
Rational Software Corporation
C Reference

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00 

PART NUMBER: 800-026108-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX





Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026108-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States 
and/or other jurisdictions, as well as various international treaties.  Any reproduction 
or distribution of the Work is expressly prohibited without the prior written consent 
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer 
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite, 
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development 
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime, 
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS, 
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process 
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational 
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro, 
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio, 
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of 
Rational Software Corporation in the United States and/or in other countries. All 
other names are used for identification purposes only, and are trademarks or 
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International 
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S. 
Government are provided and licensed as commercial software, subject to the 
applicable license agreement. All such products provided to the U.S. Government 
pursuant to solicitations issued prior to December 1, 1995 are provided with 
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS, 
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used 
as stated in the underlying license agreement. Except as explicitly stated otherwise in 
such license agreement, and except to the extent prohibited or limited by law from 
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all 
other warranties, express or implied, with respect to the media and software product 
and its documentation, including without limitation, the warranties of 
merchantability, non-infringement, title or fitness for a particular purpose or arising 



from a course of dealing, usage or trade practice, and any warranty against 
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, 
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, 
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, 
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D, 
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace, 
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the 
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, 
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft 
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft 
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft 
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, 
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, 
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual 
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev, 
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot, 
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo, 
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered 
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, 
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and 
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems, 
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and 
utilities) into any product or application the primary purpose of which is software 
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, 
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by 
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is 
included in your Rational software installation.



Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Other Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Rational Rose RealTime Integrations With Other Rational Products . . . . . . .xx

Contacting Rational Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Overview of the C Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Workflows for Your Host Workstation and Embedded Target . . . . . . . . . . . . . 2

Using C Code in Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Model Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

C Services Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Code Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Modifying Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Compilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Linking the Model with the Services Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Model Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Target Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Using C Code in Your Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Adding C Code to a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Syntax of Code Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Choice Point Code Condition Segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Encapsulating Target-Specific Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Code Sync  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Making Changes Outside the Toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Identifying Designated Code Sync Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
De-activating Code Sync  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Contents v



3 Code Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Model to Code Correspondence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Capsules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Header File (.h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Implementation File (.c)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
‘this’ Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Capsule State Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Header File (.h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Implementation File (.c)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Properties Affecting How Classes are Generated. . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Valid Code Generation Associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

User-Defined Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
‘this’ Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Generalizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logical Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Standard Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Relationships and Elements Ignored by C Code Generation . . . . . . . . . . . . . . . 23

Code Generator Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Incremental Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The Effect of Controlled Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Generated Code Directory Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
build. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Code Generator Command Line Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Command Line Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Command Line Build Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Classes and Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
vi Contents



Introduction to Sending Data in Messages  . . . . . . . . . . . . . . . . . . . . . . . . . .32
Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Sending by Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Sending by Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Data Classes that are Marshallable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Basic Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C Data Type Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Sending/Receiving Data by Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Sending/Receiving Data by Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Creating a Class Data Member from the Class Diagram . . . . . . . . . . . . . . . . . . 38
Specifying Arrays Using Association Multiplicity  . . . . . . . . . . . . . . . . . . . . . . . . 39
Creating Array and Pointer Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Creating a Constant (#define)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Creating a typedef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Creating an Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Creating a Union  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Creating and Using Classes with No Pointer Attributes . . . . . . . . . . . . . . . . . . . 43
Creating and Using Classes with Attributes that are Pointers . . . . . . . . . . . . . . 44

Integrating an External Class (Not Defined in the Toolset)  . . . . . . . . . . . . . .45
Integration Option 1: Describing an External Type to Rational Rose RealTime. 46
Integration option 2: Providing Marshalling Functions . . . . . . . . . . . . . . . . . . . . 47

5 C Services Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C Services Library Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Message Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Processing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Single and Multi-Threaded Message Processing. . . . . . . . . . . . . . . . . . . . . . . . 51
Introduction to Threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Types of Concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Mapping Capsules to Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Single-Threaded Services Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Multi-Threaded Services Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C Services Library Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Capsules are Generated as Subclasses of RTCapsule . . . . . . . . . . . . . . . . . . . 55
Contents vii



Ports are Generated as Fields of a Capsule Structure . . . . . . . . . . . . . . . . . . . . 55
Every Capsule Instance has Access to its Controller . . . . . . . . . . . . . . . . . . . . . 56
Capsule Instances, Logical, and Physical Threads  . . . . . . . . . . . . . . . . . . . . . . 56
Capsule Instances Have Access to a RTMessage Object . . . . . . . . . . . . . . . . . 57

Log Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Implementation Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Communication Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Implementation Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Communication Service properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Order-Preserving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Minimal Overhead in Message Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Semantics of Usage of Message Priorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Support for Unwired Ports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Published Versus Unpublished Unwired Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Registration by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Registration String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Deferring and Recalling Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Timing Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Implementation Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Timer Thread Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Customizing the Timing Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Timing Precision and Accuracy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

RTController Error Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Accessing the Error Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Error Enumeration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
RTController_alreadyDeferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RTController_badClass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RTController_badId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RTController_badOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RTController_badMessage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
RTController_badSignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_badState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_badValue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
viii Contents



RTController_cannotRegTimer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_cannotSetTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_dereg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_internalError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
RTController_noConnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_noMem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_ok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_prio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_reg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_unauthorizedMemoryAllocation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RTController_unexpectedStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
RTController_unexpectedPrimitive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Port Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
External  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Running Models on Target Boards . . . . . . . . . . . . . . . . . . . . . . . . . 73
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Step 1: Verify Toolchain Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Step 2: Kernel Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Step 3: Verify main.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Step 4: Try Manual Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Step 5: Running with Observability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

7 Command Line Model Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Starting the Run-time System Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Differences Between Single-threaded and Multi-threaded Services Library 

Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Application-Specific Command Line Arguments  . . . . . . . . . . . . . . . . . . . . . . . . 80
Accessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Providing Arguments on Targets that do not Support Command Line Arguments. 

81

Run Time System Debugger Command Summary . . . . . . . . . . . . . . . . . . . .81
Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
taskId, capsuleId, portId. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Running a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Contents ix



Thread Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
attach <taskId> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
detach <taskId>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Informational Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
saps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
system <capsuleId> <depth> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
info  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
printstats <taskId>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Tracing Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
log <category> <detail-level>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Control Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
go [<n>]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
step [<n>]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
quit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
continue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

8 Inside the C Services Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Organization of the Services Library Source . . . . . . . . . . . . . . . . . . . . . . . . .89

Configuration Naming Convention  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Platform Name (or configuration)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Target Base Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Libset Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
codegen  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
include. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
config  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
lib  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
libset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Configuration Preprocessor Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
DEFAULT_DEBUG_PRIORITY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DEFAULT_MAIN_PRIORITY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DEFAULT_TIMER_PRIORITY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
INTERNAL_LAYER_SERVICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MAX_NUM_SPPS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
RTS_NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TIMING_SERVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
x Contents



TO_OVER_TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
USE_THREADS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LOG_MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MULTIPLE_PRIORITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
OBJECT_DECODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
OBJECT_ENCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
STDIO_ENABLED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
RTS_CLEANUP_MECHANISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
RTS_COMPATIBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
RTS_MEMORY_POLICY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
MESSAGE_DEFERRAL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
OTRTSDEBUG  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
PURIFY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
RTS_INLINE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
INLINE_CHAINS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
INLINE_METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
RTMESSAGE_PAYLOAD_SIZE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SEND_BY_VALUE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
OBSERVABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Creating the Minimum Services Library Configuration. . . . . . . . . . . . . . . . .100

Optimizing Designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Capsule Instances and Capsule Behavior . . . . . . . . . . . . . . . . . . . . . . . . . .102
Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
State Machines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Capsules Versus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Unnecessary Sends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Sending Typed Data by Value in Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Cross Thread Message Sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

General C Performance Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Additional Design Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Hardware Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Availability of External Library on Different Platforms  . . . . . . . . . . . . . . . . . . . 106

Toolchains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Contents xi



9 Configuring and Customizing the Services Library . . . . . . . . . . 107
Configuration and Customization Explained  . . . . . . . . . . . . . . . . . . . . . . . .107

Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Customization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Changing Pre-processor Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Before you Start  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Changing Build Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Before you Start  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Overriding or Adding Operations and Classes. . . . . . . . . . . . . . . . . . . . . . .111
Why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Building the Services Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Updating a Component to use a Different Services Library . . . . . . . . . . . . . . . 114

10 Model Properties Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Generalization and Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Expanded Property Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Environment Variables and Pathmap Symbols. . . . . . . . . . . . . . . . . . . . . . . . . 117

C Model Element Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
GenerateClass (Class, C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ClassKind (Class, C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ImplementationType (Class, C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ConstructFunctionName (Class, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
GlobalPrefix(Class, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
HeaderPreface (Class, C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
HeaderEnding (Class, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ImplementationPreface (Class, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ImplementationEnding (Class, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
AttributeKind (Attribute, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
InitializerKind (Attribute, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
xii Contents



InitializerKind (Role, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
InitialValue (Role, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
GenerateConstructFunction (Capsule, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
GlobalPrefix (Capsule, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HeaderPreface (Capsule, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HeaderEnding (Capsule, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ImplementationPreface (Capsule, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ImplementationEnding (Capsule, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
KindInHeader (Uses, C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
KindInImplementation (Uses, C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C TargetRTS Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
GenerateDescriptor (Class, C TargetRTS). . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Version (Class, C TargetRTS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
InitFunctionBody (Class, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
CopyFunctionBody (Class, C TargetRTS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DestroyFunctionBody (Class, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DecodeFunctionBody (Class, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . . . . . 125
EncodeFunctionBody (Class, C TargetRTS)  . . . . . . . . . . . . . . . . . . . . . . . . . . 126
GenerateDescriptor (Attribute, C TargetRTS)  . . . . . . . . . . . . . . . . . . . . . . . . . 126
TypeDescriptor (Attribute, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
NumElementsFunctionBody (Attribute, C TargetRTS) . . . . . . . . . . . . . . . . . . . 126
GenerateDescriptor (Role, C TargetRTS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
TypeDescriptor (Role, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
NumElementsFunctionBody (Role, C TargetRTS) . . . . . . . . . . . . . . . . . . . . . . 127

C Generation Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
OutputDirectory (Component, C Generation). . . . . . . . . . . . . . . . . . . . . . . . . . 128
CodeGenDirName (Component, C Generation)  . . . . . . . . . . . . . . . . . . . . . . . 128
ComponentUnitName (Component, C Generation) . . . . . . . . . . . . . . . . . . . . . 128
CommonPreface (Component, C Generation) . . . . . . . . . . . . . . . . . . . . . . . . . 128
CodeGenMakeType (Component, C Generation)  . . . . . . . . . . . . . . . . . . . . . . 129
CodeGenMakeCommand (Component, C Generation) . . . . . . . . . . . . . . . . . . 129
CodeGenMakeArguments (Component, C Generation)  . . . . . . . . . . . . . . . . . 130
CodeGenMakeInsert (Component, C Generation). . . . . . . . . . . . . . . . . . . . . . 130
CodeSyncEnabled (Component, C Generation)  . . . . . . . . . . . . . . . . . . . . . . . 130

C Compilation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
CompilationMakeType (Component, C Compilation) . . . . . . . . . . . . . . . . . . . . 131
CompilationMakeCommand (Component, C Compilation)  . . . . . . . . . . . . . . . 131
CompilationMakeArguments (Component, C Compilation) . . . . . . . . . . . . . . . 131
Contents xiii



CompilationMakeInsert (Component, C Compilation)  . . . . . . . . . . . . . . . . . . . 131
CompileCommand (Component, C Compilation) . . . . . . . . . . . . . . . . . . . . . . . 132
CompileArguments (Component, C Compilation)  . . . . . . . . . . . . . . . . . . . . . . 133
InclusionPaths (Component, C Compilation)  . . . . . . . . . . . . . . . . . . . . . . . . . . 133
TargetServicesLibrary (Component, C Compilation)  . . . . . . . . . . . . . . . . . . . . 133
TargetConfiguration (Component, C Compilation) . . . . . . . . . . . . . . . . . . . . . . 134

C Executable Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Capsule To Logical Thread Mapping (Capsule, C Executable)  . . . . . . . . . . . . 135
TopCapsule (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
PhysicalThreads (Component, C Executable)  . . . . . . . . . . . . . . . . . . . . . . . . . 136
ExecutableName (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . . 137
DefaultArguments (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . 137
LinkCommand (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
LinkArguments (Component, C Executable)  . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UserLibraries (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UserObjectFiles (Component, C Executable) . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C Library Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
LibraryName (Component, C Library)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
BuildLibraryCommand (Component, C Library) . . . . . . . . . . . . . . . . . . . . . . . . 139
BuildLibraryArguments (Component, C Library). . . . . . . . . . . . . . . . . . . . . . . . 140

C External Library Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
GenerateClassInclusions (Component, C External Library). . . . . . . . . . . . . . . 140
CodeGenDirName (Component, C External Library) . . . . . . . . . . . . . . . . . . . . 140
InclusionPaths (Component, C External Library) . . . . . . . . . . . . . . . . . . . . . . . 141
Libraries (Component, C External Library) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11 Services Library API Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Minimally Configured Services Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

RTCapsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
msg and RTCapsule_getMsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
rts and RTCapsule_context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
RTCapsule_getIndex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
RTCapsule_getName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
RTCapsule_getTypeName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
RTCapsule_getCurrentStateString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
xiv Contents



RTController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
RTController_getError  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
RTController_strError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
RTController_perror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
RTController_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
RTController_registerTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
RTController_overrideSyncMethods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
RTController_abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

RTLog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Log show primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

RTMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
RTMessage_getPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
RTMessage_getSignal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
RTMessage_copyData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
RTMessage_getSignalName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
RTMessage_getData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
RTMessage_getType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
RTMessage_getPortIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
RTMessage_getPort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
RTMessage_defer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

RTObject_class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
When Would You Use the Type Descriptor?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
RTType_<typename> structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

RTPeerController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
RTPeerController_timedWait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
RTPeerController_waitForEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

RTPort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
RTPort_getCardinality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
RTPort_purge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
RTPort_purgeAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
RTPort_recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
RTPort_recallAt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Contents xv



RTPort_recallAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
RTPort_recallAllAt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
RTPort_send. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
RTPort_sendAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
RTPort_enqueue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
RTPort_registerAs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
RTPort_deregister  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
RTPort_isBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
RTPort_getRegisteredName  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
RTPort_isRegistered  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
RTPort_informIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
RTPort_cancelTimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
RTPort_isTimerValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
RTPort_createInSignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
RTPort_createOutSignal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

RTPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

RTSoleController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
RTSoleController_waitForEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

RTSignal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

RTTimerId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

RTTimespec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
tv_sec and tv_nsec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
RTTimespec_clock_gettime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
RTTimespec_lessEqualTo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
RTTimespec_addTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
xvi Contents



Figures
Figure 1 Target Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2 Example Attribute Specification with ‘struct’ Keyword . . . . . . . . . . . . . . 17
Figure 3 Compilation Paradigm for Producing C Executable . . . . . . . . . . . . . . . . 25
Figure 4 Classes Composed of Predefined Types. . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 5 Single-Threaded Services Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 6 Multi-threaded Services Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figures xvii



xviii Figures



Preface
This manual provides an introduction to Rational Rose RealTime C. The C module 
joins the current C++ and Java modules to add the ability to design, generate, build, 
and debug applications in the C language. 

This manual is organized as follows:

■ Overview of the C Guide on page 1
■ Using C Code in Your Model on page 9
■ Code Generation on page 13
■ Classes and Data Types on page 31
■ C Services Library on page 49
■ Running Models on Target Boards on page 73
■ Command Line Model Debugger on page 79
■ Inside the C Services Library on page 89
■ Configuring and Customizing the Services Library on page 107
■ Model Properties Reference on page 115
■ Services Library API Reference on page 143

Audience

This guide is intended for all readers, including managers, project leaders, analysts, 
developers, and testers.

Other Resources

■ Online Help is available for Rational Rose RealTime. 

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the 
online manuals, click Rational Rose RealTime Documentation from the Start menu. 

■ To send feedback about documentation for Rational products, please send e-mail 
to techpubs@rational.com.
xix



■ For more information about Rational Software technical publications, see: 
http://www.rational.com/documentation. 

■ For more information on training opportunities, see the Rational University Web 
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing 
software with Rational Suite products, join the Rational Developer Network by 
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational 
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in 
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational 
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create 
baselines of Rose RT projects in UCM and 
create Rose RealTime projects from 
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational 
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose 
RealTime model with Purify installed on 
the system, developers can invoke the 
Purify executable using the Build > Run 
with Purify command.  While the model 
executes and when it completes, the 
integration displays a report in a Purify 
Tab in RoseRealTime. 

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose 
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro 
requirements and documents with Rose 
RealTime elements.

■ Addins, Tools, and Wizards Reference: 
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose 
RealTime

Rose RealTime–
SoDa

You can create reports that extract 
information from a Rose RealTime 
model.

■ Installation Guide: Rational Rose 
RealTime

■ Rational SoDA User’s Guide 

■ SoDA Help 
xx Preface

http://www.rational.com/documentation/
http://www.rational.com/university


Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact 
Rational Customer Support.

Note:  When you contact Rational Customer Support, please be prepared to supply the 
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you 
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously 
reported problem

When sending email concerning a previously-reported problem, please include in the 
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the 
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central, 
and South 
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com 

Europe, Middle 
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com 

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com 
Contacting Rational Customer Support xxi



xxii Preface



1Overview of the C Guide
Contents

This chapter is organized as follows:

■ Introduction on page 1
■ Workflows for Your Host Workstation and Embedded Target on page 2
■ Using C Code in Models on page 2
■ Model Properties on page 3
■ C Services Library on page 4
■ Code Generation on page 5
■ Compilation on page 5
■ Model Executables on page 6

Introduction

Use this guide to learn how to use the C Language add-in to build, compile, and 
debug C-based Rational Rose RealTime models, deploy the model executables to a 
target system, and optimize and configure your target to meet your project needs.

You can produce C source code, compile it, then build an executable from the 
information contained in a Rational Rose RealTime model. The code generated for 
each model element is a function of its specification, properties, and design 
properties.

To understand how the C language add-in works, you need to become familiar with 
the main parts of the language add-in:

■ Workflows for Your Host Workstation and Embedded Target on page 2
■ The ability to configure and minimize footprint.
■ Static structure with the ability to map fixed capsule instances to any logical 

thread.
■ The means of integrating a user-designed timing service.
■ The ability to configure memory policy (should memory be allocated after 

startup).
■ 8.3 file naming compliance.
■ Using C Code in Models on page 2
1



■ Model Properties on page 3
■ C Services Library on page 4
■ Code Generation on page 5
■ Compilation on page 5
■ Model Executables on page 6

In addition, there are a number of C example models that demonstrate features of the 
toolset, the model properties, and the C Services Library.

Note:  You can find example models in the Examples directory located in the root Rose 
RealTime installation directory.

Workflows for Your Host Workstation and Embedded Target

There is an expected sequence of work activities for taking a model from early 
prototyping to final production.

During the initial phases of model development, you may to run your models 
primarily on the host workstation in order to keep the modify-compile-debug cycle as 
short as possible. You can then take advantage of workstation-based debug tools, such 
as C source-level debuggers and C analysis tools (such as PurifyTM) which may not be 
available on your target platform. This is the final step, if you are using a 
workstation-based target.

The final step for projects using some form of RTOS-based embedded target platform 
is to compile the model for the target platform, and download and run it on the target. 
These tasks are explained in Running Models on Target Boards on page 73.

The workflow of Rational Rose RealTime is intended to provide as much up-front 
verification and debugging as possible in the tool-rich environment of the host 
workstation. This environment is typically provided by a combination of Rational 
Rose RealTime host-based tools and workstation-based C tools. This leaves a minimal 
amount of debugging to do on the target, where debugging is typically more difficult. 
The use of target observability to monitor and control models at the model level 
greatly enhances the ability to debug target applications.

Using C Code in Models

C is used as a detail-level coding language in Rational Rose RealTime. At a higher 
level of abstraction, the program is described both structurally and behaviorally as a 
graphical model using the Unified Modeling Language (UML). C code can be added 
to a variety of behavioral elements in a UML model. The abstract behavior of a 
capsule is described as a graphical state diagram, which shows the allowable 
2 Chapter 1 - Overview of the C Guide



sequence of events that the capsule can process. To carry out useful activity, detailed 
code must be added to the states, transitions, and operations in the model. There are 
no restrictions on the code that you enter into your model. You can also make use of 
external C classes (that is, classes defined outside of Rational Rose RealTime) and 
libraries in your model.

Rational Rose RealTime is designed to be the central interface point for developing C 
based models, and provides support for all activities in the development process, 
including requirements capture, high-level design, coding, versioning, loadbuilding, 
and testing. It does not replace your existing C tools, instead it depends on the 
existence of other tools to handle language-specific work - it coordinates and controls 
these activities in the context of your model. For example, the toolset does not include 
a C compiler or linker. Rational Rose RealTime requires that you already have a C 
compiler or linker installed and accessible in your environment prior to compiling a C 
model.

Model Properties

The notations supported in Rational Rose RealTime are more abstract than the C 
programming language. Model properties enable you to provide language-specific 
information that is not expressed in the notation, but is necessary for generating and 
building source code. When a model element is created, each model property is 
assigned a default value which can be modified.

To build source code, the code generator also generates makefiles which specify how 
to build the generated source code. Certain model properties affect how these 
makefiles are generated and their contents.

Controlling a particular aspect of code generation may require several model 
properties. For example, several model properties applying to components are used to 
control of the aspects of building and linking a model. See Model Properties Reference 
on page 115 for detailed reference to the model properties.

You can use model properties to:

■ Add an #include directive automatically to more than one file.
■ Add a global prefix to functions generated for a class.
■ Specify the kind of C data type generated for a class (for example, struct, union, 

enum, and typedef).
■ Suppress the generation of a class.
■ Add compilation flags, include paths, and other build related settings.
Model Properties 3



Not all model components for which code is generated require model properties. For 
example, there are no model properties for generalization relationships, yet the code 
generator adds the attributes from the parent into the child’s struct as fields, then 
adds #include directives; in such cases, information obtained from specifications is 
sufficient to control code generation.

C Services Library

The behavior of a model is specified using a combination of capsule state diagrams 
and operations defined on classes and capsules. The relationships in the model are 
specified with a combination of capsule structure and class diagrams. When a model 
is built, these abstractions are automatically converted to implementation. The 
Rational Rose RealTime Services Library provides a set of built-in services commonly 
required in real-time systems. These services include: 

■ state machine handling
■ message passing
■ timing
■ concurrency control
■ thread management
■ debugging facilities

The Rational Rose RealTime Services Library provides a standard set of services 
across all supported platforms, so that your model can be readily ported to different 
target platforms. 

In summary, the facilities provided by the RealTime Services Library are:

■ Support the implementation of concurrent communicating state machines, and 
message communication.

■ Thread management and concurrency control 
■ Timing 
■ Observation and debugging of a running model 

This document includes the following basic topics:

■ C Services Library on page 49
■ Running Models on Target Boards on page 73
4 Chapter 1 - Overview of the C Guide



This document includes the following advanced topics:

■ Organization of the Services Library Source on page 89
■ Configuration Preprocessor Definitions on page 92
■ Optimizing Designs on page 102
■ Configuring and Customizing the Services Library on page 107

Code Generation

This section discusses some aspects of how a model is converted to C code and 
compiled. This should clarify the output you will see in the Build Log window and 
help you browse the generated code.

For more information on code generation, see Model to Code Correspondence on page 13.

Modifying Generated Code

Rational Rose Real Time with Code Sync provides a means to modify certain 
identified sections of the generated code from outside the toolset. You can make 
changes to specific portions of the generated code using an external editor and use 
Code Sync to have these changes propagated back into the model. 

Note:  Do not make changes to the generated code outside of the identified sections as 
you may lose these changes. For more information, see Code Sync on page 10.

Compilation

The C Language Add-in will convert a model to C code but does not include the 
compiler which will build the generated source code. Before trying to build a 
generated model ensure that your compiler tools are correctly installed. For example, 
try building a simple C program from the command line, if that works then the C 
Language Add-in will be able to properly invoke the configured compiler and make 
utilities.
Code Generation 5



Linking the Model with the Services Library

Rational Rose RealTime models are created by linking the user-compiled model files 
and the pre-compiled C Services Library into a single executable file. All the versions 
of the pre-compiled Services Libraries are available for all supported hosts. The 
Services Library can be ported and built for new hosts as required.

Model Executables

Compiling a Rational Rose RealTime model results in a stand-alone executable. The 
generated executable is not connected to the Rational Rose RealTime session unless 
specified. If targeted for a workstation platform, the model can be run by typing the 
name of the generated executable on the command line. If targeted for a real-time 
operating system, the resulting executable must be downloaded to the target and 
executed using the tools particular to that target operating system.

For more information, see Running Models on Target Boards on page 73.

Target Observability

The graphical observation tools for Rational Rose RealTime let you use the toolset to 
execute, monitor and control a model running on the Services Library, even on a 
remote target platform. The Services Library is a high-performance implementation 
intended for use in a wide-range of real-time products. Figure 1 shows a graphical 
representation of Target Observability in Rational Rose RealTime.
6 Chapter 1 - Overview of the C Guide



Figure 1 Target Observability
Model Executables 7



8 Chapter 1 - Overview of the C Guide



2Using C Code in Your 
Model
Contents

This chapter is organized as follows:

■ Adding C Code to a Model on page 9
■ Syntax of Code Segments on page 9
■ Encapsulating Target-Specific Behavior on page 10
■ Code Sync on page 10

Adding C Code to a Model

You can use C in your Rational Rose RealTime model to:

■ Perform detailed actions that occur on transitions.
■ Perform detailed actions that occur on state entry or exit.
■ Code capsule operations that can then be invoked from any other code segment 

(the common name for the C code contained inside any one model element, such 
as a transition code segment); capsule functions can be used to capture common 
operations, which may be performed as part of several different transitions, state 
entry actions, and so forth, or to simplify the transition code.

■ Perform condition tests as part of choice points or event guard conditions.
■ Write operations on classes.

You can also define C classes and functions outside of your model, make use of them 
within your model, or make calls to other existing C libraries from your model. As 
long as the external C code is visible to the compiler and linker, you can use them in a 
model.

Syntax of Code Segments

C code is added to your model by adding code to the body portion of operations, 
transitions, and so on. For this reason, you do not have to add curly braces to the 
beginning and end of any action code segments. These are added automatically by the 
code generator.
9



Choice Point Code Condition Segment

The choice point segments are created as functions which return an int. Hence, the 
condition C code entered in a choice point must have a return statement that returns 
either false (0) or true (non-0). You can have any number of other C statements in the 
choice point segment as long as it returns an int.

Encapsulating Target-Specific Behavior

The Rational Rose RealTime workflow provides as much up-front verification and 
debugging as possible in the host workstation environment. This environment is 
typically provided by a combination of Rational Rose RealTime host-based tools and 
workstation-based C tools. This leaves a minimal amount of debugging to do on the 
target, where debugging is typically more difficult. To accomplish this, isolate any 
platform-specific behavior in a few well-encapsulated places.

You are restricted to compiling and testing on target if direct calls to native OS 
functions or target-specific libraries are spread throughout your model. By 
encapsulating target-specific calls to a few key parts, the rest of the model can readily 
be tested on the workstation.

Code Sync

Code Sync lets you make changes to code from outside the toolset within an IDE 
(Integrated Development Environment), or using a text editor of your choice, and 
then propagates changes back into the model. 

For more information, see Using Code Sync to Change Generated Code in the Toolset 
Guide.

Making Changes Outside the Toolset

To re-capture changes into the model, Code Sync must be enabled, and the changes 
must be made to designated Code Sync areas. 

Identifying Designated Code Sync Areas

Designated Code Sync areas are always delimited by the Code Sync identification 
tags. These areas may be modified from the generated code and captured into the 
model using the Code Sync feature. For more information, see Using Code Sync to 
Change Generated Code in the Toolset Guide.
10 Chapter 2 - Using C Code in Your Model



User modifiable code for C is identified as follows:

/* {{{USR */

<insert or modify code here>

/* }}}USR */

When a field is omitted or the default is used, the code generator may generate an 
optimized code pattern that does not provide the empty Code Sync areas or its 
identification tags. If you wish to use a Code Sync area for an area which has been 
optimized out, you must provide a non-default value for the field (such as a 
comment) within the model, then re-generate before modifying that Code Sync area.

De-activating Code Sync

Each component has Code Sync activated by default. To de-activate Code Sync, 
change the CodeSyncEnabled property of the Generation tab for the component(s).
Code Sync 11



12 Chapter 2 - Using C Code in Your Model



3Code Generation
Contents

This chapter discusses some relevant aspects of the Rose RealTime code generation 
interface to clarify the output that users will see in the compiler output and for 
browsing the generated code. Developers who need to start debugging their C 
designs through external debugging tools also need to understand the generated code 
structure.

This chapter is organized as follows:

■ Model to Code Correspondence on page 13
■ Code Generator Behavior on page 24

Model to Code Correspondence

From a modeling perspective, designing capsules, data classes, and their interactions 
is relatively independent from the programming language. However, with respect to 
code generation, certain generic parts of a model element’s specification are 
interpreted by the code generator and translated to C code, while other elements are 
ignored. This section outlines how the UML model is translated into C code.

The C generator uses the specifications and model properties of elements in the 
current model to produce C source code. Code is generated for a component which in 
turn references a set of elements from the Logical View. The location of the source 
files that are generated for elements referenced by (or assigned to) a component is 
determined by the name of the component, the location of your model file (.rtmdl), 
and the OutputDirectory (Component, C Generation) property.

Note:  If logical view elements have not been assigned to components, either directly 
or by means of a dependency to other elements that are, the code generator will not 
see those elements and they will never be generated. 
13



For specific information about code generated for a model element, see the following 
topics:

■ Capsules on page 14
■ Capsule State Diagrams on page 16
■ Classes on page 17
■ Attributes on page 18
■ Associations on page 18
■ Standard Operations on page 22
■ Generalizations on page 21
■ Dependencies on page 22
■ Protocols on page 23
■ Logical Packages on page 22
■ Standard Operations on page 22
■ Components on page 23
■ Relationships and Elements Ignored by C Code Generation on page 23

Capsules

Each capsule is generated in its own .h and .c file. The code generator converts a 
capsule’s structure and state diagrams into C code. 

Some of the code segments can be modified from the generated code and captured 
into the model using the Code Sync feature. For more information, see Using Code 
Sync to Change Generated Code in the Toolset Guide.

For each capsule the following files are generated by default:

■ Header File (.h) on page 14
■ Implementation File (.c) on page 15
■ ‘this’ Pointer on page 15

Header File (.h)

The following code is generated in a header file:

■ Inclusions, forward references, value of the HeaderPreface (Capsule, C) property.
■ Capsule definition with any attributes, and associations as fields of the generated 

struct.
■ Ports generated as attributes of the capsule struct.
■ Standard Operations prototypes prefixed with the value of the GlobalPrefix 

(Capsule, C)
■ Value of the HeaderEnding (Capsule, C) property.
14 Chapter 3 - Code Generation



Implementation File (.c)

The following can be found in an implementation file:

■ Inclusions, forward references, value of the ImplementationPreface (Capsule, C) 
property.

