
Rational Software Corporation
Guide to Team Development

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026112-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026112-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface .xvii
Audience. xvii

Other Resources . xvii

Rational Rose RealTime Integrations With Other Rational Products xviii

Contacting Rational Customer Support . xix

1 Team Development .21
Goals of Team Development . 21

Sharing Within a Team Environment . 23

Protecting Configuration Items From Unintentional Changes. 24
Overwriting A Modification . 25
Adding Dependency Issues . 27
Changing Language Semantics . 29

Managing Relationships Between Configuration Items 30

Managing and Delivering Configuration Items . 31

Improving Efficiency in Team Development . 34
Team Development Roles. 34

Typical Roles . 35
Roles Vary Based on Team Size . 35

Architect Role . 35
Developer Role . 36
Product Tester Role . 36
Integrator Role . 37
Source Control Administrators . 37
Configuration Managers . 37
Project Managers . 38
Customer Role . 38

Recommendations . 38
Delivering the Product . 38
Source Control Fundamentals . 39
Preempting Conflicts . 41
Packaging Strategy. 41
Contents v

Managing Dependencies . 42
Labeling . 43
When Merging is Necessary. 43
Merging Detail Code Before Using Model Integrator . 44
Artifact Freeze . 44

A Special Type of Artifact Freeze .45

Building and Executing a Rational Rose RealTime Model 45

Advanced Concepts and Heuristics .46
Moving Controlled Model Elements . 46

Considerations .46
Heuristics .47

Renaming a Controlled Model Element . 47
Primary and Secondary Edits . 47

Model Conversion .48

Understanding Blue Deltas. 49
Parallel Development . 50
Model Integrator . 51
Using Rational ClearCase Multi-Site . 51
Using Rational ClearCase UCM . 52
Unique Ids . 52
Rational Quality Architect - RealTime Edition. 56
Additional Heuristics for Team Development . 56
Additional Recommendations. 57

2 Storage of Model Data . 59
Storing Model Data .59

What is a Controllable Element and a Controllable Unit? 60
What Elements Can Be Controlled?. 61
Parent and Child Controlled Elements . 62
Directory Structure for Model Data . 63
File Names for Controlled Units . 65
Controlled Units are Saved when Building . 66
Unit Information Tab . 67
What Level of Granularity Should I Use? . 68

How Stable is the Architecture? .69
How Many Users Will Be Working on This Model? .69
How Many Users Modify Elements in the Same Package? .70
How Large is Your Model? .70
Implications of Changing Unit Granularity. .70
Code Generation Performance .70
vi Contents

Sharing Controlled Units .71
Overview of Import, Add, and Share . 71

Import a File. 71
Add a Controlled Unit. 72
Share a Controlled Package . 72
Summary of Import, Add, and Share . 73

Creating Sharable Controlled Units .74
Sharing Model Properties with Controlled Units . 74

Working with Controlled Units .74
Controlling a Subset of the Controllable Elements. 75
Controlling All of the Controllable Elements. 75
Changing the Granularity of Controlled Units. 76

Moving Controlled Units .76
Moving Controlled Units Between Model Directories . 76
Moving Elements Between Controlled Units . 77

Synchronizing Models with the File System. .77

Export Controllable Elements from a Model to a File.77

Services Library packages .78

Import Controllable Elements from a File to a Model78

Add an Existing Controlled Unit to a Model .79

Share an Existing Controlled Unit into a Model .80
Shared package producer:. 81
Shared package consumer: . 81

Produce a Single Model File from a Model with Many Units 81

Virtual Path Maps. .82
How Do Virtual Paths Work? . 82
Defining Virtual Paths. 83

Defining a New Path Map Using Another Path Map Symbol 84
Implicitly Defined Pathmap Symbols . 84
Using Path Maps When Sharing Packages . 84
Using virtual paths in the value of a model property . 85
Contents vii

3 Source Control Fundamentals . 87
Fundamentals .87

Source Control in Rational Rose RealTime .88
Source Control Status . 88
What are Primary and Secondary Edits? . 89

Source Control Settings .90
Accessing Source Control Operations .93

Source Control Operations . 94
Refresh Status .94
Synchronize .94
Get .95
Check Out .95
Uncheckout .95
Add .95
Check In .95
Submit All Changes .95
Apply Label .96
Show Differences .96
Show History .96

Types of Source Control Systems . 97
File Based Source Control Systems .97
View Based Source Control Systems .98

Source Control Development Concepts .98
Development Activity . 98
Integration. 98
Lineup. 98
Working in Isolation . 99

Versioning Strategies .100
Single Stream Versioning . 100
Parallel Stream Versioning . 100

4 Organizing a Model (Architect Activities). 103
Overview .103

Packages, Models, and Subsystems .104

One Model versus Multiple Models .105

Getting Started. .106
Mapping the Architecture to Subsystems . 106
Decomposing a Model into Subsystems . 107
Splitting a Model . 107
viii Contents

Checking Package Dependencies for Completeness 107
Show Access Violations . 107
Determine the External Dependencies for a Package 108

Check if a Subsystem is Self-contained. .110

Define Subsystem Interface .110
Best Practices . 110

Scratch Pad Packages .110
Remember . 112
Potential Problems. 113

Setup Subsystem Components .113
Background . 113
Components in Subsystems . 114

Support for Unit Testing .115

Use Property Sets for Build Settings .116

Processors and Component Instances .116
Project Level Processors . 116
Subsystem Level Processors . 117
Component Instances . 117

Preparing and Releasing Subsystems .118

Splitting a Model into Subsystem Models .119
Should You Split a Model Before Adding to Source Control?. 119
Splitting a Model Not in Source Control . 119

Splitting a Model Under Source Control. .122

5 Working with a Model Under Source Control (Developer Tasks) 127
Setting up your Source Control Tool .127

Configuring Work Areas .128

Getting a Specific Lineup of a Model .128

Opening a Model Under Source Control .128

Adding a new Controlled Unit into Source Control .129
Check Out Parent Package . 129

Checking Controlled Units In and Out of Source Control129
Checking Out Controlled Units . 129
Checking In Controlled Units . 130
Submitting All Changes to Source Control . 130
Undoing a Check Out . 132
Contents ix

Building and Running Locally. .133
Reusing Build Settings . 133
Probes and Inject Messages . 134

Unit Testing Within a Subsystem .134
Best Practices. 134

Set Up Private Components .134

Differencing and Merging Model Elements .135

Synchronizing Models with Source Control .135

Promoting Changes for Integration .136

6 Building and Integrating (Integrator Tasks) 137
Building Using Automated Scripts .137

Windows . 137
UNIX . 139

Building within a Larger Build Procedure .140

Reuse of Build Artifacts .141

Integrating Changes. .143

Automating Model Validation .143

7 Source Control Administration . 145
Set up a Source Control System and Repository .146

Control Appropriate Model Elements as Units .146

Create a Local Work Area .146

Save Model to Local Work Area. .147

Configure the Workspace Source Control Options 147

Add the Model to Source Control .147

Make Default Workspace Available to Project Members147

Defining Developer Work Areas .148

Creation of Labels and Lineups .148

Manipulation of the Source Control Repository .148

8 Source Control Tools . 149
Rational ClearCase .150

General Recommendations . 150
Source Control Operation Behavior with ClearCase. .151
x Contents

UCM Integration .152
Activity Selection Combination Box . 152
Run Project Explorer . 152
Rebase. 152
Deliver . 153

Snapshot Views .153
Check in . 154
Check out. 154
Get . 154
Update . 155
Hijacking a File. 155
Deliver . 155
Rebase . 155
Activities. 155

ClearCase Workstation Setup .155
Command Line Access to the Source Control Tool . 156
Element Type Setup: Type Manager . 156
ClearCase Options. 157

ClearCase Repository Setup .157

ClearCase Work Area Setup .158

Microsoft Visual SourceSafe .158
General Recommendations . 158
Source Control Operation Behavior with SourceSafe 158
Label . 159

SourceSafe Workstation Setup .159
Command Line Access to the Source Control Tool . 159
Set Project Mapping Option . 159
Let Visual SourceSafe Know Which Database to Use 159
SourceSafe Repository Setup . 160

RCS and SCCS .160
Repository Mapping Files (.rmf). 161
Source Control Operation Behavior with SCCS. 162
RCS/SCCS Repository Setup . 162
RCS/SCCS Workstation Setup . 162

Command Line Access to the Source Control Tool . 162
Create an RMF File . 162
Set RMF Environment Variable . 162

RCS/SCCS Work Area Setup . 163
Contents xi

PVCS .163
Source Control Operation Behavior with PVCS . 164
PVCS Workstation Setup . 164

Command Line Access to the Source Control Tool. .164
Let PVCS Know Which Database to Use .164

PVCS Repository Setup . 165
Archive Suffixes .165
Write Protect Workfiles .165
One Lock Per Version/User .165
Registering a New Configuration .165

PVCS Work Area Setup . 166

9 Model Validation . 167
Introduction .167

What is a Model Inconsistency? .168

What is an Unresolved Reference? .169

What do the Errors/Warnings Mean?. .171

Validating Names .172

10 ClearCase Parallel Development: Sample Process. 175
Parallel Development Overview .176

Making Design Changes in Parallel . 178

Using View Templates .179

ClearCase Entities .180
Views . 180
View Template . 180
Labels . 180

Initial Setup .180
Create the Integrator View . 180
Create Project Labels . 181
Create Initial Lineup . 181
Creating the Developer View Template. 181

Automated Builds .184
Create the Build View . 185
Label Build Files . 186
Perform Build . 186
When the Build Completes Successfully . 186
xii Contents

Developer Process .187
Creating a Developer View. 188
Starting a Development Activity . 188
Working on a Development Activity . 189
Finishing a Development Activity . 189

Integration Process .189
Integrating Intermediate Changes . 190

View Template Script Usage .191
vtadmin. 191
vtsetview . 192

11 Customizing Source Control Interface Scripts. 193
Overview .193

Customizing Scripts .194
Input Parameters . 194
Output Expected . 194
Output Format . 194
Script Return Code . 194
Notes . 194

Script Parameters .195
cm_getcaps . 196
cm_status. 198
cm_get . 198
cm_add . 199
cm_checkout . 199
cm_checkin . 200
cm_uncheckout . 200
cm_history . 200
cm_extract . 201
cm_label. 201
cm_diff . 202
cm_merge . 202

Index. 203
Contents xiii

xiv Contents

Figures
Figure 1 UML Class Diagram of a Shared and Isolated Implementation. 24
Figure 2 Overwriting a modification . 25
Figure 3 Check-out and Check-in Scenario . 26
Figure 4 Checking Out an Artifact After it is Checked In 26
Figure 5 Merging Changes Prior to Check-In . 27
Figure 6 Comparison Between Versions . 27
Figure 7 Removing Required Dependencies . 28
Figure 8 Code Example Showing Changes to Language Semantics 29
Figure 9 Resulting Artifact After Merging Changes . 30
Figure 10 Comparing Dependency Reports . 31
Figure 11 Labelling Configuration Items . 32
Figure 12 Example of Labelling Items . 33
Figure 13 Comparing Reports . 34
Figure 14 Parallel Stream Versioning Strategy . 40
Figure 15 Packaging Strategies. 42
Figure 16 Incorrect Merge Scenario . 54
Figure 17 A Correct Merge Scenario . 55
Figure 18 Browser Icons for Controlled Units . 60
Figure 19 Browser Icons Example . 61
Figure 20 Sample model structure. 63
Figure 21 Directory structure for sample model. 64
Figure 22 Sample directory after granularity is reduced . 65
Figure 23 Filename Selection dialog . 66
Figure 24 Directory Name Selection dialog . 66
Figure 25 Unit Information tab . 67
Figure 26 Unique id conflict dialog. 79
Figure 27 Export shared package dialog . 82
Figure 28 Virtual Path Map dialog . 83
Figure 29 Controlled Unit Icons with Source Control . 88
Figure 30 Model Validation Example . 90
Figure 31 Source Control Settings. 91
Figure 32 Tools > Source Control Menu . 93
Figure 33 Source Control in the Browser context menu . 94
Figure 34 History dialog example . 96
Figure 35 Example Version Tree . 101
Figure 36 Model, Packages, and Subsystems. 105
Figures xv

Figure 37 Show Access Violations dialog . 108
Figure 38 Package Dependencies Diagram Example . 109
Figure 39 Scratch Pad Package Unit Information Tab . 112
Figure 40 Example Subsystem Components . 114
Figure 41 Add to Source Control dialog. 131
Figure 42 Check In Dialog . 132
Figure 43 Undo Check Out Dialog . 133
Figure 44 Version Tree Example . 177
xvi Figures

Preface
The purpose of this manual is to outline the goals of team development, and
recommend some best practices when using Rational Rose RealTime to help ensure
success.

This manual is organized as follows:

■ Team Development on page 21
■ Storage of Model Data on page 59
■ Source Control Fundamentals on page 87
■ Organizing a Model (Architect Activities) on page 103
■ Organizing a Model (Architect Activities) on page 103
■ Working with a Model Under Source Control (Developer Tasks) on page 127
■ Building and Integrating (Integrator Tasks) on page 137
■ Source Control Administration on page 145
■ Source Control Tools on page 149
■ Model Validation on page 167
■ ClearCase Parallel Development: Sample Process on page 175
■ Customizing Source Control Interface Scripts on page 193

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.
xvii

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime
xviii Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help

Integration Description Where it is Documented

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xix

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".
xx Preface

1Team Development
Contents

This chapter is organized as follows:

■ Goals of Team Development on page 21
■ Sharing Within a Team Environment on page 23
■ Protecting Configuration Items From Unintentional Changes on page 24
■ Managing Relationships Between Configuration Items on page 30
■ Managing and Delivering Configuration Items on page 31
■ Improving Efficiency in Team Development on page 34
■ Team Development Roles on page 34
■ Source Control Fundamentals on page 39
■ Building and Executing a Rational Rose RealTime Model on page 45
■ Advanced Concepts and Heuristics on page 46

Goals of Team Development

Developing complex systems requires that groups of people, such as analysts,
architects, developers, and testers, coordinate their efforts to produce the finished
product. Consequently, they must ask themselves the following questions:

■ What are we trying to accomplish in team development?

■ What are the goals of team development?

■ How does Rational help implement strategies and best practices to meet those
goals?

■ What do I need to do to have efficient and effective team development?

Team development touches on development, testing, configuration management,
project management, and other disciplines such as engineering, analysis and design.

This overview of team development helps provide the entire team with an overview
of the challenges associated with team development, while specifically outlining the
tools and mechanisms Rational Rose RealTime supports to aid in implementing a
team development strategy.
21

To support teams of analysts, architects, and software developers, Rational Rose
RealTime:

■ Allows team development of a single model by supporting decomposition of the
model into versionable units, called controlled units.

■ Permits moving or copying controlled units between work areas using virtual path
maps.

■ Permits sharing subsystems and layers among project members and external
projects through shared packages.

■ Allows you to generate C++ libraries in a development model, and share these
libraries into user models.

■ Enables teams to manage their model in concert with other project artifacts by
integrating with source control systems, such as Rational ClearCase.

■ Provides a tool called Model Integrator, to compare and merge controlled units.

■ Enables teams to build their models in concert with other project artifacts by
integrating with standard build environments, such as Rational ClearCase
clearmake.

The Guide to Team Development provides an overview of the basic team development
concepts in Rational Rose RealTime and specifies how to configure and use Rational
Rose RealTime in a team environment.

The goals of team development are to:

■ Allow team members to share their work with a team. See Sharing Within a Team
Environment on page 23.

■ Protect configuration items from unintentional change. See Protecting Configuration
Items From Unintentional Changes on page 24.

■ Manage the relationship between configuration items. See Managing Relationships
Between Configuration Items on page 30.

■ Deliver specific versions of configuration items to interested parties. See Managing
and Delivering Configuration Items on page 31

■ Reduce or eliminate disruptions to team activities. See Improving Efficiency in Team
Development on page 34.
22 Chapter 1 - Team Development

Sharing Within a Team Environment

After a developer completes an activity (work), they require a mechanism to share
that work with others. Integration is the mechanism that permits the integration of
changes made by a team member into what is currently being shared.

A version control system can facilitate the work flow of team members. A team
member working on a shared artifact acquires some type of implicit or explicit
permission to check-in their work by performing a check-out prior to working on the
artifact.

The check-out status for the artifact indicates to other team members that work is
currently being done to change the artifact. A configuration manager or configuration
system can monitor these operations and enforce any policies. The mechanism can
involve the use of a version control system, or it may be an unsophisticated
implementation whereby the check-in is a simple copy, and the communication is
verbal between developers. Regardless of the mechanism used, an awareness of a
change at the appropriate levels must be achieved, and you must assess the
implications of the change.

A check-in does not necessarily imply that the artifact is immediately available to
team members. Typically, it is useful to work with older versions of shared artifacts
until such time as the team is ready to access the latest version.

A version control system allows the team to return to previous versions of work,
while providing an audit trail of changes. The desire to associate work with specific
requirements is a type of policy the Integrator can enforce at integration time.

Work produced by a member of a team can affect other members of the team;
therefore, those effects must be intentional. A copy of the work is made available to a
team member in an environment isolated from other team members.

The environment is only isolated one-way. The work environment can see shared
team artifacts, but other environments are not effected by the isolated environment.
on page 1-24 is a UML class diagram that shows a typical implementation of how
work is shared and isolated. The Work class in on page 1-24 is not available to other
team members.
Sharing Within a Team Environment 23

Figure 1 UML Class Diagram of a Shared and Isolated Implementation

Note: Some version control tools may implement a strategy where the multiplicity between
the SharedWork class and the SharedWorkRevision would be 0..*

The benefits of this type of implementation are:

■ Development team members can produce builds in their isolated environment in
an iterative, non-intrusive way. It also allows team members to see a read-only
version of shared work.

■ Testing teams can perform a series of tests on a specific lineup of work in their own
test environment. A lineup is a collection of specific versions of files from a version
control repository.

■ Production users can use a particular lineup of work that has met quality control
criteria.

Protecting Configuration Items From Unintentional Changes

There are several ways a revision can cause unintentional changes to configuration
items:

■ Direct conflicting change where one change overwrites another. See Overwriting A
Modification on page 25.

■ The source from one change conflicts with another change by removing a
dependency that one of the changes relies on. See Adding Dependency Issues on
page 27.

■ A second modification changes the language semantics of the first change.

Table 1 shows the legend that explains some images found in Figure 2
through Figure 6.
24 Chapter 1 - Team Development

Table 1 Image Legend

Overwriting A Modification

If a team member shares their work with the team, not realizing that someone else
produced or edited some work with the same name, they may overwrite the changes
of the other team member.

Figure 2 Overwriting a modification

Most version control tools provide adequate protection from this type of
unintentional change through a process of obtaining permission to make
modifications, called a check-out. The version control tool grants implicit permission
when there are no check-outs currently in place. When one team member has an
artifact checked out, other team members are denied permission to check out that
same artifact until it is no longer required by the first team member. Figure 3 shows a
scenario where a check-out is followed by a check-in, allowing the sequence of events
to iterate.

Image Description

Represents an unintended change

Represents movement

Represents a unit of work or configuration item
Protecting Configuration Items From Unintentional Changes 25

Figure 3 Check-out and Check-in Scenario

This type of scenario may cause contention that is unacceptable for high traffic work
items. The diagonal lines in Figure 4 indicate that a check-out cannot occur until the
previous check-in process completes.

Figure 4 Checking Out an Artifact After it is Checked In

The problem illustrated in Figure 2 commonly occurs in strategies that do not use a
version control system. Because previous versions of configuration items are always
available to developers, the possibility of having this type of unintended change
always exists. A developer may make changes to a private copy of an artifact without
permission to do so. Subsequently, they may acquire the appropriate permission and
check-in the changes of the local copy that may not represent the latest version of the
configuration item.

You can use a merge tool to apply a combined set of changes in situations when
multiple team members have permissions to make changes to a single artifact. on
page 1-27 shows how you can merge two changes made to the same artifact.
26 Chapter 1 - Team Development

Figure 5 Merging Changes Prior to Check-In

It may be difficult to remove a set of changes that occurred in a previous version of an
artifact. The situation in Figure 6 shows us three versions of an artifact. If you want to
remove all changes applied to the second version (the changes occurring between the
two diagonal lines), you may encounter difficulties.

Figure 6 Comparison Between Versions

For example, the changes between version 1 and version 2 must be compared to the
changes between version 1 and version 3.

Obtaining adequate permission to modify artifacts helps to ensure that unintentional
changes do not occur. Configuration management can choose to implement and
enforce this type of policy.

Adding Dependency Issues

Modifying an artifact may cause a conflict with another change if it removes a
dependency that one or more other artifacts rely on. Figure 7 shows how this type of
problem can occur.
Protecting Configuration Items From Unintentional Changes 27

Figure 7 Removing Required Dependencies

Developer A and B individually check out artifacts A and B respectively, and have
access to the shared version of artifact A and B respectively.

Developer A creates a new dependency in foo() by adding
myBar-> bar().

Developer B makes changes to bar() in class A by changing the parameter signature to
integer.

Changes to bar - from bar() to bar(int) - cause any references to this function to fail.
The changes made by Developer B (to artifact B) that are referenced by foo in artifact
A are not valid.

Note: Most merge tools are unable to identify a conflict here because they compare items of
work individually, and not against all referenced work.
28 Chapter 1 - Team Development

This type of change is common and may have serious implications. Often, when
product maintenance is underway and feature development is concurrently managed,
the maintenance person or developer may be unsure or unaware of all dependencies
involved in a proposed change. Rather than research all the dependencies associated
with the artifact, they do not modify the original item. Instead, they create a new item
with the proposed changes.

Changing Language Semantics

This type of change is common and may have serious implications. Often, when
product maintenance is underway and feature development is concurrently managed,
the maintenance person or developer may be unsure or unaware of all dependencies
involved in a proposed change. Rather than search all the dependencies associated
with the artifact, they do not modify the original item. Instead, they create a new item
with the proposed changes.

When modifying an artifact, team members must be aware that subsequent changes
can affect the language semantics of the artifact. Figure 8 shows an example of how
changes can produce unexpected results.

Figure 8 Code Example Showing Changes to Language Semantics

Unless your merge tool knows something of the language semantics used, it may
produce a file like that in Figure 9.
Protecting Configuration Items From Unintentional Changes 29

Figure 9 Resulting Artifact After Merging Changes

The function dothat() is called only when there is trouble, and the function
dotheotherthing() is called only when okay is true. Since most developers do not
comment ending braces, it is difficult to identify the problem created by merging.
Figure 9 only illustrates a small example. A much more complex code block may
present a situation where it is difficult to see the unintended change.

Rational Rose RealTime Model Integrator is aware of the language semantics/model
syntax of model files.

Note: Although Rational Rose RealTime files are text files, the standard text file merge
tool is not aware of the Rational Rose RT language semantics or model syntax, and it
will corrupt the model files when it attempts to merge them.

Model Integrator is aware of the Rational Rose RealTime language semantics/model
syntax, but not of the language semantics for any language add-ins, or the UML.

Managing Relationships Between Configuration Items

Note: Team members must understand and use the dependencies between
configuration items to reduce or prevent unintended changes in the system.

Because most configuration items do not work in isolation from other configuration
items, a set of particular versions of configuration items has a set of dependencies.
When a set of versions of configuration items changes, the possibility exists that the
set of dependencies also changes. It is useful to compare the set of dependencies from
one set of versions to a previous set to ensure that dependency changes are
intentional.

A set of versions of configuration items is also known as a lineup. on page 1-31 shows
a generated dependency report for the lineup identified by the label called ALabel.
Later, a comparison is made between ALabel and another dependency report
generated for the lineup identified by BLabel. Although the dependency reports
30 Chapter 1 - Team Development

themselves may be too large to be of any use, a good differencing tool can make it
easy to see dependencies modified since a previous stable lineup of the project
artifacts.

Figure 10 Comparing Dependency Reports

Specific to Rational Rose RealTime, there are several levels of dependencies that must
be understood and managed:

■ Dependencies between control units in a model. See Storage of Model Data on
page 59 for more information on model files.

The Rational Rose RealTime Toolset interprets what is loaded into memory as the
entire model. When loaded from separate configuration items, the model elements
stored on secondary storage must be loaded such that it creates a model where
elements are consistent with any corresponding relationships.

■ Model element relationships

Managing and Delivering Configuration Items

A specific set of configuration items in their appropriate version (a lineup) must be
accessible and reproducible. Test teams, packaging teams, and production end users
must be able to work with a release of the entire system that is not in flux. Most
version control tools use labelling to produce an environment that contains the
desired set of configuration items. Labelling allows you to identify a version of a
configuration item with a retrieval marker through association.

Protection of these version sets is important. For example, in a test environment, a
small change to a single configuration item can render an entire set of test results
unreliable. Often, testing teams only have enough time to perform a specific group of
Managing and Delivering Configuration Items 31

tests once. When an element changes in the test environment while a set of tests are
underway, the schedule may not allow for regression testing, and the level of
confidence in the test results is downgraded.

Like most one-to-many relationships, a label is often stored many times; once with
each configuration item.

Figure 11 Labelling Configuration Items

Figure 11 shows the following:

■ The full set of configuration items are not all labelled at the same time.

Note: If the label is applied while the lineup changes, this may create an
inconsistent state.

■ A configuration item may be overlooked or may not be associated with the label.
Sometimes, it is better if the configuration item is not associated with the label. The
label associated with a previous version of the configuration item would make the
problem difficult to find.

A fixed label is the first primary use of a label, forever identifying a version of a
configuration item with a specific label. An example identifier of this type of label is
“Build 2000.10.04 night” or “Release 1.0”. It is also useful to include naming
convention details, such as the date and time in a label name.

The two types of floating labels (logical and explicit) become associated with different
versions of a configuration item.

Over time, a logical floating label is arbitrarily associated with the latest version of a
configuration item on a particular branch or stream. For example,
“LatestDevelopment” or “JanesLatest”.

An explicit floating label is explicitly assigned to different versions over time, and it is
almost always based on the associations of another label and not with the latest
versions on a branch or development stream. This means that it is not necessary to
“freeze” the configuration items to associate a label with versions already assigned to
32 Chapter 1 - Team Development

another label; only the state of the base label must be frozen. For example, Figure 12
shows that the SYSTEMTEST label is associated with version 3 of this particular
configuration item.

Figure 12 Example of Labelling Items

When the test team for the system is ready, they can associate the label with all the
versions associated with FUNCTIONALTEST. No changes should occur to the
FUNCTIONALTEST label until the SYSTEMTEST label change is complete. However,
assigning LATESTSTABLE with the current versions of all the files on the main branch
of development requires that no new main branch versions are added to any of the
configuration items until the LATESTSTABLE label change has completed the
operation. Since labels can be moved, it is good practice to produce and keep a dated
report on the versions associated with important labels for milestones.

Creating and comparing label reports of different dates on a regular basis can reveal
trends and areas that require additional testing to ensure quality of volatile areas of
the system. Figure 13 shows label reports for two consecutive weeks.
Managing and Delivering Configuration Items 33

Figure 13 Comparing Reports

Teams looking at a particular lineup of configuration items should retrieve artifacts
solely on the selection of configuration items associated with a specific label. Testing
in this type of environment quickly identifies overlooked configuration items because
of a missing association. It also ensures that all necessary configuration items are
included as they are made available to other teams.

Improving Efficiency in Team Development

The implementation of some team development practices can hinder the
implementation of other team development goals. Planned activities may be part of
the strategy to deal with implementation issues in a team environment.

You can reduce unplanned activities by using an effective strategy that promotes
handling conflicts up front. Your configuration management plan should implement a
strategy that promotes team development goals with as little impact to team activities
as possible. See Goals of Team Development on page 21 for more information about
specific team development goals.

The stakeholders of the configuration management plan are almost everyone, and
their needs vary significantly. The description of the roles and tasks in this document
is general and must be customized to suit your particular development organization.

Team Development Roles

This section provides an overview of the typical development roles played by team
members in a software project. The organization of the remaining sections elaborate
on the logical activities associated with these roles.
34 Chapter 1 - Team Development

Typical Roles

A role is a named behavior of an entity participating in team development, and each
role has assigned tasks to complete. There are typically seven roles to consider in your
team environment:

■ Architect
■ Developer
■ Integrator
■ Tester
■ Administrator (for source control)
■ Configuration Manager
■ Project Manager
■ Consumer

Roles Vary Based on Team Size

In a large team environment, several people can be responsible for different team
tasks associated with the same role, whereas smaller projects can have only one
person responsible for most or all of the tasks for a specific role.

A single person can play multiple roles. A user can perform Architect tasks while
working on the initial architecture of the system. Later, they can perform Developer
tasks when they are performing detailed implementation. After they make changes,
the user can perform Integrator tasks to promote this change to the integration branch
of their source control system.

Architect Role

The Architect establishes the overall structure of the model: the grouping of elements
into packages, the separation of models into subsystems, and the interfaces between
these major groupings. The Architect adapts the structure of the model to reflect the
organization of the team.

Architect Tasks:

■ Packages, Models, and Subsystems on page 104
■ Decomposing a Model into Subsystems on page 107
■ Splitting a Model on page 107

See Organizing a Model (Architect Activities) on page 103 for a description of these
tasks.
Improving Efficiency in Team Development 35

Developer Role

A Developer is anyone given check-in and check-out privileges for ongoing system
development or system maintenance.

Developer Tasks:

■ Configuring Work Areas on page 128
■ Getting a Specific Lineup of a Model on page 128
■ Opening a Model Under Source Control on page 128
■ Checking Controlled Units In and Out of Source Control on page 129
■ Building and Running Locally on page 133
■ Unit Testing Within a Subsystem on page 134
■ Promoting Changes for Integration on page 136

See Working with a Model Under Source Control (Developer Tasks) on page 127 for a
description of these tasks.

Product Tester Role

The Test Designer is the principal role in testing, and is responsible for planning,
designing, implementing, and evaluating the test.

Tester Tasks:

■ Configuring Work Areas on page 128
■ Getting a Specific Lineup of a Model on page 128
■ Opening a Model Under Source Control on page 128
■ Sharing controlled units
■ Building and Running Locally on page 133
■ Generating a test plan and test model
■ Implementing test procedures
■ Evaluating test coverage, results, effectiveness
■ Generating a test evaluation summary

The Tester is responsible for:

■ Setting up and executing the test.
■ Valuating test execution.
■ Recovering from errors.
36 Chapter 1 - Team Development

Integrator Role

An Integrator combines changes from multiple developers to produce an internal
build that they can use as the basis for the next set of development activities.

Integrator Tasks:

■ Working with an integration model
■ Sharing controlled units
■ Building Using Automated Scripts on page 137
■ Building within a Larger Build Procedure on page 140
■ Reuse of Build Artifacts on page 141
■ Integrating Changes on page 143

See Building and Integrating (Integrator Tasks) on page 137 for a description of these
tasks.

