Rational Software Corporatione

Rational- TestManager

Extensibility Reference

VERSION: 2003.06.00
PART NUMBER: 800-026179-000

WINDOWS/UNIX

R a t i O NnNa]® support@rational.com

the software development company http://www.rational.com

Legal Notices

©2000-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026179-000

Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States and /or
other jurisdictions, as well as various international treaties. Any reproduction or distribution of
the Work is expressly prohibited without the prior written consent of Rational Software
Corporation.

The Work is furnished under a license and may be used or copied only in accordance with the
terms of that license. Unless specifically allowed under the license, this manual or copies of it
may not be provided or otherwise made available to any other person. No title to or ownership
of the manual is transferred. Read the license agreement for complete terms.

Rational Software Corporation, Rational, Rational Suite, Rational Suite ContentStudio, Rational
Apex, Rational Process Workbench, Rational Rose, Rational Summit, Rational Unified Process,
Rational Visual Test, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, PerformanceStudio, PureCoverage, Purify, Quantify,
Requisite, RequisitePro, RUP, SiteCheck, SiteLoad, SoDa, TestFactory, TestFoundation, TestMate
and TestStudio are registered trademarks of Rational Software Corporation in the United States
and are trademarks or registered trademarks in other countries. The Rational logo, Connexis,
ObjecTime, Rational Developer Network, RDN, ScriptAssure, and XDE, among others, are
trademarks of Rational Software Corporation in the United States and/or in other countries.
All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and
5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and 6,126,329 and 6,167,534
and 6,206,584. Additional U.S. Patents and International Patents pending.

U.S. Government Restricted Rights

Licensee agrees that this software and/or documentation is delivered as "commercial computer
software," a "commercial item," or as "restricted computer software," as those terms are defined
in DFARS 252.227, DFARS 252.211, FAR 2.101, OR FAR 52.227, (or any successor provisions
thereto), whichever is applicable. The use, duplication, and disclosure of the software and/or
documentation shall be subject to the terms and conditions set forth in the applicable Rational
Software Corporation license agreement as provided in DFARS 227.7202, subsection (c) of FAR
52.227-19, or FAR 52.227-14, (or any successor provisions thereto), whichever is applicable.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license
agreement. Except as explicitly stated otherwise in such license agreement, and except to the
extent prohibited or limited by law from jurisdiction to jurisdiction, Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the
media and software product and its documentation, including without limitation, the
warranties of merchantability , non-infringement, title or fitness for a particular purpose or
arising from a course of dealing, usage or trade practice, and any warranty against interference
with Licensee's quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation, DirectDraw,
DirectInput, DirectX, DirectX], DoubleSpace, DriveSpace, FrontPage, Funstone, Genuine
Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror, IntelliSense, J/Direct,
JScript, LineShare, Liquid Motion, Mapbase, MapManager, MapPoint, Map Vision, Microsoft
Agent logo, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, RelayOne, Rushmore,
SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual Basic, the Visual Basic logo,
Visual C++, Visual C#, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual
Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the
Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX, are
either trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris, Java,
Java 3D, ShowMe TV, SunForum, SunVTS, SunFDD], StarOffice, and SunPCi, among others, are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into
any product or application the primary purpose of which is software license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by Addison-Wesley Publishing
Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Contents

Prefaceo et Xiii
About This Manual Xiii
AUdIEBNCE Xiii
Other RESOUICES.t e e Xiii
Integrations Between Rational Testing Tools and Other Rational Products Xiv
Contacting Rational Technical Publications Xvii
Contacting Rational Customer Support i Xvii

Part 1: Adding Custom Test Script Types

1 Introduction to Custom Test ScriptTypes 1
About Test SCript TYPES . . ot i 1
Built-In Test Script Types. . . .o oo e e 2
Running a Test Script with the Command Line Adapter 2
Adding Test Script TYPesS. . . .o oot 4

Adding a Command Line Test Script Type oo 4
Adding a Custom Test Script Typeo e 11
Using Test Script Oplions oo 12
Editing Test Script Options for a Test Script Type. 12
Editing Test Script Options for a Test Script Source. 13
Editing Test Script Options fora Test Script 13
Editing Test Script Options for an Instance ina Suite. 14
Editing Test Script Options for a Test Case Instance 14
Setting or Viewing Option Values i 14
Using Test Tool OptioNnsot e 15
Component Description and Communication Overview 16
Using the Command Line Execution Engine. 18

2 Test Script Execution Adapter API 21
About This APl . .. 21
Communication OVEIVIEWt e 21
Data Typesand CHeaderFiles i 23
SUMMIAIY. .« .o e e e 23
SESSIONCIOSE() - v v vt e e 24

Contents v

Vi

SessioNGetOptioN().o vt e 24

SESSIONOPEN() « o oot e e e e 25
SessionSetOPtioN(). . . . oo e 26
TaskADOIT() . . . ot o e e 26
TaSKCIOSE() .« v v vttt e e 27
TaskCreate() . . .« v oottt e e e 27
TaskEXeCULE() oo e 28
TaskGetOption()ot i i e e 28
TaskSetOption()o e e 29
TOEAEOI() vttt e e e e e 30
Test ScriptServicescciiiiiiiiini it it 31
About Test Script Services i 31
Datapool ServiCeS.ot e 31
SUMMANY . .t e e e e 32
TSSDatapooICIOSE(). - . v v v vt i 33
TSSDatapoolColumnCount() ot e 33
TSSDatapoolColumnName()co i e e e 34
TSSDatapoolFetch().o 35
TSSDatapoolOPeN() . . . o v vt e 36
TSSDatapoolRewind() ccii i e 39
TSSDatapoolROWCOUNE() . . . oo v e e 40
TSSDatapoolSearch()o e e e 41
TSSDatapooISEeK() . . . o v v i e 42
TSSDatapoolValue().o 43
Logging ServiCesS . ..ot e 45
SUMMAIY .« . e e e e e e 45
TSSLOGEVENT() . . o oot e e 45
TSSLOGMESSAGE() « « « v i v et e e 47
TSSLogTestCaseResult().o ot e e 48
Measurement SEIVICESot e 50
SUMMANY . . e e e e e 50
TSSCommandENd()o oo e 51
TSSCommandStart()o v i e 52
TSSENVIroNMeENtOP() . . . o v oo e 54
TSSGEtTIMe() - .o vttt e e e 56
TSSInternalVarGet(). oot 57
TSSThinK() . . . oo e e 60
TSSTIimerStart() e 60

Contents

TSSTIMeErStOpP() . . o v v e e e 62

Utility Serviceso 63
SUMMANY . . oot e e e e 63
TSSApplicationPid().ot e 64
TSSApplicationStart() i 65
TSSApplicationWait().ot e 66
TSSDElaY(). . v v vttt e e 67
TSSErrorDetail(). . . . oot 68
TSSGetComputerConfigurationAttributeList() 69
TSSGetComputerConfigurationAttributeValue() 70
TSSGetPath().o 71
TSSGetScriptOption() e 72
TSSGetTestCaseConfigurationAttribute() 73
TSSGetTestCaseConfigurationAttributeList(). 74
TSSGetTestCaseConfigurationName()ot 75
TSSGetTestCaseName() oo it 76
TSSGetTestToolOption() oot 77
TSSJavaApplicationStart(). 77
TSSNEGEXD() . « ot et e 78
TSSRANA() . - v oot et 79
TSSSeedRaNd(). . . . oo e 80
TSSEPIINt() ..ot e 81
TSSPINt() et 82
TOSUNIfOIrM() . . .o e e 83
TSSUNIQUESTING() . .« o ot et 84

MONItOr SEIVICES. . . o 84
SUMMANY . . oo e e e 84
TSSDISPIAY() « « o v v et et 85
TSSPOSItIONGEt()o ot 86
TSSPosItioNSet()o oo e 87
TSSReportCommandStatus()ot 88
TSSRunStateGet().o vt 88
TSSRunStateSet() oo e 89

Synchronization Services. 92
SUMMAY . e e 93
TSSSharedVarAssign() . .. oo v oo e e 93
TSSSharedVarEval()o o 95
TSSSharedVarWait() 96

Contents vii

viii

TSSSYNcPoINt()o 98

SESSION SEIVICES . .\ vttt e e e 99
SUMMAIY .« . e e e e e 99
TSSCONNECH() . vt e 100
TSSCONEXE() -« v v e et e e e 101
TSSDISCONNECH() .« v v vttt e 103
TSSServerStart() oo e 103
TSSSErverStOP() - v v vt it e 104
TSSShUtdOWN() . ..ot e 105

AdvanCed SerIVICES oot e 106
SUMMaAIY . oot 106
TSSInternalVarSet()o oo 107
TSSLogComMmMAaNd() . . . v vttt e e 107
TSSThINKTIME() .« v ot et e e e 109

Test Script Console Adapter APl 111

About the Test Script Console Adapter. 111
TSCA Functionality.o e 111
Built-In and Custom Test Script Typesot 112
The TSCA Function Calls. e 112

Functional Groupings of TSCA Functions 113
Required and Optional Functionality 114
Mapping of User Actions to TSCA FunctionCalls 115

Building a Custom Test Script Console Adapter. 120
Prerequisite SKills. e 120
Building a TSCA: Workflow and Implementation Issues. 120

Makinga Connection i 120
Accessingthe Data 121
Integration with Source Control 123
Displaying Properties. e 123
Supporting User Configuration of the Test Script Source 123
Filteringo 124
Custom Action SUPpPOrtot 124

Registering the TSCA DLL with TestManager. 125

TSCA Function Reference i e 125

TTAAdToSourceControl(). o oot e 126

TTCheCKIN() - . oo oot 128

TTCheCKOUL()ot eeee 129

TTClearFilter().o oo e 131

TTCONNECH() . . v oo e e e e 132

Contents

TTDISCONNECH() . « « v v v et e e e e e e e e 136

TTEI(). . o v oo e e e 137
TTExecuteNOdeACtoN()ot e e e e e 139
TTExecuteSourceACtion().ottt e e e e e 140
TTGetChildren() oo e 142
TTGetConfiguration()ot 144
TTGetFIRErEX(). . . . o oo e e e 146
TTGEtICON() . . vt et e 148
TTGetlsFunctionSupported() e e 149
TTGEtNAME() - . v ot it e 151
TTGEtNOTE() - - vt et e 153
TTGetNOdEACHONS(). . . o o oo e e e e e e 155
TTGEtROOIS() -« v vt et et e e e 156
TTGEtSOUrCEACHONS() -« o v vttt e e e 157
TTGetSourceControlStatus() it e e e e 159
TTGetSourcelCoN(). . . .o vttt e 161
TTGetTestToolOPtONS() . . . v vt it e e e e 162
TTGetTYPeICON(). . . v v vt e e e e e 165
TTNEW() et 167
TTSEIECH). « v v ettt e 168
TTSetConfiguration() e e 170
TTSEtFIErEX() . . . oot e e 172
TTShOWPIOPerties() oo vt i e e e 174
TTUNAOChECKOUL() . . . o oo e e et e e 176

Part 2: Adding Custom Test Input Types

Introduction to the Test Input Adapter API.................. 181
About Test Input Adapters 181
TIAFunctionality e 181
Built-lnand Custom TIASt e 182
The TIAFunction Calls. e 183
Functional Groupings of TIAFunctions 183
Mapping of User Actions to TIA FunctionCalls. 185
Building a Custom Test Input Adapter 189
Prerequisite SKills. e 189
Building a TIA: Workflow and Implementation Issues 189
Making a Connection. i 190

Contents ix

AccessingtheData 191

Supporting Impact Analysis 192
Displaying Properties. 193
Supporting User Configuration of Test InputData 193
Fitering e 194
Custom Action Support e 194
Registering a New Test Input Adapter 195
... 195

6 TestlInput AdapterReference...............cciiiiiiinnnn. 197
Summary of TIAFUNCHiONS 197
Using the Type Node Structure.t e 199
Note on Memory Allocation. e 200
TICONNECH) . . o ot oo e e 200
TICONNECIEX() . . . v vt e e 203
TIDISCONNECH(). « « « vttt e 205
TIExecuteNOdeACHON() oottt e e e e 207
TIEXecuteSOUrCEACHION()ottt 208
TIGEtChIIAren()o ot 210
TIGetConfiguration()o e 213
TIGEtFItErEX(). . . o oot e 215
TIGEHISChIlA() oot 217
TIGetlsFunctionSupported()o e 218
TIGetIsModified()o 220
TIGetIsModifiedSIince() oot 221
TIGEtISNOdE() . . . o v oo e e 222
TIGetIsParent()o ot 224
TIGetISValidSource(). oo i 225
TIGetModified() o 226
TIGetModifiedSInCe()o oo 227
TIGEINAME() . . o . oottt 230
TIGetNeedsValidation(). i e 231
TIGEINOdE() . . o e oot 232
TIGENOdEACHIONS() .« . v\t vt et e 234
TIGetParent()o e e 236
TIGEtROOIS() . . v e ot e 238
TIGEtSOUrCEACHIONS() . . . v vt et e 241
TIGEetSoUrcelCoN(). . . . oo e e 242
TIGEITYPE() -« v o e e e e et e e e e 244
TIGEITYPEICON() . o o ettt et e 245

x Contents

T G TYPES() . « e e e et e e e e 247

TISetConfiguration()ot e 249
TISEtFIter(). . . o e e 250
TISEtFIerEX() . . oo e 252
TISetValidationFilter()o 254
TIShOWProperties(). oo oo e e e 255
TIShowSelectDialog(). . - -« v oo 257
Using Test Script Services from an External C or C++ Program 261
Connecting to a TestManager ListenerPort. 261

Example: Attaching to a TestManager Listener Port 261
Arguments of TSSEnvironmentOp().o i it 270

Example: Manipulating Environment Variables 277
Arguments of TSSInternalVarGet(). 279

Contents xi

xii Contents

Preface

About This Manual

This manual describes the APIs that you use to extend the capabilities of Rational
TestManager. The manual is divided into two parts:

Part 1: Adding Custom Test Script Types

Part 1 describes the APIs you use if you want TestManager to manage and run
custom test script types in addition to the standard test types that it supports (such
as SQABasic, VU, Java, and Visual Basic test scripts as well as shell scripts and
manual scripts).

Part 2: Adding Custom Test Input Types

Part 2 describes the APIs you use to introduce new test inputs (such as custom test
requirements and other custom test assets) into the TestManager environment.

Audience

This manual is intended for developers who write TestManager adapters that
interface with the TestManager C execution engine.

Other Resources

This product contains online documentation. To access it, click TestManager
Extensibility in the following default installation path (ProductName is the name of
the Rational® product you installed, such as Rational TestStudio®).

Start > Programs > Rational ProductName > Rational Test > API

All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.

Xiii

Integrations Between Rational Testing Tools and
Other Rational Products

Rational TestManager Integrations

history of your test assets.
» Create baselines of your test projects.

* Manage changes to test assets stored
in the Rational Test datastore.

Integration Description Where it is Documented
Rational Use Rational Administrator to create and |® Rational Suite Administrator’s Guide
Tes’FManager— manage Rational projects. A Rational = Rational TestManager User’s Guide
Rational project stores software testing and)
Administrator development information. When you " Rational TestManager Help

work with TestManager, the information

you create is stored in Rational projects.

When you associate a RequisitePro

project with a Rational project using the

Administrator, the RequisitePro

requirements appear automatically in the

Test Inputs window of TestManager.
TestManager— Use ClearQuest with TestManager to » Rational TestManager User’s Guide
Rational track and manage defects and change = Rational TestManager Help
ClearQuest requests throughout the development

process.

With TestManager, you can submit

defects directly from a test log in

ClearQuest. TestManager automatically

fills in some of the fields in the

ClearQuest defect form with information

from the test log and automatically

records the defect ID from ClearQuest in

the test log.
TestManager— Use UCM with TestManager to: » Rational TestManager User’s Guide
[Rjatilfoin;lg?tlonal = Archive test artifacts such as test cases, [* Rational TestManager Help

nifie ange : :

Management 8 test scripts, test suites, and test plans. | Rutional Suite Administrator’s Guide
(UCM) * Maintain an auditable and repeatable |. Rotional Administrator Help

» Using UCM with Rational Suite

xiv Preface

Rational TestManager Integrations

Integration Description Where it is Documented
TestManager— Use RequisitePro to reference = Rational TestManager User’s Guide
Ratlopél requirements from Test'l\./[anager so that |, Rational TestManager Help
RequisitePro you can ensure traceability between your)) o)
project requirements and test assets. * Rational Suite Administrators Guide
Use requirements in RequisitePro as test
inputs in a test plan in TestManager so
that you can ensure that you are testing
all the agreed-upon requirements.
TestManager— Use TestManager with Robot to develop [= Rational TestManager User’s Guide

Rational Robot

automated test scripts for functional
testing and performance testing. Use
Robot to:

» Perform full functional testing. Record |*

test scripts that navigate through your
application and test the state of objects
through verification points.

» Perform full performance testing.
Record test scripts that help you
determine whether a system is
performing within user-defined
response-time standards under
varying workloads.

= Test applications developed with IDEs
(Integrated Development
Environments) such as Java, HTML,
Visual Basic, Oracle Forms, Delphi,
and PowerBuilder. You can test
objects even if they are not visible in
the application’s interface.

* Collect diagnostic information about
an application during test script
playback. Robot is integrated with
Rational Purify, Rational Quantify,
and Rational PureCoverage. You can
play back test scripts under a
diagnostic tool and see the results in
the test log in TestManager.

= Rational TestManager Help
= Rational Robot User’s Guide
Rational Robot Help

Getting Started: Rational PurifyPlus,
Rational Purify, Rational PureCoverage,
Rational Quantify.

* Rational PurifyPlus Help

Integrations Between Rational Testing Tools and Other Rational Products xv

Rational TestManager Integrations

Integration

Description

Where it is Documented

TestManager—
Rational Rose

Use as test inputs in TestManager. A test
input can be anything that you want to
test. Test inputs are defined in the
planning phase of testing.

You can use TestManager to create an
association between a Rose model (called
a test input in TestManager) and a test
case. You can then create a test script to
ensure that the test input is met. In
TestManager, you can view the test input
(the Rose model element) associated with
the test case.

* Rational TestManager User’s Guide
* Rational TestManager Help

TestManager—
Rational SoDA

Use SoDA to create reports that extract
information from one or more tools in
Rational Suite. For example, you can use
SoDA to retrieve information from
different information sources, such as
TestManager, to create documents or
reports.

* Rational SoDA User’s Guide
= Rational SoDA Help
* Rational TestManager User’s Guide

TestManager—
Rational
Unified Process
(RUP)

Use Extended Help to display RUP tool
mentors for TestManager. RUP tool
mentors provide practical guidance on
how to perform specific process activities
using TestManager and other Rational
testing tools.

Start Extended Help from the
TestManager Help menu.

Rational TestManager User’s Guide
» Rational TestManager Help
Rational Extended Help

xvi Preface

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs @rational.com.

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support as follows:

Your Location Telephone Facsimile E-mail
North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0) 20-4546-200 |[+31 (0) 20-4545-201 |support@ europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

Note: When you contact Rational Customer Support, please be prepared to supply
the following information:

* Your name, telephone number, and company name
* Your computer’s make and model

* Your operating system and version number

* Product release number and serial number

* Your case ID number (if you are following up on a previously reported problem)

Contacting Rational Technical Publications xvii

xviii Preface

Part 1: Adding Custom
Test Script Types

Introduction to Custom
Test Script Types

About Test Script Types

Part 1 of this manual explains how to customize Rational® TestManager so that it can
execute a test script written in a new language. Part 1 is organized as described in the

following table.

Section

Purpose

“Built-In Test Script Types” on
page 2

Explains the role of test script types in execution and
describes built-in test script types.

“Running a Test Script with the
Command Line Adapter” on

page 2

Explains how to run, from TestManager, any test script that
can be executed from the command line.

“Adding Test Script Types” on
page 4

Describes the two ways to extend TestManager to support a
new test script type or testing environment.

“Adding a Command Line Test
Script Type” on page 4

Gives the step-by-step procedure you follow to create a test
script type that uses Rational’s Command Line test script
adapter.

“Adding a Custom Test Script
Type” on page 11

Describes the tasks required to create a custom test script
type.

“Using Test Script Options” on
page 12

Describes how test script options are implemented and the
various ways to edit options from TestManager.

“Using Test Tool Options” on
page 15

Describes how to retrieve execution options from an external
test tool.

“Component Description and
Communication Overview” on
page 16

Lists test script adapter components and presents a diagram
describing their interaction during playback.

“Using the Command Line
Execution Engine” on page 18

Explains how to use rttsee to execute test scripts from a
command line.

Built-In Test Script Types

Built-In Test Script Types

When a TestManager user plays back (executes) a test script, test case, or suite, the
playback component of TestManager, the Test Script Execution Engine (TSEE), calls the
Test Script Execution Adapter (ISEA) associated with each type of test script in the
suite. As released, TestManager supports execution of the test script types listed and
described in the table on the next page.

Test Script Type |Description

GUI A functional test script written in SQABasic, a proprietary Basic-like
scripting language.

VU A performance test script written in VU, a proprietary C-like scripting
language.

VB A test script written in the Visual Basic language — for example, a test
script for an application based on the Microsoft Component Object Model
(COM).

Java A test script written in the Java language — for example, a test script for a

BEA WebLogic application.

Command Line A test script (written in any language) that can be executed from the
command line — for example, a DOS batch file, a Perl or Bourne shell
script, or compiled C program.

Manual A procedure explaining how to perform a test manually that, when
executed, prompts a tester to verify the result of the test.

Running a Test Script with the Command Line Adapter

The built-in Command Line test script type uses a command line execution adapter
included with TestManager. This adapter allows TestManager to run any test script
(more precisely, any program) that can be executed from the command line. No
customization is required for this extension feature. A test script run by the command
line adapter can include any of the Test Script Service (TSS) calls documented in
Chapter 3.

To run a test script using the command line execution adapter:

2 Chapter 1

Running a Test Script with the Command Line Adapter

1 From TestManager, select File > Run Test Script > Command Line. The Specify
Command Line dialog box opens.

Specify Commmand Line |

File ta run fram Cammand Line:

| Browsze. .. |

Argumernts:

[ritial directony:

aF. Cancel Help

2 InFile to run from Command Line, type the test script filename (suffix not required), or
browse to the file.

This box can also name an installed program that executes the test script. For
example, perl myTestScript.pl.

If the program must be compiled or linked, you must do this outside TestManager.

Note: If the program includes TSS calls, it must be linked with

$ratl rthome%\rtsdk\c\lib\rttssremote.lib. (The environment
variable $ratl_rthome$%, pointing to your installation path, is set during product
installation.) Also, the program must connect to a TestManager listener port.
Appendix A provides an example of a C program that makes TSS calls.

3 If the test script uses arguments, type them in the Arguments box.

4 If the test script must start from a specific location, specify it in the Initial directory
box.

5 Click OK.

Introduction to Custom Test Script Types 3

Adding Test Script Types

Adding Test Script Types

There are two ways to extend TestManager to support a new test script type. One way
is to create a test script type that is based on the Command Line test script type and
that uses the Command Line test script execution adapter (TSEA) provided with
TestManager. The procedure for doing this is explained in Adding a Command Line Test
Script Type on page 4. The advantage of this method is simplicity: it requires no
custom programming. The only requirement is that the test scripts you want to run
from TestManager can be executed from the command line. The drawback of these
scripts is that, while TestManager can execute them individually and also in suites
that include test scripts of other types, the scripts are not fully integrated into
TestManager. For example:

» Test scripts that use the Command Line adapter require separate process
invocations each time they are run. Custom test scripts do not, and so run more
efficiently.

* Any procedures (such as compilation/linking) required to make these test scripts
executable must be performed outside of TestManager.

If you extend TestManager in this way, see The Command Line Interface to Rational Test Script
Services. This manual explains tsscmd, a utility that gives Command Line test scripts
access to Rational Test Script Services. (The C bindings for these services are
documented in Chapter 3). Command-line test scripts that do not use Test Script
Services can be executed from TestManager but are not integrated into the
TestManager logging, monitoring, and reporting framework.

The other way to extend TestManager is to create a custom test script type. This
method, described in Adding a Custom Test Script Type on page 11, requires that you
develop programs implementing the C APIs described in chapters 2 and 4 of this
manual and, optionally, provide access to the Test Script Services documented in
Chapter 3. For example, you can create adapters for currently unsupported scripting
languages or software testing environments. Custom test script types are fully
integrated into the TestManager framework, but they require considerably more effort
to provide.

Adding a Command Line Test Script Type

This example illustrates how, without doing any programming, to extend
TestManager so that it can support test scripts written in a new source language. After
you have followed these procedures, TestManager can manage test scripts written in
Perl. Specifically, a TestManager user can view, edit, or play back Perl source test
scripts. Additionally, Perl test scripts can be added to TestManager suites that include
test scripts of other types.

4 Chapter 1

Adding Test Script Types

Note that you can execute test scripts that use the command line adapter without
adding a new test script type: see “Running a Test Script with the Command Line
Adapter” on page 2. The procedure below is an alternative that allows such test
scripts to be mananged (created or modified as well as executed) from TestManager.

1 Create (or designate) a folder for Perl test scripts — for example, C:\testscripts\perl.
The folder can be on a local or a network location.

2 From TestManager, click Tools > Manage > Test Script Types. The Manage Test Script
Types dialog box appears.

Manage Test Script Types E

Java Script

M anual 5cript
Fobot GUI Script Edite..
Fiobat %Ll Script —
Shell Command
WB Script

Eename...

(55

[
[B

oy |
[e

Welete

Cloze | Help

3 Click the New button. The New Test Script Type dialog box appears with the General
tab selected.

Mew Test Script Type I

General | Console Adapter Typel Execution Adapter Typel Sourcesl Statisticsl

Mame:

INewT estSoriptType]
Description:

Owner:

QK I Cancel | Help |

In the Name box, type the name of the new test script type — for example, Perl
Script. Optionally, type a description and select an owner. Only the owner can
edit or delete this script type.

Introduction to Custom Test Script Types 5

Adding Test Script Types

4 Click the Console Adapter Type tab. The dialog box changes as shown below.

Mew Test Script Type

6 Chapter 1

Adding Test Script Types

Click Use the command line console adapter and fill in the boxes as follows:

2 In the New instance command line box, type the command to execute in order to
create a new test script — the name of your favorite editor. For example:

notepad

2 In the Edit instance command line box, type the command to start in order to view
or edit existing scripts of this type. For example:

notepad {testscriptpath}
Type {testscriptpath} exactly as shown.
The program you enter (in this case notepad) must be in your path.

5 Click the Execution Adapter Type tab. The dialog box changes as shown below.

[New Test Script Type |]

Generall Consale Adapter Type Execution Adapter Type |Sources| Statisticsl

 Use a custom exacution adaptar

Execution adapter library:

& |ze the command line exacution adaptar

Execution command line:

Iperl {testscriptpath} Browse... |
Test script options... |

oK I Cancel | Help |

Click Use the command line execution adapter. In the Execution command line box, type
the execution command line for a new script instance. In this example, type the
following exactly as shown:

perl {testscriptpath}

Introduction to Custom Test Script Types 7

Adding Test Script Types

The program (perl) must be in your path. (A copy that is released with
TestManager is located in the Rational Test folder, which will be in your path by
default.)

6 Click Test Script Options. The Test Script Options dialog box opens as shown below.
INew Test ScriptType K

Generall Consale Adapter Type Execution Adapter Type |Sources| Statisticsl

 Use a custom exacution adaptar

Execution adapter library:

I Test Script Options |]
& Uz Options:
Execi Option Name Option Value
pel. _TMS_TMO_EXEC_COPY_TO_AG itestscript]
Te:

oK Cancel | Help I

oK | Cancel | Help |

In the Options area, type the following Option Name and Option Value pair:

Option Name: TMS_TSO_EXEC_COPY TO AGENT FILELIST
Option Value: {testscript}

Click OK.

8 Chapter 1

Adding Test Script Types

7 Click the Sources tab. The dialog box changes as shown below.

Mew Test Script Type

8 Click Insert. A popup appears telling you that the test script you are defining must
be created before proceeding — answer Yes. The dialog box changes as shown
below.

New Test Script Source

E—
.

Introduction to Custom Test Script Types 9

Adding Test Script Types

In the Name box, type a descriptive name for this source. Optionally, type a
description and an owner. Only the owner can edit or delete this source.

The Name you type here is added to the TestManager File > New Test Script, File >
Open Test Script, and File > Run Test Script lists. Select this name to create a new Perl
script or edit, view, or run an existing Perl script.

9 Click the Connection Data tab. The dialog box changes as shown below.
INew Test SeriptType K|

Generall Console AdapterTypel Execution Adapter Type Sources |Statistics|

Sources:

New Test Script Source |]

General Connection Data | Configurationl Statisticsl

—Data path:

™ Computer specific

Connection options:

Option name Option value Computer specific |2

e o o o |

oK | Cancel | Help |

In the Data path box, type the directory name (corresponding to Name) that you
designated in step 1. This is where source files for test scripts of this type are
located.

If the data path might vary from one local computer to another, click Computer
specific. In this case, the TestManager user is prompted for the actual path of a
script at the time of selection.

The Connection options box allows you to specify platform-specific execution
options for the script type’s executable file (in this case, for perl). No connection
options are needed for this example. Click OK and close the dialog box to conclude
the procedure.

10 Chapter 1

Adding Test Script Types

Adding a Custom Test Script Type

The tasks required to support a new custom test script type are as follows:

Write a program that supports the Test Script Execution Adapter (TSEA) API
described in Chapter 2 of this manual.

The TSEA APl is the interface that allows TestManager to call a TSEA for a
particular test script type.

Add support for the test script services (TSS) described in Chapter 3.

The TSS API gives scripts of the new type access to services such as:

s Use of datapools to provide meaningful test data to scripts during execution
s Insertion of timers and synchronization points

= Monitoring of script playback progress

2 Logging for analysis and reporting

2 Exchange of information among virtual testers through environment, internal,
and shared variables

Write a Test Script Console Adapter (TSCA) for the new test script type as
described in Chapter 4.

The TSCA allows TestManager to locate scripts of the new type and associated
programs needed to manipulate the scripts. If a new test script type is file-based
and can be displayed or edited using standard file-based viewers and editors, you
can use the built-in test script console adapter for the new type. Otherwise, a
custom TSCA is required.

Register adapter components with TestManager.

Create the new test script type and give TestManager the names and locations of
the TSCA, the TSEA, and the programs to be used to edit or view scripts of the
new type. These procedures are explained in the TestManager online Help and in
the Rational TestManager User’s Guide. The procedures are similar to those described in
Adding a Command Line Test Script Type on page 4.

Your code must reside in dynamic-link libraries (.dll in Windows, or .so in UNIX).
During initialization, the TestManager TSEE dynamically links with the TSEA
component of your adapter.

TSEA dlls must be placed in the Rational Test\tsea folder under the Rational
installation directory.

Introduction to Custom Test Script Types 11

Using Test Script Options

Using Test Script Options

A TSEA can support test script options. The API calls that support options,
documented in the next chapter, are: SessionSetOption (),
SessionGetOption (), TaskSetOption (), and TaskGetOption ().

If a TSEA supports test script options, TestManager users can set or display the values
of the options as explained below. Also, a test script (or other application) can get the
current value of an option using TSSGetScriptOption ().

Whether or not a TSEA uses test script options, a TestManager user can define and use
new options. For example, a user can:

» Define a new test script option named repeat count and assign it the value 3.

* Query the option name from a test script with TSSGetScriptOption(),and
branch based on the returned value of the option.

Test script options can be set at these levels of generality, where 1 is the highest:
1 Test Script Type

2 Test Script Source

3 Test Script

4 Test Script in a suite

5 Test Case implemented by a test script

The Test Script Execution Engine implements identically-named options
hierarchically, with lower level settings overriding higher level settings. Thus, if you
set the option named repeat count to a different value at each of the levels listed
above, the lower level settings override the higher level settings:

» 4 or5 (mutually exclusive) override 3, 2, and 1
= 3overrides2and 1
= 2overrides 1

Conversely, if you set an option only at the Test Script Type level, that setting will
apply globally for this type of test script. Thus, if you set the option named

repeat count to the value 3 and the Test Script Type level, the option will have this
value in all instances.

Editing Test Script Options for a Test Script Type
To edit a test script option from Test Manager at the Test Script Type level:

12 Chapter 1

Using Test Script Options

From TestManager, click Tools > Manage > Test Script Type. The Manage Test Script
Type dialog box opens.

From the list of existing test script types, click the type whose options you want to
edit.

Click Edit. The Test Script Properties dialog box opens.
Click the Execution Adapter Type tab.

Click Test Script Options The Test Script Options dialog box opens. Set or change
the desired option values as explained in “Setting or Viewing Option Values” on
page 14.

Editing Test Script Options for a Test Script Source

A test script source is a location where designated test scripts are stored. To edit a test
script option at the Test Script Source level:

1

D 0 A W DN

Perform steps 1-3 as described above in “Editing Test Script Options for a Test
Script Type”.

From the Test Script Properties dialog, click the Sources tab.
From the list of sources, click the appropriate source location.
Click View.

Click the Configuration tab.

Click Test Script Options The Test Script Options dialog box opens. Set or change
the desired option values as explained in “Setting or Viewing Option Values” on
page 14.

Editing Test Script Options for a Test Script

To edit a test script option at the Test Script Asset level:

1
2

From TestManager, click View > Test Scripts. The Test Scripts dialog box opens.
Do one of the following:
a Right-click a test script type folder and then click Test Script Options

b Open a test script type folder, browse to a test script, right-click and then click
Test Script Options

The Test Script Options dialog box opens. Set or change the desired option values
as explained in “Setting or Viewing Option Values” on page 14.

Introduction to Custom Test Script Types 13

Using Test Script Options

Editing Test Script Options for an Instance in a Suite

To edit a test script option for a script instance in a suite:

1

2
3
4
5

In TestManager, click File > Open Suite The Open Suite dialog box opens.
From the list of existing suites, click the suite to open.

Click OK. The Suite dialog box opens.

Open the appropriate user group and browse to a test script.

Right-click the test script and then click Run Properties. The Run Properties of Test
Script dialog box opens.

Click Test Script Options The Test Script Options dialog box opens. Set or change
the desired option values as explained in “Setting or Viewing Option Values” on
page 14.

Editing Test Script Options for a Test Case Instance

To edit a test script option for a test case instance:

1
2

In TestManager, in the Planning view, expand the Test Plans folder.

Right-click the test plan containing the test case and then click Open. The Test Plan
dialog box opens.

Expand the test cases folder containing the test case you want to edit.

Right-click the test case and then click Properties The Test Case Properties dialog
box opens.

Click the Implementation tab.

Click Test Script Options The Test Script Options dialog box opens. Set or change
the desired option values as explained in “Setting or Viewing Option Values” on
page 14.

Setting or Viewing Option Values

You edit test script options from the Test Script Options dialog box. To open this
dialog box, in TestManager, click View > Test Scripts. Right-click a test script type, test
script source, or test script, and then click Test Script Options.

14 Chapter 1

Using Test Tool Options

Test Script Options ll

Options:

Option Hame Option Value

QK I Cancel | Help |

To set a new option value, type its name in the Option Name column and its value in the
corresponding Option Value column, and click OK. To change an existing option setting,
click the Option Value column of the appropriate row, type its value, and click OK.

Using Test Tool Options

As used here, the term test tool refers to an external program or application that creates
tests of a type and behavior unknown to TestManager. A test tool might generate test
scripts in a source that TestManager cannot access or connect to. If this is the case, a
custom TSCA (see Chaper 4) must be developed that can access the foreign tests.

Additionally, a test script generated by a test tool might have special execution
requirements. Before TestManager can execute tests generated by such a tool, the
execution options need to be transferred from the test tool to the custom TSEA for the
foreign test script type. The supported mechanism for this sort of transfer is as
follows:

= The TSCA gets an array of option/value pairs from the test tool with the
TTGetTestToolOptions () call

» TestManager retrieves the execution data from the TSCA and makes it available to
the execution engine. During execution, the TSEA processes test tool options on
behalf of the foreign test script type with calls to TSSGetTestToolOption ().

This extensibility mechanism allows TestManager to run a test script generated by a
standalone test tool while also applying options that are persisted in that test tool.
Every time TestManager runs the test script, it retrieves the current options persisted
in the test tool, so statements in the test script might execute differently depending on

Introduction to Custom Test Script Types 15

Component Description and Communication Overview

the values retrieved. And because this mechanism requires no modifications to the
test script itself, nor duplicate maintenance in TestManager of the options persisted in
the test tool, testers are not affected.

Component Description and Communication Overview

The following table lists and describes the test script adapter components on
Windows NT systems. (UNIX systems have components of the same names but with
appropriate suffixes.)

File Path in Installation Directory | Description

rttss.dll Rational Test\ The C Test Script Services library. Used for
scripts executed inside TSEE process space.

rttssremote.dll | Rational Test\ The C proxy Test Script Services library.
Used for scripts executed by a proxy server
started by the TSEA.

rttsee.exe Rational Test\ The command line TSEE. Used for testing a
TSEA or TSS implementation.

tsea Rational Test\ Directory where TSEA components must
reside.

rttss.lib Rational Test\rtsdk\c\lib\ The TSS LIB file for linking.

rttssremote.lib | Rational Test\rtsdk\c\lib\ The TSS proxy LIB file for linking.

rttss.h Rational Test\rtsdk\c\include\ [The header file defining the TSS calling
interface.

tsea.h Rational Test\rtsdk\c\include\ [The header file defining the TSEA calling
interface.

testtypeapi.h Rational Test\rtsdk\c\include\ | The header file defining the TSCA calling
interface.

16 Chapter 1

Component Description and Communication Overview

The following Rational Rose® diagram illustrates how the test script adapter
components described in the previous table work together, using the Rational Java
adapter components as an example.

<<Application>> rtconsoleadaptor.dil
TestManager = —

v
TSEE

—
|
|

|
|
| ritssajavad! [_|
Z |
ritseajava. jar |
R [e———
l
I_ - rtssjava. jar
———
|

% rttsjava.dil |
<—. —
rttss.dll or
ritssremote.dll

A TestManager suite can contain many test scripts of different types. When a user
runs a suite, TestManager relies on the Test Script Console Adapter (TSCA, described
in Chapter 4) to locate scripts of the supported types, and to associate each script type
with the programs(s) used to edit or view the scripts. The TSCA used for Java test
script types is rtconsoleadapter.dll, located in the Rational Test folder under the
Rational installation directory.

To play back test scripts, TestManager starts a Test Script Execution Adapter (TSEA)
that knows how to execute each test script type. The Java TSEA is ritseajava.dll,
located in the Rational Test\tsea folder under the Rational installation directory.

Introduction to Custom Test Script Types 17

Using the Command Line Execution Engine

The design of a TSEA differs depending on the languages involved and on its scope.
The Java TSEA in the diagram has four components:

= A C component (rttseajava.dll) implementing the TSEA API (described in Chapter
2). This is the component that receives and responds to calls from the TSEE and
initializes a Java virtual machine. A session is opened and one or more tasks
(scripts of type Java) are created. The TSEE remains in contact with the TSEA C
component until the session is complete.

» A Java component (rttseajava.jar) that executes Java scripts, which may include
calls to the rttssjava.jar component.

» A Java class library (rttssjava.jar) implementing, in Java, the TSS C library
functions in rttss.dll (Chapter 3).

» A C component (rttssjava.dll). Calls from rttssjava.jar to rttss.dll go through this
layer, which converts between Java and C data types and structures.

At the bottom of the diagram is the Test Script Services library, implemented by a
dynamic-link C library. This is the layer where requested services are performed and
integrated into the TestManager Ul The Java TSEA can be linked with rttss.dll for
direct script execution or with rttssremote.dll for proxy execution.

Using the Command Line Execution Engine

The command-line execution engine, rttsee, lets you test your TSEA from the
command line rather than from TestManager. The rttsee interface is especially useful
on non-Windows platforms, and for testing your extension of the TSEE framework
independently of the test scripts executed through the framework.

The following example illustrates the most common usage of ritsee. It runs a Java
program named hello. java via the Java TSEA, rttseajava.dll.

rttsee -e rttseajava hello

The following example starts a TSS server listening on port 95 that continues running
until explicitly stopped.

rttsee -k -P 95
The syntax of rttsee is:

rttsee [option [argl]

18 Chapter 1

Using the Command Line Execution Engine

The full options are described in the following table.

Option

Description

-ddir

Specifies the directory for result files — u-file (log), o-file, e-file.
The default is the current directory.

-e tseal : type]
script[:type]

Specifies the TSEA to start and the test script to run. If tsea
handles test scripts of more than on type, :type indicates the
type of script. The :type may be specified with either or both
the TSEA or script, but it must match if specified with both.

G |iT |t

Controls random number generation. Enter one choice (I or i, T
or t) from either or both pairs:

= I Generate unique seeds for each virtual tester, using either
the predefined seed or one specified with -S (default).

