
Rational Software Corporation
Modeling Language Guide

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026107-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026107-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xi
Audience. xi

Other Resources . xi

Rational Rose RealTime Integrations With Other Rational Productsxii

Contacting Rational Customer Support . xiii

1 Modeling Language Guide .15
Unified Modeling Language . 15

Real-time Notations to UML . 16
Purpose . 16
Building Blocks . 16

Real-Time Systems . 16
Support for Real-time Systems . 17
Concurrency . 17
Capsules and Ports . 17
Capsule Structure Diagrams . 17

Real-Time Specializations Overview . 18
Executable Models . 18
Services Library . 19

Further Reading . 20

2 Elements .21
Overview. 22

Structural . 23
Behavioral . 23
Grouping. 23
Annotational . 23

Use Cases . 23

Actors . 24

Flow of Events . 25

Concrete and Abstract Use Cases . 26

Use Case Instance . 26

Use Case Packages . 26

Use Case Concurrency . 27
Contents v

Classes .27

Interfaces .28

Attributes .29

Operations .29

Association Class. .31

Utility Class .31

Instantiated Class Utility. .32

Parameterized Class .32

Instantiated Class .33

Parameterized Utility Class .33

Capsules .34

Capsule Roles .36

Ports. .37

Protocols .40

Cardinality and Capsule Structure .42

Substitutability .43

Multiple Containment .44

Actions, Messages, and Events .46

Actions .47

Call Event. .48

Signal Event .48

State Machine .48
Events and signals .49
State machine variations. .49
Overview .50

States. .50

Transitions .52
Trigger .52
Guard Condition .52
Actions .52

Run-to-Completion .54

Initial Point and Initial Transition .54

Final State .55
vi Contents

Top State .55

History - Hierarchical State Machines .56

Group Transitions .57

Junction Points .57

Choice Points .60

Transition Selection Rules .61

Interactions. .63

Components. .64

Nodes. .65

Packages .66

Notes .66

3 Relationships. 69
Overview .69

Real-time Notations . 69

Association. .70
Association Name . 71
Association Ends . 71
Association Multiplicity . 71
Navigability . 71
Aggregation . 72
Composition . 73
Visibility . 73
Qualifiers . 73
Constraints . 74
Association Classes . 74
Actor Communicates-Association . 74
Connectors. 75
Capsule Class Aggregation and Composition Relationships 75

Realization .77
Realization of Use Cases. 77

Generalization .78
Actor Generalization. 79
Include Relationship. 79
Extend Relationship . 80
Contents vii

Dependency. .81
Component-Dependency Relationship . 82

4 Diagrams . 83
Overview .83

Important Visual Relationships .84
Structure .84
Behavior .84
Real-time Specialization .85

Use Case Diagram. .85

Class Diagram .86

State Diagram .88

Collaboration Diagram .88

Capsule Structure Diagram .90

Sequence Diagram .91

Component Diagram .93

Deployment Diagram .95

Index . 97
viii Contents

Figures
Figure 1 Layered UML architecture . 15
Figure 2 The services library is a framework for real-time systems. 19
Figure 3 Elements overview. 22
Figure 4 A binary protocol as a composite of two roles . 41
Figure 5 Structural patterns with cardinality. 43
Figure 6 Compatibility Rules . 44
Figure 7 Multiple containment example . 46
Figure 8 Example state diagram . 50
Figure 9 An example use of history . 56
Figure 10 A collaboration with sequences defining different collaborations 64
Figure 11 A simple deployment diagram . 65
Figure 12 A simple association relationship . 70
Figure 13 Association with role name, multiplicity,& navigation 70
Figure 14 A capsule collaboration shown with 3 capsule roles connected with

connectors . 75
Figure 15 Class diagram . 76
Figure 16 Example includes relationship . 79
Figure 17 A Class Diagram Showing Aggregation Hierarchies 87
Figure 18 Capsule Structure Diagram Example . 91
Figure 19 An Abbreviated Call Setup Scenario . 93
Figure 20 Example Component Diagram. 94
Figure 21 Example Deployment diagram. 95
Figures ix

x Figures

Preface
This manual describes the basics of Unified Modeling Language (UML); a graphical
language for visualizing, specifying, constructing, documenting, and executing
software systems.

This manual is organized as follows:

■ Modeling Language Guide on page 15
■ Elements on page 21
■ Relationships on page 69
■ Diagrams on page 83

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.
xi

http://www.rational.com/documentation/

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
xii Preface

http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xiii

xiv Preface

1Modeling Language
Guide
Contents

This chapter is organized as follows:

■ Unified Modeling Language on page 15
■ Real-Time Systems on page 16

Unified Modeling Language

The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, documenting, and executing software systems. Although
conventional programming languages are good for expressing different algorithms,
they cannot directly show the high-level features of a system. The UML is therefore a
language for expressing high-level system properties that are best modeled
graphically.

UML provides a base visual modeling language; however, it is not possible for the
language to be sufficient for all domains. For this reason the UML has been designed
open-ended to make it possible for the language to be extended. Without bloating the
base language, new building blocks can be derived from the base to create ones that
are specific to a domain.

Figure 1 Layered UML architecture
15

Real-time Notations to UML

To address the category of systems that are characterized as complex, event-driven,
and potentially distributed, a set of new modeling constructs has been added to a
library of applied UML concepts. The notations that are based on the UML is
primarily for the use of modeling the architectures of complex real-time systems.

Purpose

This document does not attempt to present the UML in its entirety. Rather, the goal of
this document is to present, in detail, the real-time notations to the UML accompanied
by a brief overview of the key UML modeling concepts you will need to understand
when using Rational Rose RealTime.

Building Blocks

Building blocks include

■ Elements on page 21 - are the basic object-oriented building blocks of the UML and
real-time specializations. They are used to construct models.

■ Relationships on page 69 - are used to join elements together in models.

■ Diagrams on page 83 - help assemble related collections of elements together into a
graphical depiction of all or part of a model.

Real-Time Systems

Models are important tools for developing complex systems. Models are used to
represent the system at an abstract level, hiding unnecessary details. They enable
communication about the composition and operation of a system. In Rational Rose
RealTime, the model also serves as the basis for the implementation. All of the
implementation details required to build an executable are either contained within the
model, or generated from the model automatically.

Software developers have always used informal modeling techniques in the past, for
example, drawing whiteboard diagrams and writing documents.

The evolution of the Unified Modeling Language (UML) has enabled developers to
capture and communicate software designs with a common set of notations.

The UML uses visual notations to describe various views of an object model. Classes
are the fundamental building blocks of this object model. The abstract structure,
behavior and configuration of the software are described through diagrams. The
implementation details of each class can be specified through various class properties.
16 Chapter 1 - Modeling Language Guide

Support for Real-time Systems

In addition to supporting the regular UML constructs, we have used the extensibility
features of UML to define some new constructs that are specialized for real-time
system development.

Concurrency

Most real-time systems must be capable of performing many simultaneous activities.
External events are unpredictable, and the software must be able to handle interrupts
and other external events at any time without dropping current work in progress.

Capsules and Ports

UML for Real Time provides built-in light weight concurrent objects, known as
Capsules on page 34. Capsules are simply a pattern for providing light-weight
concurrency directly in the modeling notation. A capsule is implemented in Rational
Rose RealTime as a special form of class. Capsules allow the design of systems that
can handle many simultaneous activities without incurring the high overhead of
multitasking at the operating system level. In fact, many real-time projects end up
hand-coding some kind of mechanism to handle multiple simultaneous transactions.

In addition to their concurrency properties, capsules are highly encapsulated and
communicate through special message-based interfaces called Ports on page 37. A
capsule sends and receives messages through its ports. The ports are in turn
connected to other capsules, enabling the transmission of messages among capsules.
The advantage of message-based interfaces is that a capsule has no knowledge of its
environment outside of these interfaces, making it much more flexible and robust
than regular objects.

Capsule Structure Diagrams

A new diagram has been introduced to specify the capsule's interface and its internal
composition. The diagram is called a Capsule Structure Diagram on page 90, and is
based on the UML 1.3 specification collaboration diagram. This is a specification type
of diagram, and not an interaction diagram, as collaboration diagrams in other
versions of Rational Rose are. The semantics around the capsule structure diagram
allow Rational Rose RealTime to generate detailed code to implement the
communication and aggregation relationships among capsules.
Real-Time Systems 17

Real-Time Specializations Overview

Following is a list of the real-time specializations to the UML:

■ Capsules on page 34
■ Protocols on page 40
■ Ports on page 37
■ Connectors on page 75
■ Capsule Structure Diagram on page 90

In addition to the new modeling elements, which are used during analysis and
design, it was necessary to introduce new concepts and adapt others (components,
processors) to support building, running, and debugging of models built in Rational
Rose RealTime. Although you might be familiar with UML, it is worth while to
understand the added concepts and how Rational Rose RealTime uses common UML
constructs to build and deploy executable models:

■ Using components to build a model

■ Observability options - Probes, Monitors, Message traces, Source breakpoints

Executable Models

The addition of the capsule and the formal semantics surrounding the capsule
structure allows Rational Rose RealTime to generate, compile and run a complete C++
implementation based on a model containing capsules.

The ability to execute models has a revolutionary impact on the software
development process. The results are higher quality software, and shorter and more
predictable delivery cycles. Executing models is the surest way to find problems and
issues that whiteboarding and document reviews do not find. Even high-level
architectural models can be executed.

Use model execution to better understand the problem, to detect errors and problems
in requirements and architecture specifications, to explore alternative designs quickly,
and to test design models continuously during the development process.

Process note: To make the best use of Rational Rose RealTime, you should aim to get
your model running as often as possible. Making small, incremental changes and
running your model each day will bring much better results than making widespread
changes and working for weeks to get the model running again.
18 Chapter 1 - Modeling Language Guide

Services Library

To construct a Rational Rose RealTime model, two major parts are required:

■ The structure and behavior of the model

■ A Rational Rose RealTime Services Library (these are language-specific)

Figure 2 The services library is a framework for real-time systems

The services library is essentially a framework for real-time systems. It includes
functionality for controlling concurrency execution of finite state machines, for
delivering messages, and for providing timing and logging services. A framework is a
like a library of classes and operations used by an application, but with an inversion
of control, meaning that the main control lies in the framework, and the framework
invokes functions in the application to pass control to application objects as required.
Application classes are subclassed from framework classes so that they inherit
operations which are invoked by the framework.

There is no main() function in a Rational Rose RealTime model. The main() function is
contained in the services library and takes care of creating the capsules in your model
and kicking off the execution of their state machines. All you need to do is describe
the capsules and define state machines for them and they will be automatically
created and executed by the services library. The capsule state machines can, in turn,
invoke operations on other classes (data classes), and send messages to other
capsules. The services library is responsible for managing the creation and destruction
of capsules, and the delivery of messages between capsules (even across threads).
Real-Time Systems 19

The addition of the real-time specializations to the UML concepts allows the toolset to
generate complete code for the model which is tied in to the services library. When
you generate code for and compile a model in Rational Rose RealTime, the tool will
link it with a services library compiled for the particular platform you are running on.

Further Reading

The details of the Services Library routines that can be called from within your model
are described in the Language Add-in Language References.
20 Chapter 1 - Modeling Language Guide

2Elements
Contents

This chapter is organized as follows:

■ Overview on page 22
■ Use Cases on page 23
■ Actors on page 24
■ Concrete and Abstract Use Cases on page 26
■ Use Case Packages on page 26
■ Use Case Concurrency on page 27
■ Classes on page 27
■ Attributes on page 29
■ Operations on page 29
■ Association Class on page 31
■ Utility Class on page 31
■ Instantiated Class Utility on page 32
■ Parameterized Class on page 32
■ Instantiated Class on page 33
■ Parameterized Utility Class on page 33
■ Capsules on page 34
■ Capsule Roles on page 36
■ Ports on page 37
■ Protocols on page 40
■ Cardinality and Capsule Structure on page 42
■ Substitutability on page 43
■ Multiple Containment on page 44
■ Actions, Messages, and Events on page 46
■ Actions on page 47
■ Call Event on page 48
■ Signal Event on page 48
■ State Machine on page 48
■ States on page 50
■ Transitions on page 52
■ Run-to-Completion on page 54
■ Initial Point and Initial Transition on page 54
21

■ Final State on page 55
■ Top State on page 55
■ History - Hierarchical State Machines on page 56
■ Group Transitions on page 57
■ Junction Points on page 57
■ Choice Points on page 60
■ Transition Selection Rules on page 61
■ Interactions on page 63
■ Components on page 64
■ Nodes on page 65
■ Packages on page 66
■ Notes on page 66

Overview

Elements are the basic object-oriented building blocks of the UML, and real-time
notations. They are used to construct models. There are four kinds of elements:
Structural on page 23, Behavioral on page 23, Grouping on page 23, and Annotational on
page 23.

