a steady pace when

the user starts working (not shown in the sample).
v Logoff adds another 40 KB to the user logs, bringing them to 51 KB.

Except for audit logs, log files are overwritten on every restart (for the RSE started
task) or logon (for a client), keeping the total size in check. The keep.last.log
directive in rsed.envvars changes this slightly, as it can instruct RSE to keep a
copy of the previous logs. Older copies are always removed.

startup

$ ls -l /var/rdz/logs
total 144
-rw-rw-rw- 1 STCRSE STCGRP 33642 Jul 10 12:10 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 1442 Jul 10 12:10 rseserver.log

logon

$ ls -l /var/rdz/logs
total 144
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 1893 Jul 10 12:11 rseserver.log
$ ls -l /var/rdz/logs/IBMUSER
total 160
-rw-rw-rw- 1 IBMUSER SYS1 3459 Jul 10 12:11 ffs.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsget.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsput.log
-rw-rw-rw- 1 IBMUSER SYS1 303 Jul 10 12:11 lock.log
-rw-rw-rw- 1 IBMUSER SYS1 126 Jul 10 12:11 rmt_classloader_cache.jar
-rw-rw-rw- 1 IBMUSER SYS1 7266 Jul 10 12:11 rsecomm.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stderr.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stdout.log

logoff
$ ls -l /var/rdz/logs
total 80
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 2208 Jul 10 12:11 rseserver.log
$ ls -l /var/rdz/logs/IBMUSER
total 296
-rw-rw-rw- 1 IBMUSER SYS1 6393 Jul 10 12:11 ffs.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsget.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 ffsput.log
-rw-rw-rw- 1 IBMUSER SYS1 609 Jul 10 12:11 lock.log
-rw-rw-rw- 1 IBMUSER SYS1 126 Jul 10 12:11 rmt_classloader_cache.jar
-rw-rw-rw- 1 IBMUSER SYS1 45157 Jul 10 12:11 rsecomm.log
-rw-rw-rw- 1 IBMUSER SYS1 0 Jul 10 12:11 stderr.log
-rw-rw-rw- 1 IBMUSER SYS1 176 Jul 10 12:11 stdout.log

stop

$ ls -l /var/rdz/logs
total 80
drwxrwxrwx 3 IBMUSER SYS1 8192 Jul 10 12:11 IBMUSER
-rw-rw-rw- 1 STCRSE STCGRP 36655 Jul 10 12:11 rsedaemon.log
-rw-rw-rw- 1 STCRSE STCGRP 2490 Jul 10 12:12 rseserver.log

Figure 20. z/OS UNIX file system space usage

76 IBM Rational Developer for System z: Host Configuration Reference

A warning message is sent to the console when the file system holding the audit
log files is running low on free space and auditing is active. This console message
(FEK103E) is repeated regularly until the low space issue is resolved. Refer to
"Console messages" in the Host Configuration Guide (SC23-7658) for a list of console
messages generated by RSE.

The definitions in Table 26 control which data is written to the log directories, and
where the directories are located.

Table 26. Log output directives

Location Directive Function

resecomm.properties debug_level Set the default log detail level.

rsed.envvars keep.last.log Keep a copy of the previous logs
before startup/logon.

rsed.envvars enable.audit.log Keep an audit trace of client
actions.

rsed.envvars enable.standard.log Write the stdout and stderr
streams of the thread pool (or
pools) to a log file.

rsed.envvars DSTORE_TRACING_ON Enable DataStore action logging.

rsed.envvars DSTORE_MEMLOGGING_ON Enable DataStore memory usage
logging.

Operator command modify rsecommlog <level> Dynamically change the log detail
level of rsecomm.log

Operator command modify rsedaemonlog <level> Dynamically change the log detail
level of rsedaemon.log

Operator command modify rseserverlog <level> Dynamically change the log detail
level of rseserver.log

Operator command modify rsestandardlog {on|off} Dynamically change the updating
of std*.*.log

rsed.envvars daemon.log Home path for RSE started task
and audit logs.

rsed.envvars user.log Home path for user logs.

rsed.envvars _CMDSERV_WORK_HOME Home path for ISPF Client
Gateway logs

rsed.envvars TMPDIR Directory for IVP logs

rsed.envvars _CEE_DMPTARG Directory for Java dumps

Developer for System z, together with requisite software such as the ISPF Client
Gateway, also writes temporary data to /tmp and /var/rdz/WORKAREA. The amount
of data written here as a result of user actions is unpredictable, so you should have
ample free space in the file systems holding these directories.

Developer for system z always tries to clean up these temporary files, but manual
cleanup, as documented in "(Optional) WORKAREA and /tmp cleanup" in the
Host Configuration Guide (SC23-7658), can be performed at virtually any time.

The definitions in Table 27 on page 78 control where temporary data directories are
located.

Chapter 5. Tuning considerations 77

|

|

|

|
|

Table 27. Temporary output directives

Location Directive Function

rsed.envvars _CMDSERV_WORK_HOME Home path for temporary data.

rsed.envvars TMPDIR Directory for temporary data.

Key resource definitions

/etc/rdz/rsed.envvars
The environment variables defined in rsed.envvars are used by RSE, Java, and
z/OS UNIX. The sample file that comes with Developer for System z is targeted at
small to medium sized installations that do not require the optional components of
Developer for System z. "rsed.envvars, RSE configuration file" in the Host
Configuration Guide (SC23-7658) describes each variable that is defined in the
sample file, where the following variables require special attention:

_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms128m -Xmx256m"
Set initial (Xms) and maximum (Xmx) heap size. The defaults are 128M and 256M
respectively. Change to enforce the desired heap size values. If this directive is
commented out, the Java default values will be used, which are 4M and 512M
respectively (1M and 64M for Java 5.0).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.clients=60"
Maximum amount of clients serviced by one thread pool. The default is 60.
Uncomment and customize to limit the number of clients per thread pool. Note
that other limits may prevent RSE from reaching this limit.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threads=1000"
Maximum amount of active threads in one thread pool to allow new clients.
The default is 1000. Uncomment and customize to limit the number of clients
per thread pool based upon the number of threads in use. Note that each client
connection uses multiple threads (16 or more) and that other limits may
prevent RSE from reaching this limit.

Note: This value must be lower than the setting for MAXTHREADS and
MAXTHREADTASKS in SYS1.PARMLIB(BPXPRMxx).

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dminimum.threadpool.process=1"
The minimum number of active thread pools. The default is 1. Uncomment
and customize to start at least the listed number of thread pool processes.
Thread pool processes are used for load balancing the RSE server threads.
More new processes are started when they are needed. Starting the new
processes up front helps prevent connection delays but uses more resources
during idle times.

Note: If the single.logon directive is active, then there will be at least 2 thread
pools started, even if minimum.threadpool.process is set to 1. The
default setting for single.logon in rsed.envvars is active.

#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Dmaximum.threadpool.process=100"
The maximum number of active thread pools. The default is 100. Uncomment
and customize to limit the number of thread pool processes. Thread pool
processes are used for load balancing the RSE server threads, so limiting them
will limit the amount of active client connections.

78 IBM Rational Developer for System z: Host Configuration Reference

||

|||

|||

|||
|

|

|
|
|

SYS1.PARMLIB(BPXPRMxx)
RSE is a Java application, which means that it is active in the z/OS UNIX
environment. This promotes BPXPRMxx to become a crucial parmlib member, as it
contains the parameters that control the z/OS UNIX environment and file systems.
BPXPRMxx is described in the MVS Initialization and Tuning Reference (SA22-7592).
The following directives are known to impact Developer for System z:

MAXPROCSYS(nnnnn)
Specifies the maximum number of processes that the system allows.

Value Range: nnnnn is a decimal value from 5 to 32767.
Default: 900

MAXPROCUSER(nnnnn)
Specifies the maximum number of processes that a single z/OS UNIX user ID
can have concurrently active, regardless of how the processes were created.

Value Range: nnnnn is a decimal value from 3 to 32767.
Default: 25

Note:

v All RSE processes use the same z/OS UNIX user ID (that of the user
who is assigned to RSE daemon), because all clients run as threads
within the RSE processes.

v This value can also be set with the PROCUSERMAX variable in the
OMVS security profile segment of the user assigned to the RSED
started task.

MAXTHREADS(nnnnnn)
Specifies the maximum number of pthread_created threads, including running,
queued, and exited but undetached, that a single process can have
concurrently active. Specifying a value of 0 prevents applications from using
pthread_create.

Value Range: nnnnnn is a decimal value from 0 to 100000.
Default: 200

Note:

v Each client uses at least 16 threads within the RSE thread pool
process, and multiple clients are active within the process.

v This value can also be set with the THREADSMAX variable in the
OMVS security profile segment of the user assigned to the RSED
started task. When set, the THREADSMAX value is used for both
MAXTHREADS and MAXTHREADTASKS.

MAXTHREADTASKS(nnnnn)
Specifies the maximum number of MVS tasks that a single process can have
concurrently active for pthread_created threads.

Value Range: nnnnn is a decimal value from 0 to 32768.
Default: 1000

Note:

v Each active thread has an MVS task (TCB, Task Control Block).
v Each concurrent MVS task requires additional storage, some of which

must be below the 16MB line.

Chapter 5. Tuning considerations 79

v Each client uses at least 16 threads within the RSE thread pool
process, and multiple clients are active within the process.

v This value can also be set with the THREADSMAX variable in the
OMVS security profile segment of the user assigned to the RSED
started task. When set, the THREADSMAX value is used for both
MAXTHREADS and MAXTHREADTASKS.

MAXUIDS(nnnnn)
Specifies the maximum number of z/OS UNIX user IDs (UIDs) that can
operate concurrently.

Value Range: nnnnn is a decimal value from 1 to 32767.
Default: 200

MAXASSIZE(nnnnn)
Specifies the RLIMIT_AS resource values that will be established as the initial
values for new processes. RLIMIT_AS indicates the address space region size.

Value Range: nnnnn is a decimal value from 10485760 (10 Megabytes)
to 2147483647 (2 Gigabytes).

Default: 209715200 (200 Megabytes)

Note:

v This value should be set to 2G.
v This value can also be set with the ASSIZEMAX variable in the OMVS

security profile segment of the user assigned to the RSED started task.

MAXFILEPROC(nnnnnn)
Specifies the maximum number of descriptors for files, sockets, directories, and
any other file system objects that a single process can have concurrently active
or allocated.

Value Range: nnnnnn is a decimal value from 3 to 524287.
Default: 64000

Note:

v A thread pool has all his client threads in a single process.
v This value can also be set with the FILEPROCMAX variable in the

OMVS security profile segment of the user assigned to the RSED
started task.

MAXMMAPAREA(nnnnn)
Specifies the maximum amount of data space storage space (in pages) that can
be allocated for memory mappings of z/OS UNIX files. Storage is not allocated
until the memory mapping is active.

Value Range: nnnnn is a decimal value from 1 to 16777216.
Default: 40960

Note: This value can also be set with the MMAPAREAMAX variable in the
OMVS security profile segment of the user assigned to the RSED started
task.

Use the SETOMVS or SET OMVS operator command to dynamically (until next
IPL) increase or decrease the value of any of the previous BPXPRMxx variables. To

80 IBM Rational Developer for System z: Host Configuration Reference

make a permanent change, edit the BPXPRMxx member that will be used for IPLs.
Refer to MVS System Commands (SA22-7627) for more information on these
operator commands.

The following definitions are sub-parameters of the NETWORK statement.

MAXSOCKETS(nnnnnnnn)
Specifies the maximum number of sockets supported by this file system for
this address family. This is an optional parameter.

Value Range: nnnnnnnn is a decimal value from 0 to 16777215.
Default: 100

INADDRANYCOUNT(nnnn)
Specifies the number of ports that the system reserves for use with PORT 0,
INADDR_ANY binds, starting with the port number specified in the
INADDRANYPORT parameter. This value is only needed for CINET (multiple
TCP/IP stacks).

Value Range: nnnn is a decimal value from 1 to 4000.
Default: If neither INADDRANYPORT or INADDRANYCOUNT

is specified, the default for INADDRANYCOUNT is 1000.
Otherwise, no ports are reserved (0).

Various resource definitions

EXEC card in the server JCL
The following definitions are recommended to be added to the EXEC card in the
JCL of the Developer for System z servers.

REGION=0M
REGION=0M is recommended for the RSE daemon and JES Job Monitor started
tasks, RSED and JMON respectively. By doing so, the address space size is
limited only by the available private storage, or by the IEFUSI or IEALIMIT
system exits. Note that IBM strongly recommends not to use these exits for
z/OS UNIX address spaces, like RSE daemon.

TIME=NOLIMIT
TIME=NOLIMIT is recommended to be used for all Developer for System z
servers. This because the CPU time of all Developer for System z clients
accumulates in the server address spaces.

FEK.#CUST.PARMLIB(FEJJCNFG)
The environment variables defined in FEJJCNFG are used by JES Job Monitor. The
sample file that comes with Developer for System z is targeted at small to medium
sized installations. "FEJJCNFG, JES Job Monitor configuration file" in the Host
Configuration Guide (SC23-7658) describes each variable that is defined in the
sample file, where the following variables require special attention:

MAX_THREADS
Maximum number of users that can be using one JES Job Monitor at a time.
The default is 200. The maximum value is 2147483647. Increasing this number
may require you to increase the size of the JES Job Monitor address space.

Chapter 5. Tuning considerations 81

SYS1.PARMLIB(IEASYSxx)
IEASYSxx holds system parameters and is described in the MVS Initialization and
Tuning Reference (SA22-7592). The following directives are known to impact
Developer for System z:

MAXUSER=nnnnn
This parameter specifies a value that, under most conditions, the system uses
to limit the number of jobs and started tasks that can run concurrently during
a given IPL.

Value Range: nnnnn is a decimal value from 0-32767. Note that the
sum of the values specified for the MAXUSER, RSVSTRT,
and RSVNONR system parameters cannot exceed 32767.

Default Value: 255

SYS1.PARMLIB(IVTPRMxx)
IVTPRMxx sets parameters for the Communication Storage Manager (CSM), and is
described in the MVS Initialization and Tuning Reference (SA22-7592). The following
directives are known to impact Developer for System z:

FIXED MAX(maxfix)
Defines the maximum amount of storage dedicated to fixed CSM buffers.

Value Range: maxfix is a value from 1024K to 2048M.
Default: 100M

ECSA MAX(maxecsa)
Defines the maximum amount of storage dedicated to ECSA CSM buffers.

Value Range: maxecsa is a value from 1024K to 2048M.
Default: 100M

SYS1.PARMLIB(ASCHPMxx)
The ASCHPMxx parmlib member contains scheduling information for the ASCH
transaction scheduler, and is described in the MVS Initialization and Tuning Reference
(SA22-7592). The following directives are known to impact Developer for System z:

MAX(nnnnn)
An optional parameter of the CLASSADD definition that specifies the
maximum number of APPC transaction initiators that are allowed for a
particular class of transaction initiators. After this limit is reached, no new
address spaces are created and incoming requests are queued to wait until
existing initiator address spaces become available. The value should not exceed
the maximum number of address spaces allowed by your installation, and you
should be aware of competing products on the system that will also require
address spaces.

Value Range: nnnnn is a decimal value from 1 to 64000.
Default: 1

Note: If you use APPC to start the TSO Commands service, then the
transaction class used must have enough transaction initiators to allow
one initiator for each concurrent user of Developer for System z.

82 IBM Rational Developer for System z: Host Configuration Reference

Monitoring
Since user workloads can change the need for system resources, the system should
be monitored regularly to measure resource usage so that Rational Developer for
System z and system configurations can be adjusted in response to user
requirements. The following commands can be used to aid in this monitoring
process.

Monitoring RSE
RSE thread pools are the focal point for user activity in Developer for System z,
and thus require monitoring for optimal use. RSE daemon can be queried for
information that cannot be gathered with regular system monitoring tools.
v Use your regular system monitoring tools, such as RMF™, to gather address

space-specific data such as used real storage and CPU-time. If you do not have a
dedicated monitoring tool, then basic information can be gathered with tools like
the SDSF DA view or TASID (an as-is system information tool available via the
ISPF “Support and downloads” webpage).

v During startup, the RSE daemon reports the available address space size and
Java heap size with console message FEK004I.
FEK004I RseDaemon: Max Heap Size=65MB and private AS Size=1,959MB

v The MODIFY RSED,APPL=DISPLAY PROCESS operator command displays
the RSE thread pool processes. The “Memory Usage” field shows how much of
the defined Java heap is actually used. Refer to "Operator commands" in the
Host Configuration Guide (SC23-7658) for more information on this command.
f rsed,appl=d p
BPXM023I (STCRSE)
ProcessId(16777456) Memory Usage(33%) Clients(4) Order(1)

More information is provided when the DETAIL option of the DISPLAY
PROCESS modify command is used:
f rsed,appl=d p,detail
BPXM023I (STCRSE)
ProcessId(33555087) ASId(002E) JobName(RSED8) Order(1)
PROCESS LIMITS: CURRENT HIGHWATER LIMIT
JAVA HEAP USAGE(%) 10 56 100
CLIENTS 0 25 60
MAXFILEPROC 83 103 64000
MAXPROCUSER 97 99 200
MAXTHREADS 9 14 1500
MAXTHREADTASKS 9 14 1500

Monitoring z/OS UNIX
Most z/OS UNIX limits that are of interest for Developer for System z can be
displayed using operator commands. Some commands even show the current
usage and the high-water mark for a specific limit. Refer to MVS System Commands
(SA22-7627) for more information on these commands.
v The LIMMSG(ALL) directive in SYS1.PARMLIB(BPXPRMxx) tells z/OS UNIX to

display console messages (BPXI040I) when any of the parmlib limits is about to
be reached. The default value for LIMMSG is NONE, which disables the function.
Use operator command SETOMVS LIMMSG=ALL to dynamically activate this
function (until next IPL). Refer to MVS Initialization and Tuning Reference
(SA22-7592) for more information on this directive.

v The DISPLAY OMVS,OPTIONS operator command displays the current values
of z/OS UNIX directives that can be set dynamically.

Chapter 5. Tuning considerations 83

d omvs,o
BPXO043I 13.10.16 DISPLAY OMVS 066
OMVS 000D ETC/INIT WAIT OMVS=(M7)
CURRENT UNIX CONFIGURATION SETTINGS:
MAXPROCSYS = 256 MAXPROCUSER = 16
MAXFILEPROC = 256 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 1000 MAXUIDS = 200
MAXPTYS = 256
MAXMMAPAREA = 256 MAXASSIZE = 209715200
MAXTHREADS = 200 MAXTHREADTASKS = 1000
MAXCORESIZE = 4194304 MAXSHAREPAGES = 4096
IPCMSGQBYTES = 2147483647 IPCMSGQMNUM = 10000
IPCMSGNIDS = 500 IPCSEMNIDS = 500
IPCSEMNOPS = 25 IPCSEMNSEMS = 1000
IPCSHMMPAGES = 25600 IPCSHMNIDS = 500
IPCSHMNSEGS = 500 IPCSHMSPAGES = 262144
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST =
USERIDALIASTABLE=
SERV_LINKLIB = POSIX.DYNSERV.LOADLIB BPXLK1
SERV_LPALIB = POSIX.DYNSERV.LOADLIB BPXLK1
PRIORITYPG VALUES: NONE
PRIORITYGOAL VALUES: NONE
MAXQUEUEDSIGS = 1000 SHRLIBRGNSIZE = 67108864
SHRLIBMAXPAGES = 4096 VERSION = /
SYSCALL COUNTS = NO TTYGROUP = TTY
SYSPLEX = NO BRLM SERVER = N/A
LIMMSG = NONE AUTOCVT = OFF
RESOLVER PROC = DEFAULT
AUTHPGMLIST = NONE
SWA = BELOW

v The DISPLAY OMVS,LIMITS operator command displays information about
current z/OS UNIX System Services parmlib limits, their high-water marks, and
current system usage.
d omvs,l
BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=SYSTEM

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
MAXSHAREPAGES 0 10 4096
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144 *
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096

The command displays high-water marks and current usage for an individual
process when the PID=processid keyword is also specified.
d,omvs,l,pid=16777456
BPXO051I 14.06.28 DISPLAY OMVS 645
OMVS 000E ACTIVE OMVS=(76)
USER JOBNAME ASID PID PPID STATE START CT_SECS
STCRSE RSED8 007E 16777456 67109106 HF---- 20.00.56 113.914
LATCHWAITPID= 0 CMD=java -Ddaemon.log=/var/rdz/logs -
PROCESS LIMITS: LIMMSG=NONE

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

84 IBM Rational Developer for System z: Host Configuration Reference

MAXFILEPROC 83 103 256
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 97 99 200
MAXQUEUEDSIGS 0 1 1000
MAXTHREADS 9 14 200
MAXTHREADTASKS 9 14 1000
IPCSHMNSEGS 0 0 500
MAXCORESIZE --- --- 4194304
MAXMEMLIMIT 0 0 16383P

v The DISPLAY OMVS,PFS operator command displays information about each
physical file system that is currently part of the z/OS UNIX configuration,
which includes the TCP/IP stacks.
d omvs,p
BPXO046I 14.35.38 DISPLAY OMVS 092
OMVS 000E ACTIVE OMVS=(33)
PFS CONFIGURATION INFORMATION
PFS TYPE DESCRIPTION ENTRY MAXSOCK OPNSOCK HIGHUSED
TCP SOCKETS AF_INET EZBPFINI 50000 244 8146
UDS SOCKETS AF_UNIX BPXTUINT 64 6 10
ZFS LOCAL FILE SYSTEM IOEFSCM

14:32.00 RECYCLING
HFS LOCAL FILE SYSTEM GFUAINIT
BPXFTCLN CLEANUP DAEMON BPXFTCLN
BPXFTSYN SYNC DAEMON BPXFTSYN
BPXFPINT PIPE BPXFPINT
BPXFCSIN CHAR SPECIAL BPXFCSIN
NFS REMOTE FILE SYSTEM GFSCINIT
PFS NAME DESCRIPTION ENTRY STATUS FLAGS
TCP41 SOCKETS EZBPFINI ACT CD
TCP42 SOCKETS EZBPFINI ACT
TCP43 SOCKETS EZBPFINI INACT SD
TCP44 SOCKETS EZBPFINI INACT

PFS PARM INFORMATION
HFS SYNCDEFAULT(60) FIXED(50) VIRTUAL(100)

CURRENT VALUES: FIXED(55) VIRTUAL(100)
NFS biod(6)

v The DISPLAY OMVS,PID=processid operator command displays the thread
information for a specific process.
d omvs,pid=16777456
BPXO040I 15.30.01 DISPLAY OMVS 637
OMVS 000E ACTIVE OMVS=(76)
USER JOBNAME ASID PID PPID STATE START CT_SECS
STCRSE RSED8 007E 16777456 67109106 HF---- 20.00.56 113.914
LATCHWAITPID= 0 CMD=java -Ddaemon.log=/var/rdz/logs -
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0E08A00000000000 005E6DF0 OMVS .927 RCV FU
0E08F00000000001 005E6C58 .001 PTX JYNV
0E09300000000002 005E6AC0 7.368 PTX JYNV
0E0CB00000000008 005C2CF0 OMVS 1.872 SEL JFNV
0E192000000003CE 005A0B70 OMVS IBMUSER 14.088 POL JFNV
0E18D000000003CF 005A1938 IBMUSER .581 SND JYNV

Monitoring the network
When supporting a large number of clients connecting to the host, then not only
Developer for System z, but also your network infrastructure must be able to
handle the workload. Network management is a broad and well documented
subject that falls out of the scope of Developer for System z documentation.
Therefore, only the following pointers are provided.
v The DISPLAY NET,CSM operator command allows you to monitor the use of

storage managed by the communications storage manager (CSM). You can use

Chapter 5. Tuning considerations 85

this command to determine how much CSM storage is in use for ECSA and data
space storage pools, as documented in Communications Server SNA Operations
(SC31-8779).

Monitoring z/OS UNIX file systems
Developer for System z uses z/OS UNIX file systems to store various types of
data, such as logs and temporary files. Use the z/OS UNIX df command to see
how many file descriptors are still available and how much free space is left before
the next extent of the underlying HFS or zFS data set will be created.
$ df
Mounted on Filesystem Avail/Total Files Status
/tmp (OMVS.TMP) 1393432/1396800 4294967248 Available
/u/ibmuser (OMVS.U.IBMUSER) 1248/1728 4294967281 Available
/usr/lpp/rdz (OMVS.FEK.HHOP760) 3062/43200 4294967147 Available
/var (OMVS.VAR) 27264/31680 4294967054 Available

Sample setup
The following sample setup shows the required configuration to support these
requirements:
v 500 simultaneous client connections
v 300 simultaneous MVS builds (batch job)
v 200 simultaneous CARMA connections (using the CRASTART startup method)
v 3 hour inactivity time-out
v disallow usage of z/OS UNIX
v SCLM Developer Toolkit and File Manager Integration are not used
v Foresee an average Java heap usage of 5 MB
v Users have unique z/OS UNIX UIDs

Thread pool count
By default, Developer for system z tries to add 60 users to a single thread pool.
However, our requirements indicate that the inactivity time-out will be active.
Table 24 on page 67 shows that this will add 1 thread per connected client. This
thread is a timer thread, and thus constantly active. This will prevent RSE from
putting 60 users in a single thread pool, as 60*(16+1)=1020, and maximum.threads is
set to 1000 by default.