= i Use the same seed for all virtual testers, either the
predefined seed or one specified with -S.

= t Seed the generator once for all tasks at the beginning, using
either the predefined seed or one specified with -S (default).

= T Reseed the generator at the beginning of each task.

Keep-alive. Use with - P to start a TSS server that keeps running
after all test scripts have completed execution.

-P portnumber

Specifies the listening port for a TSS server that remains alive
until explicitely stopped.

-r Redirects stdio to the o-file and e-file (in the directory specified
by -d).

-S seed Specifies an alternative seed value for the predefined seed. Must
be a positive integer except in conjunction with -G 1.

-uuid Specifies the ID of a virtual tester.

-V Displays the rttsee version.

Introduction to Custom Test Script Types 19

Using the Command Line Execution Engine

20 Chapter 1

Test Script Execution
Adapter API

About This API

This chapter describes the Rational Test Script Execution Adapter (TSEA) API. This
API defines the C language calls that the TestManager Test Script Execution Engine
(TSEE) uses to communicate with a Test Script Execution Adapter (TSEA). Your TSEA
must respond to these calls as described in this chapter.

Communication Overview

Communication between the TSEE and the TSEA occurs in three phases:

1 Initialization phase. The TSEE:

Dynamically links in the DLL for your TSEA (located under the installation
folder in Rational Test\tsea).

Calls SessionOpen () to start a session; the TSEA returns a session handle.

Optionally, calls SessionSetOption () to set one or more session options.
Session options apply to all tasks (scripts) in a session. An option may be
anything (such as a working directory or timer) needed during execution.

2 Execution phase. The TSEE:

Calls TaskCreate (), which creates a test script of a type that the TSEA knows
how to execute; the TSEA returns a task handle.

Optionally, calls TaskSetOption () to set one or more task options.

Calls TaskExecute () ; the TSEA executes the task and upon completion
returns the status.

Closes the task handle.
Repeats a—d until all tasks for this TSEA have been completed.

21

Communication Overview

3 Cleanup phase. The TSEE calls SessionClose () to close the session.

At any time during task execution, the TSEE might call TaskAbort () . For example,
if the TestManager user choses to stop an executing test script or suite run, the TSEE
calls TaskAbort (). If this happens, TaskExecute () should return as soon as
possible with a termination status. The TSEE then terminates the session as cleanly as
possible.

The following diagram (generated using Rose) is a static diagram illustrating the
interactions among the components of the Java TSEA provided with TestManager.

22 Chapter2

JavaT s=a methods
comespond to T SEA
APland are called

bywTSEEthrough a
JHI wrapper

JavaTsea

s ossionOpeno
Bt oSk reate 0
Wt oskExecuten

SessionHandle

Essessionld

E§ sessionCounter

netS essionlda

1

\@

-y SessionHandle

0..n -my Sessions

Session
Serrrv Port

iy Strandld
Eorry O ptions
Seerrv LastError

=

TaskHandle

Estaskid

Essessionld

E§ taskCounter

oreated
Sclosed
Fgeto ption)
Foeto ptiond

- Tasks
l/D..'I ik

SgetTaskldd

1

®hetSessionld)

\.%

-y TaskHandle

Task
Er‘r‘ry' Options

iy JavaThread
Sy S ript

e, -y Tasks

o reate

S losed
Sqatoptiond
®satoptiond
Sowecuted
Tabort(

| Script s=ociated
with Tadcmakes=s
TS5 APl calls

Data Types and C Header Files

Data Types and C Header Files

The following table lists and describes the TSEA data types. Defined in the header file
rttss.h, these are the types of data that your TSEA receives from and returns to the

TSEE.
Type Description
832 Signed 32-bit integer.
ulé Unsigned 16-bit integer.

SessionHandle |Returned to the TSEE after a successful SessionOpen () call, and
included with session calls and TaskCreate ().

TaskHandle Returned to the TSEE after a successful TaskCreate () call, and
included with all other task calls.

TaskType Returned to the TSEE with a successful TaskCreate () call, specifying
the TSEA's test script type.

Summary

The TSEA API includes the following calls.

Function Description
SessionClose () Closes a TSEA session.
SessionGetOption () |Gets TSEA session options.
SessionOpen () Opens a TSEA session.
SessionSetOption () |Sets TSEA session options.
TaskAbort () Aborts a task.

TaskClose () Closes a TSEA task.
TaskCreate () Opens a TSEA task.
TaskExecute () Executes a task.
TaskGetOption () Gets TSEA task options.
TaskSetOption () Sets TSEA task options.
TSEAError () Gets TSEA error information.

Test Script Execution Adapter APl 23

SessionClose()

SessionClose()

Closes a TSEA session.

Syntax

s32 SessionClose (SegsionHandle session)

Element Description

session The handle of the TSEA session to close.

Comments

TSEE makes this call when the last script of a playback request has completed. Your
TSEA should perform any cleanup necessitated by the run.

See Also

SessionOpen ()

SessionGetOption()

Gets the value of a session option.

Syntax

s32 SessionGetOption (SessionHandle session, char *optname,
void *optval, s32 len)

Element Description

session The session handle, returned by SessionOpen ().

optname The session option whose value is to be returned.

optval The value of optname that is returned to the TSEE.

len Storage buffer size. When TSEE makes the call, optval is an empty buffer of
this size; on return, I1en is the size of the value pointed to by optval.

24 Chapter 2

SessionOpen()

See Also

SessionSetOption ()

SessionOpen()

Opens a session with a TSEA.

Syntax

SessionHandle SessionOpen (char *hostname, ulé port, s32
strandID, char **message)

Element Description
hostname The name (or IP address in dot notation) of the TSEA host.
port The listening port used by the TSEE for communication with proxy TSS

processes. Not used by scripts that are directly executed by TSEE.
Where a TSEA uses TSSConnect () to start a proxy script execution
process, this port must be passed to the process.

strandID Strand (thread) ID for TSS calls in this session.
message A statement that, if the open fails, is included with the log.
Comments

On success, return to the TSEE a unique session identifier of type SessionHandle.
On failure, return NULL. If NULL is returned, the failure is logged.

See Also

SessionClose ()

Test Script Execution Adapter APl 25

SessionSetOption()

SessionSetOption()

Sets the value of a session option.

Syntax
s32 SessionSetOption (SessionHandle session, char *optname,
void *optval, s32 len)
Element Description
session The session handle, returned by SessionOpen ().
optname The session option whose value is to be set.
optval The new value of optname.
len The size of buffer optval.
See Also
SessionGetOption ()
TaskAbort()
Aborts a TSEA task.
Syntax
s32 TaskAbort (TaskHandle task)
Element Description
task The handle of the TSEA task to abort.
Comments

The TSEE makes this call (from another thread) to abort a task. Your TSEA should
stop the task run as soon as possible and return a value greater than 0 indicating that
the task has been aborted.

26 Chapter2

TaskClose()

See Also

TaskClose (), TaskCreate (), TaskExecute ()

TaskClose()

Closes a TSEA task.

Syntax

s32 TaskClose (TaskHandle task)

Element Description
task The handle of the TSEA task to close.
Comments

The TSEE makes this call when a task completes. Your TSEA should perform any
cleanup necessitated by the task execution.

See Also

TaskAbort (), TaskCreate (), TaskExecute ()

TaskCreate()

Creates a task.

Syntax

TaskHandle TaskCreate (SessionHandle session, TaskType type,
char *sourcelocation, char *testScriptId)

Element Description
session The session handle, returned by SessionOpen ().
type The test script type for scripts that this TSEA plays back.

sourcelocation|The location where source scripts of type are located.

testScriptId [The name of the file containing the test script.

Test Script Execution Adapter API

27

TaskExecute()

Comments

On success, return to the TSEE a unique task identifier of type TaskHandle. On
failure, return NULL.

See Also

TaskAbort (), TaskClose (), TaskExecute ()

TaskExecute()

Executes a TSEA task.

Syntax

s32 TaskExecute (TaskHandle task)

Element Description
task The handle of the TSEA task to execute.
Comments

The TSEE makes this call to execute a task. Your TSEA should return 0 if the task
completes successfully or a number greater than 0 if the task fails.

See Also

TaskAbort (), TaskClose (), TaskCreate ()

TaskGetOption()

Gets the value of a task option.

Syntax

s32 TaskGetOption (TaskHandle task, char *optname, void
*optval, s32 len)

28 Chapter2

TaskSetOption()

Element Description

task The task handle, returned by TaskCreate ().

optname The task option whose value is to be returned.

optval The value of optname that is returned to the TSEE.

len Storage buffer size. When TSEE makes the call, optval is an empty buffer of
this size; on return, 1enis the size of the value pointed to by optval.

See Also

TaskSetOption ()

TaskSetOption()

Sets the value of a task option.

Syntax

s32 TaskSetOption (TaskHandle task, char *optname, void
*optval, s32 len)

Element Description
task The task handle, returned by SessionOpen ().
optname The task option whose value is to be set.
optval The new value of optname.
len The size of buffer optval.
See Also
TaskGetOption ()

Test Script Execution Adapter APl 29

TSEAError()

TSEAETrror()

Gets a message following an error.

Syntax

S32 TSEAError (SessionHandle session, char **message)

Element Description

session The session handle, returned by SessionOpen ().

message String explaining the cause of a TSEA call failure.
Comments

The TSEE makes this call whenever a TSEA call returns a value greater than 0. Your
TSEA should allocate a message buffer for each open session and supply a message
indicating the cause of a failure.

30 Chapter2

Test Script Services

About Test Script Services

This chapter describes the Rational Test Script Services (TSS). These services can be
extended to other languages or test frameworks. If you wrap these calls in the
language provided by your Test Script Execution Adapter, these services are available
to test script developers in that language. The services can also be directly called from
C or C++ tests: see “Using Test Script Services from an External C or C++ Program”
on page 261. The services are divided into the following functional categories.

Category Description

Datapool Provide variable data to test scripts during playback.

Logging Log messages for reporting and analysis.

Measurement Manage timers and test variables.

Utility Perform common test script functions.

Monitor Monitor test script playback progress.

Synchronization Synchronize virtual testers in multicomputer runtime environments.
Session Manage the test suite runtime environment.

Advanced Perform advanced logging and measurement functions.

Datapool Services
___|]

During testing, it is often necessary to supply an application with a range of test data.
Thus, in the functional test of a data entry component, you may want to try out the
valid range of data, and also to test how the application responds to invalid data.
Similarly, in a performance test of the same component, you may want to test storage
and retrieval components in different combinations and under varying load
conditions.

31

Summary

A datapool is a source of data stored in a Rational project that a test script can draw
upon during playback, for the purpose of varying the test data. You create datapools
from TestManager, by clicking Tools > Manage > Datapools. For more information, see
the datapool chapter in the Rational TestManager User’s Guide. Optionally, you can
import manually created datapool information stored in flat ASCII Comma Separated
Values (CSV) files, where a row is a newline-terminated line and columns are fields in
the line separated by commas (or some other field-delimiting character).

Summary

Use the datapool functions listed in the following table to access and manipulate
datapools within your scripts.

Function Description

TSSDatapoolClose () Closes a datapool.

TSSDatapoolColumnCount () Returns the number of columns in a datapool.

TSSDatapoolColumnName () Returns the name of the specified datapool column.

TSSDatapoolFetch () Moves the datapool cursor to the next row.

TSSDatapoolOpen () Opens the named datapool and sets the row access
order.

TSSDatapoolRewind () Resets the datapool cursor to the beginning of the
datapool access order.

TSSDatapoolRowCount () Returns the number of rows in a datapool.

TSSDatapoolSearch () Searches a datapool for the named column with a

specified value.

TSSDatapoolSeek () Moves the datapool cursor forward.

TSSDatapoolValue () Retrieves the value of the specified datapool column.

32 Chapter 3

Datapool Services

TSSDatapoolClose()

Closes a datapool.

Syntax

s32 TSSDatapoolClose (s32 dpid)

Element Description

dpid The ID of the datapool to close. Returned by TSSDatapoolOpen().

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_INVALID. The datapool identifier is invalid.

Example
This example opens the datapool custdata with default row access and closes it.

s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;
if (dpid > 0)
s32 retVal = TSSDatapoolClose (dpid) ;

See Also

TSSDatapoolOpen()

TSSDatapoolColumnCount()

Returns the number of columns in a datapool.

Syntax

$32 TSSDatapoolColumnCount (s32 dpid)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().

Test Script Services

33

TSSDatapoolColumnName()

Return Value

On success, this function returns the number of columns in the specified datapool.
The function exits with one of the following results:

TSS_OK. Success.

TSS_NOSERVER. No previous successful call to TSSConnect ().

TSS_INVALID. The datapool identifier is invalid.

TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Example
This example opens the datapool custdata and gets the number of columns.
s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;

if (dpid > 0)
s32 columns = TSSDatapoolColumnCount (dpid) ;

TSSDatapoolColumnName()

Gets the name of the specified datapool column.

Syntax

char * TSSDatapoolColumnName (s32 dpid, s32 columnNumber)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().

columnNumber A positive number indicating the number of the column whose name you
want to retrieve. The first column is number 1.

Return Value

On success, this function returns the name of the specified datapool column. The
function exits with one of the following results:

» TSS_OK.Success.
* TSS_NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The datapool identifier or column number is invalid.

» TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

34 Chapter 3

Datapool Services

Example
This example opens a three-column datapool and gets the name of the third column.

char *colName;
s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;
if (dpid > 0)
if (TSSDatapoolFetch(dpid) == TSS_OK)
colName = TSSDatapoolColumnName (dpid, 3) ;

TSSDatapoolFetch()

Moves the datapool cursor to the next row.

Syntax

s32 TSSDatapoolFetch (s32 dpid)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen().

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
» TSS_EOF. The end of the datapool was reached.
* TSS NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The datapool identifier is invalid.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call positions the datapool cursor on the next row and loads the row into
memory. To access a column of data in the row, call TSSDatapoolValue ().

The “next row” is determined by the assessFlags passed with the open call. The
default is the next row in sequence. See TSSDatapoolOpen ().

After a datapool is opened, a TSSDatapoolFetch () is required before the initial
row can be accessed.

Test Script Services 35

TSSDatapoolOpen()

An end-of-file (TSS_EOF) condition results if a script fetches past the end of the
datapool, which can occur only if access flag TSS_DP_NOWRAP was set on the open
call. If the end-of-file condition occurs, the next call to TSSDatapoolValue () results
in a runtime error.

Example

This example opens datapool custdata with default (sequential) access and
positions the cursor to the first row.

s32 dpid = TSSDatapoolOpen ("custdata",O0,0,NULL) ;
if (dpid > 0)
s32 retVal = TSSDatapoolFetch (dpid) ;

See Also

TSSDatapoolOpen (), TSSDatapoolSeek (), TSSDatapoolValue ()

TSSDatapoolOpen()

Opens the named datapool and sets the row access order.

Syntax

s32 TSSDatapoolOpen (char *name, u32 accessFlags, s32
overrideCount, NamedValue *overrides)

Element Description

name The name of the datapool to open. If accessFlags includes
TSS_DP_NO_OPEN, no CSV datapool is opened; instead, name refers to
the contents of overrides specifying a one-row table. Otherwise, the
CSV file name in the Rational project is opened.

36 Chapter3

Datapool Services

Element

Description

accessFlags

Optional flags indicating how the datapool is accessed when a script is
played back. Specify at most one value from each of the following
categories:

1

Specify the sequence in which datapool rows are accessed:
TSS_DP_SEQUENTIAL — Physical order (default)

TSS_DP_RANDOM — Any order, including multiple access or no access
TSS_DP_ SHUFFLE — Access order is shuffled after each access
Specify what happens after the last datapool row is accessed:

TSS_DP_NOWRAP — End access to the datapool (default)
TSS_DP_WRAP — Go back to the beginning

Specify whether the datapool cursor is shared by all virtual testers or
is unique to each:

TSS_DP_ PRIVATE — Virtual testers each work from their own
sequential, random, or shuffle access order (default)

TSS_DP SHARED - All virtual testers work from the same access
order

TSS_DP_PERSIST specifies that the datapool cursor is persistent
across multiple script runs. For example, with a persistent cursor, if
the row number after a suite run is 100, the first row accessed in a
subsequent run is numbered 101. Cannot be used with
TSS_DP_PRIVATE. Ignored if used with TSS_DP_RANDOM.

TSS_DP_REWIND specifies that the datapool should be rewound
when opened. Ignored unless used with TSS_DP_PRIVATE.

TSS_DP_NO_OPEN specifies that, instead of a CSV file, the opened
datapool consists only of column/value pairs specified in a local
array overrides]].

overrideCount

The number of columns in array overrides. Must be greater than 0 if
access flag TSS_DP_NO_OPEN is specified; otherwise, must be 0.

overrides

A local, two-dimensional array of column/value pairs, where
overrides[n].name is the column name and overrides|[n].valueis
the value returned by TSSDatapoolValue () for that column name.
Unless access flag TSS_DP_NO_OPEN is present, specify as NULL.

Test Script Services 37

TSSDatapoolOpen()

Return Value

On success, this function returns a positive integer indicating the ID of the opened
datapool. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS INVALID. The accessFlags argument is or results in an invalid
combination.

» TSS_NOTFOUND. No datapool of the given name was found.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

38

If the accessFlags argument is specified as 0, the rows are accessed in the default
order: sequentially, with no wrapping, and with a private cursor. If multiple
accessFlags are specified, they must be valid combinations as explained in the
syntax table.

If you close and then reopen a private-access datapool with the same accessFlags
and in the same or a subsequent script, access to the datapool is resumed as if it had
never been closed.

If multiple virtual testers access the same datapool in a suite, the datapool cursor is
managed as follows:

» The first open that uses the TSs_Dp_SHARED option initializes the cursor. In the
same suite run (and, with the Tss_bp_PERSIST flag, in subsequent suite runs),
virtual testers that subsequently use the same datapool opened with
TSS_DP_SHARED share the initialized cursor.

» The first open that uses the TSs_Dp_PRIVATE option initializes the private cursor
for a virtual tester. In the same suite run, a subsequent open that uses
TSS_DP_PRIVATE sets the cursor to the last row accessed by that virtual tester.

The NamedValue data type is defined as follows:

typedef struct {
char *Name;
char *Value;
} Namedvalue;

Chapter 3

Datapool Services

Example
This example opens the datapool named custdata, with a modified row access.

s32 dpid = TSSDatapoolOpen ("custdata",TSS DP_SHUFFLE |
TSS DP PERSIST, 0,NULL) ;

See Also

TSSDatapoolcClose ()

TSSDatapoolRewind()

Resets the datapool cursor to the beginning of the datapool access order.

Syntax

s32 TSSDatapoolRewind (s32 dpid)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
* TSS_NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The datapool identifier is invalid.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments
The datapool is rewound as follows:

» For datapools opened DP_SEQUENTIAL, TSSDatapoolRewind () resets the
cursor to the first record in the datapool file.

= For datapools opened DP_RANDOM or DP_SHUFFLE, TSSDatapoolRewind ()
restarts the random number sequence.

» For datapools opened DP_SHARED, TSSDatapoolRewind () has no effect.

Test Script Services 39

TSSDatapoolRowCount()

At the start of a suite, datapool cursors always point to the first row.

If you rewind the datapool during a suite run, previously accessed rows are fetched
again.

Example

This example opens the datapool custdata with default (sequential) access, moves
the access to the second row, and then resets access to the first row.

s32 dpid = TSSDatapoolOpen ("custdata",O0,0,NULL) ;
if (dpid > 0)
{

TSSDatapoolSeek (dpid,2) ;

TSSDatapoolRewind (dpid) ;

}i

TSSDatapoolRowCount()

Returns the number of rows in a datapool.

Syntax

s32 TSSDatapoolRowCount (s32 dpid)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().

Return Value

On success, this function returns the number of rows in the specified datapool. The
function exits with one of the following results:

» TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The datapool identifier is invalid.

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

40 Chapter3

Datapool Services

Example

This example opens the datapool custdata and gets the number of rows in the
datapool.
s32 dpid = TSSDatapoolOpen ("custdata",O0,0,NULL) ;

if (dpid > 0)
s32 rows = TSSDatapoolRowCount (dpid) ;

TSSDatapoolSearch()

Searches a datapool for a named column with a specified value.

Syntax

s32 TSSDatapoolSearch(s32 dpid, s32 keyCount, NamedValue *keys)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().
keycount The number of columns in keys.

keys An array containing values to be searched for.

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
» TSS_EOF. The end of the datapool was reached.
* TSS_NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The datapool identifier is invalid.

» TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments
When a row is found containing the specified values, the cursor is set to that row.
The NamedValue data type is defined as follows:
typedef struct
char *Name;

char *Value;
} Namedvalue;

Test Script Services 41

TSSDatapoolSeek()

Example

This example searches the datapool custdata for a row containing the column
named Last with the value Doe:

NamedValue toFind[1];
toFind[0] .Name = "Last";
toFind[0] .Value = "Doe";
s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;
if (dpid > 0)
if (TSSDatapoolFetch(dpid) == TSS_ OK)
s32 rowNumber = TSSDatapoolSearch (dpid, 1, toFind) ;

TSSDatapoolSeek()

Moves the datapool cursor forward.

Syntax

S32 TSSDatapoolSeek (s32 dpid, s32 count)

Element Description

dpid The ID of the datapool. Returned by TSSDatapoolOpen ().

count A positive number indicating the number of rows to move forward in the
datapool.

Return Value
This function exits with one of the following results:
» TSS_OK. Success.
* TSS_EOF. The end of the datapool was reached.
* TSS_NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The datapool identifier is invalid.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call moves the datapool cursor forward count rows and loads that row into
memory. To access a column of data in the row, call TSSDatapoolValue ().

42 Chapter 3

Datapool Services

The meaning of “forward” depends on the accessFIlags passed with the open call;
see TSSDatapoolOpen (). This call is functionally equivalent to calling
TSSDatapoolFetch () count times.

An end-of-file (TSS_EOF) error results if cursor wrapping is disabled (by access flag
TSS_DP NOWRAP) and count moves the access row beyond the last row. If
TSSDatapoolValue () is then called, a runtime error occurs.

Example

This example opens the datapool custdata with the default (sequential) access and
moves the cursor forward two rows.

s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;
if (dpid > 0)
TSSDatapoolSeek (dpid, 2);

See Also

TSSDatapoolFetch (), TSSDatapoolOpen (), TSSDatapoolValue ()

TSSDatapoolValue()

Retrieves the value of the specified datapool column in the current row.

Syntax

char * TSSDatapoolValue(s32 dpid, char *columnName)

Element Description
dpid The ID of the datapool. Returned by TSSDatapoolOpen ().
columnName The name of the column whose value you want to retrieve.

Return Value

On success, this function returns the value of the specified datapool column in the
current row. The function exits with one of the following results:

= TSS_OK. Success.
» TSS_EOF. The end of the datapool was reached.

* TSS NOSERVER. No previous successful call to TSSConnect ().

Test Script Services 43

TSSDatapoolValue()

» TSS INVALID. The specified columnName is not a valid column in the datapool.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call gets the value of the specified datapool column from the current datapool
row, which has been loaded into memory either by TSSDatapoolFetch () or
TSSDatapoolSeek ().

By default, the returned value is a column from a CSV datapool file located in a
Rational datastore. If the datapool open call included the TSS_DP_NO_ OPEN access
flag, the returned value comes from an override list provided with the open call.

This method Generates
booleanvalue () The boolean representation of the datapool value.
bytevalue () The byte representation of the datapool value.
charvalue () The character representation of the datapool value.
doublevalue () The double representation of the datapool value.
floatvalue () The float representation of the datapool value.
getBigDecimal () The BigDecimal representation of the datapool value.
intVvalue () The int representation of the datapool value.
longValue () The 1ong representation of the datapool value.
shortvalue () The short representation of the datapool value.
toString () The String representation of the datapool value.
Example

This example retrieves the value of the column named Middle in the first row of the
datapool custdata.

char *colVal;
s32 dpid = TSSDatapoolOpen ("custdata",0,0,NULL)
if (dpid > 0)
if (TSSDatapoolFetch(dpid) == TSS_ OK)
colVal = TSSDatapoolValue ("Middle") ;

44 Chapter 3

Logging Services

See Also

TSSDatapoolFetch (), TSSDatapoolOpen (), TSSDatapoolSeek ()

Logging Services

Use the logging functions to build the log that TestManager uses for analysis and
reporting. You can log events, messages, or test case results.

A logged event is the record of something that happened. Use the environment
variable EVAR_LogEvent control to control whether or not an event is logged.

An event that gets logged may have associated data (either returned by the server or
supplied with the call). Use the environment variable EVAR_LogData_control to
control whether or not any data associated with an event is logged.

Summary

Use the functions listed in the following table to write to the TestManager log.

Function Description
TSSLogEvent () Logs an event.
TSSLogMessage () Logs a message event.
TSSLogTestCaseResult () Logs a test case event.

TSSLogEvent()

Logs an event.

Syntax

s32 TSSLogEvent (char *eventType, sl6 result, char
*description, s32 propertyCount, NamedValue *property)

Element Description

eventType Contains the description to be displayed in the log for this event.

Test Script Services 45

TSSLogEvent()

Element

Description

result

Specifies the notification preference regarding the result of the call. Can
be one of the following:

* TSS LOG _RESULT NONE (default: no notification)
* TSS LOG RESULT PASS

* TSS LOG RESULT FAIL

* TSS LOG RESULT WARN

* TSS LOG RESULT STOPPED

* TSS LOG RESULT INFO

* TSS LOG RESULT COMPLETED

* TSS LOG RESULT UNEVALUATED

0 specifies the default.

description

Contains the string to be put in the entry’s failure description field.

propertyCount

Specifies the number of rows in the property array.

property

An array containing property name/value pairs, where
property [n] .name is the property name and property [n] .valueis
its value.

Return Value

This function exits with one of the following results:

= TSS_OK.Success.

* TSS_NOSERVER. No previous successful call to TSSConnect ().

» TSS_INVALID. An unknown result was specified.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR LogData control or
EVAR LogEvent control environment variables. Alternatively, the logging
preference can be set with the EVAR Log leveland EVAR Record level
environment variables. The TSS_LOG_RESULT_STOPPED,
TSS_LOG_RESULT_COMPLETED, and TSS_LOG_RESULT_UNEVALUATED
preferences are intended for internal use.

46 Chapter 3

Logging Services

NamedvValue is defined as follows:

typedef struct {
char *Name;
char *Value;
} Namedvalue;
Example
This example logs the beginning of an event of type Login Dialog.

NamedValue scriptPropl[2];

scriptProp[0] .Name = "ScriptName";
scriptProp[0] .Value = "Login";
scriptProp[1l] .Name = "LineNumber";
scriptProp([l] .Value = "1";

s32 retVal = TSSLogEvent ("Login Dialog", 0, "Login script failed",
2,scriptProp) ;

TSSLogMessage()

Logs a message.

Syntax

s32 TSSLogMessage (char *message, sl6 result, char *description)

Element Description
message Specifies the string to log.
result Specifies the notification preference regarding the result of the call. Can

be one of the following;:

" TSS LOG _RESULT NONE (default: no notification)
* TSS LOG RESULT PASS

* TSS LOG RESULT FAIL

* TSS LOG RESULT WARN

* TSS LOG RESULT STOPPED

* TSS LOG RESULT INFO

* TSS LOG RESULT COMPLETED

* TSS LOG RESULT UNEVALUATED

0 specifies the default.

description Specifies the string to be put in the entry’s failure description field.

Test Script Services

47

TSSLogTestCaseResult()

Return Value
This function exits with one of the following results:
» TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR LogData control or
EVAR LogEvent control environment variables.

Alternatively, the logging preference can be set with the EVAR_Log_level and
EVAR Record level environment variables. The TSS_LOG_RESULT_STOPPED,
TSS_LOG_RESULT_COMPLETED, and TSS_LOG_RESULT_UNEVALUATED
preferences are intended for internal use.

Example

This example logs the following message: - -Beginning of timed block T1--.

TSSLogMessage ("--Beginning of timed block T1--", 0, NULL);

TSSLogTestCaseResult()

Logs a test case result.

Syntax

s32 TSSLogTestCaseResult (char *testcase, sl6 result, char
*description, s32 propertyCount, NamedValue *propertyl[])

Element Description

testcase Identifies the test case whose result is to be logged.

48 Chapter 3

Logging Services

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:

* TSS _LOG _RESULT NONE (default: no notification)
* TSS LOG RESULT PASS

* TSS LOG RESULT FAIL

* TSS LOG RESULT WARN

* TSS LOG RESULT STOPPED

* TSS LOG RESULT INFO

* TSS LOG RESULT COMPLETED

* TSS LOG RESULT UNEVALUATED

0 specifies the default.

description Contains the string to be displayed in the event of a log failure.

propertyCount |Specifies the number of rows in the property array.

property An array containing property name/value pairs, where
property [n] .name is the property name and property [n] .valueis
its value.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
* TSS_NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

A test case is a condition, specified in a list of property name/value pairs, that you are
interested in. This function searches for the test case and logs the result of the search.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR LogData control or
EVAR LogEvent control environment variables. Alternatively, the logging
preference may be set by the EVAR_Log level and EVAR_Record_level
environment variables. The TSS_LOG_RESULT_STOPPED,
TSS_LOG_RESULT_COMPLETED, and TSS_LOG_RESULT_UNEVALUATED
preferences are intended for internal use.

Test Script Services 49

Measurement Services

The NamedValue data type is defined as follows:

typedef struct {
char *Name;
char *Value;
} Namedvalue;

Example
This example logs the result of a test case named Verify login.

NamedValue loginResult[1];

loginResult [0] .Name = "Result";

loginResult [0] .Value = "OK";

s32 retVal = TSSLogTestCaseResult ("Verify login", 0, NULL,
1,loginResult) ;

Measurement Services

Use the measurement functions to set timers and environment variables to get the
value of internal variables. Timers allow you to gauge how much time is required to
complete specific activities under varying load conditions. Environment variables
allow for the setting and passing of information to virtual testers during script
playback. Internal variables store information used by the TestManager to initialize
and reset virtual tester parameters during script playback.

Summary

The following table lists the measurement functions.

Function Description

TSSCommandEnd () Logs an end-command event.
TSSCommandStart () Logs a start-command event.
TSSEnvironmentOp () Sets an environment variable.

TSSGetTime () Gets the elapsed time of a run.
TSSInternalVarGet () Gets the value of an internal variable.
TSSThink () Sets a think-time delay:.

TSSTimerStart () Marks the start of a block of actions to be timed.

50 Chapter3

Measurement Services

Function Description

TSSTimerStop () Marks the end of a block of timed actions.

TSSCommandEnd()

Marks the end of a timed command.

Syntax

s32 TSSCommandEnd (sl6 result, char *description, s32 starttime,
s32 endtime, char *logdata, s32 propertyCount, NamedValue
*property)

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:

* TSS LOG RESULT NONE (default: no notification)
* TSS LOG RESULT PASS

* TSS LOG RESULT FAIL

* TSS LOG RESULT WARN

® TSS_LOG_RESULT STOPPED

* TSS LOG RESULT INFO

" TSS LOG_RESULT COMPLETED

® TSS LOG_RESULT UNEVALUATED.

0 specifies the default.

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a time stamp to override the time stamp set by
TSSCommandStart (). To use the time stamp set by
TSSCommandStart (), specify as 0.

endtime An integer indicating a time stamp to override the current time. To use
the current time, specify as 0.

logdata Text to be logged describing the ended command.

propertyCount |Specifies the number of rows in the property array.

property An array containing property name/value pairs, where
property [n] .name is the property name and property [n] .valueis
its value.

Test Script Services 51

TSSCommandStart()

Return Value
This function exits with one of the following results:
» TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The command name and label entered with TSSCommandStart () are logged, and
the run state is restored to the value that existed before the TSSCommandStart ()
call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control or
EVAR LogEvent control environment variables. Alternatively, the logging
preference can be set with the EVAR Log level and EVAR _Record level
environment variables. The TSS_LOG_RESULT_STOPPED,
TSS_LOG_RESULT_COMPLETED, and TSS_LOG_RESULT_UNEVALUATED
preferences are intended for internal use.

The NamedValue data type is defined as follows:

typedef struct ({
char *Name;
char *Value;
} Namedvalue;

Example

This example marks the end of the timed activity specified by the previous
TSSCommandStart () call.

532 retVal = TSSCommandEnd (TSS_LOG _RESULT PASS, "Command timer failed",
0, 0,"Login command completed", NULL) ;

See Also

TSSCommandStart (), TSSLogCommand ()

TSSCommandStart()

Starts a timed command.

52 Chapter 3

Measurement Services

Syntax

s32 TSSCommandStart (char *Ilabel, char *name, RunState state)

Element Description

label The name of the timer to be started and logged, or NULL for an unlabeled
timer.

name The name of the command to time.

state The run state to log with the timed command. See the run state table starting
on page 90. You can enter 0 (MST_UNDEF) if you're uninterested in the
run state.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

A command is a user-defined name appearing in the log of a test run. By placing
TSSCommandStart () and TSSCommandEnd () calls around a block of lines in a
script, you can log the time required to complete the actions in the block.

During script playback, TestManager displays progress for different virtual testers.
What is displayed for a group of actions associated by TSSCommandStart ()
depends on the run state argument. Run states are listed in the run state table starting
on page 90.

TSSCommandStart () increments IV_cmdcent, sets the name, label, and run state for
TestManager, and sets the beginning time stamp for the log entry. TSSCommandEnd ()
restores the TestManager run state to the run state that was in effect immediately
before TSSCommandStart ().

Example
This example starts timing the period associated with the string Login.

s32 retVal = TSSCommandStart("initTimer", "Login",MST WAITRESP) ;

Test Script Services 53

TSSEnvironmentOp()

See Also
TSSCommandEnd () , TSSLogCommand ()
TSSEnvironmentOp()

Sets a virtual tester environment variable.

Syntax
s32 TSSEnvironmentOp (EvarKey envVar, EvarOp envOp, EvarValue
*envVal)
Element Description
envVar The environment variable to operate on. See “Arguments of

TSSEnvironmentOp()” on page 270for a list and description of environment
variable constants.

envOp The operation to perform. See “Arguments of TSSEnvironmentOp()” on
page 270 for a list and description of the operation constants..

envVal The value operated on as specified by envOp to produce the new value for
envvar.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS_ INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

Environment variables define and control the environment of virtual testers. Using
environment variables allows you to test different assumptions or runtime scenarios
without re-writing your test scripts. For example, you can use environment variables
to specify:

» A virtual tester’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value.

54 Chapter 3

Measurement Services

How long to wait for a response from the server before timing out.

The level of information that is logged and available to reports.

See “Arguments of TSSEnvironmentOp()” on page 270 for a list and description of the
values that can be used for argument envVar.

Environment control options allow a script to control a virtual tester’s environment
by operating on the environment variables. Every environment variable has, instead
of a single value, a group of values: a default value, a saved value, and a current
value.

default — The value of an environment variable before any commands are applied
to it. Environment variables are automatically initialized to a default value, and,
like persistent variables, retain their values across scripts. The reset command
resets the default value, as listed in the following table.

saved — The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

current — TSS supports a last-in-first-out “value stack” for each environment
variable. The current value of an environment variable is simply the top element of
that stack. The current value is used by all of the commands. The push and pop
commands manipulate the stack.

See the table on page 276 for the values that can be used for argument envOp.

EvarOP is defined as follows:

typedef enum EvarOP EvarOP;
enum EvarOP

Vi

EVOP_eval,
EVOP_pop,
EVOP_push,
EVOP_reset,
EVOP_restore,
EVOP_save,
EVOP_set,
EVOP_END

EvarKey is defined as follows:

typedef enum EvarKey EvarKey;
enum EvarKey {

EVAR Think avg = 0,
EVAR Think sd,

EVAR Think dist,

EVAR Think def,

EVAR Think max,

EVAR Think dly scale,

Test Script Services 55

TSSGetTime()

EVAR Think cpu_ threshold,
EVAR Think cpu dly scale,
EVAR Initial dly max,
EVAR Delay dly scale,
EVAR Log level,
EVAR_Record level,

EVAR_ Suspend_check,

EVAR _LogEvent control
EVAR LogData control
EVAR TSSDisable

EVAR_END

¥
EvarValue is defined as follows:

typedef union EvarValue EvarValue;
union EvarValue {

s32 envint;
char *envStr;
s3 envsSet;
where:

* envInt is used for integer environment variables.

* envStris used for string environment variables that may have unrestricted
values.

» envSet specifies the index into a set of specific values used for string environment
variables that have a predefined set of possible values.

Example

This example gets the current value of EVAR Think dist. For a more extensive
illustration of environment variable manipulation, see “Example: Manipulating
Environment Variables” on page 277.

char *cur_ dist;
s32 retval = TSSEnvironmentOp (EVAR Think dist, EVOP_eval, cur dist);

TSSGetTime()

Gets the elapsed time since the beginning of a suite run.

Syntax

s32 TSSGetTime (void)

56 Chapter 3

Measurement Services

Return Value

On success, this function returns the number of milliseconds elapsed in a suite run.
The function exits with one of the following results:

= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

For execution within TestManager, this call retrieves the time elapsed since the start
time shared by all virtual testers in all test scripts in a suite.

For a test script executed outside TestManager, the time returned is the milliseconds
elapsed since the call to TSSSession.Connect (), or since the value of
CTXT timeZero setby TSSContext ().

Example
This example stores the elapsed time in et ime.

s32 etime = TSSGetTime() ;

TSSInternalVarGet()

Gets the value of an internal variable.

Syntax

s32 TSSInternalVarGet (IVKey internVar, IVValue *ivVal)

Element Description

internVar |The internal variable to operate on. See “Arguments of TSSInternalVarGet()”
on page 279 for a list and description of the internal variable constants.

ivVval OUTPUT. The returned value of the specifiedinternvar.

Return Value
This function returns one of the following values:

» TSS_OK. Success.

Test Script Services 57

TSSInternalVarGet()

* TSS NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

Internal variables contain detailed information that is logged during script playback
and used for performance analysis reporting. This function allows you to customize
logging and reporting detail.

The data type IVKey is defined as follows:

typedef enum IVKey IVKey;

enum IVKey {
IV_fcs_ts,
IV lcs_ts,
IV fcr ts,
IV_lcr_ts,
IV _lineno,
IV_cmdcnt,
IV uid,
IV ncxmit,
IV_ncrecv,
IV ncnull,
IV_nusers,
IV _nkxmit,
IV_nrows,
IV ncols,
IV_row,
IV _col,
IV fs ts,
IV 1s ts,
IV _fr ts,
IV 1r ts,
IV nxmit,
IV_nrecv,
IV button no,
IV fuxe ts,
IV_luxe_ts,
IV_uxe cnt,
IV _ig fs ts,
IV _ig 1s ts,
IV _ig eot ts,
IV prev_ig fs ts,
IV _prev_ig 1ls_ts,
IV npixels act,
IV npixels exp,
IV _npixels diff,
IV xwin diff level,
IV_screen,
IV_error,

58 Chapter 3

Measurement Services

IV_total_ rows,
IV _statement id,
IV _error logs,
IV_cursor id,
IV fc ts,
IV lc ts,
IV_total nrecv,
IV_error_type,
IV_tux tpurcode,
IV_command,
IV_response,
IV _source file,
IV_task file,
IV _cmd id,
IV_mcommand,
IV_alltext,
IV_error_ text,
IV _column headers,
IV total response,
IV script,
IV _version,
IV_user_group,
IV host,
IV refURI,
IV_END

yi

The IVValue data type is defined as follows:

typedef union IVValue IVValue;
union IVvalue {

s32 ivInt;

char *ivStr;

}i
where ivInt is used for integer internal variables and ivStr for string internal
variables.

Example
This example stores the current value of the IV_error internal variable in IVval.

s32 retVal = TSSInternalVarGet (IV error,IVVal) ;

Test Script Services

59

TSSThink()

TSSThink()

Puts a time delay in a script that emulates a pause for thinking.

Syntax

s32 TSSThink(s32 thinkAverage)

Element Description

thinkAverage |If specified as 0, the number of milliseconds stored in the Think avg
environment variable is used as the basis of the calculation. Otherwise, the
calculation is based on the value specified.

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

A think-time delay is a pause inserted in a performance test script in order to emulate
the behavior of actual application users.

For a description of environment variables, see TSSEnvironmentOp () on page 54.

Example

This example calculates a pause based on the value stored in the environment variable
Think_avg and inserts the pause into the script.

s32 retVal = TSSThink (0) ;

See Also

TSSThinkTime ()

TSSTimerStart()

Marks the start of a block of actions to be timed.

60 Chapter3

Syntax

s32 TSSTimerStart (char *label,

Measurement Services

s32 timeStamp)

Element Description

label The name of the timer to be inserted into the log. If specified as NULL, an
unlabeled timer is created. Only one unlabeled timer is supported at a time.

timeStamp | An integer specifying a time stamp to override the current time. If specified as
0, the current time is logged.

Return Value

This function exits with one of the following results:

= TSS_OK. Success.

* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call associates a starting time stamp with Iabel for later reference by
TSSTimerStop (). The TestManager reporting system uses captured timing
information for performance analysis reports.

Starting an unlabeled timer sets a start time for an event that you want to subdivide
into timed intervals. See the example for TSSTimerStop (). You can get a similar
result using named timers, but there will be a slight difference in the timing
calculation due to the overhead of starting a timer.

Example

This example times actions designated event1, logging the current time.

TSSTimerStart ("eventl",0) ;
/* action to be timed */
TSSTimerStop ("eventl",0) ;

See Also

TSSTimerStop ()

Test Script Services 61

TSSTimerStop()

TSSTimerStop()

Marks the end of a block of timed actions.

Syntax

S32 TSSTimerStop (char *label, s32 timeStamp, u32 rmFlag)

Element Description

label The name to be logged.

timeStamp |An integer indicating the time stamp to log. If specified as 0, the current time
is used.

rmFlag Specify as Oto stop the timer without removing it; otherwise, specify as

nonzero. A timer that is not removed can be stopped multiple times in order
to measure intervals of this timed event.

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

» TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

Normally, this call associates an ending time stamp with a label specified with
TSSTimerStart (). If the specified1abel was not set by a previous
TSSTimerStart () butan unlabeled timer exists, this call logs an event using the
specified label and the start time specified for the unlabeled timer with
TSSTimerStart ().If rmFlagis specified as 0, multiple invocations of
TSSTimerStop () are allowed against a single TSSTimerStart (). This usage (see
the example) allows you to subdivide a timed event into separate timed intervals.

Example

This example stops an unlabeled timer without removing it. In the log, event1 and
event2 will record the time elapsed since the TSSTimerStart () call.

62 Chapter 3

TSSTimerStart (NULL, Q) ;
/* action to be timed */
TSSTimerStop ("eventl",0,0) ;

/* another action to be timed */

TSSTimerStop ("event2",0,0) ;

See Also

TSSTimerStart ()

Utility Services

Utility Services

Use the utility functions to perform actions common to many test scripts.

Summary

The following table lists the utility functions.

Function Description

TSSApplicationPid () Gets the process ID of an application.
TSSApplicationStart () Starts an application.
TSSApplicationWait () Waits for an application to terminate.
TSSDelay () Delays the specified number of milliseconds.
TSSErrorDetail () Retrieves error information about a failure.

AttributeList ()

TSSGetComputerConfiguration

Gets the list of computer configuration
attributes and their values.

TSSGetComputerConfiguration

Gets the value of a computer configuration

AttributevValue () attribute.
TSSGetPath () Gets a pathname.
TSSGetScriptOption () Gets the value of a script playback option.

Attribute ()

TSSGetTestCaseConfiguration

Gets the value of a test case configuration
attribute.

AttributeList ()

TSSGetTestCaseConfiguration

Gets the list of test case configuration
attributes and their values.

Test Script Services

63

TSSApplicationPid()

Function

Description

TSSGetTestCaseConfigurationName ()

Gets the name of the configuration (if any)
associated with the current test case.

TSSGetTestCaseName ()

Gets the name of the test case in use.

TSSGetTestToolOption ()

Gets a test case tool option.

TSSJavaBApplicationStart ()

Starts a Java application.

TSSNegExp () Gets the next negative exponentially
distributed random number with the specified
mean.

TSSRand () Gets the next random number.

TSSSeedRand () Seeds the random number generator.

TSSStdErrPrint () Prints a message to the virtual tester’s error
file.

TSSStdOutPrint () Prints a message to the virtual tester’s output
file.

TSSUniform() Gets the next uniformly distributed random
number in the specified range.

TSSUniqueString() Returns a unique text string.

TSSApplicationPid()

Gets the process ID of an application.

Syntax

s32 TSSApplicationPid (TSSAppHandle appHandle)

Element Description

appHandle The ID of the application whose PID you want to get. Returned by
TSSApplicationStart () or TSSJavalApplicationStart ().

Return Value

On success, this function returns the system process ID of the specified application.
On failure, it returns 0: call TSSErrorDetail () for information.

64 Chapter 3

Utility Services

Comments

This function works for applications started by TSSApplicationStart () or
TSSJavaApplicationStart ().

A successful invocation does not imply that the application whose PID is returned is
still alive nor guarantee that the application is still running under this PID.

Example
This example returns the PID of application myApp.
TSSAppHandle myAppHandle = TSSApplicationStart ("myAPP", "d:\myDir",
0);

s32 myAppPID = TSSApplicationPid (myAppHandle) ;

See Also

TSSApplicationStart (), TSSApplicationWait (), TSSJavaApplicationStart ()

TSSApplicationStart()

Starts an application.

Syntax

TSSAppHandle TSSApplicationStart (char *appHandle, char
*workingDir, u32 flags)

Element Description

appHandle The pathname of the application to be started, which can include options
and arguments. The file suffix can be omitted.

workingDir |The directory in which to start the application. The current directory if

specified as "".

flags Reserved for future use. Specify as 0.

Return Value

On success, this function returns a handle for the started application. On failure, it
returns 0: call TsSSErrorDetail () for information.

Test Script Services 65

TSSApplicationWait()

Comments

TSSAppHandle is defined as: typedef void *TSSAPPHandle.

Example

This example starts application myApp.

TSSAppHandle myAppHandle = TSSApplicationStart ("myAPP", "d:\myDir",
0);

See Also
TSSApplicationPid (), TSSApplicationWait (), TSSJavalApplicationStart ()

TSSApplicationWait()

Waits for an application to terminate.

Syntax
s32 TSSApplicationWait (TSSAppHandle app, s32 *exitStatus, s32
timeout)
Element Description
app The application that you are waiting for. Returned by

TSSApplicationStart () or TSSJavaApplicationStart ().

exitStatus OUTPUT. If not NULL, the exit status of app.

timeout The number of milliseconds to wait for app to terminate or 0 to return
immediately.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
» TSS FAIL. The application was still running when the time-out expired.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ SYSERROR. The system returned an error: call TSSErrorDetail () for
information.

66 Chapter 3

Utility Services

* TSS_NOTFOUND. The process indicated by app was not found. It may have
terminated before this call or app may be an invalid handle.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This function works for applications started by TSSApplicationStart () or
TSSJavaApplicationStart ().

If appis still running at the time this call returns, exitStatus contains NULL. If app
has terminated at the time of return, exitStatus contains its termination code.

Example

This example waits 600 milliseconds for application myApp to terminate.

s32 termStatus;

TSSAppHandle myAppHandle = TSSApplicationStart ("myAPP", "d:\myDir",
0);

s32 retval = TSSApplicationWait (myAppHandle, termStatus, 600) ;

See Also

TSSApplicationPid (), TSSApplicationStart (), TSSJavalApplicationStart ()

TSSDelay()

Delays script execution for the specified number of milliseconds.

s32 TSSDelay (s32 msecs)

Element Description

msecs The number of milliseconds to delay script execution.

Return Value

This function exits with one of the following results:
= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Test Script Services 67

TSSErrorDetail()

Comments

The delay is scaled as indicated by the contents of the EVAR_Delay dly scale
environment variable. The accuracy of the time delayed is subject to operating system
limitations.

Example

This example delays execution for 10 milliseconds.

s32 retVal = TSSDelay (10);

TSSErrorDetail()

Retrieves error information about a failure.

Syntax

s32 TSSErrorDetail (char *errorText, s32 *len)

Element Description

errorText OUTPUT. Returned explanatory error message about the previous TSS call,

or an empty string (") if the previous TSS call did not fail.

len The length of string errorText.

Return Value

This function returns TSS_OXK if the previous call succeeded. If the previous call failed,
TSSErrorDetail() returns one of the error codes listed below and corresponding
errorText.

» TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

If the message is too long to fit in errorText, it is truncated to Ien and Ien is
updated to the message length.

68 Chapter 3

Utility Services

Example

This example opens a datapool and, if there is an error, displays the associated error
message text.

char message[256] ;
s32 dpid, ecode, msglen = 256;
dpid = TSSDatapoolOpen ("custdata",0,0,NULL) ;
if (dpid < 0)
{
/* open failed, report error */
ecode = TSSErrorDetail (message, &msglen) ;

fprintf (stderr, "TSSDatapoolOpen failed. code: %d, message: %$s\n",
ecode, message) ;

}

TSSGetComputerConfigurationAttributeList()

Gets the list of computer configuration attributes and their values.

Syntax

s32 TSSGetComputerConfigurationAttributeList (NamedvValue[]
**config, s32 *count)

Element Description

config OUTPUT. An array containing configuration name/value pairs, where
config[n] .name is the attribute name and config [n] .value isits
value.

count OUTPUT. The number of rows in the config array.

Return Value

On success, this function returns an array of computer configuration attribute names
and their values. It exits with one of the following results:

» TSS_OK.Success.

* TSS_NOSERVER. No previous successful call to TSSConnect ().

TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Test Script Services 69

TSSGetComputerConfigurationAttributeValue()

Comments

You create and maintain computer configuration attributes from TestManager. This
call returns the current settings.

The pointer to configis valid until the next call of this function. The Namedvalue
data type is defined as follows:

typedef struct {
char *Name;
char *Value;
} Namedvalue;

Example

This example returns the current computer configuration attribute list.

s32 npairs;
NamedValue *config;

s32 retVal = TSSGetComputerConfigurationAttributelList (&config,
&npairs) ;

See Also

TSSGetComputerConfigurationAttributeValue ()

TSSGetComputerConfigurationAttributeValue()

Gets the value of computer configuration attribute.

Syntax

char *TSSGetComputerConfigurationAttributeValue (char #*name)

Element Description
name The name of the computer configuration attribute whose value is to be
returned.

Return Value

On success, this function returns a handle for the started application. On failure, it
returns NULL: call TssErrorDetail () for information.

70 Chapter 3

Utility Services

Example

This example returns the value of the configuration attribute Operating System.

char *0OSVal = TSSGetComputerConfigurationAttributeValue ("Operating
System") ;

See Also

TSSGetComputerConfigurationAttributelList ()

TSSGetPath()

Gets the root path of a test asset.

Syntax

char *TSSGetPath (u32 pathKey)

Element Description

pathKey Specifies one of these values:

* TSS_SOURCE_PATH to get the root path of the test script source from
which the currently executing test script was selected. On an agent, this
is the root of the destination to which files are copied from the local
computer.

* TSS ATTACHED LOG FILE PATH to get the root of files attached to
the log.

Return Value

On success, this function returns the root of the currently executing test script or of the
files attached to the log. On failure, it returns NULL: call TSSErrorDetail () for
information.

Comments

The root path returned by this function might be the exact location where an asset is
stored, but it need not be. For example, in the fully-qualified pathname
C:\Datastore\TestScripts, C: might be the root path and Datastore\TestScripts a
pathname relative to the root path.

Test Script Services 71

TSSGetScriptOption()

For test scripts run from TestManager, the returned root path is a value in shared
memory for the current virtual tester at the time of the call. For test scripts run
stand-alone (outside TestManager), the returned root path is a value set by
TSSContext ().

Example

This example returns the root path of the source from which the currently executing
test script was selected.

char *scriptPath = TSSGetPath (TSS SOURCE_PATH) ;

See Also

TSSContext (), TSSUniqueString ()

TSSGetScriptOption()

Gets the value of a test script playback option.

Syntax

char *TSSGetScriptOption (char *optionName)

Element Description

optionName The name of the script option whose value is returned.

Return Value

On success, this function returns the value of the specified script option, or NULL if
the value specified is not used by the execution adapter. The function exits with one of
the following results:

= TSS_OK.Success.
* TSS_NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

72 Chapter 3

Utility Services

Comments

TestManager users can set the values of test script playback options. These may be
options specifically supported by a Test Script Execution Adapter (TSEA), or
arbitrarily named user-defined options. The common way to use test script options in
a test script is to query an option’s value with this call and branch according to its
returned value. For implementation details about test script options and instructions
on how to set options from TestManager, see “Using Test Script Options” on page 12.

Example

This example gets the current value of a hypothetical script option named
repeat_count. The returned pointer to optVal is valid until the next
TSSGetScriptOption () call.

char *optVval;
if (optVal = TSSGetScriptOption ("repeat count"))
printf ("The value of repeat count is %s\n", repeat count) ;

See Also

SessionSetOption (), TaskSetOption ()

TSSGetTestCaseConfigurationAttribute()

Gets the value of the specified test case configuration attribute.

Syntax

S32 *TSSGetTestCaseConfigurationAttribute (char *name,
TestCaseConfigurationAttribute *config)

Element Description
name Specifies the name of the configuration attribute to be returned.
config OUTPUT. The returned test case configuration value.

Return Value

On success, this function returns the value of the specified test case configuration
attribute. It exits with one of the following results:

= TSS_OK.Success.

Test Script Services 73

TSSGetTestCaseConfigurationAttributeList()

* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

You create and maintain test case configuration attributes from TestManager. This call
returns the value of the specified attribute for the current test case.

The TestCaseConfigurationAttribute data type is defined as follows:

typedef struct ({
char *name;
char *operator
char *value;
} TestCaseConfigurationAttribute;
Example

This example returns the value of the configuration attribute Operating System.

TestCaseConfigurationAttribute 0OSVal =
TSSGetTestCaseConfigurationAttribute ("Operating System") ;

See Also

TSSGetTestCaseConfigurationAttributelist ()

TSSGetTestCaseConfigurationAttributeList()

Gets the list of test case configuration attributes and their values.

Syntax

S32 *TSSGetTestCaseConfigurationAttributelist
(TestCaseConfigurationAttribute **config, s32 *count)

Element Description

config OUTPUT. An array containing configuration name/operator/value
triplets, where config [n] . name is the attribute name,

config[n] .operator is the operator, and config[n] .value is the
attribute value.

count OUTPUT. The number of rows in the config array.

74 Chapter 3

Utility Services

Return Value

On success, this function returns an array of test case configuration attribute names,
base values, and operators. It exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

You create and maintain test case configuration attributes from TestManager. This call
returns the current settings for the current test case.

The TestCaseConfigurationAttribute data type is defined as follows:

typedef struct {
char *name;
char *operator
char *value;
} TestCaseConfigurationAttribute;

Example

This example returns the current test case configuration attribute list.

S32 nrows;

TestCaseConfigurationAttribute *config;

s32 retVal = TSSGetTestCaseConfigurationAttributelList (&config,
&Nrows) ;

See Also

TSSGetTestCaseConfigurationAttribute ()

TSSGetTestCaseConfigurationName()

Gets the name of the configuration (if any) associated with the current test case.

Syntax

char *TSSGetTestCaseConfigurationName (void)

Test Script Services 75

TSSGetTestCaseName()

Return Value

On success, this function returns the name of the configuration associated with the
test case in use. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

A test case specifies the pass criteria for something that needs to be tested. A
configured test case is one that TestManager can execute and resolve as pass or fail.

Example
This example retrieves the name of a test case configuration.

char *tcConfig = TSSGetTestCaseConfigurationName () ;

TSSGetTestCaseName()

Gets the name of the test case in use.

Syntax

char *TSSGetTestCaseName (void)

Return Value

On success, this function returns the name of the current test case. The function exits
with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

Created from TestManager, a test case specifies the pass criteria for something that
needs to be tested.

The returned pointer to testcase is valid until the next TSSTestCaseName () call.

76 Chapter 3

Utility Services

Example
This example stores the name of the test case in use in tcName.

char *tcName;
if (tcName = TSSGetTestCaseName ())
printf ("The test case is %s\n, tcName");

TSSGetTestToolOption()

Gets the value of a test tool execution option.

Syntax

char *TSSGetTestToolOption (char *optionName)

Element Description

optionName The name of the test tool execution option whose value is returned.

Return Value

On success, this function returns the value of the specified test tool execution option.
On failure, it returns NULL: call TSSErrorDetail () for information.

Comments

If you develop adapters for a new test script type that support options, you can use
this call to get the value of a specified option.

Example

This example returns the value of an option called persist.

char *optval = TSSGetTestToolOption ("persist");

TSSJavaApplicationStart()

Starts a Java application.

Syntax

TSSAppHandle TSSJavaApplicationStart(char *app, char
*workingDir, char *classPath, char *JVM, char *JVMOptions)

Test Script Services 77

TSSNegExp()

Element Description

app The pathname of the application to be started, which can include options
and arguments. The file suffix can be omitted.

workingDir The directory in which to start the application.

classPath The Java CLASSPATH or NULL. The specified value replaces the current
CLASSPATH.
JVM The pathname of Java Virtual Machine. If specified as NULL, java.exe is

used on Windows machines and java on UNIX agent platforms.

JVMOptions Any valid JVM options or NULL.

Return Value
On success, this function returns a handle for the started application. On failure, it
returns NULL: call TSsErrorDetail () for information.

Comments
TSSAppHandle is defined as: typedef void *TSSAPPHandle.

Example
This example starts application myJavaApp.

TSSAppHandle myAppHandle = TSSJavalApplicationStart ("myJavaAPP", "',

nn nn nn) .
1 ’ ’

See Also

TSSApplicationPid (), TSSApplicationStart (), TSSApplicationWait ()

TSSNegEXxp()

Gets the next negative exponentially distributed random number with the specified
mean.

Syntax

s32 TSSNegExp (s32 mean)

78 Chapter 3

Utility Services

Element Description

mean The mean value for the distribution.

Return Value

This function returns the next negative exponentially distributed random number
with the specified mean, or -1 if there is an error. The function exits with one of the
following results:

» TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

If the error return value -1 is a legitimate value for the specified mean, then
TSSErrorDetail () returns TSS_ OK.

Example
This example seeds the generator and gets a random number with a mean of 10.

s32 retVal = TSSSeedRand (10) ;
532 next = TSSNegExp (10) ;

See Also

TSSRand (), TSSSeedRand (), TSSUniform()

TSSRand()

Gets the next random number.

Syntax

s32 TSSRand (void)

Test Script Services 79

TSSSeedRand()

Return Value

This function returns the next random number in the range 0 to 32767, or -1 if there is
an error. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example
This example gets the next random number.

s32 next = TSSRand() ;

See Also

TSSSeedRand (), TSSNegExp (), TSSUniform()

TSSSeedRand()

Seeds the random number generator.

Syntax

s32 TSSSeedRand (u32 seed)

Element Description

seed The base integer.

Return Value
This function exits with one of the following results:

= TSS_OK.Success.

80 Chapter3

Utility Services

* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

TSSSeedRand () uses the argument seed as a seed for a new sequence of random
numbers to be returned by subsequent calls to the TSSrRand () routine. If
TSSSeedRand () is then called with the same seed value, the sequence of random
numbers is repeated. If TSSRand () is called before any calls are made to
TSSSeedRand (), the same sequence is generated as when TSSSeedRand () is first
called with a seed value of 1.

Example
This example seeds the random number generator with the number 10:

s32 retVal = TSSSeedRand (10) ;

See Also

TSSRand (), TSSNegExp (), TSSUniform()

TSSePrint()

Prints a message to the virtual tester’s error file.

Syntax

s32 TSSePrint (char *message)

Element Description

message The string to print.

Return Value
This function exits with one of the following results:

» TSS_OK.Success.

Test Script Services 81

TSSPrint()

* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Example
This example prints to the error file the message Login failed.

s32 retVal = TSSePrint ("Login failed");

See Also

TSSPrint ()

TSSPrint()

Prints a message to the virtual tester’s output file.

Syntax

s32 TSSPrint (char *message)

Element Description

message The string to print.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Example

This example prints the message Login successful.

s32 retVal = TSSPrint ("Login successful");

See Also

TSSePrint ()

82 Chapter 3

Utility Services

TSSUniform()

Gets the next uniformly distributed random number.

Syntax

s32 TSSUniform(s32 low, s32 high)

Element Description
Iow The low end of the range.
high The high end of the range.

Return Value

This function returns the next uniformly distributed random number in the specified
range, or —1 if there is an error. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

If the error return value -1 is a legitimate value for the specified range, then
TSSErrorDetail () exits with value TSS_OK.
Example

This example gets the next uniformly distributed random number between —10 and
10.

int next = TSSUniform(-10,10) ;

See Also

TSSRand (), TSSSeedRand (), TSSNegExp ()

Test Script Services 83

TSSUniqueString()

TSSUniqueString()

Returns a unique text string.

Syntax

char *TSSUniqueString(void)

Return Value

On success, this function returns a string guaranteed to be unique in the current test
script or suite run. On failure, it returns NULL: call TSSErrorDetail () for
information.

Comments
You can use this call to construct the name for a unique asset, such as a test script
source file.

Example

This example returns a unique text string.

char *str = TSSUniqueString() ;

Monitor Services

When a suite of test cases or test scripts is played back, TestManager monitors
execution progress and provides a number of monitoring options. The monitoring
functions support the TestManager monitoring options.

Summary

The following table lists the monitoring functions.

Function Description

TSSDisplay () Sets a message to be displayed by the monitor.

TSSPositionGet () Gets the script source file name or line number
position.

84 Chapter 3

Monitor Services

Function Description

TSSPositionSet () Sets the script source file name or line number
position.

TSSReportCommandStatus () Gets the runtime status of a command.

TSSRunStateGet () Gets the run state.

TSSRunStateSet () Sets the run state.

TSSDisplay()

Sets a message to be displayed by the monitor.

Syntax

s32 TSSDisplay (char *message)

Element Description

message The message to be displayed by the progress monitor.

Return Value
This function exits with one of the following results:
» TSS_OK.Success.
» TSS NOOP. The TSS server is running proxy.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This message is displayed until overwritten by another call to TsSSDisplay ().

Example

This example sets the monitor display to Beginning transaction.

s32 retVal = TSSDisplay ("Beginning transaction") ;

Test Script Services

85

TSSPositionGet()

TSSPositionGet()

Gets the test script file name or line number position.

Syntax

s32 TSSPositionGet (char **srcFile, u32 *lineNumber)

Element Description

srcFile OUTPUT. The name of a source file. After a successful call, this variable
contains the name of the source file that was specified with the most recent
TSSPositionSet () call

lineNumber OUTPUT. The name of a local variable. After a successful call, this variable
contains the current line position in srcFile.

Return Value

On success, this function returns srcFile and 1ineNumber as explained in the
preceding table. The function exits with one of the following results:

= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. TSSPositionSet () and TSSPositionGet () partially
support this monitoring option for TSS scripts: if line numbers are reported, they are
displayed during playback but not the contents of the lines.

The line number returned by this function is the most recent value that was set by
TSSPositionSet (). A return value of 0 for line number indicates that line numbers
are not being maintained.

Example

This example gets the name of the current script file and the number of the line to be
accessed next.

char ** scriptFile;
u32 *lineNumber;
s32 retVal = TSSPositionGet (scriptFile, lineNumber) ;

86 Chapter3

Monitor Services

See Also

TSSPositionSet ()

TSSPositionSet()

Sets the test script file name or line number position.

Syntax

s32 TSSPositionSet (char *srcFile, u32 lineNumber)

Element Description

srcFile The name of the test script, or NULL for the current test script.

lineNumber The number of the line in srcFile to set the cursor to, or 0 for the current
line.

Return Value
This function exits with one of the following results:
» TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. TSSPositionSet () and TSSPositionGet () partially
support this monitoring option for TSS scripts: if line numbers are reported, they are
displayed during playback but not the contents of the lines.

Example

This example sets access to the beginning of test script checkLogin.

s32 retVal = TSSPositionSet ("checkLogin", 0) ;

See Also

TSSPositionSet ()

Test Script Services 87

TSSReportCommandStatus()

TSSReportCommandStatus()

Reports the runtime status of a command.

Syntax

$32 TSSReportCommandStatus (s32 status)

Element Description

status The status of a command. Can be one of the following;:
* TSS CMD STAT FAIL
" TSS CMD STAT PASS
* TSS_CMD_STAT WARN
* TSS CMD STAT INFO

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
» TSS NOOP. The TSS server is running proxy.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The entered status is invalid.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Example
This example reports a failure command status.

s32 retVal = TSSReportCommandStatus (TSS_CMD_ STAT FAIL);

TSSRunStateGet()

Gets the run state.

Syntax

s32 TSSRunStateGet (void)

88 Chapter3

Monitor Services

Return Value

On success, this function returns one of the run state values listed in the run state table
starting on page 90. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call is useful for storing the current run state so you can change the state and then
subsequently do a reset to the original run state.

Example
This example gets the current run state.

s32 orig = TSSRunStateGet () ;

See Also

TSSRunStateSet ()

TSSRunStateSet()

Sets the run state.

Syntax

s32 TSSRunStateSet (RunState state)

Element Description

state The run state to set. Enter one of the run state values listed in the run state
table starting on page 90.

Return Value
This function exits with one of the following results:
= TSS_OK.Success.

* TSS_NOSERVER. No previous successful call to TSSConnect ().

Test Script Services 89

TSSRunStateSet()

* TSS INVALID. Invalid run state.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

RunState is defined as follows:

typedef u32 RunState;

TestManager includes the option to monitor script progress individually for different
virtual testers. The run states are the mechanism used by test scripts to communicate
their progress to TestManager. Run states can also be logged and can contribute to

performance analysis reports.

The following table lists the TestManager run states.

Run State Meaning
MST BIND iiop_bind in progress
MST BUTTON X button action

MST CLEANUP

cleaning up

MST CPUDLY

cpu delay

MST DELAY

user-requested delay

MST DSPLYRESP

displaying response

MST EXITED

exited

MST EXITSQABASIC

exited SQABasic code

MST EXTERN_C

executing external C code

MST_FIND

find_text find_point

MST GETTASK

waiting for task assignment

MST_ HTTPCONN

waiting for http connection

MST HTTPDISC

waiting for http disconnect

MST_ IIOP_ INVOKE

iiop_invoke in progress

MST_ INCL

mask including above basic states

MST_ INIT

doing startup initialization

MST_ INITTASK

initializing task

90 Chapter3

Monitor Services

Run State Meaning

MST ITDLY intertask delay
MST_MOTION X motion

MST_ PMATCH matching response (precv)

MST_RECV_DELAY

line_speed delay in recv

MST_ SATEXEC

executing satellite script

MST_SEND

httpsocket send

MST_ SEND DELAY

line_speed delay in send

MST SHVBLCK

blocked from shv access

MST SHVREAD

V_VP: reading shared variable

MST SHVWAIT

user requested shv wait

MST_ SOCKCONN

waiting for socket connection

MST_ SOCKDISC

waiting for socket disconnect

MST_ SQABASIC_CODE

running SQABasic code

MST SQLCONN

waiting for SQL client connection

MST_ SQLDISC

waiting for SQL client disconnect

MST_ SQLEXEC

executing SQL statements

MST_ STARTAPP

SQABasic: starting app

MST SUSPENDED suspended
MST_TEST test case, emulate
MST_THINK thinking

MST_TRN_PACING

transactor pacing delay

MST TUXEDO

Tuxedo execution

MST TYPE

typing

MST UNDEF

user’s micro_state is undefined

MST USERCODE

SQAVu user code

MST WAITOBJ

SQABasic: waiting for object

MST WAITRESP

waiting for response

Test Script Services

91

Synchronization Services

Run State Meaning

MST_WATCH interactive -W watch record

MST XCLNTCONN waiting for http connection

MST XCLNTCONN waiting for socket connection

MST XCLNTCONN waiting for SQL client connection

MST_ XCLNTCONN waiting for X client connection

MST XCLNTDISC waiting for http disconnect

MST XCLNTDISC waiting for socket disconnect

MST XCLNTDISC waiting for SQL client disconnect

MST_XCLNTDISC waiting for X client disconnect

MST XMOVEWIN X move window

MST XQUERY X query function

MST_XSYNC X sync state during X query

MST XWINCMP xwindow_diff comparing windows

MST XWINDUMP xwindow_diff dumping window

N _MST_ INCL number of above states
Example

This example sets the run state to MST WAITRESP.

s32 retVal = TSSRunStateSet (MST WAITRESP) ;

See Also

TSSRunStateGet ()

Synchronization Services

Use the synchronization functions to synchronize virtual testers during script
playback. You can insert synchronization points and wait periods, and you can
manage variables shared among virtual testers.

92 Chapter 3

Summary

Synchronization Services

The following table lists the synchronization functions.

Function Description

TSSSharedVarAssign () Performs a shared variable assignment operation.

TSSSharedvarEval () Gets the value of a shared variable and operates on the
value as specified.

TSSSharedvVarWait () Waits for the value of a shared variable to match a specified
range.

TSSSyncPoint () Puts a synchronization point in a script.

TSSSharedVarAssign()

Performs a shared variable assignment operation.

Syntax

s32 TSSSharedVarAssign (char *name, s32 value, ShVarOp op, s32

*returnVal)

Element Description

name The name of the shared variable to operate on.
value The right-side value of the assignment expression.
op Assignment operator. Can be one of the following;:

SHVOP_assign
SHVOP add
SHVOP_subtract
SHVOP multliply
SHVOP divide
SHVOP modulo
SHVOP_ and
SHVOP_or
SHVOP_xor
SHVOP_shiftleft
SHVOP_shiftright

Test Script Services 93

TSSSharedVarAssign()

Element Description

returnVal OUTPUT. If not specified as NULL, the resulting value of name after
application of op value

Return Value

On success, this function retrieves the value of the specified shared variable before
and after it has been operated on. The function exits with one of the following results:

= TSS_OK. Success.
» TSS_NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The entered name is not a shared variable.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The data type ShvarOp is defined as follows:

typedef enum ShVarOp ShVarOp;

enum ShvVarOp {
SHVOP_assign,
SHVOP_add,
SHVOP_subtract,
SHVOP multiply,
SHVOP_divide
SHVOP_modulo,
SHVOP_and,
SHVOP_or,
SHVOP_xor,
SHVOP_shiftleft
SHVOP_shiftright
SHVOP_END

}

TSSSharedVarAssign ("myVar",5, SHVOP add,NULL) is equivalent to myVar

+= 5.

Example

This example adds 5 to the value of the shared variable 1ineCounter and puts the

new value of 1ineCounter in returnval.

s32 returnval = 5;
s32 retVal = TSSSharedVarAssign("lineCounter", wval, SHVOP_add,
returnvVal) ;

94 Chapter 3

Synchronization Services

See Also

TSSSharedVarEval (), TSSSharedVarWait ()

TSSSharedVarEval()

Gets the value of a shared variable and operates on the value as specified.

Syntax

s32 TSSSharedVarEval (char *name, s32 *value, ShVarAdj op)

Element Description

name The name of the shared variable to operate on.

value OUTPUT. A local container into which the value of name is retrieved.

op Increment/decrement operator for the returned value: Can be one of the
following:

®" SHVADJ none SHVADJ pre inc
® SHVADJ post_inc

" SHVADJ pre dec

" SHVADJ post dec

Return Value

On success, this function returns the new value of the specified shared variable as
described above. The function exits with one of the following results:

= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS_ INVALID. The entered name is not a shared variable.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The data type shvaradj is defined as follows:

typedef enum ShVarAdj ShvarAdj;
enum ShvarAdj {

SHVADJ none,

SHVADJ pre inc,

SHVADJ post_ inc,

Test Script Services 95

TSSSharedVarWait()

SHVADJ pre dec,
SHVADJ post dec

}

Example

This example post-decrements the value of shared variable 1ineCounter and stores
the result in val.

s32 val;

s32 retVval TSSSharedVarEval ("lineCounter",val, SHVADJ post inc) ;
See Also

TSSSharedVarAssign (), TSSSharedVarWait ()

TSSSharedVarWait()

Waits for the value of a shared variable to match a specified range.

Syntax

s32 TSSSharedVarWait (char *name, s32 min, s32 max, s32 adjust,
s32 timeout, s32 *returnVal)

Element Description
name The name of the shared variable to operate on.
min The low range for the value of name.
max The high range for the value of name.
adjust The value to increment/decrement the named shared variable by once it
meets the min — max range.
timeout The time-out preference (how long to wait for the condition to be met).
Enter one of the following:
= A negative number for no time-out.
= 0 to return immediately with an exit value of 1 (condition met) or 0 (not
met).
= The number of milliseconds to wait for the value of name to meet the
criteria, before timing out with and returning an exit value of 1 (met) or 0
(not met).
returnVal OUTPUT. The value of name at the time of the return, before any possible
adjustment. If t imeout expired before the return, the value is not adjusted.
Otherwise, returnvVal is incremented/decremented by adjust.

96 Chapter3

Synchronization Services

Return Value

On success, this function returns 1 (condition was met before time-out) or 0 (time-out
expired before the condition was met). The function exits with one of the following
results:

* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The entered name is not a shared variable.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call provides a method of blocking a virtual tester until a user-defined global
event occurs.

If virtual testers are blocked on an event using the same shared variable, TestManager
guarantees that the virtual testers are unblocked in the same order in which they were
blocked.

Although this alone does not ensure an exact multiuser timing order in which
statements following a wait are executed, the additional proper use of the arguments
min, max, and adjust allows control over the order in which multiuser operations
occur. (UNIX or Windows NT determines the order of the scheduling algorithms. For
example, if two virtual testers are unblocked from a wait in a given order, the tester
that was unblocked last might be released before the tester that was unblocked first.)

If a shared variable’s value is modified, any subsequent attempt to modify this

value — other than through TssSharedvarWait () — blocks execution until all
virtual testers already blocked have had an opportunity to unblock. This ensures that
events cannot appear and then quickly disappear before a blocked virtual tester is
unblocked. For example, if two virtual testers were blocked waiting for name to equal
or exceed N, and if another virtual tester assigned the value IVto name, then
TestManager guarantees both virtual testers the opportunity to unblock before any
other virtual tester is allowed to modify name.

Offering the opportunity for all virtual testers to unblock does not guarantee that all
virtual testers actually unblock, because if TSSSharedvarWait () is called with a
nonzero value of adjust by one or more of the blocked virtual testers, the shared
variable value changes during the unblocking script. In the previous example, if the
first user to unblock had called TssSharedvarWait () with a negative adjust
value, the event waited on by the second user would no longer be true after the first
user unblocked. With proper choice of adjust values, you can control the order of
events.

Test Script Services 97

TSSSyncPoint()

Example

This example returns 1 if the shared variable inProgress reaches a value between
10 and 20 within 60000 milliseconds of the time of the call. Otherwise, it returns 0.
svVal contains the value of inProgress at the time of the return, before it is
adjusted. (In this case, the adjustment value is 0 so the value of the shared variable is
not adjusted.)

s32 svvVal = 0;
s32 retVal = TSSSharedVarWait ("inProgress",10,20,0,60000,svVal) ;

See Also

TSSSharedVarAssign (), TSSSharedvVarEval ()

TSSSyncPoint()

Puts a synchronization point in a script.

Syntax

s32 TSSSyncPoint (char *label)

Element Description

label The name of the synchronization point.

Return Value
This function exits with one of the following results:
» TSS_OK.Success.
= TSS_NOOP. The TSS server is running proxy.
* TSS_NOSERVER. No previous successful call to TSSConnect ().
* TSS_INVALID. The synchronization point l1abel is invalid.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

A script pauses at a synchronization point until the release criteria specified by the
suite have been met. If the criteria are met, the script delays a random time specified
in the suite and then resumes execution.

98 Chapter3

Session Services

Typically, it is better to insert a synchronization point into a suite from TestManager
rather than use the TssSyncPoint () call inside a script.

If you insert a synchronization point into a suite, synchronization occurs at the
beginning of the script. If you insert a synchronization point into a script with
TSSSyncPoint (), synchronization occurs at the point of insertion. You can insert the
command anywhere in the script.

Example

This example creates a sync point named BlockUntilSaveComplete.

s32 retVal = TSSSyncPoint ("BlockUntilSaveComplete") ;

Session Services

This section documents functions that may be required by applications. They are not
typically used by test scripts.

A suite can contain multiple test scripts of different types. When TestManager
executes a suite, a separate session is started for each type of script in the suite. Each
session lasts until all scripts of the type have finished executing. Thus, if a suite
contains three Visual Basic test scripts and six VU test scripts, two sessions are started
and each remains active until all scripts of the respective types finish.

In a given suite run, a session can be run directly (inside the TestManager process
space) or by a separate TSS server process (proxy). The latter happens only if the
following two conditions are met:

» The test script(s) is executed by a stand-alone process (outside of TestManager)
and is linked with the link library rttssremote.lib.

» The first script of a given type in a suite that can be executed by a TSS proxy server
calls TssserverStart ().

Summary

Applications can use the session functions listed in the following table to manage
proxy TSS servers and sessions on behalf of test scripts. These functions are not
needed for sessions that are directly executed by TestManager.

Test Script Services 99

TSSConnect()

Function Description

TSSConnect () Connects to a TSS proxy server.
TSSContext () Passes context information to a TSS server.
TSSDisconnect () Disconnects from a TSS proxy server.
TSSServerStart () Starts a TSS proxy server.
TSSServerStop () Stops a TSS proxy server.

TSSShutdown () Stops logging and initializes TSS.

TSSConnect()

Connects to a TSS proxy server.

Syntax

s32 TSSConnect (char *host, ulé port, s32 id)

Element Description

host The name (or IP address in quad dot notation) of the host on which the
proxy TSS server process is running.

port The listening port for the TSS server on host, or 0 (recommended) to let
TestManager select the port.

id The connection identifier.

Return Value
This function exits with one of the following results:
= TSS_OK. Success.

* TSS NOOP. A connection and ID had already been established for this execution
thread.

» TSS NOSERVER. No TSS server was listening on port.

* TSS_SYSERROR. A system error occurred. Call TSSErrorDetail () for
information.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

100 Chapter 3

Session Services

Comments

For scripts that are executed by a proxy process rather than directly by the TSEE, this
function must be called before any other TSS functions. This function is also required
when a script (or TSEA) starts a new thread of execution.

The proxy TSS DLL uses host and port (the host and port parameters passed to
SessionOpen () in the TSEA) to establish a connection with the correct TSEE.

The direct TSS DLL ignores host and port, and associates the id with the current
execution thread. If the thread already had an ID, idis ignored. (You cannot change
id)

Example

This example connects to a TSS server running on host 192.36.25.107. The port is
defined in the example for TSSServerStart ().

s32 retVal = TSSConnect ("192.36.25.107",port,0) ;

See Also

TSSServerStart ()

TSSContext()

Passes context information to a TSS server.

Syntax

s32 TSSContext (ContextKey ctx, void *value)

Test Script Services 101

TSSContext()

Element Description

ctx The type of context information to pass: Can be one of the following;:
= CTXT workingDir
= CTXT datapoolDir
* CTXT timeZero

= CTXT todZero

= CTXT logDir

= CTXT logFile

= CTXT logData

= CTXT testScript
= CTXT_ style

= CTXT_ sourceUID

value The information of type ctx to pass.

Return Value
This functionexits with one of the following results:
= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS_ INVALID. The specified ctx is invalid.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call is useful for test scripts that are executed by a stand-alone process — outside
the TestManager framework — and that also make TSS calls. The call passes
information, such as the log file name, that would be passed through shared memory
if the script were executed by TestManager.

Test scripts that are executed by a proxy TSS server process should make this call
immediately after TSSConnect (), before accessing any other TSS services. Otherwise,
inconsistent results can occur.

ContextKey is defined as follows:

enum ContextKey {
CTXT workingDir,
CTXT datapoolDir,
CTXT timeZero,

102 Chapter 3

Session Services

CTXT_ todZero,
CTXT logDir
CTXT logFile
CTXT logData
CTXT testScript
CTXT_style
CTXT_sourceUID
CTXT_END

}i

typedef enum ContextKey ContextKey;

Example

This example passes a working directory to the current proxy TSS server.

s32 retVal = TSSContext (CTXT workingDir,"C:\temp") ;

TSSDisconnect()

Disconnects from a TSS proxy server.

Syntax

void TSSDisconnect (void)

Return Value

None.

Comments

This call closes the connection established by TSSCconnect () and performs any
required cleanup operations.

Example
This example disconnects from the TSS server.

TSSDisconnect () ;

TSSServerStart()

Starts a TSS proxy server.

Test Script Services 103

TSSServerStop()

Syntax

s32 TSSServerStart (ulé6 *port)

Element Description

port The listening port for the TSS server. If specified as 0 (recommended), the
system chooses the port and returns its number to port.

Return Value
This function exits with one of the following results:
» TSS_OK. Success.
* TSS_NOOP. A TSS server was already listening on port.
*» TSS NOSERVER. Start failure. Call TSSErrorDetail () for information.

* TSS_SYSERROR. A system error occurred. Call TSSErrorDetail () for
information.

* TSS ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

No TSS server is started if one is already running. A test script that is to be executed
by a proxy server and that might be the first to execute should make this call.

Example

This example starts a proxy TSS server on a system-designated port, whose number is
returned to port.

ulé port = 0O;

s32 retVal TSSServerStart (&port) ;

See Also

TSSServerStop ()

TSSServerStop()

Stops a TSS proxy server.

104 Chapter 3

Session Services

Syntax

s32 TSSServerStop (ulé port)

Element Description

port The port number that the TSS server to be stopped is listening on.