Figure 3 Elements overview
22 Chapter 2 - Elements

Structural

The structure of a system identifies the entities that are to be modeled. The primary
relationships captured between structure elements are communication and
containment relationships.

Behavioral

These elements represent the dynamic parts of the model that describe the changing
state of a system over time.

Grouping

These are organizational parts of a model. There is only one kind of grouping element
in UML.

■ Packages on page 66

Annotational

These provide common ways of describing or annotating any element in a diagram.

■ Notes on page 66

Use Cases

A use case is a description of a set of sequences of actions, called scenarios, that a
system performs to yield an observable result of value to an actor. A use case
describes what a system (subsystem, class, or interface) does but does not specify how
the system internally performs its tasks. This is left for the use case realizations to
show.

UML base Classes on page 27, Interfaces on page 28, Use Cases on
page 23, Components on page 64, Nodes on page 65

Real-time notations Capsules on page 34

UML base State Machine on page 48, Interactions on page 63

Real-time notations Protocols on page 40
Use Cases 23

Use cases can be concrete or abstract. See Concrete and Abstract Use Cases on page 26.

Graphical notation

The graphical notation for a use case in a use case diagram is an ellipse.

Other features

Use cases can have attributes and operations that you may represent just as for
classes. Since use cases are classifiers, you can also attach state machines, interaction
diagrams, sequence diagrams and class diagrams as more ways of describing the
behavior and scenarios described by a use case.

Relationships

Actors

An actor is anything that exchanges data with the system. An actor can be a user,
external hardware, or another system.

The difference between an actor and an individual system user is that an actor
represents a particular class of user rather than an actual user. Several users can play
the same role, which means they can be one and the same actor. In that case, each user
constitutes an instance of the actor. Since actors represent system users, they help
delimit the system and give a clearer picture of what it is supposed to do.

An actor specification is identical to a class specification with the addition of the
stereotype field set to actor.

Type From a use case to a(n)

Include Relationship on page 79 use case

Diagrams on page 83 use case

Actor Generalization on page 79 use case

Actor Communicates-Association on page 74 Actors on page 24
24 Chapter 2 - Elements

Graphical notation

The graphical notation for an actor is a stickman.

Relationships

Flow of Events

The flow of events of a use case contains the most important information derived
from use case modeling work. It should describe the use case's behavior clearly
enough for an outsider to easily understand.

The following represent some guidelines for the contents of the flow of events:

■ Describe how the use case starts and ends.
■ Describe what data is exchanged between the actor and the use case.
■ Do not describe the user interface.
■ Detail the flow of events. Remember that test designers are to use these to identify

test cases.

Structure

The two main parts of the flow of events are basic flow of events and alternative
flows of events. The basic flow of events should cover what “normally” happens
when the use case is performed. The alternative flows of events cover behavior of
optional or exceptional character in relation to the normal behavior, and also
variations of the normal behavior. You can think of the alternative flows of events as
“detours” from the basic flow of events, some of which will return to the basic flow of
events and some of which will end the execution of the use case.

Type From an actor to a(n)

generalization-relationship actor

Actor Communicates-Association on page 74 Use Cases on page 23
Flow of Events 25

Documenting

A flow of events document should be created for each use case. The format of the
document can vary depending primarily on how formal they are. The Rational
Unified Process provides templates for documenting flow of events. Alternatively,
SoDA can be used.

Concrete and Abstract Use Cases

There is a distinction between concrete and abstract use cases. A concrete use case is
initiated by an actor and constitutes a complete flow of events. “Complete” means
that an instance of the use case performs the entire operation called for by the actor.

An abstract use case is never instantiated in itself. Abstract use cases are included in
including, extending, or generalizing other use cases. When a concrete use case is
initiated, an instance of the use case is created. This instance also exhibits the behavior
specified by its associated abstract use cases. Thus, no separate instances are created
from abstract use cases.

The distinction between the two is important because it is concrete use cases the actors
will "see" and initiate in the system.

You indicate that a use case is abstract by writing its name in italics.

Use Case Instance

A use case instance is a specific flow of events through a use case. Many flows of
events are possible and many may be similar. Related flows of events should be
grouped into one use case.

Use Case Packages

A model structured into smaller units is easier to understand. It is easier to show
relationships among the model's main parts if you can express them in terms of
packages. A package is either the top-level package of the model, or stereotyped as a
use case package. You can also let the customer decide how to structure the main parts
of the model.
26 Chapter 2 - Elements

If there are many use cases or actors, you can use case packages to further structure
the use case model. A use case package contains a number of actors, use cases, their
relationships, and other packages; thus, you can have multiple levels of use case
packages (packages within packages). The top-level package contains all top-level use
case packages, all top-level actors, and all top-level use cases.

Use Case Concurrency

Instances of several use cases and several instances of the same use case work
concurrently if the system permits it. In use case modeling, you can assume that
instances of use cases can be active concurrently without conflict. The design model is
expected to solve this problem, because use-case modeling does not describe how
things work. One way to view this is to assume that only one use case instance is
active at a time and that executing this instance is an atomic action. In use case
modeling, the “interpreting machine” is considered infinitely fast, so that serialization
of use case instances is not a problem.

Classes

A class is a design-time specification for one or more distinct objects with common
structure, attributes, behavior, and operations. At run-time there are instances of
classes, referred to as objects. Use the implementation language syntax and semantics
when specifying Operations on page 29 and Attributes on page 29.

Structure

The structural features of a class are defined by its attributes.

Behavior

An object can react differently to a specific message depending on what state it is in.
You can specify the behavior of a class by drawing a State Diagram on page 88. For
each state the object can enter, the diagram shows what messages it can receive, what
operations will be carried out, and what state the object will be in thereafter.
Use Case Concurrency 27

Persistence

A persistent class represents instances where their state will be preserved when the
instance is destroyed. Instances created from a transitory class have their state
destroyed when the instance is destroyed.

Standard Stereotypes of Classes

■ Utility Class on page 31

■ Instantiated Class on page 33

■ Parameterized Class on page 32

■ Parameterized Utility Class on page 33

■ Instantiated Class Utility on page 32

■ metaclass

Graphical notation

A class icon is drawn as a three-part box, with the class name in the top part, a list of
attributes (with optional types and values) in the middle part, and a list of operations
(with optional argument lists and return types) in the bottom part.

The attribute and operation sections of the class box can be suppressed to reduce
detail in an overview. Suppressing a section makes no statement about the absence of
attributes or operations, but drawing an empty section explicitly states that there are
no elements in that part.

Interfaces

An interfaces is a model element that defines a set of behaviors (a set of operations)
offered by a classifier model element. A classifier may realize one or more interfaces.
An interface may be realized by one or more classifiers. Any classifiers that realize the
same interfaces may be substituted for one another in the system. Each interface
should provide an unique and well-defined set of operations.
28 Chapter 2 - Elements

Graphical notation

An interface is shown graphically as a circle with its name. Or it can be shown as a
class with the <<interface>> stereotype.

Attributes

An attribute is a named property of an object. The attribute name is a noun that
describes the attribute's role in relation to the object. An attribute can be scoped to a
class or an instance and configured with a specific visibility. In addition you can
specify its type, initial value, and multiplicity.

You should model the property of an object as an attribute only if it is a property of
that object alone. Otherwise, you should model the property with an association or
aggregation relationship to a class whose objects represent the property.

Changeability properties

Determines whether a value may be modified after the object is created. The possible
values are

■ changeable - No restrictions or modification.

■ frozen - The value may not be altered after the object is instantiated and its values
initialized; no additional values may be added to a set.

■ add only - Meaningful only if the multiplicity is not fixed to a single value;
additional values may be added to the set of values, but once added, a value in the
set cannot be removed or altered.

Operations

An operation is a service that can be requested from an object to affect its behavior.
The only way other objects can get access to or affect the attributes or relationships of
an object is through its operations. The operations of an object are defined by its class.
A specific behavior can be performed via the operations, which may affect the
Attributes 29

attributes and relationships the object holds and cause other operations to be
performed. An operation corresponds to a member function in C++ or to a function or
procedure in Ada.

Class or instance

An operation nearly always denotes object behavior. An operation can also denote
behavior of a class, in which case it is a class operation. This can be modeled in the
UML by modifying the scope of the operation.

Operations Have Parameters

In the specification of an operation, the parameters constitute formal parameters.
Each parameter has a name and type. You can use the implementation language
syntax and semantics to specify the operations and their parameters so that they will
already be specified in the implementation language when coding starts. Use the
implementation language syntax and semantics when specifying operations.

Properties

■ abstract - If an operation is abstract, then it does not have an implementation
defined, and one must be supplied by a descendant.

■ leaf (polymorphic) - If an operation is a leaf, then the operation cannot be
overridden by a descendant; if false, the operation is polymorphic, and the
implementation of the operation can be overridden by a descendant - that is, a leaf
operation is mapped to a C++ a non-virtual operation).

■ query - If an operation is query, then the execution of this operation leaves the
state of the system unchanged, meaning that the operation has no side effects.

These next properties address the concurrency semantics of an operation.

■ sequential - Callers of this operation must coordinate outside the object so that
only one flow of control is in the object at a time; if simultaneous calls occur, then
the semantics and integrity of the system cannot be guaranteed.

■ guarded - Multiple calls from concurrent flows of control may occur
simultaneously, but only one is allowed to commence; the others are blocked until
the performance of the first operation is complete.

■ concurrent - Multiple calls from concurrent flows of control may occur
simultaneously, and all of them may proceed concurrently.
30 Chapter 2 - Elements

Association Class

Use the association class to model properties of associations. The properties are stored
in a class and linked to the association relationship. Link Attributes are degenerate
association classes comprised only of attributes. To create an association class, create
an association and an association class. Connect the association class to the
association.

Graphical notation

An association class is a class linked to an association.

Utility Class

A utility class specifies a class whose attributes and operations are all class scoped. An
instantiated utility class represents an instance of a utility class.

Graphical notation

The class utility is shown with the same three compartments as a class.
Association Class 31

Instantiated Class Utility

An instantiated class utility is created by substituting actual values for the formal
parameters of a parameterized class utility.

Graphical notation

An instantiated class utility is displayed as utility class.

Parameterized Class

A parameterized class is a template for creating any number of instantiated classes
that follow its format. A parameterized class declares formal parameters. You can use
other classes, types, and constant expressions as parameters. You cannot use the
parameterized class itself as a parameter. You must instantiate a parameterized class
before you can create its objects.

In its simplest form, you use parameterized classes to build container classes.

You can also use parameterized classes to capture design decisions about the protocol
of a class. The arguments of the parameterized class can be used to import classes or
values that export a specific operation. In this form, a parameterized class denotes a
family of classes whose structure and behavior are defined independently of its
formal class parameters.

Graphical notation

A parameterized class is a class icon with a dashed-line box in the upper right corner.
The parameters are automatically displayed there.
32 Chapter 2 - Elements

Instantiated Class

An instantiated class is a class formed from a parameterized class by supplying actual
values for parameters. You create an instantiated class by supplying actual values for
the formal parameters of the parameterized class. This instantiation process forms a
concrete class in the family of the parameterized class. You must place the instantiated
class at the client end of an instantiate relationship (accessible using Create >
Instantiated Class on the Tools menu) that points to the corresponding
parameterized class.

An instantiated class whose actual parameters differ from other concrete classes in the
parameterized class' family forms a new class in the family.

To create an instantiated class, create a class and enter the class name with parameters
in brackets to distinguish it from other forms of classes.