■ Implementation scope operation prototypes and implementations.
■ Operations implementation.
■ Transition code, choice point code.
■ State behavior implementation.
■ Value of the ImplementationEnding (Capsule, C) property.

‘this’ Pointer

All user code in the context of a capsule (for example, state transition detail code, 
instance operations, choice points, entry and exit code, and so on) has a reference to its 
own capsule instance data through a this pointer passed as an argument to each 
generated function. The this pointer points to an instance of a capsule on which the 
function is being called, effectively allowing access to its fields (for example, 
attributes, ports, and so on).

If the following capsule is defined:

From within any of the state machine detail code and functions, you can access the 
capsule instance data via the this pointer as follows:

/* 

Here we assume that this is transition

code. Via the ‘this’ pointer you can access

the capsule’s instance data.

*/

this->counter = 34;

this->connections++;
Model to Code Correspondence 15



/*

Here we are calling a capsule function

which requires access to the instance 

data as well.

*/

NewCapsule1_open_connection(this);

/*

Sending a message via the NewPort3 port, you

are required to access the port instance

via the ‘this’ pointer.

*/

RTPort_send(&this->NewPort3,

RTPort_createOutSignal(NewPort3, go),

RTPriority_General,

&this->counter,

&RTType_long );

Capsule State Diagrams

Capsule state diagrams are parsed by the code generator and are included in the 
generated code for the owning capsule. All C code added to a state diagram is added 
to operations defined on the capsule.

Note:  Protocol and Class State diagrams are ignored by the C generator.

Note:  You should never modify code directly in the generated source files. It may 
however be useful to understand that transitions are generated as operations when 
debugging code using source level debuggers.
16 Chapter 3 - Code Generation



Classes

Classes are emulated in C through structures. Depending on their defined scope, 
attributes and associations are generated as fields (instance scoped) in the structure, 
or global (class scoped) variables.

When creating attributes as a type of existing C classes (which are really structs) you 
are required to conform to C programming rules and prefix the class name with the 
class key (for example, union, struct, enum).

Figure 2 Example Attribute Specification with ‘struct’ Keyword

Each class has its own .h and .c files generated.

Header File (.h)

The following code is generated in the header file for classes by default:

■ Inclusions, forward references, value of the HeaderPreface (Class, C) property.
■ Declarations of global attributes and associations.
■ Attributes generated from class associations or explicitly defined as fields of the 

structure.
■ User-defined operations: these operations are generated with the prefix defined in 

GlobalPrefix(Class, C) property.
■ If GenerateDescriptor (Class, C TargetRTS) property is true, a declaration for a 

class type descriptor of type RTObject_class.
■ Value of the HeaderEnding (Class, C) property.
Model to Code Correspondence 17



Implementation File (.c)

The following can be found in an implementation file:

■ Inclusions, forward references, value of the ImplementationPreface (Class, C) 
property.

■ Operation bodies for Standard Operations.
■ If GenerateDescriptor (Class, C TargetRTS) property is set, default and 

user-defined descriptor functions bodies are generated.
■ If GenerateDescriptor (Class, C TargetRTS) property is set, the type descriptor 

structure is initialized.
■ Value of the ImplementationEnding (Class, C) property.

Properties Affecting How Classes are Generated

The following properties affect how classes are generated:

■ The GenerateClass (Class, C) property is used to turn off generation of a class.
■ The ClassKind (Class, C) property can be used to generate typedefs, enums, or 

unions instead of the default struct.
■ The GenerateDescriptor (Class, C TargetRTS) property controls the generation of 

the classes’ type descriptor.

Attributes

An attribute is represented in code as an attribute in the client class by default.

The following properties affect how attributes will be generated:

■ AttributeKind (Attribute, C): use this property to toggle between generating the 
attribute as a field of the struct or as a #define.

■ Scope: attributes can be scoped to the instance, or to the class. Class scoped 
attributes are generated as global variables, to avoid possible name clashes, the 
generated global variable is prefixed with the value of the GlobalPrefix(Class, C) 
property.

Associations

An association is a relationship between two or more elements. The ends of each 
association are called association ends. Ends may be labelled with an identifier that 
describes the role that an associate element plays in the association. An end has both 
18 Chapter 3 - Code Generation



generic and language-specific properties that affect the generated code which 
traverses to that end. For example, marking an end navigable means that traversal 
from the opposite role's class to this role's class is to be implemented. 

By default if an end is named, association, aggregation, and composition relationships 
are represented in code as a field in the generated structure for the client class. The 
code generation does not generate attributes for ends which are not named.

Valid Code Generation Associations

Only the following association relationships are considered by the C code generator:

■ Capsule to protocol (port)

For these associations the code generator generates a port on the capsule. 
Associations between capsules and protocols are only navigable from the capsule 
to the protocol. The port specification page controls the specific characteristics of 
the port: public, protected, wired, and so on.

■ Class to class (data member)

For these associations the code generator by default generates a data member 
(attribute) for navigable and named ends. Several factors affect the code that is 
actually generated: the scope property affects if a member or global data member 
is generated, the multiplicity affects whether an array of attributes should be 
created, the containment affects whether the attribute should be a reference 
(pointer) or an object.

Association end multiplicity is specified as x..z, only the upper bound is used.

■ Capsule to class (data member)

For these associations the code generator by default generates a data member 
(field) on the generated capsule structure. A class cannot navigate to a capsule. The 
same factors affecting class to class associations affect capsule to class.

■ Capsule to capsule (capsule role)

For these associations the code generator generates a capsule role on the client 
capsule. Associations between capsules are always unidirectional. The capsule role 
specification page controls the specific characteristics of the capsule role: fixed, 
cardinality, and so on.
Model to Code Correspondence 19



User-Defined Operations

When generating code for a class, a global function is generated for each operation 
that is listed in the class or capsule specification. The function is named based on the 
value of the GlobalPrefix(Class, C) property of its owning class.

For each such operation, the generator produces:

■ A function declaration in the header file for the class.

■ A function body in the implementation file containing the C code added to the 
code region. You should never modify generated code.

‘this’ Pointer

The C code generator creates a parameter which is a pointer to instance data for each 
generated instance operation in order to mimic the behavior of true object-oriented 
languages, where operations have access to the attributes of the class instance on 
which they were called. The parameter is always named this. Via the this pointer you 
can access the attributes defined on the instance passed to the function.

Given the class definition shown in the diagram below, the add() function would be 
declared and access the counter attribute as follows:

void ClassA_add(struct ClassA * const this)

{

this->counter++;

}

Note:  The ‘const’ modifier enforces that the user cannot change the value of this, only 
what it points to.
20 Chapter 3 - Code Generation



And to call the add() function from detail code, you would use the following syntax to 
pass the instance data to the function:

/*

Here we create and initialize a temporary

tclass variable, then call the add() function

passing a pointer to the instance data.

*/

struct ClassA tclass;

tclass.counter = 10;

ClassA_add(&tclass);

Generalizations

Inheritance is emulated in C through the flattening and re-use of classes and capsules. 
A subclass’ attributes and associations are inherited by regenerating each element in 
the subclass’ structure. The code generator ensures that the superclass’ fields are 
inherited in the same order as they are specified in the superclass. This means that a 
pointer to a subclass can be cast upwards to a superclass instance pointer.

Example

To demonstrate how you can call functions defined on a superclass, given ClassA and 
ClassB defined as follows:
Model to Code Correspondence 21



If the GlobalPrefix(Class, C) prefix property for each class is defined as ${name}_ 
then ClassB could call the add() or init() functions using the following syntax:

ClassA_add((Class A*)this);

Dependencies

When the code generator produces code for an element (the client) that uses another 
element (the supplier), the code generator produces either an include directive 
referencing the file that contains the supplier class or a forward reference to the 
supplier. 

You can configure the directive so that an include statement, forward reference, or 
nothing, is generated in the header file (.h) and in implementation file (.c) with the 
KindInHeader (Uses, C) and KindInImplementation (Uses, C) properties.

Logical Packages

No code is actually generated for logical packages. They provide a good way of 
assigning a set of elements to a component.

In the logical design of a system, related classes are grouped into packages. In a 
Rational Rose RealTime model you define the mapping from logical design to a 
physical design via components. You can explicitly assign a logical package to a 
component. This assignment is contained in the logical package’s specification. 
Assigning a package to a component is a shorthand method of assigning every 
element contained within the package to the component.

Standard Operations

When generating code for a class, the C generator will also generate a construct 
function which initializes the classes’ attributes with either the initial value or by 
calling the attribute’s construct function.

For capsules, the construct function is generated automatically. Use the 
GenerateConstructFunction (Capsule, C) property to configure the generation of the 
construct function for capsules.
22 Chapter 3 - Code Generation



Protocols

Each protocol is generated in its own .h and .c file.

Components

When generating a component, the code generator creates a set of makefiles which 
contain rules for generating and building all elements referenced by the component. 
In addition, a system wide .c and .h file may be created for certain types of 
components. These source files contain initialization, thread creation, and other 
classes and operations required by the C Services Library.

When the code generator produces code for elements referenced by a component, the 
resulting files are stored in a directory structure. The location and name of the root of 
this directory structure can be configured using the OutputDirectory (Component, C 
Generation) property.

By default, the directory is created in the same directory containing the mode file 
(.rtmdl) and the name is derived from the name of the corresponding component.

Relationships and Elements Ignored by C Code Generation

The following modeling elements are ignored by the C code generator:

■ Realizes relationship
■ Capsule roles specified as optional or plug-in
■ Package dependencies
■ State diagrams on protocols and classes
■ Collaboration diagrams
■ Sequence diagrams
■ Actors
■ Use-cases
■ Deployment diagrams
Model to Code Correspondence 23



For this release of the C code generator, the following aspects of a model are ignored 
by the code generator:

■ Attribute/operation visibility: all attributes and operations are generated with 
public visibility, and the code generator outputs a warning to this effect if private 
or protected visibility is set on any of these generated elements.

■ Polymorphic operations: a v-table mechanism for function pointers is not 
provided.

■ Multiple inheritance
■ Nested classes

Code Generator Behavior

Code generation produces source files and makefiles for the items referenced by the 
component. When the source files are compiled, object code files are produced. 
Finally in the link stage, the object files from the top level component and all the 
components contained by aggregation (the whole component hierarchy) are then 
linked together to form an executable. The source code, object files and executable are 
all build results. 

Note:  The source code generation, compilation, and linking is managed by the make 
utility, and is external from the Rational Rose RealTime toolset. These build makefiles 
are called from within Rational Rose RealTime to build a component.

Figure 3 shows the compilation paradigm for producing a working C executable.
24 Chapter 3 - Code Generation



Figure 3 Compilation Paradigm for Producing C Executable

Incremental Generation 

The code generation and compilation processes are driven by a third-party Make 
utility, whose behavior is dependent on makefile dependencies and file timestamps. 
Without makefile dependencies, incremental builds would produce incorrect builds. 
The code generator takes steps to reduce development churn and produce 
incremental builds quickly and reliably.

The code generator reduces incremental compilation time by preserving previously 
generated files that do not need to change. When you build a component that has 
been previously built (or even partially built), the code generator attempts to preserve 
the previously built results. If the generated C files (header files and implementation 
files) do not need changing, they are not updated. This improves compilation 
performance, since:

■ if an implementation file does not need to be updated, its corresponding object file 
does not need to be recompiled, and

■ if a header file does not need to be updated, all object files which depend on that 
header file do not need to be recompiled.
Code Generator Behavior 25



Consequently, the incremental generation behavior of the code generator greatly 
improves compilation performance.

The code generator also allows incremental code-generation by tracking its own 
dependencies for each invocation. Some Make utilities (such as ClearCase’s 
clearmake and omake) can automatically track dependencies of build scripts; for 
other Make utilities, the code generator tracks all of the controlled units (CUs) that 
were read during each invocation. All of these model elements become dependencies 
(in a makefile sense) of the files generated by each invocation of the code generator. 
This dependency information is then available for the next incremental build, and the 
Make utility will only invoke the code generator to re-examine, and if necessary 
regenerate, source code that depends on a CU that has changed.

The Effect of Controlled Units

Any single invocation of the code generator will generate:

■ a single specific classifier stored in its own controlled unit (CU), or
■ all classifiers that are referenced by the component in a specific package, except for 

classifiers that are stored in their own CU, or
■ all classifiers that are referenced by the component in the model, except for 

classifiers that are stored in their own CU or in a package CU.

Note:  If a model is saved into one .rtmdl file, every time you change anything in the 
model, every model element has to be re-examined during generation. To improve 
code generation performance it is recommended that you save your model as 
controlled units.

See Working with Controlled Units in the Team Development Guide for instructions on 
how to save models as controlled units.

Because the compiler reads generated source files not controlled units, and because 
the incremental generation behavior is independent of controlled units, the choice of 
controlled units does not affect compilation performance. The incremental behavior of 
the code generator is independent of the choice of controlled units.
26 Chapter 3 - Code Generation



Generated Code Directory Layout

The build output is contained in a separate directory from the model file(s). Each 
component in a model is built in its own directory structure. There is an option in the 
component specification dialog, that allows the user to specify a different directory for 
this purpose.

Note:  We recommend that each component has a different output path to avoid 
overwriting files for other components.

Inside the component directory is a directory tree that separates the model files, 
generated source files, and build results, including the executable.

After building a component whose name is “Component1” the default directory 
structure below the output directory would look like the following:

Component1\

src\
build\

src

This directory contains all C source files generated for the component. Depending on 
the value of the component C Generation property called CodeGenDirName, source 
files may either appear directly in src or in a sub-directory of src as specified by the 
CodeGenDirName property. The generated code consists primarily of C 
representations of the classes from the users model. The code segments that contain 
the C code entered in various portions of the model are included in the generated 
source, including the transition actions, choice points, state entry and exit actions, 
operations, and so on.

There is a header and source file generated for each model element referenced by the 
component. The files will have the same name as the elements from the model. In 
most cases, generated classes and other constructs will be named as defined in the 
model.

For each capsule, a struct is generated with the name:

<capsule name>_InstanceData

The best way to understand the generated source code is to build one of the example 
models, or tutorials, then browse the generated source code.
Code Generator Behavior 27



build

The build directory contains the result of the compilation. The object files as well as 
the linked executable are included in these results. By default the executable name 
will be the name of the top-level capsule for the component. You can change this by 
specifying a different name in the General tab of the Component Specification 
dialog.

Code Generator Command Line Arguments

There are two methods of passing command line parameters to the external code 
generator:

■ Adding the command line options to the ROSERT_RTGENOPTS environment 
variable.

■ Modifying the $RTS_HOME/codegen/rtgen.mk file by adding the command line 
parameters to the RTGEN macro. The macro defined in this file will be included 
by all generated makefiles and used to generate source and build files. For 
example, to add command line parameters simply add these to the macro 
definition:

RTGEN = rtcgen -crlf

This code will pass the -crlf command to the code generator.

Command Line Arguments

The rtcgen program accepts the following arguments:

-crlf

-forcewrite

-spacedeps bs | dq | fail | none

-version

There are other options for internal use only.
28 Chapter 3 - Code Generation



The descriptions for the arguments are:

■ The -crlf flag forces files to be written Windows style, with lines terminated with a 
carriage return and line feed. By default, files are written with Unix style end of 
lines conventions.

■ The -forcewrite flag disables the code-generator's incremental file output and is 
useful for producing incremental load-builds. It is typically only used within the 
environment variable ROSERT_RTGENOPTS, when integrating a new set of 
changes on top of a previously built load-build.

■ The -spacedeps flag tells the code generator how to write code generation 
dependencies for file-paths that contain spaces, such that the Code Generation 
Make Type can read it. This would typically be overridden by users of a generic 
Unix Make utility who have experimented with space-handling in their Make 
variant. For the Compilation Make Type, there is a corresponding option to the 
rtcomp.pl script (except that "-spacedeps none" is replaced by "-nodeps").

bs: precede space with backslash (for Gnu_make).

dq: surround filename with double-quotes (for MS_nmake).

fail: cause a fatal error (for Unix_make).

none: no escape sequence (intended for ClearCase_omake and 
ClearCase_clearmake whose dep files need not be Clearmake-readable).

■ The -version flag prints the version identifier of the code-generator to STDOUT.

Command Line Build Interface

Rational Rose RealTime uses an external build engine for code generation, 
compilation, and linking. To mimic the toolset's build mode, you can run the build 
from the command line. This is useful if the build host is different from the toolset 
host. Before generating and building an existing model, it is important that the model 
be validated by the toolset. If a model is valid (for example, there are no unresolved 
references), you can then generate and build a component from the command line.

To perform outside the toolset:

1 Create the makefiles.

2 Generate the source code.

3 Build the generated source files.

Refer to the Guide to Team Development for extensive syntax examples on how to 
build a model from outside the toolset.
Code Generator Behavior 29



30 Chapter 3 - Code Generation



4Classes and Data Types
Contents

This chapter is organized as follows:

■ Overview on page 31
■ Terminology on page 31
■ Introduction to Sending Data in Messages on page 32
■ C Data Type Examples on page 35
■ Integrating an External Class (Not Defined in the Toolset) on page 45

Overview

In most models, capsules require the use of lower-level data types (or classes) to create 
and maintain internal data structures and variables, to send and receive data values in 
messages, and to interact with legacy code or third-party code libraries. With Rational 
Rose RealTime, you can use any C data types within your model, whether they are 
defined within the toolset or not, as long as the type is visible to the compiler.

Terminology

We use the term class for the generic concept of a named definition that encompasses 
a notion of storage of values, and of operations which may be performed on those 
values. In C data is implemented as a struct, and the methods are implemented as 
global functions with a pointer to the struct as the first parameter. We use the term 
instance rather than object.

Although the toolset can generate classes and type descriptors, you must ensure that 
you create classes that are well formed. For example, your classes should not leak 
memory, and they should have appropriate initialize, cheapened destroy methods 
defined.

This section provides a practical overview of how to use data classes within Rational 
Rose RealTime.
31



Introduction to Sending Data in Messages

To implement the behavior of a system, capsules send messages to either request a 
service or provide a service to other interconnected capsules. The messages that are 
sent between capsules contain a required signal name, a priority, and optional 
application data. The required signal name identifies the message and the priority 
indicates the relative importance of a message compared to other unprocessed 
messages on the same threa. If there is application data to send, it can be sent either by 
value or by reference.

Similar to operations, which do not always require parameters, messages do not 
always have to be sent with application data. When operations require parameters the 
decision must be made whether to pass the parameters by value or by reference, the 
same applies when sending application data in messages.

Protocols

The protocol definition is where you specify the type of data to be sent with a specific 
signal. To send data by value, specify the data type in the data class field of the signal. 
To send data by reference, leave the data class field empty.

Sending by Value

An alternative to sending data by reference is to send it by value. This means that a 
deep copy of the data is sent instead of a pointer to the data. This option is less 
efficient but simplifies concurrency issues.

To send data by value, the C Services Library must know how to initialize, copy and 
destroy instances that are sent. This is where type descriptors come in (see 
RTObject_class for more details). Type descriptors describe the class to the Services 
Library to allow it to manipulate the instances that it sends.

See Sending/Receiving Data by Value for an example of the Send syntax.

Sending by Reference

Sending data by reference is primarily used for efficiency; instead of copying a block 
of memory, a pointer to the memory is passed.

The rules for sending pointers in messages are: 

■ Do not send pointers across thread boundaries without considering concurrency 
access issues. 

■ Do not send pointers across process or processor boundaries unless you have 
shared memory. You must also consider concurrency issues. 
32 Chapter 4 - Classes and Data Types



■ Do not send pointers to stack objects to other capsules because the stack object gets 
deleted when the transition code segment completes. Since sends are 
asynchronous, when the receiving capsule instance dereferences the pointer, the 
data it is pointing to has been deleted. 

See Sending/Receiving Data by Reference for an example of the send syntax.

Considerations

When using data in Rational Rose RealTime, as in any other program that you will 
write, you must provide well-formed classes. Memory that is allocated on the heap 
should be deleted at the proper time, and initialize, copy and destroy methods should 
work as intended.

 

Classes can be created that have any combination of the following:

■ Sendable by value - The class can safely be sent between capsules using the init, 
copy and destroy semantics for the class.

■ Marshallable - The class can be safely encoded and output via the observability 
feature to the Rose RealTime Toolset (when tracing a message or inspecting an 
attribute), or via the log service to a console. And/or it can be safely decoded when 
received from the toolset (when injecting a message or modifying an attribute).

Note:  Any piece of data is sendable by reference as it is a pointer value that is being 
transferred. No data initialization, copying, destruction, encoding or decoding takes 
place.

Data class rule #1

Simple data types that do not contain pointers (any indirect attributes) are by default 
sendable by value and marshallable.
Introduction to Sending Data in Messages 33



Data class rule #2

Data types which contain pointers can be made sendable by value and marshallable. 
Add details to your class to make it well formed by creating or modifying, when 
needed, the following functions:

Data Classes that are Marshallable

Data classes can be made marshallable which means that the instance can be encoded 
and decoded into a string of bytes. This functionality allows the toolset to display the 
contents of instances at run-time.

When you are debugging a running model and request an attribute or data within a 
message to be displayed in the toolset (similar to the watch facility available in most 
source debuggers), the toolset sends a request to the running model. The Services 
Library then calls the encode function (defined within the type descriptor) on the class 
instance. The result of the encode function is passed as is to the toolset and shown in 
either a Watch window or a message Trace.

Basic Structures

Simple data classes - see Introduction to Sending Data in Messages - are by default 
encoded using an ASCII encoder meaning that they are marshallable. For data classes 
which contain attributes of types which are not known by the toolset, these functions 
must be written by the user. They are not automatically generated by the toolset.

Data type constructor A construct method will be automatically generated, and 
populated with each attribute’s entry from the ‘Initial value’ 
field.

Type descriptor 
functions (defined for 
each class under the C 
TargetRTS tab)

These functions define how a class is initialized, copied, 
destroyed, decoded and encoded. By default the functions 
RTstruct_init, RTstruct_copy, RTstruct_destroy, 
RTstruct_decode, and RTstruct_encode are called. 
Generally you won't have to modify these type descriptor 
functions.

NumElementsFunction 
(defined for each 
attribute under the C 
TargetRTS tab)

This is a function which determines (at run-time) the size 
of an indirect field (the number of things a pointer 
references), which if left unspecified, will be set to 1. This is 
used by the encode/decode functions.
34 Chapter 4 - Classes and Data Types



This kind of flexibility allows for almost every kind of class or data type to be used 
within Rational Rose RealTime.

C Data Type Examples

This section contains examples which demonstrate the different methods of creating 
and using data types within Rational Rose RealTime.

Syntax examples of sending data classes between capsule instances

■ Sending/Receiving Data by Reference

■ Sending/Receiving Data by Value

Class modeling examples

■ Creating a Class Data Member from the Class Diagram

■ Specifying Arrays Using Association Multiplicity

Creating and using common C constructs

■ Creating Array and Pointer Attributes

■ Creating a Constant (#define) or a #define

■ Creating a typedef

■ Creating an Enumeration

■ Creating a Union

Class Creation Examples

Before starting the examples, please make sure you are familiar with the 
considerations described in Introduction to Sending Data in Messages.

■ Creating and Using Classes with No Pointer Attributes

■ Creating and Using Classes with Attributes that are Pointers

■ Integrating an External Class (Not Defined in the Toolset)
C Data Type Examples 35



Sending/Receiving Data by Value

An alternative to sending data by reference, is to send it by value. A copy of the data 
instead of a pointer is sent to the data. This is the preferred method of sending data 
between capsules. Although this option is sometimes less efficient it does simplify 
concurrency issues.

Note:  The fact that a data type is sent by deep or shallow copy depends on the init, 
copy and destroy methods defined on the data class.

The examples below demonstrate how to send and receive data by value. We assume 
that the detail code is part of transitions on both the sender and receiver capsules.

Sender
int result;

SomeClass sendData;

SomeClass_construct( &sendData, "hello" );

/* Given a port called ‘port’ based on a protocol with a

** signal ‘start’ with data class ‘SomeClass’. */

result = RTPort_send( &this->port,

RTPort_createOutSignal( port, start ),

    RTPriority_General,

    &sendData,

    &RTType_SomeClass );

/* If ‘result’ is > 0, send was successful. */

Receiver
int result;

SomeClass recData;

result = RTMessage_copyData( this->std.msg,

    &recData,

    sizeof( recData ) );

/* If ‘result’ is > 0, copyData was successful. */
36 Chapter 4 - Classes and Data Types



Sending/Receiving Data by Reference

Users should be aware of the issues around sending data by reference. (See 
Introduction to Sending Data in Messages.) Nevertheless, for performance reasons, it 
is sometimes an effective way of sending data.

The examples below demonstrate how to send and receive data by reference. It is 
assumed that the detail code is part of transitions on both the sender and receiver 
capsules. 

Note:  The most important thing to remember is to never pass a pointer to an object 
allocated on the stack (local variable). You will also have to coordinate who is 
responsible for freeing the allocated memory. In the following example, the receiver 
will free the allocated memory.

Sender
SomeClass * pSendData = create_SomeClass();

/* Initialize with default values */

SomeClass_construct( pSendData );

/* Given a port called ‘port’ based on a protocol with a

** signal ‘stop’ with data class left empty. */

result = RTPort_send( &this->port,

RTPort_createOutSignal( port, stop ),

    RTPriority_General,

    pSsendData, (const RTObject_class *)0 );

/* If ‘result’ is > 0, send was successful. */

Receiver
const SomeClass * pRecData =

(const SomeClass *)RTMessage_getData( this->std.msg );

/* Free memory when finished with the data */

delete_SomeClass( pRecData );

Note:  Subtle bugs are possible if the receiver actually writes to the data at the end of 
the received pointer. This is why the const type modifier is used.
C Data Type Examples 37



Creating a Class Data Member from the Class Diagram

Given an association between two classes or between a capsule and a class, a data 
member is created in the generated source code for the classes participating in the 
relationship.

The above relationships results in the creation of a data member named end2 in 
NewClass1, as well as another named end1 in NewClass2, and one named end3 in 
NewCapsule1. The properties for the end (association end) control how the code is 
generated for the data member; the end affects the class at the other end of the 
association. For example, assume that end1 and end2 are contained by reference. The 
following code represents a simplified version of the code that would be generated:

struct NewClass1

{

    /* {{{RME classItem 'NewClass2' associationEnd 'end2' */

    struct NewClass2 * end2;

    /* }}}RME */

};

struct NewClass2

{

    /* {{{RME classItem 'NewClass1' associationEnd 'end1' */

    struct NewClass1 * end1;

    /* }}}RME */

};

You can specify the containment, visibility, and other attribute features to control how 
attributes are generated. These are found in the Association Specification dialog.
38 Chapter 4 - Classes and Data Types



A data member is not generated if...

■ the association end name is not specified

■ the Derived option is checked

■ the end is not navigable

■ both ends are defined as aggregate

Specifying Arrays Using Association Multiplicity

The association end multiplicity specifies the number of instances of this end that will 
appear in the related class. The data member that is created is an array with its size 
being the largest possible value in the multiplicity range specified. If the multiplicity 
is unspecified (for example, 1..*) the association is forced to be by reference.

For example, assume end1 is contained by value and end2 is contained by reference. 
The following code will be generated for the association:

struct NewClass1

{

    /* {{{RME classItem 'NewClass2' associationEnd 'end2' */

    struct NewClass2 end2[10];

    /* }}}RME */

};

struct _NewClass2

{

    /* {{{RME classItem 'NewClass1' associationEnd 'end1' */

    struct NewClass1 * end1;

    /* }}}RME */

};
C Data Type Examples 39



Creating Array and Pointer Attributes

Attributes can be created as arrays or as pointers. 

Tasks

Create an attribute and set its type to any valid C type. If it is an array, then specify the 
array size within brackets after the type. If it is a pointer then add a star after the type. 

Creating a Constant (#define)

C constants are implemented as #defines and are scoped globally. 

Note:  Symbolic capsule role and port multiplicity values must be defined using 
constants created within the toolset.

Examples

The following source code fragment shows an example of a global constant.

#define num_retries 4

Tasks

To create a global constant:

1 Create an attribute that will be the constant, so name it appropriately.

2 In the C properties tab, change the AttributeKind field to constant. 

3 In the Detail tab, set the Initial value for the constant. The type field is ignored, 
since it’s implemented as a #define, so it can be left blank. 

4 Add a dependency between the class where the constant(s) are defined and the 
capsules or classes which use the constant. If the constant is global, ensure that the 
dependency C properties are: KindInHeader = inclusion, and 
KindInImplementation = none.

Note:  This mechanism can not be used to create parametrized macros with names 
containing ‘(‘ and ‘)’. We also advise against creating complex macro expressions 
using this method. If either of these mechanisms are required, create the macro in the 
class C tab for the HeaderPreface property instead.
40 Chapter 4 - Classes and Data Types



Usage

You can use constants to specify the cardinality of replicated capsule roles, ports, and 
bindings by adding the fully qualified name (for example, 
Package1::ClassX::Constant) of the constant to the Cardinality field in the Capsule 
Role Specification dialog.

Constant values must be specified using the class name of the class in which they 
have been created because Rational Rose RealTime must resolve and verify 
cardinalities before generating the source code. In the generated source code, the 
actual value of the constant is used and not the expression class::constant.

Note:  You can specify any valid C expression in the Initial Value field for the 
constant/define. However, if the constant specifies a cardinality, the constant’s initial 
value must be a literal integer (for example, 2, 50, 100). If the cardinality cannot be 
understood by the toolset at generation time, a warning is issued and a default value 
of 0 is used.

If the constants are used in detail level code, attribute array sizes, or other common C 
usages, ensure that there is a dependency added between the class containing the 
constants and the elements which reference the constants. Apart from specifying 
cardinalities, constants can be used as in any C program.
C Data Type Examples 41



Creating a typedef

Example

typedef unsigned int u_int; 

The above source code fragment shows an example C typedef. The name of the 
typedef and the type used are examples only, you can create a typedef of any name 
and type.

Tasks

1 Create a class with the name of the typedef. 

2 In the class C Properties tab, change the ClassKind property to typedef and add 
the desired type to the ImplementationType field. 

Note:  Add a dependency between the typedef class element and the capsules or 
classes which use the type as attribute types or in detail level code.

Usage

You can create attributes of this type by setting the Type of the attribute to this new 
typedef (the typedef appears in the type drop-down list for attributes).

Creating an Enumeration

Example generated code

enum e { a = 1, b }; 

Tasks

1 Create a class named e. 

2 In the General tab of the Class Specification dialog, set the stereotype of the class 
to enumeration. 

3 Create an attribute named a in the class. 

4 In the detail properties sheet of this new attribute, change the Initial value field to 
1. 

5 Create an attribute named b in the class. 
42 Chapter 4 - Classes and Data Types



Creating a Union

You can create a C union instead of a struct or typedef.

