Rational Software Corporatione

Rational- TestManager

User’s Guide

VERSION: 2003.06.00
PART NUMBER: 800-026180-000

WINDOWS/UNIX

R a t i O NnNa]® support@rational.com

the software development company http://www.rational.com

Legal Notices

©2000-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026180-000

Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States and /or
other jurisdictions, as well as various international treaties. Any reproduction or distribution of
the Work is expressly prohibited without the prior written consent of Rational Software
Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the
terms of that license. Unless specifically allowed under the license, this manual or copies of it
may not be provided or otherwise made available to any other person. No title to or ownership
of the manual is transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational
Apex, Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified Process,
Rational Visual Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify,
Requisite, RequisitePro, RUP, SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate
and TestStudio are registered trademarks of Rational Software Corporation in the United States
and are trademarks or registered trademarks in other countries. The Rational logo, Connexis,
ObjecTime, Rational Developer Network, RDN, ScriptAssure, and XDE, among others, are
trademarks of Rational Software Corporation in the United States and/or in other countries.
All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and
5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534
and 6,206,584. Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights

Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined
in DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions
thereto), whichever is applicable. The use, duplication, and disclosure of the software and/or
documentation shall be subject to the terms and conditions set forth in the applicable Rational
Software Corporation license agreement as provided in DFARS 227.7202, subsection (c) of FAR
52.227-19, or FAR 52.227-14, (or any successor provisions thereto), whichever is applicable.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license
agreement. Except as explicitly stated otherwise in such license agreement, and except to the
extent prohibited or limited by law from jurisdiction to jurisdiction, Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the
media and software product and its documentation, including without limitation, the
warranties of merchantability , non-infringement, title or fitness for a particular purpose or
arising from a course of dealing, usage or trade practice, and any warranty against interference
with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectX, DirectX], DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine
Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror, IntelliSense, J/Direct,
JScript, LineShare, Liquid Motion, Mapbase, MapManager, MapPoint, Map Vision, Microsoft
Agent logo, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne, Rushmore,
SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, are
either trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java,
Java 3D, ShowMe TV, SunForum, SunVTS, SunFDD], StarOffice, and SunPCi, among others, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into
any product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing
Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Contents

Prefaceo i e XVii
AudiencCe. XVii
Other RESOUICESo e e e e Xvii
Integrations Between Rational Testing Tools and Other Rational Products xviii
Contacting Rational Technical Publications XXiv
Contacting Rational Customer Support XXiv

Part 1: Using TestManager to Manage Testing Projects

1 Introducing Rational TestManager.ot 1
What Is Rational TestManager. 1
TestManager Workflow. 2

Planning Tests 3
Designing Testsot 6
Implementing Tests. e 6
Executing Tests. e 7
Evaluating Tests 8
TestManager and Other Rational Products 8
The Rational Unified Process. i e 8
Projects and the Rational Administrator. 9
Automated Test Scripts and Rational Robot. 10
Automated Test Scripts and Rational TestFactory 10
Component Testing and Rational QualityArchitect. 11
Requirements and Rational RequisitePro 11
Model Elements and Rational Rose 12
Defects and Rational ClearQuest. i 12
Reports and Rational SODA 12
TestManager and Extensibility L 13
Extending Test Script Typeso oo i 13
Defining Custom Test Input Typesot e 13
Defining Custom Test Script Types. oo e 14

Contents v

Vi

Functional and Performance Testing 14

Functional Testing.o e 14
Performance Testing. o 15
Virtual Testers 15
Virtual Testers in Functional Tests 15
Virtual Testers in Performance Tests 16
Local and Agent Computers 16
The TestManager Environment. i 17
SUIES . . o 18
Starting Rational TestManager. i 19
LoggingOntoTestManager.t e 19
Starting Other Rational Products and Components from TestManager-. 20
The TestManager Main Window. i, 21
Test Asset Workspaceo e 21
Other TestManager Windows i e 26
Planning Testsc.iiiiiiiiiiiiii it eannnnnnnns 27
About Test Planningo e 27
Identifying What to Test by Using Test Inputs 28
Built-In Test Input Typeso 29
Custom Test INpUEt TYPeSottt e e e e 31
Creatinga TestPlan. e 33
Creating Test Plans i e 33
PropertiesofaTestPlan 34
Organizing Test Cases with Folders. 36
Inheriting Iterations and Configurations from a Test Case Folder. 37
Creating Test Cases.ot e 38
PropertiesofaTestCase. i e 39
Specifyingthe Owner e 40
Defining the Configurationsto Test. 41
Inheriting Test Case Properties 49
SpecifyingWhentoRunTests i 51
TestImpact Analysis. 53
Managing Test Assets 59
Upgrading from Previous Versions of Rational TestManager............... 59
Verifying and Repairing Test Datastores Using the Datastore Doctor 60
Exporting and Importing Test Assetso 60

Contents

Copy, Cut,and Paste Test Assets, 65

Software Configuration Management. o, 65

3 DesigningTests..........coiiiiiiiinii ittt it 69
About Designing Testst 69
Benefits of Good Test Design. 70
Specifying the Testing Steps and Verification Points 72
Specifying Conditions and Acceptance Criteria of TestCases 74
Example ofa TestDesign 76
4 ImplementingTests...........c.ciiiiiiiiiiiiiinnneernnnns 79
About Implementing Tests 79
Test Scripts WIindow. e 80
Implementing Test Cases. 81
Built-In Test Script Typeso 81
Custom Test Script TYpes.o v i 82
Suites Created in TestManager i 84
Calling Test Script Services from Test Scripts 85
Test Script Services and Test Script Types oot 85
Test Script Services and TestManager., 86
Creating Manual Test Scripts. 87
Importing a Manual Test Script from Another ProjectoraFile 88
Creating a Manual Test Script from a Test Case Design 88
Creating a Manual Test Script in Rational ManualTest. 88
Associating an Implementation witha TestCase. 92
Implementing Testsas Suites i 95
Activities Common to Performance and Functional Testing. 97
Changing the Settings of an Agent Computer 99
Creatinga Suite e 100
Openinga Suiteo 101
Editinga Test Scripto 101
Editing the PropertiesofaSuite 102
Replacing ltemsinaSuite........ 103
Editing the Run Properties of ltemsinaSuite. 103
Editing Information for All User and Computer Groups 104
Editing Settings for Virtual Testers. i 105
Initializing Shared Variables. 111
Printingand Exportinga Suite 113

Contents vii

Saving a Suite. 113

5 ExecutingTestsccciiiiiiiiiii ittt 115
About Running Tests 115
Built-In Support for Running Test Scripts. 116
Running Automated Test Scripts i 116
Running Manual Test Scripts. i 117

Example of Running a Manual Test Script 118
Running Test Cases.t e 119
Viewing the Associated Implementations. 119
Runninga Test Caseci it e 119
Before You RunaSuite 121
Checkinga Suite. 122
Checking Agent Computerst e 122
Controlling Runtime InformationofaSuite. 123
Controlling How a Suite Terminates i, 127
Specifying Virtual Testers and Configurations for the Suite Run 127
Running a Suite from TestManager 129
Running a Suite from the Command Line 130
Monitoring Test Runs 132
The Progress Bar and the Default Views 133
Displayingthe Suite Views 134
Displaying the State Histograms. i 136
Displaying the User and Computer Views, 138
Displaying the Shared Variables View 142
Displaying the Test Script View. e 143
Debugginga Test Scriptot 144
Displaying the Sync Points View. i 145
Displaying the Computer View 146
Displaying the Transactor View. e 147
Displayingthe Group VIiews e 148
Filtering and Sorting Views. 148
Changing Monitor Defaults 150
Configuring Custom Histograms. i 151
Controllinga Suite Duringa Run i 153
Stopping TEStRUNS e 154

viii Contents

6 EvaluatingTestsiiiiiiiiiiiiiiininnnnnnnnnns 155

About Test LOgSo oot 155
Opening a Test Log in TestManager, 156
The Test Log WiNdow.ot e e 157

Viewing TestLog Results. 160
Viewing Test Case Results. i 160
Viewing Event Details. e 161
About Log Filters e 163
Viewinga Test Script 164
Working with Test Logso 165
About Test LOgS oo e 165
About Submitting and Modifying Defects 167
Printinga Test Logot 169
Managing Log Event Property Types. 170

Viewing Test Script Results Recorded with Rational Robot. 171

Reporting Results 173
Selecting Which ReportstoUse 190
Designing Your Own Reports.ot 191
Additional Reports e 192
Creating Reportso e 192
Opening a Report.o 196
Running Reportso 197
Printing, Saving, or Copyinga Test Case Report. 198
Printing, Exporting, or Zooming In on a Listing Report 198
Copying Reportstoa New Project. 199
Creatinga QuUeryot 199

Part 2: Functional Testing with Rational TestManager

7 Creating Functional Testing Suites. 203
ADOUL SUItES. . . . e 203
Inserting a Computer Group intoa Suite 204
Inserting a Test ScriptintoaSuite, 206
Insertinga Test CaseintoaSuite 207
Inserting Suites and ScenariosintoSuites L 209

Insertinga SuiteintoaSuite 210

Contents ix

Inserting a Scenario. it e 211

Setting a Precondition Withina Suite. 212
How to Seta Precondition i 213
Relating Preconditions Set in Suites to Those in TestCases. 213

Inserting a Selectorintoa Suite. L. 213

Inserting Other ltemsintoaSuite 214
InsertingaDelay. 214
Inserting a Synchronization Point. 215
Using Events and Dependencies to Coordinate Execution 216

Distributing Tests Among Different Computers 218
Example of a Distributed Functional Test. 218

Executing Suites e 219

8 UsingtheComparatorscciiiiiiiiiiiinnnnnnns 221

About the Four Comparators i 221

Startinga Comparator 222

Using the Object Properties Comparator. 223
The Main Window. e 223
The Objects Hierarchy and the Properties List. 224
Loadingthe CurrentBaseline. i 227
Locating and Comparing Differences. i 227
Viewing Verification Point Properties 228
Adding and Removing Properties. 228
Editingthe Baseline File. 229
Savingthe Baseline File. i 229

Using the Text Comparator 230
The Main Window. e 230
The Text Window e 230
Locating and Comparing Differences. i, 231
Viewing Verification Point Properties 231
Editingthe Baseline File. 232
Savingthe Baseline File. 232

Using the Grid Comparator 233
The Main Window. e 233
The Grid WINdOWo e e 234
Differences List. 234
Setting Display Options 235

x Contents

Locating and Comparing Differences. i .. 235

Viewing Verification Point Properties L 236
Using Keys to Compare Data Files 236
Editing the Baseline File. 237
Savingthe Baseline File. 238
Using the Image Comparator. i 238
The Main Window e 239
Locating and Comparing Differences. i .. 241
Changing How Differences Are Determined 242
Changing the Color of Masks, OCR Regions, or Differences 242
Moving and Zoominganimage 243
Viewing Image Properties 243
Working with Masks 244
Working with OCR Regions e 244
Savingthe Baseline File. 245
Viewing Unexpected Active Window, 245

Part 3: Performance Testing with Rational TestManager

Performance TestingConcepts..............cciiiininnnn. 249
About Performance Testing 249
Rational TestManager and Performance Testing. 250
Creating Test Scripts 250
Planning Performance Tests 251
Testing Response Times e 251
Setting Pass and Fail Criteria for Performance Tests. 251
Identifying Performance Testing Requirements 252
Designing a Realistic Workload i 252
Implementing Performance Tests. 254
Examples of Performance Tests. 255
Number of Virtual Testers Supported Under Normal Conditions 255
Incrementally Increasing Virtual Testers 255
How a System Performs Under Stress Conditions. 257
How Different System Configurations Affect Performance................ 258
Analyzing Performance Results. i 259
Comparing Results of Multiple Runs i 260

Contents xi

Xii

Comparing Specific Requests and Responses 260

Determining the Cause of Performance Problems 261
10 Designing Performance Testing Suites 263
About SUItes. 263
Creating a Suite froma Robot Session 265
Inserting User GroupsintoaSuite. 265
Inserting Test Scriptsintoa Suite 268
Setting a Precondition Withina Suite. 269
How to Seta Precondition 270
Relating Preconditions Set in Suites to Those in TestCases. 270
Inserting Other ltemsintoaSuite 270
Insertinga Test Caseintoa Suite. 271
Inserting a Scenario.t e 272
Insertinga SuiteintoaSuite 274
Insertinga Selector 274
InsertingaDelay. e 280
Insertinga Transactor. e 281
Inserting a Synchronization Point. oL, 286
Using Events and Dependencies to Coordinate Execution 293
Executing Suites 295
11 Workingwith Datapools.ccciiiiiiiiiiinnnn 297
What Is a Datapool? e 298
Datapool ToOoIs e 298
Datapool CUISOr . . . ot e 300
Datapool Limits. e 300
What Kinds of Problems Does a Datapool Solve? 301
Planning and Creatinga Datapool. 302
Data TYPeS . . oo e e 304
Standard and User-Defined Data Types., 305
Finding Out Which Data Types YouNeed. 306
Creating User-Defined Data Types. oot 306
Generating Unique Values from User-Defined Data Types 307
Generating Multi-Byte Characters 308
Managing Datapools 308
Creating a Datapoolt e 308
Contents

12

Editing Datapool Column Definitions 316

Editing Datapool Values. 317
Renaming or CopyingaDatapool 317
Deletinga Datapool e 318
Importing a Datapool 318
Exportinga Datapool 319
Managing User-Defined Data Types 320
Editing User-Defined Data Type Values., 320
Editing User-Defined Data Type Definitions. 320
Importing a User-Defined Data Type i 321
Renaming or Copying a User-Defined Data Type 322
Deleting a User-Defined Data Type 322
Generating and Retrieving Unique Datapool Rows 322
What You Can Do to Guarantee Unique Row Retrieval 323
Creating a Datapool Outside Rational Test 324
Datapool Structure. e 325
Using Microsoft Excel to Create DatapoolData. 326
Matching Datapool Columns with Test Script Variables. 327
Maximum Number of Imported Columns 328
Creating a Column of Values Outside Rational Test 328
Step1.Createthe File. i e 328
Step 2. Assign the File’s Values to the Datapool Column 329
GeneratingUnique Values 329
Reporting Performance TestingResults. 331
AbOUt Reports 331
Running Reports e 334
Running Reports fromthe ReportBar. 334
Running Reports fromthe MenuBar. 334
Customizing Reports 335
Filtering ReportData 335
Setting Advanced Options 336
Changing a Graph’s Appearance or Typeiiiiieniennen.. 342
Changing a Graph’s AppearanCe.ttt e 344
Exporting ReportData. 347
Changing ReportDefaults 347
Changing the Reports That Run Automatically 348

Contents xiii

Changing the Reports That Run from the ReportBar 349

Types of Reportso e 349
Command Data Reports.ot 349
Command Status Reports i 352
Command Usage Reports e 354
Command TraCe . . . oottt e 362
Performance Reports 365
Compare Performance Reportso i i 369
Response vs. Time Reports. e 374

A Configuring Local and Agent Computers 379

Running More Than 245 Virtual Testers 379

Running More Than 1000 Virtual Testers 380

Running More Than 1000 Virtual Testers on One NT Computer. 380

High-Volume Performance Testing in Windows Platforms. 381

Running More Than 24 Virtual Testers on a UNIX Agent 382

Controlling TCP Port Numbers 384

SettingUp IP Aliasingo e 385

Assigning Values to System Environment Variables 386

B Standard DatapoolDataTypesccviiiiiinnnnnnns 391
Standard Data Type Table 391
Data Type Ranges 399

C ManualTest Web Execution...................ccciiiinnnn. 401

About ManualTest Web Execution 401

Overview of Tasks e e 403

About Shared Projects. e 403

How to Run a Test Case froma Web Browser. 404

Viewingthe Results 405

Troubleshooting 405

D Rational Test Asset Parcel FileFormat 409

XML Standards for Rational Test Asset Parcel Files 409

Sample Rational Test Asset Parcel Files 411
Test Plan Test Asset Parcel File 411
Test Case Test Asset Parcel File i .. 412

xiv Contents

Test Case Folder Test Asset Parcel File. 413

Build Test Asset Parcel File 416
Iteration Test Asset Parcel File. i i, 417
Computer Test Asset Parcel File 417
Computer List Test Asset Parcel File 417
Configuration Test Asset Parcel File 418
Configuration Attribute Test Asset Parcel File 419
Test Script Type Test Asset Parcel File 420
Test Input Type Test Asset Parcel File 421
Log Filter Test Asset Parcel File. i .. 421
Log Event Property Type Test Asset Parcel File 422
Test Log Details Test Asset Parcel File 422
0 0 = 423

Contents xv

xvi Contents

Preface

Rational® TestManager is an open and extensible framework that unites all of the
tools, artifacts, and data both related to and produced by the testing effort. Under this
single umbrella, all stakeholders and participants in the testing effort can define and
refine the quality goals they are working toward.

This manual describes how to use TestManager to support testing activities and how
to use TestManager for functional testing and performance testing.

Audience

This manual is intended for project analysts, project architects and developers, quality
assurance team members, project managers, and any other stakeholders involved in
the testing effort.

Other Resources

» TestManager contains complete online Help. From the main toolbar, choose an
option from the Help menu.

Note: This manual contains conceptual information. For detailed procedures, see
the TestManager Help.

» All manuals are available online, either in HTML or PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

= For information about training opportunities, see the Rational University Web
site: http://www.rational.com/university.

XVii

Integrations Between Rational Testing Tools and
Other Rational Products

Rational TestManager Integrations

history of your test assets.
» Create baselines of your test projects.

* Manage changes to test assets stored
in the Rational Test datastore.

Integration Description Where it is Documented
Rational Use Rational Administrator to create and |® Rational Suite Administrator’s Guide
Tes’FManager— manage Rational projects. A Rational = Rational TestManager User’s Guide
Rational project stores software testing and)
Administrator development information. When you " Rational TestManager Help

work with TestManager, the information

you create is stored in Rational projects.

When you associate a RequisitePro

project with a Rational project using the

Administrator, the RequisitePro

requirements appear automatically in the

Test Inputs window of TestManager.
TestManager— Use ClearQuest with TestManager to » Rational TestManager User’s Guide
Rational track and manage defects and change = Rational TestManager Help
ClearQuest requests throughout the development

process.

With TestManager, you can submit

defects directly from a test log in

ClearQuest. TestManager automatically

fills in some of the fields in the

ClearQuest defect form with information

from the test log and automatically

records the defect ID from ClearQuest in

the test log.
TestManager— Use UCM with TestManager to: » Rational TestManager User’s Guide
[Rjatilfoin;lg?tlonal = Archive test artifacts such as test cases, [* Rational TestManager Help

nifie ange : :

Management 8 test scripts, test suites, and test plans. | Rutional Suite Administrator’s Guide
(UCM) * Maintain an auditable and repeatable |. Rotional Administrator Help

» Using UCM with Rational Suite

xviii Preface

Rational TestManager Integrations

Integration Description Where it is Documented
TestManager— Use RequisitePro to reference = Rational TestManager User’s Guide
Ratlopél requirements from Test'l\./[anager so that |, Rational TestManager Help
RequisitePro you can ensure traceability between your)) o)
project requirements and test assets. * Rational Suite Administrators Guide
Use requirements in RequisitePro as test
inputs in a test plan in TestManager so
that you can ensure that you are testing
all the agreed-upon requirements.
TestManager— Use TestManager with Robot to develop [= Rational TestManager User’s Guide

Rational Robot

automated test scripts for functional
testing and performance testing. Use
Robot to:

» Perform full functional testing. Record |*

test scripts that navigate through your
application and test the state of objects
through verification points.

» Perform full performance testing.
Record test scripts that help you
determine whether a system is
performing within user-defined
response-time standards under
varying workloads.

= Test applications developed with IDEs
(Integrated Development
Environments) such as Java, HTML,
Visual Basic, Oracle Forms, Delphi,
and PowerBuilder. You can test
objects even if they are not visible in
the application’s interface.

* Collect diagnostic information about
an application during test script
playback. Robot is integrated with
Rational Purify, Rational Quantify,
and Rational PureCoverage. You can
play back test scripts under a
diagnostic tool and see the results in
the test log in TestManager.

= Rational TestManager Help
= Rational Robot User’s Guide
Rational Robot Help

Getting Started: Rational PurifyPlus,
Rational Purify, Rational PureCoverage,
Rational Quantify.

* Rational PurifyPlus Help

Integrations Between Rational Testing Tools and Other Rational Products xix

Rational TestManager Integrations

Integration

Description

Where it is Documented

TestManager—
Rational Rose

Use Rose model elements as test inputs
in TestManager. A test input can be
anything that you want to test. Test
inputs are defined in the planning phase
of testing.

You can use Testmanager to create an
association between a Rose model (called
a test input in TestManager) and a test
case. You can then create a test script to
ensure that the test input is met. In
TestManager, you can view the test input
(the Rose model element) associated with
the test case.

* Rational TestManager User’s Guide
* Rational TestManager Help

TestManager—
Rational SoDA

Use SoDA to create reports that extract
information from one or more tools in
Rational Suite. For example, you can use
SoDA to retrieve information from
different information sources, such as
TestManager, to create documents or
reports.

Rational SoDA User’s Guide
= Rational SoDA Help
Rational TestManager User’s Guide

TestManager—
Rational
Unified Process
(RUP)

Use Extended Help to display RUP tool
mentors for TestManager. RUP tool
mentors provide practical guidance on

el s ey L]
how to perform specific process activities

using TestManager and other Rational
testing tools.

Start Extended Help from the
TestManager Help menu.

Rational TestManager User’s Guide
* Rational TestManager Help
Rational Extended Help

xx Preface

Rational Robot Integrations

Integration Description Where it is Documented
Robot— Use ClearQuest with Robot to track and |= Rational Robot User’s Guide
ClearQuest manage defects and change requests = Rational Robot Help

throughout the development process.

With Robot, you can submit defects

directly from the TestManager log or

SiteCheck, modify and track defects and

change requests, and analyze project

progress by running queries, charts, and

reports.
Robot- Use PurifyPlus directly from Robot to = Rational Robot User’s Guide
PurifyPlus diagnose your software applications for |, Rotiona1 Robot Help
(Purify, Quantify, | memory errors, leaks, performance) . .
PureCoverage) | bottlenecks, and gaps in code coverage | Gefting Started: Rational PurifyPlus,

during testing. Rational Purify, Rational PureCoverage,

Rational Quantify.
= Rational PurifyPlus Help

Robot- Use Extended Help to display RUP tool |= Rational Robot Help
Rational mentors for Robot. RUP tool mentors

Unified Process
(RUP)

provide practical guidance on how to
perform specific process activities using
Robot and other Rational testing tools.

Start Extended Help from the Robot Help
menu.

» Rational Extended Help

Integrations Between Rational Testing Tools and Other Rational Products xxi

Rational Robot Integrations

Integration

Description

Where it is Documented

Robot-
TestFactory

Use Robot with TestFactory to:

* Automatically create and maintain a
detailed map of the application-
under-test.

» Generate scripts that provide
extensive product coverage and
scripts that encounter defects (without
recording).

= Track executed and unexecuted source
code.

* Report detailed findings.

= Play back Robot scripts in TestFactory
to see extended code coverage
information and to create regression
suites.

= Play back TestFactory scripts in Robot
to debug them.

This integration helps to shorten the
product testing cycle by minimizing the

time invested in writing navigation code.

» Rational TestFactory Help

Robot-
TestManager

Use Robot with TestManager to:

* Design and execute functional and
performance tests.

= Test applications developed with IDEs
(Integrated Development
Environments).

= Collect diagnostic information about
your application.

This integration helps you organize your
test scripts and the results so that you can
more accurately assess the quality of
your software.

= Rational Robot User’s Guide

= Robot Help

» Rational TestManager User’s Guide
= Rational TestManager Help

xxii Preface

Rational XDE Tester Integrations

Integration Description Where it is Documented
Rational XDE Use ClearCase and ClearCase LT to: » Rational XDE Tester Help
Tester—

ClearCase and
UCM

= Perform ClearCase tasks from the
Datastore Explorer of XDE Tester.

* Manage the supporting files for each
script.

= (Create an XDE Tester datastore and
add it to ClearCase source control
from XDE Tester.

* Add an existing XDE Tester datastore
to ClearCase source control after you
create it in a ClearCase view.

You can use XDE Tester in a UCM
enabled view if the view was created as
part of a single-stream UCM project.

XDE Tester— Use PureCoverage to help you identify [= Rational XDE Tester Help
PurifyPlus untested Java code and applets directly |, pot001 XDE Tester Release Notes
(Purify, Quantify, |from XDE Tester. Cottine S & Rational PurifyP!
PureCoverage) = Getting Started: Rational PurifyPlus,
8°) NOTEj P1.1r1.fyPlus integration with XDE Rational Purify, Rational PureCoverage,
Tester is limited and does not support Rational Quantify.
record and playback for XDE Tester
scripts. = Rational PurifyPlus Help
XDE Tester— Use XDE Tester with TestManager to: = Rational TestManager User’s Guide
TestManager .

» Design and execute functional tests.

= Test applications developed with IDEs
(Integrated Development
Environments).

= Collect diagnostic information about
your application.

This integration helps you organize your
test scripts and the results so that you can
more accurately assess the quality of
your software.

Rational TestManager Help

Rational XDE Tester Help

Integrations Between Rational Testing Tools and Other Rational Products

xXiii

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support as follows:

Your Location Telephone Facsimile E-mail
North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0) 20-4546-200 |[+31 (0) 20-4545-201 |support@ europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

Note: When you contact Rational Customer Support, please be prepared to supply
the following information:

* Your name, telephone number, and company name
* Your computer’s make and model

* Your operating system and version number

* Product release number and serial number

* Your case ID number (if you are following up on a previously reported problem)

xxiv Preface

Part 1: Using
TestManager to Manage
Testing Projects

Introducing Rational
TestManager

This chapter introduces you to Rational® TestManager. It includes the following
topics:

» What is Rational TestManager

» TestManager workflow

= TestManager and other Rational® products
» TestManager and extensibility

» Functional and performance testing

= Virtual testers

» Local and Agent computers

= Suites

» Starting Rational TestManager

» The TestManager main window

Note: For detailed procedures, see the TestManager Help.

What Is Rational TestManager

TestManager is the open and extensible framework that unites all of the tools, assets,
and data both related to and produced by the testing effort. Under this single
framework, all participants in the testing effort can define and refine the quality goals
they are working toward. It is where the team defines the plan it will implement to
meet those goals. And, most importantly, it provides the entire team with one place to
go to determine the state of the system at any time.

Testing is the feedback mechanism in the software development process. It tells you
where corrections need to be made to stay on course at any given iteration of a
development effort. It also tells you about the current quality of the system being
developed.

Everyone involved in the project is a stakeholder in the process of defining how
system quality is assessed and taking actions to correct problems. For example:

Project analysts need to know about the availability, completeness, and quality of
use cases, features, and requirements supported by the system.

Project architects and developers need to understand the state of components and
subsystems they have designed or developed.

Quality assurance team members need to develop a plan to test the system.
Furthermore, they need to understand and define the relationships between the
elements of their testing plan and the other elements of the development effort.
These traceability relationships allow the QA team to understand how changes
elsewhere in the project affect their work, and to define how to test the elements of
the system.

Project managers need to use the information that the testing effort provides to
make decisions about the acceptability and readiness of the system for release.
Their decisions are based on input from other team members such as analysts and
developers who draw their knowledge of the state of the system from these same
measurements.

Testers use TestManager to see what work needs to be done by whom and by what
date. Testers can also see what areas of their work are affected by changes
happening elsewhere in the development effort.

Testing efforts often represent 25-50% of the overall project effort. Collecting the
required data, tracking the relationships among test assets, and providing a common
presentation of the output of the testing effort often involves use of several tools. This
can make it nearly impossible to efficiently track the effects of dependencies and to
get a concise, consistent view of the state of a system.

TestManager Workflow

The TestManager workflow supports the major testing activities:

Planning tests
Designing tests
Implementing tests
Executing tests

Evaluating tests

2 Chapter 1 - Introducing Rational TestManager

Each of these activities has input and output test assets, as shown in the following
figure.

Testing Workflow

Test Assets Activities Test Assets

Test Inputs y est H’an
, Plan
Skl
ase

Design

Fest
Desice

. Implement

Test Execute
Logs

Test
Ouipu

Planning Tests
The activity of planning tests involves answering the following questions:

* What and Where? — Requirements, visual models, and other test inputs tell you
what to test and where to run the tests.

= Why - Test inputs tell you why you are going to do certain tests. For example, tests
may be performed to validate system requirements.

= When? - Iteration plans tell you when the tests must be run and must pass.

= Who? - Test plans, iteration plans, or project plans tell you who performs the
testing activities.

For information about planning tests, see Planning Tests on page 27.

TestManager Workflow 3

Test Inputs

The first step in planning your testing effort is to identify the test inputs. A test input is
anything that the tests depend on or anything that needs validation. Test inputs help
you decide what you need to test. They also help you determine what tests might
need to change based on changes in the development process. This is important in
iterative development where change is a frequent, necessary part of the process.

TestManager has three built-in test input types:

» Requirements in a Rational RequisitePro® project
» Elements in a Rational Rose® visual model

* Values in a Microsoft Excel spreadsheet

These built-in test input types give you easy access to requirements, model elements,
and values in a spreadsheet, and let you associate these inputs with other test assets
for traceability purposes. For information, see Built-In Test Input Types on page 29.

TestManager also supports custom test input types. To use a custom test input within
TestManager, write a Test Input Adapter or use an adapter provided by Rational
Software or Rational’s partners. For example, to use the tasks in a Microsoft Project as
test inputs, you would write a test input adapter for Project. For more information, see
Custom Test Input Types on page 31.

Test Plans

When you have identified your test inputs, use TestManager to create a test plan. The
test plan provides an organizational structure for the other test assets in the project.

The test plan can contain a varied collection of information and addresses many
issues including:

» What tests must be performed?
* When must the tests be performed and be expected to pass?
» Who is responsible for each test?

* Where must the tests be performed? In other words, on what hardware and
software configuration must they be run?

Projects can contain multiple test plans. You may have a plan for each phase of testing.
Different groups may have their own plans. Generally, each plan should have a single
high-level testing goal (for example, test the file maintenance utility). For information,
see Creating a Test Plan on page 33.

Each test plan can contain test case folders and test cases.

4 Chapter 1 - Introducing Rational TestManager

Test Case Folders

Within a test plan, you can create test case folders to organize your test cases
hierarchically. Common organizations may reflect system architecture, major use
cases, requirements, or combinations of these. For information, see Organizing Test
Cases with Folders on page 36.

Test Cases

The test case is the test asset in TestManager that answers the question, “What am I
going to test?” You develop test cases to define the individual things that you need to
validate to ensure that the system is working the way that it is supposed to work and
is built with the quality necessary before you can ship it.

Each test case is owned by a team member. This answers the question, “Who will do
the testing?” For information, see Creating Test Cases on page 38.

Iterations

Use iterations to specify when a test case must pass. An iteration is a defined span of
time during a project. The end of an iteration is a milestone. At some point in time
during an iteration, the product has to meet a certain quality standard to reach a
milestone. The quality standard is defined by the test cases that must pass.

Iterations might be defined by several team members — such as project managers,
product managers, and analysts — iteratively throughout the testing process. For
information, see Specifying When to Run Tests on page 51.

Configurations

Use configurations to specify where test cases must be run — on what hardware and
software configurations. For example, to ensure that your test case passes when it
runs on four different operating systems, you could create a configuration for each
operating system. Then you could associate those four configurations with the test
case, to create configured test cases. In order for the test case to pass, all of its configured
test cases must pass.

Configurations might be defined by several team members — such as project
managers, product managers, and analysts — iteratively throughout the testing
process. For information, see Defining the Configurations to Test on page 41.

TestManager Workflow 5

Designing Tests

The activity of designing tests answers the question, “How am I going to perform the
testing?” A complete test design informs readers about what actions need to be taken
with the system and what behaviors and characteristics they should expect to observe
if the system is functioning properly.

Designing tests is an iterative process. You can start designing tests before any system
implementation by basing the test design on use case specifications, requirements,
prototypes, and so on. As the system becomes more clearly specified and you have
builds of the system to work with, you can elaborate on the details of the design.

Note: A test design is different from the design work that should be done in
determining how to build your test implementation.

In TestManager, you can design your test cases by:

* Indicating the high-level steps needed to interact with the application and the
system in order to perform the test.

» Indicating how to validate that the features are working properly.
» Specifying the preconditions and postconditions for the test.
» Specifying the acceptance criteria for the test.

Given the iterative nature of software development, the design is typically more
abstract (less specific) than a manual implementation of the test, but it can easily
evolve into one.

For information about designing tests, see Designing Tests on page 69.

Implementing Tests

The activity of implementing tests involves the design and development of reusable
test scripts that implement your test case. After you create the implementation, you
can associate it with the test case.

Implementation is different in every testing project. In one project, you might decide
to build both automated test scripts and manual test scripts. In another project, you
might need to write modular pieces of software using a combination of tools.

TestManager provides built-in support for implementing the following types of test
scripts:

Note: TestManager stores built-in test script types in the Rational test datastore in
a Rational project. All test script types with (Rational Test Datastore) next to them
in the table are stored in the Rational datastore.

6 Chapter 1 - Introducing Rational TestManager

Type of Test Script

Description

GUI (Rational Test | A functional test script written in SQABasic, a Rational proprietary

Datastore) Basic-like scripting language.

Manual (Rational A set of testing instructions to be run by a human tester.

Test Datastore)

VU (Rational Test | A performance test script written in VU, a Rational proprietary C-like

Datastore) scripting language.

VB (Rational Test | A performance test script written in VB.

Datastore) Note: When you record a session in Robot, you generate VU or VB
(Visual Basic) test scripts from the recorded session, depending on a
recording option that you select in Robot.

XDE Tester GUI A functional test script written in the Java language.

Script

Command line

A file (for example, an .exe file, a .bat file, or a UNIX shell script)
including arguments and an initial directory that can be executed
from the command line.

Java

A test script written in the Java language.

TestManager also supports implementation of other types of test scripts that you have
registered. For information, see Defining Custom Test Script Types on page 14.

You can also use a suite to implement a test instead of a test script. A suite is a
container that lets you design a larger set of test cases and implementations that you
want to run. A suite can have parameters such as order, dependencies, iterations,
random operations, and so on.

For information about implementing test cases, see Implementing Tests on page 79.

Executing Tests

The activity of executing your tests involves running the test implementations to
ensure that the system functions correctly. In TestManager, you can run any of the

following:

* Anindividual test script

= One or more test cases

» A suite, which runs any combination of test cases and test scripts across one or
more computers and virtual testers.

For information about executing tests, see Executing Tests on page 115.

TestManager Workflow 7

Evaluating Tests
The activity of evaluating tests involves:

* Determining the validity of the actual test run. Did it complete? Did it fail because
preconditions weren’t met?

* Analyzing the test output to determine the result. In performance testing, you look
at reports on the generated data to see if the performance is acceptable.

= Looking at aggregate results to check coverage against test plans, test inputs,
configurations, and so on. This can also be used to measure test progress and to do
trend analysis.

» If a test input changes, TestManager informs you of the impact of that change on
your test plan. For example, if a requirement changes in some meaningful way,
which test cases in your test plans are affected is important so that you can update
them to reflect requirement changes. TestManager automatically identifies and
marks the affected test cases as "suspect” for you.

For information about evaluating tests, see Evaluating Tests on page 155.

TestManager and Other Rational Products

TestManager can be purchased as a stand-alone product or as part of other Rational
packages. When installed with other Rational products, it is tightly integrated with
those products.

The Rational Unified Process

The Rational Unified Process® is a software engineering process that enhances team
productivity for all critical activities. It delivers software best practices through
guidelines, templates, and tool mentors.

To quickly view the areas of the Rational Unified Process that are directly related to
testing;:

» In TestManager, click Help > Extended Help.

To view the complete online version of the Rational Unified Process, if you have
installed Rational Suite®:

» (Click Start > Programs > Rational Suite > Rational Unified Process.

8 Chapter 1 - Introducing Rational TestManager

Projects and the Rational Administrator

When you work with TestManager, the information that you create is stored in
Rational projects. You use the Rational® Administrator to create and manage Rational

projects.

Rational Projects

A Rational project stores software testing and development information. All Rational
components on your computer update and retrieve data from the same project.

Note: The types of data in a Rational project depend on the Rational software that you

have installed.

The following table describes each part of a Rational project:

A Rational project
consists of:

Description

Rational Test datastore

Stores application testing information such as test plans, test
cases, test logs, reports, and builds.

Note: If there are multiple, concurrent users (more than one user)
of a test datastore, use a SQL Anywhere database engine for the
test datastore. First install the Sybase SQL Anywhere software.
Then create a SQL Anywhere database server before you create a
new SQL Anywhere test datastore or change an existing
Microsoft Access test datastore to a SQL Anywhere test datastore.
For information about installing SQL Anywhere software and
creating a SQL Anywhere database server, see your Rational
installation manual. To manage a Sybase SQL Anywhere
database server, see the Sybase Help. If you distribute tests to test
agent computers, you must use a shared test datastore. For more
information about security and privileges, see the Rational
Administrator Help.

Rational RequisitePro
project

Stores product or system requirements, software and hardware
requirements, and user requirements. When you associate a
RequisitePro datastore with a project in the Administrator,
TestManager automatically uses the requirements in the
datastore as test inputs.

Rational Rose models

Stores visual models for business processes, software
components, classes and objects, and distribution and
deployment processes. You can use Rose model elements as test
inputs. To use Rose model elements, you must register the source
of the model with TestManager. For information, see Built-In Test
Input Types on page 29.

TestManager and Other Rational Products

9

Rational ClearQuest Stores change-request information for software development,
database including enhancement requests, defect reports, and

documentation modifications. When you associate a Rational
ClearQuest database with a project in the Administrator, you can
submit defects directly from a test log in TestManager into
ClearQuest. TestManager automatically fills in some of the fields
in the ClearQuest defect form with information from the test log
and automatically records the defect ID from ClearQuest in the
test log.

Security and Privileges for the Rational Test Datastore

When administrators create Rational projects using the Administrator, they determine
the security of the Rational Test datastore.

For any Rational project, administrators can create test groups with specific write and
administration privileges, and they can create test users and assign them to test
groups. The test users take on the privileges of the test groups to which they are
assigned. For more information about security, see the Rational Administrator Help.

Automated Test Scripts and Rational Robot

With Rational® Robot, you can develop automated test scripts for functional testing
and performance testing. Use Robot to:

Perform full functional testing. Record test scripts that navigate through your
application and test the state of objects through verification points.

Perform full performance testing. Record test scripts that help you determine
whether a system is performing within user-defined response-time standards
under varying workloads.

Test applications developed with IDEs (Integrated Development Environments)
such as Java, HTML, Visual Basic, Oracle Forms, Delphi, and PowerBuilder. You
can test objects even if they are not visible in the application’s interface.

Collect diagnostic information about an application during test script playback.
Robot is integrated with Rational Purify®, Rational Quantify®, and Rational
PureCoverage®. You can play back test scripts under a diagnostic tool and see the
results in the test log in TestManager.

Automated Test Scripts and Rational TestFactory

Rational TestFactory® is an automated, component-based development tool designed
for use by test teams as well as individual developers and quality engineers.

10 Chapter 1 - Introducing Rational TestManager

TestFactory automatically generates both scripts that provide extensive product
coverage and scripts that encounter defects. These test scripts are GUI scripts, the
same as Robot scripts. TestManager comes with built-in support for GUI test scripts so
you can run distributed TestFactory scripts from TestManager.

To add TestFactory scripts to the GUI test script type:
1 In TestManager, click View > Test Scripts to open the Test Scripts window.

2 Select the GUI test script type for TestFactory scripts and then right-click New
Source.

Note: For detailed procedures, see the TestManager Help.

Component Testing and Rational QualityArchitect

Rational® Quality Architect is a collection of integrated tools for testing middleware
components built with technologies such as Enterprise JavaBeans and COM. With
Quality Architect you can test individual components before building a complete
application.

Quality Architect, in conjunction with Rose, generates test scripts for components and
interactions in your Rose model. When generated, the test scripts can be edited and
run from your development environment or from TestManager.

With Quality Architect, you can:

» Generate test scripts that unit-test individual methods or functions in a
component-under-test.

» Generate test scripts that drive the business logic in a set of integrated
components. Test scripts can be generated directly from Rose interaction diagrams
or from live components using the Session Recorder.

» Generate stubs that you can use to test components in isolation, apart from other
components called by the component-under-test.

» Track code coverage through PureCoverage and model-level coverage through
TestManager.
Requirements and Rational RequisitePro

RequisitePro is a requirements management tool that helps project teams control the
development process. RequisitePro organizes your requirements by linking Microsoft
Word to a requirements repository and by providing traceability and change
management throughout the project lifecycle.

TestManager and Other Rational Products 11

When you create a Rational project using Administrator, you can associate a
RequisitePro project with the Rational project. You can then use the requirements in
the RequisitePro project as test inputs to your test plan in TestManager. As you plan
your test cases, you can associate requirements with test cases to keep track of
changes to requirements that might affect your test cases. For more information about
traceability, see Test Impact Analysis on page 53.

You can use requirements in any RequisitePro project, not just the RequisitePro project
that you associate with a Rational project. You can use one or more RequisitePro
projects as test input sources even if they are not associated with a Rational project.
However, in that case, you must register the RequisitePro project with TestManager.

Model Elements and Rational Rose

Rational Rose helps you visualize, specify, construct, and document the structure and
behavior of your system’s architecture. With Rose, you can provide a visual overview
of the system using the Unified Modeling Language (UML), the industry-standard
language for visualizing and documenting software systems.

You can use Rose model elements as test inputs in TestManager, and you can easily
associate the model elements with test cases. If you use a Rose model as a test input,
you can analyze any changes in Rose models and then manually mark as suspect the
link between a Rose model and a test case. For more information about traceability,
see Test Impact Analysis on page 53.

Defects and Rational ClearQuest

Rational ClearQuest® is a change-request management tool that tracks and manages
defects and change requests throughout the development process. With ClearQuest,
you can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

With TestManager, you can submit defects directly from a test log into ClearQuest.
TestManager automatically fills in some of the fields in the ClearQuest defect form
with information from the test log and automatically records the defect ID from
ClearQuest in the test log.

Reports and Rational SoDA

Rational SODA® generates up-to-date project reports of data extracted from one or
more tools in a Rational Suite product. SODA can work with one Rational tool, such as
RequisitePro, or combine information from more than one tool, such as RequisitePro,
Rose, TestManager, and ClearQuest. These reports provide a way for your team to
communicate more efficiently and consistently.

12 Chapter 1 - Introducing Rational TestManager

For example, with SoDA you can create a report with the following information about
a software development project:

* Requirements from RequisitePro
» Software models from Rose
» Testing criteria from TestManager

» Defect tracking information from ClearQuest

TestManager and Extensibility

TestManager includes application programming interfaces (APIs) that allow you to
extend the capabilities of TestManager and to use custom testing tools with
TestManager.

Extending Test Script Types

Out of the box, TestManager can play back test scripts written in several languages
(VU, Java, Visual Basic) as well as any type of test script that can be executed from a
command line (such as a Perl test script or a compiled C program). These are called
built-in test script types.

By writing adapters that implement the following APIs, you can extend TestManager
to support custom test script types:

= The Test Script Execution Adapter (TSEA) API allows TestManager to run custom
test scripts.

» The Test Script Services (TSS) calls allow custom test script types to integrate fully
with the TestManager analysis and reporting facilities and to use datapool,
logging, monitoring and synchronization services.

» The Test Script Console Adapter (TSCA) API supports the user interface
component that allows TestManager to create, edit, and select test scripts.

For detailed information about adapters for custom test script types, see part 1 of the
Rational TestManager Extensibility Reference.

Defining Custom Test Input Types

A test input (also called a test requirement) is any system component or procedure that
requires testing. A test input type is the native format of a tool, such as Excel, that is
used to define test inputs. TestManager supports test inputs defined using Rose,
RequisitePro, and Microsoft Excel.

TestManager and Extensibility 13

By writing adapters that implement the Test Input Adapter (TIA) API, you can extend
TestManager to support custom test input types. For example, you can extend
TestManager to support test inputs defined using Microsoft Project or C++ project
files.

For detailed information about adapters for custom test input types, see part 2 of the
Rational TestManager Extensibility Reference.
Defining Custom Test Script Types

The TestManager extensible test script type functionality enables you to implement
custom test scripts using any tool that is appropriate for your testing environment.

There are several ways to extend TestManager to support a new test script type:

» Use the Command Line Test Script Console Adapter to create, edit, and select test
scripts.

» Build a custom Test Script Console Adapter or use an adapter provided by
Rational or its partners to select (and optionally create and edit) test scripts. (For
information about custom adapters, see the Rational TestManager Extensibility Reference.)

» Use the Command Line Test Script Execution Adapter to run test scripts.

* Build a custom Test Script Execution Adapter or use an adapter provided by
Rational or its partners to run test scripts. (For information about custom adapters,
see the Rational TestManager Extensibility Reference.)

For information about defining test script types in TestManager, see Custom Test Script
Types on page 82.

Functional and Performance Testing

When you plan tests, think about whether you are interested in functional testing,
performance testing, or both.

Functional Testing

In functional testing, you typically test the accuracy of the application and how it
behaves on different operating systems.

Functional testing tends to have well-defined objectives and outcomes. For example,
if the application has a feature that saves a file to disk, it is relatively straightforward
to test this feature. If a file gets saved correctly, it passes the test. If it does not get
saved correctly, it fails the test.

14 Chapter 1 - Introducing Rational TestManager

For information about functional testing, see Part 2, Functional Testing with Rational
TestManager.

Performance Testing
In performance testing, you can measure:

» The client response time — the total end-to-end response time as seen by a user. It is
the time it takes for a user to enter a request, the server to respond to the request,
and the user to see the results.

» The server response time — the time it takes for the server to process a request.

Performance testing can be more complex than functional testing because
performance itself is subjective. What one user might perceive as too slow, another
user might perceive as acceptable. Therefore, when planning performance tests, you
should put some thought into what constitutes acceptable performance.

Another complexity of performance testing is that performance varies widely

depending on workload conditions. Querying a database on a system that is primarily
used for CPU-intensive activities yields a different response time than performing the
same query on a system used primarily for generating I/ O-intensive database reports.

For information about performance testing, see Part 3, Performance Testing with
Rational TestManager.

Virtual Testers

When you play back a test script, you emulate a discrete activity performed by an
actual user (tester). A virtual tester is a single instance of a test script running on a
computer.

Virtual Testers in Functional Tests

A virtual tester running a functional test emulates the user’s GUI activities, such as
menu choices and control selections. In other words, these virtual testers represent the
application level view of the client/server conversation. Because the virtual tester
emulates a user interacting with the GUI, you run only one virtual tester at a time on a
computer.

When you record a GUI script in Robot, Robot records the user’s activities — such as
keystrokes and mouse clicks. This traffic is the only activity that Robot records. After
recording, Robot generates an appropriate test script. When you run the script in
TestManager, you are running a virtual tester. During the test run, you see the same
GUI actions and displays that you saw when you recorded the script.

Virtual Testers 15

Virtual Testers in Performance Tests

A virtual tester running a performance test emulates traffic between a client and its
servers. In other words, these virtual tester represent the API-level view of a
client/server conversation. For performance tests, in contrast to functional tests, you
can run many virtual testers on a computer simultaneously.

When you record a session in Robot, Robot records a client’s requests — such as
Oracle, Microsoft SQL Server, and HTTP requests — to the server. Robot also records
the server’s responses. This traffic is the only activity that Robot records. Robot
ignores GUI actions such as keystrokes and mouse clicks. After recording the session,
Robot generates an appropriate test script. When you run the test script in
TestManager, it plays back the requests that you recorded, but the GUI actions that
you performed and the displays that you saw at record time are not played back.

Running many virtual testers allows you to add a workload to a client/server system.
Virtual testers also let you determine scalability and measure server response times.

You can also use virtual testers to measure client response times to get an end-to-end
response. This is more indicative of what a real user experiences when significant
client processing or screen-painting time is associated with the user activity that you
are measuring. For example, you might have a timer associated with one virtual tester
to find out how much time a query takes when 1000 other virtual testers are sending
requests to the same server at the same time.

Local and Agent Computers

You can coordinate testing activities from a single Windows computer that runs
TestManager. This is called the Local computer.

During the execution of a test, scripts play back on the Local computer or on
computers that you have designated as Agent computers. You use Agent computers to:

» Add workload to the server, if you are running a performance test.

* Run test scripts on more than one computer. If you are running a functional test,
you can save time by running the test scripts on the next available Agent computer
instead of running them all on the Local computer. Of course, your test scripts
must be modular.

» Test configurations. If you are testing various hardware and software
configurations, you can run test scripts on specific Agent computers that are set up
with these configurations.

16 Chapter 1 - Introducing Rational TestManager

The TestManager Environment

TestManager allows you to run a suite in a distributed environment. This
environment consists of a single Local computer (on which you coordinate test
execution and play back test scripts) and zero or more Agent computers (on which
you play back test scripts).

The server can run under a variety of operating systems and can be connected to the
Local and Agent computers over a TCP/IP network.

The following figure illustrates a typical TestManager configuration that contains:

» A Local computer — TestManager runs on this computer. From this computer, you
coordinate the tests that you run.

» Five Agent computers — the same TestManager Agent software runs on all of these
computers. Each computer uses different operating systems and has a different
environment.

2 Four computers are running functional tests. One virtual tester (that is, running
script) runs on each computer.

= One computer is running a performance test. Many virtual testers are running
at the same time, adding workload to the server.

» The server, sometimes called the system-under-test — This is the server whose
response or whose functions you are testing.

Local and Agent Computers 17

||

virtual testers

Local computer
WinNT4.0 or Win 2000

virtual testers adding workload

i
[[

||
s |

UNIX,
WinNT,
Win 2000

Win Me Win 2000 WinNT Win 98
Agent computers
Suites

Typically, multiple test scripts and multiple computers are involved in a test. At

runtime, test script playback is coordinated by suites that you design. You run these

suites from the Local computer.

In functional testing, suites let you run test scripts in parallel on the computers that
are available or let you match configurations when using configured test cases, so that

your tests can run more quickly. In performance testing, suites allow you to add
workload to the server.

Once you have used TestManager to create suites that describe a baseline of behavior
for the server, you can run these suites repeatedly against successive builds of your

product, and then analyze the results using the TestManager reporting tools.

For information about suites, see Implementing Tests as Suites on page 95.

18 Chapter 1 - Introducing Rational TestManager

Starting Rational TestManager

Before you start using TestManager:

» Install TestManager. For information, see the Rational Software Desktop Products
Installation Guide and the Rational Software Server Products Installation Guide.

» Create a Rational project. For information, see the Rational Suite Administrator’s Guide
or the Rational Administrator Help. A Rational project contains a test datastore to
store all test assets managed by TestManager.

Note: If there are multiple, concurrent users (more than one user) of a test
datastore, use a SQL Anywhere database engine for the test datastore. You must
install the Sybase SQL Anywhere software and create a SQL Anywhere database
server before you create a new SQL Anywhere test datastore or change an existing
Microsoft Access test datastore to a SQL Anywhere test datastore. For information
about installing SQL Anywhere software and creating a SQL Anywhere database
server, see your Rational installation manual. To manage a Sybase SQL Anywhere
database server, see the Sybase Help.

Note: Rational Administrator no longer supports Windows 98 and ME; you must
connect to a remote test datastore when using TestManager to playback test scripts
or run tests on these two platforms.

Logging On to TestManager

When you log on to TestManager, you provide your user ID and password, which are
assigned by your administrator. You also specify the project to log on to.

Starting Rational TestManager 19

To log on:

» Click Start > Programs > Rational product name > Rational TestManager to open
the Rational Test Login dialog box.

Note: For detailed procedures, see the TestManager Help.

Rational Test Login

Uzer Mare:

Type your user ID and
password. If you do not know
these, see your administrator.

Pazsword:

Froject:
Select a project. To change ——— | Classics Onne ol Browse. |
projects after you log on, exit Location:
TestManager and Iog on IC:\F‘rogram Filez\R ationalhClazsics DemobProjectshClassic

again. (You can create

projects in the Rational oK I Cancel |

Administrator.)

Starting Other Rational Products and Components from TestManager

20

When you log on to TestManager, you can start other Rational products and
components from either the Tools menu or the Tools toolbar.

The Tools menu

Tonls
Manage 4
Rational Test Rational Robok
Rational Administrakor Rational SiteCheck
Rational ClearQuest Rational ManualTest
Ratiomal RequisitePra Rational TestFackary
Rational Rose Rational “DE Tesker
Cuskomize b
CQptions. ..

Rational Administrator ~ Rational ClearQuest Rational ManualTest Rational TestFactory

The Tools toolba: RationalRose

Rational SiteCheck
Rational XDE Tester

Rational Robot

Chapter 1 - Introducing Rational TestManager

The TestManager Main Window

The following figure shows the TestManager main window and some of its child

windows.
Test Asset Workspace Test Scripts window Test Plan window Test Inputs window
(open from View menu) (open from View menu) (open from File menu) (open from View menu)

£ Classics Online - Rational TestManager

File Edit Wiew Repots Tools ‘“Window Help

oo elp b @ iea(iass rllrennEsEE [snonemnss
i Test Asset Workspace I [n] 3 | 2 T EsEPian S Functional | ests =10 x| I M Test Inputs - Suspect Test Cases H[u] [E3
= @ Functional Tests Bl Rational RequisitePro
-3 Test Flans =+ Business Function Bl ¢ Rational Project - RequisitePra Project
<&l Functonal Tests -] Cash Register E-[2) FEATY ot of Sl System
i - F.‘elfolmance Tests = [:| Clerk Functions = FEAT2 Oider Processing System
=3 herations El-E Process Sale 3. [2 FEAT21 Provide for both
T Inception 1 -9 Process New Sale automated and humarr-assisted
-5 Elaboration 1 g Standand - Win2000 order entry
¥ Elaboration 2 BHE3 Manager Funclions @ Add new SKU
& Construction 1 = {3 Retums ﬁ Process New Sale
-~ ¥ Construction 2 - Retun Muliple ltems [[E] FEAT3Warehouse system
¥ Construction 3 B3 Voids FEAT4 Home Shopping e-commerce
Initial Operational Capability system
m Transition 1 . % oid Mulple ltems H@ Rational Fiose
& Transiton B+ Maintenance
V@ Rose model - order system
g Transiion 2 -] Orine Catalo
& Microsoft Excel

- Product Release

- 7 {26 Web Order Spstem
[l Test Scripts _ (O] Scheduling time

= 1 Flobok GLI Gk Set Alam
GUI - [Rational Test Datastare]
-] Manual Seript

B . Manual - [Rational Test Datastore)
- . WVerify Weekly Featured CD

Robat YL Script

o YU - [Rational Test Datastore] 'f‘[:onﬁgulaliuns (O]]

ED Cammand Ling

@%@ Command Line =]

Appointments

CEI |§v350npl Operating System | 05 Version | Processor Type | Display Resolution
VB SS:; Standard - WinhT = Windaves = T
g B - [Rational Test Datastore) ST BT - [indows - 200
Laptop-Browser = Windows
L Laptop-kao Browser = Windows
& pranning | Executon | 9 Resuts | 8 anaiysts | Stardard - Windows #F|= Windows = WP
T 1 — / B}
|Ready | admin [/ v
Planning tab | Results tab) / .
Configurations window
) (open from View menu)
Execution tab Analysis tab

Test Asset Workspace

The Test Asset Workspace gives you different views of the test assets in your project. It
has four tabs: Planning, Execution, Results, and Analysis.

The TestManager Main Window 21

To show or hide the Test Asset Workspace:
» Click View > Test Asset Workspace.
Right-click any test asset in the Workspace to display a shortcut menu.

Right-click near the bottom of the window (in an empty area) to allow docking of the
Workspace or to float it in the main window.

Note: You can press the F5 key to refresh all in the Test Plan window and in the Test
Input window. This key does not work in the Test Asset Workspace. You must
right-click a folder in each Test asset Workspace tab or click View > Refresh
Workspace from the main menu to refresh all in the Test Asset Workspace.

Note: For detailed procedures, see the TestManager Help.

Planning Tab

The Planning tab lists the test plans and iterations in the project.

H-3 Test Plans

I Functional Tests
; Iy Performance Tests
5[] Iterations

¥ Inception 1

¥ Elabaoration 1
¥ Elaboration 2
¥ Construction 1
¥ Construction 2
¥ Construction 3
¥ Transition 1

- ¥ Transition 2

[% Planning | Execution I @ Results I a Inalysis I

Right-click any test asset to display a shortcut menu.
Note: For detailed procedures, see the TestManager Help.

For information about test plans, see Creating a Test Plan on page 33. For information
about iterations, see Specifying When to Run Tests on page 51.

22 Chapter 1 - Introducing Rational TestManager

Execution Tab

The Execution tab lists the suites, computers, and computer lists in the project.

: Test Aszzet Workspace [_ O}

E+[C] Suites

----- Manual Test Suite

----- Flace Order Functional Tests
----- Place Order Load Tests-PwiS
----- Place Order Load Tests-SOL
----- Place Order Load Testsweb
----- Test zonipt instance optiohs
=] Camputers

----- ® ciTveoY

----- ® DawnWT

----- [® DBServer

----- ® LizPC

----- ™ LoadTest Local

----- ™ MarkPC

----- ® SwiILKEY

----- ® ‘webServer

----- [Z3 Computer Lists

% Plan... Exec_._ I@ Rezults a Apal... I

Right-click any test asset to display a shortcut menu.

Note: For detailed procedures, see the TestManager Help.

For information about suites, see Implementing Tests as Suites on page 95. For
information about computers and computer lists, see Defining Agent Computers and
Computer Lists on page 97.

The TestManager Main Window 23

Results Tab
The Results tab lists the builds, test log folders, test logs, and reports in the project.

(27 Flace Order Functional Tests
[OrdercD
E[f] ordercd
| Build &
=+(Z7] Place Order Load Tests - AL
: E| 10 Concurent Users
—-(Z7] Performance Reports
Buginess Transactions
Order Transaction
=1-(C] Reponze vs Time Reports

ED Place Order Load Tests - Web
=8 20 Concurrent Users
([Z Performance Reports

E]]PIanning] Execuﬁon @Resunx |a Analyziz |

Right-click any test asset to display a shortcut menu.
Note: For detailed procedures, see the TestManager Help.

For information about builds, test log folders, and test logs, see Evaluating Tests on

page 155.

24 Chapter 1 - Introducing Rational TestManager

Analysis Tab
The Analysis tab lists the reports in the project.

i Test Azset Workspace [_ (O] x|

ElD Test Case Reports

-] Test Case Distibution

EI[:| Performance Testing Reports

*-[_] Campare Perfarmance
L] Performance

[Z1] Response vs Time
(2] Command Status

(21 Command Uzage

[Command D ata
#-[_] Command Trace

I':'I[:I Listing Reports

(7] Buid Listing

[Computer List Listing
[Z3 Computer Listing
[Configuration Listing
(2 Iteration Listing

[Z] Log Listing

[Z Seript Listing

[Z] Session Listing

[Z] Suite Listing

[_] Test Plan Listing
+-[_] User Listing

+-y Test Caze Results Distribution

W]Planning I Execution I m Rezults a Analysiz I_

Right-click any test asset to display a shortcut menu.

Note: For detailed procedures, see the TestManager Help.

For information about reports, see Reporting Results on page 173 and Reporting
Performance Testing Results on page 331.

The TestManager Main Window 25

Other TestManager Windows

The following table lists other TestManager windows and where to find more
information about them.

Window Description See

Test Input Shows the test inputs associated Identifying What to Test by Using
with a project. Test Inputs on page 28

Test Plan Shows a test plan and all of its test | Creating a Test Plan on page 33
case folders and test cases.

Test Scripts Shows each type, source, and all test | Test Scripts Window on page 80
scripts (implementations).

Configuration |Shows all of the configurations and | Defining the Configurations to Test
configuration attributes in a project. | on page 41

Suite Shows all of the items contained in a | Implementing Tests as Suites on
suite. page 95

Monitoring Shows up-to-date information as a | Monitoring Test Runs on page 132
test case, test script, or suite runs.

Test Log Shows test logs created after you About Test Logs on page 155
run a suite, test case, or test script.

Reports Shows the results of running Reporting Results on page 173
reports.

26 Chapter 1 - Introducing Rational TestManager

Planning Tests

This chapter describes how to plan tests. It includes the following topics:
» About test planning

» Identifying what to test by using test inputs

» Creating a test plan

= Organizing test cases with folders

» Creating test cases

* Managing test assets

Note: For detailed procedures, see the TestManager Help.

About Test Planning

The activity of test planning answers the question, “What do I have to test to meet the
agreed-upon quality objectives?” When you complete your test planning, you have a
test plan that defines what you are going to test.

Test planning happens over time. Different members of the team — such as product
managers, analysts, testers, and developers — might come up with new test cases that
you have to define, new situations that you need to test, and new features that you are
just learning about. In other words, don’t just create a test plan at the beginning of the
process and then view it as a stagnant document. A test plan is a continually evolving
asset.

In TestManager, test planning consists of the following major tasks:
» Gathering and identifying the test inputs

» Creating the test plan or test plans

» Creating the test case folders

» Creating the test cases

» Defining the configurations you need to test against

= Defining the iterations — when you need to run the tests

27

Identifying What to Test by Using Test Inputs

When you first start your test planning, your goal is to build a checklist of all of the
things that need to be tested.

One way to start planning is to look at any available source materials that can help
you determine what you need to test. For example, you can look at:

= Prototypes

* Builds of the software

* Functional specifications
* Requirements

* Visual models

» Source code files

» Change requests

You as a tester might look at all of these materials to help you decide, “What do I need
to test?” These materials are your test inputs. They are inputs to the planning phase.
They help you build the checklist of the things you need to test.

After you build this checklist, you can create test cases. The test cases define what you
are going to test, based on the test inputs. You can then associate the test cases with
the test inputs for tracking purposes. By setting up these associations, you can more
easily track changes to the test inputs that might result in changes to the test cases or
their implementations. For information, see Test Impact Analysis on page 53.

You can also run reports to identify the test inputs that have test cases and
implementations associated with them, and to identify which of those test cases have
been run. For example, analysts might be interested in reports based on requirements.
Architects might be interested in reports based on model elements. For information
about reports, see Reporting Results on page 173.

Almost anything can be a test input. TestManager provides built-in test input types,
and you can also define custom test input types as your testing environment requires.

To view the available test inputs:
» Click View > Test Inputs to open the Test Input window.

Note: For detailed procedures, see the TestManager Help.

28 Chapter 2 - Planning Tests

Built-In Test Input Types
TestManager has three built-in test input types:
* Requirements in a RequisitePro project
» Elements in a Rose visual model
* Values in a Microsoft Excel spreadsheet

The following figure shows requirements from the three built-in test input adapters:
requirements from a RequisitePro project, models from Rose, and values from an

Excel spreadsheet.
¥ Test Inputs - Test Cases == 3
EI--- R ational RequigitePro
El- g {:.\ R ational Froject - RequisitePro Project
| FEAT1 Pairt of Sale System
To filter the — FEATZ Order Pracessing System
requirements that /. FEAT 3 Warehouse s.ystem
appear, right-click and ;ES’?;: Home Shopping e-commerce
click Set Filter. &g Rational Fose
E@ Rose model - order system
D Uze Case View
. . -7 Logical View
To modify the properties B3 Companent Yiew
of a requirement, E-fg) Microsoft Excel
right-click and click =)-{28] Wb Order Processing

System

Scheduling time
Set Alam
Appaintrments

Properties.

Requirements from Rational RequisitePro
You can use one or more RequisitePro requirements as test inputs.
For RequisitePro:

* You or an administrator can use the Administrator to associate a RequisitePro
project with a Rational project.

» For additional RequisitePro projects as test input sources even if they are not
associated with a Rational project, you must register the additional RequisitePro
projects with TestManager. For information, see the next section, Registering a Test
Input Source.

Note: The RequisitePro requirements themselves are created and managed in
RequisitePro, but you can modify the properties of the requirements from
TestManager.

Identifying What to Test by Using Test Inputs 29

Model Elements from Rational Rose

If you have Rose installed and licensed, you can use Rose model elements as test
inputs. You must register the test input source with TestManager. For information,
see Registering a Test Input Source on page 30.

Values from Microsoft Excel

You can use one or more Excel spreadsheets as test input sources. This test input
adapter can be useful in many ways. You can document requirements or capture
project planning information in an Excel spreadsheet.

However, when using an Excel spreadsheet as a test input source, be aware that if you
insert or remove a row or column in the spreadsheet, you may need to update the Test
Input Source configuration settings.

When an association is made between a test input and a test case, the value in the
“ID” column in the spreadsheet is stored by TestManager in order to preserve the
association. Any modifications to the spreadsheet that affect the specified columns
(ID and Name), such as adding or removing rows or columns immediately around
the specified columns or rows, may invalidate the spreadsheet as a source of Test
Inputs and require that you update the associated test input source. Modifying the
values in the specifed column or rows can also result in a loss of connection between
the test case and test input.

To use an Excel spreadsheet, you must register the source (the spreadsheet) with
TestManager. For information, see the next section, Registering a Test Input Source.

Registering a Test Input Source

When you register a test input source, the test input appears automatically in the Test
Input window after you log on to that project in TestManager. You can then create an
association between a test input and a test case to track the relationships between
them. For information about tracking the impact of changes in test inputs on test
cases, see Test Impact Analysis on page 53.

To register a test input source for a built-in test input type:
1 Click Tools > Manage > Test Input Types.
2 C(lick Microsoft Excel, Rational RequisitePro, or Rational Rose, and then click Edit.

Note: If Edit is unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator
Help.

30 Chapter 2 - Planning Tests

3 Click the Sources tab and click Insert. The New Test Input Source dialog box
appears.

Note: For detailed procedures, see the TestManager Help.

Click the Connection Data tab to Mew Test Input Source []
browse to or type the path to the

General | Connection Dalal Statislicsl

source. For example:
c:\Demo\ClassicsOnline.rgs for a ez
RequisitePro project. |
Description:
Type a name for the source. This can &
be any name up to 40 characters.
I
Dwiner:
Iadmin j
Type:
I R ational RequisitePro j

;4 I Cancel | Help

Custom Test Input Types

TestManager supports using test input types other than RequisitePro requirements or
Rose model elements. For example, you might want to use the data from Microsoft
Project as test inputs. You could also define C++ language project files as a test input
type if you wanted to know which tests needed to be changed or rerun when a source
file changes.

For TestManager to support an extensible test input type, someone in your
organization must write a custom Test Input Adapter. An adapter is a dynamic-link
library (DLL) with certain required functions for TestManager to call when necessary
— for example, when connecting to or disconnecting from a test input source. In
addition to adapters written in your organization, some custom adapters are available
from Rational Software or its partners. (For information about writing test input
adapters, see the Rational TestManager Extensibility Reference.)

Identifying What to Test by Using Test Inputs 31

After the DLL is implemented, you need to define the new test input type in
TestManager and register the source. To do this:

* (Click Tools > Manage > Test Input Types. Click New.

Note: If New is unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator
Help.

Click to register the source
of the test input type.

Hew Test Inpu! Type

General | Sourcesl Statisticsl

Marne:

Type a name for the test input. 4#

This can be any name up to o

40 characters. Description: -

=

Owrer:
Iadmin j
Adapter:

Type the path to the DLL file. |

[k I Cancel | Help |

For more information, see test input types:registering new in the TestManager Help
Index.

After you define a new test input type and register the source, that source appears in
the Test Inputs window (View > Test Inputs).

32 Chapter 2 - Planning Tests

Creating a Test Plan

In TestManager, a test plan is an asset of a Rational Test datastore. You can have one
or more test plans in a project, and you can organize them in any way that makes
sense for your testing situation. For example, you could have one test plan for the
entire testing project, or you could have one test plan for each major component of the
project. Each test plan can contain multiple test case folders and test cases.

To open the Test Plan window:

* In the Planning tab of the Test Asset Workspace, expand Test Plans. Right-click the
test plan and click Open.

Note: For detailed procedures, see the TestManager Help.

In the following example, the test plan named Functional Tests contains multiple test
case folders and test cases:

% Test Plan - Functional Tests M=l B3

Test plan — & Functional Tests
B[] Business Function
E-(Z] Cash Register
B3 Clerk Functions
. B[] Process Sale
‘vl Process New Sale
ED Manager Functions

El-(Z7 Petuns
Test case ——v| Retum Multiple Items
B3] Voids

b] Vaid Multiple Items =
=+ Maintenance
ool Add new SKU
-2 Manual Stock Drder
. B[] Place Backorder

|+

Test case
folders

You can run reports to view information about the test plans in a project. For
information about reports, see Reporting Results on page 173.

Creating Test Plans

TestManager provides you with an empty test plan named Test Plan 1 that you can
use to start your planning. You can also create your own test plans.

Creating a Test Plan 33

To create a new test plan:

* In the Planning tab of the Test Asset Workspace, right-click Test Plans. Click New
Test Plan.

Note: If the New Test Plan menu command is unavailable, you do not have
Administrator privileges. For information, see the Rational Suite Administrator’s Guide or
the Rational Administrator Help.

Hew Test Plan
External Documents I Cugtarmn I Statistics I
General | Iterations - Configurations
Mame:
Description:
=
|
Owner:
Iadmin hd
] I Cancel I Help |

Properties of a Test Plan
A test plan has many properties. These can include:
» The name of the test plan (required).
= A description of the test plan.
* The owner of the test plan. For information, see Specifying the Owner on page 40.

» The configurations associated with the test plan. For information, see Defining the
Configurations to Test on page 41.

» The iterations associated with the test plan. For information, see Specifying When to
Run Tests on page 51.

* Any external documents associated with the test plan. For example, you could
associate a Microsoft Word document to a test plan that has detailed information
about your plan.

34 Chapter 2 - Planning Tests

The name of the test plan is required. For all other properties, add them when you

first create the test plan or add or change them later.

Note: You can create up to three custom properties for some test assets from the

Tools > Customize menu.

To change the properties of a test plan:

* In the Planning tab of the Test Asset Workspace or in the Test Plan window,
right-click the plan and click Properties.

You can also copy an existing test plan, which copies all of its properties.

Note: For detailed procedures, see the TestManager Help.

Inheriting Iterations and Configurations from a Test Plan

When you associate an iteration or a configuration with a test plan, test case folders in

the parent test plan inherit some of the associations. You can change any inherited

associations if they aren’t appropriate.

The following table lists the rules for inheriting iterations and configurations from a

test plan:

Test Plan Inheritance Rules

If

And

Then

You associate an iteration or
configuration with a test
plan

you create a test case folder
in the parent test plan

the test case folder inherits
the iteration or configuration
from the parent test plan.

You create a test plan
without any associated
iterations or configurations

you create a test case folder
in the test plan, and then
associate an iteration or a
configuration with the
parent test plan from the
shortcut menu

TestManager asks you if you
want to apply the
association to all of the
existing children. If you click
Yes, all existing and all new
children inherit the
association from the parent
test plan.

You create a test plan
without any associated
iterations or configurations

you create a test case folder
in the parent test plan, and
then associate an iteration or
a configuration with the
parent test plan from the
Test Plan dialog box

all new children inherit the
association from the test case
folder. Existing children do
not inherit the association
from the parent test plan.

Creating a Test Plan

35

Organizing Test Cases with Folders

Within a test plan, you can create test case folders to organize your test cases
hierarchically. You can organize your test cases in any way that makes sense for your
testing effort. For example, you might have a test case folder:

» For each tester in your department.

» For each category or type of test (unit, functional, performance, and so on).
» For each major use case of the system.

= For each major component in the application.

= For each phase of testing.

You can nest test case folders within test case folders. For example, you could have a
folder for a tester and then that tester could create folders for each piece of
functionality that needs to be tested.

To create a test case folder:

* In the Test Plan window, right-click a test plan or a test case folder and click Insert
Test Case Folder.

Note: For detailed procedures, see the TestManager Help.

Hew Test Case Folder
General | |terationsf[ﬁonfigurationsI Statisticsl
MName:
|
Description:
=
|
Owner:
Iadmin j
[k I Cancel | Help |

36 Chapter 2 - Planning Tests

Just as with test plans, a test case folder has certain properties. These can include:
* The name of the folder (required).

» A description of the folder.

» The owner of the folder — For information, see Specifying the Owner on page 40.

» The configurations associated with the folder — For information, see Defining the
Configurations to Test on page 41.

» The iterations associated with the folder — For information, see Specifying When to
Run Tests on page 51.

The name of the folder is required. For all other properties, add them when you first
create the folder or add or change them later.
Inheriting Iterations and Configurations from a Test Case Folder

When you associate an iteration or a configuration with a test case folder, test cases
and test case folders in the parent test case folder inherit some of the associations.
Change any inherited associations that aren’t appropriate.

Organizing Test Cases with Folders 37

The following table lists the rules for inheriting iterations and configurations from a

test case folder:

Test Case Folder Inheritance Rules

If

And

Then

You associate an iteration or
a configuration with a test
case folder

you create a test case in the
parent test case folder

the test case inherits the
iteration or configuration
from the parent test case
folder.

You create a test case folder
without any associated
iterations or configurations

you create a test case in the
test case folder, and then
associate an iteration or a
configuration with the
parent test case folder from
the shortcut menu

TestManager asks you if you
want to apply the
association to all of the
existing children. If you click
Yes, all existing and all new
children inherit the
association from the parent
test case folder.

You create a test case folder
without any associated
iterations or configurations

you create a test case folder
and a test case in the parent
test case folder, and then
associate an iteration or a
configuration with the
parent test case folder from
the Test Case Folder dialog
box

all new children inherit the
association from the test case
folder. Existing children do
not inherit the association
from the parent test case
folder.

Creating Test Cases

The test plan is centered on test cases. After you identify your test inputs and decide
what you plan to test, you can create your test cases.

The test case is the test asset in TestManager that answers the question, “What am I
going to test?” Test cases validate that the system is working the way that it is
supposed to work and is built with the quality necessary before you can ship it.

A test case always resides in a test case folder in a test plan.
You can create a test case in three ways:

» Import a test case from another Rational project into the current Rational project,
from a Rational Test Asset Parcel (.RTPAR) file. For information, see Exporting and
Importing Test Assets on page 60.

= In the Test Plan window, right-click a test case folder and click Insert Test Case.

38 Chapter 2 - Planning Tests

In the Test Inputs window, right-click a test input and click Insert Test Case. (If
you insert a test case in this way, the test case is automatically associated with the
test input for traceability. For information, see Setting Up Traceability Using Test
Inputs on page 54.

Hew Test Case
Extemal Documents I Implementation I Cusztom I Statistice
General I Iterations - Canfigurations I Test Inputs
Hame:
|| Design... |
Description;

=
I
Owner:
Iadmin j
[k | Cancel | Help |

Note: You can run several types of Test Case and listing reports to gather information
about the test cases in your project. For information about reports, see Reporting
Results on page 173.

Properties of a Test Case

A test case has many properties. These can include:

The name of the test case (required).
A description of the test case.
The owner of the test case — For information, see Specifying the Owner on page 40.

The configurations associated with the test case — For information, see Defining the
Configurations to Test on page 41.

The iterations associated with the test case — For information, see Specifying When
to Run Tests on page 51.

Any test inputs associated with the test case — For information, see Test Impact
Analysis on page 53.

Any external documents associated with the test case.

The manual and automated implementations of the test case are the actual test
scripts that to be run — For information, see Implementing Tests on page 79.

Creating Test Cases 39

» The design of the test case (in other words, the high-level steps and verifications to
be performed when the test case is implemented) — For information, see Specifying
the Testing Steps and Verification Points on page 72.

» Preconditions, post-conditions, and the acceptance criteria of the test case — For
information, see Specifying Conditions and Acceptance Criteria of Test Cases on
page 74.

The name of the test case is required. For all other properties, add them when you first
create the test case or add or change them later.

Note: You can create up to three custom properties for some test assets from the
Tools > Customize menu.

To change the properties of a test case:

* In the Test Plan or Test Inputs window, right-click the test case and click
Properties.

Note: For detailed procedures, see the TestManager Help.

Specifying the Owner

You can select the owner of the test case from the Owner list in the General tab of the
New Test Case dialog box.

The Owner list contains the User IDs of the test users that were added to the project
through the Administrator. (For information, see the Rational Suite Administrator’s Guide
or the Rational Administrator Help.)

The owner is important for planning and tracking purposes. For example, you could
run a Test Case Distribution report to see the test cases distributed over the owners.
For information about reports, see Reporting Results on page 173.

40 Chapter 2 - Planning Tests

Defining the Configurations to Test

You can use configurations to set up test cases so that they run automatically on
computers with specific hardware or software. For example, you might need to make
sure that a test case runs successfully on certain operating systems and certain
browsers. You could have configurations that test each operating system and browser
separately. Optionally you might need to test that certain combinations of operating
systems and browsers work together.

For example, a test case might need to run successfully on the following combinations
of an operating system and a Web browser:

» Windows 2000 and Internet Explorer 4
» Windows 2000 and Netscape 4
= Windows NT 4 and Internet Explorer 4
= Windows NT 4 and Netscape 4

Each of these combinations is a configuration that you need to test. After you define
the configurations in TestManager, you can associate the configurations with test
cases to create configured test cases. You can then run the configured test cases on the
appropriate computers.

There are four main steps when setting up configurations:

1 For any attributes that are not already built into TestManager, define the custom
attributes and their possible values. (For information, see Defining Configuration
Attributes and Their Values on page 42.)

For example, Browser is not a built-in configuration attribute. You would create a
configuration attribute named Browser, with values of Internet Explorer 4 and
Netscape 4.

2 Create a file named tmsconfig.csv or use the tmsconfig.csv file provided for each
computer on which you intend to run a configured test case. Type the custom
attributes and the appropriate values for that computer in the tmsconfig.csv file.
(For information, see Setting Up Custom Attributes in tmsconfig.csv on page 44.)

For example, if a computer has Internet Explorer 4, you must create a
tmsconfig.csv file on that computer to indicate the browser that is on it.

3 Define the specific configurations that you need to test. (For information, see
Defining the Configurations You Need to Test on page 45.)

For example, Win2000 - IE4 is one configuration, and Win2000 - Netscape4 is
another configuration.

Creating Test Cases 41

4 Associate each configuration with a test case to create a configured test case. (For
information, see Associating a Configuration with a Test Case on page 48.)