Graphical notation

An instantiated class is depicted as a class.

Parameterized Utility Class

A parameterized utility class is a set of operations or functions that are not associated
with a higher level class and are defined in terms of formal parameters. Use a
parameterized class utility as a template for creating instantiated class utilities. You
must instantiate a parameterized class utility before you can create its objects.
Instantiated Class 33

Graphical notation

A parameterized class utility is a class icon with a dashed-line box in the upper right
corner and a gray shadow at the lower edge of the rectangle. The parameters are
automatically displayed there.

Capsules

Capsules are the fundamental modeling element of real-time systems. A capsule
represents independent flows of control in a system. Capsules have much of the same
properties as classes. For example, they can have operations and attributes. Capsules
may also participate in dependency, generalization, and association relationships.
However, they also have several specialized properties that distinguish them from
classes. The main characteristics that specializes capsules from other classes are:

Classes
have...

Capsules
have...

Details

public
operations

public
ports

Sending messages through public ports is the only method that
capsules can communicate with other capsules. Classes cannot
invoke operations directly on other capsules. Capsules can call
operations on classes, but since a capsule does not have public
operations classes cannot call operations on capsules.

public,
protected,
and private
attributes

private
attributes

A class’s structure is defined by its attributes. The same goes for
capsules; however, this structure is completely private, in the sense
that no outside object can directly access these attributes. Capsules
can have the following kinds of attributes: capsule roles, protected
ports, and classes.
Note: The only public attributes of a capsule are its public
ports.

operation
invocation

message
passing

Messages are the sole means of communication between capsules.
Messages are sent and received through ports.

behavior
defined by
methods

behavior
defined
by state
machines

The action that a class performs when an operation is invoked as
defined by the implementation of the operation. However, when a
capsule receives a signal event the behavior is controlled by its state
machine.
34 Chapter 2 - Elements

Structure

A capsule may have any number of attributes that define its structure or none at all.
These attributes represent some properties of the capsule class that are shared by all
instances. What differentiates a capsule from a class is how you can formally specify
the internal organization of its structure, as a network of collaborating capsule roles.
This collaboration is a specialized UML collaboration called a capsule collaboration.

Behavior

The behavior of a class is triggered by the invocation of a public operation on the
class. Whereas, a capsules behavior is triggered by the receipt of a signal event.

When a capsule receives a message from another capsule a signal event is generated
and some response by the capsule is usually required. This typically involves
performing some calculations, formulating a response, and sending one or more
messages. The optional state machine associated with a capsule represents its
behavior. It controls the operation of the capsule itself. The state machine is the only
element that can access the protected parts of the capsule.

Logical threads of control

Capsules provide a very light weight modeling element for breaking a problem down
into multiple threads of control. Each capsule instance has its own logical thread of
control, though it may share an actual processing thread (known as a “physical
thread”) with other instances.

Graphical notation

Since a capsule is a stereotype of a class, the stereotype icon appears in the name
compartment of the class rectangle.
Capsules 35

Relationships

Capsule Roles

Capsule roles represent a specification of the type of capsules that can occupy a
particular position in a capsule's collaboration, or structure. Capsule roles are strongly
owned by the container capsule, and cannot exist independently of the container
capsule. A capsule’s structural decomposition usually includes a network of
collaborating capsule roles joined by connectors.

Classification of capsule roles

Note that the classifications below are attributes of capsule roles rather than an
attribute of the capsule classes that fill the role. This maximizes the reuse potential of
capsule specifications.

■ Fixed - By default, capsule roles are fixed, meaning that they are created
automatically when their containing capsule is created, and are destroyed when
the container is destroyed.

Type From a capsule to a

generalization-relationship capsule (class view)

aggregation & composition-relationship capsule, protocol (class view)

dependency-relationship class, capsule (class view)

association class (class view)

connector capsules (capsule collaboration view)
36 Chapter 2 - Elements

■ Optional - Some capsule roles in the structure may not be created at the same time
as their containing capsule. Instead, they may be created subsequently, when and
if necessary, by the state machine of the capsule. And they can be destroyed before
the container is destroyed.

■ Plug-in - The structure of a capsule may contain plug-in capsule roles. These are,
in effect, placeholders for capsule roles that are filled in dynamically. This is
necessary because it is not always known in advance which specific objects will
play those roles at run time. Once this information is available, the appropriate
capsule instance (which is owned by some other composite capsule) can be
“plugged” into such a slot and the connectors joining its ports to other capsule
roles in the collaboration are automatically established. When the dynamic
relationship is no longer required, the capsule is “removed” from the plug-in slot,
and the connectors to it are taken down.

Cardinality

You can specify the cardinality of capsule roles as a shorthand structural method of
grouping multiple copies of the same type of capsule role in a graphically compact
and reusable pattern.

Substitutability

Optional and plug-in capsule roles can be designated as substitutable.

Ports

Ports are objects whose purpose is to send and receive messages to and from capsule
instances. They are owned by the capsule instance in the sense that they are created
along with their capsule and destroyed when the capsule is destroyed. Each port has
its identity, which is distinct from the identity and state of their owning capsule
instance.

Ports and Protocols

To specify which messages can be sent to and from a port, a port is associated with a
protocol role. The protocol role is the specification of a set of the messages that can be
received (in) and sent (out) from the port. The protocol role essentially defines the
port type.
Ports 37

A protocol is the specification of communication patterns between capsules. In any
communication scenario the exchange of messages (those being sent and those being
received) are different depending from which end of the communicating participants
you chose to view the exchange. A protocol specifies all the views of a
communication, and each of these different views are what we call the protocol roles.
Since a port plays the role of one participant in a communication relationship it's valid
message sets (in and out) are defined by those in a specific protocol role. When
creating a port, you must specify which participant (protocol role) this port will play
in the protocol. Currently, Rational Rose RealTime only supports binary protocols,
which involve just two participants, or two protocol roles. These roles are called the
'base' role and the 'conjugate'.

Communication Rules

In order for two ports to be connected by a connector, the ports must be compatible;
that is, every signal in the 'Out' set of one protocol role must be in the 'In' set of the
other protocol role. Each protocol role can have additional signals in the 'In' set;
however, there can not be any signals in the ‘Out’ set that are not in the corresponding
'In' set on the other side. In other words, the set of 'In' signals on both sides of two
connected ports must be equal to - or be a superset of - the set of 'Out' signals on the
other side. In addition, the data class of an 'Out' signal must be the same as - or a
subclass of - the data class of the corresponding 'In' signal of the other port.

Classification of Ports

Visibility

■ Public - Public ports are ports that are part of a capsule’s interface. These ports are
shown in a capsule collaboration diagram as being located on a capsules
boundary. Public ports may be visible both from outside the capsule and inside.

■ Protected - Protected ports are used to connect capsules to contained capsule roles.
These ports are not visible from the outside of a capsule since they are not part of
the capsule’s interface.

Connector type

■ Wired - Wired ports must be connected by a connector to other ports in order to
send messages. In a capsule’s structure these are the ports that are graphically
connected to other ports.

■ Non-wired - Non-wired ports are used to model dynamic communication
channels. These ports cannot be connected with connectors to other ports. Unlike
wired connections, which are established when a capsule is created and
disconnected when destroyed, non-wired connections can be dynamically
38 Chapter 2 - Elements

controlled. This is useful for modeling client/server designs where a shared
service is shared by a large number of clients, and the clients are not known at
design time.

Termination

■ Relay - Relay ports are by nature implicitly public and wired. They are used to
model connections that funnel signal events directly to protected capsule
components without being processed by the capsule itself. If a relay port is not
connected to an internal component, all signal events arriving on that port are lost.
Generally speaking, relay ports can be used to export the interfaces of contained
capsule roles.

■ End - End ports can be public or protected, wired or non-wired. Messages sent to
an end port can be processed directly by the capsule’s behavior. End ports are the
ultimate destination of all signal events sent by capsules. These signals are
generated in the state machines and received by state machines.

Graphical notation

The notation for a port uses white and black squares to indicate which protocol role
(base or conjugate), the port plays in a protocol. The white square is used to show
conjugated ports.

Class view - in a class diagram, capsule ports are listed in a special labeled list
compartment, which normally appears after the attribute and operator
compartments. In addition, a stereotyped <<port>> association shows the
relationship between the capsule and a protocol.

Note: From the class view, you cannot tell the role of the port in the protocol.
Ports 39

Capsule role view - only public ports are shown on capsule roles. Externally there is
no distinction between relay and end ports. The name of the port and protocol role
(base or conjugate) is displayed.

Capsule collaboration view - all ports are visible in the structure view. There physical
placement, either on the capsules container or inside, differentiates between protected
and public ports. End ports are shown with a line connected to a circle. The following
illustration shows the symbols for the different port types.

Protocols

The set of messages exchanged between two objects conforms to some
communication pattern called a protocol. It is basically a contractual agreement
defining the valid types of messages that can be exchanged between the participants
in the protocol. Therefore a protocol comprises a set of participants, each of which
plays a specific role in the protocol.

Each such protocol role is specified by a unique name and a specification of messages
that are received by that role as well as a specification of the messages that are sent by
that role (either set could be empty). As an option, a protocol may have a specification
40 Chapter 2 - Elements

of the valid communication sequences; a state machine may specify this. Finally, a
protocol may also have a set of prototypical interaction sequences (these can be
shown as sequence diagrams). These must conform to the protocol state machine, if
one is defined.

Protocol participants (protocol roles)

The fact that a protocol role is defined by what is "sent" and what is "received" implies
that a protocol role is specified from the perspective of only one of the participants in
a protocol. Thus, a protocol is composed of the different protocol roles, or perspectives
of some communication pattern.

Binary protocols

Binary protocols, involving just two participants, are by far the most common and the
simplest to specify. One advantage of these protocols is that only one role, called the
base role, needs to be specified when defining the protocol. The other side of the
communication pattern, called the conjugate, can be derived from the base role simply
by inverting the incoming and outgoing message sets. This inversion operation is
known as conjugation.

Figure 4 A binary protocol as a composite of two roles

When working with binary protocols there is no need to explicitly define the
conjugate role.
Protocols 41

Ports and protocols

Protocols are primarily used to identify the type of a port. Ports play the role of one
participant in a communication relationship, so technically the type of a port is
specified by the protocol role and not the protocol.

Graphical notation

A binary protocol can be shown using the standard notation for classifiers with an
explicit stereotype label and two optional specialized list compartments for incoming
and outgoing signal sets, as shown in Figure 4. The state machine and interaction
diagrams associated with a protocol are represented using the standard UML
notation.

Cardinality and Capsule Structure

You can specify the cardinality of capsule roles and ports as a shorthand structural
method of grouping multiple copies of the same type of element in a graphically
compact and reusable pattern.

Note: Cardinality is an attribute of the capsule role and not of the capsule class. The
decision of how many instances of a capsule are needed is not a property of the
capsule, rather it is based on the needs of the application.

We often refer to capsule roles or ports that have a specified cardinality as being
replicated, meaning that there are several copies.

Cardinality rules for capsule roles

■ Fixed - All instances of a replicated fixed capsule role are created automatically
when the container capsule is created.

■ Optional - Instances of replicated optional capsule roles are created dynamically.
Their number can vary from zero (0) up to the specified cardinality.

■ Plug-in - These slots are filled in dynamically. Their number can vary from zero (0)
up to the specified cardinality.

Cardinality and ports

In order to connect replicated capsule roles, use cardinality to group ports on a
capsule that share a common protocol. The cardinality factor on a port determines the
number of instances of a port.
42 Chapter 2 - Elements

Unspecified cardinality

Cardinality values do not have to be specified. They can be left open ended by using
the asterisk character '*'.

Common structural patterns

Different capsule collaboration capsule role configurations can be achieved using
combinations of cardinality applied to both ports and capsule roles.

Figure 5 Structural patterns with cardinality

Substitutability

Substitutability is a property of an optional or plug-in capsule role. It allows the
capsule role to be instantiated with either an instance of the capsule class represented
by the capsule role or any other compatible capsule class. Two capsules are
compatible if they have the same interface, or are subclasses of the same superclass.
Since a capsule's interface is defined by its public ports, compatible capsules must
have matching public ports.