Source Control Administrators

The Source Control Administrator provides the overall source control infrastructure
and environment for all required members of the team.

Source Control Administrator Tasks:

■ Configuring the source control system for use with Rational Rose RealTime
■ Placing a model under source control
■ Creating a default workspace file
■ Defining work areas
■ Defining lineup policies
■ Enforcing all other configuration management plan policies

Depending on your team organization, the Integrator role can perform one or more of
these tasks.

Configuration Managers

The Configuration Manager provides the overall Configuration Management (CM)
infrastructure and environment. The CM function supports the product development
activity so that developers, integrators, and testers have:

■ Appropriate workspaces to build and test their work.
■ All artifacts are available for inclusion in the deployment unit, as required.

The Configuration Manager must ensure that the CM environment facilitates product
review, change, and defect tracking activities. The Configuration Manager is
ultimately responsible for a comprehensive plan that identifies and deals with pitfalls
to team development in the most efficient way for the project.
Improving Efficiency in Team Development 37

Project Managers

The Project Manager allocates resources, determines priorities, coordinates
interactions with customers and users, and generally keeps the project team focused
on the right goal. The Project Manager also establishes a set of practices to ensure the
integrity and quality of project artifacts.

Customer Role

The result of the development effort is customer consumable. It is usually impossible
to tell from the product the specific versions of source files used to create it.

Most products have some way of providing information to the customer that could
assist in determining the versions of source files used to create it. Sometimes, a
combination of product version label and build numbers are reported to the customer
in an About dialog box, much like the Rational Rose RealTime Toolset. Label the
particular lineup of source files used to create the product delivered to the customer
for possible retrieval. Customers need to know that any bug fixes provided by the
maintenance team will contribute to the stability of the product.

Recommendations

Protection of configuration items and the ability to deliver a consistent set of
configuration items are the main priorities of the configuration management plan. An
implementation of a plan to achieve the other goals should support this ideal.

Use the source control operations supported through Rational Rose RealTime to
facilitate the implementation of a greater configuration management plan. For
complex projects, a large part of the configuration management strategy that deals
with Rational Rose RealTime models may be strict ownership of shared packages.

You may think of shared packages as the building blocks of the system. One Rational
Rose RealTime model brings all the building blocks together in a coherent system.
Many working models are used with the sole purpose of creating and testing those
building blocks.

Delivering the Product

Associate the creation of configuration items and subsequent changes with an activity
under the approval of a single point of contact. This single point of contact is
sometimes implemented as a Change Control Board (which may have an alternate
name within your organization) that is aware of all the requirements and activities
that change the system. Their awareness of the changes to the system at a high level
can help them identify functional or esthetic conflicts, or nonconformance.
38 Chapter 1 - Team Development

Source Control Fundamentals

Chapter 3, called Source Control Fundamentals on page 87, specifies the source control
operations supported from Rational Rose RealTime. It outlines some of the differences
in view-based and file-based source control systems. There is also a discussion on
versioning strategies.

The ability to associate labels and create a lineup exists in both types of source control
systems. Using a parallel stream versioning strategy while maintaining a single
stream versioning policy, provides the safety inherent in single stream versioning
strategies, and also the ability to control parallel development of the same artifacts
among different teams.

Any source control tool that allows branching is capable of supporting a parallel
stream versioning strategy. An example of appropriate streams of development are:

■ Development streams, where developers make changes to the configuration items.

■ Integration stream (implementing requirements and features) managed by
Integrators.

■ Product version maintenance streams (providing fixes for bugs/defects identified
after release date) also managed by Integrators.

Include a maintenance stream for every product version currently supported by your
organization. When support for the specific product version is concluded, these
streams should end.

Note: You can use merge tools, such as Model Integrator, for merging simple, non-conflicting
changes. However, because of their limited semantic support, we do not recommend that you
use automated merge tools when there are many conflicting changes.

Bugs and defects reported against a version of the product should be evaluated
against the product under continued development in the new development stream.
Other versions of the product that may be affected by the bug/defect are under
continued support. Apply corrections to all affected versions through a manual
merge, or through focused merges.

If you implement a parallel stream versioning strategy, maintain virtual single
streams within the parallel streams. For example, Figure 14 shows a version tree
history for a configuration item. A branching of development effort occurs at
version 1.0, and version 2.0 of the configuration item.
Recommendations 39

Figure 14 Parallel Stream Versioning Strategy

Only one side of the branch is checked back into that integration stream. The
Integrator uses the main streams of development and may be unaware of the details
of individual changes. Therefore, from the perspective of these streams, they are a
single stream of development only receiving updates from one source that has
permission to modify the next version in the stream. If you require merging, perform
it outside of these integration streams, and sanity test it before integrating it as a new
version.

Do not associate product verification labels and packaging or deployment labels with
versions outside these main integration streams of development. When working with
files such as test scripts that are version controlled, consider these files as if they were
in a separate project.
40 Chapter 1 - Team Development

You may have separate streams for the development and maintenance of these scripts
as well, but this should be thought of as a different project than the one it supports
from a version control perspective. That supporting system may have logical ties or
parallels with the product under development.

Preempting Conflicts

You want to minimize more than one concurrent check-out of a configuration item. If
this strategy results in unacceptable contention for a configuration item, or a
dead-lock occurs, put overrides in place to deal with the contention.

A dead-lock occurs when Developer A requires a configuration item checked out to
Developer B to finish his work, and Developer B requires the configuration item that
Developer A currently has checked out. Because this is done up front, there is an
awareness that changes are being concurrently made to the same configuration item,
and these changes can be managed to minimize the likelihood of unintended change.

This type of concurrent work must occur outside the main development streams.
When it occurs, resolve this type of situation as quickly as possible and provide
adequate testing of the configuration item following the period of concurrent change,
to ensure no unintended changes occurred as a result.

The Rational Rose RealTime shared package capability, defined in chapter 2, Storage of
Model Data on page 59, can implement an ownership strategy to limit the scope of
implicit permissions to change configuration items.

Packaging Strategy

Think of a model as a structure containing packages, that in turn contain the design of
the system. Work models create packages that contain the particular part of the
system a team or developer is responsible for. These work models can also see other
required packages on a read-only basis by using the Rational Rose RealTime shared
package facility. An integration model can then reference the work contributions by
team members exclusively as shared packages.
Recommendations 41

Figure 15 Packaging Strategies

Managing Dependencies

To effectively manage changes to the dependencies in your system, you must create
and enforce your own team processes.

Note: For Rational Rose RealTime projects, you must identify the dependencies between
control units in a model.

See chapter 2, Storage of Model Data on page 59 for more information on model files.

Additionally, it is good practice for you to identify your model element relationships.
And, it would be beneficial if you also had an understanding of the generated source
dependencies and data dependencies.

If you do not have a formal reporting mechanism that automatically identifies these
dependencies, every change must be addressed to ensure that dependencies are
researched and assessed as a result of the change.
42 Chapter 1 - Team Development

Labeling

When considering labelling, we recommend the following:

■ Establish an environment for each group or individual that will work with a
specific set of configuration items in isolation from other changes for any length of
time. For most version control tools, this is established with directories containing
a copy of the appropriate version of the configuration item identified through a
movable label. The team member performs work on artifacts in these directories,
and this set of directories is also called the sandbox.

■ When using file-based version control tools in Unix systems, developers can
configure a directory that references the shared work through soft links. When
team members modify the reference in the directory, the link is broken and it is
replaced in the sandbox by the modified file.

■ Create dated reports for each floating label on a regular basis, listing all
configuration items associated with the label and the associated version. We
recommend that you add the report to your version control system. You can use
the data from the report to identify how the set of configuration items changed
over time, and to help you identify volatile and stable elements of the system.
Fixed labels do not require this type of report. For a label associated with a set of
configuration items that do not change often, you can reduce the frequency to
some appropriate interval, or on an ad-hoc basis.

■ Define your labeling strategy as much as possible before you begin. Use a naming
convention so that everyone can understand the labels.

■ Identify labels that may require protection from modification, and those labels that
may require restricted access.

When Merging is Necessary

Merging is necessary when an awareness exists that concurrent development may
result in conflicting changes. Perform the merge as often as possible. Each developer
involved in a concurrent change must regularly work with a merged version of the
ongoing work to identify adverse or unintended change.

The intention is to reduce the amount of lost work that can occur when conflicts arise.
A conflict identified early reduces the amount of re-work necessary. This kind of
concurrent work on the same artifacts must be done in isolation from other work.

The way ClearCase facilitates integration branches, it is wise to choose a special
integration stream for the concurrent changes to a configuration item. This isolates the
remaining artifacts in your system (which uses mutual exclusion) from these changes
until the configuration item can go through extensive quality verification.
Recommendations 43

With other sandbox type systems, one developer merges other developer's work, and
then provides the merged version to the other developer.

After every merge, assess changes to semantic relationships and other dependencies.

Merging Detail Code Before Using Model Integrator

In Model Integrator, when models include detailed code, you must select one
contributor over another.

When comparing models, Model Integrator looks at the model elements, which it
then compares with other elements based on properties. For example, for a base
model, called ModelX, there are two contributors, Contrib1 and Contrib2. If property
A of element A from Contrib1 is equal to element A of property A for Contrib2, then
all code associated with the transition is in a single property; the base model has
element A.

When property A of element A from Contrib1 is not equal to element A of property A
for Contrib2, Model Integrator detects the difference and allows you to select a
contributor. Selecting a contributor causes the base model to change.The result is a
merged model with the changes from a single contributor.

To merge before using Model Integrator:

1 Abandon the merge.

2 Export the code from Contrib1 to a file.

3 Export the code from Contrib2 to another file.

4 Use another merge tool, such as Rational ClearCase, to merge the source code from
the two files.

5 Import the merged source code into Contrib1 in Rational Rose RealTime Model
Integrator.

6 Use Model Integrator to merge Contrib1.

Artifact Freeze

Occasionally, a set of configuration items may require protection from more than one
change. We recommend that all changes currently underway be completed, verified,
shared, and re-verified. Do not allow any additional changes to that set. This is
sometimes referred to as a freeze. Following the freeze period, refresh the work areas
that use that set of shared work.
44 Chapter 1 - Team Development

The artifact freeze allows testing to occur in one environment using only shared
configuration item versions before promoting those versions to more formal testing
environments. The duration of the freeze must be long enough to label all
configuration items with a fixed label, such as “Delivered to Test on day 58”. This
labelling occurs prior to the movable “Test” label assigned the same versions as those
assigned to “Delivered to Test on day 58”.

Because “Delivered to Test on day 58” is a fixed label, it is not necessary to produce a
label report at this time. However, if reports on the dependencies between these
configuration items is available, generate and check in the set of configuration items
with the fixed label.

A Special Type of Artifact Freeze

If a change to the model results in a change between the dependencies of a model’s
control units, check in all model-related configuration items before making the
change. Ensure that the model is checked-out to allow for the change, and checked-in
after the change. Then, refresh work areas with the new copy of the model files.
Configuration items checked-in as a result of this special type of freeze may now be
checked-out to continue the work. This type of a change is a change to the model’s
architecture, and not necessarily a change to the architecture being modeled. Possible
scenarios include:

■ Changing how to store a model file, adding control units, or reducing the number
of control units. You can make these changes by clicking File > Control Unit or File >
Uncontrol Unit from the pop-up menu on model elements.

■ Moving an element from one package to another package where this represents a
move from one control unit to another control unit.

Building and Executing a Rational Rose RealTime Model

Rational Rose RealTime models are executable. To execute a model, a user must
compile/build a component in the model to produce the executable.

On a large project, we recommend sharing build artifacts, such as generated code and
object files, to reduce the build time for developers. Rational Rose RealTime has
features to support build reuse, and the ability to integrate with other tools to leverage
their features (for example, the wink-in capabilities of ClearCase clearmake).

The Integrator is responsible for many of the ‘infrastructure’ build tasks, while the
Architect and Developer roles typically participate in local build tasks.
Recommendations 45

On large projects, you can generate, then share an external library interface. This
feature allows you to reuse builds; you only need to rebuild when there are changes.
For information on external library interfaces, see Generating and Sharing an External
Library Interface in the C++ Reference.

Advanced Concepts and Heuristics

This section includes additional information about advanced concepts and heuristics
in the following areas:

■ Moving Controlled Model Elements on page 46
■ Primary and Secondary Edits on page 47
■ Understanding Blue Deltas on page 49
■ Parallel Development on page 50
■ Model Integrator on page 51
■ Using Rational ClearCase Multi-Site on page 51
■ Using Rational ClearCase UCM on page 52
■ Unique Ids on page 52
■ Rational Quality Architect - RealTime Edition on page 56
■ Additional Heuristics for Team Development on page 56
■ Additional Recommendations on page 57

Moving Controlled Model Elements

When a model element moves from one package to another, Rational Rose RealTime
does not move the file corresponding to the model element into its new directory.

When a UML package is assigned a CM system label, tis later performs the operation
on the directory and all its contents. However, if the controlled unit moved, its
corresponding element will not be labeled correctly.

Considerations

In ClearCase, the relationship between a file element and directory elements is such
that an element may be in multiple directories at the same time, possibly even in the
same view. This does not necessarily complicate things for the toolset, but requires
careful consideration.

A Rational Rose RealTime model element may be saved as two distinctly named
Rational ClearCase elements.
46 Chapter 1 - Team Development

Heuristics

Until your system architecture is stable, use package-level granularity rather than
class-level granularity. When the system architecture is stable, use Class-level
granularity. This level of granularity reduces the probability of having to merge units
later.

Renaming a Controlled Model Element

When the name of a controlled package, diagram, or classifier changes, the storage
unit file is not changed.

Primary and Secondary Edits

When a change occurs in a model, it affects the immediate controlled unit and
Rational Rose RealTime requires that you check-out the model. Often, more than one
controlled unit may be affected by the original change and Rational Rose RealTime
also requires that you check-out these controlled units. If you cannot check-out all of
the affected controlled units, the original change is not permitted.

The original change and all required (affected) changes are called primary edits.
Primary edits must be made effective at some point otherwise, they will cause
inconsistencies in the model that cannot be resolved by Rational Rose RealTime as it
loads the model.

Secondary edits involve changes as a result of primary edits, but do not have to be
completed at the time as the primary edits. Rational Rose RealTime can resolve
secondary edits as it loads the model, but the fixed model only persists in memory.
You must save the affected secondary edit control units for the changes to persist
between model loading. Since we assume a highly controlled environment, this
means that the affected controlled units must be checked out, then saved.

In summary, in a highly controlled environment, a single edit can often affect other
controlled units. As a result, some controlled units may require immediate check-out,
and some can be resolved later to have a consistent model across all its controlled
elements.

A complication to this process may occur in a project exercising best practices; where
the person making the original primary edit may only own the controlled unit that is
immediately affected. The other primary edit controlled units may belong to another
team member. Additionally, the same holds true for the secondary edit controlled
units.
Advanced Concepts and Heuristics 47

To handle the secondary edits, let the owner accept the changes and make them
persistent. All other users can let Rational Rose RealTime resolve secondary edits
when loading the model, and they can choose to ignore prompts to save the changed
controlled units they do not own.

Primary edits that do not impact more than one controlled unit are trivial and only
require that the user making the change be the one who owns the affected controlled
unit.

Primary edits that involve more than one controlled unit are the most troublesome,
and is more common in projects where specific Best Practice guidelines are not
followed. When these situations arise, there are typically two approaches to
implementing change:

■ The user making the primary edits performs a private check-out of all affected
controlled units. The affected controlled units are then later merged into another
stream, possibly at integration time. Unfortunately, the type of merging that must
be performed is less predictable and planned. It is difficult for any tool to properly
and completely address the complexities of these merges in a reliable and robust
manner. Such is the case with the Model Integrator.

■ The user making the primary edits coordinates with the owners of the other
affected controlled units to implement a change. Ultimately, to avoid the necessity
for a merge later. This approach is difficult to do and does not take advantage of
the change management features of the tools in the tool chain. An important
consideration for this approach to implementing a change, is who will do the
changes, and when.

Model Conversion

The following guidelines may help minimize the occurrence of problems when
dealing with primary edits:

■ Every controlled unit must have an owner.

■ Assign one user a number of controlled units that are related and may involve a
lot of coupling, particularly inheritance coupling.

■ Use components and layers in the architecture to reduce coupling and minimize
the number of dependent elements.

■ The interaction between unsaved secondary edits and blue delta syndrome affects
the ability to build the model. Therefore, it is very important to resolve secondary
edits as soon as possible. Blue deltas represent a changes that cannot be resolved
by Model Integrator.
48 Chapter 1 - Team Development

■ Do not over populate diagrams with information; try to focus on model elements
having the same ownership. For example, focus on Class X and its subclasses, or
Class Y and its dependencies.

Focused diagrams help reduce the effects of Primary Edits and merge conflicts in
Rational Rose RealTime Model Integrator.

Possible Solutions:

■ The owners of the affected controlled unit must save secondary edits, or save the
controlled unit with the permission of the owner of the affected controlled unit.

Heuristics:

Some model and architecture characteristics can make secondary edits better or
worse. Whenever possible, use loosely coupled architectures as in the access and
resource manager patterns. Also, avoid reusing packages from a production model
into a consumer model (shared external packages). Secondary edits are not
recognized until the consumer model is refreshed/loaded, which may not occur until
integration time.

Solutions:

■ There are consequences associated with not saving secondary edits in a persistent
manner. For controlled units that have not had their underlying representation
updated for consistency with the associated primary edits, Rational Rose RealTime
prompts the team member with warnings when the control unit(s) are first loaded.
These changes do not cause irreparable model inconsistencies; however, unsaved
secondary edits have a consequence on builds. If blue deltas are not saved, then a
build is not possible.

■ Rational Rose RealTime lets you build without committing changes to source
control.

Note: The worst case scenario is when an edit performed in one model forces a
primary edit in a controlled unit in another model (or other models), but not in the
model where the initial edit was performed. For this case, the owner of a model that is
affected by a primary edit in another model, must perform the integration of changes.

Understanding Blue Deltas

Blue Deltas occur when changes are made to a model, and due to the control over the
unit by the CM system, the file cannot be saved. Rational Rose RealTime attempts to
save all controlled units where the memory image differs from the image on the file
system, but is unsuccessful because the controlled unit is read-only. This is one of the
negative effects of unsaved secondary edits.
Advanced Concepts and Heuristics 49

Parallel Development

Parallel Development is a term that sets high expectations regarding collaborative
development, where there is a need for multiple users to work together on a common
set of artifacts to achieve the same goals.

When collaborating on a common set of artifacts, consider the following approaches
to collaborative development:

■ When more than one user needs to make changes to the same artifact, they must
share the artifact; the changes are made serially, one after the other. Although this
is the most reliable approach, it is perceived by most users as not being most
efficient. This approach can be managed using the check-in and check-out features
of most CM systems.

■ When more than one user needs to make changes to the same artifact, they can
make the changes at the same time. The changes are merged back into one artifact
at a later date. The benefit of this approach is that work goes on in parallel, and it
saves time. The problem is that arbitrary and uncoordinated changes on the copies
of the same artifact can be difficult to resolve during the merge process. In fact,
they may never be resolved, and the changes from only one contributor are
accepted and from the other, discarded.

Note: We recommend that these types of changes be coordinated and merged often.

The development process and tool chain can have a significant impact on the
opportunity to use and the effectiveness of the second approach. The second approach
is known as Parallel Development. For the purpose of this discussion, the term
Parallel Development refers specifically to this second approach to collaborative
development.

It is unrealistic to expect to employ parallel development without any constraint or
guidance. Too often, this technique is used without coordination or planning.
Sophisticated tools, such as Rational ClearCase, may not be properly used and can
lead to this misperception. The design artifacts at the center of collaborative
development have complex interrelationships within them, and between them. These
higher level abstractions and concepts are not easily, and cannot arbitrarily, be merged
without some experience. Fortunately, when team members are working within a
well-defined process, and there is a clear definition of roles and responsibilities, most
changes made in parallel are done in a complementary manner. A certain amount of
conflicting changes are inevitable. You can resolve the changes by choosing one or the
other. These conflicting changes must be expected and their frequency should be
minimized. If they are unexpected, it may be counterproductive and time is being
wasted by changes that will not be discarded.
50 Chapter 1 - Team Development

The following guidelines will help maximize the efficiency and productivity of a
process that employs parallel development:

■ Scrutinize and minimize the occurrence of every conflicting change in the merge.

■ Create a well documented and communicated development plan to help ensure
that every developer knows how they are contributing and what they will
implement. This helps minimize duplication of effort, even at the lowest level of
detail.

■ Establish clear ownership of design artifacts, and use source control to enforce it.

■ Invest time into understanding what the Rational Rose RealTime Model Integrator
will and will not do during a merge.

■ Follow all guidance specific to the Rational Rose RealTime Model Integrator
regarding the types of changes that it can reliably merge.

■ Resolve all issues relating to merging parallel changes prior to integration.

Model Integrator

The Rational Rose Model Integrator is a powerful tool that manages the merging and
differencing of models at the Rational Rose RealTime meta-model level. It is not a
visual model or UML semantic-level merge tool, therefore it lacks a number of
features that can make the merging of models more efficient and more accurate.

For every use-case of Model Integrator that fails to do what you may expect, there are
many other use-cases that do add value or do what is expected, and will save time.
When using Model Integrator, you must understand what it can do efficiently and
properly, and what should be avoided.

When you plan for a graphical change (a layout change) to a diagram within a model,
only one person should make this change. This ensures that during the merge process,
all of the graphical changes are accepted by one contributor and merging at a lower
level of detail is not allowed.

Using Rational ClearCase Multi-Site

When a team follows best practices, (for example, being careful about artifact
ownership) they can use Rational ClearCase Multi-Site to work on separate branches.

Rational ClearCase Multi-Site is a powerful tool that can help you with the challenges
of a distributed team development. When using Rational ClearCase Multi-Site, you
must consider the following:

■ Rational ClearCase Multi-Site has a restriction that a branch is owned by a site.

■ Only developers on that specific site can check out to that particular branch.
Advanced Concepts and Heuristics 51

Using Rational ClearCase UCM

Unified Change Management (UCM) is an activity-based process for managing
changes to all software artifacts. It supports a change management usage model and
is a key component of the Rational Unified Process (RUP). The RUP is a
comprehensive framework for delivering software development best practices. You
can use UCM to unify cross-functional teams and provide meaningful, common data
access, along with processes and tools, that enable teams to manage change, monitor
quality, and communicate more effectively from requirements to release.

For larger teams, you can use a combination of UCM and “base” ClearCase
functionality on a project-by-project basis. However, you may want to consider the
following facts about UCM:

■ Existing Rational ClearCase users can upgrade from their current version to UCM
and continue to work the same way by choosing not to use UCM. New Rational
ClearCase users can use the UCM model or implement a more traditional model
using base ClearCase functionality.

■ If you want to use the new UCM capabilities for a subset of your current projects, it
is possible for some teams to use UCM while others do not, even if they share
some or all of the same code.

■ Additional capabilities are available with the combination of Rational ClearCase
and ClearQuest-enabled UCM.

■ The UCM model provides an enhanced integration between Rational ClearCase
and Rational ClearQuest that is not available outside of UCM.

■ Rational ClearCase LT supports UCM and offers an activity-based process model
for managing change and controlling workflow. This provides for a seamless
upgrade path from the basic source control management functions provided by
ClearCase LT to the enterprise capabilities featured in ClearCase. With Rational
ClearCase LT, you can also take advantage of UCM to manage changes to artifacts
other than source code, including requirements documents, test scripts, and design
models.

Unique Ids

Unique ids are unique internal names associated with model elements. They are used
internally by Rational Rose RealTime, and not all model elements require unique ids.
Rational Rose RealTime includes a feature that helps Model Integrator by generating
unique ids for those model elements that would otherwise not require them, for
internal use. For Model Integrator, an element with a unique id is easier to merge.
52 Chapter 1 - Team Development

RRTEI users will find traceability easier when they set this option. Unique ids
improve the traceability of model elements of other tool integrations that use RRTEI.

It is necessary to plan and choose when to incorporate the new unique ids into the
project model since virtually all controlled units will be modified implicitly.
Additionally, the generated new ids are dependent on time and location. For example,
generating unique ids for a given model at different times, or on different machines,
produces different ids.

The following model elements do not have unique ids, unless you set this option:

■ Protocol In Signals ()
■ Protocol Out Signals ()
■ States (CompositeState)
■ Capsule Roles (CapsuleRole)
■ Ports (Port)
■ Port Roles (PortRole)
■ Capsule Structure diagram (CapsuleStructure)
■ Classifier Role (ClassifierRole)
■ Transitions (Transition)
■ Junction Point (JunctionPoint)
■ Choice Point (ChoicePoint)
■ Connectors (Connector)
■ (Guards)
■ (Events)
■ (EventGuards)
■ Parameters ()
■ Element hyperlinks (ExternalDocument)

Caution: We strongly recommend any team involved in parallel development use this
option.

Note: Setting this option creates unique ids for model elements that currently do not
have them. This typically affects most of the model, so you will be prompted to check
out those parts when setting this option.

When saving the model, the size of the affected file increases by approximately 20%,
and the time to load the model also increases.

Caution: Do not set this option in multiple streams as shown in Figure 16; otherwise,
objects with similar characteristics will be treated differently since their unique id’s
will differ.

Figure 16 shows an example of an incorrect merge scenario.
Advanced Concepts and Heuristics 53

Figure 16 Incorrect Merge Scenario

An example of when to set this option is shown in Figure 17.
54 Chapter 1 - Team Development

Figure 17 A Correct Merge Scenario

Note: This option must be set prior to branching.

For information on how to enable the Unique ids, see Model Specification in the
online help.

To clear the unique id option, follow the same procedure in Figure 17.

Note: If you clear this option, your merge results will not be as reliable.
Advanced Concepts and Heuristics 55

Rational Quality Architect - RealTime Edition

When using the Rational Quality Architect - RealTime Edition in a CM controlled
environment, ensure that you check-out the following:

■ Top level model file
■ Logical view
■ Component view
■ Deployment view

When several developers are working with
Rational Quality Architect - RealTime Edition in parallel, they must have separate
models or be on different branches.

You can use scratchpad packages to avoid complications in using
Rational Quality Architect - RealTime Edition in a highly source controlled project.
You can only specify the package that the generated model goes into; you have no
control of the component or component instance.

Additional Heuristics for Team Development
■ Begin with a high level of granularity for controlled units when an area of a model

is immature. As the area of a model becomes more mature, then its level of
granularity can be lowered, possibly to the capsule and diagram level.

■ During the architecture phase, the granularity is course. When the architecture is
released to the designers, decrease the granularity to manageable pieces for
efficient team development.

■ Use a layered architecture where the coupling between layers is minimal and
well-defined. This kind of architecture is also called loosely coupled.

■ Define the interfaces between layers of the architecture early and minimize
changes to these interface elements.

■ Release the interfaces and associated components at a layer boundary separately
and ensure that they have their own test and release schedule. There should be one
or more separately released components in each layer.

■ Every controlled unit should have only one owner.

■ Plan for conflicting merges and attempt to minimize them throughout the
development life-cycle.

■ Only merge controlled units with primary edits back into the integration stream.

■ If the system is sufficiently complex, divide each layer into subsystems.
56 Chapter 1 - Team Development

■ Ensure that subsystems have a well-defined and minimal interface to other
subsystems.

■ Subsystems are not necessarily confined to one layer. Interfaces at lower and
higher levels of abstractions should coincide with one of the architectural layers.
Subsystems may encapsulate their own set of layers that satisfy particular
objectives.

■ Use different models (.rtmdl files) to develop different subsystems and share them
in the top-level model.

■ Employ at least three streams of development: release stream, integration stream,
and developer stream.

■ Place a new part of a model under source control after it has had some (minimal)
testing.

■ As an inheritance heuristic, do not use a classifier to derive classes (for example,
Capsules, Classes, and Protocols) until its superclass has a stable design element.

■ Do not make frequent or large changes to a superclass.

❑ Subsystem interfaces (protocols and data classes) may need to be modified by
both users, but changes should be planned, controlled, and authorized by
owner (or group).

❑ Appoint one responsible person for each interface. This person is the only one
that can change the interface. For example, all requests for changes must be
sent to this single team member for them to make the required change.

Additional Recommendations
■ Perform integration at least once a week.

■ Use a build coordinator to ensure that all required components make it into the
build. The build coordinator has granularity to the capsule protocol level.
Advanced Concepts and Heuristics 57

■ The following structure represents a recommended general layout of a model,
with particular focus on the Logical view:

+UCVP

+LVP

+Project/Model Name
+Layer1

+SubSystem1
+SubSystemn
+CommonSubSystemProtocols
+CommonSubSystemDataClasses
+TopCapsules

+LayerN
+SubSystem1
+SubSystemn
+CommonSubSystemProtocols
+CommonSubSystemDataClasses
+TopCapsules

+CommonLayerProtocols
+CommonLayerDataClasses
+TopCapsules

+CVP

+DVP
58 Chapter 1 - Team Development

2Storage of Model Data
Contents

This chapter is organized as follows:

■ Storing Model Data on page 59
■ What is a Controllable Element and a Controllable Unit? on page 60
■ Sharing Controlled Units on page 71
■ Creating Sharable Controlled Units on page 74
■ Working with Controlled Units on page 74
■ Moving Controlled Units on page 76
■ Export Controllable Elements from a Model to a File on page 77
■ Import Controllable Elements from a File to a Model on page 78
■ Add an Existing Controlled Unit to a Model on page 79
■ Share an Existing Controlled Unit into a Model on page 80
■ Produce a Single Model File from a Model with Many Units on page 81
■ Virtual Path Maps on page 82

Storing Model Data

The following sections describe how Rational Rose RealTime stores model data. This
information is useful for understanding how Rational Rose RealTime interacts with
source control systems, as well as for learning the capabilities that may impact the
performance of Toolset operations that read and write model data to files.

By default, Rational Rose RealTime saves a model as one file. When multiple users
work on the model at the same time, there is reduced contention for files if the model
is stored as many small files rather than one large file. Rational Rose RealTime
supports users saving models as a series of individual files, called controlled units,
rather than one large file. As a general guideline, the more granular the storage, the
better it is for large team development because each file is a potential bottleneck when
multiple users work on it concurrently.

Rational Rose RealTime provides a great deal of flexibility in how the model data is
stored as files. A very simple model may be stored in a single file and a very large
model can be stored in hundreds or thousands of files. Understanding how to control
the storage of model data is important for using Rational Rose RealTime successfully.
59

What is a Controllable Element and a Controllable Unit?

A controllable element is a Rational Rose RealTime element (for example, class, package,
class diagram) that supports being controlled/saved to a separate PetalRT file,
independent of its parent element. The term controllable unit, or just unit, is generally
used to refer to the file itself as opposed to the element.