Return Value
This functionexits with one of the following results:
= TSS_OK. Success.
* TSS_NOOP. No TSS server was listening on port.
» TSS INVALID. No proxy TSS server was found or stopped.

* TSS_ SYSERROR. A system error occurred. Call TSSErrorDetail () for
information.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

In a test suite with multiple scripts, only the last executed script should make this call.

Example

This example stops a proxy TSS server that was started by the example for
TSSServerStart ().

s32 retval = TSSServerStop (port);

See Also

TSSServerStart ()

TSSShutdown()

Stops logging and initializes TSS.

Syntax

s32 TSSShutdown (void)

Test Script Services 105

Advanced Services

Return Value
This function exits with one of the following results:
= TSS_OK. Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS INVALID. The specified ctx is invalid.

» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call stops logging functions, pauses a playback session, and initializes TSS to
resume logging and executing the next task.

Example

This example shuts down logging during session execution so that logging can be
restarted for the next task.

s32 retval = TSSShutdown () ;

Advanced Services
|

You can use the advanced functions to perform timing calculations, logging
operations, and internal variable initialization functions. TestManager performs these
operations on behalf of scripts in a safe and efficient manner. Consequently, the
functions need not and usually should not be performed by individual test scripts.

Summary

The following table lists the advanced functions.

Function Description

TSSInternalVarSet () Sets the value of an internal variable.
TSSLogCommand () Logs a command event.
TSSThinkTime () Calculates a think-time average.

106 Chapter 3

Advanced Services

TSSInternalVarSet()

Sets the value of an internal variable.

Syntax

s32 TSSInternalVarSet (IVKey internVar, IVValue ivVal)

Element Description

internVar |The internal variable to operate on. Internal variables and their values are
listed in the table startingon page 178. See page 58 for the IVKey and page 59
for the IVValue definitions.

ivval The new value for internVar.

Return Value
The function exits with one of the following results:
= TSS_OK.Success.
* TSS NOSERVER. No previous successful call to TSSConnect ().
» TSS_ INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

* TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

The values of some internal variables affect think-time calculations and the contents
of log events. Setting a value incorrectly could cause serious misbehavior in a script.

Example
This example sets IV_cmdent to 0.

s32 retVal = TSSIntermnalVarSet (IV_cmdcnt,0);

See Also

TSSInternalVarGet ()

TSSLogCommand()

Logs a command event.

Test Script Services 107

TSSLogCommand()

Syntax

s32 TSSLogCommand (char *name, char *label, sl6 result, char
*description, s32 starttime, s32 endtime, char *logdata, s32
propertyCount, NamedValue *property)

Element

Description

name

The command name.

label

The event label.

result

Specifies the notification preference regarding the result of the call. Can
be one of the following:

" TSS LOG RESULT NONE (default: no notification)
* TSS LOG RESULT PASS

* TSS LOG RESULT FAIL

* TSS LOG RESULT WARN

* TSS LOG RESULT STOPPED

* TSS LOG RESULT INFO

* TSS LOG RESULT COMPLETED

* TSS LOG RESULT UNEVALUATED

0 specifies the default.

description

Contains the string to be displayed in the event of failure.

starttime

An integer indicating a time stamp. If specified as 0, the logged time
stamp is the later of the values contained in internal variables
IV_fecs tsand IV _fer ts.

endtime

An integer indicating a time stamp. If specified as 0, the time set by
TSSCommandEnd is logged.

logdata

Text to be logged describing the ended command.

propertyCount

Specifies the number of rows in the property array.

property

An array containing property name/value pairs, where
property [n] . name is the property name and property [n] .valueis
its value.

Return Value

This function exits with one of the following results:

= TSS_OK.Success.

* TSS NOSERVER. No previous successful call to TSSConnect ().

108 Chapter 3

Advanced Services
» TSS_ ABORT. Pending abort resulting from a user request to stop a suite run.

Comments
The value of IV_cmdent is logged with the event.

The command name and label entered with TSSCommandstart () are logged, and the
run state is restored to the value that existed prior to the TSSCommandstart () call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR LogData control or
EVAR LogEvent control environment variables. Alternatively, the logging
preference may be set with the EVAR Log level and EVAR_Record level
environment variables. The TSS_LOG_RESULT_STOPPED,
TSS_LOG_RESULT_COMPLETED, and TSS_LOG_RESULT_UNEVALUATED
preferences are intended for internal use.

NamedValue is defined as follows:

typedef struct ({
char *Name;
char *Value;
} Namedvalue;

Example
This example logs a message for a login script.

s32 retVal = TSSLogCommand ("Login", "initTimer",
TSS LOG RESULT PASS, "Command timer failed", 0, 0,"Login command
completed", NULL) ;

See Also

TSSCommandStart (), TSSCommandEnd ()

TSSThinkTime()

Calculates a think-time average.

Syntax

s32 TSSThinkTime (s32 thinkAverage)

Test Script Services 109

TSSThinkTime()

Element

Description

thinkAverage

If specified as 0, the number of milliseconds stored in the ThinkAvg
environment variable is entered. Otherwise, the value specified overrides
ThinkAvg.

Return Value

On success, this function returns a calculated think-time average. A negative exit
value indicates an error. Call TSSErrorDetail () for more information.

Comments

This call calculates and returns a think time using the same algorithm as
TSSThink (). But unlike TSsThink (), this call inserts no pause into a script.

This function could be useful in a situation where a test script calls another program
that, as a matter of policy, does not allow a calling program to set a delay in execution.
In this case, the called program would use TsSThinkTime () to recalculate the delay
requested by TSSThink () before deciding whether to honor the request.

Example

This example calculates a pause based on a think-time average of 5000 milliseconds.

ctime = ‘tsscmd GetTime'IVValue iv;
iv.ivInt = TSSGetTime;
TSSInternalvarSet (IV_fcs ts, iv)

TSSInternalvarSet (IV_fer_ts, iv

TSSInternalvarSet (IV_lcs ts,iv);
TSSInternalvarSet (IV_lcr ts,iv);

)
)

532 pause = TSSThinkTime (5000) ;

See Also

TSSThink ()

110 Chapter 3

Test Script Console
Adapter API

This chapter describes the Test Script Console Adapter (TSCA) and explains how to
build a custom TSCA.

This chapter contains the following sections:

= About the Test Script Console Adapter

* Building a TSCA: Workflow and Implementation Issues
* Registering the TSCA DLL with TestManager

About the Test Script Console Adapter

A Test Script Console Adapter (TSCA) is a C or C++ dynamic-link library (DLL) that
integrates with TestManager. By so doing, it enables additional test script types to be
available for operations.

Each test script type is associated with a particular TSCA. A TSCA is required to allow
the user to access a test script through the user interface.

Note: The TSCA does not support test script execution; this function is carried out by
the TSEA and TSEE, as described in Chapter 2.

TSCA Functionality
A TSCA must, at a minimum:
» Connect to and disconnect from the test script source.
* Provide a way for the user to select a test script from the source.

In addition to these basic functions, many TSCAs are designed to support more
sophisticated functions. A more robust TSCA might support such operations as:

* Displaying a directory hierarchy of test scripts.
= Filtering test scripts within the Test Script view.
» Displaying the properties of a test script.

» Configuring a test script source.

111

About the Test Script Console Adapter

Performing source control operations against the contents of a test script source.

Executing a custom action against the test script source or the test script, for
example, providing multiple editors for the same test script type.

Built-In and Custom Test Script Types

As described in Chapter 1, you can implement a test case with a test script that is
either a built-in test script type or a custom test script type.

If you create a custom test script type, you must extend TestManager to support this
new type. To extend TestManager, do one of the following;:

Use the built-in Command Line TSCA or other console adapters provided by
Rational.

The Command Line TSCA works for any file-based test script, for example, PERL
scripts. File-based means that the individual test scripts can be accessed by their
names or paths using the standard Microsoft File Open dialog box.

Because Rational provides this console adapter, you do not need to do any
programming; you only need to specify the executable commands for creating and
editing a test script.

Although this TSCA requires no custom programming, it is not fully integrated
into TestManager. (For more information about using the TestManager built-in
console adapter, see the TestManager online Help.)

Create a custom test script console adapter.

A custom TSCA is required to integrate the custom test type with TestManager.
Once you write the TSCA, TestManager recognizes these new test script types.

A custom TSCA is required for test scripts that are:

s Created with a test tool that does not provide a command-line interface for
creating and editing test scripts.

= Not file based, that is, cannot be opened with the standard File Open dialog
box— for example, Rational ManualTest test scripts.

A custom TSCA can also be used with file-based test scripts.

Unlike the command-line TSCA, you can fully integrate a custom TSCA into
TestManager.

The TSCA Function Calls

The TSCA applications programming interface (API) consists of 31 functions that are
organized into nine functional groupings.

112 Chapter 4

About the Test Script Console Adapter

Functional Groupings of TSCA Functions

The Test Script Console Adapter (TSCA) functions are summarized in the following

table, which shows:

» The functional groupings and their purposes.

» The functions within each group.

Function Group and Purpose

Functions in Group

interfaces to aid in the configuration of the test
script source.

Connection TTConnect ()
Supports connection and disconnection from TTDisconnect ()
the test script source.
Data Access TTGetRoots ()
Prov1d.es access to the test scripts within the TTGetChildren ()
source:
= Hierarchical data TTGetNode ()
* Nonbhierarchical data TTGetName ()
= Sources with different test script types
= Functions providing icons for source and TTGetTypelcon ()
test scripts TTGetSourcelIcon ()
TTGetIcon ()
Editor Integration TTNew ()
Provides integration between TestManager and TTEALL ()
the editor or IDE used to create and edit test
scripts.
Filtering TTSetFilterEx ()
Provides support to filter out test scripts that TTGetFilterEx ()
do not meet user-defined criteria.
TTClearFilter ()
UI Support TTShowProperties ()
1;.rov1des the ablllty to expose components that TTSelect ()
isplay test script properties. This facilitates
the use of preexisting user interfaces.
Source Configuration Support TTGetConfiguration()
Supports the ability to provide custom user TTSetConfiguration ()

Test Script Console Adapter APl 113

About the Test Script Console Adapter

Function Group and Purpose

Functions in Group

Custom Action Execution

Provides the ability to perform custom
operations on the test script source.

TTGetSourceActions ()

TTGetNodeActions ()

TTExecuteSourceAction ()

TTExecuteNodeAction ()

Source Control

Provides the ability to support source control
operations in the test script view on the test
scripts within a source.

TTAddToSourceControl ()

TTCheckIn ()

TTCheckOut ()

TTUndoCheckout ()

TTGetSourceControlStatus ()

Execution
Supports execution of the test script.

TTGetTestToolOptions ()

Miscellaneous Infrastructure

Provides infrastructure support

TTGetIsFunctionSupported ()

Required and Optional Functionality

A TSCA must, at a minimum, provide the ability to:

» Connect to a test script source.

» Select a test script.

To enable these actions, you must implement the following functions when building a

basic TSCA:
* TTConnect ()
= TTDisconnect ()

= TTSelect ()

114 Chapter 4

About the Test Script Console Adapter

In addition, to enable users to view test scripts in Test Script View, you must include
the following functions:

* TTGetRoots ()
= TTGetChildren()

Other functions are optional; they enable the user to work with the user interface to
perform additional operations on the test script. The advantages of using these
additional functions are described in Building a TSCA: Workflow and Implementation
Issues on page 120.

Some functions work in pairs. For example, because TestManager calls TTConnect ()
to make the connection to the test script source, it must subsequently call
TTDisconnect () to disconnect from the test script source.

For information about specific declarations, see the following required header file:

...\Rational Test\rtsdk\c\include\testypeapi.h

Mapping of User Actions to TSCA Function Calls

A TestManager end user may want to carry out various actions on the test script
source. Following is a list of common test script operations that the user might
perform. The order in which these operations are listed represents a plausible
sequence in which the user might execute them.

1 Defining or modifying the configuration of a test script source.
Opening the Test Script view.

Setting a filter for test scripts.

Creating a new test script.

Selecting a test script for operations.

Editing test script properties.

Editing test script text.

Performing custom actions on the test script or test script source.

© 0O N o o ~ WD

Integrating with source control.

To aid the user in carrying out these actions, you should build the TSCA to support
the test script view that enables the user to perform these operations.

When the user makes a selection in the GUI to carry out an operation on the test script
source, TestManager typically calls the TSCA function or functions that support the
user’s action.

Test Script Console Adapter APl 115

About the Test Script Console Adapter

To help you understand which functions you need to implement in order to provide
support for specific actions, the following sections explain the mapping between the
user’s actions and the TSCA functions called by TestManager to implement those
actions.

Note: Based on the current state of TestManager (including which test-script-related
operations it has already performed), TestManager may not call some of the functions
listed in the following sequences.

Defining or Modifying the Configuration of a Test Script Source

When the user defines or modifies a configuration for a test script source (for
example, specifying the operating system), TestManager calls the following functions
from the Source Configuration group in the order listed.

Typical Sequence of Function Calls Operation

1 TTGetConfiguration() Exposes user interface elements that collect data
access and data format information from the user
when registering the test script source. The TSCA
passes that information back to TestManager to be
persisted as a property of the test script source.

2 TTSetConfiguration() When a connection is made to the test script
source, TestManager passes the configuration
information obtained from the
TTGetConfiguration () function into this
function.

Opening the Test Script View

When the user opens up the Test Script view, TestManager calls the following
functions from the Connection group in the order listed below.

7

Typical Sequence of Function Calls Operation

1 TTConnect () Establishes a connection to the test script source.

2 TTGetSourceIcon () Returns the path to the bitmap containing the
icon that represents the test script source.

Note that implementation of this function is
optional.

116 Chapter 4

About the Test Script Console Adapter

Setting a Filter for Test Scripts

When the user sets a filter on the test script source, TestManager calls the following
functions, in the order shown below.

Typical Sequence of Function Calls Operation

1 TTGetFilterEx() Exposes user interface elements that collect
filtering specifications from the user registering the
test script source.

2 TTSetFilterEx() When a connection is made to the test script
source, TestManager passes the filtering
specifications obtained from TTGetFilterEx ()
into the TSCA.

3 TTGetRoots () Returns the array of nodes comprising the root
elements of the test script source.

Creating a New Test Script

When the user creates a new test script, TestManager calls the following function
from the Editor Integration group.

Function Call Operation

TTNew () Enables the tester to create a new test script for this
type of test using the hosted tool.

Selecting a Test Script for Operations

Before carrying out any operations on a test script, the user selects the test script from
a list of available test scripts in the Test Script view. To display these test scripts,
TestManager calls the following functions from the Data Access group, typically in
the sequence that follows.

Typical Sequence of Function Calls Operation

1 TTGetSourcelIcon () Returns the path of the bitmap that represents the
test script source.

2 TTGetRoots () Returns the array of nodes comprising the roots of
the test script source.

Test Script Console Adapter APl 117

About the Test Script Console Adapter

Typical Sequence of Function Calls Operation

3 TTGetChildren() Returns an array of nodes that are the children of
the specified node. TestManager calls this function
for each node returned by TTGetRoots ().

4 TTGetTypelcon/() Returns the path of the bitmap that represents the
test script node.

Editing Test Script Properties
When users want to edit the properties of a test script, they must:
1 Select the test script from the Test Script view.

2 Bring up the Test Script Properties dialog box to view and modify the test script
properties.

To enable these actions, TestManager calls the following function, which comes from

the UI Support group.
Function Call Operation
TTShowProperties () Displays the properties of a selected test script.

Editing Test Script Text

When the user selects operations to edit a test script, TestManager calls TTEdit (),
which comes from the Editor Integration group.

Function Call Operation

TTEdit () Displays a test script in the appropriate editor for
modification by the user.

Performing Custom Actions on the Test Script or the Test Script Source

You can implement the TSCA to support custom actions on the test script or on the
test script source. If the TSCA supports these custom actions, TestManager displays
them in a custom menu so that the user can select these actions.

To enable display and execution of custom actions on the test script source,
TestManager calls these functions from the Custom Action Execution group, typically
in the following sequence.

118 Chapter 4

About the Test Script Console Adapter

Typical Sequence of Function Calls Operation

1 TTGetSourceActions () Returns a pointer to an array of actions that can be
applied to the test script source.

2 TTExecuteSourceAction () Executes the specified action against the test script
source.

To enable display and execution of custom actions on a test script, TestManager calls
these functions from the Custom Action Execution group, typically in the following
sequence.

Typical Sequence of Function Calls Operation

1 TTGetNodeActions () Returns a pointer to an array of actions that can be
applied to the test script.

2 TTExecuteNodeAction () Executes the specified action against the test script.

Integrating with Source Control

When the user makes selections in the UI to integrate a test script with source control,
TestManager calls the following functions from the TSCA. These functions come from
the Source Control group. TestManager typically calls

TTGetSourceControlStatus () firstand then calls the other functions in an order
that corresponds to the order of the user’s selections in the Ul

Typical Sequence of Function Calls Operation

1 TTGetSourceControlStatus () Returns the currentsource-control status of the test
script.

2 One of the following:

» TTAddToSourceControl () Adds the appropriate files for the specified test
script to source control.

» TTCheckOut () Checks out the appropriate files for the specified
test script from source control.

= TTCheckIn() Checks in the appropriate files for the specified test
script to source control.

= TTUndoCheckout () Undoes the checkout of the appropriate files for the
specified test script.

Test Script Console Adapter APl 119

Building a Custom Test Script Console Adapter

Building a Custom Test Script Console Adapter

This section describes:

Skills you need to build a custom TSCA.

Implementation issues that arise when you create this adapter.

Prerequisite Skills

To build a custom TSCA using TestManager’s C/C++ API, you need the following
skills:

A working knowledge of the tool used to create test scripts of the given type.
Especially important is a knowledge of how to programmatically access the test
scripts within the test script source.

An ability to build a C or C++ DLL that exposes the functions called by
TestManager.

Familiarity with the TSCA API.

Building a TSCA: Workflow and Implementation Issues

This section discusses the general workflow that you should follow when building a
TSCA and the implementation issues that arise at each phase of this workflow. The
phases are:

Making a connection.
Accessing the data.

Integrating with source control.
Displaying properties.
Filtering.

Custom action support.

Making a Connection

The most critical phase in developing a TSCA is determining how to use the functions
in the Data Access group to access the data (that is, the test scripts stored in a source)
and return this data to TestManager. In most cases, the data is accessed using a
common API or directly by accessing the physical representation of the data. This
physical representation can be a file, a database, or some other source.

120 Chapter 4

Building a Custom Test Script Console Adapter

To work efficiently, the TSCA should maintain an active connection to the test script
source rather than reconnecting each time the user makes a request from TestManager.

Given these considerations, you, the TSCA developer, must determine the answers to
the following connection issues at the beginning, before you create the TSCA. The
decisions you make regarding the connection issues are the most critical decisions you
make in the process of building the TSCA. Once you have determined satisfactory
solutions to the following issues, you are likely to be successful in your development
of the TSCA.

1 How can the TSCA gain access to the test scripts in the source? If an existing API
performs this function, you should probably use it. If an appropriate API does not
exist, is there a way to gain access to the data directly?

2 How can the adapter uniquely identify the test script source? If the test scripts are
stored in the file system, the preferred form of identification is the root path to the
files. The test script source identification that you develop is passed to the
TTConnect () function when TestManager calls it.

3 Is any additional information needed for connecting to the source? If so, you
should specify that information as a connection option when registering the test
script source. The connection options are passed to the
TTGetTestToolOptions () function when TestManager calls it.

4 How can the TSCA uniquely identify a test script? If the tool used to create the test
script has a feature that is analogous to a unique ID, it is optimal to use this feature.

Note: Each test script must have its own unique ID for each test script source,
because that identifier is used to associate test cases with it.

5 Does the test script source require any configuration data in addition to the data
needed for connection? If so, what data is needed? In developing solutions to these
issues, you should implement the functions TTSetConfiguration () and
TTGetConfiguration ().

Accessing the Data

The next phase in building a TSCA is to develop support for the needed functions in
the Data Access group.

Once this support is developed, the user should be able to do the following after a
new test script type has been registered to use the TSCA:

» Register the test script source.

» Use Test Script view to view the test scripts in that source.

Test Script Console Adapter APl 121

Building a Custom Test Script Console Adapter

The issues to resolve in developing support for needed functions in the Data Access
group are as follows:

1

What is the organizational structure for the test scripts that the TSCA accesses? Is
the data organized in a hierarchical structure or in a flat list?

If the test scripts are organized in a flat list, you need the following functions to
return data:

2 TTGetRoots ()
2 TTGetNode ()

If the test scripts are stored hierarchically, you need the following functions to
return data:

2 TTGetRoots ()
2 TTGetNode ()
2 TTGetChildren ()

Are the items contained in the test script source all of the same type? Are they all
valid implementations that can be executed? (Examples of items that cannot be
implemented are verification points and low-level test scripts contained in
Rational Robot® GUI test scripts.) Even if certain items cannot be executed, you
may want to make them visible to TestManager by implementing the following
functions:

» TTGetRoots ()
2 TTGetChildren ()
Is there an easily recognized bitmap that represents the test script source?

Because Windows users are accustomed to recognizing software components by
icons, you should support the function TTGet SourceIcon (). This function
returns the path of the bitmap that represents the test script source.

Are there easily recognized bitmaps that represent the different elements
comprising test scripts in the test script source?

Because Windows users are accustomed to recognizing software components by
icons, you should support the function TTGetTypeIcon (). This function returns
the path of the bitmap that represents the test script node.

122 Chapter 4

Building a Custom Test Script Console Adapter

Integration with Source Control

To support integration with source control, TestManager needs the TSCA to support
the following functions:

= TTCheckIn()

= TTCheckOut ()

» TTAddToSourceControl ()

* TTUndoCheckout ()

» TTGetSourceControlStatus ()

You must decide which files need to be placed under source control.

Displaying Properties

By default, the only test script information displayed by the TestManager user
interface is the test script’s name. If you want to enable the user to view other
associated data about the test script, implement the function TTShowProperties ().
If possible, use the underlying tool’s property sheet if it is appropriate for display and
can be called by the TSCA.

Supporting User Configuration of the Test Script Source

The formats of different test script sources vary as to how the adapter accesses the
information in them. For example, if test scripts are stored in a database, the test
scripts may be stored in different tables for different test script sources.

Therefore, you may want the TSCA to provide a GUI that enables the user to provide
configuration information when registering the test script source. By specifying
configuration data, the user is informing TestManager about how to locate and
identify the desired test scripts in the test script source.

If you decide that you need to provide this configuration ability to the user, you must
decide:

» What kind of configurability the user needs.

» What kind of user interface to provide to the user for specifying the configuration.

Test Script Console Adapter APl 123

Building a Custom Test Script Console Adapter

Thus, when the test script sources are highly variable, write the TSCA to display a
GUI that enables the user to specify the test script storage configuration and
communicate it to TestManager. To enable this functionality, implement the following
functions:

= TTGetConfiguration()

This function prompts the user with a user interface that collects the information
needed to configure the adapter. This function must return that information in a
buffer so that TestManager can persist it with the test script source.

= TTSetConfiguration()

This function enables TestManager to pass the test script source configuration
information that is collected by TTGetConfiguration into the TSCA. The TSCA
needs this information to know how to access the data in the test script source.

In summary, consider the type of test script source when deciding whether to provide
configurability to the user.

Filtering

If a test script source contains an enormous number of test scripts, you should provide
filtering support. Filtering enables the user to use the Test Script view to selectively
view the test scripts in the test script source. If the test script is created in a tool that
supports filtering, take advantage of it.

If you implement the following functions, TestManager can use filtering in the Test
Script view:

= TTSetFilterEx()

= TTGetFilterEx ()

Custom Action Support

TestManager enables a TSCA to expose operations in the Test Script view that the test
designer can use when building test scripts. For example, a test designer working
with a Robot test script as a test script source would probably want to carry out an
operation that opens the Robot application.

You, the adapter writer, can build the adapter so that the user can implement an
operation to open Robot from the GUI. You can also support custom operations for
specific test scripts.

124 Chapter 4

Registering the TSCA DLL with TestManager

To support custom actions against a test script source, implement the following
functions:

* TTGetSourceActions()

* TTExecuteSourceAction()

To support custom actions against a test script, implement the following functions:
* TTGetNodeActions ()

= TTExecuteNodeAction ()

Registering the TSCA DLL with TestManager

If you have created your own TSCA, you must let TestManager know it exists. To
register a DLL:

1 In TestManager click Tools > Manage > Test Script Types. The Console Adapter
Type dialog box appears.

2 Click Use a custom console adapter.
3 Type the path to the DLL in the space provided, labeled Console adapter DLL file.

For more information, see the TestManager online Help.

TSCA Function Reference

This section of the Test Script Console Adapter chapter provides reference
information for all functions in the TSCA API. For each function, the following
information is presented:

» Definition

= Syntax

= Return values

* Comments (if any)

» Example

» See Also (links to related functions)

Note: The following functions are not currently used but are defined in the header file
and reserved for future use.

Test Script Console Adapter APl 125

TTAddToSourceControl()

TTCompile ()
TTGetIsChild ()
TTGetIsParent ()
TTGetIsValidSource ()
TTGetName ()
TTGetParent ()
TTGetType ()
TTGetTypes ()
TTRecord ()

TTAddToSourceControl()

Adds the appropriate files for the specified test script to source control.

Syntax

HRESULT TTAddToSourceControl (const TCHAR
SourceID[TTYPE_MAX_PATH] , const TCHAR NodeID[TTYPE_MAX_ID] ,
long I1WindowContext, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

IwindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

ErrorDescription OUTPUT. An error description that is returned by
the adapter.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.
» TTYPE_CANCEL. The user pressed the Cancel button.

» TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly
identified.

126 Chapter 4

TTAddToSourceControl()

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//***

TESTTYPEAPI API HRESULT TTAddToSourceControl (const TCHAR
SourcelID [TTYPE MAX ID], const TCHAR NodeID|[TTYPE MAX ID], long
lWindowContext, TCHAR ErrorDescription[TTYPE MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE_ SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID_ SOURCEID;

try

/* CODE OMITTED: Retrieve assets associated with NodeID.
Perform add to source control on
assets. */

catch (com error &e)

{

rc = TTYPE ERROR;
CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return eResult;

See Also

TTCheckIn (), TTCheckOut (), TTGetSourceControlStatus(),
TTUndoCheckout ()

Test Script Console Adapter APl 127

TTChecklIn()

TTCheckin()

Checks in the appropriate files for the specified test script to source control.

Syntax

HRESULT TTCheckIn (const TCHAR SourceID[TTYPE MAX PATH], const
TCHAR NodeID, long IWindowContext, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

1windowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_CANCEL. The user pressed the Cancel button.
= TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly

identified.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

[[%k Kk ok ko ok Sk k kK ok ok ok ok ok ok
TESTTYPEAPI API HRESULT TTCheckIn(const TCHAR SourceID[TTYPE MAX ID],

const TCHAR NodeID[TTYPE MAX ID],

long lWindowContext, TCHAR

ErrorDescription [TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc

TTYPE_ SUCCESS;

CConnectionContext *pContext=0;

128 Chapter 4

TTCheckOut()

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

try

/* CODE OMITTED: Retrieve assets associated with NodeID.
Perform source control CheckIn on
assets. */

}

catch (_com error &e)

{

rc = TTYPE ERROR;
CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return rc;

See Also

TTAddToSourceControl (), TTCheckOut (),
TTGetSourceControlStatus (), TTUndoCheckout ()

TTCheckOut()

Checks out, from source control, the appropriate files for the specified test script.

Syntax

HRESULT TTCheckOut (const TCHAR SourceID[TTYPE MAX PATH], const
TCHAR NodeID, long IWindowContext, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

Test Script Console Adapter APl 129

TTCheckOut()

Element Description

IWindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.
» TTYPE_CANCEL. The user pressed the Cancel button.

» TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly
identified.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//***

TESTTYPEAPI API HRESULT TTCheckOut (const TCHAR SourceID[TTYPE_MAX_ID],
const TCHAR NodeID|[TTYPE MAX ID], long lWindowContext, TCHAR
ErrorDescription [TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelD
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

try

/* CODE OMITTED: Retrieve assets associated with NodeID.
Perform source control CheckOut on assets. */

catch (_com error &e)

{

rc = TTYPE ERROR;

130 Chapter 4

TTClearFilter()

CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return rc;

See Also
TTAddToSourceControl (), TTCheckIn(),
TTGetSourceControlStatus (), TTUndoCheckout ()
TTClearFilter()

Clears the filter for the test script source.

Syntax

HRESULT TTClearFilter (const TCHAR SourceID[TTYPE MAX ID], TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The handle that the client uses to identify
the connection to the datastore.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//***

TESTTYPEAPI API HRESULT TTClearFilter (const TCHAR
SourcelD [TTYPE MAX ID], TCHAR ErrorDescription[TTYPE MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TTYPE SUCCESS;

Test Script Console Adapter APl 131

TTConnect()

CConnectionContext *pContext=0;
// lookup the context information for the specified SourcelID
CString sSourcelID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID_ SOURCEID;

/* The following lines are for a file-based filter mechanism.
The filter buffer is first cleared, followed by replacing the

derived list of supported file extensions with *.=* */

// Clear the filter buffer
pContext->m sFilter = "";

pContext->m asFilterFileExtensions.RemoveAll () ;
pContext->m asFilterFileExtensions.Add("*.*");

return rc;

See Also

TTSetFilterEx (), TTGetFilterEx()

TTConnect()

Creates a connection to the script source identifies by the contents of the ConnectInfo
paramater. It returns a handle to the client for subsequent calls to the adapter.

Syntax

HRESULT TTConnect (const char ConnectInfo[TTYPE MAX PATH], const
char UserID[TTYPE MAX ID], ConnectOption *pConnectOptions|[],
int nOptions, char SourceID[TTYPE MAX ID], char
ErrorDescription[TTYPE MAX ERROR])

Element Description

ConnectInfo INPUT. Contains the data path to the test script source.

UserID INPUT. The ID of the user to connect to the datastore.

pConnectOptions INPUT. A pointer to the defined connect options.

nOptions INPUT. An integer that specifies the total number of connection
options.

132 Chapter 4

TTConnect()

Element Description

SourceID ouTPUT. The handle that TestManager uses to identify the
connection to the datastore in subsequent calls to the adapter.

ErrorDescription OUTPUT. An message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
* TTYPE_ SUCCESS. The function completed successfully.

*» TTYPE ERROR UNABLE TO_CONNECT. The connection failed for some unknown
reason.

* TTYPE ERROR INVALID CONNECTINFO.The adapter was unable to use the
connection information.

*» TTYPE ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments
The data type ConnectOption is defined as:

struct ConnectOption

{

char Name [TTYPE MAX NAME] ;

char Value [TTYPE MAX NAME] ;
}ConnectOptionType;
The connection information is specified by an administrative user in the TestManager
New Test Script Source property page and then passed into this function in
ConnectInfo. After the connection has been established, the TSCA assigns a unique
identifier for the test source to SourceID. TestManager uses this identifier for
subsequent calls to the adapter to identify the connection. Be sure to document the
format of this string.

Example

//***
TESTTYPEAPI API HRESULT TTConnect (const char
ConnectInfo [TTYPE MAX PATH], char UserID[TTYPE MAX ID], ConnectOption
*pConnectOptions, int nOptions, char SourceID|[TTYPE MAX ID], char
ErrorDescription [TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

Test Script Console Adapter APl 133

TTConnect()

HRESULT rc = TTYPE SUCCESS;

if (_tcslen(ConnectInfo) == 0)
{
CString sError;
sError.LoadString (IDS _EMPTY PATH) ;
memset (ErrorDescription, T(’\0’), sizeof (ErrorDescription)) ;
__tcsncpy (ErrorDescription, sError, TTYPE MAX ERROR - 1);
rc = TTYPE ERROR;

}

else

{
CFileFind finder;
BOOL bExists = finder.FindFile (ConnectInfo) ;
if (!bExists)

{
CString sError;
AfxFormatStringl (sError, IDS ERROR NOSOURCE, ConnectInfo) ;
memset (ErrorDescription, T(’\0’), sizeof (ErrorDescription) ;
_tcsncpy (ErrorDescription, sError, TTYPE MAX ERROR - 1);
rc = TTYPE ERROR;
return rc;

}

// Need to go through pConnectionOption the identifier names to
// for the edit and new

CString sNewCommand = pConnectOptions[0].Value;

CString sEditCommand = pConnectOptions[1l].Value;

CString sUID = pConnectOptions[2].Value;

// Generate a unique connection id for this connection context
CString sConnectionIdentifier;
GUID newGuid;
CoCreateGuid (&newGuid); // note: this method is Windows-only
sConnectionIdentifier.Format ("$X-%X-$X-$XIXIXIXIXIXIXEX",
newGuid.Datal, newGuid.Data2, newGuid.Data3,
newGuid.Data4 [0] ,newGuid.Data4 [1] ,newGuid.Data4 [2],
newGuid.Data4 [3],
newGuid.Data4 [4] ,newGuid.Data4 [5] ,newGuid.Data4 [6],
newGuid.Data4 [7]) ;

CConnectionContext *pExistingContext = 0;

// Not connected yet.
try

{

CString sUserName, sPassword;
//For this example, assume that connection options include

//the UserName and Password necessary for connecting to the
//datastore.

134 Chapter 4

TTConnect()

// Retreive the UserID and Password.

for (int iIndex = 0; iIndex < nOptions; iIndex++)
{
if (_tcsicmp (pConnectOptions[iIndex] .Name, " UserName")
== 0)

{
}

else

{

sUserName = pConnectOptions[iIndex] .Value;

if (_tcsicmp (pConnectOptions[iIndex] .Name, "Password")

== 0)
{

}

sPassword = pConnectOptions[iIndex] .Value;

}

/* CODE OMITTED: Attempt to establish a connection to test
script data store using the UserName and Password connection
options. In some cases, connecting to a data store may not
require any connection options.*/

// Store the connection context in the connection map.
m_ServerConnections.SetAt (sConnectionIdentifier, pContext);

} // for loop
catch (_com error)

rc = TTYPE ERROR UNABLE TO CONNECT;

_tcscpy (ErrorDescription, (LPCTSTR) “Connection failure -
Bad username and Password”) ;

}
} // else

return rc;

See Also

TTDisconnect ()

Test Script Console Adapter APl 135

TTDisconnect()

TTDisconnect()

Disconnects from an existing script source.

Syntax

HRESULT TTDisconnect (char SourceID[TTYPE MAX ID], char
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The handle that the client uses to identify the connection to
the datastore.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE SUCCESS. The function completed successfully.

* TTYPE ERROR_INVALID_ SOURCEID. The specified source information was not
correct.

* TTYPE ERROR_UNABLE TO_DISCONNECT. There was no existing connection to
disconnect from.

*» TTYPE ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

After TestManager calls TTDisconnect (), no further operations are allowed on this
test script source.

Example

//**

HRESULT TTDisconnect (const CHAR SourcelID[TTYPE MAX ID], CHAR
ErrorDescription[TTYPE MAX ERROR])

{
AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

CConnectionContext *pContext=0;

136 Chapter 4

TTEdit()

// Lookup the context information for the specified SourcelID.

CString sSourcelD

SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

// If the context was found, then continue else indicate SourcelID is

// invalid.

if (pContext)

{

/* CODE OMITTED: Disconnect from test script datastore.
If unable to disconnect, return
TTYPE_ERROR_UNABLE_TO_DISCONNECT.*/

}

else

rc = TTYPE ERROR_INVALID SOURCEID;

return rc;

See Also

TTConnect ()

TTEdit()

Launches the editor for a specific test script.

Syntax

HRESULT TTEdit (const char SourceID[TTYPE MAX ID], const char
ScriptID[TTYPE MAX ID], int LineNumber, ScriptOption
*pScriptOptions([], int *nScriptOptions, char
ErrorDescription[TTYPE MAX ERROR], long IWindowContext)

Element Description

SourceID INPUT. A string that identifies the connection.

ScriptID INPUT. A string that identifies the test script.

LineNumber INPUT. An integer that specifies where the cursor is placed when
the file is opened for editing.

pScriptOptions INPUT. The test script options passed from TTSelect (). Any
changes made to the test script options are passed back and made
available to the test case or suite.

nScriptOptions INPUT. An integer that specifies the number of test script options.

Test Script Console Adapter APl 137

TTEdit()

Element Description

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

lwindowContext INPUT. An integer that specifies the handle for the parent window
(HWND)

Return Values
This function typically returns one of the following values:
* TTYPE_ SUCCESS. The function completed successfully.
* TTYPE ERROR_INVALID_ SOURCEID. The test source was incorrectly identified.

» TTYPE ERROR_INVALID_ID. The adapter could not find a test script with this
identification.

*» TTYPE ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

Script options are settings that can sometimes be important for the test script to
execute properly. The TSCA can specifiy and modify script options that TestManager
saves as part of the test case. The data type ScriptOption is defined as:

struct ScriptOption

{
char Name [TTYPE MAX NAME] ;
char Value [TTYPE MAX NAME] ;
}ScriptOptionType;

Example

[] % %k ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ke ok ok ko ok Kk ok ok K ok ok ko ok ok ok ok ok ok Rk kR Rk Kk ok
HRESULT TTEdit (const CHAR SourceID[TTYPE MAX ID],const CHAR

ScriptID[TTYPE MAX ID], ScriptOption *pScriptOptions[], int
*nScriptOptions, CHAR ErrorDescription[TTYPE MAX ERROR], long
1WindowContext)

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// Lookup the context information for the specified SourcelD.
CString sSourceID = SourcelD;

138 Chapter 4

TTExecuteNodeAction()

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

// If the context was found, continue.
if (pContext)

/* CODE OMITTED: Open the test script identified by the value of
parameter ScriptID. This could be as simple as executing a
command line call to your favorite text editor or a more complex
interaction with a test tool.*/

}

else
rc = TTYPE ERROR_INVALID_ SOURCEID;

return rc;

See Also

TTNew (), TTShowProperties(), TTSelect ()

TTExecuteNodeAction()

Executes the specified action against the specified test script.

Syntax

HRESULT TTExecuteNodeAction (const TCHAR SourceID|[TT MAX PATH],
const TCHAR Node[TT MAX ID], int nActionID, long
IwindowContext, TCHAR ErrorDescription[TT MAX ERROR])

Element Description

SourcelID INPUT. The handle identifying the connection to
the test script source.

Node OUTPUT. The ID that identifies the selected test
script in the test script source.

nActionID INPUT. The ID of the action to be executed.

IwindowContext INPUT. A handle to a window that can be the

parent of a dialog displayed by this function.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Test Script Console Adapter APl 139

TTExecuteSourceAction()

Return Values
This function typically returns one of the following values:
» TT_SUCCESS. The function completed successfully.
» TT_ERROR. The function did not complete successfully.

See Also

TTGetSourceActions (), TTGetNodeActions(),
TTExecuteSourceAction ()

TTExecuteSourceAction()

Executes the specified action against the test script source.

Syntax

HRESULT TTExecuteSourceAction (const TCHAR
SourceID|[TTYPE MAX PATH], int nActionID, long
IwindowContext, TCHAR ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

nActionID INPUT. The ID of the action to be executed.

IwindowContext INPUT. A handle to a window that can be the

parent of a dialog displayed by this method.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

140 Chapter 4

TTExecuteSourceAction()

Comments
The adapter executes the specified action against the test script source.

The following structure supports this function:

#define TTYPE ACTION_ NAME 100

struct Action
char Name [TTYPE ACTION NAME] :
int Action ID;

} ActionType;

Example

//***
TESTTYPEAPI API HRESULT TTExecuteSourceAction (const TCHAR

SourcelD [TTYPE MAX ID], int nActionID, long lWindowContext, TCHAR
ErrorDescription[TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourcelID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

switch (nActionID)
{

case 1:

/* CODE OMITTED: Execute custom action 1. */
break;

case 2:
/* CODE OMITTED: Execute custom action 2. */
break;

default:
rc = TTYPE ERROR;
__tcscpy (ErrorDescription, T(“Unrecognized action
received”)) ;
break;

}

return rc;

Test Script Console Adapter APl 141

TTGetChildren()

See Also

TTGetNodeActions (), TTExecuteNodeAction(),
TTExecuteSourceAction ()

TTGetChildren()

Returns an array of nodes that are the children of the specified node.