Substitutability rules

To be compatible with its superclass, a subclass must have a matching compatible port
for every connected interface of the superclass reference. In the following example we
use the notation A(C1) to represent a port A of type protocol C1. Let Gen be a capsule
Substitutability 43

role belonging a generic (abstract) class in some design and let Real1, Real2, and Real3
be capsule roles belonging to subclasses of this class. We illustrate the compatibility
rules with three different cases in Figure 6.

Figure 6 Compatibility Rules

Multiple Containment

Multiple containment allows you to represent capsule roles that are simultaneously
part of two or more capsule collaborations. Specifying that two different capsule roles
are actually bound to the same run-time instance can simplify the structure of the
system by allowing it to be decomposed into different views. Figure 7 shows an
example design of a telephone switching system, which has a VoiceCallHandler
capsule that is responsible for processing calls, and a MaintenanceSystem capsule
that is responsible for maintaining system integrity, both of which contain the same
voiceLineHandler capsule role.

When to Use Multiple Containment

In order to understand the need for this, it is necessary to examine the meaning of
encapsulation in object-oriented design in general. When two or more capsule roles
are placed together in a common capsule, the intent is to capture some user-defined
relationship between these components. The simplest example of a relationship
44 Chapter 2 - Elements

between objects is pure physical containment; for example, a shelf contains a
particular card. When we move into the domain of software, however, the types of
relationships that exist can be quite diverse. In communications, for instance, when
two terminals are connected to each other in order to exchange information, they are
involved in a call relationship. The object-oriented approach encourages us to capture
such identifiable relationships as distinct objects. Note that, in physical terms, there is
no real entity corresponding to a call; however, it is quite useful to think of it in that
way.

After relationships such as these are captured in unique addressable objects, then it is
possible to conceive of operations over such objects, such as terminating a particular
call or adding another party to it. To the entities invoking the operations, the structure
and implementation within such objects are typically of no concern. Following this
line of thought leads us to conclude that these objects are in fact like any other
software objects: entities with a set of externally accessible operations and an
encapsulation shell that hides their internals. Therefore, capsules can be used to
represent arbitrary user-defined relationships between their component actors.

With this explanation of capsules, the need for multiple containment is more
apparent. It is required to capture situations where a capsule role is involved in
multiple simultaneous relationships with capsule roles in another containment. In our
communications example, a terminal can simultaneously be involved in a call and be
part of a device subsystem.

Multiple Containment Example

Each port on a capsule can only be used in one of the decomposition views. For
example, in the example below, if the callSuper port on the voiceLineHandler were
used in both the VoiceCallHandler and MaintenanceSystem, it would lead to a
conflict, so it is not allowed.
Multiple Containment 45

Figure 7 Multiple containment example

Actions, Messages, and Events

There are several ways for objects to communicate with each other. Regardless of the
mechanism used there is always someone sending the message, a sender, and
someone receiving the message, a receiver. When two objects communicate
something must be passed between them. The thing that is passed between two
objects must convey what the sender wants done, pass some optional information the
receiver might need to complete the requested behavior, and also specify the way in
which the thing will be communicated from the sender to the receiver.

■ Messages - A message is a specification of the thing that will be communicated
between two objects. A signal is a special type of message that is sent
asynchronously. An instance of a message can be called a stimulus or message
instance. However, message instance and message are commonly used
interchangeably.

■ Actions - An action represents the sending, or dispatching of a message by a
sender. The type of action can specify the type of request (for example, invoke
operation, or signal event to be raised).
46 Chapter 2 - Elements

■ Events - An event represents the reception of a message by the receiver. When the
message is received an event is raised in the receiver object. There are two kinds of
events: call events and signal events.

Graphical notation

The communication between objects is modeled in interaction diagrams by linking
the sender and receiver with an association.

Actions

Actions are the things the behavior does when a transition is taken. They represent
executable atomic computations that are written as statements in a detail-level
programming language and incorporated into a state machine. Actions are atomic, in
the sense that they cannot be interrupted by the arrival of a higher priority event. An
action therefore runs to completion.

Actions may be composed of any number of operation calls, creation or destruction of
other objects, or the sending of messages to other objects.

An action may be attached to the following parts of a state machine:

■ A transition (including a transition to an initial state)

■ A state, as an entry action

■ A state, as an exit action

Blocking actions

Because of run-to-completion semantics, any action that blocks - for example, by
invoking a synchronous operation call - will effectively block the entire state machine
from handling any new events that may arrive. Further event processing will only
resume after the action has completed.
Actions 47

Call Event

A call event represents the reception of a request to synchronously invoke a specific
operation.

Flow of control

A call event is sent synchronously, meaning that when an object invokes an operation
on another, control passes from the sender to the receiver. Once the receiver has
finished processing the event, the operation returns, and control is returned to the
sender.

Signal Event

A signal event represents the reception of a particular asynchronous message. A
signal event may be sent by the action of a state transition in a state machine. The
execution of an operation can also send signals.

The receipt of a signal event usually triggers a state transition in a state diagram.

Flow of control

When an object sends a signal event, it is sent asynchronously, meaning that control
does not transfer to the receiver. Once the signal event is sent, the sending object can
continue its action and start processing other events, instead of being blocked until
the receiver has finished processing the sent event.

State Machine

State machines are used to model the dynamic aspects of a system. Whereas
interactions model a set of roles that work together to perform some common
behavior, a state machine models the behavior of a particular class, protocol, or
capsule. State machines can be used to describe a use-case flow of events, or to
completely specify the behavior of classes that receive events.
48 Chapter 2 - Elements

Events and signals

Event-driven means that behavior is stationary until it is activated by the arrival of an
anticipated signal on one of its interfaces. After responding to an event, the process
reverts to a stable state in which it is ready to receive the next event. An event is
generated whenever a message is received by an object. An event is an occurrence that
may cause the state of an object to change; it has no duration and can precede or
follow another event. A message can be used to convey either information or data
values from one object to another.

State machine variations

Because state machines are used to describe the behavior of several different kinds of
elements, there are some small differences between what is allowed in each one:

■ Class and Use Case state diagrams - All trigger events are simple uninterpreted
text.

■ Protocol state diagrams - All trigger events are signals defined on the protocol.

■ Capsule state diagrams - All trigger events are defined by a port and signal pair.

➑ Limitation: final states are not allowed.

➑ Limitation: junction points do not support the continuation kind attribute;
that is, if a transition is not continued, it defaults to history (except for
internal transitions)
State Machine 49

Overview

A state diagram is a directed graph of states connected by transitions. A state diagram
describes the life history of objects of a given class. A state machine contains exactly
one initial state and initial transition, one top state, one or more states, choice points,
and the state transitions between them.

Figure 8 Example state diagram

States

A state is a condition during the life time of an object where it is ready to process
events. A state machine is essentially composed of a top state, which can itself contain
any number of other states. A state has the following parts:

■ Name - A state must have a name so that it can be distinguished from other states
that are in the same context.

■ Entry/Exit actions - Actions that are executed on entering and exiting the state - an
entry action is executed whenever a state is entered, regardless of which incoming
transition was taken. Similarly, an exit action is taken whenever we leave the state
from whatever outgoing transition.

Hierarchical states

A state can be composed of other states, called substates. This allows modeling of
complex state machines by abstracting away detailed behavior into multiple levels.

States that do not contain substates are called simple states. A state that has substates
is called a composite state. States may be nested to any level.
50 Chapter 2 - Elements

Graphical notation

States can be viewed from two different perspectives: an external view and an internal
view. The external view shows a state as a substate of its container state machine. The
external view is in effect an abstract view of the state. The internal view shows a states
internal details - its implementation.

External view

In this view a state is shown as a rounded rectangle with a name compartment.
Optional graphical clues can be shown at the bottom of the state rectangle to show
that a state is a composite state and to show if entry or exit actions have been defined.
All junction points are shown as solid dots. Details regarding the state transitions,
whether they terminate or continue within the composite state, are not shown.

Internal view

In this view you see the details of the composite state. The states border is seen as a
bolder rounded rectangle that encapsulates its internal details. Within this view you
can see if incoming transitions from the external view end on the state, go to history,
or continue to other substates.
States 51

Transitions

A transition is a relationship between two states: a source state and a destination state.
It specifies that when an object in the source state receives a specified event and
certain conditions are met, the behavior will move from the source state to the
destination state.

A transition has the following parts:

■ Trigger
■ Guard Condition
■ Actions

Trigger

With the exception of the initial transition all behavior in a state machine is triggered
by the arrival of events on one of an object’s interfaces. Therefore, a trigger defines
which events from which interfaces will cause the transition to be taken.

The trigger is associated with the interface on which the triggering event is expected
to arrive. Moreover, a transition can have multiple triggers such that an event that
satisfies any one of the triggers will cause the transition to be taken.

Guard Condition

Each trigger can have a boolean expression associated with it which will be evaluated
before the transition is triggered. This is referred to as a guard condition. If the
expression evaluates to True, then this trigger will cause the transition to be taken; if
the expression evaluates to False, the transition is not taken. If no guard condition is
specified, the condition defaults to True. Guard conditions are coded using a detail
level language which must evaluate to a boolean result, although it can contain an
arbitrarily complex expression.

Actions

The actions in a behavior are where an object does work. For example, it can perform
operation calls, create and destroy other objects, and sends signals to other objects. It
is important to understand that a transition cannot be interrupted by the arrival of an
event. A transition is therefore said to run-to-completion.
52 Chapter 2 - Elements

Kinds of transitions

■ Normal transitions - Transitions that originate and terminate on different states.

Following are three kinds of self-transitions that are characterized by originating and
terminating on the same state, having no continuing segments, and not ending on a
continuing junction point.

■ Inner self transitions - Where the exit and entry code is not executed for the state
on which it originates and terminates.

■ Inner internal self transitions - Where the transition executes without exiting or
re-entering the state in which it is defined. And in addition the exit and entry
actions of all states which where exited and re-entered are not executed. These
kinds of transitions are similar to having global operations defined on a state
machine; when taken do not change the state of the system.

■ External self transitions - Where the exit and entry code is executed for the state
on which it originates and terminates.

Junction points

Junction points provide a way of correlating different segments of a transition that
span multiple hierarchical contexts. They are located on the boundary of a state, and
represent either the source or destination of a transition segment.

All transitions originate and terminate on a junction.

Graphical notation

A transition is rendered as a solid directed line from a source state to a target state. It
can be decorated in different ways: a black arrow head indicates that actions have
been associated with the transition; a broken transition line indicates that no triggers
have been defined for the transition; a dashed line indicates an internal self-transition.
Transitions 53

Run-to-Completion

The processing of a single event at a time by a state machine is known as a
run-to-completion step. Events are dispatched and processed by the state machine,
one at a time.

Simplifying concurrency

If preemption were allowed in a state machine, the handling of a high-priority event
could possibly modify some internal variables that were in the process of being
modified as a result of the previous low priority event. When the low priority
processing is resumed these variables would be changed, leading to errors.

With the run-to-completion approach, handling of the current event does not allow
any interruptions, even by the arrival of higher priority events - hence, avoiding the
internal concurrency problem. The advantage of this model is simplicity. The biggest
disadvantage is that processing of events cannot take too long to ensure a timely
processing of higher priority events.

Initial Point and Initial Transition

An initial point is a special point which explicitly shows the beginning of the state
machine. You connect the initial point to a start state. Where the start state will be the
first active state in the objects state machine. The transition from the initial point to the
start state, initial transition, is the first transition taken before any other transition.
Only one initial state is allowed in each state diagram.

Note: The transition from an initial point to the start state can have an action;
however, the other transition features, including a guard condition and trigger event,
are not allowed.

Transitions to and from the initial state

Only one outgoing transition can be placed from the initial point.

There can be several incoming transitions to the initial state. In this case the initial
state acts like a junction point which forces the behavior back through the initial
transition. If the initial transition is used to completely initialize an object, then any
incoming transition to the initial state will effectively reset the behavior of an object
without having to destroy then re-create it.
54 Chapter 2 - Elements

No initial transition

A state machine does not require an initial transition. In the example below, when the
state machine is created we are in the Top state until the triggering event for t1 is
received.

