Rational Software Corporatione

Rational-Testing Products

Session Recording and Script Generation Extensibility
Reference

VERSION: 2003.06.00

PART NUMBER: 800-026178-000

WINDOWS

R a t i O NnNa]® support@rational.com

the software development company http://www.rational.com

Legal Notices

©2000-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026178-000

Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States and /or
other jurisdictions, as well as various international treaties. Any reproduction or distribution of
the Work is expressly prohibited without the prior written consent of Rational Software
Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the
terms of that license. Unless specifically allowed under the license, this manual or copies of it
may not be provided or otherwise made available to any other person. No title to or ownership
of the manual is transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational
Apex, Rational Process Workbench, Rational Rose, Rational Summit, Rational UnifiedProcess,
Rational Visual Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify,
Requisite, RequisitePro, RUP, SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate
and TestStudio are registered trademarks of Rational Software Corporation in the United States
and are trademarks or registered trademarks in other countries. The Rational logo, Connexis,
ObjecTime, Rational Developer Network, RDN, ScriptAssure, and XDE, among others, are
trademarks of Rational Software Corporation in the United States and/or in other countries.
All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and
5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534
and 6,206,584. Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights

Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined
in DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions
thereto), whichever is applicable. The use, duplication, and disclosure of the software and/or
documentation shall be subject to the terms and conditions set forth in the applicable Rational
Software Corporation license agreement as provided in DFARS 227.7202, subsection (c) of FAR
52.227-19, or FAR 52.227-14, (or any successor provisions thereto), whichever is applicable.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license
agreement. Except as explicitly stated otherwise in such license agreement, and except to the
extent prohibited or limited by law from jurisdiction to jurisdiction, Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the
media and software product and its documentation, including without limitation, the
warranties of merchantability , non-infringement, title or fitness for a particular purpose or
arising from a course of dealing, usage or trade practice, and any warranty against interference
with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectX, DirectX], DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine
Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror, IntelliSense, J/Direct,
JScript, LineShare, Liquid Motion, Mapbase, MapManager, MapPoint, Map Vision, Microsoft
Agent logo, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne, Rushmore,
SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, are
either trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java,
Java 3D, ShowMe TV, SunForum, SunVTS, SunFDD], StarOffice, and SunPCi, among others, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into
any product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing
Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Contents

Prefaceciiiiiii i e s ix
About This Manual iX
AUdIEBNCE e iX
Other RESOUICES. . . . vttt e e e e e e e e iX
Integrations Between Rational Testing Tools and Other Rational Products X
Contacting Rational Technical Publications Xiii
Contacting Rational Customer Support Xiii
1 Introduction to the Robot Extensibility Framework. 1
About Session Recording and Script Generation. 1
Overview of the Extensibility Framework 1
Extending API Recording and Script Generation 3
API Recording and Script Generation — Standard 5
API Recording and Script Generation —Extended 6
APl EXample 9
Implementing Custom Recording and Script Generation 9
Installing Adapters e 10
Header Files e 11
Build Files 11
Limitations. 11
2 APIAdapterReference..........cciiiiiiiiiiiiiiennnnnnnns 13
About APl Adapters e 13
APl Recorder Adapter APl 13
IsAPIRecorderAdapter()ccuiii i e 14
GetAPIRecAdapterInfo() 14
GetApiAndWrapperNamePairs()o i 16
Generator Filter Adapter APL. e 17
ISAPIGenFiltExtAdapter() 17
GetScriptgenDIIName()ot 18
CheckAPIPacket() ... e e 19
GetDisplayName()o ot 20
GetOPtONS() .« oot it 21
SetOPtioNS() .« .o i e e 23
DisplayCustomConfigGUI()t e 24

Contents v

Vi

Sample API Generator Filter Adapter 25

API Script Generator Adapter APIL. 31
ISAPISgenAdapter()o oot e 31
InitializeScriptgen()o e 32
ProcessAPIPacket() oo e 32
PassComplete()o e 33
GetStatus() ... e 34
GetOPtiONS() . .t e 35
SetOPHONS() ..t te 37

Custom Adapter Reference..............cciiiiiiiiiinnnnns 41

About Custom Adapters e 41
Design Recommendation 41

Custom Recorder Adapter APl 41
IsCustomRecorderAdapter()o e 42
InitializeRecorder() oo 42
StartRecording() oo e 43
StopRecording()ot e 45
GetDisplayName()o ot e 46
GetOptioNS() ..o vt e 46
SetOPtONS() « vt e e 49
DisplayCustomConfigGUI()t 51

Custom Script Generator Adapter APl 53
IsCustomScriptgenAdapter() 53
InitializeScriptgen()ot 54
StartScriptgen()o e 55
CancelScriptgen() . ..o vt e 57
GetDisplayName() . ..o oo e e 57
GetOPtioNS() . ..t e 58
SetOPHONS() ..t 62
DisplayCustomConfigGUI()t 63

4 Recording and Script Generation Services.................. 67

About Recording and Script Generation Services 67

Proxy Services Reference. i e 67
ProxyGetAssignedLibrarylD()ot 68
ProxyGetTicket()o 69
ProxyGetTimeStamp() oo e e 70
ProxyLOCKNEW()o oo e 70
ProxyWriteBIOCK()o 71

Contents

ProxyUnlocK()o oo i e e e e 72

ProxyExceptionHandler() i 72
Proxy Data Typeso e 73
Proxy Examples e 74
The GetAnnotations() Service Function., 76
GetAnNNnotationS()o oo 76
Adapter Configuration ittt 79
About Adapter Configuration 79
Configuration Argument Format. 79
Robot-Defined Configuration Options. 80
Recording Oplions i e 80
Script Generation Optionsot e 81
Miscellaneous (non-GUI) Options i, 83
Adapter-Defined Configuration Options 84
Using a Custom Ul for Custom Options 85

Contents vii

viii Contents

Preface

About This Manual

This manual describes the APIs that you use to extend the Rational Robot session
recording and script generation operations.

Audience

This manual is intended for protocol experts who want to develop session recorder,
filter, and script generator adapters supported by the Rational Robot extensibility
framework.

Other Resources

» This product contains online documentation. To access it, click Session Recording
Extensibility in the following default installation path (ProductName is the name of
the Rational® product you installed, such as Rational TestStudio®).

Start > Programs > Rational ProductName > Rational Test > API

» All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

* For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.

Integrations Between Rational Testing Tools and
Other Rational Products

Rational TestManager Integrations

history of your test assets.
» Create baselines of your test projects.

* Manage changes to test assets stored
in the Rational Test datastore.

Integration Description Where it is Documented
Rational Use Rational Administrator to create and |® Rational Suite Administrator’s Guide
Tes’FManager— manage Rational projects. A Rational = Rational TestManager User’s Guide
Rational project stores software testing and)
Administrator development information. When you " Rational TestManager Help

work with TestManager, the information

you create is stored in Rational projects.

When you associate a RequisitePro

project with a Rational project using the

Administrator, the RequisitePro

requirements appear automatically in the

Test Inputs window of TestManager.
TestManager— Use ClearQuest with TestManager to » Rational TestManager User’s Guide
Rational track and manage defects and change = Rational TestManager Help
ClearQuest requests throughout the development

process.

With TestManager, you can submit

defects directly from a test log in

ClearQuest. TestManager automatically

fills in some of the fields in the

ClearQuest defect form with information

from the test log and automatically

records the defect ID from ClearQuest in

the test log.
TestManager— Use UCM with TestManager to: » Rational TestManager User’s Guide
[Rjatilfoin;lg?tlonal = Archive test artifacts such as test cases, [* Rational TestManager Help

nifie ange : :

Management 8 test scripts, test suites, and test plans. | Rutional Suite Administrator’s Guide
(UCM) * Maintain an auditable and repeatable |. Rotional Administrator Help

» Using UCM with Rational Suite

x Preface

Rational TestManager Integrations

Integration Description Where it is Documented
TestManager— Use RequisitePro to reference = Rational TestManager User’s Guide
Ratlopél requirements from Test'l\./[anager so that |, Rational TestManager Help
RequisitePro you can ensure traceability between your)) o)
project requirements and test assets. * Rational Suite Administrators Guide
Use requirements in RequisitePro as test
inputs in a test plan in TestManager so
that you can ensure that you are testing
all the agreed-upon requirements.
TestManager— Use TestManager with Robot to develop [= Rational TestManager User’s Guide

Rational Robot

automated test scripts for functional
testing and performance testing. Use
Robot to:

» Perform full functional testing. Record |*

test scripts that navigate through your
application and test the state of objects
through verification points.

» Perform full performance testing.
Record test scripts that help you
determine whether a system is
performing within user-defined
response-time standards under
varying workloads.

= Test applications developed with IDEs
(Integrated Development
Environments) such as Java, HTML,
Visual Basic, Oracle Forms, Delphi,
and PowerBuilder. You can test
objects even if they are not visible in
the application’s interface.

* Collect diagnostic information about
an application during test script
playback. Robot is integrated with
Rational Purify, Rational Quantify,
and Rational PureCoverage. You can
play back test scripts under a
diagnostic tool and see the results in
the test log in TestManager.

= Rational TestManager Help
= Rational Robot User’s Guide
Rational Robot Help

Getting Started: Rational PurifyPlus,
Rational Purify, Rational PureCoverage,
Rational Quantify.

* Rational PurifyPlus Help

Integrations Between Rational Testing Tools and Other Rational Products

Xi

Rational TestManager Integrations

Integration

Description

Where it is Documented

TestManager—
Rational Rose

Use as test inputs in TestManager. A test
input can be anything that you want to
test. Test inputs are defined in the
planning phase of testing.

You can use TestManager to create an
association between a Rose model (called
a test input in TestManager) and a test
case. You can then create a test script to
ensure that the test input is met. In
TestManager, you can view the test input
(the Rose model element) associated with
the test case.

* Rational TestManager User’s Guide
* Rational TestManager Help

TestManager—
Rational SoDA

Use SoDA to create reports that extract
information from one or more tools in
Rational Suite. For example, you can use
SoDA to retrieve information from
different information sources, such as
TestManager, to create documents or
reports.

* Rational SoDA User’s Guide
= Rational SoDA Help
* Rational TestManager User’s Guide

TestManager—
Rational
Unified Process
(RUP)

Use Extended Help to display RUP tool
mentors for TestManager. RUP tool
mentors provide practical guidance on
how to perform specific process activities
using TestManager and other Rational
testing tools.

Start Extended Help from the
TestManager Help menu.

Rational TestManager User’s Guide
» Rational TestManager Help
Rational Extended Help

xii Preface

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs @rational.com.

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support as follows:

Your Location Telephone Facsimile E-mail
North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0) 20-4546-200 |[+31 (0) 20-4545-201 |support@ europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

Note: When you contact Rational Customer Support, please be prepared to supply
the following information:

* Your name, telephone number, and company name
* Your computer’s make and model

* Your operating system and version number

* Product release number and serial number

* Your case ID number (if you are following up on a previously reported problem)

Contacting Rational Technical Publications xiii

xiv Preface

Introduction to the Robot
Extensibility Framework

About Session Recording and Script Generation

This chapter explains how to extend the Rational® Robot session recording and script
generation capabilities. It is organized as follows:

This Section Describes

Owerview of the Extensibility The choices provided by the extensibility framework.
Framework on page 1

Extending API Recording and Script | The API recording and script generation framework, and

Generation on page 3 the three types of adapter you develop to extend it.

Implementing Custom Recording and | The two types of adapter you develop to implement the

Script Generation on page 9 custom recording method.

Installing Adapters on page 10 Where to put adapters such that Robot finds them on
startup.

Limitations on page 11 Limitations of the extensibility framework.

Overview of the Extensibility Framework

Robot supports four recording methods. These are presented to the Robot user on the
Method tab of the Session Record Options dialog box, shown below.

Overview of the Extensibility Framework

The extensibility framework affects only the first and last choices, APl recorder and Use
Custom. On startup, Robot looks for installed adapters:

= If APl adapters are detected, API recording and script generation are extended to
one or more additional protocols that the Robot user selects from the Generator
Filtering tab.

= If custom adapters are detected, the custom recording selection is enabled and one
or more selectable adapters are listed in the Recorder and Script Generator boxes.

As the name implies, custom adapters work independently of Robot recording and
script generation operations. They may be written in any language that can interface
with C and recorder adapters can record in any format. By contrast, API adapters
work inside the framework of the Robot session recording and script generation
methodology. API adapters must be developed in C (or C++) and recorder adapters
must use service functions provided with Robot for recording.

2 Chapter 1

Extending API Recording and Script Generation

Extending APl Recording and Script Generation

An API recording is a capture of information exchanged between an executing
application-under-test (AUT) and a target dynamic-link library (DLL) used by the
AUT. The AUT is an application front-end (client); a target is a client-side library
implementing functions used by the application front-end to communicate with its
server, which might run on a remote host. An example of an AUT is Internet Explorer.
An example of an interesting target is winlnet.dll, a well-documented dynamic-link
library used by Internet Explorer. An example of an interesting function in winlnet.dll
is InternetConnect, which becomes active whenever an Internet Explorer user
connects with a remote Web server.

During script generation, the total recorded data in a session file passes through one
or more filtering programs, or protocols. This term describes a set of functions in a
session recording that a script generator may find useful. Protocols are listed on the
Generator Filtering tab of the Session Record Options dialog box.

Session Record Options 2
| General | hethod | flEttiEel W etymrt | Il et By | hethimsl: Eustar
Generator Generator Filtering | Generator per Protocal

Use Generator Filtering settings to control the size of generated script(s).

— Filtering
¥ Auto Filtaring ™ tdanual Filtering
—Auto Filtering
Selectthe protocols to be included in generated script(s). Only selected protocols are included.
Awailable protocals Selected protocols
Dz DBLIE
Oracle > | HTTP
loF
. | Jalt
— ODBC
Socket
SOL Server
> | Sybase
Tuxedo
<« |
Advanced... |
‘ oK Cancel | Help |

Introduction to the Robot Extensibility Framework 3

Extending API Recording and Script Generation

By selecting a protocol, such as HTTP, the Robot user says in effect: if the session file
includes any recorded calls to functions of this type, use the recorded data when
generating test scripts.

The following table lists the API recording targets that are supported by Robot
out-of-the-box. These DLLs need not (and cannot) be targeted by an extension
adapter.