We could increase maximum.threads, but due to the requirement to have on average
5 MB of Java heap per user, we choose to lower maximum.clients to 50. This keeps
us within the default 256 MB maximum Java heap size (5*50 = 250).

With 50 clients per thread pool and the need to support 500 connections, we now
know we will need 10 thread pool address spaces.

Determine minimum limits
Using the formulas shown earlier in this chapter and the criteria stated at the
beginning of this section, we can determine the resource usage that must be
accommodated.
v Address space count - maximum

3 + A + N*(x + y + z) + (2 + N*0.01)
3 + 10 + 500*1 + 200*1 + 300*1 + (2 + 500*0.01) = 1020

v Address space count - per user

86 IBM Rational Developer for System z: Host Configuration Reference

x + y + z
1 + 1 + 1 = 3

v Process count - maximum
7 + 2*A + N*(x + y + z) + (10 + N*0.05)
7 + 2*10 + 500*2 + 200*1 + 300*0 + (10 + 500*0.05) = 1562

v Process count - per user
(x + y + z) + 5*s
(2 + 1 + 0) + 5*0 = 3

v Thread count - RSE thread pool
9 + N*(16 + x + y + z) + (20 + N*0.1)
9 + 60*(16 + 1 + 4 + 0) + (20 + 60*0.1) = 1295

v Thread count - JES Job Monitor
3 + N
3 + 500 = 503

v User IDs
500 + 3 = 503
The 3 extra user IDs are for STCJMON, STCLOCK and STCRSE, the Developer
for System z started task user IDs.

Defining limits
Now that the resource usage numbers are known, we can customize the limiting
directives with appropriate values.
v /etc/rdz/rsed.envvars

– Xmx256m

not changed
– Dmaximum.clients=50
– Dmaximum.threads=1000

not changed
– Dminimum.threadpool.process=10

This change is optional; RSE will start new thread pools as needed
– DHIDE_ZOS_UNIX=true
– DDSTORE_IDLE_SHUTDOWN_TIMEOUT=10800000

v FEK.#CUST.PARMLIB(FEJJCNFG)
– MAX_THREADS=503

v SYS1.PARMLIB(BPXPRMxx)
– MAXPROCSYS(2500)

1562 minimum, added extra buffer for tasks other than Developer
for System z

– MAXPROCUSER(25)

not changed, minimum 3
– MAXTHREADS(1500)

Chapter 5. Tuning considerations 87

must be minimum 503 (for JES Job Monitor) if THREADSMAX in the
OMVS segment of user ID STCRSE is used to set the limit for RSE
(minimum 1295)

– MAXTHREADTASKS(1500)

must be minimum 503 (for JES Job Monitor) if THREADSMAX in the
OMVS segment of user ID STCRSE is used to set the limit for RSE
(minimum 1295)

– MAXUIDS(700)

503 minimum, added extra buffer for tasks other than Developer
for System z

– MAXASSIZE(209715200)

not changed (200 MB system default), we use ASSIZEMAX in the OMVS
segment of user ID STCRSE

v SYS1.PARMLIB(IEASYSxx)
– MAXUSER=2000

1020 minimum, added extra buffer for tasks other than
Developer for System z

v OMVS segment of user ID STCRSE
– ASSIZEMAX(2147483647)

2 GB

Monitor resource usage
After activating the system limits as documented in “Defining limits” on page 87,
we can start monitoring the resource usage by Developer for System z to see if
adjustment of some variables is needed. Figure 21 on page 89 shows the resource
usage after 495 users logged on. (The example in the figure shows just the logging
on. No user actions are indicated in the example.)

88 IBM Rational Developer for System z: Host Configuration Reference

BPXM023I (STCRSE)
ProcessId(16779764) Memory Usage(10%) Clients(50) Order(1)
ProcessId(67108892) Memory Usage(16%) Clients(50) Order(2)
ProcessId(67108908) Memory Usage(10%) Clients(50) Order(3)
ProcessId(67108898) Memory Usage(16%) Clients(50) Order(4)
ProcessId(67108916) Memory Usage(16%) Clients(50) Order(5)
ProcessId(67108897) Memory Usage(16%) Clients(50) Order(6)
ProcessId(67108921) Memory Usage(16%) Clients(50) Order(7)
ProcessId(83886146) Memory Usage(16%) Clients(50) Order(8)
ProcessId(67108920) Memory Usage(16%) Clients(50) Order(9)
ProcessId(3622) Memory Usage(8%) Clients(45) Order(10)

Jobname Cpu time Storage EXCP
-------- ----------- ------- ----------
JMON 1.74 43.0M 2753
LOCKD 10.05 31.9M 24621
RSED 6.65 40.1M 41780
RSED1 8.17 187.0M 76566
RSED2 13.04 184.9M 78946
RSED3 17.77 181.1M 76347
RSED4 11.63 174.9M 74638
RSED5 15.27 172.9M 72883
RSED6 13.85 180.8M 75031
RSED7 9.79 174.3M 76636
RSED8 21.59 176.1M 70583
RSED8 18.88 184.7M 76953
RSED9 9.52 189.8M 80490

Figure 21. Resource usage of sample setup

Chapter 5. Tuning considerations 89

90 IBM Rational Developer for System z: Host Configuration Reference

Chapter 6. Performance considerations

z/OS is a highly customizable operating system, and (sometimes small) system
changes can have a huge impact on the overall performance. This chapter
highlights some of the changes that can be made to improve the performance of
Developer for System z.

Refer to the MVS Initialization and Tuning Guide (SA22-7591) and UNIX System
Services Planning (GA22-7800) for more information on system tuning.

Use zFS file systems
zFS (zSeries® File System) and HFS (Hierarchical File System) are both UNIX file
systems that can be used in a z/OS UNIX environment. However, zFS provides the
following features and benefits:
v Performance gains in many customer environments when accessing files

approaching 8K in size that are frequently accessed and updated. The access
performance of smaller files is equivalent to that of HFS.

v Read-only cloning of a file system in the same data set. The cloned file system
can be made available to users to provide a read-only point-in-time copy of a
file system. This is an optional feature that is available only in a non-sysplex
environment.

v zFS is the strategic z/OS UNIX file system. The HFS functionality has been
stabilized, and enhancements to the file system will be for zFS only.

Refer to UNIX System Services Planning (GA22-7800) to learn more about zFS.

Avoid use of STEPLIB
Each z/OS UNIX process that has a STEPLIB that is propagated from parent to
child or across an exec will consume about 200 bytes of Extended Common
Storage Area (ECSA). If no STEPLIB environment variable is defined, or when it is
defined as STEPLIB=CURRENT, z/OS UNIX propagates all currently active TASKLIB,
STEPLIB, and JOBLIB allocations during a fork(), spawn(), or exec() function.

Developer for System z has a default of STEPLIB=NONE coded in rsed.envvars, as
described in rsed.envvars, configuration file. For the reasons mentioned above, it
is advised not to change this directive and place the targeted data sets in
LINKLIST or LPA (Link Pack Area) instead.

Improve access to system libraries
Certain system libraries and load modules are heavily used by z/OS UNIX and
application development activities. Improving access to these, such as adding them
to the Link Pack Area (LPA) can improve your system performance. Refer to MVS
Initialization and Tuning Reference (SA22-7592) for more information on changing the
SYS1.PARMLIB members described as follows:

Language Environment (LE) runtime libraries
When C programs (including the z/OS UNIX shell) are run, they frequently use
routines from the Language Environment (LE) runtime library. On average, about 4

© Copyright IBM Corp. 2010 91

MB of the runtime library are loaded into memory for every address space running
a LE-enabled program, and copied on every fork.

CEE.SCEELPA

The CEE.SCEELPA data set contains a subset of the LE runtime routines, which are
heavily used by z/OS UNIX. You should add this data set to
SYS1.PARMLIB(LPALSTxx) for maximum performance gain. By doing so, the
modules are read from disk only once and are stored in a shared location.

Note: Add the following statement to SYS1.PARMLIB(PROGxx) if you prefer to add
the load modules into dynamic LPA (Link Pack Area):
LPA ADD MASK(*) DSNAME(CEE.SCEELPA)

It is also advised to place the LE runtime libraries CEE.SCEERUN and CEE.SCEERUN2
in LINKLIST, by adding the data sets to SYS1.PARMLIB(LNKLSTxx) or
SYS1.PARMLIB(PROGxx). This eliminates z/OS UNIX STEPLIB overhead and there is
reduced input/output due to management by LLA and VLF, or similar products.

Note: Add the C/C++ DLL class library CBC.SCLBDLL also to LINKLIST for the
same reasons.

If you decide not to put these libraries in LINKLIST, then you must set up the
appropriate STEPLIB statement in rsed.envvars, as described in rsed.envvars,
configuration file. Although this method always uses additional virtual storage,
you can improve performance by defining the LE runtime libraries to LLA or a
similar product. This reduces the I/O that is needed to load the modules.

Application development
On systems where application development is the primary activity, performance
may also benefit if you put the linkage editor into dynamic LPA, by adding the
following lines to SYS1.PARMLIB(PROGxx):
LPA ADD MODNAME(CEEBINIT,CEEBLIBM,CEEEV003,EDCZV) DSNAME(CEE.SCEERUN)
LPA ADD MODNAME(IEFIB600,IEFXB603) DSNAME(SYS1.LINKLIB)

For C/C++ development, you can also add the CBC.SCCNCMP compiler data set to
SYS1.PARMLIB(LPALSTxx).

The statements above are samples of possible LPA candidates, but the needs at
your site may vary. Refer to Language Environment Customization (SA22-7564) for
information on putting other LE load modules into dynamic LPA. Refer to UNIX
System Services Planning (GA22-7800) for more information on putting C/C++
compiler load modules into dynamic LPA.

Improving performance of security checking
To improve the performance of security checking done for z/OS UNIX, define the
BPX.SAFFASTPATH profile in the FACILITY class of your security software. This
reduces overhead when doing z/OS UNIX security checks for a wide variety of
operations. These include file access checking, IPC access checking, and process
ownership checking. Refer to UNIX System Services Planning (GA22-7800) for more
information on this profile.

Note: Users do not need to be permitted to the BPX.SAFFASTPATH profile.

92 IBM Rational Developer for System z: Host Configuration Reference

Workload management
Each site has specific needs, and can customize the z/OS operating system to get
the most out of the available resources to meet those needs. With workload
management, you define performance goals and assign a business importance to
each goal. You define the goals for work in business terms, and the system decides
how much resource, such as CPU and storage, should be given to the work to
meet its goal.

Developer for System z performance can be balanced by setting the correct goals
for its processes. Some general guidelines are listed as follows:
v When used, assign the APPC transaction to a TSO performance group.
v Assign a started task performance group (SYSSTC) to the Developer for System

z server address spaces: JES Job Monitor (JMON), Lock daemon (LOCKD), RSE
daemon (RSED), and RSE thread pools (RSEDx).

Refer to MVS Planning Workload Management (SA22-7602) for more information on
this subject.

Fixed Java heap size
With a fixed-size heap, no heap expansion or contraction occurs and this can lead
to significant performance gains in some situations. However, using a fixed-size
heap is usually not a good idea, because it delays the start of garbage collection
until the heap is full, at which point it will be a major task. It also increases the
risk of fragmentation, which requires a heap compaction. Therefore, use fixed-size
heaps only after proper testing or under the direction of the IBM support center.
Refer to Java Diagnostics Guide (SC34-6650) for more information on heap sizes and
garbage collection.

By default, the initial heap size of a z/OS Java Virtual Machine (JVM) is 1
megabyte. The maximum size is 64 megabytes. The limits can be set with the -Xms
(initial) and -Xmx (maximum) Java command-line options.

In Developer for System z, Java command-line options are defined in the
_RSE_JAVAOPTS directive of rsed.envvars, as described in "Defining extra Java
startup parameters with _RSE_JAVAOPTS" in the Host Configuration Guide
(SC23-7658).
#_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xms128m -Xmx128m"

Java -Xquickstart option

Note: Java -Xquickstart is only useful if you use the REXEC/SSH alternate startup
method for RSE server. This method is documented in "(Optional) Using
REXEC (or SSH)" in the Host Configuration Guide (SC23-7658).

The -Xquickstart option can be used for improving startup time of some Java
applications. -Xquickstart causes the JIT (Just In Time) compiler to run with a
subset of optimizations; that is, a quick compile. This quick compile allows for
improved startup time.

Chapter 6. Performance considerations 93

-Xquickstart is appropriate for shorter running applications, especially those where
execution time is not concentrated into a small number of methods. -Xquickstart
can degrade performance if it is used on longer-running applications that contain
hot methods.

To enable the -Xquickstart option for the RSE server, add the following directive to
the end of rsed.envvars:
_RSE_JAVAOPTS="$_RSE_JAVAOPTS -Xquickstart"

Class sharing between JVMs
The IBM Java Virtual Machine (JVM) version 5 and higher allows you to share
bootstrap and application classes between JVMs by storing them in a cache in
shared memory. Class sharing reduces the overall virtual memory consumption
when more than one JVM shares a cache. Class sharing also reduces the startup
time for a JVM after the cache has been created.

The shared class cache is independent of any active JVM and persists beyond the
lifetime of the JVM that created the cache. Because the shared class cache persists
beyond the lifetime of any JVM, the cache is updated dynamically to reflect any
modifications that might have been made to JARs or classes on the file system.

The overhead to create and populate a new cache is minimal. The JVM startup cost
in time for a single JVM is typically between 0 and 5% slower compared with a
system not using class sharing, depending on how many classes are loaded. JVM
startup time improvement with a populated cache is typically between 10% and
40% faster compared with a system not using class sharing, depending on the
operating system and the number of classes loaded. Multiple JVMs running
concurrently will show greater overall startup time benefits.

Refer to the Java SDK and Runtime Environment User Guide to learn more about
class sharing.

Enable class sharing
To enable class sharing for the RSE server, add the following directive to the end of
rsed.envvars. The first statement defines a cache named RSE with group access
and it allows the RSE server to start even if class sharing fails. The second
statement is optional and it sets the cache size to 6 megabytes (system default is 16
MB). The third statement adds the class sharing parameters to the Java startup
options.
_RSE_CLASS_OPTS=-Xshareclasses:name=RSE,groupAccess,nonFatal
#_RSE_CLASS_OPTS="$_RSE_CLASS_OPTS -Xscmx6m
_RSE_JAVAOPTS="$_RSE_JAVAOPTS $_RSE_CLASS_OPTS"

Note: As mentioned in “Cache security” on page 95, all users using the shared
class must have the same primary group ID (GID). This means that the
users must have the same default group defined in the security software, or
that the different default groups have the same GID in their OMVS segment.

Cache size limits
The maximum theoretical shared cache size is 2 GB. The size of cache you can
specify is limited by the amount of physical memory and swap space available to
the system. Because the virtual address space of a process is shared between the
shared class cache and the Java heap, increasing the maximum size of the Java
heap will reduce the size of the shared class cache you can create.

94 IBM Rational Developer for System z: Host Configuration Reference

Cache security
Access to the shared class cache is limited by operating system permissions and
Java security permissions.

By default, class caches are created with user-level security, so only the user that
created the cache can access it. On z/OS UNIX, there is an option, groupAccess,
which gives access to all users in the primary group of the user that created the
cache. However, regardless of the access level used, a cache can only be destroyed
by the user that created it or by a root user (UID 0).

Refer to Java SDK and Runtime Environment User Guide to learn more about extra
security options using a Java SecurityManager.

SYS1.PARMLIB(BPXPRMxx)
Some of the SYS1.PARMLIB(BPXPRMxx) settings affect shared classes performance.
Using the wrong settings can stop shared classes from working. These settings
might also have performance implications. For further information about
performance implications and use of these parameters, refer to MVS Initialization
and Tuning Reference (SA22-7592) and UNIX System Services Planning (GA22-7800).
The most significant BPXPRMxx parameters that affect the operation of shared classes
are the following:
v MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES and IPCSHMNSEGS

These settings affect the amount of shared memory pages available to the JVM.
The shared page size for a 31-bit z/OS UNIX system service is fixed at 4 KB.
Shared classes try to create a 16 MB cache by default. Therefore set IPCSHMMPAGES
greater than 4096.
If you set a cache size using -Xscmx, the JVM will round up the value to the
nearest megabyte. You must take this into account when setting IPCSHMMPAGES on
your system.

v IPCSEMNIDS and IPCSEMNSEMS

These settings affect the amount of semaphores available to UNIX processes.
Shared classes use IPC semaphores to communicate between the JVMs.

Disk space
The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is stored in
/tmp/javasharedresources. If the identification information directory is deleted, the
JVM cannot identify the shared classes on the system and must recreate the cache.

Cache management utilities
The Java -Xshareclasses line command can take a number of options, some of
which are cache management utilities. Three of them are shown in the sample
below ($ is the z/OS UNIX prompt). Refer to Java SDK and Runtime Environment
User Guide for a complete overview of supported command-line options.
$ java -Xshareclasses:listAllCaches
Shared Cache OS shmid in use Last detach time
RSE 401412 0 Mon Jun 18 17:23:16 2007

Could not create the Java virtual machine.

$ java -Xshareclasses:name=RSE,printStats

Current statistics for cache "RSE":

Chapter 6. Performance considerations 95

base address = 0x0F300058
end address = 0x0F8FFFF8
allocation pointer = 0x0F4D2E28

cache size = 6291368
free bytes = 4355696
ROMClass bytes = 1912272
Metadata bytes = 23400
Metadata % used = 1%

ROMClasses = 475
Classpaths = 4
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 30% full

Could not create the Java virtual machine.

$ java -Xshareclasses:name=RSE,destroy
JVMSHRC010I Shared Cache "RSE" is destroyed
Could not create the Java virtual machine.

Note:

v Cache utilities perform the required operation on the specified cache
without starting the JVM, so the "Could not create the Java virtual
machine." message is normal.

v A cache can be destroyed only if all JVMs using it have shut down, and
the user issuing the command has sufficient permissions.

96 IBM Rational Developer for System z: Host Configuration Reference

Chapter 7. CICSTS considerations

Traditionally, the role of defining resources to CICS has been the domain of the
CICS administrator. There has been a reluctance to allow the application developer
to define CICS resources for various reasons:
v Most CICS resource definitions have many parameters that because of their

complexity, interrelationship with other resource definitions, and shop standards
require CICS administrator knowledge to define correctly. Incorrect definitions
can cause unexpected results that might impact the entire CICS region.

v Most customer shops provide CICS development and test environments that
must be available for shared use by multiple application groups and developers.
Many customer shops have Service Level Agreements in place for these
environments. Meeting these agreements requires strict control of the
environments.

Developer for System z addresses these issues by allowing CICS administrators to
control CICS resource definition defaults, and to control the display properties of a
CICS resource definition parameter by means of the CICS Resource Definition
(CRD) server, which is part of Application Deployment Manager.

For example, the CICS administrator can supply certain CICS resource definition
parameters that might not be updated by the application developer. Other CICS
resource definition parameters may be updatable, with or without supplied
defaults, or the CICS resource definition parameter can be hidden to avoid
unnecessary complexity.

Once the application developer is satisfied with the CICS resource definitions they
may be installed immediately in the running CICS test environment, or the
definitions may be exported in a manifest for further editing and approval by a
CICS administrator. The CICS administrator can use the administrative utility
(batch utility) or the Manifest Processing tool to implement resource definition
changes.

Note: The Manifest Processing tool is a plugin for IBM CICS Explorer.

Refer to "(Optional) Application Deployment Manager" in the Host Configuration
Guide (SC23-7658) for more information on the tasks needed to set up Application
Deployment Manager on your host system.

Customizing Application Deployment Manager adds the following services to
Developer for System z:
v (on the client) IBM CICS Explorer™ provides an Eclipse-based infrastructure to

view and manage CICS resources and enables greater integration between CICS
tools

v (on the client) CICS Resource Definition (CRD) editor
v (on the host) CICS Resource Definition (CRD) server, which runs as a CICS

application

The Application Deployment Manager CICS Resource Definition (CRD) server
consists of the CRD server itself, a CRD repository, associated CICS resource
definitions, and, when using the Web Service interface, Web Service bind files, and

© Copyright IBM Corp. 2010 97

a sample pipeline message handler. The CRD server must run in a Web Owning
Region (WOR), which is referenced in the Developer for System z documentation
as the CICS primary connection region.

Refer to the Developer for System z Information Center (http://
publib.boulder.ibm.com/infocenter/ratdevz/v7r6/index.jsp) to learn more about
the services Application Deployment Manager available in the current release of
Developer for System z.

RESTful versus Web Service
CICS Transaction Server provides in version 4.1 and higher support for an HTTP
interface designed using Representational State Transfer (RESTful) principles. This
RESTful interface is now the strategic CICSTS interface for use by client
applications. The older Web Service interface has been stabilized, and
enhancements will be for the RESTful interface only.

Application Deployment Manager follows this statement of direction and requires
the RESTful CRD server for all services that are new to Developer for System
version 7.6 or higher.

The RESTful and Web Service interfaces can be active concurrently in a single CICS
region, if desired. In this case, there will be two CRD servers active in the region.
Both servers will share the same CRD repository. Note that CICS will issue some
warnings about duplicate definitions when the second interface is defined to the
region.

Primary versus non-primary connection regions
A CICS test environment may consist of several Multi-Region Option (MRO)
connected regions. Over time, unofficial designations have been used to categorize
these regions. Typical designations are Terminal Owning Region (TOR), Web
Owning Region (WOR), Application Owning Region (AOR), and Data Owning
Region (DOR).

A Web Owning Region is used to implement CICS Web Services support, and the
Application Deployment Manager CICS Resource Definition (CRD) server must
run in this region. This region is known to Application Deployment Manager as
the CICS primary connection region. The CRD client implements a Web service
connection to the CICS primary connection region.

CICS non-primary connection regions are all other regions that the CRD server can
service. This service includes viewing resources using IBM CICS Explorer and
defining resources using the CICS resource definition editor.

If CICSPlex® SM Business Application Services (BAS) is used to manage the CICS
resource definitions of the CICS primary connection region, then all other CICS
regions managed by BAS can be serviced by the CRD server.

CICS regions not managed by BAS require additional changes to be serviceable by
the CRD server.

CICS resource install logging
Actions done by the CRD server against the CICS resources are logged in the CICS
CSDL TD queue, which typically points to DD MSGUSR of your CICS region.

98 IBM Rational Developer for System z: Host Configuration Reference

If CICSPlex SM Business Application Services (BAS) is used to manage your CICS
resource definitions, then the CICSPlex SM EYUPARM directive BASLOGMSG must be set
to (YES) for the logging to be created.

Application Deployment Manager security

CRD repository security
The CRD server repository VSAM data set holds all the default resource definitions
and must therefore be protected against updates, but developers must be allowed
to read the values stored here. Refer to “Define data set profiles” on page 32 for
sample RACF commands to protect the CRD repository.

Pipeline security
When a SOAP message is received by CICS through the Web Service interface, the
message is processed by a pipeline. A pipeline is a set of message handlers that are
executed in sequence. CICS reads the pipeline configuration file to determine
which message handlers should be invoked in the pipeline. A message handler is a
program in which you can perform special processing of Web service requests and
responses.

Application Deployment Manager provides a sample pipeline configuration file
that specifies the invocation of a message handler and a SOAP header processing
program.

The pipeline message handler (ADNTMSGH) is used for security by processing the
user ID and password in the SOAP header. ADNTMSGH is referenced by the sample
pipeline configuration file and must therefore be placed into the CICS RPL
concatenation.

Transaction security
CPIH is the default transaction ID under which an application invoked by a
pipeline will run. Typically, CPIH is set for a minimal level of authorization.

Developer for System z supplies multiple transactions that are used by the CRD
server when defining and inquiring CICS resources. These transaction IDs are set
by the CRD server, depending on the requested operation. Refer to "(Optional)
Application Deployment Manager" in the Host Configuration Guide (SC23-7658) for
more information on customizing the transaction IDs.

Transaction Description

ADMS For requests from the Manifest Processing
tool to change CICS resources. Typically, this
is intended for CICS administrators. This
transaction requires a high level or
authorization.

ADMI For requests that define, install or uninstall
CICS resources. This transaction might
require a medium level of authorization,
depending on your site policies.

ADMR For all other requests that retrieve CICS
environmental or resource information. This
transaction might require a minimal level of
authorization, depending on your site
policies.

Chapter 7. CICSTS considerations 99

Some, or all, of the resource definition requests done by the CRD server
transactions should be secured. At a minimum, the update commands (update
default Web service parameters, default descriptor parameters, and file name to
data set name binding) should be secured to prevent all but CICS administrators
from issuing these commands used to set global resource defaults.