Each controllable element has a "controlled" flag which determines if it is stored in its
own unit file or in the same file as its parent. This flag can be changed for a specified
element using the File > Control Unit and File > Uncontrol Unit menu items in the
browser context menu. See Controlling a Subset of the Controllable Elements on page 75
for the details of this process. The initial setting for the controlled flag is based on the
setting of the "Control new child units" flag of the parent unit.

The model itself is always a controlled unit. Thus, a model is made up of a
hierarchical set of controlled units where the granularity of the controlled units is
fully configurable by the user.

If an element is controlled, then its Specification Dialog includes a Unit Information
tab which lists the associated file name and other settings. See Unit Information Tab on
page 67.

The Rational Rose RealTime browser uses the following icons for controlled units (the
icons are much smaller when shown in the browser).

Figure 18 Browser Icons for Controlled Units

The first icon indicates a controlled unit that has been saved.

The second icon indicates a controlled unit that has unsaved changes. This blue
triangle is often referred to as a "delta". (Delta is a greek letter drawn as a triangle and
means "change".) The blue delta symbol indicates that the version of a unit in the
toolset is different from the file on disk from which it was loaded.

The last icon indicates a shared external package, such as the RTClasses package.

Controllable elements that are not individually controlled do not have these icons (but
they will have their respective element type icon, such as package or diagram).
Additional browser icons relating to source control status are described in Source
Control Status on page 88.
60 Chapter 2 - Storage of Model Data

Figure 19 shows an example of these icons in the browser. If we look at the elements in
the Logical View, then we see:

■ RTCClasses and RTClasses are shared external packages,
■ Collaboration1 is a controlled unit with unsaved changes,
■ the Main class diagram and NewClass1 are controlled units that were saved,
■ NewPackage1 is not a controlled unit since it does not have a controlled unit icon

Figure 19 Browser Icons Example
.

What Elements Can Be Controlled?

Rational Rose RealTime supports the following controlling elements as separate units
(file extensions for corresponding files are shown in parentheses):

■ Model (.rtmdl)
■ Package (.rtlogpkg), (includes Use Case Packages and Logical Packages)
■ Class Diagram (.rtclassdgm) (includes Use Case Diagram)
■ Class (.rtclass)
■ Capsule (.rtclass)
■ Protocol (.rtclass)
■ Use Case (.rtclass)
■ Actor (.rtclass)
■ Collaboration (.rtcollab)
■ Component Package (.rtcmppkg)
■ Component Diagram (.rtcmpdgm)
■ Component (.rtcmp)
What is a Controllable Element and a Controllable Unit? 61

■ Deployment Package (.rtdeploy)
■ Deployment Diagram (.rtdeploydgm)
■ Processor (.rtprcsr)
■ Device (.rtdev)

Parent and Child Controlled Elements

Some types of controlled elements are containers for other controlled elements. For
example, a logical package is a container for classes, capsules, protocols, class
diagrams, collaborations, and other logical packages. The package is often called the
parent for the controlled elements it contains (which are often called children).

When you create a controlled unit from a child element and then save it, its contents
are moved from its parent unit’s file and stored in a new file. Thus, the original file
will no longer hold the contents of the child. Instead, the original file only references
the new controlled unit file.

The complete list of container controlled elements and their possible child controlled
elements are:

■ model: package, component package, deployment package

■ package: package, class diagram, use case diagram, class, capsule, protocol, use
case, actor, collaboration

■ component package: component package, component diagram, component

■ deployment package: deployment package, deployment diagram, processor,
device

The "Control new child units" flag for a parent unit specifies whether children of that
unit are controlled by default.

If a parent element is not a controlled unit, then its child elements cannot be controlled
units. Similarly, when a package is uncontrolled, all children will also be uncontrolled.

A package that is a controlled unit has the following file system elements:

■ a file with model specifications

■ a directory created to save child units
62 Chapter 2 - Storage of Model Data

Directory Structure for Model Data

If a package is a controlled unit, then there is a directory created to contain the saved
child units. As an example, assume we have the following model structure:

Figure 20 Sample model structure
What is a Controllable Element and a Controllable Unit? 63

If all controllable elements in this model are controlled units, then the default
directory structure would look like:

Figure 21 Directory structure for sample model

As an alternative, if we decided to reduce the number of controlled units as follows:

■ FCapsule1, FClass1, and FProtocol1 should not be independently controlled;
instead, they should be saved in the same unit as the FrameworkLib logical
package;

■ ReleaseBuild and DebugBuild should not be independently controlled; instead,
they should be saved in the same unit as the FrameworkLib component package.
64 Chapter 2 - Storage of Model Data

These changes would result in the following directory structure:

Figure 22 Sample directory after granularity is reduced

The FrameworkLib.rtlogpkg file contains FrameworkLib, FClass1, FCapsule1, and
FProtocol1. The FrameworkLib.rtcmppkg file contains DebugBuild and ReleaseBuild.

File Names for Controlled Units

Rational Rose RealTime can generate a default name for the file used for a controlled
unit. This default is based on the name of the controllable element and the file
extension that is appropriate for its type. If a file with the same name exists in the
directory, the Toolset appends a number to generate a unique name. See What Elements
Can Be Controlled? on page 61 for a list of the file extensions.

A default name can also be generated for the directory used to store the child units for
a model or package. This default is also based on the name of the controllable element
(with no file extension). As before, if a directory with the same name exists, the Toolset
appends a number to the directory to generate a unique name.
What is a Controllable Element and a Controllable Unit? 65

By default the Toolset prompts the user to determine whether to use the default name
and, if not, determines a name for the file. Prompting occurs the first time the
controllable unit is saved.

Figure 23 Filename Selection dialog

Figure 24 Directory Name Selection dialog

If you want to always use the generated default file names, then you can avoid these
dialogs by selecting the “Always use generated file names” option in the File tab of
the Tools > Options dialog.

See Moving Controlled Units Between Model Directories on page 76 for a description of
the steps involved in moving or renaming the controllable unit file.

Controlled Units are Saved when Building

Rational Rose RealTime creates executables or libraries by generating programming
language (for example, C, C++, or Java) code from a UML meta-model. It does this
through the use of an external UML Model Compiler. This compiler reads a model in
PetalRT form and outputs the corresponding code.
66 Chapter 2 - Storage of Model Data

For this reason, the Toolset saves all modified units before performing a build.This
can cause some issues if, for some reason, the user is unable to save a modified unit.
Possible reasons for this include check-out conflicts or read-only files. The Toolset
attempts to save to read-only files (after appropriate warnings and prompting) so that
it can build any local changes which have been made.

Unit Information Tab

The specification dialog for a controlled element includes a Unit Information tab.

Figure 25 Unit Information tab

Owned by model

This check box indicates whether the unit is owned by this model, or whether it is
owned by another model and shared into this model. This setting is not directly
editable. See Overview of Import, Add, and Share on page 71 for more information on
sharing.
What is a Controllable Element and a Controllable Unit? 67

Under source control

This check box indicates whether this element has been added to source control. This
setting is not directly editable.

Control new child units

This setting controls whether newly created controllable elements in this package will
be individually controlled by default. This check box is only displayed in the Unit
Information tab for a package.

Disallow model-relative pathnames

This setting will inform Rational Rose RealTime to not use the implicit $@ virtual
pathmap symbol when saving units located anywhere within this package. See
Implicitly Defined Pathmap Symbols on page 84 for details on using this setting. This
check box is only displayed in the Unit Information tab for a package.

Scratchpad

This setting indicates that the package is a scratch pad. See Scratch Pad Packages on
page 110 for a more complete description. This check box is only enabled in the Unit
Information tab for a package that is not under source control.

Filename

This field displays the name of the file that is used to save this controllable unit. This
field is not directly editable.

Version

This field displays the version identifier for this controlled unit. If this information is
not known, then “<unknown>” displays. The ability to extract this version
information depends on the source control tool being used. If a unit is not under
source control, then this field will not be displayed.

What Level of Granularity Should I Use?

The primary benefit of having a fine granularity of controlled units (for example,
having every controllable element as its own controlled unit) is to reduce possible
contention for the file containing an element. When the model is under source control,
this translates into a lower probability that a controlled unit will already be checked
out when a user wants to make changes.
68 Chapter 2 - Storage of Model Data

The granularity of controlled units determines the number of files that are used to
store the model. A larger number of files may result in a degradation in the
performance of the source control system. This may translate into longer times for
operations such as opening a model.

The level of granularity that you use should consider the following factors:

■ How Stable is the Architecture? on page 69
■ How Many Users Will Be Working on This Model? on page 69
■ How Many Users Modify Elements in the Same Package? on page 70
■ How Large is Your Model? on page 70
■ Implications of Changing Unit Granularity on page 70
■ Code Generation Performance on page 70

How Stable is the Architecture?

In the early stages of analysis and design the architecture can change very frequently
(and often, very drastically). During these early stages, modeling elements are
created/moved/deleted often. At this point in development, it is recommended that
not every possible element be controlled as individual units. Usually controlling only
one or two levels of the package hierarchy will provide enough flexibility until the
architecture stabilizes. Once areas of the architecture stabilize, then it is recommended
that the elements in those areas be controlled down to a finer granularity before
proceeding with detailed implementation.

The goal for this approach is to create an understandable directory structure for the
model. When a controlled element is moved in the model, the corresponding
controlled unit file is not automatically moved in the directory structure. If there is
significant movement of elements in the model, the directory structure can become
very fragmented resulting in situations where controlled units which are logically
grouped within the model will not be physically located in the same directory
hierarchy. For source control purposes it is often very useful to have controlled units
for each subsystem within the same directory hierarchy since this makes it easier to
perform source control operations on entire portions of the model, for example to
label or search.

How Many Users Will Be Working on This Model?

If the model is only modified by a single user, and the model is not too large, then it is
reasonable to store the whole model in one .rtmdl file. Otherwise, you will want to
partition the model into a set of controlled units. Some teams prefer to have packages
as their lowest level of granularity while others control all elements down to the class
level so as to have maximum flexibility.
What is a Controllable Element and a Controllable Unit? 69

How Many Users Modify Elements in the Same Package?

Some teams practice strict ‘class ownership’ so that a single user is responsible for
changes to elements in a package. In this situation the controlled elements within the
package do not need to be controlled independent of the package.

How Large is Your Model?

The larger the model, the more controlled units you are likely to have. As mentioned
previously, using too fine a level of granularity could cause degradation in the
performance of some source control systems. Most likely, you will have to find a
balance between flexibility and performance.

Implications of Changing Unit Granularity

It is possible to change the granularity of the controlled units by controlling elements
that previously were not controlled (or by uncontrolling elements that previously
were controlled). These actions should be taken with care since changing the
granularity of a unit will move an element out of the current file and into a new file
(or vice versa). If you are using a source control system to provide a history of changes
for an element, then the audit trail for this element will not be easily traceable (for
example, version history does not automatically include details on granularity
changes).

Code Generation Performance

For the best performance from the Rational Rose RealTime code generator, every
class/capsule/protocol should be stored in its own unit. This allows the code
generator to parse less information when doing incremental compiles.

If multiple classes are stored in the same controllable unit, then a change to any one of
these classes will cause an incremental code generation for all classes that dependent
on any class in this unit, as opposed to all classes that depend on this particular
changed class.
70 Chapter 2 - Storage of Model Data

Model elements that do not influence code generation can be grouped together
without influencing performance. Controllable elements that do not influence code
generation are:

■ Collaborations
■ Class Diagrams
■ Actors
■ Use Cases
■ Use Case Diagrams
■ Deployment Packages
■ Deployment Diagrams
■ Processors
■ Devices

Sharing Controlled Units

A large software project is typically developed by multiple teams following a layered
architecture. The software produced by the "lower level" teams is used by the "higher
level" teams.

Typically, an organization may have several software projects being developed at one
time. Often, there is a possibility for reuse between the projects. Sometimes, this is as
simple as some common ‘data structure’ classes. In other instances, there might be
more significant framework reuse.

These sections describe the Rational Rose RealTime capabilities that support sharing
and reuse in these situations.

Overview of Import, Add, and Share

Rational Rose RealTime provides three mechanisms for reuse. Each mechanism
provides different capabilities and the correct mechanism to use depends on the
situation.

Import a File

A collection of controllable elements may be exported to a file from one model and
imported into another model. This is similar to a copy and paste of the selected
elements. The imported elements are editable in both models but, since this is
equivalent to creating new elements that are copies of the original elements, changes
made in one model are not visible within the other model (unless the copied elements
are deleted and the original elements are exported/imported again).

See Import Controllable Elements from a File to a Model on page 78.
Sharing Controlled Units 71

Add a Controlled Unit

A controlled unit saved from one model may be added to another model. The
elements in this unit are editable in both models and changes saved in one model are
visible in the other model after the unit is reloaded. The controlled unit should be
added to the same place in the hierarchy of each model.

See Add an Existing Controlled Unit to a Model on page 79.

Share a Controlled Package

A controlled package saved from one model may be shared into another model. The
elements in this unit are still editable in the original model but they are not editable in
the model that shares them. Changes saved for this unit are visible in the other model
after the unit is reloaded. The controlled unit should be shared into the same location
in the hierarchy as it is found in its owning model.

This is the same mechanism used to include the RTClasses, RTCClasses,
RTComponents, and RTCComponents packages in the default model.

For models that are under source control, Rational Rose RealTime provides a setting
that controls whether the source control status of shared packages should be queried
when the model is opened. Since the time required to query for source control status
can be significant, and is often longer than the time required to read the model files,
turning off this setting can significantly improve the time required to open a large
model if the model makes use of shared packages. See Refresh shared unit status on
model load on page 92.

See Share an Existing Controlled Unit into a Model on page 80.
72 Chapter 2 - Storage of Model Data

Summary of Import, Add, and Share

The following table summarizes the pros and cons of each of these mechanisms and
describes some situations where each is appropriate.

Table 2 Summary of Import, Add, and Share

Note: For additional information on issues associated with generating and sharing an
external library interface, see Generating and Sharing and External Library Interface
in the C++ Reference.

Mechanism Pros Cons Situations

Import - supports unstructured
sharing

- changes are
difficult to
propagate

- when you want to
use existing elements
as a basis for new
elements
- when propagation
of changes is not
required

Add - supports structured sharing
- changes are easy to
propagate by reloading unit

- when an existing
unit needs to be
owned by a new
model
- supports moving an
element from one
model to another

Share - supports structured sharing
- changes are easy to
propagate by reloading unit
- enforces read-only access to
shared elements
- can improve opening time
for a source controlled model
- can generate libraries in a
model, and share them into
any user model
- shared library contains only
the required referenced
elements
- only have to rebuild a
library interface when there
are changes

- changes must
be made in a
model which
owns the shared
unit
- generating
multiple library
interfaces from
the same model
may cause
conflicts with
guids

- useful in multiple
team development
where certain units
should not be
editable in all models
Sharing Controlled Units 73

Creating Sharable Controlled Units

When a controlled unit is brought into another model, Rational Rose RealTime
attempts to resolve all references contained in these elements. If an element has a
reference that cannot be resolved, the problem is logged and the reference removed.

See Model Validation on page 167 for a description of the problems that can be
encountered when references cannot be resolved.

It is best to avoid unresolved references when sharing controlled units. The simplest
way to avoid unresolved references is to make sure the controlled unit is
self-contained so that it does not require elements in any other controlled units. See
Check if a Subsystem is Self-contained on page 110.

The term "external dependency" can be used to describe the relationship from an
element inside a controlled unit to an element outside that controlled unit. When
creating a sharable controlled unit it is important to ensure that the external
dependencies are reasonable and documented.

See Determine the External Dependencies for a Package on page 108.

Sharing Model Properties with Controlled Units

If elements in a controlled unit use custom property sets, you must ensure that they
are present in the model that will be sharing this unit. Rational Rose RealTime
supports exporting the properties from the producer model and updating the
properties in the consumer model. This should be done before sharing or adding the
controlled unit.

For more information, see Managing Model Properties in the Toolset Guide, Rational Rose
RealTime.

Working with Controlled Units

The following sections describe common tasks involved in defining and manipulating
controlled units in a Rational Rose RealTime model:

Common Tasks:

■ Controlling a Subset of the Controllable Elements on page 75
■ Controlling All of the Controllable Elements on page 75
■ Changing the Granularity of Controlled Units on page 76
■ Moving Controlled Units Between Model Directories on page 76
■ Moving Elements Between Controlled Units on page 77
74 Chapter 2 - Storage of Model Data

■ Synchronizing Models with the File System on page 77
■ Export Controllable Elements from a Model to a File on page 77
■ Import Controllable Elements from a File to a Model on page 78
■ Add an Existing Controlled Unit to a Model on page 79
■ Share an Existing Controlled Unit into a Model on page 80
■ Produce a Single Model File from a Model with Many Units on page 81

Controlling a Subset of the Controllable Elements

There are several ways to control a subset of the controllable elements in your model
as individual units. The browser context menu for a controllable element contains
some or all of the following relevant menu items:

■ File > Control Unit - the selected elements will now be controlled as individual
units

■ File > Uncontrol Unit - the selected elements will not be controlled

■ File > Control Child Units - the child elements of the selected packages will now
be controlled as individual units (this menu item is only available for packages)

■ File > Uncontrol Child Units - the child elements of the selected packages will not
be controlled (this menu item is only available for packages)

If only a small number of elements will be controlled, then it may be easiest to
multi-select the elements in the browser and choose the File > Control Unit context
menu item.

If most of the elements will be controlled, then control all the elements first, then click
File > Uncontrol Unit on the elements that should not be controlled.

Remember:

■ The controlled units are not written to disk until a save is performed.

■ See What is a Controllable Element and a Controllable Unit? on page 60 for details on
controlled unit status information available in the model browser.

Controlling All of the Controllable Elements

To control all the controllable elements in your model as individual units:

1 Select the Model in the model browser and click File > Control Child Units.

2 When prompted about controlling all child units recursively, click Yes. Also click
Yes on the subsequent confirmation dialog.
Working with Controlled Units 75

This causes the model to be partitioned into individual files (one file for each
controllable element).

Remember:

■ The controlled units are not written to disk until a save is performed.

■ See What is a Controllable Element and a Controllable Unit? on page 60 for details on
controlled unit status information available in the model browser.

Changing the Granularity of Controlled Units

It is possible to change the granularity of controlled units using the File > Control Unit
and File > Uncontrol Unit menu items in the browser context menu.

Changing the granularity of controlled units changes the file in which some model
data is stored. If the model is under source control, then changing the granularity of
the controlled unit disconnects some of the elements in the unit from their history.

Moving Controlled Units

Moving Controlled Units Between Model Directories

After a controllable element is saved as a controlled unit, moving that element in the
model’s package structure does not move the associated file in the underlying
directory structure. This move causes the logical grouping of elements in the model to
differ from the physical grouping of the corresponding files on disk.

If you moved a controlled unit in the package hierarchy so that the directory structure
does not correspond to the model structure, then it is possible to change the location
of the file by using the following steps:

1 Outside of the Rational Rose RealTime Toolset, move the file to the desired
location.

2 Open the model in the Toolset.

3 When prompted about the missing model element, enter the new file location and
click OK. You can use the Browse button to navigate to the new location.

4 After the model is open, save the package containing this model element in order
to remember the new file location. If the model is under source control, check out
then check in the element.

Similarly, you can rename the file associated with a controlled unit.
76 Chapter 2 - Storage of Model Data

Moving Elements Between Controlled Units

Controllable elements can be moved from one parent package to another by dragging
in the browser. If a controllable element that is not individually controlled is moved
from one controlled package to another, then this will change the file in which the
element is stored. If the model data is stored in a source control system, then this will
disconnect that element from its history.

Synchronizing Models with the File System

It is possible to perform actions outside of Rational Rose RealTime that may cause the
Toolset view of the file contents to be inaccurate. Also, in some situations you may
wish to discard changes made in the Toolset in favor of the last saved versions.

To reload all the controlled units from disk, click Tools > Synchronize Mode
with File System.

To reload a selected set of controlled units, click File > Reload from File.

If the model is under source control, see Synchronizing Models with Source Control on
page 135.

Note: Be very careful when reloading subsets of the model. Some edits to the model
affect multiple units - reloading only one of the units involved in such an edit may
cause undesired changes.

Export Controllable Elements from a Model to a File

To export a collection of controllable elements (for example, package, capsule,
component, and so on) from a model:

1 Open the original model.

2 Select the elements in the browser.

3 Click File > Export... from the browser context menu and specify the desired file
name.

This will generate an .rtptl file containing these elements.
Synchronizing Models with the File System 77

Services Library packages

You should never export and add the Services Library shared packages. These are the
packages that appear in all new models, and are prefixed with RT. For example,
RTClasses, RTCClasses, RTComponents, RTCComponents.

If you export the RT packages to Rose format and then re-import, the imported RT
packages are merged with the existing model and causes duplication with the default
model's RT packages. This result is that the duplicate packages are renamed, which is
also undesirable.

See Produce a Single Model File from a Model with Many Units on page 81 for details on
how to export a whole model.

Import Controllable Elements from a File to a Model

Use the import mechanism to reuse existing controllable elements in another model
and evolve them independently of the original versions.

These steps allow you to create a file that contains a mixture of any of the controllable
element types. For example, you can export a capsule and a component into the same
file. Since a Rational Rose RealTime model has restrictions on the types of controlled
elements that can appear in each part of the model, when you import the elements
from the file, you must place them in a valid location. In the previous example, the
capsule must be placed in a logical package and the component must be placed in a
component package.

If you would like the elements in the file to be imported into the appropriate top level
package (for example, Logical View for capsules, Component View for components),
then use the following steps:

1 Open the model.

2 Click File > Import... from the application menu and specify the file name in the
dialog.

If there is a specific package into which you would like to import these elements, then
use the following steps:

1 Open the model.

2 Select the package in the browser that should contain the elements.

3 Click File > Import... from the browser context menu and specify the file name.
78 Chapter 2 - Storage of Model Data

The elements will be added to this package unless the file contains elements that are
not allowed in this package type, in which case the invalid elements will be placed in
the appropriate root packages. Continuing the previous example, if we tried to import
a capsule and a component into a logical package, the toolset will place the capsule in
the logical package and the component in the Component View package.

After the elements have been imported into the model, they will behave like any other
newly created elements.

Rational Rose RealTime will not allow you to import the same elements multiple
times into the same model. This would lead to unique id conflicts within the model,
which may result in incorrect behavior by the Toolset. If a unique id conflict would
occur as a result of the import, the following dialog will appear and the import will
fail.

Figure 26 Unique id conflict dialog

Add an Existing Controlled Unit to a Model

You can add an existing controlled unit when the elements in the unit should be
editable in multiple models. If the original model is abandoned, then you can also
"move" this unit to another model.

To add an existing unit to a model:

1 Open the model.

2 Select the package in the browser that should contain the controlled unit.

You should add the controlled unit to the same location in this model hierarchy as in
the original model.

3 Click File > Add File... from the browser context menu and specify the file name of
the unit. You can change the filter to see the different types of files that you can add
in.
Add an Existing Controlled Unit to a Model 79

The controlled unit is added to this package.

Note: The original model must have already saved the desired controlled unit.

After the controlled unit is added to the model, it will behave like the other units in
the model.

Note: The file contains this unit is the same as it was in the original model.

Create a virtual path map entry to specify the location of the controlled unit added to
this model. See Defining Virtual Paths on page 83.

If the controlled unit being added is under source control, then the model you are
adding into must have source control enabled.

Share an Existing Controlled Unit into a Model

When a product involves many developers and development teams, or when
multiple projects are developed, it may be very useful to make portions of a model
available to other teams in a read-only format.

The shared package is indicated as "not owned" by the sharing model. See Unit
Information Tab on page 67. This is the same facility used to include the RTClasses,
RTCClasses, RTComponents, and RTCComponents packages in the default model.
The interface for the TargetRTS library is shared into a model.

With Rose RealTime, you develop your application in a high level language using
state diagrams and structure diagrams. These elements are automatically converted,
such as Java to RTJava, and are placed in a framework that provides critical real-time
system services.The key to using the services provided by the framework is to
understand how your application will integrate into the Java UML Services Library
skeleton.

The ability to share packages is intended to support the development of layered
models with sharing between the groups working on the different layers. For
example, if a project involves a services layer with an application on top, the services
layer and the application could be developed as separate models. Since the
application model requires access to the services layer it could share one or more
packages from the services model. In addition, sharing the elements enforces the
restriction that developers working on the application layer should not modify the
elements in the services layer.

It is important to properly partition the system if you wish to make use of shared
packages.
80 Chapter 2 - Storage of Model Data

Shared package producer:

The producer of the shared package must ensure that the shared package is either self
contained or that all the required packages are being provided. If the package makes
use of customized property sets, then the producer must also make these property
sets available.

Shared package consumer:

To share an existing package into a model:

1 Open the model.

2 Select the package in the browser that should contain the shared package. For
example, if you want the shared package to appear under the Logical View, select
the Logical View package in the browser. Share the package to the same location in
the model hierarchy as in the original model.

3 Click File > Share External Package... from the browser context menu and specify the
appropriate file name. You can change the filter to see the different types of files
that you can share.

The package is shared into this package and the containing package is marked as
modified, but the shared package is not.

The original model must have saved the desired package as a controlled unit.

Note: We recommend that you create a virtual path map entry to specify the location
of the controlled unit added to this model. See Defining Virtual Paths on page 83.

Produce a Single Model File from a Model with Many Units

This can be useful for sending a model to someone at another location who does not
have access to your work area.

To create a single .rtmdl file for the complete model:

1 Open the model.

2 Click File > Export Model... to save the model into a single .rtmdl file. You will be
prompted for the file name and location.

You will be prompted about whether the file should include each of the shared
packages (for example, RTClasses).

Typically, you click No for each package that is available to the user who will open
the model, and click Yes for packages that are not available to that user.
Produce a Single Model File from a Model with Many Units 81

Figure 27 Export shared package dialog

Note: Since the resulting file contains a complete model, it must be opened (for example, click
File > Open...) instead of being imported (for example, click File > Import...). Rational Rose
RealTime does not allow you to import a complete model into another model.

Virtual Path Maps

When multiple users are working on the same model, there is the possibility that they
may use slightly different directory paths to the model data files. Rational Rose
RealTime provides virtual path maps as a general mechanism to solve this, and other
similar, problems.

How Do Virtual Paths Work?

When Rational Rose RealTime saves a model element, it attempts to substitute every
absolute path with a virtual path. Later, when a controlled unit is opened, each virtual
path is transformed back into an absolute path.

For example, if a user has defined a virtual path:

$MYPATH=Z:\ordersystem

and saves a package as

Z:\ordersystem\user_services.rtlogpkg

the model file will refer to the package as:

$MYPATH\user_services.rtlogpkg.

When another user, who has defined $MYPATH as:

$MYPATH=X:\ordersystem

opens the same model from their X drive, Rational Rose RealTime resolves the
internal reference to the controlled unit and loads the following file:

X:\ordersystem\user_services.rtlogpkg.
82 Chapter 2 - Storage of Model Data

Defining Virtual Paths

To define a virtual path:

1 Click File > Edit Path Map to open the Virtual Path Map dialog.

2 Type the name of the new virtual path in the Symbol field (for example,
"MYPATH"), but omit the leading “$” character.

3 In the Actual Path field, enter the folder location for the model file.

4 Click Add. You now defined a virtual path map symbol $MYPATH.

5 To substitute the current physical paths to any existing controlled units in the
model files, explicitly force a save of the units affected.

Note: Each user that is going to work on a model has to define the same path map
symbols before opening the model.

The virtual paths in the dialog box are pre-defined in Rational Rose RealTime,
although actual path values may be different for your system.

Figure 28 Virtual Path Map dialog
Virtual Path Maps 83

When anyone in the team opens or saves a model, Rational Rose RealTime attempts to
match the longest possible file path to the symbols in the path map. For example, if
there is a path map entry for MYPATH which is set to X:\ordersystem, and a model
references the controlled unit X:\ordersystem\units\data_serv.rtlogpkg, the actual
reference in the model file will be $MYPATH\units\data_serv.rtlogpkg. Thus, when
another user opens the model in their private workspace, $MYPATH will be
substituted with the path defined by that user’s path map.

Defining a New Path Map Using Another Path Map Symbol

The actual path in a path map definition can contain previously defined path map
symbols. For example, if there is a path map:

$ROOT=X:\model_vob

you can define a path map $MYPATH for the path

X:\model_vob\ordersys

by adding the path map:

$MYPATH=$ROOT\ordersys

Implicitly Defined Pathmap Symbols

To make simple model sharing transparent between users, two implicit pathmap
symbols are defined for use by controlled unit filenames:

■ $&: the context of the unit, which is the directory of the package which contains
the unit in question.

■ $@: the location of the .rtmdl file for the current model.

If you are creating a package that will be shared into other models, you should use the
"Disallow model-relative pathnames" option on the package’s Unit Information tab.
This will ensure that filenames below the package in the unit hierarchy do not attempt
to use $@. This is important because for each model to which the shared package
belongs, $@ will have a different interpretation, leading to problems loading any files
that use $@ in their path.

Using Path Maps When Sharing Packages

When sharing and adding packages between models, it is recommended that you use
virtual paths in order to avoid having explicit "hard-coded" paths saved in controlled
unit files.
84 Chapter 2 - Storage of Model Data

The controlled unit file for a controllable element is referenced by a relative file name
within the directory structure of the model in which the unit was created. If another
model references (for example, adds or shares) this controlled unit, the path name
pointing to the shared, or added element can no longer be relative. Having these
explicit paths can cause problems in team development.

This problem can be avoided by using a path map set to the root model directory of
the model where the shared controlled unit was created. A model which shares this
controlled unit will use the path map variable to reference the file.

You must ensure that this path map is defined when you create or open any model
which shares controlled units from another model.

Using virtual paths in the value of a model property

Rational Rose RealTime does not convert actual paths in model properties to virtual
paths. In order to use a virtual path in the value of a model property, you must
manually enter the virtual path map symbol, including the "$" sign - for example,
$ROOT - into the value of the model property.
Virtual Path Maps 85

86 Chapter 2 - Storage of Model Data

3Source Control
Fundamentals
Contents

This chapter is organized as follows:

■ Fundamentals on page 87
■ Source Control in Rational Rose RealTime on page 88
■ Source Control Development Concepts on page 98
■ Versioning Strategies on page 100

Fundamentals

Rational Rose RealTime provides source control facilities by integrating with existing
source control systems to provide versioning and controlled access to model files.

Source control systems are repositories that store successive versions of files, usually
with a comment attached to each version. Before a repository can begin keeping track
of a file’s versions, the file must be added to the repository.

Each user of a source control system typically has their own local working area that
stores a copy of the files from the repository which they wish to access. Even though a
repository may contain thousands of files, each user’s working area need only be
populated with the files from the repository that they will be accessing.

If a file is checked out to a user’s working area, then it will be write-enabled; if the file
is not checked out, it will be read-only. To prevent multiple users from attempting to
make changes to the same file simultaneously, exclusive access is usually enforced.
This is accomplished by allowing only one user at a time to check out a file version. As
well, some source control systems only allow the most recent version to be checked
out.

