
Rational Software Corporation
Installation Guide

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026105-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.
Part Number: 800-026105-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface .xv
Audience. .xv

Other Resources . xvi

Rational Rose RealTime Integrations With Other Rational Products xvii

Contacting Rational Customer Service . xviii

1 Introduction .1
Welcome to Rational Rose RealTime. 1

Release Notes . 1
Installation Guide Updates . 2

What’s New?. 2
Improved UML Support . 2
New Features to Improve Usability. 2
Improved Rose Compatibility . 3
Build and Target Enhancements . 4
Improved Code Generation . 5
Enhanced Configuration Management Integration and Faster Loading 5
Installation and Platform Support . 6

Overview of Rational Rose RealTime Capabilities . 6
Rational Connexis. 7

Run-Time Connectivity Viewing . 7

Rational Quality Architect - RealTime Edition. 8
Allow Sub-Capsule Instances to be Drivers . 8
Verification Mode Changes to Allow more Control in Manual Mode. 8
Allow Data Qualifier in Data Field of Send Message . 9
Allow Drivers to Model Timing Services . 9
Capsule Interface Generation for Instances on Sequence Diagram Without Role

Specified . 9
Java Language Support . 9

How to Get Help . 9
Contacting Rational Customer Service Using the Help Menu 9
Contacting Rational Customer Service by Email or Telephone 9
Evaluation and Ordering Information . 10
Rational Web Site . 10
Contents v

Directory Contents .10

Accessing the Online Help System .12

2 Referenced Configurations and Toolchain Requirements 13
Referenced Configurations .13

Requirements for Windows NT. 13
Requirements for Windows 2000 . 14
Requirements for Windows XP Pro . 14
Requirements for UNIX. 15

Toolchain Requirements .15
Help Viewer (Windows Only) . 15
Compiler . 16
Real-time Operating System . 16

Referenced Host Configurations .16
Creating Executables for Hosts Without Toolset Support 18

Generating an Executable Without a Common File System .19

Adding a Printer on UNIX. .20

3 Installing Rational Rose RealTime on Windows 23
Removing Previous Releases of Rational Products.23

Installing Mixed Versions of Rational Products .24

Using the Rational Installation Program. .24

Using the Rational Setup Wizard .25
Rational_Install Log . 26
Before You Start the Rational Setup Wizard. 26

Before You Install .27
Preparing for a Rational Rose RealTime Installation . 28

Upgrade Information .28

Specifying the Rational License Server .29

Performing a Client Installation .29

Post-Installation Tasks .32
Licensing .32

Canceling an Installation from CD-ROM. 32
Reinstalling Rational Rose RealTime from CD-ROM (Modify, Repair, Remove) 32
vi Contents

Creating a Release Area .33
Using the Rational Setup Wizard to Create a Release Area 34

Installing Rational Rose RealTime on Your Computer. 35

Post-Installation Tasks . 37
Licensing . 37

Running the Site Preparation Wizard to Create Multiple Sitedef Files. 37

Installing Rational Rose RealTime from a Release Area38
Using a Standard Configuration . 39
Customizing Your Own Configuration. 40
Post-Installation Tasks . 41

Licensing . 41

Canceling a Product Installation From a Release Area 42
Reinstalling Rational Rose RealTime From a Release Area (Modify, Repair,

Remove) . 42

Using Silent Installation Commands .43
Silent Installation Overview . 43
Running a Silent Installation on your Desktop . 44
Licensing Your Rational Product . 44

Setting Up Silent Installations of Rational Rose RealTime from a Release Area
45

Running a Silent Installation . 45

Canceling a Silent Installation . 45
Command Line Syntax to Run Silent Install . 46

Syntax . 46

After You Install .46
Updating Batch Files . 46
Configuring Your Environment . 47

ClearCase Workstation Setup .47
Command Line Access to the Source Control Tool . 48
Element type setup: type manager . 48
ClearCase Options . 48

Configuring the ClearCase Repository . 48

Testing your Environment. .49
Contents vii

4 Installing Rational Rose RealTime on UNIX. 51
Before You Install .51

Installing in Secure Environments . 52
Installing Multiple OS Versions of Rational Suite DevelopmentStudio RealTime

(UNIX) . 52
Stopping and Restarting an Installation . 52

Upgrade Information .52
Upgrading to New Version Only (Uninstalling Earlier Version) 53
Upgrading to 2003.06.00 While Maintaining an Earlier Version 54

Installation Instructions .54

After You Install .58
Sourcing to the Setup Script. 58
Unmounting the CD-ROM Drive . 58
ClearCase Workstation Setup . 58

Command Line Access to the Source Control Tool. .59
Element type setup: type manager .59
ClearCase Options .59

ClearCase Repository Setup . 60
Setting the TORNADO 2.0 Debugger Environment Variable 60
Setting Other TORNADO Environment Variables. 60
Setting the Connexis Variable. 61
Verifying the Connexis Installation . 61

Verifying your Installation using BasicTest .61
Host Configuration Installation Verification .61
BasicTest Server Output .63
BasicTest Client Output. .64

Starting Rational Rose RealTime (UNIX) . 66

5 Converting Connexis Models . 67
Converting Connexis version 2000.02.10 Models to Connexis Version

2003.06.00 Models. .67

Verifying Component Compatibility .70

6 Understanding Rational Rose RealTime Licenses 73
How Licenses Work .73

Types of Licenses .74
Node-Locked Licenses . 74
Floating Licenses . 74
Permanent Licenses and Temporary License Keys . 75
viii Contents

Emergency and Evaluation Keys . 75
Suite Licenses and Point Product Licenses . 75
Returning License Keys . 75
Upgrading Licenses . 76

Requesting License Keys. .76
Receiving and Importing License Keys . 77
Requesting License Keys by Fax . 77
Receiving Permanent License Keys. 78

Converting a Temporary License to a Permanent License 78

Licenses for Windows .79

The License Manager - UNIX. .79

License Manager Commands .80
Additional Licensing Commands . 81

License Manager Daemon (lmgrd) . 81
Vendor Daemon. 81
License Key File. 82
Application Program. 82

Configuring a UNIX Workstation to Point to a FLEXlm Server. 82
License Activation Process . 83

Licensing on UNIX .84
Running the lmgrd from a Command Prompt . 84

Example . 84
Administration Commands. 85

The License File. .85
Format . 85

UNIX Licenses .87
Start-up or Emergency keys. 87
Node-Locked keys . 87
Floating keys . 88
TLA (Temporary License Agreement) . 88

Frequently Asked Questions .88

7 Installing License Keys . 89
Before You Begin .89

Installing a Startup or Permanent License on Windows.89
Installing a Permanent License on Windows . 90
Installing the License Key. 92
Installing a Floating License Key on a UNIX server . 92
Contents ix

Installing a Startup or Permanent License on UNIX 92
Installing a Startup License on UNIX . 92
Installing a Permanent License on UNIX . 93
Installing the License Key . 95

Integration With Rational Suites Licensing. .95

Troubleshooting .96
Windows . 96
UNIX server . 97
UNIX . 97

8 Migration . 99
Migrating from Rational Rose. .99

User Interface Differences . 99
New Modeling Language Elements . 101
Code Generation, Building, and Running . 101
Opening Models from Rational Rose . 102
List of Importation Log Messages. 102
Limitations and Restrictions . 103
Importing Rational Rose Generated Code . 104

Limitations and Restrictions .104

Migrating from ObjecTime Developer 5.2/5.2.1 .105
Terminology . 105
User Interface Differences . 107
Compilation. 107

Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1 108
File Format Changes . 108
Source Control Migration . 108

Migrating Customized CM Scripts. .109

Language Add-in Changes. 110
Running Two Different Releases of Rational Rose RealTime 110
Workspace Files . 110
RRTEI Changes. 110

C Language Migration .112
Converting a C++ Model to C . 112
ObjecTime Developer for C Migration. 113

Importing Models .113
Converting Global Signals to Local Signals .114
Timing Service .115
x Contents

C++ Language Migration .115
Backwards Compatibility Mode . 115

Migrating in Two Steps . 116
What Does Backwards Compatibility Do? . 116
Compiler Will Find All Errors . 116
Building a Model in Backwards Compatibility Mode . 117
Full Migration . 119

Changes. 119
C++ UML Services Library. 119
Code Generation and Compilation. 120
New Classes for Protocols, Signals, and Ports . 120
Type Safety Explained . 120
How Has This Changed?. 121
API Changes Summary . 121
Asynchronous Sends . 122
Synchronous Sends. 123
Message Reply . 123
Defer, Recall, and Purge . 124
Port Indexes . 125
Discriminating in Code the Signal of a Received Message 126
Forwarding . 126
RTPortRef Operations . 128
RTTimespec Parameters . 130
RTSignalNames. 130
Macros . 130
External Layer Service (ELS) . 131

Code Generation . 131
Components . 131
Directory Structure. 132
Parameters Available in Transition Code . 132
Port Cardinality Cannot be Unspecified . 133
Makefile Override Changes . 133

Model Properties . 133
Advanced property Editors . 133

9 Integration Notes. 135
Overview .135

Configuration Management (CM) Tools Integration135
ClearCase on a UNIX Server and Clients on both NT and UNIX. 136
Migrating from Rational Rose and ObjecTime Developer 136

Requirements Management Tools Integration .137
Rational SoDA for Word . 137
Rational RequisitePro . 137
Contents xi

Unit Testing Tools Integration .137
Rational Purify . 138

Adding Options to Purify on UNIX. .138

Microsoft Development Environment .138

Integration with Rational Robot .138

Naming Directories .139

10 Starting Rational Rose RealTime . 141
Starting Rational Rose RealTime on Windows .141

Starting Rational Rose RealTime on UNIX .141
Start-up Options for UNIX .142

Rational Rose RealTime for UNIX and the X Window System 142
X Clients .143
X Servers .143
X Window Managers .143
Input Focus (Active Window) Policy .144
Window Order Policy. .144

Automating Rational Rose RealTime .144

Command Line Options .145

11 Add-Ins . 147
Web Publisher .147

Suggested Workflow. 147
Limitations .148

Model Integrator .149
Suggested Workflow. 149

Rose C++ Analyzer .150
Suggested Workflow. 150

Limitations .152

12 Uninstalling Rational Rose RealTime. 153
Windows .153

UNIX .153
xii Contents

13 Troubleshooting, Known Issues, and Updates 155
Overview .155

Rational Connexis .155
Troubleshooting . 156

Transport Integration Framework . 156
Turning Off Auditing for a Single Transport is Not Recommended. 156
Signals No Longer Supported . 156

Rational Quality Architect - RealTime Edition .157
Target Observability Behavior When the Model is Modified 157
Running Verify Behavior with Eighty or More Sequence Diagrams (UNIX) . . . 157
Driver Methods for Sending Messages to the Log and Custom Comparison . 158
Lost Information in To Port for a Message . 158
Do Not Use -runScriptAndQuit When Running RQART From a Script 158
Creation of Container Capsules . 159
Converting MSCs in Rational Rose RealTime Using the RQA-RT 159
Creating Messages and Sequence Diagrams . 160
Sending Message Specification Data Field Format for Java 160
Customizing a Sequence Diagram Created From a Trace. 160
RQA-RT Limitations . 161

14 Technical Support . 163
Submitting Problem Reports .163

Submitting Feature Requests. .164

Submitting Support Requests .165

Contacting Rational Customer Service by Email or Telephone166
License Support Contact Information. 167

Index. 169
Contents xiii

xiv Contents

Preface
This manual provides the necessary information to install, uninstall, and configure
Rational Rose RealTime for your environment.

This manual is organized as follows:

■ Introduction on page 1
■ Referenced Configurations and Toolchain Requirements on page 13
■ Installing Rational Rose RealTime on Windows on page 23
■ Installing Rational Rose RealTime on UNIX on page 51
■ Converting Connexis Models on page 67
■ Understanding Rational Rose RealTime Licenses on page 73
■ Installing License Keys on page 89
■ Migration on page 99
■ Integration Notes on page 135
■ Starting Rational Rose RealTime on page 141
■ Add-Ins on page 147
■ Uninstalling Rational Rose RealTime on page 153
■ Troubleshooting, Known Issues, and Updates on page 155
■ Technical Support on page 163

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.
xv

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals on Windows, click Rose RealTime Online Documentation from the Start
menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer
Network.
xvi Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RealTime
components in ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RealTime projects in
UCM and create Rose RealTime projects
from baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in Rose RealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
Rational Rose RealTime Integrations With Other Rational Products xvii

Contacting Rational Customer Service

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Service.

Note: When you contact Rational Customer Service, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on Rational Rose RealTime install
issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xviii Preface

1Introduction
Contents

This chapter is organized as follows:

■ Welcome to Rational Rose RealTime on page 1
■ Overview of Rational Rose RealTime Capabilities on page 6
■ What’s New? on page 2
■ How to Get Help on page 9
■ Directory Contents on page 10
■ Accessing the Online Help System on page 12

Welcome to Rational Rose RealTime

Rational Rose RealTime is a comprehensive visual development environment that
delivers a powerful combination of notation, processes, and tools to meet the
challenges of real-time software development. Through the industry-standard
Unified Modeling Language (UML), real-time design constructs, code generation, and
model execution capabilities, Rational Rose RealTime addresses the complete lifecycle
of a project: from early use case analysis, through to design, implementation, and
testing.

Rational Rose RealTime is designed for simple insertion into your software
development environment, processes, and workflows. Rational Rose RealTime
includes seamless integration with other Rational products and support for a variety
of commercial real-time operating systems.

This guide provides the necessary information to install and configure Rational Rose
RealTime in your environment.

Release Notes

See the Rational Rose RealTime Release Notes for information on system requirements,
known limitations, documentation updates, and troubleshooting information.
1

Installation Guide Updates

For the latest documentation updates, please refer to the Rational Rose RealTime web
site:

http://www.rational.com/support/

Navigate to the Product Documentation link.

What’s New?

Welcome to Rational Rose RealTime Version 2003.06.00. Based on extensive customer
consultation and feedback, this release contains many updates and corrections
designed to streamline user workflows and enhance developer productivity. Listed
below are some of the more visible changes that you will discover in this release. We
hope that you find the following enhancements helpful and we look forward to
serving your needs in future releases:

Improved UML Support

Rose RealTime now supports UML activity diagrams. Users can create and view
activity diagrams within Rose RealTime.

New Features to Improve Usability

Many new features have been added to this release that simplify user workflows
associated with editing and navigating models and code. These include:

■ Improvements to the find engine to provide easier access and find more things in
more places. The engine also now helps find model elements in the navigator and
provides better searches of generalizations, messages and sequence diagrams,
diagram notes, and connectors.

■ Improvements to model navigation and the ability to modify the design from
model element specifications without having to use diagrams. This has been
extended to:

❑ Modifying class relations and relation ends

❑ Adding ports, connectors, and triggers, and other elements

You can now navigate models from package specifications with a new tab that lists
the contained elements from the package. You can select all references on a
component specification using Ctrl-A.
2 Chapter 1 - Introduction

■ Improvements to state diagram editing and manipulation with better support for
copy-paste, improved diagram layout and label positioning, and the addition of a
tab listing transitions and their trigger conditions on state specifications.

■ Usability improvements for associations. Association ends are now visible in the
model navigator as well as in a compartment on classes in class diagrams.

■ Usability improvements to aggregations. It is now easier to modify association
ends using the aggregation tool as well as from the relations tab on class
specifications.

■ Improved sequence diagram layout, editing and navigation with better support
for copy/paste, additional choices for layout, the ability to navigate sequence
diagrams using the keyboard, the ability to create sequence diagrams from the
capsule structure navigator, and the ability to add create messages to existing
interaction instances.

■ Improved support for user defined stereotypes and increased support of built in
stereotypes and specialized icons.

■ Many other general improvements such as more consistent menus, additional
keyboard shortcuts, more interactive diagram layout, and the ability to print user
code when printing a model.

■ Improved requirements modeling with the addition of the Show participants in
Use Case report, the ability to create relationships between use cases, and support
for finer granularity requirements traceability with Rational Requisite Pro.

Improved Rose Compatibility

Rational Rose model import has been improved including support for importing C++
code associated with Classic C++ Rose models. Rose model artifacts are preserved
and displayed in Rose RealTime, including state, activity, sequence, collaboration,
class, component, deployment, and sequence diagrams. Because of differences in the
diagram formatting between the two tools, some diagrams may appear differently in
Rose RealTime than in Rose, but the information is preserved. Rose RealTime now
imports models from Rose v2002 without having to convert to Rose98 format.

For users migrating their Rose models and code to Rose RealTime, improvements
have been made to the sharing and interworking between code and model artifacts
from Rose C++ within Rose RealTime. You can reference Rose C++ code from Rose
RealTime during build, or you can import the model and C++ code into Rose
RealTime for further development.
What’s New? 3

Build and Target Enhancements

Many new features that enhance target support and code centric workflows have
been added:

■ It is now easier to edit the generated code with the addition of Browse Header and
Browse Body menus to navigate to the generated source code from the model.

■ The generated source code is now easier to read with the ability to turn off the
generation of codesync and model tags in the generated code.

■ Rose RealTime can include model documentation in the generated C and C++
code, and can code-sync documentation changes back into the model.

Integration with source debuggers has been enhanced with support for adding source
breakpoints to operations:

■ Source debugging integration without UML debugging is now supported. This
permits source debugging on targets that do not have TCP/IP support required for
UML debugging.

■ It is now possible to create and delete source breakpoint to operations in the UML
model and have those appear in an external source debugger.

■ Source breakpoints are easier to manage with the addition of a source breakpoint
viewer to view model-level source breakpoints.

■ The watch window has been enhanced to show the class of a variable, and to better
display long class names and data values.

■ Improvements to better indicate where a model is halted on a model halt.

Target platform and IDE support, and integration with non-Rose RealTime
applications has been enhanced:

■ Wind River Tornado 2.2, as well as bare C and C++ environments without an
operating system have been added to the list of reference configurations.

■ An “External” service API has been added to simplify the integration from
non-Rose RealTime threads and Rose RealTime generated capsule-based
applications.
4 Chapter 1 - Introduction

There have been numerous other improvements as well:

■ The add class dependencies feature has been improved and now supports a finer
granularity of choices.

■ Report file saves progress is now reported during code generation.

■ It is now possible to build a component directly from a component diagram.

■ The TargetRTS wizard has been updated.

■ Path maps are now available for library scripts.

Improved Code Generation

Rose RealTime code generation has been extended to support a wider range of target
applications. Rose RealTime now includes:

■ Support for template code generation from C++ Parameterized classes

■ Support for state-machine code generation for C and C++ classes

■ Generation of standalone C and C++ libraries, and generation of standalone
non-capsule based executables

■ Support for C++ exception declarations

■ Support for multi-line initial data and header/implementation preface/ending
specifications for C and C++ attributes

Enhanced Configuration Management Integration and Faster
Loading

New background synchronization, faster model loading, and faster toolset shutdown
improves support for large scale development have been added to this release of Rose
RealTime. Model merging has been improved with enhancements such as addition of
the ability to work with Rational ClearCase to support merging of code and text in
UML models. In addition, sequence diagrams can now be controlled units letting you
create simpler models with faster saves and improved model merging.

Model sharing and restructuring has been simplified with the ability to easily change
units from shared to owned and back, the addition of a Save As command for
controlled units to easily modify the storage location of controlled units, the ability to
easily create controlled units in uncontrolled units, the ability to view the ClearCase
version tree from within Rose RealTime, and support for ClearCase unreserved
checkouts. The Apply Label command now works recursively by model element
instead of file system.
What’s New? 5

Installation and Platform Support

Rose RealTime now installs from one CD and does not require a separate install key.

Host platform support has been extended with support for Solaris Version 9.

Overview of Rational Rose RealTime Capabilities

Modeling:

■ Use Case Modeling
■ Class Modeling
■ Collaboration (role) Modeling
■ Interaction Modeling (sequence diagrams)
■ Component Modeling
■ Deployment Modeling

Application Generation:

■ C++ Language Support
■ Java Language Support
■ C Language Support
■ Data Class Code Generation

Visual Execution:

■ Host Execution
■ Target Execution
■ Model Visualization (Animation)
■ Model Debugging (Tracing, Injection, Inspection)

Tools Interworking:

■ Rational ClearCase
■ Microsoft Visual SourceSafe (Windows only)
■ SCCS (UNIX only)
■ RCS (UNIX only)
■ PVSC (UNIX only)
■ Rational SoDA (requires Rational Rose RealTime domain)
■ Rational RequisitePro
■ Rational Purify
6 Chapter 1 - Introduction

Model Documentation:

■ Report Generation (Windows only)
■ Web Publisher

Rational Connexis

Connexis simplifies the construction of reliable, distributed applications using
Rational Rose RealTime. You can easily establish communication paths and send
messages between capsules in separate processes whether they reside on the same
node or on separate nodes. Also, you can monitor connections, trace messages, and
collect communication metrics.

With Rational Connexis, you can distribute applications built with Rational Rose
RealTime version 2003.06.00. Connexis also provides features to help you build
reliable distributed applications.

Connexis extends the asynchronous messaging used between capsules in Rational
Rose RealTime so that it can be used between capsules located in different processes
or different nodes in a network. Connexis allows you to use unwired ports, based on
protocols you define, to establish these connections. Since the same mechanisms are
used for local and remote messaging, it is easy to make your application distributed.

Using a publish and subscribe pattern, Connexis can connect capsules whether they
are on the same processor, distributed on a backplane, across a network connection, or
through some other channel. To implement these connections, Connexis uses the
underlying TCP/IP stack of the operating system.

Connexis also includes several features to provide fault-tolerance capabilities to the
applications you build with Rational Rose RealTime. The Connexis Locator Service,
which can be used to find connection destinations, supports the use of a backup
locator to automatically take over should the primary locator fail.

Run-Time Connectivity Viewing

Determining connectivity in a distributed system can be tedious and time-consuming.
To make this easier, Connexis includes a connectivity trace tool, the Connexis Viewer,
that lets you examine and monitor connection status in real-time. You can easily
determine the services that have been published and who has subscribed to them,
wherever the publishers and subscribers may be on your network.

The Connexis Viewer also lets you trace messages between publishers and
subscribers. You can apply filters to restrict the trace information being captured and
you can also specify the number and size of the memory buffers allocated for tracing.
This allows you to carefully control the allocation and use of tracing resources on
target.
Overview of Rational Rose RealTime Capabilities 7

Together, these features provide easy, convenient, and fault-tolerant connectivity.
Instead of building your own distributed communications infrastructure, you can
build additional revenue-generating features into your product. The result is that
your product ships sooner with more features.

For additional information on Connexis, see the User Guide - Rational Rose RealTime
Connexis.

Rational Quality Architect - RealTime Edition

Rational Quality Architect automates scenario-based unit testing. You can create
sequence diagrams that specify how any set of capsules interact. With a single
command, Rational Quality Architect generates and builds test harnesses along with
any requested stubs, runs the tests on the specified target, collects the results at
run-time, compares those results with the original sequence diagrams, and highlights
any differences between them along with any detected race conditions.

Using Rational Quality Architect - RealTime Edition (RQA-RT), you can extend
Rational Rose RealTime's design automation capabilities to model, debug and test. By
automatically generating complete unit and integration test harnesses directly from
sequence diagram specifications, manual coding of stubs and drivers for debugging
and testing is eliminated.

RQA-RT automatically verifies designs against sequence diagram specifications both
analytically and during execution. Application generation and automatic testing of
fully or partially complete designs, plus animated visual and symbolic debuggers,
encourages early and continuous design refinement and validation.

For detailed information on RQA-RT, see the User's Guide - Rational Quality Architect
RealTime Edition.

Allow Sub-Capsule Instances to be Drivers

This functionality provides a way to implement “stub” generation for contained
capsule instances. Providing this functionality RQA-RT enables more robust testing
and more complex interactions.

Verification Mode Changes to Allow more Control in Manual Mode

This functionality enables RQA-RT to operate in manual mode and provides the
functionality to run the harness on a custom node.
8 Chapter 1 - Introduction

Allow Data Qualifier in Data Field of Send Message

This functionality enables full composite data types to be passed as the signal data,
allowing the same range of data flexibility or inject capability as in the toolset.

Allow Drivers to Model Timing Services

When a timing service is invoked from the driver interaction instance, it will be
generated into the driver capsule. This provides more robust support for converting
trace diagrams into specifications.

Capsule Interface Generation for Instances on Sequence Diagram
Without Role Specified

Required test wrappers are automatically generated based on the user supplied
sequence diagrams.

Java Language Support

Enables RQA-RT functionality on a model based on the Java Language add-in.

How to Get Help

This section describes procedures for interacting with Rational Customer Service.

Contacting Rational Customer Service Using the Help Menu

With Rational Rose RealTime, you can email problem reports, feature requests, or
support requests to the Rational Customer Service department that services your
location, directly from the Rational Rose RealTime application’s Help menu.

For details on how to use this feature, see Technical Support on page 163.

Contacting Rational Customer Service by Email or Telephone

When contacting Rational Customer Service by email or by telephone, please be
prepared to supply the following information:

■ Name, telephone number, and company name

■ Product name and version number

■ Operating system and version number (for example, Windows NT 4.0, Windows
2000, Windows XP Pro, Solaris 2.6, 2.7, 2.8, and 2.9)
How to Get Help 9

■ Computer make and model

■ Your service request id (if you're calling about a previously reported problem)

■ A summary description of the problem, related errors, and how it was made to
occur

For details on contacting Rational Customer Service by email or telephone, see
Contacting Rational Customer Service by Email or Telephone on page 166.

Evaluation and Ordering Information

United States and Canada

Rosebud@rational.com

1-800-728-1212

Other Worldwide locations

Rosebud@rational.com

+1-408-863-9900

Rational Web Site

You can contact Rational Customer Support and obtain the latest product information
through our web site at:

http://www.rational.com/support

Directory Contents

After installation of the main Rational Rose RealTime files for Windows and UNIX,
ensure that the installation directory is $ROSERT_HOME on UNIX (Solaris) and
%ROSERT_HOME% on Windows (NT, 2000, and XP Pro) and all its associated files
are readable, and not writable, by all users of Rational Rose RealTime.

Note: For UNIX, the $ROSERT_HOME/Help directory must be Read/Write for all.
10 Chapter 1 - Introduction

http://www.rational.com/support

The ROSERT_HOME directory and its sub-directories contain all the individual files
that comprise this release of Rational Rose RealTime. Some of the files and directories
are:

Note: For the latest integration information and referenced configurations, see the
Rational Rose RealTime Release Notes.

Directory Description

ROSERT_HOME This is the top level directory.

AddIns Contains the configuration information required by Rational Rose
RealTime Add-ins.

bin Contains the Rational Rose RealTime executable and various scripts. The
bin directory also contains subdirectories for each of the supported
workstation platforms ROSERT_HOST.

C++ or C These directories contain the libraries, header files, scripts relating to code
generation, and source files for the Services Library. For more information
regarding the Services Library, see the Toolset Guide and the C Reference and
C++ Reference.

Connexis Contains the Connexis files.

Examples Contains example model files.

Help Contains the online Help, PDFs, and Viewlets.

Tutorials Contains model files for different stages of the various tutorials. See the
Rational Rose RealTime Tutorial for additional tutorial information.

RQART Contains the Rational Quality Architect - RealTime Edition files.

RTJava Contains the classes and scripts relating to code generation in Java, See the
Java Reference for more information.

Scripts Contains various Rational Rose RealTime scripts.

WebPublisher Contains the Web Publisher files.
Directory Contents 11

Accessing the Online Help System

Online Help and documentation for Rational Rose RealTime is provided in HTML
Help format. To access the online Help, from the Help menu, click Contents.

PDF versions of the documentation are available in the $ROSERT_HOME/Help
directory, unless specified otherwise.

Windows Only

The Help Viewer requires that Microsoft Internet Explorer (version 3.02 or later) be
configured on a user’s computer. It is not required that Internet Explorer be used as
the system’s default browser, or that the Internet Explorer icon be visible on the user’s
desktop.
12 Chapter 1 - Introduction

2Referenced
Configurations and
Toolchain Requirements
Contents

This chapter is organized as follows:
■ Referenced Configurations on page 13
■ Toolchain Requirements on page 15
■ Referenced Host Configurations on page 16
■ Adding a Printer on UNIX on page 20

Note: Rational Rose RealTime is not supported on Windows 95, Windows 98, or
Windows ME.