When the transaction is attached, CICS resource security checking, if enabled,
insures that the user ID is authorized to run the transaction ID.

Resource checking is controlled by the RESSEC option in the transaction that is
running, the RESSEC system initialization parameter, and for the CRD server, the
XPCT system initialization parameter.

Resource checking occurs only if the XPCT system initialization parameter has a
value other than NO and either the RESSEC option in the TRANSACTION definition is
YES or the RESSEC system initialization parameter is ALWAYS.

The following RACF commands give a sample on how the CRD server transactions
can be protected. Refer to RACF Security Guide for CICSTS for more information on
defining CICS security.
v RALTER GCICSTRN SYSADM UACC(NONE) ADDMEM(ADMS)
v PERMIT SYSADM CLASS(GCICSTRN) ID(#cicsadmin)
v RALTER GCICSTRN DEVELOPER UACC(NONE) ADDMEM(ADMI)
v PERMIT DEVELOPER CLASS(GCICSTRN) ID(#cicsdeveloper)
v RALTER GCICSTRN ALLUSER UACC(READ) ADDMEM(ADMR)
v SETROPTS RACLIST(TCICSTRN) REFRESH

SSL encrypted communication
SSL encryption of the data stream is supported when the Application Deployment
Manager client uses the Web Services interface to invoke the CRD server. The
usage of SSL for this communication is controlled by the SSL(YES) keyword in the
CICSTS TCPIPSERVICE definition, as documented in RACF Security Guide for
CICSTS.

Resource security
CICSTS provides the ability to protect resources and the commands to manipulate
them. Certain Application Deployment Manager actions might fail if security is
active, but not configured completely (for example, granting permissions to
manipulate new resource types).

Upon function failure in Application Deployment Manager, examine the CICS log
for messages like the following, and take corrective action, as documented in RACF
Security Guide for CICSTS.
DFHXS1111 %date %time %applid %tranid Security violation by user
%userid at netname %portname for resource %resource in class
%classname. SAF codes are (X’safresp’,X’safreas’). ESM codes are
(X’esmresp’,X’esmreas’).

100 IBM Rational Developer for System z: Host Configuration Reference

Administrative utility
Developer for System z provides the administrative utility to let CICS
administrators provide the default values for CICS resource definitions. These
defaults can be read-only, or can be editable by the application developer.

The administrative utility provides the following functions:
v CICSPlex name for CICSPlex managed test environments
v CICSPlex SM staging group name
v Manifest export rule setting
v CICS resource attribute defaults and display permissions
v CICS logical to physical binding used for VSAM data set definitions

The administrative utility is invoked by sample job ADNJSPAU in data set
FEK.#CUST.JCL. The usage of this utility requires UPDATE access to the CRD
repository.

ADNJSPAU is located in FEK.#CUST.JCL, unless the z/OS system programmer
specified a different location when he customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See "Customization setup" in the Host Configuration Guide
(SC23-7658) for more details.

Note: The CRD repository must be closed in CICS before running the ADNJSPAU
job. The repository can be opened again after job completion. For example,
after signing on to CICS, enter the following commands to close and open
the file, respectively:
v CEMT S FILE(ADNREPF0) CLOSED

v CEMT S FILE(ADNREPF0) OPEN

Input control statements are used to update the CRD repository for a CICS test
environment, for which the following general syntax rules apply:
v An asterisk in position 1 indicates a comment line.
v A DEFINE command must begin in position 1, followed by a single space,

followed by a valid keyword, such as TRANSACTION.
v A keyword value must immediately follow a keyword. No intervening spaces

are permitted. The only exception is for display permission keywords UPDATE,
PROTECT, and HIDDEN, which have no values.

v Keyword values are enclosed within parenthesis.
v A keyword and its value must be contained on a single line.

The following sample definitions follow the structure of the DFHCSDUP
commands, as defined in the CICS Resource Definition Guide for CICSTS. The only
difference is the insertion of the following display permission keywords used to
group the attribute values into three permission sets:

UPDATE Attributes following this keyword will be
updatable by an application developer using
Developer for System z. This is also the
default for omitted attributes.

PROTECT Attributes following this keyword will
display, but be protected from update by an
application developer using Developer for
System z.

Chapter 7. CICSTS considerations 101

HIDDEN Attributes following this keyword will not
display, and will be protected from update
by an application developer using Developer
for System z.

See the following ADNJSPAU code sample.

102 IBM Rational Developer for System z: Host Configuration Reference

//ADNJSPAU JOB <JOB PARAMETERS>
//*
//ADNSPAU EXEC PGM=ADNSPAU,REGION=1M
//STEPLIB DD DISP=SHR,DSN=FEK.SFEKLOAD
//ADMREP DD DISP=OLD,DSN=FEK.#CUST.ADNREPF0
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
*
* CICSPlex SM parameters
*
DEFINE CPSMNAME()
*DEFINE STAGINGGROUPNAME(ADMSTAGE)
*
* Manifest export rule
*
DEFINE MANIFESTEXPORTRULE(installOnly)
*
* CICS resource definition defaults
* Omitted attributes default to UPDATE.
*
* DB2TRAN default attributes
*
DEFINE DB2TRAN()

UPDATE DESCRIPTION()
ENTRY()
TRANSID()

*
* DOCTEMPLATE default attributes
*
DEFINE DOCTEMPLATE()

UPDATE DESCRIPTION()
TEMPLATENAME()
FILE() TSQUEUE() TDQUEUE() PROGRAM() EXITPGM()
DDNAME(DFHHTML) MEMBERNAME()
HFSFILE()
APPENDCRLF(YES) TYPE(EBCDIC)

*
* File default attributes
*
DEFINE FILE()

UPDATE DESCRIPTION()
RECORDSIZE() KEYLENGTH()
RECORDFORMAT(V) ADD(NO)
BROWSE(NO) DELETE(NO) READ(YES) UPDATE(NO)
REMOTESYSTEM() REMOTENAME()

PROTECT DSNAME() RLSACCESS(NO) LSRPOOLID(1) STRINGS(1)
STATUS(ENABLED) OPENTIME(FIRSTREF)
DISPOSITION(SHARE) DATABUFFERS(2) INDEXBUFFERS(1)
TABLE(NO) MAXNUMRECS(NOLIMIT)
READINTEG(UNCOMMITTED) DSNSHARING(ALLREQS)
UPDATEMODEL(LOCKING) LOAD(NO)
JNLREAD(NONE) JOURNAL(NO)
JNLSYNCREAD(NO) JNLUPDATE(NO)
JNLADD(NONE) JNLSYNCWRITE(YES)
RECOVERY(NONE) FWDRECOVLOG(NO)
BACKUPTYPE(STATIC)
PASSWORD() NSRGROUP()
CFDTPOOL() TABLENAME()

Figure 22. ADNJSPAU - CICSTS administrative utility (Part 1 of 3)

Chapter 7. CICSTS considerations 103

*
* Mapset default attributes
*
DEFINE MAPSET()

UPDATE DESCRIPTION()
PROTECT RESIDENT(NO) STATUS(ENABLED)

USAGE(NORMAL) USELPACOPY(NO)
** Processtype default attributes
*
DEFINE PROCESSTYPE()

UPDATE DESCRIPTION()
FILE(BTS)

PROTECT STATUS(ENABLED)
AUDITLOG() AUDITLEVEL(OFF)

*
* Program default attributes
*
DEFINE PROGRAM()

UPDATE DESCRIPTION()
CEDF(YES) LANGUAGE(LE370)
REMOTESYSTEM() REMOTENAME() TRANSID()

PROTECT API(CICSAPI) CONCURRENCY(QUASIRENT)
DATALOCATION(ANY) DYNAMIC(NO)
EXECKEY(USER) EXECUTIONSET(FULLAPI)
RELOAD(NO) RESIDENT(NO)
STATUS(ENABLED) USAGE(NORMAL) USELPACOPY(NO)

HIDDEN JVM(NO) JVMCLASS() JVMPROFILE(DFHJVMPR)
*
* TDQueue default attributes
*
DEFINE TDQUEUE()

UPDATE DESCRIPTION()
TYPE(INTRA)

* Extra partition parameters
DDNAME() DSNAME()
REMOTENAME() REMOTESYSTEM() REMOTELENGTH(1)
RECORDSIZE() BLOCKSIZE(0) RECORDFORMAT(UNDEFINED)
BLOCKFORMAT() PRINTCONTROL() DISPOSITION(SHR)

* Intra partition parameters
FACILITYID() TRANSID() TRIGERRLEVEL(1)
USERID()

* Indirect parameters
INDIRECTNAME()

PROTECT WAIT(YES) WAITACTION(REJECT)
* Extra partition parameters

DATABUFFERS(1)
SYSOUTCLASS() ERROROPTION(IGNORE)
OPENTIME(INITIAL) REWIND(LEAVE) TYPEFILE(INPUT)

* Intra partition parameters
ATIFACILITY(TERMINAL) RECOVSTATUS(NO)

Figure 22. ADNJSPAU - CICSTS administrative utility (Part 2 of 3)

104 IBM Rational Developer for System z: Host Configuration Reference

Administrative utility migration notes
Developer for System z version 7.6.1 added URIMAP support to the
Administrative utility. To be able to use the URIMAP support, the CRD repository

*
* Transaction default attributes
*
DEFINE TRANSACTION()

UPDATE DESCRIPTION()
PROGRAM()
TWASIZE(0)
REMOTESYSTEM() REMOTENAME() LOCALQ(NO)

PROTECT PARTITIONSET() PROFILE(DFHCICST)
DYNAMIC(NO) ROUTABLE(NO)
ISOLATE(YES) STATUS(ENABLED)
RUNAWAY(SYSTEM) STORAGECLEAR(NO)
SHUTDOWN(DISABLED)
TASKDATAKEY(USER) TASKDATALOC(ANY)
BREXIT() PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) RESTART(NO) SPURGE(NO) TPURGE(NO)
DUMP(YES) TRACE(YES) CONFDATA(NO)
OTSTIMEOUT(NO) WAIT(YES) WAITTIME(00,00,00)
ACTION(BACKOUT) INDOUBT(BACKOUT)
RESSEC(NO) CMDSEC(NO)
TRPROF()
ALIAS() TASKREQ()
XTRANID() TPNAME() XTPNAME()

*
* URDIMAP attributes
*
DEFINE URIMAP()

UPDATE USAGE(CLIENT)
DESCRIPTION()
PATH(/required/path)
TCPIPSERVICE()
TRANSACTION()
PROGRAM()

PROTECT ANALYZER(NOANALYZER)
ATOMSERVICE()
CERTIFICATE()
CHARACTERSET()
CIPHERS()
CONVERTER()
HFSFILE()
HOST(host.mycompany.com)
HOSTCODEPAGE()
LOCATION()
MEDIATYPE()
PIPELINE()
PORT(NO)
REDIRECTTYPE(NONE)
SCHEME(HTTP)
STATUS(ENABLED)
TEMPLATENAME()
USERID()
WEBSERVICE()

*
* Optional file name to VSAM data set name binding
*
*DEFINE DSBINDING() DSNAME()
/*

Figure 22. ADNJSPAU - CICSTS administrative utility (Part 3 of 3)

Chapter 7. CICSTS considerations 105

VSAM data set must be allocated with a maximum record size of 3000. Up till
Developer for System z version 7.6.1, the sample CRD repository allocation job
uses a maximum record size of 2000.

Follow these steps to enable the URIMAP support if you’re using an older CRD
repository:
1. Create a backup of your existing CRD repository, FEK.#CUST.ADNREPF0.
2. Delete the existing CRD repository.
3. Customize and submit job FEK.SFEKSAMP(ADNVCRD) to allocate and initialize a

new CRD repository. Refer to the documentation within the member for
customization instructions.

4. Customize and submit job FEK.SFEKSAMP(ADNJSPAU) to use the Administrative
utility to populate the new CRD repository.

Note:

v Migrating the existing CRD repository is not necessary, because the
Administrative utility replaces the complete contents of the CRD
repository each time it is executed.

v There are no version compatibility issues with the CRD repository. All
supported Developer for System z client and host code will work with
either maximum record size. But URIMAP support will be disabled if the
maximum record size is not 3000.

Administrative utility messages
The following messages are issued by the Administrative utility to the SYSPRINT
DD. Messages CRAZ1803E, CRAZ1891E, CRAZ1892E, and CRAZ1893E contain file status,
VSAM return, VSAM function, and VSAM feedback codes. VSAM return, function,
and feedback codes are documented in DFSMS Macro Instructions for Data Sets
(SC26-7408). File status codes are documented in Enterprise COBOL for z/OS
Language Reference (SC27-1408).

CRAZ1800I
completed successfully on line <last control statement line number>

Explanation: The system programmer administrative utility completed
successfully.

User response: None.

CRAZ1801W
completed with warnings on line <last control statement line number>

Explanation: The system programmer administrative utility completed
with one or more warnings found when processing control statements.

User response: Check other warning messages.

CRAZ1802E
encountered an error on line < line number>

Explanation: The system programmer administrative utility encountered a
severe error.

User response: Check other warning messages.

CRAZ1803E
Repository open error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

106 IBM Rational Developer for System z: Host Configuration Reference

Explanation: The system programmer administrative utility encountered a
severe error opening the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1804E
Unrecognized input record on line <line number>

Explanation: The system programmer administrative utility encountered an
unrecognized input control statement.

User response: Check a DEFINE command was followed by a single
space, followed by the keyword CPSMNAME, STAGINGGROUPNAME,
MANIFESTEXPORTRULE, DSBINDING, DB2TRAN, DOCTEMPLATE, FILE, MAPSET,
PROCESSTYPE, PROGRAM, TDQUEUE, or TRANSACTION.

CRAZ1805E
Processing keyword <keyword> on line <line number>

Explanation: The system programmer administrative utility is processing
the DEFINE keyword input control statement.

User response: None.

CRAZ1806E
Invalid manifest export rule on line <line number>

Explanation: The system programmer administrative utility encountered an
invalid manifest export rule.

User response: Check that the MANIFESTEXPORTRULE keyword value is
"installOnly", "exportOnly", or "both".

CRAZ1807E
Missing DSNAME keyword on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE DSBINDING control statement which is missing the DSNAME
keyword.

User response: Check that the DEFINE DSBINDING control statement contains
the DSNAME keyword.

CRAZ1808E
Invalid keyword value for keyword <keyword> on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE control statement and encountered an invalid value for the named
keyword.

User response: Check that the length and value of the named keyword is
correct.

CRAZ1890W
Keyword syntax error on line <line number>

Explanation: The system programmer administrative utility was processing
a DEFINE control statement and encountered a syntax error for a keyword
or keyword value.

User response: Check that the keyword value is enclosed in parenthesis
and immediately follows the keyword. The keyword and keyword value
must both be contained on the same line.

Chapter 7. CICSTS considerations 107

CRAZ1891W
Repository duplicate key write error, status=<file status code>
RC=<VSAM return code> FC=<VSAM function code> FB=<VSAM
feedback code>

Explanation: The system programmer administrative utility encountered a
duplicate key error writing to the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1892W
Repository write error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

Explanation: The system programmer administrative utility encountered a
severe error writing to the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

CRAZ1893W
Repository read error, status=<file status code> RC=<VSAM return
code> FC=<VSAM function code> FB=<VSAM feedback code>

Explanation: The system programmer administrative utility encountered a
severe error reading from the CRD repository.

User response: Check VSAM status, return, function, and feedback codes.

108 IBM Rational Developer for System z: Host Configuration Reference

Chapter 8. Customizing the TSO environment

This appendix is provided to assist you with mimicking a TSO logon procedure by
adding DD statements and data sets to the TSO environment in Developer for
System z.

The TSO Commands service
The TSO Commands service is the Developer for System z component which
executes TSO and (batch) ISPF commands, and returns the result to the requesting
client. These commands can be requested implicitly by the product, or explicitly by
the user.

The sample members provided with Developer for System z create a minimal
TSO/ISPF environment. If the developers in your shop need access to custom or
third-party libraries, the z/OS system programmer must add the necessary DD
statements and libraries to the TSO Commands service environment. Although the
implementation is different in Developer for System z, the logic behind it is
identical to the TSO logon procedure.

Note: The TSO Commands service is a non-interactive command-line tool, so
commands or procedures that prompt for data or display ISPF panels will
not work. A 3270 emulator, such as the Host Connect Emulator which is part
of the Developer for System z client, is needed to execute these.

Access methods
Since version 7.1, Developer for System z provides a choice on how to access the
TSO Commands service.
v ISPF’s TSO/ISPF Client Gateway service, which requires a minimum ISPF

service level. This is the default method used in the provided samples.
v An APPC transaction (as in pre-version 7.1 releases). This method is deprecated.

Note:

v ISPF’s TSO/ISPF Client Gateway service replaces the SCLM Developer
Toolkit function used in version 7.1.

v APPC usage by Developer for System z is marked deprecated. The APPC
related information has been removed from this publication. For more
information, refer to white paper Using APPC to provide TSO command
services (SC14-7291), available in the Developer for System z library,
http://www.ibm.com/software/rational/products/developer/systemz/
library/index.html.

Check rsed.envvars to determine which access method is used for version 7.1 and
higher hosts. If defaults were used during the configuration process, rsed.envvars
resides in /etc/rdz/.
v If the _RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC" statement is not

present (or commented out), ISPF’s TSO/ISPF Client Gateway service is used.
v If the _RSE_JAVAOPTS="$_RSE_JAVAOPTS -DTSO_SERVER=APPC" statement is present

(and not commented out), APPC is used.

© Copyright IBM Corp. 2010 109

Using the TSO/ISPF Client Gateway access method

ISPF.conf
The ISPF.conf configuration file (by default located in /etc/rdz/) defines the
TSO/ISPF environment used by Developer for System z. There is only one active
ISPF.conf configuration file, which is used by all Developer for System z users.

The main section of the configuration file defines the DD names and the related
data set concatenations, like that in the following sample:
sysproc=ISP.SISPCLIB,FEK.SFEKPROC
ispmlib=ISP.SISPMENU
isptlib=ISP.SISPTENU
ispplib=ISP.SISPPENU
ispslib=ISP.SISPSLIB
ispllib=ISP.SISPLOAD
myDD=HLQ1.LLQ1,HLQ2.LLQ2

v Each DD definition uses exactly one line (multi-line is not supported), and there
are no line length limits.

v The definitions are not case sensitive, and any white space will be ignored.
v Comment lines start with an asterisk (*).
v DD names are followed by an equal sign (=), which in turn is followed by the

data set concatenation. Multiple data set names are separated by a comma (,).
v Data set concatenations are searched in the order they are listed.
v Data sets must be fully qualified, without being enclosed in quotes (‘), and

without the use of variables.
v All data sets are allocated with DISP=SHR.
v New DD names can be added at will, but must obey the (JCL) rules for DD

names and may not conflict with other configuration parameters in ISPF.conf.
Also, ISPPROF is allocated dynamically (DISP=NEW,DELETE) by the TSO/ISPF
Client Gateway service.

Use existing ISPF profiles
By default, the TSO/ISPF Client Gateway creates a temporary ISPF profile for the
TSO Commands service. However, you can instruct the TSO/ISPF Client Gateway
z to use a copy of an existing ISPF profile. The key here is the _RSE_CMDSERV_OPTS
statement in rsed.envvars.
#_RSE_CMDSERV_OPTS="$_RSE_CMDSERV_OPTS &ISPPROF=&SYSUID..ISPPROF"

Uncomment the statement (remove the leading pound sign (#) character) and
provide the fully qualified data set name of the existing ISPF profile to use this
facility.

The following variables can be used in the data set name:
v &SYSUID. to substitute the developer's user ID
v &SYSPREF. to substitute the developer's TSO prefix

Note:

v If the data set name passed in “ISPPROF” is invalid, a temporary, empty
ISPF profile is used instead.

v The ISPF profile (both temporary and copied) is deleted at the end of the
session. Changes made to the profile are not merged into the existing ISPF
profile.

110 IBM Rational Developer for System z: Host Configuration Reference

Using an allocation exec
The allocjob statement in ISPF.conf (which is commented out by default) points
to an exec which can be used to provide further data set allocations by user ID.
*allocjob = ISP.SISPSAMP(ISPZISP2)

Uncomment the statement (remove the leading asterisk (*) character) and provide
the fully qualified reference to the allocation exec to use this facility.
v The exec is executed after allocation of ISPPROF and the DDs defined in

ISPF.conf, but before ISPF is initialized. Ensure that your allocation exec does
not undo these definitions.

v 1 parameter is passed to the exec; the user ID of the caller.
v A sample exec CRAISPRX is provided in sample library FEK.#CUST.CNTL, unless

you specified a different location when you customized and submitted job
FEK.SFEKSAMP(FEKSETUP). See "Customization setup" in the Host Configuration
Guide (SC23-7658) for more details.

Note: As the exec is called before ISPF is initialized, you cannot use VPUT and
VGET. You can however create your own implementation of these functions
using a PDS(E) or VSAM file.

Use multiple allocation execs
Although ISPF.conf only supports calling one allocation exec, there are no limits
on that exec calling another exec. And the user ID of the client being passed as
parameter opens the door to calling personalized allocation execs. You can, for
example, check if member USERID’.EXEC(ALLOC)’ exists and execute it.

An elaborate variation to this theme enables you to use the existing TSO logon
procedures, as follows:
v Read a user-specific configuration file, such as USERID’.FEKPROF’.
v See which logon procedure is mentioned in the file.
v Read the mentioned procedure from SYS1.PROCLIB and parse it to find the DD

statements and data set allocations within.
v Allocate the data set in a similar fashion as the real logon procedure.

Multiple ISPF.conf files with multiple Developer for System z
setups

If the allocation exec scenarios described above cannot handle your specific needs,
you can create different instances of Developer for System z’s RSE communication
server, each using their own ISPF.conf file. The main drawback of the method
described below is that Developer for System z users must connect to different
servers on the same host to get the desired TSO environment.

Note: Creating a second instance of the RSE server only requires duplicating and
updating configuration files, startup JCL and started task definitions. A new
installation of the product is not necessary, nor is any code duplicated.

$ cd /etc/rdz
$ mkdir /etc/rdz/tso2
$ cp rsed.envvars /etc/rdz/tso2
$ cp ISPF.conf /etc/rdz/tso2
$ ls /etc/rdz/tso2
ISPF.conf rsed.envvars
$ oedit /etc/rdz/tso2/rsed.envvars

-> change: _CMDSERV_CONF_HOME=/etc/rdz/tso2

Chapter 8. Customizing the TSO environment 111

-> change: -Ddaemon.log=/var/rdz/logs/tso2
-> change: -Duser.log=/var/rdz/logs/tso2
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

$ oedit /etc/rdz/tso2/ISPF.conf
-> change: change as needed

The commands in the previous example copy the Developer for System z
configuration files that require changes to a newly created tso2 directory. The
_CMDSERV_CONF_HOME variable in rsed.envvars must be updated to define the new
ISPF.conf home directory , and daemon.log and user.log must be updated to
define a new log location (which is created automatically if it does not exist). The
CLASSPATH update ensures that RSE can find the configuration files that were not
copied to tso2. The ISPF.conf file itself can be updated to match your needs. Note
that the ISPF workarea (variable _CMDSERV_WORK_HOME in rsed.envvars) can be
shared among both instances.

What is left now is creating a new started task for RSE that uses a new port
number and the new /etc/rdz/tso2 configuration files.

Refer to the IBM Rational Developer for System z Host Configuration Guide
(SC23-7658) for more information on the actions shown previously in this section.

112 IBM Rational Developer for System z: Host Configuration Reference

Chapter 9. Running multiple instances

There are times that you want multiple instances of Developer for System z active
on the same system, for example, when testing an upgrade. However, some
resources such as TCP/IP ports cannot be shared, so the defaults are not always
applicable. Use the information in this appendix to plan the coexistence of the
different instances of Developer for System z, after which you can use this
configuration guide to customize them.

Although it is possible to share certain parts of Developer for System z between
two (or more) instances, it is advised NOT to do so, unless their software levels are
identical and the only changes are in configuration members. Developer for System
z leaves enough customization room to make multiple instances that do not
overlap and we strongly advise you to use these features.