Rational Rose RealTime supports many different source control systems. For details
on which systems are supported, see Source Control Tools on page 149.
87

Source Control in Rational Rose RealTime

This topic is organized as follows:

■ Source Control Status on page 88
■ What are Primary and Secondary Edits? on page 89
■ Source Control Operations on page 94
■ Types of Source Control Systems on page 97

Source Control Status

When source control is enabled, Rational Rose RealTime queries the active source
control system for the status of each controlled unit. For each unit, the status indicates
whether the corresponding file is present in the source control system, and if present,
indicates whether the file is checked out to a specific user.

If a unit’s file is checked out from source control, the browser shows a check mark
next to the unit. The Unit Information tab in the specification dialog for a unit shows
whether the unit is under source control. This status is also visible in the browser:
units that are under source control are shown in the browser with a darkened
controlled unit indicator; units not under source control are shown with a faded
controlled unit indicator.

The following figure shows the different source control status options that are
displayed in Rational Rose RealTime browsers:

■ The lightened unit box opposite RTClasses and Scratch indicates that they are
controlled units, but not currently under source control

■ The checkmark in the unit box opposite System indicates that it is a controlled unit
under source control that is checked out to the current user

■ The empty darkened unit box opposite TestHarnesses indicates that it is a
controlled unit under source control that is not checked out to the current user

Figure 29 Controlled Unit Icons with Source Control
88 Chapter 3 - Source Control Fundamentals

What are Primary and Secondary Edits?

Changes to a UML model sometimes require that several model elements be modified
to effect the change. Some edits, such as element name changes and hierarchy
manipulations, may need to modify every reference to the element being changed.

Updating all of the cross-references is not necessary to maintain the model’s integrity
- only direct references must be updated, such as the reference from a derived class to
its superclass. Even though the model integrity is maintained in this way, code
generation may not work properly unless all references are updated.

Due to the many cross-references in a model, it is often infeasible to check out all of
the units that are affected by an edit so that all references can be updated immediately.
To prevent excessive check-out contention for units, Rational Rose RealTime enforces
that only the elements absolutely required for an edit be accessible in order to allow
the edit to proceed. The changes that will affect these required units is called the
"primary" edit. If these units are not accessible and cannot be checked out, then
Rational Rose RealTime will not allow the edit to proceed.

All other changes, such as references that will be modified as a result of the edit, are
lumped together and called "secondary" edits. Rational Rose RealTime optionally
prompts the user to check out secondary edit units after the operation has completed.

Note: It is important for secondary edits be updated as soon as possible. Otherwise
model validation problems may arise.

As an example, if we have a model with the classes shown in Figure 30.
Source Control in Rational Rose RealTime 89

Figure 30 Model Validation Example

If a user tries to delete port P1 from capsule class Capsule1, then this would cause the
port role P1 on capsule role role1 in Capsule2 to be deleted. This, in turn, would cause
the connector to be deleted in Capsule2. Therefore:

■ Capsule1 is a primary edit and so it must be checked out to proceed with the edit

■ Capsule2 is a secondary edit and so it should be checked out but, if not, the edit
can proceed

If Capsule2 is not checked out and the edited Capsule1 is checked in to source control,
then users who open a model with those versions of Capsule1 and Capsule2 will
encounter a model validation error that corresponds to the deletion of the connector
in Capsule2. In other words, model validation has performed the secondary edit for
this user. See Model Validation on page 167 for more information.

Source Control Settings

All source control settings are stored in the workspace file. Source control settings are
located on the Source Control tab on the Model specification sheet. The Source Control
tab can also be accessed via the Tools > Source Control > Configure... menu item.
90 Chapter 3 - Source Control Fundamentals

Figure 31 Source Control Settings

Enable source control

Allow model elements to be checked into and out of a source control system.

Check out files when edited

Forces the tool to automatically check out a model element if the user tries to edit it.

It is recommended that this option be selected if the model is under source control. If
this option is not selected, you may have difficulty saving the changes you have
made, which can also lead to problems when building.

Check out files with secondary edits

Forces the source control tool to automatically check out a model element if an edit to
some other model element causes a change in the element.
Source Control in Rational Rose RealTime 91

It is recommended that this option be selected if the model is under source control. If
this option is not selected, you may have difficulty saving the changes to the affected
model elements, which can also lead to problems when building.

Only allow edits to checked out files

Prevents edits to model elements unless the element is checked out.

It is recommended that this option be selected if the model is under source control. If
this option is not selected, then you may have difficulty saving your changes, which
can also lead to problems when building.

Add files to source control when first saved

Causes all model elements to be placed in the source control when the model is saved.

This options is usually not selected. Instead the Tools > Source Control > Submit All
Changes to Source Control menu item is used when submitting additions/changes.

Refresh shared unit status on model load

Indicates whether the Toolset refreshes the source control status of shared controlled
units when a model is first loaded.

Clearing this option can significantly improve the time it takes to open a model with
source control enabled. The status of a unit can always be refreshed later should it be
required.

Scripts directory

When working with source control, Rational Rose RealTime must know the location
of the scripts that interface with your source control tool.

Click Browse to select the directory that contains the appropriate scripts. The Browse
button opens a directory browser dialog showing a subdirectory for each of the
supported source control tools. The directory names corresponding to the source
control systems directly supported by Rational Rose RealTime are listed below:

■ cc - Rational ClearCase (Unix and Windows)

■ msvss - Microsoft Visual SourceSafe (Windows only)

■ rcs - Revision Control System (Unix only)

■ sccs - Source Code Control System (Unix only)

Note: Source control interface scripts are located in $ROSERT_HOME/bin/<host
platform>/cmscripts
92 Chapter 3 - Source Control Fundamentals

Accessing Source Control Operations

In Rational Rose RealTIme, you can access source control operations in several ways.
The first is by clicking Tools > Source Control. These operations generally apply to all
controlled units in the entire model, and include several add-in helpers and
convenience operations.

Figure 32 Tools > Source Control Menu

The second way to access source control operations is through context menus in
browsers. When you select a controlled unit from the browser, the context menu
contains source control operations. To apply an operation to multiple units at the
same time, select all the desired units, and access the source control operation through
the context menu, as shown in the following figure.
Source Control in Rational Rose RealTime 93

Figure 33 Source Control in the Browser context menu

Source Control Operations

The following source control operations are available from within the Rational Rose
RealTime toolset with all supported source control systems. Some operations are
handled slightly differently in some source control systems. See Source Control Tools on
page 149 for more information.

Unless otherwise noted, the following operations are all enabled for any selection of
units.

Refresh Status

Refresh Status queries the active source control system for each unit selected and
determines whether the unit’s file is under source control, and if so, whether the file is
checked out. Refreshing status does not retrieve new versions of files, nor does it
reload files if they have been changed outside the toolset.

Synchronize

Synchronize does the same status updating that Refresh Status performs. However,
Synchronize also determines if the file on disk has changed since the file was loaded
into the toolset. If the underlying file has changed, it will be reloaded into the toolset.
94 Chapter 3 - Source Control Fundamentals

Get

Get interfaces with the active source control system and requests the latest version of
the files corresponding to the selected units. If a new version is retrieved, Rational
Rose RealTime reloads the file.

Check Out

Check out asks the source control system to lock the specified files so that the user
may edit and change them, and in the future submit a new version via Check In. If the
specified file is currently checked out to another user, the operation will fail. Check
out will retrieve the latest version of the files being operated on.

Uncheckout

Uncheckout is available for any file that is currently checked out to the user.
Uncheckout will remove the lock that the user holds on the file in the source control
system and will replace their local file with the most recent file from the repository.

Add

Add attempts to place the selected units under source control. After a unit has been
added to source control, it can be versioned via check out and check in. Unless a file
needs to be added to source control without submitting other changes at the same
time, Submit All Changes should be used rather than explicitly clicking Add.

Check In

Check In submits a checked out file to the repository so that a new version will be
stored. Unless a file needs to be checked in without submitting other changes at the
same time, click Submit All Changes to submit changes to the repository.

Submit All Changes

Submit All Changes is only available from the Tools > Source Control menu. This
command performs the following actions:

■ Determines which units are not under source control, and queries the user to add
them.

■ Determines which units are checked out from source control, and prompts the user
to check them in.

After Submit All Changes successfully completes, the repository is updated with all
changes made by the user.
Source Control in Rational Rose RealTime 95

Apply Label

Apply Label instructs the source control system to apply a specified label to the
selected units. Directories may also be labelled, with the option of working
recursively on the directory contents.

Some source control systems do not support labelling. See Source Control Tools on
page 149 for more information.

Show Differences

Show Differences compares the local version of a unit with the latest version stored in
the source control repository. See the Rational Rose RealTime Model Integrator
documentation for details on using the merge/differencing tool.

Show Differences is only enabled when a single unit is selected.

Show History

Show History displays the version history of a unit based on the revisions of the file
that are in the source control repository.

Figure 34 History dialog example
96 Chapter 3 - Source Control Fundamentals

Most source control systems support the retrieval of a specific version of a file. For
such systems, the Get button is enabled when a version is selected in the list.

To compare the local version of the unit with a specific version, right click on the
version to compare with and click Show Differences....

For source control systems that support applying a label to arbitrary versions of
elements, the context menu will also include Apply Label....

Show History is only enabled when a single unit is selected.

Types of Source Control Systems

There are two types of source control systems: file based and view based. Each type of
system has different features and methods of supporting the source control process.
Consequently there are features of each type that are not supported with the other.

File Based Source Control Systems

Source control systems in this category include Microsoft Visual SourceSafe, Rational
ClearCase with snapshot views, RCS, and SCCS.

File based source control systems require each user to have a copy of the files in a local
folder and use the file system’s read-only attribute to control writing to files.

While working in a file-based system, you will sometimes encounter a unit in the
Toolset that is marked as dirty, despite it not being checked out (see What are Primary
and Secondary Edits? on page 89 for more information). If you are building anything
that includes the dirty unit, you will need to save the changes to disk for the build to
include these changes. The most desirable option is to check out the file in question.

However, if the file is already checked out by someone else, another avenue is
required to make the file writable and save the changes locally. Since the file is not
checked out, the read-only attribute must be changed manually. The Make Files
Writable add-in is included with Rational Rose RealTime to make this task simpler.
With this add-in enabled, the following two operations are available in the Tools >
Source Control menu.

Make Files Writable

Performing this operation will attempt to turn off the read-only attribute on the files
for units that are dirty but not checked out.
Source Control in Rational Rose RealTime 97

Make Files Read Only

Performing this operation changes the read-only attribute of files to match the
checked out status of the corresponding unit. This means that if a unit is not checked
out and the file for that unit is writable, this operation changes the file to be read only.

View Based Source Control Systems

In view based source control systems all versions of a file are stored in a versioned file
system.

Users do not work with the contents of the versioned file system directly. Instead, they
use a work area called a view that provides access to a set of files in the versioned file
system. Moreover, a view provides access to an appropriate set of versions of those
files by specifying how to choose the version of each file that will be seen in the view.

Rational ClearCase is the only currently supported view based source control system.

Source Control Development Concepts

The following concepts are helpful when designing a development process for
working with Rational Rose RealTime.

Development Activity

A development activity is comprised of changes to several elements. Each activity
should encompass a unit of work, such as fixing a bug or adding a new feature. When
the changes for an activity are submitted to the repository, the model will evolve to a
consistent new state.

Integration

Integration is the process of making changes available for use by other developers.
Integration may be performed by a specific person, but it is also common for
developers to play this role.

Lineup

A lineup is a collection of specific versions of files from the source control repository.
Examples of lineups are:

■ version 4 of every file involved in a project.

■ the latest version of each file in the project that is dated before midnight, May 12.

■ the version labelled “Build 6.1.112” of each file in the project
98 Chapter 3 - Source Control Fundamentals

Lineups are used to represent significant combinations of files. In most development
environments, the files that go into any nightly or production build form a lineup.
Lineups are also valuable for reproducing specific builds of the system. The term
baseline is also used to refer to a formal lineup.

Working in Isolation

It is essential that a developer’s work be isolated from the work that other developers
are doing. This is important for a number of reasons:

■ To ensure that each developer can work without being influenced by other
developers’ editing, compiling, testing and debugging.

■ To ensure that each developer can access the appropriate material to perform their
role. This usually requires using some sort of lineup process.

■ To ensure that each developer does not expose their work to the rest of the team
until it is ready for integration.

To support these basic team development requirements, each developer should have
their own work area. Work areas refer to private areas where developers can
implement and test code, in accordance with the project’s adopted standards, in
relative isolation from other developers. A work area must provide private (isolated)
storage for files generated during software development:

■ Working (checked-out) versions of source files

■ Executables

■ Other work area private objects and source code, test subdirectories, and test data
files

A work area private storage would be typically located within a developer’s home
directory on a workstation.
Source Control Development Concepts 99

Versioning Strategies

This topic is organized as follows:

■ Single Stream Versioning

■ Parallel Stream Versioning on page 100

Single Stream Versioning

Single stream versioning refers to having a single series of version numbers for each
file. In effect, the version history for a file is a linear sequence of revisions.

While developing a project using single stream versioning, each developer always
works with the most recent version of files in the repository. To edit a file, a reserved
check out is performed on the latest version of the file. After changes have been made,
they are submitted. This immediately makes the new version visible to other users,
and will become the latest version for others to base their changes on.

This also means that only one person can work on each file at any one time since they
must have the most recent version checked out in order to perform work.

Single stream versioning is not ideally suited to doing bug fixes on an existing release
while doing new development for a future release.

You can use both file and view based source control systems for small projects
without the need for branching or multiple stream development.

Parallel Stream Versioning

Parallel stream versioning permits each file to have a branching tree of versions. This
allows many versions of the same file to be active at the same time. The following
figure shows the version tree for a typical file in a parallel development project.
100 Chapter 3 - Source Control Fundamentals

Figure 35 Example Version Tree

Most parallel development environments involve nominating a branch in the source
control system as the integration branch. The integration branch is used for collecting
all changes to the project (/main is the integration branch in the above diagram).
Testing, release builds, and new development are all based on the contents of the
integration branch.
Versioning Strategies 101

All labelled lineups should consist of file versions from the integration branch. Once
established, a labelled lineup can serve as a the basis for builds, testing, or further
development. Frequently, a temporary lineup is established and built. If the build
completes successfully and passes basic sanity tests, the lineup is then made available
as a baseline. This process is usually automated, and should be done on a
nightly/weekly basis. In the version tree above, the TC_BASELINE_<NNN> labels
indicate stable baselines on the integration branch.

The lineup of file versions in the baseline is used for subsequent development.
Development activities should not be performed on the integration branch, but
separate from it. When a development activity is finished, the changes for that activity
can be merged by an integrator back onto the integration branch. This ensures that the
integration branch is strongly controlled and that only correctly working models are
used to base further development on.
102 Chapter 3 - Source Control Fundamentals

4Organizing a Model
(Architect Activities)
Contents

This chapter is organized as follows:

■ Overview on page 103
■ Packages, Models, and Subsystems on page 104
■ One Model versus Multiple Models on page 105
■ Getting Started on page 106
■ Checking Package Dependencies for Completeness on page 107
■ Check if a Subsystem is Self-contained on page 110
■ Define Subsystem Interface on page 110
■ Scratch Pad Packages on page 110
■ Setup Subsystem Components on page 113
■ Support for Unit Testing on page 115
■ Use Property Sets for Build Settings on page 116
■ Processors and Component Instances on page 116
■ Preparing and Releasing Subsystems on page 118
■ Splitting a Model into Subsystem Models on page 119
■ Splitting a Model Under Source Control on page 122

Overview

One of the primary goals of the Architect’s activities is to create an initial structure or
organization of the model to facilitate team development.

Product development will often start with a small team working on one model. As
development progresses, the team (and the model) will grow to a point where you
should think about how to organize the model to support multiple teams working in
parallel.

It is also useful to think about how sets of modeling elements can be reused by other
groups. You can use Rational Rose RealTime to split parts of a model into highly
cohesive layers or frameworks that can be reused in multiple models.
103

The actual division of a model into packages and subsystems is somewhat of an art
form and we will only attempt to describe some guidelines to help you get started.
Remember that once a model is well partitioned into subsystems, you can either work
with one model or split the model into separate models for each subsystem.

Packages, Models, and Subsystems

Packages are used to group model elements. There are 3 kinds of packages in Rational
Rose RealTime:

■ Logical packages (both the Logical View and Use Case View packages are the same
kind)

■ Component packages

■ Deployment packages.

Each kind of package can only group certain model elements. For example a logical
package can group capsules and classes whereas a component package can only
group component diagrams and components. Packages can also contain packages of
the same kind and so it is possible to decompose your models hierarchically.

A model is composed of the four root packages: Use Case View, Logical View,
Component View, and the Deployment View. The model is the top level model
element which contains all sub-elements.

A subsystem is a concept and not an explicit modeling element in Rational Rose
RealTime. The term subsystem represents a set of related packages that can be
developed, tested, and released together.

Subsystems form the basis for reuse between models. In a layered development
approach, the model for each layer will share in the subsystems for the layers beneath
it.

A subsystem will typically consist of one or more logical packages and one or more
component packages. The logical packages contain the classes in the subsystem and
the component packages contain the components that are used to build the
subsystem. Usually one of the components will be an external library in order to
avoid having to compile the classes in the subsystem when it is reused in another
model.
104 Chapter 4 - Organizing a Model (Architect Activities)

Figure 36 Model, Packages, and Subsystems

One Model versus Multiple Models

A large development project can result in a corresponding large model for the
complete application. If the model has a layered architecture, then it is possible to
produce a set of smaller models that follow the layering of the larger model.

One of the goals of having a separate model for each layer/subsystem is to reduce the
number of developers working on the same model. This technique helps to isolate
development work and reduce parallel development issues.

To build the full project, one designer, typically called the builder, opens a model
referencing all the subsystems that make up the project, thus loading all the changes
done to the packages in the subsystems, and build from that model.

Before splitting a model into a set of subsystem models, you should first consider the
trade-offs:
One Model versus Multiple Models 105

Advantages of a model for each subsystem:

■ Improves Toolset performance and memory footprint simply because a smaller
model is opened and worked on.

■ You can build, test, and release subsystems separately, reducing system
complexity.

■ Groups can share subsystems. Teams can share stable versions of subsystems.

■ Toolset enforces ownership by not allowing developers to modify elements in
shared subsystems.

Disadvantages:

■ Can be more complicated to setup.

■ Build process can be more involved.

■ Might not be appropriate for small teams.

The following sections describe steps to perform before splitting a model to ensure
that your model is well partitioned.

Getting Started

This topic is organized as follows:

■ Mapping the Architecture to Subsystems on page 106
■ Decomposing a Model into Subsystems on page 107
■ Splitting a Model on page 107

Mapping the Architecture to Subsystems

With Rational Rose RealTime, you decompose a model by grouping modeling
elements into packages. You then assign a set of these packages to subsystems.

You should consider each subsystem as a distinct unit that you can build and test
independently, whether the model is split or not. You must also define and enforce the
interfaces between subsystems.
106 Chapter 4 - Organizing a Model (Architect Activities)

Decomposing a Model into Subsystems
■ Checking Package Dependencies for Completeness on page 107

■ Check if a Subsystem is Self-contained on page 110

■ Define Subsystem Interface on page 110

■ Scratch Pad Packages on page 110

■ Setup Subsystem Components on page 113

■ Support for Unit Testing on page 115

■ Use Property Sets for Build Settings on page 116

■ Processors and Component Instances on page 116

Splitting a Model
■ Should You Split a Model Before Adding to Source Control? on page 119

■ Splitting a Model Not in Source Control on page 119

■ Splitting a Model Under Source Control on page 122

Checking Package Dependencies for Completeness

After you create packages and move the model elements into the packages
(subsystems), you want to ensure that the subsystems you created have dependencies
that you expect. If the interdependencies between subsystems are too complex, it will
be difficult to work in teams (changes will not be isolated) and split the model.

Show Access Violations

Click Report > Show Access Violations... to verify that the designed dependencies
between packages (subsystems) are correct and complete. For a description of this
menu item, see the Report Menu in the Toolset Guide.

The Architect should revisit the package dependencies periodically to check that the
detailed implementation has not violated the intended architecture.

Click Report > Show Access Violations... to verify that there are no violations in the
logical packages and component packages in the subsystem. You should also verify
that every class and logical package referenced by the components in the subsystem
are also part of the subsystem.
Checking Package Dependencies for Completeness 107

Figure 37 Show Access Violations dialog

Determine the External Dependencies for a Package

The Specification dialog for a package contains a Relations tab which shows the
dependencies for this package. This is a quick way to see if a package has any
dependencies but it can be difficult to visualize the dependencies if you just look at
this list. In order to properly visualize the package relationships, use a class diagram.

To quickly create a class diagram showing the relationships for a specific
package:

1 Open the class diagram.

2 If this package is not already on this diagram, then drag it from the browser onto
the diagram.

3 Select the package in the diagram and click Query > Expand Selected Elements.

The resulting dialog allows you to add related elements to this diagram based on the
chosen options.

4 To see the direct dependencies for this package, set the options to expand one level
of suppliers. Ensure that dependency relations are chosen in the Relations dialog.

5 Click OK to add the related packages to the diagram.

The following figure shows the package dependencies in a simple traffic light control
model.
108 Chapter 4 - Organizing a Model (Architect Activities)

Figure 38 Package Dependencies Diagram Example

These steps are also supported for component packages on a component diagram.

By varying the options you set in these dialogs, you can quickly produce a diagram
showing the desired information. If many packages were added to the diagram, then
you can use the automatic layout mechanism to produce an initial layout for the
diagram.

By reviewing the relationships in this diagram, the Architect can detect any
undesirable dependencies. Resolving an undesirable dependency can involve either
modifying the class(es) that caused the violation and/or moving some of these classes
to another package.
Checking Package Dependencies for Completeness 109

Check if a Subsystem is Self-contained

A self-contained subsystem is composed of packages that do not have any
dependencies to packages outside of the subsystem. A self-contained subsystem can
be shared without requiring any other subsystems.

Assuming the package dependencies are complete (see Checking Package Dependencies
for Completeness on page 107), then checking whether a subsystem is self-contained
involves examining the dependencies for the packages in the subsystem to ensure that
all of them are linked to other packages within the subsystem.

A subsystem does not need to be self-contained in order to be shared, provided that
the sharing model contains all the other subsystems that are required.

Define Subsystem Interface

By reducing the coupling between subsystems, you can lessen the chance of having
integration problems caused by using subsystems that have complex dependencies
into one another.

It is important for the producer of the subsystem to pay close attention to the classes
in a subsystem that are public (for example, is visible and usable outside of the
subsystem) and which are private. For ease of use, it is also recommended that the
subsystem contain a set of class diagrams that illustrate the public classes.

Best Practices

1 Specify the visibility of each class (public or implementation).

2 Include one or more class diagrams showing the public classes. You may also use
different visual clues for the public classes in a class diagram, for example, color.

Scratch Pad Packages

When working on a model in a team environment, it is common for a developer to
create temporary model elements that are not intended to be shared with the rest of
the team. For example, a developer may create a temporary component when unit
testing a change to a capsule class. If the model is under source control, the developer
may not want these temporary elements checked in to source control with the other
changes they are making.
110 Chapter 4 - Organizing a Model (Architect Activities)

To support temporary work within a controlled model, Rational Rose RealTime
supports scratch pad packages. A scratch pad package is a package that is not added to
source control. Also, changes can be made to a scratch pad package without the
Toolset requiring that package to be checked out. This allows multiple team members
to make temporary changes within their own local scratch pad package without
encountering any contention issues.

Elements can be moved into or out of a scratch pad package by dragging them to
another package in the browser. Elements can also be copied into (or out of) a scratch
pad package using control-drag in a model browser.

The controllable elements within a scratch pad package cannot be individually
controlled. If a controlled unit is moved into a scratch pad package, then it will no
longer be controlled.

To create a scratch pad package:

1 Create a package and give it a descriptive name, e.g., TemporaryComponents.

2 Select the package in the browser and click File > Control Unit menu item. If this
menu item is not enabled, then ensure that the parent element for this package is
also controlled.

3 Open the Specification dialog box for this package and change to the Unit
Information tab.

4 Select the Scratchpad option and click OK.

5 Save the package containing the scratch pad. Optionally, you may also save the
scratch pad. If the containing package is under source control, then it should be
checked out and checked in.
Scratch Pad Packages 111

Figure 39 Scratch Pad Package Unit Information Tab

Remember

Scratch pad packages are only intended to be used for temporary work. If you initially
create an element in a scratch pad package and you decide that it should be placed
under source control, then it is possible to move the elements from a scratch pad
package to another package by dragging them in the browser.

Conversely, if you initially create an element in a (non-scratch pad) package and you
decide that it should not be placed under source control, then it is possible to move an
element from another package into a scratch pad package by dragging in the browser.

When you open a model that contains a scratch pad package, the Rational Rose
RealTime Toolset will try to read its file based on the file information for this package.
If the file does not exist, then the Toolset will prompt to allow you to specify an
alternative file location. If you do not have a local file for this scratch pad, then you
may click Cancel to this dialog with no repercussions. If you wish to avoid any
prompts about missing scratch pad packages, open the Tools > Options dialog box and
select Ignore missing scratch pad files on the File tab.
112 Chapter 4 - Organizing a Model (Architect Activities)

Potential Problems

Since a scratch pad package is never placed under source control, you must ensure
that the elements within it are not referenced by elements that are checked in to source
control. For example, if you create a capsule class in a scratch pad package, this
capsule class should not be referenced within a component that is checked in to source
control.

Note: Elements in a scratch pad package can reference elements either inside or outside of that
package with no problems.

If you accidentally check in an element that references an element in a scratch pad,
then other developers will encounter model validation errors when they load that
version of the referencing element. For more information on model validation, see
Model Validation on page 167.

Setup Subsystem Components

This topic is organized as follows:

■ Background on page 113
■ Components in Subsystems on page 114

Background

Rational Rose RealTime supports three general types of components:

1 executables - building an executable component results in an executable (for
example, .exe files).

2 libraries - building a library component results in a static library (for example, a .lib
file).

3 external libraries - an external library specifies the path to an existing static library
so it does not need to be built.

It is also possible to create dependencies from an executable component to a library or
external library component. The dependency indicates that the static library
associated with the library component should be linked in with the executable created
when building the executable component. See the language-specific guides for more
information about components and component dependencies.

A small model may have a single executable component that is built to produce the
application. A large model will have an executable component and many library
components, typically corresponding to the layering in the architecture.
Setup Subsystem Components 113

In addition to the components that are used to build the complete application, it is
often useful to have components that build subsets of the model, for example, for unit
testing purposes.

Components in Subsystems

Ideally, each subsystem will contain one or more external library components. These
components are built as part of the build process of a subsystem and are referenced in
models that use the subsystem. An external library component will allow the sharing
model to reuse the prebuilt library, which can dramatically reduce build times for a
large model.

A subsystem will often include multiple variations of each component. For example, a
debug component and a release component. For ease of navigation and organization,
the subsystem should group the components into packages, for example, a Debug
package and a Release package containing the debug and the release components
respectively.

The subsystem model will need one or more executable components that are used to
test the subsystem. Typically, the executable component will only contain the testing
classes and it will have a dependency on the library component for the subsystem.

The following component diagram shows three components for an example
subsystem. The BaseRelease component is a library that contains the subsystem. The
SanityTests and FullRegressionTests components are executables that use the
BaseRelease component.

Figure 40 Example Subsystem Components
114 Chapter 4 - Organizing a Model (Architect Activities)

After you create the necessary components and the dependencies between them, you
have to determine which classes belong to which components. Typically, this will
follow naturally from the architecture of the model, but there can be some issues that
arise during development. As new classes are created, they will need to be added to
the appropriate component(s). If multiple developers create classes referenced by the
same component, then the component can become a source of contention.

The contention for a component can sometimes be avoided, or at least reduced, if the
component references logical packages instead of classes themselves. Remember that
referencing a package from a component is equivalent to referencing all the classes in
that package. The added benefit is that the component does not need to be updated
when a new class is added to the package provided that class belongs in that
component. The risk is that a component may contain classes that it does not require.

Support for Unit Testing

While working within a subsystem model, a developer may find it useful to create a
component for use in unit testing their changes. If this component has lasting value,
then it should be created as part of the subsystem model so that it can be reused. To
support the organized storage of unit testing components, the Architect may find it
useful to create component packages that can be used for grouping these components.

If this component is temporary, then it can be created within a scratch pad package.
Often a temporary component is created by copying an existing component by
control-dragging it in the browser.

It is recommended that the Architect creates one or more scratch pad packages in the
Logical View, Component View, and Deployment View in order to support unit
testing with temporary components. It may also be useful to create a scratch pad
package in the Use Case View.

If many developers are creating components in the same (non-scratch pad) package,
then this package can become a source of contention. If your development process
requires the creation and source control of unit testing components, then you may
wish to create several component packages that are used for this.

For more information on the tasks involved in developer testing, see Unit Testing
Within a Subsystem on page 134.
Support for Unit Testing 115

Use Property Sets for Build Settings

Using property sets for common build settings is a suggested method of maintaining
and reusing project level configuration information for building components. See
Managing Model Properties in the Toolset Guide.

Tasks:

■ The builder or architect defines custom sets of component properties which are
specific to a project. For example you can have debug and release build settings.
Custom properties are stored in the .rtmdl file for this model.

■ A component should be based on the appropriate properties sets by modifying the
Default set field in appropriate property tabs of the component Specification
dialog. Any local overrides should also be added.

■ For each executable component, the top level capsule must be set.

■ When the loadbuilder updates a property set then all components that use this set
must be updated by opening the Specification dialogs and clicking Apply Defaults
on the corresponding property tab. The development team should also be notified so
that they can update their private test components in the same way.

Processors and Component Instances

This topic is organized as follows:

■ Project Level Processors on page 116
■ Subsystem Level Processors on page 117
■ Component Instances on page 117

Project Level Processors

For each project, there is usually a known set of processors that component instances
are intended to execute on. Since all the subsystems in the model are intended to
execute on this set of processors, these project level processors should be defined in a
deployment package that is shared between the various subsystem models.

The builder should setup a deployment package containing these project level
processors. For example the builder could configure processors for the labs that are
available for the development teams. These deployment package(s) can then be
shared in each subsystem model. Each package should be owned by one of the
models so that modifications can be made to it in a controlled manner.
116 Chapter 4 - Organizing a Model (Architect Activities)

The processors in these project level deployment packages will typically not contain
any component instances. If they did contain a component instance, then sharing
them would also require the corresponding component packages which contain the
required components. In turn, these components would require the referenced classes
and logical packages. Unless these elements are present in all subsystem models,
these processors should only be used as ‘templates’ in the subsystem models.

Subsystem Level Processors

A development team may choose to create additional processors for their own use,
either by copying the project level processors or by creating new processors for
platforms that are not shared with other teams.