Referenced Configurations

Before you install on Windows or UNIX, verify that your host configuration meets the
minimum system requirements:

■ Requirements for Windows NT on page 13
■ Requirements for Windows 2000 on page 14
■ Requirements for Windows XP Pro on page 14
■ Requirements for UNIX on page 15

Requirements for Windows NT

The minimum supported configuration for running Rational Rose RealTime on
Windows NT is:

■ Windows NT 4.0, with service pack 6a and Security Rollup Package (SRP)

■ Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of free disk space for the Rational Rose RealTime installation
13

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccoutLink is not accessible using Netscape 4.x browsers.

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows 2000

The minimum supported configuration for running Rational Rose RealTime on
Windows 2000 is:

■ Windows 2000 Professional, with service pack 2 or 3.

■ Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of disk space for the Rational Rose RealTime installation

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccoutLink is not accessible using Netscape 4.x browsers.

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows XP Pro

The minimum supported configuration for running Rational Rose RealTime on
Windows XP Pro is:

■ Windows XP Pro, or XP Pro with service pack 1

■ Minimum Pentium II 300 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of free disk space for the Rational Rose RealTime installation

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher
14 Chapter 2 - Referenced Configurations and Toolchain Requirements

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccoutLink is not accessible using Netscape 4.x browsers.

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for UNIX

The minimum supported configuration for running Rational Rose RealTime on UNIX
is:

■ Solaris 2.6, Solaris 2.7, Solaris 2.8, or Solaris 2.9

❑ For Solaris operation, the minimum workstation is an UltraSparc 10 with
500 MB of RAM. We recommend an UltraSparc 60 with 600 MB of RAM. We
recommend the Solaris 2.8 operating system.

❑ Please see the Rational Rose RealTime web site
(http://www.rational.com/support) for a list of the required UNIX patches
applicable to your operating system, or run the check_rose_reqs script in the
$ROSERT_HOME/bin folder.

■ The minimum is 256 MB of RAM. We recommend 512 MB of RAM with
approximate three times this amount of swap space.

■ Minimum 370 MB of free disk space for the Rational Rose RealTime installation.

■ Browser requirement - Netscape Navigator 7.0.

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installing Rational Suite DevelopmentStudio.

Toolchain Requirements

Help Viewer (Windows Only)

The Help Viewer requires that Microsoft Internet Explorer (version 5.5 or later) be
configured on your computer. For details, see Accessing the Online Help System on
page 12.
Toolchain Requirements 15

http://www.rational.com/products/rosert

Compiler

You must have a C or C++ compiler installed on your system if you are working in
either C or C++, to make use of the code compilation and execution capabilities for
Rational Rose RealTime. Different compilers are required for host workstation and for
embedded system targets. For a list of supported compilers and targets, see Referenced
Host Configurations on page 16.

You do not need a compiler if you are working in Java.

Real-time Operating System

If you are planning to deploy your model on a real-time operating system, your
operating system, hardware and tool line-up must be one of the supported lineups
listed in Table 2 on page 17. If you do not have a supported line-up, you may be able
to get support for your line-up from a Rational RoseLink partner, or by customizing
the Rational Rose RealTime Services Library for your target. For instructions on
customizing the Services Library and compiling for new target platforms, see the C++
Reference, C Reference, or Java Reference.

Referenced Host Configurations

Table 1 shows the referenced host configurations for this release of Rational Rose
RealTime.

Table 1 Host Configurations

Toolset Host Requirements

Solaris 2.6 See Requirements for UNIX on page 15

Solaris 2.7 See Requirements for UNIX on page 15

Solaris 2.8 See Requirements for UNIX on page 15

Solaris 2.9 See Requirements for UNIX on page 15

Windows NT 4.0 (Service Pack SP6a) See Requirements for Windows NT on
page 13

Windows 2000 (Service Packs SP2 and SP3) See Requirements for Windows 2000 on
page 14

Windows XP Pro (Service Pack SP1) See Requirements for Windows XP Pro on
page 14
16 Chapter 2 - Referenced Configurations and Toolchain Requirements

A pre-defined set of the Rational Rose RealTime UML Services Libraries are delivered
as part of the Rational Rose RealTime product. The UML Services Library is what
allows the execution of standalone executable models on target operating systems.
These ports are fully tested by Rational, and are covered by standard Rational
Support Agreement. A standard port can be used to facilitate a port to your
environment of choice.

Note: For a more detailed description of the Services Library, refer to the
programmer’s guides, or online Help.

A port is based on the following specifications (often called the toolchain line-up):

■ OS version
■ Processor type
■ Compiler version

If you use a configuration other than those tested by Rational and listed in this guide,
standard support will cover problems encountered by customers only to the extent
that the problem is reproducible for the configurations listed in this guide.

Table 2 shows the referenced configurations and targets.

Table 2 Referenced Configurations and Targets

Host
Configuration(s)

Target RTOS Compiler/Processor
RTS
Library

Connexis
DCS
Library

Solaris Same Gnu 3.04 SPARC

Sun C++ 5.3, SPARC

Sun C 5.3, SPARC

C & C++

C++

C

C++

C++

-

Windows Same Visual C++ 6.0, x86
Visual C++ 7.0, x86

C & C++
C & C++

C++
C++

Solaris, Windows OSE 4.1.1 Diab 4.3f, ppc

GreenHills 1.8.9, ppc

GreenHills 2.0, ppc

C & C++

C

C

C++

-

-

Solaris OSE 4.1.1
SoftKernel

Gnu 2.95.1, SPARC C & C++ -

Windows OSE 4.1.1
SoftKernel

Visual C++ 6.0, x86 C -
Referenced Host Configurations 17

Creating Executables for Hosts Without Toolset Support

For hosts without toolset support, create an executable on the target.

Note: The following steps assume that you use a common file system and that paths
are equivalent on both machines.

To produce an executable for a host without toolset support:

1 Select Tools > Options and click the C++ Compilation tab. Click Select in the
TargetConfiguration area.

2 In the Target Configuration dialog, select the appropriate target configuration and
click OK.

Solaris, Windows Tornado 2.02

(VxWorks 5.4)

Gnu 2.96

GreenHills 1.8.9, ppc

GreenHills 2.0, ppc

C & C++

C & C++

C & C++

C++

C++

C++

Solaris

Windows NT

Tornado 2.0 Sim Gnu 2.96, SPARC

Gnu 2.96, x86

C++

C++

C++

C++

Solaris, Windows LYNX 3.1.0a gnupro-2.9-98r2, ppc C++ C++

Solaris LYNX 3.0.1 Cygnus 2.7.97r1, x86

Cygnus 2.7.97r1, ppc

C++

C++

C++

C++

Solaris Chorus Classix 4.0 egcs-2.91.66, ppc C++ -

Windows Windows CE 3.01 eMbedded Visual C++ 3.0,
sh3

C++ C++

Solaris, Windows eCos ITRON Gnu 2.95.3, x86 C -

Solaris,

Windows

No RTOS Gnu 2.8.1, SPARC

Visual C 6.0, x86

C & C++

C & C++

C & C++

C & C++

Windows Nucleus 1.1 Diab 4.2b, ppc C++ -

N/C - native
compilation only

Red Hat Linux 7.1 Egcs 2.91.66, x86 C++ C++

N/C - native
compilation only

UnixWare 7.0.1 SDK 3.0, x86 C++ C++

Table 2 Referenced Configurations and Targets

Host
Configuration(s)

Target RTOS Compiler/Processor
RTS
Library

Connexis
DCS
Library
18 Chapter 2 - Referenced Configurations and Toolchain Requirements

3 On the C++ Generation tab, ensure that CodeGenMakeType and
CodeGenMakeCommand are appropriately set for the toolset host.

4 On the C++ Compilation tab, ensure that CompilationMakeCmd and
CompilationMakeType are appropriately set for the compilation host.

5 Build the component with a build level set to Generate.

This creates the source files and makefiles, required for compilation on the target
host.

Note: If the target computer that you use to compile does not have a common file
system with the code generating host, see Generating an Executable Without a
Common File System on page 19.

6 From the build directory on the target host, set the environment variables for the
compilation configuration (line-up).

7 Invoke the appropriate make command for the line-up.

Note: If you generate the source files on Windows (NT, 2000, or XP) and compile
on UNIX, see the steps below about converting Windows files to UNIX type.

Generating an Executable Without a Common File System

If you build the source files on Windows (NT, 2000, or XP) and compile on UNIX, you
must convert your files to UNIX type before you compile and link.

To generate an executable without a common file system:

1 On the target, a visible copy of the TargetRTS must be available.

2 Copy the component directory to the target file system.

3 Edit the build/makefile so that RTS_HOME is set to location of the TargetRTS.

4 If the source was generated on Windows, convert all files in the component
directory to UNIX type, using a utility such as dos2unix.

This is very important if the target does not support CRLF (Carriage Return Line
Feed) line terminators.

Note: It may be necessary to convert files in the TargetRTS directory, particularly if
some files were edited on Windows.

5 From the build directory, set your environment variables appropriately for the
compilation configuration.
Referenced Host Configurations 19

6 Invoke the appropriate make command for this line-up.

Note: You can access a ClearCase server on UNIX with Rational Rose RealTime clients
running on both Windows and UNIX workstations.

Adding a Printer on UNIX

Rational Rose RealTime on UNIX uses MainWin (a MainSoft product that allows
Windows applications to run in a UNIX environment). Special printer specification is
necessary to support the PSCRIPT.

MainWin uses the PSCRIPT keyword in win.ini to specify PostScript support under
UNIX, using syntax similar to the way one would use the PSCRIPT driver in
Windows. Below is a typical printer-related section of a win.ini file. The win.ini file is
located in your Windows directory in your home directory (ie: ~/windows/).

The win.ini entries are more or less the same for MainWin as they are for Windows.
An explanation of each section follows the win.ini file lines.

[windows]

device=Apple LaserWriter II NT,PSCRIPT,LPT1

...

The device entry in this win.ini [windows] section defines the default printer. It takes
the following syntax:

device=outputdevicename,devicedriver,portconnection

The keyword PSCRIPT is used in place of devicedriver.

[ports]

LPT1:=lp -c "%s"

LPT2:=lp -c -dps1700 "%s"

LPT3:=

...

The win.ini [ports] section lists available communication and printer ports. Under
MainWin, the Windows LPTn keywords are mapped to UNIX commands. In this
example, LPT1 and LPT2 are mapped to the print command lp. MainWin sends all
print job output to a file. The output file is then sent to the printer. The term %s tells
the system to substitute the name of the PostScript intermediate output file. The term
-dps1700 in the example refers to a UNIX printer named ps1700. The printer should
be defined in the UNIX printcap file.
20 Chapter 2 - Referenced Configurations and Toolchain Requirements

[PrinterPorts]

Apple LaserWriter II NT=PSCRIPT,LPT1:,15,90

Postscript Printer QMS=PSCRIPT,LPT2:,15,90

The win.ini [PrinterPorts] section is included for compatibility with applications that
require this section. Entries are similar to those for the [Devices] block listed below. In
[PrinterPorts], PostScript timeout values are appended after the device name. The
timeout values are not used by MainWin.

[Devices]

Apple LaserWriter II NT=PSCRIPT,LPT1:

Postscript Printer QMS=PSCRIPT,LPT2:

The [Devices] block lists the active and inactive output devices accessed by device
drivers, and specifies the ports to which these devices are connected. In this example,
Apple LaserWriter II NT=PSCRIPT,LPT1: specifies that the printer is connected to the
PSCRIPT queue connected to LPT1.
Adding a Printer on UNIX 21

22 Chapter 2 - Referenced Configurations and Toolchain Requirements

3Installing Rational Rose
RealTime on Windows
Contents

This chapter is organized as follows:

■ Using the Rational Installation Program on page 24
■ Using the Rational Setup Wizard on page 25
■ Before You Install on page 27
■ Upgrade Information on page 28
■ Specifying the Rational License Server on page 29
■ Performing a Client Installation on page 29
■ Post-Installation Tasks on page 32
■ Creating a Release Area on page 33
■ Installing Rational Rose RealTime from a Release Area on page 38
■ Using Silent Installation Commands on page 43
■ Setting Up Silent Installations of Rational Rose RealTime from a Release Area on page 45
■ After You Install on page 46
■ Testing your Environment on page 49

Removing Previous Releases of Rational Products

Before installing Rational products from release 2003.06.00, you must completely
remove all previous releases of Rational products. For the removal procedure, see
Uninstalling Rational Rose RealTime on page 153. If the Rational Setup Wizard detects
products from previous releases, it will not proceed with the installation.

You or your system administrator must see the Rational Suite Upgrade Guide in the
Rational Solutions for Windows Documentation CD-ROM before you try to upgrade
your Rational products.

If you are using floating licenses, record the license server name(s) before you remove
Rational products from your computer. After you install new Rational products on
your computer, you need to reset the hostnames in the Rational License Key
Administrator. For more information, see the Removing Rational Products chapter in
this installation guide.
23

Installing Mixed Versions of Rational Products

In most cases, you cannot run mixed versions of Rational products on the same
computer. You can install mixed versions in the following cases:

■ Rational ClearCase with an earlier version of Rational Suite (that does not include
Rational ClearCase LT).

■ Rational ClearQuest standalone or as part of Rational Suite with full Rational
ClearCase 4.0 - 5.0.

■ Rational TeamTest with full Rational ClearCase 4.0 - 5.0.

■ Rational XDE with full Rational ClearCase 4.2 (fully patched) or 5.0.

Using the Rational Installation Program

Use the Rational installation program for initial and upgrade installations of Rational
Rose RealTime. This chapter describes the Rational installation wizard and how the
wizard can help you deploy Rational Rose RealTime directly from the installation
CD-ROM, from a release area on a network, and from a silent installation file.

Use Table 3 on page 24 to help you find the correct procedures for the deployment
method that you have selected for your users.

Note: Ask your administrator whether a release area has been set up for you.

Table 3 Deployment Methods

Method See

Install directly from the Rational Solutions
for Windows CD-ROM.

1 Using the Rational Setup Wizard on page 25.

2 Before You Install on page 27.

3 Specifying the Rational License Server on page 29.

4 Performing a Client Installation on page 29.

5 Post-Installation Tasks on page 32.

Cancel an installation from CD-ROM. Canceling an Installation from CD-ROM on
page 32.

Reinstall from a CD-ROM. Reinstalling Rational Rose RealTime from CD-ROM
(Modify, Repair, Remove) on page 32.
24 Chapter 3 - Installing Rational Rose RealTime on Windows

Using the Rational Setup Wizard

The Rational Setup Wizard installs Rational Software products. Your Rational product
shipment includes three Rational Solutions for Windows CD-ROMs:

Create a release area using the Rational
Setup Wizard.

1 Using the Rational Setup Wizard on page 25.

2 Specifying the Rational License Server on page 29.

3 Using the Rational Setup Wizard to Create a
Release Area on page 34.

4 Post-Installation Tasks on page 37.

Create multiple site defintion files for a
release area.

1 Create a release area using the Rational Setup
Wizard.

2 Running the Site Preparation Wizard to Create
Multiple Sitedef Files on page 37.

Install from a release area on a network
(using the standard configuration)

1 Using the Rational Setup Wizard on page 25.

2 Installing Rational Rose RealTime from a Release
Area on page 38

Install from a release area on a network
(customizing the client configuration for
your desktop)

1 Using the Rational Setup Wizard on page 25.

2 Before You Install on page 27.

3 Specifying the Rational License Server on page 29.

4 Installing Rational Rose RealTime from a Release
Area on page 38

Cancel an installation from a release area. Canceling a Product Installation From a Release Area
on page 42

Reinstall from a release area. Reinstalling Rational Rose RealTime From a Release
Area (Modify, Repair, Remove) on page 42

Run a silent installation from a release area. 1 Using the Rational Setup Wizard on page 25.

2 Setting Up Silent Installations of Rational Rose
RealTime from a Release Area on page 45.

Run a silent installation from a site defaults
file.

1 Using the Rational Setup Wizard on page 25.

2 Silent Installation Overview on page 43.

3 Running a Silent Installation on your Desktop on
page 44

Table 3 Deployment Methods

Method See
Using the Rational Setup Wizard 25

■ Disc 1-2 provide the Rational products to install.

■ Disc 3 provides Rational product documentation.

Rational_Install Log

The Rational installer does not display an error summary. To verify that an installation
was successful or to understand why it failed, look in the log of installation activities
called Rational_install.log (e.g.TEMP=C:\DOCUME~1\<username>\LOCALS~1\Temp or
c:\temp\install.log). The location of the temp directory depends on the temp
environment variable set on the computer. To find the location, open a command
window and type SET at the prompt.

Before You Start the Rational Setup Wizard

The following general requirements are necessary to run the Rational Setup Wizard
on the system.

■ Stop all applications before you begin the installation.

■ Make sure you have administrator privileges before installing Rational products.

To use the Rational Setup Wizard on a Windows operating system, you must have
Windows administrator privileges on the local computer. Log in as one of the
following users:

❑ Local administrator

❑ Member of the local administrator’s group

❑ Domain administrator who is a member of the local administrator’s group

■ Turn off all virus protection software. These programs often run in the background
and interfere with the install application’s performance because the virus
protection checks each file that is installed.

■ Make certain that the system meets the minimum requirements and the correct
operating system.

■ The Rational Setup Wizard uses C:\Program Files\Rational as the default install
path.
26 Chapter 3 - Installing Rational Rose RealTime on Windows

■ The Rational Setup Wizard reports the amount of space required on all drives for
your installation. To see this information, click the Space button. If your C:\ drive
lacks sufficient free disk space, you may either specify another drive during the
installation procedure or make space available on the default drive.

Note: The Setup Wizard installs Microsoft Core Components and some additional
files on the same drive as the operating system (often the C:\ drive), even if you
have specified an alternate drive for installation. These files can require 5-15 MB of
temporary disk space on your hard drive.

■ The Rational Setup Wizard requires that you install all Rational products in the
same directory. If you already have Rational products installed on the system, the
Setup Wizard installs additional Rational products in the same directory.

■ Make sure that you have a current backup of your Registry and system directories.

■ Turn off any user interface managers or environments that run on Microsoft
Windows.

■ Change to a standard VGA video driver while Rational Setup is running, or
disable video features such as virtual screens or screen switching.

■ Change to a standard mouse driver, or disable special mouse features that perform
tasks such as leaving pointer trails or changing pointer sizes.

Before You Install

Before you install Rational Rose RealTime, ensure that you have a supported system
configuration. The system requirements are in a table in the section Referenced
Configurations and Toolchain Requirements on page 13. A setup program is included to
facilitate the installation of Rational Rose RealTime on Windows NT, Windows 2000,
or Windows XP Pro. You must have administrator privileges to install this software.

Note: If you installed the Companion Products for an earlier installation of Rational
Rose RealTime, ensure that you also uninstall the Companion Products before
installing Rational Rose RealTime 2003.06.00.

For instructions on how to install Rational products, see the Installation guides for
Rational Desktop Products or Rational Server Products.
Before You Install 27

There are three types of installations that you can perform:

■ Client Installation (a local client installation) - see Performing a Client Installation on
page 29

■ Enterprise Installation - see Creating a Release Area on page 33
■ Silent Installation from the Network - see Using Silent Installation Commands on

page 43.

Preparing for a Rational Rose RealTime Installation

Here is an overview of tasks for installing Rational Rose RealTime as part of your
Rational Suite edition.

■ To generate and execute C++ code with Rational Rose RealTime, C++ compilers
must be installed on your system. For a list of supported compilers and targets, see
the Referenced Configurations and Targets on page 17.

■ To construct and execute UML models, test your Visual C++ environment. To help
you determine whether you have correctly installed and configured Visual C++ on
your system, see the Testing your Environment on page 49.

■ To deploy your model on a real-time operating system, see Referenced Host
Configurations on page 16 for information on referenced configurations.

Upgrade Information

Ensure that past releases of Rational Rose RealTime are removed from your system
prior to installation. For details on your specific platform, see Uninstalling Rational
Rose RealTime on page 153 for your specific platform.

Models created in earlier versions of Rational Rose RealTime can be loaded directly
into version 2003.06.00 Rational Rose and ObjecTime Developer models should be
converted as described in Migrating from ObjecTime Developer 5.2/5.2.1 on page 105.

Note: Do not attempt to load workspaces created in earlier versions of Rational Rose
RealTime, as they are not compatible with the new release.

Checking the Validity of Your License Keys

If you upgrade to Rational Rose RealTime 2003.06.00 from Rational Rose RealTime
releases 6.0, 6.0.1, or 6.0.2, your license keys are not valid. For information on
requesting license keys, see Requesting License Keys on page 76.
28 Chapter 3 - Installing Rational Rose RealTime on Windows

If you upgrade to Rational Rose RealTime 2003.06.00 from Rational Rose RealTime
releases 6.1, 2000.02.10, 2001.03.00, 2001A.04.xx, or 2002.05.xx, your license keys are
valid.

For more information on license keys, see Installing License Keys on page 89.

Specifying the Rational License Server

The Rational License Key Administrator (LKAD) launches at the end of the
installation. You can provide a Rational License Server name if you are using floating
licenses. Your administrator may have already provided the license server name if
you are installing from a release area or running a silent installation script.

Performing a Client Installation

This section describes a typical installation of Rational Rose RealTime from the
CD-ROM. The Rational Setup Wizard Program guides you through the software
installation. Click Next to launch the installation, and to advance through the
following screens.

Note: Interrupting an installation that is in progress may leave your system in an
indeterminate state. If you try to close the Rational Setup Wizard window while the
installation is in progress, you are asked to confirm that you want to exit from the
incomplete installation.

To install Rational Rose RealTime from a CD-ROM image:

1 Log in as a user with Administrator rights on the local machine on which you
want to install Rational Rose RealTime.

2 Insert the Rational Solutions for Windows Disc 1 into the system’s CD-ROM drive.

The Rational Setup Wizard starts automatically.

If autorun is disabled on your system, click Start > Run and enter
cd_drive: \Setup.exe where drive is the letter of the CD-ROM drive.

3 The Welcome page to the Rational Setup Wizard appears. Click Next to launch the
installation, and to advance through the following screens.

4 The Product Selection page lists all products available for installation. Select
Rational Rose RealTime.
Specifying the Rational License Server 29

5 The Deployment Method page displays the Enterprise Deployment and Desktop
Installation from CD Image options. Select the Desktop Installation from CD Image
option.

6 Choose to accept or not to accept the Rational Software license agreement in the
License Agreement page.

❑ If you accept the license agreement, the installation Wizard continues.

❑ If you do not accept the license agreement, exit the Setup Wizard by clicking
Cancel and then Finish. When you exit from the Wizard, the Setup Wizard
makes no visible changes to your system.

7 On the Destination Folder page, specify the directory where you want to install
Rational Rose RealTime. Click Change to modify the location.

Note: The installation Wizard requires that all Rational products be installed in the
same directory.

8 The Custom Setup page provides product feature options for the software
installation. You can either accept the default features on the page or you can
customize the installation.

If you want to change the features, use the Help.

Note: You must select the Rational Rose RealTime component. Rational Rose
RealTime must be installed in order to install the other addins.

Table 4 Custom Setup Options

Option Description

Rational Rose RealTime Installs the full install of Rational Rose RealTime
including all addins.

Rational Rose RealTime/Connexis Installs only the Rational Rose RealTime Connexis
addin.

Rational Rose RealTime/Rational
Quality Architect

Installs only the Rational Quality Architect -
RealTime addin.

Rational Rose RealTime/Target
Services Library Source

Installs only the TargetRTS run-time services.
30 Chapter 3 - Installing Rational Rose RealTime on Windows

9 The Wizard informs you of the disk space required to install Rational Rose
RealTime and the available disk space on the computer. Click the Space on the
bottom of the Custom Setup page to display the Disk Space Requirements page.
Click OK to close the page. If the amount of free space is less than the amount
required:

❑ Exit from the installation and make more space available on the specified disk,
or

❑ Specify an alternate Install Path. On the Destination Folder page, click Change.
Enter the new path in the Folder Name text field or use the Folder icon to select a
drive and directory, or

❑ Exclude product features in the Custom Setup page.

10 Click Install on the Ready to Install the Program page to begin the installation.

11 A Restart Windows page appears if the Rational Setup Wizard needs to restart your
computer. If files required for the installation are in use during the Rational Setup
program and if the program needs to install shared components on your system,
the Setup Wizard may need to restart your system.

Select Restart or Don’t Restart. If you select Don’t Restart, the Wizard reminds you
that the installation cannot complete until Windows restarts.

After Windows restarts, log on as the same user. If you do not, the installation does
not complete correctly. The second part of the installation process starts
automatically after you log on.

12 When the Rational Setup Wizard Completed page appears, we recommend that
you review the current information related to new features and known issues in
the readme file. In addition, you can view the Rational Developer Network Web
pages. Click Finish to complete the installation.

13 Install the License Key, if required. For information on how to install your license
key, see Installing License Keys on page 89.
Performing a Client Installation 31

Post-Installation Tasks

Licensing

Rational products require licenses. If you do not see the License Key Administrator
(LKAD) launch at the end of the installation, your product is licensed.

You or your users may see the License Key Administrator (LKAD) launch at the end
of a product installation for one of the following reasons:

■ You did not provide a Rational license server name when you created the site
definitions file (applies to installations from a release area).

■ The product requires a desktop license key.

If you see the LKAD, you or your users must perform the following tasks to license
the product.

■ To configure a floating license key, enter the name of the Rational license server in
the LKAD. For more information, see Installing a Startup or Permanent License on
Windows on page 89.

■ To configure a desktop license key, import the node-locked or per user license key
file in the LKAD. For more information, see Installing a Startup or Permanent License
on Windows on page 89

Canceling an Installation from CD-ROM

If you click Cancel any time during the Setup Wizard or before the installation
completes, you will not see any visible changes to the system. The program returns
your system to the state it was in before you launched the Rational Setup Wizard.

Reinstalling Rational Rose RealTime from CD-ROM (Modify, Repair,
Remove)

If you have successfully completed a previous installation of Rational Rose RealTime
in release 2003.06.00, you can re-run the Rational Setup Wizard to modify (add or
remove product components) an installation. If you have inadvertently removed
files from the installation directory, you can re-run Rational Setup Wizard to repair
the installation.

The Rational Setup Wizard guides you through the software installation. In each
dialog, click Next to open the next one.
32 Chapter 3 - Installing Rational Rose RealTime on Windows

To reinstall from the CD-ROM :

1 Log in as a user with Administrator rights on the local machine on which you
want to install Rational Rose RealTime.

2 Insert the Rational Solutions for Windows Disc 1 into the system’s CD-ROM drive.

The Rational Setup Wizard starts automatically.

If autorun is disabled on your system, click Start > Run and enter
cd_drive: \Setup.exe where drive is the letter of the CD-ROM drive.

3 The Rational Setup Wizard provides general information about the software
installation. Click Next to open the Program Maintenance dialog. This dialog offers
three options:

■ Modify the Existing Installation – Choosing this option enables you to change which
products and product features are installed.

To modify the existing installation, click Modify and then click Next to select or
clear product features in the Custom Setup dialog. Click Next and then click Install
to begin the installation.

■ Repair the Existing Installation – Choosing this option enables you to repair any
installation files that may be damaged. This option may repair a damaged registry
or replace files that you may have inadvertently deleted. The Repair option does
not repair incomplete installations or an unsuccessful installation.

To repair an installation, click Repair and click Next and then click Repair to begin
the repair. At the end of the repair operation, the status of the repair is displayed.

■ Remove the Existing Installation – Choosing this option removes all files that you
previously installed for this product.

To remove the existing installation, click Remove and then click Next. Click
UnInstall to begin the de-installation.

Creating a Release Area

The release area contains site defaults files and all the files that will be used in
subsequent installations. For example, part of setting up a release area is to specify
information, such as client software and license servers. This information is stored in a
site defaults file and used when a Rational product, such as Rose RealTime, is
installed on clients.
Creating a Release Area 33

There are two methods for creating a release area and populating it with site defaults
files. Both methods create an on-disk image of product files in a shareable directory on
the network. You can also use these methods to install the product on your computer
after creating a site defaults file.