Note:

v FEK and /usr/lpp/rdz are the high-level qualifier and path used during
the installation of the product. FEK.#CUST, /etc/rdz and /var/rdz are the
default locations used during the customization of the product (see
"Customization setup" in the Host Configuration Guide (SC23-7658) for
more information)..

v You should install Developer for System z in a private file system (HFS or
zFS) to ease deploying the z/OS UNIX parts of the product.

v If you can not use a private file system, you should use an archiving tool
such as the z/OS UNIX tar command to transport the z/OS UNIX
directories from system to system. This to preserve the attributes (such as
program control) for the Developer for System z files and directories.
Refer to UNIX System Services Command Reference (SA22-7802) for more
information on the following sample commands to archive and restore the
Developer for System z installation directory.
– Archive: cd /SYS1/usr/lpp/rdz; tar -cSf /u/userid/rdz.tar

– Restore: cd /SYS2/usr/lpp/rdz; tar -xSf /u/userid/rdz.tar

Identical setup across a sysplex
Developer for System z configuration files (and code) can be shared across
different systems in a sysplex, with each system running its own identical copy of
Developer for System z, if a few guidelines are obeyed. Note that this information
is for stand-alone Developer for System z instances. Additional rules for the
TCP/IP setup apply when using Distributed Dynamic VIPA to group multiple
servers (each on a separate system) into one virtual server.
v The log files should end up in unique locations to avoid one system overwriting

information from another. By routing the z/OS UNIX logs to specific locations
with the daemon.log and user.log directives in rsed.envvars, you can share the
configuration files if you mount a system specific z/OS UNIX file system on the
specified path. This way, all logs are written to the same logical place, but due to
the unshared file system underneath, they end up in different physical locations.

v Configuration-type directories like /etc/rdz/ and /var/rdz/pushtoclient/ can
be shared across the sysplex, as Developer for System z uses them in read-only
mode.

© Copyright IBM Corp. 2010 113

|
|
|
|

|
|
|

v Temporary data directories like /tmp/ and /var/rdz/WORKAREA/ should be unique
per system, as temporary file names are not sysplex-aware.

v If you share the code, you should also share the configuration files to ensure you
do not have some systems that are out of synchronization after applying
maintenance.

Identical software level, different configuration files
In a limited set of circumstances, you can share all but (some of) the customizable
parts. An example is providing non-SSL access for on-site usage, and SSL encoded
communication for off-site usage.

Attention: The shared setup CANNOT be used safely to test maintenance, a technical
preview, or a new release.

To set up another instance of an active Developer for System z installation, redo
the customization steps for the parts that are different, using different data sets,
directories, and ports to avoid overlapping the current setup.

In the SSL sample mentioned above, the current RSE daemon setup can be cloned,
after which the cloned setup can be updated. Next the RSE daemon startup JCL
can be cloned and customized with a new TCP/IP port and the location of the
updated configuration files. The MVS customizations (JES Job Monitor, and so on)
can be shared between the SSL and non-SSL instances. This would result in the
following actions:
$ cd /etc/rdz
$ mkdir /etc/rdz/ssl
$ cp rsed.envvars /etc/rdz/ssl
$ cp ssl.properties /etc/rdz/ssl
$ ls /etc/rdz/ssl/
rsed.envvars ssl.properties
$ oedit /etc/rdz/ssl/rsed.envvars

-> change: -Ddaemon.log=/var/rdz/logs/ssl
-> change: -Duser.log=/var/rdz/logs/ssl
-> add at the END:

-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

$ oedit /etc/rdz/ssl/ssl.properties
-> change: change as needed

The commands above copy the Developer for System z configuration files that
require changes to a newly created ssl directory. The daemon.log and user.log
variables in rsed.envvars must be updated to define a new log location (which is
created automatically if it does not exist). The CLASSPATH update ensures that RSE
can find the configuration files that were not copied to ssl. The ssl.properties file
itself can be updated to match your needs.

What is left now is creating a new started task for RSE that uses a new port
number and the new /etc/rdz/ssl configuration files.

Refer to the related sections in the IBM Rational Developer for System z Host
Configuration Guide (SC23-7658) for more information on the actions shown
previously in this section.

114 IBM Rational Developer for System z: Host Configuration Reference

All other situations
When code changes are involved (maintenance, technical previews, new release),
or your changes are fairly complex, you should do another installation of
Developer for System z. This section describes possible points of conflict between
the different installations.

The following list is a brief overview of items that must or are strongly advised to
be different between the instances of Developer for System z:
v SMP/E CSI
v Installation libraries
v JES Job Monitor TCP/IP port, and thus its configuration file FEJJCNFG
v JES Job Monitor startup JCL
v APPC transaction name
v RSE configuration files, rsed.envvars, *.properties and *.conf
v RSE TCP/IP port
v RSE startup JCL

A more detailed overview is listed as follows:
v SMP/E CSI

1. Install each instance of Developer for System z in a separate CSI. SMP/E will
prevent a second install of the same FMID in a CSI, but will accept installing
another FMID. If the second FMID is a newer version, it will delete the
existing version of the product. If the second FMID is an older version, the
install will fail due to duplicate part names.

v Installation libraries
1. Install each instance of Developer for System z in separate data sets and

directories. Keep in mind that you can only change the z/OS UNIX path by
prefixing the IBM supplied default of /usr/lpp/rdz. A valid sample would
be /service/usr/lpp/rdz.

2. Customization setup job FEK.SFEKSAMP(FEKSETUP) creates the data sets and
directories used to store configuration files. Since the configuration files must
be unique, and to avoid overwriting existing customizations, you must use
unique data set and directory names when submitting this job.

v Mandatory parts
1. JES Job Monitor configuration file FEK.#CUST.PARMLIB(FEJJCNFG) holds the

TCP/IP port number of JES Job Monitor and thus cannot be shared. The
member itself can be renamed (if the JCL is updated also), so you can place
all customized versions of this member in the same data set if you are not
doing the updates in the install data set.

2. JES Job Monitor startup JCL FEK.#CUST.PROCLIB(JMON) refers to FEJJCNFG and
therefore cannot be shared either. After renaming the member (and the JOB
card if you start it as a user job) you can place all JCL’s in the same data set.

3. The RSE configuration file /etc/rdz/rsed.envvars holds references to the
install path, and optionally to the server log location, which requires it to be
unique. The file name is mandatory, so you cannot keep the different copies
in the same directory.

4. The ISPF.conf configuration file has a reference to FEK.SFEKPROC(FEKFRSRV),
the TSO Commands server. This is software level specific, so you must create
an ISPF.conf file per instance.

Chapter 9. Running multiple instances 115

5. All other z/OS UNIX based configuration files (such as *.properties) must
reside in the same directory as rsed.envvars and thus cannot be shared,
since rsed.envvars must be in an unshared location.

6. The RSE startup JCL FEK.#CUST.PROCLIB(RSED) cannot be shared since it
defines the TCP/IP port number and it has a reference to the install and
configuration directories, which must be unique. After renaming the member
(and the JOB card if you start it as a user job) you can place all JCL's in the
same data set.

7. The lock daemon startup JCL FEK.#CUST.PROCLIB(LOCKD) cannot be shared
since it has a reference to the installation and configuration directories, which
must be unique. After renaming the member (and the JOB card if you start it
as a user job) you can place all JCLs in the same data set.

v Optional parts
1. The REXEC and SSH TCP/IP ports can be shared without any restrictions.
2. The APPC transaction has a reference to FEK.SFEKPROC(FEKFRSRV), the TSO

Commands server. This is software level specific, so you must create an
APPC transaction per instance. Keep in mind that, since the APPC
transaction name changes, the _FEKFSCMD_TP_NAME_ variable must be defined
in rsed.envvars.

3. Some ELAXF* procedures have a reference to hlq.SFEKLOAD, the Developer
for System z load library. See the note on JCLLIB in "ELAXF* remote build
procedures" in the Host Configuration Guide (SC23-7658) for a possible
solution on making different sets available to the users.

4. To activate two instances of the DB2 stored procedure, the following tasks
must be completed. Note however that this is a non-supported, as-is
description:
a. Copy hlq.SFEKPROC(ELAXMREX) to a differently named member, for

example, ELAXMRXX.
b. Copy sample member hlq.SFEKSAMP(ELAXMSAM) to a differently named

member, for example, ELAXMWDZ.
c. Change sample member hlq.SFEKSAMP(ELAXMJCL) to reflect these name

changes, for example:
//SYSIN DD *
CREATE PROCEDURE SYSPROC.ELAXMRXX
(IN FUNCTION_REQUEST VARCHAR(20) CCSID EBCDIC

...
, OUT RETURN_VALUE VARCHAR(255) CCSID EBCDIC)
PARAMETER STYLE GENERAL RESULT SETS 1
LANGUAGE REXX EXTERNAL NAME ELAXMRXX
COLLID DSNREXCS WLM ENVIRONMENT ELAXMWDZ
PROGRAM TYPE MAIN MODIFIES SQL DATA
STAY RESIDENT NO COMMIT ON RETURN NO
ASUTIME NO LIMIT SECURITY USER;

COMMENT ON PROCEDURE SYSPROC.ELAXMRXX IS
’PLI & COBOL PROCEDURE PROCESSOR (ELAXMRXX), INTERFACE LEVEL 0.01’;

GRANT EXECUTE ON PROCEDURE SYSPROC.ELAXMRXX TO PUBLIC;
//

d. Proceed with the customization as described in "(Optional) DB2 stored
procedure" in the Host Configuration Guide (SC23-7658), but with the new
members.

e. The new WLM environment name (for example, ELAXMWDZ) must be used
in the DB2 stored procedure wizard on the client.

116 IBM Rational Developer for System z: Host Configuration Reference

5. Bidi support in CICS regions relies on a load library member and thus
cannot be shared across releases. However, if the load module name is
identical for all instances, you can share the most recent version between the
instances, even across releases. Backward compatibility is not available if the
load module's name has changed.

6. The Application Deployment Manager load modules that are included in
CICS regions are backwards compatible, and thus the most recent version
can be shared across releases.

7. The Application Deployment Manager CRD VSAM is backwards compatible,
and thus the most recent version can be shared across releases.

8. The Application Deployment Manager CICS resource definitions are
backwards compatible, and thus the most recent version can be shared across
releases.

9. CARMA VSAMs could change between software levels, thus it is not advised
to share these.

Chapter 9. Running multiple instances 117

118 IBM Rational Developer for System z: Host Configuration Reference

Chapter 10. Troubleshooting configuration problems

This chapter is provided to assist you with some common problems that you may
encounter during your configuration of Developer for System z, and has the
following sections:
v “Log and setup analysis using FEKLOGS”
v “Log files” on page 120
v “Dump files” on page 125
v “Tracing” on page 127
v “z/OS UNIX permission bits” on page 129
v “Reserved TCP/IP ports” on page 132
v “Address Space size” on page 134
v “Miscellaneous information” on page 135

More information is available through the Support section of the Developer for
System z Web site (http://www.ibm.com/software/rational/products/developer/
systemz/) where you can find Technotes that bring you the latest information from
our support team.

In the Library section of the Web site (http://www.ibm.com/software/rational/
products/developer/systemz/library/index.html) you can also find the latest
version of the Developer for System z documentation, including whitepapers.

The Developer for System z Information Center (http://publib.boulder.ibm.com/
infocenter/ratdevz/v7r6/index.jsp) documents the Developer for System z client,
and how it interacts with the host (from a client’s perspective).

Valuable information can also be found in the z/OS internet library, available at
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/.

Please notify us if you think that Developer for System z misses a certain function.
You can open a Request For Enhancement (RFE) at
https://www.ibm.com/developerworks/support/rational/rfe/

Log and setup analysis using FEKLOGS
Developer for System z provides a sample job, FEKLOGS, which gathers all z/OS
UNIX log files as well as Developer for System z installation and configuration
information.

Sample job FEKLOGS is located in FEK.#CUST.JCL, unless you specified a different
location when you customized and submitted job FEK.SFEKSAMP(FEKSETUP). See
"Customization setup" in the Host Configuration Guide (SC23-7658) for more details.

The customization of FEKLOGS is described within the JCL. The customization
encompasses the provision of a few key variables.

Note: SDSF customers can use the XDC line command in SDSF to save the job
output in a data set, which in turn can be given to the IBM support center.

© Copyright IBM Corp. 2010 119

Log files
Developer for System z creates log files that can assist you and IBM support center
in identifying and solving problems. The following list is an overview of log files
that can be created on your z/OS host system. Next to these product-specific logs,
be sure to check the SYSLOG for any related messages.

MVS based logs can be located through the appropriate DD statement. z/OS UNIX
based log files are located in the following directories:
v userlog/$LOGNAME/

User-specific log files are located in userlog/$LOGNAME/, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.
– .dstoreMemLogging - DataStore memory usage logging
– .dstoreTrace - DataStore action logging
– fa.log - The log of the Fault Analyzer Integration
– ffs.log - The log of the Foreign File System (FFS) server, that executes native

MVS functions
– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member
– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member
– lock.log - The log of the lock manager, that locks/unlocks a sequential data

set or a PDS member
– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader
– rsecomm.log - The log of the RSE server, that handles commands from the

client and the communication logging of all services relying on RSE (may
contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output
– stdout.log - The redirected data of stdout, standard output

Note: The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

v daemon-home
The RSE daemon and RSE thread pool specific log files are located in
daemon-home, where daemon-home is the value of the daemon.log directive in
rsed.envvars. If the daemon.log directive is commented out or not present, the
home directory of the user ID assigned to the RSED started task is used. The
home directory is defined in the OMVS security segment of the user ID.
– rsedaemon.log - The log of the RSE daemon
– rseserver.log - The log of the RSE thread pools
– audit.log - The RSE audit trail
– serverlogs.count - Counter for logging RSE thread pool streams

120 IBM Rational Developer for System z: Host Configuration Reference

– stderr.*.log - RSE thread pool standard error stream
– stdout.*.log - RSE thread pool standard output stream

v /tmp
IVP-specific log files (Installation Verification Program) are located in in the
directory referenced by TMPDIR, if this variable is defined in rsed.envvars. If the
variable is not defined, the files are created in /tmp.
– fekfivpi.log - The log of the fekfivpi IVP test
– fekfivps.log - The log of the fekfivps IVP test
– fekfivpc.log - The communication log of the fekfivpc IVP test

Note: There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to "Operator commands" in
the Host Configuration Guide (SC23-7658) for more information.

JES Job Monitor logging
v SYSOUT DD

Logging of normal operations. The default value in the sample JCL
FEK.#CUST.PROCLIB(JMON) is SYSOUT=*.

v SYSPRINT DD

Trace logging. The default value in the sample JCL FEK.#CUST.PROCLIB(JMON) is
SYSOUT=*. Tracing is activated with the –TV parameter, see “JES Job Monitor
tracing” on page 127 for more details.

Lock daemon logging
v STDOUT DD

The redirected data of stdout, Java standard output. The default value in the
sample JCL FEK.#CUST.PROCLIB(LOCKD) is SYSOUT=*.

v STDERR DD

The redirected data of stderr, Java standard error output. The default value in
the sample JCL FEK.#CUST.PROCLIB(LOCKD) is SYSOUT=*.

RSE daemon and thread pool logging
v STDOUT DD

The redirected data of stdout, Java standard output of RSE daemon. The default
value in the sample JCL FEK.#CUST.PROCLIB(RSED) is SYSOUT=*.

v STDERR DD

The redirected data of stderr, Java standard error output of RSE daemon. The
default value in the sample JCL FEK.#CUST.PROCLIB(RSED) is SYSOUT=*.

v daemon-home

The RSE daemon and RSE thread pool specific log files are located in
daemon-home, where daemon-home is the value of the daemon.log directive in
rsed.envvars. If the daemon.log directive is commented out or not present, the
home directory of the user ID assigned to the RSED started task is used. The
home directory is defined in the OMVS security segment of the user ID.
– rsedaemon.log - The log of the RSE daemon
– rseserver.log - The log of the RSE thread pools
– audit.log - The RSE audit trail
– serverlogs.count - Counter for logging RSE thread pool streams
– stderr.*.log - RSE thread pool standard error stream

Chapter 10. Troubleshooting configuration problems 121

|

|
|
|

|

|

|

– stdout.*.log - RSE thread pool standard output stream

Note:

v serverlogs.count, stderr.*.log, and stdout.*.log are only created if
the enable.standard.log directive in rsed.envvars is active, or if the
function is dynamically activated with the modify rsestandardlog on
operator command.

v The * in stderr.*.log and stdout.*.log is 1 by default. However, there
can be multiple RSE thread pools, in which case the number is
incremented for each new RSE thread pool to ensure unique file names.

v There are no user-specific stdout.log and stderr.log log files when the
enable.standard.log directive is active. The user-specific data is now
written to the matching RSE thread pool stream.

v There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to "Operator commands"
in the Host Configuration Guide (SC23-7658) for more information.

RSE user logging
v userlog/$LOGNAME/

There are several log files created by the components related to RSE. All are
located in userlog/$LOGNAME/, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.
– .dstoreMemLogging - DataStore memory usage logging
– .dstoreTrace - DataStore action logging
– ffs.log - The log of the Foreign File System (FFS) server, which executes

native MVS functions
– ffsget.log - The log of the file reader, that reads a sequential data set or a

PDS member
– ffsput.log - The log of the file writer, that writes a sequential data set or a

PDS member
– lock.log - The log of the lock manager, that locks or unlocks a sequential

data set or a PDS member
– rmt_class_loader.cache.jar - The cache of classes loaded by the RSE remote

class loader
– rsecomm.log - The log of the RSE server, that handles commands from the

client and the communication logging of all services relying on RSE (may
contain Java exception stack trace)

– stderr.log - The redirected data of stderr, standard error output
– stdout.log - The redirected data of stdout, standard output

Note:

v The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

122 IBM Rational Developer for System z: Host Configuration Reference

v The creation of the .dstore* log files is controlled by the -DDSTORE_* Java
startup options, as described in "Defining extra Java startup parameters
with _RSE_JAVAOPTS" in the Host Configuration Guide (SC23-7658).

v The .dstore* log files are created in ASCII. Use z/OS UNIX command
iconv -f ISO8859-1 -t IBM-1047 .dstore* to display them in EBCDIC
(when using code page IBM-1047).

v There are no user-specific stdout.log and stderr.log log files when the
enable.standard.log directive is active. The user-specific data is now
written to the matching RSE thread pool stream.

v There are operator commands available to control the amount of data
written to some of the mentioned log files. Refer to "Operator commands"
in the Host Configuration Guide (SC23-7658) for more information.

Fault Analyzer Integration logging
v userlog/$LOGNAME/

Fault Analyzer Integration logging, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.
– fa.log - The log of the Fault Analyzer Integration
– rsecomm.log - Communication logging of Fault Analyzer Integration

File Manager Integration logging
v userlog/$LOGNAME/rsecomm.log

Communication logging of File Manager Integration, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.

SCLM Developer Toolkit logging
v userlog/$LOGNAME/rsecomm.log

Communication logging of SCLM Developer Toolkit, where userlog is the
combined value of the user.log and DSTORE_LOG_DIRECTORY directives in
rsed.envvars, and $LOGNAME is the logon user ID (uppercase). If the user.log
directive is commented out or not present, the home path of the user is used.
The home path is defined in the OMVS security segment of the user ID. If the
DSTORE_LOG_DIRECTORY directive is commented out or not present, then
.eclipse/RSE/ is appended to the user.log value.

CARMA logging
v CARMA server job

When opening a connection with CARMA, using the batch interface,
FEK.#CUST.SYSPROC(CRASUBMT) will start a server job (with the user's user ID as
owner) named CRAport, where port is the TCP/IP port used.

v CARMALOG DD

Chapter 10. Troubleshooting configuration problems 123

If DD statement CARMALOG is specified in the chosen CARMA startup
method, CARMA logging is redirected to this DD statement in the server job,
otherwise it goes to SYSPRINT.

v SYSPRINT DD

The SYSPRINT DD of the server job holds the CARMA logging, if DD statement
CARMALOG is not defined.

v SYSTSPRT DD

The SYSTSPRT DD of the server job holds the system (TSO) messages for the
CARMA server startup.

v userlog/$LOGNAME/rsecomm.log

Communication logging of CARMA, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the
OMVS security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.

APPC transaction (TSO Commands service) logging
v SYSPRINT DD

When the APPC administration utility adds and modifies a transaction program
(TP) profile, it checks the TP profile and its JCL for syntax errors. Output from
this phase consists of TP profile syntax error messages, utility processing
messages, and JCL conversion statements. Logging for messages from this phase
is controlled by the SYSPRINT DD statement for the ATBSDFMU utility. The default
value in sample JCL FEK.SFEKSAMP(FEKAPPCC) is SYSOUT=*. Refer to MVS
Planning: APPC/MVS Management (SA22-7599) for more details.

v &SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG

When a TP executes, the TP runtime messages, such as allocation and
termination messages, go to a log named by the MESSAGE_DATA_SET keyword in
its TP profile. The default value in sample JCL FEK.SFEKSAMP(FEKAPPCC) is
&SYSUID.FEKFRSRV.&TPDATE.&TPTIME.LOG. Refer to MVS Planning: APPC/MVS
Management (SA22-7599) for more details.

Note: Depending on your APPC transaction definitions and site defaults, this
log file might not appear unless the KEEP_MESSAGE_LOG(ALWAYS) keyword
is added to the transaction definitions. Refer to MVS Planning: APPC/MVS
Management (SA22-7599) for more information on this.

fekfivpc IVP test logging
v /tmp/fekfivpc.log

The fekfivpc command (CARMA related IVP test) will create the fekfivpc.log
file to document the communication between RSE and CARMA. The log will be
created in the directory referenced by TMPDIR, if this variable is defined in
rsed.envvars. If the variable is not defined, the file is created in /tmp.

fekfivpi IVP test logging
v /tmp/fekfivpi.log

124 IBM Rational Developer for System z: Host Configuration Reference

|

|

|
|
|
|

|

|

Output of the fekfivpi -file command (TSO/ISPF Client Gateway related IVP
test). The log will be created in the directory referenced by TMPDIR, if this
variable is defined in rsed.envvars. If the variable is not defined, the file is
created in /tmp.

fekfivps IVP test logging
v /tmp/fekfivps.log

Output of the fekfivps -file command (SCLMDT-related IVP test). The log will
be created in the directory referenced by TMPDIR, if this variable is defined in
rsed.envvars. If the variable is not defined, the file is created in /tmp.

Dump files
When a product abnormally terminates, a storage dump is created to assist in
problem determination. The availability and location of these dumps depends
heavily on site-specific settings. So it could be that they are not created, or created
in different locations than mentioned below.

MVS dumps
When the program is running in MVS, check the system dump files and check
your JCL for the following DD statements (depending on the product):
v SYSABEND
v SYSMDUMP
v SYSUDUMP
v CEEDUMP
v SYSPRINT
v SYSOUT

Refer to MVS JCL Reference (SA22-7597) and Language Environment Debugging Guide
(GA22-7560) for more information on these DD statements.

Java dumps
In z/OS UNIX, most Developer for System z dumps are controlled by the Java
Virtual Machine (JVM).

The JVM creates a set of dump agents by default during its initialization
(SYSTDUMP and JAVADUMP). You can override this set of dump agents using the
JAVA_DUMP_OPTS environment variable and further override the set by the use of
-Xdump on the command line. JVM command-line options are defined in the
_RSE_JAVAOPTS directive of rsed.envvars. Do not change any of the dump settings
unless directed by the IBM support center.

Note: The -Xdump:what option on the command line can be used for determining
which dump agents exist at the completion of startup.

The types of dump that can be produced are the following:

SYSTDUMP
Java Transaction dump. An unformatted storage dump generated by z/OS.

The dump is written to a sequential MVS data set, using a default name of
the form %uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S, or as determined by the
setting of the JAVA_DUMP_TDUMP_PATTERN environment variable. If you do

Chapter 10. Troubleshooting configuration problems 125

|
|
|
|

|

|

|
|
|

not want transaction dumps to be created, add environment variable
IBM_JAVA_ZOS_TDUMP=NO to rsed.envvars.

Note: JAVA_DUMP_TDUMP_PATTERN allows the usage of variables, which are
translated to an actual value at the time the transaction dump is
taken.

Table 28. JAVA_DUMP_TDUMP_PATTERN variables

Variable Usage

%uid User ID

%job Job name

%y Year (2 digits)

%m Month (2 digits)

%d Day (2 digits)

%H Hour (2 digits)

%M Minute (2 digits)

%S Second (2 digits)

CEEDUMP
Language Environment (LE) dump. A formatted summary system dump
that shows stack traces for each thread that is in the JVM process, together
with register information and a short dump of storage for each register.

The dump is written to a z/OS UNIX file named
CEEDUMP.yyyymmdd.hhmmss.pid, where yyyymmdd equals the current date,
hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations” on
page 127.

HEAPDUMP
A formatted dump (a list) of the objects that are on the Java heap.

The dump is written to a z/OS UNIX file named
HEAPDUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current
date, hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations” on
page 127.

JAVADUMP
A formatted analysis of the JVM. It contains diagnostic information related
to the JVM and the Java application, such as the application environment,
threads, native stack, locks, and memory.

The dump is written to a z/OS UNIX file named
JAVADUMP.yyyymmdd.hhmmss.pid.TXT, where yyyymmdd equals the current
date, hhmmss the current time and pid the current process ID. The possible
locations of this file are described in “z/OS UNIX dump locations” on
page 127.

Refer to Java Diagnostic Guide (SC34-6358) for more information on JVM dumps,
and Language Environment Debugging Guide (GA22-7560) for LE-specific
information.