The subsystem level processors can contain component instances based on the
components present in the subsystem. Typically this would include component
instances for regression testing the subsystem and for unit testing major classes in the
subsystem.

Component Instances

Component instances provide the ability to run a specified executable component on
a specified processor. A component instance is controlled with the processor. As
mentioned previously, project level processors will usually not have any component
instances and so they will typically be copied before they can be used to execute/test
a component.

Subsystem level processors will typically contain component instances that
execute/test the entire subsystem. Developers working on the subsystem can use
these component instances, but they may find it easier to create specific unit testing
components and corresponding component instances.

If the model is under source control, then scratch pad packages provide a way to
create and execute temporary component instances.

Tasks

■ A set of deployment packages can be created to hold processors that are available
i- house for testing. The processors will contain ip addresses, host names, and
other configuration information that can be re-used by all developers.

■ Subsystem processors can be created by copying project level processors and
creating the component instances desired for executing/testing the subsystem.

■ A developer copies one of the pre-defined processors into a scratch pad package,
and then creates the desired component instance to run on the processor.
Processors and Component Instances 117

Preparing and Releasing Subsystems

In a model composed of multiple subsystems, there should be policies in place which
describe how new versions of the subsystems will be made available to the other
models.

Subsystem Supplier

When a team is ready to release a new version of a subsystem, they must ensure that
the correct version of all the necessary elements of the subsystem are available. This
includes:

■ logical packages containing the classes in the subsystem

■ component packages containing the library components and/or external library
components for the subsystem

■ any other required Rational Rose RealTime elements

■ any other required external (non-Rational Rose RealTime) elements including .lib
files for external library components

The team releasing the subsystem will typically prepare the required elements using
one of the following mechanisms:

1 Label Subsystem Elements

If the model is under source control, then a label can be applied to the elements in
the subsystem.

2 Copy Subsystem Elements

The elements in the subsystem can be copied to a known location.

Subsystem Consumer

The architect for a model which requires this subsystem must then ensure that their
model includes the new version of the subsystem. The mechanism for this depends on
how the subsystem elements were made available.

If the subsystem elements were copied to a known location, the architect must ensure
that this location is referenced by the model. If the location is the same as the previous
version of the subsystem, then no changes should be necessary. If the location has
changed, then the architect may have to recreate their model by sharing in the shared
packages from the new locations and adding in the packages that are owned by this
model.
118 Chapter 4 - Organizing a Model (Architect Activities)

If the subsystem was packaged using a source control label, then the architect must
ensure that this label is used for getting the new lineup for their model.

If there are changes to the subsystem interface, then the architect of a model which
uses this subsystem must ensure that the corresponding changes are made within
their model.

Splitting a Model into Subsystem Models

Splitting a large model into smaller subsystem models can improve team
development. A developer can now work on the appropriate model for their
particular subsystem. Working on this smaller model should reduce the Toolset
footprint and improve the performance of several operations (e.g., opening a model).

It is possible to split a model before or after it has been placed under source control. If
a model has not been controlled, it is recommended to split the model first, then add
the resulting controlled units to source control.

Before a model is split into subsystem models, you must ensure that the dependencies
between the subsystems will support this partitioning. Specifically you must ensure
that the subsystems form a layered architecture that will allow each subsystem to exist
in a model that does not contain any of the ‘higher level’ subsystems. See Checking
Package Dependencies for Completeness on page 107.

Should You Split a Model Before Adding to Source Control?

If your model is not already in source control then it is best to split the model before
adding it to source control. If your model is already in source control, then it is still
possible to split it into separate models but the process is a bit different.

See Splitting a Model Not in Source Control on page 119 or Splitting a Model Under Source
Control on page 122 for the full description.

Splitting a Model Not in Source Control

At this point we assume that you have a base model (in this example we will call it
Base) and that the model is not yet in source control. We also assume that you will be
creating separate models for each of your subsystems.

Lastly, this description also assumes that you will want to keep the controlled units
for each subsystem model together and so they will be moved into the subsystem
directory tree. Moving the files is optional but it can make it much easier to manage
the files that make up each model.
Splitting a Model into Subsystem Models 119

The section Overview of Import, Add, and Share on page 71 provides valuable
background information that should be understood before proceeding with this task.

Tasks

1 Ensure that the base model has defined the initial controlled units, at least at the
package level corresponding to the subsystem partitioning.

The base model (Base) directory hierarchy for the sample model would look
something like:

Base.rtmdl
<Base>

UseCaseView.rtlogpkg
<UseCaseView>
LogicalView.rtlogpkg
<LogicalView>

SubSystem1.rtlogpkg
<SubSystem1>
SubSystem2.rtlogpkg
<SubSystem2>

ComponentView.rtcmppkg
<ComponentView>

SubSystem1.rtcmppkg
<SubSystem1>
SubSystem2.rtcmppkg
<SubSystem2>

DeploymentView.rtdeploy
<DeploymentView>

2 Click File > Edit Path Map to create a Virtual Path Map variable for each top level
package in the model (for example, each subsystem package). In our example, we
could create path map variables SubSystem1LogicalPkg,
SubSystem1ComponentPkg, SubSystem2LogicalPackage,
SubSystem2ComponentPkg, etc.

3 Explicitly save the Base model units affected by the new pathmap variable.

4 If the Base model makes use of custom property sets, then these must be made
available to the subsystem models. Click Tools > Model Properties > Export... to
create a file that can be imported to the subsystem models.

5 Create a new model by clicking File > New. This model will be used for the first
subsystem. Ensure that the path map variables are still defined correctly.

6 If the Base model makes use of custom property sets, then ensure that these are
available in the subsystem model. Click Tools > Model Properties > Replace... to
import the file containing the property sets.
120 Chapter 4 - Organizing a Model (Architect Activities)

7 Control all the elements in the new model by right-clicking on the Model in the
browser and clicking File > Control Child Units.

8 Save the model (.rtmdl) into an appropriate directory by clicking File > Save As....
We suggest that you create a dedicated directory for each subsystem.

For example, we could name the subsystem model SubSystem1 and store it in a
directory called SubSystem1. Answer yes to all the prompts about file names for
the control units.

9 Next, you can optionally move the packages for your subsystem from the base
model directory hierarchy into the subsystem model directory hierarchy created
when you saved the new model.

For each package that will be part of the subsystem, move the package controlled
units (in our example this would be SubSystem1.rtlogpkg and
SubSystem.rtcmppkg into the corresponding directory level in the new model)
and then move the directories for each package to the corresponding location.

The resulting directory hierarchy for the new model should look something like:
SubSystem1.rtmdl
<SubSystem1>

UseCaseView.rtlogpkg
<UseCaseView>
LogicalView.rtlogpkg
<LogicalView>

SubSystem1.rtlogpkg
<SubSystem1>

ComponentView.rtcmppkg
<ComponentView>

SubSystem1.rtcmppkg
<SubSystem1>

DeploymentView.rtdeploy
<DeploymentView>

If you move the files, then edit the associated path map variables to reflect the new
file locations.

10 Next you will have to add the subsystem packages into the subsystem model by
clicking File > Add Files... in the context menu for a package. These packages
should be added in at the same location in the subsystem model hierarchy as they
were in the base model. In our example, SubSystem1.rtlogpkg should be added to
the Logical View and SubSystem1.rtcmppkg should be added to the Component
View.

11 Save the subsystem model.
Splitting a Model into Subsystem Models 121

Steps 5 - 11 should be repeated for each remaining subsystem with the following
addition.

■ Before adding the subsystem packages to the new subsystem model (for example,
step 8 above), you must share in the packages from the other subsystems that are
required by this subsystem.

In our example, assume that SubSystem2 in the Base model depends on
SubSystem1. In the SubSystem2 model we must first click File > Share External
Package... in the browser context menu to share SubSystem1.rtlogpkg and
SubSystem1.rtcmppkg into the Logical View and Component View respectively.

If we attempt to add the packages for SubSystem2 before the other required
packages are present in the model, then the Rational Rose RealTime Toolset will
prompt to determine the location of the required elements. If you encounter this
prompt, click Cancel on this dialog and the subsequent dialog, and then share the
required packages as described above before trying to add the SubSystem2
packages again.

After splitting the original model, you will typically not use that model for any
further development. You may choose to create an equivalent model that shares in
all the subsystems. For example, in our example we could create a new model
called NewBase which shares in the packages in SubSystem1 and SubSystem2. This
model cannot be used to edit any of the subsystems but it might be useful for
building and/or testing.

Note: If the original model is not controlled, see Controlling All of the Controllable
Elements on page 75 and Controlling a Subset of the Controllable Elements on page 75.

Splitting a Model Under Source Control

At this point we assume that you have a base model (in this example we will call it
Base) and that the model is under source control. We also assume that you will be
creating separate models for each of your subsystems.

Lastly, this description also assumes that you will want to keep the controlled units
for each subsystem model together and so they will be moved into the subsystem
directory tree. Moving the files is optional but it can make it much easier to manage
the files that make up each model.

The section Overview of Import, Add, and Share on page 71 provides valuable
background information that should be understood before proceeding with this task.
122 Chapter 4 - Organizing a Model (Architect Activities)

Tasks

1 Ensure that the base model has defined the initial controlled units, at least at the
package level corresponding to the subsystem partitioning.

The base model (Base) directory hierarchy for the sample model would look
something like:

Base.rtmdl

<Base>

UseCaseView.rtlogpkg

<UseCaseView>

LogicalView.rtlogpkg

<LogicalView>

SubSystem1.rtlogpkg

<SubSystem1>

SubSystem2.rtlogpkg

<SubSystem2>

ComponentView.rtcmppkg

<ComponentView>

SubSystem1.rtcmppkg

<SubSystem1>

SubSystem2.rtcmppkg

<SubSystem2>

DeploymentView.rtdeploy

<DeploymentView>

2 Click File -> Edit Path Map to create a Virtual Path Map variable for each top level
package in the model (for example, each subsystem package). In our example, we
could create path map variables SubSystem1LogicalPkg,
SubSystem1ComponentPkg, SubSystem2LogicalPackage,
SubSystem2ComponentPkg, and so on.

3 Check out the root packages in the Base model.

4 Explicitly save the Base model units affected by the new pathmap variable.

5 Check in the root packages in the Base model in order to save the modified file
path information under source control.

6 If the Base model makes use of custom property sets, then these must be made
available to the subsystem models. Click Tools > Model Properties > Export... menu
item to create a file that can be imported to the subsystem models.
Splitting a Model Under Source Control 123

7 Create a new model by clicking File > New. This model will be used for the first
subsystem. Enable source control for this model by opening its Specification
dialog, switching to the Source Control tab, and specifying the desired settings.
Ensure that the path map variables are still defined correctly.

8 If the Base model makes use of custom property sets, then ensure that these are
available in the subsystem model. Click Tools > Model Properties > Replace... to
import the file containing the property sets.

9 Control all the elements in the new model by right-clicking on the Model in the
browser and clicking File > Control Child Units.

10 Save the model (.rtmdl) in the appropriate local working directory for your source
control system by clicking File > Save As... (for example, /vob/SubSystem1). We
suggest that you create a dedicated directory for each subsystem.

For example, we could name the subsystem model SubSystem1 and store it in a
directory called SubSystem1. Answer yes to all the prompts about file names for
the control units.

If you choose, you may add the subsystem model to source control at this stage.
Click Tools > Source Control > Submit All Changes to Source Control to ensure that all
the controllable units are added.

11 Next you can optionally move the packages that make up your subsystem from
the base model directory hierarchy into the subsystem model directory hierarchy
that was created when you saved the new model.

The actual steps involved in moving the files and directories within source control
are dependent on the source control tool.

For each package that will be part of the subsystem, move the package controlled
units, in our example this would be SubSystem1.rtlogpkg and SubSystem.rtcmppkg
into the corresponding directory level in the new model, and then move the
directories for each package to the corresponding location. The resulting directory
hierarchy for the new model should look something like:

SubSystem1.rtmdl

<SubSystem1>

UseCaseView.rtlogpkg

<Use Case View>

LogicalView.rtlogpkg

<Logical View>

SubSystem1.rtlogpkg

<SubSystem1>
124 Chapter 4 - Organizing a Model (Architect Activities)

ComponentView.rtcmppkg

<Component View>

SubSystem1.rtcmppkg

<SubSystem1>

DeploymentView.rtdeploy

<Deployment View>

If you move the files, edit the associated path map variables to reflect the new file
locations.

12 Add the subsystem packages into the subsystem model by clicking File > Add
Files... in the context menu for a package. These packages should be added in at the
same location in the subsystem model hierarchy as they were in the base model. In
our example, SubSystem1.rtlogpkg should be added to the Logical View and
SubSystem1.rtcmppkg should be added to the Component View.

If you added the subsystem model to source control previously, then you will be
prompted to check out the root packages that are affected. Click OK for these
dialog boxes.

13 Save the subsystem model.

14 Enter the changes for this subsystem model into source control by clicking Tools >
Source Control > Submit All Changes to Source Control.

15 We recommend that you create a default workspace for each subsystem model. See
Make Default Workspace Available to Project Members on page 147 for more
information on this task.

Steps 7- 15 should be repeated for each remaining subsystem with the following
addition.

■ Before adding the subsystem packages to the new subsystem model (for example,
step 12 above), you must share the packages from the other subsystems that are
required by this subsystem.

In our example, assume that SubSystem2 in the Base model depends on
SubSystem1. In the SubSystem2 model we must first click File > Share External
Package... menu item share in the browser context menu to share
SubSystem1.rtlogpkg and SubSystem1.rtcmppkg into the Logical View and
Component View respectively.

If we attempt to add the packages for SubSystem2 before the other required
packages are present in the model, then the Rational Rose RealTime Toolset
prompts you to determine the location of the required elements. If you encounter
Splitting a Model Under Source Control 125

this prompt, click Cancel and on subsequent dialog boxes as well, and then share
the required packages as described previously before attempting to add the
SubSystem2 packages again.

After splitting the original model, you will typically not use that model for any
further development. You may choose to create an equivalent model that shares in
all the subsystems. For example, in our example we could create a new model
called NewBase which shares in the packages in SubSystem1 and SubSystem2. This
model cannot be used to edit any of the subsystems, but it might be useful for
building and/or testing.

Note: If the original model is not controlled yet., see Controlling All of the Controllable
Elements on page 75 and Controlling a Subset of the Controllable Elements on page 75.
126 Chapter 4 - Organizing a Model (Architect Activities)

5Working with a Model
Under Source Control
(Developer Tasks)
Contents

This chapter is organized as follows:

■ Setting up your Source Control Tool on page 127
■ Configuring Work Areas on page 128
■ Getting a Specific Lineup of a Model on page 128
■ Opening a Model Under Source Control on page 128
■ Adding a new Controlled Unit into Source Control on page 129
■ Checking Controlled Units In and Out of Source Control on page 129
■ Building and Running Locally on page 133
■ Unit Testing Within a Subsystem on page 134
■ Promoting Changes for Integration on page 136

As a developer, you work with a subsystem model under source control. Before
reading the following sections, you should be familiar with the material in Source
Control Fundamentals on page 87.

Setting up your Source Control Tool

Before using Rational Rose RealTime with your source control tool, you must perform
any tool-specific configuration, as specified in the sections referenced below:

■ ClearCase Workstation Setup on page 155
■ SourceSafe Workstation Setup on page 159
■ RCS/SCCS Workstation Setup on page 162

Other Source Control Tools

If you customized Rational Rose RealTime to work with another source control tool,
ensure that the source control tool is correctly installed on each developer
workstation.
127

Configuring Work Areas

Before working on a source controlled model you first have to get a specific lineup of
controlled units onto your local disk. From there, you can start working on a model by
opening the workspace file.

Your Source Control Administrator or Integrator will know how to determine the
specific label or configuration used to create a local work area. Next, it is a matter of
setting up a local work area before running Rational Rose RealTime.

See the following tool specific sections:

■ ClearCase Work Area Setup on page 158
■ RCS/SCCS Work Area Setup on page 163

Getting a Specific Lineup of a Model

When a Developer begins a development task, they must start with the correct
version of the model files. The steps involved vary depending on your team
development process and the underlying source control tool.

For Rational ClearCase, the developer should be using a config spec that defines their
view to include the correct versions of the model elements.

For Microsoft Visual SourceSafe, your team may be using labels to mark the correct
versions and the developer should perform a Get based on that label by using the
Label field available from the Parameters... button in the Get dialog box.

Similar labelling strategies can be used with RCS/SCCS.

Opening a Model Under Source Control

Opening a model under source control is no different than opening a non-source
controlled model. In either case, opening the associated workspace (.rtwks) file is the
recommended way to load the model into the Toolset. A default workspace will
typically be made available by the Source Control Administrator, see Make Default
Workspace Available to Project Members on page 147.

Note: When opening the model from source control, open the associated workspace
file. The workspace stores the source control configuration settings for the model. If
you open the model directly (without using the workspace), the source control
settings will not be set, and you will have to go to the Model Specification dialog and
set them. See Configure the Workspace Source Control Options on page 147.
128 Chapter 5 - Working with a Model Under Source Control (Developer Tasks)

Adding a new Controlled Unit into Source Control

After your model is under source control, any new controlled units you create in the
model must be added to source control.

Check Out Parent Package

When a new controlled unit is added to a source controlled model, you will have to
check out the package in which the new unit will be placed. If there is excessive
contention for parent packages, then you may wish to partition the package into
several smaller packages.

To add a new controlled unit to source control:

1 Add a new unit to your model.

2 If the parent package is not checked out the Toolset prompts you to check it out.

3 Click Tools > Source Control > Submit All Changes To Source Control.

Clicking Source Control > Add to Source Control... can also add selected units to source
control.

Note: Until a unit is saved to disk, it cannot be added to source control.

The advantage of clicking Tools > Source Control > Submit All Changes To Source Control
is that you will not forget to add any units.

Checking Controlled Units In and Out of Source Control

This topic is organized as follows:

■ Check Out Parent Package on page 129
■ Checking Out Controlled Units on page 129
■ Checking In Controlled Units on page 130
■ Submitting All Changes to Source Control on page 130
■ Undoing a Check Out on page 132

Checking Out Controlled Units

After a model is under source control, check out elements before you edit them.
Depending on the source control settings, the Toolset may force you to check out
before editing. See What are Primary and Secondary Edits? on page 89.
Adding a new Controlled Unit into Source Control 129

To check out an element for editing:

1 Select the appropriate controlled unit(s) in the browser.

2 Click Source Control > Check Out... from the browser context menu

A confirmation dialog appears. After accepting, the check out operation will
proceed on all selected elements.

While editing these elements you may affect other elements that are not checked out.
See What are Primary and Secondary Edits? on page 89.

Checking In Controlled Units

To check in a controlled unit after editing:

1 Select the unit(s) in the browser.

2 Click Source Control > Check In... menu item from the browser context menu.

The unit will be automatically saved to its file before the file is checked in.

If you make changes to multiple units, and/or you have several new units to add to
source control, it is recommended that you use the Submit All Changes to Source
Control menu item (described below).

Submitting All Changes to Source Control

If you have several controlled units to check in or add to source control, then it can be
error prone to select them and use the Check In... or Add to Source Control... menu
items. Forgetting to add new units can result in model validation errors when other
users get the new version of the other units. See Model Validation on page 167.

To avoid these potential problems, you should add or check in all checked out and
new units in your model at once by clicking Tools > Source Control > Submit All
Changes to Source Control.

You are prompted to add any new units to source control (see Figure 41), then asked
to check in any checked out units (see Figure 42). These dialogs will list all new and
checked out units respectively.
130 Chapter 5 - Working with a Model Under Source Control (Developer Tasks)

Figure 41 Add to Source Control dialog

The Add to Source Control dialog box has a Keep checked out option that automatically
checks these units out after they have been added to source control.
Checking Controlled Units In and Out of Source Control 131

Figure 42 Check In Dialog

By default, all new and checked out units are submitted. You can use the check boxes
on the left side of each unit to filter items from the list in each dialog box. The check in
dialog has a Keep checked out option to keep these units checked out after the new
version has been checked in.

Undoing a Check Out

After you check out a controlled unit, you may choose to undo the check out and not
submit a new version.

To undo a check out for an element:

1 Select the appropriate controlled unit(s) in the browser.

2 Click Source Control > Undo Check Out... from the browser context menu. The
following dialog box appears.
132 Chapter 5 - Working with a Model Under Source Control (Developer Tasks)

Figure 43 Undo Check Out Dialog

Note: When you undo a check out, you will lose your local changes for these units
and they will not be submitted to source control.

Building and Running Locally

You can build any component that exists in a source controlled model without having
to check out any files. If the component is an executable and already has an associated
component instance, you can also run and observe the component instance without
having to check out anything from the model.

However, if you want to create your own components, for example to change the top
capsule or modify certain build settings, you will have to create a local component,
processor, and component instance.

Reusing Build Settings

Typically, your development team will have a set of build properties that are used to
for your components. Whenever you are creating a new component, you should try to
use one of these property sets.

For a description of the steps involved in creating temporary components for testing
purposes, see Set Up Private Components on page 134.
Building and Running Locally 133

Probes and Inject Messages

When running a component instance locally, all probes and inject messages added to
the component instance are saved locally in the <model>.rtto file. This allows a user to
debug and run a component instance without having to check it out of source control.

See User-specific Working Environments (.rtus and .rtwks)in the Toolset Guide for more
information on the .rtto file.

Unit Testing Within a Subsystem

It is possible to unit test a capsule by building and running it. You may need to create
a new component that has this capsule defined to be its top capsule, and you may also
need to create a new component instance to run. If there are existing unit test
components for this capsule, they can be reused directly.

Best Practices

It is recommended that your Architect setup a package for saving useful test
harnesses that would be of interest to developers working on the subsystem. Support
for Unit Testing on page 115

If you are creating your own unit testing components, see Use Property Sets for Build
Settings on page 116.

Set Up Private Components

Each developer will want to create their own components during day to day
development, for example, to unit test the changes they are working on. Often these
private components are not meant to be released or added to source control. Through
the use of scratch pad packages, Rational Rose RealTime provides each developer the
option of creating local modeling elements which are not checked into source control.

Tasks

■ The developer creates any required testing classes in a scratch pad package.

■ The developer creates a component in a scratch pad package. If the testing
component is only a variation of an existing component, this can be done by
copying (for example, control-dragging) the existing component into the scratch
pad.
134 Chapter 5 - Working with a Model Under Source Control (Developer Tasks)

■ The developer can set the build properties for the component by applying a
property set. This will ensure that the build settings default to the desired values,
typically defined by a project level build settings property set.

■ The developer adds/modifies references to the required classes in the component
and sets the top level capsule.

■ The developer can now build the component.

■ The developer should copy (for example, control-drag) the desired processor into
a scratch pad package and drag the test component onto this processor to create a
component instance.

■ The developer can now run this component instance and test their changes.

Differencing and Merging Model Elements

The local version of a unit may be compared to its previous versions that may exist in
your source control tool. Click Source Control > Show Differences... to compare the local
file with the most recent version under source control. To compare with an earlier
version, see Show History on page 96.

Similarly, if a unit is checked out, then a Get performed on that unit will prompt the
user if a merge should be performed. To merge from the most recent version under
source control, perform a Get on the desired checked out unit. To merge from a
previous version, use the Get facilities provided in the Show History dialog box.

See the Rational Rose RealTime Model Integrator documentation for a complete
description of how to use the merge/differencing tool.

Synchronizing Models with Source Control

To synchronize the status of units displayed in the model browser with the status as
reported by source control, click Tools > Source Control > Refresh Status of Model.

To synchronize and reload any elements that are different from what is loaded in the
Toolset, click Source Control > Synchronize.

Note: This is different from Synchronize with File System, which ignores source control
information.

To extract the latest version of all files from source control, click Tools > Source Control
> Get Latest Version of Model.
Differencing and Merging Model Elements 135

All of the above actions can be performed on subsets of the model using context
menus in the browser.

See Source Control Operations on page 94 for more information.

Promoting Changes for Integration

When working in a single stream development process, there is no explicit integration
step. Instead, submitting changes to the source control repository effectively
integrates them with the existing file versions.

For an example of integration with a parallel stream development process, see
ClearCase Parallel Development: Sample Process on page 175.
136 Chapter 5 - Working with a Model Under Source Control (Developer Tasks)

6Building and Integrating
(Integrator Tasks)
Contents

This chapter is organized as follows:

■ Building Using Automated Scripts on page 137
■ Building within a Larger Build Procedure on page 140
■ Reuse of Build Artifacts on page 141
■ Integrating Changes on page 143
■ Automating Model Validation on page 143

The Integrator combines changes from multiple developers to produce a lineup to use
as a basis for the next set of development activities. The Integrator will typically be
responsible for the automated building process.

Building Using Automated Scripts

The Rational Rose RealTime code generator assumes it is generating for a valid lineup
of classes and packages. See Automating Model Validation on page 143 for an example
of how you can validate the model as part of the automated build process.

Windows

You can initiate a build from a clean directory. For example, we will use the
TrafficLights model from the %ROSERT_HOME%/Examples/C++ directory.

To initiate a build from a clean directory:

1 Build the makefiles:

${CodeGenMakeCommand} ${CodeGenMakeArguments}

 -f $ROSERT_HOME/codegen/bootstrap/${CodeGenMakeType}.mk

 "RTS_HOME=${TargetServicesLibrary}"

 "MODEL=${ModelFile}" "COMPONENT=${QualifiedName}"

 RTmakefiles
137

where:

CodeGenMakeCommand, CodeGenMakeArguments, CodeGenMakeType, and
TargetServicesLibrary are replaced by the corresponding value in the component.

QualifiedName is replaced by the fully qualified name for the component.

ModelFile is replaced by the file name for the model (.rtmdl) file.

2 Generate the code and compile using the following:

${CodeGenMakeCommand} ${CodeGenMakeArguments}

 -f Makefile RTcompile

For example, if the following substitutions are made:

The resulting commands are:

nmake -k -f "%ROSERT_HOME%/codegen/bootstrap/MS_nmake.mk"

 "RTS_HOME=%ROSERT_HOME%/C++/TargetRTS"

 "MODEL=C:/RoseRT/MyModels/TrafficLights/trafficLights.rtmdl"

 "COMPONENT=Component

View::NT40T::NorthAmericanIntersection_x86VisualCpp60"

 RTmakefiles

cd NorthAmericanIntersection_x86VisualCpp60

nmake -k -f Makefile RTCompile

Note: In the example above, the nmake commands have been placed on mutliple
lines for readability. Ensure that your nmake commands are on a single line. The
double quotation marks around that data are required because
%ROSERT_HOME% has embedded spaces, which are not supported on Windows.

Argument Example Value

${CodeGenMakeCommand} nmake

${CodeGenMakeArguments} -k

${CodeGenMakeType} MS_nmake

${TargetServicesLibrary} %ROSERT_HOME%/C++/TargetRTS

${ModelFile} C:/RoseRT/MyModels/TrafficLights/trafficLights.rtmdl

 ${QualifiedName} Component
View::NT40T::NorthAmericanIntersection_x86VisualCpp60
138 Chapter 6 - Building and Integrating (Integrator Tasks)

The codegen and compilation make types, and the make commands on the
command line must be consistent with those defined on the component being
built. If a DOS command line build fails, building from within Rational Rose
RealTime may be required to obtain the correct command line parameters, or to
add missing references within the model.

UNIX

Starting with a valid model, it is possible to initiate a build from a clean directory
using the following two steps.These are effectively the same steps used by the
Rational Rose RealTime Toolset.

Note: The "\" character in the following command syntax represents the command
line continuation character. This may be different on your system.

To initiate a build from a clean directory:

1 Build the makefiles:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \

–f $ROSERT_HOME/codegen/bootstrap/${CodeGenMakeType}.mk \

"RTS_HOME=${TargetServicesLibrary}" \

"MODEL=${ModelFile}" "COMPONENT=${QualifiedName}" \

RTmakefiles

where CodeGenMakeCommand, CodeGenMakeArguments, CodeGenMakeType, and
TargetServicesLibrary are replaced by the corresponding value in the component;
QualifiedName is replaced by the fully qualified name for the component; and
ModelFile is replaced by the file name for the model (.rtmdl) file.

2 Generate the code and compile using:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \

–f Makefile RTcompile

For example, if the following substitutions are made:

Argument Example Value

${CodeGenMakeCommand} clearmake

${CodeGenMakeArguments} -k –J4

${CodeGenMakeType} ClearCase_clearmake

${TargetServicesLibrary} $ROSERT_HOME/C++/TargetRTS

${ModelFile} /my/path/MyModel.rtmdl
Building Using Automated Scripts 139

The resulting commands are:

clearmake -k -J4 \

-f $ROSERT_HOME/codegen/bootstrap/ClearCase_clearmake.mk \

“RTS_HOME=$ROSERT_HOME/C++/TargetRTS” \

“MODEL=/my/path/MyModel.rtmdl” \

“COMPONENT=Component View::MyComponent” \

RTmakefiles

cd MyComponent

clearmake -k -J4 -f Makefile RTcompile

Note: Automated builds are not restricted to clearmake.

Virtual Path Map Symbols

If you wish to build a component outside of the Toolset, all virtual path map symbols
used in the model must have corresponding environment variables defined.

Building within a Larger Build Procedure

For integration into a larger build procedure, automated builds can generate the code
and compile the code in two separate steps. This involves a slight change to the steps
listed above.

To integrate into a large build procedure:

1 Build the Makefiles using the same command as above.

2 Generate the code (without compiling it) by replacing “RTcompile” above with
“RTgenerate”:

$CodeGenMakeCommand} ${CodeGenMakeArguments} \

–f Makefile RTgenerate

${QualifiedName} Component View::MyComponent

Argument Example Value
140 Chapter 6 - Building and Integrating (Integrator Tasks)

3 Compilation of the generated code (without regenerating it) uses “RTmycompile”:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \

–f Makefile RTmycompile

Note: The "\" character in the command syntax represents the command line continuation
character. This may be different on your system.

If we use the same example substitutions as above, then the resulting commands are:

clearmake -k -J4 \

-f $ROSERT_HOME/codegen/bootstrap/ClearCase_clearmake.mk \

"RTS_HOME=$ROSERT_HOME/C++/TargetRTS" \

"MODEL=/my/path/MyModel.rtmdl" \

"COMPONENT=Component View::MyComponent" \

RTmakefiles

clearmake -k -J4 -f Makefile RTgenerate

clearmake -k -J4 -f Makefile RTmycompile

Reuse of Build Artifacts

Build artifact reuse is supported in Rational ClearCase environments only by using
the ClearCase "wink-in" feature. Both “clearmake” (Unix, Windows NT, and Windows
200) and "omake" (Windows NT and Windows 2000 only) provide the wink-in
mechanism.

Creating Reusable Build Artifacts

In order for build artifacts to be "wink-in-able", the following criteria must be met:

■ The component’s OutputDirectory must be in a view.