■ Run the Rational Setup Wizard on the Rational Solutions for Windows CD-ROM. See
Using the Rational Setup Wizard to Create a Release Area on page 34 for more
information.

■ Run the Site Preparation Wizard multiple times to create multiple site defaults
files. See Running the Site Preparation Wizard to Create Multiple Sitedef Files on
page 37 for more information.

Using the Rational Setup Wizard to Create a Release Area

This section explains how you can use the Rational Setup Wizard to create site
defaults files for a release area. You can create a meaningful name for the site defaults
file. By default, the file is named sitedefs.dat if you do not specify a name for it.

You can use this release area to install Rational servers and client software. Client
users can use this release area to install Rational products on their desktops.

1 Make the release area directory shareable. Even if the drive containing that
directory is already shareable, making the directory itself shareable makes it easier
to find the product release area.

a In Windows Explorer, right-click the network release area to display the
directory shortcut menu.

b Click Sharing. The Properties page appears.

c On the Sharing tab, click Shared this folder and supply a meaningful share name,
such as Rose RealTime 2003.06.00 Release Area.

2 Log in as a user with Administrator rights on the local machine.

3 Insert the Rational Solutions for Windows Disc 1 into the system’s CD-ROM drive.

The Rational Setup Wizard starts automatically.

If autorun is disabled on your system, click Start > Run and enter
cd_drive: \Setup.exe where drive is the letter of the CD-ROM drive.

The Rational Setup Wizard Program guides you through the software installation.
Click Next to open the page.

4 The Product Selection page lists all products available for installation. Select
Rational Rose RealTime. Click Next.
34 Chapter 3 - Installing Rational Rose RealTime on Windows

5 The Deployment Method page displays the Enterprise Deployment and the Desktop
installation from CD image options. Select the Enterprise Deployment option to
create a release area. Click Next.

6 The custom configuration page displays in the wizard. Use the Help to provide
instructions in this section of the wizard.

Enter the required information in each page of the wizard. (All required
information displays in the left panel of the wizard with a red dot.)

To navigate through the pages, you can either click Next to see them sequentially
or click on the page title in the left pane to access the page directly and
nonsequentially.

7 In the Completion pages, you are required to fill in the Description page and the
Create a Release Area page. The Launch Installation is optional.

a In the Description page, enter a description for users. When you are done, click
Next.

b In the Create a Release Area page, enter the release area location and filename
for the site defaults file that will be created.

❑ If you want to install software on your computer based on the site defaults that
you just entered, click Next to go to the Launch Installation page. You will save
the site defaults information to a file and then proceed with the installation on
your computer. Fo the rest of the instructions, see Installing Rational Rose
RealTime on Your Computer on page 35.

❑ If you only want to create a release area, click Done and then Next to create the
site defaults file.

8 When the Rational Setup Wizard Completed page appears, we recommend that
you review the current information related to new features and known issues in
the readme file. In addition, you can view the Rational Developer Network Web
pages. Click Finish to complete the installation of the release area.

For more information about how to install Rational Rose RealTime from this release
area, see Installing Rational Rose RealTime from a Release Area on page 38.

Installing Rational Rose RealTime on Your Computer

When you create a release area, you have the option to install Rational Rose RealTime
on your desktop.
Creating a Release Area 35

To install Rational Rose RealTime on your computer:

1 In the Launch Installation page, select Launch installation after saving site defaults
information and then click Done and then Next.

2 When the Rational Setup Wizard Completed page appears, click Finish to complete
the installation of the release area. The opportunity to see the release notes and
visit the Rational Developer Network will appear at the end of the product
installation on your computer.

3 When the installation begins, click Next. Choose to accept or not to accept the
Rational Software license agreement in the License Agreement page.

❑ If you accept the license agreement, the installation Wizard continues.

❑ If you do not accept the license agreement, exit the Setup Wizard by clicking
Cancel and then Finish. When you exit from the Wizard, the Setup Wizard
makes no visible changes to your system.

4 Specify the Destination folder using the Destination Folder page, then click Next or
change the desination folder, by clicking Change.

5 In the Site Default Configuration page, decide whether you want the site defaults
that you set installed on your computer. Either click Use the standard configuration
(These are site defaults that you set.) or I will create my own custom client
configuration.

❑ If you select I will create my own custom client configuration:

➑ The Custom Setup page displays product components to select.

➑ When you click Next, you may change any of the existing site default values.
(Any changes to the site default values apply only to this single installation.)
After modifying the values, click Done and then click Install to begin the
installation.

❑ If you select Use the standard configuration, then the default features for the
existing site default values will be used for the installation. Click Next and then
click Install to begin the installation.

6 A Restart Windows page appears if the Rational Setup Wizard needs to restart your
computer. If files required for the installation are in use during the Rational Setup
program and if the program needs to install shared components on your system,
the Setup Wizard may need to restart your system.
36 Chapter 3 - Installing Rational Rose RealTime on Windows

Select Restart or Don’t Restart. If you select Don’t Restart, the Wizard reminds you
that the installation cannot complete until Windows restarts.

After Windows restarts, log on as the same user. If you do not, the installation does
not complete correctly. The second part of the installation process starts
automatically after you log on.

7 When the Rational Wizard Completed page appears, we recommend that you
review the current information related to new features and known issues in the
readme file. In addition, you can view the Rational Developer Network Web pages.
Click Finish to complete the installation.

Post-Installation Tasks

Licensing

Rational products require licenses. If you do not see the License Key Administrator
(LKAD) launch at the end of the installation, your Rational Rose RealTime is licensed.

You or your users may see the License Key Administrator (LKAD) launch at the end
of a product installation for one of the following reasons:

■ You did not provide a Rational license server name when you created the site
definitions file (applies to installations from a release area).

■ The product requires a desktop license key or license server name.

If you see the LKAD, you or your users must perform the following tasks to license
Rational Rose RealTime.

■ To configure a floating license key, enter the name of the Rational license server in
the LKAD. For more information, see the Rational Software License Management
Guide.

■ To configure a desktop license key, import the node-locked or per user license key
file in the LKAD. For more information, see the Rational Software License
Management Guide.

Running the Site Preparation Wizard to Create Multiple Sitedef Files

In some cases, your site may require multiple site defaults files. For example, if two
groups both use Rational Rose RealTime but need to work with different default
settings, then you can create one site defaults file for each group.
Creating a Release Area 37

To create multiple site defaults for a release area:

1 Create the initial release area by following the instructions in Using the Rational
Setup Wizard to Create a Release Area on page 34. Set up this area with the
site-specific parameters relevant to the first group of users.

2 Rerun the Rational Site Preparation Wizard from the release area that you created
in Step 1. Double-click siteprep.exe in the release area or run siteprep.exe on the
command line.

3 Follow the instructions to set the product parameters.

❑ If you have already created one site defaults file (sitedefs.dat for instance), in the
initial release area, the Rational Site Preparation Wizard displays the values set
in sitedefs.dat. Keep the values that apply to both groups and change the ones
according to the needs of the second group.

❑ If you have previously created multiple site defaults files, you can select a
specific site defaults file *.dat as a starting point by clicking File > Open.

4 Click File > Save as to save a new site defaults file. You are prompted to enter a file
name and folder for the new site defaults file:

❑ If you started the site preparation on the command line and specified a
file-name argument for the site defaults file, for example, sitedefs.dat, the
Folder and File name boxes display this information. You could save the
modified site defaults files with a new file name, for example
sitedefs_cqclient.dat

❑ If no file name was previously specified, the File name box is blank. Type a file
name that does not currently exist in the release area.

Note: If you enter the name of an existing site defaults file, a warning message
appears. You can overwrite the existing file or specify a different file name to
create a new site defaults file.

According to your needs, you may create additional site defaults files in this way.

Installing Rational Rose RealTime from a Release Area

When users install Rational Rose RealTime from a release area, in most cases, they
accept the defaults as presented on the installation screens. Users who do not want to
accept the defaults should speak to you before they make changes.
38 Chapter 3 - Installing Rational Rose RealTime on Windows

Installing from a release area includes the following:

1 You or an administrator create one or more site defaults (sitedefs) files in a release
area using the Rational Setup Wizard or the Site Preparation Wizard. You inform
users of the name of the sitedefs file and network location of the release area or
send them a shortcut to the file.

2 Users can then access the publicly accessible area and execute the site defaults file
shortcut from their desktop clients. This shortcut will run an installation on their
desktops from the release area.

To install Rational Rose RealTime from a Release Area, you can use the standard
configuration or you can customize the standard client configuration for your
desktop. The first section, Using a Standard Configuration on page 39, describes the
procedure for using a standard configuration. The second section, Customizing Your
Own Configuration on page 40, describes the procedure for customizing your
configuration.

Using a Standard Configuration

To install a default configuration from the release area:

1 Log on as a user with local administrator privileges.

2 To install a Rational product using a specific site defaults file, either run setup.exe
on the command line and specify the name of the site defaults file or click the
associated site defaults shortcut in the release area. For example, to install
ClearQuest using a site defaults file named sitedefs_cqclient.dat, map a network
drive from your computer to the shared release area. Then,

❑ On the command line, use the cd command to navigate to the root directory of
the release area. Then enter: setup.exe sitedefs_cqclient.dat, or

❑ Double-click the mapped drive and click the sitedefs_cqclient.dat. shortcut.

3 The Rational Setup Wizard runs and guides you through the software installation.
In each page, click Next to open the next page. Click Help for more information.

4 The License Agreement page displays the Rational Software license agreement.
If you accept the license agreement and click Next, the installation continues. If you
do not accept it, the installation does not let you proceed further. If you click Cancel
and exit from the installation, no changes are made to your system.

5 The Destination Folder page displays the default destination folder for the
installation. Click Change to select a different destination folder for the installation.
Click Next.
Installing Rational Rose RealTime from a Release Area 39

6 Click Use the standard configuration on the Site Default Configuration page. The
default features for Rational Rose RealTime and the existing site default values
will be used for the client installation. Click Next.

7 Click Install to begin the installation on your client desktop.

8 A Restart Windows page appears if the Rational Setup Wizard needs to restart your
computer. If files required for the installation are in use during the Rational Setup
program and if the program needs to install shared components on your system,
the Setup Wizard may need to restart your system.

Select Restart or Don’t Restart. If you select Don’t Restart, the Wizard reminds you
that the installation cannot complete until Windows restarts.

After Windows restarts, log on as the same user. If you do not, the installation does
not complete correctly. The second part of the installation process starts
automatically after you log on.

9 When the Rational Wizard Completed page appears, we recommend that you
review the current information related to new features and known issues in the
readme file. In addition, you can view the Rational Developer Network Web pages.
Click Finish to complete the installation.

Customizing Your Own Configuration

To customize a configuration for a specific computer:

1 Log on as a user with local administrator privileges.

2 To install a Rational product using a specific site definitions file, either run
setup.exe on the command line and specify the name of the site defaults file or click
the associated site defaults shortcut in the release area. For example, to install
ClearQuest using a site defaults file named sitedefs_cqclient.dat, map a network
drive from your computer to the shared release area. Then,

❑ On the command line, use the cd command to navigate to the root directory of
the release area. Then enter: setup.exe sitedefs_cqclient.dat, or

❑ Double-click the mapped drive and click the sitedefs.cqclient.dat shortcut.

3 The Rational Setup Wizard runs and guides you through the software installation.
In each page, click Next to open the next page. Click Help for more information.

4 The License Agreement page displays the Rational Software license agreement.
If you accept the license agreement and click Next, the installation continues. If you
do not accept it, the installation does not let you proceed further. If you click Cancel
and exit from the installation, no changes are made to your system.
40 Chapter 3 - Installing Rational Rose RealTime on Windows

5 The Destination Folder page displays the default destination folder for the
installation. If you want to select a different destination folder for the installation,
click Change.

6 Click I will create my own custom client configuration on the Site Default
Configuration page.

❑ The Custom Setup page displays product features to select.

❑ When you click Next, you may change any of the existing site default values.
(Any changes to the site default values apply only to this single installation.)
After modifying the values, click Done.

7 Click Install to begin the installation on your client desktop.

8 A Restart Windows page appears if the Rational Setup Wizard needs to restart your
computer. If files required for the installation are in use during the Rational Setup
program and if the program needs to install shared components on your system,
the Setup Wizard may need to restart your system.

Select Restart or Don’t Restart. If you select Don’t Restart, the Wizard reminds you
that the installation cannot complete until Windows restarts.

After Windows restarts, log on as the same user. If you do not, the installation does
not complete correctly. The second part of the installation process starts
automatically after you log on.

9 When the Rational Wizard Completed page appears, we recommend that you
review the current information related to new features and known issues in the
readme file. In addition, you can view the Rational Developer Network Web pages.
Click Finish to complete the installation.

Post-Installation Tasks

Licensing

Rational products require licenses. If you do not see the License Key Administrator
(LKAD) launch at the end of the installation, Rational Rose RealTime is licensed.

You or your users may see the License Key Administrator (LKAD) launch at the end
of a product installation for one of the following reasons:

■ You did not provide a Rational license server name when you created the site
definitions file (applies to installations from a release area).

■ The product requires a desktop license key.
Installing Rational Rose RealTime from a Release Area 41

If you see the LKAD, you or your users must perform the following tasks to license
Rational Rose RealTime.

■ To configure a floating license key, enter the name of the Rational license server in
the LKAD. For more information, see the Rational Software License Management
Guide.

■ To configure a desktop license key, import the node-locked or per user license key
file in the LKAD. For more information, see the Rational Software License
Management Guide.

Canceling a Product Installation From a Release Area

If you click Cancel any time during the Setup Wizard or before the installation
completes, you will not see any visible changes to the system. The program returns
your system to the state it was in before you launched the Rational Setup Wizard.

Reinstalling Rational Rose RealTime From a Release Area (Modify,
Repair, Remove)

If you have successfully completed a previous installation of Rational Rose RealTime
release 2003.06.00, you can re-run the Rational Setup Wizard to modify (add or
remove product components) an installation. If you have inadvertently removed files
from the installation directory, you can re-run the site defaults file to repair the
installation.

The Rational Setup Wizard guides you through the software installation. In each
dialog, click Next to open the next one.

To reinstall from a release area:

1 Log in as a user with Administrator rights on the local machine on which you
want to install Rational Rose RealTime.

2 To modify, repair, or remove a Rational Rose RealTime installation installed from a
release area, either run setup.exe on the command line and specify the name of the
associated site defaults file that was used at installation time, or click the
associated site defaults shortcut in the release area. For example, to install
ClearQuest using a site defaults file named sitedefs.developers, map a network
drive from your computer to the shared release area. Then,

❑ On the command line, use the cd command to navigate to the root directory of
the release area. Then enter: setup.exe sitedefs.developers, or

❑ Double-click the mapped drive and click the sitedefs.developers shortcut.
42 Chapter 3 - Installing Rational Rose RealTime on Windows

3 The Rational Setup Wizard provides general information about the software
installation. Click Next to open the Program Maintenance dialog. This dialog offers
three options:

■ Modify the Existing Installation – Choosing this option enables you to change which
product features are installed.

To modify the existing installation, click Modify and then click Next to select or
clear product features in the Custom Setup dialog. Click Next and then click Install
to begin the installation.

■ Repair the Existing Installation – Choosing this option enables you to repair any
installation files that may be damaged. This option may repair a damaged registry
or replace files that you may have inadvertently deleted. The Repair option does
not repair incomplete installations or an unsuccessful installation.

To repair an installation, click Repair and click Next and then click Repair to begin
the repair. At the end of the repair operation, the status of the repair is displayed.

■ Remove the Existing Installation – Choosing this option removes all files that you
previously installed for this product. Before you select this option, we recommend
that you read the Remove, Repair and Modify chapter in this manual.

To remove the existing installation, click Remove and then click Next. Click
UnInstall to begin the de-installation.

Using Silent Installation Commands

A silent installation lets you install a Rational Software product, using the same
parameters, repeatedly on a number of systems.

Silent Installation Overview

Your administrator may set up a site defaults file so that many users can perform
unattended installations of a Rational Software product with the same parameters.

The site defaults file directs the Rational Setup Wizard to install program files in a
specific directory on your computer. For information about setting up a silent
installation, see Using Silent Installation Commands on page 43.

When you start the silent installation, you do not see any installation screens. If a
restart is required, your computer restarts automatically. After the computer restarts,
you must log on manually. The install wizard then re-launches automatically and
finishes. When the installation finishes, you do not see an installation complete screen
Using Silent Installation Commands 43

at the end. If your administrator did not specify the license server in the site defaults
file or you are using a node-locked or per user license key, you may have to manually
configure licensing after the Setup Wizard finishes.

Running a Silent Installation on your Desktop

The following instructions describe the commands you need to run a silent
installation on your computer.

To run the silent installation on your desktop, your administrator gives you the
following:

■ Path to the site defaults file in the network release area.

■ Installation directory (where the Rational Setup Wizard will install the files on
your desktop).

■ License key information, if necessary.

To run the site defaults file in in silent mode:

1 Map a local drive to the release area.

2 Go to Start > Run and enter cmd.exe in the Run window.

3 At the DOS prompt, enter the following command:

<local drive>: /setup.exe /g <sitedefaults.dat>

The executable installs the products specified in the site defaults file from the
source directory to the installation path. The default installation path is C:\Program
Files\Rational\<Rational products>.

Note: If the Rational Setup Wizard detects insufficient disk space on the desktop or
server, the Wizard will cancel the installation and note the error in the
Rational_install.log in your %TEMP% directory (for example,
TEMP=C:\DOCUME~1\<username>\LOCALS~1\Temp or c:\temp\install.log).
The location of the temp directory depends on the temp environment variable set
on the computer. To find the location, open a command window and type SET at
the prompt.

Licensing Your Rational Product
■ If the License Key Administrator (LKAD) Wizard launches at the end of the

installation, specify the Rational license server or import or enter the license key
information into the LKAD Wizard. For more information, see the Rational Software
License Management Guide.
44 Chapter 3 - Installing Rational Rose RealTime on Windows

Setting Up Silent Installations of Rational Rose RealTime from
a Release Area

You can configure the Rational Setup Wizard to perform silent installations of
Rational Rose RealTime. Silent installations let you perform an installation of Rational
Rose RealTime, using the same parameters, repeatedly on a number of computers.
Silent installations ensure that the correct configuration is installed on each user’s
computer.

To set up and run a silent installation:

1 Create a release area and site defaults file. You can customize site defaults files for
different sets of users. For more information, see Creating a Release Area on page 33.

2 Use the setup.exe /g command to run the site defaults file. You should not see any
screens displayed on your computer.

The file directs the Rational Setup Wizard to install program files in a specific
directory on your system. If a restart is required, your computer restarts
automatically. After the restart, you must log on manually. The installer then
re-launches automatically and finishes. When the installation finishes, you do not see
an installation complete screen at the end.

If you did not specify the license server in the sitedefs file, you and your users may
have to manually configure licensing after the Setup Wizard finishes.

Running a Silent Installation

After you have recorded, play the site defaults file. For example:

setup.exe /g <C:\silent installs\sitedefs.dat>

C:\silent installs is the release area,
and sitedefs.dat is the name of the site defaults file.

By default, the installation log file (rational_install.log) is created in your computer
temp directory. To find the temp directory, open a command prompt and type Set.

Canceling a Silent Installation

There is no command to cancel a silent installation.
Setting Up Silent Installations of Rational Rose RealTime from a Release Area 45

Command Line Syntax to Run Silent Install

This section provides the syntax for setup.exe.

Syntax

Now, you will want to review the topic, After You Install on page 46 for additional
post-installation activities.

After You Install

After you install Rational Rose RealTime, you may have to perform additional
activities, such as configuring environment variables or updating environment
variables in your batch files

Updating Batch Files

If you use a batch file to start Rational Rose RealTime, after you install, you must
modify the environment variables to use the new mapped drive. To successfully
launch Rational Rose RealTime, you must specify a fully qualified path, including the
drive letter. For example, you want to update the ROSERT_HOME variable, as well as
the launch command path:

set ROSERT_HOME=C:\Program Files\Rational\Rose RealTime
set ROSERT_HOST=win32
set ROSERT_LICENSE_FILE=%ROSERT_HOME%\license\license.dat
set path=%ROSERT_HOME%\bin\%ROSERT_HOST%;c:\Program Files\Microsoft
Visual Studio\Common\VSS\win32;c:\DevStudio\VSS\win32;%PATH%

"C:\Program Files\Rational\Rose RealTime\bin\win32\RoseRT"

Setup.exe Command Parameter Description

/g Play the silent installation session.

<sitedefs-file> Specifies the site defaults file in the
release area.
46 Chapter 3 - Installing Rational Rose RealTime on Windows

Configuring Your Environment

After installation, you must ensure that your environment is properly configured for
your compiler.

Tornado Environment Variables

If you are using Rational Rose RealTime with Tornado, you may want to set the
ROSERT_TORNADO_OPTIONS and ROSERT_TORNADO_TIMEOUT environment
variables.

When the ROSERT_TORNADO_OPTIONS is set to VX_FP_TASK, the application
checks if the processor supports floating point, and if so, it runs the target with the
floating point option.

When the ROSERT_TORNADO_TIMEOUT is set, this is used for the WTX request
timeout. The timeout value is in milliseconds.

Note: When downloading a VxWorks module to target, by default the timeout for
WTX commands is set to 30 seconds (ROSERT_TORNADO_TIMEOUT=30000). This
may not be enough when downloading large modules or when using a slow network.
You may get an error if the timeout is exceeded. This variable allows you to increase
the timeout period.

ClearCase Workstation Setup

The following setup must take place on all workstations that will be accessing a VOB
or view. For Windows NT, Windows 2000, and Windows XP, this includes all
workstations used for development.

These steps will also need to be run on all machines that act as view servers for the
ClearCase views used by Rational Rose RealTime. If you use ClearCase MultiSite, you
will need to do this at all the sites where the VOBs containing the Rose RealTime
elements are replicated.

You can determine which machines are view servers by typing the following:

cleartool lsview

in a command window. The second item on each output line indicates the machine
name where the view server is running. For example, if you see the following line in
the output of the lsview command:

myview \\mymachine\vws\myview.vws

then "mymachine" is the name of the machine where the view server for myview
exists.
ClearCase Workstation Setup 47

For further details, see your ClearCase administrator.

Command Line Access to the Source Control Tool

For any user wishing to use Rational Rose RealTime’s integration with ClearCase,
cleartool must be accessible from the command prompt.

Element type setup: type manager

The following steps are required for making ClearCase clients aware of the new
element type.

Windows NT/2000/XP

In the instructions below, <atria-home> refers to the ClearCase installation directory.
For newer releases, this typically is c:\Program Files\Rational\ClearCase. For older
releases, this typically was c:\Atria.

■ From a command prompt, run

rtperl <ROSERT_HOME>\bin\<ROSERT_HOST>\cc\mi_typeman.pl

-atriahome <atria-home>

ClearCase Options

Windows NT/2000/XP

Rational Rose RealTime is case-sensitive when looking for file names.

To set the preserve case option for the ClearCase MVFS on Windows:

1 In the ClearCase HomeBase tool, select the MVFS tab. (The ClearCase Control
Panel tool can be started from either the Windows Control Panel or from the
Administration tab in the HomeBase tool)

2 Make sure the "preserve case" check box is checked.

3 The MVFS service must be restarted for this change to take effect.

Configuring the ClearCase Repository

Each VOB must be set up to allow files of the new element type to be created. Follow
the steps that apply to your platform below for each VOB that will be storing Rational
Rose RealTime files.
48 Chapter 3 - Installing Rational Rose RealTime on Windows

Windows NT/2000/XP

Open a command prompt window and change directory to a path within the VOB in
which you wish to register the type. To create the element type, use the following
command syntax:

cleartool mkeltype -supertype text_file -manager

petalrt_file_delta -c "RoseRT files" rosert_unit

Test the Type Manager

To determine if the rosert_unit element type has been successfully registered in the
VOB, perform the following command from a command prompt after changing to a
directory contained in the VOB:

cleartool lstype -long eltype:rosert_unit

A listing of the type details will verify that it is correctly registered.

Testing your Environment

Note: If you only want to construct UML models and not execute them, you do not
need to read the remainder of this chapter.

You must have Microsoft Visual C++ 6.0 or 7.0 installed on your system and
configured to be run from the DOS prompt to make use of the code compilation and
execution capabilities of Rational Rose RealTime.

The following instructions help you to determine whether you have Visual C++
properly installed and configured on your system.

To perform testing on your environment:

1 From the Windows Start menu:

❑ In Windows NT, choose Start > Programs > Command Prompt

❑ In Windows 2000 and Windows XP, choose Start > Programs > Accessories >
Command Prompt

2 Type nmake and press ENTER.
Testing your Environment 49

3 Type cl and press ENTER.

If your environment is correct, then you should see the following report errors:

Command Prompt

Microsoft ® Windows NT ™
© Copyright 1985-1996 Microsoft Corp.

C:\>nmake

Microsoft ® Program Maintenance Utility Version 6.00.8168.0

Copyright © Microsoft Corp 1988-1998. All rights reserved.

NMAKE = fatal error B1864: MAKEFILE not found and no target specified

Stop.

C:\>cl

Microsoft ® 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for
80x86

Copyright © Microsoft Corp 1984-1998. All rights reserved.

Usage = cl { option... } filename... { /link linkoption... }

Note: If your environment is NOT properly configured, then you will see an error
similar to this one:

Command Prompt

C:\> nmake

The name specified is not recognized as an internal or external
command, operable program or batch file.

Note: If you receive this error message, your compiler environment setup is not
configured properly. There is a vcvars32.bat file located in the installation directory for
Microsoft Visual Studio (for example, \\Program Files\Microsoft Visual
Studio\VC98\Bin\vcvars32.bat) that lists the environment variables that you must
configure.
50 Chapter 3 - Installing Rational Rose RealTime on Windows

4Installing Rational Rose
RealTime on UNIX
Contents

This chapter is organized as follows:

■ Before You Install on page 51
■ Upgrade Information on page 52
■ Installation Instructions on page 54
■ After You Install on page 58

Before You Install

Before you install Rational Rose RealTime on UNIX, refer to the items in Table 5 to
direct you to information in this manual that can help you perform pre-installation
tasks.

Note: If you installed the Companion Products for an earlier installation of Rational
Rose RealTime, ensure that you also uninstall the Companion Products before
installing Rational Rose RealTime 2002.06.00.

Table 5 UNIX Pre-Installation Tasks

License your Rational software Specifying the Rational License Server on page 29
and UNIX Licenses on page 87

Ensure that your system meets the
minimum or recommended system
and software requirements

Requirements for UNIX on page 15

Upgrade from earlier versions of
Rational software

Upgrade Information on page 52
51

Installing in Secure Environments

Problems may occur when trying to perform a remote installation of Rational Suite
DevelopmentStudio RealTime (UNIX) in a secure environment (for example, remote
access to other machines is through ssh) if the environment does not have access to rsh
or remsh. To install Rational Suite DevelopmentStudio RealTime (UNIX) in this
situation, perform a local installation of the software rather than a remote installation.
If you experience further problems, contact Rational Customer Support.

Installing Multiple OS Versions of Rational Suite DevelopmentStudio
RealTime (UNIX)

If you wish to install different OS versions of Rational Suite DevelopmentStudio
RealTime (UNIX) on the same file server, we recommend that you install them in
different rational directories (referred to as <rational_dir>). If you install them into the
same Rational directory, you will not be able to uninstall a single OS version later, if
necessary. The uninstall script removes all OS versions that reside in the same
Rational directory.

Stopping and Restarting an Installation

You can stop an installation by entering q to quit the installation. If you choose q, most
of your input is saved to a user defaults file located in <rational_dir>/config/defaults.
The file name itself is in the following format:

rs_install.release_name.user_name

The user defaults file contains general purpose defaults that relate to the username
and the license server that you configure. It also keeps track of the product-specific
information for the installation of this specific Suite and version.

Note: If you enter q!, your entries are not saved to the user defaults file.

You can restart the installation by running rs_install again. Many of your entries
appear as the default value. Press the ENTER key to continue with the installation.