126 IBM Rational Developer for System z: Host Configuration Reference

z/OS UNIX dump locations
The JVM checks each of the following locations for existence and write-permission,
and stores the CEEDUMP, HEAPDUMP, and JAVADUMP files in the first one
available. Note that you must have enough free disk space for the dump file to be
written correctly.
1. The directory in environment variable _CEE_DMPTARG, if found. This variable is

set in rsed.envvars as /tmp. It can be changed to /dev/null to avoid creating
the dump files.

2. The current working directory, if the directory is not the root directory (/), and
the directory is writable.

3. The directory in environment variable TMPDIR (an environment variable that
indicates the location of a temporary directory if it is not /tmp), if found.

4. The /tmp directory.
5. If the dump cannot be stored in any of the above, it is put to stderr.

Tracing

JES Job Monitor tracing
JES Job Monitor tracing is controlled by the system operator, as described in
"Operator commands" in the Host Configuration Guide (SC23-7658).
v Starting the JMON started task with the PRM=-TV parameter activates verbose

mode (tracing)
v The modify –TV and modify –TN commands activate and deactivate tracing

RSE tracing
There are several log files created by the components related to RSE. Most are
located in userlog/$LOGNAME/, where userlog is the combined value of the
user.log and DSTORE_LOG_DIRECTORY directives in rsed.envvars, and $LOGNAME is
the logon user ID (uppercase). If the user.log directive is commented out or not
present, the home path of the user is used. The home path is defined in the OMVS
security segment of the user ID. If the DSTORE_LOG_DIRECTORY directive is
commented out or not present, then .eclipse/RSE/ is appended to the user.log
value.

The amount of data written to ffs*.log, lock.log and rsecomm.log is controlled
by the modify rsecommlog operator command, or by setting debug_level in
rsecomm.properties. See "Operator commands" in the Host Configuration Guide
(SC23-7658) and "(Optional) RSE tracing" in the Host Configuration Guide
(SC23-7658) for more details.

The creation of the .dstore* log files is controlled by the –DDSTORE_* Java startup
options, as described in "Defining extra Java startup parameters with
_RSE_JAVAOPTS" in the Host Configuration Guide (SC23-7658).

Note:

v The .eclipse directory and the .dstore* log files start with a dot (.),
which makes them hidden. Use z/OS UNIX command ls –lA to list
hidden files and directories. When using the Developer for System z
client, select the Window > Preferences... > Remote Systems > Files
preference page and enable “Show hidden files”.

Chapter 10. Troubleshooting configuration problems 127

v The .dstore* log files are created in ASCII. Use z/OS UNIX command
iconv -f ISO8859-1 -t IBM-1047 .dstore* to display them in EBCDIC
(when using code page IBM-1047).

The RSE daemon and RSE thread pool specific log files are located in daemon-home,
where daemon-home is the value of the daemon.log directive in rsed.envvars. If the
daemon.log directive is commented out or not present, the home directory of the
user ID assigned to the RSED started task is used. The home directory is defined in
the OMVS security segment of the user ID.

The amount of data written to rsedaemon.log and rseserver.log is controlled by
the modify rsedaemonlog and modify rseserverlog operator commands or by
setting debug_level in rsecomm.properties . See "Operator commands" in the Host
Configuration Guide (SC23-7658) and "(Optional) RSE tracing" in the Host
Configuration Guide (SC23-7658) for more details.

serverlogs.count, stderr.*.log, and stdout.*.log are only created if the
enable.standard.log directive in rsed.envvars is active, or if the function is
dynamically activated with the modify rsestandardlog on operator command..

Lock daemon tracing
The lock daemon-specific log is located in the STDOUT DD of the LOCKD started
task. The amount of data written to the log is controlled by the LOG startup
parameter. See "Operator commands" in the Host Configuration Guide (SC23-7658)
and "(Optional) RSE tracing" in the Host Configuration Guide (SC23-7658) for more
details.

CARMA tracing
The user can control the amount of trace info CARMA generates by setting Trace
Level in the properties tab of the CARMA connection on the client. The choices for
Trace Level are:
v Disable Logging
v Error Logging
v Warning Logging
v Informational Logging
v Debug Logging

The default value is the following:
Error Logging

Refer to “Log files” on page 120 for more information on log file locations.

Error feedback tracing
The following procedure allows gathering of information needed to diagnosis error
feedback problems with remote build procedures. This tracing will cause
performance degradation and should only be done under the direction of the IBM
support center. All references to hlq in this section refer to the high-level qualifier
used during installation of Developer for System z. The installation default is FEK,
but this might not apply to your site.
1. Make a backup copy of your active ELAXFCOC compile procedure. This

procedure is default shipped in data set hlq.SFEKSAMP, but could have been
copied to a different location, such as SYS1.PROCLIB, as described in "ELAXF*
remote build procedures" in the Host Configuration Guide (SC23-7658).

128 IBM Rational Developer for System z: Host Configuration Reference

2. Change the active ELAXFCOC procedure to include the 'MAXTRACE' string on the
EXIT(ADEXIT(ELAXMGUX)) compile option.
//COBOL EXEC PGM=IGYCRCTL,REGION=2048K,
//* PARM=(’EXIT(ADEXIT(ELAXMGUX))’,
// PARM=(’EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX))’,
// ’ADATA’,
// ’LIB’,
// ’TEST(NONE,SYM,SEP)’,
// ’LIST’,
// ’FLAG(I,I)’&CICS &DB2 &COMP)

Note: You have to double the apostrophes around MAXTRACE. The option is
now: EXIT(ADEXIT(’’MAXTRACE’’,ELAXMGUX)).

3. Perform a Remote Syntax Check on the COBOL program for which you want
detailed tracing.

4. The SYSOUT part of the JES output will start by listing the names of the data sets
for SIDEFILE1, SIDEFILE2, SIDEFILE3 and SIDEFILE4.
ABOUT TOO OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’
SUCCESSFUL OPEN SIDEFILE1 - NAME = ’uid.DT021207.TT110823.M0000045.C0000000’
ABOUT TOO OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’
SUCCESSFUL OPEN SIDEFILE2 - NAME = ’uid.DT021207.TT110823.M0000111.C0000001’
ABOUT TOO OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’
SUCCESSFUL OPEN SIDEFILE3 - NAME = ’uid.DT021207.TT110823.M0000174.C0000002’
ABOUT TOO OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’
SUCCESSFUL OPEN SIDEFILE4 - NAME = ’uid.DT021207.TT110823.M0000236.C0000003’

Note: Depending on your settings, SIDEFILE1 and SIDEFILE2 may be pointing
to a DD statement (SUCCESSFUL OPEN SIDEFILE1 - NAME = DD:WSEDSF1).
Refer to the JESJCL part of the output (which is located before the SYSOUT
part) to get the actual data set name.
22 //COBOL.WSEDSF1 DD DISP=MOD,

// DSN=uid.ERRCOB.member.SF.Z682746.XML
23 //COBOL.WSEDSF2 DD DISP=MOD,

// DSN=uid.ERRCOB.member.SF.Z682747.XML

5. Copy these four data sets to your PC, for example, by creating a local COBOL
project in Developer for System z and adding the SIDEFILE1->4 data sets.

6. Copy the complete JES job log to your PC, for example, by opening the job
output in Developer for System z and saving it to the local project by selecting
File > Save As

7. Restore procedure ELAXFCOC to the original state, either by undoing the change
(remove the ''MAXTRACE'', string in the compile options) or restoring the backup.

8. Send the collected files (SIDEFILE1->4 and job log) to the IBM support center.

z/OS UNIX permission bits
Developer for System z requires that the z/OS UNIX file system and some z/OS
UNIX files have certain permission bits set.

SETUID file system attribute
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must be allowed
to perform tasks such as creating the user’s security environment.

The file system (HFS or zFS) in which Developer for System z is installed must be
mounted with the SETUID permission bit on (this is the system default). Mounting

Chapter 10. Troubleshooting configuration problems 129

the file system with the NOSETUID parameter will prevent Developer for System z
from creating the user’s security environment, and will fail the connection request.

Use the TSO ISHELL command to list the current status of the SETUID bit. In the
ISHELL panel, select File_systems > 1. Mount table... to list the mounted file
systems. The a line command will show the attributes for the selected file system,
where the “Ignore SETUID” field should be 0.

Program Control authorization
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must run
program controlled in order to perform tasks such as switching to the user ID of
the client.

The z/OS UNIX program control bit is set during SMP/E install where needed,
except for the Java interface to your security product, as documented in Chapter 2,
“Security considerations,” on page 15. This permission bit might get lost if you did
not preserve it during a manual copy of the Developer for System z directories.

The following Developer for System z files must be program controlled:
v /usr/lpp/rdz/bin/

– fekfdivp

– fekfomvs

– fekfrivp

v /usr/lpp/rdz/lib/

– fekfdir.dll

– libfekdcore.so

– libfekfmain.so

v /usr/lpp/rdz/lib/icuc/

– libicudata.dll

– libicudata40.1.dll

– libicudata40.dll

– libicudata64.40.1.dll

– libicudata64.40.dll

– libicudata64.dll

– libicuuc.dll

– libicuuc40.1.dll

– libicuuc40.dll

– libicuuc64.40.1.dll

– libicuuc64.40.dll

– libicuuc64.dll

Note: The libicu*64.* files are only present if you applied the Developer for
System z PTF that addresses APAR AM07305 to enable 64-bit support.

Use z/OS UNIX command ls –E to list the extended attributes, in which the
program control bit is marked with the letter p, as shown in the following sample
($ is the z/OS UNIX prompt):

130 IBM Rational Developer for System z: Host Configuration Reference

$ cd /usr/lpp/rdz
$ ls -E lib/fekf*
-rwxr-xr-x -ps- 2 user group 94208 Jul 8 12:31 lib/fekfdir.dll

Use z/OS UNIX command extattr +p to set the program control bit manually, as
shown in the following sample ($ and # are the z/OS UNIX prompt):
$ cd /usr/lpp/rdz
$ su
extattr +p lib/fekf*
exit
$ ls -E lib/fekf*
-rwxr-xr-x -ps- 2 user group 94208 Jul 8 12:31 lib/fekfdir.dll

Note: To be able to use the extattr +p command, you must have at least READ
access to the BPX.FILEATTR.PROGCTL profile in the FACILITY class of your
security software, or be a superuser (UID 0) if this profile is not defined. For
more information, refer to UNIX System Services Planning (GA22-7800).

APF authorization
Remote Systems Explorer (RSE) is the Developer for System z component that
provides core services such as connecting the client to the host. It must run APF
authorized in order to perform tasks such as displaying detailed process resource
usage.

The z/OS UNIX APF bit is set during SMP/E install where needed. This
permission bit might get lost if you did not preserve it during a manual copy of
the Developer for System z directories.

The following Developer for System z files must be APF authorized:
v /usr/lpp/rdz/bin/

– fekfomvs

– fekfrivp

Use z/OS UNIX command ls -E to list the extended attributes, in which the APF
bit is marked with the letter a, as shown in the following sample ($ is the z/OS
UNIX prompt):
$ cd /usr/lpp/rdz
$ ls -E bin/fekfrivp
-rwxr-xr-x aps- 2 user group 114688 Sep 17 06:41 bin/fekfrivp

Use z/OS UNIX command extattr +a to set the APF bit manually, as shown in the
following sample ($ and # are the z/OS UNIX prompts):
$ cd /usr/lpp/rdz
$ su
extattr +a bin/fekfrivp
exit
$ ls -E bin/fekfrivp
-rwxr-xr-x aps- 2 user group 114688 Sep 17 06:41 bin/fekfrivp

Note: To be able to use the extattr +a command, you must have at least READ
access to the BPX.FILEATTR.APF profile in the FACILITY class of your security
software, or be a superuser (UID 0) if this profile is not defined. For more
information, refer to UNIX System Services Planning (GA22-7800).

Chapter 10. Troubleshooting configuration problems 131

Sticky bit
Some of the optional Developer for System z services require that MVS load
modules are available to z/OS UNIX. This is done by creating a stub (a dummy
file) in z/OS UNIX with the "sticky" bit on. When the stub is executed, z/OS UNIX
will look for an MVS load module with the same name and execute the load
module instead.

The z/OS UNIX sticky bit is set during SMP/E install where needed. These
permission bits might get lost if you did not preserve them during a manual copy
of the Developer for System z directories.

The following Developer for System z files must have the sticky bit on:
v /usr/lpp/rdz/bin/

– BWBTSOW

– CRASTART

Use z/OS UNIX command ls –l to list the permissions, in which the sticky bit is
marked with the letter t, as shown in the following sample ($ is the z/OS UNIX
prompt):
$ cd /usr/lpp/rdz
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

Use z/OS UNIX command chmod +t to set the sticky bit manually, as shown in
the following sample ($ and # are the z/OS UNIX prompt):
$ cd /usr/lpp/rdz
$ su
chmod +t bin/CRA*
exit
$ ls -l bin/CRA*
-rwxr-xr-t 2 user group 71 Jul 8 12:31 bin/CRASTART

Note: To be able to use the chmod command, you must have at least READ access
to the SUPERUSER.FILESYS.CHANGEPERMS profile in the UNIXPRIV class of your
security software, or be a superuser (UID 0) if this profile is not defined. For
more information, refer to UNIX System Services Planning (GA22-7800).

Reserved TCP/IP ports
With the netstat command (TSO or z/OS UNIX) you can get an overview of the
ports currently in use. The output of this command will look similar to the
example below. The ports used are the last number (behind the "..") in the "Local
Socket" column. Since these ports are already in use, they cannot be used for the
Developer for System z configuration.

IPv4
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 16:36:42
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
BPXOINIT 00000014 0.0.0.0..10007 0.0.0.0..0 Listen
INETD4 0000004D 0.0.0.0..512 0.0.0.0..0 Listen
RSED 0000004B 0.0.0.0..4035 0.0.0.0..0 Listen
JMON 00000038 0.0.0.0..6715 0.0.0.0..0 Listen

IPv6

132 IBM Rational Developer for System z: Host Configuration Reference

MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 12:46:25
User Id Conn State
------- ---- -----
BPXOINIT 00000018 Listen

Local Socket: 0.0.0.0..10007
Foreign Socket: 0.0.0.0..0

INETD4 00000046 Listen
Local Socket: 0.0.0.0..512
Foreign Socket: 0.0.0.0..0

RSED 0000004B Listen
Local Socket: 0.0.0.0..4035
Foreign Socket: 0.0.0.0..0

JMON 00000037 Listen
Local Socket: 0.0.0.0..6715
Foreign Socket: 0.0.0.0..0

Another limitation that can exist is reserved TCP/IP ports. There are the following
two common places to reserve TCP/IP ports:
v PROFILE.TCPIP

This is the data set referred to by the PROFILE DD statement of the TCP/IP
started task, often named SYS1.TCPPARMS(TCPPROF).
– PORT: Reserves a port for specified job names.
– PORTRANGE: Reserves a range of ports for specified job names.
Refer to Communications Server: IP Configuration Guide (SC31-8775) for more
information on these statements.

v SYS1.PARMLIB(BPXPRMxx)

– INADDRANYPORT: Specifies the starting port number for the range of port
numbers that the system reserves for use with PORT 0, INADDR_ANY binds.
This value is only needed for CINET (multiple TCP/IP stacks active on a
single host).

– INADDRANYCOUNT: Specifies the number of ports that the system reserves,
starting with the port number specified in the INADDRANYPORT parameter.
This value is only needed for CINET (multiple TCP/IP stacks active on a
single host).

Refer to UNIX System Services Planning (GA22-7800) and MVS Initialization and
Tuning Reference (SA22-7592) for more information on these statements.

These reserved ports can be listed with the netstat portl command (TSO or z/OS
UNIX), which creates an output like that in the example as follows:
MVS TCP/IP NETSTAT CS VxRy TCPIP Name: TCPIP 17:08:32
Port# Prot User Flags Range IP Address
----- ---- ---- ----- ----- ----------
00007 TCP MISCSERV DA
00009 TCP MISCSERV DA
00019 TCP MISCSERV DA
00020 TCP OMVS D
00021 TCP FTPD1 DA
00025 TCP SMTP DA
00053 TCP NAMESRV DA
00080 TCP OMVS DA
03500 TCP OMVS DAR 03500-03519
03501 TCP OMVS DAR 03500-03519

Refer to Communications Server: IP System Administrator’s Commands (SC31-8781) for
more information on the NETSTAT command.

Chapter 10. Troubleshooting configuration problems 133

Note: The NETSTAT command only shows the information defined in
PROFILE.TCPIP, which should overlap the BPXPRMxx definitions. In case of
doubt or problems, check the BPXPRMxx parmlib member to verify the ports
being reserved here.

Address Space size
The RSE daemon, which is a z/OS UNIX Java process, requires a large region size
to perform its functions. Therefore it is important to set large storage limits for
OMVS address spaces.

startup JCL requirements
The RSE daemon is started by JCL using BPXBATSL, whose region size must be 0.

Limitations set in SYS1.PARMLIB(BPXPRMxx)
Set MAXASSIZE in SYS1.PARMLIB(BPXPRMxx), which defines the default OMVS
address space (process) region size, to 2G. This is the maximum size allowed. This
is a system-wide limit, and thus active for all z/OS UNIX address spaces. If this is
not desired, then you can set the limit also just for Developer for System z in your
security software.

This value can be checked and set dynamically (until the next IPL) with the
following console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY OMVS,O

2. SETOMVS MAXASSIZE=2G

Limitations stored in the security profile
Check ASSIZEMAX in the daemon’s user ID OMVS segment, and set it to 2147483647
or, preferably, to NONE to use the SYS1.PARMLIB(BPXPRMxx) value.

Using RACF, this value can be checked and set with the following TSO commands,
as described in Security Server RACF Command Language Reference (SA22-7687):
1. LISTUSER userid NORACF OMVS

2. ALTUSER userid OMVS(NOASSIZEMAX)

Limitations enforced by system exits
Make sure you are not allowing system exits IEFUSI or IEALIMIT to control OMVS
address space region sizes. A possible way to accomplish this is by coding
SUBSYS(OMVS,NOEXITS) in SYS1.PARMLIB(SMFPRMxx).

SYS1.PARMLIB(SMFPRMxx) values can be checked and activated with the following
console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY SMF,O

2. SET SMF=xx

Limitations for 64-bit addressing
Keyword MEMLIMIT in SYS1.PARMLIB(SMFPRMxx) limits how much virtual storage a
64-bit task can allocate above the 2GB bar. Unlike the REGION parameter in JCL,
MEMLIMIT=0M means that the process cannot use virtual storage above the bar.

134 IBM Rational Developer for System z: Host Configuration Reference

If MEMLIMIT is not specified in SMFPRMxx, the default value is 0M, so tasks are bound
to the (31-bit) 2GB below the bar. The default changed in z/OS 1.10 to 2G, allowing
64-bit tasks to use up to 4GB (the 2GB below the bar and the 2GB above the bar
granted by MEMLIMIT).

SYS1.PARMLIB(SMFPRMxx) values can be checked and activated with the following
console commands, as described in MVS System Commands (GC28-1781):
1. DISPLAY SMF,O

2. SET SMF=xx

MEMLIMIT can also be specified as parameter on an EXEC card in JCL. If no MEMLIMIT
parameter is specified, the default is the value defined to SMF, except when
REGION=0M is specified, in which case the default is NOLIMIT.

Miscellaneous information

Error feedback B37 space abend
When a user selects error feedback during a compile action, several temporary
data sets are created by Developer for System z. When one of these data sets runs
out of space, the compile jobs ends with a B37-04 space abend.

Adjust the space allocation in FEK.SFEKPROC(FEKFERRF) when your users experience
this problem. The default value is SPACE(200,40) TRACKS.

System limits
SYS1.PARMLIB(BPXPRMxx) defines many z/OS UNIX related limitations, which
might be reached when several Developer for System z clients are active. Most
BPXPRMxx values can be changed dynamically with the SETOMVS and SET OMVS
console commands.

Use the SETOMVS LIMMSG=ALL console command to have z/OS UNIX display
console messages (BPXI040I) when any of the BPXPRMxx limits is about to be
reached.

Connection refused
Each RSE connection starts several processes which are permanently active. New
connections can be refused due to the limit set in SYS1.PARMLIB(BPXPRMxx) on the
amount of processes, especially when users share the same UID (such as when
using the default OMVS segment).
v The limit per UID is set by the MAXPROCUSER keyword and has a default value of

25.
v The system-wide limit is set by the MAXPROCSYS keyword and has a default value

of 200.

Another source of refused connections is the limit on the amount of active z/OS
address spaces and z/OS UNIX users.
v The maximum amount of Address Space IDs (ASID) is defined in

SYS1.PARMLIB(IEASYSxx) with the MAXUSER keyword, and has a default value of
255.

v The maximum amount of z/OS UNIX user IDs (UID) is defined in
SYS1.PARMLIB(BPXPRMxx) with the MAXUIDS keyword, and has a default value of
200.

Chapter 10. Troubleshooting configuration problems 135

|

|
|
|

|
|

Host Connect Emulator
v Host Connect Emulator uses TN3270 telnet and not the RSE server to connect to

the host.
v When using secure telnet (SSL) and you are working with certificates that are

not signed by a well-known CA, every client must add the CA certificate to their
Host Connect Emulator list of trusted CAs.

v The NOSNAEXT option of TCP/IP’s TELNETPARMS might be necessary to disable the
SNA functional extensions. If NOSNAEXT is specified, the TN3270 telnet server
does not negotiate for contention resolution and SNA sense functions.

136 IBM Rational Developer for System z: Host Configuration Reference

Appendix A. Setting up SSL and X.509 authentication

This appendix is provided to assist you with some common problems that you
may encounter when setting up Secure Socket Layer (SSL), or during checking or
modifying an existing setup. This appendix also provides a sample setup to
support users authenticating themselves with an X.509 certificate.

Secure communication means ensuring that your communication partner is who he
claims to be, and transmitting information in a manner that makes it difficult for
others to intercept and read the data. SSL provides this ability in a TCP/IP
network. It works by using digital certificates to identify yourself and a public key
protocol to encrypt the communication. Refer to Security Server RACF Security
Administrator's Guide (SA22-7683) for more information on digital certificates and
the public key protocol used by SSL.

The actions needed to set up SSL communications for Developer for System z will
vary from site to site, depending on the exact needs, the RSE communication
method used and what’s already available at the site.

In this appendix we will clone the current RSE definitions, so that we have a 2nd
RSE daemon connection that will use SSL. We will also create our own security
certificates to be used by the different parts of the RSE connection.
v “Decide where to store private keys and certificates”
v “Create a key ring with RACF” on page 139
v “Clone the existing RSE setup” on page 140
v “Update rsed.envvars to enable coexistence” on page 141
v “Update ssl.properties to enable SSL” on page 141
v “Activate SSL by creating a new RSE daemon” on page 141
v “Test the connection” on page 142
v “(Optional) Add X.509 client authentication support” on page 145
v “(Optional) Create a key database with gskkyman” on page 145
v “(Optional) Create a key store with keytool” on page 148

Throughout this appendix, a uniform naming convention is used:
v Certificate : rdzrse
v Key and certificate storage : rdzssl.*
v Password : rsessl
v Daemon user ID : stcrse

Some tasks described below expect you to be active in z/OS UNIX. This can be
done by issuing the TSO command OMVS. Use the exit command to return to
TSO.

Decide where to store private keys and certificates
The identity certificates and the encryption/decryption keys used by SSL are
stored in a key file. Different implementations of this key file exist, depending on
the application type.

© Copyright IBM Corp. 2010 137

However, all implementations follow the same principle. A command generates a
key pair (a public key and associated private key). The command then wraps the
public key into an X.509 self-signed certificate, which is stored as a single-element
certificate chain. This certificate chain and the private key are stored as an entry
(identified by an alias) in a key file.

The RSE daemon is a System SSL application and uses a key database file. This
key database can be a physical file created by gskkyman or a key ring managed by
your SAF-compliant security software (for example, RACF). The RSE server (which
is started by the daemon) is a Java SSL application and uses a key store file created
by keytool or a key ring managed by your security software.

Table 29. SSL certificate storage mechanisms

Certificate
storage Created and managed by RSE daemon RSE server

key ring SAF-compliant security product supported supported

key database z/OS UNIX’s gskkyman supported /

key store Java’s keytool / supported

To connect through SSL, we need both the key store and the key database, either
as a z/OS UNIX file or as a SAF-compliant key ring:
v key store (RACF or keytool)
v key database (RACF or gskkyman)

Note:

v SAF-compliant key rings are the preferred method for managing
certificates.

v A shared certificate can be used if RSE daemon and RSE server use the
same certificate management method.

v RSE daemon must run program controlled. Using System SSL within
implies that SYS1.SIEALNKE must be made program controlled by your
security software.

v In order to run a System SSL application (daemon connection),
SYS1.SIEALNKE must be in LINKLIST or STEPLIB. If you prefer the
STEPLIB method, add the following statement to the end of rsed.envvars.
STEPLIB=$STEPLIB:SYS1.SIEALNKE

Be aware, however, that:
– Using STEPLIB in z/OS UNIX has a negative performance impact.
– If one STEPLIB library is APF authorized, then all must be authorized.