Graphical notation

The initial state icon is a small filled circle:

Final State

A final state if a special kind of state signifying that the enclosing composite state is
completed. If the enclosing state is the top state, then it means that the entire state
machine has completed. A final state cannot have any outgoing transitions.

Final states cannot be added to a capsule state diagram.

Top State

The top-level state that is the root of the state machine containment hierarchy. There is
exactly one state in every state machine that is the top state.

The top state cannot have exit and entry actions, or outer self-transitions.
Final State 55

History - Hierarchical State Machines

The history of a state is defined as the substate that was the last current substate the
last time the state was active. In the case of simple states, they are always the last
active state.

History is useful when dealing with situations where an event takes control away
from the current state and initiates a separate behavior sequence for handling the new
event. The new sequence can involve new states and transitions. However, once
completed, we often want to resume from the point before the interruption occurred.

Continuation kinds - shallow history, deep history and default

When a transition terminates on shallow history, the active substate becomes the most
recently active substate prior to this entry. Whereas, deep history implies returning to
history at all state hierarchy levels.

Example

A common use of history is shown in the state machine in on page 1-56. In this case
transition ee is a self-transition that has a trigger for an event that none of the
substates can handle. When that event occurs the self-transition will fire then go to
history, meaning that it will revert to the last active substate. The effect is to perform
event handling without changing the state of the system.

Figure 9 An example use of history

Note: Beware of how entry and exit actions are called when the ee transition is taken.
For example, if the current active state is S2, when ee is triggered, the exit action for S2
will be taken, then the actions for ee will execute, and finally the entry action for S2
will be executed.
56 Chapter 2 - Elements

Group Transitions

Group transitions are transitions from hierarchical states that are common to all the
substates within that state. Thus common behavior that is normally represented by
equivalent transitions from every state, can be represented by a single transition
originating from the containing hierarchical state.

Junction Points

Junction points are located on the boundary of states, and represent either the source
or the destination of a transition segment. Junction points are split into those that
terminate on the state boundary, history junctions, and those which are notations that
continue within the state. Similarly transitions outgoing from a hierarchically nested
state are divided into those that terminate on the enclosing state and those that
continue from the state boundary to a target state.

Note: Every transition, whether composed of multiple segments or of a single
segment, eventually terminates to a junction point.
Group Transitions 57

Transition segments

Transitions that span multiple hierarchies, thus cross state boundaries, change context
on the way from the source to the destination state. Therefore they must be
partitioned into different segments. Each transition segment has a distinct name, and
only the originating segment has a trigger defined. The sum of all transition segments
is called the transition chain.

Note: Transition chains are executed in one single run-to-completion step.

Joining transition segments

Two or more transition segments can converge on to a single junction point. This
allows multiple transitions to be defined, which perform the same action in response
to an event, and share the same destination state. In the example below t4 and t9 both
terminate on the same junction point.

Note: Only the originating transition segments can have triggers defined. For
example, although t6 can have actions, it cannot have a trigger.

Continuation

When a transition terminates on a composite state (there are no other transitions
continuing from the junction point), the behavior of the state machine at this point is
determined by the Continuation kind property of the terminating junction point.

This selection specifies the semantics for how the state history will be used when there
is no continuing transition. There are three options:

■ Default - Specifies that the default (initial) transition should be taken.

■ History - Specifies that the state should return to shallow history.

■ Deep History - Specifies that the state should return to deep history, meaning that
all substates also return to history. This is the behavior for all capsule state
machines, so it is automatically selected.

Note: The default for capsule state machines is to always go to deep history, so deep
history will be automatically selected for capsule states, and the selections will be
grayed out.
58 Chapter 2 - Elements

Graphical notation

Junction points are displayed differently depending whether a state is shown from an
abstract view, as a substate of another containing state, or whether shown from a
detailed view, the inside of a composite state. Junction points viewed from the
abstract state view are always shown as a solid dot. However, from the detail view,
different junctions are shown with graphical clues.

Continuing junctions

Type of
junction

Example Shown as...

internal t8 originates from an internal junction. The
junction is not visible from the abstract view
of this state.

a small circle on the state
boundary

external t7 originates from an external junction. This
junction is visible from the external view of
the state so that it can eventually be connected
to. Until an external junction has been
connected it behaves like an internal junction.

a solid circle connected with a
solid line to the container state’s
boundary.

external
incoming

t6 originates from an external incoming
junction. The label of the transition segment
that is attached to the junction is shown as e6.
t6 cannot have a trigger.

a solid circle connected with a
solid line to the container state’s
boundary with an arrow at the
circle.

external
outgoing

t5 terminates on an external outgoing
junction. The next transition segment is
shown as e5. t5 has a trigger.

a solid circle connected with a
solid line to the container state’s
boundary with an arrow at the
container state boundary.
Junction Points 59

Terminating junctions (to history)

Choice Points

Choice points allow a single transition to be split into two outgoing transition
segments, each of which can terminate on a different state. The decision of which
branch to take is made after the transition is taken.

Choice points are motivated mainly by practical considerations: it often happens that
the decision on which state to terminate a transition can only be made following
certain calculations. Each choice point has an associated boolean predicate that is
evaluated after the incoming transition action is executed. Depending on the truth
value of this predicate, one or the other branch is taken.

Type of
junction

Example Shown as...

internal t8 terminates on an internal terminating
junction. This junction is not visible
from the external view of the state.

a circle with the letter 'H' (for history)
connected to the container states
boundary with a dotted line.

external t7 terminates on an external
terminating junction. This junction is
visible from the external view of the
state. If this junction is ever used to
connect another transition segment, it
will become a continuing junction,
since it will no longer terminate a
transition.

a circle with the letter 'H' (for history)
connected to the container states
boundary with a solid line.

external
incoming

e3 terminates on an external
terminating junction. This junction is
visible from the external view of the
state.

a circle with the letter 'H' (for history)
connected to the container states
boundary with a solid line with an
arrow at the circle.
60 Chapter 2 - Elements

Example

A very common use of choice points is to count events. That is when the decision of
transferring from one state to the next depends on the number of events that have
occurred. For example, if a player can only draw cards once he has received 5 cards
from a dealer, you could model this behavior the following way:

The player would keep track of how many cards he has received and every time a
new card is received would test if he has enough cards.

Graphical notation

A choice point is rendered as a circle with one incoming point, and two outgoing for
the true and false transitions. The choice point is shown with a 'C' in the middle if the
boolean predicate is defined:
.

Transition Selection Rules

When an event is ready to be processed by a state machine, a search for a candidate
transition takes place to determine which one will be taken. A transition is said to be
enabled if its trigger is satisfied by the current event, meaning that the transition has
the same event and interface specified as the current event, and the guard condition
evaluates to true.
Transition Selection Rules 61

The search order is defined by the following algorithm:

1 The search begins in the innermost current active state.

2 Within the scope of the innermost current active state, transitions are evaluated
sequentially. If a transition is enabled, the search terminates and the corresponding
transition is taken.

3 If no transition is enabled in the current scope, the search in step 2 is repeated for
the next higher scope, one level up in the state hierarchy.

4 If the top-level state has been reached and no transitions are enabled, then the
current event is discarded and the state of the behavior remains unchanged.

When a transition is enabled the algorithm continues with the following:

1 If the enabled transition is not an internal transition, then execute the exit actions
of all substates starting with the deepest history up to the current scope.

2 If the enabled transition is an internal transition, then none of the substates exit
and entry actions are executed.

3 Execute the enabled transition (this includes all the transition segments) actions.
This chain ultimately terminates on a simple state. Note that executing the
transition may include executing other state entry and exit actions as well.

4 The terminating simple state becomes the current active state.

Example

In the following example t1 is a group transition outside of S1. If S11 is the current
active state when the current event enabled transition t1, then the following actions
would be executed as part of the transition chain.

1 Exit action for S11

2 Exit action for S1

3 Action code for t1

4 Entry action for S1

5 Entry action for S11
62 Chapter 2 - Elements

S11 remains the current active state after the transition is complete.

Interactions

An interaction is a behavior that consists of a set of messages exchanged among a set
of objects or roles to accomplish a specific purpose. Interactions can be given in two
different forms: either a specification level (showing classifier roles, association roles,
and messages) or at the instance level (showing objects or instances, links, and
stimuli). Interactions are important to modelers because they clarify the roles things
play in a particular scenario, and thus provide input for determining interfaces
(protocols and the public operations of a class).

Interactions model the dynamic aspects of a model. Interactions can be modeled in
two views: in sequence diagrams and in collaborations.

Collaborations are the constraining element to a set of sequences. The sequences show
all the different communication scenarios that can occur between the instances or
roles in the collaboration.
Interactions 63

Figure 10 A collaboration with sequences defining different collaborations

Components

Components are used to model the physical elements that may reside on a node, such
as executables, libraries, source files, and documents. The component, therefore,
represents the physical packaging of the logical elements, such as classes and
capsules.

Mapping from logical to physical

The mapping from design - that is, classes and capsules - to source code and
executables is not an easy task. It is during this phase that the majority of errors are
introduced into a system. In addition, there is always the risk that the implementation
diverges from the original design. However, since the UML is a well-formed
language, with the help of tools, models can be automatically generated into a lower
level language and compiled into an executable. With automatic compilation of your
design, the model becomes the system.

In the context of automatic executable generation, a component is used to configure
sets of design elements that are to be generated and built. In addition, several
configuration parameters relating to the generation of the executable, such as
dependencies and compiler preferences, are maintained by the component.
64 Chapter 2 - Elements

Component instances

A component can have instances. An instance of a component can be a single
executable, or a library that can reside on a number of different nodes. To allow for
this, specific component instances can be assigned to nodes. Component instances are
not shown in the component diagram. They can only be shown in the deployment
diagram.

Organization

Components can be organized by placing them in packages.

Relationships

Nodes

Nodes represent physical devices, more specifically, a computational resource having
memory and processing capability. Component instances reside and run on nodes.
Use nodes to model the topology of the hardware on which your system executes.

Connections

The most common relationship between nodes is an association. In the context of
deployment, an association represents a physical connection between nodes.

Figure 11 A simple deployment diagram

Type From a component to a(n)

dependency-relationship component

realization-relationship interface
Nodes 65

Packages

A design package is a collection of classes, relationships, use-case realizations,
diagrams, and other packages. It is used to structure the design model by dividing it
into smaller parts. Packages are used primarily for model organization.

Note: Although packages can serve as a unit of configuration management, for
pragmatic reasons it is preferable to manage versioning at the class level, than at the
package level. Rational Rose RealTime supports class level versioning.

The big picture

The design model can be structured into smaller units to make it easier to understand.
By grouping design model elements into packages, then showing how those
groupings relate to one another, it is easier to understand the overall structure of the
model.

Package Content Visibility

A class contained in a package can be public or private. A public class can be
associated by any other class. A private class can only be associated with classes
contained within the same the package.

A package interface consists of a package's public classes. The package interface
(public classes) isolates and implements the dependencies on other packages. In this
way, parallel development is simplified because you can establish interfaces early on,
and the developers need to know only about changes in the interfaces of other
packages.

Notes

A note captures the assumptions and decisions applied during analysis and design.
Notes may contain any information, including plain text, fragments of code, or
references to other documents. A note holds an unlimited amount of text and can be
sized accordingly.

Notes behave like labels. They are available on all diagram toolboxes. Notes only
show up where they have been placed on diagrams. They are not considered part of
the model. Notes may be deleted like any other item on a diagram.
66 Chapter 2 - Elements

Graphical notation

The shape of a note is a rectangle with a folded edge in the upper right hand corner.

Relationships

A note may be unconnected, meaning that it applies to the diagram as a whole. You
can also attach a note via a note anchor to any item or items that can be selected in a
diagram.
Notes 67

68 Chapter 2 - Elements

3Relationships
Contents

This chapter is organized as follows:

■ Overview on page 69
■ Association on page 70
■ Realization on page 77
■ Generalization on page 78
■ Dependency on page 81

Overview

Most often model elements must collaborate with other elements in a number of
ways. Relationships allow representation of how elements stand in relation to others.