Example

union NewClass3

{

int theInt;

float theFloat;

unsigned long int theUnsignedLongInt;

};

Tasks

1 Create a class. 

2 In the class C Properties tab, change the ClassKind property to union. 

3 Fill in the attributes. 

Creating and Using Classes with No Pointer Attributes

These classes are:

■ Sendable by value 

■ Marshallable (can be observed and injected)

Classes without pointers have the above properties if all of its attributes are of types 
which do not have pointers or are also well-formed data classes.

Figure 4 Classes Composed of Predefined Types
C Data Type Examples 43



Usage

In Figure 4, the classes ConnectParams and Nodes are composed of predefined types 
(the Services Library knows how to init, copy, destroy, encode, and decode because of 
generated type descriptors). The type descriptor generated by the toolset is called 
RTType_<class name> and can be referenced directly in detail level code where an 
RTObject_class is required by a Services Library operation.

Example

int result;

ConnectParams conn_p;

ConnectParams_construct( &conn_p, <arguments> );

/* Here the class is sent by value to another capsule instance

** Given a port called ‘port’ based on a protocol with a

** signal ‘connect’ with data class ‘ConnectParams’.

*/

result = RTPort_send( &this->port,

RTPort_createOutSignal( port, connect),

    RTPriority_General,

    &conn_p,

    &RTType_ConnectParams );

/* The encode function is called when the log service is used */
RTLog_show_data( &conn_p, &RTType_ConnectParams );

Creating and Using Classes with Attributes that are Pointers

If you provide a CopyFunctionBody and a DestroyFunctionBody (Class, C 
TargetRTS), the class can be sendable by value.

If you also provide the NumElementsFunctionBody (Attribute, C TargetRTS), the 
class can be marshallable (can be observed, inspected and injected).

If you do not provide any of these operations, the class should never be sent by value. 
That would cause incorrect behavior, and possibly a system crash.

Note:  If a class has attributes which are pointers, ensure that the memory is managed 
properly by the class. Rational Rose RealTime does not create a destroy function to 
delete allocated memory; you will have to write your own destructor/constructor.
44 Chapter 4 - Classes and Data Types



When attributes are pointers, there is an additional step required to make them 
sendable and marshallable because pointers can point to anything, and the Services 
Library cannot predict how many things the pointer references. You will have to help 
the Services Library determine how many things the pointer is pointing to.

Integrating an External Class (Not Defined in the Toolset)

If you have classes defined outside of the toolset, either in third-party libraries or in 
code that will be reused for a new project, these externally defined classes can be 
integrated with Rational Rose RealTime and used for class modeling. The are also 
available in the drop-down type lists, or can be used within detail level code.

Note:  Any class or type defined outside the toolset can be used in your model, and 
depending on how the class or type is used in your model, there are a couple of ways 
that the class or type will have to be integrated with Rational Rose RealTime.

Integration Questions

Before integrating classes into Rational Rose RealTime, determine how the class or 
data type will be used within the model using the following case criteria:

1 Will objects of this type only be used to store information within a single capsule 
instance, or only sent by reference never to be observed, injected, or sent between 
processes? 

2 Will objects of this type need to be sent by value between capsule instances? 

3 Will objects of this type need to be observed during debugging, or 
encoded/decoded because they are injected or inspected/modified? 

Integration for Case #1

In the first case, the only step required for using this class in your model is to make the 
external class definitions visible to the compiler by adding the include files to the 
HeaderPreface field in the class properties or to the component compiler inclusions 
page.

After the definition is visible to the compiler, you can use the class or type within any 
detail level code.
Integrating an External Class (Not Defined in the Toolset) 45



Integration for Cases #2 and #3

If you answered yes to questions 2 and 3, then a type descriptor will have to be 
created for the external types in order to describe the types to the Services Library.

There are essentially two possibilities for handling an externally defined class or data 
type: either you create a class within Rational Rose RealTime with the same attributes 
as the external class and let Rational Rose RealTime generate the type descriptor, or 
you add the code yourself to describe how to init, copy, destroy, encode, and decode 
an instance of this type.

An external class can be made sendable by value without being observable and vice 
versa.

■ Integration Option 1: Describing an External Type to Rational Rose RealTime
■ Integration option 2: Providing Marshalling Functions

Integration Option 1: Describing an External Type to Rational Rose 
RealTime

If the class is described to Rational Rose RealTime it can be made marshallable (can be 
observed, inspected and injected). 

If your external class has well defined init, copy and destroy methods, then the class 
can be (the default type descriptor will use the operations already defined on the 
class) sendable by value.

Example: External Definition

The following class is defined in a header file outside of the toolset.

/* This is an example definition of a class in a user-defined

** external library */
struct Ext_Simple
{

int a;
char b[80];
float c[8];

};

Tasks

A class is sendable by value and observable if all its attributes are also sendable by 
value and observable. In the example above, all Ext_Simple attributes are types which 
are sendable by value and observable. In this example, the toolset can generate a 
complete type descriptor for this class. After the class is integrated within Rational 
Rose RealTime, it can be used to create other more complex classes.
46 Chapter 4 - Classes and Data Types



To describe an external type:

1 Create a class with the same name as the external class.

2 In the class C tab, ensure that the GenerateClass option is not selected. 

Because the class is already defined outside the toolset, you will not want another 
class to be generated, you are merely describing the type to Rose RealTime.

3 In the class C tab, make the header file which contains the actual class definition 
visible to this class by adding an #include statement to include the definition of 
the external class or type to the HeaderPreface property.

4 In the class C TargetRTS tab, set the GenerateDescriptor property to True.

The next step will allow the C code generator to create marshalling functions for 
the external class. This is only required to encode/decode the class. 

5 Add all the attributes that are defined in the external class to the class you created 
in Rational Rose RealTime. The attributes must have the same names but do not 
have to be declared in the same order as in the external class.

Note:  If the external class contains pointers you will also have to follow the steps in 
creating attributes as arrays and pointers to correctly define the attribute and ensure 
that the external class has a well formed (no memory leaks) init and destruct methods.

Integration option 2: Providing Marshalling Functions

Instead of having to redefine all the attributes defined in an external class to allow an 
external data type to be marshalled (as described in the integration option 1), a data 
type can be integrated for marshalling with Rational Rose RealTime if it already 
contains operations to encode and decode to and from a string of bytes.

To integrate classes in this manner, you must understand the usage of the two 
functions defined in the class C TargetRTS tab: DecodeFunctionBody (Class, C 
TargetRTS) and EncodeFunctionBody (Class, C TargetRTS).

When writing type descriptor functions, you will have access to a pointer to an 
instance of the class (target), and in some cases both a target and a source object 
instance (the source can not be modified in this case). To demonstrate how these can 
be used see the Integrating data example model.

Note:  Ensure that the external class has well defined init, copy and destruct methods, 
and call these from within the InitFunctionBody, CopyFunctionBody and 
DestroyFunctionBody properties, respectively.
Integrating an External Class (Not Defined in the Toolset) 47



Tasks

1 Create a class with the same name as the external class. 

2 In the class C tab, set the GenerateClass to false. 

3 Make the header file which contains the actual class definition visible to this class 
by adding #include <An_External.h> to the HeaderPreface property. 

4 In the class C TargetRTS tab, set the GenerateDescriptor property to True. 

5 In the class C TargetRTS tab, edit the EncodeFunctionBody (Class, C TargetRTS) 
property. Add code to encode the data class. For additional information, see 
EncodeFunctionBody (Class, C TargetRTS) for an example.

6 In the class C TargetRTS tab, edit the DecodeFunctionBody (Class, C TargetRTS) 
property. Add code to decode the data class. For additional information, see 
DecodeFunctionBody (Class, C TargetRTS) for an example.

Because the GenerateClass property was set to false, only a type descriptor will be 
generated for this new type. Moreover, it is important that the class definition in the 
external header file is visible to the compiler.
48 Chapter 4 - Classes and Data Types



5C Services Library
Contents

The Rational Rose RealTime Services Library provides a set of built-in services 
commonly required in real-time systems. These services include: state machine 
handling, message passing, timing, concurrency control, thread management, and 
debugging facilities. The Rational Rose RealTime Services Library provides a 
standard set of services across all referenced configurations, so that your model can be 
readily ported to different target configurations.

This chapter is organized as follows:

■ C Services Library Framework on page 49
■ Message Processing on page 50
■ Log Service on page 57
■ Communication Services on page 58
■ Timing Service on page 62
■ RTController Error Codes on page 66
■ Port Services on page 71

C Services Library Framework

Taken together the classes and data types defined in the C Services Library provide an 
application framework - the framework in which your application will run.

At a very general level, the framework defines the skeleton of a real-time application: 
messaging, timing, concurrency, event based processing, platform independence. 
Your job as a Rational Rose RealTime developer is to fill in the rest of the skeleton - the 
classes, capsules, and protocols which are specific to your system.

The Big Advantage

Now you can understand the power of code generation. With Rational Rose RealTime, 
you will develop your application in a high level language using State diagrams and 
Structure diagrams, and automatically these elements are converted to C and placed 
in a framework which already provides critical real-time system services.
49



Before you start developing the key to using the services provided by the framework, 
is to understand how your application will integrate into the C Services Library 
skeleton. The framework provides 3 main services to our application:

■ Communication Services is the basic mechanism for using message-based 
communication via ports.

■ Timing Service provides general purpose timing facilities. It also provides an 
interface for implementing custom timer capsules.

■ Log Service is a general purpose logging service.

Services are explained by introducing the general concepts related to the service 
followed by the functions that are used to implement the service. You should become 
familiar with the C syntax and notational conventions used in these sections as well as 
the Services Library API Reference on page 143.

Message Processing

An event is a message arriving on a capsule's port. Message-based communication is 
the basic mechanism for communication between capsules. Only aynchronous 
communication between capsules is supported in the C Services Library. Messages are 
also used by the Services Library to communicate with the capsules in the model. 

A message has three attributes: 

■ A signal that conveys the application-specific meaning of the message. 

■ A priority that indicates the urgency of the message. The priority of a message is 
determined by the sender. 

■ An optional data attribute, which contains additional information. This attribute 
can consist of an arbitrarily complex composite data object. 

Processing Overview

The Services Library does not preempt capsule processing. The heart of the Services 
Library is a controller object that dispatches messages to capsules. Its basic mode of 
operation is to take the next message from the outstanding message queue and deliver 
it to the destination capsule for processing. When it delivers the message, it invokes 
the destination capsule's state machine to process the message.

Control is not returned to the Services Library until the capsule's transition has 
completed processing the message. Each capsule processes only one message at a 
time. It processes the current message to the completion of the transition chain (for 
example, guard, exit, transition, Choice Point, exit, and entry) and then returns control 
50 Chapter 5 - C Services Library



to the Services Library and waits for the next message. This is referred to as 
run-to-completion semantics. Typically, transition code segments are short, and result 
in rapid handling of messages.

Single and Multi-Threaded Message Processing

The Services Library runs in a loop executed by a system controller object. This loop 
waits for messages and delivers them, one at a time, to capsules for processing. Each 
physical thread in a Rational Rose RealTime model has its own controller object and 
its own set of message queues. Messages that cross threads are placed in a special 
queue and picked up by the receiving thread in its processing.

The model is first initialized by queueing a special system-level message (the 
initialization message) for the top-level capsule. This causes initialization messages to 
be queued for all fixed capsules contained inside the top-level capsule. This continues 
recursively for all contained fixed capsules, so that all the fixed capsules in the model 
(those that aren't contained in optional capsules) are initialized.

After the initialization message is queued, the controller object enters its main 
processing loop (the mainLoop function). In mainLoop, it takes the next highest 
priority message from the message queues and delivers it to the receiver capsule and 
invokes that capsule's behavior to process the message. During start-up, the highest 
priority message on the queue of the main thread will be the initialization message. 
When a capsule processes the initialization message, the capsule's initial transition 
segment is executed.

When the capsule has completed processing a message, it returns control to the 
controller. The controller continues this loop until there are no more messages to be 
processed. At that point, it waits for a message from a timer or another physical 
thread in the model.

Introduction to Threads

A capsule with a dedicated processor has its own logical thread of control, and 
operates independently of other capsules. Independent capsules synchronize to 
perform higher-level scenarios through message-passing. One capsule sends a 
message to another capsule allowing the other capsule to update its state based on 
this outside stimulus.
Message Processing 51



In practice, most Rational Rose RealTime models run on a machine with a single 
processor, or possibly in a distributed environment, with a few processors. There are 
almost always more capsules than processors.

Types of Concurrency

The underlying operating system provides preemption to allow concurrent programs 
to share the processor in a fair way, where each program is guaranteed to get some 
processing time depending on the prioritization of the programs. Many operating 
systems support one or both of the following forms of concurrency: 

1 A heavy-weight unit of concurrency, usually referred to as a process, which has its 
own memory space, is completely separate from other processes for integrity, and 
which communicates with other processes through special mechanisms such as 
shared memory, sockets, signals, and so on. Processes usually have a significant 
amount of protection such that if one process crashes it does not affect other 
processes.

2 A light-weight unit of concurrency, referred to as a thread or task on most RTOSs, 
shares a common memory space with other threads, and is not as robust as it can 
be corrupted by other threads. Depending on the type of failure, an error in one 
thread may affect other threads. Threads do not have as much protection as 
processes.

Mapping Capsules to Threads

Rational Rose RealTime allows designers to make use of the underlying multi-tasking 
operating system so that the processing of a capsule on one thread does not block the 
processing of capsules on other threads. Designers can specify the physical operating 
system threads onto which the capsules will be mapped at run-time. In a system with 
only one thread, there are situations where a single capsule transition can block other 
capsules from running, such as if the capsule invokes a blocking system call. By 
placing some capsules in different threads, the designer can avoid the problems that 
arise from these situations, and make better use of the underlying processor. Not 
every capsule should run on a separate thread. For most capsules, it is sufficient to 
leave them in one thread and allow the Services Library controller to invoke their 
behavior as messages arrive.
52 Chapter 5 - C Services Library



Capsules with transitions that may block, or that have excessively long processing 
times, should be placed on separate threads. Deciding which capsules need to execute 
in different threads is a matter for design consideration.

Single-Threaded Services Library

The use of threads is not supported for certain targets, and may not be desirable for 
some applications. There is a single-threaded version of the Services Library, which is 
used for these situations. In the single-threaded model there is a single controller 
object that is responsible for queueing and delivering messages among capsules. The 
main processing loop runs inside this object. Figure 5 shows the basic structure of the 
single-threaded Services Library.

Figure 5 Single-Threaded Services Library

Multi-Threaded Services Library

Capsules can belong to different logical threads. Logical threads are mapped to a set 
of concurrent physical threads defined by the user. No other capsules in a thread can 
execute until the currently executing capsule returns control to the main loop of that 
thread except for the case of invoke.
Message Processing 53



Capsules on other physical threads may appear to execute simultaneously. The 
operating system is responsible for switching control among active physical threads. 
The operating system may preempt one physical thread in the middle of execution to 
switch to another physical thread. Each thread can be assigned a separate priority, so 
that the designer has some control over the scheduling.

In the multi-threaded model there is a separate controller object for each physical 
thread. This controller object contains the basic message delivery and processing loop. 
The basic structure of the multi-threaded Services Library is shown in Figure 6.

Figure 6 Multi-threaded Services Library

C Services Library Framework

The capsules, capsule roles, protocols, ports and classes in a Rational Rose RealTime 
model will eventually be generated to C code and integrate into the C Services Library 
framework. The framework provides a set of pre-defined data structures and 
functions which you will use in the detail level code of your model.

The complete API is explained in the chapter called Services Library API Reference on 
page 143.
54 Chapter 5 - C Services Library



As well as the reference material detailed in the API the following characteristics of 
the C Services Library framework are important to understand:

■ Capsules are Generated as Subclasses of RTCapsule on page 55
■ Ports are Generated as Fields of a Capsule Structure on page 55
■ Every Capsule Instance has Access to its Controller on page 56
■ Capsule Instances, Logical, and Physical Threads on page 56
■ Capsule Instances Have Access to a RTMessage Object on page 57

Capsules are Generated as Subclasses of RTCapsule

Every generated capsule structure contains, as the first field in the structure, an 
RTCapsule called std. Thus, for any API function that requires an RTCapsule * as a 
parameter, you can either cast the capsule instance’s ‘this’ pointer, or pass the address 
of the std field. For example, the RTCapsule_context() function, which requires a 
RTCapsule pointer, can be called in the following syntax:

/* both expressions are equivalent */

RTController * rts1 = RTCapsule_context(&this->std);

RTController * rts2 = 

RTCapsule_context((const RTCapsule *)this);

Ports are Generated as Fields of a Capsule Structure

The ports on the structure of a capsule are generated as RTPort fields in the generated 
capsule structure. The field is named exactly as the port is named in the model. Most 
communication service functions require that you specify a port as a parameter to the 
function. For example, the asynchronous send function has the following prototype:

int RTPort_send  ( const RTPort *, RTSignal, RTPriority, void *, 

const RTObject_class * );

The first parameter is a pointer to a port. Therefore you would access the port via the 
capsule instance pointer this, and send a message out of that port using the following 
syntax:

/* 

Assume a port called ‘control’ that has

an out signal ‘ack’.

*/

RTPort_send( &this->control,
Message Processing 55



RTPort_createOutSignal( &this->control, ack ),

RTPriority_General,

(void *)0, /* don’t send data */

(RTObject_class *)0 );

Every Capsule Instance has Access to its Controller

Each capsule instance has access to the controller for the thread on which it is running. 
The RTController class provides several functions that can be useful in a capsule’s 
implementation. The function RTCapsule_context() returns a pointer to the controller 
instance, which can then be passed to RTController functions.

For example, to find out the name of the thread on which a capsule is running, you 
would use the following function:

/* 

This code would be in a capsule’s

transition

*/

char * name =

RTController_name( RTCapsule_context( this ) );

Capsule Instances, Logical, and Physical Threads

As described in the Introduction to Threads on page 51, your application may required 
that certain capsule instances run on separate physical threads. Logical threads are 
used to represent a conceptually independent thread of execution. Logical threads 
may be mapped to different physical thread configurations when generating an 
executable. However, the mapping of capsule roles is defined purely in terms of 
logical threads.

Since all C capsule instances are created when a model is run, the mapping of capsule 
instances to logical threads must be provided at design time. The top level capsule is 
where you defined the logical threads and map the capsule instances to logical 
threads. The top level capsule is always mapped to the MainThread, and you cannot 
map it to any other. See Capsule To Logical Thread Mapping (Capsule, C Executable) on 
page 135 for details of how to work with logical threads.

Note:  You must use this same process to map a timer capsule role to its own logical 
thread. This logical thread can then be mapped to a separate physical thread. You then 
have a timer capsule running on its own physical thread.
56 Chapter 5 - C Services Library



The mapping from logical thread to physical thread is performed on a component. 
The component uses the logical thread information contained within the top level 
capsule assigned to that component, and allows you to map the logical threads 
defined in the top level capsule to physical threads. See PhysicalThreads (Component, C 
Executable) on page 136 for details of how to work with physical threads.

Note:  Only logical threads defined on the top level capsule are considered by the 
component.

Capsule Instances Have Access to a RTMessage Object

Every capsule has an attribute msg which is a pointer to the current message 
delivered to a capsule instance. This attribute can be used within transition detail 
level code to retrieve a message that was sent to the capsule instance. In your detail 
level code, you will first retrieve the message using RTCapsule_getMsg( this ); then 
use the RTMessage methods to query the message.

Log Service

The Log Service is organized as follows:

■ Implementation Functions on page 57
■ Characteristics on page 57

Implementation Functions

RTLog

Characteristics

The Log service is a stream of ASCII text in which system or application events can be 
recorded. The Log output is directed to the stream RTSTDIO_STREAM, which is 
defined as stdout in:

$ROSERT_HOME/C/TargetRTS/src/include/RTPriv/Stdio.h 

You can change it to stderr, but this change will also affect all calls to RTStdio_put 
used internally in the Services Library. 
Log Service 57



There is a Log method for each basic C data type, and a generic Log method for 
user-defined data types. Each call to a Log method involves locking RTStdio, writing 
the resulting text, flushing the output, and unlocking RTStdio.

Communication Services

Communication Services is organized as follows:

■ Implementation Functions on page 58
■ Concepts on page 58
■ Primitives on page 59
■ Communication Service properties on page 59
■ Semantics of Usage of Message Priorities on page 59
■ Support for Unwired Ports on page 60
■ Published Versus Unpublished Unwired Ports on page 61
■ Registration by Name on page 61
■ Deferring and Recalling Messages on page 62

Implementation Functions

RTMessage, RTPort, RTPriority

Concepts

This fundamental service provides most of the standard communication models 
prevalent in concurrent software system design including inter-capsule asynchronous 
messaging.

The Communication Service is accessed by calling the RTPort functions. The port 
name is the user defined name of the port declared in the model. The named port is 
generated as a field of the capsule containing the port.

Every named port may actually have a number of port instances associated with it 
depending on the multiplicity of the port. Each port instance is capable of sending 
and receiving messages.

A service request results in the creation of an instance of RTMessage. This message is 
delivered by the Services Library to the port at the other end of the connection. It is 
eventually processed by the behavior of the capsule containing that port.
58 Chapter 5 - C Services Library



Primitives

This service is used for messages passing between capsules in real time. Messages 
sent via this service are processed whenever the necessary CPU cycles become 
available. 

A capsule instance accesses the message that was just received by calling the 
RTCapsule_getMsg() method.

Upon processing a message received at a particular end port, the 
RTMessage_getPortIndex() method returns an index to the particular port instance 
that received the message. Calling RTPort_sendAt() on the port instance returned by 
RTMessage_getPortIndex() results in a send to only that particular port instance. 

Communication Service properties

Messages are usually delivered to the receiving object, with a few exceptions. For 
example, messages may be lost if they are sent through unbound ports

Order-Preserving

Messages of equal priority sent along the same binding are delivered in the same 
order. This applies to messages sent to capsules executing within the same thread and 
for messages going to another thread.

Minimal Overhead in Message Handling

This is due to the lack of an automatic form of acknowledgment or flow-control 
protocols.

Semantics of Usage of Message Priorities

Message priority is the relative importance of an event with respect to all other 
unprocessed messages on a thread. Higher-priority messages get preference when 
scheduling CPU time over lower-priority messages. Messages with a higher priority 
are usually processed before messages of lower priority in the queue.

The current Services Library scheduler uses simple priority scheduling so that 
messages at a particular priority level are not processed until all higher-priority 
messages on that controller have been processed.

Within a given priority level, the Services Library guarantees that messages will be 
processed in the order of arrival. 
Communication Services 59



In a distributed system, the order of arrival is not necessarily the same as the order in 
which the messages were sent. 

Message priorities do not cause the interruption of the processing of the current event 
even if a higher priority message arrives. This is due to the "run-to-completion" 
semantics of transitions as described in the previous section. 

A user-defined message has one of five priority levels associated with it. The 
following predefined symbols allow the user to specify the priority of a message by 
name: 

■ RTPriority_Panic - Highest priority available to users; to be used only for 
emergencies.

■ RTPriority_High - For high-priority processing.

■ RTPriority_General - For most processing.

■ RTPriority_Low - For low-priority.

■ RTPriority_Background - Lowest priority used for background-type activities.

Message priorities disrupt the order of events which often leads to implementation 
problems. It is recommended that applications are limited to a single priority level. If 
multiple priorities are used, then it is advisable to avoid the high and low extremes of 
the range in order to leave room for subsequent design changes. In addition to 
user-defined message priorities, there are system-level priorities. System-level 
priorities are higher than the highest user-level priority in order to guarantee the 
correct operation of Service Library routines.

Support for Unwired Ports

Ports can be either wired or unwired. Wired ports are explicitly connected to other 
wired ports with connectors. Unwired ports are not connected during design, instead 
they are dynamically connected at run-time. Unwired ports are bound to other 
unwired ports by a registered name.

Layer communication therefore involves the support for managing connections 
between unwired ports.
60 Chapter 5 - C Services Library



Published Versus Unpublished Unwired Ports

In the layered communication paradigm, unwired published ports (SPP) can only 
connect with unwired unpublished ports (SAP), or vice versa. An SPP cannot 
connect to another SPP, and an SAP cannot connect to another SAP. You can think of 
an SPP as being the server side of a connection and the SAP as being the client. The 
client always initiates the communication with the server.

The basic model is that for any given service, there is one server, and there may be 
many clients. A service is uniquely identified by name and is some functionality 
provided by the server capsule to the client capsules. There may be many different 
server capsules, each providing a different service. Any given service name may have 
only one SPP registered for it at any given time. Any other providers that attempt to 
register an SPP of the same name will be declined.

SPPs are often replicated, which enables multiple clients to be bound to the server at 
run-time; otherwise, no SAPs can be bound. By default, a SAP or SPP is automatically 
registered under its reference name when the capsule containing that SAP/SPP is 
initialized.

Registration by Name

The basic element of layer communication is a generic name server. SAPs register to 
the layer service for binding to an SPP under a unique name. SPPs need also register 
to the layer service in order to publish its unique name for binding with SAPs.

All SAPs are bound to the first SPP that registered for binding under that name. If no 
SPP exists, the SAP registrations are queued (usually in order) waiting for the SPP to 
register. SAPs will be bound with the SPP up to the maximum multiplicity of that SPP. 
SAPs not bound will continue to be queued until an instance of the SPP becomes 
available due to either a SAP deregistering or an SPP with a larger multiplicity 
registering.

Registration String

A registration string is used to identify a unique name and service under which SAPs 
and SPPs will connect, and can be of any length > 0.
Communication Services 61



Deferring and Recalling Messages

The Services Library enforces the reactive model of behavior by automatically putting 
a capsule into a receive mode between successive transitions. This means that there is 
no need for an explicit user-specified receive method. When a message is selected for 
processing, the Services Library wakes up the capsule and starts execution of the 
appropriate transition according to the algorithm described in the previous section.

In some cases, a message may be received and the capsule may decide that it would 
be more convenient to postpone the handling of this event for some later time. For 
example, the behavior may be in the middle of a complex sequence of state transitions 
when it receives an asynchronous request to handle a new sequence. Instead of trying 
to execute two sequences in parallel, it is often simpler to serialize them. To do this, 
the newly-received message must be held somehow until the current event-handling 
sequence is complete and then resubmitted. The Services Library allows messages to 
be deferred and then recalled at a more convenient time.

Timing Service

The Timing Service is organized as follows:

■ Implementation Functions on page 62
■ Characteristics on page 62
■ Usage on page 63
■ Timer Thread Configurations on page 64
■ Customizing the Timing Service on page 64
■ Timing Precision and Accuracy on page 65

Implementation Functions

RTTimespec, RTTimerId, RTPort_informIn, RTPort_cancelTimer, 
RTPort_isTimerValid

Characteristics

The timing services provide a way for a user to specify a timeout. After a timeout has 
occurred, a timeout message is then delivered to a timing port on the originating 
capsule. It is possible to keep track of a specific timeout through its RTTimerId which 
is returned by the RTPort_informIn function. You may then check that the timeout is 
still valid, or cancel it via this index. The timing services also allow one to get the 
current system time into a RTTimespec structure, and to perform arithmetic 
operations on that structure.
62 Chapter 5 - C Services Library



Usage

The implementation of a timing service is very much dependent on the timing 
interface provided by an operating system. For this reason, the timing solution 
provided with the C Language Add-in is easily customizable. The Services Library 
does not contain the timing algorithms and data structures, instead the Services 
Library acts like a dispatcher of timing messages by calling timing functions which 
have been registered on a controller. The RTController functions allow registration of 
timing functions with a controller, thus when subsequent timing requests are received 
by the controller, the controller calls the timing functions that have been registered.

The C Language Add-in provides a generic timer implementation which is supplied 
in the RTCClasses package. The complete implementation for the timers is in the 
classes and data structures in this package, this allows easy customization of timers 
from within the toolset.

To add timing services to your model:

1 Decide which timer configuration you require. Do you want a timer on:

❑ each thread

❑ one timer for all threads

❑ the timer on it’s own thread servicing all other threads 

You must consider the timing requirements for your application, and take into 
consideration the overhead of having the timer capsule on its own thread.

2 Drag the appropriate timer capsule (Timer or SelfTimer) from the RTCClasses 
package into the structure of a capsule in your model.

Note:  The RTCClasses package should be included by default in all models. If you 
are migrating or have deleted the package, you can share the package back into 
your model by selecting the Logical View and right-clicking, then select 
File > Share. Browse to the $ROSERT_HOME/C directory, and select the file 
called RTCClasses.rtlogpkg. This will share the package that contains the C timer 
implementation capsules and data classes.

3 Create a port based on the CTiming protocol on each capsule which will be using 
the timing services.

4 Use the RTPort_informIn function to request a timer.
Timing Service 63



5 When the timer expires, a timeout signal will be sent via the CTiming protocol 
port that was passed as an argument to the RTPort_informIn function. 

6 Add a transition to your model to handle the receipt of timeout signals.

Timer Thread Configurations

Every application has different requirements in terms of timing. For this reason it will 
be important to consider how timers will be configured in your model. Carefully 
consider the performance requirements you require from your timers; depending on 
this requirement you can chose from the following common timer configurations:

■ One timer for the entire model. The timer runs on main thread and services all 
threads in the model. This behavior is implemented by the Timer capsule provide 
in the RTCClasses::TimerPackage. If you add this capsule to your model it will 
register with all threads and by default be incarnated on the main thread.

■ One timer per thread. The timer runs on the thread it is assigned to and provides 
timing services on that thread only. This behavior is provided by the SelfTimer 
capsule provided in the RTCClasses::TimerPackage.

■ One timer for whole model, but runs on it’s own thread. In this case, use the 
Timer capsule but map to it’s own logical and physical thread.

Customizing the Timing Service

Although there are platform independent timing capsules available with Rational 
Rose RealTime, you may wish to implement your own timing capsules. A timer 
capsule does not need to have any internal structure, or any state machine. It registers 
certain functions with the Services Library during system start-up, and those 
functions modify the behavior of a thread when it would normally perform a wait. 
Instead of performing a wait it can perform a timed wait, and then send timeout 
messages when a timeout occurs. 

Note:  To understand how to implement a timer capsule, you can browse through the 
Timer capsule provided in the RTCClasses package.
64 Chapter 5 - C Services Library



To create a timer capsule, you must create functions with the following 
signatures:

■ RTTimerId informIn( RTCapsule * this, RTPort * replyToPort, 
RTTimespec * timeout, void * data, const RTObject_class * 
type ) 

Creates a timeout and puts it into the active timeout queue.

■ int cancel( RTCapsule * this, RTTimerId timerId )

Cancels a timeout.

■ int valid( RTCapsule * this, RTTimerId timerId )

Checks if a timeout is still active.

■ void sleep( RTController * this )

Checks for expired timers and sends timeout messages. Does timed wait on lowest 
timeout in queue until expiry or a signal.

■ void wakeup( RTController * this )

Signals a sleeping thread to wake up.