Libraries lose their APF authorization when they are mixed with
non-authorized libraries in STEPLIB.

v System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it
is available. ICSF provides hardware cryptographic support which will be
used instead of the System SSL software algorithms. Refer to System SSL
Programming (SC24-5901) for more information.

Refer to Security Server RACF Security Administrator’s Guide (SA22-7683) for
information on RACF and digital certificates. gskkyman documentation can be
found in System SSL Programming (SC24-5901), and keytool documentation is
available at http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/
keytool.html.

138 IBM Rational Developer for System z: Host Configuration Reference

Create a key ring with RACF
Do not execute this step if you use gskkyman to create the RSE daemon key
database and keytool to create the RSE server key store.

The RACDCERT command installs and maintains private keys and certificates in
RACF. RACF supports multiple private keys and certificates to be managed as a
group. These groups are called key rings.

Refer to Security Server RACF Command Language Reference (SA22-7687) for details
on the RACDCERT command.
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ACCESS(READ) ID(stcrse)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(stcrse)
SETROPTS RACLIST(FACILITY) REFRESH

RACDCERT ID(stcrse) GENCERT SUBJECTSDN(CN(’rdz rse ssl’) +
OU(’rdz’) O(’IBM’) L(’Raleigh’) SP(’NC’) C(’US’)) +
NOTAFTER(DATE(2017-05-21)) WITHLABEL(’rdzrse’) KEYUSAGE(HANDSHAKE)

RACDCERT ID(stcrse) ADDRING(rdzssl.racf)
RACDCERT ID(stcrse) CONNECT(LABEL(’rdzrse’) RING(rdzssl.racf) +

DEFAULT USAGE(PERSONAL))

The sample above starts by creating the necessary profiles and permitting user ID
STCRSE access to key rings and certificates owned by that user ID. The user ID used
must match the user ID used to run the SSL RSE daemon. The next step is creating
a new, self-signed, certificate with label rdzrse. No password is needed. This
certificate is then added to a newly created key ring (rdzssl.racf). Just as with the
certificate, no password is needed for the key ring.

The result can be verified with the following list option:
RACDCERT ID(stcrse) LIST
Digital certificate information for user STCRSE:

Label: rdzrse
Certificate ID: 2QjW1OXi0sXZ1aaEqZmihUBA
Status: TRUST
Start Date: 2007/05/24 00:00:00
End Date: 2017/05/21 23:59:59
Serial Number:

>00<
Issuer’s Name:

>CN=rdz rse ssl.OU=rdz.O=IBM.L=Raleigh.SP=NC.C=US<
Subject’s Name:

>CN=rdz rse ssl.OU=rdz.O=IBM.L=Raleigh.SP=NC.C=US<
Private Key Type: Non-ICSF
Private Key Size: 1024
Ring Associations:

Ring Owner: STCRSE
Ring:

>rdzssl.racf<

(Optional) Using a signed certificate
Certificates can be either self-signed or signed by a Certificate Authority (CA). A
certificate signed by a CA means that the CA guarantees that the owner of the
certificate is who he claims to be. The signing process adds the CA credentials
(also a certificate) to your certificate, making it a multi-element certificate chain.

Appendix A. Setting up SSL and X.509 authentication 139

When using a certificate signed by a CA you can avoid trust validation questions
by the Developer for System z client, if the client already trusts the CA.

Follow these steps to create and use a CA signed certificate:
1. Create a self-signed certificate.

RACDCERT ID(stcrse) GENCERT WITHLABEL(’rdzrse’) . . .

2. Create a signing request for this certificate.
RACDCERT ID(stcrse) GENREQ (LABEL(’rdzrse’)) DSN(dsn)

3. Send the signing request to your CA of choice.
4. Check if the CA credentials (also a certificate) are already known.

RACDCERT CERTAUTH LIST

5. Mark the CA certificate as trusted.
RACDCERT CERTAUTH ALTER(LABEL(’CA cert’)) TRUST

Or add the CA certificate to the database.
RACDCERT CERTAUTH ADD(dsn) WITHLABEL(’CA cert’) TRUST

6. Add the signed certificate to the database; this will replace the self-signed one.
RACDCERT ID(stcrse) ADD(dsn) WTIHLABEL(’rdzrse’) TRUST

Note: Do NOT delete the self-signed certificate before replacing it. If you do,
you lose the private key that goes with the certificate, which makes the
certificate useless.

7. Create a key ring.
RACDCERT ID(stcrse) ADDRING(rdzssl.racf)

8. Add the signed certificate to the key ring.
RACDCERT ID(stcrse) CONNECT(ID(stcrse) LABEL(’rdzrse’)
RING(rdzssl.racf))

9. Add the CA certificate to the key ring.
RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’CA cert’)
RING(rdzssl.racf))

Clone the existing RSE setup
In this step a new instance of the RSE configuration files is created, so that the SSL
setup can run parallel with the existing one(s). The following sample commands
expect the configuration files to be in /etc/rdz/, which is the default location used
in "Customization setup" in the Host Configuration Guide (SC23-7658).
$ cd /etc/rdz
$ mkdir ssl
$ cp rsed.envvars ssl
$ cp ssl.properties ssl
$ ls ssl
rsed.envvars ssl.properties

The z/OS UNIX commands listed above create a subdirectory called ssl and
populate it with the configuration files that require changes. We can share the
other configuration files, the installation directory, and the MVS components,
because they are not SSL-specific.

By reusing most of the existing configuration files, we can focus on the changes
that are actually required for setting up SSL and avoid doing the complete RSE
setup again. (For example, we can avoid defining a new location for ISPF.conf.)

140 IBM Rational Developer for System z: Host Configuration Reference

Update rsed.envvars to enable coexistence
So far, the definitions are an exact copy of the current setup, which implies that the
logs of the new RSE daemon will overlay the current server log files. RSE also
needs to know where to find the configuration files that were not copied to the ssl
directory. Both issues can be addressed by minor changes to rsed.envvars.
$ oedit /etc/rdz/ssl/rsed.envvars

-> change: -Ddaemon.log=/var/rdz/logs/ssl
-> change: -Duser.log=/var/rdz/logs/ssl

-> add at the END:
-- NEEDED TO FIND THE REMAINING CONFIGURATION FILES
CFG_BASE=/etc/rdz
CLASSPATH=.:$CFG_BASE:$CLASSPATH
--

The changes above define a new log location (which will be created by RSE
daemon if the log location does not exist). The changes also update the CLASSPATH
so that the SSL RSE processes will first search the current directory (/etc/rdz/ssl)
for configuration files and then search the original directory (/etc/rdz).

Update ssl.properties to enable SSL
By updating ssl.properties, RSE is instructed to start using SSL encrypted
communication.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.racf
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.racf
-> uncomment and change: server_keystore_label=rdzrse
-> uncomment and change: server_keystore_type=JCERACFKS

The changes above enable SSL and tell the RSE daemon and RSE server that their
(shared) certificate is stored under label rdzrse in key ring rdzssl.racf. The
JCERACFKS keyword tells RSE server that a SAF-compliant key ring is used as key
store.

Activate SSL by creating a new RSE daemon
As stated before, we will create a second connection that will use SSL, which
implies creating a new RSE daemon. The RSE daemon can be a started task or user
job. We will use the user job method for initial (test) setup. The following
instructions expect the sample JCL to be in FEK.#CUST.PROCLIB(RSED), which is the
default location used in "Customization setup" in the Host Configuration Guide
(SC23-7658):
1. Create a new member FEK.#CUST.PROCLIB(RSEDSSL) and copy in sample JCL

FEK.#CUST.PROCLIB(RSED).
2. Customize RSEDSSL by adding a job card on top and an exec statement at the

bottom. Also provide a new port number (4047) and the location of the
SSL-related configuration files (/etc/rdz/ssl), as shown in the following code
sample. Note that we enforce the usage of user ID STCRSE, as this user ID was
given the proper access authority to certificates and key rings in a previous
step.

Appendix A. Setting up SSL and X.509 authentication 141

Note: The user ID assigned to the RSEDSSL job must have the same authorizations
as the original RSE daemon. FACILITY profile BPX.SERVER and PTKTDATA
profile IRRPTAUTH.FEKAPPL.* are the key elements here.

Test the connection
The SSL host configuration is complete and the RSE daemon for SSL can be started
by submitting job FEK.#CUST.PROCLIB(RSEDSSL), which was created earlier.

The new setup can now be tested by connecting with the Developer for System z
client. Since we created a new configuration for use by SSL (by cloning the existing
one), a new connection must be defined on the client, using port 4047 for the RSE
daemon.

Upon connection, the host and client will start with some handshaking in order to
set up a secure path. Part of this handshaking is the exchange of certificates. If the
Developer for System z client does not recognize the host certificate or the CA that
signed it, Developer for System z client will prompt the user asking if this
certificate can be trusted.

//RSEDSSL JOB CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),USER=STCRSE
//*
//* RSE DAEMON - SSL
//*
//RSED PROC IVP=’’, * ’IVP’ to do an IVP test
// PORT=4047,
// HOME=’/usr/lpp/rdz’,
// CNFG=’/etc/rdz/ssl’
//*
//RSE EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,
// PARM=’PGM &HOME./bin/rsed.sh &IVP &PORT &CNFG’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//PEND
//*
//RSED EXEC RSED
//*

Figure 23. RSEDSSL - RSE daemon user job for SSL

142 IBM Rational Developer for System z: Host Configuration Reference

By clicking the Finish button the user can accept this certificate as trusted, after
which the connection initialization continues.

Note: RSE daemon and RSE server might use two different certificate locations,
resulting in two different certificates and thus two confirmations.

Once a certificate is known to the client, this dialog is not shown again. The list of
trusted certificates can be managed by selecting Window > Preferences... >
Remote Systems > SSL, which shows the following dialog:

Figure 24. Import Host Certificate dialog

Appendix A. Setting up SSL and X.509 authentication 143

Figure 25. Preferences dialog - SSL

144 IBM Rational Developer for System z: Host Configuration Reference

If SSL communication fails, the client will return an error message. More
information is available in the different server and user log files, as described in
“RSE daemon and thread pool logging” on page 121 and “RSE user logging” on
page 122.

(Optional) Add X.509 client authentication support
RSE daemon supports users authenticating themselves with an X.509 certificate.
Using SSL encrypted communication is a prerequisite for this function, because it
is an extension to the host authentication with a certificate used in SSL.

There are multiple ways to do certificate authentication for a user, as described in
“Client authentication using X.509 certificates” on page 24. The next steps
document the setup needed to support the method where your security software
authenticates the certificate using the HostIdMappings certificate extension.
1. Change the certificate that identifies the Certificate Authority (CA) used to sign

the client certificate to a highly trusted CA certificate. Although the TRUST
status is sufficient for certificate validation, a change to HIGHTRUST is done,
because it is used for the certificate authentication part of the logon process.
RACDCERT CERTAUTH ALTER(LABEL(’HighTrust CA’)) HIGHTRUST

2. Add the CA certificate to the key ring, rdzssl.racf, so that it is available to
validate the client certificates.
RACDCERT ID(stcrse) CONNECT(CERTAUTH LABEL(’HighTrust CA’) +

RING(rdzssl.racf))

This concludes the security software setup for the CA certificate.
3. Define a resource (format IRR.HOST.hostname) in the SERVAUTH class for the host

name, CDFMVS08.RALEIGH.IBM.COM, defined in the HostIdMappings extension of
your client certificate.
RDEFINE SERVAUTH IRR.HOST.CDFMVS08.RALEIGH.IBM.COM UACC(NONE)

4. Grant the RSE started task user ID, STCRSE, access to this resource with READ
authority.
PERMIT IRR.HOST.CDFMVS08.RALEIGH.IBM.COM CLASS(SERVAUTH) +

ACCESS(READ) ID(stcrse)

5. Activate your changes to the SERVAUTH class. Use the first command if the
SERVAUTH class is not active yet. Use the second one to refresh an active setup.
SETROPTS CLASSACT(SERVAUTH) RACLIST(SERVAUTH)
or
SETROPTS RACLIST(SERVAUTH) REFRESH

This concludes the security software setup for the HostIdMappings extension.
6. Restart the RSE started task to start accepting client logons using X.509

certificates.

(Optional) Create a key database with gskkyman
Do not execute this step if you use an SAF-compliant key ring for the RSE daemon
key database.

gskkyman is a z/OS UNIX shell-based, menu-driven, program that creates,
populates, and manages a z/OS UNIX file that contains private keys, certificate
requests, and certificates. This z/OS UNIX file is called a key database.

Note: The following statements might be necessary to set up the environment for
gskkyman. Refer to System SSL Programming (SC24-5901) for more information
on this.

Appendix A. Setting up SSL and X.509 authentication 145

PATH=$PATH:/usr/lpp/gskssl/bin
export NLSPATH=/usr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047/%N:$NLSPATH
export STEPLIB=$STEPLIB:SYS1.SIEALNKE

$ cd /etc/rdz/ssl
$ gskkyman Database Menu

1 - Create new database

Enter option number: 1
Enter key database name (press ENTER to return to menu): rdzssl.kdb
Enter database password (press ENTER to return to menu): rsessl
Re-enter database password: rsessl
Enter password expiration in days (press ENTER for no expiration):
Enter database record length (press ENTER to use 2500):

Key database /etc/rdz/ssl/rdzssl.kdb created.

Press ENTER to continue.

Key Management Menu

6 - Create a self-signed certificate

Enter option number (press ENTER to return to previous menu): 6

Certificate Type

5 - User or server certificate with 1024-bit RSA key

Select certificate type (press ENTER to return to menu): 5
Enter label (press ENTER to return to menu): rdzrse
Enter subject name for certificate

Common name (required): rdz rse ssl
Organizational unit (optional): rdz
Organization (required): IBM
City/Locality (optional): Raleigh
State/Province (optional): NC
Country/Region (2 characters - required): US

Enter number of days certificate will be valid (default 365): 3650

Enter 1 to specify subject alternate names or 0 to continue: 0

Please wait

Certificate created.

Press ENTER to continue.

Key Management Menu

0 - Exit program

Enter option number (press ENTER to return to previous menu): 0
$ ls -l rdzssl.*
total 152
-rw------- 1 IBMUSER SYS1 35080 May 24 14:24 rdzssl.kdb
-rw------- 1 IBMUSER SYS1 80 May 24 14:24 rdzssl.rdb
$ chmod 644 rdzssl.*
$ ls -l rdzssl.*
-rw-r--r-- 1 IBMUSER SYS1 35080 May 24 14:24 rdzssl.kdb
-rw-r--r-- 1 IBMUSER SYS1 80 May 24 14:24 rdzssl.rdb

The sample above starts by creating a key database called rdzssl.kdb with
password rsessl. Once the database exists, it is populated by creating a new,
self-signed, certificate, valid for about 10 years (not counting leap days). The

146 IBM Rational Developer for System z: Host Configuration Reference

certificate is stored under the label rdzrse and with the same password (rsessl) as
the one used for the key database (this is an RSE requisite).

gskkyman allocates the key database with a (very secure) 600 permission bit mask
(only owner has access). Unless the daemon uses the same user ID as the creator of
the key database, permissions have to be set less restrictive. 644 (owner has
read/write, everyone has read) is a usable mask for the chmod command.

The result can be verified by selecting the Show certificate information option in
the Manage keys and certificates submenu, as follows:
$ gskkyman

Database Menu

2 - Open database

Enter option number: 2
Enter key database name (press ENTER to return to menu): rdzssl.kdb
Enter database password (press ENTER to return to menu): rsessl

Key Management Menu

1 - Manage keys and certificates

Enter option number (press ENTER to return to previous menu): 1

Key and Certificate List

1 - rdzrse

Enter label number (ENTER to return to selection menu, p for previous list): 1

Key and Certificate Menu

1 - Show certificate information

Enter option number (press ENTER to return to previous menu): 1

Certificate Information

Label: rdzrse
Record ID: 14

Issuer Record ID: 14
Trusted: Yes
Version: 3

Serial number: 45356379000ac997
Issuer name: rdz rse ssl

rdz
IBM
Raleigh
NC
US

Subject name: rdz rse ssl
rdz
IBM
Raleigh
NC
US

Effective date: 2007/05/24
Expiration date: 2017/05/21

Public key algorithm: rsaEncryption
Public key size: 1024

Signature algorithm: sha1WithRsaEncryption
Issuer unique ID: None
Subject unique ID: None

Appendix A. Setting up SSL and X.509 authentication 147

Number of extensions: 3

Enter 1 to display extensions, 0 to return to menu: 0

Key and Certificate Menu

0 - Exit program

Enter option number (press ENTER to return to previous menu): 0

The following ssl.properties sample shows that the daemon_* directives differ
from the SAF key ring sample shown earlier.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.kdb
-> uncomment and change: daemon_keydb_password=rsessl
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.racf
-> uncomment and change: server_keystore_label=rdzrse
-> uncomment and change: server_keystore_type=JCERACFKS

The changes above enable SSL and tell the RSE daemon that the certificate is
stored under label rdzrse in key database rdzssl.kdb with password rsessl. RSE
server is still using a SAF compliant key ring.

(Optional) Create a key store with keytool
Do not execute this step if you use a SAF-compliant key ring for the RSE server
key store.

"keytool -genkey" generates a private key pair and a matching self-signed
certificate, which is stored as an entry (identified by an alias) in a (new) key store
file.

Note: Java must be included in your command search directories. The following
statement might be necessary to be able to execute keytool, where
/usr/lpp/java/J5.0 is the directory where Java is installed:
PATH=$PATH:/usr/lpp/java/J5.0/bin

All information can be passed as a parameter, but due to command-line length
limitations some interactivity is required, as follows:
$ cd /etc/rdz/ssl
$ keytool -genkey -alias rdzrse -validity 3650 -keystore rdzssl.jks -storepass
rsessl -keypass rsessl
What is your first and last name?

[Unknown]: rdz rse ssl
What is the name of your organizational unit?

[Unknown]: rdz
What is the name of your organization?

[Unknown]: IBM
What is the name of your City or Locality?

[Unknown]: Raleigh
What is the name of your State or Province?

[Unknown]: NC
What is the two-letter country code for this unit?

[Unknown]: US
Is CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US correct? (type "yes"
or "no")

[no]: yes
$ ls -l rdzssl.*
-rw-r--r-- 1 IBMUSER SYS1 1224 May 24 14:17 rdzssl.jks

148 IBM Rational Developer for System z: Host Configuration Reference

The self-signed certificate created above is valid for about 10 years (not counting
leap days). It is stored in /etc/rdz/ssl/rdzssl.jks using alias rdzrse. Its
password (rsessl) is identical to the key store password, which is a requisite for
RSE.

The result can be verified with the -list option, as follows:
$ keytool -list -alias rdzrse -keystore rdzssl.jks -storepass rsessl -v
Alias name: rdzrse
Creation date: May 24, 2007
Entry type: keyEntry
Certificate chain length: 1
Certificate 1}:
Owner: CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US
Issuer: CN=rdz rse ssl, OU=rdz, O=IBM, L=Raleigh, ST=NC, C=US
Serial number: 46562b2b
Valid from: 5/24/07 2:17 PM until: 5/21/17 2:17 PM
Certificate fingerprints:

MD5: 9D:6D:F1:97:1E:AD:5D:B1:F7:14:16:4D:9B:1D:28:80
SHA1: B5:E2:31:F5:B0:E8:9D:01:AD:2D:E6:82:4A:E0:B1:5E:12:CB:10:1C

The following ssl.properties sample shows that the server_* directives differ
from the SAF key ring sample shown earlier.
$ oedit /etc/rdz/ssl/ssl.properties

-> change: enable_ssl=true
-> uncomment and change: daemon_keydb_file=rdzssl.racf
-> uncomment and change: daemon_key_label=rdzrse
-> uncomment and change: server_keystore_file=rdzssl.jks
-> uncomment and change: server_keystore_password=rsessl
-> uncomment and change: server_keystore_label=rdzrse
-> optionally uncomment and change: server_keystore_type=JKS

The changes above enable SSL and tell the RSE server that the certificate is stored
under label rdzrse in key store rdzssl.jks with password rsessl. RSE daemon is
still using a SAF-compliant key ring.

Appendix A. Setting up SSL and X.509 authentication 149

150 IBM Rational Developer for System z: Host Configuration Reference

Appendix B. Setting up TCP/IP

This appendix is provided to assist you with some common problems that you
may encounter when setting up TCP/IP, or during checking or modifying an
existing setup.

Refer to Communications Server: IP Configuration Guide (SC31-8775) and
Communications Server: IP Configuration Reference (SC31-8776) for additional
information on TCP/IP configuration.

Hostname dependency
When using APPC for the TSO Commands service, Developer for System z is
dependent upon TCP/IP having the correct hostname when it is initialized. This
implies that the different TCP/IP and Resolver configuration files must be set up
correctly.

You can test your TCP/IP configuration with the fekfivpt Installation Verification
Program (IVP). The command should return an output like that in this sample ($ is
the z/OS UNIX prompt):
$ fekfivpt

Wed Jul 2 13:11:54 EDT 2008
uid=1(USERID) gid=0(GROUP)
using /etc/rdz/rsed.envvars

TCP/IP resolver configuration (z/OS UNIX search order):

Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC
(L) DataSetPrefix = TCPIP
(L) HostName = CDFMVS08
(L) TcpIpJobName = TCPIP
(L) DomainOrigin = RALEIGH.IBM.COM
(L) NameServer = 9.42.206.2

9.42.206.3
(L) NsPortAddr = 53 (L) ResolverTimeout = 10
(L) ResolveVia = UDP (L) ResolverUdpRetries = 1
(*) Options NDots = 1
(*) SockNoTestStor
(*) AlwaysWto = NO (L) MessageCase = MIXED
(*) LookUp = DNS LOCAL
res_init Succeeded
res_init Started: 2008/07/02 13:11:54.755363
res_init Ended: 2008/07/02 13:11:54.755371
**
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPIP 13:11:54
Tcpip started at 01:28:36 on 06/23/2008 with IPv6 enabled

© Copyright IBM Corp. 2010 151

host IP address:

hostName=CDFMVS08
hostAddr=9.42.112.75
bindAddr=9.42.112.75
localAddr=9.42.112.75

Success, addresses match

Understanding resolvers
The resolver acts on behalf of programs as a client that accesses name servers for
name-to-address or address-to-name resolution. To resolve the query for the
requesting program, the resolver can access available name servers, use local
definitions (for example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes,
HOSTS.SITEINFO, HOSTS.ADDRINFO or ETC.IPNODES), or use a combination of both.

When the resolver address space starts, it reads an optional resolver setup data set
pointed to by the SETUP DD card in the resolver JCL procedure. If the setup
information is not provided, the resolver uses the applicable native MVS or z/OS
UNIX search order without any GLOBALTCPIPDATA, DEFAULTTCPIPDATA,
GLOBALIPNODES, DEFAULTIPNODES or COMMONSEARCH information.

Understanding search orders of configuration information
It is important to understand the search order for configuration files used by
TCP/IP functions, and when you can override the default search order with
environment variables, JCL, or other variables you provide. This knowledge allows
you to accommodate your local data set and HFS file naming standards, and it is
helpful to know the configuration data set or HFS file in use when diagnosing
problems.

Another important point to note is that when a search order is applied for any
configuration file, the search ends with the first file found. Therefore, unexpected
results are possible if you place configuration information in a file that never gets
found, either because other files exist earlier in the search order, or because the file
is not included in the search order chosen by the application.

When searching for configuration files, you can explicitly tell TCP/IP where most
configuration files are by using DD statements in the JCL procedures or by setting
environment variables. Otherwise, you can let TCP/IP dynamically determine the
location of the configuration files, based on search orders documented in
Communications Server: IP Configuration Guide (SC31-8775).

The TCP/IP stack’s configuration component uses TCPIP.DATA during TCP/IP
stack initialization to determine the stack’s HOSTNAME. To get its value, the z/OS
UNIX environment search order is used.

Note: Use the trace resolver facility to determine what TCPIP.DATA values are
being used by the resolver and where they were read from. For information
on dynamically starting the trace, refer to Communications Server: IP
Diagnosis Guide (GC31-8782). Once the trace is active, issue a TSO NETSTAT
HOME command and a z/OS UNIX shell netstat –h command to display
the values. Issuing a PING of a host name from TSO and from the z/OS
UNIX shell also shows activity to any DNS servers that might be configured.

152 IBM Rational Developer for System z: Host Configuration Reference

Search orders used in the z/OS UNIX environment
The particular file or table that is searched for can be either an MVS data set or an
HFS file, depending on the resolver configuration settings and the presence of
given files on the system.

Base resolver configuration files
The base resolver configuration file contains TCPIP.DATA statements. In addition to
resolver directives, it is referenced to determine, among other things, the data set
prefix (DATASETPREFIX statement’s value) to be used when trying to access some of
the configuration files specified in this section.