Syntax

HRESULT TTGetChildren (const TCHAR SourceID[TTYPE MAX PATH],
const TCHAR NodeID[TTYPE MAX ID], struct Node
*pChildNodes[], long *plNodeCount, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

plChildNodes OUTPUT. An array of populated Node structures,
each of which is a root of the source.

plNodeCount OUTPUT. The number of nodes returned by this
function.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

142 Chapter 4

Comments

TTGetChildren()

The following structure supports this function.

struct ScriptNode

{

|

Example

TCHAR Name[TTYPE_MAX_NAME];
TCHAR NodeID[TTYPE_MAX_ID];
TCHAR Type[TTYPE_MAX_TYPE];
BOOL IsOnlyContainer;

BOOL IsImplementation;

//**
TESTTYPEAPI API HRESULT TTGetChildren (const TCHAR

SourcelID [TTYPE MAX ID], const TCHAR NodeID[TTYPE MAX ID], struct
ScriptNode *pChildNodes[], long* plNodeCount, TCHAR
ErrorDescription[TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourceID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

// In this example, insert a single child node
*pNodeArray = new struct ScriptNodel[l];
*plNodeCount = 1;

*pChildNodes = 0;

(*pNodeArray) [0] .IsImplementation = TRUE;
(*pNodeArray) [0] .IsOnlyContainer = FALSE;

_tcscpy ((*pNodeArray) [0] .Type, T("Node"));

__tcscpy ((*pNodeArray) [0] .Name, sName) ;

__tecscpy ((*pNodeArray) [0] .NodeID, T("C:\\RootFolder\\Node")) ;

return rc;

Test Script Console Adapter APl 143

TTGetConfiguration()

See Also

TTGetNode (), TTGetRoots (), TTGetSourcelcon(), TTGetTypelcon()

TTGetConfiguration()

Returns a pointer to a buffer that contains a persistable configuration for the test script
source.

Syntax

HRESULT TTGetConfiguration (const TCHAR
SourceID[TTYPE MAX PATH], long IWindowContext, TCHAR
**pConfigurationBuffer, int *pnConfigurationBufferLength,
TCHAR ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

IWindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

pConfigurationBuffer OUTPUT. A pointer to the buffer that contains the
streamed configuration.

pnConfigurationBufferLength |OUTPUT. The length of the configuration buffer.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

144 Chapter 4

TTGetConfiguration()

Comments

The adapter returns the buffer configuration as a stream of characters. This data is
interpreted by the adapter only.

It is assumed that the configuration buffer is allocated by the adapter and deleted by
TestManager.

The adapter can display a user interface if necessary.

TestManager is responsible for persisting the data.

Example

//**
TESTTYPEAPI API HRESULT TTGetConfiguration (const TCHAR

SourcelID [TTYPE MAX ID], long lWindowContext, TCHAR
**pConfigurationBuffer, int* pnConfigurationBufferLength, TCHAR
ErrorDescription [TTYPE MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified

// SourcelD

CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_ INVALID SOURCEID;

*pFilterBuffer = new char[MAX PATH];

CWnd ParentWnd;
ParentWnd.FromHandle ((HWND) 1WindowContext) ;

/* You have to create a class (A dialog with an embedded
list control to perform configuration selection is used here) */
CSelectConfigbhialog Dialog (pContext, &ParentWnd) ;

if (Dialog.DoModal () == IDOK)
{
_tcscpy (*pConfigurationBuffer,
Dialog.m sSelectedConfigurationName) ;
*pnConfigurationBufferLength =
Dialog.m sSelectedConfigurationName.GetLength() ;

}

else

{

// Put in blanks to indicate no filter set

Test Script Console Adapter APl 145

TTGetFilterEx()

CString sEmpty;
__tcscpy (*pConfigurationBuffer, sEmpty) ;
*pnConfigurationBufferLength = sEmpty.GetLength() ;

}

return rc;

}

See Also

TTSetConfiguration ()

TTGetFilterEx()

Returns a buffer containing a filter for the test script source.

Syntax

HRESULT TTGetFilterEx(const TCHAR SourceID[TTYPE MAX PATH],
long I1WindowContext, TCHAR *pFilterBuffer, int
*pnFilterBufferLength, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

IwindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

pFilterBuffer OUTPUT. A pointer to the buffer that contains the
streamed filter.

pnFilterBufferLength OUTPUT. The length of the filter buffer.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

146 Chapter 4

TTGetFilterEx()

Comments
The filter contained in the buffer is returned as a stream of characters.
The data is interpreted only by the adapter.
TestManager is responsible for persisting the data.

The adapter can display a user interface if desired.

Example

//**
TESTTYPEAPI API HRESULT TTGetFilterEx (const TCHAR

SourcelID [TTYPE MAX ID], long lWindowContext, TCHAR **pFilterBuffer,
int* pnFilterBufferLength, TCHAR ErrorDescription[TTYPE MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

*pFilterBuffer = new char[MAX PATH];

CWnd ParentWnd;
ParentWnd.FromHandle ((HWND) 1WindowContext) ;

/* You have to create a class (Typically a dialog with an
embedded list control to perform filter selection here) */
CSelectQueryDialog Dialog (pContext, &ParentWnd) ;

if (Dialog.DoModal () == IDOK)
{
_tcscpy (*pFilterBuffer, Dialog.m sSelectedQueryName) ;
*pnFilterBufferLength =
Dialog.m sSelectedQueryName.GetLength () ;

}

else

{
// Put in blanks to indicate no filter set
CString sEmpty;
_tcscpy (*pFilterBuffer, sEmpty) ;
*pnFilterBufferLength = sEmpty.GetLength() ;

Test Script Console Adapter APl 147

TTGetlcon()

return rc;

See Also

TTSetFilterEx ()

TTGetlcon()

Returns the path of the bitmap that represents test scripts in the source.

Syntax

HRESULT TTGetIcon (const char SourceID[TTYPE MAX ID], char
IconPath[TTYPE MAX PATH], char
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. A string that identifies the connection.

IconPath OUTPUT. A string that specifies the path where the image file of the
icon is located. The file must contain a 16 x 16 bitmap image.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

Return Values

This function typically returns one of the following values:

* TTYPE_ SUCCESS. The function completed successfully.

* TTYPE ERROR_INVALID_ SOURCEID. The test script source was incorrectly

identified.

*» TTYPE ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//**

TESTTYPEAPI API HRESULT TTGetIcon(char SourceID|[TTYPE MAX ID], char
IconPath[TTYPE MAX PATH], char ErrorDescription[TTYPE MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

148 Chapter 4

TTGetlsFunctionSupported()

HRESULT rc = TTYPE SUCCESS;

DWORDAwError;
CString sIcon;

char szModuleFileName [MAX PATH+1];
char szModuleFilePath[MAX PATH+1];

char szDir[MAX DIR+1];

char szDrive[MAX DRIVE+1];

// In this sample, the icon is assumed to be in the same location as

// the adapter

dwError=GetModuleFileName ((HMODULE) AfxGetInstanceHandle (),
szModuleFileName, _MAX PATH) ;
_splitpath(szModuleFileName, szDrive, szDir, NULL, NULL);

__tcscpy (szModuleFilePath,
_tcscat (szModuleFilePath,

szDrive) ;
szDir) ;

sIcon.LoadString (IDS ICON_ NAME) ;

_tcscat (szModuleFilePath,

sIcon) ;

_tcscpy (IconPath, szModuleFilePath) ;

return rc;

See Also

TTEdit (), TTNew ()

TTGetlsFunctionSupported()

Indicates whether a specified function is supported by the adapter for an active

connection.

Syntax

HRESULT TTGetIsFunctionSupported (const TCHAR
SourceID[TTYPE MAX PATH], long IFunctionID, BOOL
*pbSupported, TCHAR ErrorDescription[TTYPE MAX ERROR])

Element Description

SourcelID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

1FunctionID INPUT. The constant definition of the function.

Test Script Console Adapter APl 149

TTGetlsFunctionSupported()

Element Description

pbSupported, OUTPUT. A Boolean indicating whether the
specified function is supported.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The adapter supports IFunctionID.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

Following are the values for the parameter 1FunctionID:

TTYPE _FUNCTION TTAddToSourceControl
TTYPE_FUNCTION TTCheckIn
TTYPE_FUNCTION_ TTCheckOut

TTYPE _FUNCTION TTCompile

TTYPE FUNCTION_ TTConnect

TTYPE FUNCTION TTDisconnect

TTYPE _FUNCTION TTEdit
TTYPE_FUNCTION TTExecuteNodeAction
TTYPE FUNCTION TTExecutionSourceAction
TTYPE _FUNCTION TTGetChildren

TTYPE FUNCTION TTGetConfiguration
TTYPE_FUNCTION TTGetFilterEx

TTYPE FUNCTION_ TTGetIcon

TTYPE FUNCTION_ TTGetName
TTYPE_FUNCTION_ TTGetNode

TTYPE FUNCTION TTGetNodeActions
TTYPE FUNCTION_ TTGetRoots

TTYPE FUNCTION TTGetSourceActions
TTYPE FUNCTION TTGetSourceControlStatus
TTYPE_FUNCTION_TTGetSourcelIcon
TTYPE FUNCTION TTGetTestToolOptions
TTYPE_FUNCTION_ TTGetTypelcon

TTYPE FUNCTION_ TTNew

TTYPE_FUNCTION TTRecord

TTYPE FUNCTION TTSelect

TTYPE FUNCTION TTSetConfiguration
TTYPE_FUNCTION TTSetFilterEx

TTYPE FUNCTION TTShowProperties
TTYPE FUNCTION TTUndoCheckOut

150 Chapter 4

TTGetName()

Example

//***
TESTTYPEAPI API HRESULT TTGetIsFunctionSupported(const TCHAR

SourcelID [TTYPE MAX ID], const TCHAR NodeID|[TTYPE MAX ID], long
l1FunctionID, BOOL *pbIsSupported, TCHAR
ErrorDescription[TTYPE MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

/* The following is a sample for a minimal adapter with no source
control support. */

switch (1FunctionID)
{
case TTYPE FUNCTION_ TTConnect:
case TTYPE FUNCTION TTDisconnect:
case TTYPE_FUNCTION TTEdit:
case TTYPE FUNCTION_ TTGetIcon:
case TTYPE FUNCTION TTGetName:
case TTYPE FUNCTION TTNew:
case TTYPE FUNCTION_ TTRecord:
case TTYPE FUNCTION TTSelect:
case TTYPE FUNCTION TTShowProperties:
*pbIsSupported = TRUE;
break;

default:
*pbIsSupported = FALSE;
break;

}

return TTYPE SUCCESS;

TTGetName()

Returns the name of the specified test script.

Syntax

HRESULT TTGetName (const char SourceID[TTYPE MAX ID], const char
ScriptID[TTYPE MAX ID], char ScriptName[TTYPE MAX ID], char
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. A string that identifies the connection.

Test Script Console Adapter APl 151

TTGetName()

Element Description

ScriptID INPUT. A string that identifies the test script.

ScriptName OUTPUT. A string that specifies the name of a test script.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns on of the following values:
» TTYPE SUCCESS. The function completed successfully.

* TTYPE ERROR_INVALID SOURCEID. The test script source was incorrectly
identified.

* TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ExrrorDescription to the tester.

Example

//**

HRESULT TTGetName (const CHAR SourcelID[TTYPE MAX ID], const CHAR
ScriptID [TTYPE MAX ID], CHAR ScriptName [TTYPE MAX NAME], CHAR
ErrorDescription[TTYPE MAX ERROR])

{
AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

CString sScriptName;

/* CODE OMITTED: Obtain name of script and store in variable
sScriptName. */

_tcscpy (ScriptName, sScriptName) ;

return rc;

See Also

TTEdit (), TTProperties()

152 Chapter 4

TTGetNode()

TTGetNode()

Returns information about the node that is identified by the unique ID.

Syntax

HRESULT TTGetNode (const TCHAR SourceID[TTYPE MAX PATH], const
TCHAR NodeID|[TTYPE MAX ID], struct ScriptNode **pNode, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

pNode OUTPUT. A pointer to a populated ScriptNode
structure.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

» TTYPE_SUCCESS. The function completed successfully.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

The following structure supports this function.

struct ScriptNode

{

TCHAR
TCHAR
TCHAR
BOOL
BOOL

Name [TTYPE MAX NAME] ;
NodeID [TTYPE MAX ID];
Type [TTYPE_MAX TYPE] ;
IsOnlyContainer;
IsImplementation;

Test Script Console Adapter APl 153

TTGetNode()

Example

//**

TESTTYPEAPI API HRESULT TTGetNode (const TCHAR SourceID[TTYPE MAX ID],
const TCHAR NodeID|[TTYPE MAX ID], struct ScriptNode** pNode, TCHAR
ErrorDescription [TTYPE MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = S_OK;
*pNode = 0;

CConnectionContext *pContext=0;
// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_ INVALID SOURCEID;

*pNode = new struct ScriptNode;

// This adapter example is assuming that there is not a node

// hierarchy.

_tcsncpy ((*pNode) ->Name, (const char *)NodeID, TTYPE MAX NAME) ;

(*pNode) ->IsOnlyContainer = FALSE;
(*pNode) ->IsImplementation = TRUE;

__tcscpy ((*pNode) ->NodeID, NodelD) ;

// copy the name of node type into the node structure for all
// nodes

_tcscpy ((*pNode) ->Type, pContext->m sType) ;

return rc;

}

See Also

TTGetChildren (), TTGetNodeActions (), TTGetSourceControlStatus(),
TTGetTypeIcon ()

154 Chapter 4

TTGetNodeActions()

TTGetNodeActions()

Returns a pointer to an array of test script actions.

Syntax

HRESULT TTGetNodeActions (const TCHAR SourceID[TT MAX PATH],
const TCHAR Type[TT MAX TYPE], struct Action *pActionsl],
int #*pnActionCount, TCHAR ErrorDescription[TT MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test script source.

Type INPUT. The name of a node type.

pActions OUTPUT. A local array containing action structures

for node Type.

pnActionCount OUTPUT. The number of actions in pActions.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TT_SUCCESS. The function completed successfully.
» TT_ERROR. The function did not complete successfully.

Comments

The Type parameter is empty if no types have been returned.

See Also

TTGetSourceActions (), TTExecuteNodeAction(),
TTExecuteSourceAction ()

Test Script Console Adapter APl 155

TTGetRoots()

TTGetRoots()

Returns the array of nodes comprising the roots of the test script source.

Syntax

HRESULT TTGetRoots (const TCHAR SourceID[TTYPE MAX PATH], struct
Node *pRootNodes[], long *plNodeCount, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

pRootNodes OUTPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

plNodeCount OUTPUT. The number of nodes returned by this
method.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

The following structure supports this function.

struct ScriptNode

{

CHAR Name [TTYPE MAX NAME] ;
TCHAR NodeID [TTYPE MAX ID];
TCHAR Type [TTYPE MAX TYPE] ;
BOOL IsOnlyContainer;

BOOL IsImplementation;

156 Chapter 4

TTGetSourceActions()

Example

//**

TESTTYPEAPI API HRESULT TTGetRoots (const TCHAR SourceID |[TTYPE MAX ID],
struct ScriptNode *pRootNodes[], long* plNodeCount, TCHAR
ErrorDescription [TTYPE MAX ERROR])

{

AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourcelID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

// In this example, insert a single folder as a root node
*pNodeArray = new struct ScriptNodel[l];

*plNodeCount = 1;

*pChildNodes = 0;

*pNodeArray) [0] .IsImplementation = FALSE;
(*pNodeArray) [0] .IsOnlyContainer = TRUE;

__tcscpy ((*pNodeArray) [0] .Type, _T("RootFolder")) ;
__tcscpy ((*pNodeArray) [0] .Name, sName) ;

_tecscpy ((*pNodeArray) [0] .NodeID, T ("C:\\RootFolder\\"));

return rc;

See Also

TTGetChildren (), TTGetNode (), TTGetSourceControlStatus(),
TTGetTypeIcon ()

TTGetSourceActions()

Returns a pointer to an array of actions that can be applied to the test script source.

Syntax
HRESULT TTGetSourceActions (const TCHAR

SourceID[TTYPE MAX PATH], struct Action *pActions[], long
*plActionCount, TCHAR ErrorDescription[TTYPE MAX ERROR])

Test Script Console Adapter APl 157

TTGetSourceActions()

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

pActions OUTPUT. An array of populated Action structures,
each of which defines an action.

plActionCount OUTPUT. The number of actions returned.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments
The adapter returns an array of actions that apply to the test script source.

It is assumed that the action array is allocated by the adapter and deleted by
TestManager.

The following structure supports this function:

#define TTYPE ACTION_ NAME 100

struct Action

{

char Name [TTYPE ACTION NAME] :
int ActionID;
} ActionType;

Example

//***
TESTTYPEAPI API HRESULT TTGetSourceActions (const TCHAR

SourcelD [TTYPE MAX ID], struct TTAction *pActions[], int
*pnActionCount, TCHAR ErrorDescription[TTYPE MAX ERROR])
AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TTYPE SUCCESS;

158 Chapter 4

TTGetSourceControlStatus()

CConnectionContext *pContext=0;
// lookup the context information for the specified SourcelID
CString sSourcelID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

*pActions = new TTAction[2];

_tcscpy ((*pActions) [0] .Name, T(“Custom Action 17));
((*pActions) [0] .ActionID = 1

_tcscpy ((*pActions) [1] .Name, T(“Custom Action 27));
((*pActions) [1] .ActionID = 2

return rc;

See Also

TTExecuteNodeAction (), TTGetNodeActions(),
TTExecuteSourceAction ()

TTGetSourceControlStatus()

Returns the current source-control status of the test script.

Syntax

HRESULT TTGetSourceControlStatus (const TCHAR
SourceID|[TTYPE MAX PATH], const TCHAR NodeID, long
*plStatus, TCHAR ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

Test Script Console Adapter APl 159

TTGetSourceControlStatus()

Element Description

plStatus OUTPUT. The returned source control status of the

specified test script source:

TTYPE_SCSTATUS_NOTCONTROLLED. The
source file is not under source control.

TTYPE_SCSTATUS_CHECKEDOUT. The
source file is checked out.

TTYPE_SCSTATUS_CHECKEDIN. The source
file is checked in.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values

This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.
» TTYPE_CANCEL. The user pressed the Cancel button.

» TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly
identified.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//***
TESTTYPEAPI API HRESULT TTGetSourceControlStatus(const TCHAR
SourcelID [TTYPE MAX ID], const TCHAR NodeID [TTYPE MAX ID], long
*plStatus, TCHAR ErrorDescription[TTYPE MAX ERROR])

{

160 Chapter 4

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

try

{

long 1lResult;

TTGetSourcelcon()

/* CODE OMITTED: Retrieve assets associated with NodeID.
Retrieve source control status on assets and set 1lResult

accordingly. */
*plStatus = lResult;

}

catch (_com error &e)

{

rc = TTYPE ERROR;
CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return rc;

See Also

TTAddToSourceControl (), TTCheckIn (), TTCheckOut(),
TTUndoCheckout ()

TTGetSourcelcon()

Returns the path to the icon that represents the test script source.

Syntax

HRESULT TTGetSourceIcon (const TCHAR SourceID|[TTYPE MAX PATH],

TCHAR IconPath[TTYPE MAX PATH], TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

script source.

IconPath INPUT. The path to the icon that represents the test

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

Test Script Console Adapter APl 161

TTGetTestToolOptions()

» TTYPE_SUCCESS. The function completed successfully.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Example

//***
TESTTYPEAPI API HRESULT TTGetSourcelIcon (const TCHAR
SourceID[TTYPE_MAX_ID], TCHAR IconPath[TTYPE_MAX_PATH], TCHAR
ErrorDescription[TTYPE MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

DWORDAwWError;

CString sIcon;

char szModuleFileName [MAX PATH+1];
char szModuleFilePath[MAX PATH+1];
char szDir[MAX DIR+1];

char szDrive[MAX DRIVE+1];

// In this sample, the icon is assumed to be in the same location
// as the adapter
dwError=GetModuleFileName ((HMODULE) AfxGetInstanceHandle (),
szModuleFileName, _MAX PATH) ;

_splitpath(szModuleFileName, szDrive, szDir, NULL, NULL);

__tcscpy (szModuleFilePath, szDrive);
_tcscat (szModuleFilePath, szDir);

sIcon.LoadString (IDS_SOURCE_ICON) ;
_tcscat (szModuleFilePath, sIcon);

__tcscpy (IconPath, szModuleFilePath) ;

return rc;

See Also

TTGetChildren (), TTGetNode (), TTGetIcon(), TTGetTypeIcon()

TTGetTestToolOptions()

Returns the test tool options associated with the specified test script.

162 Chapter 4

TTGetTestToolOptions()

Syntax

HRESULT TTGetTestToolOptions (const TCHAR
SourceID|[TTYPE MAX PATH], const TCHAR NodeID[TTYPE MAX],
long I1WindowContext, struct ScriptOption #*pOptions[], int
*piCount, TCHAR ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

IWindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

pOptions OUTPUT. An array of adapter-provided test tool
options.

piCount OUTPUT. The number of test tool options.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.
» TTYPE_CANCEL. The user pressed the Cancel button.

= TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

» TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly
identified.

Comments

The adapter returns an array of name-value pairs containing the test tool options for
the specified test script.

Test Script Console Adapter APl 163

TTGetTestToolOptions()

Example

//***
TESTTYPEAPI API HRESULT TTGetTestToolOptions (const TCHAR
SourcelID [TTYPE MAX ID], const TCHAR NodeID|[TTYPE MAX ID], long
1lWindowContext, struct ScriptOption *pOptions[], int* piCount, TCHAR
ErrorDescription [TTYPE MAX ERROR]) ;

AFX MANAGE STATE (AfxGetStaticModuleState())
{

HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_ INVALID SOURCEID;

try

{

long 1lResult;

/* In this example, the username and password are provided as
connection options. They are needed for the test tool as well,
but in a slightly different format. */

CString sUserName;
CString sPassword;
// Retrieve the UserID and Password

for (int iIndex = 0; iIndex < nOptions; iIndex++)
if

(_tcsicmp (pConnectOptions [iIndex] .Name, " UserName")
= 0)

~ |l

sUserName = pConnectOptions[iIndex] .Value;
}
else
if (_tcsicmp (pConnectOptions [iIndex] .Name, "Password")
0

~ |l

sPassword = pConnectOptions[iIndex] .Value;

}

*pOptions = new ScriptOption[2];
*piCount = 2;

_tcscpy ((*pOptions) [0] .Name, T(“USR"));
_tecscpy ((*pOptions) [0] .Value, sUserName) ;

_tcscpy ((*pOptions) [0] .Name, T (“PSWD”)) ;

164 Chapter 4

TTGetTypelcon()

_tcscpy ((*pOptions) [0] .Value, sPassword) ;

}

catch (_com error &e)

{

rc = TTYPE ERROR;
CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return rc;

TTGetTypelcon()

Returns the path to the bitmap that represents the node type.

Syntax

HRESULT TTGetTypelcon (const TCHAR SourceID[TTYPE MAX PATH],
const TCHAR Type[TTYPE MAX TYPE], TCHAR
IconPath[TTYPE MAX PATH], TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

Type INPUT. The type of node for which the icon is
being requested.

IconPath INPUT. The path to the icon that represents the test
script type.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Test Script Console Adapter APl 165

TTGetTypelcon()

Comments

The following structure supports this function.

struct ScriptNode

{
TCHAR Name[TTYPE_MAX_NAME];
TCHAR NodeID|[TTYPE_MAX_ID];
TCHAR Type[TTYPE MAX TYPE];
BOOL IsOnlyContainer;
BOOL IsImplementation;

Vi

Example

//***
TESTTYPEAPI API HRESULT TTGetTypeIcon (const TCHAR

SourcelID [TTYPE MAX ID], const TCHAR Type [TTYPE MAX TYPE], TCHAR
IconPath [TTYPE MAX PATH], TCHAR ErrorDescription[TTYPE_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

DWORDAwError;

CString sIcon;

char szModuleFileName [MAX PATH+1];
char szModuleFilePath[MAX PATH+1];
char szDir[MAX DIR+1];

char szDrive[MAX DRIVE+1];

// In this sample, the icon is assumed to be in the same location
// as the adapter.
dwError=GetModuleFileName ((HMODULE) AfxGetInstanceHandle (),
szModuleFileName, _MAX PATH) ;

_splitpath(szModuleFileName, szDrive, szDir, NULL, NULL);

__tcscpy (szModuleFilePath, szDrive);
_tcscat (szModuleFilePath, szDir);

sIcon.LoadString (IDS_TYPE ICON) ;
_tcscat (szModuleFilePath, sIcon);

_tcscpy (IconPath, szModuleFilePath) ;

return rc;

See Also

TTGetChildren (), TTGetNode (), TTGetRoots ()

166 Chapter 4

TTNew()

TTNew()

Enables the tester to create a new test script using the hosted tool.

Syntax

HRESULT TTNew (const char SourceID|[TTYPE MAX ID], char
ScriptID[TTYPE MAX ID], char Name[TTYPE MAX NAME],
ScriptOption *pScriptOptions[], int* nScriptOptions, char
ErrorDescription[TTYPE MAX ERROR], long IWindowContext)

Element Description

SourceID INPUT. A string that identifies the test source.

ScriptID OUTPUT. A string that identifies the test script.

Name OUTPUT. A string that specifies the name of a test script.

pScriptOptions OUTPUT. Reserved for future use.

nScriptOptions OUTPUT. Reserved for future use.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

lwindowContext INPUT. An integer that specifies the handle for the parent window
(HWND).

Return Values

This function typically returns one of the following values:

» TTYPE_ SUCCESS. The function completed successfully.

* TTYPE ERROR_INVALID SOURCEID. The test script source was incorrectly

identified.

*» TTYPE ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

After the tester creates the new test script, this function passes the ID and test script
name to Test Manager. TestManager then passes this information to the TTEdit ()
and TTShowProperties () functions of this adapter as well as to the Test Script
Execution Adapter (TSEA).

Test Script Console Adapter APl 167

TTSelect()

Example

//**

HRESULT TTNew (const CHAR SourcelID|[TTYPE MAX ID], CHAR ScriptID
[TTYPE_MAX_ ID], CHAR Name |[TTYPE MAX NAME], ScriptOption
pScriptOptions[], int nScriptOptions, CHAR
ErrorDescription[TTYPE MAX ERROR], long lWindowContext)

{ AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;
// Lookup the context information for the specified SourcelID.
CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

// If the context was found, continue.
if (pContext)

/* CODE OMITTED: Create a new Test Script. This could be as
simple as executing a command line call to your favorite text
editor or a more complex interaction with a Test Tool.*/

/* The Name and ID of the new script must be
returned in the variables ScriptID and ScriptName.*/

_tcscpy (ScriptID, (const char *)sScriptID);
_tcscpy (ScriptName, (const char *)sScriptName) ;

}

else
rc = TTYPE ERROR_INVALID_ SOURCEID;

return rc;

See Also

TTEdit (), TTShowProperties ()

TTSelect()

Displays a Ul that allows a user to select a test script and then returns information that
identifies the selected script.

168 Chapter 4

Syntax

TTSelect()

HRESULT TTSelect (const char SourceID|[TTYPE MAX ID], char
ScriptID[TTYPE MAX ID], char ScriptName[TTYPE MAX ID],
ScriptOption *pScriptOptions[], int* nScriptOptions, char
ErrorDescription[TTYPE MAX ERROR], long IWindowContext)

Element Description

SourceID INPUT. A string that identifies the connection.

ScriptID OUTPUT. A string that identifies the test script.

ScriptName OUTPUT. A string that specifies the name of a test script.

pScriptOptions OUTPUT. A structure that specifies options for running the test
script.

nOptionOptions OUTPUT. An integer that specifies the number of test script
options.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

IwindowContext INPUT. An integer that specifies the handle for the parent window
(HWND)

Return Values

This function typically returns one of the following values:

» TTYPE SUCCESS. The function completed successfully.

* TTYPE ERROR_INVALID SOURCEID. The test script source was incorrectly

identified.

* TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments

Use this function to provide a Ul for the user to select a test script. The function
returns the ID and name of the test script to TestManager. These parameters are
passed to the TTEdit () and TTShowProperties () functions and are also passed
to the Test Script Execution Adapter (TSEA).

Test Script Console Adapter APl 169

TTSetConfiguration()

Script options are settings that may be important for the test script to execute
properly. The TSCA can specify and modify script options, which are saved by
TestManager as part of the test case or suite. The data type ScriptOption is defined
as follows:

struct ScriptOption

{

char Name [TTYPE MAX NAME] ;
char Value [TTYPE MAX NAME] ;
}ScriptOptionType;

Example

//**

TESTTYPEAPI API HRESULT TTSelect (const char SourceID|[TTYPEMAX ID],
char ScriptID[TTYPE MAX ID], char ScriptName [TTYPE MAX NAME],
ScriptOption *pScriptOptions[], int *nScriptOptions, char
ErrorDescription[TTYPE MAX ERROR], long lWindowContext)

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
m_ServerConnections.Lookup (SourceID, (void *&)pContext) ;

// 1f the context was found, then continue
if (pContext)

// remove the connection from the list of "live" connections
m_ServerConnections.RemoveKey (SourcelID) ;

// Now delete it
delete pContext;

}

return rc;

See Also

TTEdit (), TTShowProperties()

TTSetConfiguration()

Sets the configuration for the test script source based on the specified configuration
buffer.

170 Chapter 4

TTSetConfiguration()

Syntax

HRESULT TTSetConfiguration (const TCHAR
SourceID|[TTYPE MAX PATH], TCHAR *pConfigurationBuffer, int
nConfigurationBufferLength, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

pConfigurationBuffer INPUT. A pointer to the buffer that contains the
streamed configuration.

nConfigurationBufferLength INPUT. The length of the configuration buffer.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

Comments
The adapter sets the configuration for the test script source.

TestManager passes the data returned by a previous call to the method
TTGetConfiguration () as an input parameter.

Example

//***

TESTTYPEAPI API HRESULT TTSetConfiguration(const TCHAR
SourcelD [TTYPE MAX ID], TCHAR *pConfigurationBuffer, int
nConfigurationBufferLength, TCHAR ErrorDescription[TTYPE MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;

CConnectionContext *pContext=0;

Test Script Console Adapter APl 171

TTSetFilterEx()

See Also

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

// Persist the raw filter buffer for possible future use by
// TTGetConfigurationEx or TTCompile, TTEdit, etc...

pContext->m sConfiguration = pConfigurationBuffer;

/* CODE OMITTED: Handle any configuration application actions
needed by the adapter */

return rc;

TTGetConfiguration ()

TTSetFilterEx()

Sets the filter for the test script source based on the specified filter buffer.

Syntax

HRESULT TTSetFilterEx (const TCHAR SourceID[TTYPE_MAX_PATH] ,
TCHAR #*pFilterBuffer, int nFilterBufferLength, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourceID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

pFilterBuffer INPUT. A pointer to the buffer that contains the
streamed filter.

nFilterBufferLength INPUT. The length of the filter buffer.

ErrorDescription OUTPUT. A message to be displayed to the

TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

172 Chapter 4

Comments

TTSetFilterEx()

TTYPE_SUCCESS. The function completed successfully.

TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

The adapter sets the filter for the test script source.

TestManager passes, as an input parameter, the data returned by a previous call to the
method TTGetFilterEx.

Example

//***
TESTTYPEAPI API HRESULT TTSetFilterEx (const TCHAR

SourcelID [TTYPE MAX ID], TCHAR *pFilterBuffer, int nFilterBufferLength,
TCHAR ErrorDescription[TTYPE MAX ERRORI])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_ INVALID SOURCEID;

/* The remainder of this code is an example of filtering file
based script source. In this sample, the TTGetFilterEx returned
a list of file extensions that were to be hidden from the user.
This example merely parses the filter buffer and

stores the results in the adapter’s connection context.
TTGetRoots and TTGetChildren

would then use this to determine their output. */

// Persist the raw filter buffer for possible future use by
// TTGetFilterEx

pContext->m sFilter = pFilterBuffer;

TCHAR szBuffer([512];

_tcscpy (szBuffer, pFilterBuffer);

char sepsl[] = ";";

char *token;

pContext->m asFilterFileExtensions.RemoveAll () ;

// establish string and get the first token:

Test Script Console Adapter APl 173

TTShowProperties()

token = strtok(szBuffer, seps);

while(token !=

{

NULL)

CString sToken = token;

sToken.TrimLe

£t ();

sToken.TrimRight () ;
pContext->m asFilterFileExtensions.Add (sToken) ;

// Get next token:

token = strtok(
} // end while

return rc;

See Also

TTGetFilterEx ()

TTShowProperties()

NULL, seps);

Displays the properties of a test script.

Syntax

HRESULT TTShowProperties (const char SourceID[TTYPE MAX ID],
const char ScriptID[TTYPE MAX ID], ScriptOption

*pScriptOptions [

], int *nScriptOptions, char

ErrorDescription[TTYPE MAX ERROR], long IWindowContext)

Element Description

SourceID INPUT. A string that identifies the connection.

ScriptID INPUT. A string that identifies the test script.

pScriptOptions INPUT.The test script options passed in from TTSelect (). Any
changes made to the test script options must be passed back and
made available to the test case or suite.

nScriptOptions INPUT. An integer that specifies the number of test script options.

ErrorDescription OUTPUT. A message to be displayed to the TestManager user if
there is an error.

IwindowContext INPUT. An integer that specifies the handle for the parent window
(HWND)

174 Chapter 4

TTShowProperties()

Return Values
This function typically returns one of the following values:
» TTYPE_ SUCCESS. The function completed successfully.
* TTYPE ERROR_ INVALID SOURCEID. The test source was incorrectly identified.

*» TTYPE ERROR_INVALID ID.The adapter could not find a test script with this
identification.

* TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.
Comments

Script options are settings that may be important for the test script to execute
properly. The TSCA can specifiy and modify script options, which are saved by
TestManager as part of the test case or suite. The data type ScriptOption is defined

as follows:
struct ScriptOption
{
char Name [TTYPE MAX NAME] ;
char Value [TTYPE MAX NAME] ;
}ScriptOptionType;
Example

//**

HRESULT TTShowProperties (const CHAR SourcelID[TTYPE MAX ID],const CHAR
ScriptID [TTYPE MAX ID], ScriptOption

*pScriptOptions[], int nScriptOptions, long lWindowContext , char
ErrorDescription [TTYPE MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TTYPE SUCCESS;

CConnectionContext *pContext=0;

// Lookup the context information for the specified SourcelID.
CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

// If the context was found, continue.

if (pContext)

/* CODE OMITTED: Display the test script property sheet.*/

}

Test Script Console Adapter APl 175

TTUndoCheckout()

else
rc = TTYPE ERROR_INVALID_ SOURCEID;

return rc;

}

See Also
TTSelect (), TTEdit ()
TTUndoCheckout()

Undoes the checkout of the appropriate files for the specified test script.

Syntax

HRESULT TTUndoCheckout (const TCHAR SourceID[TTYPE MAX PATH],
const TCHAR NodeID, long lWindowContext, TCHAR
ErrorDescription[TTYPE MAX ERROR])

Element Description

SourcelID INPUT. The adapter-provided handle that
identifies the connection to the test script source.

NodeID INPUT. The unique ID that identifies the selected
test script in the source.

IWindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this method.

ErrorDescription OUTPUT. A message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TTYPE_SUCCESS. The function completed successfully.
» TTYPE_CANCEL. The user pressed the Cancel button.

» TTYPE_ERROR_INVALID_SOURCEID. The test script source was incorrectly
identified.

» TTYPE_ERROR. The adapter is using a customized error message. TestManager
displays the contents of ErrorDescription to the tester.

176 Chapter 4

TTUndoCheckout()

Example

//***
TESTTYPEAPI API HRESULT TTUndoCheckOut (const TCHAR

SourcelID [TTYPE MAX ID], const TCHAR NodeID|[TTYPE MAX ID], long
lWwindowContext, TCHAR ErrorDescription[TTYPE MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TTYPE SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TTYPE ERROR_INVALID SOURCEID;

try

/* CODE OMITTED: Retrieve assets associated with NodeID.
Perform source control UndoCheckOut on assets. */

}

catch (com error &e)

{

rc = TTYPE ERROR;
CString sError = (BSTR) e.Description() ;
tcscpy (ErrorDescription, (LPCTSTR) sError);

return rc;

See Also

TTAddToSourceControl (), TTCheckIn(), TTCheckOut (),
TTGetSourceControlStatus ()

Test Script Console Adapter APl 177

TTUndoCheckout()

178 Chapter 4

Part 2: Adding Custom
Test Input Types

Introduction to the Test
Input Adapter API

This chapter describes the Test Input Adapter (TIA) API and explains how to build a
custom TIA.

This chapter contains the following sections:
= About the Test Input Adapter API

* Building a TIA: Workflow and Implementation Issues

About Test Input Adapters

A Test Input Adapter (TIA) is a C or C++ dynamic-link library (DLL) that integrates
with TestManager to enable additional test input types to be available for planning
test cases. Test cases define what a tester will test, based on this newly defined test
input.

Each test input source is associated with a particular TIA. Without a TIA, the user
would be unable access a test input through the user interface.

TIA Functionality
A TIA must, at a minimum:
= Connect to and disconnect from the test input source.
» Return a list of test inputs to TestManager.

In addition to these basic functions, many TIAs are designed to support more
sophisticated actions. A more robust TIA might support such operations as:

= Filtering test inputs within the Test Input view.

» Displaying the properties of a test input.

» Performing impact analysis (suspicion) based on changes to test inputs.
» Configuring a test input source.

» Executing a custom action against the test input source or the test input.

181

Built-ln and Custom TIAs

Test inputs consist of any data that the test designer identifies as needing validation.
(For more information about built-in test input types, see the Rational TestManager
User’s Guide.)

TestManager comes with three built-in test input types. Built-in TIAs support these
test input types, enabling TestManager to access these test inputs. The built-in test
input types are:

» Requirements in the RequisitePro project
* Elements in a Rose model
* Rows or columns in a Microsoft Excel spreadsheet

If you want TestManager to support a new test input type, you must implement a
custom TIA. That is, you can extend the TestManager functionality to support test
inputs generated by non-Rational tools. You can define and manage as a test input
type any kind of intermediary object needed for testing. Examples are:

* Microsoft Project files
» C++ project files

Each C++ source module associated with a C++ project file can have its own
language restrictions, for example, permitted depth of inheritance. You can create
test cases that determine whether specific source modules adhere to these
restrictions.

Because a TIA must provide connection with the test input source, the following
functions are required for building a basic TIA:

= TIConnectEx()

Note: This function supersedes TIConnect (), which should only be used if
TIConnectEx () is not supported.

» TIDisconnect ()

In addition, the TIA must provide access to the test inputs in the source by
implementing some of the following functions:

= TIGetRoots ()
= TIGetNode ()

= TIGetChildren()

182 Chapter5

About Test Input Adapters

Other functions are optional; they enable the user to work with the user interface to
perform additional operations on the test input. The advantages of using these
additional functions are described in Building a TIA: Workflow and Implementation
Issues on page 189.

Some functions work in pairs. For example, because TIConnectEx () is called to
make the connection to the test input source, TIDisconnect () must subsequently
be called to disconnect from the test input source.

For information about specific declarations, see the required header file:

...\Rational Test\rtsdk\c\include\testinputapi.h

The TIA Function Calls

The TIA applications programming interface (API) consists of 34 functions that are
organized into eight functional groupings.

Functional Groupings of TIA Functions

The Test Input Adapter (TIA) functions are summarized in the following table, which
shows:

» The functional groupings and their purposes.

* The functions within each group.

Notes:

1 TestManager does not currently call the functions preceded by an asterisk (*).

2 The following extended function calls supersede the corresponding nonextended
calls:

2 TIConnectEx ()

2 TISetFilterEx()

Function Group and Purpose Functions in Group
Connection TIConnect ()
Supports connection and disconnection from TTConnectEx ()
the test input source.

TIDisconnect ()

Introduction to the Test Input Adapter APl 183

Function Group and Purpose

Functions in Group

Data Access

Provides access to the source’s test inputs:
= Hierarchical data

= Nonhierarchical data

= Sources with different test input types

* Functions providing icons for source and
test inputs

TIGetRoots ()

TIGetChildren()

TIGetIsNode ()

*TIGetParent ()

*TIGetName ()

*TIGetType ()

*TIGetTypes ()

TIGetTypelIcon ()

TIGetSourcelcon/()

TIGetNeedsValidation ()

State Access

Provides information about test input states.

*TIGetIsParent ()

*TIGetIsChild ()

*TIGetIsNode ()

*TIGetIsModified()

*TIGetIsModifiedSince ()

*TIGetModified ()

TIGetModifiedSince ()

Filtering

Provides support to filter out test inputs that
do not meet user-defined criteria

TISetFilter ()

TISetFilterEx ()

TIGetFilterEx ()

*TISetValidationFilter ()

UI Support

Provides the ability to create custom user
interface components that display the
properties of a test input.

TIShowProperties ()

*TIShowSelectDialog ()

Source Configuration Support

Provides the ability to produce a custom user
interface to aid in configuring the test input
source

TISetConfiguration ()

TIGetConfiguration ()

184 Chapter5

About Test Input Adapters

Function Group and Purpose

Functions in Group

Custom Action Execution

Provides the ability to expose custom
operations from the TestManager Test Input
view

TIExecuteSourceAction ()

TIExecuteNodeAction ()

TIExecuteSourceAction ()

TIGetNodeActions ()

Miscellaneous Infrastructure

Provide infrastructure support

*TIGetIsValidSource ()

TIGetIsFunctionSupported ()

Mapping of User Actions to TIA Function Calls

A TestManager end user may want to carry out various actions on the test input
source. Following is a list of common test input operations that the user might
perform in the Test Input view. The order in which these operations are listed
represents a plausible sequence in which the user might execute them.