■ void setup( void )

This function performs all the initialize functions necessary for the timer to be fully 
operational towards any timing requests it may receive. The setup function is 
called before any initial transition in the model.

You will also need to allocate the supporting structures for your functions, like timer 
queues and mutexes, and you will probably want to create some supporting functions 
to modularize your code as well.

Timing Precision and Accuracy

The precision of the timing service depends on the granularity of timing supported by 
the underlying operating system. Although you can request timeouts with a 
granularity down to the nanosecond, this does not mean you will get nanosecond 
precision. Most operating system timing facilities only have a granularity in the 
millisecond range. The granularity of timing supported on most real-time operating 
systems is much finer than that of general-purpose workstation operating systems, 
such as UNIX and Windows. 
Timing Service 65



The service does not guarantee absolute accuracy. Intervals can take slightly longer 
than specified, and events scheduled for a particular time may in fact happen slightly 
after the actual time has occurred. The magnitude of the delay depends on many 
factors. Unless the system is under severe overload, the discrepancy is usually not 
significant. 

RTController Error Codes

Many of the Services Library operations can set an error code. If any operation in a 
controller fails, an internal variable is set with an error code. The error values are 
defined with an enumeration in the RTController class.

Accessing the Error Value

The error enum identifier for the current error can be obtained via 
RTController_getError(). A description of the current error code can be accessed by 
calling the operation RTController_strError() on the current controller object. The 
controller object for any capsule can be retrieved by calling the RTCapsule_context() 
operation on the instance.

Example

The initialization phase of an application might include a transition with code like the 
one shown below where a capsule instance must establish contact with a peer before 
beginning a more involved exchange. The relevant portions include testing the return 
value from the send primitive and choosing the appropriate reaction by examining 
the reason for failure.

The following is an example of how to obtain an error and how to recover with a send 
on a unconnected port:

if( ! RTPort_send( &this->port,

RTPort_createOutSignal( port, start ),

    RTPriority_General,

    &sendData,

    &RTType_SomeClass ) )

{

switch( RTController_getError(sendingController) )

{

66 Chapter 5 - C Services Library



case RTController_noConnect:

RTPort_informIn( timingPort, 1, 0, 0, 0 );/*try later*/

break;

default:

RTStdio_putString( "Unexpected send error: ");

RTStdio_putString( RTController_strError( sendingController 

) );

RTStdio_putString( "\n" );

break;

} /* switch */

} /* if */

Error Enumeration

The error values are defined with an enum which is defined in the RTController class 
as follows:

typedef enum _RTController_PrimitiveError

{

RTController_ok, /* all */

RTController_internalError, /* all */

RTController_unexpectedStatus, /* debugger ops */

RTController_unexpectedPrimitive, /* debugger ops */

RTController_cannotSetTimer,

RTController_cannotRegTimer,

RTController_unauthorizedMemoryAllocation,

RTController_alreadyDeferred, /* CommDefer */

RTController_badClass, /* CommDeliver, CommSend */

RTController_badId, /* TimerInform */

RTController_badOperation, /* LayerDeregister */

RTController_badMessage, /* CommSend */

RTController_badSignal, /* CommSend */

RTController_badState, /* CommSend */

RTController_badValue, /* TimerInform */

RTController_dereg, /* LayerDeregister */

RTController_noConnect, /* TimerInform */
RTController Error Codes 67



RTController_noMem, /* all */

RTController_prio, /* CommSend */

RTController_reg, /* LayerRegister */

RTController_tooManySAPs /* LayerRegister */

} RTController_PrimitiveError;

RTController_alreadyDeferred 

A message can only be deferred one time within the chain of transitions it triggers. 
Subsequent calls fail and set the error code to this value.

RTController_badClass

This is not set anywhere at this point. The error should be set when there is an 
incompatible subclass detected.

RTController_badId 

The cancelTimer primitive of the timing service requires a valid timer identifier 
returned by the informIn primitive. These identifiers are invalidated by the 
cancelTimer primitive and, except for the case of informEvery, during the delivery of 
the time-out message. This error is recorded if cancelTimer is applied to an expired or 
cancelled timer identifier.

RTController_badOperation

This is not set anywhere at this point. It should be set when the controller attempts to 
execute a primitive it’s not permitted to execute.

RTController_badMessage

This is set when a capsule receives a message for which it has no event handling.
68 Chapter 5 - C Services Library



RTController_badSignal

An unidentifiable message without any capsule information occurred. Since the 
message was destined for the controller, but did not fall into the types of message a 
controller knows how to handle, it is a bad signal.

RTController_badState

A capsule has entered an invalid state.

RTController_badValue

This is not currently set anywhere. An invalid argument has been passed to the 
controller.

RTController_cannotRegTimer

Registering a timer service has failed since there is already another timer registered.

RTController_cannotSetTimer

Attempting to set an interval timer has failed.

RTController_dereg 

Attempting to deregister an unwired port which is not currently registered results in 
this error.

RTController_internalError

This error signifies that there are null function pointers for necessary functions, 
unbound end ports on sends, or unrecognized controller wait options when checking 
for events.
RTController Error Codes 69



RTController_noConnect 

Successful use of the send and reply primitives requires an established binding 
involving the port instances referenced in the primitive. This error results when that 
binding does not exist. Remember that send, applied to a replicated port, is equivalent 
to the use of the same primitive on each instance within the reference. If any port is 
unbound, this error will occur.

RTController_noMem 

RTController instances each maintain a local list of unused RTMessage objects. When 
this list is exhausted and a request for more messages from the associated 
RTResourceMgr object is not satisfied, the result is this error. This usually indicates 
that available free memory on the target is exhausted. RTMessage objects are required 
in many Services Library primitives.

RTController_ok 

So far, no error conditions have occurred. This value is set during controller 
construction.

RTController_prio 

Send and informIn primitives accept an argument which is interpreted as a message 
priority. Applications are restricted to the use of the five priorities Panic, High, 
General, Low, and Background. Other values are disallowed and trigger this error.

RTController_reg 

A name must be given in the application of the register primitive of unwired ports. A 
nil pointer is illegal and is the source of this error.

RTController_unauthorizedMemoryAllocation

A call to RTMemoryUtil_new has been made to allocate memory, yet the Run Time 
system is in the executing state, so no memory allocations should occur at this point.
70 Chapter 5 - C Services Library



RTController_unexpectedStatus

The controller has its state field set to something unrecognizable.

RTController_unexpectedPrimitive

The debugger is trying to trace a controller operation, but the primitive that the 
controller is doing is unrecognizable by the debugger.

Port Services

Note:  For additional information on the External Service Example, see the 
"C Examples" chapter in the book Model Examples, Rational Rose RealTime.

External 

The CExternal port service example provides an API that lets non-Rational Rose 
RealTime threads call a function to raise an event on a port of a Capsule in a Rational 
Rose RealTime C application. 

CExternal ports are instances of the class RTPort.

Table 1 Operations

External API 
Operations

Used to enable/disable events external events

void 
RTPort_Enabl
eExternal(RTP
ort *)

Enables the port to receive an event from the external thread. May be used 
only by the thread on which the owner capsule executes

void 
RTPort_Disabl
eExternal(RTP
ort *)

Disables the port from receiving an event from the external thread. May be 
used only by the thread on which the owner capsule executes

int 
RTPort_Raise
External(void)

If the port is enabled, delivers one event to the port, and then disables the 
port. The port must be re-enabled before another event can be raised. This 
function may be used only on threads other than the one on which the owner 
capsule executes. Returns 0 if the event was not successfully raised.
Port Services 71



Example

Given an External port named external:

//Enable the external port to receive events

RTPort_enableExternal ( &this->external );

//Disable the external port to receive events

RTPort_disableExternal ( &this->external );

And from the external thread

if (RTPort_raiseExternal (theExternalPort)==0){

//fail

}

else {

//pass

}

72 Chapter 5 - C Services Library



6Running Models on 
Target Boards
Contents

This chapter describes what you need to know to successfully compile, build, and run 
models with the C Services Library on target boards. Because of the different brands 
of embedded operating systems, and varying configurations found on each, it is 
critical that you understand your target operating system and what services the C 
Services Library will expect exist in the target operating system before you try to run a 
model on your target RTOS.

This chapter is organized as follows:

■ Overview on page 73
■ Step 1: Verify Toolchain Functionality on page 74
■ Step 2: Kernel Configuration on page 74
■ Step 3: Verify main.c on page 75
■ Step 4: Try Manual Loading on page 75
■ Step 5: Running with Observability on page 76

Overview

The C Services Library ships with supported configurations for a set of target 
processors, operating systems, and compilers. See the Installing and Configuring Guide 
for a list of the referenced target configurations. You may have to configure and 
customize the libraries included with Rational Rose RealTime to work with your 
specific configuration.

Before trying to compile and download a complex model from Rational Rose 
RealTime, run through the following steps to validate that your environment, 
operating system, kernel, and C Services Library is setup correctly.
73



Step 1: Verify Toolchain Functionality

A functioning development environment must be in place prior to building and 
running models with Rational Rose RealTime. You should be able to compile, load, 
and execute non-Rational Rose RealTime programs from the command line. This 
includes the correct installation of tools such as compilers, linkers, assemblers, 
debuggers included with your RTOS installation. In addition, it is important to ensure 
that all environment variables are defined to provide access to the header files and 
library files included with your compiler.

You will need to configure environment variables that point to the root of the RTOS 
tools installation directory, and also to the include and library directories.

Rational Rose RealTime expects all tools to be available from the command line.

Testing your Toolchain

To ensure that your toolchain is configured properly, create, build, and run a simple 
"Hello World" program which prints something to the console. This program should 
not use (be linked with) the C Services Library. 

Write, compile, link, download, and run the "Hello World" program on the target. If it 
executes successfully, then your tool chain is configured properly. Your RTOS usually 
includes a set of example programs that you can also use to validate your 
environment.

Step 2: Kernel Configuration

The standard configuration of the Services Library anticipates that the target 
operating system will support a set of services, for example: mutual exclusion 
mechanisms, multi-thread support, timing, standard input/output, memory 
management, and TCP/IP. In general, most commercial real-time operating systems 
(RTOS) have these services.

Ensure that the RTOS has the following minimum services built into the kernel:

■ a service which provides infinite and timed blocking.
■ A function that returns the current time.
■ Task/thread creation with a specified stack size and priority.
■ Standard input/output.
■ For observability, TCP/IP support is required.
■ Some support for memory management is required.
■ Main function, some RTOS have their own defined. If so then the main function in 

the Services Library must be redefined. Refer to Step 3 for additional information.
74 Chapter 6 - Running Models on Target Boards



If your RTOS kernel does not support these services, read your RTOS documentation 
on how to rebuild your kernel to include them.

Step 3: Verify main.c

For the execution of the model to begin, code must be provided to call 
RTMain::entryPoint(int argc, const, char * const * argv) passing in arguments to the 
program. This code is placed in the following file:

$RTS_HOME/src/target/<target name>/Main/main.c. 

On many configurations (platforms), this is the code for the main function, which 
simply passes argc and argv directly. However, on other configurations, these 
parameters must be constructed. For example, with VxWorks, the arguments to the 
program are placed on the stack, thus an array of strings must be explicitly created 
before calling RTMain::entryPoint. Look at the implementation added to the 
$RTS_HOME/src/target/TORNADO2/Main/main.c file. 

A C Services Library model assumes that it is the root task in the system. The model 
will define the root task, initialize the C run-time, the system timer and other things. 
For some targets you may have to modify this behavior in main.c.

If your configuration does not provide a mechanism for passing arguments to an 
executable, the arguments for RTMain::entryPoint can be defined from within the 
toolset in the DefaultArguments (Component, C Exec) property.

Step 4: Try Manual Loading

At this point, you should be able to build a simple "Hello World" model in Rational 
Rose RealTime. Build it for your target board, then load, and run it manually.

Note:  With some target operating systems, when a Rational Rose RealTime model is 
built, you are not finished. In some cases, as with pSOS+, the Rational Rose RealTime 
model is built as a library and you have to compile and link the board support 
package with the Rational Rose RealTime model library to create an executable. The 
simplest way to do all of this is to see your target board documentation, sample 
makefiles and programs.

Note:  To compile for a specific configuration, ensure that a C Executable component is 
created in Rational Rose RealTime with the correct TargetConfiguration set to the 
library for your configuration. This will instruct the code generator which build 
scripts and libraries to use.
Step 3: Verify main.c 75



After the simple model is built, download to the target board and run it. See your 
target documentation for steps required to download and run an executable.

On some target boards, the root process or the main function is spawned 
automatically, but on others, for example with Tornado, you have to specify the entry 
point function. Look in the file main.c for your target to see what function to call to 
start the model. For example, on Tornado it is rtsMain.

When the executable is run you will see the C Services Library banner and the 
debugger prompt:

Rational Rose RealTime C Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2002 Rational Software

rosert: observability listening not enabled

RTS debug: ->

Type ‘quit’ to let your model run. 

At this point you have successfully verified that the environment is configured 
properly and that your RTOS is configured correctly.

Step 5: Running with Observability

You can try running the model with observability and watch the execution of the 
model from within the toolset.

Try to connect the toolset to the running model. First, download the model and run it 
with the following command line parameter:

-obslisten=<portnumber> for example:

-obslisten=12345

Note:  If your RTOS does not support command line arguments, you must add this 
argument to the DefaultArguments (Component, C Exec) property on the component 
you create to build this model.
76 Chapter 6 - Running Models on Target Boards



When the model is started with -obslisten it will not start running the model until 
you connect to the model via the toolset, and clicked the Start button. You should see 
the following banner after running the model executable with the -obslisten 
command line parameter:

Rational Rose RealTime C Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2002 Rational Software

rosert: observability listening not enabled

**************************************************************** * 
Please note: STDIN is turned off. 

* To use the command line, telnet to the above mentioned port. 

* The _output_ of any command will be displayed in _this_ 

* window.

***************************************************************

After the telnet client has connected to the target, you must press ENTER a few times 
to give the target a chance to recognize that this is a telnet connection rather than a 
toolset connection.

Next, within Rational Rose RealTime, create a Processor and Component instance 
from the component you used to build your model. In the Component instance 
specification, change the Target Observability Port to the value you specified from 
the command line <portnumber>. Click OK, then right-click on the Component 
instance and select Attach Target. The RTS Browser will appear. Click the Start 
button and you can use the observability tools to watch the execution of your model.

The target guide is meant to help developers build, compile, debug, and deploy their 
models to a target system. The C Services Library is at the heart of the C Language 
Add-in. It is essential that you understand its architecture to start optimizing and 
configuring it for your project requirements.
Step 5: Running with Observability 77



78 Chapter 6 - Running Models on Target Boards



7Command Line Model 
Debugger
Contents

This chapter is organized as follows:

■ Overview on page 79
■ Starting the Run-time System Debugger on page 79
■ Run Time System Debugger Command Summary on page 81
■ Thread Commands on page 82
■ Informational Commands on page 84
■ Tracing Commands on page 86
■ Control Commands on page 88

Overview

The Services Library debugger provides a mechanism to allow UML for Real-Time 
models executing on the Services Library to be debugged at the UML for Real-Time 
concept level. The Services Library debugger does not provide source-level 
debugging. Source code debugging requires an external source level debugger for C, 
such as gdb. 

Note:  Some versions of the Services Library libraries are supplied with the command 
line debugger disabled for optimum efficiency. You can recompile the Services Library 
source code to configure the Services Library without the debugger. This saves some 
space in the executable model. For additional information, see Configuring and 
Customizing the Services Library on page 107.

Note:  The debugger must be configured for Observability to be enabled. 

Starting the Run-time System Debugger

URTS_DEBUG parameter 

You can use the URTS_DEBUG parameter to initialize the Services Library debugger 
with a set of commands to run at start-up. This is used most commonly to tell the 
debugger to quit, causing the model to run without the Services Library interaction. 
79



The URTS_DEBUG parameter can be passed on the command line to the executable. 
Add the -URTS_DEBUG= parameter on the command line. For example, to run the 
executable without the debugger interaction, set the debug command to "quit" before 
starting the executable as follows: MyTopLevel_Capsule -URTS_DEBUG=quit. You 
can also set URTS_DEBUG as an environment variable. This variable is used by 
default whenever no -URTS_DEBUG parameter is passed on the command line. The 
URTS_DEBUG variable should be set to a command sequence to be performed by the 
debugger on start-up. Use semicolons (;) to separate multiple commands. 

Differences Between Single-threaded and Multi-threaded Services 
Library Debugger

In single-threaded mode - using a Services Library which has been configured to 
support only a single thread - the debugger must share the same thread of control as 
the user's capsules. This has two implications. Input to the debugger is accepted only 
when the system is in a stopped state, and blocking calls in user transitions may 
prevent the debugger from operating correctly. The system is in a stopped state when 
one of the following occurs: 

■ The top capsule is about to be instantiated. 

■ A trace point is encountered. 

■ The debugger has accepted a command from the user to allow N messages, and N 
messages have been dispatched.

In multi-threaded mode, the debugger has its own thread of control. This may lead to 
the case where any model output is interleaved with the debugger output. In general, 
the threads related to timing and external layer should be detached when using the 
debugger; other threads can be attached or detached as desired. 

Application-Specific Command Line Arguments

You can supply additional command line arguments for use by your model, as you 
would for any other application. The arguments are passed on the command line after 
the name of the executable, for example:

myTopCapsule -URTS_DEBUG=quit foo 99 

Alternatively, they can be specified in the Parameters box on the Component Instance 
Specification dialog.

The first item on the command line is the name of the executable. Several arguments 
can be supplied for the Services Library (-obslisten), while another argument that can 
be passed to the debugger (-URTS_DEBUG). 
80 Chapter 7 - Command Line Model Debugger



Accessing

The following static functions are provided on the class RTMain to allow the user 
model to examine the argument list:

int RTMain::argCount()

const char * const * RTMain::argStrings()

Use argCount() to return the number of arguments passed on the command line. 
RTMain::argCount() is equivalent to argc in a traditional C/C++ program.

Use argStrings() to return an array of pointers to the actual arguments. Each 
argument is stored in a char *. RTMain::argStrings() is equivalent to argv in a 
traditional C/C++ program.

Providing Arguments on Targets that do not Support Command Line 
Arguments

Some targets do not provide the ability to start up a program with command line 
arguments. Rational Rose RealTime provides an interface within the toolset that 
allows you to specify start-up arguments that are made available to the program at 
run-time. You can specify arguments via the component property DefaultArguments 
(Component, C Executable).

Run Time System Debugger Command Summary

■ Thread Commands

■ Informational Commands

■ Tracing Commands

■ Control Commands

Help
■ help - prints help information. 

taskId, capsuleId, portId

Physical threads in the application are each identified by a taskId. Listing the threads 
in the application using the tasks command shows the Id of each task. Use this Id 
when referring to a particular thread for commands such as attach, detach and 
printstats.
Run Time System Debugger Command Summary 81



Each capsule instance has a unique capsuleId. The capsuleId indicates the capsule's 
position in the containment hierarchy. The top-level capsule instance always has an Id 
of 1. The instances contained in it are called 1/1, 1/2 and so on. Replicated references, 
however, are shown by a single Id. They can be identified individually by suffixing 
the Id number with n, where n is the particular instance number (for example, 1/5.1). 
Note that the default replication factor is always 1; for example, 1/5 is exactly the 
same as 1.1/5.1. The capsuleId is used in conjunction with the info command. The 
system command shows the capsuleId corresponding to each capsule.

Each port is identified by its portId. These portIds are relative to the capsule where 
they are defined and unique only within this capsule class.

The portIds for a capsule class can be listed using the info command. 

Running a Model

When running a model using the command line debugger, you will see the following 
set-up:

Rational Rose RealTime C Target Run Time System

Release 6.40.C.00 (+c)

Copyright (c) 1993-2002 Rational Software

rosert: observability listening not enabled

RTS debug: ->

Thread Commands
■ tasks - Prints the list of tasks (threads).

■ detach <taskId> - Do not monitor a thread specified by taskId. Allows the thread 
to run freely. 

■ attach <taskId> - Monitor a thread specified by taskId. TaskIds of the different 
physical threads in the model can be determined using the tasks command. 

The example used in the following description has been configured to use threads. 
The output is slightly different for applications compiled in a non-threaded world.
82 Chapter 7 - Command Line Model Debugger



tasks

Lists all threads in the model. Each thread is identified with a taskId. The main thread 
always appears in the list of threads. Any additional user-defined physical threads 
also appear in the list.

RTS debug: -> tasks
0: stopped  main

1: stopped  Thread1

2: stopped  Thread2

RTS debug: ->

attach <taskId>

Allows the debugger to interact with the specified task (thread). TaskId must be one 
of the taskIds listed by the tasks command. When a thread is attached, messages 
within that thread are only processed when the go command is given.

RTS debug: ->attach 1

Attached Task 1

RTS debug: ->

detach <taskId>

Allows the thread (taskId) to run freely. The debugger does not control the specified 
thread any longer. The thread processes all outstanding messages and then waits for 
new messages.

RTS debug: ->det 1

Task 1 detached

RTS debug: ->
Run Time System Debugger Command Summary 83



Informational Commands
■ saps - shows all registered SPPs and the corresponding SAPs. 

■ system [<capsule> [<depth>]] - lists all instantiated capsules in the system, 
starting with the specified capsule, to a specific depth. 

■ info <capsuleId> - shows information about the capsule instance specified by the 
capsuleId. 

■ printstats <testId> - prints the run-time statistics for thread taskId. 

saps

Lists all registered unwired ports (SAPs and SPPs).

RTS debug: ->saps

Name: prot2

 SAP: Compile_OnTop[0]/prot2[0]

 SPP: echo2[0]/prot2[0]

RTS debug: ->

system <capsuleId> <depth>

The system command lists all the active capsules in the system, starting with 
<capsuleId> (default: 1 = the top capsule) and <depth> (default: 0 = all) levels down.

Both the parameters <capsuleId> and <depth> are optional; however, if you include the 
<depth> parameter, you must include the <capsuleId> parameter as well.

Each capsule is displayed in the following format:

refName : className (type = fixed) capsuleId [more] 

Containment is indicated by indentation and one leading dot for each containment 
level. For example, in the following output, the top level capsule is listed first, 
followed by all the capsule instances in its decomposition:

RTS debug: ->system
Main_OnTop : Main (fixed) 1

. gen1 : Generator (fixed) 1/1

. gen2 : Generator (fixed) 1/2

. echo : Echo (fixed) 1/3

. . logger : LogBuffer (fixed) 1/3/1
84 Chapter 7 - Command Line Model Debugger



. . . servus : GreetServer (fixed) 1/3/1/1

. . logger : LogBuffer (fixed) 1/3/1.2

. . . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->

In the following example, we want to start with a different capsule:

RTS debug: ->system 1/3

echo : Echo (fixed) 1/3

. logger : LogBuffer (fixed) 1/3/1

. . servus : GreetServer (fixed) 1/3/1/1

. logger : LogBuffer (fixed) 1/3/1.2

. . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->

And in this example, we start with a different capsule, and also limit the depth to 1 
level:

RTS debug: ->system 1/3 1

echo : Echo (fixed) 1/3 [2 more]

RTS Debug: ->

In the last example, we can see the [2 more] message after the capsule. This means that 
the capsule in question has 2 contained capsules that were not displayed since the 
depth parameter we supplied limited the output. This [N more] message is not 
recursive, so it only indicates the number of hidden capsules in the next immediate 
level.

info

The info command returns information about a particular capsule instance. The info 
command displays the name of the capsule class for the identified instantiation, the 
role name (from the container), the current state of the capsule, the memory address of 
the capsule, whether any probes are attached to the capsule, and a list of ports and 
roles. As with capsules, ports listed are identified by an id number.

RTS debug: ->info 1/3/1

ClassName: LogBuffer

ReferenceName: logger

CurrentState: wait4activity

Address: (LogBuffer_InstanceData *)0x42BEEF

No Capsule Probe attached.
Run Time System Debugger Command Summary 85



Relay ports:

0: commandPort[10]

End ports:

0: commandPort[10] (wired)

1: echoAccess (SPP)

Components:

0: servus

RTS debug: ->

printstats <taskId>

Prints information about the number of messages delivered, outstanding messages, 
and a breakdown of messages by priority. The alias stats is mapped to this command.

RTS debug: ->print 0

main

No error.
messages[Synchronous] : 0
messages[System] : 0
messages[Panic] : 0
messages[High] : 0

messages[General] : 1

messages[Low] : 0
messages[Background] : 0

For this command, the output consists of the name of the thread, the last error 
encountered, and the number of outstanding messages available to be delivered for 
each of the distinct priorities.

Tracing Commands
■ log <category> <detail-level> - logs UML for Real-Time primitives. Selects the 

service to log (communication, layer, timer, system, all) and the detail (none, 
errors, all).
86 Chapter 7 - Command Line Model Debugger



log <category> <detail-level>

The log command turns ON the logging of all system services.

The categories are communication, exception, frame, layer, timer, system, and all. The 
detail levels are none, errors, and all.

Each message log shows the direction of the message, the receiving capsule (the `to' 
capsule), the sending capsule (the `from' capsule), and the data. The form of each 
message log is as follows: 

RTS debug: 0>

message

to capsule(Class)<state>.portName[index]:signalName
from capsule(Class)<state>.portName[index]

data dataValue 

The following example shows an example of a message trace:

RTS debug: ->log comm all

RTS debug: -> go 1
go 1

message

to client(Client)<Dozing>.cliServComm[0]:hello

from server(Server)<S1>.cliServComm[0]

data (void *)0

RTS debug: ->log comm none

RTS debug: ->go 1

go 1

RTS debug: 1>

Events that will be logged are:

■ Communications: Defer, Recall, RecallAll, Send

■ Layer: Register SAP, Deregister SAP, Register SPP, Deregister SPP

■ Timer: Cancel, InformIn
Run Time System Debugger Command Summary 87



The detail levels are as follows:

■ none - Suppresses all log messages.

■ all - Logs all events as described above.

Control Commands
■ exit - Terminates the Services Library process. 

■ go [<n>] - Delivers n messages.

■ step [<n>] - Delivers n messages. 

■ quit - Quits debug mode. Allows all tasks to run freely.

■ continue - Starts execution while retaining control.

exit

Exits the process. If you have logs turned ON, you may notice a sequence of 
cancellation/stop messages before the process is exited.

go [<n>]

Delivers n messages in the model. If <n> is omitted, the default is 10.

step [<n>]

Delivers n messages in the model. If <n> is omitted, the default is 1.

quit

Detaches the debugger and lets the model run freely. The command line debugger is 
turned off and the program is run to completion (all messages are delivered).

continue

Allows you to start running the target and make TO connections at a later time. From 
the command line, continue is similar to clicking Run in the Toolset; it starts the 
execution while retaining control (unlike quit which gives up control). For example:

MyTopCapsule -obslisten=1234 -URTS_DEBUG=continue
88 Chapter 7 - Command Line Model Debugger



8Inside the C Services 
Library
Contents

This chapter includes extended details regarding the C Services Library. For those 
who want to configure the C Services Library for speed or size, see the Configuring and 
Customizing the Services Library on page 107.

This chapter is organized as follows:

■ Organization of the Services Library Source on page 89
■ Configuration Preprocessor Definitions on page 92
■ Creating the Minimum Services Library Configuration on page 100
■ Optimizing Designs on page 102
■ Capsule Instances and Capsule Behavior on page 102
■ General C Performance Notes on page 105
■ Additional Design Considerations on page 105
■ Toolchains on page 106

Organization of the Services Library Source

Much of the configurability of the C Services Library is done at the source code level. 
Understanding the organization of the source code and build files will help you 
navigate the directory structures.

The services library is organized to be highly configurable, not only for customers but 
also to provide an easy way to support a large number of different platforms and 
configurations.

$RTS_HOME

The C Services Library source files are by default installed in the 
$ROSERT_HOME/C/TargetRTS directory. $RTS_HOME will be used to refer to this 
directory.
89



Configuration Naming Convention

When you start browsing the directories and files that make up the Services Library 
you will notice directory names and file names that may seem cryptic. These names 
are based on an easy to use naming scheme to uniquely identify the many library 
configurations.

Platform Name (or configuration)

A specific Services Library configuration is identified by its platform name. The 
platform name is made up of two parts: the target base name and the libset name.

<platform name> ::= <target base name>.<libset name>

For example:

TORNADO2S.ppc-cygnus-2.7.2-960126

SUN5T.sparc-gnu-2.7.1

NT40T.x86-VisualC++-6.0

Target Base Name

The target base name identifies the operating system, and its configuration and 
version. For this reason the target base name is made up of three parts which describe 
the operating system (OS), the os name, the os version, and the os configuration 
(single (S), multi-threaded (T) ):

<target base name> ::= <os name><os version><os configuration>

For example:

TORNADO2S -> Tornado 2.x Single-threaded

SUN5T -> Solaris 5.x Multi-threaded

NT40T -> WindowsNT 4.x Multi-threaded

Libset Name

The libset name identifies a processor architecture and compiler. The libset name is 
made up of three parts: the processor, the compiler name, and the compiler version.

<libset name> ::= <processor>-<compiler>-<compiler version>
90 Chapter 8 - Inside the C Services Library



For example:

ppc-cygnus-2.7.2-960126 ->

PowerPC processor using Cygnus version 2.7.2-960126

sparc-gnu-2.7.1 ->

Sparc processor using Free Software Foundation gnu version 2.7.1

x86-VisualC++-6.0 ->

X86 processor using Microsoft Visual C++ version 6.0

Summary

The platform name introduced in the first section reads as follows:

TORNADO2S.ppc-cygnus-2.7.2-960126 ->

For the Tornado 2.x Single-threaded RTOS running on a PowerPC processor 
using Cygnus version 2.7.2-960126

This naming scheme is used throughout the C Services Library.

Directory Structure

The source structure basically contains directories that mirror the convention 
described in the library Configuration Naming Convention on page 90. For example, the 
libset directory contains libset specific files (processor, compiler), the same goes for 
the target directory (operating system).

To better understand the directory structure, browse through it yourself.

codegen

This directory contains scripts for compiling models on different configurations 
(platforms).

include

This directory contains interface definitions for library classes and structures.

config

This directory contains platform specific (operating system and compiler) 
configurations. Each platform (see Platform Name (or configuration) on page 90) has its 
own directory that contain the platform specific scripts and configuration files.
Organization of the Services Library Source 91



target

This directory contains target (operating system) configurations. Each target (see 
Target Base Name on page 90) has its own directory that contain the target specific 
scripts and configuration files.

lib

This directory contains the compiled libraries.

libset

This directory contains processor and compiler specific configurations. Each libset 
(see Libset Name on page 90) has its own directory that contain the libset specific 
scripts and configuration files. 

src

This directory contains the generic (platform independent) source files for the 
Services Library. Each class has a directory that contains the class’ implementation. 
Within the src directory is a target directory which contains target specific (OS) 
implementation files. Each target (see Target Base Name on page 90) has its own 
directory that contains target specific source files.

tools

This directory contains scripts used for building models and building the libraries. 