Descriptive Category Name

Microsoft core KERNEL32.DLL
OLE32.DLL
OLEAUT32.DLL

Microsoft communication WSOCK32.DLL
WS2_32.DLL
WININET.DLL

Microsoft cryptographic ADVAPI32.DLL
CRYPT32.DLL
RSABASE.DLL

Oracle (OCI) ntt80.dll (dynamically loads WS2_32.DLL)
ociw32.dll
ora7nt.dll
orant71.dll
ora72.dll
ora73.dll
ora803.d11
ora804.dll
ora805.d1l
oci.dll
orageneric8.dll
oraclient8.dll

ODBC odbc32.d11

DBLIB ntwdblib.dll

The API extensibility framework allows you to add to this list.

4 Chapter 1

Extending API Recording and Script Generation

API Recording and Script Generation — Standard

Suppose that no API adapters are installed and that a Robot user:

= Selects APl record from the Method tab.

» Selects HTTP, lIOP, and Sybase from the Generator Filtering tab.

» Clicks the Record Session icon and, when prompted for the AUT, starts Internet

Explorer.

The diagram below illustrates what happens during the recording phase.

Internet Explorer

rtxvspy.dll

'

proxyWinlnet.dll

N

Y

¢

winlnet.dll

rixvutl.dll

session file

The targeted library in this example is winlnet.dll, which is used by the AUT (Internet
Explorer) to communicate with Web servers. When Internet Explorer starts, rtxvspy.dll
attaches to its process space and waits for calls to functions defined in winInet.dll.
Whenever a winlnet.dll call occurs, the call is directed by rtxvspy.dil to a
corresponding call in a proxy library (proxyWinlInit.dll in the diagram).

Introduction to the Robot Extensibility Framework 5

Extending API Recording and Script Generation

The proxy library is the component responsible for API recording. For example, a call
to the interesting function InternetConnect might be redirected to a proxy call in
proxyWinInit.dll named proxylnternetConnect. The role of a proxy function is to decide
what data should be captured and to send this to the Rational utility that maintains
the proprietary session file, rixvutl.dll. The functions needed to do this are
documented in Chapter 4.

The diagram below illustrates what happens during the script generation phase.

HTTP filter

session file

IIOP filter

Sybase filter

, VU script generator -
VU script I

The Rational recorder controller makes one or more passes through the session file,
presenting each captured call in the session file to a filter corresponding to each
user-selected protocol on the Generator Filtering tab. A filter inspects data sent to it
and instructs the controller to forward relevant data to the VU script generator. (In
actuality, this is a collection of script generators.)

controller

API Recording and Script Generation — Extended

You extend API recording and script generation by developing and installing three
types of adapters: an API Recorder Adapter, a Generator Filter Adapter, and an API
Script Generator Adapter.

An API Recorder Adapter identifies:
» A new target DLL to be loaded.

6 Chapter 1

Extending API Recording and Script Generation

An API Recorder Adapter DLL includes a recording component (proxy)
corresponding to the target. The AUT calls the proxy recorder instead of the target
library, which is called by the proxy as needed. In this fashion, all traffic between
the AUT and the target passes through the proxy. The functions used by the proxy
to record functions are documented in Chapter 4.

» A list of functions implemented by the target DLL to be recorded.

» A corresponding list of wrapper (proxy) function names implemented in the proxy
recorder component. Each real function of interest in the target DLL is
implemented under the wrapped name in the proxy component.

A Generator Filter Adapter screens recorded calls for relevance to script generation.

An API Script Generator Adapter generates a script from the data earmarked for it by
its associated Generator Filter Adapter.

Suppose that you develop and install three API adapters named newAPIRecorder.dll,
newFilter.dll, and newAPIScriptGenerator.dil. Now, when the Robot user initiates API
recording, newAPIRecorder.dll is interjected into the AUT’s process space by
rtxvspy.dll such that client calls to newTarget.dll are redirected to the proxy recording
functions in newAPIRecorer.dll.

Introduction to the Robot Extensibility Framework 7

Extending API Recording and Script Generation

App client
I
I
rtxvspy.dll -
I
¢ I
newAPIRecorder.dll newTarget.dll

I

rixvutl.dll

session file

The proxy functions in newAPIRecorder.dll decide what needs to be recorded and use
the functions documented in Chapter 4, “Recording and Script Generation Services,”
to send this information to rixvutl.dll, which adds it to the session file.

The script generation phase is modified as illustrated below. From the Generator
Filtering tab, the Robot user selects the protocol name associated with newFilter.dll,
which directs scriptable packets to newAPIScriptGenerator.dil.

8 Chapter 1

Implementing Custom Recording and Script Generation

session file

newProtocol

newAPIScriptGenerator
e

The generated script can be in one of the three supported languages (VU, Java, Visual
Basic). Rational® TestManager can play back test scripts you generate in these
languages provided they are syntactically correct.

controller /

The Rational Test\rtsdk\c\rsrext\samples\API folder contains skeletal adapters that
you can use as a starting point.

API Example

Sample extensible API adapters are provided in the Robot installation directory under
Rational Test\rtsdk\c\rsrext\samples\HelloWorldTests. These C++ examples were
developed with Visual Studio 6. For build and deployment instructions, see Rational
Test\rtsdk\c\rsrext\samples\readme.htm.

Implementing Custom Recording and Script Generation

If you install a Custom Recorder Adapter named newCustomRecorder.dll and a
corresponding Custom Script Generator Adapter named
newCustomScriptGenerator.dll, the Method tab of the Session Record Options dialog
box displays your adapters (under their display names) to the Robot user. If the user
selects the pair and initiates a custom recording session, newCustomRecorder.dll
starts. Its session file, which can have any desired format, is available as input to
newCustomScriptGenerator.dll.

Introduction to the Robot Extensibility Framework 9

Installing Adapters

The custom method is thus unrestricted: the two installed adapters can interact with
one another, and possibly with other provided ancillary programs, in any way that
you devise.

The Rational Test\\rtsdk\c\rsrext\samples\CustomAdapters folder contains skeletal
adapters that can be used as starting points for developing full versions.

Installing Adapters

The ability of Robot to detect adapters on startup is dependent on their being installed
in known locations. The following diagram shows the relevant branches of the
installation tree.

<rational-product> >

Rational Test >
adapters >

(Recorders) (ScriptGenerators) < Filters >

Several Rational products include Robot. The top of the tree, <rational-product>, is
the name of the product. By default, this product is located under Program Files. The
other folders are created by the installation directory. Locate:

avaya

= API Recorder Adapters and Custom Recorder Adapters in the recorders folder.

» API Script Generator Adapters and Custom Script Generator Adapters in the
ScriptGenerators folder.

» Generator Filter Adapters in the Filters folder.

10 Chapter 1

Limitations

If your adapters use ancillary files, create a subfolder for them under recorders,
ScriptGenerators, or filters.

Header Files

Adapters are implemented as dynamic-link libraries (DLLs). The header files required
by adapters are located in the Robot installation directory under Rational
Test\rtsdk\c\rsrext\include. To find out which headers are required for different
adapters, see the stub adapters.

Build Files

Files needed to build adapters are located in Rational Test\rtsdk\c\rsrext\lib.

Limitations

Generated VU scripts can reflect multiple protocols: from the Generator Filtering tab,
a Robot user can select multiple protocols, and the resulting scripts are based on all
relevant recorded data. By contrast, for a given API recording session, only a single
adapter-supplied protocol name can be selected from the Generator Filtering tab.

For a given Custom recording session, a selected Custom Recorder Adapter works
with a single Custom Script Generator Adapter. The Generator Filtering tab is not
relevant for the Custom recording method.

Introduction to the Robot Extensibility Framework 11

Limitations

12 Chapter 1

API Adapter Reference

About API Adapters

This chapter documents the three APIs you use to develop adapters that extend the
APIrecording and script generation method. These adapters are started when a Robot
user selects APl recording from the Method tab of the Session Record Options dialog
box. These APIs are described in the following table:

API

Description

API Recorder Adapter API
on page 13

Extends the Robot API recording to a new target and a new type
of traffic. An API Recorder Adapter includes a recording
component that uses the calls documented in Chapter 4, and
requires a Generator Filter Adapter and a corresponding API
Script Generator Adapter.

Generator Filter Adapter

Directs scriptable functions recorded by an API Recorder

API on page 17 Adapter to a corresponding API Script Generator Adapter.
API Script Generator Generates a test script(s) from recorded functions in a session
Adapter API on page 31 file.

APl Recorder Adapter API

An API Recorder Adapter is the interface between the Robot recording extensibility
framework and a recording component (proxy library) that captures traffic between a
designated target DLL and an application-under-test (AUT). The API Recorder
Adapter and proxy library components must be in the same DLL. The recording
functions used by the proxy library are documented in Chapter 4.

13

API Recorder Adapter API

API Recorder Adapters implement the following calls:

Function Description

IsAPIRecorderAdapter () Identifies an API Recorder Adapter.

GetAPIRecAdapterInfo () Returns information about associated adapters and
protocol.

GetApiAndWrapperNamePairs () | Returns names of calls to be intercepted and their
wrapper names.

IsAPIRecorderAdapter()
Identifies an API Recorder Adapter.

Syntax
BOOL IsAPIRecorderAdapter () ;

Comments

Return TRUE to indicate that this is an API Recorder Adapter. Any other response
disables the adapter.

Example

extern "C"
BOOL LINKDLL IsAPIRecorderAdapter ()

{
}

See Also

return TRUE;

IsAPIGenFiltExtAdapter (), IsAPISgenAdapter ()

GetAPIRecAdapterinfo()

Returns information about associated adapters and protocol.

Syntax
int GetAPIRecAdapterInfo (TCHAR *info, size t infoSize);

14 Chapter 2

API Recorder Adapter API

Element Description

info Pointer to a container for adapter information. Copy to this location a
string containing the following comma-separated items:

* The name of the DLL implementing this API recorder adapter.

* The name of the target DLL. The recording component (proxy) records
traffic between this target and the application-under-test. The calls to
be intercepted and their corresponding wrapper names are specified
by GetApiAndWrapperNamePairs ().

* The name of the Generator Filter Adapter DLL to be used with this
adapter.

* The name of the DLL implementing the API Script Generator Adapter
to be used with this recorder adapter.

» The protocol name. This is the public name (listed on the Generator
Filtering tab of the Session Record Options dialog box) of the
Generator Filter Adapter DLL, returned by GetDisplayName() on
page 20.

"

* A description of this adapter, or "".

* The version of this adapter, or "".

infoSize INPUT. The size allocated for info, which must not exceed this size.

Comments

Return RSR_SUCCESS to indicate that the call is complete.

Example

An adapter responds to this call as illustrated below. In the terms of this example, the
following happens: if a Robot user selects APl Recording from the Method tab and
MyProtocol from the Generator Filtering tab and activates recording, traffic between
the AUT and HelloWorld.dl11 specified by GetApiAndWrapperNamePairs () is
routed to MyAPIRecorder.dll.

extern "C"

int LINKDLL GetApiRecAdapterInfo (TCHAR *info, size t infoSize)

{

static TCHAR buffer[] =

"MyAPIRecorder.dll, "
"HellowWorld.dll,"
"MyGFA.d1l1l,™"
"MySGA.d1l1l,"
"MyProtocol, "
"This is an example,”
"Version 0.1";

if (_tcslen(buffer) >= infoSize)

API Adapter Reference 15

API Recorder Adapter AP

return RSE_BUFFER_TOO SHORT;
else

{

_tcscpy (info, buffer);
return RSR_SUCCESS;

}
}

See Also

IsAPIRecorderAdapter (), GetApiAndWrapperNamePairs ()

GetApiAndWrapperNamePairs()

Returns names of calls to be intercepted and their wrapper names.

Syntax

LPSTR GetApiAndWrapperNamePairs (int *iNumPairs);

Element Description

iNumPairs |The number of comma-separated pairs that are returned.

Comments

Your response to this call gives the name of each function call to be intercepted in the
dialog between the target DLL and application-under-test, and the function’s
corresponding wrapper name. Calls to targeted functions are redirected to
corresponding functions in the recording component (proxy library) of the API
Recorder Adapter DLL.

Example

This example returns two API/wrapper pairs:

extern "C"
LPSTR GetApiAndWrapperNamePairs (int *iNumPairs)

{

static TCHAR szPairs[] =

"HelloWorldl, pHelloWorldl, HelloWorld2, pHelloWorld2a";
*iNumPairs = 2;
return szPairs;

}

See Also

IsAPIRecorderAdapter (), GetAPIRecAdapterInfo ()

16 Chapter 2

Generator Filter Adapter API

Generator Filter Adapter API

If you extend API recording, you must provide a Generator Filter Adapter (GFA).

GFAs are listed on the Generator Filtering tab of the Session Record Options dialog

box, by the name you specify with GetDisplayName (). Each GFA is associated with
a single Script Generator Adapter (SGA), whose name is returned by
GetScriptgenDl1lName (). When a user selects a GFA and starts the AUT, recording of
traffic between it and the target DLL commences. The role of the GFA is to direct
recorded information packets that are relevant to script generation to the SGA.

Generator Filter Adapters implement the following calls. The shaded rows list
functions that other adapter types also implement.

Function

Description

IsAPIGenFiltExtAdapter()

Identifies a Generator Filter Adapter.

GetScriptgenDIlIName()

Returns the name of the associated API Script Generator
Adapter.

CheckAPIPacket() Checks for scriptable packets.

GetDisplayName() Returns the public name of this adapter.

GetOptions() Returns configuration options in effect for this adapter.

SetOptions() Sets user-specified configuration options for this adapter.

DisplayCustomConfigGUI() || Provides a custom GUI for adapter-defined configuration
options.

IsAPIGenFiltExtAdapter()
Identifies a Generator Filter Adapter.

Syntax

BOOL IsAPIGenFiltExtAdapter() ;

API Adapter Reference

17

Generator Filter Adapter API

Comments

Return TRUE to indicate that this is a Generator Filter Adapter. Any other response
disables the adapter.

Example

This response identifies an adapter as a Generator Filter Adapter:

extern "C"
BOOL LINKDLL IsAPIGenFiltExtAdapter ()

{

return TRUE;

}

See Also

IsAPIRecorderAdapter (), IsAPISgenAdapter ()
GetScriptgenDIIName()
Returns the name of the associated API Script Generator Adapter.

Syntax

int GetScriptgenDllName (TCHAR *name, size t nameSize) ;

Element Description

name Pointer to a container for the name of the API Script Generator Adapter
DLL that is used with this adapter. Copy the adapter’s name, including
suffix, to this location.

nameSize INPUT. The size allocated for name, which cannot exceed this size.

Comments

When a user selects this Generator Filter Adapter from the Generator Filtering tab, the
API Script Generator Adapter named with this call is also selected.