For example, if a test case needs to run on Windows 2000 and Internet Explorer 4,
you would associate that configuration with the test case.

Defining attributes and configurations is an iterative process, and you will most likely
continue to add and refine both throughout the testing project.

Defining Configuration Attributes and Their Values

When you start planning your testing strategy, think about how to combine the
pertinent configuration attributes (for example, Browser and Operating System) to
define the configurations to test against (for example, Browser = Netscape 4 and
Operating System = Windows).

Keep in mind that you can run reports against these configurations after you run your
test cases. For example, you can create and run a Test Case Results Distribution report
that distributes the results over the configurations. For these reports to be useful, you
must define your attributes appropriately. This process is iterative. Throughout the
testing project, you'll probably continue to expand and refine this list.

For example, when you start the project, you may need to test only Internet Explorer 4
and Netscape 4. Later in the project, the analyst may decide that you also need to test
Internet Explorer 5. You can open the configuration attribute named Browser and add
Internet Explorer 5 as a new value.

Viewing Built-ln Configuration Attributes

TestManager comes with many built-in attributes. These include: display color bits,
display resolution, memory size, operating system, OS service pack, OS version,
processor MHz, processor number, and processor type.

To view these built-in attributes and their values:
1 Click Tools > Manage > Configuration Attributes.
2 To see the properties of each attribute, select each attribute and click Edit.

Note: For detailed procedures, see the TestManager Help.

42 Chapter 2 - Planning Tests

Any defined values appear in the List values field, as shown in the following
example:

Configuration Attribute Properties

General | Statistics |

Configuration attribute
Description:
=
|
Dwner:
Source of values
’7(" Diyhamic 0 st ‘
— List walue:
| fidd
2000 Bemaye
98 —_l
Values of configuration ——] NT
attribute P

] I Cancel | Help |

If an attribute has a value in the list, you can select that value when you create a
configuration. When you run a configured test case, TestManager examines the
computer and determines if there is a match with the value.

Note: If the source of values for the attribute is set to Dynamic, you can type a value
when you create a configuration. To determine the appropriate value for a computer,
run a test script on that computer and view the configuration of the computer in the
Test Log window. For information, see Viewing Event Details on page 161.

Defining Custom Configuration Attributes

To use a configuration attribute that is not already built in, you define a custom
attribute.

To define a custom configuration attribute:

= (Click Tools > Manage > Configuration Attributes. Click New.

Creating Test Cases 43

Note: If New is unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator

Help.
General | Statistics |
Mame:
The name of the R — IBrowser
configuration attribute
Description:
=l
. El
Lets you specify the value Dwrer:
when you create the [adrmi -

configuration.

Source of value

Dyhal List ‘

Lets you specify a static
set of possible values now.

— Lizt walue

el

Possible values of the ————————— [Intemet Explorer 4 Eemaye

. . . Metzcape 4 4'
configuration attribute,

if List is selected as
the source of values

Ok I Cancel Help

If you use a custom attribute in a configuration, create a file named tmsconfig.csv on
each computer on which you intend to run that configuration. For information, see
the next section, Setting Up Custom Attributes in tmsconfig.csv.

Setting Up Custom Attributes in tmsconfig.csv

As indicated in the previous section, if you have defined custom attributes and
values, you need to create a tmsconfig.csv file or use the empty tmsconfig.csv file
provided on each computer on which you intend to run a configured test case. This
file contains the attributes and values appropriate to that computer. When you run a
configured test case, TestManager checks this file and runs the test case only if both
the custom and the built-in attributes match the configuration of the test case.

For example, suppose that you have a configured test case that should run only on
computers that have Internet Explorer 4 installed. You have defined the custom
attribute and its values by clicking Tools > Manage > Configuration Attributes, and then
clicking New, as described in the previous section. You now need to create a
tmsconfig.csv file or use the empty tmsconfig.csv file provided that includes the
attribute and its value on that computer.

44 Chapter 2 - Planning Tests

To set up custom attributes and values on a computer:

1

Create a file named tmsconfig.csv or use the empty tmsconfig.csv file provided.
You can create this file through Excel or through any text editor. (Be sure to save
the file in the csv format.)

Note: TestManager provides you with an empty tmsconfig.csv file, if you did not
already create one, to define custom attributes and values that you need with
custom configurations. If you already have a tmsconfig.csv file that you are using,
TestManager will not install or override your tmsconfig.csv file. The empty
tmsconfig.csv file by default is located in:

C:\Program Files\Rational\Rational Test\tmsconfig.csv
or wherever you installed your Rational software.
Add the appropriate attribute/value pairs to the file.

In this example, the computer is running Internet Explorer 4. Therefore, the
configuration file contains the following row:

Browser, Internet Explorer 4

The case of attribute/value pairs in tmsconfig.csv must match the case of the
custom attributes and values that you defined in TestManager.

Save the file as tmsconfig.csv.

Move the tmsconfig.csv file to the Rational Test folder on the appropriate Local or
Agent computer.

Note: For detailed procedures, see the TestManager Help.

If a test case’s configuration uses custom attributes, the configured test case runs only
on computers that fully match those attributes as defined in the computer’s
tmsconfig.csv file.

Defining the Configurations You Need to Test

Now that you have defined the configuration attributes and their values, you can
define the configurations you need to test. This process is iterative. Throughout the
testing project, you'll probably continue to expand and refine this list.

Creating Test Cases 45

To define a configuration:
1 Click Tools > Manage > Configurations. Click New.

Note: If New is unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator

Help.
Hew Configuration
General | Abtributes I Statistics I
L Mame:
Use a descriptive name that ———— [winznmniEs
includes the important —
information about the DDBSC"D_“U” — : 5
. . perating system iz Windows . Browser is -
Conflguratlon' Intermet Esplorer 4.
|
Dwner:
misydney j
Ok I Cancel | Help |

In this figure, the name of the configuration is Win2000-IE4. This name easily
identifies that the configuration will be used for testing on a computer that has a
combination of Windows 2000 and Internet Explorer 4.

2 Click the Attributes tab.
Note: For detailed procedures, see the TestManager Help.

Hew Configuration]

General Attributes I Statisticsl

Opersting System |= [windaows
05 Yersion > 2000
Processor Type ﬁ‘ Select an operator.
Display Resolution ==
Built-in Display Colors -
configuration OsiSewicshacl]
attributes Memaory Size (MB) = —
Processor Mumber ||Has -
Processor MHz
Custom ———————Browser |-
configuration If the configuration
attribute attributes were defined as
a List, click in the cell to
display a list of possible
Ok Cancel Help | values.

46 Chapter 2 - Planning Tests

In the Attributes tab, you can:

» Select a value for each appropriate built-in configuration attribute (in this example,
Operating System and OS Version).

» Select a value for the custom configuration attribute (in this example, Browser)
from the list of values you defined when you created the custom configuration
attribute.

Note: If the configuration attributes were defined as dynamic, you would need to
type in a value. For custom attributes, the valid value for a computer should be in the
tmsconfig.csv file on that computer. For built-in attributes, to determine the
appropriate value for a computer, run any test script on that computer and view the
configuration of the computer in the Log Event window of the test log. You must use
the exact name of the configuration found in the Log Event window or the
configuration does not run. For information, see Viewing Event Details on page 161.

Viewing and Editing Your Configurations

You can easily view and edit any of your configurations in the Configurations
window.

To open the Configurations window:
= (Click View > Configurations.

Note: For detailed procedures, see the TestManager Help.

Click Reload to reload
the last saved

configurations. Configuration attributes

Operating System 05 Yerzion |Processor Ty| Display Resol|
Wincows ®P

Click Save if you =5
make any E“""““'a"""s
Windowes MNT

Standard - Windows
Configurations Stand i d ST

Standard - Win2000 Winclow s 200
o \ 2l

Click to display a list Values of configuration attributes.
of operators. If the values were defined as a list,
click to display the list.

When the Configurations window is open, you can either insert configuration
attributes and configurations from the Edit menu or right-click a row in the window.

Creating Test Cases 47

Associating a Configuration with a Test Case

After you've created configurations, you can associate a configuration with a test case
to create a configured test case.

Configured test cases are useful when you need to validate that a piece of
functionality works under various configurations. For example, suppose you have a
test case that says, “Close the application.” You need to validate that the test case
passes on two configurations: Windows 2000 with Internet Explorer 4, and Windows
2000 with Netscape 4. You could create two configured test cases associated with the
main test case. In order for the test case to pass, all of its configured test cases need to
pass.

After you run the configured test cases, create a Test Case Results Distribution report
filtered on the specific configurations that interest you. For information about reports,
see Reporting Results on page 173.

You can associate a configuration with a test case in several ways:

* When creating a new test case, click the Iterations - Configurations tab in the New
Test Case dialog box.

» When editing the properties of an existing test case, click the Iterations -
Configurations tab in the Test Case Properties dialog box.

* In the Test Plan window, right-click a test case and click Associate Configuration.
Select the configurations to associate.

Note: For detailed procedures, see the TestManager Help.

You can also associate configurations with test plans and test case folders. When you
associate a configuration with a test plan or folder, the configuration is automatically
associated with all new test assets that are direct children of that plan or folder. When
you associate a configuration in the Test Plan window, you can also associate the
configuration with all of the existing children of the test plan or folder. For more
information, see Inheriting Iterations and Configurations from a Test Plan on page 35, and
Inheriting Iterations and Configurations from a Test Case Folder on page 37.

48 Chapter 2 - Planning Tests

Configured test cases appear under test cases in the Test Plan window.

= [y Functional Tests
-0 Business Function
=+(C] Cash Register

Test case

Configured test
cases

-] Maintenance
=[] Online Catalog

H-Z] Manager Functions

Ty Test Plan - Functional Tests M= E

E![:] Clerk. Functionz
=[] Process Sale

e

wi Standard - Win2000

Standard - WinhNT

121 EBrowse Functions

Inheriting Test Case Properties

When you associate a configuration with a test case to create a configured test case,
the configured test case inherits the following properties from its parent test case:

Manual implementations
Automated implementations
Preconditions
Post-conditions

Acceptance criteria

Iterations

Creating Test Cases 49

The following table lists the rules for inheriting test case properties:

Test Case Property Inheritance Rules

If

And

Then

You create a configured test
case

you do not manually change
the property of the
configured test case in the
Configured Test Case dialog
box

the configured test case
inherits the property from
the parent test case.

You create a configured test
case

you change the property of
the parent test case in the
Test Case dialog box

the configured test case
inherits the property change
from the parent test case.

You create a configured test
case

you manually change an
inherited property of a
configured test case in the
Configured Test Case dialog
box

the configured test case no
longer inherits this property
from the parent test case. If
this property changes in the
parent test case, it does not
change in the configured test
case.

You associate an iteration
with a test case

you create a configured test
case

the configured test case
inherits the iteration from
the parent test case.

You create a configured test
case and the parent test case
does not have an associated
iteration

you associate an iteration
with the parent test case
from the shortcut menu

TestManager asks you if you
want to apply the
association to all of the
existing children. If you click
Yes, all existing and all new
children inherit the
association from the parent
test case.

You create a configured test
case and the parent test case
does not have an associated
iteration

you associate an iteration
with the parent test case
from the Test Case dialog
box

all new children inherit the
association from the test case
folder. Existing children do
not inherit the association
from the parent test case.

Configured test cases also inherit test inputs and test case suspicion from their parent
test cases. For information, see Inherited Test Inputs on page 54 and Inherited Test Case
Suspicion on page 58.

50 Chapter 2 - Planning Tests

Specifying When to Run Tests

Many test organizations plan more test cases than can actually run at any given time.
You can create all of the test cases in TestManager and then use iterations to identify
when specific test cases actually need to run and pass.

An iteration is a defined span of time during a project. The end of an iteration is
typically a major project milestone. In an iteration, the product has to meet a certain
quality standard to reach a milestone. The quality standard is defined by the test cases
that must pass. In many organizations, the tester works with an analyst or project
manager to determine at which iterations the test case needs to pass.

For example, at the beginning of a project you start to create all of the test cases that
you can think of for the system. The analyst reviews your test plan and says that test
cases 1, 2, 3, and 8 are important for the Construction 2 iteration. You or the analyst go
into TestManager and associate the Construction 2 iteration with these four test cases.
During your testing, you come up with another test case. The analyst decides that this
is an important test case for Construction 2, so you add that iteration to the test case.

TestManager provides you with an initial set of iterations. (For a description of these
iterations, see the TestManager Help.) You can use these iterations or add your own
based on what makes sense for your organization.

Creating and Editing Iterations

To create or edit iterations:

1 Select Tools > Manage > Iterations.

2 Click New to create a new iteration or select an existing iteration, and click Edit.

Note: If New and Edit are unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator
Help.

Creating Test Cases 51

You can also right-click Iterations or a specific iteration in the Planning tab of the Test

Asset Workspace.
New Iteration
General | Statistios |
Hame:
Name of iteration IBeta1
Description:
=
Dwaner:
Iadmin s
Start date:
Start date of —|~ 21 j
iteration -
End date:
End date of the ————F 2/16/01 I
iteration
QK I Cancel I Help

Associating Iterations with a Test Case
You can associate an iteration with a test case in several ways:

= When creating a new test case, click the lterations - Configurations tab in the New
Test Case dialog box.

* When editing the properties of an existing test case, click the Iterations -
Configurations tab in the Test Case Properties dialog box.

» In the Test Plan window, right-click a test case and click Associate Iteration.

You can also associate iterations with test plans and test case folders. When you
associate an iteration with a test plan or folder, the iteration is automatically
associated with all new test assets that are direct children of that plan or folder. When
you associate an iteration in the Test Plan window, you can associate the iteration
with all of the existing children of the test plan or folder.

You can run all test cases associated with a specific iteration. For information, see
Running a Test Case on page 119.

You can create and run Test Case Trend reports that distribute over iterations. For
example, you can create a Test Case Trend report that is distributed over a specific
iteration over a specific period of time. When all of the test cases that define your
quality acceptance criteria for a given iteration pass, you have met your quality
objective for that milestone.

52 Chapter 2 - Planning Tests

Test Impact Analysis

Test impact analysis is very important to be certain that your test scripts are providing

coverage for all your test inputs.

If a test input changes, TestManager informs you of the impact of that change on your
test plan. For example, if a requirement changes in some meaningful way, you must
know which test cases in your test plans are affected so that you can update them to
reflect requirement changes. TestManager automatically identifies and marks the
affected test cases as “suspect” for you.

To perform test impact analysis, do the following:

Objective

Task

See

Set up traceability.

Associate a test input with a test
case.

Setting Up Traceability
Using Test Inputs on
page 54

Have TestManager automatically
mark test cases as suspect when a
meaningful change takes place in a
test input.

Set up automatic test case
suspicion in built-in test input
adapters and in custom adapters.

Setting Up Automatic
Test Case Suspicion on
page 55

Keep test cases and test scripts
up-to-date during the
development life cycle.

Regularly check test inputs or test
plans to see if there are any
meaningful test input or test case
changes.

Test Case Suspicion on
page 56 or the
TestManager Help -
test case suspicion;
viewing suspect links.

Evaluate all suspect links.

If a change to a test input is
meaningful and the link is not
marked as suspect, manually mark
the link as suspect.

Clear those suspect links that are
not meaningful, such as a minor
changes, to a feature that does not
need a change in the test script.

If a change to a test case is
meaningful, for example, a new
feature is added that requires a
new test script, create the new test
script, and then clear the suspect
link.

TestManager Help:
test case
suspicion:marking
suspect links.
TestManager Help:
test case
suspicion:clearing
suspect links.
TestManager Help:
test case
suspicion:clearing
suspect links.

Creating Test Cases 53

Setting Up Traceability Using Test Inputs

As described in Identifying What to Test by Using Test Inputs on page 28, test inputs help
you decide what to test. When you create your test cases, you can associate test inputs
with them. By doing this, you can determine if a test case needs to change because its
associated test input changes.

You can also use associations to determine if the test input is covered by a test case.
For example, suppose you are using requirements as test inputs. When every test
input is associated with a test case, all of your requirements are covered. When every
test case passes, all of the test inputs have been validated. Use the Test Case reports to
determine this information.

You can associate a test input with a test case in several ways:

* When creating a new test case, click the Test Inputs tab in the New Test Case dialog
box.

* When editing the properties of an existing test case, click the Test Inputs tab in the
Test Case Properties dialog box.

* In the Test Plan window, right-click a test case and click Associate Test Input.
» In the Test Inputs window, right-click a test input and click Associate Test Case.

* When you create a configured test case, the configured test case inherits associated
test inputs from its parent test case. For information, see the next section, Inherited
Test Inputs.

Inherited Test Inputs

When you create a configured test case, the configured test case inherits associated
test inputs from its parent test case. You can also associate a configured test case with
a test input not inherited from a parent test case.

54 Chapter 2 - Planning Tests

The following table lists the inheritance rules for test inputs:

Test Input Inheritance Rules

If

And

Then

You associate a test input
with a test case

then you create a configured
test case

the configured test case
inherits the associated test
input from the parent test
case.

You create a configured test
case

then you associate a test
input with the parent test
case

the configured test case
inherits the associated test
input from the parent test
case.

You remove a test input
association from a test case
that has a configured test
case

the inherited test input
association is removed from
the configured test case.

Note: You can only remove

an inherited test input
association from a
configured test case by
removing it from the parent
test case.

Setting Up Automatic Test Case Suspicion

TestManager can automatically identify and mark the link between a test input and a
test case as suspect, if a meaningful change occurs in a test input. You must set up
automatic test case suspicion in built-in test input adapters and in custom test input
adapters for TestManager to mark test case suspicion automatically.

Built-In Test Input Adapters

RequisitePro requirements as test inputs — If you use RequisitePro requirements as
test inputs, you can mark requirements types for external traceability. If a
requirement that you mark in RequisitePro for external traceability changes,
TestManager automatically marks as suspect the link between that requirement (test
input) and its associated test case. For information about setting up RequisitePro
requirements for external traceability, see external traceability:marking requirements in
the RequisitePro Help.

Creating Test Cases 55

Rational Rose models as test inputs — If you use a Rose model as a test input, you can
analyze any changes in a Rational Rose model and then manually mark as suspect the
link between a Rose model (test input) and a test case. You cannot set up automatic
test case suspicion for Rose models as test inputs.

Microsoft Excel values as test inputs — If you use values in an Excel spreadsheet as
test inputs, you can set up TestManager to track changes in individual test inputs or if
any change occurs in the entire spreadsheet. TestManager then automatically marks
as suspect the link between the test input and its associated test case. For information
about setting up Excel test input sources for test case suspicion, see
registering:Microsoft Excel spreadsheet as source and Set Configuration dialog box for
Microsoft Excel test inputs in the Rational TestManager Help Index.

Custom Test Input Adapters

If you use a custom test input adapter, you can define what type of change is a
meaningful change in a test input. You can also define the test input adapter so that
TestManager automatically marks the link between a test input and the associated test
case as suspect when that meaningful change occurs. (For information about writing
test input adapters, see the Rational TestManager Extensibility Reference.)

Test Case Suspicion

After you associate a test input with a test case, to view whether a test input changes
in a meaningful way (as determined by the test input adapter), you must update the
link between the test input and the associated test case as suspect.

To update a suspect link between a test input and and associated test:

» Click View > Update Suspicion from the Test Input view or Test Plan window.
To view a suspect link between a test input and an associated test:

1 Click View > Show Test Cases.

2 C(lick View > Show Suspect.
Note: For detailed procedures, see the TestManager Help.

A blue arrow appears next to each test case associated with a test input. If the link
between a test case and a test input is suspect, a red hash mark appears through the
blue arrow. A test case remains suspect until you manually clear the suspect link.

To view a suspect test case from the Test Inputs window:

» (lick View > Test Inputs.
Note: For detailed procedures, see the TestManager Help.

56 Chapter 2 - Planning Tests

The following figure shows the Test Inputs window, test inputs and their associated
test cases, and a suspect test case.

Rational RequisitePro requirements

¥ Test Inputs - Suspect Test Cases

. . -] Rational RequisitePro

Filtered test lnpm EY{:.\ Fiational Project - RequisitePro Project

source =-[F FEAT1 Paint of Sale Spstem

- | FEAT1.1 Cash register functions

@ Add new SKU

4 Concunent User Search Tests
Pr 3

] FEAT1.2 Maintaining the store’s inventany

FEATT.3 Supparting multiple cazh registers per stare

FEATT.4 Initiating orders to replenish stock when

To show associated test
cases, click View >
Show Test Cases.

To show suspect test /

necessary
cases, click View > &1-[E] FEAT2 Order Processing System
Show Suspect. #1-[E] FEAT3Wwarehouse system

[]--- FEAT4 Home Shopping e-commerce system

Rational Rose
T T Rose model - order system
- Microsaft Excel

-7 [2€ Web Order Systemn

To clear or mark a suspect test case from the Test Inputs window:

= Select a test case and then right-click. Click Mark Suspect or Clear Suspect.
To update the display of suspect test cases, do one of the following:

» Click View > Update Suspicion from the Test Input view or Test Plan window.

* From the Test Inputs or Test Plan window, select a test input source or test input
type, and then click Refresh.

» From the Test Inputs window;, click Refresh All to refresh the entire test inputs tree.
= Close and reopen the Test Plan window or Test Inputs window.

» Exit from TestManager and then start TestManager.

Note: For detailed procedures, see the TestManager Help.

A suspect test case appears in bold in the Test Plan window.

Creating Test Cases 57

The following example shows a suspect test case as it appears in the Test Plan
window and shows the test case properties of a configured test case in the Test Case

Properties dialog box:

Suspect test case
appears in bold.

To show the associated
test input, select a
suspect test case or
configured test case,
and right-click Display
Suspicion.

Associated suspect test
input appears with a
check mark.

Inherited test inputs and
inherited suspicion from
test case parent.

An asterisk (*) indicates a
change to a test case.

3) Test Plan - Functional Tests 8 []

= B Funclional Tests
(] Cash Register

-« Process new sale - Y

/ - Standard - Win2000 Configured Test Case Properties <]
,y,g:an:a::—xgn:.}mxp Extemal Documents | Implementation | Custom | Statisios |
g Standard - Winl General Iterations Test Inputs

Retumn items

S

Associated Test Inputs,

[IFEAT2.1 Ability to add/

Add
BRemove
Properties.
Mark Suspact
LClear Suspect

Inherited Test Inputs:

[WIFEAT1 ClassicsCD.com Wb Shop
[CIFEATS Interactive guide to site thiough online Help)

Checked inputs are causing suspicion,

Ok I Cancel Help

To view a suspect test case from the Test Plan window:

= (lick File > Open Test Plan.

Note: For detailed procedures, see the TestManager Help.

Inherited Test Case Suspicion

When you create a configured test case, the configured test case inherits test case
suspicion from its parent test case.

58 Chapter 2 - Planning Tests

The following table lists the inheritance rules for test case suspicion:

Test Case Suspicion Inheritance Rules

If

And

Then

A test case is suspect

the test case has a
configured test case

the configured test case
inherits test case suspicion
from the parent test case.

You clear a suspect link in a
parent test case

the configured test case has
inherited suspect links and
noninherited suspect links

TestManager clears only
inherited suspect links in a
configured test case.

Managing Test Assets

Key to planning tests is managing the assets related to a test. Once you have an
established test with stable test assets, managing them as part of a greater test strategy
can save you time and energy. As part of managing test assets you can:

» Upgrade test assets from previous versions of Rational projects.

» Use the Datastore Doctor to verify test datastores and repair corrupted test

datastores.

= Export and import test assets

» Copy, cut, and paste test assets.

= Learn about inheritance and test assets.

» Add file-based test scripts to version control.

Upgrading from Previous Versions of Rational TestManager

To use the current version of TestManager with a Rational project created with a
previous version of the Administrator, you must upgrade the project. Upgrading
your project also lets you use the new features in this version of TestManager.

Note: If your test assets are in version control, you must check in all assets before
upgrading a project and all users must disconnect from the project.

Managing Test Assets 59

To upgrade a project:

1 Start the Administrator.

2 Select a project.

3 Click File > Upgrade Project Assets.

The upgrade wizard starts. For more information, see the Rational Administrator
Help.

Note: Before upgrading test datastores, Rational recommends that you run the
Datastore Doctor wizard on the test datastore to ensure that all data is consistent and
there are no corruptions.

Verifying and Repairing Test Datastores Using the Datastore Doctor

Rational created the Datastore Doctor to help you verify the status of a given
datastore and help you to repair any inconsistencies in it.

As part of the testing process, Rational test datastores record information about
functional and performance testing assets and artifacts. Information stored includes
suites, tests plans, test cases, reports, test logs and scripts, as well as data on users,
groups, and computers. The large amount of information in a test datastore can
become corrupted for a variety of reasons.

The Datastore Doctor wizard first verifies the consistency of a specified datastore and
records and reports any inconsistencies encountered. Then the Datastore Doctor
attempts to repair inconsistencies in the datastore and the cache database contained
within the datastore.

All information about datastore verification and repair is stored in accessible log files,
and these file locations are noted when you run the Datastore Doctor.

To run the Datastore Doctor, from the Rational Administrator:

» (lick Tools > Datastore Doctor.

Exporting and Importing Test Assets

Exporting and importing test assets allows you to share assets among Rational test
datastores, use third-party tools to create or use test assets, or use third-party tools to
analyze test data. Assets exported from or imported into test datastores must conform
to the standard format for a Rational Test Asset Parcel file (RTPAR).

60 Chapter 2 - Planning Tests

Copying assets among test datastores can save time and help to ensure tests are
successful more quickly. If, for example, a computer list or configuration needs to be
used in several tests, exporting that asset to a Rational Test Asset Parcel file and then
importing that file into the different test datatores is quicker and more efficient than
recreating the asset from scratch for each test. It is also less likely to have an
inadvertent error and ensures consistency of test results.

Using third-party tools in conjunction with test assets allows additional flexibility in
your testing process. For example, you could use a stand-alone laptop computer to
compose a manual test script or write up information about a test asset in an XML file
in a text editor. You could then import that test script or test asset to use as part of
your testing. Optionally, you could open the exported test details file in a text editor
for distribution and examination beyond the testing department.

Exporting Test Assets for Use in Other Test Datastores

Most Rational test assets can be exported to Rational Test Asset Parcel (.RTPAR) files.
These files describe the asset, the configuration of the asset, and, when assets are
related to other test assets, the relationship of the asset to other assets. You can choose
to export test assets with or without related assets.

Note: Suites are not exportable.

The Rational Test Asset Parcel file is a custom XML file. All files begin with:

<?xml version="1.0"7?>
<TestAgssetParcel>

and end with
</TestAssetParcel>

Between these tags the file lists the asset being exported, all attributes, and any
selected related assets. For example, for an iteration test asset called Construction 2,
the .RTPAR file includes tags that define:

* The kind of test asset

= Test asset name

= User-defined test asset description, if any
» Date the test asset was created

» Date the test asset was last modified

» Who last modified the test asset

* Who created the test asset

» Who owns the test asset

Managing Test Assets 61

» The date the iteration begins
= The date the iteration ends

The file looks like this:

<?xml version="1.0"?>
<TestAssetParcel>
<Iterations>
<Name><! [CDATA [Construction 2]]></Name>
<Description/>
<CreationDate><! [CDATA[2001:06:20:11:46:35]] ></CreationDate>
<ModificationDates><! [CDATA[2001:06:20:11:46:35]] ></ModificationDates>
<LastModifiedBy><! [CDATA [System]] ></LastModifiedBy>
<CreatedBy><! [CDATA [System]] ></CreatedBy>
<Owner><! [CDATA [System]] ></Owner>
<StartDate><! [CDATA[2001:06:20:05:01:01]]></StartDate>
<EndDate><! [CDATA[2001:06:20:11:46:35]] ></EndDate>
</Iterations>
</TestAssetParcel>

The content of the .RTPAR file varies according and appropriate to the test asset you
export. Some tags are specific to certain assets; some are common.

Test assets with relationships have either associated assets or contained assets. For
example, two top-level folders appear on the Planning tab of the TestManager
console, Test Plans and Iterations. The test plans within the Test Plan folder are
contained assets, as are the iterations listed within the Iterations folder. Iterations and
Test Plans are associated but not contained one within the other.

When you export a test asset with relationships, you can choose to export any or all of
the related assets in their entirety, whether associated or contained, or just export the
primary asset with references to the related assets.

If you export a test asset with relationships, the .RTPAR file includes those
relationships, whether they are associated assets or contained assets. Contained asset
information is located within the parent asset tags; associated assets have the same
level as the parent asset.

Note: To export a test asset from a previous release of TestManager, first upgrade the
datastore to the current version of TestManager; then export the asset.

For more information about the format of test asset parcel files, see Appendix D,
Rational Test Asset Parcel File Format.

To export a test asset for use in another Rational test datastore, do one of the
following:

» Right-click the asset in the Test Asset Workspace and click Export.

= Select an asset type to export from the Tools > Manage menu, select a specific asset,
and then click Export.

Note: For detailed procedures, see the TestManager Help.

62 Chapter 2 - Planning Tests

Exporting Test Log Details to Third-Party Tools

TestManager also allows you to export Rational test log details using the Rational Test
Asset Parcel file format (RTPAR). In the case of log details, the parcel file describes
each log event associated with the test, unless filtered at the time of export. Once
exported, test log details can be rendered by third-party applications for further
evaluation.

TestManager allows you to filter numerous properties when exporting test log details,
including, but not limited to, details regarding test start and end time, the test
executable, test scripts, virtual testers, synchronization points, timers, and so on.

Note: Rational strongly recommends judicious filtering of test log properties to
export, as the data exported in its entirety is huge and can be difficult to manage.

For more information about the content and format of test details in test asset parcel
files, see Appendix D, Rational Test Asset Parcel File Format.

To export test asset details for evaluation by other applications:
» Right-click a test result to export from the Results tab and select Export Log Details.

Note: For detailed procedures, see the TestManager Help.

Exporting Manual Test Scripts

Rational also allows you to export manual test scripts from Rational ManualTest to a
simple text file.

To export a manual test script from ManualTest to a text file:
» (lick File > Export > To text file.

Note: For detailed procedures, see the Rational ManualTest Help.

Importing Test Assets

TestManager allows you to import test assets using the Rational Test Asset Parcel file
format (.RTPAR) as long as the content of the file conforms to the established format
and the Rational document type definition (DTD) can validate the file. Rational also
allows you to import manual test scripts into Rational ManualTest from either an
existing test datastore or from a simple text file.

Managing Test Assets 63

When you import test assets with relationships, the relationships are maintained
exactly as they existed when the asset was initially exported. For example, if you
export a test plan and export all related assets with the plan, those complete related
assets are included with the test plan in any subsequent import process. Likewise, if
you export a test plan with only reference to related assets and do not export the
complete related assets, the imported version of the test plan notes the relationships
but does not include the complete assets.

Whether you import test assets from existing Rational Test datastores or you create
test assets in a third-party application, the test asset must conform to the Rational Test
Asset Parcel file format (RTPAR). If the asset you want to import was first exported
from an existing test datastore, the format should not be in question. If the asset was
created in a third-party application, check the format against the file format as
described in Appendix D, Rational Test Asset Parcel File Format.

When you import a test asset, Rational TestManager allows you to choose whether to
overwrite existing test assets with matching names.

Warning: Be careful if you choose to overwrite; the process is irreversible.
To import a test asset from a Rational Test Asset Parcel file:

» (lick File > Import from Test Asset Parcel.

Note: For detailed procedures, see the TestManager Help.

Note: Test log data is exportable but not importable.

Importing Manual Test Scripts

Rational also allows you to import manual test scripts into Rational ManualTest from
either an existing test datastore or from a simple text file.

Since manual test scripts usually are text files of steps a person must perform, they are
easily imported from text files. However, make sure that you save the text file without
any extraneous formatting.

To import a manual test script into ManualTest from an existing Rational Test
Datastore:

= (Click File > Import > From Rational Project.
To import a manual test script into ManualTest from a text file:
» (Click File > Import > From text file.

Note: For detailed procedures, see the Rational ManualTest Help.

64 Chapter 2 - Planning Tests

Copy, Cut, and Paste Test Assets
You can:
» Cut, copy, and paste test case folders and test cases in the Test Plan window
» Cut, copy, and paste test plans and iterations in the Test Asset Workspace.
» Drag and drop test assets within the same test plan.
To cut, copy, or paste a test asset:
» Right-click a test asset and click Cut, Copy, or Paste from the shortcut menu.
Note: You cannot cut, copy, or paste between two different Rational projects.

If the Copy command is unavailable, you do not have Administrator privileges. For
information about how to change privileges, see the Rational Suite Administrator’s Guide or
the Rational Administrator Help.

Software Configuration Management

As you develop your test assets, you can use a software configuration management
system to maintain an auditable and repeatable history of your organization’s test
assets.

For test assets stored in the Rational Test datastore, use Unified Change Management
(UCM), which comes with Rational Suite, as your software configuration
management system to manage change in test assets stored in the Rational Test
datastore and in software system development from requirements to release. For
information, see the Rational Administrator Help.

For test scripts not stored in the Rational Test datastore, use Rational ClearCase LT,
which comes with Rational Suite, as your software configuration management system
or another software configuration management system that supports the Microsoft
Common Source Code Control (SCC) Integration Specification. For information see
the next section, Test Script Version Control.

Managing Test Assets 65

Test Script Version Control

For test scripts not stored in the Rational Test datastore, use test script version control
if you have the following:

» File-based test scripts not stored in the Rational Test Datastore — file-based test
script is created with a test tool, IDE, or editor that provides a command line
interface for creating and editing the test script, and can be opened with the
standard File Open dialog box. If a test script is stored in the Rational Test
datastore, (Rational Test Datastore) appears next to the test script source in the Test
Scripts window.

» A software configuration management system — You can use either Rational
ClearCase LT, which comes with Rational Suite, or another software configuration
management system that supports the Microsoft Common Source Code Control
(SCC) Integration Specification.

» A Test Script Console Adapter (TSCA) that supports versioning for the test script
type that you want to version. The TSCAs that come with TestManager support
version control for file-based test scripts. For information about writing a custom
TSCA to support versioning, see the Rational TestManager Extensibility Reference.

Setting Up Test Script Version Control

To set up test script version control and integrate source control management with
TestManager:

» Install and configure your source configuration management system. For
information about installing and configuring Rational ClearCase LT, see the
Rational Administrator Help.

» In TestManager, define any new test script types that you create. For information,
see Defining a New Test Script Type on page 84.

» Register all test script sources and enable version control for each source. For
information, see the registering: new test script source in the Rational TestManager
Help Index.

Adding Test Scripts to Version Control

You can add file-based test scripts not stored in the Rational Test Datastore to version
control, check out test scripts, check in test scripts, and undo checkouts from the Test
Scripts window of TestManager.

When you check out a test script, a check mark appears on the test script icon in the
Test Scripts window.

66 Chapter 2 - Planning Tests

To add test scripts to version control, check out test scripts, check in test scripts, and
undo checkouts:

1 Click View > Test Scripts.
2 Do one of the following:

2 Right-click a test script to display a shortcut menu. Click the version control
command that you want.

Note: The version control commands that appear on the shortcut menu depend
on the test script adapter and version control software that you use.

3 Click the test script version control icon. For information about the version
control icons, see test script version control icons in the Rational TestManager
Help Index.

Note: For detailed procedures, see the TestManager Help.

Managing Test Assets 67

68 Chapter 2 - Planning Tests

Designing Tests

This chapter describes how to design tests. It includes the following topics:

About designing tests
Specifying the testing steps and verification points
Specifying preconditions, post-conditions, and acceptance criteria of test cases

Example of a test design

Note: For detailed procedures, see the TestManager Help.

About Designing Tests

Once you have defined the features that you need to test, decide how to do the
testing. The activity of test design is primarily answering the question “How can I
perform this test case?”

As part of the design of the test case, identify:

The high-level set of steps required to perform the test.
How to validate that the items or features you are testing are working properly.

The preconditions of the test case — how to set up the application and system so
that the test case can run.

The post-conditions of the test case — how to clean up after the test case runs.

The acceptance criteria — how to decide if the test case passed.

69

You should be able to design your tests based on test inputs such as feature
descriptions and software specifications (for example, requirements) before or during
the implementation of the actual system. This is a key aspect of making testing a
parallel development with system implementation.

A test design can be created without knowledge of the specifics of the implementation
of application under test—for example, without knowledge of the kinds of controls
used in the dialogs or what dialog or window implements a use case. The test case
design should be abstract enough that if the implementation changes, the test design
remains valid.

Someone should then be able to take the test design and a software build of the
system (with documentation) and know how to implement the test.

For example, if you are using an automated testing tool like Robot, y start your tool
and follow the steps documented in the test case design to create an automated test
script. The test script becomes an implementation of the designed test case and
therefore of the test case itself.

Benefits of Good Test Design

A good test design lets you take advantage of the benefits of test automation: reuse. A
good test design helps you to recognize the potential for reuse in the implementation
that you build. Until you know what needs to be done for each test case, you cannot
identify patterns of reuse that will be valuable when you design and build your test
implementation.

When you look at all of the test designs (one for each test case) before you implement
the test cases, you might find patterns in the test designs that indicate a more efficient
way to implement the test cases. For example, you might see that every test design
begins with a step that says “From the Start menu, start the application.” You might
decide that it doesn't make sense to record this step in every test script, because if the
name of the application changes, all of the scripts would need to be changed. Instead,
you might build a subroutine to start the application and have the test scripts call that
subroutine. This would become obvious by looking at the test designs.

Another benefit of a test design is that it helps to establish a baseline for a test case. As
you develop your test cases, you can validate them against the original test design.

70 Chapter 3 - Designing Tests

The following figure is an example of a test design:

Step that can be reused,

Design Editor

Verification point

x|

Type | Hote I]t;él:riptinn | Inzert I
1 rd Start application under test
2 g “erify order windowe propertics ml
5 -~ house click into the quantity field Edit Mate... |
4 » Clear qusrtity field
g rd Type & quartity
B FJ Tab to credit card number field
7 r Clear credit card number field Import |
8 FJ Type a c:rec.lrt card numb.er B |
9 FJ Tab to credit card type field
10 v “erify current choices Frint |
ii rJ Select a credit card type
12 rJ Tah to expiration date field

¥ Enter key moves focus to the nest row

oK |

Cancel |

Help

As the application is built, you can make the instructions for execution more detailed.
You should make the design as detailed as necessary, stating the steps and actions
necessary to execute the test and the verification methods to be used.

You can easily import a test design into a manual test script, which then becomes the
implementation of the test case. For information about manual test scripts, see
Creating Manual Test Scripts on page 87.

About Designing Tests 71

Specifying the Testing Steps and Verification Points

You can design a test case when you first create the test case or at a later time.

To design a new test case:

» In the Test Plan window, right-click a test case folder. Click Insert Test Case.

Note: For detailed procedures, see the TestManager Help.

Mew Test Case

Extemal Documents I Implementation I Cusztom I Statistice I
General Iterations - Canfigurations I Test Inputs
Hame:
|| Design... Il
Description;
=
I
Owner:
Iadmin j
[k | Cancel | Help

72 Chapter 3 - Designing Tests

Click to open the Design Editor.

To design an existing test case:
= In the Test Plan window, right-click the test case. Click Design.
Note: For detailed procedures, see the TestManager Help.

Indicates whether a row is a
step (footprint) or a
verification point (check
mark). Click to change.

Contains the step or
verification point.

Click to include
a note.

x|

Ingert I

Design Editor

I Typ*a I Hote Dezcription I
1 » | Erter the first step of this design.]

Remove

Edit Note... |
Imports a
mpart I//testdesign.
Export }\Exports.a
Brint | test design.
Prints the
test design.

¥ Enter key moves focus to the nest row ok Cancel Help |

Use the Design Editor to include the steps and verification points that should be
included in the test script:

Step — An action to be taken in the application or system. This could be general when
you first begin the design, but then become more specific over time.

Verification Point — A point in a test script that confirms the state of one or more
objects.

When you click OK in the Design Editor, that design becomes a property of the test
case.

The test design evolves over iterations of the development process. As you learn more
of the details of how the system is implemented, you can add more steps and
verification points to the design.

Specifying the Testing Steps and Verification Points 73

You can import a test design from a text file to save time and effort. For information
about importing the contents of a text file, see Importing Test Assets on page 63.
Similarly, you can export a test case design to a text file to be imported later into
another project, or to be used in other ways.

Note: To create a manual test script from a test case design: Click the Implementation
tab and then click Import from Test Case Design. For more information, see Creating
Manual Test Scripts on page 87.

Specifying Conditions and Acceptance Criteria of Test Cases

Preconditions and post-conditions provide information for the person executing the test.
They describe the constraints on the system that must be true when an operation
starts or ends, therefore ensuring that the test case runs properly and leaves the
system in an appropriate state. Failure of a precondition or post-condition does not
mean that the behavior or function being tested did not work. It means that the
constraint was not met.

The acceptance criteria indicates what needs to be true in order for a particular test case
to pass.

To specify the conditions and acceptance criteria:
1 In the Test Plan window, right-click a test case. Click Properties.

2 C(Click the Implementation tab.

74 Chapter 3 - Designing Tests

Hew Test Case

General I Iterations - Canfigurations I Test Inputs I
External Dacuments Implementation | Custam I Statistics

— i anual implementation:

Select.. Wpet... I Llzar | Properties... I

Import from Test Case Design.. I

— &utomated implementation:

Select [Hper.. [Elear Froperties... I

Any setup dependency thatis —————Preconditions:

required for the test case to run. | =l

|
Any cleanup steps after the test ————Past:conditions:
case is run, to bring it back to a =
known state. [E

Acceptance criteria;

The expected results or -
performance characteristics =
that define whether the test
case passed or failed. lTl Cancel | Help |

For example, if the test case needs to verify whether the response time for logging into
a system is acceptable, you might include the following information with the test case:

Precondition — You must have the proper user ID available in the system and the
system must be in a logged off state.

Post-condition — After you log on and successfully verify the test case, log off (or bring
the system back into a known state for the following tests).

Acceptance criteria — The response time range should be between .5 and 2.0 seconds
for this test case to pass.

In another example, your test could have five verifications. However, at a certain
point in time, only three of them might need to pass for the test case to pass. In this
case, the acceptance criteria might change based on the iteration.

Note: If you associate a configuration with a test case to create a configured test case,
the conditions and acceptance criteria of the test case are inherited by the configured
test case.

Specifying Conditions and Acceptance Criteria of Test Cases 75

Example of a Test Design

This section gives an example of a design for a test case. Because the test design is
based on test inputs, it can be developed before any code is written.

In this example, you are testing an automated teller system (ATM). Your
requirements include a use case for withdrawing money from a specified account
type. Another requirement specifies that to perform any transactions with the ATM,
the user must be identified and validated. From these requirements, you have defined
a test case to ensure that you can withdraw a sum of money from a checking account
when the account contains more money at the start of the transaction than the amount
withdrawn.

The first iteration of the test design might be as follows:
Preconditions

» Ensure that we have a valid account set up and know the user ID and validation
information (password or PIN).

» Verify that a checking account exists for the user and that we know the current
balance.

» The current balance must be greater than zero.

Design

= Step — Identify the user to the ATM and validate.

» Verification Point — Make sure that we are logged on.

» Step — Select “Checking” as the account type and “Withdraw” as the transaction.

» Step — Specify the amount to withdraw where the amount is less than the current
balance.

» Verification Point — Ensure that the amount dispensed matches the amount
specified.

» Verification Point — Run the account balance transaction to ensure that the new
balance equals the old balance minus the amount withdrawn.

Post-Conditions

» Make sure that the user has logged out of the ATM.

76 Chapter 3 - Designing Tests

Acceptance Criteria

= All verifications must succeed.

As more details of the system become available — as you move through iterations of
test assets like visual models, software specifications, prototypes, and so on — you
can add more detail to the test design. For example, you might learn later that users
can identify themselves with a card and PIN. You could update the design to have
steps to insert the card, enter the PIN, and retrieve the card at the end.

Example of a Test Design 77

78 Chapter 3 - Designing Tests

Implementing Tests

This chapter describes how to implement tests. It includes the following topics:
* About implementing tests

» Implementing test cases

» Calling Test Script Services from test scripts

* Creating manual test scripts

» Associating an implementation with a test case

* Implementing tests as suites

Note: For detailed procedures, see the Rational TestManager Help.

About Implementing Tests

After you've created the test design for each test case, you're ready to implement the
test case. You implement a test case by building a test script and then associating that
test script with the test case.

Implementation is different in every organization. You can use your preferred tools or
manual test efforts to build any kind of test script appropriate for your testing
environment.

For example, one testing organization might decide to implement all of the test cases
by recording the test script using Robot.

Another organization might decide to write modular pieces of software using a
combination of Visual Test scripts, batch files, and Perl scripts, and then
programmatically tie them together in a higher-level script.

After you implement a test script, you can associate it with a test case in TestManager.
For information, see Associating an Implementation with a Test Case on page 92.

You can then run the test case or the test script in TestManager. You can also insert the
test script into a suite and run the suite. For information about running
implementations, see Executing Tests on page 115.

79

Test Scripts Window

The Test Scripts window lists all test scripts organized in a hierarchy with the test
script type at the top. Each test script type contains the test script source, which
contains test scripts.

From the Test Scripts window, you can:

View all test scripts sorted by type.
Filter, open, and run test scripts.
View and modify test script properties.

Define test script options for a test script type, a test script source, and a test script
to determine how your test script executes. You can use test script options to
control how a test script executes or to pass arguments to a test script.

Note: You can also define a test script option for a test case implementation and a
test script in a suite. For information, see Defining Test Script Options in the
Rational TestManager Help Index.

To open this window:

Click View > Test Scripts.

Right-click a test script to display a shortcut menu.

Note: For detailed procedures, see the Rational TestManager Help.

80 Chapter 4 - Implementing Tests

The following example shows the built-in test script types, test script sources, and
some test scripts in the Test Scripts window.

Test Scripts M= 3
[5°00 RebotGOlSent |
GUI - [Rational Test D atastare)
=1-_1 Marwual Script

- B Manual - [Rational Test D atastore)
B ity weekly Featued CO

Test script type

=1 Febol
Test script source =k

Browese Mozart
InventoryReport-50L
InventoryReport-web
InventoryReport

Test scripts PreferedCustomerrder-SOL
PreferedCustomerOrder-wWeb
PreferedCustomerS earch-SOL
PreferedCustomers earch-\Web
SalesReverueR eport-SOL
SalesRevenueR eportiwieb
SalezRevenueReport

]l Searchiwieb
—1-[_] Command Line

=1 Java Script
@ Java
@ Java - [Rational Test Datastore)
=0 VB Script

% B - [Rational Test Datastore]

Implementing Test Cases

You can implement a test case by creating a test script or a suite.

When you create a test script, you can use a Rational test implementation tool to
create a built-in type of test script, or you can create a custom type of test script.

Built-In Test Script Types

TestManager is tightly integrated with the Rational test implementation tools.
Starting from TestManager, you can easily implement:

» Automated test scripts recorded in Robot

» Manual test scripts created in ManualTest

Implementing Test Cases 81

Automated Test Scripts Recorded in Rational Robot

TestManager comes with built-in support for implementing the following types of
test scripts in Robot (if Robot is installed):

» GUI - A test script written in SQABasic, a Rational proprietary Basic-like scripting
language. GUI test scripts are used primarily for functional testing.

» VU or VB - When you record a session, you can generate VU or VB test scripts from
the recorded session, depending on a recording option that you select in Robot.
VU test scripts are used primarily for performance testing.

To record a test script for functional testing in Robot, starting from TestManager:
» Click File > Record > GUI.
This starts Robot and opens the Record dialog box.
To record a test script for performance testing in Robot, starting from TestManager:
= Click File > Record > Session.
This starts Robot and opens the Record Session dialog box.

For more information about recording test scripts, see the Rational Robot User’s Guide and
the Rational Robot Help.

Note: If you are recording and running scripts on Windows 98 or Windows ME, you
must connect to a remote Rational Administrator project, and therefore a remote test
datastore. Rational Administrator no longer supports Windows 98 or Windows ME.

Manual Test Scripts Created in Rational ManualTest

TestManager comes with built-in support for implementing manual test scripts in
ManualTest. A manual test script contains a set of testing instructions to be run by a
human tester.

For information, see Creating Manual Test Scripts on page 87.

Custom Test Script Types

The TestManager extensible test script type functionality enables you to implement
test scripts using any tool that is appropriate for your testing environment.

82 Chapter 4 - Implementing Tests

Command-Line and Custom Adapters
There are two ways to extend TestManager to support a new test script type:
» Use the command-line adapters

* Build custom adapters or use adapters provided by Rational and its partners

Command-Line Adapters
TestManager provides two command-line adapters:

» Command-Line Test Script Console Adapter — Use when the test script’s test tool or
editor provides a command-line interface for creating and editing the test script
and when the test script can be opened with the standard File Open dialog box (for
example, Perl scripts).

» Command-Line Test Script Execution Adapter — Use when the test script’s test tool
provides a command-line interface for running the test script.

These adapters require no custom programming. You just need to define the new test
script type in TestManager. For information, see Defining a New Test Script Type on
page 84.

Custom Adapters

Instead of using the command-line adapters, you can build your own custom
adapters or use adapters provided by Rational Software and its partners.

There are two types of custom adapters:

» Custom Test Script Console Adapter — Required for test scripts that are created with
a test tool that does not provide a command-line interface for creating and editing
test scripts and for test scripts that cannot be opened with the standard File Open
dialog box.

» Custom Test Script Execution Adapter — Required if the test script’s test tool does
not provide a command-line interface for running the test script.

For information about creating custom adapters, see the Rational TestManager Extensibility
Reference.

After these adapters have been created, you must define the new test script type in
TestManager and register the DLL. (For information, see the next section, Defining a
New Test Script Type.) You should then be able to open and run a test script of that type
from TestManager. Depending on how the Test Script Console Adapter was
implemented, you might also be able to create and edit test scripts of that type.

Implementing Test Cases 83

Defining a New Test Script Type
To define a new test script type in TestManager:
*= (Click Tools > Manage > Test Script Types. Click New.

Note: If New is unavailable, you do not have Administrator privileges. For
information, see the Rational Suite Administrator’s Guide or the Rational Administrator

Help.
Click this tab to specify the Click this tab to specify the
console adapter, which execution adapter, which
specifies how this type of enables TestManager to
test script is created and run this type of test script.
edited.

Hew Test Script Type

General | Canzole Adaptet Type | Executior’fdapter T_I,Jpel SOU[CW

plane; T Click this tab to specify
| the sources (location and
Description: connection options) for
1= this type of test script.
|
Owner:
Iadmin -

0t | cacel | Hep —H— Click Help on each tab for

more information about
each field.

Suites Created in TestManager

Suites contain test scripts, test cases, and other items. Suites provide great flexibility
and power for creating functional and performance tests through a point-and-click
interface.

Suite basics are covered in Implementing Tests as Suites on page 95. For details about
functional testing suites, see Creating Functional Testing Suites on page 203. For details
about performance testing suites, see Designing Performance Testing Suites on page 263.

84 Chapter 4 - Implementing Tests

Calling Test Script Services from Test Scripts

Rational Test Script Services (TSS) are testing services that you can call from your test
scripts using the commands in the Test Script Services API. For example, you can call
logging, synchronization, timing, and datapool services from test scripts. You can call
verification point services to validate the state or behavior of a component or system.

The following table lists the categories of services that TSS provides:

Category Description

Datapool Provides variable data to test scripts during playback, allowing virtual
testers to send different data to the server with each transaction.

Logging Logs messages for reporting and analysis.

Measurement Provides the means of fine-tuning and controlling your tests through
operations such as timing actions, setting think-time delays, and setting
environment variables.

Utility Performs common test script operations such as retrieving error
information, controlling the generation of random numbers, and printing
messages.

Monitor Monitors playback progress of a test script.

Synchronization | Synchronizes multiple virtual testers running on a single computer or
across multiple computers.

Session Manages test script session execution and playback.

Advanced Advanced features, such as setting values for internal variables.

Verification Point | Validates the state or behavior of a component or system.

Test Script Services and Test Script Types

VB, Java, and command-line test script types — as well as custom test script types that
you might add to TestManager — can take advantage of Test Script Services.

You can add TSS commands to test scripts manually during test script editing.

Calling Test Script Services from Test Scripts 85

Test Script Services commands can be added to test scripts automatically during the
following operations:

* Recording VB test scripts with Robot.

* Recording with the EJB Session Recorder that is included with Quality Architect.
The Session Recorder lets you visually connect to and interact with E]Bs. As you
execute transactions against the component, interaction data is recorded and
stored in an external XML file. Afterwards, you can use the XML Script Generator
to generate Java test scripts for testing the EJB.

» Generating test scripts using Quality Architect. Quality Architect generates Java
test scripts for testing EJB components and Visual Basic test scripts for testing
COM/DCOM objects.

Use the following table as a guideline for including Test Script Services in different
kinds of test scripts. For details, see the documentation listed for each test type.

T f
ype of, Method of Adding Test Script Services Commands | Documentation

Test Script

VB Recording a session and generating the test script Rational Test Script
with Robot or manually editing Services for Visual Basic

Java Manual editing Rational Test Script

Services for Java
Command |Manual editing The Command Line
Line Interface to Rational Test

Script Services

Note: Robot VU and GUI test script types automatically provide most TSS
equivalents. For example, when you record a test script with Robot, the test script
contains a datapool, if appropriate. TestManager also provides built-in monitoring
and session functions.

Test Script Services and TestManager

Test Script Services are designed for use with TestManager. As a result, TSS features
that are included in any type of test script — including custom test script types — are
fully integrated with the TestManager reporting, monitoring, and analysis
framework. For example:

» TestManager adheres to any synchronization and delay functionality in your test
script when it plays back (executes) the test script within a suite of test scripts.

86 Chapter 4 - Implementing Tests

» During test script playback, a tester can monitor status information about your test
script through the test script monitoring commands.

* During test script playback, TestManager provides realistic and variable data to
the test scripts through use of datapools.

» The results of timed actions are displayed in TestManager reports.

» TestManager test cases can be associated with test scripts that contain verification
commands for validating the state or behavior of a component or system.

= TestManager can run test scripts of different types within a single suite. For
example, VU, VB, and test scripts of custom types can all be run within the same
suite.

Creating Manual Test Scripts

A manual test script is a set of testing instructions to be run by a human tester. The test
script can consist of steps, verification points, and expected results that you type into
an editor.

A step is an instruction to be carried out by the tester when a manual test script is run.
This could be as simple as a single sentence (such as “Reboot the computer”) or as
complex as a whole document. In general, a step consists of one or two sentences.

Within a manual test script, a verification point is a question about the state of the
application (for example, “Did the application start?”). A verification point can consist
of any amount of text but is likely to be one or two sentences, usually ending with a
question mark.

Within a manual test script, an expected result is the intended or expected consequence
of performing a step. In general, a result consists of one or two sentences.

After you create a manual test script, you can associate it with a test case. When you
run the test case or manual test script, the test script opens in ManualTest.

When you run a manual test script, you perform each step and indicate whether each
verification point passed or failed. You can then open the Test Log window of
TestManager and see the results. If all of the verification points passed, the test script
passes. If any verification points failed, the test script fails.

Optionally, you can run a manual test script step by step in a minimized window,
which enables you to see more of the application under test.

Creating Manual Test Scripts 87

As with other types of test scripts, you can include your manual test scripts in
TestManager reports.

Note: For detailed procedures about manual test scripts, see the Rational ManualTest
Help.

You can create a manual test script in three ways:
» By importing a manual test script from another project or text file
* By importing a test case design

= In ManualTest

Importing a Manual Test Script from Another Project or a File

You can import a manual test script from another Rational project into the current

Rational project, from a Rational Test Asset Parcel (RTPAR) file, from a text file, or

from a comma separated value (.CSV) file. You can also export a manual test script to

a text file. For information, see Exporting and Importing Test Assets on page 60.
Creating a Manual Test Script from a Test Case Design

As described in About Designing Tests on page 69, a test case design primarily answers
the question “How can I perform this test case?” A design can contain steps and
verification points.

You can easily create a manual test script from a test case design. The steps and
verification points in the design become steps and verification points in the manual
test script.

To create a manual test script from a test case design:

» In TestManager, in the Test Case dialog box, click the Implementation tab. Click
Import from Test Case Design.

Note: For detailed procedures, see the Rational TestManager Help.
The manual test script becomes the implementation of the test case.

You can view and edit the manual test script by clicking Open in the Implementation
tab. This opens ManualTest. For more information, see the next section, Creating a
Manual Test Script in Rational ManualTest.

Creating a Manual Test Script in Rational ManualTest

ManualTest is tightly integrated with TestManager. Use ManualTest to create and run
manual test scripts.

88 Chapter 4 - Implementing Tests

Starting Rational ManualTest
To start ManualTest and create a new manual test script:
* In TestManager, click File > New Test Script > Manual.

Note: For detailed procedures about creating a manual test script, see the Rational
ManualTest Help.

Contains the step or verification point Contains the expected result

Use to include a file about the
expected result.

Indicates whether a —=\Rational ManualTes) - [Untitled]

row isastep (footprint) |;| File Edit View Tolls Window Help
or a verification point O\ | & & 7

(check mark) L Expected
Type | Hote Description Expected Result esult File
1 \.C Enterthe‘ﬁrst step of this manjal =l ! N
v Markas Step CirkT
Ready
Mark as VP Cirl+Shift+P
Insert Row Ins
Use to include a note. Delete Row Dl

Mote Cirl+shiftsn

Select Expected Result File Cirl+Shift+s
Right-click in any row...

... to open a shortcut menu. save cirkes

Example of a Manual Test Script
The following manual test script contains five steps and four verification points.
= The steps are actions for you to take when you run the test script.

= The verification points are questions for you to answer.

Creating Manual Test Scripts 89

Rational ManualTest - [CPU Check]

The footprint
indicates a step
to be performed.

The check mark

indicates a
verification point that
can pass or fail.

The Note icon
indicates that a note
exists. Click the icon
to open the note.

. File Edit WView Tools Window Help 5=
O E & ElFAl
Type‘ Note ‘ Description Expected Result | ::mlffe
1 Loosen the 4 thumb screws on the rear of |Housing is open. Drive cage and
* 3 [the case. Slide open the two panels to reveal| mother board are visible.
1 lthe drive cage and motherbeard houseing.
2 Detach the power supply, the power LED, The motherboard is inspectable,
r keylock switch, hardware reset switch, but not completely detached.
power on, HDD, LEF, hardware suspend and
1 speaker connectors from the motherboard.
3 F [=3 |Record the serial number on the motherboard | Serial number available for futur @
[+ | ls the motherboard BPGe model with a
1 v revision number greater than 1.0a7
5 Detach the processor fan power connector |The motherboard is further
from the motherboard detached from the CPU.
5_ Remove the processor by pushing the lever
* on the socket outward and then pulling
upward. The processor should shift slightly.
7_ Inspect the CPU. Are any pins on the bottom
1 v side missing or bent? @
8 Inspect the capacitors near the CPU socket. @
1 There should be 12 of them grouped
9 & Are any of the traces running from the CPU
1 b socket missing or damaged?
Ready

Setting the Default Editor for Manual Test Scripts

You can use either the grid editor or the text editor when you create a manual test
script. The grid editor is a structured editor that makes it easy to enter your steps and
verification points. The text editor is a free-form editor that makes it easy to

manipulate text.

Rational ManualTest - [Untitled]

Grid editor —> . File Edit View Tools Window Help -
DEE + & g 5| &
L Expected
Type| Note | Description Expected Result Result File
1 -~ |Entar the first step of thiz manual script|
Ready

Text editor ——>

Rational ManualTest - [Untitled]
B File Edit view Toals Window

OeH

Help

& 5| &

20

Ready

.'| Enter the first step of this manuasl script.

|

To set the default editor in ManualTest:

Click Tools > Options.

Note: For detailed procedures, see the Rational ManualTest Help.

This setting takes effect the next time you create or open a manual test script.

90 Chapter 4 - Implementing Tests

In the text editor, use a shortcut menu to mark items as steps, verification points, or
expected results, to create and view notes, and to attach and view expected result
files.

Indicates a note or expected result file.

Contains the step, verification point, or expected result.

Ind?cate:.s whether R m - [CPU Checiq] [‘:J@II'&'_(I

an item is a step
(footprint), a
verification point
(check mark), or
an expected

reSUIt #[=fRecord the serial number on the motherboard.
[Serial number available for future reference.
(dOCUment). Is the motherboard BP6e model with & revision number greater than 1.0a2

[#] Fjle Edit View Tools Window Help

& s

'lJEﬁ Loosen the /4 thumb screws on the rear of the case. Slide open the Two panel
N\ Housing is open. Drive cage and mother board are visible.

+# Detach the power supply, the power LED, keylock switch, hardware reset swit
[1 The motherboard is inspectable, but not completely detached.

Detach the processor fan power connector from the motherboard

The motherboard is further detached from the CFU.

Remove the processor by pushing the lever on the socket outward and then pu
Inspect the CPFU. Are any pins on the bottom side missing or bentz

[8 See the expected result file for details _ o __ i |
» Inspect the capacitors near the CPU jiocket. The Mark as Step Cirl+T
[4 8 See the expected result file for defails

o
L4
£
L4
v

Mark as VP cirl+Shift+p
“[FfAre any of the traces running frog/ the CET acck
< ' Clear Mark CirlsL
Ready Mote crl+Shiften

Select Expected Result File... Cirl+Shift+s

Right-click any item...

.. to open a shortcut menu T eave ol

The start of an item (step, verification point, or expected result) is indicated by the
footprint, check mark, or document icon. All lines that do not begin with either of
these icons are part of the previous item.

Creating Test Script Queries

ManualTest provides queries that help you select test scripts in your Rational project.
Queries let you specify the fields that appear in selection dialog boxes, how the test
scripts are sorted, and which test scripts appear.

Use filters in your queries to specify the information that is retrieved from a project.
Filters help you make queries more specific by narrowing down the information that
you are searching for. You can build simple filters or combine simple filters into more
complex ones. Use filters when you create or edit a query.

To create a new query:
= (lick Tools > Manage Script Queries.

Note: For detailed procedures, see the Rational ManualTest Help.

Creating Manual Test Scripts 91

Customizing Test Assets

When you create a manual test script, you can add custom properties to tailor the
terminology associated with the test scripts to the standards and practices used
within your organization.

You can do the following to the properties of a test script:

» Add up to three custom properties and values. (These appear in the Custom tab of
the New Test Script/Test Script Properties dialog box.)

* Add new operating environments and modify or delete existing ones.

» Add anew purpose or modify or delete existing ones. Assign a purpose to indicate
why you would use a test script.

» Define test script options for a test script type, a test script source, a test script, a
test case implementation, or a test script in a suite. Use test script options to control
how a test script executes or to pass arguments to a test script. For information, see
Defining Test Script Options in the Rational TestManager Help Index.

To see the standard properties of a manual test script in ManualTest:
= (lick File > Properties.

To customize a manual test script in ManualTest:

* (Click Tools > Customize Test Script.

You can define both the property itself (the label) and the values that can be used with
that property.

For more information about customizing a test script, see the Rational ManualTest
Help.

You can also view and customize the properties of any test script in TestManager.

Associating an Implementation with a Test Case

After you've created an implementation, you can associate it with a test case. Then
run the test case, which runs its implementation. By associating test scripts with test
cases, you can run reports that provide test coverage information.

TestManager comes with built-in support for associating the following types of
implementations:

» GUI test scripts

= VU test scripts

92 Chapter 4 - Implementing Tests

= VB test scripts

= Java test scripts

» Command-line executable programs
» Suites

» Manual test scripts

TestManager also supports associating other test script types that you have
registered. For information, see Custom Test Script Types on page 82.

To associate an implementation with a test case:
1 Do one of the following:
2 From the Test Plan window, right-click a test case. Click Properties.
or

2 From the Test Scripts window, right-click a test script. Click Implement Test
Case. The Test Plan window appears with the name of the test script that you
want to associate in the title bar. Right-click a test case. Click Properties.

2 C(Click the Implementation tab.

Note: For detailed procedures, see the Rational TestManager Help.

Associating an Implementation with a Test Case 93

Hew Test Case

General I Iterations - Canfigurations I Test Inputs I
External Dacuments Implementation | Custam I Statistics
The manual implementation ~—————jianual implementation:
associated with the test case
Click to select a manual Select.. Wpet... I Llzar | Properties... I

implementation.
Import from Test Case Design.. I

The automated implementation—————#utomated implementation:
associated with the test case

Click to select an automated —————__ Select Upet.. Elear Fropetties... |
implementation.
Freconditions:
| =
|
Post-conditions:
| =
|
Acceptance criteria;
| =
|

)4 I Cancel I Help |

You can have at most two implementations associated with a test case: one manual
and one automated. If both are associated with a test case, TestManager runs the
automated implementation when you run the test case. For information about
running test cases, see Running Test Cases on page 119.

Note: If you run a test case from the ManualTest Web Execution component, the
manual test script runs. For information, see About ManualTest Web Execution on
page 401.

When you create a configured test case, it inherits the implementation of its parent
test case. For information, see Inheriting Test Case Properties on page 49. You can
change the implementation of a configured test case by clicking Select in the
Configured Test Case dialog box.

94 Chapter 4 - Implementing Tests

Icons in the Test Plan window indicate if a test case or configured test case has an
implementation and whether it is automated or manual. For a configured test case,
the icons also indicate if the implementation was inherited from the parent test case.
The following figure shows some of the icons. For a complete list of the icons, see the
Rational TestManager Help.

&) Test Plan - Functional Tests [_ [O] x|

=25 Busingss Function =]
=-[2] Cash Register

=] Clerk Functions

=[] Process Sale

= % Process Mew Sale

Configured test cases with] Standard -W?nEEIEIEI

automated, inherited St-?ndard Wi T

implementation I'_—'||:| b anager Functions

H-] Retumns

H-] Vaids

=] Maintenance

T 5 Add new SKU

-] Manual Stock Order

Testcase withno @ ——4 »| Feplace SEU nurnber —

implementation H-3 SkU Maintenance =

Test case with automated
implementation

Test case with manual
implementation

Note: Even if an icon shows that the implementation is automated, the test case could
also have a manual implementation.

Implementing Tests as Suites

Suites are another way to implement tests in TestManager. A suite shows a
hierarchical representation of the tasks that you want to test or the workload that you
want to add to a system. It shows such items as the user or computer groups, the
resources assigned to each group, which test scripts the groups run, and how many
times each test script runs.

When implementing a test as a suite, you can:

» Define user or computer groups and apply resources to them specifying where
they run.

Groups are collections of virtual testers that perform similar tasks in the
application.

Implementing Tests as Suites 95

» Add test scripts.

Test scripts are sets of instructions. Test scripts can be used to navigate the user
interface of an application to ensure all features work or to test the activities that
the application performs behind the interface.

» Add suites to suites.
You can use suites as building blocks within suites.
» Add test cases.
A test case is a testable and verifiable behavior in a target test system.

You can use suites in both performance and functional testing. Although the concepts
of a suite are the same in both types of testing, you will probably insert different suite
items and select different options, depending on whether you are running a
functional or a performance test. The next two sections give an overview about using
suites in functional and performance testing.

Using Suites in Functional Tests

When you use a suite for functional testing, start by setting up one computer group.
This computer group can run test cases or test scripts on designated computers. Only
one test script can run on one computer at a time. You can set up test scripts so that
they run on:

» Specific computers that you assign beforehand.
» Specific computers that you assign at runtime.
* Any computer that is free to run a test script.

You may want to run a functional test on a specific computer. For example, your test
may be designed for a particular computer. Or your test may require specific
software, which is installed on a particular computer.

Conversely, you may want to distribute the test scripts in a functional test among
several computers. For example, your tests may not be designed for a specific
computer. You may want to run your tests on a group of computers, so that they can
complete as fast as possible.

Implementing a test as a suite enables you to accomplish each goal. For more
information about using suites in functional tests, see Creating Functional Testing Suites
on page 203.

96 Chapter 4 - Implementing Tests

Using Suites in Performance Tests

In performance testing, a suite enables you not to only run test scripts but also to
emulate the actions of users adding workload to a server. A suite can be as simple as
one virtual tester executing one test script or as complex as hundreds of virtual testers
in different groups, with each group executing different test scripts at different times.

For more information about using suites in performance testing, see Designing
Performance Testing Suites on page 263.

Activities Common to Performance and Functional Testing

Whether you are running performance tests or functional tests, you perform certain
common activities. For example, you define computers and computer lists, create
suites, open suites, edit test scripts, and edit items and properties in suites. These
sections discuss the tasks that you do in both performance testing and functional
testing suites.

Defining Agent Computers and Computer Lists

Tests run, by default, on the Local computer. However, you can add other computers,
called Agents, to your test environment. These Agent computers are useful in both
performance and functional testing. In performance testing, use Agents to add
workload to the server. In functional testing, use Agents to run your tests in parallel,
thus saving time.

Implementing Tests as Suites 97

Adding an Agent Computer
To add an Agent computer:
* (Click Tools > Manage > Computers, and then click New.

Note: For detailed procedures, see the Rational TestManager Help.

— Computer
Hame: I j
Metwork Mame: I Bing |
Description: =]
|
Recording Usage: [Client System ¥ Server Spstem

Playback Usage: ¥ Awailable

— Part:

Port Name | Port Mumber | Add

Remaove |

[k Cancel Apply | Help |

Combining Computers into Lists

After you have defined computers within TestManager, you can combine them into
lists. Lists are useful if you run tests on several computers or if several computers
have a similar configuration or perform a similar organizational task. By using a list,
you can reference the list instead of the individual computers.

98 Chapter 4 - Implementing Tests

To create a computer list:
» (lick Tools > Manage > Computer Lists, and then click New.
Note: For detailed procedures, see the Rational TestManager Help.

General | Statistics |

Mame:

Description:

Owner:

adrin

Agsociated Computers:

Select...

__I‘_I*_L

Eemove

[k I Cancel | Help |

After you have defined the computer list with a name and description, add computers
to the list. You must add a computer to TestManager individually before you can
include it in a list.

To add computers to a computer list:
» From the Computer List Properties dialog box, click Select.
After you have defined computers and computer lists, they become resources
available for running suites.
Note: Be sure to copy any custom-created external C libraries, Java class files, or COM
components that the suite requires to the Agent computer.

Changing the Settings of an Agent Computer

You may want to change the default settings associated with an Agent computer. The
configuration of that Agent computer may have changed and the settings in
TestManager need to reflect this.

Implementing Tests as Suites 99

To change the computer settings:

* Open a suite, and then click Suite > Edit Computers.

Note: For detailed procedures, see the Rational TestManager Help.

Computer Settings
G " Update Fieturn Femave Local
omputer Test Scripts Files Files Directary
testlist] [Multiple | Multiple *]
test =l Multiple =} Multiple =]
testlistd [Multiple =} Multiple =
aK I Cancel Help

Creating a Suite

You can create a suite in several ways:

= With wizards.

= Based on a Robot session or another suite.

» Using a blank template.

To create a suite:

= (lick File > New Suite.

Note: For detailed procedures, see the Rational TestManager Help.

Mew Suite

™ Existing suite

— Create a new suite using

€ Esisting session

" Functional Testing “Wizard

" Blank Performance T esting suite

" Blank Functional Testing suite

™ Don't show in future

o]

Cancel

Help

100 Chapter 4 - Implementing Tests

Creating a Suite from a Wizard

If you are new to testing, using the suite wizards may be the easiest way to create a
working test. Each wizard guides you through the process of creating a suite. You
must have test scripts or test cases available for use in the suite.

When you create a suite with the performance testing wizard, TestManager helps you
choose the computer on which the test runs and helps you associate test scripts that
become the basis for the test.

When you create a suite with the functional testing wizard, TestManager helps you
choose test cases and test scripts that become the basis for the test.

Opening a Suite
You can open a suite from a menu or from the Test Asset Workspace.
To open a suite from a menu:
» (Click File > Open Suite.
To open a suite from the Test Asset Workspace:
= From the Execution tab, double-click the suite in the tree.

Note: For detailed procedures, see the Rational TestManager Help.

Editing a Test Script

While you are working with a suite, you may want to edit a test script. Through
TestManager, you can:

» Edit the properties of a test script.
= [Edit the text of a test script.

Editing the Properties of a Test Script

A test script can have properties associated with it in addition to the test script name
and type. Examples of test script properties include a description of the test script and
the purpose of the test script.

Implementing Tests as Suites 101

To edit the properties of a test script:
* Open a suite, select the test script to edit, and then click Edit > Properties.

Test Script Properties
General |VU Eompilationl Specificationsl Eustoml Statisticsl

Mame:
ICaIcuIate Haurs

Description:
=
=
Dwrer:
I adrin j
Purpoze:
| -
Enviranment:
| -l

Referenced session:

ISAMF’LE SESSION Clear |

Tupe: WU

[~ Developed

0K I Cancel | Help |

Note: The tabs in this dialog box vary slightly, depending on the type of test script
you open.

Editing the Text of a Test Script

To edit the text of a test script:

= Select the test script, and then click Edit > Open Test Script.
The script is loaded and the appropriate editor is launched.

For more information about editing test scripts, see the VU Language Reference or the
Rational Test Script Services manual for your language.

Editing the Properties of a Suite

A suite has properties associated with it that can make it unique and help you
differentiate it from similar suites. Examples of suite properties include a description
of the suite and the owner of the suite.

102 Chapter 4 - Implementing Tests

To edit the properties of a suite:

* Open the suite, and then click File > Properties.

Suite Properties []

General |Specifications| Eustoml Statisticsl

Mame:

Description:

=

ak I Cancel | Help |

Replacing Items in a Suite

Use inline editing to replace any item in a suite except delays and selectors. Replacing
an item—especially an item high in the suite structure—is often easier than deleting
the item and adding another one. For example, your suite may contain a complex
structure of user groups, test scripts, and scenarios. Rather than deleting an item and
recreating the suite structure underneath, replace the item.

To replace an item:

1 Click Tools > Options > Create Suite, and then clear the Show numeric values check
box. Clearing this option lets you use inline editing to rename suite items.

2 Open a suite, select the item, and then type over the new item name.

Editing the Run Properties of ltems in a Suite

As your testing process evolves, you may want to edit the run properties associated
with suite items. You can edit the run properties of any items contained in a suite.

To edit the run properties of an item:
1 Open a suite, and then select the item to edit.

2 C(lick Edit > Run Properties.

Implementing Tests as Suites 103

TestManager displays the same dialog box that appeared when you created the item.
You can edit the values in each box.

Note: When you edit the run properties of a suite item, the changes affect only that
instance of the item. For example, if you insert a test script into a suite twice and
change the run properties of the first test script, the second test script still retains the
previous run properties.

Editing Information for All User and Computer Groups

At times, you might want to edit information for more than one user or computer
group. Although you can edit each group individually, it is easier to edit the
information for all groups at the same time.

To edit information for all groups:

* Open a suite, and then click Suite > Edit Groups.

User Groups
Firned uszer groups: Total 0
Mumber
Lzer Group ‘ Computers ‘ of Lisers ‘
Scalable uzer groups: Tatal 100
Uzer Group Computers k4
Accounting Local computer 20.000
Crata Entry Local computer 20,000
Sales Local computer 50,000

ak. I Cancel Help

104 Chapter 4 - Implementing Tests

Editing Settings for Virtual Testers

You can change the default settings associated with virtual testers. You can set Test
Script Services (TSS) environment variables to change which information is logged
when you run a suite. For example, if you have problems running a suite, set one
virtual tester to log all events and the other virtual testers to log failed events only so
that you can investigate the problem more thoroughly.

To edit virtual tester settings:

* Open a suite, and then click Suite > Edit Settings.

G Syz Environment | TSS Environment | Start Script Seed Seed
[‘ariables Yarables Scriptz | Limits =3 Flags
- Al | Lng'dc'l-_ta9 o O g0000 i1 Unique and not reseeded
+ my group -

Ok I Cancel Help

Initializing TSS Environment Variables

You can initialize the value of most TSS environment variables within TestManager.
When an environment variable is initialized through TestManager, the value is in
effect for an entire suite run unless the test script specifically changes the value.

Implementing Tests as Suites 105

To initialize a TSS environment variable:
1 Open a suite, and then click Suite > Edit Settings.
2 In the Settings dialog box, click in the TSS Environment Variables column.

T55 Environment Variables

Wl Connect | W HTTR I Wl Reporting I W Response Timeout I
Logaing Think Time | 185 | WU Client / Sewver

— Log event control

= Use default values

¥ MNore IV Urevaluated
¥ Pass ¥ Timers

¥ Fail V¥ Commands

W wiatming ™ Erwiratment
W Stopped ™ Stubs

¥ Informatianal [~ 155 eror

7 i [~ TS5 prowy emor

— Log data contral

[~ Use default values

¥ None ¥ Stopped

¥ Fail ¥ Infarmational
v Pass v Completed
I Warning ¥ Unevaluated

Restore defaults |
0k I Cancel | Help |

3 Choose one of the following tabs in the TSS Environment Variables dialog box.

Logging — Logging environment variables pertain to any test script in the suite.
They let you set the level of detail that appears in the test log associated with a
suite run.

Think time — Think-time environment variables pertain to any test script in the

suite. They control the virtual tester’s “think time” behavior. This is the time that a
typical user would delay, or think, between submitting commands.

TSS - TSS enables or disables Test Script Services, as described in the following
section.

VU Client/Server — Client/server environment variables pertain to VU test scripts
that access an SQL database. These variables let you include SQL column headers,
set the number of bytes to include in a response, and halt data retrieval at the end
of a SQL table.

106 Chapter 4 - Implementing Tests

VU Connect — Connect environment variables pertain to VU test scripts that record
HTTP and socket protocols. They control the number of times a test script retries to
connect to a server and the delay between retries.

VU HTTP — HTTP environment variables pertain to VU test scripts that record the
HTTP protocol. These variables let you emulate line speed for http and socket
requests. They also enable an HTTP test script to play back successfully if the
server responds with data that does not exactly match what was recorded—for
example, if the server responds with partial data, if the response was cached, or if
the test script was directed to another server during playback.

VU Reporting — Reporting environment variables pertain to VU test scripts. These
variables let you set how to check for an SQL unread row results and set the
maximum number of bytes to receive in an SQL response.

VU Response Timeout — Response time-out environment variables pertain to VU
test scripts that record HTTP, SQL, IIOP, or socket protocols. These variables let
you set the time-out for a VU emulation command, scale timeouts, and set the
action to take if a time-out occurs.