Configuration Preprocessor Definitions

Much of the configurability of the Services Library is done at the source code level 
within a source file using C preprocessor definitions. The configuration is set in the 
following C header files:

■ $RTS_HOME/target/<target>/RTTarget.h for specifying operating system 
specific definitions

■ $RTS_HOME/libset/<libset>/RTLibSet.h for specifying compiler specific 
definitions. This is not required for most compilers, as they can use the default 
$RTS_HOME/include/RTLibSet.h file.
92 Chapter 8 - Inside the C Services Library



Any macros defined in these files will override the corresponding macro defaults 
which appear in $RTS_HOME/include/RTPubl/Config.h. The macros and their 
default values are listed in the following pages.

Note:  In the following section, in general, defining a symbol with the value 1 enables 
the feature the symbol represents, defining it with the value 0 disables the feature, and 
leaving it undefined means it will get a default value from 
$RTS_HOME/include/RTPubl/Config.h.

DEFAULT_DEBUG_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a parameter to the OS 
call used to create the Debug thread.

DEFAULT_MAIN_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a parameter to the OS 
call used to create the Main thread.

DEFAULT_TIMER_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a parameter to the OS 
call used to create the Timer thread.
Configuration Preprocessor Definitions 93



INTERNAL_LAYER_SERVICE

Possible values: 0 or 1

Default value: 1

Description: This enables SAP/SPP functionality. If a model has no Services (unwired 
ports), and relies solely on wired ports, you can disable this option to save space.

MAX_NUM_SPPS

Possible values: 0 or more

Default value: 10

Description: This defines how many SPPs are possible in the model. You can lower 
this value, if required, or if you require more than the default, you can increase it.

RTS_NAMES

Possible values: 0 or 1

Default value: 1

Description: Target Observability and debugging require a lot of strings to make the 
Run Time System presentable to a human being. If you want to save space in your 
final shippable executable, you can compile out a lot of these strings by setting this 
macro to 0.

Turning this definition off will minimize footprint. It is up to those who make the 
models that use this configuration to not use the API that refers to the names of 
objects, or at least capture these calls in the following code blocks:

#if RTS_NAMES

code...

#endif
94 Chapter 8 - Inside the C Services Library



TIMING_SERVICE

Possible values: 0 or 1

Default value: 1

Description: Enables all the code required for supporting a timing service.

TO_OVER_TCP

Possible values: 0 or 1

Default value: 1

Description: This flag should be set to 1 when Target Observability is run over TCP, 0 
otherwise. It is used to compile code required for the tcp stack and the supporting 
functionality.

USE_THREADS

Possible values: 0 or 1

Default value: not set, must be defined in the platform headers (usually RTTarget.h)

Description: Determines whether the single-threaded or multi-threaded version of the 
Services Library is used. If USE_THREADS is 0, the Services Library is 
single-threaded. If USE_THREADS is 1, the Services Library is multi-threaded.

LOG_MESSAGE

Possible values: 0 or 1

Default value: 1

Description: Controls whether the debugger will log the contents of messages.
Configuration Preprocessor Definitions 95



MULTIPLE_PRIORITIES

Possible value: 0 or 1

Default values: 1

Description: When this feature is enabled, the Services Library creates multiple 
priority queues as opposed to one priority queue. Higher priority messages will be 
processed before lower priority messages.

OBJECT_DECODE

Possible values: 0 or 1

Default value: 1

Description: Enable the conversion of strings to objects, needed for Target 
Observability and message injection.

OBJECT_ENCODE

Possible values: 0 or 1

Default value: 1

Description: Enable the conversion of objects to strings, needed for Target 
Observability and variable inspection.

STDIO_ENABLED

Possible values: 0 or 1

Default value: 1

Description: If you disable this define, you can remove all I/O operations that the 
Target Services Library generally performs. This can save a substantial amount of 
code space, and makes a lot of sense to disable if your final target doesn’t have any 
stdio output mechanism. 
96 Chapter 8 - Inside the C Services Library



RTS_CLEANUP_MECHANISM

Possible values: 0 or 1

Default value: 1

Description: During system shutdown, you might want to clean up all the resources 
the Target Services Library allocated during start-up and during the execution of the 
model. This might be especially important if you use a tool like Purify and want to 
match up all the allocations and deletions, and only see the inconsistencies. But, if you 
are more concerned with saving space, disabling it gets rid of a substantial amount of 
cleanup code.

RTS_COMPATIBLE

Possible values: 521 or undefined

Default value: 521

Description: If this value is set to 521, then the ROOM macros in 
$RTS_HOME/include/RTPubl/UMLRT.h used in the officially published interface of 
ObjecTime Developer 5.2.1 will continue to work.

RTS_MEMORY_POLICY

Possible values: RTS_CAN_ALLOCATE, RTS_WARN_ALLOCATE, 
RTS_NEVER_ALLOCATE

Default value: RTS_CAN_ALLOCATE

Description: Generally, you don’t want to allocate memory in a Real-Time system 
after system initialization has completed. By toggling this flag, you can easily check if 
it is being allocated for some reason, or explicitly forbid it, making the call fail. If your 
system is not excessively concerned about memory allocations after start-up, you can 
allow it.
Configuration Preprocessor Definitions 97



MESSAGE_DEFERRAL

Possible values: 0 or 1

Default value: 1

Description: If enabled, activates the capability to defer processing a message received 
until a later time. An explicit RTMessage_defer call must be made to actually defer a 
message.

OTRTSDEBUG

Possible values: DEBUG_NONE or DEBUG_VERBOSE

Default value: DEBUG_VERBOSE

Description: Determines whether the Services Library debugger should be enabled. If 
set to DEBUG_VERBOSE, makes it possible to log all important internal events such 
as the delivery of messages, the creation and destruction of capsules, and so on.

If set to DEBUG_NONE, neither logging, Target Observability nor the Services 
Library debugger will be available.

PURIFY

Possible values: 0 or 1

Default value: 0

Description: Set this flag to 1 to indicate that the Purify tool is being used. This tells 
the Services Library to disable all object caching which will degrade performance but 
allow Purify to monitor RTMessage objects properly.

RTS_INLINE

Possible values: inline or blank

Default value: blank

Description: Controls whether Services Library header files define any inline 
functions.
98 Chapter 8 - Inside the C Services Library



INLINE_CHAINS

Possible values: inline or <blank>

Default value: <blank>

Description: This variable is used to indicate whether transition code chains are 
inserted directly into the code or invoked as functions. The basic trade-off is 
performance against memory. Preliminary measurements indicate that with this 
feature disabled, the size of a capsule class definition is reduced on the average. 

Note:  This gain is incurred only once for each capsule class. This feature depends on 
whether your compiler supports inlining.

INLINE_METHODS

Possible values: inline or <blank>

Default value: inline

Description: This causes transition functions to be inlined for better performance at 
the expense of potentially larger executable memory size. Note that not all compilers 
will handle this option correctly. Failures will generally be in the form of link errors.

RTMESSAGE_PAYLOAD_SIZE

Possible values: Any numerical value >= 0

Default value: 36

Description: This defines the size of the payload area in each RTMessage, where small 
objects are copied for better performance. When sending typed data by value, and the 
data to be sent fits into the payload area, the data will simply be copied into the 
message. If the data does not fit inside the payload area, memory will be allocated for 
the data and free’d after the message has been received. If set to 0, there will be no 
payload area.
Configuration Preprocessor Definitions 99



SEND_BY_VALUE

Possible values: 0 or 1

Default value: 1

Description: Determines whether the Services Library has the code compiled into it 
that will allow for sending typed data by value, instead of just sending a pointer. If 
this is turned off, ensure that your model does not use type descriptors (for example, 
sending data by value in RTPort_send() functions).

OBSERVABLE

Possible values: 0 or 1

Default value: 1

Description: Determines whether the Services Library has the code compiled into it 
that will allow for Target Observability.

Creating the Minimum Services Library Configuration

Configuring the Services Library with the minimum services allows you to most often 
reduce the size and/or increase the speed of the resulting Rational Rose RealTime 
model using the library. 

To create the minimum configuration, the values described below should be defined 
to the values in the Minimum Configuration column. This is not the only minimum 
configuration, you are free to configure the Services Library to fit your project needs.
100 Chapter 8 - Inside the C Services Library



Table 2 Definitions for Minimum Services Library Configuration

Note:  Not all C compilers support inlining.

Note:  Disabling the LOG_MESSAGE definition will turn off the logging capability of 
the Services Library. Log messages will no longer appear when the model is running.

Additional definitions that affect important functionality from the C Services Library 
can also be turned off. Ensure that your model does not rely on any of these services 
before removing them from the Services Library.

Table 3 Additional Minimum Configuration Definitions

See Changing Pre-processor Macros on page 108 for a description of how to modify 
configuration parameters and rebuild a Services Library.

Definition Default Minimum Configuration

LOG_MESSAGE 1 0

OBJECT_DECODE 1 0

OBJECT_ENCODE 1 0

RTS_NAMES 1 0

STDIO_ENABLED 1 0

RTS_CLEANUP_MECHANISM 1 0

OTRTSDEBUG DEBUG_VERBOSE DEBUG_NONE

INLINE_CHAINS <blank> inline

Definition Default Minimum Configuration

SEND_BY_VALUE 1 0

MULTIPLE_PRIORITIES 1 0

TIMING_SERVICE 1 0

INTERNAL_LAYER_SERVICE 1 0

MESSAGE_DEFERAL 1 0
Creating the Minimum Services Library Configuration 101



Optimizing Designs

Performance is usually a significant consideration in any real-world design. This 
section provides some guidelines for improving the performance of your Services 
Library-based models in the following areas:

■ Capsule Instances and Capsule Behavior on page 102
■ General C Performance Notes on page 105
■ Additional Design Considerations on page 105
■ Toolchains on page 106

Capsule Instances and Capsule Behavior

■ Guards
■ State Machines
■ Capsules Versus Data
■ Unnecessary Sends
■ Sending Typed Data by Value in Messages
■ Cross Thread Message Sending

Guards

Problem: 

Guard conditions can incur significantly more performance overhead than choice 
points. A guard condition has an associated function, which is called each time the 
trigger event is evaluated. Because many events may be evaluated before the 
transitions are executed, placing guard conditions on triggers will cause the guard 
functions to be called for every message delivery, regardless of whether the associated 
transition is being fired. Event triggers are evaluated until a matching event is found. 
At that point, evaluation of events stops. The order in which event triggers on a given 
state are evaluated is arbitrary.

Recommendation: 

Do not use guards unless absolutely necessary.
102 Chapter 8 - Inside the C Services Library



State Machines

Problem: 

State machines are traversed from an innermost state to an outermost state when 
searching for transition triggers, which match the current event. This means that if a 
transition is placed on an "outer" state boundary, and that transition fires frequently 
while the capsule is in an "inner" state, many other transition triggers may be 
evaluated before the correct one is found.

Recommendation: 

Place frequently executed transitions on leaf states.

Capsules Versus Data

Problem: 

Capsules and message sending have more overhead (both processing and memory) 
than simple data objects. You must decide at what point in your design the use of 
simple objects with no state machine to achieve performance becomes more important 
than the abstractions provided by capsules.

Recommendation: 

Capsules with minimal state machines and few ports may be converted to data 
classes.

Unnecessary Sends

Problem: 

Sending on replicated ports involves a send on every replication.

Recommendation: 

If you have a replicated port with only a few known connections, calling 
RTPort_sendAt() on only the connected instances may be much quicker than the 
broadcast approach used by RTPort_send().
Capsule Instances and Capsule Behavior 103



Sending Typed Data by Value in Messages

Problem: 

When typed data is sent by value in a message, the data is deep copied before being 
sent. For large data structures (such as a large user-defined data type), this operation 
involves several memory copies and possible allocations and de-allocations if the data 
does not fit inside of the message’s payload area.

Recommendation: 

For best performance when sending between capsules within the same memory 
space, you should consider sending pointers instead of objects. This will introduce 
more complexity into the design and coding (with respect to memory management 
and thread issues), but is more efficient for performance. In particular, if a few 
messaging interactions are identified as happening very frequently, these interactions 
could be optimized to send pointers rather than objects.

Cross Thread Message Sending

Problem: 

Message sends across thread boundaries involve more overhead than message sends 
within the same thread.

Recommendation: 

This should be taken into consideration when determining the allocation of capsules 
to threads. Lower latency is achieved between two capsules on the same thread than 
can be obtained with two capsules on different threads. Note: When using threads, 
time-ordering of messages is not preserved. That is, if you send messages to a capsule 
on the same thread and to a capsule on a different thread, subsequent messages on the 
same thread may be processed before the context switch occurs to allow the other 
thread to begin processing its messages.
104 Chapter 8 - Inside the C Services Library



General C Performance Notes

Problem: 

File input and output (I/O) functions (such as printf and scanf) are quite expensive 
(about 100 x function call overhead)

Recommendation: 

In performance-critical software, these I/O functions should only be used in 
exceptional circumstances, or as part of optional debugging code (calls that can be 
avoided). You may also consider using a low priority logging thread to do the I/O 
when the system is idle.

Problem: 

Dynamic creation and destruction of objects, particularly of large complex 
user-defined data types, is expensive (relative to a function call).

Recommendation: 

Do not dynamically create objects on the critical data path. Preallocation and 
application level management of objects can provide a substantial performance gain.

Additional Design Considerations

This section has probably just whetted your appetite for other ideas that will help 
solve your particular integration problem. As food for thought, an initial checklist of 
design areas to consider is provided. Many of these areas may not be critical to your 
application but all have been proven to be important in at least one project using 
Rational Rose RealTime. Complete discussion of these topics is beyond the scope of 
this document.

Hardware Differences

In many cases, a key difference between the application running on a 
workstation-based Services Library and a RTOS-based Services Library is the 
presence of special hardware in the RTOS case. Before just stubbing out non-existent 
hardware functionality, it is important to understand its impact on the overall 
execution of the model, in terms of the range of functionality which can be tested. For 
example, real-time platforms often have integrated Non-Volatile-Store (NVS). While it 
is easy to stub out this behavior on the workstation (for example, use RAM) this 
General C Performance Notes 105



eliminates a whole range of recovery/restart functionality. A better "stub" would be to 
simulate the NVS using the file system, thereby allowing the full model to be tested 
on the workstation.

The key point here is to always consider hardware availability when using Rational 
Rose RealTime so as to take full advantage of the ease of moving a model from one 
platform to another. It is often the case that there are more developers than there is 
hardware available for testing. 

Availability of External Library on Different Platforms

Sometimes, for whatever technical reasons, an external library cannot be integrated 
with the workstation-based Services Library. In this case, the option of integrating 
external libraries only with the Services Library should be considered. In many cases 
this allows all the capabilities of the underlying OS to be utilized and this is important 
when the goal is to use the library unmodified. In the cases where the library is 
available only as a binary (for example, CORBA ORB), this may be the only 
alternative. 

Toolchains

As a project moves through its lifecycle, it is important that any conflicts that may 
arise from the integration of external libraries be discovered as soon as possible. It is 
recommended that regular builds be done for the workstation, for the Services 
Library on the workstation, and for the Services Library on RTOS so that even if the 
actual target board or processor is not available, the compilation and linking step can 
be exercised.
106 Chapter 8 - Inside the C Services Library



9Configuring and 
Customizing the Services 
Library
Contents

This chapter discusses the different ways that are available for configuring and 
customizing the C Service Library. 

This chapter is organized as follows:

■ Configuration and Customization Explained
■ Changing Pre-processor Macros
■ Changing Build Options
■ Overriding or Adding Operations and Classes
■ Building the Services Library

Configuration and Customization Explained

The difference between configuring and customizing is that configuring modifies 
pre-defined parameters built-in to the Services Library to increase speed, or reduce 
size of your model. Whereas with customization, you change the behavior of the 
Services Library by adding source files, or by overriding existing operations.

There are several different ways of changing the functionality of the Services Library:

■ Configuration Options on page 107
■ Customization Options on page 108

Configuration Options
■ Changing Pre-processor Macros on page 108

This is useful for optimizing the library for speed or size. The library must be 
rebuilt, as well as your model.

■ Changing Build Options on page 110

This is useful for rebuilding the library with different build options, for example to 
turn on or off compiler optimizations or add debug information to the library. The 
library must be rebuilt, as well as your model.
107



Customization Options
■ Overriding or Adding Operations and Classes on page 111

You can override any Services Library operation. This is most often used to change 
the way the library is initialized, to modify the main processing loop, or to add 
platform specific implementations.

Changing Pre-processor Macros

Before you Start

Ensure that you understand the Organization of the Services Library Source on page 89, 
the Configuration Naming Convention on page 90 and Directory Structure on page 91.

Why

Modify pre-defined parameters built-in to the Services Library. This is often useful for 
configuring the library for optimal speed or size.

Where

The file $RTS_HOME/include/RTPubl/Config.h contains all Configuration 
Preprocessor Definitions, or pre-processor macros with their default values. You can 
override any of these macros by adding a definition in one of these files:

■ $RTS_HOME/libset/<libset>/RTLibSet.h

To change for a specific processor and compiler.

■ $RTS_HOME/include/RTLibSet.h

To change for all libsets that do not have their own RTLibSet.h file.

■ $RTS_HOME/target/<target>/RTTarget.h

To change for all libraries for an operating system.

It is usually preferable to perform a libset configuration; that is, to reconfigure only 
for a specific processor and compiler.
108 Chapter 9 - Configuring and Customizing the Services Library



How

In this example, we will create a new libset to localize the changes to a compiler. To 
make changes at the target level follow the same steps but create a new target instead 
of a new libset.

For this example we will assume that our current platform is:

SUN5T.sparc-gnu-2.8.1

To reconfigure the Services Library, build, and update your model to use the 
new library:

1 Choose a name for the new libset. Typically, you can append to the existing libset 
name. In this example let’s name the new libset:

sparc-gnu-2.8.1-minimal

2 Create a new directory called $RTS_HOME/libset/sparc-gnu-2.8.1-minimal.

3 Create a new directory called 
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-minimal.

4 Copy all the files from the original libset and config directories to the new 
directories:

From $RTS_HOME/libset/sparc-gnu-2.8.1 to 
$RTS_HOME/libset/sparc-gnu-2.8.1-minimal

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to 
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-minimal

5 In the new libset directory, add pre-processor statements to RTLibSet.h, and save 
the file. For example, to stop the logging messages, add the following:

#define LOG_MESSAGE 0

6 Build the new Services Library for the platform SUN5T.sparc-gnu-2.8.1-minimal 
(see Building the Services Library on page 113).

7 Update components in model to use the new Services Library (see Updating a 
Component to use a Different Services Library on page 114).
Changing Pre-processor Macros 109



Changing Build Options

Before you Start

Ensure that you understand the Organization of the Services Library Source on page 89, 
the Configuration Naming Convention on page 90 and Directory Structure on page 91.

Why

This is useful for rebuilding the library with different build options, for example to 
turn on or off compiler optimizations or add debug information to the library.

Where

The build options used to compile both the Services Library and the model can be 
found in these makefiles:

■ $RTS_HOME/libset/<libset>/libset.mk

To change for a specific processor and compiler.

■ $RTS_HOME/target/<target>/target.mk

To change for all libraries for an operating system.

■ $RTS_HOME/config/<platform>/config.mk

To change for a specific configuration (platform).

It is usually preferable to perform a libset configuration; that is, to reconfigure only 
for a specific processor and compiler.

How

In this example, we will create a new libset to localize the changes to the compiler. To 
make changes at the target level follow the same steps but create a new target instead 
of a new libset.

For this example we will assume that our current platform is:

SUN5T.sparc-gnu-2.8.1
110 Chapter 9 - Configuring and Customizing the Services Library



To modify to build a Services Library with debug symbols: 

1 Chose a name for the new libset, usually you can just append to the existing libset 
name. In this example let’s name the new libset:

sparc-gnu-2.8.1-debug

2 Create a new directory called $RTS_HOME/libset/sparc-gnu-2.8.1-debug.

3 Create a new directory called 
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-debug.

4 Copy all the files from the original libset and config directories to the new 
directories:

From $RTS_HOME/libset/sparc-gnu-2.8.1 to 
$RTS_HOME/libset/sparc-gnu-2.8.1-debug

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to 
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-debug

5 In the new libset directory open the libset.mk file and change the 
-04 flag from LIBSETCCEXTRA and replace it with -g. 

LIBSETCCEXTRA should now look like the following:

LIBSETCCEXTRA=-g -finline -finline-functions -mv8 \

 -Wall -Winline -Wwrite-strings

6 Build the new Services Library (see Building the Services Library on page 113).

7 Update components in model to use the new Services Library (see Updating a 
Component to use a Different Services Library on page 114).

Now, you have a Services Library with debug information. You can use your source 
level debugger to step through the code.

Overriding or Adding Operations and Classes

Why

You can override any Services Library operation. This is most often used to change the 
way the Service Library is initialized, to modify the main processing loop, or to add 
platform-specific implementations.
Overriding or Adding Operations and Classes 111



Where

Any Services Library modification has to be done on the target level; that is, in the 
Services Library itself and not in the model.

The most interesting operations that can be candidates for overriding are the 
following:

■ RTMain_targetStartup(), RTMain_targetShutdown()

These operations are typically overridden to initialize/cleanup drivers specific to 
the target environment, startup OS services (such as clock or timings), initialize 
specific libraries or structures that are needed by the Services Library, or initialize 
signal handlers.

■ RTPeerController_mainloop(), RTSoleController_mainloop()

This operation is typically overridden if you want a message handling strategy 
that is different than the default. For example you could perform regular sanity 
checks or audits, or receive message from other applications. 

How

In general, any operation in the Services Library can be overridden by placing an 
override version of the operation into the following subdirectory:

$RTS_HOME/src/target/<target>/<class>

The target/<target> base directory mirrors the $RTS_HOME/src directory. Thus it 
must have a directory for each class that has an overridden operation. When the 
library is built, existing files in directories in $RTS_HOME/src/target/<target> are 
used instead of the corresponding files in $RTS_HOME/src.For additional 
information, see Organization of the Services Library Source on page 89.

Tasks

In this example, we will override the RTCapsule_logMsg() operation by creating a 
new target configuration. You can also override for an existing target configuration 
but you will not be able to easily go back and forth between the original libraries and 
the customized versions.
112 Chapter 9 - Configuring and Customizing the Services Library



For this example we will assume that our current platform is:

SUN5T.sparc-gnu-2.8.1

To override the RTCapsule_logMsg() operation:

1 Choose a name for the new target. Typically, you append to the existing target 
name. In this example, let’s name the new target as follows:

SUN5NEWT

2 Create a new directory called $RTS_HOME/target/SUN5NEWT.

3 Create a new directory called $RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1

4 Create a new directory called $RTS_HOME/src/target/SUN5NEW/Capsule

5 Copy all the files and sub-directories from the original target and config 
directories to the new directories:

From $RTS_HOME/target/SUN5T to $RTS_HOME/target/SUN5NEWT

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to 
$RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1

From $RTS_HOME/src/target/SUN5 to $RTS_HOME/src/target/SUN5NEW

6 Copy the file that contains the logMsg() operation from the generic source 
directory to the new target source directory:

From $RTS_HOME/src/Capsule/logMsg.c to 
$RTS_HOME/src/target/SUN5NEW/Capsule/logMsg.c

7 Edit $RTS_HOME/src/target/SUN5NEW/Capsule/logMsg.c.

8 Build the new Services Library (see Building the Services Library on page 113).

9 Update components in model to use the new Services Library (see Updating a 
Component to use a Different Services Library on page 114)

Building the Services Library

Whenever you create a new libset or target, you have to build the new configuration 
of the Services Library. The Services Library is always built from the $RTS_HOME/src 
directory and the target for the make utility is the Platform Name (or configuration) 
(<target>.<libset>).
Building the Services Library 113



Assuming we are using a custom configured OSE Diab C compiler version 4.1a for the 
Motorola PowerPC platform, the name of our re-configured platform is 
OSE401T.ppc603-Diab-4.1a-Debug. 

To build this Services Library:

UNIX:

cd $ROSERT_HOME/C/TargetRTS/src

make CONFIG=OSE401T.ppc603-Diab-4.1a-Debug

Windows:

cd %ROSERT_HOME%\C\TargetRTS\src

nmake CONFIG=OSE401T.ppc603-Diab-4.1a-Debug

After rebuilding the Services Library, rebuild your Rational Rose RealTime models to 
link against the new Services Library libraries (see Updating a Component to use a 
Different Services Library on page 114).

Note:  If your new Services Library changed the debugging, logging, or Target 
Observability functionality, visibility into the model may be removed. Debugging the 
resulting model via the toolset may no longer be possible.

Updating a Component to use a Different Services Library

After you build a new Services Library, ensure that your components reference the 
new library. 

To update a component to use a different Services Library:

1 Open the Component Specification dialog.

2 On the C Compilation tab, click Select... .

3 A list displays the built libraries found in the current Services Library root 
($RTS_HOME) directory. If your library build was successful, it will appear in this 
list. 

4 Select your library and click OK.

5 Rebuild your model.
114 Chapter 9 - Configuring and Customizing the Services Library



10Model Properties 
Reference
Contents

This chapter is organized as follows:

■ Overview on page 115
■ Expanded Property Symbols on page 116
■ C Model Element Properties on page 117
■ C TargetRTS Properties on page 124
■ C Generation Properties on page 127
■ C Compilation Properties on page 130
■ C Executable Properties on page 134
■ C Library Properties on page 139
■ C External Library Properties on page 140

Overview

Using the C code generator, you can produce C source code from the information 
contained in a model. The code generated for each selected model component is a 
function of that component's specification and the C Language Add-in model 
properties. The model properties provide the language-specific information required 
to map your model to C. The C properties are grouped into the following property 
sets:

■ C Model Element Properties on page 117
■ C TargetRTS Properties on page 124
■ C Generation Properties on page 127
■ C Compilation Properties on page 130
■ C Executable Properties on page 134
■ C Library Properties on page 139
■ C External Library Properties on page 140

To facilitate the management of C code generation properties, use the property set 
mechanism. This mechanism establishes settings for each of the properties associated 
with a model element type. This allows you to create your own property sets, each 
new set having its own default values for any of the properties.
115



Generalization and Properties

Custom properties that are added to a model element, for example code generation 
properties, are not inherited when two model elements participate in a generalization 
relationship. For example, if class A is the parent and B the child, and class A has 
overridden the default value of the C::ClassKind property to typedef, this property in 
class B will remain set to the default. For this reason it is important that you use 
property sets to define default values that can be re-used in different model elements.

Expanded Property Symbols

When the C code generator parses the properties, it expands a set of pre-defined 
symbols. To delimit these symbols within a composite property string, use curly 
braces "{" and "}". For example, the Class::C::ConstructFunctionName property is 
defined as:

${name}_construct

If the class name is NewClass1, this property will be expanded by the code generator 
to:

NewClass1_construct

The following symbols are recognized by the C Code generator and are expanded:

If you enter: Gets expanded to:

${name}

or $name

The name of the model element on which the property is 
defined.

$@ The full directory path to where the owning model file is saved. 
The model file name is not included when the symbol is 
expanded.

$defaultMakeCommand On Windows expands to nmake and on all others to make.

$(MACRO) $(MACRO) This may be useful in some Makefile fields so that 
Make can expand MACRO.

$$ $ (a single dollar sign) This may be useful for some makefile 
fields such as CodeGenMakeInsert or CompileCommand.

$VARIABLE This is expanded to whatever the toolset’s Path Map is 
defined for VARIABLE. If no such Path Map variable 
exists, this is evaluated to nothing.
116 Chapter 10 - Model Properties Reference



Environment Variables and Pathmap Symbols

You can use environment variables and pathmap symbols in certain property fields. 
Environment variables are not interpreted by the code generator, instead they are 
passed as is into the generated files. Naturally, environment variables do not make 
sense in .c and .h files; however, they do in makefiles. For this reason we encourage 
that environment variables be primarily used with components. For example, it is 
very common to define inclusion paths as an environment variable as opposed to 
hard-coded values.

Pathmap symbols are expanded by the code generator into the generated source code. 
So these can also be used to avoid having to hard code paths into a component.

Note:  The Rose RealTime pathmap symbol is $ not $&.

The following properties are usually defined using environment variables or pathmap 
symbols:

■ InclusionPaths (Component, C Compilation) on page 133
■ TargetServicesLibrary (Component, C Compilation) on page 133
■ InclusionPaths (Component, C External Library) on page 141
■ Libraries (Component, C External Library) on page 141
■ UserLibraries (Component, C Executable) on page 138
■ UserObjectFiles (Component, C Executable) on page 138

Note:  Other properties can be defined with environment variables, but these are the 
ones you will have to modify the most often.

C Model Element Properties

This group of model properties is used to control the general aspects of the C 
language. For example, several C properties applying to classes are used to control the 
generation of operations, and class kinds. The following lists contain a summary of 
the C properties grouped by model the element to which they are associated. 
C Model Element Properties 117



Class

■ GenerateClass (Class, C) on page 118 
■ ClassKind (Class, C) on page 119
■ ImplementationType (Class, C) on page 119
■ ConstructFunctionName (Class, C) on page 119
■ GlobalPrefix(Class, C) on page 120
■ HeaderPreface (Class, C) on page 120
■ HeaderEnding (Class, C) on page 120
■ ImplementationPreface (Class, C) on page 120
■ ImplementationEnding (Class, C) on page 121

Attribute

■ AttributeKind (Attribute, C) on page 121
■ InitializerKind (Attribute, C)

Association end

■ InitializerKind (Role, C) on page 121
■ InitialValue (Role, C) on page 122

Capsule

■ GenerateConstructFunction (Capsule, C) on page 122
■ GlobalPrefix (Capsule, C) on page 122
■ HeaderPreface (Capsule, C) on page 122
■ HeaderEnding (Capsule, C) on page 122
■ ImplementationPreface (Capsule, C) on page 123
■ ImplementationEnding (Capsule, C) on page 123

Dependency

■ KindInHeader (Uses, C) on page 123
■ KindInImplementation (Uses, C) on page 123

GenerateClass (Class, C)

Determines if a class is generated by the code generator. If GenerateClass is not 
checked, the C code generator does not generate a definition for this class. This should 
be used when modeling code that has already been implemented external to the tool, 
and hence does not need to be generated. 
118 Chapter 10 - Model Properties Reference



For example, it is common to create a class within the toolset which is a place-holder 
for an external data type. This allows you to specify the data type in a protocol and 
use it for modeling purposes. If you leave the GenerateDescriptor (Class, C 
TargetRTS) property set, a type descriptor can be generated even if the class is not.

Even if the GenerateClass property is not checked you should set the ClassKind 
(Class, C) so that the C code generator can generate forward references when needed.

ClassKind (Class, C)

Defines the kind of C construct generated for the class element. Possible values are: 
struct, union, typedef, none. By default classes are generated as a struct.

If ClassKind = union, this will generate a C union. 

Note:  Type descriptors cannot be generated for unions. In addition, default values of 
all possibilities of the union and constructor operations are not used with this type of 
class.