18 Chapter 2

Example

See also

Generator Filter Adapter API

This example specifies that the API Script Generator Adapter to be used with this
adapter is named APISGenAdapterSample.dll.

extern "C"
int LINKDLL GetScriptgenDllName (TCHAR *name, size t nameSize)
{
TCHAR buf[] = "APISGenAdapterSample.dll";
if (_tcslen(buf) >= nameSize
return RSR_BUFFER_TOO_ SHORT;
else
__tcscpy (name, buf) ;
return RSR _SUCCESS;
!

GetDisplayName ()

CheckAPIPacket()

Syntax

Checks for scriptable packets.

int CheckAPIPacket (void *packet, int IDNum, int *NextConn, int
*clientIP, int *clientPort, int *serverIP, int *serverPort) ;

Element Description
packet Pointer to a location containing the name of an API packet in the session file.
IDNum INPUT. The API packet ID assigned by the session controller.

NextConn INPUT/OUTPUT. A packet ID assigned by the session controller that
earmarks a packet to be discarded, forwarded, or associated with a
previously forwarded packet.

clientIP INPUT. Pointer to the client IP address (hexadecimal notation).

clientPort |INPUT. Pointer to the port used by the client.

serverIP INPUT. Pointer to the server’s IP address.

serverPort |INPUT. Pointer to the port used by the server.

API Adapter Reference 19

Generator Filter Adapter API

Comments

The session controller presents all recorded functions in the session file to all
Generator Filter Adapters. Your adapter inspects the packets and determines which
are relevant for script generation. Multiple passes through the session file can be

made.

Every packet of data received by your adapter has a controller-assigned “next
available” connection number, Next Conn. You return each packet to the session
controller as follows:

= If you want to ignore a packet, and never see it again, return the packet with a

NextConn of 0.

* When you find a packet that should be routed to your script generation adapter,
return the packet with the same Next Conn ID. This ID is now an “existing
connection,” as this term is used in the next bullet. When the session controller
receives this packet, it designates the packet for forwarding and increments

NextConn.

» If you want to associate a packet with an existing connection, return the packet
with that packet’s Next Conn ID.

Example

See Sample API Generator Filter Adapter on page 25.

See Also

GetScriptgenDl1lName (), PassComplete (), ProcessAPIPacket ()

GetDisplayName()

Returns the public name of this adapter.

Syntax

int GetDisplayName (TCHAR *name, size t nameSize) ;

Element Description

name Pointer to a container for the adapter’s display name. Copy the name to
this location.

nameSize INPUT. The size allocated for name. The adapter’s display name cannot
exceed this size.

20 Chapter2

Generator Filter Adapter API

Comments
Specify the GUI name for this adapter. This is the name (protocol) that is displayed on
the Generator Filtering dialog.

Example

This example specifies that the protocol name associated with this adapter is
MyAPIProtocol.

extern "C"
int LINKDLL GetDisplayName (TCHAR *name, size t nameSize)

TCHAR buf[] = "MyAPIProtocol";
if (_tcslen(buf) > nameSize)

return RSR_BUFFER_TOO SHORT;

__tcscpy (name, buf) ;
return RSR_SUCCESS;

}
GetOptions()

Returns configuration options in effect for this adapter.

Syntax

int GetOptions (TCHAR *options, size t optionsSize);

Element Description

options Pointer to a container for this adapter’s options. Copy supported options,
separated by semicolons, to this location. Robot-defined options have the
format:

argument[,setting]

where argument is one of the strings described in the options table
shown below, and setting can be a value for the argument.
Adapter-defined options have the format:

name,value,description|,valuel, value2, ..valuen]

Adapter-defined options that you return in response to this call appear on
the Generator per Protocol tab of the Robot Session Record Options
dialog. They can also appear on an adapter-supplied GUIL

optionsSize INPUT. The size allocated by Robot for opt ions, which must not exceed
this size.

API Adapter Reference 21

Generator Filter Adapter API

Comments

As illustrated in the example, options supported by an adapter should be entered
from a saved, local file. Otherwise, they do not persist between sessions.

Your adapter can define a custom format for options and provide a custom GUI for
displaying and editing them and code to communicate the user’s choices to the
adapter. Do not include custom-format options in your response to this call.

The following table describes the Robot-defined configuration option arguments that
a Generator Filter Adapter can support. See Adapter Configuration on page 81 for a
mapping of these options to the Robot GUL.

Configuration Option Description

CONFIGURATION, USE_CUSTOM UI Specifies that the adapter provides a custom
GUI for displaying and selecting
adapter-defined configuration options.

CONFIGURATION, name, value, The adapter supports a configuration option
description|[,valuel, valueZ2..] of the specified name and value, which
works as indicated by the description.
Adapter-defined options may be entered
either from the Generator per Protocoltab of
the Session Record Options dialog or from a
supplied custom GUL. If a configuration
triplet includes [, valuel, value2, ...], the
supplied values are implemented by a value
pull-down menu on the grid.

Example

The following response indicates that this adapter supports a single custom
configuration triplet:

extern "C"
int LINKDLL GetOptions (TCHAR* options, size t optionsSize)
{
TCHAR buf[RSR_MAX_OPTIONS];
_tcscpy (buf, _T(""));
_tcscat (buf, CONFIGURATION) ;
_tcscat (buf, T(",Password,system,Enter server password"));
(

_tecscat (buf, T(";"));

if (_tcslen(buf) > optionsSize)
return RSR_BUFFER_TOO_ SHORT;

_tcscpy (options, buf) ;

return RSR_SUCCESS;

22 Chapter2

See Also

SetOptions()
SetOptions()
Sets user-specified

Syntax

int SetOptions

Generator Filter Adapter API

configuration options for this adapter.

(TCHAR *options, size t optionsSize);

Element

Description

options

INPUT. Pointer to a read-only location containing the Robot user’s
selections.

optionsSize

INPUT. The size of options.

Comments

When the user selects a Robot-defined option or edits an adapter-defined option, this
call communicates the user’s choice to your adapter.

This call also returns a user’s choices for adapter-defined options, in the triplet
format, that were selected from a Robot-provided dialog. However, if you use a
custom GUI for displaying and editing custom options, you are responsible for

reading the dialog,

conveying the user’s choices to the adapter, parsing, validation,

and sending an appropriate error message for invalid user specifications.

Example

This example checks to see whether a Robot user selected the Think maximum (ms)

option.

extern "C"

int LINKDLL SetOptions (TCHAR* options, size t optionsSize)

{

/* CStringArray declared for parsed sub-strings */
CStringArray OptionsArray;

/* parse the original string with semi-colon delimeter.*/
ParseString(options,';',6 &OptionsArray) ;

for(int i = 0;i<OptionsArray.GetSize () ;i++)

/* for every sub-string, create another CStringArray*/

CStringArra
if (!Options

y SubArray;
Array.GetAt (1) .IsEmpty())

API Adapter Reference 23

Generator Filter Adapter API

{

/*parse the substrings with comma delimeters */

ParseString (OptionsArray.GetAt (i) .GetBuffer
(OptionsArray.GetAt (i) .GetLength()),', ', &SubArray) ;

/* deal with each sub-string set */

if (SubArray [0] ==GENERATOR THINK)

{
if (SubArray[1] == 0)
{
int think min = SubArray(2];

}

else

{
/* Unrecognized option -- error may be thrown*/

}

}
}
}
See Also
GetOptions ()

DisplayCustomConfigGUI()

Provides a custom GUI for adapter-defined configuration options.

Syntax
int DisplayCustomConfigGUI (TCHAR *errorMessage, size t
errorMessageSize) ;
Element Description
errorMessage Pointer to a location for a message to be displayed in the event of
error. Copy the message to this location.
errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.
Comments

If your adapter specifies the option CONFIGURATION,USE_CUSTOM_UT, a Configure
button on the Generator per Protocol tab of the Session Record Options dialog is
enabled. If a user clicks this button, Robot issues this call. In response, your adapter
should display a custom GUI for entering or editing custom configuration options.

If you provide a custom GUI:

24 Chapter 2

Generator Filter Adapter API

» The format of custom configuration options is entirely up to you: it is not
necessary to include custom options with your response to GetOptions (), and
the options need not adhere to the triplet format defined by Robot for custom
options.

» If you do adhere to the triplet format for custom options and include them in your
response to GetOptions (), the Robot user can use a provided triplet grid as well
as your custom GUIL

» If you do not adhere to the triplet format for custom options, do not include them
in your response to GetOptions (). Doing so causes an error because the format
is not understood.

» Custom options chosen or edited using the Robot-supplied triplet grid are
conveyed to an adapter by SetOptions (). With a custom GUI, you are
responsible for reading and persisting user choices.

» If the GUI you provide includes online Help, it works as implemented. In any case,
you are responsible for providing any documentation that users require.

Example

extern "C"
int LINKDLL DisplayCustomConfigGUI (TCHAR *errorMessage, size t
errorMessageSize)

//display custom GUI and gather user input
if (successful)

return RSR_SUCCESS;
else

TCHAR buf[] = "Custom GUI failed to start";
if (_tcslen(buf) > errorMessageSize)
return RSR_BUFFER_TOO SHORT;

__tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

See Also

GetOptions (), SetOptions ()

Sample API Generator Filter Adapter

The following sample is part of the extended example described in API Example on
page 9.

API Adapter Reference 25

Generator Filter Adapter API

L1117 07 77777777777 77
// Copyright (c) Rational Software Corporation. 2001

// A1l Rights Reserved.

//

// FILENAME:APIFilteringAdapterSample.c

// DESCRIPTION:implementation of Sample “APIFilteringAdapterSample”

//

// REVISION HISTORY

// PROGRAMMERDATEREVISION

//

// DIM 05/25/01initial version
LI11177007 700770077 700777

L1117 7007 700770777 700777

;;//
Includes

L111177 007700770077 700777

L1117 7 007700770077 700777

#include <windows.h>
#include <tchar.h>

// Rational headers

#include “ExtDefs.h”

#include “proxhdr.h”

#include “psystem.h”

#include “plibdefs.h”

// local

#include “APIFilteringAdapterSample.h”

static unsigned int uiLibID = 0;

char buf2;
#define RSR EXT STUB SILENT “RSR_EXT STUB SILENT”

LITILTT70T 7070077077777 7 07707777777 77777777777777777777777777777
LITTTT70 77770777 7777777 7777777777 777777777777777777777777777777777777

// Function Definitions
L1117 7 0077007700770 07777 7777777777777 77777777777777777777777777777777
L1717 77077

BOOL IsAPIGenFiltExtAdapter ()
{
}

int GetDisplayName (TCHAR* name, size t nameSize)

{

return TRUE;

TCHAR buf[] = “MyAPIProtocol”;

26 Chapter2

Generator Filter Adapter API

if (_tcslen(buf) < nameSize)

{

__tcscpy (name, buf) ;

if (!GetEnvironmentVariable (RSR_EXT STUB_SILENT, &buf2,0))

MessageBox (NULL, “get Display name called and succeeded”, “DJM
filter adapter”, MB_OK) ;

return RSR_SUCCESS;

}

else

{
}

return RSR_ERROR;

}

int GetScriptgenDllName (TCHAR* name, size t nameSize)

{

TCHAR buf[] = “APISGenAdapterSample.dll”;
//1if (_tcslen(buf) < nameSize)
/74

__tcscpy (name, buf) ;
if (!GetEnvironmentVariable (RSR_EXT STUB SILENT, &buf2,0))
MessageBox (NULL, name, “filter, DJM getscriptgenname”, MB_OK) ;

return RSR_SUCCESS;
/*}
else

{

return RSR_ERROR;

b/
int GetOptions (TCHAR* options, size t optionsSize)

TCHAR opVar[4096] ;
_tcscpy(options, T(““));

if (GetEnvironmentVariable(T(“RSR_FILTER OPTIONS”), opVar, 4096)
1= 0)

{

_tcscpy (options, opVar) ;
return RSR SUCCESS;

_tcscat (options, “options;options”);
if (_tcslen(options) >= optionsSize)

return RSR _BUFFER TOO SHORT;

API Adapter Reference 27

Generator Filter Adapter API

else
return RSR SUCCESS;

}

int SetOptions (TCHAR* options, size t optionsSize, TCHAR* errorMsg,
size t errorMsgSize)

{
}

int DisplayCustomConfigGUI (TCHAR* errorMessage,
size t errorMessageSize)

}

int CheckAPIPacket (void* packet,
int IDNum,
int* NextConn,
int* clientIP,
int* clientPort,
int* serverlP,
int* serverPort)

return RSR_SUCCESS;

return RSR_SUCCESS;

major wch header *majorhdr;
char buf [MAX PATH] ;

majorhdr = packet;

// this example doesn’t pass any packet type besides API_SINGLE
// on to the script generator

if (majorhdr->major type == API_ SINGLE)

minor wch header *minorhdr = (minor wch header *) ((char*)packet +
sizeof (major wch header)) ;

// I'm interested in the following packet types

switch (IDNum)

// add filters for other libraries here

case PROXY LIB WINDOWS SYSTEM:
// check all the customer adapter records
// to see if it is ours
if (minorhdr->API id != P _CUSTOMADAPTER A)

{
}

else
{ // custom adapter record, let’s
// see if it is ours
S CUSTOMADAPTER *custadapter = (S_CUSTOMADAPTER
) ((char)packet + sizeof (major wch header)
+ sizeof (minor_wch header) +
sizeof (stamp2 wch header)) ;
void *p = (void *) ((char*)packet +

*NextConn = 0;

28 Chapter2

Generator Filter Adapter API

sizeof (major wch header)
+ sizeof (minor wch header) +
sizeof (stamp2 wch header) + custadapter->iOffszLibraryName) ;

char *szLibName = (char *)p;
/*
wsprintf (buf, “sizeofmajor=%d sizeofminor=%d”,

sizeof (major wch header),
sizeof (minor wch header)) ;
MessageBox (NULL, buf, “DJM Filter”, MB OK) ;
wsprintf (buf, “szOffset=%d4d”,
custadapter->iOffszLibraryName) ;
MessageBox (NULL, buf, “DJM Filter”, MB OK) ;
MessageBox (NULL, szLibName, “DJM Filter”, MB_OK) ;

MessageBox (NULL, “custadapterpacket found”, “DJM
filter adapter”, MB_OK) ;

*/

if (stricmp (szLibName, “SampleAPIWrapper.dll”) == 0)

{
uiLibID = custadapter->uiLibID;
MessageBox (NULL, szLibName, “Identified System
library record”, MB_OK) ;
//wsprintf (buf, “lib ID=%d”, uiLiblD) ;
//MessageBox (NULL, buf, “DJM lib id”, MB_OK) ;

}

else
*NextConn = 0;

}

break;
default:
// check for any records that are to be thrown away
//wsprintf (buf,”default processing 1ibID=%d looking for
uiLibID=%d”, IDNum, uiLibID) ;
//MessageBox (NULL, buf, ”DJM non sys packet”, MB_OK) ;

if (IDNum != (int)uiLibID)
*NextConn = 0;

if (uiLibID == 0)
*NextConn = 0;

if (IDNum == (int)uiLibID)

{
wsprintf (buf, “processing with good data packet conn
number=%d looking for uilLibID=%d”, *NextConn, uiLibID) ;
MessageBox (NULL, buf, ”DJM Filter”, MB_OK) ;

//MessageBox (NULL, “found packet to process”, “DJM
Filter”, MB OK) ;

break;

API Adapter Reference 29

Generator Filter Adapter API

else

{
}

return RSR_SUCCESS;

*NextConn = 0;

}

30 Chapter2

API Script Generator Adapter API

API Script Generator Adapter API

Implement this APl in a script generator adapter to be used with an API Recorder
Adapter. Implement the Custom Script Generator Adapter API on page 53 in a script
generator adapter to be used with the custom recording method.