Note: For more information about TSS environment variables, see the VU Language
Reference or the Rational Test Script Services manual for your language.

Disabling Test Script Services

You can disable Test Script Services during a suite run. Disabling Test Script Services
lets you reduce runtime overhead. Disabling also lets you create a test script that uses
all Test Script Services and then, based on what is enabled or disabled, test only
functional-related or performance-related services.

By default, no Test Script Services are disabled. To disable Test Script Services:
1 Open a suite, and then click Suite > Edit Settings.
2 C(lick in the TSS Environment Variables column.

3 Choose the TSS tab in the TSS Environment Variables dialog box.

Implementing Tests as Suites 107

T55 Environment ¥ariables E

Wl Connect | W HTTP I Wl Reparting | Wl Responze Timeout

Logging | Thirk Time TSS I Wl Client / Server
— Dizable Test Script Service
I~ | Wse default walues
[Datapools ™ Manitoring
[Timers " Logging
[T Commands [Werification points
™ Think [~ Synchronization points
[Delay ™ Shared variables

Restore defaults |
0k I Cancel | Help |

Enable or disable the following services:
Datapools — Use of datapools in test scripts.
Timers — Use of timers in test scripts.

Commands — Use of TSS start and end commands in test scripts. Commands are not
timed, command information is not written to a test log as an event, and there are no
reports to analyze.

Think time — Use of the TSS think-time routines in test scripts.

Delays — Use of TSS delay routines in test scripts.

Monitoring — Monitoring of a suite run.

Logging — Logging during a suite run.

Verification points — Use of verification points in test scripts.
Synchronization points — Use of synchronization points in test scripts.

Shared variables — Use of shared variables in test scripts.

108 Chapter 4 - Implementing Tests

Changing the Number of Start Test Scripts

If you are starting virtual testers in groups, TestManager lets you specify the number
of test scripts that the group of virtual testers must complete successfully before the
next group starts. You may need to do this to control the maximum number of virtual
testers that log on to a system at a given time.

For example, assume the Data Entry user group contains 100 virtual testers. Each
virtual tester runs a Login test script and then selects three test scripts in a random
order: Add New Record, Modify Record, and Delete Record. You have changed the
runtime settings so that the 100 virtual testers are not starting all at once; instead, they
are starting in groups of 25.

If you set the number of start scripts to one, the second group of 25 starts when each
virtual tester in the first group of 25 completes the Login test script. The third group of
25 starts when each virtual tester in the second group has completed the Login test
script, and so on.

To change the number of start test scripts:

* Open a suite, and then click Suite > Edit Settings.

Limiting the Number of Test Scripts

TestManager lets you limit the number of test scripts that virtual testers can run
without having to remove any test scripts from the user group. You can test the suite
run in an abbreviated form to ensure that all suite items are working correctly.

For example, limit the number of test scripts to:

* Ensure that a sequence can run for a limited time before you repeat it indefinitely
in a suite. Assume that your suite has a sequence of eight test scripts that repeats
indefinitely. To ensure that virtual testers are able to start, execute, and complete
the sequence twice, insert a sequential selector before the test scripts, and then set
Script Limits to 16.

* Temporarily disable a user or computer group without deleting it from the suite.
By setting Script Limits to 0 for the group, you disable it. (You can also disable a
fixed group by setting the number of virtual testers to 0.)

» Check that a datapool works correctly. For example, assume that a virtual tester
enters records into a database 100 times. To check that the virtual tester enters a
unique record, set Script Limits to 2. If a virtual tester enters the same record twice,
the run fails.

To limit the number of test scripts that a suite runs:

* Open a suite, and then click Suite > Edit Settings.

Implementing Tests as Suites 109

Changing the Way Random Numbers Are Generated

Each virtual tester has a seed, which generates random numbers in a test script. These
random numbers affect a virtual tester’s think time, random number library routines,
and random access in datapools. Seeds are, primarily, either unique or the same:

» With a unique seed, each virtual tester that runs the same test script has a slightly
different behavior.

For example, if one virtual tester thinks for 1.3 seconds before executing the first
command, the second virtual tester might think for 2.4 seconds. Although the
individual think times vary, they have the same distribution around a mean value.

The seeds also affect the library routines involving random numbers. For example,
in the VU language, if the first virtual tester calls the uniform routine twice and
receives the numbers 5 and 3, other virtual testers in that group probably receive
different numbers, bounded only by the minimum and maximum values that are
set in the test script.

» With the same seed, each virtual tester that runs the same test script has exactly the
same behavior.

For example:

2 If the first virtual tester thinks for 1.3 seconds before executing the first
command, the second virtual tester (and all subsequent virtual testers) also
thinks for 1.3 seconds before executing that command.

o If the first virtual tester calls the uniform routine twice and receives the
numbers 5 and 3, all other virtual testers in that group also receive 5 and 3.

You can also set whether the random number generator is reseeded at the beginning
of each test script. In general, it is better not to reseed, because one long
pseudorandom sequence is more realistic than many short ones.

Seeds are defined in one of the following ways:

» Unique and not reseeded — Generates a unique seed for each virtual tester and does
not reseed the random number generator at the beginning of each test script. Each
virtual tester in a user group behaves slightly differently. This is the most
commonly used option in performance testing.

» Unique and reseeded — Generates a unique seed for each virtual tester and reseeds
the random number generator at the beginning of each test script. Each virtual
tester in a user group behaves slightly differently, but the numbers are reseeded at
the beginning of each test script. This option is very effective for government LTD
(Live Test Demonstration) testing.

110 Chapter 4 - Implementing Tests

» Same and not reseeded — Generates the same seed for each virtual tester and does not
reseed the random number generator at the beginning of each test script. This is
generally not a desirable option to select when modeling a realistic workload,
because each virtual tester that runs the same test script behaves in the same way.
However, this option may be useful for certain types of stress testing.

» Same and reseeded — Generates the same seed for each virtual tester and reseeds the
random number generator at the beginning of each test script. This generally is not
a desirable option to select when modeling a realistic workload, because each
virtual tester that runs the same test script behaves in the same way, and short
pseudorandom sequences are not realistic.

However, this option may be useful for certain types of stress testing. For example,
if you have a suite with a shared datapool with the seed set as unique and not
reseeded, each virtual tester and iteration has a different seed that gives random
data across all virtual testers and all iterations. To see what happens when all
virtual testers access the same data pattern over and over again, set the seed as
same and reseeded for all virtual testers.

To change the behavior of the default random number generator:
* Open a suite, and then click Suite > Edit Settings.

The VU routines that generate random numbers are NegExp, Rand, and Uniform.
For more information about these routines, see the VU Language Reference or the
Rational Test Script Services manual for your language.

Initializing Shared Variables

TestManager lets you initialize shared variables in a suite. A shared variable
maintains its value across all test scripts in a suite. Each virtual tester can access and
change the shared variable.

Implementing Tests as Suites 111

To initialize a shared variable:

* Open a suite, and then click Suite > Edit Shared Variables.

Shared Variable Settings [x|
~Mel
Wariable name: I]
Update |

Integer walue: I

LComment; I

[WElEte |
Eermove &l |

Ok | Cancel | Help |

Shared variables are useful in the following situations:

» To synchronize virtual testers — Use for more specific coordination than a
synchronization point provides. For example, you can limit a transaction so that
only five virtual testers perform it at once. In that case, use a shared variable with
the appropriate wait routine in your scripting language.

* Toblock a virtual tester from executing until a global event occurs — It is easier to
set an event and a dependency than to set a shared variable. However, if the event
depends on some logic within a test script, you must use a shared variable.

» To count loops within a test script — If you want to set a loop for an entire test
script, it is easier to set a selector or an iteration count within the suite. However, if
only a portion of the test script loops, set a shared variable to control the number of
iterations of that loop.

= To monitor specific transaction counts and conditions — When you monitor a suite,
shared variables provide detailed information about the progress or state of a suite
run.

112 Chapter 4 - Implementing Tests

You declare a shared variable within a test script or resource file with a “shared”
routine. For more information about this routine, see the VU Language Reference or the
Rational Test Script Services manual for your language.

You initialize a shared variable within a suite. This is optional—the default value is 0.

You manipulate the value of a shared variable through the logic in a test script or when
you monitor the suite.

Printing and Exporting a Suite

Designing a suite can involve many iterations and changes. You may find it helpful to
examine a printed view of a suite. You can print a suite or export it as a .TXT file and
print it later.

To print a suite:
* Open the suite to print, and then click File > Print.
To export a suite as a .TXT file and print it later:

* Open the suite to export, and then click File > Export to File

Saving a Suite

After you have finished modifying a suite, save your changes. A suite that is not
saved has an asterisk in the title bar. Running a suite automatically performs a save.

To save a suite manually:

» Open the suite to save, and then click File > Save.
To save more than one suite:

1 Click File > Open Suite to open the suites to save.
2 C(lick File > Save All.

Note: If you click Tools > Options, click the Create Suite tab, and then select the Check
suite when saving box, one verification screen appears for each suite being saved.

To save a suite under a different name:

* Open the suite to save, and then click File > Save As.

Implementing Tests as Suites 113

114 Chapter 4 - Implementing Tests

Executing Tests

This chapter describes how to run tests. It includes the following topics:

About running tests

Built-in support for running test scripts
Running automated test scripts
Running manual test scripts

Running test cases

Running suites

Monitoring test runs

Stopping test runs

Note: For detailed procedures, see the TestManager Help.

About Running Tests

When you run a test, you run the implementation of each test case to validate the
specific behavior passes the quality standards of that test case. Test cases validate that
the system is working the way that it is supposed to work and is built with the quality
needed.

In TestManager, you can run:

Automated test scripts
Manual test scripts
Test cases

Suites

115

Built-In Support for Running Test Scripts

TestManager provides built-in support for running the following types of test scripts:

Note: TestManager stores built-in test script types in the Rational datastore in a
Rational project. All test script types with (Rational Test Datastore) next to them in
the table are stored in the Rational datastore.

Type of Test Script | Description

GUI (Rational Test A functional test script written in SQABasic, a Rational proprietary

Datastore) Basic-like scripting language.

Manual (Rational Test | A set of testing instructions to be run by a human tester.

Datastore)

VU (Rational Test A performance test script written in VU, a Rational proprietary C-like

Datastore) scripting language.

VB (Rational Test A performance test script written in VB.

Datastore) Note: When you start to record in Robot, you actually record a
session. You can generate VU or VB (Visual Basic) test scripts from the
recorded session, depending on a recording option that you select in
Robot.

XDE Tester GUI A functional test script written in the Java language.

Script

Command Line

A file (for example, an .exe file, a .bat file, or a UNIX shell script)
including arguments and an initial directory that can be executed
from the command line.

Java

A test script written in the Java language.

TestManager also supports running custom test script types. For information, see
Defining Custom Test Script Types on page 14.

Running Automated Test Scripts

116 Chapter 5 -

To run an automated test script from TestManager:

1 Do one of the following:

2 Click View > Test Scripts. Expand the folders, select a test script, and then
right-click Run.

2 Click File > Run Test Script and select the test script type.

Executing Tests

2 Select the test script to run and click OK to open the Run Test Script dialog box.

Run Test Script
Test Scrpt: Desktop Click to change the computers
and computer lists that are
Computers: available for the test script to

Mame | Change... | run on.

B Lacal computer

ﬂ! Click to view or edit the
properties of the selected
computer or computer list.
(This is disabled if Local
computer is selected.)

Build: [Buid 1

Log Folder: IDefauIt

Lag [Deskiop Change... || Click to change the build, log
folder, or log name.

Cancel | Help |

When you click OK, TestManager runs the test script on the first available computer in
the list. As the test script runs, you can monitor its progress and then view the results
in the test log.

For information about computers and computer lists, see Defining Agent Computers
and Computer Lists on page 97.

For information about monitoring progress, see Monitoring Test Runs on page 132.
For information about test logs, see About Test Logs on page 155.

Note: When you run a test script, TestManager does not generate test case coverage
results (even if the test script is associated with a test case). To generate test case
results, run the test case instead of the test script. For information, see Running Test
Cases on page 119.

Running Manual Test Scripts

You can do the following when you run a manual test script:

* Optionally, run a manual test script step by step in a minimized window, which
enables you to see more of the application under test.

» Optionally, set a run option to log unchecked steps and verification points as
warnings (in Rational ManualTest, select Tools > Options).

» Indicate that you have performed each step.

Running Manual Test Scripts 117

» Indicate whether each verification point passed or failed.

Note: For information about creating manual test scripts, see Creating Manual Test
Scripts on page 87.

To run a manual test script, do one of the following:

» In TestManager, click View > Test Scripts. Expand the folders, select a test script,
and then right-click Run.

* In TestManager, click File > Run Test Script > Manual and select a test script.
Rational ManualTest opens.

* In Rational ManualTest, click File > Run and select a test script.
Perform each step and verification point listed in the Run Manual Script window:
= For a step, select the Result check box to indicate that you have performed the step.

= For a verification point, click the Result cell and click None, Pass, or Fail.

Example of Running a Manual Test Script

The following figure shows the results of running a manual test script. When this
manual test script was run, the first verification point failed. The Comment icon
indicates that there is a comment about the failure. When you view the test log, you
can see the failure and the comment.

Run Manual Test Script - CPU Check

A Expected Expected Result| ~
Tvpe{ Rale Rlcscimas Result ‘ Result File izl Details Indicates that
1 s = Loo=en the 4 thumb screws on the rear of the caze. Slide| Housing is Ird
open the two panels to reveal the drive cage and open. Drive the Step was
2 Detach the power supply, the power LED, keylock The Ird performed.
* switch, hardware reset switch, power on, HOD, LEF, motherboar
hardware suspend and speaker connectors from the dis Indicates that the
3 Record the =erial number on the motherboard. Serial Ird | e : H
NG her e / vgrlflcatlon point
4 v Iz the motherboard BPSe model with a revision number gr Fail @ failed.
5 r Detach the processor fan power connector from the The Ird
motherboard mothjsrboar
6 P Remove the processer by pushing the lever on the socket Ird .
outward and then pulling upward. The processor should v/ Click to see a
Operations commentabout
Qone\ I~ Show Only Verification Points All Pass Carulel | Help | [the failure.
_ Click to specify log information. \ Click to see a comment
about the expected
result.

Indicates what the result should be.

118 Chapter 5 - Executing Tests

After you run a manual test script, you can view the results in the test log in
TestManager.

For information about test logs, see About Test Logs on page 155.

Running Test Cases

When you run a test case, you are actually running the implementation of the test
case. The implementation is a test script or suite that is associated with the test case.

Viewing the Associated Implementations
To view or change the implementations that are associated with a test case:
1 In the Test Plan window, right-click a test case, and then click Properties.
2 C(lick the Implementation tab.

You can have at most two implementations associated with a test script: one manual
and one automated. If both are associated with a test case, TestManager runs the
automated implementation when you run the test case.

Note: If you run a test case from the Rational ManualTest Web Execution component,
the manual test runs. For information, see About ManualTest Web Execution on
page 401.

For more information about implementing test cases and associating
implementations, see Implementing Tests on page 79.

Running a Test Case
To run a test case, do one of the following;:

= (Click File > Run Test Case. Select the test case to run and click OK.

Running Test Cases 119

» Click File > Run Test Cases for Iteration. Select the iteration and click OK.

Test case Configured test cases

Click to add test cases to
Run Test Cases the list
Test Cazes:
B | ¢| Process Mew Sale
b Standard - Win2000
v Standard - WinNT

Click to remove the selected
test case from the list.

Bemove

| _— Click to view or edit the

Eroperties properties of the selected
test case.
™ lgnore corfigured test cases
Computers: / Click to changg the computers
and computer lists that are
Marme | Change...

available for the test case
Froperties implementation to run on.

S

Click to view or edit the

B Local computer

L

B IBuiId B properties of the selecte_zd
computer or computer list.
Log Folder: IF‘Iace Order Functional Tests (This is disabled if Local
omputer i lected.
Log: IF‘rocess Mew Sale computer is selected.)

T Click to change the build, log

ok | Cancel I Help | folder, or log name.

Note: When you run a test case, TestManager creates a temporary suite and actually
runs the suite. TestManager removes the suite after the run is completed.

When you click OK, TestManager runs the test case as follows:

» If you run a test case that has an automated implementation, it runs on the first
available computer in the list.

A configured test case runs only on computers that fully match the test case’s
configuration. TestManager takes into account the values of that computer’s
built-in configuration attributes and the values of the custom attributes specified
in the computer’s tmsconfig.csv file. (For information about the tmsconfig.csv file, see
Setting Up Custom Attributes in tmsconfig.csv on page 44.)

For example, if the configured test case indicates that it should run on a computer
with Windows 2000, TestManager examines each computer in the Computers list
until it finds one that has Windows 2000 and then runs the test case
implementation on that computer. If no computers in the list match the
configuration, a message appears in the test log.

As the test case runs, you can monitor its progress and then view the results in the
test log. For information about monitoring progress, see Monitoring Test Runs on
page 132. For information about test logs, see About Test Logs on page 155.

120 Chapter 5 - Executing Tests

If you run a test case that has a manual implementation and no automated
implementation, Rational ManualTest starts. You can perform the steps and
verification points in the manual test script and then view the results in the test
log. For more information, see Running Manual Test Scripts on page 117.

Ignoring Configured Test Cases

If you select the Ignore configured test cases check box in the Run Test Cases dialog
box, TestManager ignores the configurations and runs the test cases on any available
computers.

TestManager has three ways of running test cases if this option is selected:

If the selected test case has configured test cases and an implementation (for
example, a test script or suite), TestManager runs the selected test case on any
available computer but does not run any of the configured test cases.

If the selected test case has configured test cases but does not have an
implementation, TestManager does not run the test case or any configured test
cases.

If a single configured test case is selected, TestManager runs the test case on the
specified configuration.

Before You Run a Suite

The following steps are involved with running a suite:

Checking the suite

Checking Agent computers

Controlling runtime information of the suite

Controlling how the suite terminates

Specifying virtual testers and configurations for the suite run

Stopping the suite

The following sections describe these steps. For information about creating a
functional testing suite, see Creating Functional Testing Suites on page 203. For
information about creating a performance testing suite, see Designing Performance
Testing Suites on page 263.

Before You Run a Suite 121

Checking a Suite

While you are working on a suite, you might change it so that it does not run correctly.
For example, you might insert a test script into a suite before it is recorded. Although
TestManager automatically checks a suite before it runs, you can check a suite without
actually running it. This can help you identify and correct problems.

To check a suite:

1 Click File > Open Suite and then select a suite.

2 Click Suite > Check Suite.

TestManager checks a suite for many kinds of errors, including the following:

» The suite does not contain any user or computer groups. A suite must have at least
one user or computer group to run.

» The suite contains an empty user or computer group. Delete either the user or
computer group, or add test scripts and other items to it.

* A user or computer group contains an empty scenario. Either delete the scenario or
add items to it.

» The suite contains a selector that is empty. Either delete this selector or add
properties to it.

= A test asset (computer, computer list, test script, suite, or test case) in the suite has
been deleted.

Note: You can set options so that the suite is checked automatically whenever you
save it. To check the suite automatically, click Tools > Options, click the Create Suite
tab, and then select the Check suite when saving check box.

Checking Agent Computers

If you are running virtual testers on Agent computers, it is a good idea to check the
Agents before you run the suite. This way, you can determine whether any problems
exist before you run the suite.

When you check Agent computers, TestManager ensures that:
= All of the Agent computers specified for virtual testers actually exist.

For example, if you incorrectly typed the name of an Agent computer,
TestManager notifies you.

» The Agent computers are available and running.

122 Chapter 5 - Executing Tests

» The Agent software is running.

The same release of TestManager software must be installed on both the Local and
the Agent computers.

To check the Agent computers:
1 Click File > Open Suite and then select a suite.
2 C(Click Suite > Check Agents.

Check Agents E3

Suite information

M arme: ISUESS Test & Change... |

Mumber of ugers: 1 ;l

oK I Cahcel Help

TestManager displays any problems with the Agent computers in a separate window.

Controlling Runtime Information of a Suite
To set the runtime settings for a suite:
1 Click File > Open Suite and then select a suite.

2 C(lick Suite > Edit Runtime.

Runtime Settings []
r—Start group information—————————————————— 1~ Suite pass criteria

e ¥ Suite 1an to completion
= Start testers in groups ¥ &l suite items executed
Humber to start at & time; m v Al test soripts passed

[~ &lltest cazes executed

¥ Alltest cases passed

— Execution order Time infarmation
£+ Sequential Diuration of rur: Ig _Ij
" Balanced ST
= Iriitialization time: =
! IEDDDD 3

 Custom Defi |
B Sl [~ Suppress timing delays

v Run fised users first o .
I = ™ Initilize imestamps for each test sorpt

Seed: |1 _I; [~ Enable IP &liasing
Ok I Cancel Help

Before You Run a Suite 123

By modifying the runtime settings, you can manage:

= Start group information — In performance testing, controls how virtual users are
started

= Suite pass criteria — The criteria for whether a suite passes or fails

= Execution order — In performance testing, controls the order in which a user group
runs

» Time information — Controls how long the suite runs
= Seed - Sets the number to feed to the random number generator

» Enable IP aliasing — Controls aliasing in VU HTTP scripts

Start Group Information

In performance testing, the Start group information controls how virtual testers are
started. Virtual testers can start all at once or in groups.

To avoid overloading a server, start virtual testers in groups and specify the number
of virtual testers in those start groups.

Note: If you start virtual testers in groups, you should also specify the number of start
scripts for the group. To do this, click Suite > Edit Settings, and modify the Start scripts
box.

Suite Pass Criteria

The Suite pass criteria controls whether a suite passes or fails. Select one of the
following:

= Suite ran to completion — The suite must run to completion without manual
termination of the run.

» All suite items executed — All items in the suite must complete their assigned tasks.
= All test scripts passed — No events fail and no commands time out.

» All test cases executed — All test cases in the suite must complete all of their
assigned tasks.

= All test cases passed — All test cases pass, which means that the application being
tested met the goals of the given test case.

If the suite does not meet the criteria, the Test Log window lists the Suite Start and
Suite End events as “failed.”

124 Chapter 5 - Executing Tests

Execution Order

In performance testing, the execution order defines the order in which virtual testers
are started. Therefore, this order determines which user groups are executed if you
run fewer virtual testers than the maximum number defined. Select one of the
following:

» Sequential — Suites that run in a sequential order run each virtual tester as it is
encountered in the suite (from the top to the bottom).

» Balanced — Suites that run in a balanced order evenly distribute the run among the
user groups in proportion to the suite.

* Run fixed users first — Runs the fixed user groups before the scalable user groups,
regardless of the execution order. If your user groups are all fixed, this option has
no effect.

Assume that you have defined four user groups with a total of 101 virtual testers, and
your suite contains them in this order:

* End of Month Accounting: 1 virtual tester
» Accounting: 20 virtual testers

» Data Entry: 30 virtual testers

= Sales: 50 virtual testers

Although your suite contains 101 virtual testers, you want to run it with only 10
virtual testers. The following table lists how the execution order affects which users
are run.

If you select Run these user groups

Sequential 1 End of Month Accounting
9 Accounting

Balanced 2 Accounting
3 Data Entry
5 Sales

Balanced and Run Fixed Users First 1 End of Month Accounting
2 Accounting

3 Data Entry

4 Sales

Before You Run a Suite 125

» Custom — Suites that run in a custom order require you to select specific user
groups or virtual testers to run. Apply a custom run order to fixed user groups
only.

Running user groups in a custom order is useful for troubleshooting. For example, if a
test script does not work and that test script is used only by the Accounting group,
run that group only.

To create a custom run order, click Define in the Runtime Settings dialog box.

You can also temporarily disable a fixed user group by selecting it, clicking Edit > Run
Properties, and then setting User Count to 0.

You can run fixed virtual testers first, thus running fixed user groups before the
scalable user groups, regardless of the execution order. If your user groups are all
fixed, specifying a run order has no effect.

Time Information

This option controls timing information such as:

» The maximum amount of time the run should take. A value of 0 imposes no time
limit.

* The maximum number of seconds for all virtual testers to confirm that they

completed initializing. If you have changed the number of start test scripts, make
sure that you set this time high enough.

» Suppressing timing delays. Any calls to TSS think times will delay 0 seconds (no
delay), thus running the suite very quickly. This choice is useful if you are testing a
suite to see whether it runs correctly and you are not interested in the timing
delays. However, this creates a maximum workload on the server, Local, and
Agent computers.

Do not suppress timing delays if you are running a large number of virtual testers.

» Initializing time stamps for each test script, which indicates whether time stamps
are carried over from script to script or are reinitialized with each script.

Seed
This option sets the number to feed to the random number generator.

TestManager uses a specified seed to generate the random numbers for selectors and
shared access in datapools.

126 Chapter 5 - Executing Tests

IP Aliasing

In VU test scripts that use the HTTP protocol, this option sets whether to use IP
aliasing.

IP aliasing requires that each virtual tester has a different source IP address. This has
meaning only if you are running HTTP test scripts and your system administrator has
set up your computer to use IP aliasing. For information about setting up IP Aliasing,
see Configuring Local and Agent Computers on page 379.

Controlling How a Suite Terminates

You can set the conditions that force a suite to stop running. For example, you might
want to stop a suite if a large number of virtual testers are completing abnormally,
indicating that something is wrong with the run.

To control how a suite terminates:
1 Click File > Open Suite and then select a suite.

2 C(Click Suite > Edit Termination.

Temmination 5 ettings []

— Temination option:

@ Terminate after completion of nest emulation cormand

= Teminate after completion of the test seript

Cleanup-time: a0 _I

—Yirutal bester termination count

Total complete: |1 _I: ¥ Use marimun testers
Hormall complete: |1 _I: ¥ Use maximum testers
Lbnormal complete: |1 _I: ¥ Use magimum testers
Test scripts complete: B

3

oK I Canicel | Help |

Specifying Virtual Testers and Configurations for the Suite Run

When you run a suite, you supply runtime-specific guidelines. Each virtual tester that
executes its assigned suite items run within these guidelines.

TestManager checks the suite before the run and compiles any uncompiled or
out-of-date test scripts.

TestManager stores the results of running the suite in test logs. After you run the suite,
run reports to analyze the data stored in these logs. You can display this information
in the form of graphs and charts, or in more traditional report formats.

Before You Run a Suite 127

When you run a suite, you specify:
= Number of virtual testers, if you are running a performance testing suite.

If a suite includes both fixed and scalable user groups, the fixed user groups are
assigned first. So, for example, if your suite includes one user group fixed at 10
virtual testers, and you run 100 virtual testers, 10 virtual testers are assigned to the
fixed user group, and the remaining 90 virtual testers are distributed among the
scalable user groups.

Note: The number of available virtual testers depends on the type of license you
have. If your license does not support the number of virtual testers you specify, an
error message appears.

* Number of computers on which to run the suite and a list of available computers,
if you are running a functional testing suite and have not specified resources.

» Log information, including build number, log folder, and log file name.

By default, the name of the log folder is based on the suite, and the log name is
based on the number of virtual testers and the number of times you have run the
suite. For example, if you run the sample suite three times, with 10 virtual testers,
15 virtual testers, and 20 virtual testers, all three test logs will be in the sample
suite folder. The log names will be Users 10 #01, Users 15 #02, and Users 20 #03.
Therefore, the log name Users 20 #03 indicates that this is the third time you have
run the suite, and the suite is being run with 20 virtual testers.

You can change these settings on the Run tab of the Options dialog box. For more
information, see the TestManager Help.

* Resource monitoring.

When you monitor a suite, TestManager records how computer resources are used
and then graphs this usage data over the corresponding virtual tester response
times when you run a Response vs. Time report. Specify the interval at which
monitoring views are updated; the lower the interval, the faster the update.

» Whether to ignore associated configurations.

Select the Ignore configurations for test cases check box to have TestManager
ignore the configurations and to run the test cases on any available computers.

TestManager has three ways of running test cases if this option is selected:

2 If the selected test case has configured test cases and an implementation (for
example, a test script or suite), TestManager runs the selected test case on any
available computer but does not run any of the configured test cases.

128 Chapter 5 - Executing Tests

s If the selected test case has configured test cases but does not have an
implementation, TestManager does not run the test case or any configured test

cases.

2 If a single configured test case is selected, TestManager runs the test case on the

specified configuration.

Running a Suite from TestManager
To run a suite from TestManager:

= (lick File >Run Suite.

Run Suite [%]

— Suite information

Marne: IStress Test 2

Mumber of users:

LChange... |

— Log Infarmation

Build: [Buid 1
Log Falder: IDefauIt
Log: IStress Test 2 Users 1 #03

Change..

— Resource Monitaring

V' Maoritor resources Update rate: |5 _I:j zeconds
[lgnore configurations for test cases
oK I Cancel | Optians... | Help

The dialog box that TestManager displays differs depending on the type of suite that

you run.

If you are running a performance testing suite, you must specify the number of virtual

testers to run.

If you are running a functional testing suite and you have not specified computer
resources, you must specify the computers on which to run the suite.

Before You Run a Suite 129

Running a Suite from the Command Line

You can run a suite from the command line. For example, if you have a suite that takes
a long time to run, or if you want to run several suites sequentially, run them from the
command line.

The following syntax shows how to run a suite from the command line:

rtmanager.exe suitename /runsuite /user userid [/password password]
/project .rsp-path [/computers [Locall; [computer-1; computer-2; ... computer-n]
[/computerlists computerlists] /build buildname

/logfolder logfoldername /log logname [/overwritelog] [/numusers nnnj
[/ignoreconfiguredtestcases] [/close]

If an argument value contains spaces, enclose it in quotation marks.

Syntax Element Description

suitename The name of the suite to run.

/runsuite Runs the suite referenced in suitename.

user userid The user name for logging on to TestManager.

password password An optional password for logging on to TestManager. Omit
this option if there is no password.

/project .rsp-path The full path to the project's .rsp file.

/computers [Local]; The names of the computers to use when running the suite.

[computer-1; computer-2;... Local is the computer on which TestManager is running.

computer-n] This option is ignored if the specified suite indicates the

computers on which to run it. If the suite does not indicate
the computers or computer lists to use, this option is
required.

/computerlists [computerlist-1; | The computer lists to use when running the suite. This
computerlist-2,... computerlist-n] | option is ignored if the specified suite indicates which
computers to use to run it, or if you specified computers in
the /computers option.

/build buildname The build in which to create the log folder. If the specified
build does not exist, TestManager creates it.

/logfolder logfoldername The name of the log folder in which to create the test log. If
the log folder does not exist, TestManager creates it.

/ log logname The name of the test log in which to record the results of
running the suite. If the log exists, you must specify the
/overwritelog option.

130 Chapter 5 - Executing Tests

Syntax Element Description

/overwritelog Overwrite the test log if it exists. If you omit this option and
the log exists, a message appears that says the log exists and
cannot be overwritten.

/numusers nnn The target number of virtual testers when executing a suite
that contains user groups. This is mandatory for running
performance testing suites.

/ignoreconfiguredtestcases Ignore configuration matching (such as test cases that
specify computers with specific operating systems or other
attributes) when running test cases that are in the specified
suite.

/close Closes TestManager after running the suite. This option is
useful when you are scheduling a suite to run at a specific
time. To make the results of the suite run remain on the
screen, omit the /close option.

Running Two Suites Sequentially

The following example runs two suites, Suitel and Suite2, sequentially. Note that you
need to invoke TestManager twice from the command line in separate and succeeding
instances. Since only one instance of TestManager can run at a time, use the Windows
START command with the /WAIT option to ensure that the second instance of
TestManager does not attempt to start until the first one is finished.

START /WAIT rtmanager.exe Suitel /runsuite /user admin /project

"C:\Sample Project\Sample.rsp" /computers Local /build "Build 1"
/logfolder Default /log Samplel /close

rtmanager.exe Suite2 /runsuite /user admin /project "C:\Sample
Project\Sample.rsp" /computers Local /build "Build 1" /logfolder
Default /log Sample2 /close

In this example, TestManager logs on to the project C:\Sample Project\Sample.rsp as the
virtual tester admin and runs Suitel on the local computer. The results of running
Suitel are stored in the test log Samplel, which is created in the log folder Default in
build Build 1. After the run is complete, TestManager closes.

The second instance of TestManager then logs on to the project C:\Sample
Project\Sample.rsp as the virtual tester admin and runs Suite2 on the local computer.
The results of running Suite2 are stored in the test log Sample2, which is created in the
log folder Default in build Build 1. After the run is complete, TestManager closes.

Before You Run a Suite 131

Scheduling a Suite to Run at a Specific Time

Use the task scheduler of your operating system together with a suite command line
to schedule a suite to run at a specific time. The following example shows how to
schedule Sample Suite to run daily at 12:00.

1

10

From the Windows 2000 taskbar, click Start > Settings > Control Panel > Scheduled
Tasks > Add Scheduled Task.

The Scheduled Task Wizard appears. Click Next.
Select Rational TestManager and then click Next.

Type a name for this task (for example, Daily Suite Run), select Daily, and then click
Next.

Select 12:00 AM as the start time, click Every Day, select a start date, and then click
Next.

Enter your Windows 2000 user name and password and then click Next.

At this point, TestManager will run each night at 12:00. However, you want a
TestManager suite to run. To run a suite, you must set the Advanced Properties.

Click Open Advanced Properties for this task when I click finish and then click
Finish.

At the Daily Suite Run dialog box, click the Task tab.

At the Run prompt, Windows displays a command line similar to the following:

C:\PROGRA~1\Rational \RATION~1\rtspla.exe ts man

Add the ts_manrtmanager.exe command line to the end of this command line.

C:\PROGRA~1\Rational \RATION~1l\rtspla.exe ts manrtmanager.exe
"Sample Suite" /runsuite /user admin /project "C:\Pats
Projects\projectl\Projectl.rsp" /computers Local /build build 271
/logfolder "Sample Suite" /log logname /overwritelog /numusers 100
/close

Monitoring Test Runs

While a suite, test case, or test script is running, you can monitor its progress. You can:

Confirm that the test is progressing successfully.
Discover potential problems early in the run so you can intervene if necessary.

Suspend and restart virtual testers.

132 Chapter 5 - Executing Tests

» Change the values of shared variables.

* Release virtual testers waiting on synchronization points.

The TestManager monitoring tools provide you with current information that is
dynamically updated as the test runs. This information includes:

» The number of commands that have executed successfully and the number of
commands that have failed.

» The general state of the virtual testers: whether they are initializing, connecting to
a database, exiting, or performing other tasks.

» Whether any virtual testers have terminated abnormally.

The Progress Bar and the Default Views

When you run a test, TestManager displays the monitoring information in a Progress
bar and in views. The Progress bar gives you a quick summary of the state of the run
and cannot be changed. You can change the views, however, to provide summary
information or detailed information about each virtual tester.

The following figure shows the Progress bar and the default views:

Fie View Monior Lools Window Help
Progress bar; T me aln|nlamoe] s
led lormal n
pull down to 0 0 000 Bl BRI BRI EY TR
resize. z = = . -
e A B E T =
I ERE e
—_—FFIF cutc - Overall I [=
E"a: “essmke Tea ;taog Iteration_| UsersInside |~
: : Smoke Test 2 = -§ 8 UserGroups
Suite View ;"‘3“455‘2 (=}~ S B Accounting: 20000% 0%
tress Test -
Overall ute s 3o Stess Test NIA 100%
(3 Computers - B sequential 0%
(C Computer Lists =a -
Caloulate Howrs: 1 timels) 0% :
= State Histogram - Standard _[O] x|
0 8 17 0 0 0 0
State 20
Histogram - @
Standard))
Unstarted Init Quiet Server Code Overhead GUI Exit
User View - - Brovps Seipt State Time =
Suite Computet
Compact 1 Accounting [1] Local computer[01] Sync Point ‘Wait Shw or Sync 00:00:07
2 Accounting [2] Local computer[02] Sync Point ‘Wait Shw or Sync 00:00:07
3 |Accounting [3] Local computer[03] Sync Point \Wait Shv or Sync 00:00.07
7] e [[B 4 |Accounting 41 Local computerd) Sunc Point \Wait Shy or Svnc 000006 =l
[Ready [2dmin |Cuently Selected Fier: 4
Monitoring Test Runs 133

With the Progress bar, you can quickly assess how successfully the test is running. The
Progress bar provides the following information:

Testers — The total number of virtual testers in the run
Active — The number of virtual testers that are neither suspended nor terminated
Suspended — The number of virtual testers in a paused state

Terminated: Normal — The number of virtual testers that completed their tasks
successfully

Terminated: Abnormal — The number of virtual testers that terminated without
completing all of their assigned tasks

Time in Run — The time the test has been running, expressed in
hours:minutes:seconds

% Done — The approximate percentage of the test that has completed

TestManager also displays three views of the running suite:

The Suite - Overall view, which displays general information about the status of
virtual testers. For more information, see Displaying the Suite Views on page 134.

The State Histogram - Standard, which is a bar chart that provides a general idea of
which tasks the virtual testers are performing. For example, some virtual testers
might be initializing, some virtual testers might be executing code, and some
virtual testers might be connecting to the database. This chart shows the number
of virtual testers in each state.

TestManager displays the State Histogram - Standard by default. However, if you
are running GUI test scripts, or if you are testing an SQL database or a Web server,
you may want to display a bar chart specifically geared to those tests. For more
information, see Displaying the State Histograms on page 136.

The User View - Compact or the Computer View - Compact, which displays
information about the current state of the virtual testers. In this view, you can click
a particular virtual tester to display additional information about that virtual tester
or control its operation. For more information, see Displaying the User and Computer
Views on page 138.

Displaying the Suite Views

The suite views are very similar to the actual suite that you have designed. Columns
show you which iteration is being executed and what percentage of the virtual testers
in a group are currently in a test script or a selector.

134 Chapter 5 - Executing Tests

The two suite views are:

= Suite - Overall — Use this view to display general information about the status of
the suite. TestManager displays this view by default when you run a suite.

» Suite - Users or Suite - Computers — Use this view to display the exact suite
progress of a particular virtual tester.
The Suite - Overall View

To display the Suite - Overall view:

* During a suite run, click Monitor > Suite > Overall.

&l New Doc Example - Rational TestManager - [Suite - Overall]

=l File Yiew Monitor Tools ‘Window Help @] x|
BB 2| %0 (o]0
AR R IR
boss|Hd|spegals s ||rann||vr 1 ||reramEs @
EEEEEE T B
———————-lx Suite Iteration Users Inside.
-3 [Suites [=1-39 User Groups
(23 Computers 5 - - %
1 Computer Lists [=] 8% Accounting: 20.000% :
Calculate Hours: 15 timefs] 15 oz
0z

Caloulate Taxes: 1 timefs)
[=) 8@ Data Enty: 30.000% %%
[l Set Up Database Application: 1 time[s) 1A 5%

=)o B8l Random without replacement 8/20 0%

FHD
dd a Record: 1 timefs], 2 wt 1 50 %
[

Modify a Record: 1 tme(s), 7 wit

0%

Delete a Record: 1 timefs), 1 wt.

[=] 8% Sales: 50.000% 53%
K Set Up Database Application: 1 timels) il 5%
Riead a Record: 1 timels) 171 2%

[=]- 0 SetUp Database Application M 7

Laagir: 1 timefs] N/ 5
Intialize Options: 1 time(s] HAA H

o ey

|Ready [admin [Curertly Selectzd Filter: 4

The Suite - Overall view is similar to the actual suite that you have designed.
However, it contains two additional columns:

The lteration column shows how many iterations are in the suite item and the iteration
in progress, averaged over all virtual testers currently executing that suite item.

For example, 8/20 indicates that, for the virtual testers currently executing that suite
item, on the average, the virtual testers are executing the 8th of 20 total iterations.

Monitoring Test Runs 135

The Users Inside column shows the percentage of virtual testers that are currently
executing each portion of the suite. The percentage next to the user group shows the
percentage of total virtual testers that have been assigned to the group and have not
yet exited the suite. The percentage next to the items within a user group shows the
percentage of virtual testers within that group that are executing that item.

For example, if the Sales user group contains 50 percent of the total virtual testers, the
Users Inside column for that group is 50 percent. If all virtual testers in the Sales group
are executing the Read Record test script, the Users Inside column for that test script is
100 percent.

The Suite - Users and Suite - Computers Views

To display the Suite - Users or the Suite - Computers view:

* During a suite run, click Monitor > Suite > User to display a Suite - Users view.
Click Monitor > Suite > Computers to display a Suite - Computers view.

il = Suite - Users =l E3
| Suite State Iteration

—- 88 Accounting: 20.000%

= - W aiting for
5 Accounting[1] Reznonss
= - ! aititg for
g Accountingl2] Besnnnss
= - W aiting for
5 Accounting[3] Reznonss

2@ Data Entry: 30.000%
o B Sales: 50000

i | |

o

For information about each column in this view, see Suite - Users or Suite - Computers
in the TestManager Help Index.

Displaying the State Histograms

The state histograms group the virtual testers into various states, such as exiting and

initializing. Use a histogram to display a bar graph of how many virtual testers are in
each state.

To display a state histogram:

* During a run, click Monitor > Histogram, and select the desired histogram.

136 Chapter 5 - Executing Tests

The state histograms are:

» Standard — Data is grouped in a general way. Select this histogram if you want a
general overview of the virtual tester states. For information about each bar in this
histogram, see State Histogram - Standard in the TestManager Help Index.

* GUI - Data is grouped appropriately for tests that run GUI test scripts. For
information about each bar in this histogram, see State Histogram - GUI in the
TestManager Help Index.

* SQL - Data is grouped appropriately for tests that access SQL databases. For
information about each bar in this histogram, see State Histogram - SQL in the
TestManager Help Index.

» HTTP - Data is grouped appropriately for tests that access Web servers. For
information about each bar in this histogram, see State Histogram - HTTP in the
TestManager Help Index.

* lIOP - Data is grouped appropriately for tests that access IIOP servers. For
information about each bar in this histogram, see State Histogram - IIOP in the
TestManager Help Index.

* DCOM — Data is grouped appropriately for the tests that access DCOM functions.
For information about each bar in this histogram, see State Histogram - DCOM in
the TestManager Help Index.

» Custom - Data is grouped according to your needs. For information about
customizing a histogram, see Configuring Custom Histograms on page 151.

The following figure shows a State Histogram - Standard:

[=stato Hstogram Standord ——__________________________________ mEE
0] 1 13 16 0 0
20
1%
10
5
lnstarted Init et Senvar Code Owverhead (0] Euit

Monitoring Test Runs 137

In this histogram, one virtual tester is in the Server state, 13 virtual testers are in the
Code state, and 16 virtual testers are in the Overhead state.

Zooming In on Histogram Bars

Each bar in a histogram shows a summary state that contains individual states. You
can zoom in on a bar to see a breakdown of how many virtual testers are in each state.

To zoom in on a histogram bar:

* Double-click a bar that contains virtual testers. A window appears that displays
the individual states.

To restore the window to its original state, click View > Reset.

The following figure shows an expanded histogram, after you have clicked the Server
bar:

[State Histogram - Standard:Server |_ O] %]
0 1 3 0 0 0 23
40 .
q / 4
Unstarted Init Quiet Server Code Qverhead GUI Exit
i 2 0 0 0 0 0 0 0 0
4
2
WaitResp Connect Disconn SQL_Exec Sending Tuxedo Eind Invoke SendDelavRecyDelay

Six virtual testers are classified as Server. The expanded histogram shows that four are
in the WaitResp state and two are in the Connect state.

For information about each bar in this histogram, see List of Histogram Bars in the
TestManager Help Index.

Displaying the User and Computer Views

The User and Computer views dynamically display the status and details of virtual
tester operations, depending on the type of user the virtual tester is emulating.
Display one of the views to see the status of individual virtual testers.

Note: TestManager displays a view based on users or based on computers, depending
on the type of test that you are running.

138 Chapter 5 - Executing Tests

To display a view:

During a run, click Monitor > User or Monitor > Computer, and select a view.

The User/Computer views are:

User/Computer View - Full — Contains complete information about all virtual testers.

User/Computer View - Compact — Contains summary information about all virtual
testers. This is the most efficient view to use when you are running Agent
computers.

User/Computer View - Results — Contains information about the success and failure
rate of each emulation command.

User/Computer View - Source — Displays the line number and the name of the
source file being executed.

User/Computer View - Message — Similar to the User/Computer View - Compact,
but also displays the first 20 letters of text from the TSS display function.

The following items pertain to all user or computer views:

To make tracking certain virtual testers easier, you can change which virtual testers
are displayed. For more information, see Filtering and Sorting Views on page 148.

When you display a user or computer view, you can also display the test script that
the virtual tester is running. Double-click the number in the first column, next to
the virtual tester. TestManager displays the test script. For more information, see
Displaying the Test Script View on page 143.

When a virtual tester terminates abnormally, TestManager writes a message
stating the reason for termination to the running Suite window. Right-click the
terminated virtual tester, and then select the View Termination Message option.

You can easily identify a virtual tester that terminates abnormally because its
Exited state is red in the views.

The rest of this section describes and gives examples of each view.

Monitoring Test Runs 139

User/Computer View - Full

This view contains complete information about all virtual testers, as shown in the
following figure:

Blseiiow Ful __——___ — ———— ——— @EX
e Groups Compter Script Command Stale Time i Source Tre Crmd Count Stieak ﬂ;

1 Accounting[1] Local computer[01]: Calculate hitp_headeiMaiting for: 00:00:00 | Calculate 36 2 1 Success §

2 Accounting[2] Local computer[02]; Calculate hitp_headeiMaiting for; 00:00:00 ;| Calculate 36 é 1 Success §

3 Accounting[3] Local computer[03]; Calculate http_regque :Client Conn; 00:00:01 Calculate 22 1 Mone 1§

4 Data Entry{1] Local computer[04]: Login hitp_headeMaiting for; 00:00:00 | Logins 75 g 1 Success 1§

5 Data Entry{2] Local computer[05]; Login (hitp_headeWaiting for; 00:00:00 | Logins 75 g 1 Success 1§

3 Data Entry[3] Local computer[068]; Login http_requeiClient Conn; 00:00:00 Login.s B1 1 Mane [

7 Diata Entry[4] Local computer[07]: Login hitp_heade\aiting for: 00:00:00 Login.s 75 2 1 Success [

8 Sales[1] Local computer[08]: Login hitp_headeMaiting for! 00:00:00 Login.s 75 2 1 Success i

El Sales[?2] Local computer[09]: Login http_reque Thinking | 00:00:00 Login.s g5 3 2 Success [

a Sales[3] Local computer[10]i - Login [http_reque iClient Conni 00:00:00 Login.s 61 1 MNone [

n Sales[4] Local computer[11]; - Login thttp_reque iClient Conng 00:00:00 | Logins Bl 1 MNaone 1§

ﬁ ST - A 1 R YV T SO Y110 R aF o SRIIIIT 'r;

For information about each column in this view, see User View - Full or Computer View
- Full in the TestManager Help Index.

User/Computer View - Compact

This view contains summary information about all virtual testers, as shown in the
following figure:

Tt Groups T Script State Time =
1 Accounting[1] Local computer[01] Calculate Hours Client Connection 00:00:00
2 Accounting[2] Local computer[02] Calculate Hours Thinking 00:00:08
3 Accounting[3] Local computer[03] Calculate Hours W1 Code 00:00:00
4 Accounting[4] Local computer[04] Calculate Hours Wi Code 00:00:00
5 Accounting[5] Local computer[15] Calculate Hours Thinking 00:00:00
& Data Entry[1] Local computer[16] Exited
7 Data Entry[2] Local computer[17] Exited B
8 Data Entry[3] Local computer[08] Exited
3 Data Entry[4] Local computer[09] Exited
10 Data Entry[5] Local computer[10] Exited
11 Data Entry[6] Local computer[11] Exited
12 |Data Entr[7] Local computer[12] Exited
13 Sales[01] Local computer[13] Exited B

For information about each column in this view, see User View - Compact or Computer
View - Compact in the TestManager Help Index.

140 Chapter 5 - Executing Tests

User/Computer View - Results

This view contains information about the success and failure rate of each emulation
command, as shown in the following figure:

= User Yiew - Results [_ O] =]
Suite: A Computer St Cermtmerd Slefis e ety Last 10 Fa";‘:;‘ale Oweral

1 Accounting[1] Local cornputer[01] i Calculate H hitp_header! Waiting for { 00:00:01 {240 Succe 1] 1] 1]

2 Accounting[2] Local computer[02]; Calculate T hitp_request Client Conn i 00:00:00 : 262 Succe 1] 1] 1]

3 Accounting(3) Local computer[03]: Calculate Hihtp_request Thinking 00:00:01 (239 Succe 1] 1] 1]

4 Accounting[4] Local cormputer[04]: Calculate H hitp_request Thinking | 00:00:01 {239 Succe 1] 1] 1]

3 Accounting[s) Local computer[05]; Calculate Hihtp_header; YWaiting for ¢ 00:00:01 ;49 Succes 1] 1 1

B Data Entry[1] Local cormputer[05] Exited

7 Data Entry[2] Local computer[07] Exited

g Data Entry(3] Local computer08] Exited

E Data Entry[4] Local computer[09] Exited

10 Data Entry[8] Local computer[10] Exited

n Data Entry[B] Laocal cormputer[11] Exited

12 Mata Frtn 71 I acal cormnotod 1?1 | =l

For information about each column in this view, see User View - Results or Computer
View - Results in the TestManager Help Index.

User/Computer View - Source

This view displays the line number and the name of the source file that is being
executed, as shown in the following figure:

= User View - Source [_ O] =]
Tt (B Tomputer Seript Command State Time: e S Tre Crnd Count

1 Accounting[1] Local cormputer[01] i Calculate Hours, hitp_header_re iWaiting for Res: 00:0019 | Calculate 2075 241

2 Accounting[2] Local computer[02]: Calculate Taxe: hitp_nrecy WIJ Code 00:00:00 : Calculate 543 63

£ Accountingl3] Local cormputer[03]; Calculate Taxe ! http_request | Client Connecti i 00:00:00 | Calculate 139 14

4 Accounting[4] Local computer[04]: Calculate Taxe ! hitp_header_re (Waiting for Res: 00:00:00 : Calculate 195 26

5 Accounting[5] Local cormputer[08] i Calculate Hours, hitp_header_re PWaiting for Res: 00:0019 | Calculate 2075 241

E Data Entry[1] Local computer[06] Exited

7 Data Entry[2] Local computer[07] Exited

E Data Entry[3] Local computer[08] Exited

3 Data Entry[4] Local computer[09] Exited

10 Data Entry[5] Local computer[10] Exited

n Data Entry[B] Local computer[11] Exited

12 Mata Frtn 71 | ncal o teel171 Fuiterd =l

For information about each column in this view, see User View - Source or Computer
View - Source in the TestManager Help Index.

User/Computer View - Message

This view is similar to the User/Computer Compact view, but it also displays
messages from the first 20 letters of text from the TSS display function. If you have
added a display routine to a test script, you may want to show this view.

Monitoring Test Runs 141

The following figure shows an example of a User View - Message:

[User View - Message M =] E3

T [Effese Tompiter Seript State Time Message
Accounting[1] Local computer[01]: Calculate Hours Waiting for Response: 00:00:51
Accounting[2] Local computer[02] Exited
Accounting[3] Local computer[03] Calculate Taxes WU Code 00:00:00
Accounting[4] Local cormputer[04] Exited
]

Local cormputer[05]; Calculate Hours {Waiting for Response; 00:00:51

1
2
3
4
5 Accounting[5
3
7
g
g

Data Entry[1] Local computer[06] Exited
Data Entry[2] Local computer[07] Exited
Data Entry[3] Local computer[0§] Exited
Data Entry[4] Local computer[09] Exited
10 Data Entry[5] Local computer[10] Exited
n Data Entry[6] Local cormputer[11] Exited

|

For information about each column in this view, see User View - Message or Computer

View - Message in the TestManager Help Index.

Displaying the Shared Variables View

In the Shared Variables view you can inspect the values of any shared variables that

you have set in your suite or test script.
To display the Shared Variables view:
= During a run, click Monitor > Shared Variable.

The following figure shows a Shared Variables view:

I Shared Variables [_ (O] =]
Hame Value \.l‘::;ir:g

sh_wvar2 0 0

zh_var3 1] 1]

zh_vard 1] 1]

zhared_war 0o 2

Lol | i

This view shows the name of each shared variable, the value of the variable, and the

number of virtual testers waiting for the shared variable to reach a certain value.

Changing the Value of a Shared Variable
You can change the value of a shared variable when you are monitoring a test.
1 During a run, click Monitor > Shared Variable.

2 Double-click the variable name, or right-click in the view and then click Change
Value.

3 If the shared variable is read-only, type a new value in the Value of box.

142 Chapter 5 - Executing Tests

4 If the shared variable is being dynamically updated, you cannot type a new value.
By the time you read the value, determine the changed value, and type it, a virtual
tester may have modified the value. If this occurs, your change is lost. Instead:

Under Operators, choose an operator. If you choose the subtract (-) or divisor (/)
operators, the order for operations is:

existing value - new value
existing value / new value

For example, assume the shared variable has a current value of 6. If you type 4 in
the Value of box and click the - operator, the new value of the shared variable is 2,
because 6 -4 = 2.

5 Click OK.

Displaying the Virtual Testers Waiting on a Shared Variable

If your test scripts contain shared variables, you can see the virtual testers waiting on
each shared variable.

To display the virtual testers waiting on a shared variable:

1 In the Shared Variables view, double-click the variable name, or right-click in the
test script.

2 C(Click See Users.

Displaying the Test Script View

The Test script view displays the test script that is running and highlights the line of
code that a virtual tester is executing. This view is useful for watching the progress of
a virtual tester through a test script.

Monitoring Test Runs 143

To display the Test script view:

* During a run, click Monitor > Test Script, and click the virtual tester whose progress
you want to check.

[Script View: Accounting[?] - Calculate Hours. s M=l E3
"Referer: hitp:ffsearch.dogpile.comftexis/search?g=Currency+Conversion"
"&geo=noéfs=webin"

"li-Modified-Since: Sunday, 05-4pr-00 04:21:13 GMTyn"

"'

set Think_awvg = 10;

HTTF_COMNN_DIRECT,

"GET /dogpilefimages/results/logo.gif HT TR/ .04n"

"Accept image/gif imagefoxhitmap, imagefjpedgitn” .
"Acceptlanguage: eniyin”

"UserAgent: Mozilla/1.22 (compatible; MSIE 2.0d; Windows NTfn"

"Connection: Keep-Aliveldn"

"Referer: hitp:ffsearch.dogpile.comftexis/search?g=Currency+Conversion"

"&geo=nod&fs=wekin"

"l-hodified-Since: Sunday, 23-Feb-00 20:50:43 GMTyAn"

L | o

Single Step | ulti-Step | Suzpend | Hesume | Termninate | Ereal: Dut |

The Test Script View window shows the test script that is running. The test script
displays, line by line, what the virtual tester is doing.

For information about the options available in this view, see Test Script view in the
TestManager Help Index.

Debugging a Test Script

You may encounter problems when you are monitoring a test. TestManager provides
tools that enable you to debug a test script. When you debug a test script, it is a good
idea to run the test with just one virtual tester, correct the test script, and then run the
test as usual.

To debug a test script:

* During a test run, click Monitor > Test Script and select the virtual tester running
the test script that you want to debug.

Select one of the following debugging options:

» Single Step — Steps through a test script one emulation command at a time,
allowing you to see what happens at each command. To use this option, first
suspend a virtual tester. This is useful for pinpointing problems.

* Multi-step — Steps through a test script multiple emulation commands at a time. To
use this option, first suspend the virtual tester. Then you can select a number of
commands to execute at a time.

144 Chapter 5 - Executing Tests

» Suspend — Suspends a virtual tester at the beginning of the next emulation
command.

* Resume — Allows a suspended virtual tester to resume its progress through a test
script.

» Terminate — Ends the virtual tester’s execution of a test script.

» Break Out — Moves a virtual tester out of the following three states:
s Waiting on a shared variable
= Waiting on a response

@ TSS delay function

Displaying the Sync Points View

The Sync Points view displays information about the synchronization points that you
have set in the suite or that you have included in a test script.

Note: This view contains information that pertains to performance testing.
To display the Sync Points view:

* During a run, click Monitor > Sync Points.

I Sync Points == E
[. g Yirtual Testers [relay [mz)
; Hame State Time Tmeout Arrived to Syhc Late Iin [LE
1| Stress_Test Feleased i 000513 Infinite: 9] 1] oo ;o 000000
i |Accaunting Beleased i 00:05.13 Infinite: 1 1 1] 000000 ;o 00:00:00

For information about each column in this view, see Sync Points view in the
TestManager Help Index.

Displaying Virtual Testers Waiting on a Synchronization Point
To display the virtual testers waiting on a synchronization point:
1 During a run, click Monitor > Sync Points.

2 Right-click the name of the synchronization point, and then click See Users.

Monitoring Test Runs 145

Releasing a Synchronization Point

You might decide to release a synchronization point, even though the required
number of virtual testers has not yet been reached. Subsequent virtual testers that
arrive at the synchronization point are not held. However, if you have set a restart
time and a maximum time in the suite, the virtual testers are delayed. So, for example,
if you release a synchronization point but have set a restart time of 1 second and a
maximum time of 4 seconds, each virtual tester who reaches that synchronization
point is delayed from 1 to 4 seconds.

To release a synchronization point:
1 During a run, click Monitor > Sync Points.
2 Right-click the name of the synchronization point and then click Release.

3 A confirmation message appears, asking you to confirm the release. Click Yes or
No.

Displaying the Computer View

Use the Computer view to check the computer resources used during a run, as well as
the status of the Local and Agent computers at the beginning and end of a run.

For information about each column in this view, see Computer view in the TestManager
Help Index.

Viewing Resource Usage During a Run

When you view resource usage during a run, TestManager displays the computer
resources used for each Local and Agent computer in the run.

To check computer resources used:

= During a run, click Monitor > Computers.

i Computer View

Resources Used
CPU Memaon Disk Transfers/Sec,
System | User | Total [Qusus LengtH Pages Input/| Pages Output] % Used |Disk 1] Dick 2] Disk 3] Disk 4
Local comput| | ncal comi Run ! 000626 50 6..1.83.1 99 ! b 04t B 63 FL AL MNA A 2z I}
hegaagentd Agent Run :00:06:30 50 A T W 2] ! 14 k] 16,0 MA L NA T TNA 14 9

It
Lt | 2l

Computer o Wirtual
Tupe State Time s

Mame

% Disk Used | Delay [r

For information about each column in this view, see Computer view in the TestManager
Help Index.

146 Chapter 5 - Executing Tests

Graphing Resource Usage During a Run

You can graph the resources that your computer uses during a run. This provides you
with a visual representation of resource usage. Within this graph of resources, you can
change the color of an item in the graph, remove an item from the graph, or remove all
items in the graph.

To graph computer resources:
1 During a run, click Monitor > Computers.

2 Right-click in the Resources Used or Network columns and then click Add to Graph.

Viewing Computers at the Start or End of a Run

The Computer view appears automatically when Agent computers start up. When all
Agents are up and running, the Computer view closes. When Agents begin shutting
down, the Computer view reappears automatically so that you can watch cleanup
activities, such as transferring files to the Local computer.

The Computer view includes Progress messages, which indicate when the computer
is creating or initializing processes, transferring files, terminating virtual testers, and
SO on.

For information about each column in this view, see Computer view in the TestManager
Help Index.

Displaying the Transactor View

The Transactor view shows the status of any transactors that you inserted into the
suite.

Note: This view pertains primarily to performance testing.
To display a Transactor view:

* During a suite run, click Monitor > Transactors.

= Transactor [_ (O] x|
MHame Type State Uszers Target Rate | Start Time | Active Time | Transactions | Actual Rate % Late
Accounting Coordinated (Mot started 0 1 per min [WFS W [WFS A NAA

For information about each column in this view, see Transactor view in the
TestManager Help Index.

Monitoring Test Runs 147

Displaying the Group Views

The Group views show the status of all user groups that you have defined. Both
Group views show the same information, but the Suite view shows the information
by user group, and the Computer view shows the information by computer.

To display a Group view:
» During a run, click Monitor > Groups.
The two Group views are:

= Group View - Suite — A list of the user groups in a suite. The following figure shows

this view:
| = Group View - Suite H=] E3
Biiaup Yirtual Tester
Total Active Suzpended Abnormal Mormal
End of Month Accounting 1 1]] 1] 1
Accounting 19 14 1] 1] 0

» Group View - Computer — A list of the groups assigned to the same computer. The
following figure shows this view:

j| = Group View - Computer H=] E3
B Wirtual Tester
i Total [Active [Suspended [Abnarmal [Normal
Local computer 20 19 1] 0 1

For information about each column in this view, see Group View - Suite or Group View -
Computer in the TestManager Help Index.

To display the virtual testers in the groups, right-click the name in the left column and
then click See Users.

Filtering and Sorting Views

This section discusses how to customize a view. For example, you can sort virtual
testers in various ways, or you can filter virtual testers and groups so that only certain
information is displayed.

Sorting the Virtual Testers in a User or Computer View

While displaying a User or Computer view, you may want to see the virtual testers in
a particular order. For example, you can sort the virtual testers alphabetically, or you
can sort them in the order in which they started.

148 Chapter 5 - Executing Tests

To change the order in which the virtual testers are displayed:

» Right-click in a column under the Suite or Computer heading from an open user or
computer view to view the shortcut menu.

You can sort virtual testers in the following orders:

» Suite Order — The order in which the user group appears in the suite.
= Execution Order — The order in which the virtual testers are started.

= Suite Groups — Alphabetical listing of suite groups.

= Computer Groups — Alphabetical listing of computer groups.

Filtering a View

You can filter virtual testers in a User or Computer view so that only certain virtual
testers appear. This is useful if you are running many virtual testers and you want to
focus on the progress of a few of these testers.

Filtering Virtual Testers

You can filter virtual testers by including or excluding selected virtual testers:

* Include - Displays only the virtual testers that you selected.

» Exclude - Displays all virtual testers except those that you selected.

To filter virtual testers:

1 Select the virtual testers that you want to filter from an open user or computer
view and right-click to display the shortcut menu.

2 C(Click Filter Virtual Testers and then click Include or Exclude.

Filtering a Virtual Tester by Value

You can filter a virtual tester on any value that stays constant during the run, such as
the name of its group, the type of test script it is running, or the name of the computer
on which a virtual tester is running.

For example, you might be running a test with 200 virtual testers in the Accounting
user group, 300 virtual testers in the Data Entry user group, and 500 virtual testers in
the Sales user group. You want to see only virtual testers in the Data Entry group.
Filter the group so that TestManager displays only the group with the “Data Entry”
value.

Monitoring Test Runs 149

To filter a virtual tester by value:

1 Right-click in any cell under the Suite, Group, or Type headings of an open User or
Computer view.

2 Click Filter Virtual Testers and then click By Value.

3 Select a string in the String box, click either Include or Exclude, and then click OK.

Filtering a Group View

If the Group view displays many columns, you can filter out some columns to provide
more room to view the columns that you want to see. You can filter a group on any
value that stays constant during the run, such as the name of the computer or user
group or the type of test script.

To filter a Group view:
1 Right-click in the Group or Type heading of an open User or Computer view.
2 Click Filter By Value.

3 Select a string in the String box, click either Include or Exclude, and then click OK.

Restoring the Default Views

If you have zoomed in on a histogram bar, filtered a view, or changed the widths of a
column in a view, you may want to restore the bar or views to their original settings.

To restore a view to its original setting:

* From the view that you want to restore, click View > Reset.

Changing Monitor Defaults

When you monitor a test, you can set which views appear automatically, how often
the views are refreshed, and whether toolbars appear automatically when you run the
test. You can also configure the Custom histogram, and change its colors, as described
in the next section.

150 Chapter 5 - Executing Tests

To change monitor defaults:

Options
Create Suite Moritor I Heportsl Run I WL Eompilationl

Default Views

Click Tools > Options and then click the Monitor tab.

— User/Computer
¥ Compact ™ Results
I~ Source ™ Message
— State Histogram
[~ DCOM [T HTTP ™ 5oL ™ Custom
[~ GUI I Iop I¥¥ Standard Lanfigure... |
— Group
" Suite ™ Computer
— Mizc
™ Shared Variables I Suite - Users/Computers [Sync Points
" Computer ¥ Suite - Dveral ™ Script
[~ Transactor
Update rate [zec): I 2_|::l
¥ Show Progress Bar
™ Always show soript for 1 user iuns
¥ Betum visws to previous position and size
¥ Minimize non-monitor views at start of run
Ok I Cancel Help

Configuring Custom Histograms

By default, the State Histogram - Custom is identical to the State Histogram -
Standard. However, unlike the other histograms, you can configure the State
Histogram - Custom. You can configure the groups, create new groups, and change
the colors that designate a group.

Monitoring Test Runs

151

To configure the State Histogram - Custom:
= From the Monitor tab of the Options dialog box, under State Histogram, click
Configure.

State Groupings

LCurrent state grouping:
Im vl Color I Add Grouping. . | [DElEte Gt |

Unassigned states Grouping members

Screen Paint Delay

2P

{€

LLEE

W Digplay unazsigned states

Ok I Cancel I Help |

To assign or remove a state in a Custom Histogram group:

» In the State Groupings dialog box, select a group from the Current State Grouping
field.

To add an entire group to the Custom histogram:
» In the State Groupings dialog box, click Add Grouping.

Add Mew State Grouping

I arme: I

] I Cancel |

To delete a group from the Custom histogram:

» In the State Groupings dialog box, select the group to delete from the Current State
Grouping box and then click Delete Grouping.

When you delete a group, all states that were in the group are unassigned.

152 Chapter 5 - Executing Tests

Controlling a Suite During a Run

TestManager provides a variety of ways to help you control a suite while it is running,.
For example, you can:

» Suspend a suite to change settings or examine its progress.

» Change the update rate of a suite.

Suspending and Resuming Virtual Testers

While a suite is running, you can suspend and resume all virtual testers, or you can
suspend and resume individual virtual testers. This is useful for investigating any
problems that occur during the run.

To suspend or resume all virtual testers:
= (Click Monitor > Suspend Test Run or Monitor > Resume Test Run.
To suspend or resume individual virtual testers:

1 Click Monitor > User or Monitor > Computers, and select the virtual tester row that
you want to suspend.

2 Right-click, and then select Suspend or Resume.

When you monitor a TestManager suite and suspend a virtual tester in an
independent transactor, upon restarting, the tester tries to catch up on the missed
transactions. If you suspend a virtual tester in a coordinated transactor, the remaining
testers compensate by attempting to maintain the desired transactor rate. If the rate
cannot be maintained, as testers restart they try to catch up on the missed
transactions.

Setting and Changing the Update Rate

By default, TestManager updates your views every two seconds. This rate is generally
sufficient.

However, if you are running many virtual testers or the CPU percentage used is high,
you may need to lower the update rate.

To update the current views while you are running the suite:
* (Click Monitor > Update.

To change the update rate of all views in the run:

1 Click Tools > Options and then click the Monitor tab.

2 At Update Rate (sec), type the number of seconds to elapse between updates.

Monitoring Test Runs 153

Stopping Test Runs

To cancel a suite run while TestManager is checking the suite:
» Maximize the Messages from running suite window and then click Cancel.
To stop a test when it is running:

» (Click Monitor > Stop Test Run.

Stop Run

Action
£ short [w/o results]

@ Process results

© Save and wn reports

Clean-up time: I 30 [zeconds]

es Mo | Help |

Stop a run in one of these ways:

» Abort (w/o results) — Stops the run and does not save the test log. Click this option if
you do not plan to run any reports or look at any Virtual Tester Error or Virtual
Tester Output file in the Test Log window.

* Process Results — Stops the run but saves the test log so that you can run reports,
and look at any Virtual Tester Error or Virtual Tester Output file in the Test Log
window.

* Save and Run Reports — Stops the run, saves the test log, and automatically
produces reports, just as if your run completed normally.

You can also specify Clean-up time. This is the amount of time allowed from the time
you request termination until TestManager forces the termination of the run.

Note: When you abort a large test that includes multiprocessor Local or Agent
computers, choose a Clean-up time of 60 seconds or more to allow virtual testers (rtsvui
processes) time to exit on their own. The default Clean-up time of 1 second often
causes the Local computer to terminate many processes at once, and can result in
leftover rtsvui processes. Although not harmful, they clutter the process table. They
can be killed individually by using Task Manager, or all at once by logging off.

When the test finishes running—whether normally or by manual
termination—TestManager displays any log data in the Test Log window. For more
information about the Test Log window, see Evaluating Tests on page 155.

154 Chapter 5 - Executing Tests

Evaluating Tests

This chapter explains how to use the Test Log window of TestManager to view logs
and interpret their contents. It also explains how to create and run reports to help you
manage your testing efforts. This chapter includes the following topics:

» About test logs

= Viewing test log results

» Viewing test script results recorded with Rational Robot
* Reporting results

Note: For detailed procedures, see the TestManager Help.

About Test Logs

After you run a suite, test case, or test script, TestManager writes the results to a test
log. Use the Test Log window of TestManager to view the test logs created after you
run a suite, test case, or test script.

A testing cycle can have many individual tests for specific areas of an application.
Reviewing the results of tests in the Test Log window reveals whether each test
passed or failed. Review and analysis help determine where you are in your software
development effort and whether a failure is a defect or a design change.

You can use the Test Log window to:
» Open a test log to view a result.
= Filter the data of a test log to view only the information you need.

= View all test cases with an unevaluated result in the Test Case Results tab of the
Test Log window. This is particularly useful in evaluating the results of
performance test cases. You can sort the test cases by actual result and then review
and update all unevaluated test cases.

» Submit a defect for a failed log event. The test log automatically fills in build,
configuration, and test script information in the ClearQuest defect form. For
information about submitting a defect, see About Submitting and Modifying Defects
on page 167.

155

» Open the test script of a script-based log event in the appropriate test script
development tool. For example, if you create a manual test script, ManualTest
opens and displays the test script. If you create a custom test script type,
TestManager opens the test script with the editor that you specify. You use a Test
Script Console Adapter (TCSA) to specify which editor opens a test script and to
manage custom test script types. For information about using custom test script
types, see Defining Custom Test Script Types on page 14.

= Preview or print data displayed in the active test log in the Test Log window.

= If you use Robot to record test scripts, you can analyze the results in a Comparator
to determine why a test failed. If you use Quality Architect to generate test scripts
from Rose models, you use the Grid Comparator to analyze results. For
information about using the Comparators, see About the Four Comparators on
page 221.

Opening a Test Log in TestManager

To open the Test Log window manually, do one of the following;:
= (lick File > Open Test Log.

* In the Results tab of the Test Asset Workspace, expand the Build tree and select a
log.

&l myproject322 - Rational TestManager [_ (O] x]
File Edit View Repots Tools Window Help

Buldtee —\ |38 a2 @& | H@ (=238 (887 |[PARDE [/ nE -5 B
|

B Builds
S-E Buid1
527 Defaul
3 Gridwp
Test Asset
Workspace 23 Dbiprap
‘‘‘‘‘‘ B TestCasel

‘‘‘‘‘‘ Ef Testup

ﬂlP\anning I Execu‘rion @Rﬂsuﬂs |a Dnalysis I

|Ready |admin |Currently Selected Filter: 4

Results tab

Note: For detailed procedures, see the TestManager Help.

You can open more than one test log in the Test Log window. If you have more than
one test log open, the log that is currently active is the one that is acted upon when
you use most menu commands.

156 Chapter 6 - Evaluating Tests

To control when the test log opens after running a test case, test script, or suite:
» (Click Tools > Options and then click the Run tab.

Note: You can also start the test log from a selected test script in a TestFactory
application map. For more information, see the Rational TestFactory User’s Guide or the
TestFactory Help.

The Test Log Window

The Test Log window of TestManager contains the Test Log Summary area, the Test
Case Results tab, and the Details tab. The iteration that appears in the Test Log
Summary area is associated with the build.

Interpreted result of test case Promoted test cases

Actual result of test case Associated

Test Case name defects

BE Test Log - Suite 23

Suite: Hime

BB | HepTetCuss

Build: Feports

Buid 1 UI Tests

Test Log " [Log Folder

Summary Detault

Iberation:

Iteration 1

Start Date/Tirne:

1140142000 02:33:40 AM

End Date/Time:

1140142000 02:33:40 AM L I | L

Test Gase I}esullx |De1ails I
i

Actual Result
Pass

Interpreted Result

Warning phys 00000001

Test Case Results tab J Details tab

About Test Logs 157

Test Case Results Tab

From the Test Log window, click the Test Case Results tab to get the overall results of
each test case—did it pass or fail? The Test Case Results tab displays the results of
running a test case or a suite that contains one or more test cases. If you run a test
script from TestManager, ManualTest, or from Robot, even if the test script is an
implementation of a test case, the Test Case Results tab will be empty. You must run a
test case to get results in the Test Case Results tab.

B Test Log - Suite 23 M=l E3

—_—
Suite: Hame Actual Result Interpreted Result Promoted Defects

ISuite 23 Pass Pass

Build:

IBuiId1

Log Folder:

IDefauIt

Iteration:

S

Start Date/Time:

IW 1/01/2000 08:39:40 AM

End D ate/Time:

IW 1/01/2000 08:39:40 AM

UT Tests Warning phry=00000001

Test Gase Resulls |Detils |

Test Case Results tab

Interpreting Test Case Results

When you first open a test log and click the Test Case Results tab, it displays the same
values for actual results and interpreted results: pass, fail, informational, or warning.
An actual result is the test case result returned and logged when the test case was run.
The actual result also appears in the Interpreted Result column as the default
interpreted result. You may want to interpret a test case result if you possess
additional knowledge about it and want to correct it.

For example, a test case may fail because the software has a defect. In this situation,
the failure is valid, and you do not need to interpret the results. However, a test case
may fail under other situations, including;

» The application-under-test has changed, and you must modify the related test
scripts.

» There is a problem with the test automation—for example, a test script ran in the
wrong order.

In either situation, the failure is misleading, and you may want to change the
Interpreted Result column in the Test Case Results tab to Pass or Informational.

158 Chapter 6 - Evaluating Tests

Promoting Test Case Results

When you promote a test case result, you indicate that the result is useful to your
project and should be made visible to others. Before you promote a result, it appears
only in the test log.

For example, assume that the required number of test cases passed your testing
criteria for a build to be shipped to beta customers. You consider the test results
“official” and want to include them in Test Case Results Distribution or Test Case
Trend reports. Therefore, you promote the result for each test case that is important
for your testing criteria.

On the other hand, assume that TestManager reports a test case as failed. You
discover that the computer is not plugged in, so the test case could not run—which is
why TestManager reported the failure. A previous test case on that computer passed,
so you promote that test case result because you want to include it in a Test Case
Results Distribution or Test Case Trend report. Therefore, you would not promote the
result of the failed test case, because the result is not significant—and, in fact, is
misleading.

Promotion does not affect the result (pass, fail, informational, or warning). It merely
indicates that the result is significant enough to appear in a Test Case Results
Distribution or Test Case Trend report.

Note: You must also save the test case results when you close a test log to make the
result appear in a Test Case Results Distribution report after promoting it.

Details Tab

The Details tab of the Test Log window contains log events that are generated when
you run a test script, test case, or suite.

Note: Detailed test results in the Details tab cannot be promoted.

[
B Test Log - Suite 23 [_[O]x]

Suite: Event Type

Site 23 = Suite Start [Suite 23]

Date & Time
11/01/2000 08:39:40 AM

Failure Reazon Computer Mame:

caths

Executable Emor

Build = Computer Start 11/01/2000 08:39:42 AM corhs
Build 1 E ~ TestCase Start [Help Tes. 11/01/2000 0B:33:51 AM cohs

) E ~ TestCase Start (Reports] 1170142000 08:33:51 AM cths
Log Folder £~ TestCase Statt (Ul Tests) 110172000 06 4007 AM cqhs Bhy=00000001
Diefault o Computer End coths
teration: i - uite: End (Suite 23] Ergcutabls Emar
Stark Date/Time:
11/01 /2000 08:39:40 AM
End Date/Time:
11/01 /2000 08:39:40 AM 4] [

Test Case Resuts Details I
Details tab

About Test Logs 159

Viewing Test Log Results

After running a test case, test script, or suite, you can quickly evaluate the results in
the Test Log window.

Viewing Test Case Results

The results of all test cases appear in the Test Case Results tab of the Test Log
window.

In the Test Case Results tab you can:
» Sort by name, actual result, interpreted result, or promotion status.
To sort test cases:

2 In the Test Case Results tab, click View > Sort By, and then select how you want
to sort the test cases.

s Double-click the column heading.
= Show test cases by the following criteria:
2 Actual result with pass, fail, warning, or other.
2 Interpreted with pass, fail, warning, or other.
= Hide the equivalent results.
To show test cases by certain criteria:

2 In the Test Case Results tab click View > Show Test Cases. Then select the
criteria you want to see.

= Display event details for a particular test case in the Test Case Results tab.
To display event details:

2 In the Test Case Results tab, select a test case, and then click View > Event
Details. TestManager displays the Details tab and locates the event details for
the test case you selected.

160 Chapter 6 - Evaluating Tests

Viewing Event Details

Detailed information about each event is available in the Details tab of the Test Log
window.

In the Details tab, you can:
» Collapse and expand events.

» Find a particular result, event type, protocol, failure reason, verification point, or
command, or search for the name and value of a specific event property.

You can view an event and navigate through all of the failures (appearing in red in
the Result column of the Details tab) from the Log Event window.

To view a particular event:

1 In the Test Log window, click the Details tab.

2 C(lick View > Properties.

Note: For detailed procedures, see the TestManager Help.

You can keep the Log Event window open while you move through each event in the
Details tab of the Test Log window. You can also resize and move this window.

The General tab of the Log Event window displays the type of event, the date and
time the event was recorded, the test script name, expected result, result information
(if any), and other information about a log event.

Log Event - Yerification Point E

General | Configuration I

[Event Type “erificstion Poirt = .
Start Date/Time 10/04/2000 11:45:20 AM C“Ck_ to move to the
Stop Date/Time 10/04/2000 11:45:20 &M . previous event.
|Resu|t Pazs

| Failure Reason

|Failure Description

Seript Line Humber

22

Actual Results File

Additional Information

TreeWiew P

CompareData "MNames=trehain” |

"P=Chject Data"

Additional Output

|I]efects

Click to move to the

Script Hame Single Order next event.
Script VP Hame Ohject Data T
Script VP type Ohject Data
|Baseline Results File |Single Crder Object
Data exp.ard -

Viewing Test Log Results 161

The Configuration tab of the Log Event window displays the configuration
information of the computer on which you ran the test script.