If ClassKind = typedef, the ImplementationType (Class, C) property is used to 
specify the type. 

If ClassKind set to none is used for backwards compatibility. If you don’t want a class 
to be generated use the GenerateClass (Class, C) property to turn off code generation.

ImplementationType (Class, C)

Provides the type for the typedef when the ClassKind (Class, C) property is set to 
typedef.

Example:

typedef char MyString[30];

Would be generated by creating a class named MyString, setting the ClassKind to 
typedef, and setting the ImplementationType to char[30].

ConstructFunctionName (Class, C)

Use this property to configure the name of the constructor function for the generated 
class. The default name for the construct function is ${name}_construct, where 
${name} is the name of the class. For example, if your class is called ConfigData then 
the generated function would be called ConfigData_construct.
C Model Element Properties 119



If this property is blank, a constructor function is not generated.

The default constructor function is generated to initialize each attribute defined in the 
class. Each attribute is initialized with its initial value, or by calling the construct 
function for the attribute. This is configurable for each attribute by using the 
InitializerKind (Attribute, C) property.

GlobalPrefix(Class, C)

This is a global prefix by which you wish to prefix all generated class operations. The 
default is empty.

Adding a global prefix will minimize conflicts with operations defined on other 
classes and make your detail code more intuitive. A common value for this property is 
${name}_. This will prefix each operation with the name of the class on which it is 
defined. 

HeaderPreface (Class, C)

Specifies the text that will appear before the declaration of the class in the header file.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

HeaderEnding (Class, C)

Specifies the text that will appear after the declaration of the class in the header file.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

ImplementationPreface (Class, C)

Specifies the text that will appear before the class implementation.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.
120 Chapter 10 - Model Properties Reference



ImplementationEnding (Class, C)

Specifies the text that will appear after the class implementation.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

AttributeKind (Attribute, C)

Specifies whether the attribute is generated as a field of the generated struct, or as a 
#define defined within the file generated for the class. Options are normal and 
constant.

If set to constant, a #define will be generated using the name of the attribute as the 
name of the macro and the initial value as the value.

If an attribute is set to constant and is to be used in detail level code, attribute array 
sizes, or other common C usages, ensure that there is a dependency added between 
the class containing the definition and the elements which use the definitions. Also 
ensure that the dependency KindInHeader (Uses, C) property is set to inclusion.

InitializerKind (Attribute, C)

Use this property to configure how the attribute is initialized. Possible values are 
assignment and call construct function. When the owner class generates and uses a 
construct function, then the construct will try and initialize its attributes however it 
can. 

If InitializerKind = assignment then in the owners construct the attribute will be 
initialized with the attributes initial value (Attribute::Detail Page::Initial value).

If InitializerKind = call contruct function then the classes’ construct function will call 
the attributes’ construct function.

InitializerKind (Role, C)

Use this property to configure how the generated attribute for the association end is 
initialized. The values and usage of this property is described in InitializerKind 
(Attribute, C).
C Model Element Properties 121



InitialValue (Role, C)

If the association end (Role) InitializerKind (Role, C) property is set to assignment 
then this value is used to initialize the generated attribute.

GenerateConstructFunction (Capsule, C)

Specifies if a construct function is to be generated for the capsule to initialize all of its 
attributes with either their initial values or by calling the attributes’ construct 
functions.

GlobalPrefix (Capsule, C)

This text field represents the string that all operations will be prefixed with. By default 
this is blank. A good value for this is ${name}_, as this will prefix all functions that 
serve as operations with the name of the capsule followed by an underscore then the 
operation name. This is the convention used in the C Services Library.

HeaderPreface (Capsule, C)

Specifies a block of C code to include in the generated code of the capsule class 
header, after any generated #include's and before the generated capsule declarations. 
Code can include: comments, #define's, #include's, declarations, and so on.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

HeaderEnding (Capsule, C)

Specifies a block of C code to be included at the end of the generated code for the 
capsule class header. The HeaderEnding is generated after the generated capsule 
declarations.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.
122 Chapter 10 - Model Properties Reference



ImplementationPreface (Capsule, C)

Specifies a block of C code to include in the generated code of the capsule class 
implementation, after any generated #include's and before the generated capsule 
definitions. Code can include: comments, #define's, #include's, declarations, and so 
on.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

ImplementationEnding (Capsule, C)

Specifies a block of C code to be included at the end of the generated code for the 
capsule class implementation. The ImplementationEnding is generated after the 
generated capsule definitions.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

KindInHeader (Uses, C)

Specifies the representation of the dependency in the header file of the source class. 

The options are

■ inclusion - include the header file for the target class

■ forward reference - declare a forward reference to the target class

■ none - dependency is not generated in header

KindInImplementation (Uses, C)

Specifies the representation of the dependency in the implementation file of the 
source class.

The options are:

■ inclusion - include the header file for the target class

■ forward reference - declare a forward reference to the target class

■ none - dependency is not generated in implementation
C Model Element Properties 123



C TargetRTS Properties

This group of model properties is used to control the C Service Library aspects of the 
code generation. For example, several C Target RTS properties applying to classes are 
used to control the generation of specialized classes and structures which describe the 
class to the Services Library. The following lists contain a summary of the C TargetRTS 
properties grouped by model element to which they are associated.

Class

■ GenerateDescriptor (Class, C TargetRTS) on page 124
■ Version (Class, C TargetRTS) on page 125
■ InitFunctionBody (Class, C TargetRTS) on page 125
■ CopyFunctionBody (Class, C TargetRTS) on page 125
■ DestroyFunctionBody (Class, C TargetRTS) on page 125
■ DecodeFunctionBody (Class, C TargetRTS)
■ EncodeFunctionBody (Class, C TargetRTS) on page 126

Attribute

■ GenerateDescriptor (Attribute, C TargetRTS) on page 126
■ TypeDescriptor (Attribute, C TargetRTS) on page 126
■ NumElementsFunctionBody (Attribute, C TargetRTS) on page 126

AssociationEnd

■ GenerateDescriptor (Role, C TargetRTS) on page 127
■ TypeDescriptor (Role, C TargetRTS) on page 127
■ NumElementsFunctionBody (Role, C TargetRTS) on page 127

GenerateDescriptor (Class, C TargetRTS)

If selected, the C code generator will create a type descriptor for the class. The type 
descriptor will allow marshalling (encode/decode) of the class. The type descriptor 
contains information that the C Services Library requires to initialize, copy, destroy, 
encode, and decode data types. If the GenerateDescriptor property is not selected, the 
data type cannot be sent by value in messages and will not be observable or injected.
124 Chapter 10 - Model Properties Reference



Version (Class, C TargetRTS)

Specifies the version of the data type.

InitFunctionBody (Class, C TargetRTS)

Specifies the body of a function to initialize a data type. By default the C code 
generator generates a function which calls RTstruct_init.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

CopyFunctionBody (Class, C TargetRTS)

Specifies the body of a function to copy a data type. By default the C code generator 
generates a function which calls the data types copy constructor.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

DestroyFunctionBody (Class, C TargetRTS)

Specifies the body of a function to destroy a data type. By default the C code generator 
calls the data types default constructor.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

DecodeFunctionBody (Class, C TargetRTS)

Specifies the body of a function to decode a data type from a stream of bytes. By 
default the C code generator uses a built-in function. If the C Services Library does not 
know about a data type, because it may be externally defined, or have private fields, 
then you can write your own decoder. The function is passed a RTDecoding object 
from which the stream of bytes can be retrieved and then used to create a new object 
of this type. The decode function target argument is an already allocated object that 
should be initialized with the new data.
C TargetRTS Properties 125



This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

EncodeFunctionBody (Class, C TargetRTS)

Specifies the body of a function to encode a data type to a stream of bytes. By default 
the C code generator uses a built-in function. If the C Services Library does not know 
about a data type, because it may be externally defined, or have private fields, then 
you can write your own encoder. The function is passed a RTEncoding object from 
which the stream of bytes should be passed from the object that is being encoded. The 
encode function source argument is an already allocated object that is to be encoded.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

GenerateDescriptor (Attribute, C TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a descriptor is not 
generated, the C Services Library will not be able to encode/decode the attribute.

TypeDescriptor (Attribute, C TargetRTS)

Specifies an explicit descriptor for the attribute. Normally, the code generator will 
determine which descriptor should be used for the attribute, but in some cases, you 
may want to override this.

NumElementsFunctionBody (Attribute, C TargetRTS)

If the attribute is a pointer to an object, this pointer may point to one or many objects. 
The NumElementsFunctionBody property provides the body of the function which 
calculates the number of objects the pointer points to. If the body is empty, the pointer 
is assumed to point to only one object.

This function is required to make attributes which are pointers to arrays deep copied 
and observable in the execution monitors.
126 Chapter 10 - Model Properties Reference



This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

GenerateDescriptor (Role, C TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a descriptor is not 
generated the C Services Library will not be able to encode/decode the attribute.

TypeDescriptor (Role, C TargetRTS)

Specifies an explicit descriptor for the attribute. Normally the code generator will 
determine which descriptor should be used for the attribute, but in some cases you 
may want to override this.

NumElementsFunctionBody (Role, C TargetRTS)

If the association end is generated as a pointer, the pointer may point to one or many 
objects. For additional information, see NumElementsFunctionBody (Attribute, C 
TargetRTS) on page 126.

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

C Generation Properties

Code generation properties are used to configure the way in which a component is 
generated to C. These properties apply equally to Executable and Library component 
types.

Component

■ OutputDirectory (Component, C Generation) on page 128
■ CodeGenDirName (Component, C Generation) on page 128
■ ComponentUnitName (Component, C Generation) on page 128
■ CommonPreface (Component, C Generation) on page 128
■ CodeGenMakeType (Component, C Generation) on page 129
C Generation Properties 127



■ CodeGenMakeCommand (Component, C Generation) on page 129
■ CodeGenMakeArguments (Component, C Generation) on page 130
■ CodeGenMakeInsert (Component, C Generation) on page 130
■ CodeSyncEnabled (Component, C Generation) on page 130

OutputDirectory (Component, C Generation)

The output path can be changed to allow you to set the directory into which the 
generated files will be written. By default this property is set to $@/$name where $@ is 
the model file directory, and $name is the name of the component.

CodeGenDirName (Component, C Generation)

Specifies the name of the directory that will be created to hold the generated C code 
for the component elements. This directory will be generated as a subdirectory of the 
output directory identified in the OutputDirectory (Component, C Generation).

ComponentUnitName (Component, C Generation)

Specifies the name of the source files generated for the component itself.

CommonPreface (Component, C Generation)

Component level inclusion files are entered as inclusions in this list. Any number can 
be specified and are entered independently of any directory search list. The list of 
directories to search for these inclusions is entered through InclusionPaths 
(Component, C Compilation). Inclusions items can be added and deleted as required. 

The scope of inclusions is system level. For example, if all elements being built by this 
component make use of a set of math routines, the math header file can be specified 
here instead of on each individual element. In addition, the inclusions are declared in 
exactly the sequence they appear in the list (top to bottom). One way this ordering can 
be useful is by having normal system include files specified before user includes. 
Specifying system includes in this way can aid visibility and ensure completeness.

Note:  The compiler you are using may search some paths automatically; for example, 
a compiler hosted on UNIX often searches /usr/include. 
128 Chapter 10 - Model Properties Reference



Generally, inclusions can be declared at both the component and class level. The 
former specified in this inclusion list, the latter specified through the Class 
Specification dialog. In either case, the directory search list comes from the 
InclusionPaths (Component, C Compilation) property.

You can add class level inclusions via the ImplementationPreface (Class, C) and 
HeaderPreface (Class, C) properties on classes and capsules. 

Both inclusion types get dropped into the global space. However, the only semantic 
difference between them is the scope guarantee: the component-level inclusions are 
guaranteed to have all classes in their scope, while the class-level inclusions guarantee 
that only that classes and its subclasses will have the declared inclusion in scope (that 
is, visible). These includes are actually in the global space regardless of type, so we 
recommend that you restrict usage of these inclusions to external and type 
declarations; otherwise, multiple definitions are reported at link time. 

This field may also be modified from the generated code and captured into the model 
using the Code Sync feature. For more information, see Using Code Sync to Change 
Generated Code in the Toolset Guide.

CodeGenMakeType (Component, C Generation)

Can be one of <default>, Unix_make, MS_nmake, ClearCase_clearmake or 
Gnu_make. This influences the format of the generated makefiles so they conform to 
differences in the make variants. For example, if using nmake on Windows, then 
MS_nmake must be selected as the make type.

Leaving the entry as <default> allows the code generator to automatically select the 
make type based on the platform on which the component is being generated. Either 
Unix_make (for UNIX) or MS_nmake (for Windows) is substituted for <default>. If 
you require another make type, then explicitly specify the make type in this field. 

CodeGenMakeCommand (Component, C Generation)

When a model is built, Rational Rose RealTime generates the model files then invokes 
the make utility to generate the source code from the model files. Code generation is, 
therefore, external. Make handles incremental code generation by using the 
timestamps on the toolset-generated model files.

The name of the make utility being used to control the code generation. The make 
name must be the exact name of the make command. By default the default make 
command is $defaultMakeCommand which allows the code generator to 
C Generation Properties 129



automatically select the make type based on the platform on which the component is 
being generated. Either make (for UNIX) or nmake (for Windows) is substituted. If 
you require a different make utility, then explicitly specify the make type in this field. 

CodeGenMakeArguments (Component, C Generation)

Any flags supported to be passed to the make utility.

CodeGenMakeInsert (Component, C Generation)

The overrides file is a makefile fragment which is included in the compilation 
makefile that allows for the addition of user-defined dependencies, compile, and link 
options.

CodeSyncEnabled (Component, C Generation)

The flag which is used to enable or disable Code Sync for a component, from the 
component’s Generation tab.

C Compilation Properties

Compilation properties are used to configure the way in which the generated source 
files for a component are compiled. These properties apply equally to Executable and 
Library component types. Both executables and libraries require compilation.

Component

■ CompilationMakeType (Component, C Compilation) on page 131
■ CompilationMakeCommand (Component, C Compilation) on page 131
■ CompilationMakeArguments (Component, C Compilation) on page 131
■ CompilationMakeInsert (Component, C Compilation) on page 131
■ CompileCommand (Component, C Compilation) on page 132
■ CompileArguments (Component, C Compilation) on page 133
■ InclusionPaths (Component, C Compilation)
■ TargetServicesLibrary (Component, C Compilation) on page 133
■ TargetConfiguration (Component, C Compilation) on page 134
130 Chapter 10 - Model Properties Reference



CompilationMakeType (Component, C Compilation)

Can be one of <default>, Unix_make, MS_nmake, ClearCase_clearmake or 
Gnu_make. This influences the format of the generated makefiles so they conform to 
differences in the make variants. For example, if using nmake on Windows, then 
MS_nmake must be selected as the make type.

Leaving the entry as <default> allows the code generator to automatically select the 
make type based on the platform on which the component is being generated. Either 
Unix_make (for UNIX) or MS_nmake (for Windows) is substituted for <default>. If 
you require another make type, explicitly specify the make type in this field. 

CompilationMakeCommand (Component, C Compilation)

When a model is built, Rational Rose RealTime generates the model files then invokes 
the make utility to generate the source code from the model files. Code generation is, 
therefore, external. Make handles incremental code generation by using the 
timestamps on the toolset-generated model files.

The make name must be the exact name of the make command. The make name must 
be the exact name of the make command. By default the default make command is 
$defaultMakeCommand which allows the code generator to automatically select the 
make type based on the platform on which the component is being generated. Either 
make (for UNIX) or nmake (for Windows) will be substituted. If you require a 
different make utility, explicitly specify the make type in this field.

CompilationMakeArguments (Component, C Compilation)

Any flags supported to be passed to the make utility.

CompilationMakeInsert (Component, C Compilation)

The overrides file is a makefile fragment which is included in the compilation 
makefile that allows for the addition of user-defined dependencies, compile, and link 
options.
C Compilation Properties 131



To quickly add object or library files to the link line of a component, add the object file 
or library to the link flags field. 

Note:  When quickly adding object or library files, no dependency is automatically 
generated for the object or library files. This means that if the object or library files 
change, it will not automatically cause your component to become out-of-date, and 
require re-compiling.

Use the overrides makefile to add these dependencies by using the USER_DEPS and 
USER_OBJS macros within your makefile. 

CompileCommand (Component, C Compilation)

The CompileCommand property replaces the pre-configured compiler shell 
command defined in libset.mk. You would normally leave this entry (for example, 
usually set to $(CC) ) and use the default compiler specified in the libset makefile.

When building your model, a compiler compiles the generated code and a linker will 
link the executable. By default, when you specify the Service Library, you identify the 
make files used to build the component, and the tools are specified in the 
makefile called:

$ROSERT_HOME/RTSType/TargetLibrary/libset/Library/libset.mk 

While you can override in the component, the compiler and/or the linker used, the 
new tools used should be compatible with the ones being overridden. Typically, you 
want to override the compiler/linker to:

■ Perform Preprocessing: 

For example, instead of invoking the compiler straight away, you can invoke a 
script that will perform some preprocessing, as well as compiling (such as running 
the source file through lint before invoking the compiler). 

■ Qualify the path to the compiler/linker because they are not in the current path: 

If you want to choose a completely different type of compiler (for example, gnu vs. 
Greenhills), or a different release of a compiler, change the Service Library 
specification instead. The make files used will pass flags understood by the 
compiler/linker. As well, the pre-compiled Service Library to be linked will have 
been compiled with the compiler you are using.
132 Chapter 10 - Model Properties Reference



CompileArguments (Component, C Compilation)

Any flags supported by your compiler utility. This is where you would specify a 
parallel make flag to increase compilation efficiency.

InclusionPaths (Component, C Compilation)

Any number of entries can appear as inclusion path items. As a group they comprise 
the directory search set used by the compiler to find user-specified inclusion files. 
They are searched in the order specified in the list.

Note:  Enclose directory names with embedded spaces in double quotes (").

Avoid adding unnecessary inclusion paths to this list. The number of directories that 
need to be searched for a file can slow down the compilation process because of the 
file access required for searching all the directories.

We recommend that shell/environment variables be used when specifying the 
inclusion paths. This way other team members can configure their environment 
without having to modify the component.

Note:  Pathmap variables, those defined within the toolset, cannot be used to specify 
indirect inclusion paths because they are not substituted into the generated 
makefiles. ONLY use environment/shell variables because they will be visible to the 
makefiles (which are built outside the toolset) when the build occurs.

TargetServicesLibrary (Component, C Compilation)

The text field specifies the path to the root directory for the specific Services Library 
desired. This can be any valid directory name. This name must be specified as a full 
path to the root directory of the Services Library root.

The Target Services directory contains all the scripts and programs to generate and 
compile a component. Hence, if this directory is not configured correctly, you won't be 
able to generate or compile. You are likely to see the "Name not found" or "Build 
Failed" error appear in the Build Log window if it is incorrectly configured.

By default, this field references the Services Library in your Rational Rose RealTime 
home directory $ROSERT_HOME/C/TargetRTS.
C Compilation Properties 133



TargetConfiguration (Component, C Compilation)

This property is used to uniquely identify the configuration of the Services Library 
used to compile and link a component. Click the Select... button on the Component 
Specification dialog. Select a Target Configuration from the list. The list was created 
from the entries found in $ROSERT_HOME/$RTS_HOME/lib. The configuration 
name is composed of three parts: os.processor-compiler-version. For example, the 
configuration for a WindowsNT 4.0 multi-threaded platform with an x86 processor 
built with version 6.0 of Microsoft Visual C++ would be:

NT40T.x86-VisualC++-6.0

If you would like to see the valid configuration names, look at the directories located 
in the lib subdirectory of the Services Library root. If you build different 
configurations of the Services Library the new configuration will appear in this list.

C Executable Properties

This group of model properties controls the aspects of generating an executable from 
a C model. C Executable properties apply only to components which of type C 
Executable. The following lists contain a summary of the C Executable properties 
grouped by the model element to which they are associated.

Component

■ TopCapsule (Component, C Executable) on page 135
■ PhysicalThreads (Component, C Executable) on page 136
■ ExecutableName (Component, C Executable) on page 137
■ DefaultArguments (Component, C Executable) on page 137
■ LinkCommand (Component, C Executable) on page 138
■ LinkArguments (Component, C Executable) on page 138
■ UserLibraries (Component, C Executable) on page 138
■ UserObjectFiles (Component, C Executable) on page 138

Capsule

■ Capsule To Logical Thread Mapping (Capsule, C Executable) on page 135
134 Chapter 10 - Model Properties Reference



Capsule To Logical Thread Mapping (Capsule, C Executable)

In C, logical threads are defined in the Logical View and physical threads are defined 
in the Component View. Individual capsule instances can be mapped to any logical 
thread and logical threads can be mapped to any physical thread.

Logical threads may be mapped to different actual physical thread configurations for 
generating the executable implementation. However, the model entities are defined 
purely in terms of logical threads. That is, in the design, the model entities get 
allocated to a particular logical thread. Only at implementation time does the designer 
have to worry about mapping these to physical threads on the target system.

The definition and mapping of capsule roles to logical threads is done on the top level 
capsule of your C model. This property is edited with an advanced property editor 
which provides a graphical interface. To open the dialog, click the Edit... button to the 
right of the property name. This dialog automatically shows all the contained capsule 
roles of the current capsule. If the Mapped logical thread field is set to <default>, the 
capsule role will run on the same logical thread as its parent. Thus, assigning Device2 
to LogThread2, shown in the example dialog above, will cause, unless overridden in a 
contained capsule, all contained capsules to be assigned to the same thread as its 
containing capsule.

You can define capsule to logical thread mappings on any capsule, however when 
mapping logical threads to physical threads on a component, the component will only 
look at the logical threads defined on the top level capsule.

TopCapsule (Component, C Executable)

Specifies the top capsule to compile for this component. The top capsule defines the 
compilation closure for the component. All classes, including capsule and protocol 
classes referenced directly or indirectly by the top capsule will be compiled as part of 
the component. Dependencies are verified before every component build, and are 
added to this list before the build. The top capsule also defines the default executable 
name to be produced by the compilation.

This property uses an advanced property editor. When you click the Select... button, a 
dialog shows a list of all capsules referenced by the component. Select the desired top 
level capsule, and click OK.
C Executable Properties 135



PhysicalThreads (Component, C Executable)

For some configurations (platforms), the Services Library supports multiple threads. 
By default, all logical threads are assigned to a pre-defined thread called MainThread. 
The top-level capsule is always placed on the MainThread. The C Services Library is 
responsible for allocating all capsule instance to the appropriate threads as defined by 
the thread’s configuration.

This property is modified using a property editor which provides a graphical 
interface. To open the dialog, click the Edit... button to the right of the property name. 

The dialog automatically populates the list with logical threads defined on the capsule 
assigned as the top-level capsule for this component. 

The physical threads list contains the list of physical threads that are defined for this 
component. Depending on the implementation of threads provided by the Target 
Real-Time Operating System, each physical thread is a light-weight, time-sliceable 
process, running in a shared address space with the Services system threads and the 
other physical threads in the model.

By default, every configuration contains the following physical thread:

■ MainThread - here all of the capsules in your model execute by default. If you 
want capsules to execute in a thread other than the MainThread, you must define 
additional physical threads. 

You can create new physical threads, and either drag and drop logical threads to other 
physical threads, or use the Logical threads list at the bottom of the dialog to assign 
the logical threads to physical threads.

Physical Thread Properties

For each physical thread you define, you can also modify the following thread 
properties:

Note:  Although stack size is configurable, for some target operating systems, this 
stack size is effective at the time the main thread is created because on some targets, 
the OS creates the main thread with a default thread size, and this thread size cannot 

Stack Size Size (in bytes) of the call stack allocated for this thread. By default 
is set to 20KB.

Priority The priority at which this thread will run.

Free message queue The number of messages allocated for inter-capsule messaging on 
this thread.
136 Chapter 10 - Model Properties Reference



be modified at run-time. For these situations, the desired stack size for the main 
thread can be set by configuring the OS kernel, or by the way in which the executable 
is spawned on the target.

Using Physical Thread Trade-offs

Before choosing to create another physical thread in your model, consider the 
following costs:

■ memory overhead for the thread stack space, and control objects created by the 
C Services Library required for each physical thread.

■ processing overhead; inter-thread message sending is generally an order of 
magnitude slower that intra-thread messaging.

ExecutableName (Component, C Executable)

You can specify the name, or a name with an absolute path, of the executable created 
as a result of the component being built. If left unspecified, the executable name is set 
to the name of the component's top-level capsule.

If an absolute path is not used in the executable name, the executable will be located 
in the following component build output directory:

<output_dir>/build

DefaultArguments (Component, C Executable)

Some configurations (platforms) do not allow the passing of command line 
arguments to an executable at load time (namely, on some real-time operating 
systems). For this case, the default arguments provides a mechanism for getting 
execution arguments into the executable. You can use RTMain_argv() to retrieve any 
passed command line argument within your model. Enter a comma-separated list of 
quoted arguments into this field.For example:

"134.434.344.4","barneyht","delay=98" 

The default arguments field is only used for targets that cannot accept command line 
arguments. Targets that accept command line arguments will ignore the content of 
this field.
C Executable Properties 137



LinkCommand (Component, C Executable)

The linker override field replaces the pre-configured linker shell command defined in 
the file libset.mk. You would normally leave this entry and use the default linker 
specified in the libset makefile.

LinkArguments (Component, C Executable)

Any flags supported by your linker utility.

UserLibraries (Component, C Executable)

Specifies libraries that are passed to the linker. You have to specify the library prefix, 
path, and extension correctly. The code generator does not modify these library 
names. For example, you can either add libraries on separate lines or separated by a 
space on the same line:

$@/userfiles.lib

$PROJECTX/lib/userfiles.lib

Note:  Enclose pathnames with spaces in double quotes ‘”’.

This property is intended for backwards compatibility. We recommend that you 
model externally created libraries with external library components instead of adding 
them to this property. This will allow libraries to be visible in the toolset and more 
easily re-used with different executable components.

UserObjectFiles (Component, C Executable)

Specifies object files that are passed to the linker. You have to specify the library 
prefix, path, and extension correctly. The code generator does not modify these object 
names. For example:

$@/userfiles.o

$PROJECTX/lib/userfiles.o

Note:  Enclose pathnames with spaces in double quotes ‘”’.

This property is intended for backwards compatibility. It would be more flexible to 
create libraries for object files and then create external library components to model 
externally created libraries. This will allow libraries to be visible in the toolset and 
more easily re-used with different executable components.
138 Chapter 10 - Model Properties Reference



C Library Properties

This group of model properties is used to control the aspects of generating a library 
from a C model. C Library properties apply only to components which are of type C 
Library. This page contains a summary of the C Library properties. To re-use libraries 
that have already been built within a Rational Rose RealTime model, use an External 
Library component.

Component

■ LibraryName (Component, C Library) on page 139
■ BuildLibraryCommand (Component, C Library) on page 139
■ BuildLibraryArguments (Component, C Library) on page 140

LibraryName (Component, C Library)

The name of the generated library file. By default this name is 
${LIB_PFX}$name${LIB_EXT}. The library file is written to a directory called build 
which is located in the directory specified by the OutputDirectory (Component, C 
Generation) property.

LIB_PFX is defined as "lib" and can be configured. You can change the default setting 
for this make macro by modifying its definition in either of the following files:

$RTS_HOME/libset/default.mk 

$RTS_HOME/libset/<libset name>/libset.mk

LIB_EXT is defined as the default library extension for your configuration (platform). 
You can change the default setting for this make macro by modifying the following 
file:

$RTS_HOME/libset/<libset name>/libset.mk

Note:  $RTS_HOME is the location of your Services Library root directory. For for 
more information about the Services Library directory, see TargetServicesLibrary 
(Component, C Compilation).

BuildLibraryCommand (Component, C Library)

Specifies the archiving command. You would normally leave this entry and use the 
pre-configured linker shell command defined in libset.mk.
C Library Properties 139



BuildLibraryArguments (Component, C Library)

Any flags supported by your archive utility. They are passed as is to the archiver.

C External Library Properties

This group of model properties is used to control the aspects of generating the 
makefile fragments which allow pre-built libraries to be re-used within a C 
Executable. C External Library properties apply only to components which of type C 
External Library.

Component

■ GenerateClassInclusions (Component, C External Library) on page 140
■ CodeGenDirName (Component, C External Library) on page 140
■ InclusionPaths (Component, C External Library) on page 141
■ Libraries (Component, C External Library) on page 141

GenerateClassInclusions (Component, C External Library)

Ensure that this property is not set if you do not want inclusions generated in classes 
and capsules that use the elements referenced by the external library. This is useful if 
the inclusion is actually provided somewhere else in the model, or in an external file. 
Typically, this property should remain set. 

CodeGenDirName (Component, C External Library)

This property is only required if GenerateClassInclusions (Component, C External 
Library) is set and the external library represents a library build from the toolset. This 
is the prefix directory for the generated source code. This should be set to the same 
value as CodeGenDirName (Component, C Generation) for the library component 
that was used to create the library to which this external library references. 

Having this prefix ensures that all inclusions generated for model elements that 
reference elements in the external library are prefixed with this value. This will reduce 
the chance of having inclusion conflicts. For example if this property is set to rtg, then 
inclusions are generated as: 

#include <rtg/foo.h> 
140 Chapter 10 - Model Properties Reference



InclusionPaths (Component, C External Library)

Specifies the location of the definitions for the external library. Components which 
reference this external library will automatically include the definitions header file. 

$@/include 

$PROJECTX/include 

$@/ALibraryComponent/src 

It is recommended that you use pathmap symbols or environment variables for 
pathnames in this property. See Environment variables and pathmap symbols. 

If ComputeDependencies is set to Yes, then the make depends utility is used to 
calculate dependencies in that directory and the object file for the model becomes 
dependent on the inclusion files in this directory that it needs. 

Note:  We recommend that you use environment variables instead of hard-coded 
paths. Alternatively, you can use the pre-defined code gen variables, such as $@. 
Environment variables are recongnized by the make utility.

Libraries (Component, C External Library)

Specifies the location and names of the libraries that this external component 
represents. This libraries listed in this field are added to the link line for any 
executable component that references this external library. You have to specify the 
complete path and filename. For example: 

On UNIX: 

/home/projectX/lib/classes.a 

$@/lib/classes.a 

$PROJECTX/lib/classes.a 

-L@/lib 

-lclasses 

On Windows: 

$@/lib/classes.lib 

C:\local\projects\ProjectX\lib\classes.lib 
C External Library Properties 141



It is recommended that you use pathmap symbols or environment variables for 
pathnames in this property. See Environment Variables and Pathmap Symbols on page 117. 