API Script Generator Adapters implement the following calls. The shaded rows list
functions that other adapter types also implement.

Function Description

IsAPISgenAdapter() Identifies an API Script Generator Adapter.

InitializeScriptgen() Performs initialization procedures.

ProcessAPIPacket() Receives an API packet for processing.

PassComplete() Returns the pass completion status.

GetStatus() Returns the progress status.

GetOptions() Returns configuration options in effect for this adapter.

SetOptions() Sets user-specified configuration options for this adapter.
IsAPISgenAdapter()

Identifies an API Script Generator Adapter.

Syntax
BOOL IsAPISgenAdapter () ;

Comments

Return TRUE to indicate that this is an API Script Generator Adapter. Any other
response disables the adapter.

This adapter is associated with a single Generator Filter Adapter. When a user selects
the associated Generator Filter Adapter from the Generator Filtering tab and starts an
API recording session, this adapter receives any scriptable packets that are exchanged
between the AUT and the target.

API Adapter Reference 31

API Script Generator Adapter API

Example

A C adapter should respond to this call as illustrated below.

extern "C"
BOOL LINKDLL IsAPISgenAdapter ()

{
}

See Also

return TRUE;

IsAPIRecorderAdapter (), IsAPIGenFiltExtAdapter()
InitializeScriptgen()
Performs initialization procedures.

Syntax

int InitializeScriptgen (TCHAR *scriptPathname) ;

Element Description

scriptPathname | Pointer to a location containing the path name of the script file (stored
inside the Rational datastore). The script filename base is supplied by

the Robot user. If split scripts are supported, their names are generated
from this base.

Comments

An initialization procedure sets up the output path for scripts and can perform other
startup functions.

Example

This example illustrates a successful response.

extern "C"
int LINKDLL InitializeScriptgen (TCHAR *scriptPathname)

{

MessageBox (NULL, "InitializeScriptgen Called", "Hello from APISgen
Adapter Stub!", MB OK) ;

return RSR_SUCCESS;

}
ProcessAPIPacket()

Receives an API packet for processing.

32 Chapter2

API Script Generator Adapter API

Syntax
int ProcessAPIPacket (void *packet, int IDNum) ;
Element Description
packet INPUT. Pointer to a container for the name of an API packet in the session
file.
IDNum INPUT. The API packet ID assigned by the session controller.
Comments
The associated Generator Filter Adapter designated this packet as relevant for script
generation.
Example

This example illustrates a successful response.

extern "C"
int LINKDLL ProcessAPIPacket (void *packet, int IDNum)

{
MessageBox (NULL, "ProcessAPIPacket Called","Hello from APISgen
Adapter Stub!", MB OK);

return RSR_SUCCESS;

See Also

CheckAPIPacket ()

PassComplete()

Returns the pass completion status.

Syntax

int PassComplete (int passNumber) ;

Element Description

passNumber INPUT. The ID of the pass through the session file.

API Adapter Reference 33

API Script Generator Adapter API

Comments

The packets in a session file are read by the session controller and presented to the
Generator Filter Adapter, which designates packets that are relevant to script
generation. There are usually multiple passes through the session file.

Return RSR_SUCCESS to indicate that script generation is progressing normally.
Otherwise, return a nonzero integer and supply an appropriate error message.

Example

This example illustrates a successful response.

extern "C"
int LINKDLL PassComplete (int passNumber)

MessageBox (NULL, "PassComplete Called","Hello from APISgen Adapter

Stub!", MB_OK) ;
return RSR_SUCCESS;

See Also

CheckAPIPacket (), ProcessAPIPacket ()

GetStatus()

Returns the progress status.
Syntax

int GetStatus (TCHAr *msg, size t msgSize) ;

Element Description

msg Pointer to a container for the status message to be displayed. Copy

the message to this location.

msgSize INPUT. The size allocated for msg, which cannot exceed this size.

Comments

Return RSR_SUCCESS to indicate that script generation is progressing normally.
Otherwise, return a nonzero integer and supply an appropriate error message.

Example

This example illustrates a successful response.

34 Chapter 2

API Script Generator Adapter API

extern "C"
int LINKDLL GetStatus (TCHAR *msg, size t msgSize)

{

MessageBox (NULL, "GetStatus Called","Hello from APISgen Adapter
Stub!", MB_OK) ;

return RSR_SUCCESS;

GetOptions()
Returns configuration options in effect for this adapter.
Syntax
int GetOptions (TCHAR *options, size t optionsSize);
Element Description
options Pointer to a container for this adapter’s options. Copy supported options,
separated by semicolons, to this location. Robot-defined options have the
format:
argument[,setting]
where argument is one of the strings described in the options table
shown below, and setting can be a value for the argument.
Generator:Custom
optionsSize INPUT. The size allocated by Robot for opt ions, which must not exceed
this size.
Comments

As illustrated in the example, options supported by an adapter should be entered
from a saved, local file. Otherwise, they do not persist between sessions.

The following table describes the Robot-defined configuration option arguments that
a Script Generator Adapter can support. See Adapter Configuration on page 81 for a
mapping of these options to the Robot GUL.

Configuration Option Description

GENERATOR_BIND VU VARS On the Generator tab of the Session Record
Options dialog, the Bind output parameters to VU
variables check box is enabled.

GENERATOR_COMMAND_ID On the Generator tab of the Session Record
Options dialog, the Command ID prefix box is
enabled.

API Adapter Reference 35

API Script Generator Adapter API

Configuration Option

Description

GENERATOR_CPU_THRESH

On the Generator tab of the Session Record
Options dialog, the CPU/user threshold (ms)
check box is enabled.

GENERATOR_DISPLAY ROWS

On the Generator tab of the Session Record
Options dialog, the Display recorded rows boxes
are enabled. The Robot user’s choices are
communicated by SetOptions () in the
format:

GENERATOR DISPLAY ROWS, choice,
rows

where:

= choice is one of these values
corresponding to the user’s selection of
None, First, Last, or All:

RSR_DISPLAY RECORDED ROWS_ NONE
RSR_DISPLAY RECORDED ROWS FIRST
RSR_DISPLAY RECORDED ROWS LAST
RSR_DISPLAY RECORDED ROWS ALL

» rowsis 0 (for All or None) or the specified
number of rows.

GENERATOR_PLAYBACK PACING

On the Generator tab of the Session Record
Options dialog, the Playback pacing radio boxes
are enabled. The Robot user’s choice of per
command, per script, or hone is communicated
by SetOptions () as:

RSR_GENERATOR PLAYBACK PACING
COMMAND

RSR_GENERATOR PLAYBACK PACING
SCRIPT

RSR_GENERATOR PLAYBACK PACING
NONE

GENERATOR_THINK

On the Generator tab of the Session Record
Options dialog, the Think maximum (ms) check
box is enabled.

GENERATOR_USE DATAPOOLS

On the Generator tab of the Session Record
Options dialog, the Use datapools check box is
enabled.

GENERATOR_VERIFY RETURN_ CODES

On the Generator tab of the Session Record
Options dialog, the Verify playback return codes
check box is enabled.

GENERATOR_VERIFY ROW_COUNTS

On the Generator tab of the Session Record
Options dialog, the Verify playback row counts
check box is enabled.

36 Chapter2

API Script Generator Adapter API

Configuration Option Description

TEST_SCRIPT TYPE, type Specifies the type of test script generated by
this Script Generator Adapter; type may be

one of the following indicating, respectively,
Java, Visual Basic, or VU:

RSR_SCRIPT TYPE JAVA
RSR_SCRIPT TYPE VISUAL BASIC
RSR_SCRIPT TYPE VU

Example
The following response indicates that this adapter:
* Generates Java test scripts.

» Uses datapools.

extern "C"

int LINKDLL GetOptions (TCHAR* options, size t optionsSize)
TCHAR buf [RSR_MAX OPTIONS] ;
tcscpy (buf, T(""));

_tcscat (buf, TEST SCRIPT TYPE);

_tescat (buf, _T(",”));

“tcscat (buf, _T(RSR_SCRIPT TYPE JAVA)) ;
_tescat (buf, _T(";"));

__tcscat (buf, GENERATOR USE DATAPOOLS) ;
_tecscat (buf, _T(";"));

if (_tcslen(buf) > optionsSize)
return RSR_BUFFER_TOO_ SHORT;

_tcscpy (options, buf) ;

return RSR _SUCCESS;

See Also
SetOptions()

SetOptions()

Sets user-specified configuration options for this adapter.

Syntax

int SetOptions (TCHAR *options, size t optionsSize);

API Adapter Reference 37

API Script Generator Adapter API

Element Description
options INPUT. Pointer to a read-only location containing the Robot user’s
selections.
optionsSize INPUT. The size of options.
Comments

When the user selects or specifies a value for a Robot-defined option, this call
communicates the user’s choice to your adapter.

For Robot-defined options pertaining to script generation (those specified on the
Generator tab of the Session Record Options dialog), this call communicates the user’s
choices using this format:

option[,choice] [, value]
where:

* optionis one of the option strings in column 1 of the options table: see
GetOptions ().

= If the option includes a check box, choice is 0 (not checked) or 1 (checked).

» If there is a data entry box(es), the entered value(s) appears after a preceding
comma.

For example, if your adapter supports option GENERATOR THINK and a user checks
this option and specifies a maximum of 5 milliseconds, the options argument of
SetOptions () contains this value: GENERATOR THINK, 1, 5. If the user does not
check this option, SetOptions () returns this value: GENERATOR THINK, 0, 0.
Options are separated from one another by semicolons.

This function returns the session file name, sessionfile, in this format:
GENERATOR_SESSION NAME, sessionfile

You need this name in order to use the service call GetAnnotations() on page 70.

Example

This example checks to see whether a Robot user selected the Think maximum (ms)
option.

extern "C"
int LINKDLL SetOptions (TCHAR* options, size t optionsSize)

{

/* CStringArray declared for parsed sub-strings */
CStringArray OptionsArray;

38 Chapter2

See Also

API Script Generator Adapter API

/* parse the original string with semi-colon delimeter.*/
ParseString(options, ';', &OptionsArray) ;

for(int i = 0;i<OptionsArray.GetSize () ;i++)

{
/* for every sub-string, create another CStringArray*/
CStringArray SubArray;
if (!OptionsArray.GetAt (i) .IsEmpty())

/*parse the substrings with comma delimeters */
ParseString (OptionsArray.GetAt (i) .GetBuffer
(OptionsArray.GetAt (i) .GetLength()),', ', &SubArray) ;

/* deal with each sub-string set */
if (SubArray[0] ==GENERATOR_THINK)

{

if (SubArray[1l] == 0)

{

int think min = SubArray(2];

}

else

{
}

/* Unrecognized option -- error may be thrown*/

}

GetOptions ()

API Adapter Reference 39

API Script Generator Adapter API

40 Chapter2

Custom Adapter
Reference

About Custom Adapters

This chapter documents the two APIs you use to implement custom recording and
script generation adapters. These APIs are described in the following table:

API Description

Custom Recorder Adapter | A Custom Recorder Adapter is started when a user selects Use

API on page 41 Custom from the Method tab on the Session Record Options
dialog box. Requires a corresponding Custom Script Generator
Adapter.

Custom Script Generator | A Custom Script Generator Adapter generates a test script(s)
Adapter API on page 53 | from a session file recorded by a corresponding Custom
Recorder Adapter.

Design Recommendation

A Custom Recorder Adapter can run as part of the multithreaded Robot session
recorder process or as a separate process. If your recorder adapter is implemented in a
language other than C, run it in a separate process. This design simplifies
communication between the recorder adapter, script generator adapter, and other
optional adapter components.

Custom Recorder Adapter API

Custom Recorder Adapters implement the following calls. The shaded rows list
functions that other adapter types also implement.

Function Description
IsCustomRecorderAdapter () |Identifies a Custom Recorder Adapter.
InitializeRecorder () Performs initialization procedures.

41

Custom Recorder Adapter API

Function Description

StartRecording () Starts recording a session.

StopRecording () Concludes a recording session.

GetDisplayName () Returns the public name of this adapter.

GetOptions () Returns configuration options in effect for this adapter.

SetOptions () Sets user-specified configuration options for this adapter.

DisplayCustomConfigGUI () Provides a custom GUI for adapter-defined configuration
options.

IsCustomRecorderAdapter()

Identifies a Custom Recorder Adapter.

Syntax

BOOL IsCustomRecorderAdapter() ;

Comments
Return TRUE to indicate that this is a Custom Recorder Adapter. Any other response
disables the adapter.

Example

A C adapter should respond to this call as illustrated below.

extern "C"
BOOL LINKDLL IsCustomRecorderAdapter ()

{

return TRUE;

}

See Also

IsCustomScriptgenAdapter ()

InitializeRecorder()

Performs initialization procedures.

Syntax

int InitializeRecorder (TCHAR *errorMessage, size t
errorMessageSize) ;

42 Chapter 3

Custom Recorder Adapter API

Element Description

errorMessage Pointer to a container for a message to be displayed in case of an
initialization error. Copy the message to this location.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.

Comments

Initialization procedures are optional and adapter-defined. A return of RSR_SUCCESS
indicates that the adapter is prepared to begin recording a session on request.

Example

extern "C"
int LINKDLL InitializeRecorder (TCHAR *errorMessage, size t
errorMessageSize)
{
//perform initialization procedures
if (successful)
return RSR_SUCCESS

else

{
TCHAR buf[] = "Recorder failed to initialize";
if (_tcslen(buf) >= errorMessageSize)

return RSR_BUFFER_TOO SHORT;

__tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

}
}

See Also

StartRecording (), StopRecording()

StartRecording()

Starts recording a session.