Log Event - Yerification Point

General Configuration |

Memory Size

128

05 Service Pack

Service Pack S

0S5 Version

NT

Operating System

Wincowes

Processor

Pertium

Click to move to the

Processor Humhber 1

previous event.

Click to move to the
next event.

When you add a new log event property type, a new tab appears in the Log Event
window. The data, depending on how it is defined, displays in a separate tab in the
Log Event window as text or as an HTML file, or in a separate application. For
example, the Associated Data tab displays data generated by all http_request
commands, TSS logging methods (such as TSSLog . Message in Visual Basic), and
SQABasic timing statements.

Log Event - Emulation Command

General I Configuration

U=zing keep-alive connection to
"wyw. kodak con:80"

GET Click to move to the
AUSrinages enscorp store palmPixv? gi previous event.

f HTTP~1.1 —

Aocept @ ®o%

Referer: . Click to move to the
I/lttp Aowww . kodak | consTS~enscorpsstors next event.

Accept-Language: en—us —
Accept-Encoding: gzip. deflate
Tzer—igent: Mozilla~<4.0 (compatible:;
MSIE 5.5;: Windows HT 4.0

Host: www.kodak . com

Connection: Keep-Alive

Cockie:
zessionid=MLWUQlAAAAEMIQHTIO2SHWGA

=

162 Chapter 6 - Evaluating Tests

About Log Filters

You can create a log filter to narrow down the amount of data displayed in the active
Test Log window. For example, you can create a filter to display only verification
points or computer starts. A log filter can make it easier to view large test logs.

Note: TestManager stores log filters in a project. All log filters are available to all users
of a project but, when you apply a log filter to an active log, the results are visible only
on your local system.

You can:
» Create or edit log filters.

» Choose a filter to narrow down the amount of logged data displayed in the Test
Log window.

» Copy, rename, or delete a log filter. The copy feature is useful when you want to
create multiple filters that are similar to one another. After you create the first
filter, make a copy of it. Then edit the copied filter to make the necessary
modifications. You can also rename and delete a log filter.

Creating and Editing a Log Filter
To create or edit a log filter:

» (lick Tools > Manage > Log Filters. Click New, or select a filter and click Edit. Then
select the type of event information you want to filter on each of the tabs.

Note: For detailed procedures, see the TestManager Help.

If you filter an event type, the filter includes all information included in the event type
as well as the event type itself.

Viewing Test Log Results 163

Applying a Test Log Filter

After you create a test log filter, set the filter that you want to use to narrow down the
amount of logged data that appears in an active Test Log window.

To apply a test log filter:
* Open alog and click View > Set Test Log Filter and select the filter.

To turn off all log filters, click the test log filter All. This filter displays all
information logged in the Test Log window when you run a test case, test script, or
suite.

Note: When you apply a test log filter, the active Test Log window generates a new
log and then displays the new filtered log information, which may take some time.
For detailed procedures, see the TestManager Help.

Viewing a Test Script

You can select any log event that is associated with a test script and view it in the tool
that you used to create the test script. For example, if you create a GUI test script and
open the test script from the Test Log window;, the test script opens in Robot. If you
create a manual test script and open the test script from the Test Log window;, it opens
in ManualTest. If you create a custom test script type, TestManager opens the test
script with the editor that you specify. Use a Test Script Console Adapter (TSCA) to
specify which editor opens a test script and to manage custom test script types. For
information about using a custom test script type, see Defining Custom Test Script Types
on page 14.

Note: When you double-click an event in an open log generated from Robot under
Purify, Quantify, or PureCoverage, the test script opens in Robot, and the file opens in
the diagnostic tool. For information about setting diagnostic tools options, see the
Robot Help.

To view a test script:

1 Open a test log.

2 Click the Details tab.

3 Right-click a test script start or test script end event and click Open Script.
Note: For detailed procedures, see the TestManager Help.

164 Chapter 6 - Evaluating Tests

Working with Test Logs
When working with test logs, you can:
* Open a test log.
* Rename a test log.
* View the properties of a test log (the name, description, build, and log folder).
To do any of these tasks:
1 In the Test Asset Workspace, click the Results tab.
2 Right-click a test log and then select an item on the shortcut menu.

Note: You can also print data displayed in the Test Log window. For information, see
Printing a Test Log on page 169.

About Test Logs

Test logs record everything that happens during a test script, test case, or suite run
from the time the test script, test case, or suite begins until it ends. Unless logging is
specifically turned off, every virtual tester action, system call, verification point, and
result is included in the logging process. You can view properties for every event
from the Test Log window, and you can also view certain test logs in a whole file.

Suite Log

The suite log contains all the messages associated with a suite run. It is the same
information that you see in the Messages window when you run a suite. The log
contains build, log folder and log name information, and messages about checking the
suite, compiling test scripts, and any warnings or errors associated with the suite.

To view the suite log:

* In the Test Log window, right-click a suite start event and then click View Suite
Log.

To print a suite log:
* From an open suite log, click File > Print.

Note: For detailed procedures, see the TestManager Help.

Viewing Test Log Results 165

Virtual Tester Error File

The virtual tester error file contains any runtime error information associated with a
specific virtual tester.

Note: The error file does not always exist. If an error is encountered during playback,
TestManager records the error in this file. If no errors occur, no data populates this
file, so TestManager deletes the file automatically. For more information about test
scripts, see the Rational Robot User’s Guide or the Rational Test Script Services manual
for your language.

To view an error file:

* In the Test Log window;, right-click a virtual tester start event and then click View
Virtual Tester Error File.

To print an error file:
= From an open error file, click File > Print.

Note: For detailed procedures, see the TestManager Help.

Virtual Tester Output File

The virtual tester output file contains any information a virtual tester specifically
writes from test script output. This can be just about anything. For example, this file
could log SQL commands.

Note: The output file does not always exist. If output is generated during playback,
TestManager records the output in this file. If no output is generated, no data
populates this file, so TestManager deletes the file automatically. For more
information about test scripts, see the Rational Robot User’s Guide or the Rational Test
Script Services manual for your language.

To view an output file:

= In the Test Log window, right-click a virtual tester start event and then click View
Virtual Tester Output File.

To print an output file:
* From an open output file, click File > Print.

Note: For detailed procedures, see the TestManager Help.

166 Chapter 6 - Evaluating Tests

About Submitting and Modifying Defects

A defect can be anything from a request for a new feature to an actual bug found in the
application-under-test. Defect tracking is an important part of the software testing
effort.

Use the Test Log window of TestManager to submit defects for any verification points
that fail during playback of a recorded test script. When you submit a defect from the
test log, TestManager opens a special defect form configured by the ClearQuest
administrator to automatically accept TestManager data and fills in several fields for
you with information from the log. If you associate a test case with a test input, the
test input information appears automatically in the defect form. (When you submit
defects this way, TestManager does not actually start ClearQuest; it opens the defect
form, which is part of ClearQuest.) You can also submit defects manually using
ClearQuest, but none of the fields are automatically filled in for you.

Note: To use ClearQuest to store defects from TestManager, an administrator must
first set up the ClearQuest schema and then create or attach a ClearQuest user
database as part of a Rational project. For information, see the Rational ClearQuest
Administrator’s Guide. If you use ClearQuest Multisite, you must have ClearQuest
Mastership privileges to submit or modify a defect from the Test Log window. If you
do not have ClearQuest Mastership, modify defects manually using ClearQuest.

For your convenience, a specially designed schema, the TestStudio® schema, is
included with your software for defect tracking. In ClearQuest, the term schema refers
to all attributes associated with a change-request database. This includes field
definitions, field behaviors, the state transition tables, actions, and forms. For more
information about ClearQuest schemas, see the Rational ClearQuest Help.

About the Rational TestStudio Schema

The TestStudio schema includes two TestStudio defect forms: one for submitting new
defects and one for modifying and tracking defect information.

Note: To use the TestStudio schema, you must select it when you create a ClearQuest
user database as part of a Rational project. You can also select an existing ClearQuest
user database that uses the TestStudio schema. If you want to attach an existing
ClearQuest database that has a schema different from the TestStudio schema, you
need to upgrade the schema. For information, see the Rational Suite Administrator’s
Guide.

You can use the TestStudio defect form to track as many or as few details about a
defect as you want.

Note: To display information about each item in the defect form, right-click the item
and click Help.

Viewing Test Log Results 167

How to Submit and Modify a Defect

You can submit or modify defects from the Test Log window of TestManager or from
ClearQuest. If you open a test log in TestManager, TestManager fills in many of the
fields in the defect form. If you use ClearQuest, you must enter the fields manually.

To submit or modify a defect from TestManager, do one of the following:

* Ina test log, in the Event Type column, right-click the failed event and then click
Submit Defect.

= (lick Edit > Submit Defect.

Note: TestManager attempts to connect to ClearQuest using your user name and
password. However, if TestManager still cannot connect to the ClearQuest database,
the Login dialog box appears. In this case, type your ClearQuest user name and
password. Select the database in which you want to submit the defect.

If you submit a defect from the test log, the number of the new defect appears in the
Defect column of the test log.

Defect number

B Test Log - Suite 23

Suite: Event Type
Suite 23 B Suite Start [Suite 23]

Build =+ Computer Start
Build 1 E TestCase Start [Help Tes..
|:3 TestCase Start [Reports)

Lem il [~ TestCase Start [Ul Tests]

Default Computer End

Iteratian; d (Suite 23] Executable Ermar

Date & Time
11/01/2000 08:33:40 AM
11/01/2000 08:33:42 AM
1170172000 08:33:51 AM
11/01/2000 08:33:51 AM
1170172000 08:40:07 AM

Failure Reason Caomputer Marme Defects
cths
cthe
cghs
cahs
cahg

caths

Exgcutable Emor

phys00000001

Stark Date/Time:

117012000 08:33:40 AM

End Date/Time:

11/01/2000 08:33:40 AM 4] [
Test Case Results Details I

If the operating system code page and the ClearQuest schema code page do not
match, you may see an error message when you attempt to generate a defect from a
log event. Code pages are restricted to ASCII characters; if there are characters of any
other type on the code page, the error is possible, and a defect is not generated. For
more information about code pages, see the ClearQuest Administrator’s Guide and the
ClearQuest Designer online help.

Note: You can also submit defects from SiteCheck®, after you play back a Web
verification point. From the test log, right-click the failed Web verification point and
click Submit Defect. In SiteCheck, click Tools > Enter a Defect. For detailed procedures,
see the TestManager Help.

168 Chapter 6 - Evaluating Tests

Printing a Test Log

You can preview or print the information displayed in the active test log to analyze
test results, as shown in this example:

Example of a
print preview

Evert Type | Result Date & Time: Failure Rea... | Computer Mame Defects
[=— Suite Start (Suite 1) 10/06/2000 10:48:34 ... | Executable... corths
— TestCasze 0062000 10:48:51 .. Unkniown
— TestCasze 10ME200010:48:95 ... | Unknown
— TestCasze 10M06200010:49:03 ... | Unknown
B User Start A0ME2000 10:48:36 ...
4 Script Start (Push Buttar) ADMEA000 104543
— Application Start Pasz 10062000 10:45:44 ..
— Verification Point (O... 1062000 10:48:50 ...
— Script End (Push But... 1062000 10:48:50 ...
5 Script Start (Single Order) 1062000 10:48:50 ...
— Application Start 0062000 10:48:50 ...
— Verification Point (O... 062000 10:48:56 ...
— Verification Point (0. 1062000 10:48:57 ...
— Script End (Single Or... 1062000 10:48:57 ...
5 Script Start (Single Order) 1062000 10:48:57 ...
— Application Start 0062000 10:48:55 ...
— Verification Point (O... 1062000 10:4%:02 ...
— Verification Point (O... 1062000 10:4%:02 ...
— Script End (Single Or... 002000 10:49:03 ...
— User End 1062000 10:4%:03 ...
— Suite End (Suite 1) A10/06/2000 10:49:04 ... | Executable... corhs

When you print an active test log, your printed document matches what you see on
the screen, so be sure to display the level of detail on your screen that you want in the
printed document. To increase the number of details in the report, click the (+) plus
sign in the Event Type column. To reduce the number of details, click the minus sign
(-) in the Event Type column.

To print an active test log:

1 In the Test Log window, display the log that you want to print.

2 C(lick File > Print.

Note: For detailed procedures, see the TestManager Help.

Viewing Test Log Results

169

Managing Log Event Property Types

You can manage log event property types to register additional log event properties
for display in TestManager. When you add a new log event property
type—depending on how it is defined—it displays in a separate tab in the Log Event
window as text or as an HTML file, or in a separate application. For more information
about the information logged by this property type, see Viewing Event Details on
page 161.

Note: Log event property types are related to the extensibility of TestManager. When
integrating a new test script type, you can define additional log event properties. For
more information, see the Rational TestManager Extensibility Reference.

TestManager supplies a default log event property type Virtual Tester Associated Data.
This only applies to data generated by all http_request commands, TSS logging
methods (such as TSSLog.Message in Visual Basic), and SQABasic timing
statements.

For example, if you are running a test against a Web server, you could set up an event
type that specifically logs HTTP requests on the Web server.

To create or edit a log event property type:

* (Click Tools > Manage > Log Event Property Types. Click New.

170 Chapter 6 - Evaluating Tests

Hew Log Event Property Type
General | Statistics |

Mame:

Enter a property name. \|

Description:
Click Internal viewer and =]
select Text or HTML to either
add a tab to the Log Event
Properties dialog (Text) or launch
a Web browser displaying logged |
information (HTML). Owner:

| -
Click External viewer to see \Elfm;e{ vee o

+ |nternal viewer:

logged data in the application of

Text -
your choice. T [rex B

™" Extemnal viewer

Click to select a Format type to I

specify whether the data logged — Farmat type
is the actual data or the Data
reference to the data in an B | | o e

separate file.

[k I Cancel | Help

Note: For detailed procedures, see the TestManager Help.

Viewing Test Script Results Recorded with Rational Robot

You can use Robot to record test scripts that contain verification points. After you
play back the test script, Robot writes the results to a log. Certain verification points
also have baseline data files that are saved. If a verification point fails during playback,
actual data files are also saved. Use the appropriate Comparators to view actual data or
image files and view and edit the baseline files as needed.

In addition to using the Test Log window to view the playback results of verification
points, you can use it to view procedural failures, aborts, and any additional playback
information.

A testing cycle can have many individual tests for specific areas of an application.
Reviewing the results of tests in the Test Log window reveals whether each passed or
failed. Analyzing the results in a Comparator helps determine why a test may have
failed. Review and analysis help determine where you are in your software
development effort and whether a failure is a defect or a design change.

Viewing Test Script Results Recorded with Rational Robot 171

Viewing a Verification Point in the Comparators

In the Details page of the Test Log window, failed events appear in red in the Result
column. If the event is a failed verification point of a test script created using Robot,
you can analyze the failure using one of the Comparators.

To view a verification point in a Comparator:

1 Open a test log.

2 Click the Details tab.

3 Right-click a verification point and click View Verification Point.

The appropriate Comparator opens based on the type of verification point, as shown
in the following table. You can then analyze the results to determine whether the
failure was caused by a defect or an intentional change in the application.

Comparator Verification Points
Text Comparator Alphanumeric
Grid Comparator Object Data
Menu
Clipboard
Image Comparator Window Image
Region Image
Object Properties Comparator Object Properties

Note: QualityArchitect uses the Grid Comparator to display verification point
information.

For more information about the four Comparators, see Using the Comparators on
page 221.

Failure indications in test logs do not necessarily mean that the application-under-test
has failed. Evaluate each verification point failure with the appropriate Comparator
to determine whether it is an actual defect, a playback environment difference, or an
intentional design change made to a new build of the application-under-test.

172 Chapter 6 - Evaluating Tests

Playback/Environmental Differences

Differences between the recording environment and the playback environment can
generate failure indications that do not represent an actual defect in the software. This
can happen if applications or open windows are indicated in the recorded
environment that are not in the environment, or vice versa.

For example, if you create a file using Notepad in the recorded environment, when
you play back the test script, the file already exists and the test log shows a failure that
has nothing to do with the software that you are actually testing.

You should analyze these apparent failures with the appropriate Comparator to
determine whether the window that Robot could not find is an application window
that should have opened during the test script playback or an unrelated window.

Intentional Changes to an Application Build

Revisions to the application-under-test can generate failure indications in test scripts
and verification points developed using a previous build as the baseline. This is
especially true if the user interface has changed.

For example, the Window Image verification point compares a pixel-for-pixel bitmap
from the recorded baseline image file to the current version of the
application-under-test. If the user interface changes, the Window Image verification
point fails. When intentional application changes result in failures, you can easily
update the baseline file to correspond to the new interface using the Image
Comparator. Intentional changes in other areas can also be updated using the other
Comparators.

For information about updating the baseline, see Using the Comparators on page 221.

Reporting Results

TestManager lets you create many different types of reports. The reporting tools that
TestManager provides are flexible enough for you to create a variety of queries and
display formats that help you determine whether your testing effort comprehensively
covers all of the requirements for your application. TestManager also provides several
default report definitions that you can use to create simple reports.

TestManager provides the following types of reports:

» Test case reports — Use to track the progress of planning, implementation, and
execution of test cases.

Reporting Results 173

» Listing reports — Use to display test assets and their properties that are stored in a
Rational project.

= Performance testing reports — Use to analyze the performance of a server under
specified conditions.

About Test Case Reports

Test case reports track the progress of planning, implementation, and execution of test
cases. These reports have multiple display formats including bar chart, stack chart,
area chart, line chart, pie chart, and tree view.

There are three types of test case reports:

= Test Case Distribution — Shows how thoroughly your test plan covers the
requirements and test inputs that you must test by displaying information such as
the number of test cases planned, who created them, what the configuration
information is, and whether the test cases have been implemented manually or
with a test script. For more information, see About Test Case Distribution Reports on
page 174.

» Test Case Results Distribution — Shows the same information as Test Case
Distribution reports for test cases that contain results from running a test script,
test case, or suite. For more information, see About Test Case Results Distribution
Reports on page 175.

» Test Case Trend — Shows the number of test inputs and test cases that are planned,
developed, executed, or that have met the testing criteria over a period of time. For
more information, see About Test Case Trend Reports on page 182.

In Test Case Distribution and Test Case Results Distribution reports, you can show
test cases that are suspect. A test case is suspect if a test input with which it is
associated changes in a meaningful way, implying that the test case coverage for that
test input is no longer sufficient. For more information, see About Reporting Test Case
Suspicion on page 180.

About Test Case Distribution Reports

Use Test Case Distribution reports during the planning and implementation phases of
a project. A test case distribution report helps you determine:

* The number of test cases planned.
» The number of test cases implemented with test scripts.
» The number of test cases that have not been implemented.

* The number of test cases implemented with a manual or automated test script.

174 Chapter 6 - Evaluating Tests

» The number of test cases with a specific property, for example, a specific iteration
or configuration.

* The number of test cases that are suspect.

The following Test Case Distribution report shows the implemented test cases with
the number of manual and automated test scripts.

|& Implemented Functional Test Cases [_ (O] x]
EICIENE
Test Case Distribution
12
1071
@ L
[i
b7 H L] Crested B
é 6l 1 None
o | O] Wanuat
2 O] Aute
E 4+
=3
= L
2L
1] T
aclmin
Crested By
v

For information about creating Test Case Distribution reports, see Creating a Test Case
Distribution Report on page 192 and Creating Test Case Suspicion Reports on page 193 .
For information about running these reports, see Running Reports on page 197.

About Test Case Results Distribution Reports

Use Test Case Results Distribution reports during the execution phase of a project.
These reports provide crucial information about the results of running a test script,
test case, or suite. Using the result information, you can evaluate the quality of a
specific build and the progress of the testing of that build.

Reporting Results 175

The following Test Case Results report shows the number of test cases with results
and the number of test cases executed for each test input.

|
| Test Input [_ (0]]
SHEF ‘v H ‘

- 1
=[] FEAT! ClassiesCD com Wb Shop

E--‘ FEAT1.1 Secure payment method

o] PapmentSecuiy

E--‘ FEAT1.2 E sy browsing

o] Browsing

= [B) FEATY.3 Al to check status o en ordr

o] PaymentSecuily

-|&] FEAT1.4 E-mail nofization af new tles of interest

FEATY.5 Highly scaleable

FEAT1.E Abilty to customize the web site

=-[&] FEAT1.F User registration good for fulune purchases

N o] PaymentSecuily

1B FEAT2 ClassicsCD Administation System

=-[B) FEATZY Akl to addhemave ofigs

g

FEATS Interactive quide o site thiough online Help

These green cells
indicate that these
test cases have
been executed,
have results, and
have passed.

e o] Adiin These red cells
=[] FEAT2.2 Abiliy o check on customer ordses indicate that these
C L) bdin test cases were
E--‘ FEAT2 3 Maintain custamer infamatian executed, have
e Admin results, but did not
= [B) FEAT24 Generate epors pass.

] Adin

For information about creating Test Case Results Distribution reports, see Creating a
Test Case Result Distribution Report on page 194. For information about running these
reports, see Running Reports on page 197.

About Default Test Case Coverage Reports

TestManager provides several default test case coverage report definitions. You can
use these report definitions to quickly create a variety of test case coverage reports.
These report definitions help you create reports that track the progress of your test
planning, test development, and test execution efforts. They demonstrate how well
the testing of your requirements is covered by showing which requirements have test
cases and implementations assigned to them and which still need them.

176 Chapter 6 - Evaluating Tests

The following table describes the default test case coverage report definitions.

input, and while you
are implementing
them, you can use this
report to determine
the number of test
cases that have been
implemented and the
percentage of test
cases per test input
that have been
implemented. This
gives you an exact
picture of the progress
of the implementation
of your test plan.

Report Name AYallable Purpose Distributed Description
with over
Test Plan New You can determine Test plans A Test Case Distribution
Development | projects | whether each test case report that shows the
Coverage that is planned has at number of planned and
least one implemented test cases in
implementation each level of the test plan
associated with it. (test plan, test folder, and
test case).
Test Input New You can determine if | Testinputs |A Test Case Distribution
Planning projects | there are discrepancies report that shows the
Coverage between the test cases number of planned test cases
you have planned to and the percentage of test
cover your test inputs, inputs that are implemented.
and how many of your For example, if a test input is
test cases actually associated with a test case
have implementations that contains two configured
associated with them. test cases and the test case
and one of the configured
test cases have
implementations, this report
shows that the test input is
66% implemented.
Note: This report definition
is the same as the Test
Planning Coverage report
definition from previous
releases.
Test Input New After you have Test inputs | A Test Case Distribution
Development | projects | planned the test cases report that shows the
Coverage that cover each test number of test cases

planned, the number of test
cases implemented, and the
percentage of test cases
implemented, in each level
of the test plan.

Note: This report definition
is the same as the Test
Development Coverage
report definition from
previous releases.

Reporting Results 177

Report Name A‘./allable Purpose Distributed Description
with over
Test Plan New You can compare the |Test plans | A Test Case Distribution
Suspicion projects | number of planned report that shows the
Coverage and suspect test cases number of test cases that are
so that you can see, at planned and the number of
each level of the test test cases that are suspect.
plan, how much of the For more information about
test plan could be reporting test case suspicion,
affected by suspect see About Reporting Test Case
test cases. A test case Suspicion on page 180.
is suspect if the test
input with which it is
associated changes
significantly.
Test Plan New This report is similar | Test plans | A Test Case Distribution
Suspicion projects | to the Test Plan report that shows the
Coverage Suspicion report, but number of test cases that are
with Status in addition, it provides planned and the number of
a description of the suspect test cases. Includes a
suspect status next to text description of the
each test case in the suspect status.
report.
Test Plan New You can see the Test plans | A Test Case Results
Execution projects | number of Distribution report that
Coverage implemented test shows the number of test
cases that have been cases that are implemented,
executed at each level that have results, that
of a test plan and the passed, and that failed.
results. This shows
you the integrity of
your testing coverage
and of the product you
are testing by
displaying which test
cases have run and if
they passed or failed.

178 Chapter 6 - Evaluating Tests

Report Name A‘./allable Purpose Distributed Description
with over
Test Input New After you have Test inputs | A Test Case Results
Execution projects | planned the test cases Distribution report that
Coverage that cover each test shows the number of test
input, and while you cases that are planned, that
are executing them, have been executed, and the
you can use this report percentage of test cases that
to determine the have been executed.
number of test cases Note: This report definition
that have been run is the same as the Test
and the percentage of Execution Coverage report
test cases per test definition from previous
input that have been releases
run. This gives you an '
exact picture of the
progress of the
execution of your test
plan.
Test Planning | Projects | You can determine if |Testinputs |A Test Case Distribution
Coverage upgraded | there are discrepancies report that shows the
from between the test cases number of planned test cases
previous |you have planned to and the percentage of
releases | cover your test inputs, planned test inputs.
and how many of your Note: This report is the same
}fs,(cases lactualtl yt as the current Test Input
assvoecilg:g devrxl;ii}r: fh:ecr)ﬂ.s Planning Coverage report.
Test Projects | After you have Test inputs | A Test Case Distribution
Development | upgraded | planned the test cases report that shows the
Coverage from that cover each test number of test cases
previous |input, and while you planned, the number of test
releases |are implementing cases implemented, and the

them, you can use this
report to determine
the number of test
cases that have been
implemented and the
percentage of test
cases per test input
that have been
implemented. This
gives you an exact
picture of the progress
of the implementation
of your test plan.

percentage of test cases
implemented, in each level
of the test plan.

Note: This report definition
is the same as the current
Test Input Development
Coverage report definition.

Reporting Results 179

you can use this report
to determine the
number of test cases
that have been run
and the percentage of
test cases per test

Report Name A‘./allable Purpose Distributed Description
with over
Test Projects | After you have Test inputs | A Test Case Results
Execution upgraded | planned the test cases Distribution report that
Coverage from that cover each test shows the number of test
previous |input, and while you cases that are planned, that
releases | are executing them, have been executed, and the

percentage of test cases that
have been executed.

Note: This report definition
is the same as the current
Test Input Execution
Coverage report definition.

input that have been
run. This gives you an
exact picture of the
progress of the
execution of your test
plan.

About Reporting Test Case Suspicion

Test Case Distribution and Test Case Results Distribution reports can show test cases
that are suspect. A test case is suspect if a test input with which it is associated
changes in a meaningful way (for example, a new feature is added to a requirement
that requires a new test script). Those changes imply that the test case coverage for
that test input is no longer sufficient. The test input adapter determines if a test input
changes in a meaningful way: It indicates which test inputs have changed since a
particular date and time, enabling TestManager to determine which test cases are
suspect. TestManager marks the coverage link between the test input and test case as
suspect to notify you of a potential gap in the test coverage. You can define a Test
Case Distribution or a Test Case Results Distribution report to show suspect states
and the number of suspect test cases. When you run test case suspicion reports, test
inputs appear as children of test cases. For more information about test case
suspicion, see Test Impact Analysis on page 53.

Note: Suspect links cannot be market or cleared in the output views of reports.

You can view the suspect state of test cases in Test Case Distribution or Test Case
Results Distribution reports in the following ways by:

* Viewing counts of test cases that are suspicious. When you distribute over test
inputs or test plans, the reports show which test cases are suspect and a roll-up
count of suspect test cases (the number of suspect test cases contained in test case
folders, test plans, and other elements that contain test cases), as well as a
description of the suspect state.

180 Chapter 6 - Evaluating Tests

Defining a Test Case Distribution or Test Case Results Distribution report template
for showing the suspicion state and counts of test cases.

Showing test inputs as children of test cases when you run Test Case Distribution
or Test Case Results Distribution reports with suspicion status.

Creating default test case queries to display only suspect or nonsuspect test cases
when you either create a new test datastore or upgrade an existing test datastore.

Four suspicion states appear in Test Case Distribution and Test Case Results
Distribution reports:

Suspect: The test input has changed in a meaningful way. This suspicion state
appears in red.

Not Suspect: The test input has not changed in a meaningful way. This suspicion
state appears in green.

Note: Not Suspect status appears for test cases that have not been linked to test
inputs, as well as for test cases that are linked to test inputs where the test inputs
have not changed.

Child or Children Suspect: The test input has one or several child assets that are
suspect. This suspicion state appears in yellow.

Causing Suspicion: The test input is causing its parent asset to be suspect. This
suspicion state appears in orange.

TestManager provides two default Test Case Distribution Suspicion coverage reports.
For more information about these reports, see About Default Test Case Coverage Reports
on page 176.

Reporting Results 181

The following Test Case Distribution report shows the number of planned test cases,

the number of suspect test cases, and the suspicion status of each test case in each

level of a test plan.

{5 Test Plan

IS[=1 E3

SHRB

Planned Test Cases

Suspect Test Cazes

Suspicion Status

=

|- El] Functional Tests

21

Children Suzpect

E1-[L1 Business Function

21

Children Suspect

-1 Online Catalog

10

Children Suspect

=-[_] Browse Functions

2

Children Suzpect

=[] Browse by Compoger

Children Suspect

- v] Browse Mozart

1]
2
1

= ral o ra| raf ra| e

registers per store

[=1- »| Browse Sonataz

regizters per store

= D Order Funchionz

=-[[1 Create a new account

«| [Create account

------ »| From existing act

=-[_] Check Order

----- «| Ewisting order

----- »| Mewly placed order

----- w| POS Order

----- «| Walid card

=-[1 Place Order

«| Inwvalid Credit Cards

«| Werify Featured Selection

2.1 Cash Register

(= D tanager Functions

=~ Voids

«| Woid Multiple ltems

E| D Returnz

[]---D M aintenance

iple tems

JENPY Y (Y Y PN PO QY (UUNPY NG (Y U (Y Y S (PR Y FNEY I

] —

About Test Case Trend Reports

Test Case Trend reports provide information about the number of test inputs and test
cases that have been planned, developed, executed, or that have met the testing
criteria over a period of time, with intervals specified by builds, iterations, or dates.

182 Chapter 6 - Evaluating Tests

The following Test Case Trend report shows the number of test cases planned and
implemented over all iterations.

& Classics Online - Rational TestMal 1Ol x|
@ Fi= View Reportz Tools ‘Window Help =7 5[
=T

Test Case Results Trend

[Test Cases Impiemented

Mumber 01 Test Cases
=

Incept... Elabor... Elsbor ... Constr... Constr... Constr... Intis... Transi... Transi... Produc...

lteration

JESR T

|Ready | admin i

Filtering Test Input Source Information

Use one of two ways to filter test input source information in Test Case Distribution
or Test Case Results Distribution reports that distribute over test inputs.

Note: When you filter test input source information, it may take some time for
TestManager to generate a new report.

= Filter before you run a report — You can filter out unnecessary information in order
to narrow down the amount of data displayed in a Test Case report. In the Test
Case Distribution or Test Case Reports Definition dialog boxes, under Distribute
Over, click Value.

Reporting Results 183

Tree Values

Available Values: Selected Yalues:
----- % Rational Project - Requisi

¥

<

|
|
<

EN [I
: { Click to filter test input source
_ B T information.

oK | Cancel |

= Filter after you run a report — If you still need to eliminate unnecessary
information, you can filter out the unnecessary information.

- Click to filter test
input source
-k Classics Online - Rational TestManager - [Tes =alx
P Fle View Repots Tools “Window Help =18]%|
SR [v =]
Planned Test Cases Test Ca lﬂ

|E) 4(} Rational Project - RequisitePro Project
[E] ACTOR2 Manager
--[E] ACTOR Administrater
o . ACTOR Order Processing System
. ACTORS Credit Card Autharization System
| --[E] ACTORG Poink of Sale System
| B . FEAT1 Paint of Sale Spstem
- FEAT1.1 Cash register functions

=] FEAT1.2 Maintaining the stare’s inventary

e | Audd new SKU
=] FEAT1.3 Supparting muliple cash registers per store
i v| Browse Sonatas
t- | Browse Mozart
[- . FEATT.4 Initiating orders to replenish stock when necessary
[B . FEAT? Onder Processing System

- . FEAT2.1 Provide for bath autamated and human-assisted order et
| 5-[F) FEAT3 Warshouse system
FEAT31 Manage 1eceiving, ing, and shipping of

- FEAT3 2 Provide reaktime contral aver merchandise-handing equipment such as
- FEAT3.3 Interface with other Classics Inc. back-office systems such as Purchasing
___ andiccounis Payable
L . FEAT3 4 Interface with extemal spstems such a3 those of vendars and freight carmers
- B . FEAT4 Home Shopping e-commeice spstem
=} FEAT4.1 An online catalng for web vistors to browse
o v| Browse Sonatas

- #| Browse Mozart
(=N —

3 Shaded cells are
: green, indicating
0
0

that these test cases
are planned and
! implemented.

2 mimlel 2 o|lo|le|o|a| e H —| ol oo o]~

Note: For detailed procedures, see the TestManager Help.

184 Chapter 6 - Evaluating Tests

Viewing Properties of Assets in a Test Case Report

You can view the properties of an asset in any type of test case report. Double-click
the asset in a report to display a list of test cases associated with the particular asset as
shown in the following figure:

i~ | Implemented Functional Test Cases o [=1E3
El=IENES
. Double-click to
Test Case Distribution . .
display a list of
12
P
10+ Test Cases List
@ [Test Cases
FAEE ¥
&
% [Created [Add new SKU
g . C1 one Replece SKU mnber
5 C] Manua oncuirent User Login Tests
5 Concunert User Search Tests
£ 1 1 Auwo Multiple Compaser Brawsing
R Invalid Credit Card Orders
Cash Register Performance Tests
28
o +
admin
Created By
admin r
Click to display properties
of a selected test case.

Note: When you save a report, it creates a JPEG image. You cannot double-click a
JPEG image to display a list of assets.

When you double-click the number of a counted asset in a tree view type of test case
report (a Test Case Distribution or Test Case Results report created when you
distribute over a test input or test plan), the assets within that count display.

Reporting Results 185

For example, in the following figure, when you double-click 9 in the Implemented
column, a list of the nine test cases that have been implemented appears in the Test
Cases List window. To see the properties of any asset, select an asset, and then

right-click Properties.

- Test Plan
L2l |
EIEIRET /
[/ #Parned Himplemented /2]
-) Functionsl Tests H 18
=[] Business Function 21 18
-2 |Orline Catalog 10 g
=B Cah Rt ;
=[] Manager Fungfions [x]
=-E3 Voids 1 Test Cases
o Void 1 g o
Mulipke Browse Sonatas
Create account
=0 Retums 1| |From existing act
| Petum 1| |invalid Credit Cards
Muliiple Verlfy Featuied Selection
Items Existing crdler
=[] Clerk Functions 1 Newly placed order
5[] Process Sale 1 POS Order
ol Process 1
New Sale
£l

186 Chapter 6 - Evaluating Tests

Right-click Properties to display an
asset’s properties.

Double-click a number to display a
list of test cases associated with an
asset in a particular count.

Click to display the properties
of a selected test case.

You can view the total number of test cases associated with an asset in a tree view
type of test case report. When you roll up a report, the total number of test cases
associated with an asset appears. When you roll down a report, the number of test
cases associated with an asset appears beside each asset.

Click to roll up or roll down the
number of test cases
associated with an asset.

|

b Classics Online - Rational Testanage -0/ x|
§ Fle Vew Reoots Took Window Help -18]x|

CEEE [v n]

[Planned Tes! Cases | Inplemenied TestCa.. [
5 2. Retone Pofet - ReguistzPo Pofeel 7

ACTOR2 Maroger

ACTORS Adiistaor

ACTOR! OidetProcessing Systen
ACTOR Credt Card Authorzaton System
TO6 Paint of Sale System

FEAT Portof Sak Sytem

FEAT1.1 Cash register functons

FEAT1.2 Maintaining the store s nventoyy
< ddnew KU
FEAT1 jeters per store
1 Browse Sonalas
rowse Mozart
14 nfaling ordes o teplenish stock when recessay

2.1 Provide for both automated and human-assisted order entry

AT3.1 Manage receiving, warehousing, and shiping of mrchandise

AT32 Povide reckime conlol over merchandis handing equipment uch as

oo bl 1 el

FEATS 3 Interface wih ot CassiosIn. back ofce sstems such as Purchasing
andccous Poyeble

ase of vendors and feight cariers

FEAT4 Home Shopping e-commerce sstem
FEAT4.1 Anonln catalog for web vistars to browse
]

4 Browe Hozst _

Note: For detailed procedures, see the TestManager Help.

About Listing Reports

Listing reports display lists of the different test assets stored in a Rational project.
TestManager includes listing reports for builds, computers, computer lists,
configurations, iterations, sessions, suites, test logs, test plans, test scripts, and users.

Each listing report comes with one or more design layouts that you can use. A design
layout defines the look of each report and the specific information included in a
listing report. You can also customize the design layout or create new design layouts
using Crystal Reports. For information, see Customizing Design Layouts for Listing
Reports on page 189.

By using different combinations of layouts and listing reports, you can create a wide
variety of ready-to-run reports.

Reporting Results 187

For example, using the available design layouts and listing reports, you can create a
test script listing report that:

= Lists the details of all of the test scripts in your project.

{= Script Detail.rpt [_[OIx]

I 4 Tos b M o= (& [0]| Taad 00z B3

@ Script Detail Report

Add New SKU

Type: GUl

Owner: pat Custom 1:

Created By: System Custom 2;

Last Modifed By: System Custom 3:

Creation Date: 10/23/2000 Purpese; <None>
Modification Date: 10/23/2000 Environment: <None>

Browse Mozart

Type: WL

Owner: pat Custom 1:
Created By: System Custom 2:
Last Modifed By: System Custom 3:
Creation Date: 10/23/2000 Purpose:
Medification Date: 10/23/2000 Envirenment:

Browse Mozart Selections

Type: Gul

Owner: pat Custom 1:

Created By: Systern Custom 2:

Last Modifed By: Systern Custom 3:

Creation Date: 1072372000 Purpose: <Nonez

Modification Date: 10/23/2000 Environment: <Nonez -

* Summarizes all of the computers in a project.

= Computer Summary.rpt [_[O]x]

LI Tof1 bW om | & & |[loox]| Toss 100

@ Computer Summary Report

Name Network Address
CITYBOY CITYBOY

DawnhT DawnP333
LizPC LizP400
LoadTest Master Farside
MarkPC MarkP333

SWILKEY
WehServer

=
=
=]
=]
=]
=
=
=

DBServer

SWILKEY
WehServer

DBServer

You can also create a query to specify which data to include in a listing report. For
information about creating a query, see the Crystal Reports Help.

188 Chapter 6 - Evaluating Tests

Customizing Design Layouts for Listing Reports

A design layout defines the look of each listing report and the specific information
included in a listing report. To customize existing design layouts or create a new
design layout, you must install Crystal Reports 8.5 Professional Edition (purchased
separately).

When you create a new listing report in TestManager, you can optionally create new
design layouts or customize existing ones. Crystal Reports uses report dictionaries of
assets and properties stored in the Rational Test datastore. These dictionaries link the
various assets together using the database schema.

For more information about using Crystal Reports to create new design layouts or
customize existing ones, see the Crystal Reports Help.

About Performance Testing Reports

Performance testing reports help you analyze the performance of a server under
specified conditions. For example, you can determine how long it took for a virtual
tester to execute a command and how response times varied with different suite runs.
You can also customize reports.

Performance testing reports include:
» Performance reports.

» Compare Performance reports.

= Response vs. Time reports.

» Command Status reports.

= Command Usage reports.

* Command Trace reports

» Command Data reports

For detailed information about performance testing reports, see Reporting Performance
Testing Results on page 331.

Reporting Results 189

Selecting Which Reports to Use

The following table summarizes the types of TestManager reports.

To

Use This Report

See

Categorize test cases by a particular
property. (For example, view how many
test cases are in each iteration or how
many test cases were created by people
in a particular testing group.)

Test Case Distribution

About Test Case Reports on
page 174

Determine the number of test cases that
meet your test criteria.

Test Case Results Distribution

About Test Case Reports on
page 174

Determine the percentage of test cases
planned, implemented, or executed for
several builds, iterations, or dates. Also
to view the percentage of test inputs
tested, not tested, satisfied, or not
satisfied for several builds, iterations, or
dates.

Test Case Trend

About Test Case Reports on
page 174

Determine whether test inputs have
changed and if the integrity of your test
coverage for your requirements is
jeopardized by displaying suspect status
for test cases.

Test case suspicion reports

About Reporting Test Case
Suspicion on page 180

List the builds in your project. Build Listing About Listing Reports on
page 187

List the computers in your project. Computer Listing About Listing Reports on
page 187

List the computer lists in your project. | Computer List Listing About Listing Reports on

page 187

List the configurations in your project.

Configuration Listing

About Listing Reports on
page 187

List the iterations in your project.

Iteration Listing

About Listing Reports on
page 187

List the sessions in your project.

Session Listing

About Listing Reports on
page 187

List the suites in your project.

Suite Listing

About Listing Reports on
page 187

List the test logs in your project.

Test Log Listing

About Listing Reports on
page 187

190 Chapter 6 - Evaluating Tests

the mean, standard deviation, and
percentiles for each command in a suite.

List the test plans in your project. Test Plan listing About Listing Reports on
page 187

List the test scripts in your project. Test Script Listing About Listing Reports on
page 187

List the users in your project. User Listing About Listing Reports on
page 187

Display the response times and calculate | Performance Performance Reports on

page 365

Compare the response times measured
by several Performance reports.

Compare Performance

Compare Performance
Reports on page 369

Display individual response times and
whether a response has passed or failed.

Response vs. Time

Response vs. Time Reports
on page 374

Obtain a quick summary of which
commands passed or failed.

Command Status

Command Status Reports
on page 352

View cumulative response time and
summary statistics, as well as
throughput information for emulation
commands for all test scripts and for the
suite run as a whole.

Command Usage

Command Usage Reports
on page 354

Examine errors in your run and view the
“conversation” between the virtual tester
and the server.

Command Data

Command Data Reports on
page 349

Examine failures in detail. View raw data
from the test logs without statistically
analyzing the data.

Command Trace

Command Trace on
page 362

Designing Your Own Reports

If you are an experienced Crystal Reports user, you can create your own custom
reports in addition to listing reports to meet the needs of your testing team. For
information, see the Crystal Reports Help.

Reporting Results 191

Additional Reports
Additional reports are available in ClearQuest and SoDA.

You can use ClearQuest reports, as well as design layouts, queries, and charts to help
you manage your defect database. These reports and other items are automatically
created for you when you create a project that contains an associated ClearQuest
database. For information about using these defect reports, see the ClearQuest Help.
For information about creating a project, see the Rational Suite Administrator’s Guide.

You can also create reports using SODA. SoDA is a report generation tool that
supports reporting as well as formal documentation requirements. With SoDA, you
can retrieve information from different information sources, such as Rose and
RequisitePro, to create a single document or report. For information about creating
reports using SoDA, see the SoDA Help. To use SoDA, click Reports > SoDA Report.

Creating Reports
To create a report:
» Click Reports > New and then select the type of report you want to create.

Note: For detailed procedures, see the TestManager Help.

Creating a Test Case Distribution Report

When you create a Test Case Distribution report, you can select how the data appears:
either in bar, stack, line, pie, or tree report type, depending on the type of report you

select.
|5 Test Case Distribution
Select how —————1 | [B | wm] | @ 22 [is]
to display the ronh Label
data. Distribute Over Title
- Yalues | ITest Casze Distribtion
Stack. # - Axis
I j Yalues | I
Test Case Query ' - Az
- New.. | Edi.. | [Numbes DF Test Cases
Report Description ~Sort Info
Sort Order
I(Nnna> j
™ Show Zero Counts
I Show IU = :I' Counts
Save bz, Save I Cloze | Bun | Help |

192 Chapter 6 - Evaluating Tests

Creating Test Case Suspicion Reports

When you create test case suspicion reports, you select the information about suspect
test cases and distribute over test plans or test inputs. Use queries to display suspect,

nonsuspect, or all test cases.

Note: For detailed procedures, see the TestManager Help.

Select
theseitems
to display

{7 Test Case Distribution - Test Plan Suspici

E

et | llnh |

ms|e

n Coverage with Status

|

suspect
test cases.

Display
suspect,
nonsuspect, —
or all test
cases.

— Graph Labels
Distribute Ower: Title:
ITest Plan j Yalues ... | ITest Flan Suspicion Coverage with Status
Stack: - Az
I d Walues .. | ITest Plan
- A
INumher OF Test Cages
— Sort Infa
Test Caze Query: Sort Order:
|<N0ne> j Mew, Edit... | |<N0ne> j
[T [Mot Suspect
Suspect | = ¥ | Show Zero Counts
o I~/ Shiow ID 3: I Largest j' Courts
Sawve fg. | Save | LCloze | Run I Help

Reporting Results

193

Creating a Test Case Results Distribution Report

When you create a Test Case Results Distribution report, select the test case results
that you want in a report:

il Test Case Result Distribution™

M |

Distribute Over

IDwnEI j m

—Graph Label
Title

IT est Case Result Distrbution

A - Anis

Select the result.

Note: For detailed procedures, see the TestManager Help.

194 Chapter 6 - Evaluating Tests

Informational =

Query

[H ew. | Ed..

Report Description

Y - Anig
INumber Of Test Cases

~Sort Info
Sort Order

|<N0ne> j

™ Show Zero Counts

™ Show ID 33 I 'l il

Save s, . | Save

| Close | Bun | Help |

Creating a Test Case Trend Report

When you create a Test Case Trend report, select the information about test cases or
test inputs over several builds, iterations, or dates that you want to appear in a report.

If Test Trend = - [0]x]
MAEEERDEE

s

Trend Over Title
Select the date. I -l Period... ITest Trend
Type Ta Trend On Hatiig
ITesl Case | IDate
Show f-dais
Planned INumber 0f Test Cages
Developed
Guery

|—;| Ne.. Edt.

Fieport Description

% 0f
| H

™ Cummulative

Save s, | Save Close Fun Help

Note: For detailed procedures, see the TestManager Help.

Reporting Results 195

Creating a Listing Report

When you create a listing report, you determine how you want the information to
appear by choosing a Crystal Reports design layout. You can create new design
layouts or customize existing Crystal Reports layouts. For more information, see
Customizing Design Layouts for Listing Reports on page 189.

= Listing Reports [_ (O]

Test Asset Type:

IB uild
Description:
=
|
— Design
Tope:

Select the design layout. [Eysal
\\ Layout:

Creating Performance Testing Reports

When you create performance testing reports, specify the log data on which to run the
report and how to manipulate the log data to see just the information you need. For
detailed information about creating performance testing reports, see Reporting
Performance Testing Results on page 331.

Opening a Report

After creating and saving a report, open it and, if necessary, make changes to the
report.

To open or change a report, do one of the following:
» Click Reports > Open, select a report from the list, and then click OK.

» In the Analysis tab of the Test Asset Workspace, select the type of report you want
to open. Select the particular report you want to open or change.

* Open the report from the Report bar (performance testing reports only.)

Note: For more details about opening a report, see the TestManager Help.

196 Chapter 6 - Evaluating Tests

Running Reports
You can run reports from:
» The Test Asset Workspace.
* The Report menu.

» The Report bar (performance testing reports only). For information, see Running
Reports from the Report Bar on page 334.

Note: For detailed procedures, see the TestManager Help.

Running a Report from the Test Asset Workspace
To run a report from the Test Asset Workspace:

* In the Analysis tab of the Test Asset Workspace, expand the type of report to run.
Right-click the particular report and then click Run.

Note: For detailed procedures, see the TestManager Help.

Running a Report from the Menu
To run a report from the menu:

» Click Reports > Run and then select the type of report to run. Select a particular
report and click OK.

Note: For detailed procedures, see the TestManager Help.

Reporting Results 197

Printing, Saving, or Copying a Test Case Report

After you run a test case report, you can print, save, or copy it to the Clipboard.

El Save a report. El Copy to Clipboard.
E,ml Close report.
%l Print a report.

{ | 1=st Case: Distribution - Untitled5

Test Case Distribution

Owiner

Product Release
Construction 3
Construction 2
Construction 1
Iteration1

Number Of Test Cases

BRI

Guest
Bob
John
Mary

Owiner

| |

Note: Tree view type test case reports cannot be saved or copied. You can only print
tree view type test case reports.

Note: For detailed procedures, see the TestManager Help.

Printing, Exporting, or Zooming In on a Listing Report

After you run a listing report, print it or export it to a different file format and save it
on your computer. You can export a finished report to a number of popular
spreadsheet and word processor formats, as well as to HTML, ODBC, and common
data interchange formats. Distributing the information is easy. For example, you may
want to use the report to project trends in a spreadsheet or to mail to other members
of your testing team.

198 Chapter 6 - Evaluating Tests

@ Export a report.

%l Print a report. I-mnz ,I Zoom in or out of chart.

C[ol=|

gt Build2_rpt
M 4 1af1 y ¥ o= | & & |[100%

Total 4 100%

2000709420 16:35:23.00

Hame LastModifiedEy
Build 1
System
EBuild 213)
admin
Build 213
admin
Build 219

admin

Note: For detailed procedures, see the TestManager Help.

Copying Reports to a New Project

If you create a report or a new design layout and want to use it in a new project, use
the Administrator to copy them when you create a new project. The Administrator
copies any saved listing reports and listing design layouts to the new project.

For information, see the Administrator Help.

Creating a Query

A query is a request for specific information from a Rational Test datastore. You can
create a query for each type of TestManager report.

Queries for Test Case Distribution, Test Case Trend, and Performance Testing
Reports

TestManager provides predefined queries to narrow down the data in Test Case
Distribution, Test Case Results Distribution, Test Case Trend, and performance
testing reports. You can edit the existing queries and create your own queries for
these reports.

Reporting Results 199

To create a query, do one of the following:
» Create or open a report and then click New next to the Query field.
» (Click Tools > Manage > Queries > Test Case.

Note: For detailed procedures, see the TestManager Help.

Queries for Listing Reports

To create a query for a listing report, you must install Crystal Reports 8.5 Professional
Edition (purchased separately). For more information about creating a query for
listing reports, see the Crystal Reports Help.

200 Chapter 6 - Evaluating Tests

Part 2: Functional Testing
with Rational
TestManager

Creating Functional
Testing Suites

This chapter describes how to create functional testing suites. It includes the following
topics:

About suites

Inserting a computer group into a suite

Inserting a test script into a suite

Inserting a test case into a suite

Inserting a suite into a suite

Setting a precondition on a test script, test case, or suite
Inserting a selector into a suite

Inserting other items into a suite

Running tests on a specific computer

Distributing tests among different computers

Executing suites

Note: For detailed procedures, see the TestManager Help.

About Suites

A suite shows a hierarchical representation of the tasks that you want to test. It shows
such items as the computers that run the test, the test scripts that run, and how many
times each test script runs.

Through a suite, you can:

Assign test cases to computers and rerun the test cases without having to reassign
them.

Run test scripts and test cases on the next available computer, thus speeding up
your testing process.

203

» Set preconditions on items in a suite, which require that they complete
successfully before the next item in the suite runs.

= Synchronize virtual testers.
Note: The suites in this chapter contain GUI test scripts, which are generally used for

functional testing. A suite, however, can also contain VU scripts, VB scripts, or other
user-defined test script types.

Inserting a Computer Group into a Suite

When you create a suite for functional testing, set up computer groups first. A
computer group contains the test scripts that the suite runs and declares which
computers are available to the suite.

Your test can run on any Agent computer that you have defined in TestManager. If
you have not defined any computers, TestManager runs your test on the Local
computer. For information about defining computers, see Defining Agent Computers
and Computer Lists on page 97.

If you simply insert a computer group and accept the defaults, TestManager creates
one computer group. Use multiple computer groups only if you want to:

» Assign certain items to run on certain sets of computers. The items assigned to a
group use only the computers assigned to that group.

» MixGUIand VU test scripts in a suite. GUI and VU test scripts must be in different
computer groups.

When you insert a computer group into a suite, you must decide when to assign the
computers. The method that you use applies to the entire suite. You can:

» Assign specific computers when you insert the computer group. The suite runs if
any these computers are available at runtime.

» Wait until runtime to assign specific computers. TestManager prompts you for the
computers when you run the suite. The suite runs if any of these computers are
available at runtime.

When you assign computers at runtime, you limit the suite to one computer
group.
* Run the test on any computer that is free to run a test script. This is called

distributed functional testing. For more information about distributed functional
testing, see Distributing Tests Among Different Computers on page 218.

204 Chapter 7 - Creating Functional Testing Suites

To insert a computer group into a suite:

» (lick Suite > Insert > Computer Group.

Run Properties of Computer Group B=
Hame:

¥ Prompt for computers before mnning suite

LComputers:

Local computer Change... |
Eraperties |

kK I Cancel | Help |

At this point, the virtual testers in the computer group are assigned to the Local
computer.

To assign the virtual testers in the group to Agent computers:

= Clear Prompt for computers before running suite, and then click Change.

Select Computers [x|
Luvailable: Selected:
Mame | Mame |
= ejgssee] M Local Computer

EX

H HE

<€

Ok | Cancel Help

Inserting a Computer Group into a Suite 205

Inserting a Test Script into a Suite

After you insert a computer group into a suite, insert the test scripts that the computer
group will run. One test script runs on one computer at a time.

To insert a test script into a suite:

» From an open suite, select the computer group to run the test script, and then click

Suite > Insert > Test Script.

FRun Properties of Test Script []

Test script sgurce:

GLI - [Ratior

Test script name;: I

— Select
Queny: I Standard j Mew.
Mame | Script Type | Description |
Copy Values GUI
Enter Values GUI
Excel GUI
Exit &pplication GUI
Initialize: GUI
Save Changes GLI
Select all |
™ Precondition
~ General
Ewvent: I
Iterations: |1 _I:j Delay between iterations: ID _I:j Seconds
r Scheduling method
tethod |<N0ne> 'l
Dependencies; I j Multiple Dependencies. . |
(K I Cancel | Eroperties.... | Help |

Note: For detailed procedures, see the TestManager Help.

You can set a precondition on a test script. When you set a precondition, the test script
must successfully complete in order for other suite items with the same parent to run.

For example, a test script might establish a certain state in the software. You can run
the test script to establish the state and then perform a series of tests that depend on

the system state.

For information about preconditions, see Setting a Precondition Within a Suite on

page 212.

206 Chapter 7 - Creating Functional Testing Suites

Inserting a Test Case into a Suite

Test cases let you:

* Define a test without being concerned about its implementation. Over time, the
implementation can be changed, but the test case remains the same. The benefit is
that you can create a suite with a test case and change the implementation (test
script) without updating or maintaining the suite.

» Insert test cases into suites so that you can run multiple test cases at one time and
save the set of test cases that are running together.

» Insert configured test cases to verify that a test case succeeds in multiple different
environments. When you insert configured test cases in suites, TestManager
automatically assigns the test cases to the appropriately configured computers.

Inserting a Test Case into a Suite 207

To insert a test case into a suite:

= (Click Suite > Insert > Test Case.

Run Properties of Test Case [x|

Test Case Mame: IATM test case

— Select

(] Default
B o ATM test case
b Standard - Win2000
by Standard - Windows KP

¥ Report test case results [~ Precondition

— General
Ewvent: I

Iterations: |-| _I; Delay between iterations: ID _I; Secands

— Scheduling method
I ethod: |<N0ne> j

Dependencies: I j fdultinle Dependencies. . |

(0].4 I Cancel | Froperties... | Help |

Note: For detailed procedures, see the TestManager Help.

You can set a precondition on a test case. When you set a precondition, the test case
must successfully complete in order for other suite items with the same parent to run.
For information about preconditions, see Setting a Precondition Within a Suite on

page 212.

To set a precondition on a test case:

» Right-click the test case to which to apply the precondition and select Run
Properties.

208 Chapter 7 - Creating Functional Testing Suites

Inserting Suites and Scenarios into Suites

Inserting suites or scenarios into a suite allows you to maintain a hierarchy of suite
items. When you insert a suite or scenario into a suite, you can:

» Reuse suite items without having to duplicate them in multiple areas of a suite.

» Group suite items together so they can be shared by more than one computer
group.

* Maintain your suite more easily. This is especially true if you have a complicated
suite that uses many test scripts. Grouping the suite items under a suite or a
scenario has the added advantage of making your suite easier to read and
maintain.

In functional testing, you typically insert a suite into a suite, because inserting a suite
provides more flexibility. In general, insert a suite into a suite when:

* You want to reuse a series of items in multiple suites. You can insert a suite into
different suites.

* You want any change that you make to a suite replicated in every instance of that
suite.

Insert a scenario into a suite when:

* You want to reuse a series of items in one suite. You cannot insert a scenario into
different suites.

* You want to see the hierarchy of the suite items when you open a suite. A scenario
lets you see this structure. If you insert a suite into a suite, you must open the child
suite to see the suite items.

For example, you could create three suites, each testing a different aspect of an
accounting application:

* One suite opens and edits the spreadsheets.
* One suite tests all the menus.
* One suite tests complex formulas within the spreadsheet.

All three suites need virtual testers to open the accounting application. Yet within
each suite, unique tasks need to be repeated. You can create a separate suite for
opening the application and insert that suite into each of the three suites. You can then
insert a scenario into each suite to represent the tasks that are unique to the suite.

Inserting Suites and Scenarios into Suites 209

Inserting a Suite into a Suite

If a suite contains computer groups, you can insert it into other suites. Inserting a suite
into a suite is useful when you are creating a complex test or when you are creating
multiple tests that perform duplicate functions. You can create and check a suite and
then insert it into larger suite. You save time by not having to redefine the same test
assets in each suite. Any change made to a suite is replicated in every instance of that

suite.
To insert a suite into a suite:

= (Click Suite > Insert > Suite.

Run Properties of Suite []
Suite name: ||
— Select
Queny: IStandard j Mew

M ame | D escription |

Smoke Test
Stress Test

_E
General

Ewent: I

M=

Iterations:

Delay between iterations: IU _I:j

" Precondition

Seconds

i~ Scheduling method

tethod |<N0ne> 'l
Dependencies; I j Multiple Dependencies. . |
(K | Cancel | Eroperties.... | Help |

Note: For detailed procedures, see the TestManager Help.

You can set a precondition on a suite. When you set a precondition, the suite must
successfully complete in order for other suite items with the same parent to run. For
information about preconditions, see Setting a Precondition Within a Suite on page 212.

To set a precondition on a suite:

= Right-click the suite to which to set the precondition, and then select Run

Properties.

210 Chapter 7 - Creating Functional Testing Suites

Inserting a Scenario

You define a scenario in the Scenarios section of the suite by inserting a scenario and
then inserting items within it. To make a computer group execute a scenario, insert
the scenario name in a computer group. Otherwise, the scenario is not executed.

In the following suite, all three computer groups run the test scripts needed to
initialize the application before testing various parts of it. You can simplify this suite
by storing the required initialization test script in a scenario. The suite shows the test
script Initialize as part of the Initialize Application scenario. A delay could be added
to this scenario after the test script is run, and that change would filter to all instances
of the Initialize Application scenario.

File Edit Wiew GSuite Beports Tools Window Help T
|
2 Byid [Buid 1 Log [Buite 1 Users 1 Change Log.
Log Folder [Petaut Viewlog | Pei | Resp | Stows | Usae |
EEEEEE IR aEr £ IEEYET L
38 F A E e |
— [Event | Depsndsrisies
g E;:’::Sulels = El Computer Groups
F-[C7] Computer Lists E----%g (4 Group 1: 1 computer resournces
Ml Initialize Application: 1 time[s)
Enter Walues: 1 timels)
- Save Changes: 1 time(s)
Exit Application: 1 timefs]
[_]....Elg Development Group 2 1 computer resources
----- HHD Initislize Applic.ation: 1 timefs)
Copy Values: 1 timefs)
----- Exit &pplication: 1 time(s)
- Save Changes: 1 times]
=)=) Administation Group 3 T computer iesouices
Initialize Application: 1 time(s)
i| Copyalues: 1 timefs)
Enter Walues: 1 timels)
Exit Application: 1 time(s)]
j| Save Changes: 1 time(s]
E 00 Intislize Application
= ! Inifialize: 1 fimes)
|Ready [admin |Cunrently Selected Filter: 4

Inserting Suites and Scenarios into Suites 211

To create a new scenario:

= From the Scenarios section of the suite, click Suite > Insert > Scenario.

Run Properties of Scenario B=
= oaton

akK I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.
To insert a scenario into a suite:

» Click where you want to place the scenario, and then click Suite > Insert > Scenario.

Run Properties of Scenario [x|
Mame: Initialize Application

Iterations: |1 _I:j

Event: I

1.4 I Canicel | Help |

Note: For detailed procedures, see the TestManager Help.

After you have created the scenario and the computer group that runs the scenario, it
is a good idea to populate the scenario. A scenario requires only test scripts to run.
However, like a computer group, a realistic scenario may also contain test cases,
suites, and selectors.

Setting a Precondition Within a Suite

When you insert a test script, test case, or suite into a suite, you can specify whether
successful completion of that item is a precondition for the remainder of that suite
sequence. The item must pass for the remaining suite items at the same level to run.

For example, suppose a suite includes two suites, each of which contains an
initialization test script and several test cases. If you set a precondition on the
initialization test script and the test script fails, TestManager skips all remaining test
cases within that suite only. The suite run resumes at the beginning of the second
suite.

Preconditions apply only to the specific instance of the test script, test case, or suite.
For example, if you insert a test script multiple times and you want to set a
precondition on all instances of the test script, you must set the precondition for each
test script.

212 Chapter 7 - Creating Functional Testing Suites

How to Set a Precondition
To set a precondition:

» Right-click the test script, suite, or test case on which to set the precondition, and
then select Run Properties.

Note: For detailed procedures, see the TestManager Help.

Relating Preconditions Set in Suites to Those in Test Cases

The preconditions that you set when designing and implementing test cases
(discussed in chapters 3 and 4) are not related to the preconditions that you set within
a suite.

A precondition set on a test case is a setup dependency to ensure that a test case can
run properly. You can enter text in the field. Although TestManager does not use this
text, you can refer to it later. If a precondition fails, the test case may still meet the
acceptance criteria, but the constraints necessary for the test case to run are not met.

A precondition set within a suite must complete successfully for subsequent items at
the same level in the suite to run. TestManager uses this field. If a precondition fails,
TestManager does not run remaining suite items at the same level in the suite.

However, you can relate the two types of preconditions so that the suite precondition
enforces the test case precondition. The following steps show how to do this:

1 Set a precondition on a test case.
2 Within a suite, insert a test script that checks that the test case precondition is met.

3 Within a suite, set a precondition on the test script itself.

Inserting a Selector into a Suite

TestManager allows you to set suite items to run in different sequences by setting a
selector. A selector provides more sophisticated control than running a simple
sequence of consecutive items in a suite. A selector tells TestManager which items to
execute and in what sequence. For example, you might want to repeatedly select a test
script at random from a group of test scripts. A selector helps you to do this.

The following list explains the types of selectors that are used in functional testing.
The other types of selectors are used in performance testing.

= Sequential — Runs each suite item in the order in which it appears in the suite. This
is the default.

Inserting a Selector into a Suite 213

» Parallel - Distributes each suite item to any computer that is available. This selector
is used in distributed functional testing. The suite items are parceled out in order,
based on which computers are available to run another test script. Once an item
runs, it does not run again.

A parallel selector distributes each test script without regard to its iterations. For
example, assume Script A runs for 10 iterations and Script B runs for only one
iteration. The number of iterations does not affect the way the scripts are
distributed.

To insert a selector into a suite:

» Select the computer group or a scenario to contain the selector, and then click
Suite > Insert > Selector.

Run Properties of Selector

" Random with replacement
€ Random without replacement
€ Dynamic lnad balancing for time

" Dynamic load balancing for frequency

Murmber to repeat I'I _I:j

Event: I

0K I Caticel | Help |

Note: For detailed procedures, see the TestManager Help.

Inserting Other Items into a Suite

The items described in the following sections are generally used in performance tests.
You may occasionally use these items in functional tests.

Inserting a Delay

A delay tells TestManager how long to pause before it runs the next item in the suite.

In functional testing, use delays to cause test scripts to wait before executing. For
example, if one virtual tester updates a record, you can insert a delay to give the
application time to process and display the correct information. By providing a delay,
you ensure that the application has enough time to complete a task, in case another
virtual tester must perform an action as a result of that task.

214 Chapter 7 - Creating Functional Testing Suites

To insert a delay into a suite:

» Click the computer group, scenario, or selector to add a delay, and then click
Suite > Insert > Delay.

Run Properties of Delay

Delay

 From start of suite

€ Until & particular time of day

Delay: |5 _Ij Seconds

Event: I

ak. I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

Inserting a Synchronization Point

A synchronization point lets you coordinate the activities of a number of virtual testers
by pausing the execution of each virtual tester at a particular point. Synchronization
points are used primarily in performance testing suites. However, you might use
synchronization points in a functional testing suite to test what happens when two
virtual testers access a file at the same time.

A synchronization point is in effect until one of the following events occurs:

» All virtual testers associated with the synchronization point arrive at the
synchronization point.

= A time-out period is reached before all virtual testers arrive at the synchronization
point.

* You manually release the virtual testers while monitoring the suite.

Inserting Other Items into a Suite 215

To insert a synchronization point into a suite:

» (Click Suite > Insert > Synchronization Point.

Run Properties of Synchronization Point [X]
Hame:
ISmoke_Tesﬂ j
—Release type
' Together
Restart time: il _I: Seconds
= Staggered
Iinimum time: 1] _I: Seconds
Maximum time: [_I: Seconds
Timeout: 0 _I;l Seconds
oK, I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

For more information about how synchronization points work, see How
Synchronization Points Work on page 288.

Using Events and Dependencies to Coordinate Execution

An event is a mechanism that coordinates the way items are run in a suite. For
example, you cannot test whether an application saves changes made to certain
values unless those values have actually changed. You set a dependency on the test
scripts that save changes, which blocks virtual testers until the event (the changes
actually being made) occurs.

You can have multiple events in a suite. Although only one item in a suite can sef an
event, many items can depend on an event.

216 Chapter 7 - Creating Functional Testing Suites

The following suite shows virtual testers waiting until the first virtual tester changes

values:

&l Doc Sample - Rational TestManager - [Smoke Test"]

Eile Edit Yiew Suite Heports Took

‘window Help

= E3
==1x|

x|

v

2 Buid [Buid 1

Lag

Log Folder [Defaur

[Buite 1 Users

Wiew Log

1 Change Log...

| Pt | Rew | s | Usame |

LSS HA =R

BE

227 |PERD|

CRC= RN TN ER AN B

[»® =%

=

Suite:

Event | Dependencies

N Suites
{1 Computers

01 Computer Lists B8

SO o)

[# Computer Groups

- G4 Group 1: 1 computer resoLrces
0 Initizlize Application: 1 timels]
. Fe Smoke_Test

Enter Values: 1 timels)

Save Changes: 1 timefs)

Exit &pplication: 1 time{z]

= | Development Group 2 1 computer resources

- [HH Initilize Application: 1 time(s)
3o Smoke_Test
Copy Walues: 1 time(s)
Exit Applicatior: 1 timefs)
Sawve Changes: 1 timels)

£) Admiristation Group 3: 1 computer resources

- [HH Initilize Application: 1 time(s)
e Smoke_Test

Copy Values: 1 time(s)
Enter Values: 1 timefs]

Esit Applisatiare 1 timefs)
Save Changes: 1 timels]

...

“alues are changed

Walues are changed

Walues are changed

Walues are changed

|Ready

| admin

|Currently Selected Filter:

The second column in the suite lists the events, and the third column lists the

dependencies.

To add a test script that sets or depends on an event:

» (Click Suite > Insert > Test Script.

Note: For detailed procedures, see the TestManager Help.

This example shows how to add a test script that sets an event and another test script
that depends upon an event. However, scenarios and delays can also set events.

Inserting Other Items into a Suite 217

Distributing Tests Among Different Computers

You may want to distribute your test scripts among different computers. For example,
your tests may not be designed for a specific computer. Or you may want to run your
tests on a group of computers so that they can complete as fast as possible. With
TestManager, you can run many computers concurrently and distribute your tests
among these computers. This enables you to speed up the testing process.

To distribute your tests among different computers, follow these steps:

* When you insert computer groups into a suite, click Change and add your
computers to the computer list that appears. For more information about setting
up test scripts to run on different computers, see Inserting a Computer Group into a
Suite on page 204.

» After you have inserted your computer groups, insert a Parallel selector. The test
scripts that you insert under the selector are continuously sent out to the next
available computer. Of course, the test scripts must be designed so that they are
self-contained and do not rely on one another. For more information about the
parallel selector, see Inserting a Selector into a Suite on page 213.

Example of a Distributed Functional Test

218

In the following example, assume that you want to test your Accounting software.
You want to distribute your tests over different computers so that they can run as
quickly as possible.

The following table summarizes how you set up this test.

Test Scripts Suite Reports

A script to log virtual | One computer group that logs the users | Test log report to show
tester in. in. whether all virtual
testers in the suite
successfully ran to
completion.

A modular script for | One computer group that contains a
each virtual tester task. | Parallel selector and modular scripts

A test script top erform that run on any computer.

any cleanup work and | One computer group that shuts down
then shut down the the application.
application.

This table shows one way to perform a distributed functional test. There are many
other ways to use TestManager to build and run effective distributed functional tests.
The most important thing to keep in mind is that all of the test scripts should be
modular.

Chapter 7 - Creating Functional Testing Suites

Executing Suites

After you have created and saved a suite, you can:

» Check the suite for errors. To do this, open the suite, and then click Suite > Check
Suite.

» Check the status of Agent computers. To do this, open the suite, and then click
Suite > Check Agents.

* Control the runtime information of the suite. To do this, open the suite, and then
click Suite > Edit Runtime.

» Control how the suite terminates. To do this, open the suite, and then click Suite >
Edit Termination.

* Run the suite. To do this, open the suite, and then click File > Run Suite.

Finally, while the suite is running, you can monitor its progress. For information
about monitoring suites, see Monitoring Test Runs on page 132.

Executing Suites 219

220 Chapter 7 - Creating Functional Testing Suites

Using the Comparators

This chapter explains how to use the Comparators to compare and view data
captured when you use verification points in a Robot test script or in
Quality Architect. This chapter includes the following topics:

» About the Four Comparators

= Starting a Comparator

» Using the Object Properties Comparator
» Using the Text Comparator

» Using the Grid Comparator

» Using the Image Comparator

Note: For detailed procedures, see the TestManager Help.

About the Four Comparators

After you play back a test case, test script, or suite, TestManager writes the results to a
test log that appears in the Test Log window of TestManager. The test log tells you
whether each test case, test script, or suite passed or failed.

For further details, click the Details tab of the test log. When you double-click a failed
verification point in the test log, the appropriate Comparator for that verification
point appears. You can view and compare data captured using the Comparators to
pinpoint the exact reason that a verification point failed.

Note: You can use the Comparators only with test scripts containing verification
points created with Robot.

When you record a test script that includes a verification point, Robot creates a
Baseline file that contains the data that you captured.

When you play back a test script, Robot compares the properties in the Baseline file
with the properties in the application-under-test. If the comparison fails, Robot saves
the data that caused the failure to an Actual file. The results of the verification point
appear in a test log.

221

The four Comparators are as follows:

Object Properties Comparator — Use the Object Properties Comparator to view and
compare the properties captured when you use the Object Properties verification
point.

Text Comparator — Use the Text Comparator to view and compare alphanumeric
data captured when you use the Alphanumeric verification point.

Grid Comparator — Use the Grid Comparator to view and compare data captured
when you use the following verification points: Object Data, Menu, or Clipboard.
Quality Architect uses the grid comparator to display verification point
information.

Image Comparator — Use the Image Comparator to view and edit bitmap images
captured when you use the following verification points: Region Image or
Window Image. You can also view Unexpected Active Windows.

Starting a Comparator

To start a Comparator from TestManager:

1
2

Click File > Open Test Log.
Expand the Build folder that contains the log, and then double-click the log.

For the Test Log window of TestManager to open a Comparator, the log must
contain a verification point for that particular Comparator.

Click the Details tab at the bottom of the Test Log window.

In the Event Type column, click the plus sign (+) to expand a test script and view all
verification points.

Right-click a verification point and click View Verification Point.

The Comparator for that particular verification point opens and that verification
point appears.

If the verification point failed, the Comparator opens with both the Baseline and
Actual files displayed.

To start a Comparator from Robot, see the Rational Robot User’s Guide.

222 Chapter 8 - Using the Comparators

Using the Object Properties Comparator

Use the Object Properties Comparator to view and compare the properties captured
when you use the Object Properties verification point in a Robot test script.

You can use the Object Properties Comparator to:

= Review, compare, and analyze the differences between the Baseline file and the
Actual file.

= View or edit the Baseline file for an Object Properties verification point.

To start the Object Properties Comparator from the test log window, see Starting a
Comparator on page 222.

The Main Window

The main window of the Object Properties Comparator contains the Objects
hierarchy, the Properties list, and the Differences list.

"% Object Properties Comparator - OPC.0Object Properties

Objects hierarchy ——

0
I— StatusBar Dbjectindex=1 BorderStyle |Resizeabls | 7 |Fesizeabls
I— TreeView DObjectindex=7 Caption E=ploring - [C:] | Exploring - [T
I— Label Objectindex=1 Enabled True True
Properties list - Label ObiectindexsZ M axButton True True

I— Toolbar Objectindex=1 MinEutton True True

|- ComboB ox Objectinds:=1 Systembenu True True

|- Generic Class=SHELLDLL Yisible True True

I— List¥iew Objectindex=1 WindowState | Mormal Mormal

L Header Objectindex=1 WindowStyle | Dverlapped Overlapped

Differences list

"TreeVfiew Objectindex=1", Property "Focus": Comparizon failed
"Height': Comparizon failed
"ltemCount: Comparizon failed
"Mumtfizibleltems": Comparizon failed

! "Top": Comparizon failed

""Label Objectindex=1", Property "Top": Comparison failed

""Label Objectindex=2", Property "Top": Comparison failed

"Toolbar Objectindex=1", Property "Visible": Comparison failed

The Objects hierarchy contains the list of all objects that Robot records in the Object
Properties verification point. The Properties list contains the list of properties of those
objects. When you select an object on the left, its properties appear on the right. You
can control the display of both the Objects and Properties sections of the window by
using the View commands.

Using the Object Properties Comparator 223

The Differences list shows the objects that have differences between the Baseline and
the Actual files. If you click an object in the list, that object is highlighted in the Objects
hierarchy and Properties list. If you are viewing a file with no failures, this section
does not appear. To show or hide this section, click View > Show Difference List.

The Objects Hierarchy and the Properties List

When the Object Properties Comparator is opened, the Objects hierarchy and
Properties list appear as follows:

* The Objects hierarchy appears in the left pane of the window. It displays the list of
all objects recorded by Robot using the Object Properties verification point and
saved in the Baseline file.

» The Properties list appears in the right pane of the window. It displays the list of
properties of the selected object, and the properties’ values in the Baseline file and
the Actual file (if there are differences).

If the verification point passed, the Comparator displays the Objects hierarchy and
the Properties list with only the Baseline column.

If the verification point failed, the Comparator displays the Objects hierarchy and the
Properties list with both the Baseline and Actual columns, so you can compare them.

Note: If the verification point contains just one object, the Objects hierarchy does not
appear. To display it, click View > Objects or View > Objects and Properties.

Changing the Window Focus

To change the focus between the Objects hierarchy and the Properties list, do one of
the following:

» Click the mouse in the section.
= DPress TAB.
» Press ALT+O to set the focus to the Objects hierarchy.

» Press ALT+P to set the focus to the Properties list.

224 Chapter 8 - Using the Comparators

Working Within the Objects Hierarchy
To display the Objects hierarchy:
» (lick View > Objects or View > Objects and Properties.

The object list is hierarchical. You can expand or collapse the view of objects by
selecting a top-level object and using the View > Expand and View > Collapse
commands.

When you select an object, the properties for that object are displayed in the
Properties list.

Each object is listed by its object type and is bold. After the object name, information

such as the object class or index may appear. Use it to identify the object. If the object
is red, it has properties with different values in the Baseline and the Actual files. If the
object is blue, it exists in the Baseline file but not in the Actual file.

You can do any of the following to work within the Objects hierarchy. The Objects
hierarchy must have window focus.

* Press HOME, END, PAGEUP, PAGEDOWN, UP ARROW, and DOWN ARROW to
move between objects.

» Click the check box that precedes each object to select or deselect it for testing. All
objects preceded by a check mark are tested.

= Select an object preceded by a check mark to display its properties in the
Properties list.

» Select an object and press INSERT to display a dialog box for adding and removing
properties from the Properties list for that object.

» Double-click a parent object to expand or collapse its children.

» Press plus (+) to expand the highlighted object one level, or press minus (-) to
collapse the highlighted object. Press asterisk (*) to expand all objects.

» Right-click an object in the hierarchy to display the Objects shortcut menu.

» Double-click an object that is labeled Unknown to define the object. For information
about defining unknown objects during recording, see the Rational Robot User’s
Guide.

Using the Object Properties Comparator 225

Working Within the Properties List
To display the Properties list:
= (lick View > Properties or View > Objects and Properties.

The Name column shows the name of the property. The Baseline and Actual columns
display the values for the properties. Values in the Baseline column represent the
properties from the original recording of the Object Properties verification point.
Values in the Actual column represent the state of the properties in the latest
played-back version. By default, if the Baseline and Actual column values differ, both
columns are displayed.

Use the View commands to control which columns appear in the Properties list.

If a property is red, it has different values in the Baseline and the Actual files. If a
property is blue, it exists in the Baseline file but not in the Actual file. If a value cell is
blank, the property has an empty value.

You can do any of the following to work within the Properties list. The Properties list
must have window focus.

» Type the first letter of a property’s name to move to that property or to the first
property beginning with that letter.

» Press HOME, END, PAGEUP, PAGEDOWN, UP ARROW, and DOWN ARROW to
highlight a property.

» Press INSERT to display a dialog box for adding and removing properties from the
Properties list.

» Select a property and press DELETE to remove it from the list.
» Double-click the value cell of a property to edit the value.

= Position the pointer on the vertical border between column title cells. Drag the
pointer to the right or left to change the column widths.

» Point to a property and click the right mouse to display the Properties shortcut
menu.

226 Chapter 8 - Using the Comparators

Loading the Current Baseline
To load the Current Baseline file:
= (lick File > Load Current Baseline.