There are four main types of relationships in the base UML:

■ Association on page 70 - represent structural relationships between elements

■ Realization on page 77 - represent the relationship between an interface and its
implementation

■ Generalization on page 78 - link generalizations with their specializations

■ Dependency on page 81 - represent using relationships between elements

The relationships expressed above are in simple form. However, they also have a
number of properties that allow them to be used to model relationships with an
increased level of detail. This increased level of detail is necessary in order for total
source code generation of a model.

Real-time Notations

In addition to the base UML relationships, the real-time specialization is a specialized
association role relationship: Connectors on page 75 - is a specialized association role
that captures the static communication relationships between capsule roles.
69

Association

An association is a structural relationship that is used to connect one element to
another. Associations can be used during analysis to initially identify general
relationships between classes. As your model evolves, you will add additional
properties to associations to make them more specific.

Association roles

The relationships between roles in a collaboration diagram are called association
roles. These define the required communication links between the roles in a
collaboration.

Graphical notation

The graphical notation of an association will depend on the amount of detail that has
been added to describe it.

Figure 12 A simple association relationship

Figure 13 Association with role name, multiplicity,& navigation

Additional properties

You can assign a variety of additional properties to association relationships. They
include:

■ association name
■ association ends
■ association multiplicity
■ navigability
■ aggregation
■ composition
■ visibility
70 Chapter 3 - Relationships

■ qualifiers
■ constraints
■ association classes
■ Actor communicates-association
■ Connectors

Association Name

You can name associations to describe the nature of the relationship between the
elements it links. Although relationships can have names, you won't necessarily need
to include one if the association includes association ends.

Association Ends

The end of an association where it connects to an element is called an association end.
End names can be used instead of association names to describe the role an element
plays in the relationship.

Association Multiplicity

It defines the number of objects that participate in an association relationship. There
are two multiplicity indicators for each association, one at each end.

Multiplicity is a specification of the range of allowable cardinalities that a set may
assume. The multiplicity is written as a range or as an explicit value.

Navigability

The navigability property on an association end indicates that it is possible to
navigate from a associating class to the target class using the association. This may be
implemented in a number of ways: by direct object references, by associative arrays,
hash-tables, or any other implementation technique that allows one object to reference

1 Exactly one

0..* Zero or more

1..* One or more

0..1 Zero or one

7..9 Specific range

6 A specific number
Association 71

another. Navigability is indicated by an open arrow, which is placed on the target end
of the association line next to the target class (the one being navigated to). The default
value of the navigability property is true.

Aggregation

Aggregation is a special form of association that specifies the whole-part relationship
between an aggregate (whole) and the component (part). There are many examples of
aggregation relationships: an Elevator contains Doors, within a company
Departments are made-up of Employees, a Computer is composed of a number of
Devices. To model this, the aggregate (Elevator) has an aggregation association to its
constituent parts (Doors).

Graphical notation

A hollow diamond is attached to the end of an association path on the side of the
aggregate (the whole) to indicate aggregation.

Composition

If there is strong inter-dependency relationship between the aggregate and the parts -
where the definition of the aggregate is incomplete without the parts - then a
composition should probably be used instead of a plain aggregation.

Aggregate or association?

Aggregation should be used only in cases where there is a composition relationship
between classes, where one class is composed of other classes, where the "parts" are
incomplete outside the context of the whole. Consider the case of an order: it makes
no sense to have an order which is "empty" and consists of "nothing". The same is true
for all aggregates: Departments must have Employees, Families must have Family
Members, and so on.

If the classes can have independent identity outside the context provided by other
classes, and if they are not parts of some greater whole, then the association
relationship should be used. In addition, when in doubt, an association may be more
appropriate. Aggregations are generally obvious, and choosing aggregation is only
done to help clarify. It is not something that is crucial to the success of the modeling
effort.
72 Chapter 3 - Relationships

Composition

Composition is a form of aggregation with strong ownership and coincident lifetime
of the part with the aggregate. The multiplicity of the aggregate end may not exceed
one (i.e. it cannot be shared). The aggregation is also unchangeable, that is once
established, its links cannot be changed. By implication, a composite aggregation
forms a “tree” of parts, with the root being the aggregate, and the “branches” the
parts.

A composition should be used over “plain” aggregation when there is strong
inter-dependency relationship between the aggregate and the parts; where the
definition of the aggregate is incomplete without the parts.

Graphical notation

A solid filled diamond is attached to the end of an association path to indicate
composition. In this example, the Customer Interface is composed of several other
classes. In this example the multiplicities of the aggregations are also specified.

A CustomerInterface object knows which Receipt Printer, Keypad, and Speaker
objects belong to it.

Visibility

There are circumstances in which you will want to limit the visibility of the
association relative to elements outside the association.

The visibility property can be used to control the visibility of elements owned by
packages and the visibility of the features (attribute or operation) of a classifier.
Possible values are

■ Public - Public access specifies that any outside classifier with visibility to
classifier can use the feature. This is the default visibility.

■ Protected - Protected access means that classifier features are accessible only to
descendants, friends, or to the classifier itself.

■ Private - Private access means that the features of the classifier are accessible only
to the classifier itself.

Qualifiers

Qualifiers are used to further restrict and define the set of instances that are associated
to another instance; an object and a qualifier value identify a unique set of objects
across the association, forming a composite key. Qualification usually reduces the
multiplicity of the opposite end; the net multiplicity shows the number of instances of
the related class associated with the first class and a given qualifier value. Qualifiers
Association 73

are drawn as small boxes on the end of the association attached to the qualifying class.
They are part of the association, not the class. A qualifier box may contain multiple
qualifier values; the qualification is based on the entire list of values. A qualified
association is a variant form of association attribute.

Constraints

The basic constructs of associations, are usually sufficient in describing most
structural relationships you will encounter. But they cannot describe them all. In
UML, you can use constraints, on association ends and associations, to capture
important conditions of the association. The constraint is an expression of some
semantic condition that must be preserved while the system is in a steady state.

Graphical notation

Constraints are shown in curly braces '{', '}'.

Implementing constraints

In practice, the constraints identified in the model should be verified in your system.
To be valuable, constraints shouldn't simply be a modeling aid. An approach to
implementing constraints is to use assertions (if your programming language
supports them) to verify post conditions, pre-conditions, and invariants.

Association Classes

An association class is an association that also has class properties (such as attributes,
operations, and associations). It is shown by drawing a dashed line from the
association path to a class symbol that holds the attributes, operations, and
associations for the association. The attributes, operations, and associations apply to
the original association itself. Each link in the association has the indicated properties.
The most common use of association classes is the reconciliation of many-to-many
relationships (see example below). In principle, the name of the association and class
should be the same, but separate names are permitted if necessary. A degenerate
association class just contains attributes for the association; in this case you can omit
the association class name to de-emphasize its separateness.

Actor Communicates-Association

Use cases and actors interact by sending signals to one another. To indicate such
interactions we use a communicates-association between use case and actor. A use
case has at most one communicates-association to each actor, and an actor has at most
one communicates-association to each use case, no matter how many signal
transmissions there are. The complete network of such associations is a static picture
of the communication between the system and its environment.
74 Chapter 3 - Relationships

Communicates-associations are not given names. Because there can be only one
communicates-association between a use case and an actor, you need only specify the
start and end points to identify a particular communicates-association.

Connectors

Connectors really capture the key communication relationships between capsule
roles. They interconnect capsule roles that have similar public interfaces, which are
called ports. A key feature of connectors is that they can only interconnect compatible
ports.

Connectors only exist in the context of a capsule collaboration.

Graphical notation

A connector is shown as a line between ports in a collaboration diagram.

Figure 14 A capsule collaboration shown with 3 capsule roles connected with
connectors

Capsule Class Aggregation and Composition Relationships

Relationships between capsule classes

Capsule roles in a class diagram are shown by composition relationships between
capsule classes. Depending on the attributes of the capsule role (fixed, optional, or
plug-in), the aggregation can be shown as a composition. For example plug-in and
Association 75

optional capsule roles are shown with aggregation relationships whereas fixed
capsule roles are shown with composition. The capsule role name is shown as the end
name of the association. Cardinality of the capsule role is also displayed.

Relationships between capsule classes and protocol classes

Ports can also be modeled in the class diagram using a stereotyped <<port>>
composition relationship between a protocol and a capsule class. The port name is
specified using the association end name. The cardinality can also be specified.

Class diagram shows a different perspective

The decomposition of a capsule can also be shown in a capsule collaboration. In
addition to the information shown in the class diagram the capsule collaboration
diagram specifies the precise interconnection topology between capsule roles,
indicated by connectors.

Example

The following diagrams show the same model, but it is shown from both the class
diagram and then the capsule collaboration diagram perspectives.

Figure 15 Class diagram
76 Chapter 3 - Relationships

Realization

A realization relationship defines a contract between classifiers where the contract is
set of behaviors. There are two elements in the UML that can be realized: interfaces
and use cases. Simply put, interfaces and use cases specify behavior without detailing
the implementation. The classifier who will realize the interface or use case is
responsible for providing the implementation.

Realizations are a good way of separating the specification from the implementation.

Realization is a form of generalization, in which only behavior is inherited.

Graphical notation

Realizations are represented as a cross between a dependency and generalization as a
hashed line with a large open arrowhead.

Realization of Use Cases

In an executing system, an instance of a use case does not correspond to any particular
object in the implementation model. Instead it corresponds to a specific flow of events
that is executed as sequence of events between implementation objects.

By creating a society of classes and other elements that work together to implement
the behavior of the use case we realize a use case.

Note: The relationship between the use case and its realization may not be visualized
explicitly, although the tools that are used to manage your models maintain this
relationship.

Using interaction diagrams

Use cases are realized by describing its flow of events in interaction diagrams. You
should describe each flow variant in a separate diagram. Start by describing the basic
flow, then describe variants such as exceptional flows, error handling, and time-out
handling.

Note: The focus of a system's architecture is to find the minimal set of well-structured
interactions for all use cases in a system.
Realization 77

Generalization

A generalization relationship between classes shows a relationship between a general
element, called the superclass or parent, and a more specific element, called the
subclass or child. With a generalization relationship, the child will inherit all the
structure and behavior defined in the parent. The child may also add new structure or
behavior.

Graphical notation

A generalize relationship is a solid line with an arrowhead pointing to the superclass.

Details

Generalization is a static relationship, meaning that it can only be visualized in a class
diagram or a use case diagram. In addition, generalization can only link same types of
elements. A capsule cannot be a superclass of a class.
78 Chapter 3 - Relationships

Actor Generalization

Several actors can play the same role in a particular use case. To make the model
clearer, you can represent the different kinds of users user by subclassing. Each
inherited actor represents one of the user's roles relative to the system.

Include Relationship

The include-relationship connects a base use case to an inclusion use case. The
inclusion use case is always abstract. It describes a behavior segment that is inserted
into a use-case instance that is executing the base use case. The base use case has
control of the relationship to the inclusion and can depend on the result of performing
the inclusion, but neither the base nor the inclusion may access each other's attributes.
The inclusion is in this sense encapsulated, and represents behavior that can be reused
in different base use cases.

Figure 16 Example includes relationship

You can use the include-relationship to:

■ Factor out behavior from the base use case that is not necessary for the
understanding of the primary purpose of the use case, only the result of it is
important.

■ Factor out behavior that is in common for two or more use cases.
Generalization 79

Extend Relationship

The extend-relationship connects an extension use case to a base use case. It is used to
model part of a use case that a user may see as optional.

You can use the extensions for several purposes:

■ To show that a part of a use case is optional, or potentially optional, system
behavior. In this way, you separate optional behavior from mandatory behavior in
your model.

■ To show that a subflow is executed only under certain (sometimes exceptional)
conditions, such as triggering an alarm.

■ To show that there may be a set of behavior segments of which one or several may
be inserted at an extension point in a base use case. It will depend on the
interaction with the actors during the execution of the base use case which of the
behavior segments are inserted and in what order.