Syntax

int StartRecording (TCHAR *sessionPath, size t sessionPathSize,
StatusCallbackPtr fPtr, TCHAR *errorMessage, size t
errorMessageSize) ;

Custom Adapter Reference 43

Custom Recorder Adapter API

Element Description

sessionPath INPUT. Pointer to a read-only location containing the session file’s

path name, without extension.

sessionPathSize INPUT. The size allocated of sessionPath.

fPtr INPUT. Pointer to a Robot-defined callback function that

communicates the adapter’s status. The function has this
signature:

fPtr (msgType, "status message") ;

msgType may be one of the following:

RSR_CALLBACK PROGRESS
RSR_CALLBACK_ STOP
RSR_CALLBACK ERROR.

errorMessage Pointer to a container for a message to be displayed if recording

fails to start. Copy the message to this location.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot

exceed this size.

Example

This example starts recording into an XML session file.

extern "C"

int

44 Chapter 3

LINKDLL StartRecording (TCHAR* pathname,
size t pathnameSize,
StatusCallbackPtr fPtr,
TCHAR* errorMessage,
size t errorMessageSize)

TCHAR buf [1024];

_tcscpy (buf, "Start recording to: ");
_tcscat (buf, pathname) ;

MessageBox (NULL, buf,"", MB OK) ;

TCHAR fileName[1024];
_tcscpy(fileName, pathname) ;

_tcscat (fileName, ".xml");
ofstream of (fileName) ;
if (of)

of << "<?xml version=\"1.0\" ?>\n<Sample>\n </Sample>" << endl;

fPtr (RSR_CALLBACK PROGRESS, "I am doing OK") ;
return RSR SUCCESS;

Custom Recorder Adapter API

See Also

InitializeRecorder(), StopRecording ()

StopRecording()

Concludes a recording session.

Syntax

int StopRecording (TCHAR *errorMessage, size t
errorMessageSize) ;

Element Description

errorMessage Pointer to a container for a message to be displayed in case there is
a cleanup error. Copy the message to this location.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.

Comments

This call is made when a Robot user ends a recording session. Stop recording and
return RSR_SUCCESS.

If you return RSR_BUFFER_TOO SHORT to indicate that the initial
errorMessageSize is too small, Robot loops until errorMessageSize is large
enough to contain errorMessage.

Example

extern "C"
int LINKDLL StopRecording (TCHAR* errorMessage,
size t errorMessageSize)

//stop recording
if (successful)
return RSR_SUCCESS

else
{
TCHAR buf[] = "Couldn’t stop!!!";
if (_tcslen(buf) >= errorMessageSize)

return RSR_BUFFER_TOO SHORT;

_tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

Custom Adapter Reference 45

Custom Recorder Adapter API

See Also

InitializeRecorder(), StartRecording ()

GetDisplayName()
Returns the public name of this adapter.
Syntax
int GetDisplayName (TCHAR *name, size t nameSize) ;
Element Description
name Pointer to a container for the adapter’s display name. Copy the name to
this location.
nameSize INPUT. The size allocated for name. The adapter’s display name cannot
exceed this size.
Comments

Specify the GUI name for this adapter. This name is presented to the Robot user (in

the Recorder list box beside the Use Custom radio box) on the Method tab of the Session
Record Options dialog.

Example

This example specifies that the GUI name of this adapter is rtweblogicEJB.

extern "C"
int LINKDLL GetDisplayName (TCHAR *name, size t nameSize)

{
TCHAR buf[] = "rtweblogicEJB";
if (_tcslen(buf) > nameSize)

return RSR_BUFFER_TOO_ SHORT;

__tcscpy (name, buf) ;
return RSR_SUCCESS;

}
GetOptions()

Returns configuration options in effect for this adapter.

Syntax

int GetOptions (TCHAR *options, size t optionsSize);

46 Chapter 3

Custom Recorder Adapter API

Element

Description

options

Pointer to a container for this adapter’s options. Copy supported options,
separated by semicolons, to this location. Robot-defined options have the
format:

argument[,setting]

where argument is one of the strings described in the options table
shown below, and setting can be a value for the argument.
Adapter-defined options have the format:

name,value,description|[,valuel, value2,..valuen)]

Adapter-defined options that you return in response to this call appear on
the Method:Custom tab of the Robot Session Record Options dialog. They
can also appear on an adapter-supplied GUI

optionsSize

INPUT. The size allocated by Robot for opt ions, which must not exceed
this size.

Comments

As illustrated in the example, options supported by an adapter should be entered
from a saved, local file. Otherwise, they do not persist between sessions.

Your adapter can define a custom format for options and provide a custom GUI for
displaying and editing them and code to communicate the user’s choices to the
adapter. Do not include custom-format options in your response to this call.

The following table describes the Robot-defined configuration option arguments that
a Custom Recorder Adapter can support. See Adapter Configuration on page 81 for a
mapping of these options to the Robot GUL

Configuration Option Description

CONFIGURATION, USE _CUSTOM UI Specifies that the adapter provides a custom

GUI for displaying and selecting
adapter-defined configuration options.

CONFIGURATION, name, value, The adapter supports a configuration option
description|[,valuel, valueZ2..] of the specified name and value, which

works as indicated by the description.
Adapter-defined options may be entered
either from the Method:Custom tab of the
Session Record Options dialog or from a
supplied custom GUL If a configuration
triplet includes [, valuel, value2, ...], the
supplied values are implemented by a value
pull-down menu on the grid.

Custom Adapter Reference 47

Custom Recorder Adapter API

Configuration Option

Description

DEFAULT_SCRIPT GENERATOR, sga

Specifies the name of the companion Custom
Script Generator Adapter for this Custom
Recorder Adapter. Enter the adapter’s display
name as specified with GetDisplayName ().

GENERAL_START APP_PROMPT

On the General tab of the Session Record
Options dialog, the Prompt for application name
on start recording check box is enabled.

RECORD_BLOCK

On the Session Insert dialog and the Insert
menu, the Start Block and Stop Block options are
enabled.

RECORD_COMMENT

On the Session Insert dialog and the Insert
menu, the Comment option is enabled.

RECORD_SPLITS

On the Session Record dialog, the Split Script
icon is enabled.

RECORD_SYNC_PT

On the Session Insert dialog and the Insert
menu, the Sync point option is enabled.

RECORD_TIMER

On the Session Insert dialog and the Insert
menu, the Start timer and Stop timer options are
enabled.

RECORD_START APP

On the Session Insert dialog and the Insert
menu, the Start Application option is enabled.

SESSION FILES, format

Specifies the file format(s) and extension(s) of
the session file(s), which can be one or more of
the following:

* RSR SESSION FILE EXT — user-defined
type, extension .ext.

* RSR SESSION FILE_EXT— XML format,
extension .xml. (The BEA WebLogic
recorder uses this format).

= RSR_SESSION FILE EXT — Rational’s
proprietary trace file format (called a watch
file), extension .wch. API Recorder
Adapters use this format.

Example

The following response indicates that this adapter:

= Creates an XML trace file.

» Isused with a Script Generator Adapter named mySGA.

48 Chapter 3

Custom Recorder Adapter API

» Supports split scripts.

extern "C"
int LINKDLL GetOptions (TCHAR* options, size t optionsSize)

TCHAR buf [RSR_MAX OPTIONS] ;
_tescpy(buf, T(""));

_tcscat (buf, SESSION FILES) ;

_tescat (buf, T(",xml"));

_tecscat (buf, _T(";"));

__tcscat (buf, DEFAULT SCRIPT GENERATOR) ;
_tescat (buf, _T(",mySGA"));

_tecscat (buf, _T(";"));

_tcscat (buf, RECORD_SPLITS) ;

_tescat (buf, _T(";"));

if (_tcslen(buf) > optionsSize)
return RSR BUFFER TOO SHORT;

_tcscpy (options, buf) ;

return RSR_SUCCESS;

}
See Also
SetOptions()
SetOptions()
Sets user-specified configuration options for this adapter.
Syntax
int SetOptions (TCHAR *options, size t optionsSize);
Element Description
options INPUT. Pointer to a read-only location containing the Robot user’s
selections.
optionsSize INPUT. The size of options.
Comments

When the user selects or specifies a value for a Robot-defined option or edits an
adapter-defined option, this call communicates the user’s choice to your adapter.

Custom Adapter Reference 49

Custom Recorder Adapter API

This call also returns a user’s choices for adapter-defined options, in the triplet
format, that were selected from a Robot-provided dialog. However, if you use a
custom GUI for displaying and editing custom options, you are responsible for
reading the dialog, conveying the user’s choices to the adapter, parsing, validation,
and sending an appropriate error message for invalid user specifications.

Example

This example checks to see whether a Robot user selected the Think maximum (ms)
option.

extern "C"

int LINKDLL SetOptions (TCHAR* options, size t optionsSize)
/* CStringArray declared for parsed sub-strings */
CStringArray OptionsArray;

/* parse the original string with semi-colon delimeter.*/
ParseString(options, ';', &OptionsArray) ;

for(int i = 0;i<OptionsArray.GetSize () ;i++)

{
/* for every sub-string, create another CStringArray*/
CStringArray SubArray;
if (!OptionsArray.GetAt (i) .IsEmpty())

/*parse the substrings with comma delimeters */
ParseString (OptionsArray.GetAt (i) .GetBuffer
(OptionsArray.GetAt (i) .GetLength()),', ', &SubArray) ;

/* deal with each sub-string set */
if(SubArray[O]==GENERATOR_THINK)

{

if (SubArray[1l] == 0)
{
int think min = SubArray([2];
}
else
{
/* Unrecognized option -- error may be thrown*/
}
}
}
}
See Also
GetOptions ()

50 Chapter3

Custom Recorder Adapter API

DisplayCustomConfigGUI()
Provides a custom GUI for adapter-defined configuration options.
Syntax
int DisplayCustomConfigGUI (TCHAR *errorMessage, size t
errorMessageSize) ;
Element Description
errorMessage Pointer to a location for a message to be displayed in the event of
error. Copy the message to this location.
errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.
Comments

If your adapter specifies the option CONFIGURATION,USE_CUSTOM_UI, a Configure
button on the Method:Custom tab of the Session Record Options dialog is enabled. If
a user clicks this button, Robot issues this call. In response, your adapter should
display a custom GUI for entering or editing custom configuration options.

If you provide a custom GUI:

The format of custom configuration options is entirely up to you: it is not
necessary to include custom options with your response to GetOptions (), and
the options need not adhere to the triplet format defined by Robot for custom
options.

If you do adhere to the triplet format for custom options and include them in your
response to GetOptions (), the Robot user can use a provided triplet grid as well
as your custom GUIL

If you do not adhere to the triplet format for custom options, do not include them
in your response to GetOptions (). Doing so causes an error because the format
is not understood.

Custom options chosen or edited using the Robot-supplied triplet grid are
conveyed to an adapter by SetOptions (). With a custom GUI, you are
responsible for reading and persisting user choices.

If the GUI you provide includes online Help, it works as implemented. In any case,
you are responsible for providing any documentation that users require.

Custom Adapter Reference 51

Custom Recorder Adapter API

Example

extern "C"
int LINKDLL DisplayCustomConfigGUI (TCHAR *errorMessage, size t
?rrorMessageSize)
//display custom GUI and gather user input
if (successful)
return RSR_ SUCCESS;

else
TCHAR buf[] = "Custom GUI failed to start";
if (_tcslen(buf) > errorMessageSize)

return RSR_BUFFER_TOO SHORT;

_tcscpy (errorMessage, buf) ;
return RSR FAILURE;

}

See Also

GetOptions (), SetOptions ()

52 Chapter 3

Custom Script Generator Adapter API

Custom Script Generator Adapter API

Use this API to develop a script generator adapter to be used with a Custom Recorder
Adapter. Use API Script Generator Adapter API on page 31 to develop a script generator
adapter to be used with the API recording method.

Custom Script Generator Adapters implement the following calls. The shaded rows
list functions that other adapter types also implement.

Function

Description

IsCustomScriptgenAdapter()

Identifies a Custom Script Generator Adapter.

InitializeScriptgen()

Performs initialization procedures.

StartScriptgen() Starts a script generation session.

CancelScriptgen() Cancels a script generation request.

GetDisplayName() Returns the public name of this adapter.

GetOptions() Returns configuration options in effect for this adapter.

SetOptions() Sets user-specified configuration options for this adapter.

DisplayCustomConfigGUI() Provides a custom GUI for adapter-defined configuration
options.

IsCustomScriptgenAdapter()

Identifies a Custom Script Generator Adapter.

Syntax

BOOL IsCustomScriptgenAdapter() ;

Comments

Return TRUE to indicate that this is a Custom Script Generator Adapter. Any other

response disables the adapter.

Example

A C adapter should respond to this call as illustrated below.

extern "C"

BOOL LINKDLL IsCustomScriptgenAdapter ()

{

Custom Adapter Reference 53

Custom Script Generator Adapter API

return TRUE;

See Also

IsCustomRecorderAdapter ()

InitializeScriptgen()

Performs initialization procedures.

Syntax
int InitializeScriptgen (TCHAR *errorMessage, size t
errorMessageSize) ;
Element Description
errorMessage Pointer to a container for a message to be displayed in case there is
an initialization error. Copy the message to this location.
errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.
Comments
In response to this call, perform any needed initialization procedures and return
RSR_SUCCESS.
Example

extern "C"
int LINKDLL InitializeScriptgen (TCHAR *errorMessage, size t
errorMessageSize)
{
//perform initialization procedures
if (successful)
return RSR_SUCCESS

else

{
TCHAR buf[] = "Recorder failed to initialize";
if (_tcslen(buf) >= errorMessageSize)

return RSR_BUFFER_TOO SHORT;

__tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

54 Chapter 3

Custom Script Generator Adapter API

See Also

CancelScriptgen(), InitializeRecorder (), StartScriptgen ()

StartScriptgen()

Starts a script generation session.