1 Defining or modifying the configuration of a test input source.

Opening the Test Input view.

Setting a filter for a test input source.

Displaying properties of a test input.

2
3
4 Selecting a test input from a test input source.
5
6

Performing custom actions (if any) on the test input source

Note: Based on the current state of TestManager (including which test-input-related
operations it has already performed), TestManager may not call some of the functions

listed in the following sequences.

Introduction to the Test Input Adapter APl 185

Defining or Modifying the Configuration of a Test Input Source

When the user defines or modifies the configuration of a test input source,
TestManager calls the following two functions from the Source Configuration group
in the order listed below.

Typical Sequence of Function Calls Operation

1 TIGetConfiguration() Exposes user interface elements that collect data
access and data format information from the user
when registering the test input source. The TIA
passes that information back to TestManager to be
persisted as a property of the test input source.

2 TISetConfiguration() When a connection is made to the test input source,
TestManager passes the configuration data

obtained from the TIGetConfiguration ()
function into this function.

Note: Test inputs from different sources demonstrate great variability in:
* Data access
» Data format

For example, test inputs from a RequisitePro project are relatively stable. TestManager
treats all requirements in a RequisitePro test input source as potential test inputs.
Therefore, you do not need to write a custom TIA to collect any additional user input.

On the other hand, test inputs from an Excel-based input source tend to be highly
variable regarding the test input location (column or row) and the data format,
making it undesirable to build a specialized adapter for each possible condition.

Opening the Test Input View

When the user opens up the Test Input view, TestManager calls the following
functions from the Connection group in the order listed below.

Note: TIConnectEx () supersedes TIConnect ().

186 Chapter5

About Test Input Adapters

Typical Sequence of Function Calls Operation

1 TIConnectEx() Establishes a connection to the test input source.

2 TIGetSourceIcon () Returns the path to the bitmap containing the icon
that represents the test input source in Test Input
view.

Note that implementation of this function is
optional.

Setting a Filter for a Test Input Source

When the user sets a filter on the test input source, TestManager calls the following
functions from the Filtering group in the order listed below.

Typical Sequence of Function Calls Operation

1 TIGetFilterEx() Exposes user interface elements that collect
filtering specifications from the user. The TIA
passes those filtering specifications back to
TestManager to be persisted with the Test Input
view or test coverage reports.

2 TISetFilterEx() When a connection is made to the test input source,
TestManager passes into the TIA the filtering
specifications obtained from TIGetFilterEx ().

Selecting a Test Input from a Test Input Source

Many operations, including associating a test case to a test input, require that the user
select a test input from a test input source. To display the contents of a test input
source, TestManager calls these functions from the Data Access group, typically in the
following sequence:

Typical Sequence of Function Calls Operation

1 TIGetSourceIcon/() Returns the path to the bitmap that represents the
test input source.

2 TIGetRoots () Returns the array of nodes comprising the roots of
the test input source.

Introduction to the Test Input Adapter APl 187

Typical Sequence of Function Calls Operation

3 TIGetChildren() Returns an array of nodes that are the children of
the specified node. TestManager calls this function
once for each test input returned by the function
TIGetRoots ().

4 TIGetTypeIcon() Returns the path to the bitmap that represents the
test input type for each test input added to the
view.

Displaying Properties of a Test Input

When the user makes a Ul selection to view the properties of a test input,
TestManager calls the following function, which comes from the UI Support group.

Function Call Operation

TIShowProperties () Displays the properties of a selected test input.

Performing Custom Actions on the Test Input Source

You can implement the TIA to support custom actions on the test input source. If the
TIA supports these custom actions, TestManager displays them in a custom menu so
that the user can select them. To enable display and execution of custom actions on the
test input source, TestManager calls these functions from the Custom Action
Execution group, typically in the following sequence:

Typical Sequence of Function Calls Operation

1 TIGetSourceActions () Returns a pointer to an array of actions that can be
applied to the test input source.

2 TIExecuteSourceAction/() Executes the specified action on the test input
source.

188 Chapter5

Building a Custom Test Input Adapter

Performing Custom Actions on a Test Input Node

You can implement the TIA to support custom actions on a test input node. If the TIA
supports these custom actions, TestManager displays them in a custom menu so that
the user can select them. To enable display and execution of custom actions on the test
input node, TestManager calls these functions from the Custom Action Execution
group, typically in the following sequence:

Typical Sequence of Function Calls Operation

1 TIGetNodeActions () Returns a pointer to an array of actions that can be
applied to a node of a particular type.

2 TIExecuteNodeAction () Executes the specified action on the specified node.

Building a Custom Test Input Adapter

This section first describes the skills you need to build a custom TIA and then
describes the implementation issues that arise when you create this adapter.
Prerequisite Skills

To build a custom TIA using the TestManager C/C++ API, you need the following
skills:

» A working knowledge of the tool or format used to persist test inputs of that type.
This knowledge must include details of how to programmatically access the data
within the test input source.

* An ability to build a C or C++ DLL that exposes the functions called by
TestManager.

» Familiarity with the TIA APIL

Building a TIA: Workflow and Implementation Issues

This section discusses the general workflow that you should follow when building a
TIA and the implementation issues that arise at each phase of this workflow. The
phases are as:

» Making a connection.
» Accessing the data.
» Supporting impact analysis.

» Displaying properties.

Introduction to the Test Input Adapter APl 189

» Supporting user configuration of the Test Input source.
» Filtering.

» Custom action support.

Making a Connection

The most critical phase in developing a TIA is determining how to use the functions in
the Data Access group to access the data (that is, the test inputs stored in a source) and
return this data to TestManager. In most cases, the data is accessed using a common
API or directly by accessing the physical representation of the data. This physical
representation can be file, a database, or some other source.

It is most efficient if the TIA maintains an active connection to the test input source
rather than reconnecting each time the user makes a request from TestManager. It is
possible that some test input sources do not require a connection to access the test
inputs contained within it.

Given these considerations, you, the TIA developer, must determine the answers to
the following connection issues at the beginning, before you create the TIA. The
decisions you make regarding the connection issues are the most critical decisions you
make in the process of building the TIA. Once you have determined satisfactory
solutions to the following issues, you are likely to be successful in your development
of the TIA.

1 How can the TIA gain access to the test input data in the source? If an existing API
performs this function, use it. If an appropriate API does not exist, is there a way to
gain access to the data directly? Alternatively, is there a consistent way to export
the data to CSV or some other common format for which an adapter exists or can
be written?

2 How can the adapter uniquely identify the test input source? If the test inputs are
stored in a file, the preferred form of identification is the path to the file. If the test
inputs are not stored in a file, you must create a logical name. The test input source
identification that you develop is passed to the TIConnectEx () function when
TestManager calls it.

3 Is any additional information needed for connecting to the source? If not, the
TIConnect () function is probably adequate. If, however, additional data is
needed, the user can specify it as connection options when registering the test
input source. These connection options are passed to TIConnectEx () .

190 Chapter5

Building a Custom Test Input Adapter

4 How can the TIA uniquely identify a test input? If the tool used to create the test
input supports the concept of a unique ID for each test input, it is optimal to use it.
If not, the adapter needs to derive a unique identifier. Each test input needs its own
unique ID per source, which is used as a key for association with a test case.

5 Does the test input source require any configuration data in addition to the data
needed for connection? If so, what data is needed? The major decision you face
here is which data to hard code into the TIA itself and which data to have the user
specify.

For example, if you are building a general TIA to support general database access
of test inputs, you can do one of the following:

2 Write a table-specific TIA in which you hard code the table and column names
into the TIA itself.

2 Write a more general TIA that has functionality enabling users to specify the
table and column names each time they register a new test input source.

The first option, while requiring less initial work on your part, is not reusable
when the test input configuration changes — for example, a new table is used to
store the test input data. In this case, you would have to write a new TIA for the
new table.

The second option, in which you write the TIA so that the user can specify the
table and column names, is more flexible and reusable. To enable the user to
specify this information, you must implement the functions
TISetConfiguration () and TIGetConfiguration().
TIGetConfiguration () must provide a Ul to collect the configuration
information.

Accessing the Data

The next phase in building a TIA is to develop support for the functions in the Data
Access group.

Once this support is developed, the TIA should be ready for partial use by
TestManager. If a new test input type has been registered to use the TIA, the user
should be able to:

» Register and, if necessary, configure a test input source.
» Use the Test Input view to view the test inputs in that source.

» Associate a test case with any of the test inputs from that source.

Introduction to the Test Input Adapter APl 191

The issues to resolve in developing support for functions in the Data Access group
are:

1 What is the organizational structure for the test input data that the TIA will access?
Is the data organized in a hierarchical structure or in a flat list?

If the test input data is organized in a flat list, you need the following functions to
return data:

@ TIGetRoots ()
2 TIGetNode ()

If the test input data is organized hierarchically, you need the following functions
to return data:

2 TIGetRoots ()
2 TIGetNode ()
2 TIGetChildren()

2 Are the items contained in the test input source all of the same type, or does the
source support multiple types? A Rose model is an example of a test input source
that contains many different types of test inputs.

3 Is there an easily recognized bitmap or icon that represents the test input source?

Because Windows users are accustomed to recognizing software components by
icons, you should support the function TIGet SourceIcon (). This function
returns the path of the bitmap that represents the test input source.

4 Are there easily recognized bitmaps or icons that represent the different elements
that comprise test inputs in the test input source?

Because Windows users are accustomed to recognizing software components by
icons, you should support the function TIGetTypeIcon (). This function returns
the path of the bitmap that represents the node type.

Supporting Impact Analysis

A key TestManager feature is its ability to support impact analysis based on changes
to test inputs. For this feature to work, you must implement the function
TIGetModifiedSince (), whichreturns a list of test inputs that have been modified
since a specified date and time. To determine which test inputs have changed, the TIA
needs to access a test input source containing a last-modified date/time for each test
input. Without such a source, it is unlikely that you can create a TIA that supports
impact analysis.

192 Chapter5

Building a Custom Test Input Adapter

Displaying Properties

By default, the only test input information displayed by the TestManager user
interface is the input name. To enable the user to view other associated data about the
test input from the TestManager user interface, you should implement the function
TIShowProperties (). Try to use the underlying tool’s property sheet if it is
appropriate for display and can be called by the TIA.

Supporting User Configuration of Test Input Data

In designing a TIA, you need to decide whether to implement the TIA in a way that
enables the test designer to specify how the adapter should interpret the test input
data. If the test designer can specify data interpretation, you must determine the kind
of user interface to provide for specifying the configuration.

You may want to support user configuration of test input data because test inputs
from different sources vary in data access, data format, and data stability.

For example, test inputs from a RequisitePro project are relatively stable. The built-in
Test Input Adapter is hard coded to understand the configuration of RequisitePro
projects. Therefore, the test designer does not need to specify a configuration to the
adapter.

In contrast, a test input type can be highly variable. For example, the data
configuration in a Microsoft Excel spreadsheet is variable, and therefore the TIA does
not intrinsically understand this data configuration, such as whether the data is
arranged horizontally or vertically. Given the variable nature of test inputs, you
cannot build a specialized adapter for each possible condition.

To enable user configuration of test input data, you should implement the following
functions:

» TIGetConfiguration()

This function prompts the user with a user interface that collects the information
needed to configure the adapter. This function must return that information in a
buffer so that TestManager can persist it with the test input source.

= TISetConfiguration()

This function enables TestManager to pass into the TIA the test input source
configuration information found in the buffer. (The content of this buffer is the
same as the configuration information collected from the user.) The TIA needs this
information to know how to access the data in the test input source.

In summary, consider the variability in format of the test input source when deciding
whether to provide configurability to the user.

Introduction to the Test Input Adapter APl 193

Filtering

A test input source can contain an enormous number of test inputs. For example, a
RequisitePro project can have 10,000 or more requirements, each of which is a possible
test input. In cases like this, you must provide filtering support so that only test inputs
meeting certain criteria are displayed to the user in Test Input view or in test case
distribution reports. If the test input is created in a tool that supports filtering, you
should take advantage of it.

If you implement the functions TISetFilterEx () and TIGetFilterEx(),
TestManager can set and get a filter.

Custom Action Support

TestManager enables you to expose operations in the GUI that are useful for the test
designer when working with test inputs. For example, a test designer working with a
Requisite Pro project as a test input source would probably want to carry out an
operation that opens the Requisite Pro project.

You, the adapter writer, can build the adapter so that the test designer can execute an
operation to open Requisite Pro from the GUI You can also support custom
operations for specific test inputs.

To support custom actions against the Test Input source, implement the following
functions:

= TIGetSourceActions()

» TIExecuteSourceAction ()

To support custom actions against a test input, implement the following functions:
= TIGetNodeActions ()

= TIExecuteNodeAction ()

194 Chapter 5

Building a Custom Test Input Adapter

Registering a New Test Input Adapter

After you have implemented the Test Input Adapter and created the DLL file, do the
following:

» Compile the DLL using the cdec1* calling convention.
» Use the following procedure to register the DLL with TestManager.
To register the DLL with TestManager:

1 From TestManager click Tools > Manage > Test Input Types.

N

Click New in the Manage Test Inputs dialog box. (If the button is disabled, you do
not have write privileges. See the Using the Rational Administrator manual or Help.)

Enter the path to the DLL in the space provided for the adapter.
Click the Sources tab.
Click Insert.

If a message appears asking if the type should be created, click Yes.

N o g A~ W

In the New Test Input Source dialog box, enter a name of the source (40 characters
maximum).

8 Enter a description.
9 Select an owner from the list.

10 In the Connect Information field, enter the connection information required for this
test input source.

11 Click OK.

You can also edit, rename, copy, and delete a test input source from the Manage Test
Input Types dialog box.

For detailed information about managing extensible test inputs, see the TestManager
online Help.

Introduction to the Test Input Adapter APl 195

196 Chapter5

Test Input Adapter

Reference

This chapter provides reference material for the test inputs applications programming
interface (API), including examples that use code from the RequisitePro adapter. For
information about specific declarations, see the following header file:

...Rational Test\rtsdk\c\include\testinputapi.h

Summary of TIA Functions

The Test Inputs Adapter (TIA) functions are summarized in the following table.

Note:

» TestManager does not currently call the functions preceded by an asterisk (*).

» The following extended function calls supersede the corresponding nonextended

calls:
2 TIConnectEx()

a TISetFilterEx ()

Function Definition

TIConnect () Connects to the test input source.

TIConnectEx () Connects to the test input source and
supports additional parameters for
connection options.

TIDisconnect () Disconnects from the test input source.

TIExecuteNodeAction ()

Executes the specified action against the
specified test input node.

TIExecuteSourceAction ()

Executes the specified action against the test
input source.

TIGetChildren ()

Fills an array with the children of a specified
parent node.

197

Summary of TIA Functions

Function Definition

TIGetConfiguration () Returns a pointer to a buffer that contains a
configuration for the test input source.

TIGetFilterEx () Returns a pointer to a filter for the test input

source.

TIGetIsFunctionSupported ()

Indicates whether a specific function is
supported by the adapter for an active
connection.

TIGetModifiedSince ()

Fills an array with input elements modified
since a specified date.

TIGetNeedsValidation ()

Determines whether an input element
requires validation.

TIGetNode () Returns information about the specified
node.

TIGetNodeActions Returns a pointer to an array of test input
actions.

TIGetRoots () Fills an array with root elements extracted

from the input source.

TIGetSourceActions ()

Returns a pointer to an array of actions that
can be applied to the test input source.

TIGetSourcelcon ()

Points to the location of the 16 x 16 bitmap
containing the icon that represents the input
source in Test Input view.

TIGetTypelcon ()

Points to the location of the bitmap file of the
icon that identifies nodes of a specified type.

TISetConfiguration ()

Sets the configuration for the test input

source based on the specified configuration
buffer.

TISetFilter ()

Filters display of test input elements.

TISetFilterEx()

Sets the filter for the test input source based
on the specified filter buffer.

TIShowProperties () Displays the property page or dialog box of
an input element.

*TIGetIsChild () Not currently supported.

*TIGetIsModified () Not currently supported.

198 Chapter 6

Using the Type Node Structure

Function Definition

*TIGetIsModifiedSince () Determines whether an input element has
been modified since a specified date.

*TIGetIsNode () Determines whether a specified input
element exists.

*TIGetIsParent () Determines whether an input element is a
parent node.

*TIGetIsValidSource () Determines whether a specified input source
exists.

*TIGetModified () Fills an array of structures with input
elements that have been modified since the
last call to TIGetModified ().

*TIGetName () Extracts the user-readable name of an input
element.

*TIGetParent () Finds the parent node of an input element.

*TIGetType () Extracts the name of the type of an input
element.

*TIGetTypes () Fills an array with an identifier for each type
of input element.

*TISetValidationFilter () Filters operations according to validation
status.

*TIShowSelectDialog () Displays the selection dialog for choosing
elements from the input source.

Using the Type Node Structure

Many of the functions in this API make use of parameters of type Node, which is

defined as:

struct Node

{
char Name [TI_ MAX NAME] ;
char NodeID[TI MAX ID];
char Type[TI _MAX TYPE];
BOOL IsOnlyContainer;
BOOL NeedsValidation;

} NodeType;

Name is the name of the input element displayed in the test input view.

NodeID is the unique identifier for this input element, assigned by the adapter.

Test Input Adapter Reference

199

Note on Memory Allocation

Type is used for associating this input element with a type (for test inputs that
subdivide into types).

If IsOnlyContainer is set to TRUE, the input element contains other test input
elements and cannot have test cases associated with it.

If NeedsValidation is set to TRUE, the input element needs to be tested.

Note on Memory Allocation

The TIA that you develop is responsible for allocating memory for functions that use
pointer-to-pointer parameters, for example TIGetRoots (). TestManager is
responsible for deallocating the memory.

TiConnect()

Connects to the test input source.

Syntax

HRESULT TIConnect (const TCHAR ConnectInfo[TI MAX PATH], const
TCHAR UserID[TI MAX ID], TCHAR SourceID[TI MAX ID], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

ConnectInfo INPUT. A string that specifies the location of the test input source,
often defined as a path.

UserID INPUT. A string that identifies the current tester.

SourceID OUTPUT. A string that identifies the input source. The ID is used in
subsequent calls to the adapter.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

200 Chapter 6

TIConnect()

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.

* TI ERROR UNABLE TO_CONNECT. No connection with the input source was
possible.

*» TI ERROR_INVALID CONNECTINFO.The adapter was unable to use the
connection information.

Comments
This call has been superseded by TIConnectEx ().

After the connection to an input source has been established, the TIA assigns a unique
identifier SourceID, which can be any string of characters. TestManager uses this
identifier for subsequent calls to the adapter. Be sure to document the format of this

string. This is particularly important when there are multiple, simultaneous
connections.

Example

//**
HRESULT TIConnect (const TCHAR ConnectInfo[TI MAX PATH], const TCHAR
UserID[TI _MAX ID], TCHAR SourceID[TI MAX ID], TCHAR
ErrorDescription[TI_MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

// Look in the connection map to determine whether a connection with
// the specified RQS file is already established.
CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

// If there is no active connection for the specified RegPro
// Project, attempt to connect.
if (!pContext)
{
CFileStatus FileStatus;
// Determine whether a RegPro RQS project file exists.
if (CFile::GetStatus (ConnectInfo, FileStatus) == TRUE)

{

try

{

/* CODE OMITTED: Establish a connection to the RegPro
project using the RegPro COM Server.*/

Test Input Adapter Reference 201

TIConnect()

// I1If the connection was successful, add the new connection

// context to the connection map.
m_ProjectConnections.SetAt (ConnectInfo, pContext) ;

// Use the ConnectionInfo as the SourcelID.
__tcscpy (SourceID, ConnectInfo);

catch (_com error &e)

{

// If RegPro COM Server throws an exception, return the
// error using a built in error processing routine.
PopulateErrorDescription (IDS ERROR UNABLE TO_ CONNECT,
e.WCode (), e.ErrorMessage (), ErrorDescription);

}

else

// The RQS file does not exist, return the appropriate error
// code.
rc = TI_ERROR_INVALID CONNECTINFO;

}
!
// The connection already exists.
else

{

__tcscpy (SourceID, ConnectInfo);

return rc;

See Also

TIConnectEx (), TIDisconnect ()

202 Chapter 6

TIConnectEx()

TIConnectEx()

Creates a connection to a test input source. This method supersedes TIConnect ();it
supports additional parameters for connection options.

Syntax

HRESULT TIConnectEx (const TCHAR ConnectInfo[TI MAX PATH], const
TCHAR UserID[TI_MAX ID], const TIConnectOption
*pConnectOptions, int nOptions, TCHAR SourceID[TI MAX ID],
TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

ConnectInfo INPUT. A string that specifies the location of test inputs, often
defined as a path.

UserID INPUT. A string that identifies the A string that identifies the
current tester.

pConnectOption INPUT. An array of test input source connection options that the
user defined using TestManager.

nOptions INPUT. The number of connection options.

SourceID OUTPUT. A string that identifies the input source. The ID is used in
subsequent calls to the adapter.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values

This function typically returns one of the following values:

» TI_SUCCESS. The function completed successfully.

* TI ERROR UNABLE TO_CONNECT. No connection with the input source was

possible.

*» TI ERROR_INVALID CONNECTINFO.The adapter was unable to use the
connection information.

Test Input Adapter Reference 203

TIConnectEx()

Comments

The TIA calls this function before calling any other function. After the connection to
an input source has been established, the TIA assigns a unique identifier SourceID,
which can be any string of characters. TestManager uses this identifier for subsequent
calls to the adapter. SourceID must remain valid until TIDisconnect () is called.

Example

//**
HRESULT TIConnectEx (const char ConnectInfo[TI MAX PATH], const char
UserID[TI _MAX ID], const struct TIConnectOption *pConnectOptions, int
nOptions, char SourceID[TI _MAX ID], char
ErrorDescription[TI_MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

// Look in the connection map to determine whether a connection
// with the specified RQS file is already established.
CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

// If there is no active connection for the specified RegPro
// Project, attempt to connect.
if (!pContext)

CFileStatus FileStatus;
// Determine whether a RegPro RQS project file exists.
if (CFile: :GetStatus (ConnectInfo, FileStatus) == TRUE)

{

try

{
// If RegPro used connection options, which it does not
for (int i=0; i<nOptionCount; i++)

// Then process the connection options
/* CODE OMITTED: Establish a connection to the RegPro
project using the RegPro COM Server.*/
// I1If the connection was successful, add the new connection
// context to the connection map.

m_ProjectConnections.SetAt (ConnectInfo, pContext) ;

// Use the ConnectionInfo as the SourcelD.
__tcscpy (SourceID, ConnectInfo);

catch (_com error &e)

{

204 Chapter 6

TIDisconnect()

// If RegPro COM Server throws an exception, return the
// error using a built in error processing routine.
PopulateErrorDescription (IDS ERROR UNABLE TO CONNECT,
e.WCode (), e.ErrorMessage (), ErrorDescription);

}
}
else

{

// The RQS file does not exist, return the appropriate error
// code.
rc = TI_ERROR_INVALID CONNECTINFO;

}

// The connection already exists.
else

{

__tcscpy (SourceID, ConnectInfo);

return rc;

See Also

TIConnect (), TIDisconnect ()

TIDisconnect()

Disconnects from the test input source.

Syntax

HRESULT TIDisconnect (const TCHAR SourceID[TI_ MAX ID], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Test Input Adapter Reference 205

TIDisconnect()

Return Values

This function typically returns one of the following values:

TI_SUCCESS. The function completed successfully.

TI_ERROR INVALID SOURCEID. The specified source information was not
correct.

TI_ERROR UNABLE TO DISCONNECT. There was no existing connection to
disconnect from.

Comments

After TestManager calls TIDisconnect (), no further calls to this input source are
allowed without another call to TIConnect () or TIConnectEx ().

Example

//**

HRESULT TIDisconnect (const TCHAR SourceID[TI MAX ID], TCHAR
ErrorDescription[TI_MAX ERROR])

{

See Also

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

// Look in the connection map to determine whether a connection with
// the specified RQS file is already established. Note that the

// RegPro adapter also uses the path of the RQS file as the

// SourcelID.

CConnectionContext *pContext=0;
m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

// If the context was found, then continue.
if (pContext)

/* CODE OMITTED: Close connection to the RegPro Project by using
the RegPro COM Server.x/

// Remove the connection from the list of active connections.
m_ProjectConnections.RemoveKey (SourceID) ;

return rc;

TIConnect (), TIConnectEx ()

206 Chapter 6

TIExecuteNodeAction()

TIExecuteNodeAction()

Executes the specified action against the specified test input node.

Syntax

HRESULT TIExecuteNodeAction (const TCHAR SourceID[TI_MAX PATH],
const TCHAR Node[TI MAX ID], int nActionID, long
IwindowContext, TCHAR ErrorDescription[TI MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

Node OUTPUT.
nActionID INPUT. The ID of the action to be executed.
IwindowContext INPUT. A handle to a window that can be the

parent of a dialog displayed by this function.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.

Example

//**

HRESULT TIExecuteNodeAction (const TCHAR SourceID[TI MAX ID], const
TCHAR Node [TI_MAX ID], int nActionID, long lWindowContext, TCHAR
ErrorDescription[TI_MAX ERROR])

AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID

Test Input Adapter Reference 207

TIExecuteSourceAction()

CString sSourcelID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

switch (nActionID)

{

case O:
/* CODE OMITED: Execute custom action 1. */

break;

case 1:
/* CODE OMITED: Execute custom action 2. */

break;

default:
rc = TI_ERROR;
_tcscpy (*ErrorDescription,
_T(“Unrecognized action received”)) ;
break;

}

return rc;

See Also

TIGetSourceActions (), TIGetNodeActions(),
TIExecuteSourceAction ()

TIExecuteSourceAction()

Executes the specified action against the test input source.

Syntax

HRESULT TIExecuteSourceAction (const TCHAR
SourceID|[TI MAX PATH], int nActionID, long lWindowContext,
TCHAR ErrorDescription[TI_MAX ERROR])

208 Chapter 6

TIExecuteSourceAction()

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

nActionID INPUT. The ID of the action to be executed

IwindowContext INPUT. A handle to a window that can be the

parent of a dialog displayed by this function.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.

Example

//**
HRESULT TIExecuteSourceAction (const TCHAR SourceID[TI MAX ID], int
nActionID, long lWindowContext, TCHAR ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

switch (nActionID)
{
case O:
/* CODE OMITED: Execute custom action 1. */
break;
case 1:
/* CODE OMITED: Execute custom action 2. */
break;

Test Input Adapter Reference 209

TIGetChildren()

default:
rc = TI_ERROR;
_tcscpy (*ErrorDescription,
_T(“Unrecognized action received”)) ;
break;

}

return rc;

See Also

TIGetSourceActions (), TIGetNodeActions (), TIExecuteNodeAction ()

TIGetChildren()

Fills an array with the children of a specified parent node.

Syntax

HRESULT TIGetChildren (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID[TI MAX ID], struct Node *pChildNodes[], long
*plNodeCount, TCHAR ErrorDescription[TI MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies a parent node.

pChildNodes OUTPUT. A pointer to a structure containing the child elements of
parent NodeID.

plNodeCount OUTPUT. A pointer to the number of child elements in
pChildNodes.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

For the definition of type Node, see “Using the Type Node Structure.”

Return Values

This function typically returns TI_SUCCESS when the function completes
successfully and returns TI_ERROR_INVALID SOURCEID if the input source was
incorrectly identified.

210 Chapter 6

TIGetChildren()

Comments

This function fills pChildNodes with child elements of a parent node specified by
NodeID. If the parent has no children, pChildNodes is empty.

You assign the total number of elements written to pChildNodes to plNodeCount.

Example

//**

HRESULT TIGetChildren (const TCHAR SourceID[TI MAX ID], const TCHAR
NodeID[TI MAX ID], struct Node *pChildNodes[], long* plNodeCount,
TCHAR ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

struct Node *pNodeArray=0;
*plNodeCount = 0;

*pChildNodes = 0;
CConnectionContext *pContext=0;

// Lookup the connection information for the RegPro Project
// identified by SourcelD.
m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelID.
if (pContext)

CPtrArray PtrArray;

/* CODE OMITTED: Obtain a collection of child requirements using
RegPro COM server and store the data for each child requirement
in an instance of class CRegInfo. CReqInfo is a RegPro adapter
specific class which stores info about each RegPro
requirement. The instances of CReqgInfo are stored in a
pointer array (CPtrArray).*/

// Allocate enough Node data structures for all the children in
// the point array.
pNodeArray = new struct Node [PtrArray.GetSize()];

// Populate the array of Nodes with the data returned by using
// the RegPro COM server.
for (long 1lIndex=0; lIndex < PtrArray.GetSize(); lIndex++)

// Get an instance of CRegInfo.
CRegInfo *pRegInfo = (CReqgInfo *)PtrArray.GetAt (1Index) ;

// Copy the requirement name.
__tcscpy (pNodeArray [1Index] .Name, (const char *)

Test Input Adapter Reference 211

TIGetChildren()

pRegInfo->m sName) ;

// Copy the Container and NeedsValidation attributes.
pNodeArray [1Index] .IsOnlyContainer = pRegInfo->m bContainer;
pNodeArray[lIndex] .NeedsValidation =

pRegInfo->m bNeedsValidation;

// Copy the Requirement NodeID (which is a GUID for a RegPro
// requirement) .

__tcscpy (pNodeArray [1Index] .NodeID, pRegInfo->m sGUID) ;

char szNodeType [TI_MAX TYPE+1];

/* CODE OMITTED: Obtain the name of the requirement type by using
the RegPro COM server.x/

// Copy the name of requirement type into the node structure.
__tcscpy (pNodeArray [1Index] .Type, (char *) szNodeType) ;

delete pRegInfo;

}

// Set the return pointer for the node array.
*pChildNodes = pNodeArray;

// Set the count for the number of returned nodes.
*plNodeCount = PtrArray.GetSize();

}

else
rc = TI_ERROR_INVALID SOURCEID;

return rc;

See Also

TIGetParent ()

212 Chapter 6

TIGetConfiguration()

TiGetConfiguration()

Returns a pointer to a buffer that contains a configuration for the test input source.

Syntax

HRESULT TIGetConfiguration (const TCHAR SourceID[TI_MAX PATH],
long I1WindowContext, TCHAR **pConfigurationBuffer, int
*pnConfigurationBufferLength, TCHAR ErrorDescription)

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

IwindowContext INPUT. A string that identifies an input element.

pConfigurationBuffer OUTPUT. A pointer to the buffer that contains the

streamed configuration.

pnConfigurationBufferLength |OUTPUT. The length of the configuration buffer.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.
* TI_ERROR_INVALID_SOURCEID. The input source was identified incorrectly.

Comments
Typically, the adapter displays a user interface to collect the configuration data.

TestManager is responsible for persisting the data.

Test Input Adapter Reference 213

TIGetConfiguration()

Example

//**
HRESULT TIGetConfiguration(const TCHAR SourceID[TI MAX ID], long
1lWindowContext, TCHAR **pConfigurationBuffer, int*

pnConfigurationBufferLength, TCHAR ErrorDescription[TI MAX ERROR])

{

AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

*pFilterBuffer = new char[MAX PATH];

CWnd ParentWnd;
ParentWnd.FromHandle ((HWND) 1WindowContext) ;

/* You have to create a class (A dialog with an embedded
list control to perform configuration selection is used here) */
CSelectConfigDialog Dialog (pContext, &ParentWnd) ;

if (Dialog.DoModal () == IDOK)

{

_tecscpy (*pConfigurationBuffer,

Dialog.m sSelectedConfigurationName) ;
*pnConfigurationBufferLength =

Dialog.m sSelectedConfigurationName.GetLength() ;

else
// Put in blanks to indicate no filter set
CString sEmpty;

_tcscpy (*pConfigurationBuffer, sEmpty) ;
*pnConfigurationBufferLength = sEmpty.GetLength() ;

}

return rc;

See Also

TISetConfiguration()

214 Chapter 6

TIGetFilterEx()

TiGetFilterEx()

Returns a pointer to a buffer that contains a filter for the test input source.

Syntax

HRESULT TIGetFilterEx(const TCHAR SourceID|[TI MAX PATH],
longlwindowContext, TCHAR **pFilterBuffer, int
*pnFilterBufferLength, TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

IWindowContext INPUT. A handle to a window that can be the
parent of a dialog displayed by this function.

pFilterBuffer OUTPUT. A pointer to the buffer that contains the
streamed filter.

pnFilterBufferLength OUTPUT. The length of the filter buffer.

ErrorDescription OUTPUT. The message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
»= TI_ERROR. The function did not complete successfully.
» TI_ERROR_INVALID_SOURCEID. The input source was identified incorrectly.

Comments
The filter is returned as a stream of characters.
The data is interpreted only by the adapter.
Typically, the adapter displays a user interface to collect the filter data.

TestManager is responsible for persisting the data.

Test Input Adapter Reference 215

TIGetFilterEx()

Example

//**
HRESULT TIGetFilterEx (const TCHAR SourceID[TI MAX PATH], long
1lWindowContext, TCHAR **pFilterBuffer, int *pnFilterBufferLength,
TCHAR ErrorDescription[TI_MAX ERROR])
{

AFX MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_ INVALID SOURCEID;

/* The rest of this code simply displays a dialog that shows the
filter options. It assumes that the dialog saves the filter
settings to the Context pointer. */
if (pContext->m lpDispatchProject)
{
try
{
CFilterDialog FilterDialog(pContext, NULL) ;
if (FilterDialog.DoModal () == IDOK)
{
*pnFilterBufferLength =
pContext->GetFilterSettings (pFilterBuffer) ;
}
else
rc = TI_ERROR;
FilterDialog.DestroyWindow () ;

}

catch (_com error)

{
}

rc = TI_ERROR;

else

}

return rc;

}

rc = TI_ERROR_INVALID SOURCEID;

See Also

TISetFilterEx ()

216 Chapter 6

TIGetlsChild()

TIGetlsChild()

Note: This function is not currently called.

Determines whether an input element is a child node.

Syntax

HRESULT TIGetIsChild (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID|[TI MAX ID], BOOL* pbIsChild, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pbIsChild OUTPUT. A pointer to a Boolean value that specifies whether the
node is a child.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was incorrectly identified.

= TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

Set the Boolean value pbIsChild to TRUE if the element identified in NodeIDis a
child. Set the value to FALSE if the element is not a child.

See Also

TIGetIsParent ()

Test Input Adapter Reference 217

TIGetlsFunctionSupported()

TiGetlsFunctionSupported()

Indicates whether a specific function is supported by the adapter for an active
connection.

Syntax

HRESULT TIGetIsFunctionSupported (const TCHAR
SourceID|[TI MAX PATH], long lFunctionID, BOOL *pbSupported,
TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

1FunctionID INPUT. The constant definition of the function.

pbSupported OUTPUT. A Boolean indicating whether the

specified function is supported.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.

218 Chapter 6

TIGetlsFunctionSupported()

Comments
The 1FunctionID argument can be one of the following:

TI_FUNCTION TIClearFilter
TI_FUNCTION_TIConnect
TI_FUNCTION TIConnectEx
TI_FUNCTION TIDisconnect
TI_FUNCTION TIExecuteNodeAction
TI_FUNCTION TIExecutionSourceAction
TI_FUNCTION TIGetChildren
TI_FUNCTION TIGetConfiguration
TI _FUNCTION TIGetFilterEx

TI FUNCTION TIGetIsChild

TI _FUNCTION TIGetIsModified
TI_FUNCTION TIGetIsNode

TI FUNCTION TIGetIsParent
TI_FUNCTION TIGetIsValidSource
TI _FUNCTION TIGetModified
TI_FUNCTION TIGetModifiedSince
TI_FUNCTION TIGetName

TI FUNCTION TIGetNeedsValidation
TI _FUNCTION TIGetNode
TI_FUNCTION TIGetNodeActions

TI FUNCTION TIGetParent

TI FUNCTION TIGetRoots
TI_FUNCTION TIGetSourceActions
TI FUNCTION TIGetSourceIcon

TI FUNCTION TIGetType
TI_FUNCTION TIGetTypelcon

TI FUNCTION TIGetTypes
TI_FUNCTION TISetConfiguration
TI_FUNCTION TISetFilter

TI FUNCTION TISetFilterEx

TI _FUNCTION TISetValidationFilter
TI_FUNCTION TIShowProperties
TI_FUNCTION TIShowSelectDialog

Example

//**

HRESULT TIGetIsFunctionSupported(const TCHAR SourceID[TI MAX ID],
const TCHAR NodeID[TI MAX ID], long lFunctionID, BOOL *pbIsSupported,
TCHAR ErrorDescription[TI_MAX ERROR])

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

/* The following is a sample for a minimal adapter with no source
control support. */

switch (lFunctionID)

{

Test Input Adapter Reference 219

TIGetlsModified()

case TI_FUNCTION_TIConnect:

case TI FUNCTION TIDisconnect:

case TI_FUNCTION_TIEdit:

case TI_FUNCTION_TIGetIcon:

case TI_FUNCTION_ TIGetName:

case TI_FUNCTION_TINew:

case TI_FUNCTION TISelect:

case TI FUNCTION TIShowProperties:
*pbIsSupported = TRUE;

break;
default:
*pbIsSupported = FALSE;
break;

}

return TI_ SUCCESS;

TiGetisModified()

Note: This function is not currently called.

Determines whether an input element has been modified since the last call to
TIGetModified().

Syntax

HRESULT TIGetIsModified (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID[TI MAX ID], BOOL* pbIsModified, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pbIsModified OUTPUT. A pointer to a Boolean value that specifies whether the
input element has been modified.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:

» TI SUCCESS. The function completed successfully.

220 Chapter 6

TIGetlsModifiedSince()

*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

= TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input

element.

Comments

An element is considered modified if certain properties have changed, particularly
properties that affect the way the element is associated with or validated by test cases
— for example, the element’s type or its user-readable name.

Set the Boolean value pbIsModified to TRUE if the element has been modified since
the last call to TIGetModified (), and set the value to FALSE if the element has not

been modified.

See Also

TIGetModified(),

TiGetlsModifiedSince()

TIGetIsModifiedSince ()

Note: This function is not currently called.

Determines whether an input element has been modified since a specified date.

Syntax

HRESULT TIGetIsModifiedSince (const TCHAR SourceID[TI_MAX ID],
const TCHAR NodeID[TI MAX ID], struct tm tmDate, BOOL*
pbIsModified, TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

tmDate INPUT. The date, defined in time.h, which is part of the C-language
Standard Library.

pbIsModified OUTPUT. A pointer to a Boolean value that specifies whether the
input element has been modified.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Test Input Adapter Reference 221

TIGetlsNode()
For the definition of type Node, see “Using the Type Node Structure.”

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.
* TI_ERROR_INVALID_ SOURCEID. The input source was identified incorrectly.

= TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

An element is considered modified if certain properties have changed, particularly
properties that affect the way the element is associated with or validated by test cases
— for example, the element’s type or its user-readable name.

See Also

TIGetIsModified()

TiGetlsNode()

Note: This function is not currently called.

Determines whether a specified input element exists.

Syntax

HRESULT TIGetIsNode (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID[TI MAX ID], BOOL* pbIsNode, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pbIsNode OUTPUT. A pointer to a Boolean value that specifies whether the
input element exists.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

222 Chapter 6

TIGetlsNode()

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

* TI NODE_NOT FOUND. The adapter was unable to locate the specified input
element.

Comments

Set the Boolean value pbIsNode to TRUE if the element is there, and set the value to
FALSE if the element is not there.

Example

//**

HRESULT TIGetIsNode (const TCHAR SourceID[TI MAX ID], const TCHAR
NodeID[TI MAX ID], BOOL* pbIsNode, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;
*pIsNode = FALSE;

// Look in the connection map to determine whether a connection with
// the specified RQS file exists. Note that the RegPro adapter also
// uses the path of the RQS file as the SourcelD.

CConnectionContext *pContext=0;
m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

if (pContext)

/* CODE OMITTED: Determine whether specified NodeID is valid and set
value of *pIsNode based on its validity.*/

else
rc = TI_ERROR_ INVALID SOURCEID;

return rc;

See Also

TIGetIsChild (), TIGetIsParent ()

Test Input Adapter Reference 223

TIGetlsParent()

TiGetlsParent()

Determines whether an input element is a parent node.

Syntax

HRESULT TIGetIsParent (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID[TI_MAX ID], BOOL* pbIsParent, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pbIsParent OUTPUT. A pointer to a Boolean value that specifies whether the
input element is a parent node in a hierarchical tree.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

= TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

Set the Boolean value pbIsParent to TRUE if the specified input element (Node ID) is
a parent. Set the value to FALSE if the input element is not a parent.