Upgrade Information

Refer to the following topics:

■ Upgrading to New Version Only (Uninstalling Earlier Version) on page 53
■ Upgrading to 2003.06.00 While Maintaining an Earlier Version on page 54
52 Chapter 4 - Installing Rational Rose RealTime on UNIX

Upgrading to New Version Only (Uninstalling Earlier Version)

You can load models created in earlier versions of Rational Rose RealTime directly
into 2003.06.00. To convert your existing ObjecTime Developer models, see Migrating
from ObjecTime Developer 5.2/5.2.1 on page 105.

Note: Do not attempt to load workspaces created in earlier versions of Rational Rose
RealTime, as they are not compatible with the new release.

If you are upgrading Rational Rose RealTime on any of the UNIX platforms, you
must do one of the following:

■ Manually delete your ~/.registry directory before you run the new version for
the first time

or

■ Add the "-recreate_registry" command line option the first time you run the new
version.

Checking the Validity of Your License Keys

If you upgrade to Rational Rose RealTime 2003.06.00 from Rational Rose RealTime
releases 6.0, 6.0.1, or 6.0.2, your license keys are not valid. For information on
obtaining new license keys, see Requesting License Keys on page 76.

If you upgrade to Rational Rose RealTime 2003.06.00 from Rational Rose RealTime
releases 6.1, 2000.02.10, 2001.03.00, 2001A.04.xx, or 2002.05.00, your license keys are
valid.

For more information on license keys, see Installing License Keys on page 89.
Upgrade Information 53

Upgrading to 2003.06.00 While Maintaining an Earlier Version

Your Unix environment can continue to have a Rational Rose RealTime 2003.06.00
installation and an earlier release of Rational Rose RealTime that uses Unix
environment variables. Refer to the following pseudo code to set up your
environment to use both releases of Rational Rose RealTime (.csh or .sh setup):

if your current softlink is set to an old version

set up the following environment variables

ROSERT_HOME
ROSERT_HOST
ROSERT_LICENSE_FILE

else

source <rational_dir>/rosert_setup.csh or
. <rational_dir>/rosert_setup.sh

set up the following

CONNEXIS_HOME to $ROSERT_HOME/Connexis

Installation Instructions

Note: Unless specified otherwise, your system administrator will generally carry out
these steps.

For environments where there is more than one user of Rational Suite
DevelopmentStudio RealTime (UNIX), we strongly recommend that you install the
main Rational Rose RealTime files on a centralized file server.

Default values, where provided, are prefixed with the following notation:

- - >

To accept the default value, simply press ENTER.

Installation Overview

The following provides an overview of the installation process and show the installed
UNIX directories and files.

Note: Directory and file names are for example purposes only.
54 Chapter 4 - Installing Rational Rose RealTime on UNIX

To Install Rational Rose RealTime on UNIX:

1 Log on to the install client. This may be any UNIX computer that:

➑ Gives you access to a CD-ROM drive

➑ Mounts the file system into which you will load the Rational Suite
DevelopmentStudio RealTime (UNIX) release

➑ Runs the operating system specified on the Rational Suite DevelopmentStudio
RealTime (UNIX) CD (Solaris 2.6, 2.7, 2.8, or 2.9)

2 Place the Rational Suite DevelopmentStudio RealTime (UNIX) CD in the CD-ROM
drive.

If the CD-ROM drive is not mounted, mount the CD-ROM drive.

As the root, create a directory (if one does not already exist) to be the mount point
for the CD-ROM drive. The following examples for each platform use the directory
/cdrom. Ensure that you know the device name of the CD-ROM drive. If you do
not know the device name, consult your system administrator. Mounting
commands for different operating systems are as follows:

❑ Sparc/Solaris with Volume Management

Solaris 2.x with volume management mounts to the /cdrom directory. This
happens automatically when you load the CD-ROM drive. You have volume
management if the vold daemon is running on the system.

❑ Sparc/Solaris (Solaris 2.x) Without Volume Management

mkdir /cdrom
mount -r -F hsfs /dev/dsk/c0t6d0s0 /cdrom

3 From a shell window, change directory to the root level of the mounted CD-ROM
device. For example: cd /cdrom, and press ENTER.

4 To run the setup script, type the following:

rs_install

The rs_install command is a complete installer that includes licensing setup, license
checking, product installation, and product setup. Rational recommends that you
follow the menus and prompts and allow rs_install to guide you through the
installation.

Note: You can invoke rs_install with a number of options. For example, you can
use the -no_log (-nl) option to stop rs_install from creating a log file. To see a listing
of all available options, run rs_install -help.

The Using RS Install script appears.
Installation Instructions 55

5 Press ENTER to continue.

In the Enter Install Location script, the installation process searches for Rational
directories.

6 Press ENTER to continue.

An arrow (- - >), opposite a number/directory, indicates the default location used
for this installation.

Next, you will specify the directory to install Rational Suite DevelopmentStudio
RealTime (UNIX).

7 Type 0 to specify a new directory, or type a value associated with a listed directory,
then press ENTER.

If you specify a new directory, rs_install copies the Rational files to this location.
The directory name must be specified as an absolute path name, and must be a
valid path (this means that the directory must exist). A RoseRT sub-directory is
appended in the directory that you specify. The directory needs to be visible on all
computers from which you want to run this product, and must be writable by the
installer’s user name.

Next, the license agreement appears and you are prompted to accept or reject the
license agreement. You must accept the license agreement to proceed.

8 Type Y and press ENTER if you agree with the terms of the agreement.

If you do not agree with the terms of the license, the installation should be aborted.
All software and documentation should be returned to Rational Software.

9 Type Y or N to indicate if you want to Show this license agreement next time.

10 In the Product and License Configuration menu, type the number associated with
Rational Rose RealTime for UNIX, then press ENTER.
56 Chapter 4 - Installing Rational Rose RealTime on UNIX

11 In the Rational Rose RealTime - Licensing Options Menu, select a licensing
option.

Depending on the licensing option you select, answer the questions and follow the
directions.

12 After licensing, on the Rational Rose RealTime - Product Customization Menu,
verify that Rational Rose RealTime for Unix will be installed, and that you have
enough space to install it.

13 Press f (the default) to continue.

14 In the Install Documentation Menu, specify whether you want other
documentation installed

15 In Rational Rose RealTime - Enter Install Mode, indicate how you want
rs_install to deal with components that are already installed.

16 Press ENTER to continue.

rs_install installs Rational Rose RealTime.

17 After the installation completes, press ENTER to continue.

Option Description

1 Use an existing Rational license (FLEXlm) file or a server
that is already configured.

2 Set up permanent or counted license(s).

■ Request Node-Locked or floating keys through
AccountLink.

■ After you request Node-Locked key(s) from AccountLink,
you will receive an email from Rational that contains an
attachment (a .upd file). You must save this file.

3 Set up a temporary license file.
Installation Instructions 57

After You Install

After you install, you want to:

■ Sourcing to the Setup Script on page 58
■ Unmounting the CD-ROM Drive on page 58
■ Setting the Connexis Variable on page 61
■ Verifying the Connexis Installation on page 61

Sourcing to the Setup Script

After you install Rational Rose RealTime, you should source to your <rational_dir> to
automatically set your environment variables.

■ For Rational Suite DevelopmentStudio, type the following:

source <rational_dir>/rs_setup.csh or . <rational_dir>/rs_setup.sh

■ For the Rational Rose RealTime point product, type the following:

source <rational_dir>/ rosert_setup.csh or
. <rational_dir>/ rosert_setup.sh

Unmounting the CD-ROM Drive

For CD-ROM installs, unmount the CD-ROM drive with the following commands.

For Solaris with volume management (vold is running):

% eject cd

All others must unmount the CD as root.

% su

umount /cdrom

Note: You cannot eject the CD if you are at the directory /cdrom or /cdrom/cdrom0. If
you receive a "Device busy" error, change your directory location to a location other
than the CD-ROM and repeat the above commands.

ClearCase Workstation Setup

The following setup must take place on all workstations that will be accessing a VOB
or view. For UNIX, this includes all machines that are view servers.

These steps will also need to be run on all machines that act as view servers for the
ClearCase views used by Rational Rose RealTime. If you use ClearCase MultiSite, you
will need to do this at all the sites where the VOBs containing the Rose RealTime
elements are replicated.
58 Chapter 4 - Installing Rational Rose RealTime on UNIX

You can determine which machines are view servers by typing:

cleartool lsview

in a command window. The second item on each output line indicates the machine
name where the view server is running. For example, if you see the following line in
the output of the lsview command:

myview \\mymachine\vws\myview.vws

then "mymachine" is the name of the machine where the view server for myview
exists.

For further details, see your ClearCase administrator.

Command Line Access to the Source Control Tool

For any user wishing to use Rational Rose RealTime’s integration with ClearCase,
cleartool must be accessible from the command prompt.

Element type setup: type manager

The following steps are required for making ClearCase clients aware of the new
element type.

UNIX

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to install the type
manager in each ClearCase installation. To set up the extensions and tool mappings,
the user executing the script must have write access to the following directories in the
ClearCase installation:

/lib/mgrs

/config/ui/icons

/config/ui/bitmaps

/config/magic

Use the following command line to set up the proper file extensions and tool
invocations:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install

-server

ClearCase Options

There are no options that need configuring for UNIX ClearCase.
After You Install 59

ClearCase Repository Setup

Each VOB must be set up to allow files of the new element type to be created. Follow
the steps that apply to your platform below for each VOB that will be storing Rational
Rose RealTime files.

UNIX

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to register the
rosert_unit element type in each VOB using the following syntax:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install

-eltype -vob <vob_path>

Test the Type Manager

To determine if the rosert_unit element type has been successfully registered in the
VOB, perform the following command from a command prompt after changing to a
directory contained in the VOB:

cleartool lstype -long eltype:rosert_unit

A listing of the type details will verify that it is correctly registered.

Setting the TORNADO 2.0 Debugger Environment Variable

On Solaris, in order to use the TORNADO 2.0 debugger with Rational Rose RealTime,
the TORNADO 2.0 shared libraries must be pointed to by the environment variable
LD_LIBRARY_PATH. The required libaries are usually located at:

<path to TORNADO 2.0 installation
directory>/tornado-2.0/host/sun4-solaris2/lib

Setting Other TORNADO Environment Variables

If you are using Rational Rose RealTime with the Target RTOS, you may want to set
the ROSERT_TORNADO_OPTIONS and ROSERT_TORNADO_TIMEOUT
environment variables.

When the ROSERT_TORNADO_OPTIONS is set to VX_FP_TASK, the application
checks if the processor supports floating point, and if so, it runs the target with the
floating point option.
60 Chapter 4 - Installing Rational Rose RealTime on UNIX

When the ROSERT_TORNADO_TIMEOUT is set, this is used for the WTX request
timeout. The timeout value is in milliseconds.

Note: When downloading a VxWorks module to target, by default the timeout for
WTX commands is set to 30 seconds (ROSERT_TORNADO_TIMEOUT=30000). This
may not be enough when downloading large modules or when using a slow network.
You may get an error if the timeout is exceeded. This variable allows you to increase
the timeout period.

Setting the Connexis Variable

After you install the Rational Rose RealTime, you must set the environment variable
for CONNEXIS_HOME to the appropriate location, such as:

setenv CONNEXIS_HOME $ROSERT_HOME/Connexis

Note: Set this environment variable after $ROSERT_HOME is created (either by
setenv ROSERT_HOME or in a rs_install setup after you
source <rational_dir>/rosert_setup.csh, or
. <rational_dir>/rosert_setup.sh

Verifying the Connexis Installation

To increase efficiency and eliminate improper installation and/or setup
misconfiguration, you are strongly encouraged to verify your installation.
Additionally, verify your Connexis installation by using the BasicTest model provided
with Connexis in $CONNEXIS_HOME/Connexis. This model uses the CDM
transport.

Verifying your Installation using BasicTest

You can easily verify your installation by using the BasicTest model provided with
Connexis in:

$ROSERT_HOME/Connexis/C++/examples

Host Configuration Installation Verification

The following instructions are for a Windows NT, Windows 2000, and Windows XP
Pro setup with Microsoft Visual C++ 6.0. If you use Visual C++ 6.0, use the elements
corresponding to VC++6.0.

 on page 1-63 and on page 1-63 define the names that are applicable for each of the
supported host platforms (Windows and Solaris). The package names, component
names, and component instance names differ for each platform.
After You Install 61

Use the information in on page 1-63 and on page 1-63, when completing the
following steps:

1 Start Rational Rose RealTime.

2 Load the BasicTest model from $ROSERT_HOME/Connexis/C++/examples.

3 From the Component View, expand the component package corresponding to
your host platform.

4 Select the client component and from its item menu, choose Build > Rebuild All to
recompile it.

5 Select the server component and from its item menu, choose Build > Rebuild All
to recompile it

6 In the Deployment View NT40 package, expand the processor that corresponds to
you host platform.

7 The client will use port 9100 and the server will use port 9900. If these ports are
being used by other another application on your workstation, you will need to
change them. Open the server component instance's specification sheet and
change the 9900 in the -CNXep startup parameter to an available port number.
Open the client Component Instance Specification dialog box and change 9900
specified in the -s argument to the server's port number. Change the 9100 in the
-CNXep startup parameter to an available port number, and then save your
changes.

8 Select the server component instance and click Run. On the RTS panel of the
instance, click Start to execute the server.

9 On the Model View, select the client component instance and choose Run from its
item menu. On the Runtime View of the instance, click the Start button to execute
the client.
62 Chapter 4 - Installing Rational Rose RealTime on UNIX

10 Verify that your output for client and server looks similar to the output shown in
sections BasicTest Server Output on page 63 and BasicTest Client Output on page 64.

Note: Note: This list may be incomplete. Please check the BasicTest model for the
complete list.

Note: This list may be incomplete. Please check the BasicTest model for the complete list.

BasicTest Server Output
Rational Rose RealTime C++ Target Run Time System

Release 6.50.B.00 (+c)

Copyright (c) 1993-2003 Rational Software

rosert: observability listening at tcp port 30399

* Please note: STDIN is turned off. *

Table 6 Components for Referenced Configurations

Component Package Client Component Server Component

WindowsMS Visual
Studio 6.0

NT40-x86-VCC60 basicTestClient_31 basicTestServer_31

SolarisGnu 2.81 SUN5-sparc-gnu-281 basicTestClient_5 basicTestServer_5

SolarisSun
Workshop 5.0

SUN5-sparc-SunCC-50 basicTestClient_4 basicTestServer_4

Table 7 Component Instances for referenced configurations

Compone
nt Package

Client Component
Client
Component
Instance

Server Component
Instance

WindowsMS
Visual
Studio 6.0

NT40 MyNT40Workstation basicTestClient
_31Instance

basicTestServer_31I
nstance

SolarisGnu
2.81

Solaris MySparcstation basicTestClient
_5Instance

basicTestServer_5In
stance

SolarisSun
Workshop
5.0

Solaris MySparcstation basicTestClient
_4Instance

basicTestServer_4In
stance
After You Install 63

* To use the command line, telnet to the above mentioned port. *

* The _output_ of any command will be displayed in _this_ window. *

Rational Software Corp. Connexis(tm) - Distributed Connection

Service (dcs)

Release 6.50.B.82

Copyright (c) 1999-2003 Rational Software Corporation

dcs: CRM Transport : enabled

dcs: CDM Transport : enabled

dcs: CRM listening at [crm://192.139.251.167:2005]

dcs: CDM listening at [cdm://192.139.251.167:9900]

dcs: target agent enabled

dcs: locator service not available

dcs: metric service enabled

BasicTest-Server-started:

Server : Received simple greeting message... sending it back

Server : test cycle completed, received rtunbound !

Server : Received simple greeting message... sending it back

Server : test cycle completed, received rtunbound !

Note: The above represents a partial listing of the BasicTest Server Output.

BasicTest Client Output
Rational Rose RealTime C++ Target Run Time System

Release 6.50.B.00 (+c)
64 Chapter 4 - Installing Rational Rose RealTime on UNIX

Copyright (c) 1993-2003 Rational Software

rosert: observability listening at tcp port 30380

* Please note: STDIN is turned off. *

* To use the command line, telnet to the above mentioned port. *

* The _output_ of any command will be displayed in _this_ window. *

Rational Software Corp. Connexis(tm) - Distributed Connection

Service (dcs)

Release 6.50.B.82

Copyright (c) 1999-2003 Rational Software Corporation

BasicTest-Client-started:

dcs: CRM Transport : enabled

dcs: CDM Transport : enabled

dcs: CRM listening at [crm://192.139.251.167:2010]

dcs: CDM listening at [cdm://192.139.251.167:9100]

dcs: target agent enabled

dcs: locator service not available

dcs: metric service enabled

Client : sending a greeting message...

->Client: received message:

RTString"Hello, Welcome to the Connexis world!"

Client : unbound received
After You Install 65

Client : reregistering SAP

Client : sending a greeting message...

->Client: received message:

RTString"Hello, Welcome to the Connexis world!"

Client : unbound received

Note: The above represents a partial listing of the BasicTest Client Output.

Starting Rational Rose RealTime (UNIX)

To start Rational Rose RealTime, run the command displayed at the end of the
rs_install process.

Note: The installation process creates a rosert_setup.csh or a rosert_setup.sh.
66 Chapter 4 - Installing Rational Rose RealTime on UNIX

5Converting Connexis
Models
Contents

This chapter is organized as follows:

■ Converting Connexis version 2000.02.10 Models to Connexis Version 2003.06.00 Models
on page 67

■ Verifying Component Compatibility on page 70

This chapter describes how to convert a model from Rational Connexis version
2000.02.10 to Rational Connexis version 2003.06.00.

Converting Connexis version 2000.02.10 Models to Connexis
Version 2003.06.00 Models

If you are using version 2000.02.10 of Connexis, the Connexis Model Conversion Tool
searches your model, identifying any incompatibilities, and provides a detailed
description, explaining the changes. Table 8 explains the changes made to your model
during the conversion process.

Note: If you encounter any problems with migrating your model to Connexis version
2003.06.00, contact Rational Customer Support.

Table 8 Model Conversion for Connexis version 2000.02.10 to Connexis version
2003.06.00

Condition Change

RTDXBase, RTDXBase_Agent,
RTDXBase_Locator, RTDXBase_Agent_Locator
fixed capsule roles are in the model

Replaces the capsule roles with the corresponding
RTDBase configuration.

Integrates the CDM transport with the capsules
containing the new RTDBase or RTDBase_Locator
capsule roles.

Integrates the CRM transport into the containing
capsule.

RTDBase, RTDBase_Locator fixed capsule roles
are in the model but do not have the CDM
transport as an attribute.

Integrates the CDM transport using a composite
aggregation relationship into the capsules
containing RTDBase or RTDBase_Locator capsule
roles.
67

RTDXBase optional capsule role is in the model Converts to the RTDBase and integrates the CRM
and CDM transports.

RTDXBase_Agent optional capsule role is in the
model

Converts to RTDBase_Agent and integrates the
CRM transport.

RTDXBase_Locator optional capsule role is in the
model

Converts to RTDBase_Locator and integrates the
CDM and CRM transports

RTDXBase_Locator_Agent optional capsule role
is in the model

Converts to RTDBase_Locator_Agent and
integrates the CRM transport.

RTDBase or RTDBase_Locator optional capsule
role is in the model

Users are notified that the CDM transport is
integrated.

RTDBase_Agent or RTDBase_Locator_Agent
optional capsule role is in the model

Searches the model identifying any of the
components that have a dependency on the ORB. If
the dependency exists, the CRM transport is
integrated.

A component depends on a XDCS library
component

Changes the component dependency to use the
DCS library component.

The TargetConfiguration property of a
component references a -CNX-M or a -CNX-
target configuration

Removes the -CNX- or -CNX-M from the
TargetConfiguration name.

Table 8 Model Conversion for Connexis version 2000.02.10 to Connexis version
2003.06.00

Condition Change
68 Chapter 5 - Converting Connexis Models

To convert your model:

1 Load a model that uses version 2000.02.10 of Connexis in Rational Rose RealTime.

2 Select Tools > Connexis > Convert Model.

3 View more information about incompatible capsules and components by selecting
the capsule or the component from the dialog and clicking More Information.
Converting Connexis version 2000.02.10 Models to Connexis Version 2003.06.00 Models 69

The Element Information dialog provides the following information:

4 Click OK after you read the information, and repeat step 3 for additional capsules
and components that appear in the Convert Model dialog.

5 Click Auto-Convert All from the Convert Model dialog.

The Conversion Tool converts the incompatible capsules and components in your
model. As the conversion takes place, the Conversion Tool may prompt you to
confirm some conversion changes.

Note: Only run the conversion tool once. If you run the tool a second time, the
information displayed in the Convert Model dialog may not be accurate.

Verifying Component Compatibility

The Component Verification Tool verifies that a component is compatible with
Rational Connexis version 2003.06.00.

To verify that a component is compatible with version 2003.06.00:

1 Right-click a component.

2 Select Connexis > Verify.

Table 9 Element Information Dialog Chart

Information Heading Description

Model Path Shows the path of the selected capsule or component.

Description of Incompatibility Explains the reason for the incompatibility between version
2000.02.10 and version 2003.06.00.

Suggested Course of Action Explains how the Conversion tool will make the capsule or
component compatible with Connexis version 2003.06.00.
70 Chapter 5 - Converting Connexis Models

The Component Verification Results dialog appears.

3 Select the component from the Components area.

The model path and the incompatibilities for the selected component appear.

4 Open the component from the browser and fix the incompatibilities.

Note: You do not have to close the Component Verification Results dialog while
fixing the incompatibilities.

5 Click OK.
Verifying Component Compatibility 71

72 Chapter 5 - Converting Connexis Models

6Understanding Rational
Rose RealTime Licenses
Contents

This chapter is organized as follows:

■ How Licenses Work on page 73
■ Types of Licenses on page 74
■ Requesting License Keys on page 76
■ Converting a Temporary License to a Permanent License on page 78
■ The License Manager - UNIX on page 79
■ License Manager Commands on page 80
■ Licensing on UNIX on page 84
■ The License File on page 85
■ UNIX Licenses on page 87
■ Frequently Asked Questions on page 88

When you buy Rational Rose RealTime, you purchase a number of node-locked
and/or floating licenses. A node-locked license allows you to use Rational Rose
RealTime on a specific workstation. Floating licenses allow anyone on your network
to use Rational Rose RealTime as long as a floating license is available. Thus, the
number of licenses that you purchase determines the maximum number of users who
can use Rational Rose RealTime simultaneously.

For example, if you purchased five licenses and three users are currently using
Rational Rose RealTime, then two more users can use Rational Rose RealTime.

How Licenses Work

Licenses are managed by a license manager (FLEXlm™ software delivered as part of
Rational Suite DevelopmentStudio for UNIX) that runs on a license server. The license
manager monitors license access, simultaneous usage, idle time, and so on.

When you start Rational Rose RealTime from the Rational Suite DevelopmentStudio,
you are initially unlicensed. If a license is available, the license manager gives you a
license for the Suite, which allows you to run any of the products included in the
73

Suite. You retain the license as long as you keep using any of the products in the Suite.
When you exit the last program in the Suite, your license is returned to the license
manager and is made available for another user.

If no license is available, you are unable to use Rational Rose RealTime until a license
is returned by another user. An "Unable to obtain a license" message is displayed.

Note: The inability to obtain a license may also be caused by a corrupted license file, a
change to the host id (network card, IP address) or a hard disk drive replacement
when a node-locked license is used on NT. Please ensure you are able to communicate
with the license server through a simple ping command. For example:

ping <IP address of license server>

Types of Licenses

The types of licenses are:

■ Node-Locked Licenses on page 74
■ Floating Licenses on page 74
■ Permanent Licenses and Temporary License Keys on page 75
■ Emergency and Evaluation Keys on page 75

Node-Locked Licenses

Node-locked licenses are created only for a specific system. A node-locked license can
be a permanent license, a temporary license, or it can be an evaluation license.

Note: Because node-locked licenses are uncounted licenses, there is no need to have a
license server process running to manage their use.

Floating Licenses

Floating licenses are licenses that can be shared by multiple users on multiple
systems. A Rational license server controls use of the floating licenses.

Floating licenses allow anyone on your network to use Rational Suite
DevelopmentStudio as long as a license is available. Thus, the number of licenses that
you purchase determines the maximum number of users who can use Rational Suite
DevelopmentStudio concurrently.
74 Chapter 6 - Understanding Rational Rose RealTime Licenses

Permanent Licenses and Temporary License Keys

When you register Rational products to specific systems (license server or client) in
AccountLink, Rational generates license keys and sends you an e-mail message with
these permanent license keys in a license file. The permanent keys let you use the
Rational products have no expiration date. However, Rational assigns an expiration
date to the license keys if your company has negotiated a Term License Agreement
(TLA). TLA keys are not permanent, but the process of ordering and installing TLA
licenses is the same as a permanent license.

To use Rational products for an evaluation period or if you expect a delay in receiving
your permanent keys, you can install the temporary license key provided in your
Rational License Key Certificate. Because Rational has not generated the temporary
key for a specific system, you can use it on any system until the specified expiration
date.

Permanent and temporary license keys can be floating or node-locked. The difference
is that a temporary key is not generated for a specific system and a permanent key is
generated for a specific system.

Emergency and Evaluation Keys

Emergency and evaluation license keys are temporary license keys. They can be
floating or node-locked. They are short-term licenses that are not generated for a
specific system.

Suite Licenses and Point Product Licenses

A Rational license key indicates whether it is a Rational Suite license, such as Rational
Suite DevelopmentStudio, or a point-product license, such as Rational Purify. A
Rational license file can contain multiple floating or node-locked Suite and
point-product license keys.

Returning License Keys

You may need to replace an old system or decide another system should act as the
new Rational license server. Because permanent license keys are tied to a system’s
host ID, Rational products will not work on another system until you import new
license keys that are tied to the new system’s host ID.

To get your new license key, you need to "return" the existing license key back to your
Rational account and then "get" or order a license key for the other system. You could
also call this task moving the license key from one system to another or removing the
license key from the old system.
Types of Licenses 75

When you return a license key, you do not physically give the license key back to
Rational. Instead, the return transaction updates Rational’s records to indicate that
you are no longer using the software on that system. This adjusts the count of
registered products in your account and allows you to get the license key for the other
system.

In accordance with the Legal Agreement provided on AccountLink, you have 30 days
to shut down the license server that corresponds to the server identified in the
returned license file. If you have a license file that contains more than one license and
you are returning only one of those licenses, remove the entry for the license that you
are returning. When you have finished editing the file, use the lmreread command to
reread the license file and restart the vendor daemon. For more information about
licensing commands, see License Manager Commands on page 80.

Upgrading Licenses

If you are upgrading from an earlier version of a Rational Suite or point-product, you
can reuse your current Rational Suite and point-product license keys.

Requesting License Keys

AccountLink (http://www.rational.com/accountlink) is a Web tool that you can use
to manage your permanent (or Term License Agreement) license keys. To use
AccountLink, you need the License Key Certificate to order and install your license
keys. AccountLink’s interface offers three license transactions:

■ Get License Key(s)
■ Return License Key(s)
■ Request a Copy of a License File

With these three transactions, you can order and return permanent license keys for
Windows and UNIX products from single or multiple Rational accounts.

Note: AccountLink does not support temporary license key transactions.

AccountLink requires you to register your Rational software to specific systems using
the system’s host ID or ethernet address. You can register:

■ Rational Windows or UNIX products that will be served from a Rational license
server.

■ Single or redundant Rational license servers on Windows or UNIX systems.
76 Chapter 6 - Understanding Rational Rose RealTime Licenses

■ Remote Windows or UNIX systems; you do not need to sit at the system for which
you are requesting license keys.

If you are not at the computer for which you are requesting license keys, you must
have the following information available: Hostname and Host ID. You can
download a tool from AccountLink that provides this information automatically
for you.

Alternatively, you can run rs_hostinfo directly from the CD to get the host
information. This applies to UNIX host information only. To obtain information
about a Windows host, you need to use the download tool.