■ All controlled units within the model must be version controlled in a ClearCase
VOB.

■ All controlled units must not be checked out to the view performing the build.
Reuse of Build Artifacts 141

■ The build must be performed from a clean directory. If a build is unsuccessful, the
OutputDirectory must be completely cleaned in order to guarantee wink-in.

■ In the component, the CodeGenMakeType and CompilationMakeType properties
must both be set to either "ClearCase_clearmake" or "ClearCase_omake" as
appropriate. Similarly, the CodeGenMakeCommand and CompilationMakeCommand
properties must be set to something appropriate, typically either "clearmake" or
"omake".

The OutputDirectory can be a view-private directory, but that requires every developer
to create that directory in their view first. A recommended practice is to use a
directory element that is stored in a VOB.

The following are encouraged practices:

■ All external include files should be version-controlled in a ClearCase VOB.

■ The TargetServicesLibrary should be version-controlled in a ClearCase VOB.

■ Other linked libraries should be version-controlled in a ClearCase VOB.

■ Optionally, $ROSERT_HOME should be version-controlled in a ClearCase VOB.

Using Build Artifacts

A developer wishing to reuse the artifacts from a build should:

■ assign his or her environment variables (such as $ROSERT_HOME and $PATH)
appropriately,

■ use the same versions of elements that the build used,

■ create in his or her view, if it does not already exist, the same OutputDirectory used
by the builder

■ perform the same activity that the builder performed (a compile or a generate,
from within the Toolset or from the command-line).

See ClearCase Parallel Development: Sample Process on page 175 for a description of a
development process that provides significant build artifact reuse.
142 Chapter 6 - Building and Integrating (Integrator Tasks)

Integrating Changes

Integrating developer changes is highly dependent on the development process being
used. The primary goal of the Integrator is to produce an updated lineup of model
elements that can be used as a basis for subsequent development activities. This will
often involve merging changes from multiple developers (using the Rational Rose
RealTime Model Integrator) and performing local builds to verify sanity.

For an example of how integration can be performed in a parallel development
environment with ClearCase, see ClearCase Parallel Development: Sample Process on
page 175.

Automating Model Validation

Rational Rose RealTime provides an automated way of determining if a model is
valid. These steps can be incorporated into an automated build process to determine if
the code generation and compilation steps of the build should be performed.

Using the Rational Rose RealTime Extensibility Interface (RRTEI), you can write a
script that:

■ Opens a specified model (using the Application.OpenModel method).

■ Saves the log to a specified file (using the Application.SaveLogAs method).

■ Closes the Toolset (using the Application.Exit method).

For more information on the RRTEI, see the Rational Rose RealTime Extensibility
Interface References Online Help.

You can invoke this script as part of an automated build. The automated build script
can then search (for example, grep) the log file to determine if any errors or warnings
were encountered when the model opens. If problems were encountered, then the
build script can email the log file to the builder. If no problems were encountered,
then the build script can continue with the code generation and compilation steps.
Integrating Changes 143

144 Chapter 6 - Building and Integrating (Integrator Tasks)

7Source Control
Administration
Contents

The source control administrator provides the overall source control infrastructure
and environment for the development team. It is assumed that the source control
administrator is familiar with both Rational Rose RealTime and your source control
tool.

Prior to any team development work with Rational Rose RealTime, the following
tasks must be completed:

■ Set up a Source Control System and Repository on page 146

For each project, the following tasks will be required:

■ Control Appropriate Model Elements as Units on page 146

■ Create a Local Work Area on page 146

■ Save Model to Local Work Area on page 147

■ Configure the Workspace Source Control Options on page 147

■ Add the Model to Source Control on page 147

■ Make Default Workspace Available to Project Members on page 147

After these steps are completed, development can start on the project. However, there
are additional responsibilities to consider:

■ Defining Developer Work Areas on page 148

■ Creation of Labels and Lineups on page 148

■ Manipulation of the Source Control Repository on page 148

The details of many of these tasks are dependent on the source control plan developed
for the project.
145

Set up a Source Control System and Repository

Prior to placing Rational Rose RealTime models under source control, there are some
setup steps that must be followed to configure the source control system to allow
proper integration with Rational Rose RealTime. Most of these tasks are performed
outside of Rational Rose RealTime and require knowledge of the source control tools
you will be using. If you are unsure about the procedures, please see your source
control tools documentation.

Before continuing, please review the tool-specific documentation in the sections
referenced below:

■ Rational ClearCase on page 150

■ Microsoft Visual SourceSafe on page 158

■ RCS and SCCS on page 160

After reviewing this material, ensure that a repository is properly set up for
integration with Rational Rose RealTime.

Control Appropriate Model Elements as Units

Determine the granularity you require for your project and team environment at the
current stage in development. Do this in collaboration with the architect(s) for the
project. See What Level of Granularity Should I Use? on page 68 for information on
choosing the right granularity.

See Controlling All of the Controllable Elements on page 75 and Controlling a Subset of the
Controllable Elements on page 75 for a description of the mechanics involved in
specifying which model elements should be controlled.

Create a Local Work Area

You will want to establish a local work area for you to save models. Setting up a work
area is specific to each source control tool:

■ ClearCase Work Area Setup on page 158

■ RCS/SCCS Work Area Setup on page 163
146 Chapter 7 - Source Control Administration

Save Model to Local Work Area

Before placing the model under source control, it must be saved to the local work area.
Save the model to the directory you have associated with your source control
repository.

Configure the Workspace Source Control Options

To enable source control, fill in the proper settings on the Source Control tab, as
described in Source Control Settings on page 90.

Add the Model to Source Control

The simplest way to add all applicable units to source control is to use the Submit All
Changes to Source Control tool as described in Submit All Changes on page 95. If you
require finer control over which units will be added, see Source Control Operations on
page 94 and Add on page 95.

Make Default Workspace Available to Project Members

The workspace (.rtwks) file contains information that is common to all users that will
be working on the project. Settings in the workspace will rarely, if ever, change after it
is initially set up. All developers on a project should use identical copies of the
workspace file. For this reason, you may want to place this file under source control so
that a fixed version is available to all project users. Rational Rose RealTime does not
provide explicit support for checking in or checking out this file.

After the source control manager adds the model to source control, the workspace
should be manually added using your source control tool. Other users should then
retrieve the workspace as part of their initial update of their local work area. This will
ensure that all team members use the same source control settings for the project.
Save Model to Local Work Area 147

Defining Developer Work Areas

At this point, the source control administrator should think about how each worker
(developer, integrator, and so on) will work individually and access specific versions
(lineups) of a model. This usually involves defining labelling policies.

The source control administrator should provide guidelines to the rest of the team as
to how work areas should be created for each developer. In some cases the source
control administrator may need to actually create the work areas.

Defining work areas is tool dependent, and the steps required for setting up a work
area for single stream and parallel stream development can be quite different. See the
section below that corresponds to your source control system for more information:

■ ClearCase Work Area Setup on page 158

■ RCS/SCCS Work Area Setup on page 163

Creation of Labels and Lineups

Labels, and the use of labels to create lineups, are crucial to any successful
development strategy. There are many ways to use labels and lineups, though, and
the specifics of each are highly specific to each organizations development
environment and source control tools.

For an example of an effective labelling and lineup strategy, see ClearCase Parallel
Development: Sample Process on page 175.

Manipulation of the Source Control Repository

It may be necessary to move or rename files in the repository. This should only be
performed by someone who is familiar with the source control tool being used. In
many development environments, such moving and renaming is always carried out
by the source control administrator, who will be able to carry out the task most
effectively.

See Moving Controlled Units Between Model Directories on page 76 for details on
relocating controlled units.
148 Chapter 7 - Source Control Administration

8Source Control Tools
Contents

This chapter is organized as follows:

■ Rational ClearCase on page 150
■ UCM Integration on page 152
■ Snapshot Views on page 153
■ ClearCase Workstation Setup on page 155
■ ClearCase Repository Setup on page 157
■ ClearCase Work Area Setup on page 158
■ Microsoft Visual SourceSafe on page 158
■ SourceSafe Workstation Setup on page 159
■ RCS and SCCS on page 160
■ PVCS on page 163

This chapter contains information on integrating Rational Rose RealTime with the
different supported source control tools. Each source control tool requires specific
configuration for proper use with Rational Rose RealTime.

The following source control systems are supported:

■ Rational ClearCase (Windows and Unix) - see Rational ClearCase on page 150

■ Microsoft Visual SourceSafe (Windows only) - see Microsoft Visual SourceSafe on
page 158

■ RCS and SCCS (Unix only) - see RCS and SCCS on page 160

■ PVCS (Windows only) - see PVCS on page 163

Before starting, understand how the tasks described in this chapter relate to the
overall team development process, described in Team Development on page 21.

For details on adding support for other source control systems, see Customizing Source
Control Interface Scripts on page 193.

Note: These sections assume you are already familiar with the capabilities and
terminology of your chosen source control tool.
149

Rational ClearCase

ClearCase uses a view model combined with a virtual file system that allows users to
specify the lineup of file versions with which they want to work (a config spec controls
the lineup used for a particular view). Rational Rose RealTime then sees the files in the
current view just as if they were stored on a regular (non-ClearCase) file system.
Rational Rose RealTime specifies the set of files that make up the model, and
ClearCase provides the versions of these files determined by the view's config spec.
Thus the model must be saved to a view directory that is not view-private in order for
the files to be added to source control.

As mentioned in Working in Isolation on page 99, it is important that each developer
have their own work area. When working with ClearCase, a work area is a view. This
means that each developer should use a view that is dedicated for their sole usage and
that should not be shared with other developers.

ClearCase has a feature allowing a new element "type" to be defined that includes
specifying a merge and differencing tool that should be used on files of the new type.
Rational Rose RealTime uses this to define an element type that applies to all Rational
Rose RealTime files placed under source control. With this element type defined, all
new Rational Rose RealTime files that are placed into a VOB are associated with that
file type and will use Rational Rose RealTime Model Integrator as their default merge
and differencing tool.

Registering a new ClearCase element type involves two steps. First, each ClearCase
installation must be set up with a "type manager" that will map file extensions to the
new element type and indicates which executable to invoke for merge and diff
operations. Second, the new element type must be registered in all VOB’s in which it
will be used. The setup required for these steps is detailed later in this section.

General Recommendations

Windows NT/2000

Users should not access views through the MVFS mount point or M: drive. Instead,
use the views through explicit drive mountings (usually X:, Y:, Z:). This improves
"wink-in" and eliminates dependencies on view names.
150 Chapter 8 - Source Control Tools

Source Control Operation Behavior with ClearCase

Certain operations behave differently in ClearCase than as described in Source Control
Operations on page 94. These differences are detailed below.

Get

Get is not able to retrieve a specific version of a file to a view because the version being
observed in a view can only be changed via the config spec for that view. However, if a
file is checked out, then Get may be used to replace the checked out file with a copy of
a particular version of the file.

In the case where a file is not checked out, performing a Get on that file is the same as
performing a Synchronize on the file.

See Snapshot Views on page 153 for details about how the get command works with
Snapshot Views.

Synchronize

If a dynamic view is being used and the version of a file available in the view changes,
then Synchronize will detect this and reload the file. Synchronize is a safer operation to
perform than Get, as Synchronize will not lose any checked out changes, while Get
may replace your checked out changes with the most recent version in the VOB.

Add

When adding files to source control, the ClearCase integration assumes that the
containing directory is under source control and not currently checked out. If the
containing directory is already checked out, the add will fail.

Label

Labelling of a directory will only apply the label to the directory element itself. To
apply the label to the files contained within a directory, the Recursive option must be
used.
Rational ClearCase 151

UCM Integration

The UCM integration allows users working in a UCM VOB to assign activities to
revisions from within the Toolset. In addition, you can Rebase, Deliver, and launch the
Project Explorer from within the Toolset.

Activity Selection Combination Box

If ClearCase is enabled and if the model is stored in a UCM VOB, an activity selection
combination box appears in the Add, Check in and Check out dialog boxes. If the
activity box appears, an activity must be selected or created to continue with the
operation. To create a new activity simply type it into the activity combination box.

The activity selector contains the list of activities that exist in the view containing the
model. The view’s current activity is automatically selected.

Run Project Explorer

To load the ClearCase project explorer application within its own process, click Run
project explorer. You can continue using Rational Rose RealTime while the project
explorer is loaded.

If the project explorer binary cannot be found, due to a problem with the path, an
error message is generated in Rational Rose RealTime.

Rebase

To start a Rebase, click Rebase from Stream from Tools > Source Control. The Rebase
ClearCase dialog box appears.

1 After the rebase has started, a Rational Rose RealTime dialog box appears,
prompting you to synchronize the model with rebase changes. Ignore this dialog
for now. You will return to Rational Rose RealTime after the rebase operation has
been started.

2 Change to the Rebase dialog box and proceed with the operation.

3 After the initial rebase is finished, the Rebase dialog box will suggest that you
build and test before checking in any undelivered work.

4 Test the rebase from within Rational Rose RealTime, then return to the rebase
ClearCase dialog box.

5 To keep the changes, click Complete from the Rebase dialog box.
152 Chapter 8 - Source Control Tools

Deliver

Before using the Deliver command, you need to check in all changes to be delivered.
After you check in your changes, click Deliver Stream from Tools > Source Control. The
Deliver ClearCase dialog box appears.

1 From the Deliver ClearCase dialog box, select the activities to deliver.

2 Merge changes if applicable.

3 The Rational Rose RealTime session from which the rebase was started will be
unavailable until the rebase is completed. Load another Rational Rose RealTime
session to test changes in your own integration stream.

4 When satisfied with deliver, return to the Deliver ClearCase dialog box.

5 To save the changes, click Complete from the Deliver ClearCase dialog box.

Snapshot Views

Snapshot views are supported by Rational Rose RealTime. With ClearCase, you
initiate a snapshot view update from within the Toolset, to work on files that you did
not check out. The snapshot view contains the directory tree of source files.

You will want to use snapshot views if any of the following conditions apply:

■ your computer does not support dynamic views

■ you want to optimize build performance to achieve native build speeds

■ you want to work with source files under ClearCase control when you are either
disconnected from the network that hosts the VOBs, or connected to the network
intermittently

■ you want access to a view from a computer that is not a ClearCase host

■ your project does not use ClearCase build auditing and build avoidance

Certain operations behave differently in ClearCase snapshot views than as described
in Source Control Operations on page 94 and Source Control Operation Behavior with
ClearCase on page 151.
Snapshot Views 153

Check in

When checking in files, ClearCase copies the new version to the VOB, as long as there
is no successor version already in VOB.

If there is a successor, an error is returned from the scripts an will appear in the log. In
order to check in your changes, you must first merge the most recent version from the
VOB into your local copy. There are a couple of methods to perform the merge:

1 Update your snapshot view by clicking Tools > Source Control > Update Snapshot
View.... The Update Snapshot View... command helps you merge any changes. This is the
preferred method since your snapshot view will also get any new elements that appear in
the VOB.

2 If you know that the only the one element has changed in the VOB, use the
context-menu Source Control > Get to retrieve the most recent version and perform
the merge.

Check out

When working with a snapshot view, ClearCase marks elements in VOB as checked
out. When checking out an element you will not be warned if a more recent version
exists in VOB.

Get

The Get command for snapshot views in Rational Rose RealTime uses the update
command to copy elements to a snapshot view. Unless you are certain that there are
no new elements in the VOB, you can use Get to update existing model elements in
your view. However, to get all new elements that may of been added to a VOB, use the
Update Tool.

1 If the element is checked in, the Get command updates that element with the most
recent version from the VOB.

2 If the element is checked out and is not the most recent in the VOB, the Get
command prompts you to merge.

3 You cannot update an element which is already the most recent version in the
VOB.

It may happen that the Get command updates a model element which references new
elements that have not been copied into your snapshot view. This will happen if, after
the Get operation, a dialog box appears prompting for the location of elements the
Toolset could not find. If this happens, simply run the Update Tool to copy all new
elements into your snapshot view.
154 Chapter 8 - Source Control Tools

Update

If a model is version controlled in a ClearCase snapshot view, the Update Snapshot
View... menu item appears from the Tools > Source Control menu. Update launches the
ClearCase update tool. When the update is completed, a dialog is displayed to help
you resync the model with the new elements that have been copied to your view and
elements that have been checked in.

Hijacking a File

If you work in a snapshot view while not connected to a network, you can modify a
loaded model element that you have not checked out. This is what ClearCase calls
hijacking a file. Once reconnected to the network (VOB), launch the Update tool to
resolve hijacked files.

Deliver

When delivering a stream that has associated snapshot views, use the Tools > Source
Control > Update Snapshot View... command to update the snapshot view before
delivering. Click Tools > Source Control > Deliver Stream to deliver the changes.

Rebase

Use the project explorer to rebase, then update your snapshot view from within the
Toolset.

Activities

Activities work just like dynamic views. The check in, check out and add dialog boxes
contain an activity combination box if the snapshot view is UCM enabled.

ClearCase Workstation Setup

The following setup must take place on all workstations that will be accessing a VOB
or view. For Windows NT and Windows 2000, this includes all workstations used for
development. For Unix, this includes all machines that are view servers.

These steps will also need to be run on all machines that act as view servers for the
ClearCase views used by Rational Rose RealTime. If you use ClearCase MultiSite, you
will need to do this at all the sites where the VOBs containing the Rose elements are
replicated.
ClearCase Workstation Setup 155

You can determine which machines are view servers by typing the following:

cleartool lsview

in a command window. The second item on each output line indicates the machine
name where the view server is running. For example, if you see the following line in
the output of the lsview command:

myview \\mymachine\vws\myview.vws

then "mymachine" is the name of the machine where the view server for myview
exists.

For further details, see your ClearCase administrator.

Command Line Access to the Source Control Tool

For any user wishing to use Rational Rose RealTime’s integration with ClearCase,
cleartool must be accessible from the command prompt.

Element Type Setup: Type Manager

The following steps are required for making ClearCase clients aware of the new
element type.

Windows NT/2000/XP

In the instructions below, <atria-home> refers to the ClearCase installation directory.
For newer releases, this typically is c:\Program Files\Rational\ClearCase. For older
releases, this typically was c:\Atria.

■ From a command prompt, run

rtperl <ROSERT_HOME>\bin\<ROSERT_HOST>\cc\mi_typeman.pl

-atriahome <atria-home>

UNIX

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to install the type
manager in each ClearCase installation. To set up the extensions and tool mappings,
the user executing the script must have access to the following directories in the
ClearCase installation:

/lib/mgrs

/config/ui/icons

/config/ui/bitmaps

/config/magic
156 Chapter 8 - Source Control Tools

Use the following command line to set up the proper file extensions and tool
invocations:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install

-server

ClearCase Options

Windows NT/2000/XP

Rational Rose RealTime is case sensitive when looking for file names, so you must
turn on the preserve case option for the ClearCase MVFS on Windows:

1 In the ClearCase HomeBase tool, select the MVFS tab. (The ClearCase Control
Panel tool can be started from either the Windows Control Panel or from the
Administration tab in the HomeBase tool)

2 Make sure the "preserve case" check box is checked.

3 The MVFS service must be restarted for this change to take effect.

UNIX

There are no options that need configuring for UNIX ClearCase.

ClearCase Repository Setup

Each VOB must be set up to allow files of the new element type to be created. Follow
the steps that apply to your platform below for each VOB that will be storing Rational
Rose RealTime files.

Windows NT/2000/XP

Open a command prompt window and change directory to a path within the VOB in
which you wish to register the type. To create the element type, use the following
command syntax:

cleartool mkeltype -supertype text_file -manager

petalrt_file_delta -c "RoseRT files" rosert_unit

UNIX

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to register the
rosert_unit element type in each VOB using the following syntax:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install

-eltype -vob <vob_path>
ClearCase Repository Setup 157

Test the Type Manager

To determine if the rosert_unit element type has been successfully registered in the
VOB, perform the following command from a command prompt after changing to a
directory contained in the VOB:

cleartool lstype -long eltype:rosert_unit

A listing of the type details will verify that it is correctly registered.

ClearCase Work Area Setup

With ClearCase, a work area is defined by a view. Each developer accessing Rational
Rose RealTime files in a VOB should use their own dedicated view. For an example of
a developer view that could be used in a parallel development process, see Creating a
Developer View on page 188.

Microsoft Visual SourceSafe

Microsoft Visual SourceSafe (VSS) stores and retrieves files on your local disk. Each
VSS “project” has a working folder specified for it. Rational Rose RealTime saves
model elements to and load elements from this working folder. VSS then checks those
local files into and out of its repository. After modifying the local file, Rational Rose
RealTime invokes a script that instructs VSS to check in a file.

For Visual SourceSafe, this involves setting up a project and associating a folder on
your local disk with that project.

General Recommendations

On some systems, command line access to SourceSafe is extremely slow if the Visual
SourceSafe explorer is currently running. If you find SourceSafe access to be slow, try
closing any open SourceSafe explorers.

Note: SourceSafe settings are not saved to disk immediately when they are set. If you
change a setting, close the Visual SourceSafe explorer to ensure that the change will be
used by future invocations of the SourceSafe command line tool.

Source Control Operation Behavior with SourceSafe

Certain operations behave differently in Visual SourceSafe than as described in Source
Control Operations on page 94. These differences are detailed below.
158 Chapter 8 - Source Control Tools

Label

Visual SourceSafe allows labels to be applied only to the most recent versions in the
database.

Labelling a directory automatically applies the label to everything recursively
contained within it.

SourceSafe Workstation Setup

This topic is organized as follows:

■ Command Line Access to the Source Control Tool on page 156
■ Set Project Mapping Option on page 159
■ Let Visual SourceSafe Know Which Database to Use on page 159
■ SourceSafe Repository Setup on page 160

Command Line Access to the Source Control Tool

The ss SourceSafe tool must be available from the command line. To test this, open a
command prompt and type “ss about”. If an error occurs, you will need to modify
your path so that the ss tool can be found.

Set Project Mapping Option

Visual SourceSafe must be configured to determine which projects correspond to file
system directories. Follow these steps to correctly set up Visual SourceSafe for this:

1 In Visual SourceSafe Explorer, click Tools > Options.

2 Click the Command Line Options tab.

3 Set the Assume project based on working folder check box.

4 Right-click on the appropriate project and select Set Working Folder to set a
working folder for your project.

5 Exit Miscrosft Visual SourceSafe.

Let Visual SourceSafe Know Which Database to Use

Rational Rose RealTime will not be able to determine which database to use if you
have more than one SourceSafe database configured on your system unless the SSDIR
environment variable is set. Visual SourceSafe uses SSDIR to determine which
database to use. This variable tells Visual SourceSafe where to find the srcsafe.ini file
for the database you wish to use.
SourceSafe Workstation Setup 159

You should set the SSDIR variable in the System control panel, or with a shell script. To
set SSDIR in a shell, use the following command:

set ssdir=<path to srcsafe.ini>

The path given should be the directory that contains the srcsafe.ini file for the database
you wish to use.

Note: Do not put a space between the equal sign and the location of the srcsafe.ini file.

SourceSafe Repository Setup

Rational Rose RealTime does not support multiple checkouts with single stream
source control systems. For proper integration with Rational Rose RealTime, the
Visual SourceSafe database should be configured to not allow multiple checkouts.

A common practice is to create a project in Visual SourceSafe that will serve as a
container for all Rational Rose RealTime models that will be placed in the repository.

RCS and SCCS

Rational Rose RealTime is designed to work with SCCS and RCS through a set of
scripts that are provided. Rational Rose RealTime saves model elements as individual
files which are stored and version controlled by SCCS/RCS.

Neither RCS nor SCCS directly support directory hierarchies, and Rational Rose
RealTime uses hierarchical storage by default to store the model elements. To support
a hierarchical repository, Rational Rose RealTime creates a separate RCS/SCCS
storage directory for each level in the model hierarchy.

For example, the repository structure might look something like the following, where
<dir> indicates a directory:

<repository>

<models>

<RCS>

MyModel.rtmdl,v

<MyModel>

<RCS>

LogicalView.rtlogpkg,v

ComponentView.rtlogpkg,v

UseCaseView.rtlogpkg,v

DeploymentView.rtlogpkg,v
160 Chapter 8 - Source Control Tools

<LogicalView>

<RCS>

...

<ComponentView>

<RCS>

...

Repository Mapping Files (.rmf)

Each developer in a team will use their own local working directory for working on
models. A special mapping file is then required to map the local working directory to
the repository directory representing the root of the hierarchy. This map file is referred
to as a Repository Mapping File (RMF). Each line in the RMF is a file name prefix
mapping that works similar to the virtual pathmap mechanism within Rational Rose
RealTime. Each entry consists of two path prefixes, separated by an equals sign (=).

Example:

/home/john_doe/RoseRT/models=/repository/models

By applying this map file, the Rational Rose RealTime rcs integration will map local
working directory

/home/john_doe/RoseRT/models

to repository directory

/repository/models/RCS

The RMF may contain multiple entries. The first valid prefix will be used, and
successive substitutions will not be applied.

Before determining if an RMF source prefix is valid for a given path, both the source
and destination prefixes will have environment variable substitution performed on
them. Thus, assuming every user had a RoseRT/models directory in their home
directory, the following RMF file could be used by all users working from the given
repository:

/home/$user/RoseRT/models=/repository/models

Note: The RMF must not contain softlinks to directories. It must contain the actual
path to the directory.
RCS and SCCS 161

Source Control Operation Behavior with SCCS

Certain operations behave differently in SCCS than as described in Source Control
Operations on page 94. These differences are detailed below.

Label

SCCS does not support labelling. All labelling operations will be unavailable from the
Toolset.

RCS/SCCS Repository Setup

The repository root directory must be created. Be sure to place appropriate access
permissions on the directory so that the users will have the required access to the files
in it.

If you will be using a global RMF for all users accessing the repository, you should
create it now and place it in a location accessible by all users.

RCS/SCCS Workstation Setup

Command Line Access to the Source Control Tool

The rcs/sccs executables must be available from your path in order for Rational Rose
RealTime to integrate with them.

Create an RMF File

Use a text editor to create the RMF file that will contain the mapping between your
local working directory and the RCS/SCCS repository. Create an entry in your RMF
to point to the working directory set aside for your models (create a working directory
if you do not already have one).

Set RMF Environment Variable

The RCS/SCCS scripts examine an environment variable to determine what RMF to
use.

For RCS:

■ Set the ROSERT_RCS_MAPFILE environment variable to the name of the file
containing the map entry. For example:

setenv ROSERT_RCS_MAPFILE ~/MyRCSMap.txt
162 Chapter 8 - Source Control Tools

For SCCS:

■ Set the ROSERT_SCCS_MAPFILE environment variable to the name of the file
containing the map entry. For example:

setenv ROSERT_SCCS_MAPFILE ~/MySCCSMap.txt

RCS/SCCS Work Area Setup

To populate the local work area initially from the repository, use the provided
cm_update script:

For RCS:

■ Run the following command from a command line:

rtperl $ROSERT_HOME/bin/<platform>/cmscripts/rcs/cm_update

-D <dir_name_and_path> -R

Where <platform> is the name of you platform (for example, sun5) and
<dir_name_and_path> is the name of your local working directory with the full path
to it, for example:

/home/john_doe/RoseRT/models

For SCCS:

■ Run the following command from a command line:

rtperl $ROSERT_HOME/bin/<platform>/cmscripts/sccs/cm_update

-D <dir_name_and_path> -R

Where <platform> is the name of you platform (for example, sun5) and
<dir_name_and_path> is the name of your local working directory with the full path
to it, for example:

/home/john_doe/RoseRT/models

PVCS

Rational Rose RealTime is designed to work with PVCS through a set of scripts. The
PVCS source control scripts are supported on Windows only. PVCS lets you organize
your versioned files using project databases, projects, and subprojects. Configuration
files are used to add directives to PVCS commands. The PVCS scripts use
configuration files to map the current working directory to a PVCS database.
PVCS 163

Source Control Operation Behavior with PVCS

Certain operations behave differently in PVCS than as described in Source Control
Operations on page 94.

Label

PVCS does support labeling, however the scripts do not. All labelling operations will
be unavailable from the Toolset.

PVCS Workstation Setup

Command Line Access to the Source Control Tool

The PVCS command line tools must be available from the command line. To test this,
open a command prompt and type "get -help". The command should return help for
the get command. The first line of the help will read:

GET - extract revisions from PVCS archives

Let PVCS Know Which Database to Use

Before adding a Rational Rose RealTime model to a PVCS database, you will need to
define the initial (root) directory to use for the version control repository (for example,
database or archive). This is done by creating a file named pvcs.cfg in the directory
where you save your model (for example, the directory where the .rtmdl file is
located). This file will contain a single directive on one line:

VCSDir C:\pvcs\rrtmodels

where C:\pvcs\rrtmodels is the root directory of the PVCS archive in which the
versioned model files will be stored. This allows the scripts to map the work directory
to a repository. A sample file is provided in the scripts directory.

Rational Rose RealTime uses a hierarchical structure to store files. When using these
scripts, a pvcs.cfg file will automatically be created in each of the Rational Rose
RealTime sub-directory to create a comparable directory structure in the repository. If
a pvcs.cfg file already exists in any one of these sub-directories, it will not be
over-written. It is the responsibility of the user to make sure that such a file contains a
valid VCSDir directive.

Note: Any sub-directory will automatically have repository sub-directory created according to
its parent's VCSDir.

Note: The repository path has only been tested with mapped drives under Windows.
No tests have been conducted using UNC paths.
164 Chapter 8 - Source Control Tools

PVCS Repository Setup

This assumes that you are familiar with PVCS configuration and have already created
a database for your model. Before using PVCS with Rose Real Time you must change
a small set of PVCS configuration parameters. A file called pvcsMaster.cfg located with
the scripts contains a sample configuration file that will work with Rational Rose
RealTime. The configuration changes are described below.

Archive Suffixes

The default archive suffixes must be changed so that the versioned filename does not
get changed. By default the ??v__ suffix template will have to be changed so that
extensions of more than 3 characters are maintained. We suggest using +,v as the
suffix template.

Write Protect Workfiles

Ensures that checked in files are write protected and not deleted.

One Lock Per Version/User

Rational Rose RealTime does not support multiple checkouts with single stream
source control systems. For proper integration with Rational Rose RealTime, the pvcs
database should be configured to not allow multiple checkouts.

Registering a New Configuration

There are a couple of ways to do this. This example demonstrates one method, which
may or may not be appropriate for all project configurations.

The configuration parameters required for Rose Real Time are located in a file called
pvcsMaster.cfg. This file should be located with the PVCS scripts. It is suggested that
you do not modify the options marked as required.