Syntax

int StartScriptgen (TCHAR *sessionPath, size t sessionPathSize,
TCHAR *scriptPath, size t scriptPathSize, StatusCallbackPtr
fPtr, TCHAR *errorMessage, size_t errorMessageSize) ;

Element Description

sessionPath INPUT. Pointer to a location containing the session file’s path
name, without extension.

sessionPathSize INPUT. The size allocated for sessionPath, which cannot exceed
this size.

scriptPath INPUT. Pointer to a location for the script file’s path name, without
extension.

scriptPathSize INPUT. The size allocated for scriptPath, which cannot exceed
this size.

fPtr Pointer to a Robot-defined callback function for communication of

completion status. The function has this signature:
fPtr (msgType, "status message") ;
msgType can be one of the following;:

RSR_CALLBACK DETAILS
RSR_CALLBACK ERROR
RSR_CALLBACK FINISHED
RSR_CALLBACK PROGRESS
RSR_CALLBACK STOP

As shown in the example, with msgType
RSR_CALLBACK_PROGRESS, the status message is a number
between 0 and 100, indicating percent completed, formatted as a
string.

errorMessage Pointer to a location for a message to be displayed in case of a
startup error.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.

Custom Adapter Reference 55

Custom Script Generator Adapter API

Comments

Respond to this call by starting script generation and returning RSR_SUCCESS.

Example

The following example provides progress information in 10% intervals and parses for
multiple script names.

extern "C"

int LINKDLL StartScriptgen (TCHAR* pathname,
size t pathnameSize,
TCHAR* scriptFilePathnames,
size t scriptFilePathnamesSize,
StatusCallbackPtr fPtr,
TCHAR* errorMessage,
size t errorMessageSize)

CStringArray ScriptNames;
for (int i=1; i<=10; i++)
TCHAR progress|[5];

sprintf (progress, "%d",i*10) ;
fPtr (RSR_CALLBACK PROGRESS, progress) ;

Sleep (1000) ;
ParseString(scriptFilePathnames, ';', &ScriptNames) ;
for(i = 0;i<ScriptNames.GetSize () ;i++)

{

CopyFile("c:\\seed.java",ScriptNames [i]+".java",FALSE) ;
fPtr (RSR_CALLBACK FINISHED, "Scriptgen successful!!!l");

return RSR SUCCESS;

See Also

CancelScriptgen(), InitializeScriptgen (), StartRecording()

56 Chapter 3

Custom Script Generator Adapter API

CancelScriptgen()

Cancels a script generation request.

Syntax

int CancelScriptgen (TCHAR *errorMessage, size t
errorMessageSize) ;

Element Description

errorMessage Pointer to a container for a message to be displayed in case of a
cleanup error. Copy the message to this location.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot
exceed this size.

Comments

This call is made when a Robot user cancels script generation, or in case of a system
error. On receiving the call, stop script generation as soon as possible, perform
cleanup operations, and return RSR_SUCCESS.

Example

extern "C"
int LINKDLL CancelScriptgen (TCHAR* errorMessage,
size t errorMessageSize)

//stop scriptgen and perform cleanup
if (successful)

return RSR_SUCCESS
else

{

TCHAR msg[] = "Cancellation cleanup failed";
if (_tcslen(buf) >= errorMessageSize)
return RSR_BUFFER_TOO_ SHORT;

__tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

}
}

See Also

InitializeScriptgen (), StartScriptgen ()

GetDisplayName()

Returns the public name of this adapter.

Custom Adapter Reference 57

Custom Script Generator Adapter API

Syntax
int GetDisplayName (TCHAR *name, size t nameSize) ;
Element Description
name Pointer to a container for the adapter’s display name. Copy the name to
this location.
nameSize INPUT. The size allocated for name. The adapter’s display name cannot
exceed this size.
Comments
Specify the GUI name for this adapter. This name is presented to the Robot user (in
the Script Generator list box beside the Use Custom radio box) on the Method tab of the
Session Record Options dialog.
Example
This example specifies that the GUI name of this adapter is rtweblogicEJB.
extern "C"
int LINKDLL GetDisplayName (TCHAR *name, size t nameSize)
{
TCHAR buf[] = "rtweblogicEJB";
if (_tcslen(buf) > nameSize)
return RSR_BUFFER_TOO SHORT;
__tcscpy (name, buf) ;
return RSR_SUCCESS;
}
GetOptions()
Returns configuration options in effect for this adapter.
Syntax

int GetOptions (TCHAR *options, size t optionsSize);

58 Chapter 3

Custom Script Generator Adapter API

Element

Description

options

Pointer to a container for this adapter’s options. Copy supported options,
separated by semicolons, to this location. Robot-defined options have the
format:

argument[,setting]

where argument is one of the strings described in the options table
shown below, and setting can be a value for the argument.
Adapter-defined options have the format:

name,value,description|[,valuel, value2,..valuen)]

Adapter-defined options that you return in response to this call appear on
the Generator:Custom tab of the Robot Session Record Options dialog.
They can also appear on an adapter-supplied GUIL

optionsSize

INPUT. The size allocated by Robot for opt ions, which must not exceed
this size.

Comments

As illustrated in the example, options supported by an adapter should be entered
from a saved, local file. Otherwise, they do not persist between sessions.

Your adapter can define a custom format for options and provide a custom GUI for
displaying and editing them and code to communicate the user’s choices to the
adapter. Do not include custom-format options in your response to this call.

The following table describes the Robot-defined configuration option arguments that
a Script Generator Adapter can support. See Adapter Configuration on page 81 for a
mapping of these options to the Robot GUL

Configuration Option Description

CONFIGURATION, USE _CUSTOM UI Specifies that the adapter provides a custom

GUI for displaying and selecting
adapter-defined configuration options.

CONFIGURATION, name, value, The adapter supports a configuration option
description|[,valuel, valueZ2..] of the specified name and value, which

works as indicated by the description.
Adapter-defined options may be entered
either from the Generator:Customtab of the
Session Record Options dialog or from a
supplied custom GUL If a configuration
triplet includes [, valuel, value2, ...], the
supplied values are implemented by a value
pull-down menu on the grid.

Custom Adapter Reference 59

Custom Script Generator Adapter API

Configuration Option

Description

GENERATOR_BIND VU VARS

On the Generator tab of the Session Record
Options dialog, the Bind output parameters to VU
variables check box is enabled.

GENERATOR_COMMAND ID

On the Generator tab of the Session Record
Options dialog, the Command ID prefix box is
enabled.

GENERATOR_CPU_THRESH

On the Generator tab of the Session Record
Options dialog, the CPU/user threshold (ms)
check box is enabled.

GENERATOR_DISPLAY ROWS

On the Generator tab of the Session Record
Options dialog, the Display recorded rows boxes
are enabled. The Robot user’s choices are
communicated by SetOptions () in the
format:

GENERATOR DISPLAY ROWS, choice,
rows

where:

= choiceis one of these values
corresponding to the user’s selection of
None, First, Last, or All:

RSR_DISPLAY RECORDED ROWS_ NONE
RSR_DISPLAY RECORDED ROWS FIRST
RSR_DISPLAY RECORDED ROWS LAST
RSR_DISPLAY RECORDED ROWS ALL

* rowsis 0 (for All or None) or the specified
number of rows.

GENERATOR_PLAYBACK PACING

On the Generator tab of the Session Record
Options dialog, the Playback pacing radio boxes
are enabled. The Robot user’s choice of per
command, per script, or hone is communicated
by SetOptions () as:

RSR_GENERATOR PLAYBACK PACING
COMMAND

RSR_GENERATOR PLAYBACK PACING
SCRIPT

RSR_GENERATOR PLAYBACK PACING
NONE

GENERATOR_THINK

On the Generator tab of the Session Record
Options dialog, the Think maximum (ms) check
box is enabled.

GENERATOR_USE DATAPOOLS

On the Generator tab of the Session Record
Options dialog, the Use datapools check box is
enabled.

60 Chapter3

Custom Script Generator Adapter API

Configuration Option Description

GENERATOR USE_ SCRIPTGEN PROGRESS |Specifies that the adapter provides progress
information to be displayed by a Robot
progress dialog.

GENERATOR VERIFY RETURN CODES On the Generator tab of the Session Record
Options dialog, the Verify playback return codes
check box is enabled.

GENERATOR_VERIFY ROW_COUNTS On the Generator tab of the Session Record
Options dialog, the Verify playback row counts
check box is enabled.

TEST SCRIPT TYPE, type Specifies the type of test script generated by
this Script Generator Adapter; type may be

one of the following indicating, respectively,
Java, Visual Basic, or VU:

RSR_SCRIPT TYPE_JAVA
RSR_SCRIPT TYPE VISUAIL_BASIC
RSR_SCRIPT TYPE VU

Example
The following response indicates that this adapter:
* Generates Java test scripts.

» Uses datapools.

extern "C"
int LINKDLL GetOptions (TCHAR* options, size t optionsSize)
{

TCHAR buf [RSR_MAX OPTIONS] ;

_tecscpy (buf, T(""));

_tcscat (buf, TEST SCRIPT TYPE) ;

_tescat (buf, _T(",”));

_tcscat (buf, _T(RSR_SCRIPT TYPE JAVA));
_tecscat (buf, _T(";"));

__tcscat (buf, GENERATOR USE DATAPOOLS) ;
_tescat (buf, _T(";"));

if (_tcslen(buf) > optionsSize)
return RSR_BUFFER_TOO_ SHORT;

_tcscpy(options, buf) ;

return RSR_SUCCESS;

See Also

SetOptions()

Custom Adapter Reference 61

Custom Script Generator Adapter API

SetOptions()

Sets user-specified configuration options for this adapter.
Syntax

int SetOptions (TCHAR *options, size t optionsSize);

Element Description

options INPUT. Pointer to a read-only location containing the Robot user’s

selections.

optionsSize INPUT. The size of options.

Comments

When the user selects or specifies a value for a Robot-defined option or edits an
adapter-defined option, this call communicates the user’s choice to your adapter.

For Robot-defined options pertaining to script generation (those specified on the
Generator tab of the Session Record Options dialog), this call communicates the user’s
choices using this format:

option[,choice] [, value]

where:

* optionis one of the option strings in column 1 of the options table: see
GetOptions ().

= If the option includes a check box, choice is 0 (not checked) or 1 (checked).

» If there is a data entry box(es), the entered value(s) appears after a preceding
comma.

For example, if your adapter supports option GENERATOR THINK and a user checks
this option and specifies a maximum of 5 milliseconds, the options argument of
SetOptions () contains this value: GENERATOR THINK, 1, 5. If the user does not
check this option, SetOptions () returns this value: GENERATOR THINK, 0, 0.
Options are separated from one another by semicolons.

This call also returns a user’s choices for adapter-defined options, in the triplet
format, that were selected from a Robot-provided dialog. However, if you use a
custom GUI for displaying and editing custom options, you are responsible for
reading the dialog, conveying the user’s choices to the adapter, parsing, validation,
and sending an appropriate error message for invalid user specifications.

62 Chapter 3

Custom Script Generator Adapter API

Example

This example checks to see whether a Robot user selected the Think maximum (ms)
option.

extern "C"
int LINKDLL SetOptions (TCHAR* options, size t optionsSize)

{
/* CStringArray declared for parsed sub-strings */
CStringArray OptionsArray;
/* parse the original string with semi-colon delimeter.*/
ParseString (options, '; ', &OptionsArray) ;
for(int i = 0;i<OptionsArray.GetSize () ;i++)
{
/* for every sub-string, create another CStringArray*/
CStringArray SubArray;
if (!OptionsArray.GetAt (i) .IsEmpty())
/*parse the substrings with comma delimeters */
ParseString (OptionsArray.GetAt (i) .GetBuffer
(OptionsArray.GetAt (i) .GetLength()),', ', &SubArray) ;
/* deal with each sub-string set */
if (SubArray [0] ==GENERATOR THINK)
{
if (SubArray[1l] == 0)
{
int think min = SubArray([2];
}
else
{
/* Unrecognized option -- error may be thrown*/
}
}
}
}
See Also
GetOptions ()
DisplayCustomConfigGUI()

Provides a custom GUI for adapter-defined configuration options.

Syntax

int DisplayCustomConfigGUI (TCHAR *errorMessage, size t
errorMessageSize) ;

Custom Adapter Reference 63

Custom Script Generator Adapter API

Comments

Element Description

errorMessage Pointer to a location for a message to be displayed in the event of

error. Copy the message to this location.

errorMessageSize INPUT. The size allocated for errorMessage, which cannot

exceed this size.

If your adapter specifies the option CONFIGURATION,USE_CUSTOM_UT, a Configure
button on the Generator per Protocol tab of the Session Record Options dialog is
enabled. If a user clicks this button, Robot issues this call. In response, your adapter
should display a custom GUI for entering or editing custom configuration options.

If you provide a custom GUI:

Example

64

The format of custom configuration options is entirely up to you: it is not
necessary to include custom options with your response to GetOptions (), and
the options need not adhere to the triplet format defined by Robot for custom
options.

If you do adhere to the triplet format for custom options and include them in your
response to GetOptions (), the Robot user can use a provided triplet grid as well
as your custom GUL

If you do not adhere to the triplet format for custom options, do not include them
in your response to GetOptions (). Doing so causes an error because the format
is not understood.

Custom options chosen or edited using the Robot-supplied triplet grid are
conveyed to an adapter by SetOptions (). With a custom GUI, you are
responsible for reading and persisting user choices.

If the GUI you provide includes online Help, it works as implemented. In any case,
you are responsible for providing any documentation that users require.

extern "C"
int LINKDLL DisplayCustomConfigGUI (TCHAR *errorMessage, size t
errorMessageSize)

//display custom GUI and gather user input
if (successful)

return RSR_ SUCCESS;
else

{

Chapter 3

Custom Script Generator Adapter API

TCHAR buf[] = "Custom GUI failed to start";
if (_tcslen(buf) > errorMessageSize)
return RSR_BUFFER TOO SHORT;

_tcscpy (errorMessage, buf) ;
return RSR_FAILURE;

}
}

See Also

GetOptions (), SetOptions ()

Custom Adapter Reference 65

Custom Script Generator Adapter API

66 Chapter 3

Recording and Script
Generation Services

About Recording and Script Generation Services

This chapter documents functions required by some types of adapters. It contains
these sections:

» Proxy Services Reference on page 67. These functions are needed by API recorder
DLLs.

= The GetAnnotations() Service Function on page 76. This function is needed by
Custom Script Generator Adapters that support the features described in Script
Generation Options on page 81, and by all API Script Generator Adapters (which
are required to support these features).

Proxy Services Reference

Extending API recording requires the writing of a recording component (proxy
library) corresponding to the targeted library that implements the functions to be
recorded. Traffic between the AUT and target library that is to be recorded passes
through the proxy library. The job of the functions in the proxy library is to decide
what needs to be recorded and to pass this data to Rational’s rtxvutl.dll, which adds
the data to the session file. The proxy library and API Recorder Adapter components
must reside in the same DLL.