If the Current Baseline is already displayed, this command is disabled. In order to edit
a Baseline, you must be viewing the Current Baseline. Editing can include creating a
mask, cutting, copying, pasting, duplicating, moving, or deleting masks, or using the
Auto Mask feature.

The Current Baseline is the latest saved baseline file and is used as the expected result
for verification point comparisons. It is this Current Baseline that you see in the
Comparator when the Comparator is opened through Robot. However, when the
Comparator is opened through the Test Log window of TestManager, which is the
more common method, the Comparator may display the historical Baseline and
Actual. Because only the Current Baseline can be edited, if you have the historical
Baseline or any other logged Baseline showing, you cannot use any of the editing
commands—they are disabled. You can manually force the Current Baseline to be
loaded by using this command.

Locating and Comparing Differences

The Object Properties Comparator begins its comparison with the first object in the
Objects hierarchy and its properties in the Properties list.

Objects that contain differences between the Baseline and Actual lists are red. Objects
that are in the Baseline list but not in the Actual list are blue.

To locate the first difference between the Baseline data and the Actual data:
» (Click View > First Difference.

When the difference is located, the failure is highlighted. The Differences list indicates
the failure number and provides information about the failure.

To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Properties list.

Using the Object Properties Comparator 227

Viewing Verification Point Properties
To view verification point properties:
= (Click File > Verification Point Properties.

The Verification Point Properties dialog box shows the verification point type, the
name of the Baseline file, and the name of the Actual file.

Yerification Point Properties

Gereral Files |

Property I Walue
Current Bazeline Objprop. Object Properties base.obp

Ok I Cancel Aol Help

Adding and Removing Properties

When you first create an Object Properties verification point, you can specify the
properties to test by adding and removing them from the Properties list. You can also
add and remove properties from the list when you view the data file in the Object
Properties Comparator. This lets you refine a test even after it has been created and
played back.

For example, if the Properties list for a verification point contains a Height property
that you decide you do not want to test, you can remove the property in the
Comparator. You can also apply the properties in the list to all objects of the same
type for this verification point, and then define a list of default properties for each
type of object.

To add a property to the Properties list:
» (Click Edit > Edit Property List.

Removing a property removes it from the Properties list but does not remove the
property from the verification point's Baseline file. Removing a property means that it
can no longer be tested in future playbacks. Once removed, properties can be added
back later.

228 Chapter 8 - Using the Comparators

To remove properties from the Properties list:
» (Click Edit > Remove Property.

If you remove a property, you can add it back to the Properties list at a later time by
using the Edit > Edit Property List command.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it up-to-date with the developing application.

When editing the Baseline file, you can:

= [Edit a value in the Properties list.

» Cut, copy, and paste a value.

» Copy values from the Actual to the Baseline file.
» Change a verification method.

» Change an identification method.

* Replace the Baseline file.

Note: You cannot edit the Actual file.

For step-by-step instructions on these tasks, search for the task in the Object
Properties Comparator Help.

Saving the Baseline File
To save changes made to the Baseline file:
» Click File > Save Baseline.

This command is enabled only if you have made changes to the Baseline file.

Using the Object Properties Comparator 229

Using the Text Comparator

Use the Text Comparator to view and compare alphanumeric data captured when
you use the Alphanumeric verification point in a Robot test script.

You can use the Text Comparator to:

» Review, compare, and analyze the differences between the Baseline file and the
Actual file.

= View or edit the Baseline file for an Alphanumeric verification point.

To start the Text Comparator, see Starting a Comparator on page 222.

The Main Window

The main window of the Text Comparator contains the Text window.

@.Texl Comparator - TC2.Alphanumeric
File Edit “iew Help
E@ S (N ERBE &%
Baseline lictual =
Colors Colors

Text -

window blue purple gree[ll blue purple gree]]
|orange] teal yellow orang| teal vellow
red black white red black lilac
4l I) | »I;
Ready READ 2

The Text Window

The Text window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a Baseline file for a comparison. The Actual pane shows data
from the current playback. You can control the display of the panes by using the View
commands.

The Text window uses a typical text editor format. In general, use the same rules and
methods for typing, selecting, and deleting that you would use in a standard text
editor (such as Notepad).

The Baseline pane has a white background and the Actual pane has a gray
background. Data that failed the comparison between the Baseline file and the
Actual file appears in reverse color when you use one of the locating commands
to highlight it.

230 Chapter 8 - Using the Comparators

In the Text window, you can:

= Scroll the Text window

= Change the widths of the text panes
» Use word wrap

For step-by-step instructions, search for each task in the Text Comparator Help.

Locating and Comparing Differences
To locate the first difference between the Baseline data and the Actual data:
» Click View > First Difference.
To navigate between differences, use the View commands.

The comparison starts in the upper left corner of the pane. The Comparator then scans
for differences by going across each row of text in order, as it would in a text editor.

When the comparator finds a difference using the View commands, the difference
between the Baseline file and the Actual file appears in reverse color.

The Alphanumeric verification point stores the specified verification method as part
of the test script command. For data files created by the Alphanumeric verification
point, the Comparator assumes a case-sensitive comparison, regardless of how it was
recorded. For numeric data, the Comparator assumes Numeric Equivalence as the
verification method.

Viewing Verification Point Properties
To view verification point properties:

» (Click File > Verification Point Properties.

Using the Text Comparator 231

The Verification Point Properties dialog box shows the verification point type, the
name of the Baseline file, and the name of the Actual file.

VYerification Point Properties

General | Files I

Froperty | Walue
Werification Point Type Alphanumeric

ak. I Cancel Spply Help

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it current with the developing application.

When editing the Baseline file, you can:

= Edit the data.

» Cut, copy, and paste data.

» Copy data from the Actual to the Baseline file.
* Replace the Baseline file.

Note: You cannot edit the Actual file.

For step-by-step instructions on these tasks, search for each task in the Text
Comparator Help.

Saving the Baseline File
To save changes made to the Baseline file:
» Click File > Save Baseline.

This command is enabled only if you have made changes to the Baseline file.

232 Chapter 8 - Using the Comparators

Using the Grid Comparator

Differences r=

Use the Grid Comparator to view and compare data captured when you use the
following verification points in a Robot test script:

» Object Data
* Menu
» Clipboard

QualityArchitect also uses the grid comparator to display verification point
information.

You can use the Grid Comparator to:

» Review, compare, and analyze the differences between the Baseline file and the
Actual file.

» View or edit the Baseline file for a verification point.

To start the Grid Comparator, see Starting a Comparator on page 222.

The Main Window

The main window of the Grid Comparator contains the Grid window and the
Differences list. The Grid window contains the grids of data recorded in an Object

Data, Menu, or Clipboard verification point. The Differences list displays descriptions

of any items that failed during playback.

@.Elid Comparator - Grid 1.0bject Data
Eile Edit Wiew Help

e My dh aaBalew

[Baseline ctual
Grid | Edit View | Help Edit View | Help
ind Cop [N~ Scientific Help Topics Cop [- Scientific Help Topics
window Standard Standard
About Calculator About Calculator

W Comparison failed: Top Menu "Edit", Row 2

Ready v

Using the Grid Comparator

233

The Grid Window

The Grid window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a Baseline file for a comparison. The Actual pane shows data
from the current playback. You can control the display of the Baseline and Actual files
by using the View commands.

The grids in the panes show data in row and column format. Cells with a green
background contain data that passed the comparison between the Baseline file and
the Actual file. Cells with a red background failed the comparison.

You can set display options to control the Grid window. For more information, see
Setting Display Options on page 235.

Differences List

The Differences list displays the Actual items that failed during playback. This list
shows the reasons why a verification point failed and displays icons to graphically
illustrate the type of failure. If you click an item in the list, that item is highlighted in
the grid. If you are viewing a file with no differences, this section does not appear.

The following icons may appear in the Differences list:

Icon Meaning

@ No differences found

Comparison failed

Item not found

Different sizes

@ o @ @

Key not found

To work in the Differences list:
= Use the vertical scroll bar to scroll through the list of descriptions.

» Select a description in the Differences list to highlight the failure in the Baseline
and Actual files.

234 Chapter 8 - Using the Comparators

Setting Display Options
You can set the following display options in the Grid Comparator:
* Change the column widths.
» Transpose the grid data.
» Synchronize the scroll bars.
» Synchronize the cursors.

For step-by-step instructions, search for each task in the Grid Comparator Help.

Locating and Comparing Differences
To locate the first difference between the Baseline data and the Actual data:
» C(Click View > First Difference.
To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Baseline and Actual panes.

In the grid panes, the comparison starts with the first data cell in the grid (the cell in
the upper-left corner). The Comparator then scans for differences by going down the
first column. At the end of the column, the comparison goes to the top of the second
column, and so on.

When a difference is located, the Comparator highlights the area of difference using
reverse color and highlights the description in the Differences list. You can also select
a description in the Differences list to highlight that failure in the Baseline and Actual
files.

Verification points that have entire rows or columns selected compare the data in each
cell as well as the number of cells in the row or column. If the number of cells is
different, the Comparator highlights the row or column and italicizes the header
number or text. It also displays a red line around the header cell.

If the data displayed in the grid is larger than the window, use the scroll bars to view
other areas of the data or resize the window.

Note: If a difference is highlighted in the Baseline file and the description in the
Differences list is Item cannot be found, it means that you cannot highlight the
difference in the Actual file, because the item is missing there.

Using the Grid Comparator 235

Viewing Verification Point Properties
To view verification point properties:

= (Click File > Verification Point Properties.

Verification Point Properties

General | Files I

Froperty | Walue
Werifization Point Type Menu
Test Menu States Yes
Test Menu Keys Yes

Werification Method Cazelsensitive
|dentification Method — FRows by location, Columns b tite

Ok I Cancel | Apply I Help

The Verification Point Properties dialog box shows:
» Verification point type.

» Test menu states.

» Test menu keys.

» Verification method.

» Identification method.

» Name of the baseline file.

= Name of the actual file.

Using Keys to Compare Data Files

You can use the Key/Value identification method when you create Object Data or
Clipboard verification points in Robot.

For verification points that have the Rows by Key/Value identification method, use
the Grid Comparator to add or change keys in the Baseline file. As in a relational
database, keys can be used to uniquely identify a row for comparison.

You can add or change keys to determine what the important comparisons are in a
verification point and possibly to change a failed verification point into one that
passes.

If the value of the data in a key column changes, Robot cannot locate the record, and
the verification point fails. You may then want to change the keys in the Comparator
to gain more insight into why the verification point failed.

236 Chapter 8 - Using the Comparators

If you have not specified keys that ensure uniqueness, the test can fail because Robot
might compare the selected record to a record that contains similar values but that is
not the record you want to test. You can experiment by changing the keys in the
Comparator to improve the predictability of the verification point.

If the database schema changes, change the keys in the Comparator to identify new
and unique columns.

To use keys to compare data files:
1 Click the name of a column in the Baseline file.
2 Click the right mouse, or press CTRL+K to add or remove a key.

The data in the Baseline and Actual files should be automatically compared again.
At this point you can evaluate the new key placement.

If a key column in the Baseline file has different data from the Actual file, the
Differences list displays Row not found: Row x and includes the value from the
Baseline key column.

If there are no key columns and the row data in the Baseline and Actual files does not
match exactly, the Differences list displays Row not found: Row where x and
includes each column name and value from the Baseline file.

Editing the Baseline File

When you make intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it current with the developing application.

When editing the Baseline file, you can:

= [Edit the data.

» Edit a menu item.

» Cut, copy, and paste data.

» Copy data from the Actual to the Baseline file.
= Save the Baseline file.

Note: You cannot edit the Actual file.

For step-by-step instructions, search for each task in the Grid Comparator Help.

Using the Grid Comparator 237

Saving the Baseline File
To save changes made to the Baseline file:
» Click File > Save Baseline.

This command is enabled only if you have made changes to the Baseline file.

Using the Image Comparator

Use the Image Comparator to open and view bitmap images captured when you use
the following verification points in a Robot test script:

* Region Image
» Window Image
You can use the Image Comparator to:

* Review and analyze the differences between the Baseline image file and the Actual
image file.

» Edit the Region Image or Window Image verification points by creating masks on
the image.

= Create OCR regions to read the text within a region.

= View images of unexpected active windows that cause a failure during a test
script's playback.

To start the Image Comparator, see Starting a Comparator on page 222.

238 Chapter 8 - Using the Comparators

The Main Window

The main window of the Image Comparator contains the Image window, the
Mask/OCR List, the Differences List, and the status bar.

%7 Image Comparator - [Window Image Window Image]

File Edit “iew Toolz Help
CE & oo iR @ NN EBRBE SN
IR
Image Baseline Actual
window = I
! £ ! =
CE | € | I_ CE | € |
P R YR
R Y Y
N 0 [N I I Y e
O I P I I
4 | _>|_v| 4] | _>|_vI
MaSk/OCR] Mask/OCRH List Difference List
list Mumber* | Left | Top | Right | Bottom I Comment/OCF | Left: | p | Right | Bottom | Deescription |
Diffrences e W oE
list 7l | 0
Status bar For Help, press F1 [oo 4

The Image Window

The Image window has two panes: Baseline and Actual. The Baseline pane shows the
image file that serves as an expected file for a comparison. The Actual pane shows the
image from the current playback. You can control the display of both panes by using
the View commands.

The parts of the image that passed the comparison between the Baseline file and the
Actual file appear exactly as they were recorded. The parts of the image that failed the
comparison (that is, the differences) are shown as red regions.

You can move the image within a pane and zoom the image. For information, see
Moving and Zooming an Image on page 243.

Using the Image Comparator 239

Differences List

The Differences List displays a list of the items that failed during playback. The Left,
Right, Top, and Bottom columns represent the measurement of the sides of the
difference area, in numbers of pixels. The number in the Left column is the number of
pixels from the left margin to the left edge of the difference region. The number in the
Right column is the number of pixels from the left margin to the right edge of the
difference region. In the same manner, the Top and Bottom columns define the
number of pixels to the top and bottom edges of the difference region, from the top
margin.

To work in the Differences List:
» Use the vertical scroll bar to scroll through the list of descriptions.

= Select a description in the Differences list to highlight the failure in the Baseline
and Actual files.

* Double-click an item in the list to position the image so that the region is centered
in the view. It flashes briefly and then is selected.

» The Difference list is sortable by column. The currently sorted column is indicated
with an asterisk. To sort by a different column, click the column header. The list is
sorted in ascending order of the selected column.

Mask/OCR List

Masks are used to hide the underlying masked area from comparison when test
scripts are played back. Any areas of the image that contain a mask are not compared
when you play back a test script containing an Image verification point.

Robot uses OCR regions to read the text within a designated region and to compare it
in subsequent playbacks of the test script.

The Mask/OCR List in the lower-left pane of the main window lists any masks and
OCR regions that are being used in the verification point. When you select a mask or
OCR region in the list, it is highlighted in the Baseline and Actual files. This list works
in the same way that the Differences List works, as described in the previous section,
Differences List. The Mask/OCR List part of the Image Comparator is empty if you
do not have any masks or OCR regions defined for the verification point.

The Left, Right, Top, and Bottom columns represent the measurement of the sides of
the mask or OCR region in number of pixels.

240 Chapter 8 - Using the Comparators

These measurements work in the same way as they work in the Difference List. The
Comment column for masks contains optional comments, which you can add by
selecting a mask and clicking Edit > Mask Properties. The OCR Text column for OCR
regions contains the text in the region to be tested.

The Status Bar

The status bar at the bottom of the main window provides useful information as you
work with the Comparator. To show or hide the status bar, choose View > Status Bar.

The message area in the left part of the status bar displays menu command
descriptions and operational messages, such as progress updates, while the
Comparator is scanning the image for differences.

On the right side of the status bar, four small panes for specific information appear:

ReadOnly — Indicates a read-only state. This happens if the current Baseline is not
displayed, because the current Baseline is the only file that you can edit.

Load CBL — Indicates that the current Baseline is not being displayed. If you want to
make edits, click File > Load Current Baseline to display the current Baseline.

BLINK - Indicates that the Blink feature is turned on.

<zoom percentage> — Indicates the zoom percentage of the window. If you have the
original or normal view, the zoom percentage is 100%. If you have zoomed to some
percentage of the normal view, that percentage is shown. If you have fit the image to
the window, FITTED appears.

Locating and Comparing Differences
To display differences in the Baseline and Actual images:
» Click View > Show Differences.
To locate the first difference:
» Click View > First Difference.

When a difference is located, the Comparator flashes it briefly, centers the difference
in the panes, and then selects it in both panes.

To navigate between differences, use the View commands.

You can also select a difference in the Differences List to highlight that failure in the
Baseline and Actual images.

Using the Image Comparator 241

Changing How Differences Are Determined

Each difference region represents a logical set of differing pixels—a cluster of
differing pixels close together. Depending on your preference setting, the Comparator
determines whether this region is close enough to the last one to be classified as either
the same or a different difference region. Every time the Comparator defines a new
region around a differing pixel, the Comparator determines whether the region is
close enough to any other previously defined region. If so, the Comparator combines
the two rectangular regions. Otherwise, the region becomes a new difference region.

To change how differences are determined:

1

Click Tools > Options.

Use this setting to specify how close is close enough when a new differing pixel
has been found.

Change the setting under Difference Regions. Move the sliding bar to determine
whether more or fewer difference regions are created.

When you move the bar, the picture next to the slide is a representation of that
choice.

Changing the Color of Masks, OCR Regions, or Differences

To change the color of masks, OCR regions, or differences in the Image window:

1

Click Tools > Options.

2 Change the setting under Colors.

Masks — Select the highlight color for masks in the image. The masks are displayed
as a block of this color in the Baseline and Actual files. The default color is a light
green. Click Change to select a different color.

Differences — Select the highlight color for differences in the image. The difference
regions are displayed as a block of this color in the Baseline and Actual files. The
default color is a light red. Click Change to select a different color.

OCR regions — Select the highlight color for OCR regions in the image. The regions
are displayed as a block of this color in the Baseline and Actual files. The default
color is a light blue. Click Change to select a different color.

242 Chapter 8 - Using the Comparators

Moving and Zooming an Image
You can move the image within the Baseline and Actual panes in several ways:

» Use the horizontal and vertical scroll bars. Scrolling is synchronized if you are
viewing both files.

» Use the moving hand pointer. If you hold down the left mouse anywhere in the
image that is not a mask or a difference region, the mouse pointer turns into a
hand. Use it to move the image around in the window.

Note: You can use the zooming commands to move around the image. You can zoom
in, zoom out, zoom by percentage, fit the image exactly to the window, or return to
the normal image size.

* To zoom in on the image, click View > Zoom > Zoom In.

This zooms in on the image by a factor of 2. If you have a mask, OCR region, or
difference region selected when you use the Zoom command, the zooming is
centered on that region. If you do not have a region selected, the zoom is centered
on the entire image. You can use the command repeatedly to keep zooming into
the image.

» To zoom out from the image, click View > Zoom > Zoom Out.

» To zoom the normal display of the image by a percentage, click View > Zoom >
Zoom Special and the percentage.

» To restore the image to its original size, click View > Zoom > Normal Size.
= To fit the image to the full size of the pane, click View > Zoom > Fit To Window.

Zoom factors always retain the image’s aspect ratio to ensure that text and images
appear without distortion. Fit To Window represents the largest zoom factor that can
display the entire image in the window while maintaining the image’s aspect ratio.

Viewing Image Properties
To view the properties of an image:
» (Click File > Properties.

The Image Properties dialog box shows information about the image, including its
scale, color, size, and the creation date of the file.

Using the Image Comparator 243

Working with Masks

You can create masks in the Image Comparator with the Edit > New Mask command.
Masks are used to hide the underlying masked area from comparison when test
scripts are played back. Any areas of the image that contain a mask are not compared
when you play back a test script that contains an Image verification point.

Use masks to ensure that certain regions are not tested. For instance, if your
application has a date field, you might want to mask it to avoid a failure every time
the test script is played back. You can also apply masks to hide differences that you
determine were caused by intentional changes to the application, so that they do not
cause failures in future tests.

Because you can only edit the Baseline file, you cannot perform the following
procedures in the Actual file. However, when you select a mask in the Baseline file,
the mask is also selected in the Actual file. You cannot modify the mask in the Actual
file—it is shown there for convenience only.

You can do the following with masks:
» Display masks

» Create masks

= Move and resize masks

» Cut, copy, and paste masks

* Duplicate masks

* Delete masks

* Automatically mask differences

For step-by-step instructions, search for each task in the Image Comparator Help.

Working with OCR Regions

Robot uses Optical Character Recognition (OCR) regions to read the text within a
designated region and compare it in subsequent playbacks of the test script.

You can use OCR regions to verify proper operation of an application that
dynamically paints text in window areas or where the Actual text is difficult to obtain.
OCR regions are also useful in situations where a text string’s font or weight may
change unexpectedly but go undetected using traditional verification methods. To
achieve the correct verification, you can define OCR regions on existing or newly
captured Image verification points.

244 Chapter 8 - Using the Comparators

You can do the following with OCR regions:
* Create an OCR region

= Move and resize OCR regions

» Cut, copy, and paste OCR regions

* Duplicate OCR regions

* Delete OCR regions

For step-by-step instructions, search for each task in the Image Comparator Help.

Saving the Baseline File
To save changes made to the Baseline file:
» Click File > Save Baseline.

This command is enabled only if you have made changes to the Baseline file.

Viewing Unexpected Active Window

Robot is designed to respond to unexpected active windows (UAW) during test script
playbacks. An unexpected active window is any unscripted window appearing
during test script playback that interrupts the playback sequence and prevents the
expected window from being made active. An example of a UAW is an error message
generated by the application-under-test or an e-mail notification message window.

You can view the unexpected window in the Image Comparator only if you have set
the option in Robot. In the GUI Playback dialog box in Robot, click the Unexpected
Active Window tab. Make sure that the Detect unexpected active windows and the
Capture screen image options are both selected. (For more information about setting
an unexpected active window option, see the Rational Robot User’s Guide.)

To open a UAW to view in the Comparator:
1 Start TestManager and open a log file containing a UAW.
2 Do one of the following in the Event Type column:
s Double-click an unexpected active window event.
2 Select an unexpected active window event and click UAW.

The Image Comparator opens and that UAW appears.

Using the Image Comparator 245

246 Chapter 8 - Using the Comparators

Part 3: Performance
Testing with Rational
TestManager

Performance Testing
Concepts

This chapter introduces performance testing with TestManager. It includes the
following topics:

» About performance testing

= Rational TestManager and performance testing
= Planning performance tests

* Implementing performance tests

» Examples of performance tests

* Analyzing performance results

Note: For detailed procedures, see the TestManager Help.

About Performance Testing

A performance test helps you determine whether a multiclient system is performing to
defined standards under varying workloads and configurations.

Performance testing is a class of tests implemented and executed to characterize and
evaluate the performance-related characteristics of the tested server such as:

= Timing profiles
» Execution flow
* Response times
» Operational reliability and limits

Different types of performance tests, each focused on a different test objective, are
implemented throughout the software development life cycle.

249

Early in the development lifecycle—in the elaboration iterations—performance tests
focus on identifying and eliminating architecture-related performance bottlenecks.
Later in the lifecycle—in the construction iterations—performance tests tune the
software and environment (optimizing response time and resources), and verify that
the applications and system acceptably handle high workload and stress conditions,
such as a large number of transactions, clients, or volumes of data. Different types of
performance tests are suited to each iteration.

Rational TestManager and Performance Testing

Performance testing with TestManager helps you discover and correct performance
problems before you deploy your application in the real world. With TestManager,
you have all of the tools you need to identify, isolate, and analyze performance
bottlenecks.

As an automated load testing tool, TestManager emulates one or many actual users
performing various computing tasks. By replacing users with virtual testers,
TestManager removes the need for users to manually add workload to the server.

Because TestManager lets you play back the activities of multiple virtual testers on a
single computer, you can run tests involving hundreds or thousands of virtual testers
on just a few computers—or on one computer.

Creating Test Scripts
A test script can come from a number of sources:

* You can record a session in Robot. Robot records activities in the session and then
automatically creates a test script that represents the user’s interactions with the
server. For more information about recording a session, see the Rational Robot User’s
Guide.

* You can import a test script from QualityArchitect. When you generate a Java or
Visual Basic script through Quality Architect, you can view it through
TestManager, just like any other test script. You can run it, use it to implement a
test case, or insert it into a suite.

* You can write a Java or Visual Basic test script by hand. The test script must follow
the conventions defined for these test script types. For more information, see the
Rational Test Script Services for Java and Rational Test Script Services for Visual Basic manuals.

250 Chapter 9 - Performance Testing Concepts

* You can write a test script using any scripting language. When you supply a test
script in this way, you must write an adapter so that TestManager recognizes the
test script type. For more information, see the Rational TestManager Extensibility
Reference.

Planning Performance Tests

Testing the performance of a server typically involves loading the server with many
virtual testers. The objective is to find out how the server performs under the
workload.

Some of the performance questions you might want to answer are:
» How many virtual testers can the server support under normal conditions?

= Are there any situations where server performance degrades suddenly under
normal conditions?

» How does the system perform when you exceed the normal conditions? In a
worst-case scenario, does the system degrade gracefully or does it break down
completely?

* How does the system perform under varying hardware configurations?

The following sections discuss the key steps that are involved in planning a test.

Testing Response Times
TestManager lets you measure various indicators of performance—for example:
» How long did it take for the action to complete?
» How quickly was the server able to respond under heavy workload conditions?

You can measure the client response time or server response time, or both.

Setting Pass and Fail Criteria for Performance Tests

Because performance can be subjective, it is essential that you identify the features to
be tested and the criteria that determine whether performance passes or fails. The
pass or fail criteria often involve a range of acceptable response times.

For example, you could define the following as an acceptable response time:

» For 100 virtual testers, 90% of all transactions have an average response time of 5
seconds or less. No response time can exceed 20 seconds.

Planning Performance Tests 251

» For 500 virtual testers, 80% of all transactions have an average response time of 10
seconds or less. No response time can exceed 45 seconds.
Identifying Performance Testing Requirements

When planning a performance test, consider the hardware and software that your test
requires. For example:

» Server computers: database servers, Web servers, other server systems

» Client computers: Windows 2000, NT, 98, 95, or Me computers; network
computers; or Macintosh or UNIX workstations

= Databases that will be accessed
» Applications that will be running
In addition, you need to determine the following parameters for your tests:

» The size of the test databases and other test files to accurately represent the real
workload

» The distribution of data across the server to prevent I/O bottlenecks

» If you are testing a database, the settings of key database parameters

Designing a Realistic Workload

If you are testing performance, your model must accurately mirror the workload at
your site. Therefore, consider the types of transactions that occur at your site.

For example, do users query the database and update it occasionally, or do they
update it frequently? If they update the database frequently, are the updates complex
and lengthy, or are they short?

When designing the workload, consider these issues:
» The workload interval — The period of time the workload model represents.

For example, the workload interval could be a peak hour, an average day, or an
end-of-the-month billing cycle.

» Test variables — The factors you will change during the performance test.

For example, you could vary the number of virtual testers to understand how
response time degrades as the workload increases.

252 Chapter 9 - Performance Testing Concepts

It is best to change only one variable at a time. Then, if performance changes with
the next test, you know that the change was caused by that one variable.

You set test variables when you set up a suite. For more information, see
Implementing Tests as Suites on page 95.

» Virtual tester classifications — You categorize the virtual testers into groups based
on the types of activities they perform.

For each group, identify the number of virtual testers or the percentage of overall
virtual testers. For example, you could group 20% of the virtual testers into
Accounting, 30% of the virtual testers into Data Entry, and 50% of the virtual
testers into Sales.

Set up user groups within a suite. Keep these user groups in mind as you plan the
test scripts to be associated with the test. The test scripts should accurately reflect

the actions of realistic user groups. For information about setting up user groups,

see Inserting User Groups into a Suite on page 265.

= User work profiles — The set of activities that the virtual testers perform and the
frequency with which they perform them. The virtual tester actions should mirror
the mix of tasks that the users actually perform as closely as possible.

For example, if the Sales user group accesses the database 70% more than the other
two groups, be sure that the workload reflects this.

= User characteristics — Determine how long a virtual tester pauses before executing
a transaction, the rates at which the transaction is executed, and the number of
times a transaction is executed consecutively. It is important to model the real user
characteristics accurately because the values directly affect the overall
performance of the system.

For example, a user who thinks for 5 seconds and types 30 words per minute puts
a much smaller workload on the system than a user who thinks for 1 second and
types 60 words per minute.

Use delays and think times to model the virtual tester characteristics. For more
information about delays, see Inserting a Delay on page 280. For more information
about think times, see the Rational Robot User’s Guide.

When designing a workload model, make sure to consider factors such as these to
ensure an accurate test environment. Taking the time to consider these factors saves
time in the long run. The more clearly defined your testing goals are, the more quickly
you can achieve them.

Planning Performance Tests 253

Implementing Performance Tests

Once you have chosen the pass and fail criteria, hardware and software requirements,
and workload model, you are ready to create test scripts and set up the tests. Some
issues to consider during this phase of the process are:

» The applications to test — It is not cost-effective to test all of your applications.
Spending time and resources testing an application that has little effect on overall
performance takes away from the time spent testing critical applications. You must
consider this balance when planning and designing tests.

In general, you should identify the 20% of the applications that generate 80% of the
workload on your system. For example, you might not want to include an
application that updates a database at the end of the year only.

» The database on which to run the test — Decide whether you want to run the test on
the production database or a test database. Running tests on production systems in
current use may yield incorrect results because the effect of the regular user
workload is not included in the workload model.

* The termination conditions — If one virtual tester fails, should the test stop or
should it keep running?

If you are implementing a large number of virtual testers and a few fail, generally
the test can continue. However, if a virtual tester that performs a fundamental task
(such as setting up the database) fails, the test should stop.

You set termination conditions in the suite. For more information about setting
termination conditions, see Controlling How a Suite Terminates on page 127.

* The stable workload — Should the test wait until all virtual testers are connected, or
should the test begin running immediately?

If you are trying to measure the response time for virtual testers, you probably
should wait until all testers are connected before the actual testing begins.

You define a stable workload for reporting purposes in the Performance report.
For more information, see Reporting on a Stable Workload on page 340.

254 Chapter 9 - Performance Testing Concepts

Examples of Performance Tests

This section summarizes some typical performance tests. Each test objective is
accompanied by a table that lists the key elements to consider when defining such a
test. The tables are intended only as a guide; they do not attempt to define all of the
possible elements you can include in your performance tests.

Number of Virtual Testers Supported Under Normal Conditions

Suppose you want to determine the number of virtual testers that a server can
support, to ensure that the system can meet your scalability requirements. How many
virtual testers can the system support before the response is unacceptable?

For example, you estimate that a database system supports 500 virtual testers. You
could plan to run the test with 300, 400, 500, 600, and 700 virtual testers concurrently
performing multiple tasks. The following table shows the key elements you might
include when designing the test:

Test Scripts Suite Reports

A test script to initialize
the database.

A test script to log virtual
testers in.

A test script for each
virtual tester task:

* adding records

= deleting records

= querying the database
* running payroll reports

A fixed user group with one
virtual tester. This virtual
tester logs in, initializes the
database, and sets an event
indicating that the database
is initialized.

A scalable user group with
many virtual testers. This
group logs in and waits until
the event is set. It then
executes the scenario.

A scenario that contains:

= a selector to randomly
select a test script

= a test script for each
virtual tester task

A testlog to show whether
all virtual testers in the
suite successfully ran to
completion.

A Command Status report
to show whether the
server completed its
requests successfully.

Performance reports for
each suite run: 300, 400,
500, 600, and 700 virtual
testers.

A Compare Performance
report comparing the
output of all five
Performance reports.

Incrementally Increasing Virtual Testers

A common requirement in performance testing is to model what happens across a
span of time while different virtual testers perform their work. For example, suppose
you want to test how your server performs early in the morning when people are
starting their day. You also want to know how the server handles an increasing
workload during the day and particularly at times of peak workload.

Examples of Performance Tests 255

With TestManager, you could model this type of workload by incrementally loading
virtual testers. You would start by developing a model of the workload that you want
to test. For example, write down the frequency and volume of use of your
applications. Then, when setting up your suite:

1 Schedule different user groups to start at different times over the life of the suite.

2 For each user group, set the number of virtual testers that run the test script and an
iteration count (optional) as appropriate for your test.

By layering the start time and iteration count of your virtual testers, you build up
workload incrementally. You also can add workload spikes at specific times in your
suite run.

The following describes a sample test that represents overlapping shifts:

* You start a suite with 100 virtual testers. This group of virtual testers represents the
early shift of entry clerks repeating the same group of order entry transactions
over and over. Set each virtual tester to run many iterations of the transaction, and
set enough iterations to keep this group of virtual testers running the test script
until the suite ends. You may have to experiment to determine how many
iterations you need.

» Through a suite, set a Delay. The Delay type might be from the start of the suite, or it
might begin at a certain time of day. When the delay is over, 200 new virtual testers
begin. This is the next shift of entry clerks, which overlaps the first shift.

* During the combined shift, which represents peak workload, 300 virtual testers
perform transactions repeatedly.

256 Chapter 9 - Performance Testing Concepts

The following table summarizes a sample test that represents overlapping shifts:

Test Scripts Suite Reports

A test script to initialize A fixed user group with one | A testlog to show whether
the database. virtual tester. This virtual all virtual testers in the
tester logs in, initializes the | suite successfully ran to
database, and sets an event | completion.

) indicating that the database
A test script for each is initialized.

virtual tester task:

A test script to log virtual
testers in.

A Command Status report
to show whether the

A fixed user group with 100 |server completed its

* adding records virtual testers. Each virtual | requests successfully.

= deleting records tester logs in and waits until |1, performance reports:
. the event is set. Each virtual)

* querying the database | cior then executes many * One report on the time

* running payroll reports |iterations of the scenario. period from the start of

the run until 2 hours

A fixed user group with 200 have passed.

virtual testers that delays for)
2 hours. Each virtual tester |* One report on the time

then logs in, checks that the period from 2 hours
event is set, and executes until the end of the run.
many iterations of the A Compare Performance
scenario. report comparing the

One scenario that contains: | output of both

Performance reports.
= a selector to randomly

select a test script

= a test script for each
virtual tester task

How a System Performs Under Stress Conditions

Stress testing can be understood as a relentless attempt to cause a breakdown in the
server. Use a stress test when you suspect the server has some weak areas, which may
break down completely or diminish responsiveness when an operation is performed
many times or over a long period.

Because stress tests involve multiple simultaneous operations (such as sending
hundreds of queries to the server at the same moment), virtual testers provide the
most practical and effective means of performing this type of stress test. Running test
scripts continuously helps you understand the long-term effects of running the
application under stressful conditions.

In a simple stress test, you could create a test where virtual testers perform the same
operation continuously and repeatedly for hours on end. Your test might involve:

= Inserting thousands of records into a database.

» Sending thousands of query requests to a database.

Examples of Performance Tests 257

The following table summarizes a sample stress test:

Test Scripts Suite Reports

A test script to initialize A fixed user group with one | A testlog to show whether
the database. virtual tester. This virtual all virtual testers in the
tester logs in, initializes the | suite successfully ran to
database, and sets an event | completion.

) indicating that the database
A test script for each is initialized.
virtual tester task:

A test script to log virtual
testers in.

A Command Status report
to show if the server

A scalable user group with | behaved correctly, even

* adding records 1000 virtual testers. Each under stress.

= deleting records virtual tester logs in aanh Performance reports for
waits at a sync point. When | o5ch suite run: 900, 1000,

. all the Virfcual testers are and 1100 virtual testers.
* running payroll reports | synchronized, each virtual These Performance reports

Fteste; execuftf}s{ many show when the system
iterations of the scenario. starts to degrade and

One scenario that contains: | ensure that the
degradation is graceful.

= querying the database

= a selector to randomly
select a test script A Compare Performance
report comparing the
output of each
Performance report.

= a test script for each
virtual tester task

How Different System Configurations Affect Performance

TestManager lends itself well to configuration testing because of the way a suite is
organized and run. You might conduct a configuration test for a variety of reasons—
for example:

» To test how your system performs with more (or less) memory
= To test how your system performs with a different amount of disk space

» To find the network card with which the system performs best

258 Chapter 9 - Performance Testing Concepts

The following table summarizes a sample configuration test for 100 virtual testers:

Test Scripts Suite Reports

A test script to initialize A fixed user group with one | A testlog to show whether
the database. virtual tester. This virtual all virtual testers in the
tester logs in, initializes the | suite successfully ran to
database, and sets an event | completion.

] indicating that the database
A test script for each is initialized.
virtual tester task:

A test script to log in
virtual testers.

A Command Status report
to show if the server

A fixed user group with 100 | returned expected

* adding records virtual testers. Each virtual | responses, even under

= deleting records tester logs in and waits until | stress.

the event is set. Each virtual
tester then executes many

* running payroll reports | iterations of the scenario.

Performance reports for
each suite run on each
configuration.

= querying the database

One scenario that contains: A Compare Performance

= a selector to randomly report comparing the
select a test script output of each

* a test script for each Performance report.

virtual tester task

Analyzing Performance Results

TestManager generates considerable about your tests, and at first, the sheer volume of
data might be overwhelming. However, if you planned your tests carefully, you
should be reasonably certain which data is important to you.

First, check that your data is statistically valid. To do this, run a Performance report
and a Response vs. Time report on your data.

Note: At the end of a successful suite run, TestManager runs the Performance and
Response vs. Time reports automatically.

The Performance report includes two columns: Mean and Standard Deviation. If the
mean is less than three times the standard deviation, your data might be too dispersed
for meaningful results.

The Response vs. Time graph shows the response time versus the elapsed time of the
run. The data should reach a steady-state behavior rather than getting progressively
better or worse. If the response time trend gets progressively better, perhaps you
included logon time in your results rather than measuring a stable workload. Or the
amount of data accessed in your database may be smaller than realistic, resulting in
all accesses being satisfied in cache.

Analyzing Performance Results 259

After you are satisfied that your sample is valid, start analyzing the results of your
tests. When you are analyzing results, use a multilevel approach. For example, if you
were driving from one city to another, you would use a map of the United States to
plan an overall route and a more detailed city map to get to your specific destination.
Similarly, when you analyze your results, first start at a macro level and then move to
levels of greater detail.

The following sections summarize the different levels of detail that you can use to
analyze the results of your tests. For more information about performance testing
reports, see Reporting Performance Testing Results on page 331.

Comparing Results of Multiple Runs

The first level of analysis involves evaluating the graphical summaries of results for
individual suite runs and then comparing the results across multiple runs. For
example, examine the distribution of response times for individual virtual testers or
transactions during a single suite run. Then compare the mean response times across
multiple runs with different numbers of virtual testers.

This first-level analysis lets you know whether your performance goals are generally
met. It helps identify trends in the data, and can highlight where performance
problems occur—for example, performance might degrade significantly at 250 virtual
testers.

For this type of analysis, run the Performance and Compare Performance reports.

Comparing Specific Requests and Responses

The second level of analysis involves examining summary statistical and actual data
values for specific virtual tester requests and system responses. Summary statistics
include standard deviations and percentile distributions for response times, which
indicate how the system responses vary by individual virtual testers.

For example, if you are testing an SQL database, you could trace specific SQL requests
and corresponding responses to analyze what is happening and the potential causes
of performance degradation.

For second-level analysis, you could:

1 Identify a stable measurement interval by running the Response vs. Time report
and obtaining two time stamps. The first time stamp occurs when the virtual
testers exit from the startup tasks. This is the time stamp of the last virtual tester
who starts to do “real” work: adding records, deleting records, and so on. The
second time stamp is the first virtual tester who logs off the system. You have now
identified a stable measurement interval.

260 Chapter 9 - Performance Testing Concepts

2 Create a Performance report using only the interval specified by these two time
stamps.

3 Graph the Performance report to verify that the distribution has flattened.
4 Run the Performance, Compare Performance, and Command Usage reports to
examine the summary statistics for this measurement interval.
Determining the Cause of Performance Problems

The third level of analysis helps you understand the causes and significance of
performance problems.

Analyzing Results Statistically

This detailed analysis takes the low-level data and uses statistical testing to help draw
useful conclusions. Although this analysis provides objective and quantitative
criteria, it is more time consuming than first- and second-level analysis and requires a
basic understanding of statistics.

When you analyze your data at this level, you use the concept of statistical significance
to help discern whether differences in response time are real or are due to some
random event associated with the test data collection. On a fundamental level,
randomness is associated with any event. Statistical testing determines whether there
is a systematic difference that cannot be explained by random events. If the difference
was not caused by randomness, the difference is statistically significant.

To perform a third-level analysis, run the Performance and Response vs. Time reports.
Some of the measurements to consider during third-level analysis are:

* Minimum — The lowest response time.

= Maximum — The highest response time.

= Mean - The average response time. This average is computed by adding all of the
response time values together and then dividing that total by the number of
response time values.

* Median — The midpoint of the data. Half of the response time values are less than
this point and half of them are greater than this point.

= Standard Deviation — How tightly the data is grouped around the mean.

* Percentiles — The percentages of response times above or below a certain point.
The 90th percentile is often measured.

» Outlier — A value that is much higher or lower than the others in the data.

Analyzing Performance Results 261

For example, System A and System B both have a mean response time of 12
milliseconds (ms). This does not necessarily mean that the system response is the
same. Further evaluation of the results reveals that System A has response times of 11,
12,13, and 12, and System B has response times of 1, 20, 25, and 2. Although the mean
time is the same (12 ms), the minimum, maximum, and standard deviation are all
quite different.

Monitoring Computer Resources and Tuning Your System

Performance problems can be caused by limited hardware resources on your server
rather than software design. For example, your disk job service times could be
unacceptably slow due to a concentration of disk transfers being sent to a single disk
rather than being spread across several disk drives. This problem is typically fixed by
relocating some of the frequently accessed files (such as swap files or temporary files)
to a disk with less activity.

Performance problems also can be caused by overloaded LAN segments or routers,
resulting in substantial network congestion. Even the simplest round-trip delay from
client to server and back can take several seconds. This problem is typically fixed by
splitting an overloaded LAN segment into two or three segments with routers in
between. Sometimes you need to add a second network card to server systems so they
can be directly accessible to two LAN segments without going through a router.

Either of these hardware limitations can result in slow response time measurements
that cannot be fixed by changing the software design.

TestManager lets you match CPU, memory, and disk use metrics with virtual tester
response time data. You can monitor your computer resource use during a suite
playback and then graph this data over the corresponding virtual tester response
times, to determine whether imbalance in the hardware resources is causing slow
response times.

For more information about running the Response vs. Time report, see Mapping
Computer Resource Usage onto Response Time on page 342.

262 Chapter 9 - Performance Testing Concepts

Designing Performance
Testing Suites

This chapter describes how to design performance testing suites. It includes the
following topics:

About suites

Creating a suite from a Robot session

Inserting user groups into a suite

Inserting test scripts into a suite

Setting a precondition on a test script, test case, or suite
Inserting other items into a suite

Using events and dependencies to coordinate execution

Executing suites

Note: For detailed procedures, see the TestManager Help.

About Suites

A suite shows a hierarchical representation of the workload that you want to run. It
shows such items as the user groups, the number of users in each user group, which
test scripts the user groups run, and how many times each test script runs.

Through a suite, you can:

Run test scripts and test cases.
Group test scripts to emulate the actions of different types of virtual testers.
Set the order in which test scripts run.

Synchronize virtual testers.

263

The following simple suite shows three user groups: Accounting, Data Entry, and

Sales.
&0 Doc Sample - Rational TestManager - [Stress Test 27] [O]]
Fle Edi Yiew Sule Repots Tools Window Help]
x|
2 g [Buid 1 Log [Stress Test Users 1402 Change Log
Log Folder [Defaut Viewlog | Pef | Resp | staws | Usae |
ISEE HDP R[S 2 s | [FER |emmemem]
5B EE - @D
1| Suite | Ewent Dependencies
3 [Sules =)-3 & User Groups

a0
- m

(23 Compulers
(21 Computer Lists

28 Accaunting: 20.000%
: Calculate Haours: 1 time{s)
Calculate Taxes: 1 time(s)
[=]-- 28 Data Entry: 30.000%
Login: 1 timels]
Initialize Options: 1 time(s]
Add New Recard: 1 timels)

Modity Fiecord: 1 timefs]
Delete Record: 1 timefs)
=]~ 5 8 Sales: 50.000%

Login: 1 timefs)

Initialize Options: 1 time(s)

Read Record: 1 timefs)

oo [—

B Pe. [B

|Fready | [Currently Gelected Fiter 4

In this suite:

» The Accounting user group runs two test scripts: one calculates payroll hours and
one calculates payroll taxes.

» The Data Entry user group runs five test scripts: one logs in, one initializes
database options, and three change database records.

= The Sales user group runs three test scripts: one logs in, one initializes database
options, and one reads database records.

Note: The suites in this chapter contain VU test scripts, which are generally used for
performance testing. A suite, however, can also contain GUI scripts, VB scripts, or
other user-defined test script types.

264 Chapter 10 - Designing Performance Testing Suites

Creating a Suite from a Robot Session

If you have recorded a session in Robot, you can play back the test scripts in the
session through TestManager.

When you create a suite from a session and then run the suite, you execute all of the
client/server requests that you recorded during the session, in the order in which you
recorded them.

Creating a suite from a session maintains the test scripts in the order in which you
recorded them originally. To maintain this order, create the suite from the session. For
more flexibility of placement of scripts in a suite, add the test scripts individually.

You can also create a suite based on an existing suite or from scratch. For more
information about creating suites, see Creating a Suite on page 100.

Inserting User Groups into a Suite

A user group is the basic building block for all performance testing suites. A user
group is a collection of virtual testers that perform the same activity. For example, the
suite on page 264 contains three user groups: Accounting, Data Entry, and Sales.

Creating a Suite from a Robot Session 265

To insert a user group into a suite:

From an open suite, click Suite > Insert > User Group.

Run Propertiez of Uzer Group E3

Marme:

I.ﬁ.ccnunting

— Uzer Count
Make user count;

"~ Fired

[urnber: |1 _I:l
Percentage: |2|:| z

— Computers

Local complter j

Multiple Computers... |

ok I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

When you add a user group to a suite, you must specify whether the group contains
fixed or scalable virtual testers:

Fixed — Specifies a static number of virtual testers. Enter the maximum number of
virtual testers that you want to be able to run. For example, if you enter 50 virtual
testers, you can run up to 50 virtual testers in the Sales group each time you run a
suite.

Typically, you assign a fixed number of virtual testers to user groups that do not
add a workload. For example, one virtual tester could run a Warmup test script to
open a database for the virtual testers, and another virtual tester could run a
Shutdown test script to restore and close the database.

Scalable — Specifies a dynamic number of virtual testers. Type the percentage of
the workload that the user group represents. For example, the Accounting group
might represent 20 percent of the virtual testers, the Data Entry group might
represent 30 percent of the virtual testers, and the Sales group might represent 50
percent of the virtual testers in the suite. Each time you run a suite, specify the
total number of virtual testers to be run; TestManager distributes the virtual testers
among the scalable user groups according to the percentages you specify.

266 Chapter 10 - Designing Performance Testing Suites

When you define a user group, you must also specify the computer where the user
group runs. The default computer is the TestManager Local computer, but you can
specify that the user group runs on any defined Agent computer.

Typically, you run the user group on an Agent computer if:

» A performance test requires specific client libraries, or a functional test requires
specific software that is on a specific Agent computer. The user group must run on
the computer that has the libraries or software installed.

» A functional test is designed for a particular computer.

Note: Copy any custom-created external C libraries, Java class files, or COM
components necessary for the test to the Agent computer.

You can also distribute the virtual testers among multiple Agent computers. Typically,
you run a user group on multiple computers if you have:

» A functional test that must execute as quickly as possible. You can save time by
running your virtual testers simultaneously on different computers.

* A large number of virtual testers, and the Local computer does not have enough
CPU or memory resources to support this workload. You can conserve resources
by running fewer virtual testers on each computer in the distribution.

Inserting User Groups into a Suite 267

To distribute the virtual testers in a user group among multiple Agent computers:

Click Suite > Insert > User Group, and then click Multiple Computers.

Multiple Computers E
— Computers

Computers in the project:

Computer

= Local computer
= QATestl
B Darest2
= ATestd
= QATestd

Hame or [P Address: I

‘wieight: m

Lidd b st

— Selected computer

Computer | wieight |

B Local computer 1

hove Up

Iioe Bawmn

i

Eemove

o]

Cancel |

Help

Note: For detailed procedures, see the TestManager Help.

Inserting Test Scripts into a Suite

After you insert user groups into a suite, you add the test scripts that the user groups
run. The suite on page 264 shows the test scripts associated with each user group. The
Accounting group runs two test scripts, the Data Entry group runs five test scripts,

and the Sales group runs three test scripts.

Note: You cannot mix GUI and VU test scripts in a user group. You can, however, mix
other test script types.

268 Chapter 10 - Designing Performance Testing Suites

To insert a test script into a suite:

* From an open suite, select the user group to run the test script, and then click
Suite > Insert > Script.

Run Properties of Test Script [<]
Test script sguice: IVU - [Rational Test Datastore] d

Test script name: ||

—Select

Query: I Standard j Hew...

Mame | Script Type | Description | |

Calculate Hours WL
Calculate Taxes Wl
Delete Record WU
Initialize Options Wi
Lagin Wi
Lagout Wi
Modify Record WL
Read Record Wl
Select &l |
[Precondition
— General
Event: I

Iterations: I'I _I;' Delay between iterations: ID _I:j Seconds

—Scheduling method

Method: I <Moner vl
Dependenoies; I j luliple Dependencies. . |
] I Canicel | Eroperties... | Help |

Note: For detailed procedures, see the TestManager Help.

Setting a Precondition Within a Suite

When you insert a test script, test case, or suite into a suite, you can specify that
successful completion of that item is a precondition for the remainder of that suite
sequence. The item must pass for the remaining suite items at the same level to run.

For example, suppose a suite includes two suites, each of which contains an
initialization test script and several test cases. If you set a precondition on the
initialization test script and the test script fails, TestManager skips all remaining test
cases within that suite only. The suite run resumes at the beginning of the second suite.

Setting a Precondition Within a Suite 269

Preconditions apply only to the specific instance of the test script, test case, or suite.
For example, if you insert a test script multiple times and you want to set a
precondition on all instances of the test script, you must set the precondition for each
test script.

How to Set a Precondition
To set a precondition:
» Right-click the test script, suite, or test case to which to set the precondition, and

theenselect Run Properties.

Relating Preconditions Set in Suites to Those in Test Cases

The preconditions that you set when designing and implementing test cases
(discussed in chapters 3 and 4) are not related to the preconditions that you set within
a suite.

A precondition set on a test case is a setup dependency to ensure that a test case can
run properly. You can enter text in the field. Although TestManager does not use this
text, you can refer to it later. If a precondition fails, the test case may still meet the
acceptance criteria, but the constraints necessary for the test case to run are not met.

A precondition set within a suite must complete successfully for subsequent items at
the same level in the suite to run. TestManager uses this field. If a precondition fails,
TestManager does not run remaining suite items at the same level in the suite.

However, you can relate the two types of preconditions, so the suite precondition
enforces the test case precondition. The following steps show how to do this:

1 Set a precondition on a test case.
2 Within a suite, insert a test script that checks that the test case precondition is met.

3 Within a suite, set a precondition on the test script itself.

Inserting Other ltems into a Suite

A suite requires only user groups and test scripts to run. However, a suite that
realistically models the work that actual users perform is likely to be more complex
and varied than this simple model. A realistic suite might also contain test cases,
subordinate suites, scenarios, selectors, delays, synchronization points, and
transactors to represent a variety of virtual tester actions.

270 Chapter 10 - Designing Performance Testing Suites

In addition to the items that you can add to a suite in TestManager, you can add
certain features to a test script only through Robot. These items—timers, blocks, and
comments—are discussed in detail in the Rational Robot User’s Guide.

Inserting a Test Case into a Suite

You insert test cases into suites so that you can run multiple test cases at one time and
save the set of test cases that are running together.

You insert configured test cases to verify that a test case succeeds in different
environments. When you insert configured test cases in suites, TestManager
automatically assigns the test cases to the appropriately configured computers.

To insert a test case into a suite:

* From an open suite, click Suite > Insert > Test Case.

Run Properties of Test Case

Test Case Name: IATM test case

— Select
B iTest Plan T
=13 Default
Bl o] ATM test case
ol Standard - Win2000

b Standard - Windows =P

¥ Report test case results

™ Precondition

— General

Event: I

|1 =1 Delay between iterations:
|

Iterations:

ID _I:j Seconds

— Scheduling method

M ethad: I <Hanes YI

[ependencies: I

[zl

Iultiple Dependencies. . |

o]

Cancel |

Broperties... | Help |

Note: For detailed procedures, see the TestManager Help.

Inserting Other Items into a Suite 271

You can set a precondition on a test case. When you set a precondition, the test case
must successfully complete in order for other suite items with the same parent to run.
For information about preconditions, see Setting a Precondition Within a Suite on

page 269.

To set a precondition on a test case:

» Right-click the test case and then select Run Properties.

Inserting a Scenario

A scenario lets you group test scripts together so they can be shared by more than one
user group. If you have a complicated suite that uses many test scripts, grouping the
test scripts under a scenario has the added advantage of making your suite easier to
read and maintain.

You define a scenario in the Scenarios section of the suite by creating a scenario and
then inserting items within it. To make a user group execute a scenario, insert the
scenario name in a user group. Otherwise, the scenario is not executed.

272 Chapter 10 - Designing Performance Testing Suites

In the suite on page 264, both the Data Entry and the Sales user groups run the test
scripts Login and Initialize Options. You can simplify this suite by storing both test

scripts in a scenario. The following suite shows the test scripts Login and Initialize
Options grouped under the Set Up Database Application scenario:

st Doc Sample - Rational TestManager - [Stress Test 27] [_[O] %]
File Edt Wiew Sute Repoits Tools ‘Window Help -8 x|
x|
2l B [Buid 1 Log [Stiess Test Users 1802 Change Log...
Log Folder [Defauit Viewlog | Pt | Resp | Staws | Usae |
EEF I DR AlE T 1Y) e zes=
=R R e
1 [e [Event Dependencies
2 Suites [=]-+ 3B User Groups
(-] Computers
-2 Computer Lists =] 3B Accounting : 20.000%
Calculate Hours: 1 time(s]
Caloulate Taxes: 1 timels)
=] 8% Data Entry: 20.000%
- [HH Set Up Database Application: 1 time(s]
- Add New Record: 1 fime(s)
Maodity Recard: 1 time(s)
- Delete Fiecord: 1 timefs)
[8% Sales: 50.000%
- [HH Set Up Database Application: 1 time(s]
| ReadRecord: 1 time(s]
[=] HHD Set Up Datsbase Application
Login 1 timefs]
= Initialize Options: 1 time(s]
|Ready |admin [Currently Selected Filter: v

To create a new scenario:

From the Scenarios section of the suite, click Suite > Insert > Scenario.

Run Properties of Scenario

Mame: ISet |Ip Databaze &pplicatior]

Ok I Cancel | Help |

Inserting Other Items into a Suite 273

To insert a scenario into a suite:
» Click where you want to place the scenario and then click Suite > Insert > Scenario.

Run Properties of Scenario

Mame: ISet Up Database Application j

Iterations: |1 _Ij

Event: ||

Ok I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

After you have created the scenario and before you add the scenario to a user group, it
is a good idea to populate the scenario. A scenario requires only test scripts to run.
However, like a user group, a realistic scenario may also contain selectors, delays,
synchronization points, and transactors. A scenario can even contain other scenarios.

Inserting a Suite into a Suite

Although you generally use suites that contain user (rather than computer) groups in
performance testing, you can insert a suite that contains computer groups into
another suite. The advantage of inserting a suite into a suite is that changes that you
make to the child suite are persistent. So, for example, you can insert a group of test
scripts into a computer-based suite, use the group in many different suites, but update
the suite only once.

For more information, see Inserting a Suite into a Suite on page 210.

Inserting a Selector

TestManager allows you to set suite items to run in different sequences by setting a
selector. A selector provides more sophisticated control than running a simple sequence
of consecutive items in a suite. A selector tells TestManager which items each virtual
tester executes and in what sequence. For example, you might want to repeatedly
select a test script at random from a group of test scripts. A selector helps you to do
this.

274 Chapter 10 - Designing Performance Testing Suites

To insert a selector into a suite:

» Select the user group or a scenario that will contain the selector and then click
Suite > Insert > Selector.

Run Properties of Selector

—Type
& Sequentiat

E

 Parallsl

£ Random with replacement
' Randorm withot replacement
" Dynamic load balancing for time

£ Dynamic lnad balancing for frequency

Mumber to repeat 1

Ewent: I

Ok I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

Inserting Other Items into a Suite 275

Consider the following suite, which does not contain any selectors:

Fie Edit Yiew Sute FRepots Toos Window Help NI
x|
=l Build [puid 1 Log [Sess Test Users 1402 Change Log |
Log Folder [efaui Viewlog | Paf | Resp | Stas | Usage |
R IRy E T T e £ X3
23 A [B e fl e O
™ [Event Dependercies
e ER
(3 Computer Lists =] 58 #ccounting : 20.000%
----- Caleulate Hours: 1 time(s)
Calculate Taxes: 1 time(s)
[=]- 58 Data Entry: 30.000%
0 Set Up Database Applcation: 1 time(s]
----- Add New Resard: 1 time(s)
Modify Record: 1 timels)
----- Delets Recard: 1 time(s]
] 33 Sales: 50.000%
----- I SetUp Database Application: 1 time(s)
Read Record: 1 timels)
[=]- [[
[=]- 00 SetUp Database Application
----- Lagire 1 timefs)
Initialize Options: 1 timels)
C=C R T
|Ready |admin |Currently Selected Filter: 4

When you run the suite with 50 virtual testers, TestManager assigns 10 virtual testers
to Accounting, 15 virtual testers to Data Entry, and 25 virtual testers to Sales (based on

the specifications of the scalable user groups). All 50 virtual testers start executing test
scripts at the same time.

The 10 Accounting virtual testers run each test script in the order in which the test
script appears in the suite: first Calculate Hours and then Calculate Taxes.

The 15 Data Entry virtual testers run the Set Up Database Application scenario and
then run the Add New Record, Modify Record, and Delete Record test scripts in
the order in which the test scripts appear in the suite.

The 25 Sales virtual testers run the Set Up Database Application scenario and then
run the Read Record test script.

However, suppose your Data Entry virtual testers actually add records, delete
records, and modify records randomly. Furthermore, they do not perform these tasks

with the same frequency. For every record they delete, they modify seven records and
add two records.

276 Chapter 10 - Designing Performance Testing Suites

To make your user group reflect this behavior, insert a Random selector into the Data

Entry user group. The following suite shows the Data Entry user group set up to
select test scripts randomly without replacement.

&0 New Doc Example - Rational TestManager

[_[O]x]

File Edit View Suite HBeports Tools Window Help

=l
2 pyig IEuwhﬂ Lag ISIressTestUselﬂEﬂDE Change Log...

Lag Folder IDelauIl “iew Log | Pert | Resp | Status | Usage |

EErEIEE R DI AT T P ET L

= 5o A e 2 |
——
9 |Suites

(23 Computers Suite Event De

L[] Computer Lists

[=]-3 8 User Groups
B Accounting 20.000%
[83 DataEnty: 20.000%

HH SetUp Database Application: 1 timels)
[=]- Eﬁ Fiandom without replacement: 100 selection(s)

- Add a Record: 1 timefs), 2 wt

frdl Modify a Record: 1 timefs], 7 wt
Delete a Record: 1 time(g). 1wt

B Gales: 50.0005%

[Ready

[admin [Currently Selected Fiker:

When you run the suite with 50 virtual testers, scaled according to user group
specifications, each Data Entry virtual tester:

Runs the Set Up Database Application scenario.

Picks one test script per iteration: Add New Record, Modify Record, or Delete
Record. Because there are 100 iterations, each Data Entry virtual tester adds a

record 20 times, modifies a record 70 times, and deletes a record 10 times. The
adding, modifying, and deleting are done in any order.

Types of Selectors

TestManager provides the following types of selectors:

Sequential — Runs each test script or scenario in the order in which it appears in the
suite. This is the default.

Inserting Other Items into a Suite 277

» Parallel — Distributes its test scripts or scenarios to an available virtual tester (one
virtual tester per computer). Typically, you use this selector in functional testing.
The items are parceled out in order, based on which virtual testers are available to
run another test script. Once an item runs, it does not run again.

A parallel selector distributes each test script without regard to its iterations.

= Random with replacement — The selector runs the items under it in random order,
and each time an item is selected, the odds of it being selected again remain the
same.

Think, for example, of a bucket that contains 10 red balls and 10 green balls. You
have a 50% chance of picking a red ball and a 50% chance of picking a green ball.
The first ball selected is red. The ball is then replaced in the bucket with another
red ball. Every time you pick a ball, you have a 50% chance of getting a red ball.

Because the ball is replaced after each selection, the bucket always contains 10 red
and 10 green balls. It is even possible (but unlikely) to pick a red ball every time.
Similarly, the Random with replacement selector is not guaranteed to run every
item in it, particularly if you have set one test script to run more frequently than
another. In other words, if your bucket contains 19 red balls and one green ball, the
green ball might not be selected at all.

* Random without replacement — The selector runs the items under it in random
order, but each time an item is selected, the odds change. For example, think of the
same bucket that contains 10 red balls and 10 green balls. Again, the first ball
selected is red. However, the ball is not replaced in the bucket. Therefore, the next
time you have a slightly greater chance of picking a green ball. Each time you
select a ball, your odds change.

Therefore, if the first 10 balls selected are red, the odds of the next 10 balls being
green are 100 percent. Similarly, the Random without replacement selector runs
every item in it, as long as the number of iterations of the selector is greater than or
equal to the number of items in the selector.

* Dynamic load balancing — With dynamic load balancing, items are not selected
randomly. Think again of the bucket that contains red and green balls. You have
assigned an equal “weight” to each ball. If the first ball that is selected is red, the
second ball selected is always green. This is because with each ball, or test script,
selected, the system “dynamically balances” the workload to approach the 50-50
weight that you set. You can set other weights that are not 50-50. The key point is
that the next test script to run is not selected randomly; it is selected to balance the
workload according to the weight that you have set.

278 Chapter 10 - Designing Performance Testing Suites

You can balance the workload either for time or for frequency. For example,
assume you are dynamically balancing ScriptA and ScriptB, and using equal
weights. ScriptA, however, takes twice as long to run as ScriptB.

If you balance the load dynamically for time, the load is balanced by the runtime of
each test script. Because ScriptA takes twice as long to run, it is actually selected
only half as often as ScriptB.

If you balance the load dynamically for frequency, both test scripts run an equal
number of times. If ScriptA runs 500 times, ScriptB also runs 500 times. The fact
that ScriptA takes longer to run is not factored into the balance.

Dynamic load balancing is done across all virtual testers in a user group. For
example, the following figure shows the Data Entry user group with 15 virtual
testers. Three test scripts, Add New Record, Modify Record, and Delete Record,
are contained in a dynamic load balancing selector.

& New Doc Example - Rational TestManager

= E3
File Edit Yiew Suite Heports Took Window Help
x|
2 guid |Bu||d1 Log ISlless Test Users 15 #06 Changs Log
Log Folder IDefau\t “iew Log | Perf | Resp | Status | Usage |
LA R ET £y EEEET L]
I E R L [
=
= Guites .
(33 Computers Suite: Event De
(2 Computer Lists [=]-+ 5 B User Groups
-8B Accounting 20 000%
S& Data Enty: 30.000%
-------- H Set Up Database Application: 1 time(s)
= g Dynamic load balancing for frequency: 10 selsction(s]
Add a Record: 1 timefs], 2wt
Modify a Record: 1 timefs], 7 wt.
. Delete a Record: 1 time(s], 1wt
2@ Sales 50.000%
N E
[Ready [admin [Eurently Selected Fiter: 4

Inserting Other Items into a Suite 279

When you run the suite, the first Data Entry virtual tester selects the Modify
Record script, because it has the largest weight. However, because the workload is
balanced across all Data Entry virtual testers, after the first virtual tester exits,
TestManager recalculates the weights to reflect the fact that the test script with the
largest weight (7) has already been selected. By the time later virtual testers are
ready to select a test script, the weights have changed so they have a greater
chance of selecting the Add New Record test script.

Inserting a Delay
A delay tells TestManager how long to pause before it runs the next item in the suite.
To insert a delay into a suite:

» Click the user group, scenario, or selector to which to add a delay, and then click
Suite > Insert > Delay.

Run Properties of Delay

Delay type
(ol

€ From start of suite

© Until a particular time of day

Delay: |5 _Ij Seconds

Ewent: I

Ok I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

280 Chapter 10 - Designing Performance Testing Suites

In performance testing, you use delays to model typical user behavior. For example, if
your Accounting user group calculates the hours and taxes, and then pauses for two

minutes, you would add a delay after the Calculate Taxes test script, as shown in the
following suite.

&BDoc §ample - Rational TestManager - [Stress Test 27] M=k
Fils Edit Wisw Suts Repets Tools ‘window Help IR
=
I |Euwld1 Log ISIIESSTESIUsers 1802 Changs Lag
Log Foldsr [Defaut Viewlog | Peif | Resp | Status | Usage |
G825 (HI|: 22 (B2 [FRAD lerws % E
= 2= o [R B e G e O
1 [sy | Event Dependencies
23 Buites =] 38 User Groups
(3 Computers
(21 Computer Lists (=)&) Accounting: 20.000%

Caleulate Hours: 1 time[s]
Caloulate Tanes: 1 time(s)
B oeley 120 ers
-38 Data Enty: 30.000%

B Sales: 50.000%

[+

8. Be [[§. 8]

|Fieady

[admin |Currently Selected Fiter

A

You can insert a delay into a suite or a test script. The advantages of inserting a delay

into a suite are that the delay is visible in the suite and the delay is easy to change
without editing the test script.

Inserting a Transactor

A transactor tells TestManager the number of tasks that each virtual tester runs in a
given time period. For example, you might be testing an Order Entry group that
completes 10 forms per hour, or you might be testing a Web server that you want to be

able to support 100 hits per minute. Use a transactor to model this time-based
behavior.

Inserting Other Items into a Suite 281

To insert a transactor into a suite:

» Select the user group or selector to contain the transactor, and then click Suite >
Insert > Transactor.

Run Properties of Transactor

Mame: || j

—Type
¢ Coordinated

' Independent

—FRate
¢ Taotal rate
€ Userrate

I1 :II per Iminute -]

Distribution: INegative Exponential j

Framge: 20 =l of interval

]
Iterations: |1 _I:

Scenario: ISc:enarioD j

Event: li
Ok I

Cancel I Help I

Note: For detailed procedures, see the TestManager Help.

In the previous section, you added a delay to the Accounting user group. This delay
made the virtual testers pause for two minutes after they calculated the hours and
taxes, as shown in the suite on page 281.

282 Chapter 10 - Designing Performance Testing Suites

However, suppose that the Accounting group instead calculates the hours and the
taxes at the specific rate of 10 transactions per hour. You could edit the suite to reflect
this by replacing the selector and delay with a transactor. The following suite shows
the Accounting user group after you have added a transactor:

@l Doc Sample - Rational TestManager - [Stiess Test 27]
File Edit “iew Suite Reports Tools ‘“indow Help (=1 |
x|
2l Buig [Buid 1 Log [Stress Test Users 1 802 Change Log
Log Folder [Defaui Viewlog | Pef | Resp | staws | Usae |
EErF L I e R A ET EY) EEEET L
B 38 o) [B e B G
= lxd [q | Ewent Dependencies
3 Sues =5 ®] User Groups
(2] Computers
(1 Computer Lists 18 coounting: 20.000%
@ Accounting: 1 iterations
[+]--§ B Data Entry: 30.000:%
[}~ 8 Sales: 50.000%
[=]--00 Accounting Scenaria
[Caleulate Hours: 1 times)
Calculats Taxes: 1 timefs)
" B Delay 120500
[+]--000 SetUp Database Application
. He.
|Ready [admin |Currently Selected Filter: v

This suite is identical to the one on page 281, except that it contains:

» A transactor, which tells TestManager the rate that you want to maintain, and how

long you want to maintain this rate.

» A scenario, which contains the items that the transactor runs.

A transactor can be one of two types:

» A Coordinated transactor, which has a built-in synchronization point, lets you
specify the total rate that you want to achieve. The virtual testers work together to
generate the workload. For example, if you run a suite with 10 virtual testers and
then run the same suite with 20 virtual testers, the total transaction rate stays the

same.

Inserting Other Items into a Suite 283

Use a coordinated transactor when you are emulating the total transaction rate
applied to a server, rather than the rate of specific times a virtual tester runs a task.
For example, to emulate the number of hits per minute that a Web server can
handle, use a coordinated transactor.

» An Independent transactor lets each virtual tester operate independently. It does not
coordinate the virtual testers under it with a built-in synchronization point. For
example, if you run a suite with 10 virtual testers and then run the same suite with
20 virtual testers, the total transaction rate doubles—because the number of virtual
testers has doubled.

Use an independent transactor if different user groups run the transaction at
different times or if you are emulating individual behavior rather than a group
behavior. For example, to emulate an Accounting user group that performs 10
calculations per hour but not all at the same time, use an independent transactor.

Once you have defined the transactor type, you must then specify the transactor rate:

= Total rate — For a coordinated transactor, you generally select Total rate. This is
because whether 100 virtual testers or 50 virtual testers are participating, it has no
effect on the rate that TestManager submits transactions.

» User rate — For an independent transactor, you must select User rate.

However, select User rate for a coordinated transactor if you expect to change the
rate frequently and want the convenience of not having to edit the suite. For
example, suppose you have inserted a coordinated transactor and you want to
compare a workload at 100 hits per minute, 200 hits per minute, and 300 hits per
minute—increasing the workload with each suite run. If you select User rate, you
do not have to change the rate in the transactor’s properties. Instead, when you
run the suite at 100 virtual testers, 200 virtual testers, and 300 virtual testers, the
rate scales proportionally.

Next, specify the distribution of the transactor:

» A Constant distribution means that each transaction occurs exactly at the rate you
specify. For example, if the transaction rate is 4 per minute, a transaction starts at
15 seconds, 30 seconds, 45 seconds, and 60 seconds—exactly four per minute,
evenly spaced, with a 15-second interval. Although this distribution is simple
conceptually, it does not accurately emulate the randomness of user behavior.

A Constant distribution is useful for emulating an automated process. For
example, you might want to emulate an environment where virtual testers are
uploading data to a database every half hour.

284 Chapter 10 - Designing Performance Testing Suites

A Uniform distribution means that over time, the transactions average out to the
rate you specify, although the time between each transaction is constant. The time
between the start of each transaction is chosen randomly with a uniform
distribution within the selected range. Think of this range as a “window” through
which the transaction runs.

For example, the transaction rate is 4 per minute (that is, 1 transaction per
15-second interval). If you select a range of 20%, your transaction has a 3-second
window on each side of that 15-second interval, because 20% of 15 seconds is 3
seconds.

Therefore, the first transaction starts at 12-18 seconds (15 plus or minus 3). The
second transaction starts 15 seconds plus or minus 3 seconds after the first
transaction starts. If the first transaction starts at 12 seconds, the second transaction
starts at 24 to 30 seconds. However, if the first transaction starts at 18 seconds, the
second transaction starts at 30 to 36 seconds.

Because each transaction starts randomly within the range that you specity, it is
normal for transactions to run at a rate that is faster or slower than the rate that
you selected for short periods of time. For example, if a transaction starts every 12
seconds for a minute (recall that the window is 12-18 seconds), the rate for that
initial interval is 5 per minute—not the 4 per minute that you selected. Over time,
however, the transaction rate averages out to 4 per minute.

With a Uniform distribution, a transaction has the same probability of running
within the range that you specify. The transaction starts anywhere within this
window. In our example, the probability of the first transaction starting at 12
seconds, 18 seconds—or anywhere in between—is equal.

A Negative Exponential distribution, in contrast, changes the probability of when a
transaction starts. This distribution most closely emulates the bursts of activity
followed by a tapering off of activity that is typical of user behavior. Using the
same example of 4 transactions per minute, the probability that a transaction starts
immediately is high, but decreases over time. TestManager maintains the desired
average rate.

Imagine that you have called a meeting at two o’clock. Most people arrive at two, a
few people arrive at five minutes past two, and fewer still at ten past two. Perhaps
the last straggler arrives at two-thirty. This arrival time approximates a negative
exponential distribution. Most people arrive on time, and then the arrival rate
declines. Mathematically speaking, the interval is chosen randomly from a
negative exponential distribution with the average interval is equal to 1/rate.

Inserting Other Items into a Suite 285

Transactors can be inserted in a user group or independently in a sequential or
random selector. If you are inserting an independent transactor within a random
selector, you must specify the weight of the selector. For information about selectors,
see Types of Selectors on page 277.

A transactor can set an event. For information about events, see Using Events and
Dependencies to Coordinate Execution on page 293.

Inserting a Synchronization Point

A synchronization point lets you coordinate the activities of a number of virtual testers
by pausing the execution of each virtual tester at a particular point (the
synchronization point) until one of the following events occurs:

» All virtual testers associated with the synchronization point arrive at the
synchronization point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. When the specified number of virtual
testers reaches the synchronization point, TestManager releases the virtual testers
and allows them to continue executing the suite.

» A time-out period is reached before all virtual testers arrive at the synchronization
point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, before all virtual testers arrive at the
synchronization point, the time-out period expires and TestManager releases the
virtual testers and allows them to continue executing the suite. Virtual testers that
did not make it to the synchronization point before the time-out expired do not
stop at the synchronization point. They also continue executing the suite.

* You manually release the virtual testers while monitoring the suite.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, this time you decide to release virtual
testers from the synchronization point and continue executing the suite. All virtual
testers may or may not have arrived at the synchronization point. Virtual testers
that did not make it to the synchronization point before you released them
manually do not stop at the synchronization point. They also continue executing
the suite.

286 Chapter 10 - Designing Performance Testing Suites

You can insert a synchronization point:

Into a test script — Insert a synchronization point into a test script using Robot in
one of the following ways:

2 During recording, using the toolbar or the Insert menu.

2 During test script editing, by manually typing the synchronization point
command into the test script.

Insert a synchronization point into the test script to control exactly where the test
script pauses execution. For example, insert a synchronization point command just
before you send a request to a server.

Use this method if the synchronization point depends upon some logic that you
add to the test script during editing.

For information about inserting a synchronization point into a test script during
recording, see the Rational Robot User’s Guide.

Into a suite — Insert a synchronization point into a suite through TestManager.

Insert a synchronization point into a suite in TestManager to pause execution
before or between test scripts rather than within a test script. Inserting a
synchronization point into a suite offers these advantages:

2 You can easily move the location of the synchronization point without having
to edit a test script.

s The synchronization point is visible within the suite rather than hidden within
a test script.

When you insert a synchronization point into a suite in TestManager, you can do
more than assign a synchronization point name to a test script. For example:

@ You can specify whether you want the virtual testers to be released at the same
time or at different times.

2 If the virtual testers are to be released at different times (staggered), you can
specify the minimum and maximum times within which all virtual testers are
released.

= You can specify a time-out period.

Inserting Other Items into a Suite 287

To insert a synchronization point into a suite:

» (Click Suite > Insert > Synchronization Point.

Run Properties of Synchronization Point

Timeout: il

Mame:
IS tress Tes| j
Invalid characters)
— Release type
% Together
Restart tirme: ID _I:j Seconds
" Staggered
Finirmurn time: IU _I:j Seconds
P aximnurn brne: ID _I:j Seconds
| 3

Seconds

;4 I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

For example, when you run a stress test (an attempt to run your applications under
extreme conditions to see if they or the server “break”), your suite might contain
virtual testers that perform the certain operations continuously and repeatedly for
hours on end. To most effectively run a stress test, you could synchronize the virtual
testers so that they perform the operations at the same time to stress the system. You
could do this by inserting a synchronization point to coordinate these virtual testers to
perform certain functions simultaneously.

How Synchronization Points Work

At the start of a test, all virtual testers begin executing their assigned test scripts. They
continue to run until they reach the synchronization point. When specified in a test
script, a synchronization point is a programmatic command (sync_point ina VU test
script, SQASyncPointWait in an SQABasic test script, TSSSync . SyncPoint ina VB
test script, or TSSSync . syncPoint in a Java test script). When specified in a suite, a
synchronization point is placed similarly to other suite elements (delays, transactors,
and so on).

288 Chapter 10 - Designing Performance Testing Suites

The following figure illustrates a synchronization point:

The virtual testers pause at the synchronization point until TestManager releases
them.

o Virtual testers running Virtual testers reach the
simultaneously synchronization point
> >
> >

> >

> >

> >

> >

> >

> >
> >

> >

The following suite shows synchronization points called Stress Test:

@0 Doc Sample - Rational TestManager - [Stress Test 27] [_ O] =]
File Edt Wisw Subs Repots Tooks Window Help _ 1| x|
=
2 Byid [Buid 1 Log [Stess Test Users 1802 Change Log...

Log Folder [Defat Viewlog | Pel | Resp | Staws | Usae |

BEEE | HE LR |ga
= 3 o [E e e D
e r'm | Event Dependencies

T

ter FpEADR

|lewz =%

£ [Suites
-] Computers
(-] Compuler Lists

]

ser Groups

i
38 Accounting : 20.000%

'

[e Stress_Test
= E;.; Sequentiat 100 timefs)
Calculate Hours: 1 timefs]
Calculate Takes: 1 timels)
B ety 120 sens
[=- 88 DataEntny: 30.000%
(K] Set Up Database Application: 1 timels)

e Stess_Test

= Q Randarm without replacement: 100 selectionls)
#dd Mew Record: 1 timefs], 2 wt
Delete Recard: 1 time(s]. 7 wt.
Madify Recard: 1 timsfs). 1 wt
[83 Sales: 50.000%
M Set Up Database Application: 1 time(s)

-
4 Stress Test

Read Recard: 200 fimels)

i+ 000 [

TTEL. BE

|Ready |admin |Cunently Selected Fikter: v

Inserting Other Items into a Suite 289

The virtual testers in the Accounting user group wait at the synchronization point.
The virtual testers in the Data Entry and Sales user groups perform the Set Up
Database Application scenario and then wait at the synchronization point. When all
the virtual testers reach the synchronization point, they are released.

If you run the test with 10,000 virtual testers, when all the virtual testers reach the
Stress Test synchronization point, they are released. In this example:

» Each of the 2000 virtual testers in the Accounting group calculates the hours and
taxes, pauses for two minutes, and then calculates the hours and taxes again. Each
virtual tester repeats this 100 times.