Example of registering a master configuration file with PVCS: This file should be
located in a write-protected directory so only the configuration manager can change
it. The master configuration file should then be enabled in the following manner:

vconfig -cI:\PVCSRepository\pvcsMaster.cfg I:\bin\pvcs\vmwfvc.dll

where I:\PVCSRepository\pvcsMaster.cfg is the master configuration file I:\bin\pvcs is
the directory where the PVCS binaries are found. Alternately, this information can be
added to PVCS' master.cfg file.
PVCS 165

PVCS Work Area Setup

Creating a Working Directory Tree From an Existing Archive

To create a working directory tree from an archive, you can use the cm_update script.
Create a starting pvcs.cfg file that points to the archive directory. You can then issue the
following command:

rtperl -w %ROSERT_HOME%\bin\win32\cmscripts\Pvcs\cm_update -R

This will recreate the correct directory tree for your project.PVCS repository setup.
166 Chapter 8 - Source Control Tools

9Model Validation
Contents

This chapter is organized as follows:

■ Introduction on page 167
■ What is a Model Inconsistency? on page 168
■ What is an Unresolved Reference? on page 169
■ What do the Errors/Warnings Mean? on page 171
■ Validating Names on page 172

Introduction

The purpose of model validation is to produce a consistent and complete model
within the Toolset. Every time a model is loaded into Rational Rose RealTime, the
Toolset does a complete pass over the model looking for model inconsistencies and
unresolved references. If any inconsistencies or unresolved references are found, then
the elements that have these problems are either deleted or repaired. The containing
controllable units for the affected elements will also be marked as modified.

When individual controlled units are loaded into the model (e.g., when getting a new
version of a class), the Toolset will validate only the elements affected by replacing
this unit.

In order to avoid having the same validation problems reported in the future, the
controlled units which were modified by the Toolset should be saved. If the model is
under source control, then these units should be checked out and checked in.

Information about each validation problem is written to the Rational Rose RealTime
log. If you have a large number of validation messages, then the log may overflow
and some messages will be lost. You can change the log size by opening the Tools >
Options dialog and editing the value in the Log size field in the General tab. Also, the
Log warnings option in this dialog should be checked to ensure that all messages will
appear in the log.
167

What is a Model Inconsistency?

A model inconsistency is reported when the combination of the elements in the model
has resulted in a violation of a modeling constraint.

The following example scenario creates a model inconsistency by violating the
constraint that the initial state must have at most one outgoing transition:

1 Create two capsule classes C1 and C2 where C2 is a subclass of C1.

2 Create a state S1 in the state machine for capsule C1.

3 Create a transition T1 from the initial state to S1 in the state machine for capsule
C2.

4 Save C2 as a controlled unit.

5 Delete transition T1 from the state machine for C2.

6 Create a transition T2 from the initial state to S1 in the state machine for C1.

7 Reload C2 from the saved file.

These actions will result in a model inconsistency where the state machine for capsule
C2 would have two transitions originating in the initial state. The Toolset resolves this
inconsistency by excluding T2 from the state machine of C2.

These actions will result in the following message being written to the log:

Warning: Removed transition "T2" from class "C2".

A model inconsistency is often caused by saving changes to one controlled unit
without saving the related changes to other controlled units. The related changes are
usually classified by the Toolset as secondary edits. See What are Primary and Secondary
Edits? on page 89. It can also be caused by opening a model that is composed of an
inconsistent lineup of unit versions.

Model inconsistencies can also be reported for the following modeling constraints:

■ Circular inheritance loop - there cannot be a cycle in the inheritance graph for a
class

Warning: Removed Generalization from class ""C1"" to class ""Logical View::C2"".

■ Multiple transitions from the same pseudostate - initial states and junction points
can have at most one outgoing transition; also the true and false branches of a
choice point can each have at most one outgoing transition

Warning: Removed transition "T2" from class "C2".
168 Chapter 9 - Model Validation

■ Connector to an unwired port - a connector can only be attached to wired ports

Warning: Removed connector "c1" from class "C2".

■ Event guard with no events - an event guard must have at least one event defined
for it

Warning: Removed empty trigger event on transition "t1" in class "C2".

What is an Unresolved Reference?

An unresolved reference is reported when the combination of elements in the model
has invalidated a reference from one element to another.

The following example scenario creates an unresolved reference from a transition to a
state:

1 Create two capsule classes C1 and C2 where C2 is a subclass of C1.

2 Create two states S1 and S2 in the state machine for capsule C1.

3 Create a transition T1 from S1 to S2 in the state machine for capsule C2.

4 Save C2 as a controlled unit.

5 Delete state S1 from the state machine for C1.

6 Reload C2 from the saved file.

These actions will result in an unresolved reference related to the transition T1. Since
state S1 has been deleted, the transition (and its associated junction points) cannot be
properly created and so they are deleted. Similar unresolved references will exist
because of the view elements in the state diagram for C2.

These actions will result in the following messages being written to the log (see the
next subsection for a detailed description of these messages):

Error: Unresolved reference from Capsule "C2"

to Item with name :TOP:S1

by Refinement "<unnamed>".

Error: Unresolved reference from State "TOP"

to StateVertex with name :TOP:S1:Junction1

by Transition "t1".

Warning: Removed transition "t1" from class "C2".
What is an Unresolved Reference? 169

Warning: Unresolved reference to State with name S1.

in StateView S1 in State Diagram: Logical View / C2 - Top

State

Warning: Unresolved reference to State with name S1.

in StateView S1 in State Diagram: Logical View / C2 -

Warning: Unresolved reference to JunctionPoint with name

:TOP:S1:Junction1.

in JunctionPointView :TOP:S1:Junction1 in State Diagram:

Logical View / C2 -

Warning: Unresolved reference to InitialPoint with name Initial.

in InitialPointView Initial in State Diagram: Logical View /

C2 -

Warning: Unresolved reference to JunctionPoint with name

:TOP:S1:Junction1.

in JunctionPointView :TOP:S1:Junction1 in State Diagram:

Logical View / C2 - Top State

Warning: Unresolved reference to JunctionPoint with name

:TOP:S2:Junction1.

in JunctionPointView :TOP:S2:Junction1 in State Diagram:

Logical View / C2 - Top: S2

Warning: Unresolved reference to JunctionPoint with name

:TOP:S2:Junction1.

in JunctionPointView :TOP:S2:Junction1 in State Diagram:

Logical View / C2 - Top State

As with a model inconsistency, an unresolved reference is often caused by saving
changes to one controlled unit without saving the related changes to other controlled
units. It can also be caused by opening a model that is comprised of an inconsistent
lineup of units.
170 Chapter 9 - Model Validation

Unresolved references can also be reported for the following situations:

■ classifier role referencing a missing classifier

■ connector referencing a missing port or port role

■ interaction instance referencing to a missing classifier role

■ generalization, realization, association, aggregation, or dependency relationship
referencing a missing class, capsule, protocol, use case, package, or component

■ port referencing a missing protocol

■ signal referencing a missing class

■ component referencing a missing class, capsule, protocol, or package

■ port event referencing a missing port or signal

■ protocol role event referencing a missing signal

■ message referencing a missing interaction instance

■ component instance referencing a missing component

■ refinement of a missing inherited state, transition, capsule role, port, or connector

What do the Errors/Warnings Mean?

The error/warning messages for a model inconsistency should be self explanatory.
Each message typically describes the deletion or exclusion of a model element.

The error/warning messages for an unresolved reference may require a bit more
explanation. The elements in a model fall into two categories: model elements and
view elements. A model element is the underlying UML element (for example, class,
state, transition, classifier role). A view element is the a graphic object representing a
model element within a diagram.

Unresolved References Between Model Elements

These messages tend to use the following templates:

Error: Unresolved reference from <element type> <element name>

to <element type> with name <element name>

by <element type> <element name>

where:

<element type> describes a kind of model element, for example, Capsule, State
What do the Errors/Warnings Mean? 171

<element name> is the name of a model element, for example, C1, S1

Unresolved References from a View Element

These messages tend to use the following template:

Warning: Unresolved reference to <element type> with name <element

name>

in <view type> <element name> in <diagram type> <diagram

name>

where:

<element type> describes a kind of model element, for example, Capsule, State

<element name> is the name of a model element, e.g., C1, S1

<view type> describes a kind of view element which is a presentation of a model
element in a diagram; these are usually formed by adding View to the end of the
element type, for example, StateView.

Validating Names

In conjunction with model validation, the Rational Rose RealTime Toolset checks the
names of the model elements to ensure that they are valid. If a name conflict is
detected, then the Toolset will rename one of the conflicting elements. This ensures
that names are unique where required.

As with model validation problems, a name conflict can be caused by saving changes
to one controlled unit without saving the related changes to other controlled units. It
can also be caused by opening a model that is comprised of an inconsistent lineup of
units.

To create a name conflict:

1 Create two capsule classes C1 and C2 where C2 is a subclass of C1.

2 Create a state S1 in the state machine for capsule C1.

3 Save C1 as a controlled unit.

4 Delete state S1 from the state machine for C1.

5 Create another state S1 in the state machine for C2.

6 Reload C1 from the saved file.
172 Chapter 9 - Model Validation

In the state machine for C2 we have a locally defined state S1 and an inherited state
S1. These two states have a name conflict since a state name must be unique among all
states in its containing state. The Toolset will rename one of the states and output the
following message to the log:

Warning: Renamed State "S1" to "S1_0" in class/package "C1".

A name conflict can also be caused by multiple users making changes to related
classes. For example:

1 Assume we have a model where class C2 is a subclass of class C1.

2 One user adds an attribute named ‘m_name’ to a C1

3 Another user adds an attribute with the same name to C2

If the modified versions of C1 and C2 are loaded in as part of the same model, then
there will be a name conflict between the attributes.

See Naming Guidelines in the Toolset Guide for more information on the naming rules.
Validating Names 173

174 Chapter 9 - Model Validation

10ClearCase Parallel
Development: Sample
Process
Contents

This chapter details how to set up a parallel development process to use Rational Rose
RealTime with Rational ClearCase.

This chapter is organized as follows:

■ Parallel Development Overview on page 176
■ Using View Templates on page 179
■ ClearCase Entities on page 180
■ Initial Setup on page 180
■ Automated Builds on page 184
■ Developer Process on page 187
■ Integration Process on page 189
■ View Template Script Usage on page 191

The process presented illustrate an example used to explain parallel development and
is not in any way a definitive guide for working with ClearCase. Feel free to use this
process as is, or to modify and customize it as necessary to fit your project’s needs.

Many of the techniques presented in this example are not specific to either ClearCase
or parallel development, although the details certainly are. This example assumes a
homogeneous ClearCase installation (for example, Windows NT, WIndows 2000, or
Unix) and does not address the details of how to setup ClearCase in a multi-sited
environment. It should be noted that view profiles are not recommended in a mixed
ClearCase installation and are used in this example for simplicity only. The process of
installing more advanced configurations of ClearCase does not affect the usage of
Rational Rose RealTime, but requires more advanced knowledge of ClearCase itself.
For that reason, this example uses a simple ClearCase configuration to illustrate the
parallel development process. Please refer to the ClearCase product documentation
for help with multi-site and heterogeneous installations and administrations.

Note: Throughout this example, the prefix TC is used to indicate an identifier that is
unique to the project being worked on. Using distinct labels for each project will help
keep their development progress self-contained and more manageable.
175

Parallel Development Overview

The benefits of a proper parallel development process are:

■ reduced contention for checkouts
■ private version streams for development activities
■ shared build results to reduce incremental development times
■ stable and controlled evolution of the system being developed

As explained in Parallel Stream Versioning on page 100, the integration branch plays a
central role in most parallel development strategies. In this example, /main is used as
the integration branch. All automated builds are generated from the integration
branch, all lineups are created from elements on the integration branch, and all
development is based on the integration branch.

Automated builds are performed on the contents of the integration branch. To ensure
reproducible builds (and provide wink-in of build artifacts), the latest version of each
file and directory on the integration branch is labelled with an identifier such as
TC_BUILDFILES. Using a label instead of a timestamp or whatever happens to be in
view insures that a build is completely reproducible. If the version of a file labelled
with TC_BUILDFILES causes compile problems, then a previous version of the file
can be used simply by applying TC_BUILDFILES to the appropriate version and
re-building incrementally.

When the build is successful, a new label is generated of the form
TC_BASELINE_NNN. The label is then applied to the exact version of each file that
was included in the build (for example, every version that labelled with
TC_BUILDFILES is now labelled TC_BUILD_NNN).

As far as development is concerned, no actual development occurs on the integration
branch. All development is carried out on private branches, one per development
activity. Each private branch is based off of a lineup on the integration branch,
conveniently labelled by the automated build process. Since the file versions used in
the build are also used by developers, wink-in of build artifacts comes for free.

After a development activity finishes, an integrator is given the branch name and
merges the changes for that activity onto the integration branch when time permits.
176 Chapter 10 - ClearCase Parallel Development: Sample Process

The following diagram illustrates a typical version tree for an element in this process:

Figure 44 Version Tree Example
Parallel Development Overview 177

The remainder of this chapter explains the details behind the process just described.
See the following sections:

■ Using View Templates on page 179

■ ClearCase Entities on page 180

■ Initial Setup on page 180

■ Automated Builds on page 184

■ Developer Process on page 187

■ Integration Process on page 189

Making Design Changes in Parallel

Generally, if the editing you do on a private branch causes a problem in the C++
environment, it will also cause a problem in the Rational Rose RealTime environment.
Considerations should be made regarding the number of elements that must be
checked out to make design changes versus syntax changes. As a rule, do not make
design changes in parallel because you face the danger of having difficulty merging
them together.

Things that should be safe to perform in parallel:

■ modify transition code

■ modify member function code

■ add attributes/members to classes

Things that should not be performed in parallel:

■ deletion of model elements

■ renaming of model elements

■ relocation of model elements

By saying these operations should not be done in parallel, this means that the
developer/designer making these changes should ensure that no-one else will be
modifying the elements affected before the next integration. It certainly should not be
interpreted as "don't use a private branch for this work".
178 Chapter 10 - ClearCase Parallel Development: Sample Process

Using View Templates

To ensure that developers use a common base for their view’s config spec, and to
make it easier to work on private branches, view templates are used. A view template
specifies the integration branch to work from, lists labelled checkpoints that can be
used to base a private branch on, and includes a config spec template that can be filled
in with additional config spec rules.

Windows NT/2000/XP

This functionality is provided with ClearCase 3.2.1 for Windows NT/2000 through
View Profiles.

UNIX

ClearCase for Unix does not include support for View Profiles. To replicate similar
functionality, Perl scripts exist to provide essentially the same functionality. The
vtadmin and vtsetview scripts are located in the
$ROSERT_HOME/bin/$ROSERT_HOST/cc/vt directory.

Every developer will need access to a common location from which the view
templates will be accessed. The view template scripts look for the view templates in
the directory named by the CCVIEWTEMPLATES environment variable.

Each view template consists of the following parts:

■ A list of labels that indicate integration branch lineups

■ A config spec for browsing any specific integration branch lineup

■ A config spec for performing a development activity on a private branch

■ A config spec used by the integrator

■ A config spec used by the builder

Since the config specs for each project will be different, a view template must be
generated for each project.

See View Template Script Usage on page 191 for complete details on how to use the view
template scripts.
Using View Templates 179

ClearCase Entities

This development process will require the creation and usage of the following
ClearCase entities.

Views

A separate view will be needed for the integrator, for the builder, and for each
developer.

View Template

A view template will be needed to provide a standard config spec for each developer.

Labels

Labels will be used to define various lineups. Significant labels include:

■ TC_BASELINE_0: Represents the initial state of the project.

■ TC_BUILDFILES: This label indicates what element versions should be included
in the next automated build. Only the builder should use this label.

■ TC_LATEST_STABLE: This label is applied to the most recent stable lineup on the
integration branch.

Note: This label is not fixed. The elements it refers to will change whenever a new stable
lineup is established.

Initial Setup

Before starting with the parallel development process outlined below, it is assumed
that the model that will be worked on is already under source control in a VOB. See
Set up a Source Control System and Repository on page 146 for details on this.

Create the Integrator View

All project setup can occur from the integrator view. The integrator view will see the
latest versions of elements on the integration branch, which in this case is /main. The
config spec should look like this:

element * CHECKEDOUT

element * /main/LATEST
180 Chapter 10 - ClearCase Parallel Development: Sample Process

Views are created with this config spec by default, so create a view with the name
tc_int. If the integrator role will be played by multiple team members, be sure to
choose a storage location for the view that will provide suitable performance for all.
As always, integrators should not share views and so no two integrators should use
this view at the same time.

Create Project Labels

The standard project labels mentioned above should now be created. These labels
include TC_BASELINE_0, TC_BUILDFILES, and TC_LATEST_STABLE.

Each of these labels should be created before starting work on the project. A label type
can be created with the following cleartool syntax:

[x:\dev]cleartool mklbtype -c "Initial Project State" TC_BASELINE_0

Created label type "TC_BASELINE_0".

Create Initial Lineup

After the labels have been created, the initial lineup label should be applied to the
VOB (\dev is the BOB being used in this example):

[x:\dev]cleartool mklabel -recurse TC_BASELINE_0 \dev

The initial model should be a valid stable model, so the TC_LATEST_STABLE label
should be applied to all versions that are covered by the initial lineup:

[x:\dev]cleartool mklabel -recurse -version TC_BASELINE_0 -replace

TC_LATEST_STABLE \dev

Creating the Developer View Template

To ensure consistent and controlled access to the model, and to ease the usage of
lineups and private branches, all developers should derive their config specs from a
common base.

There are two primary functions that developers will be performing, and each
requires a different config spec:

■ Browsing: allows the view to see the latest stable lineup on the integration branch.

■ Development: this sees a snapshot of the integration branch based on a labelled
stable lineup, and branches files to a developer-private branch when files are
checked out.

The rules for the browsing config spec are as follows:

element * TC_LATEST_STABLE

element * /main/LATEST
Initial Setup 181

The TC_LATEST_STABLE label in the rule above can be changed to a different label if a
developer wishes to view a lineup other than the latest. Optionally, the -nocheckout
modifier can be added to the above rules so that checkouts can not occur accidentally
while browsing.

For the development config spec, the rules should be:

element * CHECKEDOUT

element * ...\paulr_timing\LATEST

mkbranch paulr_timing

element * TC_BASELINE_5

element * \main\LATEST

In these rules, paulr_timing is the name of the private branch on which the
development is taking place and TC_BASELINE_5 is the stable lineup that the
development is based on. The rules have the following meaning:

■ All versions checked out to the view will be seen

■ If there is no checked out version, then the latest version on the private branch will
be seen.

■ If there is no version on the private branch, then take the version labelled by the
lineup.

■ If an element from the lineup is checked out, immediately branch it to the private
branch, and check out the newly branched version.

■ If an element does not exist on the private branch and does not have the lineup
label applied to it, simply choose the latest version on the main branch.

Windows NT/2000/XP

The developer view template can be implemented using view profiles by creating and
maintaining a view profile, and having each developer associate their view with the
view profile. Using the ClearCase View Profiles tool, create a new view profile using
the supplied wizard, entering the following details:

■ Name: tc_dev_profile

■ Include the storage VOB for the model
182 Chapter 10 - ClearCase Parallel Development: Sample Process

■ The work for the profile will not be done on a branch. (Though private branches
will be used by developers, the view profile itself will provide a config spec to be
used only for browsing the integration branch, not for making changes on it.)

■ Give the label for the initial lineup, TC_BASELINE_0, as the checkpoint label for
creating private branches. This is not used for the default config spec, but instead
marks TC_BASELINE_0 as a possible branching point.

■ The diagram annotation can be modified as appropriate.

The default browsing config spec produced will look similar to the following:

[CC_PROJECT - Checked Out Rule

element * CHECKEDOUT

#

Any modifications to the Profile config spec should

be made following this comment.

CC_PROJECT]

[CC_PROJECT - Profile Config Spec

Do not directly modify the text below, it has been

automatically generated by the ClearCase View Profile

Tool. To change the Profile config spec, use the

ClearCase View Profile Wizard to update the Profile

status as needed.

element * \main\LATEST

CC_PROJECT]

Unfortunately, this config spec will let developers see changes that have been merged
to the integration branch but that have not yet been built and tested. What is wanted
instead is a config spec that shows the latest stable build at any point in the
development process. The change required is:

[CC_PROJECT - Checked Out Rule

element * CHECKEDOUT

#

Any modifications to the Profile config spec should

be made following this comment.

CC_PROJECT]
Initial Setup 183

element * TC_LATEST_STABLE

[CC_PROJECT - Profile Config Spec

Do not directly modify the text below, it has been

automatically generated by the ClearCase View Profile

Tool. To change the Profile config spec, use the

ClearCase View Profile Wizard to update the Profile

status as needed.

element * \main\LATEST

CC_PROJECT]

The view profile is now ready for developers to use.

UNIX

Use the supplied vtadmin script to create a new template. The following command
syntax can be used:

vtadmin -mktemplate -template tc -lateststable TC_LATEST_STABLE

-buildlabel TC_BUILDFILES -integrationbranch /main -snapshot

/vobs/TrafficControl

After the command finishes, a template with the supplied parameters will have been
created in the $CCVIEWTEMPLATES directory, and is now ready for use in the project.

To add the initial lineup label as a supported branching point, use the following
vtadmin invocation:

vtadmin -addlineup -template tc -baselinelabel TC_BASELINE_0

Automated Builds

To provide the ability to selectively choose the versions of files that go into the build,
the builder will select all versions that are labelled with the build label
TC_BUILDFILES. This allows flexibility in changing the exact versions that go into the
build should it be needed (for example, if the most recent version of a file contains
code that does not compile, then the previous version can be labelled instead).
184 Chapter 10 - ClearCase Parallel Development: Sample Process

There are several steps involved in the build:

■ Label Build Files

■ Perform Build

■ When the Build Completes Successfully

❑ Create a new lineup label and apply to build file versions

❑ Apply TC_LATEST_STABLE to build file versions

❑ Make New Lineup Available to Developers

Before any of this can occur, though, the build view must first be created.

Create the Build View

The build view is similar to the integrator view in that it selects files from the
integration branch, but different in that it needs to select labelled versions when
performing the build.

When performing the labelling, the latest version of files on the integration branch
need to be in view for the labelling to select the correct file versions. This config spec is
identical to the one presented above for the integrator.

When performing a build, the build view must see the labelled version of all files that
are contained in the build. For files and directories that are not labelled, it suffices to
select the latest version on the main branch. The following config spec rules capture
these requirements:

element * TC_BUILDFILES

element * \main\LATEST

For the build view to be used for both labelling and building, the config spec for the
view must be switched back and forth. This can be done by having text files that
contain the two config specs and using cleartool setcs to invoke the appropriate config
spec.

Depending on your development environment, it may be possible to use the
integrator view for labelling and leave the build view always configured to pick up
the TC_BUILDFILES labelled files.

A typical name for the build view is tc_build.

UNIX

The view template scripts produce a text version of the build and integrator config
spec rules indicated above. Use the vtsetview script to select the appropriate config
spec rules into the build view.
Automated Builds 185

Label Build Files

After ensuring that the current view has the integrator config spec, apply the
TC_BUILDFILES label to the latest version of each element on the integration branch.
The following command will do this:

cleartool mklabel -recurse -replace -version \main\LATEST

TC_BUILDFILES \dev

Perform Build

After ensuring that the current view has the builder config spec, perform the build.

If the build does not complete successfully, or if the produced build does not pass
sanity testing, determine if it is possible to fix the problem simply by backing up the
version of a file used. If so, apply the TC_BUILDFILES label to the earlier version of the
file and restart the build. Continue until a successful build is produced.

If there are build problems that cannot be resolved in the above manner, then ensure
that the developers responsible for the problem are notified so that the next build will
be successful.

When the Build Completes Successfully

Create a New Lineup Label and Apply to Build File Versions

Create a label that will encompass all versions used in the build just completed. This
should be a unique label in a regular form, such as TC_BASELINE_NNN, where NNN is
an integer preferably generated automatically in an incremental manner from the
previous lineup label.

Apply the label to all versions that were used in the build:

cleartool mklabel -recurse -replace -version TC_BUILDFILES

TC_BASELINE_NNN \dev

If you wish to prevent the lineup contents from being changed in the future, you may
wish to lock the TC_BASELINE_NNN build label at this point.

Apply TC_LATEST_STABLE to Build File Versions

As a convenience, the TC_LATEST_STABLE label is used to show the most recent
successful stable build. To update the versions that TC_LATEST_STABLE applies to, use
a similar mklabel invocation to the one presented above.
186 Chapter 10 - ClearCase Parallel Development: Sample Process

Make New Lineup Available to Developers

The newly labelled lineup should now be exposed for developers to use as a
branching point for private branches. This is done by adding the TC_BASELINE_NNN
label to the view template.

Although it may seem that TC_LATEST_STABLE could be added as a potential
branching point label, this is not the case. Branching points are intended to be
unchanging specifications of a lineup of versions. However, TC_LATEST_STABLE
changes with every build, and is therefore not appropriate for use as a branching
point.

Windows NT/2000/XP

Using view profiles, the build label should be added to the tc_dev_profile view profile.
This is done in the ClearCase View Profiles editor by using the context menu on the
tc_dev_profile profile.

UNIX

Use vtsetadmin to add the build label to the view template:

vtadmin -addlineup -template tc -baselinelabel TC_BASELINE_NNN

Developer Process

Each development activity is completed by a single developer and is performed on a
private branch specific to that activity. Again, each developer requires their own view.
The view is based on a branching point on the integration branch identified by a build
label.

A unique branch name must be chosen that identifies the work being performed (such
as paulr_timing). The view’s config spec rules are set up to automatically check out
and branch files from the branching point to the private branch. As well, new
elements created during the development activity are immediately branched to the
private branch.

Because the branch is hidden from other developers, the user may check in
incremental changes to the branch. When the developer is satisfied that their changes
are completed and ready to be integrated, the developer informs the integrator that all
changes on the private branch are ready for integration.
Developer Process 187

By basing developer private branches off of labels that correspond to the versions
used by automated builds, each developer will be able to reuse most of the build
results in the form of winked-in derived objects. This significantly reduces the amount
of building that is required by each developer when they make changes.

Creating a Developer View

It is important to note that each developer needs their own view. Under no circumstances
should multiple users work from the same view.

Windows NT/2000/XP

After creating the view, associate the view with the tc_dev_profile View Profile. The
view will be set up for browsing as per the description in Creating the Developer View
Template on page 181.

UNIX

After creating the view, use the vtsetview script to set the view config spec to the
default browsing config spec using the following command:

vtsetview -setview browse -template tc

The view will now show the latest stable build of the model.

Starting a Development Activity

Each development activity is performed on a private branch. The name of the private
branch should be appropriate to the activity being worked on. One strategy for
avoiding branch name clashes is to start each branch name with the user id of the
developer doing the work (for example, paulr_timing).

Windows NT/2000/XP

To start an activity, use the Set Up Private Branch wizard that is available from
ClearCase HomeBase. Rather than base the branch on the elements currently in view,
choose to use a different branch point. On the version selection page, click by View
Profile checkpoint, and select the integration branch label you wish to work from,
which is likely the most recent label in the list.
188 Chapter 10 - ClearCase Parallel Development: Sample Process

UNIX

Use the vtsetview script with the -listbaselines option to see what lineups are available
for basing the private branch on. To start the private branch, use the following
invocation of vtsetview:

vtsetview -startbranch -template tc

-brname paulr_timing -brpoint TC_BASELINE_4

Working on a Development Activity

After the view has been set up like this, the model should be loaded into Rational
Rose RealTime. Work now proceeds until the entire development activity is complete.
The developer may check in intermediate results, as they will not be seen by other
developers since the changes will all occur on the private branch.

Finishing a Development Activity

When all development is complete on the activity, and everything submitted to source
control, the changes are ready to be propagated to the integration branch. The
propagation is performed by the integrator, so the only task remaining for the
developer is to end the private branch and notify the integrator that the changes on
the completed branch are ready for integration.

Windows NT/2000/XP

Use the Finish Private Branch wizard in ClearCase HomeBase. Since integration of the
changes made onto the integration branch will be done by the integrator, choose to
leave the changes on the branch.

UNIX

Use the following invocation of vtsetview to finish the private branch:

vtsetview -endbranch -template tc -brname paulr_timing

Integration Process

Each development activity must eventually be merged into the integration branch.
ClearCase has several tools available for performing such a merge. The cleartool
findmerge command can be used to merge all changes from a branch onto another
branch. From the integrator view, the following command syntax can be used:

cleartool findmerge \dev -all -fversion .../paulr_timing/LATEST

-merge
Integration Process 189

Alternately, Windows NT and Windows 2000 users can use the ClearCase Merge
Manager to perform the same merge.

Both of these methods will merge directory versions and also use Rational Rose
RealTime Model Integrator to merge changes in model files. After performing the
merge, the integrator should load the model into Rational Rose RealTime and verify
that no merge errors have occurred. If the model loads correctly, the changes should
be checked in by clicking Tools > Source Control > Submit All Changes to Source Control.

To integrate a series of development activities:

1 Load the model from the integrator’s view.

2 Perform the merge as detailed above.

3 Click Tools > Source Control > Synchronize Entire Model. This command reloads all
files that changed in the merge.

4 Ensure that the merged differences are as desired.

5 Click Tools > Source Control > Submit All Changes to Source Control to accept the
changes and check them into source control.

6 Repeat steps 2 through 5 for each activity that requires integration.

Integrating Intermediate Changes

It is quite common that when a developer is working on feature X on branch Y, they
may require that intermediate versions of the files modified integrated back to the
integration branch. This enables other developers to have access to their changes, but
the original developer can continue working on the classes. To accomplish this, the
recommendation is as follows:

1 Developer creates a new label.

2 Developer applies the label to the versions of elements on their branch which they
want integrated.

3 Developer tells the integrator which label/branch combination specifies the
changes to be merged.

4 Integrator uses available CC tools (findmerge or merge manager) to perform the
integration.
190 Chapter 10 - ClearCase Parallel Development: Sample Process

View Template Script Usage

This topic is organized as follows:

■ vtadmin on page 191

■ vtsetview on page 192

vtadmin

The vtadmin script is used to list, create, delete, and update view templates. Each
usage of vtadmin is detailed below:

vtadmin -lstemplates

This invocation lists the available view templates.

vtadmin -mktemplate -template <templatename>

-lateststable <stablelabel> -buildlabel <buildlabel>

[-integrationbranch <intbranch>] [-snapshot <vob directory>]

This invocation creates a new template with the specified name, latest stable label,
build label and integration branch. If the integration branch is not supplied, then
/main is assumed.

Note: Creating a view template does not create the labels and branches indicated; they are
assumed to already exist. You can also specify that a load rule be added to the templates so that
you can create and use snapshot views.

vtadmin -lslineups -template <templatename>

This invocation lists the lineup labels associated with the specified view template.

vtadmin -addlineup -template <templatename>

-lineuplabel <lineuplabel>

This invocation adds a lineup label to the specified view template.

vtadmin -rmlineup -template <templatename>

-lineuplabel <lineuplabel>

This invocation removes the indicated lineup label from the specified view template.