This chapter documents the calls needed to pass data to rtvutl.dll. The API recording
services are listed below, in the order in which they are used. See Proxy Examples on
page 74 for examples illustrating these calls.

Function Description

ProxyGetAssignedLibraryID() | Gets an ID for the specified target DLL.

ProxyGetTicket() Gets an ID for a proxy function to be recorded.
ProxyGetTimeStamp() Gets a time stamp for a proxy function to be recorded.
ProxyLockNew() Locks the session file prior to a write operation.

67

Proxy Services Reference

Function Description

ProxyWriteBlock() Writes a block to the session file.

ProxyUnlock() Unlocks the session file after a write operation.
ProxyExceptionHandler() Returns the library ID and function associated with an error.

ProxyGetAssignedLibrarylD()
Gets an ID for the specified target DLL.

Syntax

int ProxyGetAssignedLibraryID (char *DLLName)

Element Description

DLLName Specifies the name of the target DLL.

Return Value

On success, this function returns an ID for the named DLL.

Comments

Unlike the other proxy calls, which are called with each write operation, this call is
made only during session initialization and so is likely to appear in a different DLL.
The returned ID is the 1ibraryID argument to ProxyLockNew() on page 70.

Example

This example illustrates the use of this call in an initialization block.

#include <windows.h>
#include <tchar.h>

#include "SampleAPIWrapper.h"
#include "proxutil.h"

// initialize global for library ID
int gbLibID = 0;

int WINAPI Dl1lMain (HANDLE hInstance,
ULONG ul reason being called,
LPVOID lpReserved)

{

switch (ul reason being called)

{

68 Chapter 4

Proxy Services Reference

case DLL PROCESS ATTACH:

{
// MUST call the following in DLL_PROCESS ATTACH
// this function is provided by the Utility DLL
// rtxutil.dll

// the name passed-in must be the exact name of
// your wrapper DLL
gbLibID = ProxyGetAssignedLibraryID ("SampleAPIWrapper.dll");

// add whatever initialization you need here
break;

case DLL PROCESS DETACH:

// add whatever cleanup you may need here
break;

}

default:
{
}

}

return 1;

break;

ProxyGetTicket()

Gets an ID for a proxy function to be recorded.

Syntax
DWORD ProxyGetTicket (void)
Return Value

On success, this function returns the ID uniquely identifying a packet to be recorded.
On failure, it returns PROXY INVALID TICKET.

Comments

This call begins a write operation inside a proxy function, which should proceed only
if the call succeeds. The returned ID is an input argument to ProxyLockNew() on
page 70. On failure, the correct behavior is to call the real function and return without
recording anything.

Example

See Proxy Examples on page 74.

Recording and Script Generation Services 69

Proxy Services Reference

ProxyGetTimeStamp()

Gets a time stamp for a proxy function to be recorded.

Syntax
DWORD ProxyGetTimeStamp (void)

Return Value
On success, this function returns the number of milliseconds that have elapsed since
the session file was initialized.

Comments

This value returned by this function is an argument of ProxyLockNew() on page 70.

Example

See Proxy Examples on page 74.

ProxyLockNew()

Locks the session file prior to a write operation.

Syntax

void *ProxyLockNew (int ticketID, DWORD msec, int libraryID,
int proxyID, int PacketType, int packetSize)

Element Description

ticketID The ID of the packet to be written to the .wch file. Returned by
ProxyGetTicket().

msec The number of milliseconds elapsed since the session file was initialized.
Returned by ProxyGetTimeStamp()

libraryID |TheID of the library associated with this proxy call. Returned by
ProxyGetAssignedLibraryID ()

proxyID The ID of this proxy call.

70 Chapter4

Proxy Services Reference

Element

Description

packetType

One of the following:

* API ENTRY. Begin a record in a badly written API that overwrites input
data parameters.

= API_EXIT. End a record.
* API_SINGLE. Produce a single record for each proxy function.

Normally specify API_SINGLE. If used, API_ENTRY and API_EXIT must
both be used in order to get a complete record.

packetSize

The number of bytes to be written.

Comments

The proxyIDis a unique identifier for each function that you record. Typically, you
start with 1 and increment proxyID for each function to be recorded. This argument
should be defined in a header file common to the API Recorder, Generator Filter, and
API Script Generator adapters, such that the combination of 1ibraryIDand
proxyIDuniquely identifies a single proxy function and what it pertains to.

Example

See page 74 for an API_SINGLE example; see page 75 for an API_ENTRY/API_EXIT

example.

ProxyWriteBlock()

Writes a block to the session file.

Syntax

int ProxyWriteBlock (LPVOID, int iSize)

element Description
LpData Pointer to the data to be written to the session file.
iSize The number of bytes to write.

Return Value

On success, the function returns the offset from the most recent ProxyLockNew() call
to the beginning of data for the current ProxyWriteBlock() call.

Recording and Script Generation Services 71

Proxy Services Reference

Example

See Proxy Examples on page 74.

ProxyUnlock()
Unlocks the session file after a write operation.
Syntax
void ProxyUnlock (DWORD msec)
Element Description
msec Specify as 0 for the default behavior, described below:
* API_SINGLE. ProxyGetTimestamp() is called and the result placed in the
session file header.
= API_ENTRY and API_EXIT. The original time stamp passed with
ProxyLock is placed in the session header.
Alternatively, you can enter a number of milliseconds to place in the session
header.
Example

See Proxy Examples on page 74.

ProxyExceptionHandler()

Returns the library ID and function associated with an error.

Syntax
void ProxyExceptionHandler (type proxyLib, type proxyFunction)
Element Description
proxyLib The proxy library ID.
proxyFunction |The proxy function ID.
Example

See Proxy Examples on page 74.

72 Chapter 4

Proxy Services Reference

Proxy Data Types

To use the proxy utility functions, you must include \Suite\include\proxhdr.h, whose
structures are as follows:

#define API ENTRY1
#define API EXIT 2
#define API SINGLE3

/* All three have a common header: */

typedef struct ({

unsigned char major type;/* API_ENTRY, API EXIT, API SINGLE, WCH V1
*

/

unsigned char spare uchar;/* Future */

unsigned short spare ushort;/* Future */

unsigned int ticket;/* Unique ticket for each API call */

unsigned int timestamp;/* Entry TS for all but API EXIT (api
return) */

unsigned int total length;/* Total length of packet including ALL
headers */
} major wch header;

/* API_EXIT has no secondary header */

/* API_ENTRY and API_SINGLE supply the following as a second header: */
typedef struct ({
unsigned int process_id;/* Process ID of API_ proxy */
unsigned int thread id;/* Thread ID of API proxy */
unsigned int library id;/* Library identifier of proxied API */
unsigned int API id;/* Unique id for each proxied API */
} minor wch header;

/* API_SINGLE will supply a third header following the second header:
*/

typedef struct ({
unsigned int timestamp;/* api return timestamp for API SINGLE */

unsigned int alignment uint;/* To maintain double word alignment
*/
} stamp2 wch header;
/*
Packets will be generated for an API proxy as either a pair of
API ENRTY
and API EXIT sharing a common ticket number OR one API SINGLE.
*/

The above structures, including the process ID, thread ID, and total length of the
proxy record, are filled in for you automatically.

Recording and Script Generation Services 73

Proxy Services Reference

Proxy Examples

Following are examples illustrating API_SINGLE and API _ENTRY/API_EXIT. In
this examples, pMyProxyFunc () is the name of the proxy function and RealFunc ()
is the name of the actual function in the target DLL that is being recorded.

The following is an API _SINGLE example.

typedef struct({
int iInput;

int iInput2;

int dwResult;
}MYSTRUCT ;

LRESULT pMyProxyFunc(int iInput, int iInput2, LPSTR szInString, LPSTR
szOutString)

DWORD dwTicket, dwTimeStamp;
LRESULT dwResult;
MYSTRUCT *pMyStruct;

dwTicket = ProxyGetTicket () ;
if (dwTicket == PROXY INVALID TICKET)

{
}

return RealFunc(iInput, iInput2, szInString, szOutString)

else
dwTimeStamp = ProxyGetTimeStamp () ;
dwResult = RealFunc(iInput, iInput2, szInString,
szOutString)

pMyStruct = ProxyLockNew (dwTicket,
dwTimeTimeStamp,
PROXY LIB MY PROXY,
P_MYPROXY 1ID,
API SINGLE,
sizeof (MYSTRUCT) ;

pMyStruct.iInput = iInput;
pMyStructiInput2 = iInput2;
pMyStruct.dwResult = dwResult;

ProxyWriteBlock (szInString, strlen(szInString) + 1);
ProxyWriteBlock (szOutString, strlen(szOutString) + 1);

ProxyUnlock (0) ;

return dwResult;

74 Chapter 4

typedef struct(
int iInput;

int iInput2;
}MYSTRUCT IN;

typedef struct({
int dwResult;
}MYSTRUCT OUT;

The following is an API_ENTRY/API_ EXIT example.

Proxy Services Reference

LRESULT pMyProxyFunc(int iInput, int iInput2, LPSTR szInString, LPSTR

szOutString)

{
DWORD dwTicket, dwTimeStamp;
LRESULT dwResult;
MYSTRUCT_IN *pMyStructlIn;
MYSTRUCT_OUT *pMyStructOut;

dwTicket = ProxyGetTicket () ;
if (dwTicket == PROXY INVALID TICKET)

{

return RealFunc(iInput, iInput2, szInString, szOutString)

}

else

{

dwTimeStamp = ProxyGetTimeStamp () ;

pMyStructIn = ProxyLockNew (dwTicket,
dwTime,
PROXY LIB MY PROXY,
P_MYPROXY ID,
API_ENTRY,
sizeof (MYSTRUCT IN) ;

ProxyWriteBlock (szInString, strlen(szInString) + 1);

ProxyUnlock (0) ;

dwResult = RealFunc(iInput, iInput2,

szOutString)

pMyStruct = ProxyLockNew (dwTicket,
dwTime,
PROXY LIB MY PROXY,
P _MYPROXY ID,
API EXIT,
sizeof (MYSTRUCT) ;

pMyStruct.dwResult = dwResult;

szInString,

ProxyWriteBlock (szOutString, strlen(szOutString) + 1);

Recording and Script Generation Services 75

The GetAnnotations() Service Function

ProxyUnlock (0) ;
return dwResult;

The GetAnnotations() Service Function

Script Generation Options on page 81 describes features that API Recorder Adapters
must support and that Custom Recorder Adapters can support. These features allow
Robot users to insert comments, synchronization points, start/end blocks, and
start/end timers at specified locations inside generated test scripts. If a user specifies
these options, they are automatically recorded in an annotations file. Your script
generator adapter is then responsible for reading this file and placing the requested
code in the test script. You use the GetAnnotations () call to access the entries in
the annotations file.

GetAnnotations()

Reads the annotations file.

Syntax

int GetAnnotations (TCHAR sessionName[], int insertType, TCHAR
*insertVal, int *insertValSize)

Element Description

sessionName Enter the name of the session file that the annotations file you
are reading is associated with. For custom recordings, the
session file name is an input argument included with
StartRecording() on page 43. For API recordings, the session
file name is returned to the API Script Generator Adapter by
SetOptions() on page 37.

insertType Enter one of the following values indicating the type of insert
to be retrieved:

* RSR ANNOTATION SPLITS
* RSR_ANNOTATION COMMENTS
* RSR_ANNOTATION TIMERS
* RSR ANNOTATION BLOCKS
* RSR_ANNOTATION_ SYNC_PTS

If multiple inserts of this type are present, all are returned.

insertvVal OUTPUT. After a successful call, insertVval contains all
insertions of the specified type in the annotations file.

76 Chapter 4

The GetAnnotations() Service Function

Element Description

insertValSize Pointer to the size of insertval. If this size is too small, the
required size is returned.

Return Value

* RSR_SUCCESS. Success. The call found annotations of type insertType and
returned them to insertval.

* RSR_OBJECT DOES NOT_ EXIST.No annotations of type insertType were
found.

* RSR BUFFER TOO SHORT. The local container insertVal is too small to contain
all insertions of the specified type.

» RSR_FAILURE. The call failed, probably because of an internal error.

Comments

The first line of the annotations file contains an integer representing the base time at
the creation of the session file. All other lines in the file contain time stamps that are
offsets relative to the base time. A script generator adapter uses these offsets in order
to determine placement of the insertion in the generated test script.

Following is a sample annotations file containing these insertion requests: two
split-scripts, one comment, two synchronization points, two start/stop blocks, and
two start/stop timers.

995471049

79334, script 1
86794, script 2
71792, comment 1
35000, sync point 1
61479, sync point 2
29712, 50763, block 1
55941, 79334, block 2
24035, 79294, timer 1
41699, 79334, timer 2

If called with argument RSR_ANNOTATION_ SPLITS, GetAnnotations () returns
the first three lines; with argument RSR_ ANNOTATIONS COMMENTS, lines 1 and 4;
with argument RSR_ ANNOTATIONS TIMERS, the first and last two lines are returned
— and so on.

Example

This example queries the annotations file for insertions of type
RSR_ANNOTATION SPLITS.

Recording and Script Generation Services 77

The GetAnnotations() Service Function

//specify size of reply buffer
int ReplySize = 1024;

//dynamically allocate the reply buffer
TCHAR *ReplyBuffer = new TCHAR [ReplySizel];

//call GetAnnotations and react according to its return flag.

switch (GetAnnotations (tchar (SessionName) ,RSR_ANNOTATION SPLITS,ReplyBu
ffer, &ReplySize))

case RSR_SUCCESS:
//you have your request in Reply buffer
TRACE ("\n") ;
TRACE (ReplyBuffer) ;
TRACE ("\n\n") ;
break;
case RSR_OBJECT DOES NOT EXIST:
//no split-script insertion requests were present
break;
case RSR_BUFFER_TOO_ SHORT:
//your buffer was too short. Call again with needed size.
delete ReplyBuffer;
ReplyBuffer = new TCHAR [ReplySize] ;

switch (GetAnnotations (tchar (SessionName) ,RSR_ANNOTATION SPLITS,ReplyBu
ffer, &ReplySize))

case RSR _SUCCESS:
//you have what you asked for in ReplyBuffer
TRACE ("\n") ;
TRACE (ReplyBuffer) ;
TRACE ("\n\n") ;
break;
default:
ASSERT (FALSE) ;
}

break;
case RSR FAILURE:
default:

ASSERT (FALSE) ;

78 Chapter 4

Adapter Configuration

About Adapter Configuration

The extensibility framework provides a way for Robot users to specify configuration
options for the adapters you develop (except for API Recorder Adapters, which do
not support configuration options). The same calls are used for all adapter types:

» GetOptions () returns to Robot all configuration options supported by an
adapter. But while the call is the same, the supported option arguments are
different for different types of adapters.