The license key types for Rational Rose RealTime that are supported in Rational Suite
DevelopmentStudio are:

Receiving and Importing License Keys

After you register your Rational products to a specific system with AccountLink,
Rational generates a license key file that contains the license key. The file is sent in an
e-mail message to the contact e-mail address that you designate in AccountLink’s
License Contact page.

You need to save the file to a known directory location as you will need to provide this
information when you install the Rational software.

Note: If AccountLink is unavailable, see Requesting License Keys by Fax on page 77 or
call Rational Licensing Support. See Contacting Rational Customer Service by Email or
Telephone on page 166 for Support phone numbers.

Requesting License Keys by Fax

This section summarizes the steps for getting a node-locked or floating permanent
license key when you do not have an internet connection or when Rational
AccountLink is unavailable.

Although this section gives customers instructions for obtaining license keys by fax,
Rational recommends that you use Rational AccountLink
(www.rational.com/accountlink) to request permanent license keys.

Component type License type

Rational Rose RealTime for UNIX Node-locked and floating

Rational Rose RealTime for Windows Node-locked and floating
Requesting License Keys 77

To request license keys by fax:

1 Find your License Key Certificate in your Rational product shipment.

2 Print the license request form.

The documentation browser can be used directly from the CD-ROM and from the
installed product area. To view the form directly from the CD-ROM, run the
command rs_help from the CD-ROM root directory. The form is located in the
HTML Tool Documentation/Rational Suite DevelopmentStudio/FAX License
Request Form.

3 Use the License Key Certificate to fill out the form. Make sure that the contact,
Rational account number, product, licensing, and host information are correct.
Any errors will cause delays in receiving your license keys.

Note: If you are requesting a node-locked license, be sure to select NodeLocked and
not NodeLocked UNIX.

4 Fax the request to Rational. See Contacting Rational Customer Service by Email or
Telephone on page 166 for fax and phone numbers.

Call Rational Licensing Support if you cannot use Rational AccountLink or the fax
form to order your permanent license keys. See License Support Contact Information on
page 167 for phone numbers.

Receiving Permanent License Keys

If you request a new license using AccountLink, Rational will send you a license key
file through email. If you request a permanent license key by fax and you have
specified an email address in your contact information, you will receive a license key
file through email. You can copy the permanent license file from the email enabled
system and install it on the system that is not e-mail enabled.

If you cannot provide an email address, contact Rational Licensing Support. See
License Support Contact Information on page 167 for the phone numbers.

Converting a Temporary License to a Permanent License

If you initially used a temporary license (evaluation or startup) to install Rational
Suite DevelopmentStudio, you can convert your license to a permanent license by
using the license_setup command. The license_setup command allows you to run a
subset of the install script, rs_install. The license_setup command allows you to set up
license options and run the license check sequence.
78 Chapter 6 - Understanding Rational Rose RealTime Licenses

You may also do this by running rs_install; however, using license_setup will save you
time as there is no need to run through a full product installation or any of the post
product installation setup.

Note: You need to have a permanent or TLA license before you start. See Requesting
License Keys on page 76.

Licenses for Windows

You can request and install license keys before or after installing Rational products;
however, you must have a license key installed and configured to run Rational Rose
RealTime. To configure a license key, click Configure Licenses to launch the Rational
License Key Administrator and License Key Administrator Wizard. If you do not
install the license keys before installing, the License Key Administrator will appear
and the end of the installation process.

The Rational Suite License Management Guide describes the licensing terms and the
Rational License Key Administrator.

The License Manager - UNIX

Rational Suite DevelopmentStudio for UNIX uses the Flexible License Manager,
FLEXlm™, from Globetrotter Software, Inc. The DevelopmentStudio requires FLEXlm
7.0f. The license manager includes the following components:

■ A vendor daemon named rational that dispenses DevelopmentStudio licenses.

The rational daemon is used for all of Rational’s licensed products. If you have
other products from other vendors that also use FLEXlm, they will include their
own vendor daemons.

■ A license daemon named lmgrd.

The same license daemon is used by all licensed products from all vendors that use
FLEXlm. The lmgrd daemon does not process requests on its own, but forwards
requests to the appropriate vendor daemon.

■ A license file that you maintain.

It specifies your license servers, vendor daemons, and product licenses.

Note: Rational recommends that you use a single combined license file for all of our
products.
Licenses for Windows 79

After the license file is in place and the license daemons are running, the server
system needs to be set up to automatically restart the license server when it reboots.
You will be instructed by rs_install or license_setup how to do this. These commands
cannot do this because this step requires root permissions. The commands to do this
are as follows:

On Solaris:

$ su

cp <rational_dir>/config/start_lmgrd_on_server-name \

/etc/rc2.d/S98Rational

License Manager Commands

To verify that your license manager is operational, you can enter these commands on
your license server to see if its daemons are running:

% ps axw | grep -v grep | egrep “lmgrd|rational”

or

% ps -e | grep -v grep | egrep “lmgrd|rational”

Their output should include lines similar to the following (your path names may
vary):

538 ?? S 0:03.50 /rational/base/cots/flexlm.7.0f/platform/lmgrd

-c /rational/config/servername.dat

-l /rational/config/servername.log

539 ?? I 0:00.90 rational -T brazil 6.0 3 -c ...
80 Chapter 6 - Understanding Rational Rose RealTime Licenses

The license manager supports several system-administration commands.

For more information on these commands, you can view the FLEXlm online
documentation in the rational_dir/docs/html/FLEXlm_End-User_Manual directory. This
documentation is in HTML format.

Additional Licensing Commands

license_check - This command allows you to run a subset of rs_install. In addition to
using the commands above, you can also use the license_check command to run the
FLEXlm lmstat command for counted licenses and the exinstal command for any
license file (not port@host). The lmstat command queries the license server for a list of
licenses that are in the license pool. The exinstal command checks the license file
format and license codes to see if everything is consistent.

License Manager Daemon (lmgrd)

The license manager daemon (lmgrd) handles the initial contact with the client
application programs, passing the connection on to the appropriate vendor daemon.
It also starts, stops, and restarts the vendor daemons.

Vendor Daemon

In FLEXlm, licenses are granted by running processes. There is one process for each
vendor who has a FLEXlm-licensed product on the network. This process is called the
vendor daemon. The vendor daemon keeps track of how many licenses are checked out,
and who has them. If the vendor daemon terminates for any reason, all users lose
their licenses. (This does not mean that the applications suddenly stop running. Users

Command Description

lmdiag Allows you to diagnose problems when you cannot checkout a license.

lmdown Shuts down license and vendor daemons

lmhostid Reports license manager host ID of workstation

lmreread Rereads license file, starts new vendor daemons

lmstat Reports status on daemons and feature usage

exinstal Reports on licenses in license file you specify on the command line.
License Manager Commands 81

can save their work and exit safely.) Users normally regain their license automatically
when lmgrd restarts the vendor daemon, although the applications may exit if the
vendor daemon remains unavailable.

Client programs communicate with the vendor daemon usually through TCP/IP
network communications. The client application and the daemon processes (the
license server) can run on separate nodes on your network across any size wide-area
network. Also, the format of the traffic between the client and the vendor daemon is
machine independent allowing for heterogeneous networks. This means that the
license server and the computer running an application can be on different hardware
platforms or even different operating systems (for example, Windows NT as a server
system and UNIX as a client or UNIX as a server and Windows NT as a client).

License Key File

Licensing data is stored in a text file called the license key file. The license key file is
created by the software vendor and is edited and installed by the License Key
Administrator. It contains information about the server nodes and vendor daemons,
and at least one line of data (called FEATURE or INCREMENT lines) for each licensed
product. Each FEATURE line contains a license key based on the data in that line, the
hostids specified in the SERVER lines, and other vendor specific data.

In some environments, you can combine the licensing information for several vendors
into a single license key file. The FLEXlm default location is:

/usr/local/flexlm/licenses/rational.dat (UNIX)

Note: We strongly recommend that you keep a copy of the license key file in a safe
location.

Application Program

The application program using FLEXlm is linked with the program module (called
the FLEXlm client library) that provides communication with the license server. On
Windows, this module is called LMGRxxx.DLL, where xxx indicates the FLEXlm
version. During execution, the application program communicates with the vendor
daemon to request a license.

Configuring a UNIX Workstation to Point to a FLEXlm Server

To configure a UNIX workstation to point to a FLEXlm server, point to a copy of the
license file on the UNIX client computer. You can make a copy of the license file if you
cannot see it from the client computer.
82 Chapter 6 - Understanding Rational Rose RealTime Licenses

Use the following command to help debug problems on the UNIX client computer:

$ROSERT_HOME/bin/sun5/lmstat -c $ROSERT_LICENSE_FILE

License Activation Process

When you run a "counted" FLEXlm-licensed application, such as a Rational Suite
product that uses a floating license, the following occurs:

1 The license module in the client application finds the license key file, which
includes the host name of the license server node and port number of the license
manager daemon, lmgrd.

2 The client establishes a connection with the license manager daemon (lmgrd) and
specifies the appropriate vendor daemon.

3 lmgrd determines which machine and port correspond to the master vendor
daemon and returns that information to the client.

4 The client establishes a connection with the specified vendor daemon and sends its
license request.

5 The vendor daemon checks in its memory to see if any licenses are available and
sends a grant or denial back to the client.

6 The license module in the application grants or denies use of the feature, as
appropriate.

"Uncounted" features, where the number of licenses is ’0’ (zero), do not require a
server and the FLEXlm client library routines in the application grant or deny
usage based solely upon the license contents. Node-locked licenses, for example,
set the license number to 0 (zero).
License Manager Commands 83

Licensing on UNIX

Running the lmgrd from a Command Prompt

From a command prompt execute:

lmgrd -c <licenseFileList> -l <logfile>

Note: lmgrd can be found in $ROSERT_HOME/bin/<arch>, where <arch> is the host
that Rational Rose RealTime is installed on (sun5).

■ licenseFileList is the path to the license file or a list of license files. If the FLEXlm
daemon is only being used to provide Rational Rose RealTime licenses, use -c
$ROSERT_LICENSE_FILE. Otherwise, include the $ROSERT_LICENSE_FILE
environment variable in a semicolon (“;”) separated list.

■ logfile is the path to a log file. $ROSERT_HOME/license/log is recommended if
lmgrd is only providing Rational Rose RealTime licenses.

For convenience, you will probably want to augment a system initialization script on
your license server to automatically start the license daemon each time the license
server boots.

The names, locations, organization, and contents of system initialization scripts varies
from UNIX system to UNIX system. You might begin by looking at the following files:
for Solaris:

/etc/rc2.d/SlmRational.sh

To verify that your license manager is operational, you can enter these commands on
your license server to see if its daemons are running:

% ps axw | grep -v grep | egrep "lmgrd|rational"

or

% ps -e | grep -v grep | egrep "lmgrd|rational"

Example
lmgrd -c $ROSERT_LICENSE_FILE -l /apps/logs/logRRT

or

lmgrd -c $ROSERT_LICENSE_FILE;$LM_LICENSE_FILE -l

/apps/logs/current_log
84 Chapter 6 - Understanding Rational Rose RealTime Licenses

Administration Commands

The license manager supports several system-administration commands.

Note: These commands can be found in $ROSERT_HOME/bin/<arch>, where
<arch> is the host that Rational Rose RealTime is installed on (sun5).

The License File

The default Rational license file is either:

<rational_dir>/config/rational.dat

or

<rational_dir>/config/temporary.dat

The temporary.dat file is used for both startup and evaluation licenses while the
rational.dat file is used for permanent and TLA licenses.

FLEXlm uses this variable to locate the license file.

Format

The license file is a text file that you can edit with any text editor. Your license file will
contain lines similar to:

SERVER garcon 1874350 1706

DAEMON rational

FBE669014E142A4CF37 " "

Command Description

lmdiag Allows you to diagnose problems when you cannot checkout a
license.

lmdown Shuts down license and vendor daemons.

lmhostid Reports license manager host ID of workstation

lmremove Returns specific licenses to license pool (for example, after a
workstation crashes).

lmreread Rereads license file, starts new vendor daemons.

lmstat Reports status on daemons and feature usage.

exinstal Reports on licenses in license file you specify on the command line.
The License File 85

In general, one or three server lines are followed by one or more vendor daemon lines,
which are followed by one or more feature lines. Rational Rose RealTime requires
only one of each, but your license file may include data for other products.

Each server line contains:

■ Keyword SERVER
■ Host name of the license server, from hostname
■ License manager host ID of the license server, from lmhostid
■ TCP port number to use

Each vendor daemon line contains:

■ Keyword DAEMON
■ Name of the vendor daemon (always rational for Rational Rose RealTime)
■ Pathname to the directory that contains the executable code for this daemon
■ Pathname to your options files for this daemon (optional)

Each feature line contains:

■ Keyword FEATURE
■ Name of the feature
■ Name of the vendor daemon, previously defined on a DAEMON line, that serves

this feature (always rational for Rational products)
■ Latest (that is, highest number) version of this feature that is supported (5.000) for

the current release of Rational Rose RealTime
■ Expiration date. This is specified as ‘dd-mmm-yy’ or as ‘dd-mmm-yyyy’, where

‘yy’ is the last 2 digits of the year and ‘yyyy’ is the unabbreviated year. You must
specify 4 digits for the year 2000 and beyond. You must specify '00' to indicate a
license which does not expire.

■ Number of licenses
■ Encryption code (obtained from Rational for Rational Rose RealTime)
■ Vendor string, enclosed in double quotes, contains node-locked information when

licensing Rational Rose RealTime as node-locked
■ License manager host ID, supplied only when this feature is bound to a specific

host (that is, node-locked)

Note: You cannot combine floating and node-locked licenses for the same product
in a single license file.
86 Chapter 6 - Understanding Rational Rose RealTime Licenses

The tokens on each line can be separated by any amount of white space (spaces or
tabs). You can edit only four kinds of tokens in the license file:

■ Host names on SERVER lines
■ TCP port numbers on SERVER lines
■ Pathnames to vendor daemons on DAEMON lines
■ Pathnames to options files on DAEMON lines

All other tokens are included as input to the encryption algorithm that produces the
encryption codes on the FEATURE lines.

Note: A DEMO FEATURE Line (includes "DEMO" at the end of the FEATURE Line) is
a special temporary license which does not require running lmgrd or start_lm.
Licensing is activated when the DEMO FEATURE Line is placed in the license file.

UNIX Licenses

The type of licenses are:

■ Start-up or Emergency keys
■ Node-Locked keys
■ Floating keys
■ TLA (Temporary License Agreement)

Start-up or Emergency keys

Notes:

■ Use -startuplicense to enter keys.

■ When the UNIX LKAD displays, fill the fields with the information from Welcome
letter.

Node-Locked keys

Notes:

■ Request Node-Locked keys through AccountLink.

■ After you request Node-Locked key(s) from AccountLink, you will receive an
email from Rational that contains an attachment (a .upd file). You must save this
file.

■ FLEXlm is not required for Node-locked licenses.
UNIX Licenses 87

Floating keys

Notes:

■ Request Floating keys through AccountLink.

■ After you request Node-Locked key(s) from AccountLink, you will receive an
email from Rational that contains an attachment (a .upd file). You must save this
file to a desired location on the server.

■ We strongly recommend that you keep a copy of this license file in a safe location.

Note: We strongly recommend that you keep all of your Rational Floating licenses in a
single license file. Do not mix Floating and Node-Locked keys in the same file. Use
lmgrd -c <key_file1; key_file2; keyfile3> to point to several different license files.

TLA (Temporary License Agreement)

Notes:

■ Temporary license keys that are valid for a specified period of time.

Frequently Asked Questions

1 Can I use the FLEXlm licensing software I already have installed?

Yes. Install our license code in the default location (in rational_dir/base/cots) and use
it to serve the Rational licenses.

2 I already have FLEXlm installed and managing non-Rational licenses, and now I
want to install Rational Suite DevelopmentStudio for UNIX. Can I do this?

Yes. You can have more than one lmgrd on a system, but they must use different
ports. You can only have one rational daemon on the system.

a What do I do if my existing FLEXlm installation uses port 27000?

27000 is the default port, so you need to specify a different port number for
DevelopmentStudio. Do this by editing the license import file (.upd file) and
modifying the SERVER line. Change the port number to something other than
27000 (for example, 2001). Note that the port number follows the host ID.

b What do I do if my existing FLEXlm installation uses a port other than 27000?

You don’t have to do anything since rs_install will default to port 27000. If you
are using the same server for other Rational products, you must specify the
port number you are using.
88 Chapter 6 - Understanding Rational Rose RealTime Licenses

7Installing License Keys
Contents

This chapter is organized as follows:

■ Before You Begin on page 89
■ Installing a Startup or Permanent License on Windows on page 89
■ Installing a Startup or Permanent License on UNIX on page 92
■ Integration With Rational Suites Licensing on page 95
■ Troubleshooting on page 96

Before You Begin

For specific information on license keys please refer to the Installation Instructions
and License Certificate that accompany the product shipment. If either of these two
documents is missing, please contact Rational License Support for replacement
information.

Before you begin, ensure that you know the name of your license server. You will be
prompted for the server name during the installation.

You can install Rational license keys before or after you install a Rational product. If
you want to install a license key before you install a Rational product, open the
Rational License Key Administrator by selecting Programs > Rational Software > Rational
License Key Administrator from the Windows Start menu.Use the Rational License Key
Administrator Help or see the Administering Licenses for Rational Software manual for
information about requesting and installing license keys.

Installing a Startup or Permanent License on Windows

The License Key Administrator (LKAD) lets you install startup or permanent license
keys, as required. The startup license keys are time-limited and allow you to start
using Rational Rose RealTime immediately.
89

To obtain a license key:

1 Do one of the following:

❑ To install a temporary license key, select the Enter a Temporary or Evaluation
License Key option.

❑ To obtain a permanent license key, select one of the other options.

2 Follow the prompts in the wizard after you have chosen your option.

If you choose Request a license using Rational AccountLink on the World Wide
Web, your web browser opens and takes you to the AccountLink web site:

http://www.rational.com/accountlink

We recommend that you bookmark this site. You will need to access AccountLink
when you are ready to obtain a permanent license.

Installing a Permanent License on Windows

To install a permanent license key:

1 Open the Rational Rose RealTime AccountLink web site:

www.rational.com/accountlink

2 Click Get License Key(s).

AccountLink prompts you to enter your account information.

3 View your company’s License Key Certificate and enter your Rational account
number found on this certificate.

Note: If you are unable to find your Rational account number, contact Rational
License Support.

4 Click Next.

AccountLink prompts you to specify the license type.

5 To select a license type, do one of the following:

❑ Click NodeLocked to obtain a license for a client install.

❑ Click Floating to obtain a license for a server install.

6 Select the product line Rose RealTime.

7 Select the product name Rational Rose RealTime for Windows.

8 Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be "1".
90 Chapter 7 - Installing License Keys

9 Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10 Enter your Host Name and Host ID.

11 If you do not know the host name and host id, you can download an application
from AccountLink:

❑ Select Windows operating system from the scroll down list.

❑ Click Download.

The File Download dialog box appears, prompting you to open the file from its
current location or to save the file. We recommend that you open the file, to
import it to disk automatically.

❑ Click OK.

❑ A dialog box appears containing the Host Name and Host ID.

❑ Copy the Host Name and Host ID from the dialog box.

❑ Paste the contents into the Host Name and Host ID fields.

12 Select the platform on which the toolset will be running.

13 Click Next.

14 Enter the contact information.

15 Click Next.

16 Verify the information:

❑ If the information is correct, click Submit.

❑ If the information is NOT correct, click Modify email. Correct the information
as required, then click Submit.

Note: An email message will be sent to the inbox for the email address which you
submitted.
Installing a Startup or Permanent License on Windows 91

Installing the License Key

To install the license key:

1 Double-click the attached .upd file.

A dialog box appears prompting you to save the file to disk or open the file.

2 Click Open and then click OK.

The LKAD Confirm Import dialog box appears.

3 Click Import, then click OK.

Installing a Floating License Key on a UNIX server

To install a floating license key on a UNIX server:

1 Obtain the license key as outlined in Installing a Permanent License on Windows on
page 90.

2 Set the HOST NAME and HOST ID to be the UNIX LICENSE SERVER.

3 FLEXlm v7.0f or greater and the rational daemon are both required on the UNIX
machine. If either of these is not available, they can be downloaded from our ftp
site at:

ftp://ftp.rational.com/public/tools/flexlm

4 Activate the new licenses with the FLEXlm software. For information about the
FLEXlm license manager, see The License Manager - UNIX on page 79, or refer to the
FLEXlm documentation.

5 Using the License Key Administrator, set your license server using the Settings -
Service Configuration menu.

Installing a Startup or Permanent License on UNIX

The startup license keys are time-limited and allow you to start using Rational Rose
RealTime immediately.

Installing a Startup License on UNIX

To install a startup license on UNIX:

1 Go to the $ROSERT_HOME/bin directory.

2 Type RoseRT -startuplicense.
92 Chapter 7 - Installing License Keys

The Startup License Key Administration form appears.

Locate the Startup License Key certificate that accompanied your product shipment.

3 Based on the license type and product name indicated on this certificate, copy the
appropriate information into the Startup License Key Administration form, and
click OK.

Note: A floating license requires you to start the license server. See Understanding
Rational Rose RealTime Licenses on page 73.

Your startup license is created. Remember that your Startup license will expire on the
date listed on the certificate. You will have to request and install permanent license
keys before this expiry date.

Now you are ready to start Rational Rose RealTime.

Installing a Permanent License on UNIX

Licenses are obtained from the Rational website, using AccountLink. After obtaining
the license(s), they need to be installed on Rational Rose RealTime.

To install a permanent license on UNIX:

1 Visit the Rational Rose RealTime AccountLink web site:

www.rational.com/support/accountlink

2 Click Get License Key(s).

AccountLink prompts you to enter your account information.
Installing a Startup or Permanent License on UNIX 93

3 View your company’s License Key Certificate and enter your Rational account
number found on this certificate.

Note: If you are unable to find your Rational account number, contact Rational
License Support.

4 Click Next.

AccountLink prompts you to specify the license type.

5 To select a license type, do one of the following:

❑ Click NodeLocked to obtain a license for a client install

❑ Click Floating to obtain a license for a server install

6 Select the product line Rose RealTime.

7 Select the product name Rational Rose RealTime for UNIX.

8 Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be "1".

9 Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10 Enter your Host Name and Host ID.

11 If you do not know the host name and host id, you can download an application
from AccountLink:

❑ Select UNIX operating system from the scroll down list.

❑ Click Download.

The File Download dialog box appears, prompting you to open the file from its
current location or to save the file. We recommend that you open the file, to
import it to disk automatically.

❑ Click OK.

❑ A dialog box appears containing the Host Name and Host ID.

❑ Copy the Host Name and Host ID from the dialog box.

❑ Paste the contents into the Host Name and Host ID fields.

12 Select the platform on which the toolset will be running.

13 Click Next.

14 Enter the contact information.

15 Click Next.
94 Chapter 7 - Installing License Keys

16 Verify the information:

❑ Click Submit if the information is correct.

❑ Click Modify email if the information is NOT correct. Correct the information
as required and then click Submit.

Note: An email message will be sent to the inbox for the email address which you
submitted.

Installing the License Key

To install the License Key:

1 Save the attached .upd file as: $ROSERT_HOME/license/license.dat

2 Do one of the following:

❑ To integrate Rational Rose RealTime with other Rational products, see
Integration With Rational Suites Licensing on page 95.

❑ To not integrate Rational Rose RealTime with any other Rational products, see
The License Manager - UNIX on page 79, to initially set up FLEXlm and activate
your new keys.

Integration With Rational Suites Licensing

If you are using other Rational products with Rational Rose RealTime, the license.upd
file that you receive from Rational in response to a license request will contain the
keys for all the Rational products. If you are using floating licenses, you will already
be using the FlexLM lmgrd daemon and the rational vendor daemon.

Rational Rose RealTime assumes that the ROSERT_LICENSE_FILE variable points to
a valid FlexLM license file that contains a valid Rational Rose RealTime license. If you
follow the instructions provided, the existence of the additional license keys will not
cause any problems.

Note: Only one instance of the rational daemon can be executed at any given time for
floating licenses. Your project’s license administrator should ensure that only one
instance of the rational command exists and/or all paths are set correctly so that only
one instance of the rational command is used.

For additional information on integration with Rational Suites Licensing, see the
Installing Rational Suite Guide.
Integration With Rational Suites Licensing 95

Troubleshooting

You may encounter some difficulties with the following configurations:

■ Windows
■ UNIX server
■ UNIX

Windows

Problem 1

If a FLEXlm License Manager dialog appears indicating that "Your application was
unable to obtain a license because...", do the following:

1 Click Cancel.

You will get a Rational Rose RealTime message stating "Unable to obtain a license".

2 Click OK.

3 Run the LMTools application, located in:

C:/Program Files/Rational/CommonLM

4 Verify that FlexLM is pointing to the correct license file.

Problem 2

If you receive an "Unable to obtain a license message" message after the splash screen
is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. See Installing a Floating License Key on a UNIX
server on page 92.
96 Chapter 7 - Installing License Keys

UNIX server
Note: This section applies only if you are installing a floating license on a UNIX
server.

Problem 1

If a FLEXlm License Manager dialog appears indicating that "Your application was
unable to obtain a license because...":

1 Ensure that your Windows client environment variable for
ROSERT_LICENSE_FILE is set to the appropriate location.

2 Ensure that your UNIX server is set up correctly. For information on setting up
your UNIX server, see Understanding Rational Rose RealTime Licenses on page 73, or
refer to the FLEXlm documentation.

Problem 2

If you receive an "Unable to obtain a license message" message after the splash screen
is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. Installing a Floating License Key on a UNIX server on
page 92.

UNIX

Problem 1

If a FlexLM License Manager dialog appears indicating that "Your application was
unable to obtain a license because...", do the following:

1 Click Cancel.

You will get a Rational Rose RealTime message stating "Unable to obtain a license".

2 Click OK.
Troubleshooting 97

3 Verify the location and naming of the license file:

❑ Verify that the variable set matches the actual location and file name, by typing
the following in a command prompt:

echo $ROSERT_LICENSE_FILE

❑ If you are incorporating this file into an existing FLEXlm license file, see
Understanding Rational Rose RealTime Licenses on page 73, or refer to the FLEXlm
documentation, to ensure that the setup and key activation was done correctly.

4 If both the name and location are correct, verify that the install process set the
ROSERT_LICENSE_FILE environment variable to the location of the file.

If the environment variable is not set or set incorrectly, add or modify as
appropriate.

Problem 2

If you receive an "Unable to obtain a license" message after the splash screen is
displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. See the Installing a Floating License Key on a UNIX
server on page 92.
98 Chapter 7 - Installing License Keys

8Migration
Contents

This chapter is organized as follows:

■ Migrating from Rational Rose on page 99
■ Migrating from ObjecTime Developer 5.2/5.2.1 on page 105
■ Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1 on page 108
■ C Language Migration on page 112
■ C++ Language Migration on page 115

This chapter provides help for users migrating models from Rational Rose, ObjecTime
Developer, or previous releases of Rational Rose RealTime.

Migrating from Rational Rose

The Rational Rose RealTime interface is similar to Rational Rose; however, there are
some subtle differences that Rose users should understand before using Rational Rose
RealTime.

User Interface Differences

If you are familiar with Rose, you should not have too much trouble understanding
the Rational Rose RealTime user interface. Rational Rose RealTime has maintained the
same architecture as Rational Rose and has preserved the main toolset features: a
model browser, diagrams, model properties, add-ins, and an extensibility interface
(RRTEI).

Note: Some of the icons have been modified but they have remained intuitive.

However, to support modeling real-time systems, to allow full code generation, and
to provide an executable interface, you will notice the following main changes to the
Rational Rose RealTime interface. For a complete description of the Rational Rose
RealTime user interface please refer the Rational Rose RealTime Toolset Guide.
99

Multiple Model Browsers

The browser in Rational Rose RealTime have three views (tabs): the Model View, the
Containment View, and the Inheritance View. Each view displays the elements in
your model from different perspectives.

In addition, you can create multiple model browser windows by selecting
View > Browsers > Create New Browser.