If GenerateDependencies is set to Yes, the executable for the model becomes 
dependent on the library files. You must set Generate Dependencies to False for any 
entries which are directories (-L) or prefixed libraries (-lmath). 
142 Chapter 10 - Model Properties Reference



11Services Library API 
Reference
Contents

This chapter is organized as follows:

■ Overview on page 143
■ RTCapsule on page 144
■ RTController on page 147
■ RTLog on page 152
■ RTMessage on page 154
■ RTObject_class on page 158
■ RTPeerController on page 159
■ RTPort on page 160
■ RTPriority on page 171
■ RTSoleController on page 172
■ RTSignal on page 172
■ RTTimerId on page 172
■ RTTimespec on page 173

Overview

The C Services Library Class Reference is a reference to the structures and abstract 
data types that you use within the detailed code of a capsule to access the services 
provided by the C Services Library.

In the alphabetical listing section, each class description includes a member summary 
by category, followed by alphabetical listings of operations and attributes. This 
reference does not describe private or restricted operations and attributes from the 
Services Library. Some features and classes in the Services Library are internal to the 
library itself and thus are not supported as interfaces into a users application.

For each of the classes listed in this reference, only the operations and attributes 
explicitly detailed in this chapter represent the supported interface to the C Services 
Library. 
143



Minimally Configured Services Library

If you have reconfigured the Services Library which has resulted in the removal of 
functionality from the library, some functions of the interfaces defined in this API 
may no longer be available in the minimally configured Services Library. For 
details on configuring the Services Library refer to the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.In addition, the functions 
described in this section refer to the pre-processor macros on which they depend.

RTCapsule

Every capsule - when generated as C code - is a subclass of RTCapsule; thus, the first 
field of every generated capsule’s instance data is a RTCapsule named std. In any 
user code where capsule instance data exists through the this pointer, one can access a 
pointer to the RTCapsule information in the following ways:

(RTCapsule *)this /* or */

&this->std 

This common base class for all capsules defines attributes and operations which 
allows the Services Library to communicate with the running capsule instances.

Since all detail level code added to a capsule class is generated as part of a capsule 
class, the detail level code has direct access to some useful attributes and operations 
that are defined on RTCapsule. Under the Rational Rose RealTime paradigm, you 
should only be calling the operations of RTCapsule or using attributes that are 
defined below:

Note:  The attributes and operations on RTActor are private. One capsule may not 
manipulate another capsule’s attributes.

Attributes

msg and 
RTCapsule_getMsg

Contains a pointer to the current message which triggered a 
transition. Neither it, nor the object is points to, should be modified.

rts and 
RTCapsule_context

Contains a pointer to the controller for the physical thread on which a 
capsule instance is executing.
144 Chapter 11 - Services Library API Reference



Operations

msg and RTCapsule_getMsg

const RTMessage * msg;

const RTMessage * RTCapsule_getMsg( const RTCapsule * );

Remarks

Every capsule class has an attribute msg which contains a pointer to the current 
message delivered to a capsule instance. This attribute can be used within transition 
detail level code to retrieve a message that was sent to the capsule instance.

Examples

Retrieve the void * pointer to the data portion of the message.

int theData = *(int *)

RTMessage_getData( (RTCapsule *) this)->msg); 

RTSignal theSignal = 

RTMessage_getSignal( RTCapsule_getMsg( &this->std ) );

Explanation of the RTMessage primitives used in the above example can be found in 
RTMessage section.

RTCapsule_getCurrentStateString Gets the current state name containing the executing 
segment. 

RTCapsule_getIndex Gets the replication index of this capsule instance in 
the home capsule role.

RTCapsule_getName Gets the capsule role name in which this capsule 
instance is running.

RTCapsule_getTypeName Gets the capsule class name of this capsule instance.
RTCapsule 145



rts and RTCapsule_context

RTController * RTCapsule_context( const RTCapsule * ); 

Return Value

A pointer to the controller for the thread on which this capsule instance is running.

Remarks

There are some public operations on the RTController class that can be accessed this 
way. You may find it useful for printing error information, as in the example below.

Examples

int result = 

RTPort_send( port,RTPort_createOutSignal( port, hey ), 

RTPriority_General, (void *)0, (RTObject_class *)0 );

if( ! result )

{

RTController * context = RTCapsule_context( this );

log.show("Error on physical thread: ");

RTLog_show( RTController_name( context ) );

RTController_perror( context, "send");

}

RTCapsule_getIndex

int RTCapsule_getIndex( const RTCapsule * );

Return Value

The replication index of this capsule instance in its "home" role (where it was 
incarnated). The replication value is zero-based (0).
146 Chapter 11 - Services Library API Reference



RTCapsule_getName

const char * RTCapsule_getName( const RTCapsule * ); 

Return Value

The name of the capsule role in which this capsule instance is running (where it was 
incarnated).

Note:  Unavailable in certain Services Library configurations. For additional 
information, see RTS_NAMES in the book Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.

RTCapsule_getTypeName

const char * RTCapsule_getTypeName( const RTCapsule * ); 

Return Value

Returns the class name of this capsule instance.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see RTS_NAMES in the book, Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.

RTCapsule_getCurrentStateString

const char * RTCapsule_getCurrentStateString( const RTCapsule * ) ;

Return Value

The name of the current state containing the executing segment.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see RTS_NAMES in the book Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.

RTController

The RTController is an abstract class that defines the interface to a group of executing 
capsule instances within a single thread of concurrency. There is one controller object 
for each physical thread in the system. The controller object maintains information 
about the state of the thread as a whole, including the most recent error. Since the 
RTController 147



majority of operations in the Services Library return either 1 (true) if successful, and 0 
(false) otherwise, the controller object can provide the precise cause of failure. Refer to 
the error values description for a complete listing of the Services Library run-time 
errors.

Also, with regards to the timing service, controllers serve as the interface between 
user-designed timing actors and the Services Library. 

Note:  From within a capsule instance, you can retrieve a pointer to its controller by 
calling the RTCapsule_context operation. 

Operations

RTController_getError

RTController_PrimitiveError RTController_getError( const RTController * ); 

Return Value

The value of the most recent error within the thread.

Remarks

The error code is not reset by a subsequent successful primitive operation call. Call it 
immediately following the failure of a Services Library operation call.

RTController_abort Terminates the current process. 

RTController_getError Returns the value of the most recent error within a 
particular thread. 

RTController_name Obtains the name of the controller (physical thread name). 

RTController_perror Prints a user-supplied error message along with the string 
for the current error as returned by getError. 

RTController_strError Describes the current error code. 

RTController_registerTimer Register a RoseRT defined timer capsule as the timer service 
for this controller.

RTController_overrideSyncMet
hods

Override this controller’s interface to going to sleep and 
waking up, in order to implement a RoseRT defined timing 
service. 
148 Chapter 11 - Services Library API Reference



Examples

See the example shown in the RTController Error Codes descriptions.

RTController_strError

const char * RTController_strError( const RTController * ); 

Return Value

A description of the current error code on the current RTController; that is, the 
controller for a physical thread.

Examples

See the example shown in the RTController Error Codes descriptions.

RTController_perror

void RTController_perror( const RTController *, const char * ); 

The string to be printed to stderr along with the current error string as returned by the 
RTController_strError operation. By default, the string "error" will be printed.

Example

int result = 

RTPort_sendAt( &this->aPort, 0, 

RTPort_createOutSignal( aPort, ack ), 

RTPriority_General, 

(const void *)0, 

(const RTObject_class *)0 );

if( ! result )

RTController_perror( 

RTCapsule_context( (RTCapsule *)this ), 

"Error sending ack"); 

Output

Error sending ack: Port not connected. 
RTController 149



RTController_name

const char * RTController_name( const RTController * ); 

Return Value

Returns the name of the controller. Controllers are named based on the physical 
thread on which they run. The assigned physical thread names are taken from the 
physical thread specification dialog. This method is a way of allowing capsules to find 
out what thread they are running on. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see RTS_NAMES in the Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.

RTController_registerTimer

int RTController_registerTimer( RTController * this, void * timer, 
RTController__informIn informInFn, RTController__cancel cancelFn, 
RTController__valid validFn );

Remarks

This function allows for the integration of a RoseRT designed timer capsule with the 
Services Library. To implement the functionality of the timing service, a timer capsule 
must provide informIn, cancelTimer and isTimerValid primitives. These are fed in 
through this primitive to register these particular timing services on the physical 
thread that this RTController interfaces to. 

Return Value

This function returns positive logic values indicating its level of success. 
150 Chapter 11 - Services Library API Reference



Example

/* register this capsule as the timing service 

for this particular thread */

if( ! RTController_registerTimer( 

RTCapsule_context( this ), 

(void *)this, 

MyCapsule_informIn, 

MyCapsule_cancel, 

MyCapsule_valid ) )

RTController_perror("Thread already has timing service");

RTController_overrideSyncMethods

int RTController_overrideSyncMethods( RTController * this, RTController__sleep    
sleepFn, RTController__wakeup wakeupFn );

Remarks

This function services as the other half of the timer capsule registration puzzle. In 
order to integrate timing functionality into the RTController, it is important that the 
timer capsule provides a mechanism for the controller’s synchronization methods to 
be overridden. Otherwise, if a thread goes to sleep when there are no messages to 
process or timeouts to work upon, how will it wake up when it is given a timer 
request to handle? See the CTimer class for an example of how to implement sync 
methods.

Return Value

This function returns positive logic values to indicate success. 

Example

/* override my thread’s synch methods */

if( ! 

RTController_overrideSyncMethods( 

RTCapsule_context( this ), 

MyCapsule_nap, MyCapsule_awaken ) )

RTController_perror( RTCapsule_context( this ), "cannot override 
sync methods" );
RTController 151



RTController_abort

void RTController_abort( RTController * ); 

Remarks

Calling this operation on any controller will terminate the current process. The 
top-level capsule instance is destroyed, which in turn destroys all capsule instances in 
the system, messages that have not been processed are deleted, all threads are 
destroyed, and the process quits.

Examples

RTController_abort( RTCapsule_context( &this->std ) );

RTLog

The Log service is a stream of ASCII text in which system or application events can be 
recorded.

Note:  Currently all log service output is directed to stdout. 

Operations

Log show primitives

void RTLog_show_string( const char * data);

void RTLog_show_char  ( char data);

void RTLog_show_double( double data);

void RTLog_show_float ( float data);

void RTLog_show_int   ( int data);

void RTLog_show_uint  ( unsigned int data);

void RTLog_show_long  ( long data);

Log show primitives  Writes an ASCII string to the log with no leading or trailing 
carriage returns  
152 Chapter 11 - Services Library API Reference



void RTLog_show_ulong ( RTulong data);

void RTLog_show_short ( short data);

void RTLog_show_ushort( RTushort data );

void RTLog_show_ptr   ( const void *data );

void RTLog_show_data  ( const void * data, const RTObject_class * type);

Parameters

data, type 

Is the object, type information, or simple type that is to be displayed to the log.

Remarks

The log knows how to display simple types, but it can also display any user-defined 
type as well. For a user-defined type to be displayable, it must have type information 
defined with a function to encode the object. The log will simply call this encode 
function.

RTLog_show_string() prints a string and is always available, even if 
OBJECT_ENCODE Services Library configuration parameter is turned off.

RTLog_show_data() prints the value of the user-defined data type and is available 
only if OBJECT_ENCODE and STDIO_ENABLED are turned on.

Examples

/* Print as an ASCII string the contents of a class */

RTLog_show_data( &SubscriberData, &RTType_SubscriberData );

/* Print a string */
RTLog_show_string( "Timer has expired" );

/* Print an int */

RTLog_show_int( 19 );
RTLog 153



RTMessage

This class is the data structure used within the Services Library to represent messages 
that are communicated between capsule instances. The messages that are sent 
between capsules contain a required signal name (which identifies the message), a 
priority, and optional application data.

You will most often use the operations on the RTMessage class to manipulate the 
messages that trigger transitions. 

Do not treat an RTMessage as an object that can be stored, instead, you should extract 
the relevant information from the message and store it separately.

Note:  Applications should treat the msg field of an RTCapsule and all data addressed 
beyond that pointer as read-only.

Operations

RTMessage_defer Defer the current message against the receiving ports defer 
queue.

RTMessage_getData Returns a pointer to the data that was sent along with a 
message. 

RTMessage_getPriority Returns the priority of the message.

RTMessage_getSignalName Returns the name of the message signal.

RTMessage_getType  Returns a pointer to the type information describing the data 
contained within the message.  

RTMessage_getSignal Returns the signal of the message. 

RTMessage_copyData Copies the data (by value) into a local buffer. 

RTMessage_getPort Retrieves a pointer to the port which received the message. 

RTMessage_getPortIndex Finds the index of the port on which the message was 
received (0 and 1 based). 
154 Chapter 11 - Services Library API Reference



RTMessage_getPriority

RTPriority RTMessage_getPriority( const RTMessage * ); 

Return Value

Returns the value of the priority of the message. 

RTMessage_getSignal

RTSignal RTMessage_getSignal( const RTMessage * ); 

Return Value

Returns the value of the signal of the message. 

RTMessage_copyData

int RTMessage_copyData( const RTMessage *, void * buffer, int size);

Return Value

Returns the number of bytes copied into buffer. If the size of the buffer (specified by 
the size parameter) is not large enough, RTMessage_copyData shall return 0. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see SEND_BY_VALUE in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.

Example

SomeDataClass buffer;

/* copy RTMessage data into buffer */

int copied = RTMessage_copyData( 

RTCapsule_getMessage(), 

&buffer, 

sizeof( SomeDataClass ) );
RTMessage 155



RTMessage_getSignalName

const char * RTMessage_getSignalName( const RTMessage * );

Return Value

Returns the name of the signal that was sent with the message. This name will be the 
same as the name of the signal defined in the protocol.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see RTS_NAMES in the book, Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.

Example

RTLog_show_string( RTMessage_getSignalName( RTCapsule_getMsg( 
&this->std ))); 

RTMessage_getData

const void * RTMessage_getData( const RTMessage * ); 

Return Value

Returns the pointer to the data that was sent along with a message. 

aDataType dt = 

*(aDataType *)RTMessage_getData( RTCapsule_getMsg( this ) ); 

RTMessage_getType

const RTObject_class * RTMessage_getType( const RTMessage * ); 

Return Value

Returns a pointer to an RTObject_class which contains the type information that 
describes the data in the message, or (RTObject_class *)0 if only data pointer sent. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see SEND_BY_VALUE in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.
156 Chapter 11 - Services Library API Reference



RTMessage_getPortIndex

int RTMessage_getPortIndex( const RTMessage * );

Return Value

Returns the index of the port on which the message was received. The 
RTMessage_getPortIndex function returns a zero-based index (index values begin at 
0). 

Example

Use to send a message to a particular port instance, as follows: 

const RTMessage * msg = RTCapsule_getMsg( this );

/* reply to message */

RTPort_sendAt( 

port, 

RTMessage_getPortIndex( msg ),

RTPort_createOutSignal( port, reply ), 

RTPriority_High, 

&someData, 

&RTType_typeOfSomeData );

RTMessage_getPort

RTPort * RTMessage_getPort( const RTMessage * );

Return Value

Returns a pointer to the port instance on which this message was received, or 
(RTPort *) 0 if called in the initial transition.

RTMessage_defer

int RTMessage_defer( const RTMessage * ); 

Return Value

Returns true (1) if the message was successfully deferred, and false (0) otherwise. An 
error is returned if you defer an invoked message, or a message which has already 
been deferred.
RTMessage 157



Remarks

Deferred messages can be recalled using the recall functions defined on RTPort.

Example

In the transition where a message is to be deferred you would defer the message as 
follows:

RTMessage_defer( this->std.msg );

RTObject_class

The RTObject_class is a structure that contains information describing a data type. 
These type descriptors may be generated automatically for any class created in the 
toolset. The Services Library uses the information in the descriptors to initialize, copy, 
destroy, encode, and decode objects of the corresponding type.

Using type descriptors has several advantages:

■ Arbitrary structures can be used in models even if they cannot be expressed in the 
toolset or are provided by third-parties. 

■ Encoding and decoding can be extended to arbitrary data structures. 

■ More efficient handling of data is possible by avoiding memory allocation and 
de-allocation. By adding the size to the type descriptor, the Library Services can 
decide when a payload area of a message is large enough to hold the data to be 
sent. 

■ Any user-defined type can be sent (by value), using the copy, and destroy 
functions in the type descriptor, and inspected via the observability interface using 
the init, encode, and decode functions. 

Note:  The toolset will generate these descriptors for most classes which are defined 
using basic types (see below for the list). If classes contain more complicated 
structures you can write your own type descriptor functions from within the toolset. 
See C Target RTS properties for more information on this subject. 

/* A type is described by one of these structures. */

Field            Meaning

-----            -------

_super           The base type of this type

_name            The name of this type

_version         The version of this type

_size            The byte size of this type (sizeof)
158 Chapter 11 - Services Library API Reference



_init_func       The default constructor for this type

_copy_func       The copy constructor for this type

_decode_func     The decode function for this type

_encode_func     The encode function for this type

_destroy_func    The destructor for this type

_num_fields      The number of fields or array elements

_fields          The field types or array element type

*/

When Would You Use the Type Descriptor?

Whenever data is passed to the Services Library, you need to provide the type 
descriptor, along with the data to be sent. If the type descriptor is not provided to the 
Services Library, data objects will not be observed with the debugger, or sent to 
another process.

RTType_<typename> structure

For every generated class in your model there is a type descriptor created which is 
called RTType_<typename>. For example, if you define a class called 
RobotControlData the generated type descriptor would be:

const RTObject_class RTType_RobotControlData; 

You can provide the generated type descriptor for a generated class to any Service 
Library operation that requires it.

RTPeerController

RTPeerController is a refinement of the RTController class which represents the 
interface to a physical thread in the multi-threaded run-time system. To implement a 
timer capsule that plugs into the C Services Library, you may need to use the 
following primitives. 

Operations

RTPeerController_timed
Wait

Allows for a means of doing a timed wait. This is useful for 
implementing your own timing service.

RTPeerController_waitF
orEvents

Put the RTPeerController in the phase of waiting for events to 
happen (either timer timeout, message arrival or timer request). 
RTPeerController 159



RTPeerController_timedWait

void RTPeerController_timedWait( RTPeerController *, RTTimespec * );

This function allows for a thread to block on a timed wait. The thread will be awoken 
by either an external event like a message delivered to a controller or by the time 
expiry . 

Example

RTPeerController_timedWait( RTCapsule_context(), &time );

RTPeerController_waitForEvents

void RTPeerController_waitForEvents( RTPeerController * );

This is the means by which an RTController in the multi-threaded Services Library 
goes to sleep. Using this method to go to sleep ensures that if the thread receives a 
message, it shall be woken up in order to deliver it. 

RTPort

For each port specified on a capsule, an RTPort is generated within the instance data. 
RTPort serves as the interface to most of the primitives of the communications, layer 
and timing services of the Service Library. A RTPort instance contains a list of all the 
individual instances of that port that may be bound (at runtime or through 
connectors) to one or more RTPort instances. 

Operations

RTPort_send Broadcast a message across the entire port using the 
communications and/or internal layer service. 

RTPort_sendAt Send a message solely on this index using the 
communications and/or internal layer service. 

RTPort_enqueue Enqueue a message onto a port without having to be 
bound to it. This is very useful to implement a timing 
capsule in order to deliver timeout messages. 

RTPort_getCardinality Returns the cardinality of the port. 
160 Chapter 11 - Services Library API Reference



RTPort_isBound Returns the bound status of the port instance specified by 
index. 

RTPort_getRegisteredName Returns the name of the registration that the unwired port 
has registered as. 

RTPort_isRegistered Determines the registration status of the port instance 
specified by the index. 

RTPort_registerAs Registers an unwired port by name. 

RTPort_deregister Deregisters an unwired port. 

RTPort_recall Recall a message that came in on this port and that was 
deferred. 

RTPort_recallAt Recall a message that came in on this port instance and was 
deferred. 

RTPort_recallAll Recall all messages that came in on this port that were 
deferred. 

RTPort_recallAllAt Recall all messages that came in on this port instance that 
were deferred. 

RTPort_purge Purge all messages from the defer queue that came in on 
this port.

RTPort_purgeAt Purge all messages from the defer queue that came in on 
this port instance specified by index. 

RTPort_informIn Request a one-shot timer to expire in a specified amount of 
time. 

RTPort_cancelTimer Cancel a timer that was created on this timer port. 

RTPort_isTimerValid Determine if a timer (that was created on this timer port) is 
valid. 

RTPort_createOutSignal Create an out signal local to the protocol.

RTPort_createInSignal Create an in signal local to the protocol. 
RTPort 161



CExternal ports are instances of the class RTPort.

Table 4 Operations

RTPort_getCardinality

int RTPort_getCardinality( const RTPort * ); 

Return Value

Returns the cardinality of the port.

Remarks

Remember that port instances are indexed in the Services Library as 0 based. That 
means that if a port has a cardinality of N, you should only reference instances using 
index numbers 0..N-1. 

External API 
Operations

Used to enable/disable events external events

void 
RTPort_Enabl
eExternal(RTP
ort *)

Enables the port to receive an event from the external thread. May be used 
only by the thread on which the owner capsule executes

void 
RTPort_Disabl
eExternal(RTP
ort *)

Disables the port from receiving an event from the external thread. May be 
used only by the thread on which the owner capsule executes

int 
RTPort_Raise
External(void)

If the port is enabled, delivers one event to the port, and then disables the 
port. The port must be re-enabled before another event can be raised. This 
function may be used only on threads other than the one on which the owner 
capsule executes. Returns 0 if the event was not successfully raised.
162 Chapter 11 - Services Library API Reference



RTPort_purge

int RTPort_purge( const RTPort * ); 

Return Value

Returns the number of deleted messages from the defer queue.

Remarks

To delete deferred messages for one port instance use RTPort_purgeAt.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.

RTPort_purgeAt

int RTPort_purgeAt( const RTPort *, int index ); 

Parameters

index

The port index for which deferred messages should be purged.

Return Value

Returns the number of deleted messages from the port instance defer queue.

Remarks

To delete deferred messages for all port instances use RTPort_purge.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.
RTPort 163



RTPort_recall

int RTPort_recall( const RTPort * ); 

Return Value

Returns the number of recalled messages (either 0 or 1).

Remarks

Calling recall on a port gets the first deferred message from one of the port instances, 
starting from the first (instance 0). Messages are recalled from the front of the defer 
queue.

There is no time limit on deferral, therefore applications must take precautions against 
forgetting messages on defer queues.

This operation recalls the first deferred message on any port instance. To recall the 
first message on one port instance of a replicated port, use the RTPort_recallAt 
operation.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.

RTPort_recallAt

int RTPort_recallAt( const RTPort *, int index ); 

Return Value

Returns the number of recalled messages (either 0 or 1).

Parameters

index

Port instance index for which to recall a deferred message.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the Adapting Rational Rose RealTime for Target 
Environments, Rational Rose RealTime.
164 Chapter 11 - Services Library API Reference



RTPort_recallAll

int RTPort_recallAll( const RTPort * ); 

Return Value

Returns the number of recalled messages.

Remarks

This operation recalls all deferred message on any port instance. Messages are 
recalled from the front of the defer queue.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.

RTPort_recallAllAt

int RTPort_recallAllAt( const RTPort *, int index); 

Return Value

Returns the number of recalled messages from a given port instance.

Remarks

Calling RTPort_recallAllAt on a port will get all the deferred message from the port 
instance indicated by index. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see MESSAGE_DEFERRAL in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.

RTPort_send

int RTPort_send  ( const RTPort *, RTSignal, RTPriority, void *, const 
RTObject_class * );

Remarks

Construct a message (of particular signal, data, priority, and type) and send it across 
the specified port. If the port has cardinality greater than 1, then the message is 
broadcast across each of the instances. 
RTPort 165



Returns

RTPort_send returns the number of successful messages sent. If all messages are sent 
properly, then this value should be equivalent to RTPort_getCardinality(). 

RTPort_sendAt

int RTPort_sendAt( const RTPort *,int, RTSignal, RTPriority, void *, const 
RTObject_class * );

Remarks

Construct a message (of particular signal, data, priority, and type) and send it across 
the specified port instance. 

Returns

Positive logic values indicate success. 

RTPort_enqueue

RTMessage * RTPort_enqueue( const RTPort *, int index, RTSignal, RTPriority, 
const void * data, RTCapsule * fromCapsule, const RTObject_class * type );

Remarks

Construct a message (of particular signal, data, priority and type) and enqueue it 
upon the port instance specified by the port and index. The RTCapsule field is for the 
capsule doing the enqueuing, so that the Services Library knows what controller to 
allocate the message from. 

Returns

A pointer to the constructed message. This can be useful in designing a timer service, 
as after you deliver the message through an RTPort_enqueue, you still may be able to 
cancel the timer request if a cancelTimer request is made by following this pointer. 
166 Chapter 11 - Services Library API Reference



RTPort_registerAs

int RTPort_registerAs( RTPort *, const char * service ); 

Return Value

Returns 1 (true) if the registration of the service name was successful, and 0 (false) 
otherwise. The registration can fail if this operation is called on a port instance which 
is not an unwired end port. The port knows whether or not to register itself as a 
published or unpublished unwired port based upon the appropriate code generation 
model properties.

Note:  The protocols referenced by the unwired ports cannot be verified by the toolset, 
since there are no connectors. At runtime, protocol compatibility is not preformed and 
it is possible to register a SAP and SPP with the same name but incompatible 
protocols.

Parameters

service 

This parameter is a string that is used to identify a unique name and service under 
which the unwired ports will connect.

The pointer to the registration name, such as service, is stored in the SAP/SPP 
registration table. RTPort_registerAs does not make a copy of the registration name. 
Therefore, the application should never change the service contents. 

Remarks

If this operation is invoked on an unwired port which is already registered with a 
different name, then the original registered name is automatically deregistered, and 
the SAP is registered with the new name.

When an unwired port is registered, it does not necessarily mean that the port has 
been connected to another unwired port. The successful completion of the register 
operation simply indicates that the name has been registered. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.
RTPort 167



RTPort_deregister

int RTPort_deregister( RTPort * ); 

Return Value

Returns 1 (true) if the deregistration of the service name was successful, and 0 (false) 
otherwise.

Remarks

When an unwired port is deregistered if it is currently connected to another unwired 
port, the connection is terminated.

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.

RTPort_isBound

int RTPort_isBound( const RTPort *, int index ); 

Return Value

Returns 1 (true) if the port instance specified by the index is bound (either through a 
connector or a layer registration). 

RTPort_getRegisteredName

const char * RTPort_getRegisteredName( const RTPort *, int index); 

Return Value

Returns the name of the service by which an unwired port instance specified by the 
RTPort and index parameters has registered as. If the port is not unwired, or it the 
port has not yet registered, this function returns (const char *)0. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.
168 Chapter 11 - Services Library API Reference



RTPort_isRegistered

int RTPort_isRegistered( const RTPort *, int index );

Return Value

Returns positive logic values to indicate if the unwired port instance specified by 
index is registered under a particular name. If the port is unwired, this method 
returns 0. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.

RTPort_informIn

RTTimerId RTPort_informIn( const RTPort * this, long sec, long nsec, RTPriority 
prio, void * data,   const RTObject_class * type );

Remark

RTPort serves as an interface to a registered timing service which hooks up to 
particular RTController objects on a global or per-thread basis. This function sets a 
timer to expire in sec seconds and nsec nano-seconds. When this timer expires, the 
timer capsule shall enqueue a message on the specified port, with the specified data, 
priority and type. 

Returns

An RTTimerId object that represents the timer entry in the timing capsule. This 
RTTimer instance may be used to cancel or query the timer’s status. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see TIMING_SERVICE in the book Adapting Rational Rose RealTime for 
Target Environments, Rational Rose RealTime.
RTPort 169



RTPort_cancelTimer

int RTPort_cancelTimer( const RTPort * this , RTTimerId id);

Remark

The RTPort serves as an interface to a registered timing service which hooks up to 
particular RTController objects on a global or per-thread basis. This method serves as 
a means of cancelling a timer request indicated by the id, which was returned by an 
RTPort_informIn call. 

Returns

This function returns positive logic to indicate its success. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.

RTPort_isTimerValid

int RTPort_isTimerValid  ( const RTPort * this, RTTimerId id);

Remark

This operation checks the RTPort_informIn request made upon the port passed as a 
parameter that the given timer id is still an outstanding timer (for example, if the 
timer is to expire). The RTPort serves as an interface to a registered timing service 
which hooks up to particular RTController objects on a global or per-thread basis. 

Returns

A boolean logic value that indicates if the timer specified by the RTTimerId is valid. 

Note:  Unavailable in certain Services Library configurations. For additional 
information, see INTERNAL_LAYER_SERVICE in the book Adapting Rational Rose 
RealTime for Target Environments, Rational Rose RealTime.
170 Chapter 11 - Services Library API Reference



RTPort_createInSignal

RTPort_createInSignal( port, signal )

This operation is not a function, but a macro used to define a local signal given the 
name of a port and a signal. By using macros, if the name of a protocol class changes, 
all of the capsule user code that uses these signals does not need to be updated. This 
method is meant to be used for In signals only, to distinguish between triggers when 
forwarding messages. 

RTPort_createOutSignal

RTPort_createOutSignal( port, signal)

This operation is not a function, but a macro used to define a local signal given the 
name of a port and a signal. By using macros, if the name of a protocol class changes, 
all of the capsule user code that uses these signals does not need to be updated. This 
method is meant to be used for out signals only, to create signals that are to be used in 
RTPort_send, RTPort_sendAt and RTPort_enqueue operations. 

RTPriority

Priorities are abstracted through the RTPriority enumeration. The following priorities 
are available (from highest to lowest):

■ RTPriority_System
■ RTPriority_Panic
■ RTPriority_High
■ RTPriority_General
■ RTPriority_Low
■ RTPriority_Background

These priorities must be specified the following primitives:

■ RTPort_send
■ RTPort_enqueue
■ RTPort_sendAt
■ RTPort_informIn
RTPriority 171



RTSoleController

RTSoleController is a refinement of the RTController class which represents the 
interface to a physical thread in the single-threaded run-time system. In order to 
implement a timer capsule that plugs into the C Services Library, you may need to use 
the following primitives. 

Operations

RTSoleController_waitForEvents

void RTSoleController_waitForEvents( RTSoleController * );

Remarks

This is the means by which an RTController in the single-threaded Services Library 
goes to sleep. Using this method to go to sleep ensures that if the thread receives a 
message, it shall be woken up in order to deliver it. 

RTSignal

This class is the encapsulation of signals within the Services Library. All signals are 
defined locally, so they must be specified with regards to the RTPort that they apply 
to. All of the operations upon RTSignals can be found in the RTPort module. 

RTTimerId

The Rose RealTime Timing services use RTTimerId as an identifier for timer requests. 
The timer identifier is returned by a request to RTPort_informIn. The timer identifier 
can be used subsequently to cancel the timer by calling RTPort_cancelTimer.

RTSoleController_waitF
orEvents

Put the RTSoleController in the phase of waiting for events to 
happen (either timer timeout, input/output, or ipc events). 
172 Chapter 11 - Services Library API Reference



RTTimespec

The RTTimespec class is used to create timer values for passing to the Timer Service. 
It is intended for compatibility with POSIX.