* SetOptions () passes a choice or parameter specified by a Robot user to an
adapter, so that the adapter can implement the choice.

* GetAnnotations () isaservice call that script generator adapters use in order to
support scripting options specified by the user during recording.

Configuration Argument Format

Configuration options are passed by defined argument strings specified with
GetOptions () and SetOptions (). Configuration options fall into two categories:
those defined by Robot and those defined by an adapter. Robot-defined option
arguments have the format

option-argument[,value]

where option-argument is a defined string and value is a setting (settings are
relevant for some but not all options). A value setting is a string that cannot contain
commas or semicolons (spaces are okay).

Adapter-defined options have the format
name,value,description

Neither of the three arguments can contain internal commas or semicolons.

79

Robot-Defined Configuration Options

The two types of arguments, which can be intermixed, are separated by semicolons.
For example, the following argument returned in response to GetOptions ()
indicates that the adapter supports two Robot-defined options and one
adapter-defined option:

RECORD_SPLIT;
TEST _SCRIPT TYPE, RSR_SCRIPT TYPE JAVA;
SERVER USERNAME, system, Username for privileged operations

Robot-Defined Configuration Options

There are three categories of Robot-defined options:
» Recording Options on page 80.

= Script Generation Options on page 81.

» Miscellaneous (non-GUI) Options on page 83.

Recording Options

When the user starts recording, the Session Record floating tool bar appears (see
below, left side), from which the Session Insert tool bar (right side) can be opened.

Open Robot window Synchronization

point

f!*’l'ﬁﬁfh! lu

/

Start Start / stop Start / stop
application timer block

Split script

Open Session
Insert toolbar

Options on these tool bars allow users to insert time-stamped data into an annotations
file. If your Custom Recorder Adapter enables these options, the associated Custom
Script Generator Adapter, in order to script the preferences, must interpret the
annotations file entries and synchronize them with the session file. API Script
Generator Adapters must support these options.

80 Chapter5

Robot-Defined Configuration Options

The following table lists the argument strings that enable the features on the Session
Record and Session Insert dialog boxes. If your Custom Recorder Adapter does not
include these argument strings in response to GetOptions (), the corresponding
icon is dimmed. The icons are always enabled during API recording and so should be
supported by API Script Generator Adapters.

Feature Argument String

Start Application RECORD_START APP
Split Script RECORD_ SPLIT
Insert Timer start/stop RECORD_ TIMER
Insert Comment RECORD_COMMENT
Insert Block start/stop RECORD_BLOCK

Script Generation Options

The Generator tab of the Session Record Options dialog box displays script generation
options that Custom Script Generator Adapters and API Script Generator Adapters
can enable or disable. The following figure shows the GUI options and the argument
strings you use to enable the options. If your script generator adapter does not include
these argument strings in response to GetOptions (), the corresponding checkbox
or entry box is shaded. See GetOptions() on page 58 (Custom Script Generator
Adapters) or GetOptions() on page 35 (API Script Generator Adapters) for the exact
configuration arguments to use in order to enable these options.

Adapter Configuration 81

Robot-Defined Configuration Options

GENERATOR_VERIFY_ GENERATOR_DISPLAY GENERATOR_VERIFY_ GENERATOR_BIND_VU
ROW_COUNTS _ROwWS RETURN_CODES _VARS

GENERATOR_USE
_DATAPOOLS

GENERATOR_
COMMAND_ID

GENERATOR_
PLAYBACK_PACING

GENERATOR_CPU
THRESH

GENERATOR_THINK

One other script generation option, relevant only for Custom Recorder Adapters,

appears on the General tab. If Prompt for application name on start recording is checked,
the user is prompted to name an application to be started at the outset of recording.
The argument string that enables this checkbox is GENERAL _START APP_PROMPT.

82 Chapter5

Miscellaneous (non-GUI) Options

Robot-Defined Configuration Options

The following table describes the argument strings for non-GUI configuration options
and names the type of adapter that can specify the argument in response to
GetOptions (). These option arguments describe how your adapters work
internally or how adapters communicate with one another or the Robot user.

Argument String

Used by

Description

CONFIGURATION,
name,value,
description
[,valuel, value2 ...

]

Custom Recorder
Adapter, Custom
Script Generator
Adapter, Generator
Filter Adapter, API
Script Generator
Adapter

Specifies an adapter-defined option. See
Adapter-Defined Configuration Options on
page 84.

CONFIGURATION,
USE_CUSTOM_UI

Custom Recorder
Adapter, Custom
Script Generator
Adapter, Generator
Filter Adapter, API
Script Generator
Adapter

Specifies that the adapter supplies a custom
GUI for displaying and editing of
adapter-defined configuration settings. See
Using a Custom Ul for Custom Options on
page 85.

DEFAULT SCRIPT
_ GENERATOR

Custom Recorder
Adapter

Specifies the display name of the
corresponding Custom Script Generator
Adapter. If not specified, the user must
select the adapter from the Script Generator
box on the Method tab.

If a Custom Recorder Adapter can be used
with only one Custom Script Generator
Adapter, remove ambiguity for the user by
assigning them the same display name..

SESSION_FILES,
type

Custom Recorder
Adapter

Specifies the internal format (Rational
binary format, XML, or custom) of the
session file(s). This option must be
specified.

TEST SCRIPT TYPE, |Custom Script Specifies the language (Java, Visual Basic, or
t ype_ a Generator Adapter, |VU) of the generated script. This option
Generator Filter must be specified.
Adapter
USE_SCRIPTGEN Custom Script Specifies that an adapter supplies progress
PROGRESS Generator Adapter |information so that the waiting user can see

the status in a progress dialog box.

Adapter Configuration 83

Adapter-Defined Configuration Options

Adapter-Defined Configuration Options

Adapters may define custom configuration options (except for API Recorder
Adapters, which do not support custom options). Adapter-defined options are
comma-separated name-value-description triplets that are known only to the adapter.

These options are defined with this argument string:
CONFIGURATION,name,value,description[,valuel, value?2 ...]

Robot users may specify adapter-defined configuration options. If you supply
optional value arguments to define all valid settings for an option, instead of having
to enter a value, the user selects from a predefined list of values. This prevents
typographical errors and eliminates the need to parse user selections.

By default, custom options returned from a Custom Recorder Adapter in response to
the GetOptions () call appear on the Method: Custom tab (illustrated below).

KMHello EJB to Record
system YWeblogic Server User Name
weblogic YWeblogic Server Password

84 Chapter5

Adapter-Defined Configuration Options

The following fragment shows the response to GetOptions () by a Custom Recorder
Adapter that would result in the display shown above.

CONFIGURATION, EJBName, KMHello,EJB to Record;
CONFIGURATION, ServerUsername, system, WebLogic Server User Name;
CONFIGURATION, ServerPassword, Weblogic,WebLogic Server Password

The triplet grid shown above appears on a different tab depending on the type of
adapter:

» Custom Recorder Adapter options appear on the Method:Custom tab shown
above.

» Custom Script Generator Adapter options appear on the Generator:Custom tab.

= API Script Generator Adapter options appear on the Generator per Protocol tab.

Using a Custom Ul for Custom Options

Your adapter can provide a custom GUI for options it defines. This choice is
controlled by the option:

CONFIGURATION, USE CUSTOM UI

If your adapter specifies this option, the Configure button at the bottom of the options
grid (see the previous figure) is enabled. If the user clicks this button, you start the
GUL

If your adapter provides a custom GUI, your response to GetOptions () is not
required to include custom options or to adhere to the Robot-defined triplet format
for custom options. If your GetOptions () response does include custom options,
the Robot user can use both the triplet grid and the custom GUL

If your adapter provides a custom GUI, you are responsible for any necessary user
documentation and for conveying a user’s choices to the adapter.

Adapter Configuration 85

Adapter-Defined Configuration Options

86 Chapter5

Index

A

API adapters
API Recorder Adapter API 14
API Script Generator API 31
Generator Filter Adapter API 17
source of protocol name 20

API Recorder Adapter
API summary 14
GetApiAndWrapperNamePairs() 16
GetAPIRecAdapterInfo() 14
IsAPIRecorderAdapter() 14

API recording services
examples 74
ProxyExceptionHandler() 72
ProxyGetAssignedLibraryID() 68
ProxyGetTicket() 69
ProxyGetTimeStamp() 70
proxyhdrh 73
ProxyLockNew() 70
ProxyUnlock() 72
ProxyWriteBlock() 71

API Script Generator Adapter
API summary 31
custom options 85
enable/disable Generator tab options 81
GetOptions() 35
GetStatus() 34
InitializeScriptgen() 32
IsAPISgenAdapter() 31
list of configuration arguments 35
PassComplete() 33
ProcessAPIPacket() 32
SetOptions() 37

application-under-test 3

AUT See application-under-test

C

CancelScriptgen() 57

CheckAPIPacket() 19
Custom Recorder Adapter

API summary 41

custom options 85
DisplayCustomConfigGUI() 51
enable/disable record options 81
GetDisplayName() 46
GetOptions() 46
InitializeRecorder() 42
IsCustomRecorderAdapter() 42
list of configuration arguments 47
service functions 67
SetOptions() 49
StartRecording() 43
StopRecording() 45

Custom Script Generator Adapter

API summary 53

CancelScriptgen() 57

custom options 85
DisplayCustomConfigGUI() 63
enable/disable Generator tab options 81
GetDisplayName() 57
InitializeScriptgen() 54
IsCustomScriptgenAdapter() 53

list of configuration arguments 35, 59
StartScriptgen() 55

Custom U, enable 85

DisplayCustomConfigGUI() (Custom Recorder

API) 51

DisplayCustomConfigGUI() (Custom Script Gen-

erator API) 63

DisplayCustomConfigGUI() (Generator Filter

API) 24

dynamic-link library, target 3

87

F

filter adapter 3
filter adapter, for API recording 17

G

Generator Custom tab, purpose 85
Generator Filter Adapter
API summary 17
CheckAPIPacket() 19
DisplayCustomConfigGUI() 24
GetDisplayName() 20
GetOptions() 21
GetScriptgenDIlIName() 18
IsAPIGenFiltExtAdapter() 17
list of configuration arguments 22
SetOptions() 23
Generator per Protocol tab, purpose 85
GetApiAndWrapperNamePairs() 16
GetAPIRecAdapterInfo() 14
GetDisplayName() (Custom Recorder API) 46
GetDisplayName() (Custom Script Generator
API) 57
GetDisplayName() (Generator Filter API) 20
GetOptions() (API Script Generator API) 35
GetOptions() (Custom Recorder API) 46
GetOptions() (Generator Filter API) 21
GetScriptgenDIlIName() 18
GetStatus() 34

InitializeRecorder() 42

InitializeScriptgen() (API Script Generator
API) 32

InitializeScriptgen() (Custom Script Generator
API) 54

IsAPIGenFiltExtAdapter() 17

IsAPIRecorderAdapter() 14

IsAPISgenAdapter() 31

IsCustomRecorderAdapter() 42

IsCustomScriptgenAdapter() 53

88

M

Method Custom tab, purpose 85

P

PassComplete() 33
ProcessAPIPacket() 32
protocol 3

protocol name, source of 20
proxy services, list 67
ProxyExceptionHandler() 72
ProxyGetAssignedLibraryID() 68
ProxyGetTicket() 69
ProxyGetTimeStamp() 70
ProxyLockNew() 70
ProxyUnlock() 72
ProxyWriteBlock() 71

R

recorder adapters
API Recorder Adapter API 14
Custom Recorder Adapter API 41

S

script generator adapters
API Script Generator Adapter API 31
Custom Script Generator API 53
SetOptions() (API Script Generator API) 37
SetOptions() (Custom Recorder API) 49
SetOptions() (Generator Filter API) 23
StartRecording() 43
StartScriptgen() 55
StopRecording() 45

T

target library 3

	Rational® Testing Products
	Session Recording and Script Generation Extensibility Reference
	Contents
	Preface
	About This Manual
	Audience
	Other Resources
	Integrations Between Rational Testing Tools and Other�Rational Products
	Contacting Rational Technical Publications
	Contacting Rational Customer Support

	Introduction to the Robot Extensibility Framework
	About Session Recording and Script Generation
	Overview of the Extensibility Framework
	Extending API Recording and Script Generation
	API Recording and Script Generation — Standard
	API Recording and Script Generation — Extended
	API Example

	Implementing Custom Recording and Script Generation
	Installing Adapters
	Header Files
	Build Files

	Limitations

	API Adapter Reference
	About API Adapters
	API Recorder Adapter API
	IsAPIRecorderAdapter()
	GetAPIRecAdapterInfo()
	GetApiAndWrapperNamePairs()

	Generator Filter Adapter API
	IsAPIGenFiltExtAdapter()
	GetScriptgenDllName()
	CheckAPIPacket()
	GetDisplayName()
	GetOptions()
	SetOptions()
	DisplayCustomConfigGUI()
	Sample API Generator Filter Adapter

	API Script Generator Adapter API
	IsAPISgenAdapter()
	InitializeScriptgen()
	ProcessAPIPacket()
	PassComplete()
	GetStatus()
	GetOptions()
	SetOptions()

	Custom Adapter Reference
	About Custom Adapters
	Design Recommendation

	Custom Recorder Adapter API
	IsCustomRecorderAdapter()
	InitializeRecorder()
	StartRecording()
	StopRecording()
	GetDisplayName()
	GetOptions()
	SetOptions()
	DisplayCustomConfigGUI()

	Custom Script Generator Adapter API
	IsCustomScriptgenAdapter()
	InitializeScriptgen()
	StartScriptgen()
	CancelScriptgen()
	GetDisplayName()
	GetOptions()
	SetOptions()
	DisplayCustomConfigGUI()

	Recording and Script Generation Services
	About Recording and Script Generation Services
	Proxy Services Reference
	ProxyGetAssignedLibraryID()
	ProxyGetTicket()
	ProxyGetTimeStamp()
	ProxyLockNew()
	ProxyWriteBlock()
	ProxyUnlock()
	ProxyExceptionHandler()
	Proxy Data Types
	Proxy Examples

	The GetAnnotations() Service Function
	GetAnnotations()

	Adapter Configuration
	About Adapter Configuration
	Configuration Argument Format
	Robot-Defined Configuration Options
	Recording Options
	Script Generation Options
	Miscellaneous (non-GUI) Options

	Adapter-Defined Configuration Options
	Using a Custom UI for Custom Options

	Index