» Each of the 3000 virtual testers in the Data Entry group adds, deletes, or modifies a
record. Each virtual tester repeats this 100 times.

» Each of the 5000 virtual testers in the Sales group reads a record. Each virtual tester
repeats this 200 times.

When setting synchronization points, you must specify how virtual testers are
released from the synchronization point:

» Together — Releases all virtual testers at once.

Specify a restart time to delay the virtual testers. For example, if you set the Restart
time to 4 seconds, after the virtual testers all reach the synchronization point (or
the time-out occurs), they wait 4 seconds, and then they are all released.

The default restart time is 0, which means that when the last virtual tester reaches
the synchronization point, all virtual testers are released immediately.

» Staggered — Releases the virtual testers one by one.

The amount of time that each virtual tester waits to be released is chosen at
random and is uniformly distributed within the range of the specified minimum
time and maximum time. For example, if the minimum time is 1 second and the
maximum time is 4 seconds, after the virtual testers reach the synchronization
point (or the time-out occurs) each virtual tester waits between 1 and 4 seconds
before being released. All virtual testers are distributed randomly between 1 and 4
seconds.

The time-out period for a synchronization point specifies the total time that
TestManager waits for virtual testers to reach the synchronization point. If all the
virtual testers associated with a synchronization point do not reach the
synchronization point when the time-out period ends, TestManager releases any
virtual testers waiting there. The time-out period begins when the first virtual tester
arrives at the synchronization point.

290 Chapter 10 - Designing Performance Testing Suites

Although a virtual tester that reaches a synchronization point after a time-out is not
held, the virtual tester is delayed at that synchronization point. So, for example, if the
time-out period is reached, and the restart time is 1 second and the Maximum time is
4 seconds, a virtual tester is delayed between 1 and 4 seconds.

The default time-out is 0, which means that there is no time-out. Setting a time-out is
useful because one virtual tester might encounter a problem and might never reach
the synchronization point. When you set a time, you do not hold up other virtual
testers because of a problem with one virtual tester.

A suite or test script can have multiple synchronization points, each with a
unique name. A given synchronization point name can be referenced in multiple test
scripts and /or suites.

Why Use Synchronization Points?

By synchronizing virtual testers to perform the same activity at the same time, you
can make that activity occur at some particular point of interest in your
test—for example, when the application sends a query to the server.

Synchronization points inserted into test scripts are used in conjunction with timers to
determine the effect of varying virtual tester load on the timed activity. For example,
to simulate the effect of virtual tester load on data retrieval:

1 While recording the test script (named VU1 in this example) that submits the
query and displays the result, perform the following actions:

a Insert a synchronization point named TestQuery into the test script.
b Start a block.

The block times the transaction you are about to perform. The block also
associates the block and timer names with the name of the emulation command
that performs the transaction.

¢ Submit the query and wait for the results to be displayed.
d Stop the block.

2 While recording the test script that provides the load, insert another TestQuery
synchronization point just before you begin to record the task that provides the
load. For example, just before you click to submit an order form, add a
synchronization point. Name this test script VU2.

3 Add VU1 and VU2 to a suite.

Inserting Other Items into a Suite 291

4 Run the suite a number of times, each time applying a different number of virtual
testers to the VU2 test script. However, you need only one virtual tester running
the VU1 test script in each test.

Theoretically, as the number of synchronized VU2 virtual testers increases, the
time reported by the VU1 timer should also increase.

In this example, the TestQuery synchronization point ensures that:

» All VU2 virtual testers submit their forms at the same time—thereby providing
maximum concurrent virtual tester load.

» The VU1 virtual tester submits its query at the same time that the VU2 virtual
testers are loading the server—thereby providing maximum load at a critical time.
Release Times and Time-Outs for Synchronization Points in Test Scripts

You cannot define minimum and maximum release times or time-out periods for
synchronization points inserted into test scripts as you can for synchronization points
inserted into suites. By default:

» Virtual testers held at a script-based synchronization point are released
simultaneously.

» There is no time limit to how long virtual testers can be held at the synchronization
point.

However, if a synchronization point in a suite has a release time range and time-out
period defined for it, the release times and time-out period apply to all
synchronization points of that same name—even if a synchronization point is in a test
script.

Scope of a Synchronization Point

The scope of a synchronization point includes all test scripts that reference a
particular synchronization point name plus all user groups that reference that name.

For example, suppose you have the following user groups in a suite:

» A Data Entry user group of 75 virtual testers. This user group runs a test script
containing the synchronization point Before Query.

* An Engineering user group of 10 virtual testers. This user group runs a different
test script than the Data Entry groups runs. But this test script also contains a
synchronization point named Before Query.

292 Chapter 10 - Designing Performance Testing Suites

» A Customer Service user group of 25 virtual testers. This user group runs a test
script that contains no synchronization points. However, the user group does have
a synchronization point defined for it. This synchronization point is also named
Before Query.

At suite runtime, TestManager releases the virtual testers held at the Before
Query synchronization point when all 110 virtual testers arrive at their respective
synchronization points.

Using Events and Dependencies to Coordinate Execution

An event is a mechanism that coordinates the way items are run in a suite. For
example, you are running a suite that contains 100 virtual testers that access a
database. You want the first virtual tester to initialize the database and the other 99
virtual testers to wait until the initialization is complete. To do this, you could set a
dependency on the initialization event, which blocks the 99 virtual testers until the event
(the first virtual tester initializes the database) occurs.

You can have multiple events in a suite. Although only one item in a suite can sef an
event, many items can depend on the event.

Note: Events and dependencies require only that actions occur—not necessarily that
they complete successfully. If parts of your suite require that actions not only occur
but also complete successfully, use a precondition on a test case, test script, or suite.
For more information about preconditions set on items within suites, see Setting a
Precondition Within a Suite on page 269.

Using Events and Dependencies to Coordinate Execution 293

The following suite shows 99 virtual testers waiting until the first virtual tester
initializes a database:

&l Doc Sample - Rational TestManager - [Suite 9%]

File Edit “iew Suite Repots Took Mindow Help =18l
x|
2 Buid |Buud1 Log IStress Test Users 1402 Change Log...

Lag Folder IDefau\t “iew Log | Pert | Resp | Status | Usage |

DEEE M@ PR (3 sar [FERD | % B = % @

RN E R ER N [
T | Event | Dependencies

-3 Suites 213 User Groups

-] Computers

23 Computer Lists E| gg Initialization: 1 userls)

: i Initialize D atabaze: 1 timels] D atabase iz Initialized

S5 8 Data Entry: 99 users]
El 9 Random without replacement: 10 sele.

RHE

dd New Record: 1 timels), 2 vt Database is Initizlized
Modify Record: 1 timels), 7 vt Database is Initizlized

Delets Record: 1 time(s], 1 wt Databass is Initislized

TR Pe. @ Ee

|Ready [admin [Currertly Selected Filter: 4

The second column in the suite lists the events and the third column lists the
dependencies. In this suite, as soon as the Initialize Database test script completes, it
sets the event Database Is Initialized. The Add New Record, Modify Record, and
Delete Record test scripts depend on this event and can run only after it is set.

In the previous example, the virtual testers in the Data Entry user group ran test
scripts randomly. In this case, you must add a dependency to each test script in the
selector, because you do not know which test script will run first. However, if the Data
Entry user group runs the test scripts sequentially, add a dependency to the first test
script only.

To add a test script that sets or depends on an event:
» (lick Suite > Insert > Test Script.
Note: For detailed procedures, see the TestManager Help.

294 Chapter 10 - Designing Performance Testing Suites

The previous example shows how to add a test script that sets an event and another
test script that depends upon an event. However, scenarios, transactors, and delays
can also set events, and executables can be dependent on an event.

Executing Suites

After you have created and saved a suite, you can:

» Check the suite for errors. To do this, open the suite, and then click Suite > Check
Suite.

» Check the status of Agent computers. To do this, open the suite, and then click
Suite > Check Agents.

» Control the runtime information of the suite. To do this, open the suite, and then
click Suite > Edit Runtime.

» Control how the suite terminates. To do this, open the suite, and then click Suite >
Edit Termination.

* Run the suite. To do this, open the suite, and then click File > Run Suite.

Finally, while the suite is running, you can monitor its progress. For information
about monitoring suites, see Monitoring Test Runs on page 132.

Executing Suites 295

296 Chapter 10 - Designing Performance Testing Suites

Working with Datapools

This chapter describes how to create and manage datapools. It includes the
following topics:

What is a datapool

Planning and creating a datapool

Data types

Managing datapools

Managing user-defined data types

Generating and retrieving unique datapool rows
Creating a datapool outside Rational Test

Creating a column of values outside Rational Test

Note: For detailed procedures, see the TestManager Help.

You should familiarize yourself with the concepts and procedures in this chapter
before you begin to work with datapools.

Note: This chapter describes datapool access from VU and GUI test scripts played
back in a TestManager suite. Additional information about datapools can be found in
a number of different Rational documents:

s For datapool procedures, see the TestManager Help.

s For information about using datapools in VB or Java test scripts, see the
Rational Test Script Services manual for your language.

2 For information about datapools in custom test script types, see the Rational
TestManager Extensibility Reference.

2 For more information about creating datapools during test script recording, see
the Rational Robot User’s Guide and Robot Help.

s For information about datapools and GUI test scripts, see the SQABasic Language
Reference.

297

What Is a Datapool?

A datapool is a test dataset. It supplies data values to the variables in a test script
during playback.

Datapools let you automatically supply variable test data to virtual testers under
high-volume conditions that potentially involve hundreds of virtual testers
performing thousands of transactions.

Typically, you use a datapool so that:

* Each virtual tester that runs the test script can send realistic data (which can
include unique data) to the server.

» A single virtual tester that performs the same transaction multiple times can send
realistic (usually different) data to the server in each transaction.

If you do not use a datapool during playback, each virtual tester sends the same literal
values to the server—the values defined in the test script.

For example, suppose you record a VU test script that sends order number 53328 to a
database server. If 100 virtual testers run this test script, order number 53328 is sent to
the server 100 times. If you use a datapool, each virtual tester can send a different
order number to the server.

Datapool Tools

You create and manage datapools with either Robot or TestManager. The following
table shows which activities you can perform with each product:

Activity Robot TestManager

Automatically generate datapool
commands in a test script.

Create a datapool and
automatically generate datapool
values.

Edit the DATAPOOL_CONFIG
section of a VU test script.

Edit datapool column definitions
and datapool values.

Create and edit datapool data
types. .

298 Chapter 11 - Working with Datapools

Activity Robot TestManager

Perform datapool management
activities such as copying and
renaming datapools.

Import and export datapools.

Import data types.

This chapter discusses datapools and explains how to perform activities related to
datapools in TestManager. For information about using datapools in Robot, see the
Rational Robot User’s Guide.

Managing Datapool Files
A datapool consists of two files: a text file and a specification file.
» Datapool values are stored in a text file with a .csv extension.

» Datapool column names are stored in a specification(.spc) file. Robot or
TestManager is responsible for creating and maintaining this file. You should
never edit this file directly.

.csv and .spc files are stored in the TMS_Datapool directory of your project.

Unless you import a datapool, Robot or TestManager automatically creates and
manages the .csv and .spc files based on instructions that you provide through the
user interface.

If you import a datapool, you are responsible for creating the .csv file and populating
it with data. However, the Rational Test software is still responsible for creating and
managing the .spc file for the imported datapool.

For information about importing datapools, see Importing a Datapool on page 318 and
Creating a Datapool Outside Rational Test on page 324.

Note: TestManager automatically copies a .csv file to each Agent computer that needs
it. If an Agent’s .csv file becomes out-of-date, TestManager automatically updates it.

What Is a Datapool? 299

Datapool Cursor

The datapool cursor, or row-pointer, can be shared among all virtual testers who
access the datapool, or it can be unique for each virtual tester.

Sharing a datapool cursor among all virtual testers allows for a coordinated test.
Because each row in the datapool is unique, each virtual tester can share the same
cursor and still send unique records to the database.

In addition, a shared cursor can be persistent across suite runs. For example, suppose
that the last datapool row accessed in a suite run is row 100:

» If the cursor is persistent across suite runs, datapool row access resumes with row
101 the first time the datapool is accessed in a new suite run.

» If the cursor is not persistent, datapool row access resumes with row 1 the first
time the datapool is accessed in a new suite run.

Note: Virtual testers running SQABasic test scripts can share a cursor when playback
occurs in a TestManager suite, but not when playback occurs in Robot.

For information about defining the scope of a cursor, see the description of the Cursor
argument in the Rational Robot User’s Guide.

Row Access Order
Row access order is the sequence in which datapool rows are accessed at test runtime.

With GUI test scripts, you control the row access order of the datapool cursor through
the sequence argument of the SQABasic SQADatapoolOpen command.

With VU test scripts, you control row access order through the Access Order setting in
the Robot Configure Datapool in Script dialog box. (See the Rational Robot User’s Guide.)

For other types of test scripts, see the Rational Test Script Services manual for your
language.
Datapool Limits

A datapool can have up to 150 columns if Robot or TestManger automatically
generates the data for the datapool, or 32,768 columns if you import the datapool from
a database or other source. Also, a datapool can have up to 2,147,483,647 rows.

300 Chapter 11 - Working with Datapools

What Kinds of Problems Does a Datapool Solve?

If you play back a test script just once during a test run, that test script probably does
not need to access a datapool.

But often during a test run, and especially during performance testing, you need to
run the same test script multiple times. For example:

During performance testing, you may run multiple instances of a test script so that
the test script is executed many times simultaneously. (Remember, a virtual tester
is one runtime instance of a test script.)

During functional and performance testing, you may often run multiple iterations
of a test script so that the test script is executed many times consecutively
(simulating a virtual tester performing the same task over and over).

If the values used in each test script instance and each test script iteration are the same
literal values—the values that you provided during recording or hand-coded into the
test script—you might encounter problems at suite runtime.

The following are some examples of problems that datapools can solve:

Problem: During recording, you create a personnel file for a new employee using
the employee’s unique social security number. Each time the test script is played
back, an attempt is made to create the same personnel file and supply the same
social security number. The application rejects the duplicate requests.

Solution: Use a datapool to send different employee data, including unique social
security numbers to the server each time the test script is played back.

Problem: You delete a record during recording. During playback, each instance and
iteration of the test script attempts to delete the same record, and “Record Not
Found” errors result.

Solution: Use a datapool to reference a different record in the deletion request each
time the test script is played back.

Problem: The client application reads a database record while you record a test
script for a performance test. During playback, that same record is read hundreds
of times. Because the client application is well designed, it puts the record in cache
memory, making retrieval deceptively fast in subsequent fetches. The response
times that the performance test yields are inaccurate.

Solution: Use a datapool to request a different record each time the test script is
played back.

What Is a Datapool? 301

Planning and Creating a Datapool

A summary of the stages involved in preparing a datapool for use in testing is
illustrated in the following figure. The order of stages shown is the typical order for
planning and creating a datapool for test scripts.

Plan the Datapool

= What datapool columns do you need?
= What data type should you assign each column?
= Do you need to create data types?

Generate the Code
VU Test Scripts

Select the Use datapools recording option.
* Record the transactions, and then stop recording.
* Robot automatically generates datapool commands.
= Robot automatically matches up test script variable
names with datapool column names.

GUI Test Scripts

* Manually add datapool commands to the test script.
* Match up test script variable names with datapool
columns.

Create and Populate the Datapool
VU Test Scripts

= In Robot, click Edit > Datapool Information.
= Modify DATAPOOL_CONFIG or accept the defaults.

VU and GUI Test Scripts

= In Robot or TestManager, define datapool columns (including
assigning a data type to each datapool column).
* Generate the data.

The following steps provide details about these activities.
1 Plan the datapool.

Determine the datapool columns you need. In other words, what kinds of values
(names, addresses, dates, and so on) do you want to retrieve from the datapool
and send to the server?

Typically, you need a datapool column for each test script variable to which you
plan to assign datapool values during recording.

302 Chapter 11 - Working with Datapools

For example, suppose your client application has a field called Order Number.
During recording, you type in a value for that field. With VU test scripts, the value
is assigned to a test script variable automatically. During playback, that variable
can be assigned unique order numbers from a datapool column.

This stage requires some knowledge of the client application and the kinds of data
that it processes.

To help you determine the datapool columns that you need, record a preliminary
test script. Robot automatically captures all of the values supplied to the client
application during recording and lists them in the DATAPOOL_CONFIG section at
the end of the test script. For more information, see Finding Out Which Data Types
You Need on page 306.

Generate datapool code.

To access a datapool at runtime, a test script must contain datapool commands,
such as commands for opening the datapool and fetching a row of data. With VU
test scripts, a DATAPOOL_CONF IG section must also be present. This section
contains information about how the datapool is created and accessed.

Datapool code is generated in either of the following ways:

2 With VU test scripts, Robot generates datapool code automatically when you
finish recording a session. Robot is aware of all the variables in the session that
are assigned values during recording, and it matches up each of these variables
with a datapool column in the test script.

To have Robot generate datapool commands automatically during recording,
make sure that Use datapools is selected in the Generator tab of the Session
Record Options dialog box before you record the test script.

Note: You must still supply data to the datapool and enable it.

a With SQABasic test scripts, you manually insert the datapool commands and
match up test script variables with datapool columns. For information about
coding datapool commands, see the Rational Robot User’s Guide.

s For information about using datapools with other script types, see the Rational
Test Script Services manual for your language.

Create and populate the datapool.

After the datapool commands are in the test script, you can create and populate
the datapool.

To start creating and populating a datapool for a test script that you are editing in
Robot, click Edit > Datapool Information.

Planning and Creating a Datapool 303

Creating and populating a datapool for a test script involves the following
general steps:

2 Editing the DATAPOOL _CONFIG section of the test script. For example, you
might want to change the default datapool access flags or exclude a datapool
column from being created for a particular test script variable. Optionally, you
can accept all of the default settings that Robot specifies when it creates this
section in a test script.

For information about editing the DATAPOOL_CONFIG section of a test script,
see the Rational Robot User’s Guide.

2 Defining the datapool columns that you determined you needed during the
planning stage. For example, for an Order Number column, you can specify the
maximum number of characters that an order number can have and whether
the Order Number column must contain unique values.

For information about defining datapool columns, see the Rational Robot User’s
Guide.

You also assign a data type to each datapool column. Data types supply a
datapool column with its values. For information about data types, see Data
Types on page 304.

s Generating the data. Once you configure the datapool and define its columns,
populate the datapool by clicking Generate Data.

Note: You can also create and populate a datapool file manually and import it into the
datastore. For more information, see Creating a Datapool Outside Rational Test on
page 324.

Data Types

A datapool data type is a source of data for one datapool column.

For example, the Names - First data type (shipped with Rational Test as a standard
data type) contains a list of common English first names. Suppose you assign this data
type to the datapool column FNAME. When you generate the datapool, TestManager
populates the FNAME column with all of the values in the Names - First data type.

304 Chapter 11 - Working with Datapools

The following figure shows the relationship between data types, datapool columns,
and the values assigned to test script variables during playback:

First Name\
During datapool generation,

Fr;;l erick the First Name data type
ary populates the FNAME
Frank datapool column with

Lauren appropriate values.
Eleanor \
Charlotte FNAME

William
Victor ..., Frederick, ...
sy Mary, ...
ey Frank, ...
During playback, the FNAME - Lauren, ...
column supplies a different - Eleanor, ...
value to the FNAME variable - Charlotte, ...
in each instance of the script. -y William, ...
/ ..., Victor, ...
Virtual Tester 1 Virtual Tester 2 Virtual Tester 3
FNAME="Frederick" FNAME="Mary" FNAME="Frank"

Standard and User-Defined Data Types
The two kinds of datapool data types are:

» Standard data types that are included with Rational Test. These data types include
commonly used, realistic sets of data in categories such as first and last names,
company names, cities, and numbers.

For a list of the standard data types, see Standard Datapool Data Types on page 391.

» User-defined data types that you create. You must create a data type if none of the
standard data types contain the kind of values you want to supply to a test script
variable.

User-defined data types are useful in situations such as the following;:

2 When a field accepts a limited number of valid values. For example, suppose a
datapool column supplies data to a test script variable named color. This
variable provides the server with the color of a product being ordered. If the
product only comes in the colors red, green, blue, yellow, and brown, these are
the only values that can be assigned to color. No standard data type contains
these exact values.

Data Types 305

To ensure that the variable is assigned a valid value from the datapool:

i Before you create the datapool, create a data type named Colors that
contains the five supported values (Red, Green, Blue, Yellow, Brown).

ii When you create the datapool, assign the Colors data type to the datapool
column COLOR. The COLOR column supplies values to the test script’s
color variable.

2 When you need to generate data that contains multi-byte characters, such as
those used in some foreign-language character sets. For more information, see
Generating Multi-Byte Characters on page 308.

Before you create a datapool, find out which standard data types you can use as
sources of data and which user-defined data types you need to create. Although you
can create a data type while you are creating the datapool itself, the process of creating
a datapool is smoother if you create the user-defined data types first.

Finding Out Which Data Types You Need

To decide whether to assign a standard data type or a user-defined data type to each
datapool column, determine the kinds of values to be supplied to test script variables
during playback—for example, whether the variable contains names, dates, order
numbers, and so on.

To find the kind of values that are supplied to a variable:

» With VU test scripts, view the DATAPOOL_CONFIG section of the test script. (Robot
adds this information automatically during recording to a VU test script when you
select Use datapools in the Generator tab of the Session Record Options dialog
box.)

The DATAPOOL_CONFIG section contains a line for each value assigned to a test
script variable during recording. In the following example, the value 329781 is
assigned to the variable CUSTID:

INCLUDE, "CUSTID", "string", "329781"

For more information about the DATAPOOL_CONFIG section of a test script, see the
Rational Robot User’s Guide.

Creating User-Defined Data Types

If none of the standard data types can provide the correct kind of values to a test script
variable, create a user-defined data type.

306 Chapter 11 - Working with Datapools

To create a user-defined data type:
» (Click Tools > Manage > Data Types, and then click New.

New Data Type
General | Statistics |

Hame:

Description:

[ofs I Cancel | Help |

When you create a user-defined data type, it is listed in the Type column of the
Datapool Specification dialog box (where you define datapool columns). Type also
includes the names of all the standard data types. User-defined data types are flagged
in this list with an asterisk (*).

Note: You can assign data from a standard data type to a user-defined data type. For
information, see Editing User-Defined Data Type Definitions on page 320.
Generating Unique Values from User-Defined Data Types

You may want a user-defined data type to supply unique values to a test script
variable during playback. To do so, the user-defined data type must contain unique
values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, associate the following settings for the datapool column with the user-defined
data type:

= Set Sequence to Sequential.
» Set Repeat to 1.

= Make sure that the No. of records to generate value does not exceed the number of
unique values in your user-defined data type.

For information about the values you set in the Datapool Specification dialog box, see
Defining Datapool Columns on page 311.

Data Types 307

Generating Multi-Byte Characters

If you want to include multi-byte characters in your datapool (for example, to support
Japanese and other languages that include multi-byte characters), you can do so in
either of the following ways:

» Through a user-defined data type. For information, see Creating User-Defined Data
Types on page 306.

The editor provided for you to supply the user-defined data fully supports Input
Method Editor (IME) operation. An IME lets you type multi-byte characters, such
as Kanji and Katakana characters as well as multi-byte ASCII, from a standard
keyboard. The IME is included in the Japanese version of Microsoft Windows.

» Through the Read From File data type. For information, see Creating a Column of
Values Outside Rational Test on page 328.

Managing Datapools

You manage datapools from the Manage Datapools dialog box. The activities you
perform in this dialog box affect datapools stored in the current datastore. For
information about where datapools are stored, see Datapool Location on page 319.

Manage D atapools

NaMmes Mew.

RTauthentication

Edit...
Herame. .
gy
[elete

Import...

ARG

Expart..

Claze | Help

Creating a Datapool
When you create a datapool using TestManager, you must specify the following:
= Name and description of the datapool.

Choose a name of up to 40 characters. While a description is optional, entering one
can help you identify the purpose of the datapool. Datapool descriptions are
limited to 255 characters.

308 Chapter 11 - Working with Datapools

* Column names.

Datapool columns are also called fields. With VU test scripts, datapool column
names must match the names of the test script variables that they supply values to.
Names are case-sensitive.

» Data type and properties for each datapool column.

For information about the properties you can define for a datapool column, see
Defining Datapool Columns on page 311.

* Number of records to generate.
To create and automatically populate a datapool:

= (Click Tools > Manage > Datapools, and then click New.

MNew Datapool 2]
General | Statisticsl

MName:

Description:

[} I Cancel Help

If There Are Errors

If the datapool values are not successfully generated, TestManager asks if you want to
see an error report rather than a summary of the generated data. Viewing this report
can help you identify where to make corrections in the datapool fields. To view an
error report, click Yes when TestManager asks whether you want to see an error
report or summary data.

Viewing Datapool Values

If a datapool includes complex values (for example, embedded strings, or field
separator characters included in datapool values), view the datapool values to ensure
the contents of the datapool are as you expect.

Managing Datapools 309

To see the generated values:

* In the Manage Datapools dialog box, select the datapool you just created, click
Edit, and then click Edit Datapool Data.

gl Data Type Specification - names

Ingert before | Datapool Fields
[Mame Type [Sequence | FRepeat | Length | D ecir

Insert after

< | >

MNo. of records to generate: 100 Generate Data | Save | Cancel Help

Making the Datapool Available to a Test Script

For a test script to be able to access the datapool that you create with TestManager, the
test script must contain datapool commands, such as commands for opening the
datapool and fetching values. VU test scripts must also contain DATAPOOL_CONFIG.

You can add datapool commands and DATAPOOL_CONFIG to a test script either
before or after you create the datapool with TestManager. For information about
automatically adding datapool commands and DATAPOOL_CONFIG to a test script
during recording, see the Rational Robot User’s Guide.

310 Chapter 11 - Working with Datapools

Defining Datapool Columns

Use the following table to help you define datapool columns in the Datapool
Specification dialog box:

Grid Column

Description

Name

The name of a datapool column (and its corresponding test script
variable).

If you change the name of a datapool column, be sure that the new
name matches all instances of its corresponding test script variable.

If you create a datapool outside of the Rational Test environment and
then import it, TestManager automatically assigns default names to
the datapool columns. Use Name to match the imported datapool
column names with their corresponding test script variables. Names
are case-sensitive.

You can use an IME to type multi-byte characters in datapool field
names.

Type

The standard or user-defined data type that supplies values to the
datapool column in Name. User-defined data types are marked with
an asterisk (¥).

Specify the data type to assign to the datapool column, as follows:

= To select a standard data type or an existing user-defined data
type, click the currently displayed data type name, and then select
the new data type from the list:

= If you type rather than select the name of a user-defined data type,
enter an asterisk before the user-defined data type name. For
example, to specify the user-defined data type MyData, type:

*MyData

= To create a new user-defined data type, enter the data type name
(without the asterisk) in the field, and then press RETURN. After
you click Yes to confirm that you want to create a user-defined
data type, the Data Type Properties - Edit dialog box appears.

= For information about creating a data type, see Creating
User-Defined Data Types on page 306.

Managing Datapools

311

Grid Column

Description

Sequence

The order in which the values in the data type specified in Type are
written to the datapool column. Select one of these options from the
list:

= Random — Writes numeric and alphanumeric values to the
datapool column in any order.

= Sequential - Writes numeric values sequentially (for example, 0, 1,
2...). With decimal numbers, the sequence is based on the lowest
possible decimal increment (for example, with a Decimals value of
2, the sequential values are 0.00, 0.01, 0.02, ...).

= Sequential is only supported for numeric values (including date
and time values) and values generated from user-defined data

types.

When you select Sequential with numeric data types, and you
specify a Minimum and Maximum range, Interval must be
greater than 0.

= Unique — With data type Integers - Signed, ensures that numbers
written to the datapool column are unique. Also, set Repeat to 1,
and define a Minimum and Maximum range.

Do not confuse the Random and Sequential settings in this grid with
Random and Sequential access order in the Configure Datapool in
Script dialog box.The Random and Sequential settings in this grid
determine the order in which values are written to an individual
datapool column at datapool creation time. Random and Sequential
access order determine the order in which virtual testers access
datapool rows at suite runtime.

Repeat

The number of times a given value can appear in a datapool column.
Repeat cannot be set to 0.

To make values unique with Integers - Signed data types and
user-defined data types, set Repeat to 1. For unique Integers - Signed
values, also set Sequence to either Sequential or Unique.

When defining unique values, ensure that the number of rows you
are generating is not higher than the range of possible unique values.

Length

The maximum number of characters that a value in the datapool
column can have. If the datapool column contains numeric values,
Length specifies the maximum number of characters a number can
have, including a decimal point and minus sign, if any.

For example, for decimal numbers as high as 999.99, set Length to 6.
For decimal numbers as low as -999.99, set Length to 7.

Length cannot be 0.

Decimals

Specifies the maximum number of decimal places that floating point
values can have. Maximum setting is 6 decimal places.

312 Chapter 11 - Working with Datapools

Grid Column

Description

Interval

Writes a sequence of numeric values to the datapool column. The
sequence increments by the interval you set. For example, if Interval
is 10, the datapool column contains 0, 10, 20, and so on. If Interval is
10 and Decimal is 2, the datapool column contains 0.00, 0.10, 0.20, and
SO on.

Minimum interval is 1. Maximum interval is 999999.

With numeric data types (including dates and times), when Sequence
is set to Sequential and you specify a Minimum and Maximum range,
Interval must be greater than 0.

Use Interval only with numeric values (including dates and times).

Minimum

Specifies the lowest in a range of numeric values. For example, if the
datapool column supplies order number values, and the lowest
possible order number is 10000, set Type to Integer - Signed, Minimum
to 10000, and Maximum to the highest possible order number.

Use Minimum only with numeric values (including dates and times).

Maximum

Specifies the highest in a range of numeric values. For example, if the
datapool column supplies values to a variable named ounces, set
Type to Integer - Signed, Minimum to 0, and Maximum to 16.

Use Maximum only with numeric values (including dates and times).

Seed

The number that Rational Test uses to compute random values.
The same seed number always results in the same random sequence.
To change the random sequence, change the seed number.

Data File

The path to the user-defined data type file. The path is automatically
inserted for you. This field is not modifiable.

Data type files are stored in the Datatype directory of your project.
You never have to modify these files directly.

Some items might not be modifiable, depending on the data type that you select. For

example, if you select the Names - First data type, you cannot modify Decimals,
Interval, Minimum, or Maximum.

If you are generating unique values for an Integers - Signed data type, Length,

Minimum, Maximum, and No. of records to generate must be consistent. For example, if
you want unique numbers from 0 through 999, errors may result if you set Length to 1,

Maximum to 5000, and No. of records to generate to a number greater than 1000.

Note: You can use an IME to type multi-byte characters into the Name column only.

The IME is automatically disabled when you are editing any other column.

Managing Datapools

Example of Datapool Column Definition

Suppose you want to record a transaction in which a customer purchase is entered
into a database. During recording, you supply the client application with the
following information about the customer:

Customer name
Customer ID
Credit card number
Credit card type

Credit card expiration date

After you record the test script, create the datapool. Define the datapool’s columns in
the Datapool Specification dialog box, as illustrated in the following figure:

Float data type with O)]
decimals is used for —— Customer ID is unique

credit card numbers

Date range ___
_
Name \ Type Sequence/ [Repeat | Length [Decimaks [Interval b inirnurm \ M aximurmn
Insert after b [MName Haa\es - First Fiandam / 1 20] 0 0 \ 0
[Name Han\es - Last Fiandom/ 1 20 1 1 1 \ 1]
custDr Integyrs - Sigred Urnique / 1 7 0 0 1000000\ 9933333
Datapoo| coNum [Float 3 Random 1 16 0 0 [100000000000000Y | 9333333333333539
ccTupe *Credit Card Type Random 1 15 0 a a 0
column 1 coExpDate| Date - MM/DD/YY\Y | Random 1 15 0 i 07011988 Y 12312002
i r
Ma. of records ta generate: [1000 \Qenelate Datal Save I Cancel Help
Generate 1000 The only user-defined data
datapool rows type needed

The following are some highlights of the datapool column you have chosen:

fName column. The standard data type Names - First supplies this datapool
column with masculine and feminine first names.

IName column. The standard data type Names — Last supplies this datapool
column with surnames.

custID column. The standard data type Integer - Signed supplies ID numbers to
this datapool column. Because all customer IDs in this example consist of seven
digits, the Minimum and Maximum range is set from 1000000 through 9999999. Also,
because all IDs must be unique, Sequence is set to Unique.

Note: Sequence can only be set to Unique for Integer — Signed data types.

314 Chapter 11 - Working with Datapools

» ccNum column. The Integer - Signed data type generates numbers up to nine
digits.
Note: Because credit card numbers contain more than nine digits, the standard

data type Float X.XXX is used to supply credit card numbers to this datapool
column.

* Decimals is set to 0 so that only whole numbers are generated. Sequence is set to
Random to generate random card numbers. To generate unique numbers, Repeat
isset to 1.

* ccType column. This is the only datapool column that needs to have values
supplied from a user-defined data type. The user-defined data type Credit Card
Type contains just four values—American Express, Discover, MasterCard,
and Visa.

» ccExpDate column. The standard data type Date - MM /DD/YYYY supplies credit
card expiration dates to this datapool column. The range of valid expiration dates
is set from July 1, 1998 through December 31, 2002. Sequence is set to Random to
generate random dates.

Example of Datapool Value Generation

After you define datapool columns in the Datapool Specification dialog box, click
Generate Data to generate the datapool values.

To see the values you generated:
1 Click Close.
2 C(lick Edit Datapool Data.

Managing Datapools 315

This is what you see:

Drag this vertical bar to change column width.

BE

Harme Hamme custD cohum ool ype cExpDate |

» Carweay 2445267 B0EE543149543072 |Visa 9/13/1998 =
| |Kaoganti Pistara 7327429 B996616484463400 | Discover 1/18/2000
| [Clarerce affen 4950796 3860B866544383417 | Discover 7/26/1909
|__[Pam Elders 3211256 6I67E30561131902 | Visa 7/29/2001
| [lzzy ies 6821857 6517053674186043 | Visa 9/04/200
Gene cBryas 6199383 9892651646473812 | MasterCard 9/22/200
Linsey Randalph 7893933 30897803354 22292 | Discover 0/12/200
apaleon Seibert 8266508 4900680213960734 | Discover 14./20/2000
Lester Quirit 7541708 7510525333071463 | Discover 3/07/2001
| [Morman Sicol 6413493 2849627B7768727 | Visa 2/07/2000
ke Sandy 6039891 4251911486691085 | Discover 6/23/2001
| |Geriet MeDonagh 6261296 8630209049474339 | Visa 072672001
Toni Garavalia 3743098 4335144215555004 |MasterCard 2/11/1958
Fex Sulling 6874076 2648600742281909 | Visa 173041938
Linda Dalton 2650643 11627431 26430160 | Visa 3/24/2000
Ernanuels Lioce 5753551 58434097037 24003 | M asterCard /2472001
| |Ginger Bucchi 1946446 4251965524822971 | Visa 3/28/1939
| [Mumy Scraga 6241330 9779549341305014 |Visa 4132001
| |lsrael ichlen 6797118 2787 206474102208 | Discover 7/31/1909
Lyle Fentz 7710609 489504207 2556646 | MasterCard 141241939
|| Claudstte attie 1421162 9BIE045256296100 | American Express 1/03/2000
| [Henrietta yers 2052623 693970467 2609540 | Visa 6/16/2001
Cathi arbireri 1327082 7245010391034065 | Visa 6/23/2000
Jackson oack. 6833313 6770635333043530 | Visa 17071938

| [Michele ughman 3073764 598141139020210d | Discover 9/20/1958 -

Save LCancel Help

Editing Datapool Column Definitions

The Datapool Specification dialog box allows you to define and edit the columns in
the datapool file. Datapool column definitions are listed as rows in this dialog box.
Datapool columns are also called fields.

To edit the definitions of the columns in an existing datapool:
» Click Tools > Manage > Datapools, select the datapool to edit, and then click Edit.

When you finish editing datapool column definitions, choose whether to generate
data for the datapool.

To see the generated values:
= In the Datapool Properties — Edit dialog box, click Edit Datapool Data.

If the datapool values are not successfully generated, TestManager asks if you want to
see an error report rather than a summary of the generated data. Viewing this error
report can help you identify where to make corrections in the datapool fields. To view
an error report, click Yes when TestManager asks whether you want to see an error
report or summary data.

316 Chapter 11 - Working with Datapools

Deleting a Datapool Column

Datapool column definitions are listed as rows in the Datapool Specification
dialog box. To delete a datapool column definition from the list, select the row to be
deleted and press the DELETE key.

Editing Datapool Values

To view or edit the values in an existing datapool:

* Click Tools > Manage > Datapools, select the datapool to edit, and then click Edit.
When modifying the values in an existing datapool, note that:

2 When you click a value to edit it, an arrow icon appears to the left of the row
you are editing.

s When you begin to edit the value, a pencil icon appears to the left of the row,
indicating editing mode.

2 To undo the changes that you made to a value, before you move the insertion
point out of the field, press CTRL + Z.

2 To see the editing menu, select the text to edit, and then right-click the mouse.

2 To increase the width of a column, move the bar that separates column names.
To increase the height of a row, move the bar that separates rows.

Slide left or right to
Slide up or down change column

{ame Name cusllD i
to change ro width.
hefghat ge row \ P |Faren Conway 2445267

Fogarti Fistora 7327429

For an example of the datapool values that TestManager generates, see Example of
Datapool Value Generation on page 315.

Renaming or Copying a Datapool

When you rename or copy a datapool, you must specify a new name for the datapool,
up to a maximum of 40 characters.

To rename or copy a datapool:

= (Click Tools > Manage > Datapools.

Managing Datapools 317

Deleting a Datapool

Deleting a datapool removes the datapool .csv and .spc files plus all references to the
datapool from the datastore.

To delete a datapool:

= (Click Tools > Manage > Datapools.

Importing a Datapool

It is possible to create and populate a datapool yourself, using a tool such as Microsoft
Excel. For example, you might want to export data from your database into a .csv file
and then use that file as your datapool.

If you create a datapool yourself, import it into the same datastore as the test scripts
that accesses it. You can use TestManager to import a datapool .csv file.

When you import a datapool, you often have to change the names of the datapool
columns to match the names of the corresponding test script variables. For more
information, see Matching Datapool Columns with Test Script Variables on page 327.

To import a datapool .csv file:
= (Click Tools > Manage > Datapools, and then click Import.

Import Datapool
Irmpart | Statisticsl

Hame:

IH Tauthentication

Description:

— Import fram

Browse | Field Separatar: I

0K I Cancel | Help |

318 Chapter 11 - Working with Datapools

Datapool Location

When you import a datapool, TestManager copies the datapool’s .csv file to the
Datapool directory associated with the current project and datastore.

For example, if the current project is MyProject, and the current datastore directory is
MyDatastore, then the datapool is stored in the following directory:

C:\MyProject\MyDatastore\DefaultTestScriptDatastore\TMS_Datapool

This directory also includes the datapool’s specification (.spc) file. When you create
and then import a .csv file, TestManager automatically creates the .spc file for you.
You should never edit the .spc file directly.

Note: After you import a datapool, the original file that you used to populate the
datapool remains in the directory that you specified when you saved it. The Rational
Test software has no further need for this file.

Importing a Datapool from Another Project

You can use the TestManager Import feature to copy a datapool that you created for
one project into another. When you import a datapool into a new project, the source
datapool remains available to the original project.

To import a datapool into a new project:
*= (Click Tools > Manage > Datapools, and then click Import.
Note: If the datapool that you are importing includes user-defined data types, import
the data types before you import the datapool. For information, see Importing a
User-Defined Data Type on page 321.

Exporting a Datapool

You can use the TestManager Export feature to copy a datapool to any directory on
your computer’s directory structure. When you export a datapool, the original
datapool remains in its project and datastore.

Do not attempt to export a datapool to another Rational Test project. Instead, use the
import feature to import the datapool into the new project. For more information, see
Importing a Datapool on page 318.

To export a datapool to a location on your computer:

* (Click Tools > Manage > Datapools.

Managing Datapools 319

Managing User-Defined Data Types

You use TestManager to manage user-defined data types. You can edit data type
values and data type definitions. You can also rename, copy, and delete data types.

For information about creating user-defined data types, see Data Types on page 304.

Editing User-Defined Data Type Values

If you want to add, remove, or modify data type values, or if you just want to modify
the optional description, edit the data type.

You can only edit user-defined data types, not standard data types.
To edit a user-defined data type:

= (Click Tools > Manage > Data Types.

Editing User-Defined Data Type Definitions

Like all data types, a user-defined data type is essentially a one-column datapool. The
single column contains the values that you type into the user-defined data type.

You can edit the default definition of the data type column in the Datapool
Specification dialog box, just as you edit the default definition of datapool columns.

If you edit the definition of a user-defined data type and then generate values for the
data type, you overwrite any existing values for the data type.

To edit the definition of a user-defined data type:
»= (Click Tools > Manage > Data Types.

You can also add values to a user-defined data type by supplying it with values from
a standard data type. This automatic generation of values by TestManager can reduce
the typing that you need to perform when adding values to the user-defined data

type.
For example, suppose you want to create a user-defined data type that contains a list

of valid product IDs. The valid ID numbers range from 1000001 through 1000100.
However, there is a dash between the fourth and fifth digits (such as 1000-001).

Rather than typing in all 100 numbers, with dashes, you can have TestManager
generate the numbers and assign them to a user-defined data type. Then, you can edit
the data type values and each ID.

320 Chapter 11 - Working with Datapools

When you choose to automatically generate values, you must specify guideline values
for TestManager to use during generation. These values include:

* Type = Integers - Signed
* Sequence = Sequential
* Repeat=1

» Length=7

= Interval =1

= Minimum = 1000001

» Maximum = 1000100

= No. of records to generate
Note: You can also assign the standard data type Read From File to a user-defined
data type. For information about using the Read From File data type, see Creating a
Column of Values Outside Rational Test on page 328.

Importing a User-Defined Data Type

You can import a user-defined data type from one project into another. When you
import a user-defined data type into a new project, the source data type is still
available to the original project.

To import a user-defined data type into a new project:
* (Click Tools > Manage > Test Input Types.

Manage Test Input Types

ReaustePo W

Edit...
Herame. .

el

A

[elete

Claze Help

Managing User-Defined Data Types 321

Renaming or Copying a User-Defined Data Type

When you rename or copy a user-defined data type, you must specify a new name for
the data type, up to a maximum of 40 characters.

To rename or copy a user-defined data type:

* (Click Tools > Manage > Data Types.

Deleting a User-Defined Data Type
To delete a user-defined data type in TestManager:

» (Click Tools > Manage > Data Types.

Generating and Retrieving Unique Datapool Rows

Many database tests work best when each row of test data is unique. For example,

if a test involves virtual testers adding customer orders to a database, each new order
has to be unique—in other words, at least one field in the new record has to be a “key”
field containing unique data.

When you are defining datapool columns in the Datapool Specification dialog box,
you specify whether a given datapool column should contain unique data. If you
specify that one or more columns should contain unique data, the datapool that the
Rational Test software generates is guaranteed to contain unique rows.

However, even when a datapool contains all unique rows, it is possible for duplicate
rows to be supplied to a test script at runtime.

To generate and retrieve unique datapool rows, you must perform a few simple tasks
when you define the datapool.

Use the following guidelines when the datapool is being accessed by either a single
test script or by multiple test scripts, including both VU and GUI test scripts.

322 Chapter 11 - Working with Datapools

What You Can Do to Guarantee Unique Row Retrieval

To ensure that a datapool supplies only unique rows to test scripts at runtime, follow

these guidelines:

What to do

How to do it

Specify at least
one column of
unique data.

In the Datapool Specification dialog box, specify that at least one
datapool column should contain unique data. Unique data can be
supplied through the Integers - Signed data type, through the Read
From File data type, and through user-defined data types.

With the Integers - Signed data type, take all of these actions:
= Set Sequence to Unique or Sequential.
= Set Repeat to 1.

= If Sequence=Unique, set an appropriate range in Minimum and
Maximum.

= Make sure that the values of Length and No. of records to
generate are appropriate for the set of numbers to generate.

With the Read From File data type, see Generating Unique Values on
page 329 for information.

With user-defined data types, see Generating Unique Values from
User-Defined Data Types on page 307 for information.

Generate enough
datapool rows.

Generate at least as many unique datapool rows as the number of
times the datapool is accessed during a test.

For example, if 50 virtual testers access a datapool during a test,
and each virtual tester is set for 3 iterations each, the datapool must
contain at least 150 rows.

Specify the number of rows to generate in the No. of records to
generate field of the Datapool Specification dialog box.

Disable cursor

wrapping.

If the datapool cursor wraps after the last row in the datapool has
been accessed, previously fetched rows are fetched again.

Disable cursor wrapping in any of these ways:

= When editing the DATAPOOL_CONFIG section of a VU test script
in the Configure Datapool in Script dialog box, set Wrap at end of
file? to No.

= When editing a VU test script in Robot, add DP_ NOWRAP to the
list of flags in the f1ags argument of the DATAPOOL_CONFIG
statement or the datapool_open function.

= When editing a GUI test script in Robot, set the wrap argument
of the SQADatapoolOpen command to False.

Generating and Retrieving Unique Datapool Rows

323

What to do

How to do it

Use sequential or
shuffle access
order.

With sequential or shuffle access, each datapool row is referenced
in the row access order just once. When the last row is retrieved, the
datapool cursor either wraps or datapool access ends.

With random access, rows can be referenced in the access order
multiple times. Therefore, a given row can be retrieved multiple
times.

You can set row access order in any of these ways:

= When editing the DATAPOOL_CONFIG section of a VU test
script in the Configure Datapool in Script dialog box, set Access
Order to Sequential or Shuffle.

= When editing a VU test script in Robot, add DP_ SEQUENTIAL
or DP_ SHUFFLE to the list of flags in the f1ags argument of
the DATAPOOL CONFIG statement or the datapool open
function.

= When editing a GUI test script in Robot, set the sequence
argument of the SQADatapoolOpen command to
SQA DP_SEQUENTIAL or SQA DP SHUFFLE.

Do notrewind the
cursor during a
test.

If you rewind the datapool cursor during a test (through the VU
datapool rewind function or the SQABasic
SQADatapoolRewind command), previously accessed rows are
fetched again.

Note: Rational Test can guarantee that a datapool contains unique rows only when

you generate datapool data through Robot or TestManager.

Creating a Datapool Outside Rational Test

To create a datapool file and populate it with data, you can use any text editor, such as
Windows Notepad, or any application, such as Microsoft Excel or Microsoft Access,

that can save data in .csv format.

For example, you can create a datapool file and type in the data, row by row and

value by value. Or, you can export data from your database into a .csv file that you

create with a tool such as Excel.

After you create and populate a datapool, you can use TestManager to import the
datapool into the datastore. For information about importing a datapool, see Importing

a Datapool on page 318.

324 Chapter 11 - Working with Datapools

Datapool Structure

A datapool is stored in a text file with a .csv extension. The file has the following
characteristics:

Each row contains one record.

Each record contains datapool field values delimited by a field separator. Any
character can be used for the field separator. Some common field separators are as
follows:

2 Comma (,). This is typically the default in the U.S. and the U.K.

@ Semicolon (;). This is typically the default in most other countries.
2 Colon (:).

> Pipe ().

2 Slash (/).

The field separator can consist of up to three single-byte ASCII characters or one
multi-byte character.

Note: To view or change the field separator, click Start > Settings > Control Panel,
double-click the Regional Settings icon, and then click the Number tab. List
separator contains the separator characters.

Each column in a datapool file contains a list of datapool field values.
Field values can contain spaces.

A single value can contain a separator character if the value is enclosed in double
quotes. For example, “Jones, Robert” is a single value in a record, not two.

The quotes are used only when the value is stored in the datapool file. The quotes
are not part of the value that is supplied to your application.

A single value can contain embedded strings. For example, “Jones, Robert “Bob””
is a single value in a record, not two.

Each record ends with a line feed.

Datapool column names are stored in a .spc file. (Robot and TestManager edit the
.spc file. Never edit the .spc file directly.)

The datapool name that is stored in the datastore is the same as the root datapool
file name (without the .csv extension). The maximum length of a datapool name is
40 characters.

Creating a Datapool Outside Rational Test 325

Example Datapool

The following is an example of a datapool file with three rows of data. In this
example, field values are separated by commas:

John, Sullivan, 238 Tuckerman St,Andover,MA,01810
Peter,Hahn,512 Lewiston Rd,Malden,MA, 02148
Sally,Sutherland, 8 Upper Woodland Highway,Revere,MA, 02151

Using Microsoft Excel to Create Datapool Data

When you are using Microsoft Excel to populate a datapool, do not separate values
with the Windows separator character on page 325. Excel automatically inserts the
separator character when you save the datapool in .csv format.

To create and populate a datapool using Microsoft Excel:
» Click File > New to create a new Excel workbook.

The following is an example of how a datapool might look as it is being populated
with data in Microsoft Excel:

ﬁ&le Edit Yiew Insert Format Tools Data Accounting ‘window Help =12 %]
NEEHESRY | sERd o-« &&= 4438
arial v10v31g|§§§|$|§-&-g- 2
[-] = 512 Lewiston Rd
A [B [¢ [o [E [F [& [K
| 1 |John Sullivan 238 Tucke Andover | IA 01810
| 2 |Peter Hahn I512 Lewis]_Ma\den T2y 02148
| 3 |Sally Sutherland 8 Upper W Revere) 02151
4
| 5 |
| 6|
| 7|
| 8|
| 2|
|41Q ¥ [M], Sheetl § SheetZ J Sheeld [1al jjﬂ
Ready e e e e T

Note that:
= Each column represents a datapool field.

» Each row is an individual datapool record containing datapool field values.

326 Chapter 11 - Working with Datapools

Saving the Datapool in Excel

When you finish adding rows of values to the datapool, save the datapool to .csv
format.

To save a datapool file using Microsoft Excel:
» Click File > Save As.

Note: Do not specify the Datapool directory in the datastore. When you later

import the datapool using the TestManager Import feature, TestManager
automatically copies the datapool to the Datapool directory in the current project and
datastore.

If you use Windows Notepad to open the datapool file that you just created and
saved, this is how it looks:

E newdp.csv - Notepad M= E3
File Edit Search Help
John,Sullivan,238 Tuckerman St,Andover ,Hn,B81818 =l

Peter ,Hahn,512 Lewiston Rd,HMalden,Hn, 82148
Sally,Sutherland,8 Upper Woodland Highway,Revere,ln,82151

Matching Datapool Columns with Test Script Variables

When you create a .csv file and then import it as a datapool, TestManager
automatically assigns column names (that is, datapool field names) to each
datapool column.

Datapool column names must match the names of the test script variables that they
supply with data (including a case match). But most likely, when you create and
import a datapool, the column names that TestManager assigns do not match the
names of the associated test script variables. As a result, you need to edit the column
names that TestManager automatically assigns when importing the datapool. You do
so by modifying a column’s Name value in the Datapool Specification dialog box.

For information about how to open the Datapool Specification dialog box during
datapool editing, see Editing Datapool Column Definitions on page 316.

Creating a Datapool Outside Rational Test 327

Maximum Number of Imported Columns

You can import a datapool that contains up to 32,768 columns. If you open an
imported datapool in the Datapool Specification dialog box, you can view and edit all
datapool column definitions up to that limit.

A datapool is subject to a 150-column limit only if you generate data for the datapool
from the Datapool Specification dialog box.

Creating a Column of Values Outside Rational Test

A datapool that you create with Rational Test can include a column of values supplied
by an ASCII text file. You could use this feature, for example, if you want the datapool
to include a column of values from a database.

Populating a datapool column with values from an external file requires two
basic steps:

1 Create the file containing the values.

2 Assign the values in the file to a datapool column through the standard data type
Read From File.

Step 1. Create the File

If you want to use a file as a source of values for a datapool column, the file must be a
standard ASCII text file. The file must contain a single column of values, with each
value terminated by a carriage return.

You can create this text file any way you like—for example, you can use either of these
methods:

= Type the list of values in Microsoft Notepad.

= Export a column of values from a database to a text file.

328 Chapter 11 - Working with Datapools

Step 2. Assign the File’s Values to the Datapool Column

Once the file of values exists, you assign the values to a datapool column just as you
assign any set of values to a datapool column—through a data type. In this case, you
assign the values through the Read From File data type.

To do so, from the Datapool Specification dialog box, in the Type column, select the
data type Read From File for the datapool column being supplied the values from the
external text file.

Use the Read From File data type to assign values to multiple columns in the same
datapool.
Generating Unique Values

You can use the Read From File data type to generate unique values to a datapool
column that you create outside Rational Test.

To generate unique values through the Read From File data type, the file that the data
type accesses must contain unique values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, make the following settings for the datapool column associated with the Read
From File data type:

» Set Sequence to Sequential.
» Set Repeat to 1.

» Make sure that the No. of records to generate value does not exceed the number of
unique values that you are accessing through the Read From File data type.

For information about the values you set in the Datapool Specification dialog box, see
Defining Datapool Columns on page 311.

Creating a Column of Values Outside Rational Test 329

330 Chapter 11 - Working with Datapools

Reporting Performance
Testing Results

This chapter discusses performance testing reports and suggests ways to evaluate the
data provided in them. It includes the following topics:

» About reports

* Running reports

» Customizing reports

= Exporting reports

* Changing report defaults

» Types of reports

Note: For detailed procedures, see the TestManager Help.

About Reports

TestManager provides various reports that help you analyze the success or failure of a
suite run, as well as the performance of the server under specified conditions. For
example, you can determine how long it takes for a virtual tester to execute a
command and how response times vary with different suite runs.

By default, if a test completes successfully and the test generates appropriate data,
TestManager automatically runs Command Status and Performance reports against
the data in the test log and displays the processed results.

331

The following figure shows a sample Command Status and a sample Performance

report:

i New Doc Example - Rational TestManager
File Edit Wiew HReports Tools Window Help

[_[O]]

x|

= Buid [Buid 1

Lag

Log Falder IDelau\t

[Stress Test Users 15 #08

View Log

Perf

Change Log...

Resp | Staws | Usage |

LEEeE HE »BE RS

IR aE EY

EEEET]

E B EE e D

| x|

- Suies
(1 Computers
e[Computer Lists

B Performance Report Dutput - Performance 17 M[=] k3 | [l Command Status Report Output - Command Status 17 _[O] %
=5 _ertormance Teport Julpul - Periormance T RIS R [

50

40

30

MIN S0th TOth 80tk 90tk 95th MaX
CrdID NUM [MEAN | STODEW | MIM Bith = CrndlD NUM | Passed Faied % Passed % Failed =
T Caleula™001 3 053 052 018: 033 1 Calcula™~001 48 48 1] 100.00 0.0C
2 Calcuia 2 g [1k7 (1 PR e 1= i | Caloula~002 48 48 [joo.00 0.0
3 Caloula~003 £ 0E] 0427045 ael (1B Caleuia™003 42 42 u 100.00 o0
] Eaiv st E ki) R e F 2 | Caleuis 04 i i i T i il
5 Caleula™005 g 0y (IR EERTN SR | Caleuia™005 42 42 u 1o0.00 o0
B Eaicula~toE B 15 [Tk N L k] [Calcula™006 48 48 1] 100.00 0.0C
7 Calcuia 07 g by [IFCERNTY ER T S | Caloula~007 48 3 42 1250 8750
[Caloula~008 k| 13 [ikE T CH KR | Caleuia™003 4 3 42 670 9330
3 Eaiviaiiia g Vi fsErTREs TR (B Caleuis~00a i B iz 25 750
10 |Caleula™010 g 043 025016 04z (10 Caleuia™010 42 42 u 1o0.00 o0
11 Eaiula~tii B ks Ei i R L Y 11 Caloula™011 48 48 1] 100.00 0.0C
12 |Caeuia iz g [1kH (1R E e |] Caloula™01 2 48 48 0 100.00 0.0C
13 Caleuia~iis B 114 [T TR Y 13 Calcula~013 48 B 42 12.50 8750
18 |Caleuia g q {131 {1 1O | IE] Caloula™014 45 45 [joo.00 0.0
15 |Caleula™0is £ 128 136,048, 04f |15 [Caledia”0lS 42 42 u 100.00 0.0t
E E T8 | EL & R ZI—;I T Ealouls 07 4 4 i i) ?n Diﬁl
[Ready [admin [Currently Selected Filter: 4

After you examine report data, save or delete the report. If you save the report,
TestManager gives it a default name based on the type of report and the number of
existing reports of that type—for example, Performance 1. TestManager saves the
report under the test logs in the project. To view the report again, open the saved
report. If you delete the report, you can re-create it by running the report definition
against the same test log.

The following table summarizes the different types of reports:

server. If you access a database, the report shows
the database errors, as well as the number of rows

that you expect to receive versus the number
returned from the server. If you need further
information, run a Command Trace report.

Report Function Information
Command Examine errors in your run. The report shows the | Command Data
Data “conversation” between the virtual tester and the | Reports on page 349

332 Chapter 12 - Reporting Performance Testing Results

Report

Function

Information

Command
Status

Obtain a quick summary of which and how many
commands passed or failed. The report displays
the status of all emulation commands and
SQABasic timer commands. If the report contains
failures, you might want to run the Command
Data report.

Command Status
Reports on page 352

Command
Usage

View cumulative response time and summary
statistics, as well as throughput information for all
emulation commands for all test scripts and for
the suite run as a whole.

Command Usage
Reports on page 354

Command
Trace

Examine any failures in detail. The report formats
raw data from the test logs, without performing
statistical analysis. It provides information
including the time stamps from each emulation
command and SQABasic timer command, and the
counts of data sent and received.

Command Trace on
page 362

Performance

Display the response times, and calculate the
mean, standard deviation, and percentiles for each
emulation command in the suite run.

This report groups responses by command ID and
shows only responses that passed. In contrast, the
Response vs. Time report shows each command
ID individually, as well as both passed and failed
responses.

Performance Reports
on page 365

Compare
Performance

Compare the response times measured by
Performance reports. After you have generated
several Performance reports, use the Compare
Performance report to compare specific data.

Compare Performance
Reports on page 369

Response vs.
Time

Display individual response times and whether a
response has passed or failed. This report is useful
for looking at data points for individual responses
as well as trends in the data.

This report shows each command ID individually
and the status of the response. In contrast, the
Performance report groups responses by
command ID and shows only passed responses.

You can right-click on the report, select a computer
that was in the run, and graph the resource
monitoring statistics for that computer. These are
the same statistics that you display when you
monitor resources during a suite run.

Response vs. Time
Reports on page 374

About Reports

333

Running Reports

TestManager automatically runs the default Performance and Command Status
reports at the end of a successful suite run. This section describes how to run different
reports.

Reports run from the Report bar or from TestManager menus.

Note: You might also want to view the test logs—the “raw” results—before you run
reports against them. This lets you quickly validate the results of your run. For
information about viewing test logs, see Viewing Test Log Results on page 160. In
addition, LogViewer provides a view of the test case results and lets you manually
promote them.

Running Reports from the Report Bar

The quickest way to run a report is to click on the Report bar. The Report bar lists the
last test log that you accessed. TestManager runs the report using the information in
this test log, unless you specify another one.

To run a report from the Report bar:
1 If the Report bar is not visible, click View > Report Bar.

2 Click any one of the report buttons.

x|
2 Buid [Buid T TestLog [petformance testing Users 1 HO8 Change Test Log..

JJ Log Folder [Detauit Testlog | CwdData Perf Resp vs Time | Cmd Status | CrdTrace | Cwd Usage |

Note: You can customize the Report bar by populating it with your own reports. For
more information, see Changing the Reports That Run from the Report Bar on page 349.

Running Reports from the Menu Bar

Although TestManager lets you run reports quickly from the Report bar, you can run
only one report of each type against a test log. However, you might want to run a
number of reports from a test log. For example, you might have customized a series of
Performance reports and want to run each report against the same test log. You can
run these reports from the menu bar.

To run a report from the menu bar:

» Click Reports > Run, and select the type of report to run.

334 Chapter 12 - Reporting Performance Testing Results

Customizing Reports

TestManager lets you customize reports for your particular testing requirements.
You can customize a report by:
» Filtering the data.

For example, you can filter the report so that it contains only one virtual tester
group, only certain test scripts, and only certain command IDs.

* Changing a report’s advanced options.

For example, you can modify a Response vs. Time report so that extremely long
responses are not included in the report.

» Changing a graph’s appearance and type.
For example, you can display a graph as a line graph or a bar graph.

After you have customized a report and saved it, you can use it repeatedly to quickly
analyze your data.

Filtering Report Data

TestManager provides a set of default reports with predefined settings and options.
You can, however, filter the report to include certain data.

For example, the Performance report on page 332 contains information from many
command IDs, and the graph is complex. To see fewer command IDs, zoom in on the
graph, as explained on page 345. Alternatively, right-click the report, click Settings,
and then click Select Command IDs.

However, instead of filtering the report, it is much easier to filter the report definition
beforehand so that the report include only the information you are interested in. You
can filter a report definition so it includes only certain virtual testers, only certain test
scripts, or only certain commands.

When you set up filtering, you must specify the following information, depending on
the type of report:

» Build and test log information — The build and log folder that contain the test logs,
and the test log that you want to use for the report

» Virtual testers — The virtual testers or groups associated with the test log
» Scripts — The test scripts associated with the virtual testers

»= Command IDs — The command IDs in the test scripts

Customizing Reports 335

To set up filtering in Performance, Response vs. Time, Command Status, and
Command Usage reports:
* Open or create a new report of that type, and then click Change Filters.

Change Filters

Select the build that containg the test log:

Build:

Build 1 -]

Select the log folder that containg the test log:

Log Folder:

Default j

Select the test log:

Test Log:
zample segzion Users 1 #04 j

< Back I Mest » I Cancel | Help |

Note: If you are filtering virtual testers, you usually select the test log with the largest
number of virtual testers. This ensures that your report filters all of the virtual testers.

You can also filter the report after you run it. For more information, see Filtering
Command 1Ds That Appear in a Graph on page 346.

Setting Advanced Options

All TestManager reports have advanced options, which determine how the report
data is calculated and displayed. The specific advanced options are different for each
report. To fine tune a report, change the advanced options.

336 Chapter 12 - Reporting Performance Testing Results

To see the advanced options for a report:

* Open or create a new report, and then click Change Options.

Advanced Options
Sort Method I Calculation I Graph I Percentiles
Tirne Period | Responze Range I Stable Load I Responze Types

Specify time period to include response data
[Times are relative to the run start time)

— Beqin time

" Custorn starting time: 00:00:00=5
~ End time

& Endof un

' Custom ending time: 00:00:00 ==

Ok I Cancel | Help

Note: For more information about advanced options, see the TestManager Help.

The following table summarizes each advanced option and lists the reports that use

the option:

Option Description Reports

Graph Display the report as a graph, a table, or both; change | Command Status,
the type of graph displayed; change the labels for the | Performance, Response vs.
graph axes; and add headers and footers. Time, Compare Performance

Response Include only responses that fall between a maximum | Command Status,

Range and minimum time. The default includes all Performance, Response vs.
response times. Time, Compare Performance
You might want to set a maximum response time to
eliminate outliers. If you change this option for one
report, change the other reports, too, so that the
reports reflect the same information. For more
information, see Eliminating Outliers on page 339.

Response Include only HTTP responses or responses with Command Status,

Types timers. The default includes all responses. The Performance, Response vs.
Command Status and Response vs. Time reports also | Time
let you filter responses that contain verification
points.

Sort Method Sort command IDs numerically or in the order in Command Status,
which they were run. The default is to sort command | Performance, Response vs.
IDs alphabetically. Time

Customizing Reports 337

Option

Description

Reports

Stable Load

Specify the number of virtual testers that must be
logged on before results are reported. The default is
to report results when any number of virtual testers
are logged on. You might want to change this option
so that a certain number of virtual testers, or all
virtual testers, must be logged on. For more
information, see Reporting on a Stable Workload on
page 340.

If you change this option for one report, change the
other reports, too, so that the reports reflect the same
information.

Command Status,
Performance, Response vs.
Time

Time Period

Report on a specific portion of the suite run. The
default is to report on the entire run.

Command Status,
Performance, Response vs.
Time

Calculation

Change how response times are calculated. The
default measures the time from the end of the last
send command until the last byte of the response is
received. If you change this option for one report,
change the other reports, too, so that the reports
reflect the same information.

Performance, Response vs.
Time

Response
Status

Include only passed responses or only failed
responses. The default is to include all responses.

Command Trace, Response vs.
Time

Summary

Summarize data by virtual tester, test script,
command ID (Command Status), or run (Command
Usage). The default for the Command Status report
is by command ID; the default for the Command
Usage report is by run.

Command Status, Command
Usage

Options

Report failed commands (and the previous passed
command, for context). You can change the options
to include both passed and failed commands. For
more information, see Including Passed and Failed
Commands on page 341.

Command Data

Percentiles

Change how the response times are grouped.
Generally, the defaults of 50, 70, 80, 90, and 95 are
adequate.

Performance

Timestamps

Omit time stamps from the report. When you omit
time stamps, reports with the same emulation
activity but different repetitions are identical.

Command Trace

Command
Types

Include only SQL, HTTP, TUXEDO, IIOP, or socket
commands; only testcase commands; or
commands that include timers. The default is to
include all emulation commands.

Command Trace

338 Chapter 12 - Reporting Performance Testing Results

Option

Description Reports

Script Filters | Include only emulation commands that occurona | Command Trace

specific line of (or range) of code or at a specific
number (or range) in the sequential execution of
commands. The default is to include all emulation
commands.

TSS

Environment variables. The default is to include all environment
Variables variables.

Include only certain types of TSS environment Command Trace

Eliminating Outliers

Reports may contain some values, called outliers, that are completely out of the
normal range. For example, suppose you run a Performance report on 1000 virtual
testers and most response times range from 2 to 7 seconds. The response for one
command ID is 30 seconds—far more than normal. Because this occurs only once, it
may be a nonrepresentative time. In some cases, you might want to eliminate such
data points from the report because they may inaccurately skew cumulative data.

Although you might consider outliers merely nonrepresentative data that you want to
eliminate, they may also be a legitimate sign of performance problems. Therefore, you
should determine the reason for outliers before mechanically eliminating them.

To eliminate outliers:
1 Open or create a Performance report.

2 Under the Advanced Options summary, click Change Options.

Customizing Reports 339

3 In the Response Range tab, specify a maximum limit for a response time.

Advanced Options
Sort Method | Calculation I Graph I Percentiles
Time Period Rezponse Range | Stable Load I Response Types
= Mirirnum limit;
i
i
© Specified minimum; ID-D [seconds]

— M auimurn lirit:

& Mo masimum

" Specified masimum: ID-D [seconds]

] I Cancel Help

Reporting on a Stable Workload

It is useful to limit your report to include only response times that represent a stable
workload. For example, you are probably not interested in times when only a few
virtual testers have logged on to the system or when most virtual testers have logged
off.

To report on a stable workload:
1 Open or create a Performance report.

2 Under the Advanced Options summary, click Change Options.

340 Chapter 12 - Reporting Performance Testing Results

3 In the Stable Load tab, specify the minimum number of virtual testers that you
consider to be a stable workload.

Advanced Options
Sort Method I Calculation | Graph I Percentiles I
Time Period I Reszponse Range Stable Load | Response Types

Specify the minimum number of active vitual testers to include response
data:

&+ Disabled
 AllVirtual testers

 Custorn number of Vitual testers

at least |1 _Ij [~ Range

] I Cancel | Help |

Note: For detailed procedures, see the TestManager Help.

Including Passed and Failed Commands

It is often useful to include passed commands as well as failed commands in a
Command Data report.

For example, assume you are running a suite with 20 virtual testers. Of these 20
testers, 17 testers pass and three testers fail. The three testers fail when they modify a
certain record.

When you examine the failed commands only, it is tempting to conclude that
something is wrong with that particular record—perhaps the record does not exist in
the database. However, for a clear overall picture, look at the passed commands as
well as the failed commands. It could be that the 17 testers who passed also tried to
modify the record. In that case, the flaw does not lie with the record itself but with the
logic of your test script.

To include both passed and failed commands in a Command Data report:
1 Click Report > New > Command Data Report.
2 Under Advanced Option Summary, click Change Options.

3 Inthe Advanced Options dialog box, select the Include success and failure
messages check box.

Customizing Reports 341

4 Click OK. The Command Data Report dialog box appears.

5 Click Save and save the report under a descriptive name, such as Command
Data--Passed and Failed Commands.

The next time you open a Command Data report, TestManager displays the
Command Data--Passed and Failed Commands report along with the default report.

Reporting on a Particular Command ID

The default Response vs. Time report can look confusing because it contains
information about every command ID. This information is useful for assessing trends
in the data. However, you might want to report on a particular command ID or a
small group of command IDs and display the report in a line histogram, which is
easier to read.

To report on a particular command ID and then display it as a line histogram, see
Command 1Ds:Reporting on a Particular Command ID in the TestManager Help Index.

Mapping Computer Resource Usage onto Response Time

Monitoring computer resources is essential in performance testing. If you have a
performance problem, you need to determine whether it is caused by a large number
of virtual testers or by a hardware bottleneck. The Response vs. Time report lets you
overlay computer resource statistics over response time. If your response time
increases, you can determine whether this was caused by a computer resource
problem.

Note: TestManager must be set up to collect the information about computer resources
before you can report on them. When you run a suite, the Run Suite dialog box
appears, and you must select the Monitor resources check box.

To map computer resources onto response time:

» Right-click on the graph of the Response vs. Time report, and then click Show
Resources.

Changing a Graph’s Appearance or Type

TestManager can display the Compare Performance, Performance, Response vs. Time,
and Command Status reports as both graphs and table-style reports. TestManager lets
you change the type of graph that appears and enhance its display.

342 Chapter 12 - Reporting Performance Testing Results

To change the appearance or type of a graph:

= From an open report, click View > Settings.

Report Dutput Settings [%]
General | Edit Graph Labelsl Select Command IDsI Responze Hangel
Graph Style:————————————— [~ Graph Type:
L " Line
™ Inverted Axes © frea
™ Show D ataset Label ' Bar
™ Display Legend " Stack
V' Display Grid Pie

kK I Cancel | Lol | Help |

Note: The options for changing the appearance or type of a graph vary according to
the type of report that you select.

From this dialog box, you can:

* Change the appearance of a graph.

* Change the labels of a graph.

» Filter information such as the command IDs.

In a Performance report, you can also change the response range that appears in the
graph.

Customizing Reports 343

Changing a Graph’s Appearance

TestManager lets you control a graph’s format and appearance. You can display or
clear information about selected points and datasets without affecting the graph’s
cumulative data. The following figure shows a stack graph with a header, background
grid, and various other options:

Header

Background
grid

Response Time Report
Point

X,y axes labels —

sconds
ACNENNS) M=)
faraA,

%

w
g 3 X= Ist, ¥= 0. 16
- | Dara Ser: TOTAL
o 2 —
Ux- ok ¥= 007
Color-coded Eoaug sa: 7074
legend é OJ.L;J
I 50th 70th 80th 90th 95thMAX
Footer ——— Percertiles

B Alternate [TestSample [0 ToTaL

Time of Emulation Session: Fri Apr 03 1998 11:02

Graph options that you can change include:

* Log Scale — Scales any graphical display type to its logarithmic equivalent.
* Inverted Axes — Switches the relative positions of the graph’s axes.

= Show Dataset Label — Applies the data set labels to the graph.

» Display Legend — Displays a color-coded legend for all displayed graphical
components (not available on the Response vs. Time report).

» Display Grid — Displays a grid that is useful for visual comparisons (not available
on the Pie graph).
Displaying and Clearing Data Point Information

When working with graphs, you may want to display the value of a specific point in a
graph.

344 Chapter 12 - Reporting Performance Testing Results

To display information about a data point:

= Move the mouse over the desired area of the graph, and click
CTRL-SHIFT-BUTTONI.

To clear data point information:

» Right-click the graph and then click Clear Point Information.

Changing a Graph’s Type

When working with graphs, you can change the type of graph that TestManager
displays.

To change a graph’s type:

* Inthe graph that you want to change, click View > Settings, and then select a graph
type.

Enlarging and Rotating a Graph

By clicking combinations of SHIFT/CONTROL keys and mouse buttons, you can further
manipulate a graph’s appearance. The following table lists how to do this:

Action Mouse/key sequence Other required action
Enlarge a graph’s size. CTRL-BUTTON1 Drag the mouse toward the
BUTTON?2 bottom of the graph.

Change a graph’s SHIFT-BUTTONI1 Move the mouse to reposition the

position. BUTTON?2 graph.

Zoom in on a graph'’s SHIFT-BUTTON1 Draw a box around the area to

axes. zoom, and then release
BUTTONI.

Zoom in on a graph'’s CTRL-BUTTON1 Draw a box around the area to

data. zoom, and then release
BUTTONI.

Rotate the view of a BUTTON1 BUTTON2 Move the mouse up and down to

graph (stack and pie change the inclination angle.

graphs only). Move the mouse left and right to
rotate the graph (stack only).

Reset a graph to its The lowercase letter “r” None.

original size.

Customizing Reports 345

Changing a Graph’s Labels

When working with a Command Status, Performance, or Compare Performance
graph, you can change the labels of the graph, including text, font, style, and size of a
label.

To change a graph’s labels:

» In the graph that you want to change, click View > Settings.

General Edit Graph Labels | Select Command IDsI Responze Hangel

~ Titles:
7 Az

Header:

|
¥ A I
|
|

Footer:

— Fonts:

wes | [|
Header: I Select |
Footer: I Select |

Qg I Cancel | Lpply | Help |

Filtering Command IDs That Appear in a Graph

TestManager lets you filter command ID data before or after you process the report.
Filtering command ID data after running the report is useful if your report results in a
graph that is complex and you want to examine portions of it in more detail.

346 Chapter 12 - Reporting Performance Testing Results

To filter the command IDs in a graph:
= In the graph in which you want to filter IDs, click View > Settings.

Generall Edit Graph Labels Select Command IDs | Response Hangel

Select the command IDs that are to be shown:

Ayailable Selected
A Caleula™00 -
kS Calcula~002

Calcula™003
¥ Calcula~004
Calcula™~005
Calcula™~006

S Calcula~007

Calcula~008
<4 Calcula™003
Calcula~mo
Calcula™011
Caleula™m 2
Calcula~013
Calcula~014
Calcula™m s
Calcula~m7
Calcula~mg
Calcula™~020 =l

Qg I Cancel | Lpply | Help

Exporting Report Data

The Performance, Command Status, Compare Performance, and Response vs. Time
reports display data graphically. You can export this graphic data to a .csv file for
further processing.

To export report data to a .csv file:

» Display the data, and then click File > Export to File.

Changing Report Defaults

TestManager automatically generates Performance and Command Status reports at
the end of a suite run. In addition, you can click a report name on the Report bar, and
TestManager runs that report.

You can specify the reports that TestManager generates at the end of a run. For
example, TestManager can automatically display a Command Usage report in
addition to the Performance and Command Status reports. TestManager can also
generate a Performance report based on a report that you have defined instead of the
default Performance report.

Exporting Report Data 347

You can change the reports that TestManager runs when you click in the Report bar.
For example, instead of TestManager running the default Performance report, you can
have it run a Performance report that you have defined.

Changing the Reports That Run Automatically

TestManager automatically displays Performance and Command Status reports at the
end of the suite run. However, you can change the reports that TestManager
automatically displays.

To change the reports that TestManager automatically displays at the end of a suite
run:

= (Click Tools > Options, and then click the Reports tab.

Create Suital Manitor ~ Repoits | Fun I Wi Compilationl

Peiformance Testing Repart Settings
Autaomatic Reparts at End of Run

Performance Default Performance Report Add...
Comrnand Status Default Command Status Feport

[elete

[

Initialize Default Reports

Restore Defaults Reset Repart Bar

V¥ Automatic Report Bar dizplay

[T Disable save on closing Report Dutputs
— Report Bar Button

Command Data IDefauIt Command D'ata Repart Change...

Performance IDefauIt Peiformance Repart Change...

Response s Time IDEfﬁUIt Response Report Change...

Command Status IDefauIt Command Status Repart Change...

Cormrmand Trace IDefauIt Command Trace Report Change...

FEFEE

Command Usage IDefauIt Command Usage Report Change...

0K I Cancel | Help |

For information about changing the reports that TestManager automatically displays,
see changing default settings in the TestManager Help Index.

348 Chapter 12 - Reporting Performance Testing Results

Changing the Reports That Run from the Report Bar

The Report bar lets you run reports by clicking a button. TestManager automatically
runs the default reports unless you specify otherwise. For example, you may have
defined a new report that you want to run from the Report bar instead of a default
report.

To specify the reports that TestManager runs from the Report bar:
» (Click Tools > Options, and then click the Reports tab.

For information changing the reports, see changing reports in the TestManager Help
Index.

Note: To reset the Report bar so that it generates the default reports, click Tools >
Options, click the Reports tab, and then click Reset Report Bar.

Types of Reports

This section discusses the types of performance testing reports available in
TestManager.

Command Data Reports

Use Command Data reports to identify the differences between expected and actual
responses in a test run.

The report shows the commands sent and the data received during the run. The report
displays all response data that is written to the test log.

Types of Reports 349

To define a new Command Data report:

» (lick Reports > New > Command Data.