The search order used to access the base resolver configuration file is the
following:
1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used (see also
“Understanding resolvers” on page 152). The search continues for an additional
configuration file. The search ends with the next file found.

2. The value of the environment variable RESOLVER_CONFIG

The value of the environment variable is used. This search will fail if the file
does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf

4. //SYSTCPD DD card
The data set allocated to the DD name SYSTCPD is used. In the z/OS UNIX
environment, a child process does not have access to the SYSTCPD DD. This is
because the SYSTCPD allocation is not inherited from the parent process over
the fork() or exec function calls.

5. userid.TCPIP.DATA

userid is the user ID that is associated with the current security environment
(address space, task, or thread).

6. jobname.TCPIP.DATA

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used (see
also “Understanding resolvers” on page 152).

9. TCPIP.TCPIP.DATA

Translate tables
The translate tables (EBCDIC-to-ASCII and ASCII-to-EBCDIC) are referenced to
determine the translate data sets to be used. The search order used to access this
configuration file is the following. The search order ends at the first file being
found:
1. The value of the environment variable X_XLATE The value of the environment

variable is the name of the translate table produced by the TSO CONVXLAT
command.

2. userid.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).

Appendix B. Setting up TCP/IP 153

3. jobname.STANDARD.TCPXLBIN

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

4. hlq.STANDARD.TCPXLBIN

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

5. If no table is found, the resolver uses a hard-coded default table, identical to
the table listed in data set member SEZATCPX(STANDARD).

Local host tables
By default, resolver first attempts to use any configured domain name servers for
resolution requests. If the resolution request cannot be satisfied, local host tables
are used. Resolver behavior is controlled by TCPIP.DATA statements.

The TCPIP.DATA resolver statements define if and how domain name servers are to
be used. The LOOKUP TCPIP.DATA statement can also be used to control how domain
name servers and local host tables are used. For more information on TCPIP.DATA
statements, refer to Communications Server: IP Configuration Reference (SC31-8776).

The resolver uses the Ipv4-unique search order for sitename information
unconditionally for getnetbyname API calls. The Ipv4-unique search order for
sitename information is the following. The search ends at the first file being found:
1. The value of the environment variable X_SITE

The value of the environment variable is the name of the HOSTS.SITEINFO
information file created by the TSO MAKESITE command.

2. The value of the environment variable X_ADDR

The value of the environment variable is the name of the HOSTS.ADDRINFO
information file created by the TSO MAKESITE command.

3. /etc/hosts

4. userid.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

5. jobname.HOSTS.SITEINFO

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

6. hlq.HOSTS.SITEINFO

hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Applying this set up information to Developer for System z
As stated before, Developer for System z is dependent upon TCP/IP having the
correct hostname when it is initialized, when using APPC. This implies that the
different TCP/IP and Resolver configuration files must be set up correctly.

In the following example we will focus on some configuration tasks for TCP/IP
and Resolver. Note that this does not cover a complete setup of TCP/IP or
Resolver, it just highlights some key aspects that might be applicable to your site:
1. In the JCL below we see that TCP/IP will use SYS1.TCPPARMS(TCPDATA) to

determine the stack’s hostname.

154 IBM Rational Developer for System z: Host Configuration Reference

//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’,PROF=TCPPROF,DATA=TCPDATA
//*
//* TCP/IP NETWORK
//*
//TCPIP EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,PARM=&PARMS
//PROFILE DD DISP=SHR,DSN=SYS1.TCPPARMS(&PROF)
//SYSTCPD DD DISP=SHR,DSN=SYS1.TCPPARMS(&DATA)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CFGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSERROR DD SYSOUT=*

2. SYS1.TCPPARMS(TCPDATA) tells us that we want the system name to be the
hostname and that we do not use a domain name server (DNS); all names will
be resolved through site table lookup.
; HOSTNAME specifies the TCP host name of this system. If not
; specified, the default HOSTNAME will be the node name specified
; in the IEFSSNxx PARMLIB member.
;
; HOSTNAME
;
; DOMAINORIGIN specifies the domain origin that will be appended
; to host names passed to the resolver. If a host name contains
; any dots, then the DOMAINORIGIN will not be appended to the
; host name.
;
DOMAINORIGIN RALEIGH.IBM.COM
;
; NSINTERADDR specifies the IP address of the name server.
; LOOPBACK (14.0.0.0) specifies your local name server. If a name
; server will not be used, then do not code an NSINTERADDR statement.
; (Comment out the NSINTERADDR line below). This will cause all names
; to be resolved via site table lookup.
;
; NSINTERADDR 14.0.0.0
;
; TRACE RESOLVER will cause a complete trace of all queries to and
; responses from the name server or site tables to be written to
; the user’s console. This command is for debugging purposes only.
;
; TRACE RESOLVER

3. In the Resolver JCL we see that the SETUP DD statement is not used. As
mentioned in “Understanding resolvers” on page 152, this means that
GLOBALTCPIPDATA and other variables will not be used.
//RESOLVER PROC PARMS=’CTRACE(CTIRES00)’
//*
//* IP NAME RESOLVER – START WITH SUB=MSTR
//*
//RESOLVER EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS
//*SETUP DD DISP=SHR,DSN=USER.PROCLIB(RESSETUP),FREE=CLOSE

4. If we assume that the RESOLVER_CONFIG environment variable is not set, we can
see in Table 30 on page 156 that Resolver will try to use /etc/resolv.conf as
base configuration file.
TCPIPJOBNAME TCPIP
DomainOrigin RALEIGH.IBM.COM
HostName CDFMVS08

As mentioned in “Search orders used in the z/OS UNIX environment” on page
153, the base configuration file contains TCPIP.DATA statements. If the system
name is CDFMVS08 (TCPDATA stated that the system name is used as hostname)
we can see that /etc/resolv.conf is in sync with SYS1.TCPPARMS(TCPDATA).
There are no DNS definitions so site table lookup will be used.

Appendix B. Setting up TCP/IP 155

5. Table 30 also tells us that if we do not have to do anything to use the default
ASCII-EBCDIC translation table.

6. Assuming that the TSO MAKESITE command is not used (can create the
X_SITE and X_ADDR variables), /etc/hosts will be the site table used for name
lookup.
Resolver /etc/hosts file cdfmvs08
9.42.112.75 cdfmvs08 # CDFMVS08 Host
9.42.112.75 cdfmvs08.raleigh.ibm.com # CDFMVS08 Host
127.0.0.1 localhost

The minimal content of this file is information about the current system. In the
sample above we define both cdfmvs08 and cdfmvs08.raleigh.ibm.com as a
valid name for the IP address of our z/OS system.
If we were using a domain name server (DNS), the DNS would hold the
/etc/hosts info, and /etc/resolv.conf and SYS1.TCPPARMS(TCPDATA) would
have statements that identify the DNS to our system.
To avoid confusion, you should keep the TCP/IP and Resolver configuration
files in sync with each other.

Table 30. Local definitions available to resolver

File type
description APIs affected Candidate files

Base resolver
configuration files

All APIs 1. GLOBALTCPIPDATA

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD-name

5. userid.TCPIP.DATA

6. jobname.TCPIP.DATA

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

9. TCPIP.TCPIP.DATA

Translate tables All APIs 1. X_XLATE environment variable

2. userid.STANDARD.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

5. Resolver-provided translate table, member
STANDARD in SEZATCPX

156 IBM Rational Developer for System z: Host Configuration Reference

Table 30. Local definitions available to resolver (continued)

File type
description APIs affected Candidate files

Local host tables endhostent
endnetent
getaddrinfo
gethostbyaddr
gethostbyname
gethostent
GetHostNumber
GetHostResol
GetHostString
getnameinfo
getnetbyaddr
getnetbyname
getnetent
IsLocalHost
Resolve
sethostent
setnetent

IPv4

1. X_SITE environment variable

2. X_ADDR environment variable

3. /etc/hosts

4. userid.HOSTS.xxxxINFO

5. jobname.HOSTS.xxxxINFO

6. hlq.HOSTS.xxxxINFO

IPv6

1. GLOBALIPNODES

2. RESOLVER_IPNODES environment variable

3. userid.ETC.IPNODES

4. jobname.ETC.IPNODES

5. hlq.ETC.IPNODES

6. DEFAULTIPNODES

7. /etc/ipnodes

Note: Table 30 on page 156 is a partial copy from a table in Communications Server:
IP Configuration Guide (SC31-8775). See that manual for the full table.

Host address is not resolved correctly
When you see problems where TCP/IP Resolver cannot resolve the host address
properly, it is most likely due to a missing or incomplete resolver configuration
file. A clear indication for this problem is the following message in lock.log:
clientip(0.0.0.0) <> callerip(<host IP address>)

To verify this, execute the fekfivpt TCP/IP IVP, as described in "Installation
verification" in the Host Configuration Guide (SC23-7658). The resolver configuration
section of the output will look like the following sample:
Resolver Trace Initialization Complete -> 2008/07/02 13:11:54.745964

res_init Resolver values:
Global Tcp/Ip Dataset = None
Default Tcp/Ip Dataset = None
Local Tcp/Ip Dataset = /etc/resolv.conf
Translation Table = Default
UserId/JobName = USERID
Caller API = LE C Sockets
Caller Mode = EBCDIC

Ensure that the definitions in the file (or data set) referenced by “Local Tcp/Ip
Dataset” are correct.

This field will be blank if you do not use a default name for the IP resolver file
(using the z/OS UNIX search order). If so, add the following statement to
rsed.envvars, where <resolver file> or <resolver data> represents the name of
your IP resolver file:
RESOLVER_CONFIG=<resolver file>

or

Appendix B. Setting up TCP/IP 157

RESOLVER_CONFIG=’<resolver data set>’

158 IBM Rational Developer for System z: Host Configuration Reference

Bibliography

Referenced publications
The following publications are referenced in this document:

Table 31. Referenced publications

Publication title
Order
number Reference Reference Web site

Program Directory for IBM
Rational Developer for
System z

GI11-8298 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Prerequisites

SC23-7659 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Host Configuration
Quick Start

GI11-9201 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Host Configuration
Guide

SC23-7658 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Host Configuration
Reference

SC14-7290 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Host Configuration
Utility Guide

SC14-7282 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

SCLM Developer Toolkit
Administrator's Guide

SC23-9801 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Rational Developer for
System z Common Access
Repository Manager
Developer's Guide

SC23-7660 Developer for
System z

http://www.ibm.com/software/rational/products/
developer/systemz/library/index.html

Using APPC to provide TSO
command services

SC14-7291 White paper http://www-306.ibm.com/software/awdtools/rdz/
library/

Using ISPF Client Gateway
to provide CARMA services

SC14-7292 White paper http://www-306.ibm.com/software/awdtools/rdz/
library/

Communications Server IP
Configuration Guide

SC31-8775 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
Configuration Reference

SC31-8776 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
Diagnosis Guide

GC31-8782 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server IP
System Administrator's
Commands

SC31-8781 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server
SNA Network
Implementation Guide

SC31-8777 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Communications Server
SNA Operations

SC31-8779 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

© Copyright IBM Corp. 2010 159

Table 31. Referenced publications (continued)

Publication title
Order
number Reference Reference Web site

Cryptographic Services
System SSL Programming

SC24-5901 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

DFSMS Macro Instructions
for Data Sets

SC26-7408 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

DFSMS Using data sets SC26-7410 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Language Environment
Customization

SA22-7564 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Language Environment
Debugging Guide

GA22-7560 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Initialization and
Tuning Guide

SA22-7591 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Initialization and
Tuning Reference

SA22-7592 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS JCL Reference SA22-7597 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Planning Workload
Management

SA22-7602 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS Setting Up a Sysplex SA22-7625 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

MVS System Commands SA22-7627 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Security Server RACF
Command Language
Reference

SA22-7687 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Security Server RACF
Security Administrator's
Guide

SA22-7683 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

TSO/E Customization SA22-7783 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

TSO/E REXX Reference SA22-7790 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services
Command Reference

SA22-7802 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services
Planning

GA22-7800 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

UNIX System Services User's
Guide

SA22-7801 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Using REXX and z/OS
UNIX System Services

SA22-7806 z/OS 1.11 http://www-03.ibm.com/servers/eserver/zseries/
zos/bkserv/

Java Diagnostic Guide SC34-6650 Java 5.0 http://www.ibm.com/developerworks/java/jdk/
diagnosis/

Java SDK and Runtime
Environment User Guide

/ Java 5.0 http://www-03.ibm.com/servers/eserver/zseries/
software/java/

Resource Definition Guide SC34-6430 CICSTS 3.1 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

160 IBM Rational Developer for System z: Host Configuration Reference

Table 31. Referenced publications (continued)

Publication title
Order
number Reference Reference Web site

Resource Definition Guide SC34-6815 CICSTS 3.2 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

Resource Definition Guide SC34-7000 CICSTS 4.1 https://publib.boulder.ibm.com/infocenter/cicsts/
v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/
library/library_html.html

RACF Security Guide SC34-6454 CICSTS 3.1 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

RACF Security Guide SC34-6835 CICSTS 3.2 http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

RACF Security Guide SC34-7003 CICSTS 4.1 https://publib.boulder.ibm.com/infocenter/cicsts/
v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/
library/library_html.html

Language Reference SC27-1408 Enterprise
COBOL for
z/OS

http://www-03.ibm.com/systems/z/os/zos/bkserv/
zapplsbooks.html

The following Web sites are referenced in this document:

Table 32. Referenced Web sites

Description Reference Web site

Developer for System z Information Center http://publib.boulder.ibm.com/infocenter/ratdevz/v8r0/index.jsp

Developer for System z Support http://www.ibm.com/software/rational/products/developer/
systemz/

Developer for System z Library http://www.ibm.com/software/rational/products/developer/
systemz/library/index.html

Developer for System z home page http://www.ibm.com/software/rational/products/developer/
systemz/

Developer for System z Recommended service http://www-01.ibm.com/support/docview.wss?rs=2294
&context=SS2QJ2&uid=swg27006335

Developer for System z enhancement request https://www.ibm.com/developerworks/support/rational/rfe/

z/OS internet library http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/

CICSTS Information Center https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Download Apache Ant http://ant.apache.org/

Java keytool documentation http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

CA support home page https://support.ca.com/

Bibliography 161

Informational publications
The following publications can be helpful in understanding setup issues for
requisite host components:

Table 33. Informational publications

Publication title
Order
number Reference Reference Web site

ABCs of z/OS System
Programming Volume 9
(z/OS UNIX)

SG24-6989 Redbook http://www.redbooks.ibm.com/

System Programmer’s
Guide to: Workload
Manager

SG24-6472 Redbook http://www.redbooks.ibm.com/

TCPIP Implementation
Volume 1: Base Functions,
Connectivity, and Routing

SG24-7532 Redbook http://www.redbooks.ibm.com/

TCPIP Implementation
Volume 3: High Availability,
Scalability, and Performance

SG24-7534 Redbook http://www.redbooks.ibm.com/

TCP/IP Implementation
Volume 4: Security and
Policy-Based Networking

SG24-7535 Redbook http://www.redbooks.ibm.com/

162 IBM Rational Developer for System z: Host Configuration Reference

Glossary

A
Action ID. A numeric identifier for an action between
0 and 999

Application Server.

1. A program that handles all application operations
between browser-based computers and an
organization's back-end business applications or
databases. There is a special class of Java-based
appservers that conform to the J2EE standard. J2EE
code can be easily ported between these appservers.
They can support JSPs and servlets for dynamic
Web content and EJBs for transactions and database
access.

2. The target of a request from a remote application. In
the DB2 environment, the application server
function is provided by the distributed data facility
and is used to access DB2 data from remote
applications.

3. A server program in a distributed network that
provides the execution environment for an
application program.

4. The target of a request from an application
requester. The database management system
(DBMS) at the application server site provides the
requested data.

5. Software that handles communication with the
client requesting an asset and queries of the Content
Manager.

B
Bidirectional (bi-di). Pertaining to scripts such as
Arabic and Hebrew that generally run from right to
left, except for numbers, which run from left to right.
This definition is from the Localization Industry
Standards Association (LISA) Glossary.

Bidirectional Attribute. Text type, text orientation,
numeric swapping, and symmetric swapping.

Build Request. A request from the client to perform a
build transaction.

Build Transaction. A job started on MVS to perform
builds after a build request has been received from the
client.

C
Compile.

1. In Integrated Language Environment (ILE)
languages, to translate source statements into
modules that then can be bound into programs or
service programs.

2. To translate all or part of a program expressed in a
high-level language into a computer program
expressed in an intermediate language, an assembly
language, or a machine language.

Container.

1. In CoOperative Development Environment/400, a
system object that contains and organizes source
files. An i5/OS® library or an MVS-partitioned data
set are examples of a container.

2. In J2EE, an entity that provides life-cycle
management, security, deployment, and runtime
services to components. (Sun) Each type of
container (EJB, Web, JSP, servlet, applet, and
application client) also provides component-specific
services

3. In Backup Recovery and Media Services, the
physical object used to store and move media such
as a box, a case, or a rack.

4. In a virtual tape server (VTS), a receptacle in which
one or more exported logical volumes (LVOLs) can
be stored. A stacked volume containing one or more
LVOLs and residing outside a VTS library is
considered to be the container for those volumes.

5. A physical storage location of the data. For
example, a file, directory, or device.

6. A column or row that is used to arrange the layout
of a portlet or other container on a page.

7. An element of the user interface that holds objects.
In the folder manager, an object that can contain
other folders or documents.

D
Database. A collection of interrelated or independent
data items that are stored together to serve one or more
applications.

Data Definition View. Contains a local representation
of databases and their objects and provides features to
manipulate these objects and export them to a remote
database

Data Set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

Debug. To detect, diagnose, and eliminate errors in
programs.

© Copyright IBM Corp. 2010 163

Debugging Session. The debugging activities that
occur between the time that a developer starts a
debugger and the time that the developer exits from it.

E
Error Buffer. A portion of storage used to hold error
output information temporarily.

F
.

G
Gateway.

1. A middleware component that bridges Internet and
intranet environments during Web service
invocations.

2. Software that provides services between the
endpoints and the rest of the Tivoli® environment.

3. A component of a Voice over Internet Protocol that
provides a bridge between VoIP and
circuit-switched environments.

4. A device or program used to connect networks or
systems with different network architectures. The
systems may have different characteristics, such as
different communication protocols, different
network architecture, or different security policies,
in which case the gateway performs a translation
role as well as a connection role.

H
.

I
Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and terminal user. ISPF
consists of four major components: DM, PDF, SCLM,
and C/S. The DM component is the Dialog Manager,
which provides services to dialogs and end-users. The
PDF component is the Program Development Facility,
which provides services to assist the dialog or
application developer. The SCLM component is the
Software Configuration Library Manager, which
provides services to application developers to manage
their application development libraries. The C/S
component is the Client/Server, which allows you to
run ISPF on programmable workstation, to display the
panels using the display function of your workstation

operating system, and to integrate workstation tools
and data with host tools and data.

Interpreter. A program that translates and runs each
instruction of a high-level programming language
before it translates and runs the next instruction.

Isomorphic. Each composed element (in other words,
an element containing other elements) of the XML
instance document starting from the root has one and
only one corresponding COBOL group item whose
nesting depth is identical to the nesting depth of its
XML equivalent. Each non-composed element (in other
words, an element that does not contain other
elements) in the XML instance document starting from
the top has one and only one corresponding COBOL
elementary item whose nesting depth is identical to the
nesting level of its XML equivalent and whose memory
address at runtime can be uniquely identified.

J
.

K
.

L
Linkage Section. The section in the data division of
an activated unit (a called program or an invoked
method) that describes data items available from the
activating unit (a program or a method). These data
items can be referred to by both the activated unit and
the activating unit.

Load Library. A library containing load modules.

Lock Action. Locks a member.

M
.

N
Navigator View. Provides a hierarchical view of the
resources in the Workbench.

Non-Isomorphic. A simple mapping of COBOL items
and XML elements belonging to XML documents and
COBOL groups that are not identical in shape
(non-isomorphic). Non-isomorphic mapping can also be
created between non-isomorphic elements of
isomorphic structures.

164 IBM Rational Developer for System z: Host Configuration Reference

O
Output Console View. Displays the output of a
process and allows you to provide keyboard input to a
process.

Output View. Displays messages, parameters, and
results that are related to the objects that you work
with

P
Perspective. A group of views that show various
aspects of the resources in the workbench. The
workbench user can switch perspectives, depending on
the task at hand, and customize the layout of views
and editors within the perspective.

Q
.

R
RAM. Repository Access Manager

Remote File System. A file system residing on a
separate server or operating system.

Remote System. Any other system in the network
with which your system can communicate.

Remote Systems Perspective. Provides an interface for
managing remote systems using conventions that are
similar to ISPF.

Repository.

1. A storage area for data. Every repository has a
name and an associated business item type. By
default, the name will be the same as the name of
the business item. For example, a repository for
invoices will be called Invoices. There are two types
of information repositories: local (specific to the
process) and global (reusable).

2. A VSAM data set on which the states of BTS
processes are stored. When a process is not
executing under the control of BTS, its state (and
the states of its constituent activities) are preserved
by being written to a repository data set. The states
of all processes of a particular process-type (and of
their activity instances) are stored on the same
repository data set. Records for multiple
process-types can be written to the same repository.

3. A persistent storage area for source code and other
application resources. In a team programming
environment, a shared repository enables multiuser
access to application resources.

4. A collection of information about the queue
managers that are members of a cluster. This

information includes queue manager names, their
locations, their channels, what queues they host,
and so on.

Repository Instance. A project or component that
exists in an SCM.

Repositories View. Displays the CVS repository
locations that have been added to your Workbench.

Response File.

1. A file that contains a set of predefined answers to
questions asked by a program and that is used
instead of entering those values one at a time.

2. An ASCII file that can be customized with the setup
and configuration data that automates an
installation. The setup and configuration data
would have to be entered during an interactive
install, but with a response file, the installation can
proceed without any intervention.

S
Servers View. Displays a list of all your servers and
the configurations that are associated with them.

Shell. A software interface between users and the
operating system that interprets commands and user
interactions and communicates them to the operating
system. A computer may have several layers of shells
for various levels of user interaction.

Shell Name. The name of the shell interface.

Shell Script. A file containing commands that can be
interpreted by the shell. The user types the name of the
script file at the shell command prompt to make the
shell execute the script commands.

Sidedeck. A library that publishes the functions of a
DLL program. The entry names and module names are
stored in the library after the source code is compiled.

Silent Installation. An installation that does not send
messages to the console but instead stores messages
and errors in log files. Also, a silent installation can use
response files for data input.

Silent Uninstallation. An uninstallation process that
does not send messages to the console but instead
stores messages and errors in log files after the
uninstall command has been invoked.

T
Task List. A list of procedures that can be executed by
a single flow of control.

U
URL. Uniform Resource Locator

Glossary 165

V
.

W
.

X
.

Y
.

Z
.