Output Windows

In Rational Rose, the log is in an undockable window that cannot be dragged onto
another section or window. In Rational Rose RealTime, the output window is
dockable, and contains a set of windows that show different kinds of output from the
toolset.

Code Editors

In Rational Rose, code is added to operations outside the toolset; in Rational Rose
RealTime, code is added in the tool. Code is added to model elements through their
specification dialogs. For example, the Details tab of an Operation specification
contains a Code window in which you can write the body source code of the
operation.

Code can also be added to capsule state diagrams.

Code Browser

During the development of a model, you spend considerable time writing source
code. In Rational Rose RealTime, you can edit the code for the currently selected
element in the code window, rather than having to open the element’s specification
dialog.

Layout Tools and Line Styles

Rational Rose RealTime allows you to perform advanced layout operations on
diagrams. For example, you can align, change the view spread, and make elements
the same size. You can also configure the way lines are drawn:
100 Chapter 8 - Migration

Figure 1 Layout Menu - Right-click on any Diagram

Figure 2 Line Attributes Menu - Edit > Line Attributes

New Modeling Language Elements

Rational Rose RealTime introduces new modeling elements - capsules, protocols, and
ports - and a new diagram - the structure diagram. The Rational Rose RealTime
Modeling Language Guide contains information about the new modeling elements, as
well as a summary of the real-time specializations to the UML.

You can also review the Concept Tutorials.

Code Generation, Building, and Running

An important difference between Rational Rose and Rational Rose RealTime is the
support for building and executing models from within the toolset. Note the
following:

■ Rational Rose RealTime is not meant to be used in a round trip process. The model
contains all the information required to generate, build, and run elements in the
model.

■ Rational Rose RealTime does not ship with a compiler for your target
environment. You must install and configure a compiler for your target. Rational
Rose RealTime will use that compiler to build the model.
Migrating from Rational Rose 101

For more information, see the Rational Rose RealTime Toolset Guide, available through
the online Help.

Opening Models from Rational Rose

Rational Rose RealTime can open files saved with Rational Rose 98, 98i, or 2002 (.mdl
files).

Fixing Unresolved References

When importing a model from Rational Rose 98 or Rational Rose 98i into Rational
Rose RealTime, you should fix any model errors in Rational Rose (Tools > Check
Model) before trying to import the model. In particular, it is important to resolve any
unresolved references. Rational Rose is not concerned with unresolved references;
however, they are very important in Rational Rose RealTime as they can result in
incomplete code generation and compilation errors.

For more information, see “Model Validation” in the Guide to Team Development.

Opening a Rational Rose Model in Rational Rose RealTime

To open a Rational Rose model in Rational Rose RealTime:

1 Select File > Open and choose Rose Model (.mdl) from the Files of Type
drop-down menu.

2 Select a file and click Open.

Opening a new model discards any existing model that you have. The tool prompts
you to save changes first.

List of Importation Log Messages

The following messages may appear in the Log after a Rose98 model has been
imported.

Message: Warning: Renamed elementClass “oldElementName” to
“newElementName”.

Description: A loaded model element has been renamed to conform with Rational
Rose RealTime's naming requirements. Double-clicking on the warning in the log, this
may display the renamed element.

Message: Error: Unresolved reference from ... to ... by ...

Description: The toolset was unable to resolve a reference between two model
elements. This is usually the result of loading an incomplete model, for example,
when the user has updated only part of a model from CM. The rest of the model needs
102 Chapter 8 - Migration

to be loaded in order for the reference to be resolved. However, in some cases, the
unresolved model element is removed from the model and the deletion is recorded in
the log window.

Message: Error: Error reading file fileName at line lineNumber or Error message
detail.

Description: The error message detail may contain validation errors originating from
the internal meta-model. Possible error message details that originate from the petal
reader are listed below.

Message: Invalid syntax.

Description: The file contents cannot be read by the toolset. The user should send the
file to customer support with a description of what they were doing when the file was
created. For example, if you import a Rose98 model and make some changes to the
Component View, the file will not reload in Rational Rose RealTime.

Limitations and Restrictions

When a Rose model is opened in Rational Rose RealTime, the following elements are
not converted:

■ Importing Rational Rose models containing controllable units is not supported

Load the model with controllable units in Rational Rose. Export the model into a
single .ptl petal file. Import the .ptl file into Rose. Save the model as a .mdl file in
Rational Rose. Open the .mdl file in Rational Rose RealTime.

■ Three-tier class diagrams are not supported in Rational Rose RealTime.

Rational Rose RealTime skips over three-tier class diagram making it unnecessary
to remove them before importing.

■ Rational Rose elements that are not supported are written to the Documentation
field in Rational Rose RealTime.

Note: The conversion of models is supported in one direction only: once models are
brought into Rational Rose RealTime, if they are converted back to Rational Rose, the
additional Rational Rose RealTime functionality will not appear in Rose. Working in a
mixed Rational Rose RealTime/Rose environment is not supported. Generated code
is not compatible between the two tools.
Migrating from Rational Rose 103

Importing Rational Rose Generated Code

Source code that has been generated from a Rational Rose model and has been edited
within the preserved regions may be imported.

To Import Rational Rose Generated Code:

1 Verify that the Rational Rose .mdl file is not newer than the generated code. If so,
regenerate the code.

2 Open the Rational Rose model.

For details, see Opening Models from Rational Rose on page 102.

3 Choose Tools > Import Code....

If code was generated from this model using Rational Rose and the model was
saved after the code generation was performed, a "Rose Code Import" window
appears. Otherwise, a "There are no .cpp or .h files available for import" message is
displayed.

The Rational Rose Code Import Window lists all the .cpp and .h files that were
generated from the model and lets you select all or a subset of the files. It also
displays the classes that will be affected by each file that is selected. After a file is
imported, it will not be listed if code importation is repeated.

4 After you have complete importation and are satisfied with the results, save the
model.

Limitations and Restrictions
■ No action will be taken on empty preserved regions. As a result, constructors,

destructors and operators that are generated by Rational Rose and have empty
preserved regions, will not be added to the model.

■ Use of the Code Name properties for classes and operations can cause inconsistent
naming in the generated code. The inconsistencies can cause compile time errors,
which can be resolved manually.
104 Chapter 8 - Migration

Migrating from ObjecTime Developer 5.2/5.2.1

Users migrating from ObjecTime Developer can open their models in Rational Rose
RealTime. First, see the Conversion Guide - ObjecTime Developer to Rational Rose RealTime
to get your ObjecTime Developer model loaded and built in Rational Rose RealTime.

Note: Contact Rational Customer Support to obtain the latest Objectime model
conversion patches.

Terminology

The modeling language and toolset terminology in Rational Rose RealTime is
different than that used in ObjecTime. This section provides an overview of the
changes.

Actor/binding/protocol Class

Rational Rose RealTime supports the UML modeling language. Therefore, certain
modeling elements are referred to by UML standards differently than they are in
ROOM (Real-Time Object-Oriented Modeling). For detailed information regarding
the UML modeling elements supported in Rational Rose RealTime, see the Modeling
Language Guide.

Table 10 Terminology Mappings from ROOM to UML

Context/update

In ObjecTime Developer, contexts and updates contain a group of related actors,
protocols, and data classes. In Rational Rose RealTime, models are stored in controlled
units that can vary in granularity. For example, the whole model can be stored as a
single controlled unit (default) or each element can be stored individually. If a model

ROOM UML

actor capsule

actor reference capsule role

protocol protocol

port port

SAP/SPP unwired ports

binding connector
Migrating from ObjecTime Developer 5.2/5.2.1 105

is stored as one controlled unit, then the model file (.rtmdl) contains all information
about a model. If the model file is read-only, then when the model is opened in
Rational Rose RealTime it is also read-only.

Activation/passivation

These terms have been replaced by more commonly used open and save. You open a
model into Rational Rose RealTime, and save it to disk.

For more information, see the Toolset Guide.

Workspace Browser

In ObjecTime Developer, workspace browsers showed all activated contexts and
updates. Since Rational Rose RealTime only supports one model loaded at a time,
there is no equivalent concept.

The workspace in Rational Rose RealTime is associated with a specific model and is
saved as such. The workspace can be stored under Configuration Management, if
desired.

Model Browser

Rational Rose RealTime still has a model browser. You can, however, have more than
one browser for a model, and each browser shows the model from three different
views (tabs): the Model View, the Containment View, and the Inheritance View.

For more information, see the Toolset Guide.

Project Files

Project files do not exist in Rational Rose RealTime. An equivalent concept is the
model file (.rtmdl) that contains references to a set of packages, but does not contain
version information. Rational Rose RealTime does not manage versions of files.
Instead the model file loads the packages it finds on disk. It is up to the developer,
through their configuration management process, to ensure that the files on disk are
the correct version.

Library Browser

Library browsers do not exist in Rational Rose RealTime. Because of the changed
underlying model representation, the configuration management integration has
changed significantly in Rational Rose RealTime.

It is highly recommended that you read the Guide to Team Development for a detailed
introduction to using source control with Rational Rose RealTime.
106 Chapter 8 - Migration

User Interface Differences

For a complete description of the Rational Rose RealTime user interface, please refer
to the Toolset Guide. Rational Rose RealTime looks very different than ObjecTime
Developer. Although you can accomplish almost everything you can in ObjecTime
Developer, the steps and mechanics are very different. For this reason, it is
recommended that you review the tutorials to become familiar with the interface. You
can also take the Rational University course called DRTSwRRRT.

Note: When using Rational Rose RealTime, everything is right-click-centric, meaning
that you can right-click on every element in the toolset to show a context-menu that
contains actions that you can perform.

Property Editors

Property editors have been replaced by specification dialogs. Every modeling element
has a specification dialog that contains a non-graphical view of its properties. To
access an element’s specification, right-click on the element (in either the browser or
on a diagram) and select Open Specification.

List Headers

In ObjecTime Developer, every window has a list header in which you can access
menu items specific to that window. In Rational Rose RealTime, these have been
replaced by right-click menus and the main application menu.

State and Structure Diagrams

To open a state or structure diagram, right-click a capsule, and click Open Structure
Diagram or Open State Diagram. The state and structure diagram editors appear in
the same window. You can switch between one and the other using the tabs at the
bottom of the window. If you want to see the structure and state diagrams
simultaneously, click and drag one of the tabs away from the window. This undocks
the diagram and creates a new window containing only the selected diagram. You can
redock the diagrams by dragging one of the tabs into the other.

For more information, see the Conversion Guide, ObjecTime Developer to Rational Rose
RealTime

Compilation

In ObjecTime Developer 5.2/5.2.1, data classes were compiled one package at a time.
In Rational Rose RealTime, data classes are compiled one class at a time.
Migrating from ObjecTime Developer 5.2/5.2.1 107

Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1

Models from these previous versions of Rational Rose RealTime are compatible with
this version. However, there are some changes in team development and language
add-ins that require you to plan some changes to your model.

Note: Beta customers must uninstall before installing the new release.

File Format Changes

When opening a Rational Rose RealTime 6.x model, a dialog may warn you that the
next time the model is saved, the files will be saved in the new file format. To prevent
the original model from being overwritten, on the File menu, click Save As.

Figure 3 Warning Dialog

For this reason, when working with a model under source control, you must check
out all controlled units so that they can be saved in the new format.

Source Control Migration

If your model is in source control, you need to load it into the new release of Rational
Rose RealTime.

To Save a File in the New File Format:

1 In the 6.0 toolset, all files should be checked in, and the model should build and
test successfully.

The source control administrator/model converter checks out all files from the 6.0
toolset.

2 Install and start the new release of Rational Rose RealTime.

3 Open the .rtmdl file in Rational Rose RealTime.

Note: Do not open the workspace (.rtwks).

4 Save the model.
108 Chapter 8 - Migration

5 Configure the source control settings.

6 Save the Workspace.

7 Submit all changes.

Note: Migration from 6.0 is one-way. After you have migrated a model , you cannot
successfully reload a controlled unit in 6.0 format. Although the toolset lets you
attempt to reload a controlled unit, several errors will be reported. A mixed model is
not supported.

ClearCase Integration

Rational Rose RealTime models currently stored in a ClearCase VOB should be
converted to use the type manager in order to take advantage of the new integration
features. A script, cc_chtype.pl, has been included to help in the conversion process.
The script, located in $ROSERT_HOME/bin/$ROSERT_HOST/cc, produces a log of
commands that will convert the existing model files from the default "text_file" type
to the supplied "rosert_unit" type.

After following the setup directions detailed in the "Source Control Tools" chapter in
the Guide to Team Development, use the following invocation from the root of your VOB
to produce a batch file, which when executed will convert any Rational Rose RealTime
files to the rosert_unit type:

rtperl cc_chtype.pl -cmdfile chcmds.bat -recurse *

After examining the chcmds.bat file and verifying that the commands contained
within it are the commands you want to perform, execute the batch file.

If you do not want to be queried to convert each file, add "-chargs -f" to the
cc_chtype.pl command line before the -recurse argument.

rtperl cc_chtype.pl -cmdfile chcmds.bat -chargs -f -recurse *

This will generate commands that force the type change without querying.

For ClearCase users who want to use clearmake, there is a problem with filenames
with spaces in them. For help with this, contact Rational Customer Support at:

http://www.rational.com/support

Migrating Customized CM Scripts

For complete information on library scripts and what scripts may require
modification to meet your specialized CM needs, see the Guide to Team Development.
Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1 109

http://www.rational.com/products/rosert

Language Add-in Changes

The C and C++ Language Add-Ins have changed, it is very important to read C
Language Migration on page 112 and C++ Language Migration on page 115 for
instructions on migrating existing models to either of these Language Add-Ins.

Note: Rational Rose RealTime version 2001A.04.00 (and later) supports the Java
language.

Running Two Different Releases of Rational Rose RealTime

Windows NT

When you install version 2003.06.00 of Rational Rose RealTime, all older versions of
Rational products are uninstalled.

UNIX

You can set up your environments to run both releases of Rational Rose RealTime, but
do not run them from the same machine at the same time. This is a MainWin
limitation. There are workarounds that are available as solutions on the Rational
Customer Services knowledge base.

For additional information, see Upgrading to 2003.06.00 While Maintaining an Earlier
Version on page 54.

Workspace Files

Version 6.0.x workspace files are not supported. You must open the model without the
workspace. The unsupported workspace is backed up to a file.

RRTEI Changes

If you have previously used any of the following classes or functions in your scripts,
they have to be removed in order for your scripts to be compatible with this new
release:

■ ComponentAggregationCollection class
■ ComponentAggregation class
■ Component::GetComponentAggregation()
■ Component::AddComponentAggregation()
■ Component::DeleteComponentAggregation()
■ ComponentPackage::GetObject()
■ RSSchedule enumeration
■ Schedule rich type
110 Chapter 8 - Migration

If you have previously used any of the following classes or functions in your scripts,
they have to be replaced in order for your scripts to be compatible with this new
release. Use the model element’s tool’s properties. For example, The old
Component::OutputPath property can now be retrieved by the "C++ Generation"
OutputDirectory property from the component.

■ Component::OutputPath
■ Component::TopCapsule
■ Component::RTSType
■ Component::TargetLibrary
■ Component::RTSDescription
■ Component::CompilerName
■ Component::CompilerLibrary
■ Component::CompilerFlags
■ Component::CompilerDescription
■ Component::Inclusions
■ Component::UserObjectFiles
■ Component::InclusionPaths
■ Component::LinkerName
■ Component::LinkerFlags
■ Component::LinkerDescription
■ Component::ExecutableFileName
■ Component::Platform
■ Component::MultiThreaded
■ Component::DefaultArgs
■ Component::TargetDescription
■ Component::CodeGenMakeName
■ Component::CodeGenMakeFlags
■ Component::CodeGenMakeOverridesFile
■ Component::CodeGenMakeDescription
■ Component::CompilationMakeName
■ Component::CompilationMakeType
■ Component::CompilationMakeFlags
■ Component::CompilationMakeOverridesFile
■ Component::CompilationMakeDescription
■ Component::UserLibraries
■ Component::UserSourceFiles
■ Component::UserLibraryPaths
■ Component::CodeGenMakeType
■ Component::AddInclusion()
■ Component::DeleteInclusion()
■ Component::AddUserLibrary()
Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1 111

■ Component::RemoveUserLibrary()
■ Component::AddUserObjectFile()
■ Component::DeleteUserObjectFile()
■ Component::AddInclusionPath()
■ Component::DeleteInclusionPath()
■ Component::GetInclusionPathFlag()
■ Component::AddUserLibraryPath()
■ Component::DeleteUserLibraryPath()

C Language Migration

The following section provides details on migration issues specific to the C Language
Add-in.

For more information on the C Language Add-in, refer to the Rational Rose RealTime C
Reference .

Converting a C++ Model to C

You can convert a C++ model to C, however, the process is not as simple as changing
the language of each model element. First, the C Services Library’s API is different
than that of the the C++ Services Library, meaning that all the Services Library
references in the detail code must be changed. Secondly, the C Services Library does
not support dynamic structure (import/deport), which may require you to re-design
you model. In addition, all issues regarding conversion from regular C++ to C still
apply to the conversion (for example, polymorphism is not supported in C,
encapsulation is not enforced, all fields in a struct are public, and so on...).

You should decide early in the development cycle whether your project will be
developed in C or C++ because changing languages in the middle of development
requires a lot of work.

To Convert an Existing Rational Rose RealTime Model Based on the C++
Language:

1 Make a backup copy of the C++ model that you are trying to convert.

2 Change the language of each model element. The language setting is on the General
tab of each element’s specification dialog.

Note: When model elements change languages, all the C++ language properties
are replaced by C language properties. Therefore, any properties that have been
modified are lost when the language is changed.
112 Chapter 8 - Migration

3 Review the Rational Rose RealTime C Reference for descriptions of the new C
properties and how these are to be used in your model.

4 All attribute and operations should be made public. The model will continue to
build with them as private or protected, but the code generator will output many
warnings in this regard.

5 If your C++ model depends on dynamic structure and importation, you can mimic
this behavior in a C model by combining the static linkage of ports between
capsules and the dynamic linkage of unwired ports. With some re-design, you can
replace importation from your C++ model to use unwired ports and the
RTPort_registerAs() and RTPort_deregister() functions to bind and unbind ports
dynamically.

6 Convert all timing ports to C Timing, and then add a timing capsule to your
model.

7 Remove all Log ports and all Exception ports.

8 When your design can be supported by C Services Library features, you can
convert the syntax in your detail code.

Note: We recommend that you start converting a small set of capsules that can be
built and tested separately before trying to convert the whole model. Iteratively
modify detail code, build, and test.

9 Update your components to C components.

10 Configure any of the build properties that are required.

ObjecTime Developer for C Migration

ObjecTime Developer for C models can be imported into Rational Rose RealTime,
compiled, and run with only minor modifications to the model. Functional updates
(like a proper recall mechanism and data integration) was not provided via the
ObjecTime Developer for C interface and thus will only be available via the new C
UML Services Library API.

Importing Models

Prior to importing a model, you should read the Conversion Guide, ObjecTime Developer
to Rational Rose RealTime to understand important issues involved with migrating
ObjecTime Developer models to Rational Rose RealTime.
C Language Migration 113

To Import an ObjecTime Developer for C Model into Rational Rose RealTime:

1 Set the default language to C.

2 Set the default environment to C TargetRTS through Tools > Options >
Language/Environment Tab. This will ensure that protocol classes import as C
Protocols.

3 Export and import your OTD for C model. For details, see the Conversion Guide -
ObjecTime Developer to Rational Rose RealTime.

4 When the model has been imported, replace all ports of type Timing with type
CTiming in your model.

Note: Your triggers (on timeout) will remain valid.

5 Update your timing service. If you have a simple timing service, to get you started,
replace whatever timing capsule you had with the one available in Logical
View::RTCClasses::TimerPackage::Timer. You can override this later with a
custom timer after you get your model working.

6 Build your target.

Note: If you receive a signal is undefined build error, replace signal with
ROOM_Signal(port, signal) for the given port.

Converting Global Signals to Local Signals

A common update that may be required to some imported models involves the way
the signals are now represented. In order to provide local signals, and thus the ability
to build libraries without global system knowledge, more macro operations are
necessary.

The only supported way of creating signals with the backwards compatible interface
is with these primitives:

■ ROOM_Signal(port, signal), where port is the name of the port (unqualified
with respect to the this pointer) and signal is the name of the signal.

■ ROOM_InSignal(port, signal), where the parameters are specified identically to
the previous case.

In ObjecTime Developer, these macros returned signal. You may have tried to
optimize out the use of these macros, and used the signal name when sending
messages through these services. However, this will no longer work because these
114 Chapter 8 - Migration

macros now create a local signal (relative to the protocol class of the port). As a result,
you will find compile errors when you go to build your model indicating that the
signal is undeclared. Do the following:

Every call of

ROOM_PortSend(port, signal)

needs to be replaced with

ROOM_PortSend(port, ROOM_Signal(port, signal))

This change applies to all signals used in ROOM_ macros.

Timing Service

The global signal timeout no longer exists. You need to use Timing_rt_timeout or use
the ObjecTime Developer RSL_Timeout() macro that has been mapped to
Timing_rt_timeout.

Also, remember that these macro operations de-references the pointer for you, so all
you have to do is provide the names.

C++ Language Migration

The following section provides details on migration issues specific to the C++
Language Add-in.

For more information on the C Language Add-in, refer to the C++ Reference.

If you are upgrading from a previous release of either ObjecTime Developer or
Rational Rose RealTime, to build and run your model in Backwards Compatibility Mode
on page 115. Then, you can convert to the new syntax described in Changes on
page 119.

See the Conversion Guide, ObjecTime Developer to Rational Rose RealTime, that is available
as part of the online Help system.

Backwards Compatibility Mode

An essential requirement of the C++ Language Add-in is that it allows models from
previous releases to be loaded, compiled, and run with only small syntax changes to
the model. Because of the scope of the changes required to the Language Add-in, most
C++ Language Migration 115

models will contain constructs that still will not compile even in backwards
compatibility mode because of the increased send type checking and removal of
global signals.

Note: Global signals have been replaced by a signal operation local to each protocol
class defining the signal. Signals with the same name in different protocols do not
share the same operation.

Migrating in Two Steps

You can plan your conversion in two steps:

1 Build your model in backwards compatibility.

2 Convert to the new syntax.

Since you retain the benefits of type safety even in backwards compatibility mode,
one option would be to keep active projects in backwards compatibility and only use
the new syntax on new projects.

Advantages of Backwards Compatibility Versus Changing All Syntax

■ Only small changes to user code are required.

■ There are no run-time penalties.

■ You can optionally benefit from the new message send type safety.

Disadvantages

■ There are stubs generated for each protocol to allow backwards compatibility.
More code is therefore generated in backwards compatibility mode.

■ Compilation times are longer because there is more code to compile.

What Does Backwards Compatibility Do?

Protocols can be marked as backwards compatible (see the C++ Target RTS tab of the
Protocol Specification). This will tell the code generator to create stub code in the
protocol classes to allow use of the old Communication Services syntax.

Compiler Will Find All Errors

Many errors in existing models will be discovered by the compiler. After a build, the
Build Errors pane of the output window will have a list of all compile errors.
Double-click on the error and the code section containing the error appears.
116 Chapter 8 - Migration

Figure 4 Sample Output Window Showing Build Errors

Building a Model in Backwards Compatibility Mode

Follow these steps to build and run a model loaded into Rational Rose RealTime to be
built and run in backwards compatibility mode.

Step 1: Optional Type Checking

A flag has been added to the C++ TargetRTS tab for protocols called TypeSafeSignals.
By default this property is turned on. Turning off the flag causes the code generator to
ignore the types for all signals in the protocol class. This is the same as setting them
all to blank (for example, any). This sets the type of the data to be sent to void * and
allows SEND_SCALAR to work without change. This is considered a true backwards
compatibility mode with the added advantage that it affects the new send syntax as
well (i.e. you can turn off backwards compatibility and turn off type safe signals).

If you want to continue to use the SEND_SCALAR macro you should turn off the
TypeSafeSignals property on these protocols.

Step 2: Enable BackwardsCompatible Protocol Property

■ Press F12 or select Tools > Options from the main menu, and in the Options tab
and select the C++ Target RTS tab. Then set the Type to Protocol and ensure that
the BackwardsCompatible checkbox is checked.
C++ Language Migration 117

This will ensure that all protocols default to backwards compatibility mode.

Note: On loading of ObjecTime Developer models all protocols will automatically be
set to backwards compatibility mode.

Step 3: Clean up Unsafe Sends

Most models contain unsafe sends and sends that are not used as defined in the
associated protocol. You should fix these constructs so that you do not need to debug
bugs caused by these kinds of errors.

The compiler will find these errors. However if you know where you have signal-type
incompatibilities, you can manually fix them.

Previous versions of the C++ UML Services Libraries allowed sending a signal,
defined in the protocol to have a data class, to be sent without data. Because of the
new tightened type safety of sends, this is no longer allowed and will result in
compilation errors. To compile in backards compatibility mode you will have to
modify all errors of this type.

This is an example of a typical compile error for a signal-data class mismatch:

int __thiscall NewProtocol1::base::send(const struct RTSignal_start

&,const class AClass1 &,int)' : cannot convert parameter 2 from

'int' to 'const class AClass1 &

Step 4: Remove Unspecified ‘*’ Replication Values

You can search your model for unspecified replication values by using the find tool
and searching Cardinality/Multiplicity fields for the value ‘*’.
118 Chapter 8 - Migration

Step 5: Investigate Remaining Syntax Changes

■ The first step is to identify if you use message forwarding or if you access signal
names in user code. You will have to convert these constructs as described in
Forwarding on page 126 and Discriminating in Code the Signal of a Received Message
on page 126.

Example compile error message when using old forwarding syntax:

int __thiscall NewProtocol1::base::send(const struct RTSignal_start

&,const class AClass1 *,const struct RTObject_class *,int)' : cannot

convert parameter 1 from 'int' to 'const struct RTSignal_start &'

Example compile error message when using signal name in user code:

binary '==' : no operator defined which takes a left-hand operand of

type 'int' (or there is no acceptable conversion)

Note: If you still have compilation problems, review Changes on page 119 to ensure
that you are not using classes that have been removed from the Services Library.

Full Migration

When your model is compiling and running in backwards compatibility mode, the
next step for full migration is a communication service syntax change. You will have
to find and replace occurrences of old syntax with the new syntax and individually
turn off the BackwardsCompatibility flag on a per protocol basis. For a complete
listing of the change communication service primitives, see Changes on page 119
section.

Changes

This section explores all the changes affecting users of the C++ Language Add-in who
will be migrating their existing models to this new version.

C++ UML Services Library

Adding support for libraries and type safety required changing the Communication
Service API. Review these sections to understand the new C++ Services Library
changes.

■ Type Safety Explained on page 120
■ New Classes for Protocols, Signals, and Ports on page 120
■ API Changes Summary on page 121
■ Macros on page 130
■ External Layer Service (ELS) on page 131
C++ Language Migration 119

No attempt will be made to describe changes made to the private or undocumented
features of the C++ Services Library. We recommend that you always use only the
documented interfaces.

Note: For minor problems migrating customizations or configurations of the C++
UML Services Library contact Rational Customer Support. For all other problems
migrating your custom changes contact your sales representative to arrange for
consulting services to assist in the migration.

Code Generation and Compilation

Components have been expanded to allow building libraries and model external
libraries.

New Classes for Protocols, Signals, and Ports

In previous versions of the Services Library RTEndPort and RTEndPortRef classes
were used to represent port instances and port references. These classes have been
replaced by RTProtocol, RTOutSignal, RTInSignal, and RTSymmetricalSignal
classes.

For each protocol in a model a structure is generated. Contained in the structure are a
Base and Conjugate class which are subclasses of RTProtocol. For each signal defined
in the protocol an operation is generated in the Base and Conjugate classes. The
introduction of the new classes has changed the syntax of communication service
operations.

Type Safety Explained

In a protocol specification, a signal may be defined with an associated data class.
Previously, it was optionally up to the software designer whether or not to actually
send data along with such signals. In addition you were able to send signals that were
not defined on the port on which they were sent.

In summary, there has never been any support for compile-time validation that user
code conformed to a protocol specification. Consequently all errors of this type could
only be caught at run-time, resulting in developers having to track down “unexpected
message warnings” and run-time exceptions.
120 Chapter 8 - Migration

How Has This Changed?