The specialization is conditional, which means its execution is dependent on what has
happened while executing the base use case. The base use case does not control the
conditions for the execution of the specialization, those conditions are described
within the extend-relationship. The specialization use case may access and modify
attributes of the base use case. The base use case, however, cannot see the
specializations and may not access their attributes. The base use case is implicitly
modified by the specializations. You can also say that the base use case defines a
modular framework into which specializations can be added, but the base does not
have any visibility of the specific specializations. The base use case should be
complete in and of itself, meaning that it should be understandable and meaningful
without any references to the specializations. However, the base use case is not
independent of the specializations, since it cannot be executed without the possibility
of following the specializations.
80 Chapter 3 - Relationships

Dependency

A dependency relationship is used to specify that a change in the specification of one
element may affect another element that uses it, but not necessarily the reverse.
Dependency relationships are used to model dependencies that have not been
implicitly captured by the other types of relationships in your model.

Graphical notation

A dependency relationship is a dotted line with an arrowhead at one end. The
arrowhead points to the supplier class. In this example, Element B is dependent on
class A.

Applications

Dependency relationships can have different shades of meaning depending on which
elements are part of the relationship. The different meanings can be shown in your
diagram by applying stereotypes to the relationship.

Example uses:

■ A client class accesses a value, constant or variable, defined in a supplier
class/interface (class diagram).

■ An operations of a client class invoke operations of a supplier class/interface (class
diagram).

■ Operations of a client class have signatures whose return class or arguments are
instances of a supplier class/interface (class diagram).

■ A component requires a compilation dependency on another component
(component diagram).

■ A use case includes or extends another use case (use case diagram).

■ To show the layering of a system, you can add dependencies between packages.
Dependency 81

Component-Dependency Relationship

An important use of a dependency relationship is to represent compilation
dependencies between components. A compilation dependency exists from one
component to the components that are needed to compile the component. In C++, for
example, the compilation dependencies are indicated with #include statements. In
Ada, compilation dependencies are indicated by the with clause. In Java the
compilation dependency is indicated by the import statement. In general there should
be no cyclical compilation dependencies.
82 Chapter 3 - Relationships

4Diagrams
Contents

This chapter is organized as follows:

■ Overview on page 83
■ Use Case Diagram on page 85
■ Class Diagram on page 86
■ State Diagram on page 88
■ Collaboration Diagram on page 88
■ Capsule Structure Diagram on page 90
■ Sequence Diagram on page 91
■ Component Diagram on page 93
■ Deployment Diagram on page 95

Overview

Diagrams allow you to assemble related collections of elements together into a
graphical depiction of all or part of a model. Each diagram provides a view into the
elements that make up your model. In this way the user of the model can decide to see
only the views of the underlying model that are of interest.
83

Important Visual Relationships

Although each type of diagram shows different views of the model, they all show
common relationships between the elements. The most important of these
relationships are:

■ Connections - Provide some clue as to the relationships between elements.

■ Containments - Are shown as symbols with a boundary. For example, a capsule’s
collaboration is shown as a box with a heavy border to represent the boundary of
the capsule. Capsule roles within the boundary are contained by the capsule. And
elements placed directly on the boundary are interface elements, visible from
outside the element.

■ Visual attachment - Symbols being near or far from one another, for example,
represent layering in a system.

Structure
■ Class Diagram on page 86 (static structure) - is a high level generalization of a

system that shows a set of elements and their general relationships.

■ Collaboration Diagram on page 88 (dynamic structure) - captures a desired pattern
of interactions between a set of objects, emphasizing the structural organization of
the objects.

■ Component Diagram on page 93 - captures the static implementation view of a
system.

■ Deployment Diagram on page 95 - captures the configuration of run-time processing
nodes and the components that run on them.

Behavior
■ Sequence Diagram on page 91 - captures interactions between a set of objects,

emphasizing the logical ordering of messages.

■ State Diagram on page 88 - captures the dynamic aspects of an event-driven
system, and is best used for modeling the behavior of event-driven classes.

■ Use Case Diagram on page 85 - captures the context and intended behavior of the
system, a subsystem, or a class.
84 Chapter 4 - Diagrams

Real-time Specialization

In addition to the base UML diagrams, the Capsule Structure Diagram on page 90 is a
specialized form of the collaboration diagram with formal semantics that enable
complete code generation:

■ Capsule Structure Diagram on page 90 - captures structural patterns that specify the
communication relationships between a capsule's objects. The communication
takes place in order to accomplish a task, or the behavior of the capsule. The
diagram also shows the interface elements of a capsule.

Use Case Diagram

A use case diagram shows actors and use cases together with their relationships. The
individual use cases represent functionality, or requirements of functionality of a
system, a class, or a capsule.

Use case diagrams can be organized into (and owned by) use case packages, showing
only what is relevant within a particular package.

It is recommended that you include each actor, use case, and relationship in at least
one of the diagrams. If it makes the use case model clearer. They can be part of several
diagrams and you can show them several times in the same diagram.

Graphical notation

A use case diagram is a graph of actors, use cases, use case packages, and the
relationships between these elements.

Example
Use Case Diagram 85

Class Diagram

Class diagrams show the static structure of the model. Although it is called a class
diagram, it may also contain other elements besides classes that exist in a model, such
as capsules, protocols, packages, their internal structure, and their relationships to
other elements. Class diagrams do not show temporal information.

Class diagrams may be organized into (and owned by) packages, but the individual
class diagrams are not meant to represent the actual divisions in the underlying
model. A package may then be represented by more then one class diagram.

A model element can appear in more than one class diagram.

Graphical notation

The basic notation for elements in a class diagram is using a solid-outline rectangle
with three compartments separated by a horizontal line. The top compartment is used
to display the name of the element, and other optional properties such as stereotypes
and icons. The bottom compartments, or list compartments, are used to show string
representations of an elements features. For example operations and attributes are
commonly represented. However, other optional list compartments can show other
features. For example, a capsule has a list compartment for ports and capsule roles.

Relationships are shown as lines connecting two element symbols in the diagram. The
lines may have a number of graphical representations to show their properties.

Example

The following class structures are suitable for illustration in class diagrams, but you
will not use all of them in all situations. Each class structure should have its own class
diagram.

■ The most important classes and their relationships. Diagrams of this type can
function as an object model summary and are of great help in reviewing the
model. These diagrams are likely to be included in the logical view of the
architecture.

■ Functionally related or coherent classes.

■ Classes that belong to the same package.

■ Important aggregation hierarchies.
86 Chapter 4 - Diagrams

■ Important structures of entity objects, including class structures with association,
aggregation and generalization relationships. If possible you should create a class
diagram that contains all the classes of the long-lived objects and their
relationships. This kind of diagram is especially useful in reviewing what is stored
in the system, and the storage structures.

■ Packages and their dependencies, possibly illustrating their layering.

■ Classes that participate in a specific use-case realization.

■ A single class, its attributes, operations, and relationships with other classes.

Figure 17 A Class Diagram Showing Aggregation Hierarchies
Class Diagram 87

State Diagram

A state diagram shows the sequence of states that an object or an interaction goes
through during its life in response to received messages, together with its responses
and actions. A state machine is a graph of states and transitions that describes the
response of an object of a given class to the receipt of outside stimuli. State diagrams
show a state machine and are especially useful in modeling event-driven systems.

Graphical notation

A statechart diagram represents a state machine. The states are represented by state
symbols and the transitions are represented by arrows connecting the state symbols.
States may also contain subdiagrams, or other state machines that represent different
hierarchical state levels.

Example

Collaboration Diagram

Collaboration diagrams show the communication patterns among a set of objects or
roles to accomplish a specific purpose. The diagram can be shown in two different
forms: either a specification level (showing classifier roles, association roles, and
messages) or at the instance level (showing objects or instances, links, and stimuli).

Collaborations are the constraining element to a set of sequences. The sequences show
all the different communication scenarios that can occur between the instances or
roles in the collaboration, while the collaboration shows the connection topology
between the elements.
88 Chapter 4 - Diagrams

To model the explicit time related sequence of interactions between objects, use a
sequence diagram.

It is important to understand that a collaboration defines a set of interactions that are
meaningful for a given purpose, for example, to accomplish a certain task. However, a
collaboration does not identify a global relationships between model elements.

Roles and Objects

The participants in a collaboration define the roles that objects play in an interaction.
The role describes the type of object that can play the role, such as an object with the
required interface.

Graphical notation

A collaboration is shown as a graph of classifier roles together with connected lines
called association roles. Normally, only the name of the compartment is shown. The
name compartment contains the string:

role name : classifier name

A communication relationship can be shown between roles in a collaboration by
adding an association role, a solid line connecting two role boxes.

Example

A collaboration may be attached to a class or a use case to describe the context in
which their behavior occurs. For example, by showing the roles objects play to
perform the behavior of a use case or operation.

A collaboration can also be used to formally specify the composite structure of a
capsule. This specialized collaboration, called a capsule structure, shows roles or
capsule roles, and their connectors. In addition, the collaboration visually shows the
capsules interfaces by placing them on the boundary of the collaboration.
Collaboration Diagram 89

Capsule Structure Diagram

A capsule structure diagram is a specialized collaboration diagram. This diagram is
used for the same purpose as the general collaboration, that is to specify a pattern of
communication between objects. However in a capsule structure the communication
pattern is owned by a particular capsule and represents the composite structure of its
capsule roles, ports, and connectors.

It is important to understand that a capsule structure defines a set of interactions that
are meaningful for a given purpose, that is for the implementation of it's behavior
(e.g. a capsules behavior is actually the composite behavior of all its components).
However the collaboration does not identify global relationships between its capsule
role.

Differences between a general collaboration and a capsule structure

■ capsule roles - The roles in a capsule structure are restricted to capsule roles;
association roles are not allowed. When a capsule role is shown in a capsule
structure diagram, its public ports are shown. This allows connectors to be created
between capsule roles.

Note: You can model the collaboration of a capsule's attributes that are not capsule
classes by using a normal collaboration diagram.

■ ports - Since capsules communicate with each other via ports (and not operation
invocation), a capsule structure shows a capsule’s ports. Ports can be placed on the
boundary of the collaboration to show that they are externally visible (public
interfaces), or contained within the boundary to show that they are protected (not
accessible from outside the capsule).

■ capsule boundary - A capsule structure diagram shows a visual representation of
the capsule’s encapsulation shell. This shell shows both the implicit containment
relationship between capsule roles and a capsule, and visually identifies the ports
which are interfaces.

■ connectors - In a general collaboration communication between objects is modeled
using an association role between two classifier roles. In a capsule structure,
communication relationships are explicitly shown between capsule ports.

■ code generation - A capsule's collaboration is a formal specification which allows
for the source code implementation to be automatically generated. The semantics
of a general collaboration are not formal enough to result in automatic code
generation.
90 Chapter 4 - Diagrams

Graphical notation

A capsule structure is shown as a box with a heavy border, which represents the
capsule’s boundary. Capsule roles are shown inside the boundary as composite parts.
Ports are shown as rectangles and connectors as solid lines connecting ports.

Example

The following capsule structure shows the capsule roles which make up a control
center switching software.

Figure 18 Capsule Structure Diagram Example

Sequence Diagram

An interaction is a pattern of communication among objects at run-time. A sequence
diagram is used to show this interaction from the perspective of showing the explicit
ordering messages. Sequence diagrams are often used to show specific
communication scenarios of a collaboration.
Sequence Diagram 91

Sequence diagrams are particularly important to designers because they clarify the
roles of objects in a flow and thus provide basic input for determining class
responsibilities and interfaces.

Graphical notation

A sequence diagram has two dimensions, the vertical dimension represents time, and
the horizontal dimension represents the different objects in the interaction.

Object box

In a sequence diagram each object that participates in the interaction is represented by
a rectangular box at the top of the diagram. The name field maps to the name of an
object which conforms to a role in a collaboration.

Lifelines

These are the dashed vertical lines that descend from the object box. They represent
the existence of the object at a particular time. When an object is created or destroyed,
then its lifeline start or stops at the appropriate point. The object symbol is drawn at
the top of the lifeline. If the object is destroyed, then its destruction is marked on the
lifeline by a large 'X'.

Focus of control

An activation, or focus of control, shows the period during which an object is
performing an action. It represents both the duration of the action and the control
relationship between the activation and its callers.