Example

//**
HRESULT TIGetIsParent (const TCHAR SourceID[TI MAX ID], const TCHAR
NodeID[TI_MAX ID], BOOL* pIsParent, TCHAR

ErrorDescription[TI_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

224 Chapter 6

TIGetlsValidSource()

HRESULT rc = TI_SUCCESS; //

// Look in the connection map to determine whether a connection with
// the specified RQS file exists. Note that the RegPro adapter also
// uses the path of the RQS file as the SourcelID.
CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

if (pContext)

/* CODE OMITTED: Determine if specified NodeID is a parent and set
value of *pbIsParent.*/

}

else
rc = TI_ERROR_INVALID SOURCEID;

return rc;

See Also

TIGetIsChild (), TIGetIsNode ()

TIGetlsValidSource()

Note: This function is not currently called.

Determines whether the specified test input source exists.

Syntax
BOOL TIGetIsValidSource (const TCHAR SourceID[TI_MAX ID])
Element Description
SourcelID INPUT. The handle identifying the connection to the test input
source.

Return Values

This function returns a value of TRUE if the input source exists and returns a value of
FALSE if the input source is not valid.

Test Input Adapter Reference 225

TIGetModified()

Example

//**

BOOL TIGetIsValidSource (const TCHAR SourceID[TI MAX ID])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

BOOL bValidSource

= FALSE;

CConnectionContext *pContext=0;
m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

if (pContext)

bvalidSource

TRUE;

return bValidSource;

See Also

TIConnect (), TIDisconnect ()

TIGetModified()

Note: This function is not currently called.

Fills an array of structures with input elements that have been modified since the last
call to TIGetModified ().

Syntax

HRESULT TIGetModified(const TCHAR SourceID[TI_MAX ID], struct
Node ModifiedNodes[], long* plNodeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

ModifiedNodes OUTPUT. An array containing elements that have been modified
since the last invocation of this call.

plNodeCount OUTPUT. A pointer to a long integer that specifies the number of
elements assigned to ModifiedNodes.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

226 Chapter 6

TIGetModifiedSince()
For the definition of type Node, see “Using the Type Node Structure.”

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.

* TI_ERROR_INVALID_ SOURCEID. The input source was identified incorrectly.

Comments

This function determines which elements have been modified since the last call to
TIGetModified (). An element is considered modified if certain properties have
changed, particularly properties that affect the way the element is associated with or
validated by test cases — for example, the element’s type or its user-readable name.
Modified elements are assigned to ModifiedNodes.

You assign the total number of modified elements to pINodeCount.

See Also

TIGetIsModified (), TIGetModifiedSince ()

TiGetModifiedSince()

Fills an array of node structures with input elements modified since a specified date.

Syntax

HRESULT TIGetModifiedSince (const TCHAR SourceID[TI MAX ID],
struct tm tmDate, struct Node *pModifiedNodes[], long*
plNodeCount, TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

tmDate INPUT. The date, defined in time.h, which is part of the C-language
Standard Library.

pModifiedNodes OUTPUT. A pointer to an array containing elements that have been
modified since tmDate.

Test Input Adapter Reference 227

TIGetModifiedSince()

Element Description

plNodeCount OUTPUT. A pointer to a long integer that specifies the total number
of elements written to ModifiedNodes.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

For the definition of type Node, see “Using the Type Node Structure.”

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.

*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

Comments

An element is considered modified if certain properties have changed, particularly
properties that affect the way the element is associated with or validated by test cases
— for example, the element’s type or its user-readable name. You assign modified
elements to ModifiedNodes.

You assign the total number of modified elements to pINodeCount.

Example

//**
HRESULT TIGetModifiedSince (const char SourceID[TI MAX ID], struct tm
tmDate, struct Node *pModifiedNodes[], long* plNodeCount, char
ErrorDescription[TI_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;
try

{

CTIAConnection *pConnection = 0;

// lookup the context information for the specified SourcelID
if (!theApp.m ConnectionMap.Lookup (SourceID, (void
*&)pConnection))q
return TI_ERROR_ INVALID SOURCEID;

// 1f the context was found, then continue
if (pConnection)

228 Chapter 6

TIGetModifiedSince()

// Convert the passed in time

COleDateTime DateTime;

DateTime.SetDateTime (tmDate.tm year+1900,tmDate.tm mon+1,
tmDate.tm mday, tmDate.tm hour, tmDate.tm min, tmDate.tm sec) ;

/* CODE OMITTED: Process the new date to see if any of the
input has been modified since this date.
And populate the NodeArray to return*/
*pModifiedNodes = pNodeArray;
*plNodeCount = PtrArray.GetSize();
}
else
rc = TI_ERROR;
}
catch (COleException *e)
sprintf (ErrorDescription, "COleException. SCODE: %081x.",
(long)e->m_sc) ;
return TI_ERROR;

}

catch(COleDispatchException *e)
{
sprintf (ErrorDescription,
"COleDispatchException. SCODE: %081x,Description: \"%s\"."
(long) e->m wCode, (LPSTR)e->m strDescription.GetBuffer
(TI_MAX ERROR)) ;
return TI_ ERROR;

’

}

catch(...)

{
}

return TI_ERROR;

return rc;

See Also

TIGetModified (), TIGetIsModified(), TIGetIsModifiedSince ()

Test Input Adapter Reference 229

TIGetName()

TiGetName()

Note: This function is not currently called.

Extracts the name of an input element.

Syntax

HRESULT TIGetName (const TCHAR SourceID[TI_MAX ID], const TCHAR
NodeID[TI_MAX ID], TCHAR Name[TI_MAX NAME], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

Name OUTPUT. A string that specifies the name of the input element.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
* TI_SUCCESS. The function completed successfully.
* TI_ERROR_INVALID_ SOURCEID. The input source was identified incorrectly.

*» TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

You assign the name of the input element identified in NodeID to Name.

Example

//**

HRESULT TIGetName (const TCHAR SourceID[TI MAX ID], const TCHAR
NOdeID[TI_MAX_ID], TCHAR Name[TI_MAX_NAME], TCHAR
ErrorDescription[TI_MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

230 Chapter 6

TIGetNeedsValidation()

// Look in the connection map to determine whether a connection with
// the specified RQS file exists.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelID.
if (pContext)

CString sRegName;

/* CODE OMITTED: Obtain the name for the requirement whose ID is the
value of NodeID and store it in local variable sRegName.
If value of NodeID is not a valid test input, return

TI_NODE_NOT_ FOUND. */

// Copy the name into the return buffer.
__tcsncpy (Name, (const char *)sRegName, TI MAX NAME) ;

}

else
rc = TI_ERROR INVALID SOURCEID;

return rc;

See Also

TIGetParent (), TIGetNode ()

TiGetNeedsValidation()

Note: This function is not currently called.

Determines whether an input element requires validation.

Syntax

HRESULT TIGetNeedsValidation (const TCHAR SourceID[TI_MAX ID],
const TCHAR NodeID[TI MAX ID], BOOL* pbNeedsValidation,
TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

Test Input Adapter Reference 231

TIGetNode()

Element Description

pbNeedsValidation OUTPUT. A pointer to a Boolean value that specifies whether the
input element requires validation.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
* TI_SUCCESS. The function completed successfully.
* TI_ERROR_INVALID_ SOURCEID. The input source was identified incorrectly.

*» TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

Set the value of Boolean pbNeedsValidation to TRUE if the input element needs to
be validated, and set the value to FALSE if the input element does not need to be
validated.

See Also

TIGetModified (), TIGetModifiedSince (), TISetValidationFilter ()

TiGetNode()

Returns information about the specified node.

Syntax

HRESULT TIGetNode (const TCHAR SourceID[TI_MAX ID], const TCHAR
NodeID[TI MAX ID], struct Node **pNode, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies a parent node.

232 Chapter 6

TIGetNode()

Element Description

pNode OUTPUT. A pointer to the node specified in NodeID.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values

This function typically returns TI_SUCCESS when the function completes
successfully and returns TI_ERROR_INVALID SOURCEID if the input source was

incorrectly identified.

Comments

The definition of type Node is as follows:

struct Node

{

char Name [TI_MAX NAME] ;
char NodeID[TI MAX ID];
char Type[TI MAX TYPE];
BOOL IsOnlyContainer;
BOOL NeedsValidation;

} NodeType;

Example

HRESULT TIGetNode (TCHAR SourceID[TI_MAX_ID], TCHAR NodeID[TI_MAX_ID],
struct Node **pNode, TCHAR ErrorDescription[TI_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = S_OK;

// Look in the connection map to determine if a connection with the
//specified .RQS file exists.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

if (pContext)

{

//CODE OMITTED: Obtain the Requirement identified by NodeID and
//store data in instance of CRegInfo.

//CRegInfo is a RegPro adapter-specific class that stores info
//about a RegPro requirement.

//If value of NodeID is not a valid TestInput, TI_NODE NOT FOUND is

Test Input Adapter Reference 233

TIGetNodeActions()

//returned.

// populate Node structure
*pNode = new struct Node;

// copy Requirement Name

_tcscpy ((*pNode) ->Name, (const char *)pRegInfo->m sName) ;

(*pNode) ->IsOnlyContainer = pRegInfo->m bContainer;
(*pNode) ->NeedsValidation = pRegInfo->m bNeedsValidation;

// copy the Requirement NodeID (which is a GUID for a RegPro

// requirement)
__tcscpy ((*pNode) ->NodeID, pRegInfo->m sGUID) ;

TCHAR szNodeType [TI_MAX TYPE+1];

// CODE OMITTED: Obtain the name of the Requirement Type via the

// RegPro COM server

// copy the name of requirement type into the node structure

_tcscpy ((*pNode) ->Type, (char *) szNodeType) ;
else

rc = TI_ERROR_INVALID SOURCEID;

return rc;

See Also

TIGetIsNode ()

TiGetNodeActions()

Returns a pointer to an array of test input actions.

Syntax

HRESULT TIGetNodeActions (const TCHAR SourceID[TI_ MAX PATH],
const TCHAR Type[TI MAX TYPE], struct Action *pActionsl],
int *pnActionCount, TCHAR ErrorDescription[TI_ MAX ERROR])

234 Chapter 6

TIGetNodeActions()

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

Type INPUT. The name of a node type.

pActions OUTPUT. A local array containing action structures
for node Type.

pnActionCount OUTPUT. The number of actions in pActions.

ErrorDescription OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

» TI_SUCCESS. The function completed successfully.

» TI_ERROR. The function did not complete successfully.

* TI_ERROR_INVALID_SOURCEID. The input source was identified incorrectly.

Comments

The Type parameter is empty if no types have been returned.

Example

//**
HRESULT TIGetNodeActions (const TCHAR SourceID|[TI MAX ID], const TCHAR

Type [TT_MAX_TYPE],

struct TIAction *pActions[], int *pnActionCount,

TCHAR ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

Test Input Adapter Reference 235

TIGetParent()

struct TIAction *pTempActions;
pTempActions = new struct TIAction [2];
if (Type == “FEAT")

_tcscpy (pTempActions [0] .Name, "Custom Action for features 1\0");
pTempActions [0] .ActionID = 0;

_tcscpy (pTempActions [1] .Name, "Custom Action features 2\0");
pTempActions [1] .ActionID = 1;

*pActionCount = 2;

*pActions = pTempActions;
return rc;

See Also

TIGetSourceActions (), TIExecuteNodeAction(),

TIExecuteNodeAction ()

TiGetParent()

Note: This function is not currently called.

Finds the parent node of an input element.

Syntax

HRESULT TIGetParent (const TCHAR SourceID[TI MAX ID], const
TCHAR NodeID[TI MAX ID], struct Node** pParentNode, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pParentNode OUTPUT. A pointer to a structure that receives the parent node.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

For the definition of type Node, see “Using the Type Node Structure.”

236 Chapter 6

TIGetParent()

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

* TI NODE_NOT FOUND. The adapter was unable to locate the specified input
element.

Comments

You assign a pointer to the parent node in pParentNode. If there is no parent for the
specified input element, assign a null pointer.

Example

//**
HRESULT TIGetParent (const TCHAR SourceID[TI MAX ID], const TCHAR
NodeID[TI MAX ID], struct Node **pParentNode, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

// Look in the connection map to determine whether a connection with
// the specified RQS file exists.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

if (pContext)

/* CODE OMITTED: Obtain the parent of the Requirement identified by
NodeID and store data in instance of CRegInfo.
If value of NodeID is not a valid test input,
TI_NODE NOT FOUND is returned.*/

// Populate Node structure.
*pParentNode = new struct Node;

// Copy test input name.
_tcscpy ((*pParentNode) ->Name, (const char *)pRegInfo->m sName) ;

(*pParentNode) ->IsOnlyContainer = pRegInfo->m bContainer;
(*pParentNode) ->NeedsValidation pRegInfo->m bNeedsValidation;

// Copy the Requirement NodeID (which is a GUID for a RegPro
// requirement) .
__tcscpy ((*pParentNode) ->NodeID, pRegInfo->m sGUID) ;

Test Input Adapter Reference 237

TIGetRoots()

char szNodeType [TI_MAX TYPE+1];

/* CODE OMITTED: Obtain the name of the requirement type by using
the RegPro COM server.*/
// Copy the name of requirement type into the node structure.

_tcscpy ((*pParentNode) ->Type, (char *) szNodeType) ;

else
rc = TI_ERROR_INVALID SOURCEID;

return rc;

See Also

TIGetIsNode (), TIGetIsChild()

TiGetRoots()

Fills an array with root elements extracted from the input source.

Syntax

HRESULT TIGetRoots (const TCHAR SourceID[TI_ MAX ID], struct Node
*pRootNodes[], long *plNodeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

PRootNodes OUTPUT. A string of structures of type Node that receives the root
nodes.

plNodeCount OUTPUT. A pointer to a long integer that specifies the total number
of root nodes.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

For the definition of type Node, see “Using the Type Node Structure.”

238 Chapter 6

TIGetRoots()

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

* TI NODE_NOT FOUND. The adapter was unable to locate the specified input
element.

Comments

You assign nodes that are root elements to pRootNodes. If the input source is not
hierarchical, fill RootNodes with all of the elements of the input source.

You assign pINodeCount the total number of nodes written out to prootNodes.

Example

//**
HRESULT TIGetRoots (const TCHAR SourceID[TI MAX ID], struct Node
pRootNodes [], long plNodeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

struct Node *pNodeArray=0;
*pNodeCount = 0;

*pRootNodes = 0;
CConnectionContext *pContext=0;

// Lookup the connection information for the RegPro Project
// identified by SourceID.
m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelID.

if (pContext)

{

CPtrArray PtrArray;

/* CODE OMITTED: Obtain a collection of root nodes using RegPro
COM server and store the data for Requirement in an instance of
class CRegInfo. CRegInfo is a RegPro adapter specific class
that stores info about each RegPro requirement. The instances
of CRegInfo are stored in a pointer array (CPtrArray).*/

// Allocate enough Node data structures for all the root nodes in
// the pointer array.

Test Input Adapter Reference 239

TIGetRoots()

See Also

}

pNodeArray = new struct Node [PtrArray.GetSize()];

//
//

Populate the array of Nodes with the data returned by using
the RegPro COM server.

for (long 1lIndex=0; lIndex < PtrArray.GetSize(); lIndex++)

/*

}
//

// Get an instance of CRegInfo.
CRegInfo *pRegInfo = (CReqgInfo *)PtrArray.GetAt (lIndex) ;

// Copy the requirement name.
__tcscpy (pNodeArray [1Index] .Name, (const char
*)pRegInfo->m sName) ;

// Copy the Container and NeedsValidation attributes.
pNodeArray [1Index] .IsOnlyContainer = pRegInfo->m bContainer;
pNodeArray [1Index] .NeedsValidation =

pRegInfo->m bNeedsValidation;
// Copy the Requirement NodeID (which is a GUID for a RegPro
// requirement) .
__tcscpy (pNodeArray [1Index] .NodeID, pRegInfo->m sGUID) ;
char szNodeType [TI_MAX TYPE+1];

CODE OMITTED: Obtain the name of the requirement type by using
the RegPro COM server.*x/

// Copy the name of requirement type into the node structure.
__tcscpy (pNodeArray [1Index] .Type, (char *) szNodeType) ;

delete pRegInfo;

Set the return pointer for the node array.

* pRootNodes = pNodeArray;

//

Set the count for the number of returned nodes.

*plNodeCount = PtrArray.GetSize();

else

rc

= TI_ERROR_INVALID SOURCEID;

return rc;

TIGetIsNode (), TIGetIsParent (), TIGetParent (), TIGetChildren ()

240 Chapter 6

TIGetSourceActions()

TiGetSourceActions()

Returns a pointer to an array of actions that can be applied to the test input source.

Syntax

HRESULT TIGetSourceActions (const TCHAR SourceID[TI_MAX PATH],
struct Action #*pActions([], int #*pnActionCount, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

PActions OUTPUT. An array of populated action structures,
each of which defines an action.

pnActionCount OUTPUT. The number of actions returned

ErrorDescription OUTPUT. The message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.

Example

//**

HRESULT TIGetSourceActions (const TCHAR SourceID[TI MAX ID], struct
TIAction *pActions[], int *pnActionCount, TCHAR
ErrorDescription[TI_MAX ERROR])

{ AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;
CConnectionContext *pContext=0;
// lookup the context information for the specified SourcelID

CString sSourcelID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

Test Input Adapter Reference 241

TIGetSourcelcon()

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

struct TIAction *pTempActions;
pTempActions = new struct TIAction [2];

_tcscpy (pTempActions [0] .Name, "Custom Action 1\0");
pTempActions [0] .ActionID = 0;

_tcscpy (pTempActions [1] .Name, "Custom Action 2\0");
pTempActions [1] .ActionID = 1;

*pActionCount = 2;

*pActions = pTempActions;
return rc;

See Also

TIGetNodeActions (), TIExecuteSourceAction(),
TIExecuteNodeAction ()

TiGetSourcelcon()

Points to the location of the 16 x 16 bitmap containing the icon that is displayed with
the name of the test input source in the TestManager Test Input view.

Syntax

HRESULT TIGetSourceIcon(const TCHAR SourceID[TI_MAX ID], TCHAR
IconPath[TI_MAX PATH], TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

IconPath OUTPUT. A string that identifies the location of the icon graphics
file.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

242 Chapter 6

TIGetSourcelcon()

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR_INVALID_SOURCEID. The input source was incorrectly identified.

Comments

The source is identified in SourceId. This icon is also used for all elements of the
input source that belong to a type that does not have its own icon.

Example

//**

HRESULT TIGetSourceIcon (const TCHAR SourceID[TI MAX ID], TCHAR
IconPath[TI_MAX PATH], TCHAR ErrorDescription[TI MAX ERROR])
{
DWORDAwError;
charszModuleFileName [MAX PATH+1];
charszModuleFilePath [MAX PATH+1];
charszDir [MAX DIR+1];
charszDrive [MAX DRIVE+1] ;

// Obtain the path to where the RegPro adapter is installed.
dwError=GetModuleFileName ((HMODULE) AfxGetInstanceHandle (),
szModuleFileName, _MAX PATH) ;

_splitpath(szModuleFileName, szDrive, szDir, NULL, NULL);

// Build the path to where the bitmap file exists.

__tcscpy (szModuleFilePath, szDrive);

__tcscat (szModuleFilePath, szDir);

_tcscat (szModuleFilePath, "bitmap source.bmp") ;

// Copy the path into the return variable.
_tcscpy (IconPath, szModuleFilePath) ;

return TI_ SUCCESS;

See Also

TIGetTypeIcon ()

Test Input Adapter Reference 243

TIGetType()

TIGetType()

Note: This function is not currently called.

Extracts the name of the type of an input element.

Syntax

HRESULT TIGetType (const TCHAR SourceID[TI_MAX ID], const TCHAR
NodeID[TI_MAX ID], TCHAR Typel[TI_MAX TYPE], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

Type OUTPUT. A string that identifies the type of node.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
* TI_SUCCESS. The function completed successfully.
* TI_ERROR_INVALID_ SOURCEID. The input source was identified incorrectly.

*» TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Comments

You assign the type of the input element identified in NodeID to Type.

Example

//**

HRESULT TIGetType (const TCHAR SourceID[TI MAX ID], const TCHAR
NodeID[TI_MAX ID], TCHAR Type [TI _MAX NAME], TCHAR
ErrorDescription[TI_MAX ERROR])

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

244 Chapter 6

TIGetTypelcon()

// Look in the connection map to determine whether a connection with
// the specified RQS file exists.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (ConnectInfo, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelD.

if (pContext)

{

CString sReqgType;

/* CODE OMITTED: Obtain the type for the requirement whose unique ID
is the value of NodeID and store it in local variable sReqType.
If value of NodeID is not a valid test input, return
TI_NODE_NOT FOUND.*/

// Copy its type into the return buffer.
_tcsncpy (Type, (const char *)sReqType, TI MAX TYPE) ;

}

else
rc = TI_ERROR INVALID SOURCEID;

return rc;

See Also

TIGetTypelIcon (), TIGetTypes ()

TiGetTypelcon()

Points to the location of the 16 x 16 bitmap file of the icon that identifies nodes of a
specified type.

Syntax

HRESULT TIGetTypeIcon (const TCHAR SourceID[TI MAX ID], const
TCHAR Type[TI _MAX TYPE], TCHAR IconPath[TI_MAX PATH], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

Type INPUT. A string that identifies the type of node.

Test Input Adapter Reference 245

TIGetTypelcon()

Element Description

IconPath OUTPUT. A string that specifies the location of a graphics file for an

icon that represents nodes of a particular type.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if

there is an error.

Return Values

This function typically returns TI SUCCESS when the function completes
successfully and returns TI_ERROR_INVALID_ SOURCEID if the input source
information was incorrectly identified.

Comments

Use IconPath to point to the location of the icon that identifies nodes of type Type.

Example

//**

HRESULT TIGetTypeIcon (const TCHAR SourceID[TI MAX ID], const TCHAR
Type [TI_MAX TYPE], TCHAR IconPath[TI MAX PATH], TCHAR
ErrorDescription[TI_MAX ERROR])

{

DWORDAwError;

charszModuleFileName [MAX PATH+1];
charszModuleFilePath [MAX PATH+1];
charszDir [MAX DIR+1];

charszDrive [MAX DRIVE+1];

// Obtain the path to where the RegPro adapter is installed.
dwError=GetModuleFileName ((HMODULE) AfxGetInstanceHandle (),
szModuleFileName, _MAX PATH) ;

_splitpath(szModuleFileName, szDrive, szDir, NULL, NULL);

// Build the path to where the bitmap file exists.
__tcscpy (szModuleFilePath, szDrive) ;

_tcscat (szModuleFilePath, szDir);

_tcscat (szModuleFilePath, "bitmap type.bmp") ;

// Copy the path into the return variable.
_tcscpy (IconPath, szModuleFilePath) ;

return TI_ SUCCESS;

246 Chapter 6

TIGetTypes()

See Also

TIGetSourcelcon ()

TiGetTypes()

Note: This function is not currently called.

Fills an array with an identifier for each type of input element.

Syntax

HRESULT TIGetTypes (const TCHAR SourceID[TI_MAX ID], TCHAR
(**Types) [TI_MAX TYPE], long* plTypeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

Types OUTPUT. A pointer to an array of type identifiers.

pTypeCount OUTPUT. A pointer to a long integer that specifies the total number
of test types.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns TI_SUCCESS when the function completes
successfully and returns TI ERROR_INVALID SOURCEID if the input source
information was incorrectly identified.

Comments
You assign an identifier for each input type to Types.

You assign the total count of type identifiers to p1 TypeCount.

Test Input Adapter Reference 247

TIGetTypes()

Example

//**
HRESULT TIGetTypes (const TCHAR SourceID[TI MAX ID], TCHAR (**

Types) [TI_MAX TYPE], long* plTypeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

// Lookup the connection information for the RegPro Project
// identified by SourceID.

CConnectionContext *pContext=0;
m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelID.
if (pContext)

try
// Get the ReqgPro project interface pointer from the instance
// of CConnectionContext.
RegServer:: ProjectPtr
ProjectPtr (pContext->m lpDispatchProject) ;

// Get the requirement types from the RegPro project interface
// pointer.

RegServer:: ReqTypesPtr

MyReqTypesPtr (ProjectPtr->GetReqTypes ()) ;

// Allocate enough memory to return the types - (which are
// strings in RegPro) .
Types = (char () [TI_MAX TYPE]) malloc(sizeof (char) *

MyReqTypesPtr->GetCount () * TI MAX TYPE);

// Loop through the requirements types to find the right one.

for (long lIndex = 1; lIndex <= MyReqTypesPtr->GetCount () ;
1Index++)

{

COleVariant varIndex=1lIndex;
/* CODE OMITTED: Obtain requirement type from collection and
a yp

store in variable MyReqTypePtr.*/

// Copy name of requirement type into the return array. Note
// that index of array is 0 based.

_tcscpy ((*pszTypes) [1Index-1], (char
*)MyReqTypePtr->GetName ()) ;

// Store count of types in return variable.
*plTypeCount = MyReqTypesPtr->GetCount () ;

248 Chapter 6

catch (_com error)

{
}
}

else

rc = TI_ERROR;

TISetConfiguration()

rc = TI_ERROR_ INVALID SOURCEID;

return rc;

}

See Also

TIGetType (), TIGetTypelcon ()

TISetConfiguration()

Sets the configuration for the test input source based on the specified configuration

buffer.

Syntax

HRESULT TISetConfiguration (const TCHAR SourceID[TI_MAX PATH],
TCHAR *pConfigurationBuffer, int nConfigurationBufferLength,
TCHAR ErrorDescription[TI_MAX ERROR])

Element

Description

SourcelD

INPUT. The handle identifying the connection to
the test input source.

pConfigurationBuffer

INPUT. A pointer to the buffer that contains the
streamed configuration.

nConfigurationBufferLength

INPUT. The length of the configuration buffer.

ErrorDescription

OUTPUT. The message to be displayed to the
TestManager user if there is an error.

Return Values

This function typically returns one of the following values:

» TI_SUCCESS. The function completed successfully.

» TI_ERROR. The function did not complete successfully.
* TI_ERROR_INVALID_SOURCEID. The input source was identified incorrectly.

Test Input Adapter Reference 249

TISetFilter()

Example

//**

HRESULT TISetConfiguration (const TCHAR SourceID[TI MAX ID], TCHAR
*pConfigurationBuffer, int nConfigurationBufferLength, TCHAR
ErrorDescription[TI_MAX ERROR])

{ AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;
CConnectionContext *pContext=0;
// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;

m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_ INVALID SOURCEID;

// Persist the raw filter buffer for possible future use by
//TIGetConfigurationEx or

// TICompile, TIEdit, etc...

pContext->m sConfiguration = pConfigurationBuffer;

/* CODE OMITED: Handle any configuration application actions
needed by the adapter */

return rc;

See Also

TIGetConfiguration ()

TISetFilter()

Filters the display of test input elements.

Syntax

HRESULT TISetFilter (const TCHAR SourceID[TI MAX ID], const
TCHAR UserID[TI MAX ID], TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description
SourceID INPUT. The handle identifying the connection to the test input
source.

250 Chapter 6

TISetFilter()

Element Description

UserID INPUT. A string that identifies the current user.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values

This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR_INVALID_SOURCEID. The input source was incorrectly identified.

Comments

You provide the filter creation mechanism in a window or in a dialog box so that the

display of input elements is reduced to a specific set. Filtering information can be
stored on a peruser basis.

Example

//**

HRESULT TISetFilter (const TCHAR SourceID[TI MAX ID], const TCHAR
UserID[TI_MAX ID], TCHAR ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;

HRESULT rc = TI_SUCCESS;

// Lookup the connection information for the RegPro Project
// identified by SourcelD.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelD.
if (pContext)

try

{

CFilterDialog FilterDialog(pContext, NULL) ;
// Display filter dialog.
if (FilterDialog.DoModal ())
{
}
}

catch (_com_error)

Test Input Adapter Reference 251

TISetFilterEx()

{

}
}

else
rc = TI_ERROR_INVALID SOURCEID;

return rc;

}

See Also

TISetFilterEx (), TISetValidationFilter ()

TISetFilterEx()

Sets the filter for the test input source based on the specified filter buffer.

Syntax

HRESULT TISetFilterEx (const TCHAR SourceID[TI_MAX_PATH] , TCHAR
*pFilterBuffer, int nFilterBufferLength, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to
the test input source.

pFilterBuffer OUTPUT. A pointer to a buffer that contains the
streamed filter.

nFilterBufferLength OUTPUT. The length of the filter buffer.

ErrorDescription OUTPUT. The message to be displayed to the

TestManager user if there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR. The function did not complete successfully.

252 Chapter 6

TISetFilterEx()

Comments
This function supersedes the function TISetFilter ().

TestManager is responsible for persisting this data.

Example

//**
HRESULT TISetFilterEx (const TCHAR SourceID[TI MAX ID], TCHAR
*pFilterBuffer, int nFilterBufferLength, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE_ STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;
CConnectionContext *pContext=0;

// lookup the context information for the specified SourcelID
CString sSourceID = SourcelD;
m_ServerConnections.Lookup (sSourceID, (void *&)pContext) ;

if (pContext == 0)
return TI_ERROR_INVALID SOURCEID;

/* The remainder of this code is an example of filtering file
based input source. In this sample, the TIGetFilterEx returned
a list of file extensions that were to be hidden from the user.
This example merely parses the filter buffer and stores the
results in the adapter’s connection context. TIGetRoots and
TIGetChildren would then use this to determine their output.*/

// Persist the raw filter buffer for possible future use
// by TIGetFilterEx
pContext->m sFilter = pFilterBuffer;

TCHAR szBuffer[512];

_tcscpy (szBuffer, pFilterBuffer);
char seps([] = ";";

char *token;

pContext->m asFilterFileExtensions.RemoveAll () ;

// establish string and get the first token:
token = strtok(szBuffer, seps);
while(token != NULL)
{
CString sToken = token;
sToken.TrimLeft () ;
sToken.TrimRight () ;
pContext->m asFilterFileExtensions.Add (sToken) ;

Test Input Adapter Reference 253

TISetValidationFilter()

// Get next token:
token = strtok(NULL, seps);

}// end while

return rc;

}

See Also

TIGetFilterEx ()

TiSetValidationFilter()

Note: This function is not currently called.

Filters operations according to validation status.

Syntax

HRESULT TISetValidationFilter (const TCHAR SourceID|[TI_MAX ID],
const TCHAR UserID[TI MAX ID], BOOL bOnlyNeedsValidation,
TCHAR ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

UserID INPUT. A string that identifies the current user.

boOnlyNeedsValidation|INPUT. A pointer to a Boolean value that specifies whether
filtering by validation status is in effect.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR_INVALID_SOURCEID. The input source was incorrectly identified.

254 Chapter 6

TIShowProperties()

Comments

Create a filter so that all operations on the input source (SourceID) performed by the
current tester (UserID) apply only to elements that need validation. If
boOnlyNeedsValidationis setto False, filtering by this criterion is disabled.

See Also
TISetFilter (), TISetFilterEx (), TIGetFilterEx()
TIShowProperties()

Displays the property page or dialog box of an input element.

Syntax

HRESULT TIShowProperties (TCHAR const SourceID[TI MAX ID], const
TCHAR NodeID[TI MAX ID], struct Node** pModifiedNode, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

NodeID INPUT. A string that identifies an input element.

pModifiedNode OUTPUT. A pointer to a structure that receives the new information
about a node.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TI SUCCESS. The function completed successfully.
*» TI ERROR_INVALID SOURCEID. The input source was identified incorrectly.

= TI_NODE_NOT_ FOUND. The adapter was unable to locate the specified input
element.

Test Input Adapter Reference 255

TIShowProperties()

Comments

If any property relevant to TestManager has changed, assign the new information to a
Node structure associated with the pointer pModifiedNode.

Example

//**
HRESULT TIShowProperties (const TCHAR SourceID|[TI MAX ID], const TCHAR
NodeID[TI _MAX ID], struct Node** pModifiedNode, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX_MANAGE_STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

// Look in the connection map to determine whether a connection with
// the specified RQS file exists.

CConnectionContext *pContext=0;
m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

if (pContext)

{

/* CODE OMITTED: Display the RegPro Requirement Properties dialog
If OK is selected, store relevant information in an instance of
CRegInfo. CRegInfo is a RegPro adapter-specific class.

If value of NodeID is not a valid test input,
TI_NODE NOT FOUND is returned.*/

// Populate Node structure.
*pNode = new struct Node;

// Copy test input name.
_tcscpy ((*pModifiedNode) ->Name, (const char *)pRegInfo->m sName) ;

(*pModifiedNode) ->IsOnlyContainer = pRegInfo->m bContainer;
(*pModifiedNode) ->NeedsValidation =
pRegInfo->m bNeedsValidation;

// Copy the Requirement NodeID (which is a GUID for a RegPro
// requirement) .

_tcscpy ((*pModifiedNode) ->NodeID, pRegInfo->m sGUID) ;

char szNodeType [TI _MAX TYPE+1];

/* CODE OMITTED: Obtain the name of the requirement type by using
the RegPro COM server.*x/

// Copy the name of requirement type into the node structure.
_tcscpy ((*pModifiedNode) ->Type, (char *) szNodeType) ;

else
rc = TI_ERROR_INVALID SOURCEID;

256 Chapter 6

TIShowSelectDialog()

return rc;

}

See Also

TIShowSelectDialog ()

TIShowSelectDialog()

Note: This function is not currently called.

Displays a selection dialog box for choosing elements from the input source.

Syntax

HRESULT TIShowSelectDialog(const TCHAR SourceID[TI MAX ID],
struct Node* pSelectedNodes[], long* plNodeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

Element Description

SourceID INPUT. The handle identifying the connection to the test input
source.

pSelectedNodes OUTPUT. An array of structures that specifies the selected input
elements.

plNodeCount OUTPUT. A pointer to a long integer that specifies the total number
of nodes selected.

ErrorDescription OUTPUT. The message to be displayed to the TestManager user if
there is an error.

Return Values
This function typically returns one of the following values:
» TI_SUCCESS. The function completed successfully.
» TI_ERROR_INVALID_SOURCEID. The input source was incorrectly identified.

Test Input Adapter Reference 257

TIShowSelectDialog()

Comments

This function displays a selection dialog box (supplied by the adapter) for selecting
elements from the input source (SourceID). You assign the selected elements to
pSelectedNodes.

Assign the total number of selected elements to plNodeCount.

Example

//**
HRESULT TIShowSelectDialog (const TCHAR SourceID|[TI MAX ID], struct
Node *pSelectedNodes[], long* plNodeCount, TCHAR
ErrorDescription[TI_MAX ERROR])

{

AFX MANAGE STATE (AfxGetStaticModuleState()) ;
HRESULT rc = TI_SUCCESS;

struct Node *pNodeArray=0;

// Look in the connection map to determine whether a connection with
// the specified RQS file exists.

CConnectionContext *pContext=0;

m_ProjectConnections.Lookup (SourceID, (void *&)pContext) ;

// Determine whether a connection exists with the specified
// SourcelID.

if (pContext)

{

CPtrArray PtrArray;

/* CODE OMITTED: Display the RequisitePro Requirement Selection
Dialog. Upon selection of the OK button, extract the selected
requirements and store the data for each requirement in an
instance of class CReqgInfo.

CRegInfo is a RegPro adapter-specific class that stores info
about each RegPro requirement. The instances of CRegInfo are
stored in a pointer array (CPtrArray).*/

// Allocate enough Node data structures for all the root nodes in
// the pointer array.

pNodeArray = new struct Node [PtrArray.GetSize()];

// Populate the array of Nodes with the data returned by using
// the RegPro COM server.

for (long 1lIndex=0; lIndex < PtrArray.GetSize(); lIndex++)

// Get instance of CRegInfo.
CRegInfo *pRegInfo = (CReqgInfo *)PtrArray.GetAt (l1Index) ;

// Copy the requirement name.
__tcscpy (pNodeArray [1Index] .Name, (const char

258 Chapter 6

See Also

}
//

TIShowSelectDialog()

*)pRegInfo->m sName) ;

// Copy the Container and NeedsValidation attributes.
pNodeArray [1Index] .IsOnlyContainer = pRegInfo->m bContainer;
pNodeArray[lIndex] .NeedsValidation =

pRegInfo->m bNeedsValidation;

// Copy the Requirement NodeID (which is a GUID for a RegPro
// requirement) .

__tcscpy (pNodeArray [1Index] .NodeID, pRegInfo->m sGUID) ;

char szNodeType [TI_MAX TYPE+1];

/* CODE OMITTED: Obtain the name of the requirement type by
using the RegPro COM server.*/

// Copy the name of requirement type into the node structure.
__tcscpy (pNodeArray [1Index] .Type, (char *) szNodeType) ;

delete pRegInfo;

Set the return pointer for the node array.

*pSelectedNodes = pNodeArray;

//

Set the count for the number of returned nodes.

*pNodeCount = PtrArray.GetSize();

}

else
rc

= TI_ERROR_INVALID SOURCEID;

return rc;

TIShowProperties ()

Test Input Adapter Reference 259

TIShowSelectDialog()

260 Chapter 6

Using Test Script
Services from an External
C or C++ Program

This appendix explains how to use the test script services calls documented in
Chapter 3 from a C or C++ program.

Connecting to a TestManager Listener Port

Rational does not provide a built-in test script type for C or C++ test scripts. You can,
however, directly call the test script services documented in Chapter 3 from a C or
C++ program and run the program from TestManager as a Command Line test script.
TestManager displays the test results if you:

* Include code that connects the external program to a TestManager listener port.

» Compile the program and link it with the rttssremote. 1ib library released
with TestManager.

An example follows. The lines that attach to a TestManager listener port are shown in
bold. If you saved this program to a file named emulmany.c, here’s how you would
compile and link the program:

cl /I "$ratl rthome%\rtsdk\c\include" /c emulmany.c
link /out:emulmany.exe emulmany.obj
"$ratl rthome%\rtsdk\c\lib\rttssremote.lib"

To run the program, follow the instructions in “Running a Test Script with the
Command Line Adapter” on page 2. Alternatively, to be able to access C or C++ test
scripts for viewing or editing as well as for execution from TestManager’s File
pull-down menu selections, you can create a new test script type for your C or C++
test scripts: see “Adding a Command Line Test Script Type” on page 4.

Example: Attaching to a TestManager Listener Port

* This program demonstrates how to use the Test Script Services
(TSS)

* from a C program.
*

* The program is designed to run as a command line script under
TestManager.