When invoked with no parameters the script will output usage help.
View Template Script Usage 191

vtsetview

The vtsetview script is used to configure config spec and perform common developer
queries. Each usage of vtsetview is detailed below:

vtsetview -startbranch -template <templatename>

-brname <branchname> -brpoint <labelname>

This invocation attempts to start a private branch using the supplied parameters.

vtsetview -endbranch -template <templatename>

-brname <branchname>

This invocation is used to end the indicated private branch.

vtsetview -setview (integrate | build | browse)

 -template <templatename>

This invocation is used to set a specific config spec into the current view.

vtsetview -lslineups -template <templatename>

This invocation lists the available lineups for the specified view template.

When invoked with no parameters, the script will output usage help.
192 Chapter 10 - ClearCase Parallel Development: Sample Process

11Customizing Source
Control Interface Scripts
Contents

This chapter is organized as follows:

■ Overview on page 193
■ Customizing Scripts on page 194
■ Script Parameters on page 195

Overview

Rational Rose RealTime implements source control through a generic script interface
that allows it to work with many source control systems. Each Rational Rose RealTime
source control action has an associated script that is executed when that action is
performed in the Toolset. Rational Rose RealTime looks for the script in the directory
selected in Source Control configuration. It executes the script (passing certain
information to the script via command-line options), and reads the results from the
standard output stream.

A list of scripts follows:

■ cm_getcaps
■ cm_status
■ cm_get
■ cm_add
■ cm_checkout
■ cm_checkin
■ cm_uncheckout
■ cm_history
■ cm_extract
■ cm_label
■ cm_diff
■ cm_merge
193

Customizing Scripts

This topic is organized as follows:

■ Input Parameters on page 194
■ Output Expected on page 194
■ Output Format on page 194
■ Script Return Code on page 194
■ Notes on page 194

Input Parameters

Parameters are categorized as optional or required. This is not an indication of
whether the script needs to support the parameter. All parameters must be supported.
Optional parameters are those that may be passed by the Toolset in a particular
invocation of the script. If the parameter is not passed this indicates that some default
behavior is expected. The default behavior is described for each parameter. Required
parameters are those that the script can expect the Toolset will always pass to it. There
is no default behavior for required parameters, as they will always be present. The
detailed information about each parameter is provided below in the section Script
Parameters on page 195.

Output Expected

All output is to stdout.

Output Format

The format of the information in the script output expected by the Toolset.

Script Return Code

All scripts should return either 0 or > 0. If the return code is non-zero, the Toolset
interprets this to mean that the operation failed. In this case, the Toolset displays
whatever the script writes to stderr as an error message.

Notes

Any more detailed notes or warnings.

Note: All scripts must be written in Perl. They will be invoked as

rtperl -w <scriptname> <args>
194 Chapter 11 - Customizing Source Control Interface Scripts

Script Parameters

Each of these scripts is passed one or more parameters from Rational Rose RealTime.
Values occupy the next argument position, for example, -T data.

The following is a description of each of the parameters that can be passed to the
various source control scripts. Not every parameter is applicable for every source
control script. See the description of each script for the list of parameters that may be
passed to that script.

-D <directory>

<directory> is a string containing the path to the directory where the files to be
operated on are contained. The default if no -D is given is the current working
directory.

-E <element>, -S <element>

<element> is a string containing the name of the file to be checked out, unchecked out,
submitted, extracted, and so forth by the script (for example, MyCapsule). There is no
default. If -E is specified, <element> indicates a file; if -S is specified, <element>
indicates a directory.

For scripts that can operate on multiple elements at the same time, all elements passed
to the script will be located in the same directory. This means that all elements
specified will be located in the directory specified by -D.

-O <file>

<file> is the file name (including path if necessary) where the result of the operation
should be written.

-C <commentfile>

<commentfile> is name of a file containing the user supplied reason for the operation.
This parameter is only submitted to the script if cm_getcaps indicates that the script
supports it and the user enters something valid in the dialog displayed when the
operation is carried out.

-V <version>

<version> is the version tag of the element to be operated on. If the Toolset asks for a
particular version, the script must attempt to return the requested version. If no
version is specified (no -V is given), the default is the latest.
Script Parameters 195

A Note About Version Tags

For each version in the source control repository there is a unique version tag that the
scripts return to the Toolset. Version tags get passed to and from the scripts when the
Toolset performs source control operations. The tag may be numerical or an arbitrary
string.

cm_getcaps

Returns the set of capabilities supported by the source control system.

Sometimes, it is necessary to specify other information during a particular source
control operation. For example, some source control systems must be given an
‘update number’ when an object is submitted. By simply defining a collection of
prompts for a source control operation, the user will be prompted for this additional
information and then passed to the corresponding script.

Input parameters

None

Output format

<output>::= <cap_entry>*

<cap_entry>::= <capability> '\n'

<capability>::= "Parameter" <operation_param>

| "Comment" <operation_comment>

| "Option" <option>

<operation_param>::= <operation_name> PromptString

<argument_type> <required> CommandFlag

<default>

<saveDefault>

<operation_name>::= "CheckOut"

| "CheckIn"

| "Add"

| "Get"

| "Label"

| "UnCheckout"

<argument_type>::= "string"
196 Chapter 11 - Customizing Source Control Interface Scripts

| "integer"

| "list" "(" <paramlist> ")"

<paramlist>::= <listelement>

| <listelement> <paramlist>

<list element>::= "(" value string ")"

<required>::= "mandatory"

| "optional"

<default>::= Default

| "NONE"

<saveDefault>::= "saveDefault"

| "noSaveDefault"

<operation_comment>::= <operation_name> PromptString <required>

CommandFlag <default> <saveDefault>

<option>::= "CanDetermineFileVersions" <boolean>

| "ScriptTimeout" Integer

| "BatchedStatus" <boolean>

| "IsClearCase" <boolean>

| "SupportsDiff" <boolean>

| "SupportsMerge" <boolean>

| "SupportsLabel" <boolean>

<boolean>::= "TRUE"

| "FALSE"

Notes

■ Specifying CheckOut as the operation means that a new argument is being
defined for the cm_checkout script. Similarly, add defines a new argument for the
cm_add script.

■ <argument_type> defines the valid type of the argument. If additional validation is
required, it must be done by the script that is given this argument.
Script Parameters 197

■ <required> defines whether the user must specify a value. If the user does not
specify a value for an optional argument, then that argument will not be passed to
the corresponding script.

■ <flag> defines the command line flag to use when this value is passed to the
corresponding script.

■ <default> defines the default value to be displayed in the prompting dialog. A
value of NONE means that there is no default.

■ <saveDefault> defines whether the previously entered value is remembered and
used as the default the next time this operation is performed.

Example

To specify that the user should be prompted for a mandatory update number and an
optional reason for use during check-in, modify the cm_getcaps script to produce
output similar to the following:

parameter checkin "Update No" Integer mandatory -U NONE saveDefault

Comment checkin "Comment" optional -C NONE saveDefault

cm_status

Used to sync the status of files in the Toolset with the state of the files in the source
control repository.

Input parameters

-D <directory>

-S <dir element>

-E <file element>

Output format

<item> <status> <user> <version>

See supplied scripts for the allowable values of these fields.

cm_get

Retrieves the latest version of a file from the source control repository.

Input parameters

-D <directory>

-E <filename>

-V <version>
198 Chapter 11 - Customizing Source Control Interface Scripts

Output format

<item> <status> <user> <version>

See supplied scripts for the allowable values of these fields.

cm_add

Used to add a file into the source control system.

Input parameters

-D <directory>

-S <dir element>

-E <file element>

-C <commentfile>

Output format

<item> <status> <version>

See supplied scripts for the allowable values of these fields.

cm_checkout

Used to lock an element (file) in the source control repository. Upon successful
completion, the specified element should be reserved for modification by a particular
user.

Input parameters

-D <directory>

-E <filename>

-C <commentfile>

Output format

<item> <status> <version>

See supplied scripts for the allowable values of these fields.
Script Parameters 199

cm_checkin

Used to submit a new version of an element to the source control repository. Upon
successful completion, the repository should be updated to include the new version of
the specified element.

Input parameters

-D <directory>

-E <filename>

-C <commentfile>

Output format

<item> <status> <version>

See supplied scripts for the allowable values of these fields.

cm_uncheckout

Used to unlock an element in the source control repository. Upon successful
completion, the specified element should no longer be reserved for modification by
the user.

Input parameters

-D <directory>

-E <filename>

Output format

<item> <status> <version>

See supplied scripts for the allowable values of these fields.

cm_history

Used to produce the list displayed by the History Browser in Rational Rose RealTime.
The script should output one line for each version of the specified element.

Input parameters

-D <directory>

-E <filename>

Output format

<version> <author> <date> <time> <locked-by>

See supplied scripts for the allowable values of these fields.
200 Chapter 11 - Customizing Source Control Interface Scripts

cm_extract

Used to extract a version of an element from the source control repository. Upon
successful completion, a copy of the specified element version should be written to a
file.

Input parameters

-D <directory>

-E <filename>

-O <output file>

-V <version>

Output format

<item> <status>

See supplied scripts for the allowable values of these fields.

cm_label

Used to apply a label to an element or directory in the source control repository. The
labelling operation will not be exposed in Rational Rose RealTime unless the
SupportsLabel option is set to TRUE in the cm_getcaps file.

Input parameters

-D <directory>

-E <filename>

-S <dir_element>

-L <label>

-C <commentfile>

-V <version>

Output format

<item> <status>

See supplied scripts for the allowable values of these fields.
Script Parameters 201

cm_diff

Used to difference two versions of a file in the repository. This script will only be
called for diffing operations if the SupportsDiff options is set to TRUE in the
cm_getcaps file. Only source control systems that can integrate with Rational Rose
RealTime Model Integrator should use this mechanism, as a standard textual diff does
not provide useful results for Rational Rose RealTime model files.

Input parameters

-D <directory>

-E <filename>

-V <version>

Output format

<item> <status>

See supplied scripts for the allowable values of these fields.

cm_merge

Used to merge a version of a file from the repository into the currently checked out
file. This script will only be called for merging operations if the SupportsMerge options
is set to TRUE in the cm_getcaps file. Only source control systems that can integrate
with Rational Rose RealTime Model Integrator should use this mechanism, as a
standard textual merge does not provide useful results for Rational Rose RealTime
model files.

Input parameters

-D <directory>

-E <filename>

-V <version>

Output format

<item> <status>

See supplied scripts for the allowable values of these fields.
202 Chapter 11 - Customizing Source Control Interface Scripts

Index
A
access violations 107
accessing source control operations 93
adding

controlled units 72, 75
controlled units to source control 75
existing controlled units to models 79
files to source control 92

Apply Label operation 96
architect role 35
automated builds 184
automated scripts for building 137
automating model validation 143

B
blue delta 49
build files 186
build settings 116
build views 185
building

components 133
creating reusable build artifacts 141
reusing build artifacts 141
using automated scripts 137
using build artifacts 142
within a larger build 140

C
-C parameter 195
changing

controlled unit granularity 76
granularity of controlled units 70

Check in operation 95
Check out operations 95
checking dependencies 107

checking in
controlled units 130
elements 130
model elements 130

checking out files
when edited 91
with secondary edits 91

child controlled elements 62
ClearCase 150

activities 155
Add 151
check in 154
check out 154
command line access 156
Deliver 153, 155
element type 156
entities 180
Get 151, 154
hijacking 155
Label 151
Rebase 152
Rebase (snapshot) 155
recommendations 150
repository setup 157
snapshot views 153
Synchronize 151
UCM 52
UCM Integration 152
Update 155
work area setup 158
workstation setup 155

ClearCase options
Unix 157
Windows 157

cm_add 199
cm_checkin 200
cm_checkout 199
cm_diff 202
cm_extract 201
cm_get 198
Index 203

cm_getcaps 196
cm_history 200
cm_label 201
cm_merge 202
cm_status 198
cm_uncheckout 200
code generation performance 70
command line access to ClearCase 156
component instances 117
component packages 104
composition of a model 104
configuration management 59, 103, 127, 137
configuration manager role 37
configuring for PVCS 165
configuring source control tools 127
contacting Rational customer support xix
controllable element 60

child 62
controlling a subset 75
controlling all elements 75
directory structure 64
exporting from model to a file 77
importing from a file to a model 78
influence on code generation 71
parent 62

controlled unit 59, 60
adding a controlled unit 72
adding existing units to models 79
changing granularity 76
common tasks 74
creating sharable units 74
granularity 68
importing a file 71
moving between model directories 76
moving elements between 77
owned by model 67
problems when saving 67
reducing number of 64
reloading 77
saving 67
sharing 71
sharing a controlled package 72
sharing an existing unit into a model 80

sharing model properties 74
summary 73
unresolved references 74
version identifier 68

controlled units
moving 46

controlling
child element 62
element

files 61
types 61

model elements as units 146
new child units 68
parent element 62

controlling a subset 75
converting

model 48
creating

build view 185
class diagram 108
developer view template 181
initial lineup 181
integrator view 180
labels 148
lineups 148
local work area 146
project labels 181
reusable build artifacts 141
RMF file 162
scratch pad package 111
work area 146

creating an rmf file 162
creating sharable controlled units 74
cross-references 89
customer roles 38
customizing scripts 193

D
-D parameter 195
decomposing a model into subsystems 107
default workspace 128, 147
204 Index

defining
developer work areas 148
new path maps 84
parameterized path map 85
path map 85
path map using another symbol 84
subsystem interface 110

defining a virtual path 83
Deliver 155
delivering (ClearCase) 153
deployment packages 104
developer processes 187

creating
developer view 188

finishing a development activity 189
starting a development activity 188
working on a development activity 189

developer role 36
developer view template 181
developer work areas 148
differencing model elements 135
directory structure for model data 63

E
-E parameter 195
edit types

primary 47
secondary 47

editing
checked out files 92

element type setup
Unix 156
Windows 156

elements
child 62
controlling 61
file types 61
parent 62

enable source control 91
exporting controlled elements 77
external dependencies 108
external dependency 74

F
file based source control 97
file history 96

G
Get operation 95
granularity of controlled units 68

architecture 69
code generation performance 70
implications of changing 70
modifying

elements in same package 70
number of users 69
size of model 70

H
hijacking a file 155

I
implicitly defined path map symbols 84
importing

controllable elements 78
importing a file 71
inject messages 134
input parameters 194
integrating changes 143
integrating immediate changes 190
integration

promoting changes 136
integration process 189
integrator role 37
interface scripts 92

L
labelling build files 186
labels 148
lineups 148
logical packages 104
Index 205

M
Make File Writable command 97
Make Files Read Only command 98
making design changes in parallel 178
mapping architecture to subsystems 106
mapping files 161
merging model elements 135
Microsoft Visual SourceSafe 158

command line access 159
databases 159
recommendations for Rational Rose

RealTime 158
repository setup 160
setting project mapping 159

model 80
adding an existing controlled unit 79
automating validation 143
blue delta 49
composition 104
controllable element 60
controlled unit 60
controlled units 59
controlling all controllable elements 75
controlling elements as units 146
converting 48
creating a single model 81
cross-references 89
decomposing into subsystems 107
export elements to a file 77
granularity of controlled units 69
importing controllable elements 78
inconsistency 168
lineup 128
mapping architecture to subsystems 106
moving controlled units 76
one versus multiple 105
opening under source control 128
recommended layout 58
setting to improve opening time 92
splitting 107
storing data 59
subsystems 104
synchronizing 77
unique Id 52

unit 60
unit testing 115
unresolved reference 169
validating names 172
validation scenarios 90

Model Conversion 48
model data

controlled units 59
directory structure 63
guidelines 59

model elements
differencing 135
merging 135

model elements, checking in 130
Model Integrator 51
model structure 58
model validation 167
model-relative path names 68
models

synchronizing 135
modifying

elements in a package 70
moving controlled units 46
multiple models 105

O
-O parameter 195
opening model under source control 128
operations

Apply Label 96
Check in 95
check out 95
Get 95
Refresh status 94
Show Differences 96
Show History 96
Submit all Changes 95
Synchronize 94
Uncheckout 95

organizing a model
build settings 116
component instances 117
decomposing a model into subsystems 107
206 Index

model composition 104
one versus multiple 105
packages 104
processors 116
property sets 116
splitting 107
subsystem 104
unit testing 115
verifying self-containment 110

output format 194

P
package

dependencies 107
determine external dependencies 108

packages
check out parent 129
component 104
creating a scratch pad 111
deployment 104
determine external dependencies 108
logical 104
parent 129
scratch pad 68, 111
scratch pad considerations 113
Services Library 78
show access violations 107

parallel design changes 178
parallel development 50
parallel stream versioning 100
parent controlled elements 62
paths

defining a parameterized path map 85
defining using another path map symbol 84

primary edit guidelines 48
primary edits 47, 89
private component setup 134
probes 134
processors

project level 116
subsystem level 117

product tester role 36
project level processors 116

project manager role 38
promoting changes 136
property sets 116
PVCS 163

archive suffixes 165
command line access 164
database 164
locking 165
registering a new configuration 165
repository setup 165
source control operation behavior 164
work area setup 166
write-protect work files 165

R
Rational ClearCase Multi-Site 51
Rational customer support

contacting xix
Rational Quality Architect 56
RCS 160

command line access 162
creating an rmf file 162
repository setup 162
setting environment variable 162
work area setup 163

Rebase (snapshot) 155
rebasing in ClearCase 152
reducing controlled units 64
Refresh status operations 94
refreshing shared unit status 92
relationships

managing between configuration items 30
reloading controlled units 77
repository mapping Files 161
repository setup for ClearCase 157
reusing build artifacts 141
reusing build settings 133
rmf files 161
roles 34, 35

architect 35
configuration manager 37
customer 38
developer 36
Index 207

integrator 37
product tester 36
project manager 38
source control administrator 37
team size 35
tester 36

rtwks (workspace) 147

S
-S parameter 195
saving controlled units 67
SCCS 160

command line access 162
creating and rmf file 162
repository setup 162
setting environment variable 163
source control operation behavior 162
work area setup 163

scratch pad 68
scratch pad packages 68, 111

considerations 113
script parameters 195
script return code 194
scripts

cm_add 199
cm_checkin 200
cm_checkout 199
cm_diff 202
cm_extract 201
cm_get 198
cm_getcaps 196
cm_history 200
cm_label 201
cm_merge 202
cm_status 198
cm_uncheckout 200
creating 194
input parameters 194
version tags 196
vtadmin 191
vtsetview 192
written using Perl 194

scripts directory 92

secondary edits 47, 89
Services Library packages 78
Set MSVSS options 159
setting rmf environment variable 162
setting up source control 127
sharing

Add 73
controlled package 72
controlled units 71, 73

existing units 80
model properties 74

Import 73
model properties 74
Share 73

sharing and existing controlled unit 80
sharing controlled units

adding 71
external dependency 74
import 71
sharing 71
unresolved references 74

sharing packages
using path maps 84

Show Differences operation 96
Show History operation 96
single models 105
single stream versioning 100
snapshot views 153
Source control

repository setup for RCS 162
source control

accessing operations 93
adding files 92
Apply Label 96
building a component 133
Check in 95
Check out 95
checking in controlled units 130
checking out files

automatically 91
checking out files automatically 91
ClearCase 151
command line access to ClearCase 156
command line access to PVCS 164
command line access to RCS 162
208 Index

command line access to SCCS 162
creating a local work area 146
customizing 193
development concepts 98
enabling 91
file based 97
Get 95
interface scripts 92, 193
location of interface scripts 92
Make Files Read Only 98
Make Files Writable 97
Microsoft Visual SourceSafe 158
operations 94
primary edits 89
PVCS 163
RCS 160
Refresh status 94
repository 146
repository setup for SCCS 162
SCCS 160
scratch pad packages 112
scripts directory 92
secondary edits 89
settings 90
Show Differences 96
Show History 96
splitting a model 122
status options 88
Submit all Changes 95
supported systems 92
Synchronize 94
types of 97
Uncheckout 95
undo a check out 132
versionable elements 92
versioning strategies 100
view based systems 98

source control administration 145
source control administrator role 37
source control development concepts 98

development activity 98
integration 98
lineup 98
working in isolation 99

source control interface scripts 193
cm_add 199
cm_checkin 200
cm_checkout 199
cm_diff 202
cm_extract 201
cm_get 198
cm_getcaps 196
cm_history 200
cm_label 201
cm_merge 202
cm_status 198
cm_uncheckout 200
input parameters 194
script parameters 195
script return code 194

source control status 88
source control tools 149
sources control

repository setup for VSS 160
splitting a model 107, 119

in source control 122
not in source control 119
tasks 120

stdout output 194
storing model data

controlled units 59
granularity of controlled units 69
guidelines 59

Submit all Changes operation 95
submitting changes to source control

source control
submit changes 130

subsystem
consumer 118
define interface 110
verify self-containment 110

subsystem level processors 117
subsystems

components of 114
preparing and releasing 118
splitting a model

into subsystem models 119
supplier 118
Index 209

summary
sharing controlled units 73

supported source control systems 92
synchronize operations 94
synchronizing

models with source control 135
synchronizing models 77

T
tasks 107

architect role 35
component instances 117
developer role 36
integrator role 37
private component setup 134
source control administrator role 37
splitting a model 120
splitting a model in source control 123
working with controlled units 74

team development
architect role 35
configuration manager role 37
customer role 38
developer role 36
heuristics 56
integrator role 37
parallel development 50
product tester role 36
project manager role 38
roles 34
source control administrator role 37
team size 35
tester role 36
typical roles 35

tester roles 36
troubleshooting

Managing Relationships Between Configura-
tion Items 30

When more than one user needs to make
changes to the same artifact 50

types of source control systems 97

U
UCM 52
UCM integration 152
Uncheckout operations 95
undo a check out 132
Unified Change Management 52
unique id collisions 79
unique Id’s 52
unit information 92
unit testing 115, 134

best practices 134
unresolved model reference 169
updating cross-references 89
using path maps 84
using view templates 179
using virtual paths 85

V
-V parameter 195
validating names 172
verifying dependencies 107
version tags 196
versioning strategies 100

parallel stream 100
single stream 100

view based source control system 98
virtual path

defining 83
defining a new path map 84
implicitly defined symbols 84

virtual path map
symbols 140

virtual path maps 82
vtadmin script 191
vtsetview script 192

W
working in isolation 99
workspace file 128
210 Index

	Guide to Team Development
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Team Development
	Goals of Team Development
	Sharing Within a Team Environment
	Protecting Configuration Items From Unintentional Changes
	Overwriting A Modification
	Adding Dependency Issues
	Changing Language Semantics

	Managing Relationships Between Configuration Items
	Managing and Delivering Configuration Items
	Improving Efficiency in Team Development
	Team Development Roles
	Typical Roles
	Roles Vary Based on Team Size

	Architect Role
	Developer Role
	Product Tester Role
	Integrator Role
	Source Control Administrators
	Configuration Managers
	Project Managers
	Customer Role

	Recommendations
	Delivering the Product
	Source Control Fundamentals
	Preempting Conflicts
	Packaging Strategy
	Managing Dependencies
	Labeling
	When Merging is Necessary
	Merging Detail Code Before Using Model Integrator
	Artifact Freeze
	A Special Type of Artifact Freeze

	Building and Executing a Rational Rose RealTime Model

	Advanced Concepts and Heuristics
	Moving Controlled Model Elements
	Considerations
	Heuristics

	Renaming a Controlled Model Element
	Primary and Secondary Edits
	Model Conversion

	Understanding Blue Deltas
	Parallel Development
	Model Integrator
	Using Rational ClearCase Multi-Site
	Using Rational ClearCase UCM
	Unique Ids
	Rational Quality Architect - RealTime Edition
	Additional Heuristics for Team Development
	Additional Recommendations

	Storage of Model Data
	Storing Model Data
	What is a Controllable Element and a Controllable Unit?
	What Elements Can Be Controlled?
	Parent and Child Controlled Elements
	Directory Structure for Model Data
	File Names for Controlled Units
	Controlled Units are Saved when Building
	Unit Information Tab
	What Level of Granularity Should I Use?
	How Stable is the Architecture?
	How Many Users Will Be Working on This Model?
	How Many Users Modify Elements in the Same Package?
	How Large is Your Model?
	Implications of Changing Unit Granularity
	Code Generation Performance

	Sharing Controlled Units
	Overview of Import, Add, and Share
	Import a File
	Add a Controlled Unit
	Share a Controlled Package
	Summary of Import, Add, and Share

	Creating Sharable Controlled Units
	Sharing Model Properties with Controlled Units

	Working with Controlled Units
	Controlling a Subset of the Controllable Elements
	Controlling All of the Controllable Elements
	Changing the Granularity of Controlled Units

	Moving Controlled Units
	Moving Controlled Units Between Model Directories
	Moving Elements Between Controlled Units

	Synchronizing Models with the File System
	Export Controllable Elements from a Model to a File
	Services Library packages
	Import Controllable Elements from a File to a Model
	Add an Existing Controlled Unit to a Model
	Share an Existing Controlled Unit into a Model
	Shared package producer:
	Shared package consumer:

	Produce a Single Model File from a Model with Many Units
	Virtual Path Maps
	How Do Virtual Paths Work?
	Defining Virtual Paths
	Defining a New Path Map Using Another Path Map Symbol
	Implicitly Defined Pathmap Symbols
	Using Path Maps When Sharing Packages
	Using virtual paths in the value of a model property

	Source Control Fundamentals
	Fundamentals
	Source Control in Rational Rose RealTime
	Source Control Status
	What are Primary and Secondary Edits?
	Source Control Settings
	Accessing Source Control Operations

	Source Control Operations
	Refresh Status
	Synchronize
	Get
	Check Out
	Uncheckout
	Add
	Check In
	Submit All Changes
	Apply Label
	Show Differences
	Show History

	Types of Source Control Systems
	File Based Source Control Systems
	View Based Source Control Systems

	Source Control Development Concepts
	Development Activity
	Integration
	Lineup
	Working in Isolation

	Versioning Strategies
	Single Stream Versioning
	Parallel Stream Versioning

	Organizing a Model (Architect Activities)
	Overview
	Packages, Models, and Subsystems
	One Model versus Multiple Models
	Getting Started
	Mapping the Architecture to Subsystems
	Decomposing a Model into Subsystems
	Splitting a Model

	Checking Package Dependencies for Completeness
	Show Access Violations
	Determine the External Dependencies for a Package

	Check if a Subsystem is Self-contained
	Define Subsystem Interface
	Best Practices

	Scratch Pad Packages
	Remember
	Potential Problems

	Setup Subsystem Components
	Background
	Components in Subsystems

	Support for Unit Testing
	Use Property Sets for Build Settings
	Processors and Component Instances
	Project Level Processors
	Subsystem Level Processors
	Component Instances

	Preparing and Releasing Subsystems
	Splitting a Model into Subsystem Models
	Should You Split a Model Before Adding to Source Control?
	Splitting a Model Not in Source Control

	Splitting a Model Under Source Control

	Working with a Model Under Source Control (Developer Tasks)
	Setting up your Source Control Tool
	Configuring Work Areas
	Getting a Specific Lineup of a Model
	Opening a Model Under Source Control
	Adding a new Controlled Unit into Source Control
	Check Out Parent Package

	Checking Controlled Units In and Out of Source Control
	Checking Out Controlled Units
	Checking In Controlled Units
	Submitting All Changes to Source Control
	Undoing a Check Out

	Building and Running Locally
	Reusing Build Settings
	Probes and Inject Messages

	Unit Testing Within a Subsystem
	Best Practices

	Set Up Private Components
	Differencing and Merging Model Elements
	Synchronizing Models with Source Control
	Promoting Changes for Integration

	Building and Integrating (Integrator Tasks)
	Building Using Automated Scripts
	Windows
	UNIX

	Building within a Larger Build Procedure
	Reuse of Build Artifacts
	Integrating Changes
	Automating Model Validation

	Source Control Administration
	Set up a Source Control System and Repository
	Control Appropriate Model Elements as Units
	Create a Local Work Area
	Save Model to Local Work Area
	Configure the Workspace Source Control Options
	Add the Model to Source Control
	Make Default Workspace Available to Project Members
	Defining Developer Work Areas
	Creation of Labels and Lineups
	Manipulation of the Source Control Repository

	Source Control Tools
	Rational ClearCase
	General Recommendations
	Source Control Operation Behavior with ClearCase

	UCM Integration
	Activity Selection Combination Box
	Run Project Explorer
	Rebase
	Deliver

	Snapshot Views
	Check in
	Check out
	Get
	Update
	Hijacking a File
	Deliver
	Rebase
	Activities

	ClearCase Workstation Setup
	Command Line Access to the Source Control Tool
	Element Type Setup: Type Manager
	ClearCase Options

	ClearCase Repository Setup
	ClearCase Work Area Setup
	Microsoft Visual SourceSafe
	General Recommendations
	Source Control Operation Behavior with SourceSafe
	Label

	SourceSafe Workstation Setup
	Command Line Access to the Source Control Tool
	Set Project Mapping Option
	Let Visual SourceSafe Know Which Database to Use
	SourceSafe Repository Setup

	RCS and SCCS
	Repository Mapping Files (.rmf)
	Source Control Operation Behavior with SCCS
	RCS/SCCS Repository Setup
	RCS/SCCS Workstation Setup
	Command Line Access to the Source Control Tool
	Create an RMF File
	Set RMF Environment Variable

	RCS/SCCS Work Area Setup

	PVCS
	Source Control Operation Behavior with PVCS
	PVCS Workstation Setup
	Command Line Access to the Source Control Tool
	Let PVCS Know Which Database to Use

	PVCS Repository Setup
	Archive Suffixes
	Write Protect Workfiles
	One Lock Per Version/User
	Registering a New Configuration

	PVCS Work Area Setup

	Model Validation
	Introduction
	What is a Model Inconsistency?
	What is an Unresolved Reference?
	What do the Errors/Warnings Mean?
	Validating Names

	ClearCase Parallel Development: Sample Process
	Parallel Development Overview
	Making Design Changes in Parallel

	Using View Templates
	ClearCase Entities
	Views
	View Template
	Labels

	Initial Setup
	Create the Integrator View
	Create Project Labels
	Create Initial Lineup
	Creating the Developer View Template

	Automated Builds
	Create the Build View
	Label Build Files
	Perform Build
	When the Build Completes Successfully

	Developer Process
	Creating a Developer View
	Starting a Development Activity
	Working on a Development Activity
	Finishing a Development Activity

	Integration Process
	Integrating Intermediate Changes

	View Template Script Usage
	vtadmin
	vtsetview

	Customizing Source Control Interface Scripts
	Overview
	Customizing Scripts
	Input Parameters
	Output Expected
	Output Format
	Script Return Code
	Notes

	Script Parameters
	cm_getcaps
	cm_status
	cm_get
	cm_add
	cm_checkout
	cm_checkin
	cm_uncheckout
	cm_history
	cm_extract
	cm_label
	cm_diff
	cm_merge

	Index