Messages

A message is the specification of a communication between objects that convey
information with the expectation that activity will occur upon receipt. A message
instance is shown as a line from the lifeline of one object to the lifeline of another. In
the case of a message sent by an object to itself, the arrow may start and finish on the
same lifeline. The arrow is named with the name of the message. The arrow head of
the message can be shown in different ways to convey the different types of message
communication.
92 Chapter 4 - Diagrams

Example

Figure 19 An Abbreviated Call Setup Scenario

Component Diagram

A component diagram shows the dependencies among software components. A
software module may be represented as a component. Some components exist at
compile time, some exist at link time, some exist at run time, and some exist at more
than one time. A compile-only component is one that is only meaningful at compile
time. The run-time component in this case would be an executable program. A
component diagram has only a type form, not an instance form. To show component
instances, use the deployment diagram.
Component Diagram 93

Graphical notation

A component diagram is a graph of components connected by dependency
relationships. Components can be connected to components by physical containment
representing composition relationships. Components can also be organized in
component packages. Component diagrams contain:

■ component packages
■ components
■ dependency relationships

You can create one or more component diagrams to depict the component packages
and components at the top level of the component view, or to depict the contents of
each component package. Such component diagrams belong to the component
package that they depict.

Example

Figure 20 Example Component Diagram
94 Chapter 4 - Diagrams

Deployment Diagram

The deployment diagram provides a basis for understanding the physical distribution
of the run-time processes across a set of processing nodes. There is only one
deployment view of the system. Nodes may contain component instances, which
indicates that the component runs on the node.

Graphical notation

A deployment diagram is a graph of nodes connected by a communication
association called a connection. The deployment diagram is used to show which
components will run on which nodes.

Example

Figure 21 Example Deployment diagram
Deployment Diagram 95

96 Chapter 4 - Diagrams

Index
A
Actions 47
actions 46, 47

blocking 47
Notation 47

Actions, messages, and events 46
actor

generalization 79
Actor generalization 79
Actors 24

graphical notation 25
relationships 25

Additional properties 70
Aggregate or association? 72
Aggregation 72
aggregation 72

Graphical notation 72
Annotational 23
Association 70

class 31
roles 71

association 70
Additional properties 70
aggregation 72
composition 72
ends 71
Graphical notation 70
multiplicity 71
name 71
navigability 71
roles 70

Association class 31
association class 31, 74

Graphical notation 31
Association ends 71
Attributes 29
attributes 29

Changeability properties 29
private (capsules) 34

B
Behavioral 23
Binary protocols 41
Blocking actions 47
Building blocks 16

C
Call event 48
call event 48

flow of control 48
Capsule aggregation and composition

relationships 75
Capsule class aggregation and composition

relationships 75
capsule collaboration and general collaboration,

differences between 90
Capsule collaboration diagram 90
Capsule roles 36
capsule roles 36

Cardinality 37
Substitutability 37

capsule structure diagram 90
capsule boundary 90
capsule roles 90
code generation 90
connectors 90
Differences between a general collaboration

and a capsule collaboration 90
Example 91
Graphical Notation 91
ports 90

Capsules 34
capsules 34

aggregation & composition-relationship 36
association 36
Behavior 35
connector 36
dependency-relationship 36
Index 97

generalization-relationship 36
Graphical notation 35
Logical threads of control 35
message passing 34
private attributes 34
public ports 34
Relationships 36
roles 36
Structure 35

Capsules and ports 17
cardinality 42

capsule roles 37
Common structural patterns 43
rules for capsule roles 42
unspecified 43

Cardinality and capsule structure 42
cardinality and ports 42
Cardinality rules for capsule roles 42
choice point 60

example 61
Graphical notation 61

Choice points 60
class 27

Behavior 27
Graphical notation 28
instantiated 33
parameterized 32
parameterized utility 33
Persistence 28
Standard stereotypes of classes 28
Structure 27
utility 31

Class diagram 76
Class diagram shows a different perspective 76
class utility

instantiated 32
parameterized 33

Classes 27
Classification of capsule roles 36
Collaboration diagram 88
collaboration diagram 88

Example 89
Graphical Notation 89
Roles and objects 89

Common structural patterns 43

communication rules for ports 38
Component diagram 93
component diagram 93

Example 94
graphical notation 94

Component instances 65
Component-dependency relationship 82
component-dependency Relationship 82
Components 64
components 64

Mapping from logical to physical 64
Organization 65
Relationships 65

Composition 72, 73
composition 73

Graphical notation 73
Concrete and abstract use cases 26
Concurrency 17
concurrency

simplifying 54
use case 27

Connections 84
Connectors 75
connectors 75

Graphical notation 75
contacting Rational customer support xiii
Containments 84
Continuation kinds — shallow history, deep his-

tory and default 56

D
Deep History 58
Dependency 81
dependency 81

Applications 81
example uses 81
Graphical notation 81

Dependency relationship 81
Deployment diagram 95
deployment diagram 95

Example 95
Graphical Notation 95

deployment diagram, a simple 65
98 Index

Diagrams
Capsule collaboration 90
Collaboration 88
Component 93
Deployment 95

diagrams
Behavior 84
capsule structure 90
component 93
deployment 95
important visual relationships 84
real-time specialization 85
sequence 91
state 88
Structure 84

Differences between a general collaboration and a
capsule collaboration 90

E
End ports 39
event

call 48
signal 48

events 46
Example 56, 86
Example includes relationship 79
Example state diagram 50
Example uses

81
Executable Models 18
Extend Relationship 80
external incoming junction 59
external junction 59
external outgoing junction 59

F
final state 55
flow of control

call event 48
signal event 48

flow of events 25
Documenting 26
Structure 25

G
general collaborations and capsule collaboration,

differences between 90
Generalization 78
generalization

actor 79
Details 78
Graphical notation 78
relationships 78

Graphical notation 24, 25
Group transitions 57
group transitions 57
Grouping 23
guarded condition (trigger) 52

H
Hierarchical State Machines 56
Hierarchical states 50
History 58
History — hierarchical state machines 56
history, an example use of 56

I
Include relationship 79
include relationship 79
initial

point 54
transition 54

Initial point and initial transition 54
initial state

transition from 54
Initial state and initial transition 54
initial transition

Graphical notation 55
none 55
Index 99

instance
use case 26

Instantiated class 33
instantiated class 33

Graphical notation 33
Instantiated class utility 32
instantiated class utility 32

Graphical notation 32
Interactions 63
interactions 63
Interfaces 28
interfaces 28

Graphical notation 29
internal junction 59

J
Joining transition segments 58
junction point

continuation 58
Continuing junctions 59
Graphical notation 59
joining transition segments 58
terminating junction types 60
transition segments 58

Junction points 53, 57
junction points 57
junction types 59
junctions 59

L
logical threads 35

M
message passing

capsules 34
messages 46

sequence diagram 92
Modeling Language Reference 15
Modeling language Reference 15

Multiple containment 44
example 45

Multiple containment example 46
multiplicity

association 71

N
Nodes 65
nodes 65

Connections 65
Notation 86
Notes 66
notes 66

Graphical notation 67
Relationships 67

O
Operations 29
operations 29

Class or instance 30
Have Parameters 30
Properties 30

Other features 24

P
package 66

Content Visibility 66
overview 66

Packages 66
packages

use case 26
Parameterized class 32
parameterized class 32

Graphical notation 32
Parameterized utility class 33
parameterized utility class 33

Graphical notation 34
Persistence 28
point

initial 54
100 Index

Ports 37
ports 37

classification of 38
Communication rules 38
Connector type 38
End 39
Graphical notation 39
Non-wired 38
public 34
Relay 39
Termination 39
Visibility 38
Wired 38

Ports and protocols 37, 42
Protocol participants (protocol roles) 41
protocols 40

binary protocols 41
Graphical notation 42
participants (protocol roles) 41

public ports 34
Purpose 16

Q
qualifiers 73

R
Rational customer support

contacting xiii
Realization 77
realization 77

Graphical notation 77
of use cases 77
Using interaction diagrams 77

Realization of use cases 77
Real-time extension 69
Real-time extension to UML 16
Real-time notations 69
Real-time notations to UML 16
Real-time specialization 85
Real-Time Specializations Overview 18
Relationships 24, 25, 65, 69

relationships 69
actor communicates-Association 74
aggregation 72
association 70
association classes 74
capsule class aggregation 75
component-Dependency 82
composition 73, 75
connectors 75
constraints 74
dependency 81
Example 76
extend 80
generalization 78
include 79
qualifiers 73
realization 77
visibility 73

Relationships between capsule classes 75
Relationships between capsule classes and proto-

col classes 76
relay ports 39
Run-to-completion 54
run-to-completion 54

Simplifying concurrency 54

S
Sequence diagram 91
sequence diagram

Example 93
Focus of control 92
Graphical Notation 92
Lifelines 92
Messages 92
Object box 92

Signal event 48
signal event 48

flow of control 48
State diagram 88
state diagram 88

Example 88
graphical notation 88

State machine 48
Index 101

state machine 48
Events and signals 49
Overview 50
variations 49

State Machines
Hierarchical 56

States 50
states 50

Entry and Exit actions 50
External view 51
final 55
Graphical notation 51
hierarchical 50
Internal view 51
top 55

Structural 23
Structural patterns with cardinality 43
structural patterns, common 43
Substitutability 43
substitutability 43

rules 43
Support for real-time systems 17

T
Terminating junctions (to history) 60
threads

control (capsules) 35
Top state 55
top state 55
transition 52

Actions 52
Example 62
Graphical notation 53
group 57
Guard Condition 52
initial 54
junction points 53
selection rules 61
to and from the initial state 54
Trigger 52
types 53

Transition segments 58
Transition selection rules 61

Transitions 52
trigger 52

U
Unspecified cardinality 43
Use Case

concurrency 27
Graphical Notation 85
instance 26
packages 26

Use case concurrency 27
Use Case diagram

diagrams
Use Case 85

Example 85
Use case diagram 85
Use case instance 26
Use case packages 26
Use Cases

abstract 26
concrete 26
graphical notation 24
other features 24
relationships 24

Use cases 23
Utility class 31
utility class 31

Graphical notation 31

V
visibility 73
Visual attachment 84

W
When to use multiple containment? 44
wired ports 38
102 Index

	Modeling Language Guide
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Modeling Language Guide
	Unified Modeling Language
	Real-time Notations to UML
	Purpose
	Building Blocks

	Real-Time Systems
	Support for Real-time Systems
	Concurrency
	Capsules and Ports
	Capsule Structure Diagrams
	Real-Time Specializations Overview
	Executable Models
	Services Library
	Further Reading

	Elements
	Overview
	Structural
	Behavioral
	Grouping
	Annotational

	Use Cases
	Actors
	Flow of Events
	Concrete and Abstract Use Cases
	Use Case Instance
	Use Case Packages
	Use Case Concurrency
	Classes
	Interfaces
	Attributes
	Operations
	Association Class
	Utility Class
	Instantiated Class Utility
	Parameterized Class
	Instantiated Class
	Parameterized Utility Class
	Capsules
	Capsule Roles
	Ports
	Protocols
	Cardinality and Capsule Structure
	Substitutability
	Multiple Containment
	Actions, Messages, and Events
	Actions
	Call Event
	Signal Event
	State Machine
	Events and signals
	State machine variations
	Overview

	States
	Transitions
	Trigger
	Guard Condition
	Actions

	Run-to-Completion
	Initial Point and Initial Transition
	Final State
	Top State
	History - Hierarchical State Machines
	Group Transitions
	Junction Points
	Choice Points
	Transition Selection Rules
	Interactions
	Components
	Nodes
	Packages
	Notes

	Relationships
	Overview
	Real-time Notations

	Association
	Association Name
	Association Ends
	Association Multiplicity
	Navigability
	Aggregation
	Composition
	Visibility
	Qualifiers
	Constraints
	Association Classes
	Actor Communicates-Association
	Connectors
	Capsule Class Aggregation and Composition Relationships

	Realization
	Realization of Use Cases

	Generalization
	Actor Generalization
	Include Relationship
	Extend Relationship

	Dependency
	Component-Dependency Relationship

	Diagrams
	Overview
	Important Visual Relationships
	Structure
	Behavior
	Real-time Specialization

	Use Case Diagram
	Class Diagram
	State Diagram
	Collaboration Diagram
	Capsule Structure Diagram
	Sequence Diagram
	Component Diagram
	Deployment Diagram

	Index