In the new UML Services Library, you must send data if the signal has an associated
data type. The data must be of the type, or a subclass of the type, specified for that
signal. Alternatively, the data may be of type void or left empty. A data class type left
empty (that is, no type specified) implies that you can send anything with the signal.
In addition you can only send signals that have been defined on the protocol role
associated with the port.

Note: Backwards compatibility mode allows previous release syntax to be used in
models compiled with the current release of the C++ Services Library.

The TypeSafeSignals flag on protocols can be used to force the code generator to
ignore the data class value of all signals defined in a protocol. The code generator
treats the signal’s data class as being empty, thus allowing any type of data class to be
sent with the signal.

API Changes Summary

The changes affecting the communication service interface can be grouped into the
following usage scenarios:

■ Asynchronous Sends on page 122 (to one or all port instances)
■ Synchronous Sends on page 123 (to one or all port instances)
■ Message Reply on page 123
■ Defer, Recall, and Purge on page 124 (one or all signals to one or all port instances)
■ Port Indexes on page 125
■ Discriminating in Code the Signal of a Received Message on page 126
■ Forwarding on page 126 (potentially from one protocol to another and to one or all

port instances)
■ RTPortRef Operations on page 128

In addition to the changes in the communication service review, the following issues
that may impact your conversion:

■ RTTimespec parameters

All examples in this section assume that a replicated port called aPort of type
aProtocol is defined on a capsule.
C++ Language Migration 121

The protocol is symmetric (in and out signals are the same) and is defined as:

Note: The examples show sending RTInteger (a type of RTDataObject with which
ObjecTime Developer 5.2 users will be familiar), and regular classes created using
Rational Rose RealTime 6.0, AClass1.

Asynchronous Sends

5.2/6.0

port.send(signal, rtdataobject, priority);

port.send(signal, data, type, priority);

port[index]->send(signal, rtdataobject, priority);

port[index]->send(signal, data, type, priority);

New syntax

port.signal(rtdataobject).send(priority);

port.signal(data).send(priority);

port.signal(rtdataobject).sendAt(index, priority);

port.signal(data).sendAt(index, priority);

New syntax example

RTInteger level(15); // RTDataObject

AClass1 mdata(49, 1.23);

aPort.reset(level).send(); // broadcast

aPort.start(mdata).send(); // broadcast

aPort.reset(level).sendAt(1); // single port

aPort.start(mdata).sendAt(1); // single port

Signal Data Class

start AClass1

stop int

reset RTInteger
122 Chapter 8 - Migration

Synchronous Sends

5.2/6.0

port.invoke(repbufs, signal, rtdataobject);

port[index]->invoke(repbuf, signal, rtdataobject);

port.invoke(repbufs, signal, data, type);

port[index]->invoke(repbuf, signal, data, type);

New syntax

port.signal(rtdataobject).invoke(repbufs);

port.signal(data).invoke(repbufs);

port.signal(rtdataobject).invokeAt(index, repbuf);

port.signal(data).invokeAt(index, repbuf);

New syntax example

RTInteger level(5); // RTDataObject

AClass1 mdata(49, 1.23);

RTMessage replyBuffers[5];

RTMessage replyBuffer;

aPort.reset(level).invoke(&replyBuffers); // broadcast

aPort.start(level).invokeAt(1, &replyBuffer); // single port

aPort.reset(mdata).invoke(&replyBuffers); // broadcast

aPort.start(mdata).invokeAt(1, &replyBuffer); // single port

Message Reply

5.2/6.0

msg->sap()->send(signal, rtdataobject);

msg->sap()->send(signal, data, type);

msg->reply(signal, rtdataobject);

msg->reply(signal, data, type);

New syntax

rtport->signal(rtdataobject).reply();

rtport->signal(data).reply();

New syntax example
C++ Language Migration 123

RTInteger level(5); // RTDataObject

AClass1 mdata(49, 1.23);

rtport->reset(level).reply();

rtport->start(mdata).reply();

Note: rtport is an argument passed to each transition code segment. It is a pointer to
the port on which the triggering signal was received. For more information see
Parameters Available in Transition Code on page 132.

If a transition is triggered by signals arriving from different ports with different
protocols, then the rtport argument cannot be used to reply. In these cases you will
have to either explicitly cast the port or create a separate transition to reply to signals
arriving on a specific port.

((AProtocol::Base *)msg->sap())->Ack().Send();

The difference between rtport and msg->sap() is that rtport is coerced to the correct
protocol type by the code generator whereas msg->sap() is a pointer to a generic
RTProtocol object.

Defer, Recall, and Purge

5.2/6.0

port.purge(signal);

port[index]->purge(signal);

port.recall(signal, front);

port[index]->recall(signal, front);

port.recallAll(signal, front);

port[index]->recallAll(signal, front);

port.recallAll();

port.recallAll(0, front);

New syntax

port.signal().purge();

port.signal().purgeAt(index);

port.signal().recall(front);

port.signal().recallAt(index, front);

port.signal().recallAll(front);
124 Chapter 8 - Migration

port.signal().recallAllAt(index, front);

port.recall();

port.recallFront();

port.recallAt(index);

port.recallAll();

port.recallAllFront();

port.recallAllAt(index);

port.purge();

port.purgeAt(index);

New syntax example

// a signal must have already been deferred

// using a call to msg->defer().

// purge all deferred messages on all port instances

aPort.purge();

// recall all deferred bye signals

aPort.bye().recall();

Port Indexes

5.2/6.0

msg->sap()->getIndex(); // 0-based

msg->sap()->index(); // 1-based

msg->sap()->at(index) // 1-based

New syntax

msg->sapIndex0(); // 0-based

msg->sapIndex(); // 1-based

Note: The at() , and getIndex() operations are no longer supported.

New syntax example

AClass1 mdata(1, 4.56);

int index = msg->sapIndex0();

// send back to same port instance on
C++ Language Migration 125

// which we just received a message.

rtport->start(mdata).sendAt(index);

Discriminating in Code the Signal of a Received Message

You may have code that used a signal outside the scope of a message send. For
example:

AClass1 mdata(1,4.56);

int index = msg->sap()->getIndex();

if(msg->getSignal() == hello)

{

aPort.start(mdata).sendAt(index);

}

Since these signal values are not global you have to use the enumeration values for
the signals defined in their respective protocol role. For example, you would have to
change the above code fragment to:

AClass1 mdata(1,4.56);

int index = msg->sapIndex0();

if(msg->getSignal() == NewProtocol1::Base::rti_hello)

{

aPort.start(mdata).sendAt(index);

}

Note: The signal value in the protocol will always be called rti_<signalname>. You
can easily reference it by using the following syntax:
Protocol::<ProtocolRole>::rti_<signalname>, as shown above. ProtocolRole will be
either Base or Conjugate.

Forwarding

In previous versions of the C++ UML Services Library, you were permitted to blindly
forward signals out other port instances. Because signals are no longer global (that is,
a signal with the same name and data class in two protocols won’t have the same
signal operation) this will no longer work.
126 Chapter 8 - Migration

5.2/6.0 forwarding syntax:

port.send(msg->signal, msg->data);

port.send(msg->signal, msg->data, msg->type);

Static Forwarding Pattern

In most cases, you can implement simple forwarding behavior by discriminating the
received signal then explicitly sending a signal out another port. The outgoing signal
doesn’t necessarily have to be the same name as the incoming signal. Static
forwarding requires signal discrimination in a transition (for example, using a switch
statement) or adding transitions for each signal being forwarded.

Examples

// using one transition to route all

// incoming messages to other ports.

switch(msg->getSignal())

{

case NewProtocol1::Base::rti_start:

outport.start(*rtdata).send();

break;

case NewProtocol1::Base::rti_stop:

outport.stop(*rtdata).send();

break;

default:

log.log(“Unexpected message”);

}

// or one transition per

// signal. In this case each transition

// would forward one signal.

outport.start(*rtdata).send();

Dynamic Forwarding

Some routing capsules are designed so that they won’t know the exact protocols for
the forwarding ports at design time (that is, they could be overridden at run-time). In
these cases, the switch statement described in the static forwarding pattern does not
provide a good solution.
C++ Language Migration 127

Dynamic forwarding provides run-time mapping from one protocol to another. It
works by creating a signal map table to map signal numbers from one protocol to
another based on the signal name and the data class. This provides constant signal
lookup. In addition, signals that don’t have compatible data classes are not added to
the signal map.

Dynamic forwarding support has not been added to the UML Services Library.
Instead a set of classes has been created that can be used in any model that requires
this level of forwarding. To use dynamic forwarding please refer to the Dynamic
Forwarding model example in the Examples. The example model contains the
forwarding classes, or adaptors, and sample usage of these classes. In general
capsules requiring dynamic forwarding will have to do the following:

1 For each port pair where forwarding will be used, an adaptor object is created to
initialize and encapsulate the signal map. If you have forwarding from port A to B
and A to C you will need 2 adaptor objects.

2 Each adaptor is initialized at run-time with the in and out protocols. This will
create the signal map.

3 When forwarding is required in a transition, pass the message to be forwarded to
the adaptor.

The example model that contains the forwarding classes (adaptors and signal maps)
can be found in:

$ROSERT_HOME/Examples/Models/C++/DynamicForwarding

RTPortRef Operations

The RTPortRef class is no longer part of the UML C++ Services Library. Operations
that used to be available on this class have been moved to the RTProtocol class. This is
a summary of the operations that have changed going from the RTPortRef to the
RTProtocol class:
128 Chapter 8 - Migration

RTEndPort ** RTPortRef::incarnations()

This was last present in ObjecTime Developer 5.2. You will have to use a port
(RTProtocol) paired with an index wherever a pointer to RTEndPort appeared
previously. For example, before you would have:

RTEndPort ** ports = portref.incarnations();

for(int i = 0; i < portref.size(); i++)

(*ports)[i]->send(ack);

This has to be converted to:

for(int i = 0; i < portref.size(); i++)

portref.ack().sendAt(i);

The valid indices are from 0 to (port.size()-1), inclusive.

RTEndPort ** RTPortRef::incarnationsTo()

There is no direct replacement for this. Users will have to base their loop on the port
index rather than an index into the returned array of pointers. Within that loop you
will want to use

int RTProtocol::isIndexTo(int, RTActor *) const

to discover the replication indices which correspond to incarnations that would
previously have been included in the array. This new interface is more efficient
because it avoids the need to allocate and release a block of memory.

RTEndPort * RTPortRef::incarnationTo():

This operation is replaced by RTProtocol::indexTo(). For example, here is a common
use of incarnationTo and how it can be converted to use indexTo:

RTActorId aid = frame.incarnate(role1);

RTEndPort * port = (RTEndPort *)0;

if(aid.isValid()) {

 port = replicatedportref.incarnationTo(aid);

 if(port != (RTEndPort *)0)

 port->send(Signal);

}

Is replaced with RTProtocol::indexTo(),

RTActorId aid = frame.incarnate(role1);

int port_index;

if(aid.isValid()) {

 port_index = replicatedportref.indexTo(aid);
C++ Language Migration 129

 if(port_index != -1)

 port.Signal().sendAt(port_index);

}

RTTimespec Parameters

ObjecTime Developer (OTD) models which used the RTTimespec constructor with
only one parameter, as in the following code:

timer.informIn(RTTimespec(2));

will result in a compile error after conversion of the model to Rational Rose RealTime.
The compile error will appear something like:

..\rtg\Driver.cpp(67) : error C2440: 'type cast' : cannot convert from
'const int' to 'struct RTTimespec'

No constructor could take the source type, or constructor overload
resolution was ambiguous.

The reason is that in OTD, the RTTimespec constructor included default arguments,
that is, RTTimespec (long=0, long=0). The default constructor values are not
supported on RTTimespec in Rational Rose RealTime. Any code that made use of the
default arguments needs to be changed to supply both constructor arguments. For
example:

RTTimespec(2);

must be changed to:

RTTimespec(2, 0);

RTSignalNames

Some users have accessed this private structure to find signal names. Support for
accessing this structure was never supported and has been removed from the UML
Services Library. If you have referenced this structure look at replacing this
functionality with the RTMessage::getSignalName() operation which returns the
name of the signal received in the current message.

Macros

The following pre-defined macros will continue to be backards compatible.

SEND_PTR(ptr)
130 Chapter 8 - Migration

RECEIVE_PTR(type)

SEND_SCALAR(value)

RECEIVE_SCALAR(type)

SEND_EXT(value)

RECEIVE_EXT(type)

External Layer Service (ELS)

In version 6.0 of the C++ Services Library the ELS was included in the pre-compiled
C++ UML Services Libraries. However source code was not shipped. In the current
release of Rational Rose RealTime the ELS is not provided for use, nor supported with
the release. Please refer to the IPC Application Note and Example for information on
how the ELS can be replaced. The External Layer has been replaced by Rational
Connexis. Further information on Add-ins, including Connexis, can be found in the
online Help and on the Rational Rose RealTime product web site:

http://www.rational.com/products

Code Generation

To support scalable build environments the C++ Language Add-in now supports the
ability to break systems into a number of independently buildable components. You
can now use components to build libraries, executables, and model external libraries.
See Components on page 131. To support different component types and provide an
extensible interface for components several Model Properties have been added to
components.

Components

Components are collections of references to model elements that are used to build
something. In Rational Rose RealTime, there are three kinds of components:

■ C++ Executable: produces an executable.

■ C++ Library: produces a library file containing the object files for the classes
referenced by the component.

■ C++ External Library: does not actually produce a build output, but represents a
pre-built and packaged component within a model.
C++ Language Migration 131

The build options for each component type are stored in a set of model properties. In
Rational Rose RealTime 6.0, a component’s build options were hard-coded attributes
of the component. See the Rational Rose RealTime C++ Reference for more information
about how to use the new component types.

Directory Structure

The code generation directory structure has changed, it is now:

<component name>

<build>

capsule1.exe

capsule1.obj

...

<src>

Makefile

capsule1.dep

capsule2.dep

capsule1.cpp

capsule1.h

...

Parameters Available in Transition Code

Within each transition code segment there are two new parameters that are available.

Note: The msg variable is still available in transition code and capsule operations.

rtdata: This is the equivalent of the RTDATA macro. It is the data sent with the
message cast to the data type specified in the protocol for the incoming signal. The
rtdata parameter is cast to the lowest common superclass of the possible data classes
for the given code segment.

int level = *rtdata;

Note: Models which used RTDATA do not have to change. RTDATA and rtdata are
equivalent.

If a transition is triggered by multiple signals with different data classes, you will
have to cast msg->data yourself.

int level = *(const int *)msg->data;
132 Chapter 8 - Migration

rtport: This is a pointer to the port cast to the appropriate protocol type, on which the
message that triggered the transition was received. You can use this parameter to
reply to messages. See Message Reply on page 123.

Port Cardinality Cannot be Unspecified

Because there is no way to resolve unspecified cardinalities between libraries, capsule
role replication cardinalities cannot be left unspecified as ‘*’. You should use constants
to specify replication values.

Makefile Override Changes

Previously the makefile override property was set to a file name which contained a
makefile fragment which was to be included into the main makefiles with an include
statement. Now the makefile overrides property is added, as is, to the makefile. That
means that you don’t have to create a separate file outside of the toolset to contain any
additional makefile commands.

Previous models which contain makefile overrides are converted by adding the
include statement to the property.

Model Properties

Component build settings are now stored in model properties. This allows easy
extensibility and sharing of build options. Although the actual build properties have
not changed much, they have been re-arranged. Build options now exist for each
component type and for generic generation and compilation settings.

Component type properties: C++ Executable, C++ Library, C++ External Library.

Generic build settings: C++ Generation, C++ Compilation

See the Rational Rose RealTime C++ Reference for descriptions of the component model
properties.

Advanced property Editors

A number of properties introduced in this release require more than simply a true or
false value. Instead some properties represent a set of parameters. To assist
configuring properties that have several parameters that can be set, graphical editors
C++ Language Migration 133

have been added to property sheets to allow editing of these complex properties. If a
property has an advanced property editor you will notice an Edit... or Select... button
beside the property. Press the button to access the extended property editor window.
134 Chapter 8 - Migration

9Integration Notes
Contents

This chapter is organized as follows:

■ Overview on page 135
■ Configuration Management (CM) Tools Integration on page 135
■ Requirements Management Tools Integration on page 137
■ Unit Testing Tools Integration on page 137
■ Microsoft Development Environment on page 138
■ Integration with Rational Robot on page 138
■ Naming Directories on page 139

Overview

Rational Rose RealTime can coexist on the same workstation with any Rational or
ObjecTime product. In addition Rational Rose RealTime is shipped with
"out-of-the-box" integrations with several popular development tools. It will simplify
tool-chain complexity by providing teams with seamless integration to leading
real-time operating systems, compilers, symbolic debuggers, and other
market-leading Rational Software products. For a list of supported platform
"line-ups", see Referenced Host Configurations on page 16.

Configuration Management (CM) Tools Integration

The following CM tools are supported with integration for Rational Rose RealTime.
For more information on integrating these tools, see the Guide to Team Development.

Tools Version

Rational ClearCase (Base and UCM) 3.2.1 (requires patch 10), 4.0, 4.1, 5.0, 6.0

Microsoft Visual SourceSafe (NT, 2000 and XP
Pro only)

5.0 and 6.0
135

ClearCase on a UNIX Server and Clients on both NT and UNIX

You can access a ClearCase server on UNIX with Rational Rose RealTime clients
running on both NT and UNIX workstations. For more information on integrating
these tools, see the Guide to Team Development.

Migrating from Rational Rose and ObjecTime Developer

In order to migrate models into Rational Rose RealTime from either Rational Rose or
ObjecTime Developer where models were previously stored in a configuration
management system, the model must be brought into the Rational Rose or the
ObjecTime Developer tool and written to a single file. Please refer to Migration on
page 99.

When importing a model from Rational Rose into Rational Rose RealTime, you are
encouraged to resolve any model errors in Rose (Tools > Check Model) before trying
to import the model. It is important to fix unresolved references. In general, Rational
Rose is not concerned with unresolved references; however, they are very important
in Rational Rose RealTime as they can result in incomplete code generation and
compilation errors.

In order to export the ObjecTime model in a format that is readable by Rational Rose
RealTime, a patch must be applied to the 5.2 or 5.2.1 toolset to format the file in a
single linear form file with all the required information. The patch is available from
Rational Customer Support for both the 5.2 and 5.2.1 product release only. Please
contact the Rational Customer Support group for further information.

After the model is imported into Rational Rose RealTime, it can then be stored in the
configuration management system.

Note: RRT_Export patches are available on the Rational web site.

RCS (UNIX only) 5.7

SCCS (UNIX only) 5.6 on Solaris

PVCS Integration 6.5

Tools Version
136 Chapter 9 - Integration Notes

Requirements Management Tools Integration

The following tools are supported for integration with Rational Rose RealTime.

Rational SoDA for Word

SoDA and Rational Rose RealTime will work together out of the box if installed from
the Suite. Rational Rose RealTime offers the same level of SoDA integration as Rose.
For information on how SoDA and Rational Rose RealTime integrate, see the Rational
Rose integration section in the SoDA documentation.

Please refer to the product support page at

http://www.rational.com/support

for the latest updates on SoDA integration.

Note: To generate a report using SoDA, the Ration Rose RealTime model must have
been saved at least once. If the Rational Rose RealTime model has never been saved, it
will be untitled. An untitled model will cause SoDA to generate errors.

Rational RequisitePro

RequisitePro and Rational Rose RealTime will work together out of the box if installed
from the Suite. Rational Rose RealTime offers the same level of RequisitePro
integration as Rose. For information on how RequisitePro and Rational Rose RealTime
integrate, see the Rose integration section in the RequisitePro documentation.

Unit Testing Tools Integration

The following tools are supported for integration with Rational Rose RealTime.

Tools Version

Rational SoDA for Word (NT only) 2000.02.10 and later

Rational RequisitePro 2000.02.10 and later

Tools Version

Purify for UNIX and Windows NT 2001.03.00 and later
Requirements Management Tools Integration 137

http://www.rational.com/products/rosert

Rational Purify

After a component is built and a component instance has been created, the instance
can then be run and observed. Purify detects errors in model code as well as the
model. For information, see the Running and Debugging section in the Rational Rose
RealTime Toolset Guide.

Adding Options to Purify on UNIX

Occasionally, you may need to add options during a Purify’d build on UNIX.

Options can be added by changing PURIFY_OPTIONS in the
CompilationMakeInsert field of the executable component.

The default value of PURIFY_OPTIONS (generated in the Makefile by the code
generator) is:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -windows=no

To accommodate using g++, you can add the following:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -windows=no
-collector=/usr/lib/gcc-ld -g++=yes

Where the path of to the collector, gcc-ld in most cases, should be the path that is
specific to your environment.

For proper integration of Purify when running the Purify’d executable from the
toolset, you should preserve the default options.

For an explanation of Purify options, see Running a component instance with Purify in
the Toolset Guide.

Microsoft Development Environment

We recommend that you install the latest service packs available from Microsoft for
Visual Studio or Visual C++.

Integration with Rational Robot

Installing the 2003.06.00 release of Rational Rose RealTime will interfere with the
operation of the 6.1 release of Rational Robot.

We recommend that you upgrade to the 2003.06.00 release of Rational Robot.
138 Chapter 9 - Integration Notes

Naming Directories

Avoid using spaces in directory names if you plan to integrate with Tornado, OSE or
VRTX embedded operating systems. For additional information, see the Technical
Notes in the Customer Support section on our web site at:

http://www.rational.com/support
Naming Directories 139

http://www.rational.com/products/rosert

140 Chapter 9 - Integration Notes

10Starting Rational Rose
RealTime
Contents

This chapter is organized as follows:

■ Starting Rational Rose RealTime on Windows on page 141
■ Starting Rational Rose RealTime on UNIX on page 141
■ Rational Rose RealTime for UNIX and the X Window System on page 142
■ Automating Rational Rose RealTime on page 144
■ Command Line Options on page 145

Starting Rational Rose RealTime on Windows

To start Rational Rose RealTime on Windows, on the Start menu, choose Programs >
Rational Software > Rational Rose RealTime.

Note: You must first install license keys before running Rational Rose RealTime.

Temporary license keys can be found in the product package. Instructions on how to
request permanent license keys, see Installing License Keys on page 89.

For additional information on configuring you environment variables, see Configuring
Your Environment on page 47.

Starting Rational Rose RealTime on UNIX

You can start Rational Rose RealTime from a UNIX command shell prompt by typing:

RoseRT

You can also use the following to start Rational Rose RealTime on Unix:

RoseRT -recreate_registry

Setting the -recreate_registry option creates a default registry.
141

Start-up Options for UNIX

-regedit

Edits the internal registry that maintains mappings of directory names and other
information required by the Rational Rose RealTime tool. This registry mimmicks the
function of the WindowsNT registry, except that on UNIX the registry is maintained
directly by Rational Rose RealTime.

-startuplicense

Creates a startup license.

-recreate_registry

Creates a default registry, throwing away any changes made through the -regedit
option.

-q | -quiet

Limits the output of the tool on startup.

-v | -verbose

Provides verbose output on startup.

-cleanup

Kills all running applications using MainWin and then cleans up the x-server
resources.

You should be very careful with this command as it will kill all MainWin applications
running under your Id.

Note: If your last Rational Rose RealTime session ended unexpectedly (by crashing),
always use this option.

Rational Rose RealTime for UNIX and the X Window System

When running on UNIX platforms, Rational Rose RealTime relies on the X Window
System to provide basic user interface services. Rational Rose RealTime supports the
most common versions of the X Window System: Version 11 Release 5 and Version 11
Release 6.
142 Chapter 10 - Starting Rational Rose RealTime

The following topics provide background information on how Rational Rose
RealTime interacts with the X Window System and highlights any specific
requirements.

X Clients

The X Window System employs a network-enabled client-server architecture.
Rational Rose RealTime is a client application within this architecture. X clients
interact with the user via an X server which may or may not be running on the same
system as the client application. If the server and client are not running on the same
system, the X client is said to be using a remote display.

X Servers

The X server is a program that controls interaction between the user and an X client
application via the keyboard, mouse and graphical display screen. The X server runs
locally on the system where the display is attached.

On UNIX workstations the X server is normally provided by the system vendor. If
you want to run Rational Rose RealTime on a UNIX workstation and remotely display
it on a Windows workstation, a third-party X server (such as, Hummingbird Exceed)
is required. Rational Rose RealTime has been qualified to be used with Hummingbird
Exceed 6.1.

X Window Managers

The X window manager is a special X application that facilitates running multiple X
clients within separate windows on a single X server. The window manager provides
mechanisms for resizing and moving windows and designating which X client has
input focus at a given time.

Most X environments include a window manager. Rational Rose RealTime supports
most commonly used window managers including:

■ Common Desktop Environment (CDE)

■ Motif (MWM)

■ Exceed native window manager

When available, the CDE window manager is recommended.
Rational Rose RealTime for UNIX and the X Window System 143

Input Focus (Active Window) Policy

The X window manager often allows the user to specify a policy for delegating input
focus. This window is also referred to as the active window. There are two common
settings:

■ Click to focus. In this mode, the user must click on a window with the mouse to
give it input focus. This is most consistent with the Windows focus policy and is
the recommended configuration.

■ Point to focus. In this mode, the user points to a window with the mouse to give it
input focus.

Window Order Policy

When using the CDE window manager, to ensure that the proper Secondary and
Transient window policy is in effect, set the following environment variable in
.Xdefaults:

dtwm*secondariesOnTop: True

Setting this XResource to True in each user’s Xdefaults file ensures dialogs are always
stacked above their associated primary windows. Not using this XResource can result
in the secondary window, such as an external editor, getting caught behind the
primary window and resulting in the user's inability to regain focus of the secondary
window.

When using CDE as your XWindow manager, please note that the Allow Primary
Windows on Top and Raise Windows When Made Active options are enabled by
default. These options should be disabled when setting the dtwm*secondariesOnTop
option to True.

Automating Rational Rose RealTime

Rational Rose RealTime can be programmed to automatically perform a wide variety
of tasks through the Rational Rose RealTime Extensibility Interface (RRTEI). The
RRTEI is accessible through Basic scripts and from COM automation clients. This
interface can be used to create add-ins and scripts. Rational Rose RealTime also
supports the Rose Extensibility Interface (REI) for compatibility with Rose. The
complete documentation for the RRTEI is included in the Rational Rose RealTime
Online Help System.

Running Rational Rose RealTime as an automation server consumes a license when
the application is made visible.
144 Chapter 10 - Starting Rational Rose RealTime

Command Line Options

The following are command line options for Rational Rose RealTime:

<filename>

A user option to load a model on startup.

Note: To ensure that a file name containing spaces is processed properly, on the
command line, the file name must contain a combination of single and double
quotation marks. The file name will require two levels of quotation marks so that the
spaces in the file name are not interpreted as space characters, and to ensure that the
file name and path are passed as a single argument to the Rational Rose RealTime
executable. The <filename> parameter is quoted as follows:

<open_single_quote><open_double_quote>path/filename<close_double_qu

ote><close_single_quote>

For example, if you have the following path and file name:

My Models/My working model.rtmdl

you would use the following to invoke the toolset from the command line:

RoseRT '"My Models/My working model.rtmdl"'

-nologo

A user option to suppress the logo screen on startup.

-emulateREI

A user option to enable the Rose Extensibility Interface (REI). Overrides the settings in
tools/options.

Note: The Rational Rose RealTime Extensibility Interface (RRTEI) is still available.

-noEmulateREI

A user option to disable the Rose Extensibility Interface (REI). Overrides the settings
in tools/options.

Note: The Rational Rose RealTime Extensibility Interface (RRTEI) is still available.

-register or -regserver

Enters the applications registry settings into the registry.
Command Line Options 145

-unregister or -unregserver

Removes the applications registry settings from the registry.