{F Command Data Report - Untitled™

— Filters: —Advanced Option Summary:
irtual Testers = Options: -l
All Processing:

Ihclude failure meszages only
Do not include error meszages

L4 :J-J K :J-J
Change Options.... |

Save | Run I LCloze | Help I

The following figure shows an example of a Command Data report:

== Start of data for Virtual Tester: User Groupl[l] <==

¢¢¢ http request[Loginl 252]: script = Login(252), source = Login{2182) [74] 3>

Connected to "www.amazon.com: 80" successfully after 1 attempt

GET /g/post-holiday/go-button-gateway-blue. gif HTTP-1.1

Accept: */%

Referer: http://www anazon. con exec/obidos tg/browse /- 046272 /ref=11n_3-107-1229994-58573548
Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozillasd 0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www. anazon. com

Connection: Keep-hlive

Cookie: w-nain=hQFiIzHUFj8nCecT@YhEZ72=V=0FQiBf ; ubid-main=077-0853064-2749903; ses=ion-id-t

*#xx http hdr recv[Loginl 253]: script = Login{253), source = Login(2203) [73] ===
EXPECT=200
ACTUAL=

¢¢¢ http request[Loginl 254]: script = Login(254), source = Login{2206) [75] »»»

Connected to "g-images. amazon.com: 80" successfully after 1 attempt

GET ~images/G/01-kitchensadvertisedsp-narch_side gif HTTR-1.1

hooept: */%

Refersr: http://wwy anazon. con exec/obidos tg /brovse /- 046272/ ref=11n_3-107-1229994-5857353
Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozillas4.0 {compatible; MSIE 5.5; Windows HT 5.07

Host: g-inages.amazon.con

Connection: Keep-hlive

Cookie: z-main=hQFiIlzHUF]8nCacT@VESZ72sVs0F0iBE : ubid-nain=077-0853064-2749903; session-id-t

350 Chapter 12 - Reporting Performance Testing Results

What’s in Command Data Reports?
Command Data reports contain the following information:

Header and trailer lines, which show you which virtual tester generated the data. In
the following example, the header and trailer lines show data from the first virtual
tester in the Accounting group, Accounting[1]:

==> Start of data for virtual tester Accounting[1l]
==> End of data for virtual tester Accounting[1]

Inside the header and trailer lines, the Command Data report shows data on each
command that a virtual tester executed. For example:

x cmd[cmdID] : script=scrname (cmdcnt), source=srcname(srcline) [con-num]***

actual data written to test log

Syntax Meaning
<<< The command recorded and played back successfully.
<<* An expected error. Indicates that an error occurred during recording and

the same error occurred during playback. For example, during recording,
you attempt to access a Web site that doesn’t exist. During playback, the
virtual testers attempt to access the same Web site. This is an expected error,
because it occurred during recording and during playback.

e No error occurred during recording but an error occurred during playback.
cmd The command name from the log event.
cmdID The command ID from the log event.

script=scrname The name of the test script.

cmdcnt The number of commands that have been executed in the test script.

source=srcname Inmost cases, this is the same as the test script. However, if a test script calls
another script or contains an include file, the calling test script or the file
that contains the include directive is displayed.

srcline The source line.

con-num The value of the Server connection environment variable
associated with each SQL, HTTP, or socket emulation command.

Types of Reports 351

Command Status Reports

Command Status reports show the total number of times a command has run, how
many times the command has passed, and how many times it has failed. If the
response that you received is the same or is expected, TestManager considers that the
command has passed; otherwise, TestManager considers that it has failed.

Command Status reports reflect the overall health of a suite run. They are similar to
Performance reports, but they focus on the number of commands run in the suite.
Command Status reports are useful for debugging, because you can see which
commands fail repeatedly and then examine the related test script.

To define a new Command Status report:

= (lick Reports > New > Command Status.

{7 Command 5tatus Report - Untitled=

 Filters:

—Advanced Option Summary:

Virtual Testers
all

Scripts
All

Commands
All

=] Tirne Period:

Eegin Time: Start of Run

End Time: End of Run
Responge Range:

Finirnurn limit: Mo Minimum

b axirnunn lirnit: Mo b aximum
Stable Load: Disabled
Fiesponse Types: Al
Graph:

Method: Both

Type: Bar

Labels:

= # awiz: None
o |
Change DOptions... |

Save

| Run I LCloze |

Help

The following figure shows an example of a Command Status report. This report
shows that command 1 (command ID Delete~6.001) ran 3 times and did not fail, and
command 4 (command ID Initial~2.001) ran 10 times and did not fail.

352 Chapter 12 - Reporting Performance Testing Results

The graph plots the command number against the number of times the test script ran.
It displays commands that passed in green and commands that failed in red.

B Command Status Report Output - Command Status 1= [_ (O] =]
10 . T — .o —
all il
el i
om0 om0 e 0 o 0 s s A
4 5 [7 g
CrndID HUM [Passed | Failed % Passed % Failed
1 Delete ~E.001 3 3 a 100.00 0.00
2 Delete ~6.002 3 3 a 100.00 0.00
3 Celete ~6.003 3 3 a 100.00 0.00
4 Initial~2.001 10 10 a 100.00 0.00
B Initial~2.002 10 10 a 100.00 0.00
5 Initial~2.003 10 10 a 100.00 0.00
7 Login1.001 10 10 a 100.00 0.00
g Login1.002 10 10 a 100.00 0.00
9 Loginl.003 10 10 a 100.00 0.00
10 TOTAL =) B9 a 100.00 0.00

What’s in Command Status Reports?

Command Status reports contain the following information:

* Cmd ID - The command ID associated with the response.

* NUM - The number of responses corresponding to each command ID. This number

is the sum of the numbers in the Passed and Failed columns.

» Passed — The number of passed responses for each command ID (that is, those that
did not time out).

» Failed — The number of failed responses for each command ID that timed out (that
is, the expected response was not received).

* % Passed — The percentage of responses that passed for that command ID.

* % Failed — The percentage of responses that failed for that command ID.

The last line of the report lists the totals for each column.

Types of Reports 353

Command Usage Reports

Command Usage reports display data on all emulation commands and responses.
The report describes throughput and virtual tester characteristics during the suite run.

The summary information in the Command Usage report gives a high-level view of
the division of activity in a test run. The cumulative time spent by virtual testers
executing commands, thinking, or waiting for a response can tell you quickly where
the bottlenecks are. The Command Usage report also can provide summary
information for protocols.

To define a new Command Usage report:
= (Click Reports > New > Command Usage.

ommand Uzage Report

— Filters: —Advanced Option Summary:
itual Testers =l Summary: Run =l
All
Scripts
Al

L] _'l_I Kl _'l—I
Change Options.... |

Save | Run I LCloze | Help I

The following figure shows an example of a Command Usage report:

B Command Usage Report Dutput - Command Usage 1 |_ (O] x 1
Time of Emulation Se=ssion: Wed Aug & 2001 13:22 Il
Command Usage Report
Cumulative Statistics for All Selected Virtual Testers and Scripts
Active Time: 1549 .4 szecs Inactive Time: 70.0 =secs
Paz=zed Commands: 350 Average Throughput: 13,55 cmds-min
Failed Commands: i} Average Throughput 0.00 cmds<min
Pas=ed Responses: 280 Average Throughput: 10.854 resps-min
Failed Responses: i} Average Throughput : 0.00 resps-min —
Time Spent Waiting: 268 .8 second=s => 17 3%
Time Spent in Input: 0.0 second=s =: 0.0%
Time Spent Thinking: 1280.6 seconds => 82.7%
Passed HTTF Connections: 350 Passed Connections-Hin: 136
Failed HTTF Connections: 0 Awg Connect Setup Time: 133 m=
HTTF Sent Ebvte=: 135 HTTP Sent KBvtes-Sec: 0.1
HTTFP Receiwed Ebytes: 1641 HTTF Recv EBytes.-Sec: 1.1
Sent Kbytes-Connection: 0.4 Recwv Kbytes<Connection: 4.7
4| | L2

354 Chapter 12 - Reporting Performance Testing Results

What’s in Command Usage Reports?

Command Usage reports contain a section on cumulative statistics and a section on
summary statistics.

Cumulative Statistics

= Active Time — The sum of the active time of all virtual testers. The active time of a
virtual tester is the time that the virtual tester spent thinking (including delays
after the virtual tester’s first recorded command), executing commands, and
waiting for responses.

* Inactive Time — The sum of the inactive time of all virtual testers and test scripts.
The inactive time of a virtual tester is the time before the virtual tester’s first
emulation command (including the overhead time needed to set up and initialize
the run), and possibly interscript delay (the time between the last emulation
command of the previous test script and the beginning of the current test script).

» Passed Commands — The total number of passed send commands; that is,
commands that send virtual tester input to the server.

* Failed Commands — The total number of failed send commands; that is, commands
that send virtual tester input to the server.

* Passed Responses — The total number of responses to send commands that were
matched by passing receive commands. This is not the same as the total number of
expected receive commands, because a response may be matched by an arbitrary
number of receive commands. A response is considered expected if all receive
commands used to match it have an expected status.

* Failed Responses — The total number of responses that were matched by failing
receive commands. This is not the same as the total number of unexpected receive
commands, because a response may be received by an arbitrary number of receive
commands. A response is considered unexpected if any receive commands used to
match it have an unexpected status.

Note: The total of passed commands plus failed commands often does not equal
the total of passed responses plus failed responses. This is because send
commands and responses in a test script do not necessarily have a one-to-one
correspondence. For example, an HTTP script may issue one send command
(http_request) and receive multiple responses to the send
(http_header recv and one or more http nrecv commands).

Types of Reports 355

» Average Throughput — Four measurements of average throughput are provided:
passed command throughput, failed command throughput, passed response
throughput, and failed response throughput. This represents the throughput of an
average virtual tester.

» Time Spent Waiting — The total time spent waiting for responses, given both in
seconds and as a percentage of active time. The time spent waiting is the elapsed
time from when the send command is submitted to the server until the server
receives the complete response. The time that an http_request spends waiting
for a connection to be established is counted as time spent waiting.

* Time Executing Commands — The total time spent in executing commands on the
Agent computer. This measurement is provided both in seconds and as a
percentage of active time.

The time spent executing VU emulation commands that access a SQL server is
defined as the elapsed time from when the SQL statements are submitted to the
server until these statements have completed.

The time spent executing VU emulation commands that access TUXEDO
middleware is defined as the time to execute the specific ATMI primitive until it
succeeds or fails.

= Time Spent in Input — The total time spent sending virtual tester input to the server.
This measurement is provided both in seconds and as a percentage of active time.

The time spent by VU http_request and sock_send commands in sending
input to the server is reported as time spent in input.

» Time Spent Thinking — The total time spent thinking, both in seconds and as a
percentage of active time. The time spent thinking for a given command is the
elapsed time from the end of the preceding command until the current command
is submitted to the server. This definition of think time corresponds to that used
during the run only if the TSS environment variable Think def in the test script
has the default LR (last received), which assumes that think time starts at the last
received data time stamp of the previous response.

If any VU emulation commands are executed that access a SQL server, the Command
Usage report includes:

= Rows Received - Number of rows received by all reported sqlnrecv commands.

* Received Rows/Sec — Average number of rows received per second. Derived by
dividing the number of rows received by the active time

356 Chapter 12 - Reporting Performance Testing Results

Average Rows/Response — Average number of rows in the passed and failed
responses. Derived by dividing the number of rows received by the number of
passed and failed responses.

Average Think Time — Average think time in seconds for sqlexec and
sglprepare statements only.

SQL Execution Commands — Number of sgqlexec commands reported.
Preparation Commands — Number of sqlprepare commands reported.

Rows Processed — Number of rows processed by all reported sqlexec
commands.

Processed Rows/Sec — Average number of rows processed per second. Derived by
dividing the number of rows processed by the active time.

Avg Rows/Execute Cmd — Average number of rows processed by each sgqlexec
command. Derived by dividing the number of rows processed by the number of
sglexec commands reported.

Avg Row Process Time — Average time in milliseconds for processing a row by an
sglexec command. Derived by dividing the time spent on sglexec commands
by the number of rows processed.

Avg Execution Time — Average time in milliseconds to execute an sqlexec or
DCOM method call command. Derived by dividing the time spent on sglexec
commands by the number of sglexec commands.

Avg Preparation Time — Average time in milliseconds to execute an sqlprepare
command. Derived by dividing the time spent on sglprepare commands by the
number of sqlprepare commands.

If any HTTP emulation commands are executed that access a Web server, the
Command Usage report includes:

Passed HTTP Connections — Number of successful HTTP connections established
by all reported http request commands.

Failed HTTP Connections — Number of HTTP connection attempts that failed to
establish a connection for all reported http request commands.

HTTP Sent Kbytes — Kilobytes of data sent by reported http request commands.

HTTP Received Kbytes — Kilobytes of data received by reported http nrecv and
http recv commands.

Types of Reports 357

Sent Kbytes/Connection — Kilobytes of data sent by reported http request
commands per connection. Derived by dividing the kilobytes of data sent by the
number of successfully established HTTP connections.

Passed Connections/Min — Number of successful HTTP connections established per
minute. Derived by dividing the number of successful HTTP connections by the
active time.

Avg Connect Setup Time — Average time, in milliseconds, required to establish a
successful HTTP connection. Derived by dividing the total connection time for all
recorded http request commands by the number of successful connections.

HTTP Sent Kbytes/Sec — Kilobytes of data sent per second. Derived by dividing the
kilobytes of data sent by all recorded http reguest commands by the active
time.

HTTP Recv Kbytes/Sec — Kilobytes of data received per second. Derived by
dividing the kilobytes of data received by all recorded http nrecv and
http recv commands by the active time.

Recv Kbytes/Connection — Kilobytes of data received by reported http nrecv
and http_recv commands per connection. Derived by dividing the kilobytes of
data received by the number of successfully established HTTP connections.

If any VU emulation commands are executed that represent socket traffic, the
Command Usage report includes:

Passed Socket Connections — Number of successful socket connections established
by all reported sock connect functions.

Socket Sent Kbytes — Kilobytes of data sent by reported sock send commands.

Socket Received Kbytes — Kilobytes of data received by reported sock nrecvand
sock_recv commands.

Passed Connections/Min — Number of successful socket connections established
per minute. Derived by dividing the number of successful socket connections by
the active time.

Socket Sent Kbytes/Sec — Kilobytes of data sent per second. Derived by dividing
the kilobytes of data sent by all recorded sock send commands by the active
time.

Socket Recv Kbytes/Sec — Kilobytes of data received per second. Derived by
dividing the kilobytes of data received by all recorded sock nrecv and
sock_recv commands by the active time.

358 Chapter 12 - Reporting Performance Testing Results

If any VU emulation commands are executed that access TUXEDO middleware, the
Command Usage report includes:

= Tuxedo Execution Commands — Number of TUXEDO commands reported.

= Avg Execution Time — Average time in milliseconds to execute a TUXEDO
command. Derived by dividing the time spent on TUXEDO commands by the
number of TUXEDO commands.

If any start_time emulation commands are executed, the Command Usage report
includes:

» stop_time Commands — The number of stop_time commands reported.

» stop_time Cmds/Min — Number of stop_time commands per minute. Derived by
dividing the number of stop_time commands by the active time.

» start_time Commands — The number of start time commands reported.

* Avg Block Time — Average response time in seconds for reported stop_time
commands. Derived by dividing the sum of the response times for all stop_time
commands by the number of stop_time commands. The response time of a
stop_time command is the elapsed time between it and its associated
start time command.

If any VU emulate emulation commands are executed, the Command Usage report
includes:

* Passed emulate Commands — Number of emulate commands that report a passed
status.

» Passed emulate Time Spent — Total time spent, from when the passed emulate
commands start to where they end.

* Failed emulate Commands — Number of emulate commands that report a failed
status.

* Failed emulate Time Spent — Total time spent, from when the failed emulate
commands start to where they end.

If any testcase emulation commands are executed, the Command Usage report
includes:

» Passed testcase Commands — Number of testcase commands that report a
passed status.

= Failed testcase Commands — Number of testcase commands that report a failed
status.

Types of Reports 359

If any user-defined commands—such as TSS commands, Visual Basic method calls, or
Java commands—are executed, the Command Usage report includes a section for
those commands.

Summary Statistics

* Duration of Run — Elapsed time from the beginning to the end of the run. The
beginning of the run is the time of the first emulation activity among all virtual
testers and test scripts, not just the ones you have filtered for this report. Similarly,
the end of the run is the time of the last emulation activity among all virtual testers
and test scripts. The elapsed time does not include the process time.

= Passed Commands, Failed Commands, Passed Responses, Failed Responses —
Identical to their counterparts in Cumulative Statistics on page 355.

» Total Throughput — Four measurements of total throughput are provided: passed
command throughput, failed command throughput, passed response throughput,
and failed response throughput. The total throughput of passed commands is
obtained by dividing the number of passed commands by the run’s duration, with
the appropriate conversion of seconds into minutes. Thus, it represents the total
passed command throughput by all selected virtual testers at the applied
workload, as opposed to the throughput of the average virtual tester. The total
failed command, and the total passed and failed response throughputs are
calculated analogously.

These throughput measurements, as well as the test script throughput, depend
upon the virtual tester and test script selections. The summary throughput
measurements are most meaningful when you select all virtual testers and test
scripts. For example, if you select only three virtual testers from a ten-virtual-tester
run, the throughput does not represent the server throughput at a
ten-virtual-tester workload, but rather the throughput of three selected virtual
testers as part of a ten-virtual-tester workload.

= Number of Virtual Testers — Number of virtual testers in the suite run.
= Number of Timers — Number of timers in the suite run.

* Number of Completed Scripts — Test scripts are considered complete if all associated
activities associated are completed before the run ends.

* Number of Uncompleted Scripts — Number of test scripts that have not finished
executing when a run is halted. Test scripts can be incomplete if you halt the run or
set the suite to terminate after a certain number of virtual testers or test scripts.

» Average Number of Scripts Completed per Virtual Tester — Calculated by dividing
the number of completed test scripts by the number of virtual testers.

360 Chapter 12 - Reporting Performance Testing Results

Average Script Duration for Completed Scripts — Average elapsed time of a
completed test script. Calculated by dividing the cumulative active time of all
virtual testers and test scripts by the number of completed test scripts.

Script Throughput for Completed Scripts — Number of test scripts-per-hour
completed by the server during the run. Calculated by dividing the number of
completed test scripts by the duration of the run, with the conversion of seconds
into hours. This value changes if you have filtered virtual testers and test scripts.

If any timers are executed, the Command Usage report includes:

Avg Number of Timers — Calculated by dividing the number of timers by the
number of virtual testers.

Average Start and Stop Timer Duration — Average response time in seconds for
reported timers. Derived by dividing the sum of the response times for all stop
timers by the number of stop timers. The response time is the elapsed time
between a start timer and its associated stop timer.

Timer Throughput for all Virtual Testers — Number of stop timers executed per
minute during the suite run. Derived by dividing the number of stop timers by the
duration of the run.

If any emulate emulation commands are executed, the Command Usage report
includes:

Passed emulate Commands — Number of emulate commands that report a passed
status.

Passed emulate Time Spent — Total time spent, from when the passed emulate
commands start to where they end.

Failed emulate Commands — Number of emulate commands that report a failed
status.

Failed emulate Time Spent — Total time spent, from when the failed emulate
commands start to where they end.

If any testcase emulation commands are executed, the Command Usage report
includes:

Passed testcase Commands — Number of testcase commands that report a
passed status.

Failed testcase Commands — Number testcase commands that report a failed
status.

Types of Reports 361

If any user-defined commands—such as TSS commands, Visual Basic method calls, or
Java commands—are executed, the Command Usage report includes a summary
section for those commands.

Command Trace

Command Trace reports list the activity of a run and enable you to examine in detail
unusual or unexpected events. This report formats raw data from the suite run
without performing statistical analysis.

Command Trace reports display the actual time stamps from the emulation, the
counts of data sent and received, and the TSS environment variable settings (if
recorded).

Note: To display the actual data sent or received, run a Command Data report.
To define a new Command Trace report:

» (lick Reports > New > Command Trace.

{f Command Trace Report - Untitled™

— Filters: —Advanced Option Summary:
itual Testers -l Fesponse Types: Al -l
All Fiesponse Status: Al
Seripts Enviranment ' ariables: Al
All Source Lines: Al
Commands Command Count; Al
All Exclude Timestamps: Mo

L] _'l_I K _'l—I
Change Options... |

Save | Run I LCloze | Help I

362 Chapter 12 - Reporting Performance Testing Results

The following figure shows an example of a Command Trace report:

Trace of Emulation Session Activity

Total Humber of Virtual Testers Enulated: 10
Humber of Wirtual Testers in Report: 10

Informnation for Virtual Tester: Accounting[l]
Rational Suite TestStudio Release 8.5

Tine of Suite RFun: Wed Aug 8 13:22:41 2001
Time of Day Reference for Timestamps: 997291361

Virtual Tester's Enwvironment: Screen = 0, Server connection = 1, Emulation = HOHE,
Screen_match = CURSOR _DATA
Login Timestamp: 70619
Virtual Tester: Accounting[l] Test Script: Login
Beginning timestamp of test script Login: 7069
Src Cmd First Last
Line Count Clnt Command Command ID Count Timestamp Timestanp Stat
34 1 1 http request Loginl 001 265 7080 10194
10194 10194 pas=s
49 Zz 2 http request Loginl. 002 431 10214 10465
10465 10465 pass
Virtual Tester's Environment: Server connection = 2 ("Loginl. 002"}
BB 3 2 http hdr recv Loginl . 003 214 10665 10665 pas=s
6a 4 2 http nrecv_cache Loginl. 004 i) 10675 10675 pass
Virtual Tester's Environment: Server connection = 1 ("Loginl. 001"}
74 5 1 http hdr recw Loginl . 005 163 10784 10784 pass
76 & 1 http nrecw Loginl . 006 9649 10784 10784 pass

What’s in Command Trace Reports?

Command Trace reports contain the following information:

Total Number of Virtual Testers Emulated — The number of virtual testers in the suite
run.

Number of Virtual Testers in Report — The number of virtual testers that appear. If
you have filtered virtual testers, this number is different from the total number of
virtual testers emulated.

Rational Suite TestStudio Release — The release of TestStudio that you used to play
back a test script.

Time of Suite Run — The time that the suite started to run.

Time of Day Reference for Timestamps — The time that the suite started to run, given
as the number of seconds since 00:00:00 GMT, January 1, 1970.

To convert these time stamps into time-of-date format, use the UNIX ctime(3)
library routine or the Windows localtime () library function.

Types of Reports 363

For each virtual tester, the Command Trace report lists the following information:

* A line showing the virtual tester that is being reported. In this example, the tester
is Data_Entry[1], or the first virtual tester in the Data Entry group.

» Default TSS environment variable values and environment variable changes
taking place on each virtual tester during playback. The changes correspond to
environment control commands executed during the suite run.

Note: The default setting logs essential—but not all—environment variables. This
information is generally sufficient for reporting purposes. However, to report on all
environment variables, open a suite, click Suite > Edit Settings, click in the TSS
Environment Variable column, and click the Logging tab. Select the Environment check
box, and then rerun the suite.

The Command Trace report lists the following information:

» A test script header, which lists the virtual tester, the release, and the name of the
test script.

» Beginning Timestamp — The time, in milliseconds (since the beginning of the suite
run), at the start of execution of each test script.

* Login Timestamp — Recorded for each virtual tester. This corresponds to the time
when the virtual tester’s logon status changed to ON.

» Emulation commands executed during the suite run. A three-line heading appears
if any emulation commands are included. The Command Trace report gives the
following information for each emulation command:

Src Line — The line number of the command in the source file, if available (Java and
Visual Basic test scripts do not make this value available; therefore, the Command
Trace report displays N/2).

Cmd Count — A running tally of the number of emulation commands executed in a
test script. This tally includes http_request commands that are read from the
cache. The report shows 0 for SQABasic timers.

Cint — The value of the Server connection environment variable associated
with each SQL, HTTP, or socket emulation command. If your test script has
multiple connections, this value lets you know which receive command
corresponds to which request. The Command Trace report leaves this column
blank for other commands.

Attached to Server — For TUXEDO sessions that start with a tux_tpinit
emulation command, this line appears.

364 Chapter 12 - Reporting Performance Testing Results

Command — The emulation command that was executed. If an HTTP response was
read from cache (rather than from the network), the report shows
http nrecv (c) (rather than http nrecv).

Command ID — The command ID associated with the command.
Count — These values depend on the type of emulation command.
This is the number of bytes of data written to the test log.

For SQL emulation commands, this is the number of rows of data written to the
test log.

For TUXEDO emulation commands, this is a code which can be 0 (buffer neither
sent nor received), 1 (buffer sent but not received), 2 (buffer not sent but received),
or 3 (buffer sent and received).

First Timestamp — The time, in milliseconds, that the command started executing,
relative to the beginning of the suite run.

Last Timestamp — The time, in milliseconds, that the command stopped executing,
relative to the beginning of the suite run.

Stat - Whether the emulation command passed or failed.

Server n ("server_name") disconnected — Indicates that the server connection has
been closed.

Ending Timestamp — The time, in milliseconds, that the test script stopped
executing, relative to the beginning of the suite run. This value is reported for each
test script. The duration of the test script is also reported.

Logout Timestamp — The time, in milliseconds, that the virtual tester’s logon status
changed from ON to OFF.

Performance Reports

Performance reports are the foundation of reporting performance-related results in
TestManager. They can show whether an application meets the criteria in your test
plan or test case. For example, a Performance report can tell you whether 95% of
virtual testers received responses from the test system in eight seconds or less, or what
percentage of virtual testers did not receive responses from the system in that time.

You can use Performance reports to display the response times recorded during the
suite run for selected commands. Performance reports also provide the mean,
standard deviation, and percentiles for response times.

Types of Reports 365

Performance reports use the same input data as Response vs. Time reports, and they
sort and filter data similarly. However, Performance reports group responses with the
same command ID, whereas Response vs. Time reports show each command ID
individually.

To define a new Performance report:

» (lick Reports > New > Performance.

| Performance Report - Untitled~ [_] I
— Filters: — &dvanced Option Summary:

irtual Testers ;I Time Period: =
Al Begin Time: Start of Run

Scripts End Time: End of Fun
All Responze Range:

Cammands Miirnuar lirrit: o Miirnum
All tMawirmurn lirnit: Mo b aximum

Stable Load: Disabled
Responze Types: Al
Graph:

Methad: Bath

Type: Bar

Labels:

= # Axist None -
K| ;I_I Kl ;I_I
Change Optiohe... |

Save I Bun I LCloze | Help |

366 Chapter 12 - Reporting Performance Testing Results

The following figure shows an example of a Performance report. The graph plots the
seconds of response times against preset percentiles. Thus, this graph shows 15 bars
for each percentile category because a total of 15 commands are graphed.

B Performance Report Output - Performance 1 [_ (O] x|

CrndID WNUM | MEAN | STDDEY | MIN | GOth | 70th | 80th | 90tk | S6th | Mak | =]
1 Caloula™7.001 1 0.00 000: 000; 000 000: 000; 001: 00 00
2 Caloula™7.002 1 057 0200 032: 063: 080 084 083 092: 095
3 Caloula™7.003 1o 057 020; 032; 063: 080; 084 083 092: 095
4 Caloula™8.001 1o 0.00 000; 000; 000 000¢ 000; 001 00: 00
5 Caloula™8.002 1o 082 018: 086 083 093; 097 1.00; 105 109
[Caloula™8.003 10 082 018: 086 083 093: 097 1.00; 105 109
7 Delete ~6.001 1 0.00 000: 000f 000 0008 0000 000 000: 000
[Delete ~6.002 1 070 0220 034: 071: 078 083 085 102 105
g Delete ~6.003 1 070 0220 034 07: 078 083 085 102 105
10 Iritial~2.001 1 0.00 000: 000: 000 000: 0000 0.00: 000: 000
n Iritial™2.002 1 082 020; 041 083 092: 097 1.03; 103 110
12 Iritial™2.003 1 082 020; 041 083 0920 097 1.09: 1.10: 171
13 Laogin . 007 1 163 146: 023 1B3; 313 316 37170 3180 379
14 Laoginl 002 i 0.54 0596: 019 023 0250 025 056 2000 343
15 Laogin 003 i 0.21 001 020 0217 0220 023 023 0237 0235
16 TOTAL 150 0.56 OB5: 0.00: 0488 075 083 033
<
|

What’s in Performance Reports?
Performance reports contain the following information:
» Cmd ID - The command ID associated with the response.

* NUM - The number of responses for each command ID (the number of times each
command ID appeared in the test log). In this example, each command ID has 10
responses.

= MEAN - The arithmetic mean of the response times of all commands and responses
for each command ID.

» STD DEV - The standard deviation of the response times of all commands and
responses for each command ID.

* MIN - The minimum response time for each command ID. In this example, the
minimum response times range from 0.00 second, which means that the command
took less than a hundredth of a second to complete, to 1.69 seconds.

Types of Reports 367

» 50th, 70th, 80th, 90th, 95th — The percentiles of the response times for each
command ID.

The percentiles compare the response times of each command ID. For example, the
50th column shows the 50th percentile of time for each command ID. This means
that half of the commands had a shorter response time and half had a longer
response time.

In this example, the 50th percentile of Calcula~7.002 is .69. This means that 50% of
the response times are less than 0.69 seconds. The 95th percentile of Calcula~7.002
is .92. This means that 95% of the response times are less than 0.92 seconds.

* MAX - The maximum response time of all responses for each command ID. In this
example, they range from 0.01 second to 3.43 seconds.

The total response time is listed in the table but is not displayed in the graph because,
to a casual onlooker, a graph that includes this total might appear skewed. However,
you can display the total response time. To display the total response time in the
graph:

1 From a Performance report, right-click the graph and select Settings.

Report Output Settings [<]

Generall Edit Graph Labels Select Command IDs | Response Hangel

Select the command |Ds that are to be shown:
Awvailable Selected

AR ; Calcula~001 -
z Calcula™~002

Calcula™003
> Calcula~004
Calcula~005
Calcula™006

£ Calcula~007
<

Calcula™008
< Calcula™003
Calcula~010
Calcula~011
Calcula™m 2
Calcula™3
Calcula™014
Calcula™015
Calcula~m17
Calcula~019
Calcula™020 =l

ak I Cancel | Lpply | Help |

2 C(Click the Select Commands IDs tab, and then select TOTAL.

368 Chapter 12 - Reporting Performance Testing Results

Compare Performance Reports

The Compare Performance report compares response times measured by
Performance reports. After you have generated several Performance reports, you can
use a Compare Performance report to compare the values of a specific field in each of
those reports. You also can compare reports that show different numbers of virtual
testers or compare reports from runs on different system configurations.

Compare Performance reports allow you to see how benchmark information differs
for various workloads. For example, you can run the same test with increasing
workloads, and then compare the Performance reports of the test runs to see how
performance changes under an ever increasing workload.

When you run a Compare Performance report, you specify the base Performance
report and up to six other Performance reports.

Defining a Compare Performance Report
Defining a Compare Performance report is similar to defining other reports.
To define a new Compare Performance report:

* (Click Reports > New > Compare Performance.

|5 Compare Performance Report - Untitled™

— Compare field —Advanced Option Summary:
0 I’E Fesponse Range: =
= Standard Deviation inimun lirit: Mo Minimunn
e . ’ baximum limit: Mo b aximum
Percentile Graph:
i] - Method: Both
J Type: Bar
» Labels:
Sl # Ais: None
& Yalue relative to base report ¥ Ais: None
Header: None
 Absolute data values el (e
—weighted =
@ |ndividual sample data L _’l—l

" Weighted by count of base repart samples Change Options...
Save | Bun I LCloze | Help |

When you define a Compare Performance report, you must define the following:
» The fields to compare in the selected Performance reports:
2 Mean — Compares the mean value of the response times.

= Standard Deviation — Compares the standard deviation for the response times.

Types of Reports 369

s Percentile - Compares the response times based on the percentile that you
select. The percentile must be in the Performance report. For example, if the
Performance reports calculate the 50, 70, 80, 90, and 95 percentiles, the
Compare Performance report must use one of these percentiles.

» The style of the comparison relative to the base Performance report:

2 Value relative to base report — Compares the response times relative to the base
Performance report. With this option, the first column in the report (the base
Performance report) is always 1, and the other columns are relative to it. For
example, if the base report lists a response time as 2.5 and another report lists
the response time as 5, the Compare Performance report lists them as 1 and 2.

= Absolute data values — The indicated response times appear in the report. For
example, if the base report lists a response time as 2.5 and another report lists
the response time as 5, the Compare Performance report lists them as 2.5 and 5.

» The weight of the response times that occur most frequently:

= Individual sample data — The response times are not weighted. A command ID
that occurs ten times and a command ID that occurs 100 times have an equal
influence on the response time statistics.

2 Weighted by count of base report samples — The response times are weighted to
reflect the frequency of occurrence of the command ID to which they
correspond. Command IDs that occur more frequently have more influence on
the response time statistics, and command IDs that occur less frequently have
less influence on the statistics.

Note: For more information about advanced options, see the TestManager Help.

What’s in Compare Performance Reports?

A Compare Performance report can compare reports in a number of ways. It can
compare reports absolutely or it can compare reports relative to a base report. In
addition, the response times can be weighted so that command IDs that occur
frequently have more influence, or they can be unweighted so that each command ID
has equal influence.

There are four versions of the Compare Performance report:
» Absolute

» Weighted absolute

» Relative

» Weighted relative

370 Chapter 12 - Reporting Performance Testing Results

Absolute Reports

Absolute reports display the actual values of the response times, in seconds. The final
line of the report gives the arithmetic sum of the response times.

To define an Absolute report:

» (lick Reports > New > Compare Performance, and then select the Absolute data
values and the Individual sample data options.

The following figure shows the last few lines of an Absolute report:

Build 1 Build 1 Build 1 Build 1
CrndiD Default D efault D efault Default
Suite 1 Usgers 1 #1 Suite 1 Users G#13 Suite 1 Users 10 #20 Suite 1 Users 20 §17
Performance 1-1 uzer | Peformance 1-5 users | Performance 1 --10 Uszers | Performance 1 - 20 Users

95 [Modify ~5.0012 1.35 1.04 1.24 0.96
896 |Print P~3.001 0.0a 0.00 0.oa 0.00
97 |Print P~3.002 0.44 0.40 059 0.E5
92 |Print P~3.003 0.44 0.40 0.59 0.E5
939 |ReadRe~4.001 0.0a 0.m 0.m 0.00
100 |Flead Re~4.002 0.56 073 0.E6 0.64
101 |Fead Re~4.003 0.56 0.73 0.E7 0.64
102 |Fead Re~4.004 0.0a 0.o7 0.m 0.00
103 |Fead Re~4.005 0.E5 0.88 062 0.74/
104 |Fead Re~4.008 0.E5 1.02 0o 075
106 |SUM 4821 59.79 E2.36 FI7

Weighted Absolute Reports

Weighted Absolute reports weigh response times by their frequency of occurrence
and are useful for comparing total response times.

To define a Weighted Absolute report:

= (Click Reports > New > Compare Performance, and then select the Absolute data
values and the Weighted by count of base report samples options.

The weight applied is equal to the number of valid responses for that command ID in
each report. If the command IDs in the reports have a different number of responses,
TestManager uses the smallest nonzero number as the weight.

The weighted absolute value is the product of this weight and the absolute value for
the response time. The final line of the weighted absolute Compare Performance
report gives the arithmetic sum of the weighted response times for each report.

Types of Reports 371

The following figure shows the last few lines of a Weighted Absolute report:

Build 1 Build 1 Build 1 Build 1
CrdiD Default Default Default Default
Suite 1 Users 1 #1 Suite 1 Users 5#19 Suite 1 Usgers 10 §20 Suite 1 Users 20§17

Performance 1--1 uger | Performance 1--5 users| Performance 1 -- 10 Users | Performance 1 -- 20 Users
35 [Modiy ~5.012 1.35 1.04 1.24 0.86
96 [Print P~9.001 0.00 0.00 0.00 0.00
37 [Print P~3.002 0.44 0.40 0.53 0.55
98 [Print P~3.003 0.44 0.40 053 0.E5
93 [ReadRe~4.001 0.00 0.0 0.0 0.00
100 |Read Re™4.002 056 073 0.EG 0.E4
101 |Read Re™4.003 0.56 0.73 0.E7 0.54
102 |Aead Re™4.004 0.00 0.07 0.0 0.00
103 |Read Re~4.005 0.EG 0.88 0.E2 0.74
104 |Fead Re™4.006 0.E5 1.02 0.70 0.75
1058 |PWEIGHTED SUM 48.21 53.79 £2.36 It

Relative Reports

Relative reports list the base response time as 1.00 and the other response times
relative to that base.

To define a Relative report:

= (Click Reports > New > Compare Performance, and then select the Value relative to
base report and the Individual sample data options.

The final line of the report gives the geometric mean of the relative response times for
each report. To determine the geometric mean, TestManager multiplies the response
times and then takes a root of the product equal to the number of response times.

For example, if there are five response times, TestManager multiplies them together
and takes the fifth root of the product.

Mathematically, the geometric mean of a set of values xq, X, ..., X is expressed as:

(xlxz...xk)l/k

372 Chapter 12 - Reporting Performance Testing Results

The following figure shows the last few lines of a Relative report:

Build 1 Build 1 Build 1 Build 1
CndID Detault Default Default Default
Suite 1 Users 1 #1 Suite 1 Users 5#15 Suite 1 Users 10 §20 Suite 1 Users 20 §17

Performance 1--1 uzer | Perfformance 1--5 users | Performance 1 -- 10 Users | Performance 1 - 20 Users
95 |Modify ~5.012 1.00 0.77 0.92 0.64
896 |Print P~9.001 1.00 1.00 1.00 1.00
97 |Print P~9.002 1.00 0.91 1.34 1.48
38 |Print P~3.003 1.00 0.91 1.34 1.48
95 |Read Re~4.001 1.00 10.00 10.00 1.00
100 |FAead Re~4.002 1.00 1.30 1.18 1.14
101 |Fead Re~4.003 1.00 1.30 1.20 1.14
102 |Fead Re~4.004 1.00 70.00 10.00 1.00
103 |FAead Re~4.005 1.00 1.3 0.95 1.14
104 |Fead Re~4.008 1.00 1.67 1.08 1.15
105 |GEOD ME&N 1.00 1.75 1.80 1.73

Weighted Relative Reports

This report is the same as the Relative report, except that it also lists the weighted
geometric mean.

To define a Weighted Relative report:

* (Click Reports > New > Compare Performance, and then select the Value relative to
base report and the Weighted by count of base report samples options.

The weighted geometric mean differs from the geometric mean in that it takes into
account the frequency with which the different command IDs occur. Frequently used
command IDs have a greater influence on the weighted geometric mean than
infrequently used ones—in contrast to the geometric mean, where all command IDs
have equal influence.

The weight applied when calculating the weighted geometric mean for each
command ID equals the number of valid responses for that ID in each report being
compared. If the number of valid responses for a command ID differs among the
reports, the smallest nonzero count is used as its weight.

Mathematically, the weighted geometric mean of a set of values xq, Xy, ..., Xk with
frequencies (weights) of f,, f,, ..., fk, where f; + , + ... + fk = N, is expressed as:

1/ N
(xf‘x%...xﬁk)

Types of Reports 373

The following figure shows the last few lines of a Weighted Relative report:

Build 1 Build 1 Build 1 Build 1
CrndiDr Default Default Default Default
Suite 1 Users 1#1 Suite 1 Users G#13 Suite 1 Users 10 #20 Suite 1 Users 20 #17

Perfarmance 1--1 uger | Performance 1-5 users| Performance 1 - 10 Users | Performance 1 - 20 Users
95 |Modiy ~5.012 1.00 077 0.92 0.64
96 |Print P~3.001 1.00 1.00 1.00 1.00
37 |Print P~3.002 1.00 0.91 1.34 1.48
98 |Print P~9.003 1.00 0.91 1.34 1.48
93 |ReadRe~4.001 1.00 10.00 10.00 1.00
100 |Read Re~4.002 1.00 1.30 1.18 1.14
1001 |Fiead Re™4.003 1.00 1.30 1.20 1.14
102 |Read Re™~4.004 1.00 70.00 10.00 1.00
103 |Read Re~4.005 1.00 1.35 0.95 1.14
104 |Fiead Fe™4.006 1.00 1.57 1.08 1.15
105 |GEO MEAN 1.00 175 1.80 1.73
106 |WGHT GMEAN 1.00 1.78 1.80 1.73

N/A and Undefined Responses

Occasionally, you might see the strings n/a and Undefn in a Compare Performance
report. The following table describes when TestManager displays these strings:

If Then the Compare Performance report

A command ID is in the base report but does | Lists n/a for that command ID in the table and
not occur in the other reports. does not include information for that command
ID in the report graph.

A command ID is in the report but does not | Ignores that command ID.
occur in the base report.

You are producing a Relative report, and Lists the response time as 0 in the base report,
some command IDs have a response time of 0.| and lists the other results corresponding to that
command ID as Undefn.

All the response times for a report are listed | Lists the geometric mean or sum as n/a.
as n/a or Undefn.

Response vs. Time Reports

Response vs. Time reports display individual response times. Response vs. Time
reports use the same input data as Performance reports, and sort and filter data
similarly. However, Response vs. Time reports show each command ID individually,
whereas Performance reports group responses with the same command ID.

374 Chapter 12 - Reporting Performance Testing Results

To define a new Response vs. Time report:

Click Reports > New > Response vs. Time.

i Response Vs. Time Report - Untitled® [[x]
—Filters: —&dvanced Option Surnmarny:

ittual Testers = Time Period: -
All Begin Time: Start of Fun

Scripts End Time: End of Run
All Fiesponze Fange:

Commands Minimurm limit: Mo Minimum
All b awimnurn limit: Mo b asimum

Stable Load: Disabled

Fiezponze Types: Al

Sort Method: Alphabetic
Calculation: last received - last sent
Responze Status: All

Graph:
= Method: Bath =
K _'l_I i _>l_I
Change Options... |
Save | Bun I Lloze | Help |

Response vs. Time reports are useful for the following tasks:

Checking the trend in the response time. The Response vs. Time report shows the
response time versus the elapsed time of the suite run.

The response time should be clustered around one point rather than getting
progressively longer or shorter. If the trend changes, check that you have excluded
logon and setup time in your results. The worst case is that you might need to
change your test design.

Checking any spikes in the response time. If the response time is relatively flat
except for one or two spikes, you might want to investigate the cause of the spikes.

Filtering the data so that it contains only one command ID, and then graphing that
command ID as a histogram.

Checking the resources used by a computer in the run (optional).

To see the resources used, right-click the Response vs. Time report and select a
computer.

Types of Reports 375

The following figure shows a Response vs. Time report.

B Response ¥s Time Aeport Output - Response ¥z Time 1* M=l E3
ales
ales
EIEE
ales
ales
EIEE
ales
ata nﬁﬁ
ata phkny
aEa n%
afaEn
Accounting
Accountin
Accannfin X " " :] ; \
i A0000 100000 150000 200000
Crnd D Ending TS Fesponse Status Wirtual Tester Script i’
1 Calcula™173 E30ES 150iFPazz Accounting[1 Calculate Howe
2 Caleula™00 37403 410 Pags Accounting[1] Calculate Hou
3 Calcula™~040 45996 151 {Pazz Accounting1 Calculate Hou
4 Calcula™030 51544 171 iPass Accounting[1] Calculate Hou
5 Calcula™001 145088 230 Pazz Accounting1]: Calculate Tax
=] T mlmaal =042 1AdFE07T FIN:iDann M

nnnnnn Fimml 1 T mlm il mbm L - ;I
2

The graph plots each virtual tester versus the response time in milliseconds. The
graph contains many short lines that resemble dots. The lines indicate that the
response times for all the virtual testers are quite short. The longer a line is on the X
axis, the longer the response time, because the X axis graphs the response time.

376 Chapter 12 - Reporting Performance Testing Results

What’s in Response vs. Time Reports?

Typically, Response vs. Time reports contain two sections, one for expected responses
and one for unexpected responses. The responses within each section are sorted by
command ID. Within each command ID, responses are sorted by the ending time
stamp.

Response vs. Time reports contain the following information:
* Cmd ID - The command ID associated with the response.

* Ending TS — The ending time stamp of the response. This time stamp corresponds
to the value of the read-only time stamp variable for the response. The time stamp
is the interval ending time stamp as defined by the Time Period report option.

» Response — The response time in milliseconds.
» Status — Displays Pass or Fail to indicate whether the response passed or failed.
» Virtual Tester — The virtual tester corresponding to the response.

» Script — The name of the test script corresponding to the response.

Types of Reports 377

378 Chapter 12 - Reporting Performance Testing Results

Configuring Local and
Agent Computers

If your suite runs a large number of virtual testers, you must set certain system
environment variables for the run to complete successfully. This appendix includes
the following topics:

Running more than 245 virtual testers

Running more than 1000 virtual testers

Running more than 1000 virtual testers on one NT computer
High-volume performance testing on Windows platforms
Running more than 24 virtual testers on a UNIX Agent
Controlling TCP port numbers

Setting up IP aliasing

Assigning values to system environment variables

Note: For detailed procedures, see the TestManager Help.

Running More Than 245 Virtual Testers

If your suite runs more than 245 virtual testers total, you must change two settings in
the NuTCRACKER operating environment on the Local computer. To run more than
245 virtual testers on an NT Agent computer, you must make the same changes on
that Agent.

To change these settings:

1

2
3
4

Click Start > Settings > Control Panel > Nutcracker.
Click the NuTC 4 Options tab.
Select Semaphore Settings from the Category list.

Change the Max Number of Semaphores to N + S + 10, where N is the number of
virtual testers that you want to run and S is the number of shared variables used
by scripts in the suite.

Repeat for Max Number of Semaphores Per ID.

379

6 Click OK.
7 Click Restart Later.
8 Restart NT.

Running More Than 1000 Virtual Testers

If your suite runs more than 1000 virtual testers total, you must create an environment
variable that sets the minimum shared memory size on the Local computer. To run
more than 1000 virtual testers on an NT Agent computer, you must make the same
changes on that Agent.

To create and set this environment variable:
1 Click Start > Settings > Control Panel > System.
2 C(lick the Environment tab.

3 Create an environment variable named RT MASTER_SHM MINSZ, and setits value
to 700 * N, where N is the number of virtual testers that you want to run.

On the Local computer, N is the total number of virtual testers for the entire run.
On the Agent computer, N is the number of virtual testers that run on that Agent.

4 C(Click Set and then click OK.
5 Restart NT.

Running More Than 1000 Virtual Testers on One NT Computer

If your suite runs more than 1000 virtual testers on an NT computer, you must create
and set a system environment variable on each NT computer running more than 1000
virtual testers.

To create and set this environment variable:
1 Click Start > Settings > Control Panel > System.
2 C(lick the Environment tab.

3 Create an environment variable named RT MASTER NTUSERLIMIT, and set its
value to the number of virtual testers that you want to run.

4 C(Click Set, and then click OK.

5 Restart TestManger (on the Local computer) or the test Agent (on the Agent
computer) for the new setting to take effect on that computer.

380 Appendix A - Configuring Local and Agent Computers

High-Volume Performance Testing in Windows Platforms

To further customize system settings for high-volume testing on a single
Windows-based computer (600 to 1000 testers or more), you must edit the registry to
increase desktop heap memory (memory used for dynamic memory allocation).

Warning: Exercise extreme caution when modifying the registry. Backup the registry
and understand how to restore the registry from backup before proceeding.

To increase desktop heap:
1 Open the Windows Registry Editor. Click Start > Run, then type regedit and click OK.
2 Locate the following key:

Key HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\Control\ Session
Manager\SubSystems

Name Windows

Value %SystemRoot% \system32\csrss.exe ObjectDirectory=\Windows

SharedSection=1024,3072,512 Windows=0On SubSystem Type=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ProfileControl=Off
MaxRequestThreads=16

Type REG_EXPAND_SZ

3 Edit the string “SharedSection=xxxx,yyyy,zzzz"” as follows:
Note: Edit this string only.

XXXX The first value listed applies to the desktop heap common to all desktops.
Leave this value unmodified.

yyyy The second value applies to the system-wide desktop heap and controls the
heap used for all Windows objects. The value must be sufficiently large for the
number of virtual testers desired. Allow for approximately 5K per virtual
tester for Windows NT and Windows 2000, and 10K per virtual tester for
Windows XP.

This value must be set on the computer on which the virtual testers are
running. For example, set this value on an agent computer on which virtual
testers are running, but not necessarily on a local computer running a test
unless the virtual testers are running there.

This setting only applies if the Rational Test Agent is run from the desktop. It
has no effect if the test agent is run as a service. Modify the non-interactive
desktop heap instead.

High-Volume Performance Testing in Windows Platforms 381

7277 The third value applies to non-interactive desktop heap. If this parameter is
missing from your registry, the default value will be 512K.

If you are running Rational Test Agent as a service, do not modify
system-wide desktop heap. Instead modify this non-interactive desktop heap
value, setting it to an amount appropriate for the number of virtual testers you
are running. Allow for approximately 5K per virtual tester for Windows NT
and Windows 2000, and 10K per virtual tester for Windows XP.

For example, if using the test machine as an agent, set up the SharedSection value
for 2,000 virtual testers as follows:

SharedSection=1024,10000,512
4 Reboot the system for changes to take effect.

Increasing desktop heap can allow an ill-behaving application to consume more
resources than desired. While increasing heap will allow more virtual testers to run, it
also decreases the number of desktops that can be created. These values should only
be increased by an amount sufficient to run the number of virtual testers desired.

Running More Than 24 Virtual Testers on a UNIX Agent

If your suite runs more than 24 virtual testers on a UNIX Agent computer, you must
set the following system environment variables:

382 Appendix A - Configuring Local and Agent Computers

System Environment Variable

Value

Total TestManager processes (NPROC,
MAXUP)

The number of virtual testers on the Agent
+ 5.

Total open files (NFILE, NINODE)

(6* N) + (open_files * N) + (connections * N)

N is the number of virtual testers on the
Agent.

open_files is the number of files explicitly
opened within test scripts.

connections is the number of connections
open concurrently.

Total system-wide shared memory
(SHMALL/SHMMAX)

724 + 5609N + 16S + 13G + group_names
bytes

N is the number of virtual testers on the
Agent.

S is the number of shared variables in all
the test scripts in the suite.

G is the number of user groups in the suite.
group_names is the length of all user group
names in the suite.

Semaphore set IDs (SEMMNI,
SEMMAP)

1

Total semaphores (SEMMNS)

The number of virtual testers on the Agent.

Semaphores per set (SEMMSL)

The number of virtual testers on the Agent.

Note: These values are in addition to the requirements of other system processes or
applications. The current system values should not be decreased. For example, if other

system processes require SEMMNI=10, do not decrease the value to 1.

For example, for a Solaris Agent running 2000-4000 virtual testers, set system

environment variables as follows:

set semsys:seminfo_ semmap=1024
set semsys:seminfo semmni=4096
set semsys:seminfo semmns=4096
set semsys:seminfo semmnu=4096
set semsys:seminfo semmsl=4096
set semsys:seminfo semopm=50

set semsys:seminfo_semume=64

set shmsys:seminfo shmmni=1024

set shmsys:seminfo shmmax=100072000

set shmsys:seminfo shmseg=100
set shmsys:seminfo shmmin=1

Running More Than 24 Virtual Testers on a UNIX Agent

Controlling TCP Port Numbers

The rtmstr_v and rtmstr_s network services control the ports on the Local computer to
which the Agent communication software connects. These network services allow
tests to be run with Local and Agent computers on different networks separated by a
firewall, by controlling the ports to which the listening Local server processes bind.

In a test run involving Agents, there are multiple socket connections between the
Local computer and each Agent.

Connections made from the Local to the Agent computer are always made to a single
well-known port on which the Agent is listening. This port defaults to 8300.

Two connections are made from each Agent computer to the Local computer, one to a
Local server process named rtvsrv and another to a Local server process named rtssrv.
Each server process listens on a separate port. The processes do not bind to a specific
port; instead the Local computer’s operating system chooses a port dynamically. The
Local computer then communicates these port values to the Agent during run
initialization. (Note that all Agents connect to the same two ports on the Local
computer.) These two dynamically chosen ports on the Local computer cause firewall
administration problems because the two ports to be used cannot be determined in
advance.

You can control this problem by using the optional presence of network services (the
traditional TCP/UDP network services defined in an /etc/services file, not to be
confused with an NT service). On NT, the services file is found in
drive\WINNT\system32\drivers\etc\services. There is one entry per line, which lists
the service name, the port number, and the protocol (TCP or UDP).

Specifically, control over the ports is provided as follows:
rtvsrv binds to the port (in priority order):

1 The value of the TCP service named rtmstr_v, if defined.
2 Ifnot defined, a port dynamically chosen by the system.
rtssrv binds to the port (in priority order):

1 The value of the TCP service named rtmstr_s, if defined.
2 Ifnot defined, a port dynamically chosen by the system.

The ports defined by these two services are independent. That is, they do not need to
be adjacent nor related to the well-known Agent port of 8800. They do need to be
unique. We suggest using the ports 8801 and 8802 if they are not used for some other
service on the Local computer.

384 Appendix A - Configuring Local and Agent Computers

For example, if you want the ports on the Local computer to be 8801 and 8802, add the
following two lines to the services file:

rtmstr_s8801/tcp# TestStudio Master S server

rtmstr_v8802/tcp# TestStudio Master V server

In addition, the rtagent network service has been added to control the port at which
the Agent listens. If the well-known Agent port of 8800 is already in use by another
application on one or more Agent computers, an alternate port needs to be specified
using the rtagent service.

The rtagent service is put in the services file in the same way that the network services
rtmstr_v and rtmstr_s are put in the file. The difference is that the rtagent service must
be defined on the Local computer and all Agents used in the testing run, and must be
identical for all systems. The Agents must be rebooted after altering the service file.

For example, if you want the Agent to listen on port 8888, add the following line to the
services file on both the Local and Agent computers:

rtagent8888/tcp# TestStudio Agent

Setting Up IP Aliasing

TestManager provides IP aliasing, which allows many IP addresses to be assigned to
the same physical system. Every virtual tester can be assigned a different IP address to
realistically emulate your virtual tester community. The requests generated by these
virtual testers receive responses back from the Web server with timing characteristics
and validation recorded intact.

To use IP aliasing on any particular computer, the system administrator must set up
the IP addresses on that system.

For Windows NT, this can be done with the Settings > Control Panel > Network >
Protocols > TCP/IP Protocol > Properties > Advanced > IP Addresses > Add.

For UNIX, this can be done with the i fconfig (1) command line utility. See the
ifconfig manual pages for specific details appropriate to that operating system. To
set up large numbers of IP addresses, it is convenient to use a Perl or UNIX shell
script. A sample Korn shell script for this purpose named ipalias_setup can be
found in the bin directory of UNIX Agent installs. (You must have root privileges to
set up IP aliases with ifconfig.)

Be careful when assigning IP addresses to a computer, because you may run into
problems such as conflicting IP addresses or routing considerations. We recommend
that IP addresses be assigned by a qualified network administrator.

Setting Up IP Aliasing 385

After IP Aliasing is set up, open a suite, click Suite > Edit Runtime, and then select the
Enable IP Aliasing check box.

If IP Aliasing is selected in the suite, at the beginning of a run, the TestManager
software on each computer (Local or Agent) queries the system for all available IP
addresses. Each suite scheduled to run on that computer is assigned an IP address
from that list, in round-robin fashion. If a computer has more virtual testers than IP
addresses, an IP address is assigned to multiple virtual testers. If a computer has
fewer virtual testers than IP addresses, some IP addresses are not used. This approach
optimizes the distribution of IP addresses regardless of the number of virtual testers
scheduled on a computer and frees you from having to match IP addresses to specific
virtual testers.

Assigning Values to System Environment Variables

TestManager passes the system environment variables set on an Agent computer to
each virtual tester. If you are using virtual testers to test a database server or
application, you can override these system environment variables.

To override the value of a system environment variable:

» (Click Suite > Edit Settings, and then click in the Sys Environment Variables column
of the User Settings dialog box.

System Environment ¥ariables

— Mew

Wariable name: I

Y ariable value: I [pdate

[Elete

Tl

Eremowe Al

0K I Caticel | Help

You can change the value or a previously set system environment variable in the
System Environment Variables dialog box. For more information, see the TestManager
Help.

386 Appendix A - Configuring Local and Agent Computers

You can set system environment variables for listed testing platforms as follows:

Testing Platform | System Environment Variable Settings
Oracle on a UNIX [Specify the directory that contains the client software in the
Agent variable ORACLE_HOME.

Example:
ORACLE_HOME = /ora/app/oracle/product/8.0.5

If /var/opt/oracle does not contain tnsnames.ora, assign the
pathname of the file to the variable TNS_ADMIN.

Example: TNS_ADMIN = /home/uname/oracletest

Sybase on a UNIX
Agent

Specify the directory that contains the client software in the
variable SYBASE.

Example: SYBASE = /usr/local/sybasec

Specify the directory that contains the Sybase client libraries in
the path of one of the following system environment variables:

PATH (Windows)

LD _LIBRARY PATH (Solaris Agents)
SHLIB_PATH (HP-UX Agents)
LIBPATH (AIX Agents)

Java on a UNIX
Agent

Specify the directory that contains the Java libraries in the
variable LD TLTBRARY PATH.

Example:

LD _LIBRARY PATH=/usr/jrell8/lib/linux/native_threads
When the Agent computer is also using third-party software
(such as IBMWebSphere) you must specify the directory

location of that software’s libraries in the system environment
variable LD_LIBRARY PATH in addition to the Java libraries.

In addition, for Java Developers Kit versionl.1, you must also
set the following variable:

JAVA COMPILER=NONE

Assigning Values to System Environment Variables

387

Testing Platform

System Environment Variable Settings

Local or Agents
running TUXEDO
test scripts

Specify the directory that contains the client software in the
variable TUXDIR.

Set the NLSPATH environment variable to the path of the
directory that contains the TUXEDO message file.

Set the value of STUXDIR/11ib to one of the following system
environment variables:

LD _LIBRARY PATH (Solaris Agents)
SHLIB_PATH (HP-UX Agents)
LIBPATH (AIX Agents)

For Windows NT Local computers, these must be defined
only for TUXEDO client-only installations. The TUXEDO full
runtime installation process sets them automatically. For
more information, see the TUXEDO installation instructions.

Set one of the following:
The Workstation Listener’s address to WSNADDR.
Example:

WSNADDR=//sparky:36001
WSNADDR=00028CA1COA8F0D6

The Workstation Listener’s host name and port to WSLHOST
and WSLPORT. These variables override WSNADDR, if set.

Example:

WSLHOST=sparky
WSLPORT=36001

Local or Agents
running TUXEDO
test scripts that
use FML typed
buffer field names

Set a list of FML field table file names to FIELDTBLS. This
variable is used by Agents running test scripts that contain FML
typed buffer field name references. If this variable is not set,
functions that use FML typed buffer field names that are not
included in this list fails, causing dependent commands to fail.

Example: FIELDTBLS=ct . f1dtbl, inv.fldtbl

Set the absolute pathname of the directory containing the FML
field table file to FLDTBLDIR. This variable is used by Agents
running test scripts that contain FML typed buffer field name
references. If this variable is not set, functions that use FML
typed buffer field names that are not included in this list (for
example, tux_setbuf_int ()) fails, causing dependent
commands to fail.

Example: FLDTBLDIR=/ul/tuxapp/dat

388 Appendix A - Configuring Local and Agent Computers

Testing Platform

System Environment Variable Settings

Local or Agents
running TUXEDO
test scripts that
use FML32 typed
buffer field names

Set a list of FML32 field table file names to FIELDTBLS32. This
variable is used by Agents that run test scripts that contain
FML32 typed buffer field name references. If this variable is not
set, functions that use FML32 typed buffer field names that are
not included in this list will fail, causing dependent commands
to fail.

Example: FIELDTBLS32=ct32.fldtbl, inv32.f1ldtbl

Set the absolute pathname of the directory containing the
FML32 field table files to FLDTBLDIR32. This variable is used
by Agents running test scripts that contain FML32 typed buffer
field name references. If this variable is not set, functions that
use FML32 typed buffer field names that are not included in this
list (such as tux_setbuf_int ()) fails, causing dependent
commands to fail.

Example: FLDTBLDIR32=/ul/tuxapp/dat

Local or Agents
running TUXEDO
test scripts that
use VIEW,
X_COMMON, or
X_C_TYPE typed
buffers

Set a list of view description file names to VIEWFILES. This
variable is used by Agents running test scripts that use VIEW,
X_COMMON or X_C_TYPE typed buffers. If this variable is not set,
functions that use these typed buffers that are defined in view
description files not in this list fails, causing dependent
commands to fail.

Example: VIEWFILES=ct .V, inv.V

Set the absolute pathname of the directory containing the view
description files to VIEWDIR. If this variable is not set,
tux_tpalloc () or tux_alloc_buf () calls that try to
allocate a buffer of type VIEW, X_COMMON, or X_C_TYPE fails,
causing dependent commands or functions to fail.

Example:
VIEWDIR=/ul/tuxapp/dat:/ul/tuxapp/dat2

Local or Agents
running TUXEDO
test scripts that
use VIEW32 typed
buffers

Set a list of view description file names to VIEWFILES32. This
variable is used by Agents running scripts that use VIEW32
typed buffers. If this variable is not set, functions that use
VIEW32 typed buffers which are defined in view description
files not in this list fails, causing dependent commands to fail.

Example: VIEWFILES32=ct32.V,inv32.V

Set the absolute pathname of the directory containing the view
description files to VIEWDIR32. This variable is used by Agents
running test scripts that use VIEW32 typed buffers. If this
variable is not set, tux_tpalloc () or tux_alloc_buf ()
calls that try to allocate a buffer of type VIEW32 fails, causing
dependent commands or functions to fail.

Example: VIEWDIR32=/ul/tuxapp/dat

Assigning Values to System Environment Variables

389

Testing Platform [System Environment Variable Settings

Solaris Agents Set the TLI network service provider pathname to WSDEVICE.
running TUXEDO [This value is typically /dev/tcp. If not set, playback terminates
test scripts with an error message.

Example: WSDEVICE=/dev/tcp

INFORMIX ona [Assign a valid entry in the $INFORMIXDIR/etc/sglhosts
UNIX Agent file to INFORMIXSERVER.

computer Assign a value to INFORMIXDIR. The value depends on your

version of INFORMIX CLI and INFORMIX ESQL/C.

390 Appendix A - Configuring Local and Agent Computers

Standard Datapool Data
Types

This appendix contains:
» A table of standard data types.
» A table of minimum and maximum ranges for the standard data types.

Note: For detailed procedures, see the TestManager Help.

Standard Data Type Table

Data types supply datapool columns with their values. Assign data types to datapool
columns when you define the columns in the Datapool Specification dialog box.

The standard data types listed in the following table are included with your Rational
Test software. Use these data types to help populate the datapools that you create.

The standard data types (plus any user-defined data types you create) are listed in
the Datapool Specification dialog box under the heading Type. You can use this dialog
box to set Type and the other datapool column definitions (such as Length and
Interval) listed in the following table.

Note that related data types (such as cities and states) are designed to supply
appropriate pairings of values in a given datapool row. For example, if the

Cities - U.S. data type supplies the value Boston to a row, the State Abbrev. - U.S. data
type supplies the value MA to the row.

391

Standard data type name Description Examples
Address - Street Street numbers and names. No period after | 20 Maguire Road
abbreviations. 860 S Los Angeles St 8th Fl
75 Wall St 22nd F1
Cities - U.S. Names of U.S. cities. Lexington
Cupertino
Raleigh

Company Name

Company names (including designations
such as Co and Inc where appropriate).

Rational Software Corp
TSC Div Harper Lloyd Inc
Sofinnova Inc

Date - Aug 10, 1994

Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

Oct 8,1997
Jun 17, 1964
Nov 10, 1978

If the comma is the
delimiter, the values are
stored in the datapool as
follows:

"Oct 8, 1997"
"Jun 17, 1964"
"Nov 10, 1978"

Date - August 10, 1994

Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

October 8, 1997
June 17, 1964
November 10, 1978

If the comma is the
delimiter, the values are
stored in the datapool as
follows:

"October 8, 1997"
"June 17, 1964"
"November 10, 1978"

392 Appendix B - Standard Datapool Data Types

Standard data type name Description Examples
Date - MM/DD/YY Dates in the format shown. 10/08/97
. . 06/17/64

You can only specify a range of dates in the 11/10/78

same century (that is, the year in Maximum
must be greater than the year in Minimum).

To include the slashes (/) as ordinary
characters rather than as the .csv file

If the slash is the delimiter,
the values are stored in the
datapool as follows:

delimiter, the dates are enclosed in double |"10/08/97"
quotes when stored in the datapool. "06/17 /64"
To set a range of dates from January 1, 1900 11/10/78
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

Date - MM/DD/YYYY Dates in the format shown. 10/08/1997
To include the slashes (/) as ordinary 06/17/1964

11/10/1978

characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"10/08/1997"
"06/17/1964"
"11/10/1978"

Date - MMDDYY

Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in Maximum
must be greater than the year in Minimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

100897
061764
111078

Date - MM-DD-YY

Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in Maximum
must be greater than the year in Minimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

10-08-97
06-17-64
11-10-78

Date - MMDDYYYY

Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

10081997
06171964
11101978

Date - MM-DD-YYYY

Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

10-08-1997
06-17-1964
11-10-1978

Standard Datapool Data Types 393

Standard data type name

Description

Examples

Date- YYYY/MM/DD

Dates in the format shown.

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900

1997/10/08
1964/06/17
1978/11/10

If the slash is the delimiter,
the values are stored in the
datapool as follows:

February 1 is 032.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
1900001 and Maximum to 2050365.

through December 31, 2050, set Minimum to [“1997/10/08"
19000101 and Maximum to 20501231. "1964/06/17"
"1978/11/10"

Date - YYYYMMDD Dates in the format shown. 19971008
To set a range of dates from January 1, 1900 %g%g%g
through December 31, 2050, set Minimum to
19000101 and Maximum to 20501231.

Date, Julian - DDDYY Dates in the format shown. DDD is the 28197
total number of days that have passed in a [16964
year. For example, January 1 is 001, and 31478
February 1 is 032.
To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
00100 and Maximum to 36599.

Date, Julian - DDDYYYY Dates in the format shown. DDD is the 2811997
total number of days that have passed in a | 1691964
year. For example, January 1 is 001, and 3141978
February 1 is 032.
To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
0011900 and Maximum to 3652050.

Date, Julian - YYDDD Dates in the format shown. DDD is the 97281
total number of days that have passed in a | 64169
year. For example, January 1 is 001, and 78314
February 1 is 032.
To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
00001 and Maximum to 99365.

Date, Julian - YYYYDDD Dates in the format shown. DDD is the 1997281
total number of days that have passed in a | 1964169
year. For example, January 1 is 001, and 1978314

394 Appendix B - Standard Datapool Data Types

Standard data type name Description Examples
Float - X.XXX Positive and negative decimal numbers in |243.63918
the format shown. -95.99
Set Length to the number of decimal places 155075028157503
to allow (up to 6).
Set Minimum and Maximum to the range of
numbers to generate.
To generate numbers with more than 9
digits (the maximum allowed with the
Integers - Signed data type), use the Float -
X.XXX data type and set Decimals to 0.
Float - X.XXXE+NN Positive and negative decimal numbers in |4.0285177E+068
the exponential notation format shown. -3.2381443E+024
Set Length to the number of decimal places 8.8373255E+119
to allow (up to 6).
Set Minimum and Maximum to the range of
numbers to generate.
Gender Either M or F, with no following period. M
F
Hexadecimal Hexadecimal numbers. 1d6b77
ff
3824e7d
Integers - Signed Positive and negative whole numbers. This | 1349
is the default data type. -392993
441393316

To include negative numbers in the list of
generated values, set Minimum to the
lowest negative number you want to allow.

Maximum range:
m Minimum = -999999999 (-999,999,999)

m Maximum = 999999999 (999,999,999)

For larger numbers, use a float data type.

If you do not specify a range, the default
range is 0 through 999,999,999.

Use this data type to generate unique data
in a datapool column (for example, when
you need a “key” field of unique data).
You can also use Read From File and
user-defined data types to generate unique
data.

Standard Datapool Data Types

395

Standard data type name Description Examples
Name - Middle Masculine and feminine middle names. Richard
If the middle name is preceded by a field TI;eresa
with masculine or feminine value (such as Julius
a masculine or feminine first name), the
middle name is in the same gender
category as the earlier field.
Name - Prefix Mr or Ms, with no following period. Mr
If the name prefix is preceded by a field Ms
with masculine or feminine value (such as
a masculine or feminine gender
designation), the name prefix is in the
same gender category as the earlier field.
Names - First Masculine and feminine first names. Richard
If the first name is preceded by a field with T}igresa
masculine or feminine value (such as a Julius
masculine or feminine name prefix), the
first name is in the same gender category
as the earlier field.
Names - Last Surnames. Swidler
Larned
Buckingham
Names - Middle Initial Middle initials only, with no following B
period. M
L
Packed Decimal A number where each digit is represented | Nonprintable digits.
by four bits. Digits are nonprintable.
Note that commas and other characters
that can be used to represent a packed
decimal number may cause unpredictable
results when the datapool file is read.
Phone - 10 Digit Telephone area codes, appropriate 7816762400
exchanges, and numbers. 4123818993
5052658498
Phone - Area Code Telephone area codes. To generate correct |781
area code lengths, set Length to 3. 412
505
Phone - Exchange Telephone exchanges. To generate correct (676
exchange lengths, set Length to 3. 381
265

396 Appendix B - Standard Datapool Data Types

Standard data type name Description Examples
Phone - Suffix Four-digit telephone numbers (telephone |2400
numbers without area code or exchange). |[8993
To generate correct telephone number 8498
suffix lengths, set Length to 4.
Random Alphabetic String | Strings of random uppercase and AQSEFuOZUIUIpAGsEM
lowercase letters. DESieAiRFiEqiEIDiicEw
Length determines the number of edEIDilcisewsDIEdgP
characters generated.
Random Alphanumeric Strings of random uppercase and AYcHISWmeMeMO0AK4
String lowercase letters and digits. HSk9vGAQU79esDE

Length determines the number of
characters generated.

7Eeis93k4ELXie7S32siDI4E

Read From File Assigns values from an ASCII text file to [Any values in an ASCII text
the datapool column. For example, you file.
could export a database column to a text
file, and then use this data type to assign
the values in the file to a datapool column.

You can use this data type to generate
unique data. You can also use the Integers -
Signed and user-defined data types to
generate unique data.
For information about using this data type,
see Creating a Column of Values Outside
Rational Test on page 328.
Space Character An empty string.
State Abbrev. - U.S. Two-character state abbreviations. MA
CA
NC

String Constant A constant with the value of Seed. The 1234
datapool column is filled with this one AAA
alphanumeric value. 1b1b

Time - HH.MM.SS Times in the format shown. Hours range [00.00.00 (midnight)
from 00 (midnight) through 23 (11 pm). 11.14.38

21.44.19

To set a range of times from midnight to
2 pm, set Minimum to 0 and Maximum to
140000.

Standard Datapool Data Types

397

Standard data type name

Description

Examples

Time - HH:MM:SS

Times in the format shown. Hours range
from 00 (midnight) through 23 (11 pm).

To include the colons (:) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of times from midnight to
2 pm, set Minimum to 0 and Maximum to

00:00:00 (midnight)
11:14:38
21:44:19

If the colon is the delimiter,
the values are stored in the
datapool as follows:
"00:00:00" (midnight)
"11:14:38"

140000. "21:44:19"
Time - HHMMSS Times in the format shown. Hours range [000000 (midnight)
from 00 (midnight) through 23 (11 pm). 111438
To set a range of times from midnight to .
2 pm, set Minimum to 0 and Maximum to
140000.
Zip Code - 5 Digit Five-digit U.S. postal zip codes. To 02173
generate the correct zip code lengths, set 95401
Length to 5. 84104
Zip Code - 9 Digit Nine-digit U. S. postal zip codes. 021733104
954012694
841040190
Zip Code - 9 Digit with Dash | Nine-digit U.S. postal zip codes with a 02173-3104
dash between the fifth and sixth digits. 95401-2694
84104-0190
Zoned Decimal Zoned decimal numbers. 3086036
450
499658196

398 Appendix B - Standard Datapool Data Types

Data Type Ranges

The following table lists the minimum and maximum ranges for the standard data

types:

Type of range Limitation
Maximum hours 23
Maximum minutes 59
Maximum seconds 59
Maximum two-digit year 99
Maximum four-digit year 9999
Maximum months 12

Minimum six-digit date

010100 (January 1, 00)

Maximum six-digit date

123199 (December 31, 9999)

Minimum eight-digit date

01010000 (January 1, 0000)

Maximum eight-digit date

12319999 (December 31, 9999)

Minimum negative integer (Integers -
Signed)

-999999999 (-999,999,999)

Maximum positive integer (Integers -
Signed)

999999999 (999,999,999)

Maximum decimal places (Float data types) |6
Male/Female title Mr, Ms
Gender designation M, F

Standard Datapool Data Types

399

400 Appendix B - Standard Datapool Data Types

ManualTest Web
Execution

This appendix provides an overview of Rational ManualTest Web Execution, a feature
of Rational TestManager, that lets you run a test case with a manual test script
implementation from a Web browser. The appendix includes the following topics:

» About ManualTest Web execution

» Overview of tasks

» About shared projects

*» How to run a test case from a Web browser
* Viewing the results

» Troubleshooting

Note: For detailed procedures, see the TestManager Help.

About ManualTest Web Execution

A manual test script is a set of testing instructions that are run by a human tester. A
manual test script can consist of steps and verification points that you type into a
manual test script using Rational ManualTest. After you create a manual test script
and associate it with a test case, creating a test case implementation, you can run the
test case from a Web browser. For information about creating a manual test script, see
Creating Manual Test Scripts on page 87. For information about test case
implementations, see Associating an Implementation with a Test Case on page 92.

With the ManualTest Web Execution component of TestManager, you can:

* Run a test case with a manual test script implementation from a Web browser. The
advantage to using the ManualTest Execution feature of TestManager is that you
only need Web browser software to run a test case with a manual test script
implementation.

» Indicate results and add comments as you perform each task in a manual test
script. These results appear in a test log.

* Include your test case results in a TestManager report.

401

When you run a test case, you view and record the results of performing the manual
steps and verification points in the manual test script.

Note: You can run a test case from a Web browser only if it has a manual test script
implementation; you cannot run a test case with an automated test script
implementation from a Web browser. If a test case has both a manual test script and an
automated test script implementation, only test cases with a manual test script
implementation appear in the ManualTest Web Execution component of TestManager.
You can only run test cases with a manual test script implementation from a Web
browser.

To run a test case with a manual test script implementation, you or an administrator
install and configure a Web server with ManualTest Web Execution software and
configure a Web browser on each client that accesses a Rational project. To run a test
case using a Web browser, type the machinename, the network name of the Web
server, and the alias, the name of an alias for the directory where you or your
administrator installed the ManualTest Web Execution software on the Web server.

For example:
http://Webserverl/ManTestdir

For information about installing and configuring a Web server, see the Rational Testing
Products Installation Guide or the Rational Suite Installation Guide.

The following figure shows a Web browser accessing the Web server to run a test case
stored in a shared project. The Web server can also reside on the same computer as a
Rational project:

Web Browser (Type Webserver1 - ManTestdir (alias of Rational project
http://Webserver1/ directory where you installed
ManTestdir) ManualTest Web Exeuction
software)

402 Chapter C - ManualTest Web Execution

Overview of Tasks

The following table lists the tasks that you perform to run a test case with a manual
test script implementation from a Web browser and where you can find information
about each task.

Task See

1 Install and configure a Web server. The Rational Testing Products Installation
Guide or the Rational Suite Installation Guide

2 Set up a Web browser. The Rational Testing Products Installation
Guide or the Rational Suite Installation Guide

3 Use Rational ManualTest to create a | Creating Manual Test Scripts on page 87
manual test script.

4 Run a test case from a Web browser. | How to Run a Test Case from a Web Browser on

page 404
5 View the results in the Test Log Opening a Test Log in TestManager on page
window of TestManager. 156

About Shared Projects

We recommend that when you create a project, you make it a shared project so others
can access your manual test scripts from a Web browser. To share a project, create the
project in a shared directory and use the Uniform Naming Convention (UNC) for the
directory name. (For more information about creating a shared directory, see the
Rational Suite Administrator’s Guide or the Rational Administrator Help.)

Overview of Tasks 403

How to Run a Test Case from a Web Browser

You run a test case with a manual test script implementation from a Web browser with
the Rational ManualTest Web Execution component of TestManager. You can indicate
results and add comments as you perform each task in a manual test script.

To run a test case with a manual test script implementation from a Web browser:

1

Start a Web browser, either Netscape Navigator 4.0 (or later) or Microsoft Internet
Explorer 4.0 (or later).

Connect to the Web server by typing the following:
http://machinename/alias

where machinename is the network name of the Web server, and alias is the
name of an alias for the directory where you or your administrator installed your
Rational software on the Web server.

For example:
http://Webserver/TM

For information about setting up an alias for a Web server running any version of
Windows, see the Rational installation guide for your product.

Log into a Rational project.

a Type your user name and password for the project that contains the test case
that you want to run. If you do not know the user name and password, see
your project administrator.

b Select a project from the list of projects. You need privileges to access a shared
project. (For information about creating a shared project, see the Rational Suite
Administrator’s Guide or the Rational Administrator Help.)

Note: If your project does not appear in the list of projects, use the Rational
Administrator software to register your project. For information about
registering an existing project, see the Rational Administrator Help.

¢ Click OK. The hierarchy of test cases appears. Only those test cases with
manual test script implementations appear in the hierarchy.

Navigate through the Test Case tree and click a test case with a manual test script
implementation that you want to run.

Note: You also can run a manual test one step at a time.

For detailed information about using the ManualTest Web Execution component, see
the Rational ManualTest Web Execution Help.

404 Chapter C - ManualTest Web Execution

Viewing the Results

To view the results in the Test Log window of TestManager, see Opening a Test Log in
TestManager on page 156.

Troubleshooting

This section lists some problems that you may experience when running a test case
from a Web browser and how to correct each problem.

Note: The error messages in this troubleshooting section are ManualTest Web
Execution error messages, not Web browser error messages.

If you have problems with your Web server, check that your Web server meets the
software requirements. For information, see About Shared Projects on page 403.

Problem — Your Rational projects do not appear when you log into a Rational project.
(You type http://machinename/alias and log into a Rational project.)

Error message — None.

Solution — All Web clients use the same user account to access a Rational project either
on a Web server (if the project is on the Web server) or on the domain (to access shared
projects on other systems in the domain).

Check two things:

» That the user account on the Web server or on the domain (for shared projects) has
privileges to read and write into a Rational project. (Ask your administrator to
check the privileges of the user account that the administrator sets up on the Web
server.)

» To allow Web clients access, you must also log into this account when you create a
new Rational project or register an existing Rational project using the Rational
Administrator.

Problem — You cannot connect from a Web browser to a Web server running the
Microsoft Personal Web Server (PWS).

Error message — None.

Solution - If you restart a Web server running PWS, PWS may not start automatically
when the server restarts. This is an intermittent problem. To fix the problem, restart
PWS.