166 IBM Rational Developer for System z: Host Configuration Reference

Documentation notices for IBM Rational Developer for System
z

© Copyright IBM Corporation - 2000, 2010

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2010 167

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
3039 Cornwallis Road, PO Box 12195
Research Triangle Park, NC 27709
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

168 IBM Rational Developer for System z: Host Configuration Reference

Copyright license
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademark acknowledgments
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

Rational are trademarks of International Business Machines Corporation and
Rational Software Corporation, in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, or
other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, or other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Documentation notices for IBM Rational Developer for System z 169

170 IBM Rational Developer for System z: Host Configuration Reference

Index

Special characters
_RSE_PORTRANGE 17
.dstoreMemLogging 120
.dstoreTrace 120

A
access method, Using the TSO/ISPF

Client Gateway 110
Access methods, TSO 109
access to spool files, Conditional 22
access to system libraries, Improve 91
Actions against jobs - execution

limitations 21
Address space count 61
Address Space size 134
address space size limit 69
administrative utility for CICS

administrators
functions provided 101

administrative utility messages 106
Administrative utility, migration

notes 105
ADNJSPAU, Administrative utility 101
allocation exec, using 111
APF authorization

FEK.SFEKAUTH 33
APF, authorization 131
APPC transaction logging 124
Application Deployment Manager

(ADM) 1
Application Deployment Manager

security 99
Application Deployment Manager, CICS

Resource Definition editor 97
Application Deployment Manager, CICS

Resource Definition server 97
Application Deployment Manager,

customizing 97
Application development 92
application protection for RSE,

Define 39
ASCHPMxx

MAX 82
ASSIZEMAX 36
audit control

_RSE_HOST_CODEPAGE 19
audit.* options 19
daemon.log 19
enable.audit.log 19

audit data
actions logged 19

audit logging, managed by RSE
daemon 18

audit.log 120
authentication by RSE daemon 26
authentication by security software 25
Authentication methods 15
authentication, JES Job Monitor 16

authentication, Setting up SSL and
X.509 137

B
Base resolver configuration files 153
BPXPRMxx 87

INADDRANYCOUNT 81
MAXASSIZE 36, 80, 134
MAXFILEPROC 80
MAXMMAPAREA 80
MAXPROCSYS 79, 135
MAXPROCUSER 79, 135
MAXSOCKETS 81
MAXTHREADS 79
MAXTHREADTASKS 79
MAXUIDS 80, 135

C
Cache management utilities, Java Virtual

Machines (JVMs) 95
cache security, Java Virtual Machines

(JVMs) 95
cache size limits, Java Virtual Machines

(JVMs) 94
CARMA and TCP/IP ports 44
CARMA logging

rsecomm.log 123
CARMA tracing 128
CEE.SCEELPA

SYS1.PARMLIB(LPALSTxx) 92
Certificate Authority validation

gskkyman 24
SAF key ring 24
TRUST, HIGHTRUST 24

Certificate Revocation List (CRL),
querying

CRL environment variables 25
rsed.envvars 25

certificate, X.509 16
certificates, client authentication using

X.509 24
CICS Resource Definition (CRD) editor,

Application Deployment Manager 97
CICS Resource Definition (CRD) server,

Application Deployment Manager 97
CICS resource definitions,

administrator 97
CICS resource definitions, developer 97
CICS resource install logging 98
CICS transactions 28
CICSPlex SM Business Application

Services (BAS) 98
CICSTS considerations 97
CICSTS security 27
class sharing between Java Virtual

Machines (JVMs) 94
class sharing, enabling in Java Virtual

Machines (JVMs) 94

classification rules, WLM 52
CLASSPATH 114
client authentication support, add

X.509 145
Client authentication using X.509

certificates 24
Client Gateway access method, Using the

TSO/ISPF 110
cloning existing RSE setup 140
COBOL

remote check 128
coexistence, update rsed.envvars to

enable coexistence 141
command security, Define JES 36
Common Access Repository Manager

logging 123
Communication encryption using

SSL 17
communication, External 43
communication, Internal 44
communication, SSL encrypted 23, 100
component overview, Developer for

System z
graphical representation 1

Conditional access to spool files 22
Conditional actions against jobs 20
configuration files, Base resolver 153
configuration files, Developer for System

z 28
configuration files, Identical software

level, different 114
configuration information, search orders

of 152
configuration problems,

Troubleshooting 119
Connection flow 6

graphical representation 6
Connection refused 135
connection regions, primary versus

non-primary 98
Connection security 16
considerations, Performance 91
considerations, Security 15
controlled libraries for RSE, Define

MVS 38
CRD repository 27
CRD repository security 99
customization - ISPF.conf, 110
customizing Application Deployment

Manager 97
Customizing the TSO environment 109

D
data set profiles, Define 32
Define MVS program controlled libraries

for RSE 38
Define PassTicket support for RSE 39
Define Port Of Entry checking for

RSE 27

© Copyright IBM Corp. 2010 171

Define RSE server as a secure z/OS
UNIX 38

Define z/OS UNIX program controlled
files for RSE 40

definitions available to resolver 156
definitions, Security 29
dependency, Hostname 151
Developer for System z started tasks,

Define 35
Developer for System z, component

overview
graphical representation 1

Developer for System z,
understanding 1

development, Application 92
different configuration files with identical

software levels 114
directory structure, z/OS UNIX

graphical representation 11
Disk space, Java Virtual Machines

(JVMs) 95
Distributed Dynamic VIPA

EZBEPORT 46
PORT 46
PORTRANGE 46
SERVERWLM 46
SYSPLEXPORTS 46
VIPADISTRIBUTE 46

Dump files 125
dump locations, z/OS UNIX 127
dumps, Java 125
dumps, MVS 125

E
Emulator, Host Connect 136
enable class sharing, Java Virtual

Machines (JVMs) 94
encrypted communication, SSL 23, 28,

100
encryption using SSL,

Communication 17
Error feedback tracing 128
execution limitations, Actions against

jobs 21
External communication 43
external communication to specified

ports, limiting 17

F
fa.log 120
Fault Analyzer Integration logging

fa.log 123
rsecomm.log 123

feedback tracing, Error 128
FEJJCNFG 44, 87, 115

CONSOLE_NAME 21
MAX_THREADS 81

FEJJCNFG, JES Job Monitor 28
FEKAPPL 16
fekfivpc IVP test logging

fekfivpc.log 124
fekfivpc.log 121
fekfivpi IVP test logging

fekfivpi.log 124

fekfivpi.log 121
fekfivpi.log, IVP test logging 124
fekfivps.log 121
fekfivps.log, IVP test logging 125
FEKLOGS, log and setup analysis

using 119
FEKRACF, security definitions 29
fekrivp 131
ffs.log 120
ffsget.log 120
ffsput.log 120
File Manager Integration logging

rsecomm.log 123
file system attribute, SETUID 129
file system space usage, z/OS UNIX 75
file systems, zFS 91
Fixed Java heap size 93
freeing a lock

RSE , modify cancel command 10

G
goals, setting in WLM 53
gskkyman, Create a key database

with 145

H
heap size limit, Java 69
host address not resolved, TCP/IP

Resolver
lock.log 157

Host Connect Emulator 136
host tables, Local 154
Hostname dependency 151
hostnames, applying to Developer for

System z 154

I
Identical setup across a sysplex 113
identical software levels with different

configuration files 114
IEASYSxx 88

MAXUSER 82, 135
Improve access to system libraries 91
Improving performance of security

checking 92
install logging, CICS resource 98
Internal communication 44
ISP.SISPLOAD

ISPF TSO/ISPF Client Gateway 38
ISPF profiles, Use existing 110
ISPF TSO/ISPF Client Gateway

ISP.SISPLOAD 38
ISPF, Use multiple allocation execs 111
ISPF.conf files, use with multiple

setups 111
ISPF.conf, Basic customization 110
IVP test logging

fekfivpi.log 124
fekfivps.log 125

IVTPRMxx
ECSA MAX 82
FIXED MAX 82

J
Java dumps 125
Java heap size limit 69
Java heap size, Fixed 93
Java Virtual Machines (JVMs), class

sharing between 94
Java Xquickstart option 93
JAVA_DUMP_TDUMP_PATTERN 126
JCL requirements, startup 134
JES command security, Define 36
JES JMON

GEN_CONSOLE_NAME 22
JES Job Monitor (JMON) 1
JES Job Monitor authentication 16
JES Job Monitor configuration

GEN_CONSOLE_NAME 22
JES Job Monitor logging 121
JES Job Monitor tracing 127
JES Job Monitor, FEJJCNFG 28
JES security 19
JMON 37, 115
jobs, Conditional actions against 20
JVMs, class sharing between 94

K
key database, Create with

gskkyman 145
key resource definitions 78

rsed.envvars 78
SYS1.PARMLIB(BPXPRMxx) 79

key ring, Create with RACF 139
key store with keytool, Create 148
keytool, Create a key store with 148

L
Language Environment runtime

libraries 91
libraries for RSE , Define MVS 38
libraries, Improve access to system 91
libraries, Language Environment

runtime 91
LIMIT_COMMANDS 20
LIMIT_VIEW 22
limiting external communication,

specified ports 17
limits, System 135
Local definitions available to

resolver 156
Local host tables 154
Lock daemon 9
Lock Daemon (LOCKD) 1
Lock daemon flow

graphical representation 9
Lock daemon logging 121
lock daemon tracing 128
lock.log 120
Log and setup analysis using

FEKLOGS 119
log files

.dstoreMemLogging 120

.dstoreTrace 120
audit.log 120
fa.log 120
fekfivpi.log 120

172 IBM Rational Developer for System z: Host Configuration Reference

log files (continued)
fekfivps.log 120
ffs.log 120
ffsget.log 120
ffsput.log 120
lock.log 120
rmt_class_loader.cache.jar 120
rsecomm.log 120
rsedaemon.log 120
rseserver.log 120
serverlogs.count 120
stderr.log 120
stdout.log 120

logging, APPC transaction 124
logging, CARMA 123
logging, Fault Analyzer Integration 123
logging, fekfivpi IVP test 124
logging, File Manager Integration 123
logging, JES Job Monitor 121
logging, Lock daemon 121
logging, RSE daemon 121
logging, RSE user 122
logging, SCLM Developer Toolkit 123
logging, thread pool 121
LPALSTxx 92

M
management, Workload 93
messages, administrative utility 106
methods, Authentication 15
migration notes, administrative

utility 105
monitoring RSE 83
monitoring z/OS UNIX 83
monitoring z/OS UNIX file systems 86
monitoring, network 85
multiple allocation execs, TSO/ISPF 111
multiple Developer for System z setups,

use multiple ISPF.conf files with 111
multiple instances, Running 113
Multiple ISPF.conf files 111
MVS dumps 125
MVS program controlled libraries for RSE

, Define 38

N
netstat 132
network, monitoring 85
non-system administrators, update

privileges 12

O
OMVS segment, Define 32
one-time password and User ID 16

P
PassTicket support for RSE , Define 39
PassTickets, using 18
password and User ID 16
Performance considerations 91

performance of security checking,
Improving 92

permission bits, z/OS UNIX 129
Pipeline security 99
POE checking 17, 27
Port of Entry checking 27
Port Of Entry checking 17
PORTRANGE 133
ports, CARMA and TCP/IP 44
ports, limiting external communication to

specific 17
ports, Reserved TCP/IP 132
ports, TCP/IP 43
primary versus non-primary connection

regions 98
private keys and certificates, decide

where to store 137
Process count 64
profiles, Define data set 32
Program Control authorization 130
publications, Referenced 159

Q
querying a Certificate Revocation List

(CRL)
CRL environment variables 25
rsed.envvars 25

quickstart, Java option (-Xquickstart) 93

R
RACF

permits 33
RACF, Create a key ring with 139
Referenced publications 159
refused connection 135
repository security, CRD 99
requirements, startup JCL 134
Reserved TCP/IP ports 132
resolver, Local definitions available

to 156
resolvers, Understanding 152
resource definitions, various 81
resource install logging, CICS 98
resource security 100
resource usage, overview 60
resource usage, tuning 59
RESTful interface 98
RESTful interface versus Web Service

interface 98
rmt_class_loader_cache.jar 120
RSE , Define MVS program controlled

libraries for 38
RSE , Define PassTicket support for 39
RSE , Define Port Of Entry checking

for 27
RSE as a Java application

graphical representation 3
RSE daemon 43
RSE daemon (RSED) 1
RSE daemon and audit logging 18
RSE daemon log files

audit.log 121
rsedaemon.log 121
rseserver.log 121

RSE daemon log files (continued)
serverlogs.count 121
stderr.*.log 121
stdout.*.log 121

RSE daemon logging 121
RSE daemon, authentication by 26
RSE server 43
RSE setup, Clone existing 140
RSE thread pool log files

audit.log 121
rsedaemon.log 121
rseserver.log 121
serverlogs.count 121
stderr.*.log 121
stdout.*.log 121

RSE tracing 127
RSE user logging

.dstoreMemLogging 122

.dstoreTrace 122
ffs.log 122
ffsget.log 122
ffsput.log 122
lock.log 122
rmt_class_loader.cache.jar 122
rsecomm.log 122
stderr.log 122
stdout.log 122

RSE, define application protection for 39
RSE, Define as a secure z/OS UNIX

server 38
RSE, Define z/OS UNIX program

controlled files for 40
RSE, monitoring 83
RSE, rsed.envvars

_RSE_JAVAOPTS 28
RSE, ssl.properties 29
rsecomm.log 120

File Manager Integration logging 123
SCLM Developer Toolkit logging 123

rsecomm.properties 128
rsed.envvars 77, 114

_CMDSERV_CONF_HOME 112
_RSE_JAVAOPTS 109, 125
_RSE_PORTRANGE 17
Dmaximum.clients 78
Dmaximum.threadpool.process 78
Dmaximum.threads 78
Dminimum.threadpool.process 78
DSTORE_LOG_DIRECTORY 123, 127
STEPLIB 23
Xms 78
Xmx 78

rsed.envvars, update to enable
coexistence 141

rsedaemon.log 120
rseserver.log 120
Running multiple instances 113
runtime libraries, Language

Environment 91

S
sample setup 86

defining limits 87
determining minimum limits 86
thread pool count 86

sample storage, usage analysis 70

Index 173

SCLM Developer Toolkit 38
SCLM Developer Toolkit (SCLMDT) 1
SCLM Developer Toolkit logging

rsecomm.log 123
SCLM security 28
search orders of configuration

information 152
Search orders, z/OS UNIX

environment 153
Secure socket layer host configuration

connection, Test 142
Secure Socket Layer, Communication

encryption using 17
Secure Socket Layer, Setting up 137
secure z/OS UNIX server, Define RSE as

a 38
security checking, Improving

performance of 92
security commands, useful

ADDGROUP 13
ALTUSER 13
CONNECT 13

Security considerations 15
Security definitions 29
security definitions, Checklist 30
security profile, Limitations stored

in 134
security settings and classes, Activate 31
security settings, verify 40
security software, authentication by 25
security, Application Deployment

Manager (ADM) 99
security, CICSTS 27
security, Connection 16
security, Define JES command 36
security, JES 19
security, pipeline 99
security, resource 100
security, SCLM 28
security, transaction 99
segment, Define OMVS 32
serverlogs.count 120
setting goals, WLM 53
settings and classes, Activate security 31
SETUID file system attribute 129
setup, identical across a sysplex 113
signed certificate, self-signed or signed by

Certificate Authority 139
size estimate, guidelines 70
size limit, address space 69
size limit, Java heap 69
size, Address Space 134
SMP/E install, sticky bit 132
software level, identical in different

configuration files 114
space usage, z/OS UNIX file system 75
spool files, Conditional access to 22
SSL encrypted communication 23, 28,

100
SSL host configuration connection,

Test 142
SSL, Communication encryption

using 17
SSL, Setting up 137
ssl.properties, activate SSL by creating

new RSE daemon 141

ssl.properties, Activate SSL by
updating 141

started tasks, Define for Developer for
System z

JMON started tasks 35
LOCKD started tasks 35
RSED started tasks 35

startup JCL requirements 134
stderr.*.log 120
stderr.log 120
stdout.*.log 120
stdout.log 120
STEPLIB, Avoid use of 91
sticky bit, MVS load module availability

to z/OS UNIX 132
storage usage 69
subsystem types

ASCH 52
CICS 52
JES 52
OMVS 52
STC 52

support for RSE, Define PassTicket 39
SYS1.PARMLIB(BPXPRMxx) 87

MAXASSIZE 36, 134
MAXPROCSYS 135
MAXPROCUSER 135
MAXUIDS 135

SYS1.PARMLIB(BPXPRMxx), Java Virtual
Machines (JVMs) 95

SYS1.PARMLIB(BPXPRMxx), Limitations
set in 134

SYS1.PARMLIB(IEASYSxx) 88
MAXUSER 135

sysplex, identical setup across 113
system exits, Limitations enforced

by 134
system libraries, Improve access to 91
System limits 135

T
tables, Local host 154
tables, Translate 153
task owners 4
TCP/IP ports 43
TCP/IP ports, graphical

representation 43
TCP/IP ports, Reserved 132
TCP/IP Resolver, host address not

resolved
lock.log 157

TCP/IP, applying to Developer for
System z 154

TCP/IP, Local definitions available to
resolver 156

TCP/IP, Setting up 151
test logging, fekfivpc IVP 124
test logging, fekfivpi IVP 124
Test the SSL host configuration

connection 142
third party and X.509 certificate 16
Thread count 66
thread pool logging 121
thread security in RSE server

PassTickets 18
tracing 127

tracing, CARMA 128
tracing, Error feedback 128
tracing, JES Job Monitor 127
tracing, lock daemon 128
tracing, RSE 127
transaction dump pattern variables 126
transaction security 99
Translate tables 153
Troubleshooting configuration

problems 119
TSO Access methods 109
TSO Command Service 1
TSO Commands service 109
TSO Commands service logging 124
TSO environment, Customizing 109
TSO/ISPF Client Gateway access method,

Using 110
TSO/ISPF, customization -

ISPF.conf, 110
TSO/ISPF, Use existing ISPF profiles 110
TSO/ISPF, Use multiple allocation

execs 111
TSO/ISPF, use with multiple setups 111
TSO/ISPF, Using an allocation exec 111
tuning considerations 59

U
understanding Developer for System z 1
UNIX dump locations 127
UNIX environment, Search orders used

in 153
UNIX program controlled files for RSE,

Define 40
UNIX server, Define RSE as 38
update privileges, non-system

administrators 12
usage analysis, sample storage 70
use existing ISPF profiles 110
use of STEPLIB, Avoid 91
User ID and one-time password 16
User ID and password 16
user logging, RSE 122
Using an allocation exec 111
using PassTickets 18

V
Various resource definitions 81

EXEC card, server JCL 81
FEJJCNFG 81
SYS1.PARMLIB(ASCHPMxx) 82
SYS1.PARMLIB(IEASYSxx) 82
SYS1.PARMLIB(IVTPRMxx) 82

Verify security settings 40
VIPA, Distributed Dynamic 46

W
Web Owning Region 98
Web Service interface 98
where to store private keys and

certificates 137
WLM classification rules 52
WLM considerations xii, 51
workload classification, WLM 51

174 IBM Rational Developer for System z: Host Configuration Reference

Workload management 93
workload manager 51

X
x.509 authentication, setting up 137
X.509 certificate 16
X.509 certificates, client authentication

using 24
X.509, adding client authentication

support 145
Xquickstart, Java option 93

Z
z/OS UNIX commands, useful

chgrp 13
chmod 13
chown 13
ls 13

z/OS UNIX directory structure
graphical representation 11

z/OS UNIX dump locations 127
z/OS UNIX environment, Search orders

used in 153
z/OS UNIX file system space usage 75
z/OS UNIX file systems, monitoring 86
z/OS UNIX permission bits 129
z/OS UNIX program controlled files for

RSE, Define 40
z/OS UNIX server, Define RSE as 38
z/OS UNIX, monitoring 83
zFS file systems, Using 91

Index 175

176 IBM Rational Developer for System z: Host Configuration Reference

Readers’ Comments — We'd Like to Hear from You

IBM Rational Developer for System z
Host Configuration Reference
Version 8.0.1

Publication No. SC14-7290-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088 (US and Canada)

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC14-7290-00

SC14-7290-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg. 503
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-T07

Printed in USA

SC14-7290-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Summary of changes
	Description of document content
	Understanding Developer for System z
	Security considerations
	TCP/IP considerations
	WLM considerations
	Tuning considerations
	Performance considerations
	CICSTS considerations
	Customizing the TSO environment
	Running multiple instances
	Troubleshooting configuration problems
	Setting up SSL and X.509 authentication
	Setting up TCP/IP

	Chapter 1. Understanding Developer for System z
	Component overview
	RSE as a Java application
	Task owners
	Connection flow
	CARMA
	CARMA configuration files
	CRASTART
	Batch submit

	Lock daemon
	Freeing a lock

	z/OS UNIX directory structure
	Update privileges for non-system administrators
	Useful security commands
	Useful z/OS UNIX commands
	Sample setup

	Chapter 2. Security considerations
	Authentication methods
	User ID and password
	User ID and one-time password
	X.509 certificate
	JES Job Monitor authentication

	Connection security
	Limit external communication to specified ports
	Communication encryption using SSL
	Port Of Entry checking

	Using PassTickets
	Audit logging
	Audit control
	Audit data

	JES security
	Actions against jobs - target limitations
	Actions against jobs - execution limitations
	Access to spool files

	SSL encrypted communication
	Client authentication using X.509 certificates
	Certificate Authority (CA) validation
	(Optional) Query a Certificate Revocation List (CRL)
	Authentication by your security software
	Authentication by RSE daemon

	Port Of Entry (POE) checking
	CICSTS security
	CRD repository
	CICS transactions
	SSL encrypted communication

	SCLM security
	Developer for System z configuration files
	JES Job Monitor - FEJJCNFG
	RSE - rsed.envvars
	RSE - ssl.properties

	Security definitions
	Requirements and checklist
	Activate security settings and classes
	Define an OMVS segment for Developer for System z users
	Define data set profiles
	Define the Developer for System z started tasks
	Define JES command security
	Define RSE as a secure z/OS UNIX server
	Define MVS program controlled libraries for RSE
	Define application protection for RSE
	Define PassTicket support for RSE
	Define z/OS UNIX program controlled files for RSE
	Verify security settings

	Chapter 3. TCP/IP considerations
	TCP/IP ports
	External communication
	Internal communication
	CARMA and TCP/IP ports

	Multi-stack (CINET)
	CARMA and stack affinity
	crastart*.conf
	CRASUB*

	Distributed Dynamic VIPA
	Sample setup
	System SYS1 – TCP/IP profile
	System SYS2 – TCP/IP profile

	Chapter 4. WLM considerations
	Workload classification
	Classification rules

	Setting goals
	Considerations for goal selection
	STC
	OMVS
	JES
	ASCH
	CICS

	Chapter 5. Tuning considerations
	Resource usage
	Overview
	Address space count
	Process count
	Thread count

	Storage usage
	Java heap size limit
	Address space size limit
	Size estimate guidelines
	Sample storage usage analysis

	z/OS UNIX file system space usage
	Key resource definitions
	/etc/rdz/rsed.envvars
	SYS1.PARMLIB(BPXPRMxx)

	Various resource definitions
	EXEC card in the server JCL
	FEK.#CUST.PARMLIB(FEJJCNFG)
	SYS1.PARMLIB(IEASYSxx)
	SYS1.PARMLIB(IVTPRMxx)
	SYS1.PARMLIB(ASCHPMxx)

	Monitoring
	Monitoring RSE
	Monitoring z/OS UNIX
	Monitoring the network
	Monitoring z/OS UNIX file systems

	Sample setup
	Thread pool count
	Determine minimum limits
	Defining limits
	Monitor resource usage

	Chapter 6. Performance considerations
	Use zFS file systems
	Avoid use of STEPLIB
	Improve access to system libraries
	Language Environment (LE) runtime libraries
	Application development

	Improving performance of security checking
	Workload management
	Fixed Java heap size
	Java -Xquickstart option
	Class sharing between JVMs
	Enable class sharing
	Cache size limits
	Cache security
	SYS1.PARMLIB(BPXPRMxx)
	Disk space
	Cache management utilities

	Chapter 7. CICSTS considerations
	RESTful versus Web Service
	Primary versus non-primary connection regions
	CICS resource install logging
	Application Deployment Manager security
	CRD repository security
	Pipeline security
	Transaction security
	SSL encrypted communication
	Resource security

	Administrative utility
	Administrative utility migration notes
	Administrative utility messages

	Chapter 8. Customizing the TSO environment
	The TSO Commands service
	Access methods

	Using the TSO/ISPF Client Gateway access method
	ISPF.conf
	Use existing ISPF profiles
	Using an allocation exec
	Use multiple allocation execs
	Multiple ISPF.conf files with multiple Developer for System z setups

	Chapter 9. Running multiple instances
	Identical setup across a sysplex
	Identical software level, different configuration files
	All other situations

	Chapter 10. Troubleshooting configuration problems
	Log and setup analysis using FEKLOGS
	Log files
	JES Job Monitor logging
	Lock daemon logging
	RSE daemon and thread pool logging
	RSE user logging
	Fault Analyzer Integration logging
	File Manager Integration logging
	SCLM Developer Toolkit logging
	CARMA logging
	APPC transaction (TSO Commands service) logging
	fekfivpc IVP test logging
	fekfivpi IVP test logging
	fekfivps IVP test logging

	Dump files
	MVS dumps
	Java dumps
	z/OS UNIX dump locations

	Tracing
	JES Job Monitor tracing
	RSE tracing
	Lock daemon tracing
	CARMA tracing
	Error feedback tracing

	z/OS UNIX permission bits
	SETUID file system attribute
	Program Control authorization
	APF authorization
	Sticky bit

	Reserved TCP/IP ports
	Address Space size
	startup JCL requirements
	Limitations set in SYS1.PARMLIB(BPXPRMxx)
	Limitations stored in the security profile
	Limitations enforced by system exits
	Limitations for 64-bit addressing

	Miscellaneous information
	Error feedback B37 space abend
	System limits
	Connection refused

	Host Connect Emulator

	Appendix A. Setting up SSL and X.509 authentication
	Decide where to store private keys and certificates
	Create a key ring with RACF
	(Optional) Using a signed certificate

	Clone the existing RSE setup
	Update rsed.envvars to enable coexistence
	Update ssl.properties to enable SSL
	Activate SSL by creating a new RSE daemon
	Test the connection
	(Optional) Add X.509 client authentication support
	(Optional) Create a key database with gskkyman
	(Optional) Create a key store with keytool

	Appendix B. Setting up TCP/IP
	Hostname dependency
	Understanding resolvers
	Understanding search orders of configuration information
	Search orders used in the z/OS UNIX environment
	Base resolver configuration files
	Translate tables
	Local host tables

	Applying this set up information to Developer for System z
	Host address is not resolved correctly

	Bibliography
	Referenced publications
	Informational publications

	Glossary
	Documentation notices for IBM Rational Developer for System z
	Copyright license
	Trademark acknowledgments

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