RTTimespec is a struct with two fields: tv_sec and tv_nsec, where tv_sec is the 
number of seconds for the timer setting, and tv_nsec is the number of nanoseconds.

Operations

tv_sec and tv_nsec

long tv_sec;
long tv_nsec; 

Remarks

Where tv_sec is the number of seconds for the timer setting, and tv_nsec is the 
number of nanoseconds. There are 10e9 nanoseconds in one second.

Examples

This will initialize an RTTimespec with one second.

RTTimespec t1;

t1.tv_sec = 1;

t1.tv_nsec = 0;

This class is used most often in conjunction with the Timing Service to specify time 
values.

RTTimespec_addTo Arithmetic operators

RTTimespec_lessEqualTo Comparison operators

RTTimespec_clock_gettime Returns the current time
RTTimespec 173



RTTimespec_clock_gettime

void RTTimespec_clock_gettime( RTTimespec *); 

Parameters

tspec 

The values of this RTTimespec parameter are filled in with the current time.

Example

RTTimespec t;
RTTimespec_clock_gettime( &t ); 

RTTimespec_lessEqualTo

int RTTimespec_lessEqualTo ( const RTTimespec *, const RTTimespec );

Remark

To check for equality, just use the built in operator == for the structures. 

Return Value

Nonzero if the first object is less than or equal to the second object; otherwise 0. 

RTTimespec_addTo

void RTTimespec_addTo ( RTTimespec *, const RTTimespec * );

Add the value of the second timespec to the first. Since the first parameter is not 
const, the value is saved in it. 
174 Chapter 11 - Services Library API Reference



Index
Symbols
#define 40
$$ 116
$(MACRO) 116
$@ 116
${name} 116
$defaultMakeCommand 116
$name 116
$RTS_HOME 89
$VARIABLE 116

A
Accessing 80
Accessing the error value 66
adding

C code to model 9
Additional Design Considerations 105
API reference

Services Library 143
Application-specific command line 

arguments 80
array

creating attributes 40
specifying using association multiplicity 39

association
multiplicity 39

association (C Reference) 18
Asynchronous and synchronous 

communication 59
attach 83
AttributeKind (Attribute, C) 121
attributes

creating array 40
creating pointer 40

attributes (C Reference) 18
Availability of external library on different 

platforms 106

B
build 28

changing options 110
Services Library 113

building
Services Library 113

BuildLibraryArguments (Component, C 
Library) 140

BuildLibraryCommand (Component, C 
Library) 139

C
C code (in model) 9
C Compilation properties 130

component 130
C constructs 35
C data type examples 35
C Executable properties 134

component 134
C External Library properties 140

components 140
C Generation properties 127

component 127
C Library properties 139

component 139
C model element properties 117

AssociationEnd 118
attribute 118
capsule 118
class 118
dependency 118

C Services Library 49
details 89
Services Library

C 4
C Services Library Framework 49, 54
Index 175



C TargetRTS properties 124
AssociationEnd 124
attribute 124
class 124

C++ code in models 2
capsule

mapping to threads 52
Capsule diagrams 123
Capsule Functions 103
Capsule instances and capsule behavior 102
capsule role 19
Capsule To Logical Thread Mapping (Capsule, C 

Executable) 135
capsuleId 81
capsules

header file
capsule 14

implementation file (C Reference) 15
purpose of 32
this pointer 15

capsules (C Reference) 14
Capsules vs. Data 103
changing

build options 110
pre-processor macros 108

choice point
code condition segment (C Reference) 10

class 17
header file (C Reference) 17
implementation file (C Reference) 18
properties affecting generation of 18
properties that affect generation 18

Classes 31
classes (C Reference) 17
Classes and Data Types 31
Classes and data types 31
ClassKind (Class, C) 119
code condition segment 10
Code Generation 13
Code generation (C) 5
code generation associations 19

capsule to capsule (capsule role) 19
capsule to class (data member) 19
capsule to protocol (port) 19
class to class (data member) 19

code generator behavior 24
Code generator command line arguments 28
code generator command line arguments 28
code segments

syntax 9
Code Sync

deactivate 11
de-activating 11
enable 10
making changes outside the toolset 10

Code Sync (C Reference) 10
Code Sync areas 10
codegen 91
CodeGenDirName (Component, C External 

Library) 140
CodeGenDirName (Component, C 

Generation) 128
CodeGenMakeArguments (Component, C 

Generation) 130
CodeGenMakeCommand (Component, C 

Generation) 129
CodeGenMakeInsert (Component, C 

Generation) 130
CodeGenMakeType (Component, C 

Generation) 129
CodeSyncEnabled (Component, C 

Generation) 130
Command line arguments 28
command line arguments

application specific 80
code generator 28
code generator (C Reference) 28

Command line debugger
Control commands 88
Informational commands 84
Thread commands 82

Command Line Model Debugger 79
Command-line build interface 29, 54
command-line build interface 29
CommonPreface (Component, C 

Generation) 128
Communications services 58
CompilationMakeArguments (Component, C 

Compilation) 131
176 Index



CompilationMakeCommand (Component, C 
Compilation) 131

CompilationMakeInsert (Component, C 
Compilation) 131

CompilationMakeType (Component, C 
Compilation) 131

CompileArguments (Component, C 
Compilation) 133

CompileCommand (Component, C 
Compilation) 132

components 23
Services Library 114

ComponentUnitName (Component, C 
Generation) 128

concurrency
types 52

condition segment 10
config 91
Configuration Definitions 101
Configuration Naming Convention 90
configuring

Services Library 107
constant

specifying cardinality 41
use 41
values 41

constant (#define) 40
ConstructFunctionName (Class, C) 119
Constructor 174
contacting Rational customer support xxi
context 146
Control commands 88

continue 88
exit 88
go 88
quit 88
step 88

controlled units 26
Controller_unexpectedStatus 71
CopyFunctionBody (Class, C TargetRTS) 125
COUNT 95
creating

array attributes 40
classes with attributes that are pointers 44
classes with no pointer attributes 43

pointer attributes 40
union 43

Creating and using common C constructs 35
-crlf 29
Cross Thread Message Sending 104

D
data class

marshallable 34
Data class rule #1 33
Data class rule #2 34
data member 19
Data members 173
data type constructor 34
Data Types 31
De-activating Code Sync 11
Debugger 98
DecodeFunctionBody (Class, C TargetRTS) 125
DEFAULT_DEBUG_PRIORITY 93
DEFAULT_MAIN_PRIORITY 93
DEFAULT_TIMER_PRIORITY 93
DefaultArguments (Component, C 

Executable) 137
DEFER_IN_ACTOR 95
DEFER_IN_ACTORS 95
Deferring and recalling messages 62
dependencies 22
deregisterSAP 168
DestroyFunctionBody (Class, C TargetRTS) 125
detach 83
Diagrams

Capsule 123
Differences Between Single-threaded and 

Multi-threaded Services Library 
Debugger 80

E
encapsulating target-specific behavior 10
EncodeFunctionBody (Class, C TargetRTS) 126
enumeration (C Reference) 42
environment variables 117
Error enumeration 67
Index 177



Example 149
Examples 145, 146, 149, 152, 153, 173, 174
ExecutableName (Component, C 

Executable) 137
exit 88
external port service example (C) 71
external types 46
EXTERNAL_LAYER 95

F
-forcewrite 29
forward reference 123

G
General C++ performance notes 105
generalizations 21
GenerateClass (Class, C++) 118
GenerateClassInclusions (Component, C External 

Library) 140
GenerateConstructFunction (Capsule, C) 122
Generated code directory layout 27
generated code directory layout 27
Generated code structure 54, 76
GenerateDescriptor (Attribute, C 

TargetRTS) 126
GenerateDescriptor (Class, C TargetRTS) 124
GenerateDescriptor (Role, C TargetRTS) 127
getCurrentStateString 147
getName 147
getTypeName 147
GlobalPrefix (Capsule, C) 122
GlobalPrefix(Class, C) 120
go 88
guards 102

H
Hardware differences 105
HAVE_INET 99
header file

Class 17

header file (C Reference) 14
header file (.h) 14, 17
HeaderEnding (Capsule, C) 122
HeaderEnding (Class, C) 120
HeaderPreface (Capsule, C) 122
HeaderPreface (Class, C) 120
Help 81
Host workstation and embedded target 

workflows 2, 51

I
Implementation classes 57, 58, 62
implementation file

capsule 15
class 18

implementation file (.c) 15, 18
ImplementationEnding (Capsule, C) 123
ImplementationEnding (Class, C) 121
ImplementationPreface (Capsule, C) 123
ImplementationPreface (Class, C) 120
ImplementationType (Class, C) 119
include 91
inclusion 123
InclusionPaths (Component, C Compilation) 133
InclusionPaths (Component, C External 

Library) 141
Incremental generation 25
incremental generation 25
Informational commands

info 84
printstats 84
saps 84
system 84

informational commands 84
InitFunctionBody (Class, C TargetRTS) 125
InitializerKind (Attribute, C) 121
InitializerKind (Role, C) 121
InitialValue (Role, C) 122
INLINE_CHAINS 99
INLINE_METHODS 99
INTEGER_POSTFIX 95
integrating

external class 45
178 Index



integration
considerations 45

INTERNAL_LAYER_SERVICE 94
Introduction to threads 10, 51

K
kernel configuration 74
KindInHeader (Uses, C) 123
KindInImplementation (Uses, C) 123

L
lib 92
libraries

on UNIX 141
on Windows 141

Libraries (Component, C External Library) 141
Library Properties 139
LibraryName (Component, C Library) 139
libset 92
Libset Name 90
Libset name 90
LinkArguments (Component, C Executable) 138
LinkCommand (Component, C Executable) 138
Linked together into your models executable 6
Linker Override 138
linking

model with Services Library (C) 6
Linking the model together with the Services 

Library 6
log (tracing command 86
log (tracing command) 87
Log show primitives 152
LOG_MESSAGE 95
Logical Packages 22
logical thread

mapping 135

M
macros

changing pre-processor 108
Macros used in code segments 80
main.c 75
MainThread 136
manual loading 75
Mapping

capsules to threads 52
mapping

logical thread 135
Mapping capsules to threads 52
Mapping capsules top threads 52
marshallable

data classes 34
marshalling

functions 47
MAX_NUM_SPPS 94
message

processing 50
message priorities 59
Message processing 2, 50
MESSAGE_DEFERRAL 98
messages

cross thread sending 104
deferring 62
recalling 62
sending data in 32
sending typed data by value 104

Minimum Configuration Definitions 101
model 28

adding C code 9
executables 6
linking with Services Library (C) 6
properties reference 115

Model Debugger 79
Model executables 6, 76
model properties reference 115
Model to code correspondence 13
MULTIPLE_PRIORITIES 96
Index 179



multiplicity
specifying arrays using association 39

multi-threaded message processing 51
Multi-threaded Services Library 53
Multi-threaded Services Library Debugger 80
Multi-threaded Services Library debugger 80

N
name 150
Naming Convention 90
NumElementsFunction 34
NumElementsFunctionBody (Attribute, C 

TargetRTS) 126
NumElementsFunctionBody (Role, C 

TargetRTS) 127

O
OBJECT_ENCODE 96, 98, 99
observability 76
OBSERVABLE 100
One shot timer 63
Operations 145, 148, 152, 155, 174
operations

user-defined 20
Operators 174
Optimizing designs 102
Order-preserving 59
OTRTSDEBUG 98
Output 149
OutputDirectory (Component, C 

Generation) 128
Overview 1, 13

P
Parameters 153, 163, 164, 165, 167, 174
pathmap symbols 117
Performance guidelines 102
Periodic timer 64, 66

physical thread 136
properties 136
trade-offs 137

physical threads 56
PhysicalThreads (Component, C Executable) 136
Platform Name 90
pointer attributes 40
port 19

SAP 61
SPP 61

port services 71
portId 81
pre-processor macros 108
Primitives 59
printstats 86
priority

RTPriority 171
Processing overview 50
Property Symbols 116
protocols 23
Providing arguments on targets that do not sup-

port command line arguments 81
purge 163
PURIFY 98

Q
quit 88

R
Rational customer support

contacting xxi
recallAll 165
receiver 36, 37
Registration by name 61
Registration string 61, 62
Relative versus absolute time 71
Remarks 145, 146, 148, 152, 153, 162, 163, 

164, 165, 167, 168, 173
Return Value 148, 149, 157, 164, 165
Return value 146, 147, 150, 156, 162, 163, 

165, 167, 168, 174
180 Index



RTActor 173
context 146
getCurrentStateString 147
getError 146
getIndex 146
getName 147
getTypeName 147
msg and RTActor

getMsg 145
RTActorClass 173
RTCapsule 55, 144

attributes 144
operations 145

RTCapsule_context 146
RTCapsule_getCurrentStateString 147
RTCapsule_getIndex 146
RTCapsule_getMsg 145
RTCapsule_getName 147
RTCapsule_getTypeName 147
RTController 147

abort 152
getError 148
name 150
operations 148
perror 149
strerror 149

RTController error codes 66
RTController_abort 152
RTController_alreadyDeferred 68
RTController_badClass 68
RTController_badId 68
RTController_badMessage 68
RTController_badOperation 68
RTController_badSignal 69
RTController_badState 69
RTController_badValue 69
RTController_cannotRegTimer 69
RTController_cannotSetTimer 69
RTController_getErro 148
RTController_internalError 69
RTController_name 150
RTController_noConnect 70
RTController_noMem 70
RTController_ok 70
RTController_overrideSyncMethods 151

RTController_prio 70
RTController_reg 70
RTController_registerTimer 150
RTController_unauthorizedMemoryAllocation

70
RTController_unexpectedPrimitive 71
RTEndPortRef

deregisterSAP 168
incarnationsTo 163
incarnationTo 163
purge 163
recall 164, 165
recallAll 165
registerSAP 167
send 163

RTLog 152
operations 152

RTLogSAP
show and RTLogSAP

log 152
RTMessage 57, 154

defer 157
getData 156
operations (C) 154
reply 157
sap 157
sapIndex 157

RTMessage_copyData 155
RTMessage_getData 156
RTMessage_getPort 157
RTMessage_getPriority 155
RTMessage_getSignal 155
RTMessage_getSignalName 156
RTMessage_getType 156
RTMESSAGE_PAYLOAD_SIZE 99
RTObject_class 158
RTPeerController 159
RTPeerController_timedWait 160
RTPeerController_waitForEvents 160
RTPort 160
RTPort_cancelTimer 170
RTPort_createInSignal 171
RTPort_createOutSignal 171
RTPort_deregister 168
RTPort_enqueue 166
Index 181



RTPort_getCardinality 162
RTPort_getRegisteredName 168
RTPort_informIn 169
RTPort_isBound 168
RTPort_isRegistered 169
RTPort_isTimerValid 170
RTPort_purge 163
RTPort_purgeAt 163
RTPort_recall 164
RTPort_recallAll 165
RTPort_recallAllAt 165
RTPort_recallAt 164
RTPort_registerAs 167
RTPort_send 165
RTPort_sendAt 166
RTPriority 171
RTREAL_INCLUDED 98, 99
RTS_CLEANUP_MECHANISM 97
RTS_COMPATIBLE 97, 99
RTS_COUNT 95
RTS_INLINE 98
RTS_INLINES 98
RTS_MEMORY_POLICY 97
RTS_NAMES 94
RTS_TYPES 99
RTSignal 172
RTSoleController 172
RTSoleController_waitForEvents 172
RTTimerId 172
RTTimespec 173

getclock 174
RTTimespec 174

RTTimespec basic arithmetic operators 174
RTTimespec basic comparison operators 174
RTTimespec time fields 173
RTTimespec_addTo 174
RTTimespec_clock_gettim 174
RTTimespec_lessEqualTo 174
RTType_ structure 159
Run Time System Debugger

command summary 81
Run time System debugger 79
running

models on target boards 73
Running a model 82

S
SAP 61
sap 157
saps 84
send 163

by reference 32
by value 32
considerations 33
cross thread message sending 104
data by reference 37
data by value 36
data classes between capsule instances 35
data in messages 32
data in messages (C Reference) 32
unncessary sends (troubleshooting) 103

SEND_BY_VALUE 100
sender 36, 37
sending

by reference 32
by value 32
data by reference 37
data by value 36
data classes between capsule instances 35
data in messages 32
data in messages (C Reference) 32
protocols 32
typed data by value in messages 104

Sending RTDataObjects in messages 104
Services Library 49, 53, 89, 107, 143

API reference 143
building 113
C 49
configuring 107
creating minimum configuration 100
customizing 107
directory structure (C) 91
linking model (C) 6
minimally configured 144
optimizing designs 102
organization (C) 89
updating component 114

Services Library configuration 100
Services Library Debugger Command 

Summary 81
182 Index



Services Library Framework 49
Single and multi-threaded message 

processing 51
single-threaded 53
Single-threaded Services Library 53
Single-threaded Services Library Debugger 80
Single-threaded Services Library debugger 80
Single-threaded Services Library message 

processing 53
-spacedeps 29
SPP 61
src 27, 92
State Machines 103
STDIO_ENABLED 96
step 88
symbols

properties (C Reference) 116
syntax

code segments 9
syntax of code segments (C Reference) 9

T
target 92

encapsulating behavior 10
Target Base Name 90
Target base name 90
TargetConfiguration (Component, C 

Compilation) 134
TargetServicesLibrary (Component, C 

Compilation) 133
taskId 81
tasks 83
TController_dereg 69
testing

tool chain 74
this pointer 15
this pointer (C Reference) 15, 20
this’ Pointer 20
Thread commands 82

attach 82
detach 82
tasks 82

threads
introduction 51
mapping to capsules 52

Timer thread configurations 64
Timing precision and accuracy 65, 71
Timing Service

customizing 64
Timing service 62
TIMING_SERVICE 95
TO_OVER_TCP 95
Tool Chain

testing 74
tool chain functionality 74
Tool Chains 106
tool chains 106
tools 92
toolset

making change outside the toolset 10
TopCapsule (Component, C Executable) 135
Tracing commands 86

log 86
tracing commands

log 87
troubleshooting

availability of external library on different 
platforms 106

C performance 105
capsules versus data 103
cross thread message sending 104
design considerations 105
Guards 102
guards 102
hardware differences 105
properties affecting generation of classes 18
relationships and elements ignored by C code 

generation 23
sending typed data by value in messages 104
state machines 103
unnecessary sends 103

tv_nsec 173
tv_sec 173
type descriptor

functions (C Reference) 34
when to use 159

typedef (C Reference) 42
Index 183



TypeDescriptor (Attribute, C TargetRTS) 126
TypeDescriptor (Role, C TargetRTS 127
Types of concurrency 52

U
union 43
Unnecessary Sends 103
unpublished unwired ports 61
unwired ports

support for 60
unwired published ports 61
unwired unpublished ports 61
URTS_DEBUG parameter 79
USE_THREADS 93, 95, 100
User-defined operations 20
UserLibraries (Component, C Executable) 138
UserObjectFiles (Component, C Executable) 138

V
-version 29
Version (Class, C TargetRTS) 125
184 Index


	C Reference
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Overview of the C Guide
	Introduction
	Workflows for Your Host Workstation and Embedded Target
	Using C Code in Models
	Model Properties
	C Services Library
	Code Generation
	Modifying Generated Code

	Compilation
	Linking the Model with the Services Library

	Model Executables
	Target Observability


	Using C Code in Your Model
	Adding C Code to a Model
	Syntax of Code Segments
	Choice Point Code Condition Segment

	Encapsulating Target-Specific Behavior
	Code Sync
	Making Changes Outside the Toolset
	Identifying Designated Code Sync Areas
	De-activating Code Sync



	Code Generation
	Model to Code Correspondence
	Capsules
	Header File (.h)
	Implementation File (.c)
	‘this’ Pointer

	Capsule State Diagrams
	Classes
	Header File (.h)
	Implementation File (.c)
	Properties Affecting How Classes are Generated

	Attributes
	Associations
	Valid Code Generation Associations

	User-Defined Operations
	‘this’ Pointer

	Generalizations
	Example

	Dependencies
	Logical Packages
	Standard Operations
	Protocols
	Components
	Relationships and Elements Ignored by C Code Generation

	Code Generator Behavior
	Incremental Generation
	The Effect of Controlled Units

	Generated Code Directory Layout
	src
	build

	Code Generator Command Line Arguments
	Command Line Arguments

	Command Line Build Interface


	Classes and Data Types
	Overview
	Terminology
	Introduction to Sending Data in Messages
	Protocols
	Sending by Value
	Sending by Reference
	Considerations
	Data Classes that are Marshallable
	Basic Structures


	C Data Type Examples
	Sending/Receiving Data by Value
	Sender
	Receiver

	Sending/Receiving Data by Reference
	Sender
	Receiver

	Creating a Class Data Member from the Class Diagram
	Specifying Arrays Using Association Multiplicity
	Creating Array and Pointer Attributes
	Creating a Constant (#define)
	Creating a typedef
	Creating an Enumeration
	Creating a Union
	Creating and Using Classes with No Pointer Attributes
	Creating and Using Classes with Attributes that are Pointers

	Integrating an External Class (Not Defined in the Toolset)
	Integration Option 1: Describing an External Type to Rational Rose RealTime
	Integration option 2: Providing Marshalling Functions


	C Services Library
	C Services Library Framework
	Message Processing
	Processing Overview
	Single and Multi-Threaded Message Processing
	Introduction to Threads
	Types of Concurrency
	Mapping Capsules to Threads
	Single-Threaded Services Library
	Multi-Threaded Services Library
	C Services Library Framework
	Capsules are Generated as Subclasses of RTCapsule
	Ports are Generated as Fields of a Capsule Structure
	Every Capsule Instance has Access to its Controller
	Capsule Instances, Logical, and Physical Threads
	Capsule Instances Have Access to a RTMessage Object

	Log Service
	Implementation Functions
	Characteristics

	Communication Services
	Implementation Functions
	Concepts
	Primitives
	Communication Service properties
	Order-Preserving
	Minimal Overhead in Message Handling

	Semantics of Usage of Message Priorities
	Support for Unwired Ports
	Published Versus Unpublished Unwired Ports
	Registration by Name
	Registration String

	Deferring and Recalling Messages

	Timing Service
	Implementation Functions
	Characteristics
	Usage
	Timer Thread Configurations
	Customizing the Timing Service
	Timing Precision and Accuracy

	RTController Error Codes
	Accessing the Error Value
	Error Enumeration
	RTController_alreadyDeferred
	RTController_badClass
	RTController_badId
	RTController_badOperation
	RTController_badMessage
	RTController_badSignal
	RTController_badState
	RTController_badValue
	RTController_cannotRegTimer
	RTController_cannotSetTimer
	RTController_dereg
	RTController_internalError
	RTController_noConnect
	RTController_noMem
	RTController_ok
	RTController_prio
	RTController_reg
	RTController_unauthorizedMemoryAllocation
	RTController_unexpectedStatus
	RTController_unexpectedPrimitive

	Port Services
	External


	Running Models on Target Boards
	Overview
	Step 1: Verify Toolchain Functionality
	Step 2: Kernel Configuration
	Step 3: Verify main.c
	Step 4: Try Manual Loading
	Step 5: Running with Observability

	Command Line Model Debugger
	Overview
	Starting the Run-time System Debugger
	Differences Between Single-threaded and Multi-threaded Services Library Debugger
	Application-Specific Command Line Arguments
	Accessing
	Providing Arguments on Targets that do not Support Command Line Arguments

	Run Time System Debugger Command Summary
	Help
	taskId, capsuleId, portId
	Running a Model
	Thread Commands
	tasks
	attach <taskId>
	detach <taskId>

	Informational Commands
	saps
	system <capsuleId> <depth>
	info
	printstats <taskId>

	Tracing Commands
	log <category> <detail-level>

	Control Commands
	exit
	go [<n>]
	step [<n>]
	quit
	continue



	Inside the C Services Library
	Organization of the Services Library Source
	Configuration Naming Convention
	Platform Name (or configuration)
	Target Base Name
	Libset Name
	Summary

	Directory Structure
	codegen
	include
	config
	target
	lib
	libset
	src
	tools


	Configuration Preprocessor Definitions
	DEFAULT_DEBUG_PRIORITY
	DEFAULT_MAIN_PRIORITY
	DEFAULT_TIMER_PRIORITY
	INTERNAL_LAYER_SERVICE
	MAX_NUM_SPPS
	RTS_NAMES
	TIMING_SERVICE
	TO_OVER_TCP
	USE_THREADS
	LOG_MESSAGE
	MULTIPLE_PRIORITIES
	OBJECT_DECODE
	OBJECT_ENCODE
	STDIO_ENABLED
	RTS_CLEANUP_MECHANISM
	RTS_COMPATIBLE
	RTS_MEMORY_POLICY
	MESSAGE_DEFERRAL
	OTRTSDEBUG
	PURIFY
	RTS_INLINE
	INLINE_CHAINS
	INLINE_METHODS
	RTMESSAGE_PAYLOAD_SIZE
	SEND_BY_VALUE
	OBSERVABLE

	Creating the Minimum Services Library Configuration
	Optimizing Designs
	Capsule Instances and Capsule Behavior
	Guards
	State Machines
	Capsules Versus Data
	Unnecessary Sends
	Sending Typed Data by Value in Messages
	Cross Thread Message Sending

	General C Performance Notes
	Additional Design Considerations
	Hardware Differences
	Availability of External Library on Different Platforms

	Toolchains

	Configuring and Customizing the Services Library
	Configuration and Customization Explained
	Configuration Options
	Customization Options

	Changing Pre-processor Macros
	Before you Start
	Why
	Where
	How

	Changing Build Options
	Before you Start
	Why
	Where
	How

	Overriding or Adding Operations and Classes
	Why
	Where
	How
	Tasks

	Building the Services Library
	Updating a Component to use a Different Services Library


	Model Properties Reference
	Overview
	Generalization and Properties

	Expanded Property Symbols
	Environment Variables and Pathmap Symbols

	C Model Element Properties
	GenerateClass (Class, C)
	ClassKind (Class, C)
	ImplementationType (Class, C)
	ConstructFunctionName (Class, C)
	GlobalPrefix(Class, C)
	HeaderPreface (Class, C)
	HeaderEnding (Class, C)
	ImplementationPreface (Class, C)
	ImplementationEnding (Class, C)
	AttributeKind (Attribute, C)
	InitializerKind (Attribute, C)
	InitializerKind (Role, C)
	InitialValue (Role, C)
	GenerateConstructFunction (Capsule, C)
	GlobalPrefix (Capsule, C)
	HeaderPreface (Capsule, C)
	HeaderEnding (Capsule, C)
	ImplementationPreface (Capsule, C)
	ImplementationEnding (Capsule, C)
	KindInHeader (Uses, C)
	KindInImplementation (Uses, C)

	C TargetRTS Properties
	GenerateDescriptor (Class, C TargetRTS)
	Version (Class, C TargetRTS)
	InitFunctionBody (Class, C TargetRTS)
	CopyFunctionBody (Class, C TargetRTS)
	DestroyFunctionBody (Class, C TargetRTS)
	DecodeFunctionBody (Class, C TargetRTS)
	EncodeFunctionBody (Class, C TargetRTS)
	GenerateDescriptor (Attribute, C TargetRTS)
	TypeDescriptor (Attribute, C TargetRTS)
	NumElementsFunctionBody (Attribute, C TargetRTS)
	GenerateDescriptor (Role, C TargetRTS)
	TypeDescriptor (Role, C TargetRTS)
	NumElementsFunctionBody (Role, C TargetRTS)

	C Generation Properties
	OutputDirectory (Component, C Generation)
	CodeGenDirName (Component, C Generation)
	ComponentUnitName (Component, C Generation)
	CommonPreface (Component, C Generation)
	CodeGenMakeType (Component, C Generation)
	CodeGenMakeCommand (Component, C Generation)
	CodeGenMakeArguments (Component, C Generation)
	CodeGenMakeInsert (Component, C Generation)
	CodeSyncEnabled (Component, C Generation)

	C Compilation Properties
	CompilationMakeType (Component, C Compilation)
	CompilationMakeCommand (Component, C Compilation)
	CompilationMakeArguments (Component, C Compilation)
	CompilationMakeInsert (Component, C Compilation)
	CompileCommand (Component, C Compilation)
	CompileArguments (Component, C Compilation)
	InclusionPaths (Component, C Compilation)
	TargetServicesLibrary (Component, C Compilation)
	TargetConfiguration (Component, C Compilation)

	C Executable Properties
	Capsule To Logical Thread Mapping (Capsule, C Executable)
	TopCapsule (Component, C Executable)
	PhysicalThreads (Component, C Executable)
	ExecutableName (Component, C Executable)
	DefaultArguments (Component, C Executable)
	LinkCommand (Component, C Executable)
	LinkArguments (Component, C Executable)
	UserLibraries (Component, C Executable)
	UserObjectFiles (Component, C Executable)

	C Library Properties
	LibraryName (Component, C Library)
	BuildLibraryCommand (Component, C Library)
	BuildLibraryArguments (Component, C Library)

	C External Library Properties
	GenerateClassInclusions (Component, C External Library)
	CodeGenDirName (Component, C External Library)
	InclusionPaths (Component, C External Library)
	Libraries (Component, C External Library)


	Services Library API Reference
	Overview
	Minimally Configured Services Library

	RTCapsule
	Attributes
	Operations
	msg and RTCapsule_getMsg
	rts and RTCapsule_context
	RTCapsule_getIndex
	RTCapsule_getName
	RTCapsule_getTypeName
	RTCapsule_getCurrentStateString

	RTController
	Operations
	RTController_getError
	RTController_strError
	RTController_perror
	RTController_name
	RTController_registerTimer
	RTController_overrideSyncMethods
	RTController_abort

	RTLog
	Operations
	Log show primitives

	RTMessage
	Operations
	RTMessage_getPriority
	RTMessage_getSignal
	RTMessage_copyData
	RTMessage_getSignalName
	RTMessage_getData
	RTMessage_getType
	RTMessage_getPortIndex
	RTMessage_getPort
	RTMessage_defer

	RTObject_class
	When Would You Use the Type Descriptor?
	RTType_<typename> structure

	RTPeerController
	Operations
	RTPeerController_timedWait
	RTPeerController_waitForEvents

	RTPort
	Operations
	RTPort_getCardinality
	RTPort_purge
	RTPort_purgeAt
	RTPort_recall
	RTPort_recallAt
	RTPort_recallAll
	RTPort_recallAllAt
	RTPort_send
	RTPort_sendAt
	RTPort_enqueue
	RTPort_registerAs
	RTPort_deregister
	RTPort_isBound
	RTPort_getRegisteredName
	RTPort_isRegistered
	RTPort_informIn
	RTPort_cancelTimer
	RTPort_isTimerValid
	RTPort_createInSignal
	RTPort_createOutSignal

	RTPriority
	RTSoleController
	Operations
	RTSoleController_waitForEvents

	RTSignal
	RTTimerId
	RTTimespec
	Operations
	tv_sec and tv_nsec
	RTTimespec_clock_gettime
	RTTimespec_lessEqualTo
	RTTimespec_addTo


	Index