Viewing the Results 405

To restart PWS:

1 Click Start > Programs > Windows NT 4.0 Option Pack > Microsoft Personal Web
Server > Personal Web Manager.

2 Under Publishing, click Start.
3 Click Properties > Exit.

Problem — When you log into a project from a Web browser, the following error
message appears.

Error message — Unable to connect to project.

Solution — Make sure that the Web server privileges are set correctly. For information,
see the Rational Testing Products Installation Guide or the Rational Suite Installation
Guide.

Problem — An error message appears when you select a manual test script.

Error message — Error message that includes Server.ObjectCreate in the
message.

Solution — Make sure that you or the Web server administrator installs Microsoft
Internet Explorer 5.0 or later on the Web server.

Problem — When you type text in a dialog box and submit it, erratic behavior occurs.
Alternatively, when you open a manual test script, results and comments are already
filled in from the last session.

Error message — None.

Solution — Disable caching on your Web browser. For information about disabling
caching, see your Rational installation manual.

406 Chapter C - ManualTest Web Execution

Problem — After you connect to the Web server, a Login dialog box appears. In the
Login dialog box, the project select list is empty.

Error message — None.

Solution — Create a project and create manual test scripts or register an existing project
that contains manual test scripts.

To create a project or register an existing project:
1 Do one of the following:

2 For IIS, log into the user account of the virtual directory that you configured to
run a test case. See the Rational Testing Products Installation Guide or the Rational
Suite Installation Guide.

s For PWS, log into the user account under which the Web server runs. For
information, see the Rational Testing Products Installation Guide or the Rational
Suite Installation Guide.

2 Start the Rational Administrator and create a new project or register an existing
project. For information about creating or registering a project, see the Rational
Suite Administrator’s Guide or the Rational Administrator Help.

3 If you create or register a shared project, make sure that the privileges for the
project directory are set for the virtual directory user account for IIS, or for the user
account that the Web server runs under for PWS.

4 Restart the Web server.

Troubleshooting 407

408 Chapter C - ManualTest Web Execution

Rational Test Asset
Parcel File Format

This appendix provides an overview of the Rational Test Asset Parcel (.RTPAR) file
format, including:

= XML standards
= Samples of parcel files

For more information about exporting and importing test assets within Rational
TestManager, see Managing Test Assets on page 59.

XML Standards for Rational Test Asset Parcel Files

Rational uses XML (eXtensible Markup Language) to record test asset data in
imported and exported test asset parcel (RTPAR) files. Rational allows you to export
and import the following test assets in this format:

» Test plans

= Test cases

» Test case folders

* Builds

= Iterations

= Computers

» Computer lists

* Configurations

» Configuration attributes
» Test script types

= Test input types

» Log filters

*= Log event property types

Rational also allows you to export, but not import, test log data in the .RTPAR format.

409

All test asset parcel files must begin with a generic XML tag declaring the type of file
and version of XML (<?xml version="1.0"?>) and begin and end with the
<TestAssetParcel> tag. All other tags and data in the file fall within the
<TestAssetParcel> tag.

The actual data associated with each attribute is placed in brackets within each
attribute tag. The tag name itself describes the attribute, and within this tag is the
CDATA tag that contains the actual data.

In developing the XML tags for the test asset parcel files, Rational developers have
attempted to create intuitive tag names to represent the attributes associated with
exportable test assets and test asset data. Whenever possible, these attribute tag
names correspond to dialog box labels for the asset.

For example, assets include information about when the asset was first created in a
<CreationDate> tag. For an asset initially created on Friday, August 17, 2001 at 4:23
and 7 seconds in the afternoon, the entire tag would look like this:

<CreationDate><![CDATA[2001:08:17:16:23:07]]></Creation Date>
Standard data formats for .RTPAR files include the following:
» Date and time in the format YYYY:MM:DD:HH:MM:SS

» No data is represented by <None> or the tag includes a / at the end instead of a full
closing tag.

Test assets exported or imported with associated or contained assets are a special
case. For example, when you export a computer list, you can choose to export just the
computer list test asset with no individual computer data or all test asset data for each
computer in the list. All subordinating tags and/or data for a particular related asset
or attribute must be contained within the specific tag.

Placement of information about related assets within the file for the parent asset
determines whether the asset is an associated asset or a contained asset. Associated
assets are placed as follows:

<?xml version="1.0"?>
<TestAssetParcel>
<ParentAsset>
<Attributes>
</Parent Asset
<RelatedAsset>
<Attributes>
</RelatedAsset
</TestAssetParcel>

410 Appendix D - Rational Test Asset Parcel File Format

Contained assets are placed as follows:

<?xml version="1.0"?>
<TestAssetParcel>

<ParentAsset>

<Attributess>
<ContainedAsset>
<Attributes>
</ContainedAsset>
</ParentAssets>

</TestAssetParcel>

If you intend to use third-party applications to create importable test assets, refer to
the sample files in the next section as guidelines.

Sample Rational Test Asset Parcel Files

The following examples of test asset parcel files represent the different test assets that
Rational allows you to import and export. What would be unique data specific to each
test asset is italicized.

Test Plan Test Asset Parcel File

You can choose to export test plans with the following related assets:

Contained test case folders
Contained test cases

Contained configured test cases
Associated implementations
Associated test inputs
Associated iterations
Associated configurations

Associated configuration attributes

Sample Rational Test Asset Parcel Files 411

Depending on which related assets, if any, you choose to export with the test plan test
asset, the .RTPAR file includes information about those related assets according to the
format established for that asset individually. This example shows a test plan test
asset exported with a contained test case folder, but not any other related assets.

<?xml version="1.0"?>
<TestAssetParcel>
<TestPlan>
<Name><! [CDATA [Test Plan Name]]></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]]]></ModificationDates>
<LastModifiedBys><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<Customl/>
<Custom2/>
<Custom3/>
<ExternalDocument-List/>
<Iteration-List/>
<Configuration-List/>
<TestCaseFolder>
<Name><! [CDATA [Test Case Folder Name]] ></Name>
<Description/>
<CreationDates><! [CDATA [YYYY:MM:DD:HH:MM:SS]]]></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM:SS]]]></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners<! [CDATA [Name]] ></Owners>
<Iteration-List/>
<Configuration-List/>
</TestCaseFolders>
</TestPlan>
</TestAssetParcel>

Test Case Test Asset Parcel File
You can choose to export test cases with the following related assets:
* Contained configured test cases
» Associated iterations
» Associated configurations
» Associated configuration attributes
» Associated implementations

» Associated test inputs

412 Appendix D - Rational Test Asset Parcel File Format

Depending on which related assets, if any, you choose to export with the test case test
asset, the .RTPAR file includes information about those related assets according to the
format established for that asset individually. This example shows a test case test
asset exported with contained configured test cases, associated iterations, associated
configurations, and associated configuration attributes.

<?xml version="1.0"?>
<TestAssetParcel>

<TestCase>

<Name><! [CDATA [Test Case Name]]></Name>

<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM:SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH: MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>

<Owner><! [CDATA [Name]] ></Owner>

<Purpose/>

<Customl/>

<Custom2/>

<Custom3/>

<Preconditions/>
<PreconditionsInheriteds><! [CDATA[X]] ></PreconditionsInheriteds>
<Postconditions/>

<PostconditionsInheriteds><! [CDATA[X]]></PostconditionsInheriteds
<Configureds><! [CDATA [X]] ></Configured>

<Suspect><! [CDATA[0]] ></Suspect>

<ExternalDocument-List/>

<TestInput-List/>

<AcceptanceCriteria/>
<AcceptanceCriterialnheriteds><! [CDATA[X]] ></AcceptanceCriterialnheriteds>
<AutoImplementationInheriteds><! [CDATA[X]] ></AutoImplementationInheriteds>
<ManualImplementationInheriteds><! [CDATA[X]]></ManualImplementationInheriteds>
<DesignStep-List/>

<ExecutionOption-List/>

<Iteration-List/>

<Configuration-List/>

</TestCase>

Test Case Folder Test Asset Parcel File

You can choose to export test case folders with the following related assets:

Contained test cases

Contained configured test cases
Associated iterations

Associated configurations
Associated configuration attributes
Associated implementations

Associated test inputs

Sample Rational Test Asset Parcel Files 413

Depending on which related assets, if any, you choose to export with the test case
folder test asset, the .RTPAR file includes information about those related assets
according to the format established for that asset individually. This example shows a
test case folder test asset exported with contained test assets, contained configured
test cases, associated iterations, associated configurations, and associated
configuration attributes.

<?xml version="1.0"?>
<TestAssetParcel>
<TestCaseFolders>
<Name><! [CDATA [Test Case Folder Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [admin]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<Iteration-List/>
<Configuration-List/>
<TestCase>
<Name><! [CDATA [Test Case Name]] ></Name>
<Descriptions><! [CDATA [Description]]></Description>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]]></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<Purpose/>
<Customl/>
<Custom2/>
<Custom3/>
<Preconditions/>
<PreconditionsInheriteds><! [CDATA[X]] ></PreconditionsInheriteds>
<Postconditions/>
<PostconditionsInheriteds><! [CDATA[X]] ></PostconditionsInheriteds>
<Configured><! [CDATA[X]]></Configureds>
<Suspect><! [CDATA[X]] ></Suspect>
<ExternalDocument-List>
<ExternalDocument><! [CDATA [Document Path and Name]] ></ExternalDocuments>
</ExternalDocument-List>
<TestInput-List/>
<AcceptanceCriteria/>
<AcceptanceCriterialInherited><! [CDATA [X]]></AcceptanceCriterialnheriteds>
<AutoImplementationInheriteds><! [CDATA[X]]></AutoImplementationInheriteds>
<ManualImplementationInheriteds><! [CDATA[X]]></ManualImplementationInheriteds>
<DesignStep-List/>
<ExecutionOption-List/>
<Iteration-List>
<Associated-Iteration><! [CDATA[Iteration Name]]></Associated-Iterations>
</Iteration-List>
<Configuration-List>
<Associated-Configurations><! [CDATA [Configuration Name]]></Associated-Configurations>
</Configuration-List>
<ConfiguredTestCase>
<Name><! [CDATA [Configured Test Case Name]] ></Name>
<Description/>
<CreationDates><! [CDATA[YYYY:MM:DD: HH: MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<Purpose/>
<Customl/>
<Custom2/>
<Custom3/>
<Preconditions/>
<PreconditionsInheriteds><! [CDATA[X]] ></PreconditionsInheriteds>
<Postconditions/>
<PostconditionsInheriteds><! [CDATA[X]] ></PostconditionsInheriteds>
<Configured><! [CDATA[X]]></Configureds>
<Suspects><! [CDATA [X]] ></Suspect>
<ExternalDocument-List/>

414 Appendix D - Rational Test Asset Parcel File Format

<TestInput-List/>
<AcceptanceCriteria/>
<AcceptanceCriterialnherited><! [CDATA [X]]></AcceptanceCriteriaInheriteds>
<AutoImplementationInheriteds><! [CDATA [X]]></AutoImplementationInheriteds>
<ManualImplementationInherited><! [CDATA[X]]></ManualImplementationInherited>
<DesignStep-List/>
<ExecutionOption-List/>
<Iteration-List>
<Associated-Iterations><! [CDATA[Iteration Name]]s></Associated-Iterations>
</Iteration-List>
<Configuration-List>
<Associated-Configuration><! [CDATA [Configuration Name]] >
</Associated-Configurations>
</Configuration-List>
</ConfiguredTestCase>
</TestCase>
<TestCase>
<Name><! [CDATA [Test Case Name] ></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<Purpose/>
<Customl/>
<Custom2/>
<Custom3/>
<Preconditions/>
<PreconditionsInheriteds><! [CDATA[X]] ></PreconditionsInheriteds>
<Postconditions/>
<PostconditionsInheriteds><! [CDATA [X]]></PostconditionsInheriteds>
<Configured><! [CDATA[X]]></Configured>
<Suspect><! [CDATA[X]] ></Suspect>
<ExternalDocument-List/>
<TestInput-List/>
<AcceptanceCriteria/>
<AcceptanceCriterialnherited><! [CDATA [X]]></AcceptanceCriterialnheriteds>
<AutoImplementationInheriteds><! [CDATA[X]]></AutoImplementationInheriteds>
<ManualImplementationInheriteds><! [CDATA[X]]></ManualImplementationInherited>
<DesignStep-List/>
<ExecutionOption-List/>
<Iteration-List/>
<Configuration-List/>
</TestCase>
</TestCaseFolders>
<Configuration>
<Name><! [CDATA [Configuration Name]] ></Name>
<Description/>
<CreationDates><! [CDATA[YYYY:MM:DD:HH: MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<Attribute-List>
<Attribute>
<Name><! [CDATA [Attribute Name]] ></Name>
<Op><! [CDATA [Attribute Operator]]></Op>
<Values><! [CDATA [Attribute Value]]s></Value>
</Attribute>
<Attribute>
<Name><! [CDATA [Attribute Name]] ></Name>
<Op><! [CDATA [Attribute Operator]]></Op>
<Values><! [CDATA [Attribute Value]]s></Value>
</Attributes>
</Attribute-List>
</Configurations>
<Iteration>
<Name><! [CDATA [Iteration Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH: MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDates>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<StartDate><! [CDATA[YYYY:MM:DD:HH: MM: SS]] ></StartDate>
<EndDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]] ></EndDate>

Sample Rational Test Asset Parcel Files 415

</Iteration>

<ConfigurationAttributes>
<Name><! [CDATA [Attribute Name]] ></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<InternalName><! [CDATA [Attribute Internal Name]] ></InternalName>
<Value-List>

<Values><! [CDATA [Attribute
<Value><! [CDATA [Attribute
<Value><! [CDATA [Attribute
<Value><! [CDATA [Attribute

Valuel]] ></Value>
Valuel]></Value>
Valuel] ></Value>
Valuel]></Value>

<Values><! [CDATA [Attribute Value]]s</Value>
<Values><! [CDATA [Attribute Value]]s</Value>
</Value-List>
<AttributeType><! [CDATA[X]] ></AttributeType>
</ConfigurationAttributes>
<ConfigurationAttribute>
<Name><! [CDATA [Attribute Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM: DD:HH:MM: SS0]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDates>
<LastModifiedBys><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<InternalName><! [CDATA [Attribute Internal Name]] ></InternalName>
<Value-List>

<Value><! [CDATA [Attribute
<Value><! [CDATA [Attribute
<Values><! [CDATA [Attribute
<Values><! [CDATA [Attribute
<Values><! [CDATA [Attribute

Valuel]l ></Value>
Valuel] ></Values>
Valuel]] ></Value>
Valuel] ></Value>
Valuel] ></Value>

</Value-List>
<AttributeTypes><! [CDATA[X]]></AttributeType>
</ConfigurationAttributes>
</Test Asset Parcels>

Build Test Asset Parcel File
You can choose to export builds with the following related assets:
* Contained log folders
» Associated iterations

Depending on which related assets, if any, you choose to export with the build test
asset, the .RTPAR file includes information about those related assets according to the
format established for that asset individually. This example shows a build test asset
exported with a contained log folder, but not any associated iterations.

<?xml version="1.0"?>
<TestAssetParcel>
<Build>
<Name><! [CDATA [Build Name]] ></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Notes/>
<Owners><! [CDATA [Name]] ></Owner>
<State><! [CDATA [<None>]] ></State>
<LogFolders>
<Name><! [CDATA [Log Folder Name]] ></Name>
<Description/>
<CreationDates><! [CDATA[YYYY:MM:DD: HH: MM:SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]]></ModificationDates>

416 Appendix D - Rational Test Asset Parcel File Format

<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Path/>
<AutoNameCount><! [CDATA [X]] ></AutoNameCount>
</LogFolder>
</Builds>
</TestAssetParcel>

Iteration Test Asset Parcel File

Iteration test assets can be exported individually or as part of a test plan.

<?xml version="1.0"?>
<TestAssetParcel>
<Iterations>
<Name><! [CDATA [Iteration Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH: MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<StartDate><! [CDATA[YYYY:MM:DD:HH: MM: SS]] ></StartDate>
<EndDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]] ></EndDate>
</Iterations>
</TestAssetParcel>

Computer Test Asset Parcel File

Computer test assets can be exported individually or as part of a computer list.

<?xml version="1.0"?>
<TestAssetParcel>
<Computer>
<Name><! [CDATA [Computer Name]] ></Name>
<Description><! [CDATA [Description]] ></Descriptions>
<NetworkAddress><! [CDATA [Network Address]]></NetworkAddress>
<UsageClient><! [CDATA[X]] ></UsageClient>
<UsageServer><! [CDATA [X]] ></UsageServers>
<UsagePlaybacks><! [CDATA[X]] ></UsagePlayback>
<PortInformation-List/>
</Computers>
</TestAssetParcel>

Computer List Test Asset Parcel File

You can choose to export computer lists with or without associated computers. If you
choose to export associated computers with the computer list, the .RTPAR file
includes information about each computer in the list in the format established for
exporting individual computer test assets.

This example shows a computer list test asset exported without associated computer

data:
<?xml version="1.0"?>
<TestAssetParcel>

<ComputerList>
<Name><! [CDATA [Computer List Name]] ></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>

</ComputerLists>

</TestAssetParcel>

Sample Rational Test Asset Parcel Files 417

This example shows a computer list test asset exported with associated computer
data:

<?xml version="1.0"?>
<TestAssetParcel>
<ComputerList>
<Name><! [CDATA [Computer List Name]] ></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<Computer-List>
<Associated-Computer><! [CDATA [Associated Computer Name]]></Associated-Computers>
<Associated-Computers><! [CDATA [Associated Computer Name]]></Associated-Computers
</Computer-List>
</ComputerLists>
<Computer>
<Name><! [CDATA [Associated Computer Name]]></Names>
<Description/>
<NetworkAddress><! [CDATA [Network Address]]></NetworkAddress>
<UsageClient><! [CDATA[X]] ></UsageClient>
<UsageServer><! [CDATA [X]] ></UsageServers>
<UsagePlayback><! [CDATA[X]] ></UsagePlayback>
<PortInformation-List/>
</Computers
<Computer>
<Name><! [CDATA [Associated Computer Name]]></Names>
<Description><! [CDATA [description]]></Descriptions>
<NetworkAddress><! [CDATA [Network Address]]></NetworkAddress>
<UsageClient><! [CDATA[X]]></UsageClient>
<UsageServer><! [CDATA [X]] ></UsageServers>
<UsagePlaybacks><! [CDATA [X]] ></UsagePlayback>
<PortInformation-List/>
</Computers
</TestAssetParcel>

Configuration Test Asset Parcel File

You can choose to export configurations with or without associated configuration
attributes. If you choose to export associated configuration attributes with the
configuration, the .RTPAR file includes information about each configuration
attribute in the format established for exporting individual configuration attribute test
assets.

This example shows a configuration test asset exported with associated configuration
attributes:

<?xml version="1.0"?>
<TestAssetParcel>
<Configuration>
<Name><! [CDATA [Configuration Name]] ></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM:SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH:MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<Attribute-List>
<Attribute>
<Name><! [CDATA [Attribute Name]]></Name>
<Op><! [CDATA [Attribute Operator]]></Op>
<Values><! [CDATA [Attribute Value]]s></Value>
</Attributes>
<Attribute>
<Name><! [CDATA [ttribute Name]]></Name>
<Op><! [CDATA [Attribute Operator]]></Op>

418 Appendix D - Rational Test Asset Parcel File Format

<Value><! [CDATA[ttribute Valuel]s></Values>
</Attributes>
</Attribute-List>
</Configuration>
<ConfigurationAttribute>
<Name><! [CDATA [Configuration Attribute Name]] ></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD: HH: MM:SS]] ></CreationDate>
<ModificationDates><! [CDATA [YYYY:MM:DD:HH: MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<InternalNames><! [CDATA [Internal Name]]></InternalName>
<Value-List>
<Values><! [CDATA [Configuration Attribute Valuel]s></Value>
<Value><! [CDATA [Configuration Attribute Valuel]s></Values>
<Value><! [CDATA [Configuration Attribute Valuel]s></Values>
<Value><! [CDATA [Configuration Attribute Valuel]s></Values>
<Value><! [CDATA [Configuration Attribute Valuel]s></Value>
<Values><! [CDATA [Configuration Attribute Valuel]s></Value>
</Value-List>
<AttributeType><! [CDATA[X]]></AttributeType>
</ConfigurationAttribute>
<ConfigurationAttributes>
<Name><! [CDATA [Configuration Attribute Name]] ></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<InternalNames><! [CDATA [Internal Name]]></InternalNames>
<Value-List>
<Value><! [CDATA [Configuration Attribute Valuel]s></Values>
<Value><! [CDATA [Configuration Attribute Valuel]s></Values>
<Value><! [CDATA [Configuration Attribute Valuel]s></Value>
<Value><! [CDATA [Configuration Attribute Valuel]s></Value>
<Values><! [CDATA [Configuration Attribute Valuel]s></Values>
</Value-List>
<AttributeTypes><! [CDATA[X]]></AttributeType>
</ConfigurationAttributes>
</TestAssetParcel>

Configuration Attribute Test Asset Parcel File

Configuration attributes can be exported individually or included when you export a
configuration.

<?xml version="1.0"?>
<TestAssetParcel>
<ConfigurationAttributes>
<Name><! [CDATA [Configuration Attribute Name]] ></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA [YYYY:MM:DD:HH: MM: SS]] ></ModificationDate>
<LastModifiedBys><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<InternalName><! [CDATA [Internal Name]]></InternalName>
<Value-List/>
<AttributeTypes><! [CDATA[X]] ></AttributeType>
</ConfigurationAttributes>
</TestAssetParcel>

Sample Rational Test Asset Parcel Files 419

Test Script Type Test Asset Parcel File

You can choose to export test script types with or without contained test script
sources. If you choose to export contained test script sources with the test script type
test asset, the .RTPAR file includes information about each test script source in the
format established for exporting individual test script source test assets.

This example shows a test script type test asset exported with contained test script
sources:

<?xml version="1.0"?>
<TestAssetParcel>
<TestScriptType>
<Name><! [CDATA [Test Script Typel]s></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDate><! [CDATA[YYYY:MM:DD:HH: MM:SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></Name>
<Owner><! [CDATA [Name]] ></Owner>
<ConsoleAdapterName><! [CDATA [Name]] ></ConsoleAdapterName>
<ExecutionAdapterName><! [CDATA [Name]] ></ExecutionAdapterName>
<ConsoleAdapterType><! [CDATA [X]] ></ConsoleAdapterType>
<ExecutionAdapterTypes><! [CDATA [X]] ></ExecutionAdapterType>
<NewMethod/ >
<EditMethod/>
<SelectMethod/>
<RecordMethod/ >
<ExecutionMethod/>
<ExecutionOption-List/>
<SelectUseFileDlg><! [CDATA[X]]></SelectUseFileDlg>
<ConsoleAdapterPath/>
<ExecutionAdapterPath/>
<Flags><! [CDATA[X]]></Flags>
<Type><! [CDATA[X]] ></Type>
<MaxTesters><! [CDATA[X]] ></MaxTesters>
<ScriptSource-List>
<Associated-ScriptSource><! [CDATA [Associated Script Source]l]s>
</Associated-ScriptSources>
</ScriptSource-List>
</TestScriptType>
<TestScriptSource>
<Name><! [CDATA[VU - (Rational Test Datastore)]]s></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<DataPath><! [CDATA [Datastore Path]]></DataPath>
<DataPathSpecificity><! [CDATA[X]]></DataPathSpecificity>
<ConnectionOption-List>
<ConnectionOption>
<Name><! [CDATA [Connection Option Name]]s></Names>
<Op/>
<Values><! [CDATA[X]]></Value>
</ConnectionOption>
<ConnectionOption>
<Name><! [CDATA [Connection Option Name]] ></Name>
<Op/>
<Value><! [CDATA [Connection Option Valuells></Values>
</ConnectionOption>
</ConnectionOption-List>
<Flags><! [CDATA[0]]></Flags>
<ExecutionOption-List/>
<DatapoolPath/>
<DatapoolPathSpecificity><! [CDATA[X]]></DatapoolPathSpecificity>
<EnableVersioning><! [CDATA [X]] ></EnableVersioning>
<Associated-ScriptType><! [CDATA [Associated Script Typell></Associated-ScriptTypes>
</TestScriptSources>
</TestAssetParcel>

420 Appendix D - Rational Test Asset Parcel File Format

Test Input Type Test Asset Parcel File

You can choose to export test input types with or without contained test input
sources. If you choose to export contained test input sources with the test input type
test asset, the .RTPAR file includes information about each test input source in the
format established for exporting individual test input source test assets.

This example shows a test input type test asset exported without contained test input
sources:

<?xml version="1.0"?>
<TestAssetParcel>
<TestInputType>
<Name><! [CDATA [Test Input Type Name]]></Name>
<Description/>
<CreationDate><! [CDATA [YYYY:MM:DD:HH:MM:SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owners><! [CDATA [Name]] ></Owner>
<AdapterName><! [CDATA [Adapter File Name]] ></AdapterNames>
<Flags><! [CDATA[X]]></Flags>
<Type><! [CDATA[X]] ></Type>
<InputSource-List/>
</TestInputType>
</TestAssetParcel>

Log Filter Test Asset Parcel File

Log filter test assets are exported individually.

<?xml version="1.0"?>
<TestAssetParcel>
<LogFilters>
<Name><! [CDATA [Log Filter Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDate>
<LastModifiedBy><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<ResultOptionCriteria><! [CDATA[X]] ></ResultOptionCriterias>
<EventTypeCriteria-List/>
<EventSpecificCriteria-List/>
<VPCriteria-List/>
<ProtocolCriteria-List/>
<CommonCommandCriteria-List/>
<ASCIICommandCriteria-List/>
<XCommandCriteria-List/>
<HTTPCommandCriteria-List/>
<TuxedoCommandCriteria-List/>
<SQLCommandCriteria-List/>
<SocketCommandCriteria-List/>
<IIOPCommandCriteria-List/>
<DCOMCommandCriteria-List/>
<EJBCommandCriteria-List/>
</LogFilters>
</TestAssetParcel>

Sample Rational Test Asset Parcel Files 421

Log Event Property Type Test Asset Parcel File

Log event property type test assets are exported individually.

<?xml version="1.0"?>
<TestAssetParcel>

<LogEventPropertyType>
<Name><! [CDATA [Log Event Property Name]]></Name>
<Description/>
<CreationDate><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></CreationDate>
<ModificationDates><! [CDATA[YYYY:MM:DD:HH:MM: SS]] ></ModificationDates>
<LastModifiedBys><! [CDATA [Name]] ></LastModifiedBy>
<CreatedBy><! [CDATA [Name]] ></CreatedBy>
<Owner><! [CDATA [Name]] ></Owner>
<ViewerType><! [CDATA[X]] ></ViewerType>
<FormatType><! [CDATA [X]] ></FormatType>
<ExternalViewerCommand/>
<InternalViewerType><! [CDATA[X]]></InternalViewerType>
</LogEventPropertyType>

</TestAssetParcel>

Test Log Details Test Asset Parcel File

When you export test log details, you can filter some log event properties. Log event

properties fall into six major categories:

Exported test log files produce exceptionally large files, even when filtered. The
format of these files conforms to the format of .RTPAR files as established in this
appendix; therefore, a complete file is not displayed here. Try exporting a test log
detail file for yourself to see the data for specific information in the .RTPAR format.

General - Includes common event properties such as Event Type and Start Time.

General properties are always exported.

Result - Includes properties such as Result, Failure Reason, and Failure

Description. Result properties are always exported.

Event Specific — Includes the properties listed in the Export Test Log dialog box
and are specific to events that occurred during the test. For an event-specific

property to be exported, it must be checked.

User Defined — Includes any custom property created in TestManager.
User-defined properties are not listed, but to be exported, User Defined must be

checked in the Select properties to export list.

Configuration — Includes properties such as Operating System and OS Version.
These properties are exported only if Export Configuration Properties is checked.

Defect ID — Includes all defect IDs associated with the test log. Defect-IDs are

always exported.

422 Appendix D - Rational Test Asset Parcel File Format

Index

A

acceptance criteria of test cases 52, 74,
77,213,270

access order of datapool rows 300

actual results 157

adapters
console 13, 14, 66, 83, 156
custom 14, 83
execution 13, 14, 83
input 4, 31, 55

addresses data type 392

Agent computers 16, 97, 204, 267
adding 98
AIX 387, 388
changing settings of 99
checking 122, 219, 295
combining into lists 98
controlling port numbers 384
HP-UX 387, 388
Java 387
monitoring resources of 146, 333, 342
monitoring status of 146
Oracle 387
preferred user view 139
required files 267
running suite items in parallel 214,

278

running virtual testers on 267
Solaris 387, 388
Sybase 387
TUXEDO 388

AIX Agents 387, 388

analyzing results 259, 331

application-under-test 167
changes to 173, 229, 232, 237
failure 172
ASCII text files 328
automatically generating values for us-
er-defined data types 320
axes, inverting in graphs 344

baseline file, editing
in Grid Comparator 237
in Object Properties Comparator 229
in Text Comparator 232
baseline file, saving
in Grid Comparator 238
in Image Comparator 245
in Object Properties Comparator 229
in Text Comparator 232
benchmarking 369
blocks, reporting average time 359
books, Rational xvii
builds
assigning when running tests 117
displaying 24
exporting 416
importing 416
in Test Asset Workspace 156
intentional changes to 173
iterations associated with 157
reporting on 190
test logs and 156
built-in
configuration attributes 42

Index 423

types of test inputs 29
types of test scripts 81

C

checking
Agent computers 122, 219, 295
suites 122, 219, 295
test inputs 53
test scripts in and out 66
cities data type 392
ClearQuest 167
client computers 252
performance tests and 16
client/server environment variables 106
columns in datapools
assigning data types to 311
assigning values from a text file 328,
397
deleting 317
editing column definitions 316
editing values in TestManager 317
example of column definition 314
field values and 325
length of 312
matching with test script variables
327
maximum number 300, 328
names correspond to test script vari-
ables 311
setting numeric ranges in 313
setting unique values in 312
unique 323
values supplied by data types 304
COM components 267
Command Data reports 332, 349
including passed and failed responses
338, 341

424 Index

reporting on Server connection 351
command IDs
displaying individually 333
filtering 335, 339, 342, 346
grouping Command Status reports by
338
grouping responses by 333
in Command Trace reports 365
sorting in reports 337
Command Line Test Script Console
Adapter 14
Command Line Test Script Execution
Adapter 14
Command Status reports 333, 352
automatically run 334
data summary style 338
graphing 337, 342
setting response ranges 337, 339
setting response type 337
setting stable loads 338
setting time period for 338
sorting command IDs 337
Command Trace reports 333, 362
filtering data 339
including command types 338
including TSS environment variables
339
omitting timestamps 338
reporting on Server connection 364
Command Usage reports 333, 354
data summary style 338
company names data type 392
Comparators
Grid 233
Image 238
Object Properties 223
starting 222
Text 230

viewing verification points in 172
Compare Performance reports 333, 369
absolute comparison 371
defining 369
graphing 337, 342
N/A and Undefined responses 374
relative comparison 372
setting response ranges 337, 339
weighted absolute comparison 371
weighted relative comparison 373
Compare reports. See Compare Perfor-
mance reports
computer groups 95, 204
changing information about 104
inserting into suites 205
replacing 103
temporarily disabling 109
computer lists
defining 98
displaying 23
exporting 417
importing 417
reporting on 190, 191
running tests on 117
Computer view 146
Compact 139, 140
Full 139, 140
Message 139, 141
Results 139, 141
Source 139, 141
computers
displaying 23
displaying configurations 162
exporting 417
importing 417
monitoring resources of 128, 146,
262,333,342
reporting on 188, 190

running tests on 117
running virtual testers on 204, 267
See also Agent computers, Local
computers
configuration attributes
built-in 42
custom 43
defining 42
displaying 46
exporting 419
importing 419
tmconfig.csv file 41, 44
configuration tests 258
configurations 5, 41
associating with test cases 48
defining 45
displaying 162
editing 47
exporting 418
importing 418
inheriting from test case folders 38
inheriting from test plans 35
reporting on 190
testing hardware 16, 258
viewing 47
configured test cases 41
creating 48
ignoring during run 121, 128
inherited test case suspicion 58
inheriting test case properties and 50
inheriting test inputs 54
running 119, 120
connect environment variables 107
console adapters 83
constant value data type 397
copying
datapools 317
log filters in Test Log 163

Index 425

reports to a new project 199
test assets 65
test case reports 198
user-defined data types 322
coverage reports 176, 178, 179, 180
credit card numbers 315
Crystal Reports 189, 191, 200
.csv datapool files 299, 319
.csv exported reports 347
.csv tmsconfig files 41, 44
cursors, datapool 300
disabling wrapping for unique row re-
trieval 323
custom
histograms 137, 152
test input types 31
test script types 13, 14, 82
customer support, Rational xxiv
customizing
adapters 14, 56, 83
configuration attributes 43
histograms 151
listing report layouts 189
manual test script properties 92
queries 200
reports 191, 335, 336
test assets 92
test inputs 13
test script types 14
views 148

D

data types
assigning to datapool columns 311
copying 322
creating 306
deleting 322

426 Index

determining which data types you
need 306

editing values in 320

importing user-defined 321

list of standard data types 391

minimum and maximum values 399

renaming 322

role of 304

standard and user-defined 305

datapools 302

access order 300

assigning data types to 311

checking by limiting test scripts 109

column definition 314

copying 317

creating 309, 324

cursors 300

data types 304

deleting 318

deleting columns from 317

disabling and enabling 108

editing column definitions 316

editing values, in TestManager 317

exporting 319

files 299, 319

finding data types for 306

generating values 315

importing 318, 319

limits 300

maximum number of columns 300,
328

numeric ranges in 313

planning 302

random access in 110

random numbers in 126

role of 298, 301

row access order 300

setting unique values in 312

shared virtual tester access to 126
structure 325
Test Script Services 85
unique row retrieval 323
where stored 299
Datastore Doctor 60
dates
Julian 394
setting ranges 392, 393, 394
dates data types 392, 393, 394
DCOM histograms 137
debugging
test scripts 144
tips 173
using Command Status reports for
352
decimal numbers 312, 395
defaults
for virtual testers 105
manual test script editor 90
monitor 150
reports 347
tmsconfig.csv file 45
defects 157
entering in ClearQuest 12, 168
generating from test log 168
TestStudio defect form 167
tracking 167
delays 214, 256, 280, 295
disabling and enabling 108
setting events 217
setting in a suite 281
suppressing 126
deleting
datapool column definitions 317
datapools 318
groups from custom histograms 152
log filters in Test Log 163

masks 244
OCR regions 245
performance testing reports 332
properties from the Properties list 226
user-defined data types 322
dependencies 216, 293
setting 217, 294
Design Editor 72
designing tests 6, 69
desktop heap 381
disabling
cursor wrapping in datapools 323
Test Script Services 107
user or computer groups 109, 126
display function 139, 141
distributed functional tests 96, 214, 218,
267
example 218
documentation, Rational xvii
dynamic load balancing selectors 278

E

editing
Agent computer settings 99
baseline file in Grid Comparator 237
baseline file in Object 229
baseline file in Text comparator 232
configurations 47
datapool column definitions 316
datapool values in TestManager 317
default monitor settings 150
default settings for virtual testers 105
in-line 103
iterations 51
log filters 163
manual test scripts 90
reports 196

Index 427

suites 102
test scripts 101
user and computer group properties
104
user options 103
user-defined data type definitions 320
user-defined data type values 320
empty string data type 397
emulate emulation commands 359, 361
emulation commands
displaying success or failure of 139,
141
displaying success or failure of View
Results 139
stepping through 144
throughput information 333
timeout 107
environment
differences in recording and playback
173
TestManager 17
environment variables. See system envi-
ronment variables, TSS environ-
ment variables
error files
displaying 144
virtual tester 144, 166
evaluating tests 8
events 216, 293
setting 217, 294
viewing details 161
viewing failed 161
Excel
as test input source 30, 56
creating datapool files with 326
executables, replacing 103
executing
automated test scripts 116

428 Index

manual test scripts 117

phase of project 175

suites 121, 127, 130

test cases 119

tests 7, 115
execution order of virtual testers 125
exponential notation data type 395
exporting

builds 416

computer lists 417

computers 417

configuration attributes 419

configurations 418

datapools 319

iterations 417

log event property types 422

log filters 421

manual test scripts 63

reports 198, 347

RTPAR files 409

suites 113

test assets 60, 409

test case folders 413

test cases 412

test input types 421

test log data 63, 422

test plans 411

test script types 420
Extended Help 8
extensible

test input types 31

test script types 13, 14, 82
external C libraries 267

F

fields in datapools. See columns in
datapools

FIELDTBLS system environment vari-
able 388
FIELDTBLS32 system
variable 389
file types
.csv (datapool files) 299, 319
.csv (reports) 347
.csv (tmsconfig files) 41, 44
.RTPAR 409
.spc (datapool specification files)
299,319

environment

files
datapool file location 299
required on Agent computers 267
total open 383
virtual tester error 144, 166
virtual tester output 166
filtering
group views 150
report data 335, 339, 342, 346
test cases 160
test input source information 183
test logs 163
virtual testers 149
firewalls, controlling port numbers 384
first names data type 396
fixed user groups 266
running first 125
FLDTBLDIR system environment vari-
able 388
FLDTBLDIR32 system
variable 389
float data types 395
floating point numbers 312, 395
folders, test case 37
functional tests 14
distributed 96
suites in 96

environment

G

gender data type (M, F) 395
generating
defects 168
values in datapools 315
graphs
changing formats 345
data point information 344
modifying labels 346
Grid Comparator 233
comparing actual and baseline files
235
editing baseline file 237
locating differences 235
saving baseline file 238
setting display options 235
using keys to compare data 236
grids, displaying in graphs 344
Group views 148
groups
adding to custom histograms 152
deleting from custom histograms 152
filtering 150
GUI histograms 137
GUI test scripts 82
adding to TestFactory 11
recording in Robot 15
GUI users. See virtual testers

H

Help
Extended 8
for TestManager xvii, 1, 203, 249
hexadecimal data type 395
high-volume performance testing 379,
381

histograms
Index 429

custom 137, 151
DCOM 137
GUI 137
HTTP 137
IIOP 137
SQL 137
standard 137
zooming in on bars 138
HP-UX Agents 387, 388
HTTP emulation commands
enabling IP aliasing 127, 385
reporting 338, 357
reporting on Server connection 351,
364
response from cache 365
response timeout 107
HTTP environment variables 107
HTTP histograms 137

ignoring configured test cases during run
121
[IOP
emulation commands in Command
Trace reports 338
histograms 137
response timeout 107
Image Comparator 238
changing color of masks and differ-
ences 242
displaying differences 241
locating differences 241
Mask/OCR list 240
masks 244
saving baseline file 245
unexpected active windows 245
images, testing 238

430 Index

IME (Input Method Editor) 308,311, 313
implementations
associating with test cases 92, 93
reporting on test cases 174
implementing test cases 79, 81
with automated Robot test scripts 82
with built-in types of test scripts 81
with custom types of test scripts 82
with manual test scripts 82
with suites 95
implementing tests 6, 79
importing
builds 416
computer lists 417
computers 417
configuration attributes 419
configurations 418
datapools from another project 319
datapools from outside Rational Test
318
iterations 417
log event property types 422
log filters 421
manual test scripts 64
RTPAR files 409
test assets 60, 409
test case folders 413
test cases 412
test input type 421
test plans 411
test script type 420
user-defined data types 321
increasing desktop heap 381

INFORMIXDIR system environment
variable 390
inheriting

iterations and configurations from
test case folders 38

iterations and configurations from
test plans 35
test case properties 50
test case suspicion 58
test inputs 54
in-line editing 103
Input Method Editor 308, 311, 313
integer data type 395
interpreted results 157
interpreting test case results 158
IP aliasing 127, 385
iterations 5, 51
associated with build 157
associating with test cases 52
creating and editing 51
displaying 22
displaying suite 135
exporting 417
importing 417
inheriting from test case folders 38
inheriting from test plans 35
reporting on 190
running test cases associated with 119

J

Japanese characters 306, 308
Java
class files 267
on a UNIX Agent 387
setting system environment variables
387
JAVA COMPILER system environment
variable 387
Julian date data types 394

K

Kanji characters 308
Katakana characters 308
keys
in unique datapool rows 322
using to compare data in columns 236

L

last names data types 396
LD LIBRARY PATH system environ-
ment variable 387, 388
legends, displaying in graphs 344
LIBPATH system environment variable
387, 388
listing reports 174, 187
creating 196
customizing design layouts 189
exportion 198
printing 198
queries in 200
zooming in on 198
literal value data type 397
Local computers 16
controlling port numbers 384
monitoring resources of 146, 333, 342
monitoring status of 146
running suites on 18
TUXEDO 388
log event details 161
log event properties
associated data 162
general 161
types of 170
log event property types
exporting 422
importing 422

log filters 163
Index 431

applying 164

copying 163

creating in Test Log 163

editing in Test Log 163

exporting 421

importing 421

turning off 164
log scale, displaying in graphs 344
Log Viewer. See test log window
logging

disabling and enabling 108

suites 165

TSS environment variables 106

M

manual test scripts 87
creating 88
customizing properties 92
editors 90
example 89
exporting 63
implementing 82
importing 64, 88
running 117
steps in 87
verification points in 87
manual test scripts on the Web
troubleshooting 405
manuals, Rational xvii

mapping resource usage onto response

time 342
masks in Image Comparator 242, 244
maximum response time 261, 365
mean response time 261, 365
median response time 261, 365
memory

minimum shared for large user runs

432 Index

380

response from cache 365

total shared for large user runs 383
Microsoft Common Source Code Control

Integration Specification 65, 66

Microsoft Excel

as test input source 30, 56

creating datapool files with 326
middle initials data type 396
middle names data type 396
minimum response time 261, 365
monitoring computer resources 146, 262,

333,342

setting option to allow 128
monitoring suites 132

changing default settings 150

Computer 139

Computer view 146

Computer View - Compact 139, 140

Computer View - Full 139, 140

Computer View - Message 139, 141

Computer View - Results 141

Computer View - Source 139, 141

disabling and enabling 108

Group views 148

setting update rates 128

Shared Variables view 142

Sync Points view 145

Test Script Services 85

Test Script view 143

Transactor views 147

User View - Compact 139, 140

User View - Full 139, 140

User View - Message 139, 141

User View - Results 139, 141

User View - Source 139, 141
multi-byte characters 306, 308, 311, 313

N

names data types
company names 392
first names 396
last names 396
middle initials 396
middle names 396
titles (Mr, Ms) 396
network services 384
NLSPATH system environment variable
388
numbers data type 395
NuTCRACKER settings, changing when
running large numbers of users
379

O

Object Properties Comparator 223
adding properties to test 228
displaying differences in baseline and

actual files 227
editing baseline file 229
locating differences 227
Objects hierarchy 224
Properties list 224
removing properties 228
saving baseline file 229
OCR regions, creating in Image Compar-
ator 244
Oracle, setting system environment vari-
ables 387
ORACLE HOME system environment
variable 387

outliers 261, 337, 339

output file, virtual tester 166

owners of test cases, specifying 40

P

packed decimal data type 396
parallel selectors 214, 278
parcel files. See .RTPAR files
PATH system environment variable 387
Performance reports 259, 261, 333, 365
automatically run 334
comparing 369
graphing 337, 342
setting response ranges 337, 339
setting response time calculation 338
setting response time percentiles 338
setting response type 337
setting stable loads 254, 338, 340
setting time period for 338
sorting command IDs 337
performance testing reports 189, 331
changing default settings 347
changing graph formats 345
changing reports that run automati-
cally 348
Command Data 332, 349, 350
Command Status 333, 352
Command Trace 333, 362, 363
Command Usage 333, 354
Compare Performance 333, 369, 370
comparing 369
creating 196
customizing 335, 336
default names of 332
deleting 332
disabling 108
displaying 25
displaying grids 344
displaying legends 344
displaying log scales 344
exporting 347
filtering data 335, 342, 346
Index 433

inverting axes 344
Performance 259, 261, 333, 365, 367
properties of 342
queries in 199
Response vs. Time 259, 261, 374,376
restoring default 349
running from menu bar 334
running from report bar 334
saving 154
setting response time calculations 338
setting response type 337
setting stable loads 254, 338, 340
setting time period for 338
sorting command IDs 337
types of 332
performance tests 15, 249, 251
including virtual testers in 16
suites in 97
persistent datapool cursors 300
phone numbers data types 396, 397
planning
datapools 302
performance tests 251
tests 3, 4, 27
playback differences 173
populating datapools 315
port numbers, controlling 384
post-conditions of test cases 74
preconditions
suites 210, 212, 269
test cases 208,212,269, 272
test cases during design 74
test scripts 206, 212, 269
printing
error file 166
reports 198
suite logs 165
suites 113

434 Index

test case designs 73

test case reports 198

test logs 169

virtual tester output file 166
privileges and test assets 10
processes, total TestManager 383
projects

copying reports into 199

execution phase 175

listing users in 187, 191

planning and implementation 174

Rational 9

shared 403

upgrading 59
promoted test cases 157
promoting test case results 159, 334
properties

manual test scripts 92

report 342

suites 102

test case folders 37

test cases 39

test plans 33

test scripts 101
Properties Comparator 229

Q

queries
creating 199, 200
predefined 199

R

random alphabetic string data type 397

random alphanumeric string data type
397

random datapool access 300

random numbers 110
random value seed 313
random with replacement selectors 278
generating random numbers for 126
random without replacement selectors
278
generating random numbers 126
ranges in dates 392, 393, 394
Rational Administrator 9
starting from TestManager 20
Rational ClearQuest 10, 12, 167, 192
reports in 192
Rational Customer Support xxiv
Rational ManualTest 88
starting from TestManager 20
Rational projects 9
Rational QualityArchitect 11
Rational RequisitePro 9, 11, 29, 55
Rational Robot 10
creating suite from 265
starting from TestManager 20
Rational Rose 9, 12, 30
starting from TestManager 20
Rational SiteCheck
starting from TestManager 20
Rational SoDA 12, 192
reports in 192
Rational Test datastore 9, 10
repairing 60
verifying 60
Rational TestFactory 10, 157
Rational TestManager 1
and performance testing 250
extensibility 13
hardware and software environment
17
integration with other products 8
logging in to 20

main window 21

starting 19

submitting defects from 168

total processes 383

upgrading 59

workflow 2
Rational TestStudio

defect schema and form 167
Rational Unified Process 8
Rational XDE Tester

starting from TestManager 20
Read From File data type 328, 397

unique values 329

records in datapools. See rows in

datapools
registering
test input type 32
test script types 84
release times 292
ranges 292
staggering 290
renaming
log filters in Test Log 163
user-defined data types 322
report definitions 178, 179, 180

reporting environment variables 107

reports 173, 190
ClearCase 192
copying to a project 199
creating 192
customizing 191
displaying 25
Listing 187
listing 174, 187
opening 196
printing 198
Rational ClearQuest 192
Rational SoDA 192

Index 435

running 197
selecting which to run 190
SoDA 192
test case 173
Test Case Distribution 174, 180, 192
Test Case Results Distribution 174,
175, 180, 194
test case suspicion 174
Test Case Trend 174, 182, 195
See also performance testing reports
resource monitoring 146, 262, 333, 342
setting option to allow 128
Response reports. See Response vs. Time
reports
response timeout environment variables
107
response times
reporting on 261, 338
standard deviation 261, 365
Response vs. Time reports 259, 261, 374
graphing 337, 342
including passed or failed responses
338
resource monitoring 128, 333, 342
setting response ranges 337, 339
setting response time calculations 338
setting response type 337
setting stable loads 338
setting time period for 338
sorting command IDs 337
restoring default reports 349
results
actual 157
interpreted 157
interpreting 158
promoted 159
row access order 300
rows in datapools

436 Index

access order 300
maximum number 300
records and 325
unique 323
RT MASTER NTUSERLIMIT system
environment variable 380
.RTPAR files 409
XML format 409
rules
inheritance of iterations and configu-
rations 35
running
automated test scripts 116
manual test scripts 117
reports 197, 334
suites 18, 121, 127, 130, 219, 295
test cases 119, 404
tests 7, 115

S

saving
baseline file 229, 232, 238, 245
performance testing reports 154
suites 113
test case reports 198
scalable user groups 266
SCC integration 65, 66
scenarios 209, 272, 295
and suites 209
replacing 103
setting events 217
schedules. See suites
scientific notation data type 395
scope of a synchronization point 292
security and test assets 10
seeds 111
base 126

for random selectors 126
for virtual testers 110
random datapool values 313
selectors 213, 274
dynamic load balancing 278
inserting into a suite 214, 275
parallel 214, 278
random 278
sequential 213, 277
semaphores
changing maximum number of 379,
383
per set 383
set IDs 383
sequential datapool access 300
unique row retrieval and 324
sequential selectors 213, 277
servers
Server connection 351, 364
testing 255
sessions
creating suite from 265
recording in Robot 16
reporting on 190
Test Script Services 85
shared datapool cursors 300
shared memory 380, 383
shared projects 403
using to run a test case remotely 404
shared variables
changing value of 142
disabling and enabling 108
displaying virtual testers waiting on
143
initializing 111
viewing values of 142
SHLIB PATH system environment vari-
able 387, 388

shuffle datapool access 300
unique row retrieval and 324
socket emulation commands
reporting 338, 358
reporting on Server connection 351,
364
response timeout 107
Solaris Agents 387, 388
sorting virtual testers 148
space data type 397
.spc datapool specification files 299, 319
SQL emulation commands
reporting 338, 356
reporting on Server connection 351,
364
response timeout 107
SQL histograms 137
stable workloads
planning 254, 259, 260
setting in reports 254, 338, 340
staggering release times 290
standard data types
list of 391
minimum and maximum values 399
role of 305
when to use 306
standard deviation of response times 261,
365
standard histograms 137
start scripts 109
setting maximum initialization time
for 126
start_time emulation commands
reporting on 361
state abbreviations data type 397
state histograms 137
states
assigning to custom histograms 152

Index 437

removing from custom histograms
152
Status reports. See Command Status re-
ports
steps
in manual test scripts 87
in test case design 72
stop_time emulation commands, report-
ing on 359
street names data type 392
stress tests 257, 288
string constant data type 397
structure of datapools 325
submitting defects 167
suite log 165
suites 203, 263
and scenarios 209
changing test logs in 128
checking 122, 219, 295
creating 101
creating from a session 265
displaying 23
editing 102
execution order of virtual testers 125
exporting 113
implementing test cases with 95
in functional tests 96, 203
in performance tests 97
inserting computer groups 205
inserting selectors 213, 214, 274, 275
inserting test cases 207, 271
inserting test scripts 206, 268
inserting transactors 281, 282
inserting user groups 265
log 165
minimum requirements for running
122,270
monitoring 108, 132

438 Index

opening 101
percent done 134
preconditions 210, 212, 269
printing 113
replacing items in 103
reporting on 190, 338
results 127
running 121, 127, 130, 219, 295
saving 113
setting delays in 281
setting maximum time for run 126
setting number of virtual testers 128
setting pass or fail criteria 124
synchronization points and 287
synchronizing items in 214, 215, 216,
280, 286, 287, 293
terminating 154, 219, 295, 360
time in run 134
suspect test cases 53, 174, 178, 180, 193
clearing or marking 57
number of 175
refreshing 57
states for 181
updating 56, 57
viewing 56
suspending virtual testers 145, 153, 154
Sybase, setting system environment vari-
ables 387
Sync Points view 145
synchronization points 145, 215, 286,
287,290
disabling and enabling 108
displaying state of 145
example of 291
inserting into suites 215, 286, 287
inserting into test scripts 287
multiple 291
number of virtual testers waiting 145

release time ranges 292

releasing 146

releasing virtual testers from 145,

290, 292

replacing 103

scope of 292

Test Script Services 85

timeout 145, 292
synchronizing items in suites

delays 214, 280

events and dependencies 216, 293

synchronization points 215, 286, 287
system environment variables 386

T

technical publications, Rational xxiv
terminating suites 154, 219, 295, 360
planning 254
terminating virtual testers 145
abnormal 134, 139, 148
normal 134, 148
test asset parcel files. See .RTPAR files
test assets
copying 65
customizing 92
exporting 409
importing 409
importing and exporting 60
reporting on 187
security 10
viewing properties of 185
viewing workspace 21
Test Case Distribution reports 174, 180
creating 192
default definitions 176
displaying suspicion status 193
filtering information 183

queries in 199
test case folders
creating 36
exporting 413
importing 413
inheritance and 38
inheriting iterations and configura-
tions from test plans 35
properties 37
test case properties
inheriting 50
test case reports 173
coverage 176
printing, saving, and copying 198
tree view type 187, 198
viewing properties of assets in 185
Test Case Results Distribution reports
174,175, 180
creating 194
default definitions 176, 178, 179
filtering information 183
queries in 199
test case suspicion, inherited and config-
ured test cases 58
Test Case Trend reports 174, 182
creating 195
queries in 199
test cases 5
acceptance criteria 52, 74, 77, 213,
270
actual results 157
associating implementations with 92
associating iterations with 52
associating test inputs with 54
categorizing 190
configured 41, 48, 119, 120, 121
creating 38
creating by importing from a Rational

Index 439

Test Asset Parcel 38
displaying 160
exporting 412
filtering 160
ignoring configured during run 121
importing 412
inheriting iterations and configura-
tions from test case folders 38
inserting into a suite 207, 271
inserting into a test case folder 38
interpreted results 157
interpreting results 158
organizing 36
post-conditions 74
preconditions 74
preconditions in suites 208, 212, 269,
272
promoted 157
promoted results 159
promoting results 334
properties 39
reporting on 178, 179, 180, 182
results 158
running 119
running remotely 404
sorting 160
specifying owners of 40
suspect 53, 56,57, 174,175,178, 180,
181, 193
suspicion status 193
viewing events from 160
when to run 51
Test Development Coverage report defi-
nition 179
Test Execution Coverage report defini-
tion 180
Test Input Adapter 4, 31, 55
Test Input Development Coverage report

440 Index

definition 177
Test Input Execution Coverage report
definition 179
Test Input Planning Coverage report def-
inition 177
test input types
built-in 29
custom 31
exporting 421
importing 421
registering 32
test inputs 4, 13
appearing in defect form 167
associating with test cases 54
changing 53
checking 53
coverage 53
filtering source information 183
identifying what to test 28
inheriting from test cases 54
model elements from Rose 12, 30
reporting on 179, 182
requirements from RequisitePro 11,
29
values from Microsoft Excel 30
viewing 28
test logs 127
assigning when running tests 117
displaying 24, 144
displaying data written to 349
exporting 63, 422
folder name 24, 128
naming 128
opening 156
printing 169
reporting on 190
running reports against 336
Test Script Services 85

turning off filters 164
Test Plan Development Coverage report
definition 177
Test Plan Execution Coverage report def-
inition 178
Test Plan Suspicion Coverage report def-
inition 178
Test Plan Suspicion Coverage with Sus-
pect Status report definition 178
Test Planning Coverage report definition
179
test plans 4
creating 33
displaying 22
exporting 411
importing 411
inheritance and 35
properties 33
reporting on 178, 191
reporting on test cases in 180
Test Script Console Adapter 13, 14, 66,
83, 156
custom 14, 83
Test Script Execution Adapter 13, 14, 83
custom 14, 83
Test Script Services 13
adding to test scripts 85
disabling 107
TestManager and 86
test script types
adding 14
built-in 81
custom 13, 14, 82
defining 84
exporting 420
importing 420
registering 84
Test Script view 143

test scripts

adding Test Script Services 85

associating variables with datapool
columns 327

associating with test cases 92

built-in types 81

changing number 109

coverage 53

custom types 13, 14, 82

debugging 144

defining new types 84

disabling and enabling shared vari-
ables in 108

disabling and enabling TSS services
108

editing 101

grouping into scenarios 209, 272

GUI 82

implementations of test cases 81

initializing timestamps for 126

inserting into a suite 206, 268

limiting number 109

manual 87

options 92

preconditions 212, 269

preconditions in 206

properties of 101

recorded in Robot 82

replacing 103

reporting active times of 355

reporting inactive times of 355

reporting on 191

running 116

running TestFactory 10

setting dependencies 217, 294

setting events 216, 293

variable names and datapool column
names 311

Index 441

VB 82
version control 65, 66
viewing 164
VU 82
TEST7 LTMASTER_SHM_MINSZ
system environment variable 380
testcase emulation commands 359, 361
tests
activities involving 2
benchmark 369
configuration 258
designing 6, 69
distributed functional 214, 218, 267
evaluating 8
executing 7, 115
functional 14
implementing 6, 79
performance 15, 249, 251
planning 3, 27
stress 257, 288
Text Comparator 230
comparing actual and baseline files
231
editing baseline file 232
locating differences 231
saving baseline file 232
viewing verification point properties
231
text files, assigning values to a datapool
column 328, 397
think time
disabling and enabling 108
TSS environment variables 106
throughput 356, 360
time data types 397, 398
timeout values, for
points 292
timers, disabling and enabling 108

synchronization

442 Index

times
reporting active 355
reporting inactive 355
setting maximum initialization 126
setting maximum suite run 126
standard deviation of response 261,
365
suppressing delays 126
throughput 333
timestamps
in Command Trace reports 333, 364
initializing for test scripts 126
omitting from Command Trace report
338
tmsconfig.csv file 41, 44
TNS ADMIN system environment vari-
able 387
traceability 54
training, Rational xvii
Transactor view 147
transactors 147, 281, 295
displaying information about 147
inserting into a suite 282
replacing 103
troubleshooting
manual test scripts on the Web 405
Web servers 405
TSS environment variables
client/server 106
connect 107
HTTP 107
in Command Trace reports 339
initializing 105
logging 106
reporting 107
reporting on 364
response timeout 107
think time 106

TUXEDO
emulation commands in Command
Trace reports 338
emulation commands in Command
Usage report 359
setting system environment variables
388

U

U.S. cities data type 392
U.S. state abbreviations data type 397
UNC, using for directory names 403
unexpected active windows 245
Unified Change Management (UCM) 65
Uniform Naming Convention. See UNC
unique datapool rows
guidelines for 322
Read From File data type and 329
setting unique values 312
user-defined data types and 307
update rates, when monitoring suites 128
Usage reports. See Command Usage re-
ports
user groups 95, 265
changing information about 104
displaying information about 148
editing properties of 104
fixed 125, 266
inserting into suites 265, 266
planning 253
replacing 103
scalable 125, 266
temporarily disabling 109, 126
User View - Compact 139, 140
with Agent computers 139
User View - Full 139, 140
User View - Message 139, 141

User View - Results 139, 141
User View - Source 139, 141
user-defined data types 306
automatically generating values for
320
copying 322
deleting 322
editing definitions of 320
editing values in 320
importing 321
renaming 322
role of 305
unique values 307
when to use 306
users, reporting on 187, 191

\'

variable names, and datapool column
names 311, 327
VB test scripts 82
verification points
disabling and enabling 108
in manual test scripts 87
in test case design 72
Test Script Services 85
viewing in Comparators 172
version control 65
VIEWDIR system environment variable

389

VIEWDIR32 system environment vari-
able 389

VIEWFILES system environment vari-
able 389

VIEWFILES32 system environment
variable 389

viewing

datapool values in TestManager 317
Index 443

test scripts 164
user-defined data type values 320
verification points in the Comparators
172
views
Computer 146
Computer View - Compact 139, 140
Computer View - Full 140
Computer View - Message 139, 141
Computer View - Results 141
Computer View - Source 139, 141
customizing 148
restoring default 150
Results 139
Shared Variables 142
Sync Points 145
Test Script 143
User View - Compact 139, 140
User View - Full 140
User View - Message 139, 141
User View - Results 141
User View - Source 139, 141
virtual testers 15, 268
abnormal termination 134, 148
active 134
changing settings 105
combining test script types 268
determining number supported 255
displaying information about 135
error file 144, 166
execution order 125
filtering 149
including in performance tests 16
incrementally loading 255
limiting number of test scripts run by
109
normal termination 134
normal termination of 148

444 Index

output file 166
parallel selectors 214, 278
percentage executing suite 136
reporting active times of 355
reporting inactive times of 355
resuming suspended 145
running large numbers 379
seeds for 110
setting limit for large virtual tester
runs 380
setting number of 128, 204, 266
sorting 148
starting at different times 109
suspended 134, 148
suspending 145, 153, 154
terminating 134, 139, 145, 148
total number in run 134
waiting on shared variable 143
waiting on synchronization point 145
virtual users. See virtual testers
VU test scripts 82

W

Web servers, troubleshooting 405
Windows NT Agents 387, 388
workloads
adding to server 16
designing 252
planning stable 254, 259, 260
reporting on stable 254, 338, 340
WSDEVICE system environment vari-
able 390
WSLHOST system environment variable
388
WSLPORT system environment variable
388
WSNADDR system environment vari-

able 388 y 4

zip code data types 398
X zoned decimal data type 398

XML 409

Index 445

446 Index

	Rational® TestManager
	User’s Guide
	Contents
	Preface
	Audience
	Other Resources
	Integrations Between Rational Testing Tools and Other�Rational Products
	Contacting Rational Technical Publications
	Contacting Rational Customer Support

	Part 1: Using TestManager to Manage Testing Projects
	Introducing Rational TestManager
	What Is Rational TestManager
	TestManager Workflow
	Testing Workflow
	Planning Tests
	Test Inputs
	Test Plans
	Test Case Folders
	Test Cases
	Iterations
	Configurations

	Designing Tests
	Implementing Tests
	Executing Tests
	Evaluating Tests

	TestManager and Other Rational Products
	The Rational Unified Process
	Projects and the Rational Administrator
	Rational Projects
	Security and Privileges for the Rational Test Datastore

	Automated Test Scripts and Rational Robot
	Automated Test Scripts and Rational TestFactory
	Component Testing and Rational QualityArchitect
	Requirements and Rational RequisitePro
	Model Elements and Rational Rose
	Defects and Rational ClearQuest
	Reports and Rational SoDA

	TestManager and Extensibility
	Extending Test Script Types
	Defining Custom Test Input Types
	Defining Custom Test Script Types

	Functional and Performance Testing
	Functional Testing
	Performance Testing

	Virtual Testers
	Virtual Testers in Functional Tests
	Virtual Testers in Performance Tests

	Local and Agent Computers
	The TestManager Environment

	Suites
	Starting Rational TestManager
	Logging On to TestManager
	Starting Other Rational Products and Components from TestManager

	The TestManager Main Window
	Test Asset Workspace
	Planning Tab
	Execution Tab
	Results Tab
	Analysis Tab

	Other TestManager Windows

	Planning Tests
	About Test Planning
	Identifying What to Test by Using Test Inputs
	Built-In Test Input Types
	Requirements from Rational RequisitePro
	Values from Microsoft Excel
	Registering a Test Input Source

	Custom Test Input Types

	Creating a Test Plan
	Creating Test Plans
	Properties of a Test Plan
	Inheriting Iterations and Configurations from a Test Plan

	Organizing Test Cases with Folders
	Inheriting Iterations and Configurations from a Test Case Folder

	Creating Test Cases
	Properties of a Test Case
	Specifying the Owner
	Defining the Configurations to Test
	Defining Configuration Attributes and Their Values
	Viewing Built-In Configuration Attributes
	Defining Custom Configuration Attributes

	Setting Up Custom Attributes in tmsconfig.csv
	Defining the Configurations You Need to Test
	Viewing and Editing Your Configurations

	Associating a Configuration with a Test Case

	Inheriting Test Case Properties
	Specifying When to Run Tests
	Creating and Editing Iterations
	Associating Iterations with a Test Case

	Test Impact Analysis
	Setting Up Traceability Using Test Inputs
	Inherited Test Inputs
	Setting Up Automatic Test Case Suspicion
	Built-In Test Input Adapters
	Custom Test Input Adapters

	Test Case Suspicion
	Inherited Test Case Suspicion

	Managing Test Assets
	Upgrading from Previous Versions of Rational TestManager
	Verifying and Repairing Test Datastores Using the Datastore Doctor
	Exporting and Importing Test Assets
	Exporting Test Assets for Use in Other Test Datastores
	Exporting Test Log Details to Third-Party Tools
	Exporting Manual Test Scripts
	Importing Test Assets
	Importing Manual Test Scripts

	Copy, Cut, and Paste Test Assets
	Software Configuration Management
	Test Script Version Control
	Setting Up Test Script Version Control
	Adding Test Scripts to Version Control

	Designing Tests
	About Designing Tests
	Benefits of Good Test Design

	Specifying the Testing Steps and Verification Points
	Specifying Conditions and Acceptance Criteria of Test Cases
	Example of a Test Design

	Implementing Tests
	About Implementing Tests
	Test Scripts Window

	Implementing Test Cases
	Built-In Test Script Types
	Automated Test Scripts Recorded in Rational Robot
	Manual Test Scripts Created in Rational ManualTest

	Custom Test Script Types
	Command-Line and Custom Adapters
	Command-Line Adapters
	Custom Adapters

	Defining a New Test Script Type

	Suites Created in TestManager

	Calling Test Script Services from Test Scripts
	Test Script Services and Test Script Types
	Test Script Services and TestManager

	Creating Manual Test Scripts
	Importing a Manual Test Script from Another Project or a File
	Creating a Manual Test Script from a Test Case Design
	Creating a Manual Test Script in Rational ManualTest
	Starting Rational ManualTest
	Example of a Manual Test Script
	Setting the Default Editor for Manual Test Scripts
	Creating Test Script Queries
	Customizing Test Assets

	Associating an Implementation with a Test Case
	Implementing Tests as Suites
	Using Suites in Functional Tests
	Using Suites in Performance Tests
	Activities Common to Performance and Functional Testing
	Whether you are running performance tests or functional tests, you perform certain common activit...
	Defining Agent Computers and Computer Lists
	Adding an Agent Computer
	Combining Computers into Lists

	Changing the Settings of an Agent Computer
	Creating a Suite
	Creating a Suite from a Wizard

	Opening a Suite
	Editing a Test Script
	Editing the Properties of a Test Script
	Editing the Text of a Test Script

	Editing the Properties of a Suite
	Replacing Items in a Suite
	Editing the Run Properties of Items in a Suite
	Editing Information for All User and Computer Groups
	Editing Settings for Virtual Testers
	Initializing TSS Environment Variables
	Disabling Test Script Services
	Changing the Number of Start Test Scripts
	Limiting the Number of Test Scripts
	Changing the Way Random Numbers Are Generated

	Initializing Shared Variables
	Printing and Exporting a Suite
	Saving a Suite

	Executing Tests
	About Running Tests
	Built-In Support for Running Test Scripts
	Running Automated Test Scripts
	Running Manual Test Scripts
	Example of Running a Manual Test Script

	Running Test Cases
	Viewing the Associated Implementations
	Running a Test Case
	Ignoring Configured Test Cases

	Before You Run a Suite
	Checking a Suite
	Checking Agent Computers
	Controlling Runtime Information of a Suite
	Start Group Information
	Suite Pass Criteria
	Execution Order
	Time Information
	Seed
	IP Aliasing

	Controlling How a Suite Terminates
	Specifying Virtual Testers and Configurations for the Suite Run
	Running a Suite from TestManager
	Running a Suite from the Command Line
	Running Two Suites Sequentially
	Scheduling a Suite to Run at a Specific Time

	Monitoring Test Runs
	The Progress Bar and the Default Views
	Displaying the Suite Views
	The Suite - Overall View
	The Suite - Users and Suite - Computers Views

	Displaying the State Histograms
	Zooming In on Histogram Bars

	Displaying the User and Computer Views
	User/Computer View - Full
	User/Computer View - Compact
	User/Computer View - Results
	User/Computer View - Source
	User/Computer View - Message

	Displaying the Shared Variables View
	Changing the Value of a Shared Variable
	Displaying the Virtual Testers Waiting on a Shared Variable

	Displaying the Test Script View
	Debugging a Test Script
	Displaying the Sync Points View
	Displaying Virtual Testers Waiting on a Synchronization Point
	Releasing a Synchronization Point

	Displaying the Computer View
	Viewing Resource Usage During a Run
	Graphing Resource Usage During a Run
	Viewing Computers at the Start or End of a Run

	Displaying the Transactor View
	Displaying the Group Views
	Filtering and Sorting Views
	Sorting the Virtual Testers in a User or Computer View
	Filtering a View
	Filtering Virtual Testers
	Filtering a Virtual Tester by Value

	Filtering a Group View
	Restoring the Default Views

	Changing Monitor Defaults
	Configuring Custom Histograms
	Controlling a Suite During a Run
	Suspending and Resuming Virtual Testers
	Setting and Changing the Update Rate

	Stopping Test Runs

	Evaluating Tests
	About Test Logs
	Opening a Test Log in TestManager
	The Test Log Window
	Test Case Results Tab
	Interpreting Test Case Results
	Promoting Test Case Results

	Details Tab

	Viewing Test Log Results
	Viewing Test Case Results
	Viewing Event Details
	About Log Filters
	Creating and Editing a Log Filter
	Applying a Test Log Filter

	Viewing a Test Script
	Working with Test Logs
	About Test Logs
	Suite Log
	Virtual Tester Error File
	Virtual Tester Output File

	About Submitting and Modifying Defects
	About the Rational TestStudio Schema
	How to Submit and Modify a Defect

	Printing a Test Log
	Managing Log Event Property Types

	Viewing Test Script Results Recorded with Rational Robot
	Viewing a Verification Point in the Comparators
	Playback/Environmental Differences
	Intentional Changes to an Application Build

	Reporting Results
	About Test Case Reports
	About Test Case Distribution Reports
	About Test Case Results Distribution Reports
	About Default Test Case Coverage Reports
	About Reporting Test Case Suspicion
	About Test Case Trend Reports
	Filtering Test Input Source Information
	Viewing Properties of Assets in a Test Case Report

	About Listing Reports
	Customizing Design Layouts for Listing Reports

	About Performance Testing Reports
	Selecting Which Reports to Use
	Designing Your Own Reports
	Additional Reports
	Creating Reports
	Creating a Test Case Distribution Report
	Creating Test Case Suspicion Reports
	Creating a Test Case Results Distribution Report
	Creating a Test Case Trend Report
	Creating a Listing Report
	Creating Performance Testing Reports

	Opening a Report
	Running Reports
	Running a Report from the Test Asset Workspace
	Running a Report from the Menu

	Printing, Saving, or Copying a Test Case Report
	Printing, Exporting, or Zooming In on a Listing Report
	Copying Reports to a New Project
	Creating a Query
	Queries for Test Case Distribution, Test Case Trend, and Performance Testing Reports
	Queries for Listing Reports

	Part 2: Functional Testing with Rational TestManager
	Creating Functional Testing Suites
	About Suites
	Inserting a Computer Group into a Suite
	Inserting a Test Script into a Suite
	Inserting a Test Case into a Suite
	Inserting Suites and Scenarios into Suites
	Inserting a Suite into a Suite
	Inserting a Scenario

	Setting a Precondition Within a Suite
	How to Set a Precondition
	Relating Preconditions Set in Suites to Those in Test Cases

	Inserting a Selector into a Suite
	Inserting Other Items into a Suite
	Inserting a Delay
	Inserting a Synchronization Point
	Using Events and Dependencies to Coordinate Execution

	Distributing Tests Among Different Computers
	Example of a Distributed Functional Test

	Executing Suites

	Using the Comparators
	About the Four Comparators
	Starting a Comparator
	Using the Object Properties Comparator
	The Main Window
	The Objects Hierarchy and the Properties List
	Changing the Window Focus
	Working Within the Objects Hierarchy
	Working Within the Properties List

	Loading the Current Baseline
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Adding and Removing Properties
	Editing the Baseline File
	Saving the Baseline File

	Using the Text Comparator
	The Main Window
	The Text Window
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Editing the Baseline File
	Saving the Baseline File

	Using the Grid Comparator
	The Main Window
	The Grid Window
	Differences List
	Setting Display Options
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Using Keys to Compare Data Files
	Editing the Baseline File
	Saving the Baseline File

	Using the Image Comparator
	The Main Window
	The Image Window
	Differences List
	Mask/OCR List
	The Status Bar

	Locating and Comparing Differences
	Changing How Differences Are Determined
	Changing the Color of Masks, OCR Regions, or Differences
	Moving and Zooming an Image
	Viewing Image Properties
	Working with Masks
	Working with OCR Regions
	Saving the Baseline File
	Viewing Unexpected Active Window

	Part 3: Performance Testing with Rational TestManager
	Performance Testing Concepts
	About Performance Testing
	Rational TestManager and Performance Testing
	Creating Test Scripts

	Planning Performance Tests
	Testing Response Times
	Setting Pass and Fail Criteria for Performance Tests
	Identifying Performance Testing Requirements
	Designing a Realistic Workload

	Implementing Performance Tests
	Examples of Performance Tests
	Number of Virtual Testers Supported Under Normal Conditions
	Incrementally Increasing Virtual Testers
	How a System Performs Under Stress Conditions
	How Different System Configurations Affect Performance

	Analyzing Performance Results
	Comparing Results of Multiple Runs
	Comparing Specific Requests and Responses
	Determining the Cause of Performance Problems
	Analyzing Results Statistically
	Monitoring Computer Resources and Tuning Your System

	Designing Performance Testing Suites
	About Suites
	Creating a Suite from a Robot Session
	Inserting User Groups into a Suite
	Inserting Test Scripts into a Suite
	Setting a Precondition Within a Suite
	How to Set a Precondition
	Relating Preconditions Set in Suites to Those in Test Cases

	Inserting Other Items into a Suite
	Inserting a Test Case into a Suite
	Inserting a Scenario
	Inserting a Suite into a Suite
	Inserting a Selector
	Types of Selectors

	Inserting a Delay
	Inserting a Transactor
	Inserting a Synchronization Point
	How Synchronization Points Work
	Why Use Synchronization Points?
	Release Times and Time-Outs for Synchronization Points in Test Scripts
	Scope of a Synchronization Point

	Using Events and Dependencies to Coordinate Execution
	Executing Suites

	Working with Datapools
	What Is a Datapool?
	Datapool Tools
	Managing Datapool Files

	Datapool Cursor
	Row Access Order

	Datapool Limits
	What Kinds of Problems Does a Datapool Solve?

	Planning and Creating a Datapool
	Data Types
	Standard and User-Defined Data Types
	Finding Out Which Data Types You Need
	Creating User-Defined Data Types
	Generating Unique Values from User-Defined Data Types
	Generating Multi-Byte Characters

	Managing Datapools
	Creating a Datapool
	If There Are Errors
	Viewing Datapool Values
	Making the Datapool Available to a Test Script
	Defining Datapool Columns
	Example of Datapool Column Definition
	Example of Datapool Value Generation

	Editing Datapool Column Definitions
	Deleting a Datapool Column

	Editing Datapool Values
	Renaming or Copying a Datapool
	Deleting a Datapool
	Importing a Datapool
	Datapool Location
	Importing a Datapool from Another Project

	Exporting a Datapool

	Managing User-Defined Data Types
	Editing User-Defined Data Type Values
	Editing User-Defined Data Type Definitions
	Importing a User-Defined Data Type
	Renaming or Copying a User-Defined Data Type
	Deleting a User-Defined Data Type

	Generating and Retrieving Unique Datapool Rows
	What You Can Do to Guarantee Unique Row Retrieval

	Creating a Datapool Outside Rational Test
	Datapool Structure
	Example Datapool

	Using Microsoft Excel to Create Datapool Data
	Saving the Datapool in Excel

	Matching Datapool Columns with Test Script Variables
	Maximum Number of Imported Columns

	Creating a Column of Values Outside Rational Test
	Step 1. Create the File
	Step 2. Assign the File’s Values to the Datapool Column
	Generating Unique Values

	Reporting Performance Testing Results
	About Reports
	Running Reports
	Running Reports from the Report Bar
	Running Reports from the Menu Bar

	Customizing Reports
	Filtering Report Data
	Setting Advanced Options
	Eliminating Outliers
	Reporting on a Stable Workload
	Including Passed and Failed Commands
	Reporting on a Particular Command ID
	Mapping Computer Resource Usage onto Response Time

	Changing a Graph’s Appearance or Type
	Changing a Graph’s Appearance
	Displaying and Clearing Data Point Information
	Changing a Graph’s Type
	Enlarging and Rotating a Graph
	Changing a Graph’s Labels
	Filtering Command IDs That Appear in a Graph

	Exporting Report Data
	Changing Report Defaults
	Changing the Reports That Run Automatically
	Changing the Reports That Run from the Report Bar

	Types of Reports
	Command Data Reports
	What’s in Command Data Reports?

	Command Status Reports
	What’s in Command Status Reports?

	Command Usage Reports
	What’s in Command Usage Reports?
	Cumulative Statistics
	Summary Statistics

	Command Trace
	What’s in Command Trace Reports?

	Performance Reports
	What’s in Performance Reports?

	Compare Performance Reports
	Defining a Compare Performance Report
	What’s in Compare Performance Reports?
	Absolute Reports
	Weighted Absolute Reports
	Relative Reports
	Weighted Relative Reports
	N/A and Undefined Responses

	Response vs. Time Reports
	What’s in Response vs. Time Reports?

	Configuring Local and Agent Computers
	Running More Than 245 Virtual Testers
	Running More Than 1000 Virtual Testers
	Running More Than 1000 Virtual Testers on One NT Computer
	High-Volume Performance Testing in Windows Platforms
	Running More Than 24 Virtual Testers on a UNIX Agent
	Controlling TCP Port Numbers
	Setting Up IP Aliasing
	Assigning Values to System Environment Variables

	Standard Datapool Data Types
	Standard Data Type Table
	Data Type Ranges

	ManualTest Web Execution
	About ManualTest Web Execution
	Overview of Tasks
	About Shared Projects
	How to Run a Test Case from a Web Browser
	Viewing the Results
	Troubleshooting

	Rational Test Asset Parcel File Format
	XML Standards for Rational Test Asset Parcel Files
	Sample Rational Test Asset Parcel Files
	Test Plan Test Asset Parcel File
	Test Case Test Asset Parcel File
	Test Case Folder Test Asset Parcel File
	Build Test Asset Parcel File
	Iteration Test Asset Parcel File
	Computer Test Asset Parcel File
	Computer List Test Asset Parcel File
	Configuration Test Asset Parcel File
	Configuration Attribute Test Asset Parcel File
	Test Script Type Test Asset Parcel File
	Test Input Type Test Asset Parcel File
	Log Filter Test Asset Parcel File
	Log Event Property Type Test Asset Parcel File
	Test Log Details Test Asset Parcel File

	Index