261

#include <stdlib.h>
#include <stdio.h>
#include "rttss.h"

char emul logmsg[512];

typedef struct info {
char *host;
ul6é port;
s32 vtid;

} info t;

int
uniform delay (int mindly,
int maxdly,
int pctpass) {
s32 dly;
s32 pass;

dly = TSSUniform(mindly, maxdly) ;
pass = TSSUniform(1,100) < pctpass;
sprintf (emul logmsg, "uniform delay(%d, %d, %d) delayed %d and
%s.",
mindly, maxdly, pctpass, dly,
pass ? "passed" : "failed");
TSSDelay (dly) ;
return pass;

int main(int argc, char *argv[]) {
s32 rc;
s32 pass;
EvarValue evalue;
int 1i;
char *s;
info t thinfo; /* Parent program host/port

*/

/* Get connect info from the environment. */

if (s = getenv("RTTSS HOST"))
thinfo.host = s;

262 Appendix A

else {
fprintf (stderr, "Environment variable RTTSS HOST is not
defined\n") ;
exit(1);

}

thinfo.port = 0;

if (s = getenv("RTTSS_ PORT"))
thinfo.port = (ul6) strtoul(s, NULL, 10);

thinfo.vtid = 0;

if (s = getenv("RTTSS VTID"))
thinfo.vtid = strtol(s, NULL, 10);

if ((rc = TSSConnect(thinfo.host, thinfo.port, thinfo.vtid)) !=

TSS OK) {

fprintf (stderr, "TSSConnect failed\n");

exit(-1);
}
evalue.envStr = "NEGEXP'";
TSSEnvironmentOp (EVAR Think dist, EVOP_set, &evalue) ;
evalue.envInt = 100;
TSSEnvironmentOp (EVAR Think dly scale, EVOP_set, &evalue);
evalue.envInt = 3000;

TSSEnvironmentOp (EVAR Think avg, EVOP_set, &evalue);

for

(i:O;i<l;i++){

TSSCommandStart ("step001", "step001l", MST DELAY) ;
pass = uniform delay (10, 100, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS

TSS_LOG_RESULT FATL,

"step001l failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step002", "step002", MST DELAY) ;

pass = uniform delay (100, 200, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS

TSS_LOG_RESULT FATL,

"step002 failed",
OI
OI

Using Test Script Services from an External C or C++ Program 263

emul logmsg,

OI
NULL) ;
TSSCommandStart ("step003", "step003", MST DELAY) ;

pass = uniform delay (200, 300, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step003 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step004", "step004", MST DELAY) ;

pass = uniform delay (300, 400, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step004 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step005", "step005", MST DELAY) ;

pass = uniform delay (400, 500, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step005 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step006", "step006", MST DELAY) ;

pass = uniform delay (500, 600, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS
TSS_LOG_RESULT FATL,
"step006 failed",
0,
0,
emul logmsg,

264 Appendix A

0,
NULL) ;

TSSCommandStart ("step007", "step007", MST DELAY) ;
pass = uniform delay (600, 700, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step007 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step008", "step008", MST DELAY) ;

pass = uniform delay (700, 800, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step008 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step009", "step009", MST DELAY) ;

pass = uniform delay (800, 900, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step009 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step010", "step01l0", MST DELAY) ;

pass = uniform delay (900, 1000, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS
TSS_LOG_RESULT FATL,

"step01l0 failed",

0,

0,

emul logmsg,

0,

Using Test Script Services from an External C or C++ Program 265

NULL) ;

TSSCommandStart ("step011l", "step0ll", MST DELAY) ;
pass = uniform delay (1000, 1100, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step0l1ll failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step012", "step0l2", MST DELAY) ;

pass = uniform delay (1100, 1200, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step0l1l2 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step013", "step013", MST DELAY) ;

pass = uniform delay (1200, 1300, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FATIL,
"step01l3 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step014", "step01l4", MST DELAY) ;

pass = uniform delay (1300, 1400, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS
TSS_LOG_RESULT FATL,

"step01l4 failed",

0,

0,

emul logmsg,

0,

NULL) ;

266 Appendix A

TSSCommandStart ("step015", "step01l5", MST DELAY) ;
pass = uniform delay (1400, 1500, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step01l5 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step016", "step0l6", MST DELAY) ;

pass = uniform delay (1500, 1600, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step0l6 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step017", "step0l17", MST DELAY) ;

pass = uniform delay (1600, 1700, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step0l1l7 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step018", "step018", MST DELAY) ;

pass = uniform delay (1700, 1800, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS
TSS_LOG_RESULT FATL,

"step01l8 failed",

0,

0,

emul logmsg,

0,

NULL) ;

Using Test Script Services from an External C or C++ Program 267

TSSCommandStart ("step019", "step019", MST DELAY) ;
pass = uniform delay (1800, 1900, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step01l9 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step020", "step020", MST DELAY) ;

pass = uniform delay (1900, 2000, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step020 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step021", "step021", MST DELAY) ;

pass = uniform delay (2000, 3000, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step021 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step022", "step022", MST DELAY) ;

pass = uniform delay (3000, 4000, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS

TSS LOG RESULT FAIL,
"step022 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step023", "step023", MST DELAY) ;

268 Appendix A

pass = uniform delay (4000, 5000, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step023 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step024", "step024", MST DELAY) ;

pass = uniform delay (5000, 6000, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step024 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step025", "step025", MST DELAY) ;

pass = uniform delay (6000, 7000, 90);
TSSCommandEnd (pass ? TSS_LOG_RESULT PASS

TSS LOG RESULT FAIL,
"step025 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step026", "step026", MST DELAY) ;

pass = uniform delay (7000, 8000, 90);
TSSCommandEnd (pass ? TSS LOG RESULT PASS

TSS LOG RESULT FAIL,
"step026 failed",

0,
0,
emul logmsg,
0,
NULL) ;
TSSCommandStart ("step027", "step027", MST DELAY) ;

pass = uniform delay (8000, 9000, 90);

Using Test Script Services from an External C or C++ Program

269

TSSCommandEnd (pass ? TSS_LOG_RESULT PASS :
TSS_LOG_RESULT FATIL,
"step027 failed",
0,
0,
emul logmsg,
0,
NULL) ;

Arguments of TSSEnvironmentOp()

The following table describes the valid values of the first argument (envVar) of
TSSEnvironmentOp (). Note the following about EVAR_LogData_control and
EVAR_LogEvent control:

= They correspond to the check boxes in the TestManager TSS Environment
Variables dialog box. Use this dialog box to set logging and reporting options at
the suite rather than the script level.

» They are more flexible alternatives to EVAR Log level and
EVAR_Report level.

Name Type/Values/(default) Contains
EVAR Delay dly scale integer 0—2000000000 The scaling factor applied
percent (100) globally to all timing

delays. A value of 100%,
which is the default, means
no change. A value of 50%
means one-half the delay,
which is twice as fast as the
original; 200% means twice
the delay, which is half as
fast. A value of zero means
no delay.

270 Appendix A

Name

Type/Values/(default)

Contains

EVAR LogData_ control NONE, Flags indicating the level of
PASS, detail to log. Specify one or
FAIL, more. These result flags
WARNING, (except the last, which
STOPPED, specifies everything)
INFORMATIONAL, correspond to flags entered
COMPLETED, with the TSSLogEvent,
UNEVALUATED TSSLogMessage,
ANYRESULT TSSTestCaseResult,

TSSCommandEnd, and
TSSLogCommand
functions. For example,
specifying FAIL selects
everything logged by
functions that specified
flag FAIL.

EVAR_LogEvent controlL NONE, Flags indicating the level of
PASS, detail to log for reports.
FAIL, Specify one or more. The
WARNING, first nine result flags
STOPPED, (NONE through
INFORMATIONAL, UNEVALUATED)
COMPLETED, correspond to flags
UNEVALUATED, specified with the
TIMERS, TSSLogEvent,
COMMANDS, TSSLogMessage,
ENVIRON, TSSTestCaseResult,
STUBS, TSSCommandEnd, and
TSSERROR, TSSLogCommand
TSSPROXYERROR functions. The other
ANYRESULT flags (TIMERS through

TSSPROXYERROR)

indicate the event objects.
For example, FAIL plus
COMMANDS selects for
reporting all commands
that recorded a failed result.
ANYRESULTS selects
everything.

Using Test Script Services from an External C or C++ Program 271

Name

Type/Values/(default)

Contains

EVAR Log level

string "OFF" ("TIMEOUT")
"UNEXPECTED" "ERROR"
"ALL"

The level of detail to log;:
* OFF - Log nothing.
= TIMEOUT — Log

emulation command
time-outs.

= UNEXPECTED — LOg
time-outs and
unexpected responses
from emulation
commands.

* ERROR - Logall
emulation commands
that setIV_errortoa
nonzero value. Log
entries include
IV_error and
IV_error text.

* ALL - Log everything;:
emulation command
types and IDs, script IDs,
source files, and line
numbers.

272 Appendix A

Name Type/Values/(default) Contains

EVAR Record level "MINIMAL" "TIMER" The level of detail to log for
"FAILURE" ("COMMAND") | reporting;:

ALL * MINIMAL — Record only
items necessary for
reports to run. Use this
value when you do not
want user activity to be
reported.

= TIMER —MINIMAL plus
start_time and
stop_time emulation
commands. Reports do
not contain response
times for each emulation
command, emulation
command failure does
not appear, and the
result file for each virtual
tester is small. Use this
setting if you are not
concerned with the
response times or
pass/fail status of
individual emulation
commands.

" FAILURE - TIMER
plus emulation
command failures and
some environment
variable changes. Use
this setting if you want
the advantages of a small
result file but to show
also that no emulation
command failed.

= COMMAND — FAILURE
plus emulation
command successes and
some environment
variable changes.

* ALL — COMMAND plus all
environment variable
changes. Complete
recording.

Using Test Script Services from an External C or C++ Program 273

Name

Type/Values/(default)

Contains

EVAR_Suspend_check

string ("ON") "OFF"

Controls whether you can
suspend a virtual tester
from a Monitor view:

" ON — A suspend request
is checked before
beginning the think time
interval by each send
emulation command.

* OFF - Disable suspend
checking.

EVAR Think avg

integer 0-2000000000 ms
(5000)

The average think-time
delay (the amount of time
that, on average, a user
delays before performing
an action).

EVAR Think cpu dly scale

integer 0-2000000000 ms
(100)

The scaling factor applied
globally to CPU (processing
time) delays. Used instead
of

EVAR_Think dly scal
eif EVAR_Think avgis
less than

EVAR Think cpu thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think max.

EVAR Think cpu_threshold

integer 0—2000000000 ms (0)

The threshold value used to
distinguish CPU delays
from think-time delays.

274 Appendix A

Name Type/Values/(default) Contains

EVAR Think def string "FS" "LS" "FR" ("LR") "FC" The starﬁng point of the
"LC" think-time interval:

= FS - thesubmission time
of the previous send
emulation command

* LS - thecompletion time
of the previous send
emulation command

= FR - the time the first
data of the previous
receive emulation
command was received

= LR - the time the last
data of the previous
receive emulation
command was received,
or LS if there was no
intervening receive
emulation command

= FC - the submission
time of the previous
connect emulation
command (uses the
IV_fc_tsinternal
variable)

* LC - thecompletion time
of the previous connect
emulation command
(uses the IV_1c_ts
internal variable)

Using Test Script Services from an External C or C++ Program 275

Name

Type/Values/(default)

Contains

EVAR_Think dist

string ("CONSTANT")
"UNIFORM" "NEGEXP"

The think-time distribution:

= CONSTANT - sets a
constant distribution
equal to Think_avg

= UNIFORM - sets a
random think-time
interval distributed
uniformly in the range:
[EVAR Think avg-
EVAR Think sd,
EVAR Think avg+
EVAR Think sd]

= NEGEXP - sets a random
think-time interval
approximating a bell
curve with
EVAR_Think_avgequal
to standard deviation

EVAR Think dly scale

integer 0 — 2000000000 ms
(100)

The scaling factor applied
globally to think-time
delays. Used instead of
EVAR _Think cpu dly
scaleif
EVAR_Think avgis
greater than
EVAR_Think cpu thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think max.

EVAR Think max

integer 0—2000000000 ms
(2000000000)

A maximum threshold for
think times that replaces
any larger setting.

EVAR Think sd

integer 0—2000000000 ms (0)

Where

EVAR _Think dist isset
to UNIFORM, specifies the
think-time standard
deviation.

The following table describes the valid values of the second argument (envOp) of

TSSEnvironmentOp ().

276 Appendix A

Operation Description

EVOP_eval Operate on the value at the top of the variable’s stack.

EVOP_pop Remove the variable value at the top of the stack.

EVOP_push Push a value to the top of a variable’s stack.

EVOP_reset Set tll(ne value of a variable to the default and discard any other values in the
stack.

EVOP_restore | Set the saved value to the current value.

EVOP_save Save the value of a variable.

EVOP_set Set a variable to the specified value.

Example: Manipulating Environment Variables

This example illustrates how to manipulate environment variables.

#include <stdio.h>
#include <rttss.h>

void errorexit (void) ;

int main(int argc, char *argv[])

{
EvarValue ev;
if (s = getenv ("RTTSS_ HOST"))
thinfo.host = s;
else {
fprintf (stderr, "Environment variable RTTSS HOST is not
defined\n") ;
exit (1) ;

}
thinfo.port = 0;
if (s = getenv("RTTSS PORT"))
thinfo.port = (ulé) strtoul (s, NULL, 10);
thinfo.vtid = 0;
if (s = getenv("RTTSS VTID"))
thinfo.vtid = strtol(s, NULL, 10);
if ((rc = TSSConnect (thinfo.host, thinfo.port, thinfo.vtid))

!= TSS_OK) {
fprintf (stderr, "TSSConnect failed\n");
exit (-1) ;
!
if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;

printf (“At start, value is ‘%s’\n”, ev.envStr);

Using Test Script Services from an External C or C++ Program 277

ev.envStr = “NEGEXP”;

if (TSSEnvironmentOp (EVAR Think dist, EVOP push, &ev) != TSS OK)
errorexit () ;

if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;

printf (“After push, value is ‘%s’\n”, ev.envStr);

if (TSSEnvironmentOp (EVAR Think dist, EVOP pop, NULL) != TSS OK)
errorexit () ;

if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;

printf (“After pop, value is ‘%s’\n”, ev.envStr);

ev.envStr = “NEGEXP”;

if (TSSEnvironmentOp (EVAR Think dist, EVOP_set, &ev) != TSS OK)
errorexit () ;

if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;

printf (“After set, value is ‘%s’\n”, ev.envStr);

if (TSSEnvironmentOp (EVAR Think dist, EVOP_save, NULL) != TSS_OK)
errorexit () ;

if (TSSEnvironmentOp (EVAR Think dist, EVOP_ reset, NULL) != TSS_OK)
errorexit () ;

if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;

printf (“After save and reset, value is ‘'%s’\n”, ev.envStr);

if (TSSEnvironmentOp (EVAR Think dist, EVOP restore, NULL) !=
TSS_OK)
errorexit () ;
if (TSSEnvironmentOp (EVAR Think dist, EVOP eval, &ev) != TSS OK)
errorexit () ;
printf (“After restore, value is ‘'%s’\n”, ev.envStr);

return O;

void errorexit (void)

{

char msg[256] ;

int msglen;

int r;

msglen = sizeof (msg);

r = TSSErrorDetail (msg, &msglen) ;

fprintf (stderr, “TSS call failed, code %d: %$s\n”, r, msg);

exit (1) ;

278 Appendix A

Arguments of TSSInternalVarGet()

The following table lists the internal variables that can be entered with the

internVar argument.
Variable Contains
IV_alltext Response text up to the value of Max_nrecv_saved. The same
as response.
IV _cmd_id The ID of the most recent emulation command.
IV_cmdent A running count of the number of emulation commands the
script has executed.
IV _col The current column position (1-based) of the cursor (ASCII

screen emulation variable).

IV_column_ headers

The two-line column header if Column_headers is ON.

IV_command

The text of the most recent emulation command.

IV_cursor_ id

The last cursor declared by sqldeclare_cursor or opened by
sglopen_cursor.

IV_error

The status of the last emulation command. Most values for
error are supplied by the server.

IV_error_text

The full text of the error from the last emulation command. If
erroris 0, error text returns ””. For a SQL database or
TUXEDO error, the text is provided by the server.

IV_error_type

If you are emulating a TUXEDO session and error is nonzero,
error_type contains one of the following values:

(no error)

VU/TUX Usage Error
TUXEDO System /T Error
TUXEDO FML Error
TUXEDO FML32 Error

Application under test Error

N U W N = O

Internal Error

If you are emulating an IIOP session and error is nonzero,
error_type contains one of the following values:

0 (no error)

1 TIOP_EXCEPTION_SYSTEM
2 TIOP_EXCEPTION_USER

3 ITOP_ERROR

Using Test Script Services from an External C or C++ Program 279

Variable

Contains

IV fc ts

The “first connect” time stamp for http_request and
sock_connect.

IV fr ts

The time stamp of the first received data of sqlnrecv,

http nrecv,http_recv,http_header recv, sock nrecy,
or sock_recv. For sglexec and sglprepare, fr_tsissetto
the time the SQL database server responded to the SQL
statement.

IV _fs ts

The time the SQL statement was submitted to the server by
sglexec or sglprepare, or the time when the first data was
submitted to the server by http_request or sock_send.

IV _host

The host name of the computer on which the script is running.

IV _lc_ts

The “last connect” time stamp for http_ request and
sock connect.

IV lineno

The line number in source_file of the previously executed
emulation command.

IV 1r ts

The time stamp of the last received data for sqglnrecv,

http nrecv,http_ recv,http header recv, sock nrecy,
or sock recw. For sqlexec and sqlprepare, 1r_ts is set to
the time the SQL database server responded to the SQL
statement.

IV 1s ts

The time the SQL statement was submitted to the server by
sglexec or sglprepare, or the time the last data was
submitted to the server by http_ request or sock_send.

IV_mcommand

The actual (mapped) sequence of characters submitted to the
application under test by the most recent send or msend
command. For send commands, mcommand is always equivalent
to command.

IV_ncnull The number of null characters in an application response
examined by the previous receive command in attempting to
match this response.

IV _ncols The number of columns in the current screen (ASCII screen

emulation variable).

IV_ncrecv

The total number of nonnull characters from an application
response examined by the previous receive command in
attempting to match this response.

IV _ncxmit

The total number of characters transmitted to the application by
the previous send or msend command.

280 Appendix A

Variable

Contains

IV nkxmit

The total number of “keystrokes” transmitted to the application
by the previous send or msend command. For send commands,
nkxmit is always equivalent to ncxmit.

IV _nrecv

The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv, http recy,
sock nrecv, or sock recw.

IV_nrows

The number of rows in the current screen (ASCII screen
emulation variable).

IV_nusers

The number of total virtual testers in the current TestManager
session.

IV _nxmit

The total number of characters contained in the SQL statements
transmitted to the server in the last sglexec or sglprepare
command, or the number of bytes transmitted by the last

http request or sock send.

IV_response

Same as row.

IV_row The current row position (1-based) of the cursor (ASCII screen
emulation variable).
IV_script The name of the script currently being executed.

IV _source file

The name of the file that was the source for the portion of the
script being executed.

IV statement id

The value assigned as the prepared statement ID, which is
returned by sqlprepare and sglalloc_statement.

IV_total nrecv

The total number of bytes received for all HTTP and socket
receive emulation commands issued on a particular connection.

IV_total_ rows

Set to the number of rows processed by the SQL statements. If
the SQL statements do not affect any rows, total rows is set to
0. If the SQL statements return row results, total rows is set to
0 by sglexec, and then incremented by sqlnrecv as the row
results are retrieved.

IV_tux tpurcode

TUXEDO user return code, which mirrors the TUXEDO API
global variable tpurcode. It can be set only by the
tux_tpcall, tux_tpgetrply, tux tprecv, and
tux_tpsend emulation commands.

IV_uid

The numeric ID of the current virtual tester.

IV_user_ group

The name of the user group (from the suite) of the virtual tester
running the script.

IV_version

The full version string of TestManager (for example, 7.5.0.1045).

Using Test Script Services from an External C or C++ Program 281

282 Appendix A

Index

A

add

command line test script type 4

custom test script type 11

test script types 4
advanced

list of functions 106
IV_alltext internal variable 279
application

get processid 64

start 65

start (Java) 77

wait for termination id 66
attributes

of computers 69

of test cases 73, 74

block on shared variable 96
booleanValue 44
byteValue 44

C

calculate think-time 109
C/C++ 111
charValue 44
close

datapool 33

session 24

task 27
Command Line test script type 2
command line TSCA 112
command runtime status, report 88
command timer

start 52

stop 51

command, log 107
command-line execution engine 18
computer configuration attribute list, get 69
computer configuration attribute value, get 70
configuration attributes

of computers 69

of test cases 73, 74
connecting to

TSS server 100
context information, pass to TSS server 101
create

command line test script type 4

custom test script type 11

task 27

test script type 4
IV_cursor_id internal variable 279
custom test script adapter, building 120

D

datapools

access order during playback 37

close 33

get column name 34

get column value 43

get number of columns 33

get number of rows 40

list of functions 32

open 36

overview 32

reset access 39, 42

rewind 39

search for column/value pair 41

set row access 35
definition of TSCA 111
delay script execution 67
disconnect from TSS server 103
DLL, registering for TSCA 176
doubleValue 44

283

E

environment control commands 55

eval 277

pop 277

push 277

reset 277

restore 277

save 277

set 277
environment variables

current 55

default 55

list 270

operations, defined 276

reporting

Max_nrecv_saved 279

saved 55

set 54

setting values of 55
IV_error internal variable 279
IV_error_text internal variable 279
IV_error_type internal variable 279
errors

get details 68

print message 81
eval environment control command 277
EVAR_Delay_dly_scale 270
EVAR_Log level 272
EVAR_LogData_control 271
EVAR_LogEvent_control 271
EVAR_Record_level 273
EVAR_Suspend_check 274
EVAR_Think_avg 274
EVAR_Think_cpu_dly_scale 274
EVAR_Think_cpu_threshold 274
EVAR_Think_def 275
EVAR_Think_dist 276
EVAR_Think_dly_scale 276
EVAR_Think_max 276
EVAR_Think_sd 276
event log 45

284

F

IV_fc_ts internal variable 280

floatValue 44

IV_fr_ts internal variable 280

IV_fs_ts internal variable 280

functional groupings of TSCA functions 113
functions, summary of 126

G

get
application process id 64
computer configuration attribute list 69
computer configuration attribute value 70
elapsed runtime 56
error details 68
exponentially distributed random
number 78
internal variable value 57
name of datapool column 34
number of datapool columns 33
number of datapool rows 40
pathname 71
random number 79
run state 88
script option 72
script source file position 86
session option 24
task option value 28
test case configuration 75
test case configuration attribute list 74
test case configuration attribute value 73
test case name 76
test tool execution option 77
uniformly distributed random number 83
unique text string 84
value of datapool column 43
value of shared variable 95
getBigDecimal 44

H

header file, TSCA 115, 126, 183

header files
TIA 197
TSCA 115
IV_host internal variable 280
http_header_recv emulation command
bytes received 281
http_nrecv emulation command
bytes processed by 281
bytes received 281
http_recv emulation command
bytes processed by 281
bytes received 281
http_request emulation command
bytes sent to server 281

internal variables
get value of 57
IV_alltext 279
IV_amd_id 279
IV_cmdent 279
IV_col 279
IV_column_headers 279
IV_cursor_id 279
IV_error 279
IV_error_text 279
IV_error_type 279
IV_fc_ts 280
IV_fr_ts 280
IV_fs_ts 280
IV_host 280
IV_lc_ts 280
IV_linend 280
IV_Ir_ts 280
IV_Is_ts 280
IV_mcommand 280
IV_ncnull 280
IV_ncols 280
IV_ncrecv 280
IV_ncxmit 280
IV_nkxmit 281
IV_nrecv 281

IV_nrows 281
IV_nusers 281
IV_nxmit 281
IV_response 281
IV_row 281
IV_script 281
IV_source_file 281
IV_statement_id 281
IV_total_nrecv 281
IV_total_rows 281
IV_tux_tpurcode 281
IV_uid 281
IV_user_group 281
IV_version 281
list 58
set value of 107
intValue 44
IV_cmd_id internal variable 279
IV_cmdent internal variable 279
IV_col internal variable 279

IV_column_headers internal variable 279

J

Java test script type 2

L

IV_lc_ts internal variable 280
IV_linend internal variable 280
log

command 107

event 45

message 47

test case result 48
LogEvent_control 271
logging

list of functions 45, 50, 63
longValue 44
IV_Ir_ts internal variable 280
IV_Is_ts internal variable 280

285

M

Manual test script type 2
mapping of user actions to TSCA function
calls 115
Max_nrecv_saved environment variable
IV_mcommand internal variable 280
measurement
list of functions 50, 63
memory allocation 200
message
log 47
print 82
monitor
list of functions 84
monitor display message, set 85

N

IV_ncnull internal variable 280
IV_ncols internal variable 280
IV_ncrecv internal variable 280
IV_ncxmit internal variable 280
IV_nkxmit internal variable 281
IV_nrecv internal variable 281
IV_nrows internal variable 281
IV_nusers internal variable 281
IV_nxmit internal variable 281

o)

open
datapool 36
session 25
task 27
option

get session option 24
get task option value 28
set session option 26
set task option value 29

P

pathname, get 71

286

pop environment control command 277
print
error message 81
message 82
proxy TSS server
start 103
stop 104
proxy TSS server process
pass context information to 101
push environment control command 277

R

random numbers
get 79
get (exponentially distributed) 78
get (uniform) 83
seed 80
report, command runtime status 88
reporting environment variables
Max_nrecv_saved 279
reset
datapool access 39, 42
reset environment control command 277
IV_response internal variable 281

restore environment control command 277

rewind

datapool 39
IV_row internal variable 281
rttsee 18
rttsee.exe 16
rttss.dll 16
rttss.h 16
rttssremote.dll 16
run states

get 88

list of 90

set 89

S

save environment control command 277
script option, get 72
IV_script internal variable 281

script types 2
search
datapool 41
seed
random number generator 80
session
list of functions 99
SessionClose 24
SessionGetOption 24
SessionOpen 25
SessionSetOption 26
set
command timer start point 52
command timer stop point 51
datapool row access 35
environment variable 54
monitor display message 85
run state 89
script execution delay 67
script source file position 87
session option 26
synchronization point 98
task option 29
think-time delay 60
timer end point 62
timer start point 60
value of internal variable 107
value of shared variable 93
set environment control command 277
shared variables
assignment operations 93
block on 96
get value of 95
set value of 93
shortValue 44
sock_nrecv emulation command
bytes processed by 281
sock_recv emulation command
bytes processed by 281
sock_send emulation command
bytes sent to server 281
IV_source_file internal variable 281
SQABasic test script type 2
sqlalloc_statement emulation function
statement_id returned by 281

sqlexec emulation command

number of characters sent to server 281

sets rows processed to 0 281
sqlnrecv emulation command
increments total rows processed 281
rows processed by 281
sqlprepare emulation command

number of characters sent to server 281

statement_id returned by 281
stand-alone TSS server process

pass context information to 101

start 103

stop 104
start

application 65

command timer 52

Java application 77

timer 60

TSS server process 103
IV_statement_id internal variable 281
stop

command timer 51

timer 62

TSS server process 104
synchronization

list of functions 92, 93
synchronization point

set 98

T

tables

TIA functions 197
TaskAbort 26
TaskClose 27
TaskCreate 27
TaskExecute 28
TaskGetOption 28
TaskSetOption 29
TEdit

example 138
test case

get configuration 75

287

getname 76 TIGetTypes 248

log result 48 TISetConfiguration 250

test case configuration attribute list, get 74 TISetFilter 251

test case configuration attribute value, get 73 TISetFilterEx 253

test script adapter, components 16 TIShowProperties 256

Test Script Console Adapter. See TSCA TIShowSelectDialog 258

test script types 2 TIA function table 197
adding 4, 11 TIA functions

test scripts TIConnect 129, 131, 140, 146, 148, 155,
block on shared variable 96 157, 166, 172, 174, 177, 200, 208,

built-in and custom 112

get line position 86

get shared variable value 95

set line position 87

set shared variable value 93

set synchronization point 98
test tool option, get 77
testtypeapi.h 16

210, 216, 236, 250, 254
TIConnectEx 203
TIDisconnect 205
TIExecuteNodeAction 207
TIExecuteSourceAction 208
TIGetChildren 207, 217
TIGetConfiguration 213
TIGetFilterEx 215

think time TIGetlsChild 217
calculate 109 TIGetIsFunctionSupported 218
set 60 TIGetIsModified 220

TIA examples TIGetIsModifiedSince 221

TIConnect 201
TIConnectEx 204
TIDisconnect 206
TIExecuteNodeAction 207
TIExecuteSourceAction 209
TIGetChildren 211
TIGetConfiguration 214
TIGetFilterEx 216
TIGetIsFunctionSupported 219
TIGetIsNode 223
TIGetIsParent 224
TIGetIsValidSource 226
TIGetModifiedSince 228
TIGetName 230
TIGetNode 233
TIGetNodeActions 235
TIGetParent 237
TIGetRoots 239
TIGetSourceActions 241
TIGetSourcelcon 243
TIGetType 244
TIGetTypelcon 246

288

TIGetIsNode 222
TIGetIsParent 224
TIGetIsValidSource 225
TIGetModified 226
TIGetModifiedSince 227
TIGetName 230
TIGetNeedsValidation 231
TIGetNode 232
TIGetNodeActions 234
TIGetRoots 238
TIGetSourceActions 241
TIGetSourcelcon 242
TIGetType 244
TIGetTypelcon 245
TIGetTypes 247
TISetConfiguration 249
TISetFIlter 250
TISetFilterEx 252
TISetValidationFilter 254
TIShowProperties 255
TIShowSelectDialog 257

TIA functionsTIGetParent 236

TIConnect 129, 131, 140, 146, 148, 155, 157,

166, 172, 174, 177, 200, 208, 210,
216, 236, 250, 254

example 201
TIConnectEx 203
TIDisconnect 205

example 206
TIGetChildren 207, 217

example 211
TIGetlIsChild 217
TIGetIsFunctionSupported 218
TIGetIsModifiedSince 221
TIGetIsNode 222

example 223
TIGetlIsParent 224

example 224
TIGetIsValidSource 225
TIGetModified() 226
TIGetModifiedSince 227
TIGetName 230

example 230
TIGetNeedsValidation 231
TIGetNodeActions 242
TIGetParent

example 237
TIGetRoots 238

example 239
TIGetSourceActions 241
TIGetSourcelcon

example 243
TIGetType 244

example 244
TIGetTypelcon 245

example 246
TIGetTypes 247

example 248
timer

calculate think-time 109

get elapsed runtime 56

set think time 60

start 52, 60

stop 51, 62
TISetFilter 250

example 251
TISetValidationFilter 254

TIShowProperties 255
example 256
TIShowSelectDialog 257
example 258
toString 44
IV_total_nrecv internal variable 281
IV_total_rows internal variable 281
TSCA
building a custom test script adapter 120
built-in and custom test script types 112
command line TSCA 112
custom TSCA 112
defining or modifying the configuration of a
test script source 116
definition 111
editing test script properties 118
editing test script text 118
functional groupings 113
header file 115, 126, 183
integrating with source control 118
issues in building
accessing the data 121
custom action support 124
displaying properties 123
filtering 124
integration with source control 123
making a connection 120
supporting user configuration of the test
script source 123
mapping of user actions to function calls 115
opening the test script view 116
performing custom actions on the test script
or the test script source 118
registering the TSCA DLL with
TestManager 125
required and optional functionality 114
required functionality 111
selecting a test script for operations 117
setting a filter for test scripts 117
summary of functions 126
TSCA (Test Script Console Adapter)
about 111, 181
TSCA examples
TTConnect 133
TTDisconnect 136

289

TTEdit 138
TTGetlcon 148
TTGetName 152
TTNew 168
TTSelect 170
TTShowProperties 175
TSCA functions
TTAddToSourceControl 126
TTCheckIn 128
TTCheckOut 129
TTClearFilter 131
TTConnect 132
TTDisconnect 136
TTEdit 137
TTExecuteNodeAction 139
TTExecuteSourceAction 140
TTGetChildren 142
TTGetConfiguration 144
TTGetFilterEx 146
TTGetlcon 148
TTGetlsFunctionSupported 149
TTGetName 151
TTGetNode 153
TTGetNodeActions 155
TTGetRoots 156
TTGetSourceActions 157
TTGetSourceControlStatus 159
TTGetSourcelcon 161
TTGetTestToolOptions 162
TTGetTypelcon 165
TTNew 167
TTSelect 168
TTSetConfiguration 170
TTSetFilterEx 172
TTShowProperties 174
TTUndoCheckout 176
TSEAError 30
tsea.h 16
TSS server process
connect to 100
disconnect from 103
pass context information to 101
start 103
stop 104
TSSApplicationPid 64

290

TSSApplicationStart 65
TSSApplicationWait 66
TSSCommandEnd 51
TSSCommandStart 53
TSSConnect 100
TSSContext 101
TSSDatapoolClose 33
TSSDatapoolColumnCount 33
TSSDatapoolColumnName 34
TSSDatapoolFetch 35
TSSDatapoolOpen 36
TSSDatapoolRewind 39
TSSDatapoolRowCount 40
TSSDatapoolSearch 41
TSSDatapoolSeek 42
TSSDatapoolValue 43
TSSDelay 67

TSSDisplay 85
TSSEnvironmentOp 54
TSSePrint 81
TSSErrorDetail 68

TSSGetComputerConfigurationAttributeList 69
TSSGetComputerConfigurationAttributeValue

70
TSSGetPath 71
TSSGetScriptOption 72
TSSGetTestCaseConfiguration 75

TSSGetTestCaseConfigurationAttribute 73
TSSGetTestCaseConfigurationAttributeList 74

TSSGetTestCaseName 76
TSSGetTestToolOption 77
TSSGetTime 56
TSSInternalvarGet 57
TSSInternalvarSet 107
TSSJavaApplicationStart 77
TSSLogCommand 108
TSSLogEvent 45
TSSLogMessage 47
TSSLogTestCaseResult 48
TSSNegExp 78
TSSPositionGet 86
TSSPositionSet 87
TSSPrint 82

TSSRand 79
TSSReportCommandStatus 88

TSSRunStateGet 88
TSSRunStateSet 89
TSSSeedRand 80
TSSServerStart 104
TSSServerStop 103, 105
TSSSharedVarAssign 93
TSSSharedVarEval 95
TSSSharedVarWait 96
TSSShutdown 105
TSSSyncPoint 98
TSSThink 60
TSSThinkTime 109
TSSTimerStart 61
TSSTimerStop 62
TSSUniform 83
TSSUniqueString 84
TTAddToSourceControl 126
TTCheckIn 128
TTCheckOut 129
TTClearFilter 131
TTConnect 132

example 133
TTDisconnect 136

example 136
TTEdit 137
TTExecuteNodeAction 139
TTExecuteSourceAction 140
TTGetChildren 142
TTGetFilterEx 146
TTGetlcon 142, 148

example 148
TTGetlsFunctionSupported 149
TTGetName 151

example 152
TTGetNode 153
TTGetNodeActions 155
TTGetRoots 156
TTGetSourceActions 157
TTGetSourceControlStatus 159
TTGetSourcelcon 161
TTGetTestToolOptions 162
TTGetTypelcon 165

TTNew 167

example 168
TTSelect 168

example 170
TTSetConfiguration 170
TTSetFilterEx 172
TTShowProperties 174

example 175
TTUndoCheckout 176
tux_tpcall emulation command

sets TUXEDO user return code 281
tux_tpgetrply emulation command

sets TUXEDO user return code 281
tux_tprecv emulation command

sets TUXEDO user return code 281
tux_tpsend emulation command

sets TUXEDO user return code 281
IV_tux_tpurcode internal variable 281
type node structure, using 199

U

IV_uid internal variable 281
update, shared variable 93
IV_user_group internal variable 281
using the type node structure 199
utility

list of functions 63

\'

IV_version internal variable 281
Visual Basic test script type 2
VU test script type 2

w

wait
for application termination id 66

291

292

	Rational® TestManager
	Extensibility Reference
	Contents
	Preface
	About This Manual
	Audience
	Other Resources
	Integrations Between Rational Testing Tools and Other�Rational Products
	Contacting Rational Technical Publications
	Contacting Rational Customer Support

	Part 1: Adding Custom Test Script Types
	Introduction to Custom Test Script Types
	About Test Script Types
	Built-In Test Script Types
	Running a Test Script with the Command Line Adapter
	Adding Test Script Types
	Adding a Command Line Test Script Type
	Adding a Custom Test Script Type

	Using Test Script Options
	Editing Test Script Options for a Test Script Type
	Editing Test Script Options for a Test Script Source
	Editing Test Script Options for a Test Script
	Editing Test Script Options for an Instance in a Suite
	Editing Test Script Options for a Test Case Instance
	Setting or Viewing Option Values

	Using Test Tool Options
	Component Description and Communication Overview
	Using the Command Line Execution Engine

	Test Script Execution Adapter API
	About This API
	Communication Overview
	Data Types and C Header Files
	Summary
	SessionClose()
	SessionGetOption()
	SessionOpen()
	SessionSetOption()
	TaskAbort()
	TaskClose()
	TaskCreate()
	TaskExecute()
	TaskGetOption()
	TaskSetOption()
	TSEAError()

	Test Script Services
	About Test Script Services
	Datapool Services
	Summary
	TSSDatapoolClose()
	TSSDatapoolColumnCount()
	TSSDatapoolColumnName()
	TSSDatapoolFetch()
	TSSDatapoolOpen()
	TSSDatapoolRewind()
	TSSDatapoolRowCount()
	TSSDatapoolSearch()
	TSSDatapoolSeek()
	TSSDatapoolValue()
	Logging Services
	Summary
	TSSLogEvent()
	TSSLogMessage()
	TSSLogTestCaseResult()
	Measurement Services
	Summary
	TSSCommandEnd()
	TSSCommandStart()
	TSSEnvironmentOp()
	TSSGetTime()
	TSSInternalVarGet()
	TSSThink()
	TSSTimerStart()
	TSSTimerStop()
	Utility Services
	Summary
	TSSApplicationPid()
	TSSApplicationStart()
	TSSApplicationWait()
	TSSDelay()
	TSSErrorDetail()
	TSSGetComputerConfigurationAttributeList()
	TSSGetComputerConfigurationAttributeValue()
	TSSGetPath()
	TSSGetScriptOption()
	TSSGetTestCaseConfigurationAttribute()
	TSSGetTestCaseConfigurationAttributeList()
	TSSGetTestCaseConfigurationName()
	TSSGetTestCaseName()
	TSSGetTestToolOption()
	TSSJavaApplicationStart()
	TSSNegExp()
	TSSRand()
	TSSSeedRand()
	TSSePrint()
	TSSPrint()
	TSSUniform()
	TSSUniqueString()
	Monitor Services
	Summary
	TSSDisplay()
	TSSPositionGet()
	TSSPositionSet()
	TSSReportCommandStatus()
	TSSRunStateGet()
	TSSRunStateSet()
	Synchronization Services
	Summary
	TSSSharedVarAssign()
	TSSSharedVarEval()
	TSSSharedVarWait()
	TSSSyncPoint()
	Session Services
	Summary
	TSSConnect()
	TSSContext()
	TSSDisconnect()
	TSSServerStart()
	TSSServerStop()
	TSSShutdown()
	Advanced Services
	Summary
	TSSInternalVarSet()
	TSSLogCommand()
	TSSThinkTime()

	Test Script Console Adapter API
	About the Test Script Console Adapter
	TSCA Functionality
	Built-In and Custom Test Script Types
	The TSCA Function Calls
	Functional Groupings of TSCA Functions
	Required and Optional Functionality
	Mapping of User Actions to TSCA Function Calls
	Defining or Modifying the Configuration of a Test Script Source
	Opening the Test Script View
	Setting a Filter for Test Scripts
	Creating a New Test Script
	Selecting a Test Script for Operations
	Editing Test Script Properties
	Editing Test Script Text
	Performing Custom Actions on the Test Script or the Test Script Source
	Integrating with Source Control

	Building a Custom Test Script Console Adapter
	Prerequisite Skills
	Building a TSCA: Workflow and Implementation Issues
	Making a Connection
	Accessing the Data
	Integration with Source Control
	Displaying Properties
	Supporting User Configuration of the Test Script Source
	Filtering
	Custom Action Support

	Registering the TSCA DLL with TestManager
	TSCA Function Reference
	TTAddToSourceControl()
	TTCheckIn()
	TTCheckOut()
	TTClearFilter()
	TTConnect()
	TTDisconnect()
	TTEdit()
	TTExecuteNodeAction()
	TTExecuteSourceAction()
	TTGetChildren()
	TTGetConfiguration()
	TTGetFilterEx()
	TTGetIcon()
	TTGetIsFunctionSupported()
	TTGetName()
	TTGetNode()
	TTGetNodeActions()
	TTGetRoots()
	TTGetSourceActions()
	TTGetSourceControlStatus()
	TTGetSourceIcon()
	TTGetTestToolOptions()
	TTGetTypeIcon()
	TTNew()
	TTSelect()
	TTSetConfiguration()
	TTSetFilterEx()
	TTShowProperties()
	TTUndoCheckout()

	Part 2: Adding Custom Test Input Types
	Introduction to the Test Input Adapter API
	About Test Input Adapters
	TIA Functionality
	Built-In and Custom TIAs
	The TIA Function Calls
	Functional Groupings of TIA Functions
	Mapping of User Actions to TIA Function Calls
	Defining or Modifying the Configuration of a Test Input Source
	Opening the Test Input View
	Setting a Filter for a Test Input Source
	Selecting a Test Input from a Test Input Source
	Displaying Properties of a Test Input
	Performing Custom Actions on the Test Input Source
	Performing Custom Actions on a Test Input Node

	Building a Custom Test Input Adapter
	Prerequisite Skills
	Building a TIA: Workflow and Implementation Issues
	Making a Connection
	Accessing the Data
	Supporting Impact Analysis
	Displaying Properties
	Supporting User Configuration of Test Input Data
	Filtering
	Custom Action Support

	Registering a New Test Input Adapter

	Test Input Adapter Reference
	Summary of TIA Functions
	Using the Type Node Structure
	Note on Memory Allocation
	TIConnect()
	TIConnectEx()
	TIDisconnect()
	TIExecuteNodeAction()
	TIExecuteSourceAction()
	TIGetChildren()
	TIGetConfiguration()
	TIGetFilterEx()
	TIGetIsChild()
	TIGetIsFunctionSupported()
	TIGetIsModified()
	TIGetIsModifiedSince()
	TIGetIsNode()
	TIGetIsParent()
	TIGetIsValidSource()
	TIGetModified()
	TIGetModifiedSince()
	TIGetName()
	TIGetNeedsValidation()
	TIGetNode()
	TIGetNodeActions()
	TIGetParent()
	TIGetRoots()
	TIGetSourceActions()
	TIGetSourceIcon()
	TIGetType()
	TIGetTypeIcon()
	TIGetTypes()
	TISetConfiguration()
	TISetFilter()
	TISetFilterEx()
	TISetValidationFilter()
	TIShowProperties()
	TIShowSelectDialog()

	Using Test Script Services from an External C or C++ Program
	Connecting to a TestManager Listener Port
	Example: Attaching to a TestManager Listener Port

	Arguments of TSSEnvironmentOp()
	Example: Manipulating Environment Variables

	Arguments of TSSInternalVarGet()

	Index