-runScriptAndQuit

Use in conjunction with a compiled script passed as parameter. When the toolset is
launched with this command line option, the toolset starts hidden, runs the script and
quits. All of this is done without consuming a license. This is particularly useful to
allow batch mode builds.
146 Chapter 10 - Starting Rational Rose RealTime

11Add-Ins
Contents

This chapter is organized as follows:

■ Web Publisher on page 147
■ Model Integrator on page 149
■ Rose C++ Analyzer on page 150

Web Publisher

Web Publisher enables you to create a web-based (HTML) representation of a Rational
Rose RealTime model, which others can view using a standard browser such as
Netscape Navigator or Microsoft’s Internet Explorer.

Unlike sequential formats, such as paper or text files, Web Publisher lets you
non-sequentially browse, search, and navigate your design. You can publish
successive iterations of an evolving model for review or for sharing information.
Another potential use is to publish documentation for a frozen API or framework.

Web Publisher recreates model elements, including diagrams, classes, packages,
relationships, attributes, and operations. Once published, hypertext links enable you
to traverse the model much as you would in Rational Rose RealTime.

You can control what Web Publisher includes by setting a variety of options. For
example, you can select which packages of a model are published, the amount of
detail to include, the notation to use, and the graphics format for diagrams. The View
feature lets you launch your default browser and view the published model directly
from Web Publisher.

Suggested Workflow

Follow these steps to generate the files needed to create a web-based version of a
Rational Rose RealTime model:

1 Open the model you want to publish.

2 Select Tools > Web Publisher.
147

3 From the Web Publisher dialog, select the publishing options you need.

Note: The dialog displays the options that were selected the last time a model was
published.

4 Click Publish when you are ready to publish the model.

5 Use View to open your default web browser and view the published model.
Remember that in the future you can open the published model in the browser by
opening the root file name you specified on the Web Publisher dialog.

6 Click Close to close the dialog.

Limitations

The following browsers are supported:

■ Microsoft Internet Explorer 5.5 or better. (www.microsoft.com)

■ Netscape Navigator 4.72 or better. (http://www.netscape.com/download) If you
want to publish the images in PNG format you need to add PNG support to
Netscape Communicator. PNG Live
(http://codelab.siegelgale.com/solutions/pnglive2.html) is a plug-in that
provides PNG support for Netscape Communicator. Netscape Communicator 4.5
or better has built-in support for PNG and therefore does not require any special
plug-in to view web pages created by Web Publisher.
(www.netscape.com/download)

■ Only eight colors are directly supported in published diagrams. Other colors are
obtained by dithering. If you want to avoid dithering, set up Rational Rose
RealTime to use line and fill colors that are among the eight available.

The following table includes the eight available colors and their RGB values.

Red 255 0 0

Green 0 255 0

Blue 0 0 255

White 255 255 255

Black 0 0 0

Yellow 255 255 0

Magenta 255 0 255

Light Blue 0 255 255
148 Chapter 11 - Add-Ins

■ In published diagrams, you can normally click on a model element to go to that
model element's specification information. This does not work for some model
elements. These include aggregation relationships on the class diagram, transitions
on the state diagram, association roles on the collaboration diagram, and
connections on the deployment diagram.

For more information consult the Web Publisher online help.

Model Integrator

The Rational Rose RealTime Model Integrator add-in allows you to compare up to
seven units/models - called contributors - to a common root model/units - called the
base contributor.

The add-in exists as a separate executable that can be launched stand-alone or from
the toolset using Tools > Model Integrator. It is launched by the toolset when using
the Source Control > Show Differences.

It is capable of acting as a ClearCase Type Manager, meaning that ClearCase uses
Model Integrator for showing differences and merging Rational Rose RealTime
units/models.

Suggested Workflow

Merging two branches of a model

Assuming a base model B and two models C1 and C2, having B as their common
historical ancestor.

From Rational Rose RealTime, select Tools > Model Integrator to launch Model
Integrator

From Model Integrator:

1 Select File > Contributors to open the Contributors dialog.

2 First enter the base contributor B, then the two other contributors C1 and C2.

3 Click Merge.

For each contributor, Model Integrator loads the first level of subunits and brings
up the subunits dialog.

4 Press OK to load all subunits.

Model Integrator now shows the merged model potential conflicts.
Model Integrator 149

5 Resolve each conflict by selecting the contributor to use for that conflict. To see
model differences, select Options > Compare Model.

6 When all conflicts are resolved, select File > Save As and choose a file name.

7 In the subunits dialog that follows, click OK.

Comparing local unit with the one in source control database

From Rational Rose RealTime, select the unit to compare in the browser. Open the
context menu and select Source Control > Show Differences.

For more information consult the Model Integrator online help.

Rose C++ Analyzer

The Rose C++ Analyzer is an executable bundled with Rational Rose 2000’s Rose C++
add-in. Used in conjunction with the Tools > Import menu command, it provides a
way to import legacy C++ systems into Rational Rose RealTime.

Rational Rose RealTime only supports the initial reverse engineering since the code is
embedded within its model. Full target observability from the toolset is supported,
thus eliminating the need to update code outside the toolset environment.

Note: The online help for the Rose C++ Analyzer contains Rose 2000 specific
information that may not be applicable to Rational Rose RealTime. We suggest you
limit your use of the add-in to the Suggested Workflow described below.

Suggested Workflow

From Rational Rose RealTime, select Tools > C++ Analyzer to launch Analyzer.

From Rose C++ Analyzer:Create Project:

1 Set compiler settings.

2 Add Files.

3 Analyze.

4 Code Cycle.

5 Export to Rose.

From Rational Rose RealTime:

1 Select File > Open to load the Rose Model.

2 Select Tools > Import Code to import code from source files.
150 Chapter 11 - Add-Ins

Notes

■ When you create a Rose C++ Analyzer project for the first time, the following
message prompts you to define the $DATA/Rose pathmap symbol:

Click OK to bring up the following dialog:

In the Actual Path field, enter an existing path where the Rose C++ Analyzer will
store information about analyzed source files. Click Add and then OK.

■ Windows users: You may not get this dialog if Rational Rose 2000 is already
installed on your machine. In this case, the Import Code window appears.

■ UNIX users: The default pathmap symbol $DATA/ must be replaced with $DATA.
Rose C++ Analyzer 151

Limitations
■ C++ capabilities are limited by Rational Rose RealTime’s code generator’s own

limitation, for example, C++ templates, namespaces

■ Round-trip engineering is not supported (and not needed).

■ Pathmap functionality is not supported (and not needed).

For more information consult the Rose C++ Analyzer online help.
152 Chapter 11 - Add-Ins

12Uninstalling Rational
Rose RealTime
Contents

This chapter is organized as follows:

■ Windows on page 153
■ UNIX on page 153

Windows

To uninstall Rational Rose RealTime from a Windows machine:

1 Click Start > Settings > Control Panel.

2 Double-click Add/Remove Programs.

3 Select Rational Rose RealTime and click Change/Remove.

Follow the instructions on your screen to remove Rose RealTime.

Note: We recommend that you also remove the Rose RealTime directories and
registry settings from your system after uninstalling Rational Rose RealTime. These
directories are:

HKEY_CURRENT_USER\Software\Rational Software\Rose RealTime

HKEY_LOCAL_MACHINE\Software\Rational Software\Rose RealTime

UNIX

To uninstall Rational Rose RealTime from a UNIX machine:

1 Save any user data files in another location before removing the installation
directory.

2 Remove the installation directory and all of its contents.
153

154 Chapter 12 - Uninstalling Rational Rose RealTime

13Troubleshooting, Known
Issues, and Updates
Contents

This chapter is organized as follows:

■ Overview on page 155
■ Rational Connexis on page 155
■ Rational Quality Architect - RealTime Edition on page 157

Overview

The following is a list of the problems and limitations in Rational Rose RealTime
products at the time of release. Some of these problems may have been addressed by
the time you read this. For the most recent list of known problems and any fixes that
may have been published, please visit the Rational Rose RealTime web site at:

http://www.rational.com/support/

Select Upgrades, Patches, and Service Releases, then select Rational Rose RealTime.

Rational Connexis

The following topics describe the troubleshooting, known issues, and updates for
Rational Connexis version 2003.06.00:

■ Troubleshooting

❑ Transport Integration Framework

❑ Turning Off Auditing for a Single Transport is Not Recommended

❑ Signals No Longer Supported
155

http://www.rational.com/products/rosert/support

Troubleshooting

Transport Integration Framework

When implementing your Transport Integration using the Transport Integration
Framework (TIF), you must create a component to build the Transport Integration.
The Transport Integration component requires an additional inclusion path for the
TargetRTS.

Add an inclusion for:

$(ROSERT_HOME)/C++/TargetRTS/src/target/<your target>, where <your target>
maps to the target you are building.

Example:

If building for "NT40," the inclusion path would be:

$(ROSERT_HOME)/C++/TargetRTS/src/target/NT40

Turning Off Auditing for a Single Transport is Not Recommended

You may not be able to turn off auditing for a single transport. This is because setting
-CNXtap=0 will result in no auditing taking place for the CRM and CDM transports.
The internal timer used by the transporter will be set to 1 second. This may affect the
-CNXtrre and -CNXtbrd parameters which are rounded up to a multiple of -CNXtap.
Any transports integrated with an audit type other than “No Audit,” will find the
-CNXtcapi and -CNXtcapo periods to be a multiple of 1 second. Setting -CNXtap to be
> 1 second will affect the frequency at which metrics can be collected by the viewer
and other DCS enabled applications.

Signals No Longer Supported

The RTDDCSRunning and the RTDDCSrunningReply signals are no longer
supported in this version of Connexis. The recommended fashion for determining if
DCS is running, is to wait for the rtBound signal, indicating that a successful
connection to the RTDInitStatus publisher has been made.
156 Chapter 13 - Troubleshooting, Known Issues, and Updates

Rational Quality Architect - RealTime Edition

The following topics describe any troubleshooting, known issues, and update
information for Rational Quality Architect - RealTime Edition version 2003.06.00:

■ Target Observability Behavior When the Model is Modified

■ Running Verify Behavior with Eighty or More Sequence Diagrams (UNIX)

■ Driver Methods for Sending Messages to the Log and Custom Comparison

■ Lost Information in To Port for a Message

■ Do Not Use -runScriptAndQuit When Running RQART From a Script

■ Creation of Container Capsules

■ Converting MSCs in Rational Rose RealTime Using the RQA-RT

■ Creating Messages and Sequence Diagrams

■ Sending Message Specification Data Field Format for Java

■ Customizing a Sequence Diagram Created From a Trace

■ RQA-RT Limitations

Target Observability Behavior When the Model is Modified

Target observability was modified to change the way it reacts when it detects a model
change. Previously, a message box with the text "Target observability session
terminated due to model change." would appear and the component instance would
either be detached or shut down. The new behavior is to continue execution. A
modeless dialog box will appear and contain the text "Target observability has
detected a model change. Execution is continuing. Do you wish to detach/shutdown
this component instance?". If you do nothing or click Continue, execution will
continue and additional model changes will be ignored. If you click
Detach/Shutdown, the component instance will be detached. If the component
instance is the instance used to start the run, and the check box Attach to target on
startup on the Detail tab of the Component Instance specification dialog is selected,
an attempt will be made to shut down the target. If that attempt is successful, any
other component instances attached to the same target are also detached.

Running Verify Behavior with Eighty or More Sequence Diagrams (UNIX)

If you want to select Verify Behavior for a model that contains eighty or more
Sequence diagrams, ensure that they have at least 32MB of stack space available (use
limit stacksize in csh, and ulimit -s in sh).
Rational Quality Architect - RealTime Edition 157

Driver Methods for Sending Messages to the Log and Custom
Comparison

RQA-RT includes two helper functions in RQARTAbstractTestWrapper, the capsule
that is the superclass for all generated drivers. These functions are:

SendACompareFailure(<some_string>);LogAMessage(<some_string>);Both of these
functions send a message to the RoseRT log that is hyperlinked to the appropriate
message in the trace Sequence diagram. SendACompareFailure also causes the
sequence diagram differencing algorithm to fail on that message. These functions can
be called in any user-specified code in a Sequence diagram. This includes:

Local action code blocks from the "Quality Architect - RT" tab of the Local Action
Specification.

The "Sender Driver Test Code" and "Receiver Driver Test Code" code blocks available
from the "Quality Architect - RT" tab of the Send Message Specification".

This code will be inserted on the appropriate transition in the generated driver
capsule. If you want to see exactly where it is inserted, use the Find In feature to
search for some identifiable piece of the code (possibly a unique string in a comment)
in the generated driver capsule.

Lost Information in To Port for a Message

If you load an LF-file into Rational Rose RealTime and perform the conversion, there
are a number of instances where the

information on the To Port of a message is lost. In Rational Rose RealTime 2003.06.00,
the conversion was enhanced to determine the receiver port on any message sent
between two instances that have a direct logical connection from the sender port. This
calculation increases the time required to perform the conversion. Diagrams which
have messages between instances that skip relay ports will continue to require the
receiver port to be entered manually.

Do Not Use -runScriptAndQuit When Running RQART From a Script

When running RQART from a script using the RunVerifyBehavior method do not use
the -runScriptAndQuit command line option to cause RoseRT to exit once the script
is complete. Since Verify Behavior runs asynchronously after RunVerifyBehavior is
called this will cause RoseRT to exit before Verify Behavior is complete. Use the
szScriptOnCompletion parameter of RunVerifyBehavior to specify a script that
contains the actions that you want to occur after Verify Behavior is complete. This
script can exit RoseRT using the Exit method.
158 Chapter 13 - Troubleshooting, Known Issues, and Updates

Creation of Container Capsules

RQA-RT does not automatically create container capsules for a nested capsule when
the container is not included in the Sequence Diagram.

Converting MSCs in Rational Rose RealTime Using the RQA-RT

Problem

Many MSCs have a variable of the same name (prepareSetupReqD), but they can have
a different type. When RQA-RT synthesizes these attributes from the multiple driver
instances and attempts to generate one test driver, there is a name conflict and it
selects the last Sequence Diagram attribute's type as the type for the attribute of the
test driver class.

Background

In ObjecTime Developer, attributes are a characteristic of MSCs; each MSC can have
its own attributes. These attributes can be considered variables for the environment
which acts as a driver in TestScope.

When the MSCs are converted in Rational Rose RealTime using the RQA-RT
conversion tool, each MSC is converted to a Sequence Diagram. In this Sequence
Diagram, what was the environment in ObjecTime Developer is now a driver capsule
that is automatically created. The interaction instance (of the driver) in the sequence
diagram has attributes which were converted from the MSC in ObjecTime Developer.

This newly created interaction instance is set as a driver during the Verify Behavior
operation. As a result, a new RQADriver is created.

Example:

Seq1:: driver has an attribute xAttrib of type Xtype

Seq2:: driver has an attribute xAttrib of type Ytype

Test harness generates a driver class with an attribute xAttrib of type Xtype or Ytype.
The compilation occurs and the result will be many errors in the test harness. The
errors occur because some of the action code interprets xAttrib as type Xtype and
some as type Ytype.

Workaround

Run the Sequence Diagrams from separate test harnesses. This means that you will
have completely separate components and will have to compile again.
Rational Quality Architect - RealTime Edition 159

Creating Messages and Sequence Diagrams

The Item Properties in the Create Message Specification dialog, with the exception of
Thread, only apply if you are creating a Capsule Under Test (CUT). Thread applies in
every case. The Item Properties entries are as follows:

■ Capsule class - a capsule name. Enter a value here only if you want to override the
default capsule class associated with the role that is associated with the interaction
instance being created.

■ Initial data - Enter a value here only if your Capsule Under Test (CUT) requires
data on startup. To provide data you must specify an attribute in the driver
sending the create message with the appropriate initial values. You cannot provide
initial data in create messages sent from the environment.

■ Data Descriptor - if you provided initial data, you must specify the type descriptor
of the type of data that you specified. This is in the format RTType_<type of initial
data>

■ Thread name

Sending Message Specification Data Field Format for Java

For the data to be passed with the messages, the data type should be specified as
<data_type> <constructor_arguments>. For example, to pass Integer object referring
to the number 5, place the following:

Integer 5 or java.lang.Integer 5

If <data_type> is omitted, Integer is assumed.

The <constructor_arguments> should contain the exact line to be passed as an
argument to constructor. For example, for the MyObject(Integer, String) the following
line can be used: MyObject 5, "Acme"

Note: No additional brackets or quotes need to be placed around
<constructor_arguments>.

Customizing a Sequence Diagram Created From a Trace

To customize a Sequence diagram created from a Trace do not delete columns from
the Trace window. This may cause Rational Rose RealTime to crash. Instead, create the
Sequence diagram from the full Trace window ,and delete unwanted instances from
the Sequence diagram.
160 Chapter 13 - Troubleshooting, Known Issues, and Updates

RQA-RT Limitations
■ RQA-RT does not support C models.

■ Only leaf node instances in the interaction/sequence diagram can be specified as a
driver/stub.

■ Within a specification sequence diagram, each interaction instance without a
specified role must have a unique name. Only one interaction instance per test set
can be left unnamed.

■ When running multiple specifications in a test, a port on a capsule under test
(CUT) can only be connected to one interaction instance with an unspecified role
for the set of specifications.

■ An interaction instance with an unspecified role cannot have a cardinality index.
Care should be exercised using unspecified roles to test capsules and/or ports
with cardinality greater than 1.

■ If the generated trace sequence diagram is manually compared to the specification
sequence diagram, it is important to remember that such comparison is
asymmetric - the specification sequence diagram should always be selected before
the trace diagram.

■ When running multiple specifications in a test, remember that the capsules under
test continue to execute between tests. Ensure that each sequence diagram
becomes quiescent at the end of each test scenario.

■ If you generate a new harness into a controlled package which isn't checked out
warnings will be generated.

■ In Java, replicated subcapsules can only be specified as drivers if the replication
index is 1.

■ Interaction instances with unspecified roles cannot be used to simulate
interactions with sub-capsules. An error will occur if an unsupported use of
"unnamed" interaction instance is detected.

Workaround: For example: top capsule A has capsule role B in it's structure.
Capsule B has capsule role C in it's structure. If you run a test on the Sequence
Diagram located under A's Structure Diagram, "unnamed" interaction instances
can communicate with the B, but not C. To use "unnamed" interaction instance
with the C, a Sequence Diagram should be located under B's Structure Diagram.

Note: "unnamed" interaction instances are not a mandatory part of the verification
process.
Rational Quality Architect - RealTime Edition 161

■ If a capsule role has a cardinality greater than 1, the cardinality index should be
specified on interaction instances.

■ RQA-RT support of unspecified interaction instances allows you to easily drive an
unconnected port without having to add a driver capsule to the collaboration.
More complex tests will require the use of a driver capsule. Regardless, you cannot
drive a test using a port that is part of the system currently being tested.

■ Verify Behavior in RQART always performs differencing on any test completed,
even if the entire test run did not finish.

■ The Environment in a sequence diagram is an InteractionInstance, just like all the
other InteractionInstances in the diagram. The only RQART property currently
used for the Environment is the Minimum Run Time, which allows the you to
specify a minimum runtime for the entire test.
162 Chapter 13 - Troubleshooting, Known Issues, and Updates

14Technical Support
Contents

This chapter is organized as follows:

■ Submitting Problem Reports on page 163
■ Submitting Feature Requests on page 164
■ Submitting Support Requests on page 165
■ Contacting Rational Customer Service by Email or Telephone on page 166

This chapter describes how to submit problem reports, feature requests and support
requests to Rational Customer Service.

Submitting Problem Reports

With Rational Rose RealTime, you can email problem reports to the Rational
Customer Service department that services your location. When you email a problem
report directly from the Rational Rose RealTime application, a wizard guides you
through the process, ensuring that you provide the correct information to the Rational
Customer Service team. This information includes contact and location information,
and a detailed description of the problem that you are reporting.

To submit a problem report:

1 From the Help menu, click Email Technical Support.

A submenu appears, providing you with three options.

2 Click Problem Report.

The General Information dialog appears.

3 Type your contact and location information in the text areas provided and click
Next.

The Problem Report - Additional Information dialog appears.

4 In the Defect Title text area, type a detailed name for the problem that your are
reporting.

5 Select the type of problem that you are reporting from the appropriate list boxes.
163

6 Describe the problem, using the categories provided in the Details area.

7 Click Next.

The Email Summary dialog appears.

8 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
chosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the email address.

9 If you want to save or print a copy of the email, click the appropriate button.

10 Click Send Email to send your email.

Submitting Feature Requests

With Rational Rose RealTime, you can email feature requests to the Rational Software
Customer Service department that services your location. When you email a feature
request directly from the Rational Rose RealTime application, a wizard guides your
through the process, ensuring that you provide the correct information to the Rational
Software Customer Service department. This information includes contact and
location information, and a detailed description of the feature that your are
requesting.

To submit a feature request:

1 From the Help menu, click Email Technical Support.

A submenu appears, providing you with three options.

2 Click Feature Request.

The General Information dialog appears.

3 Type your contact and location information in the text areas provided and click
Next.

The Feature Request - Additional Information dialog appears.

4 In the Request Title text area, type a detailed name for the Feature that you are
requesting.

5 Select the level of urgency for the feature that you are requesting.

6 Describe the feature, using the categories provided in the Details area.
164 Chapter 14 - Technical Support

7 Click Next.

The Email Summary dialog appears.

8 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
chosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the e-mail address.

9 If you want to save or print a copy of the email, click the appropriate button.

10 Click Send Email to send your email.

Submitting Support Requests

With Rational Rose RealTime, you can email Support requests to the Rational
Software Customer Service department that services your location. When you email a
Support request directly from the Rational Rose RealTime application, a wizard
guides you through the process, ensuring that you provide the correct information to
Rational Customer Service department. This information includes contact and
location information, and a detailed description of the support request that you are
submitting.

To submit a support request:

1 From the Help menu, click Email Technical Support.

A submenu appears, providing you with three options.

2 Click Support Request.

The General Information dialog appears.

3 Type your contact and location information in the text areas provided and click
Next.

The Support Request - Additional Information dialog appears.

4 In the Request Title text area, type a detailed name for the request that you
require.

5 Select the level of urgency for the question with which you need help.

6 Type your question in the Question text area.

7 Click Next.

The Email Summary dialog appears.
Submitting Support Requests 165

8 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
chosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the e-mail address.

9 If you want to save or print a copy of the email, click the appropriate button.

10 Click Send Email to send your email.

Contacting Rational Customer Service by Email or Telephone

When contacting Rational Customer Service by email or by telephone, please be
prepared to supply the following information:

■ Name, telephone number, and company name

■ Product name and version number

■ Operating system and version number (for example, Windows NT 4.0, Windows
2000, Windows XP, Solaris 2.6, 2., 2.8, and 2.9)

■ Computer make and model

■ Your service request id (if you are calling about a previously reported problem)

■ A summary description of the problem, related errors, and how it was made to
occur

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Service.

You can obtain technical assistance by sending electronic mail to the appropriate
email address. Electronic mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an email place
“Rational Rose RealTime” in the subject line, and in the body of your message include
a description of your problem.

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXXXXXX]", where XXXXXXXXX is your Service Request
number. For example:

[SR#111222333] Rational Rose RealTime installation issues

Sometimes Rational Customer Service engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Customer Service" and add your fax number to
the information requested above.
166 Chapter 14 - Technical Support

Telephone, fax, and email information for Rational Customer Service are Table 11. If
you have problems or questions regarding licensing, please see License Support Contact
Information on page 167.

Table 11 Telephone and Fax and Email Information

License Support Contact Information

If you have a problem or questions regarding the licensing of your Rational Software
products, please contact the Licensing Support office nearest you.

Telephone numbers for license support are listed in the following table. Ask for, or
select, Licensing Support.

Table 12 License Support Telephone and Fax

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com

Region Telephone Number Fax Number

North, Central, and South America +1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460

Europe, Middle East, and Africa +31 20 4546 200 +31 20 4546 202

Asia Pacific +61 2 9419 0111 +61 2 9419 0123
Contacting Rational Customer Service by Email or Telephone 167

Email addresses for license support are listed in the following table.

Table 13 License Support Email

Region Email Address

North, Central, and South America license@rational.com

Europe, Middle East, and Africa license@europe.rational.com

Asia Pacific license@apac.rational.com

Asia Pacific

(Mainland China, Hong Kong, and Taiwan)

license@china.rational.com

Asia Pacific

(Korea)

license@apac.rational.com

Asia Pacific

(Japan)

license@japan.rational.com
168 Chapter 14 - Technical Support

Index
A
accessing

online help 12
AccountLink 76
activation process

licenses 83
active window policy (X window system) 144
adding

printer on UNIX 20
add-ins

Model Integrator 149
Rose C++ Analyzer 150

administration commands
licensing on Unix 85

Advanced property editors 133
Advantages of backwards compatibility 116
agreement, licenses 30, 36
Allow sub-capsule instances to be drivers 8
API Changes 121
API Changes Summary 121
asynchronous sends 122
automating

Rational Rose RealTime 144
Rose RealTime 144

Automating Rose RealTime 144

B
backwards compatibility

advantages 116
disadvantages 116

Backwards Compatibility Mode 115
BasicTest server output 63
Batch Files

updating 46
bin (directory) 11

building
Model in Backwards Compatibility

Mode 117
Building a model in backwards compatibility

mode 117

C
C Language Migration 112
C++ Analyzer 150

Limitations 152
Suggested Workflow 150

C++ Language Migration 115
C++ UML Services Library 119
Capsule interface generation 9
CD-ROM

mounting instructions 55
unmount 58

classes 120
-cleanup 142
ClearCase

command line access 48, 59
element type 48, 59
repository setup 48, 60
workstation setup 47, 58

ClearCase integration 109
ClearCase on a UNIX Server 136
ClearCase options

Unix 59
Windows 48

Client Installation 29
Client Installation Tasks 28
Code browser 100
Code editors 100
Code Generation 101, 120, 131
command line access to ClearCase 48, 59
Index 169

Command Line Options 145
command line options 145
commands

License Manager 80
compilation 120
Configuration Management (CM) Tools

Integration 135
configuration requirements

UNIX 15
Windows 2000 14
Windows NT 13
Windows XP Pro 14

configurations
host 16

configuring
environment 47

Configuring a UNIX Workstation to Point to a
FLEXlm Server 82

connectivity 7
Connexis 7

converting models 67
converting models from 67
Run-Time connectivity viewing 7
troubleshooting 155
verifying the installation 61

contacting Rational Customer Service xviii
contacting Rational Technical Support 9
Container Capsules 159
convert an existing Rose RealTime model 112
converting

C++ Model to C 112
Connexis model 69
connexis models 67
global signals to local signals 114
Models from Connexis 67

converting a C++ model to C 112
Converting MSCs 159
converting temprorary licenses to permanent 78
creating

container capsules 159
Executables for Hosts without Toolset

Support 18
messages 160
Sequence diagrams 160

creating executables 18
customizing

Sequence diagram from a trace 160

D
data qualifier 9
Defer 124
DEMO FEATURE 87
determining connectivity 7
Devices 21
drivers 8, 9
Dynamic Forwarding 127

E
element type setup

Unix 59
Windows 48

ELS 131
Emergency Keys 75, 87
Emergency License 75
-emulateREI 145
Enable BackwardsCompatible protocol

property 117
environment configuration 47
environment variables

configuring for Windows 47
Evaluation License 75
exinstal 81, 85
External Layer Service (ELS 131

F
file

license 79
file format changes 108
fixing unresolved references 102
FLEXlm

application program 82
configuring for UNIX 82

FLEXlm Server 82
Floating License 74
170 Index

floating license key for Unix 92
Forwarding 126
Forwarding Pattern 127
Frequently Asked Questions 88

G
generating

executable without a common file system 19
generating executables 19
getting help 9

H
host configurations 16
Host platform installation 61
hosts

creating executables without Toolset
support 18

how to get help 9

I
Imgrd 81
import an ObjecTime Developer for C model 114
Importation Log Messages 102
importing

Generated Code 104
Limitations and Restrictions 104
log messages when migrating 102
models 113
Rational Rose generated code 104

Importing license keys 77
input focus (active window) policy 144
install

types 28
install program

run 55
Install Rational Rose RealTime on UNIX 55

install types
administrative install 28
client install 28
client install from Network 28

installation
preparing for (Windows) 28
procedure 25
restarting (UNIX) 52
stopping (UNIX) 52

Installation Guide Updates 2
installation instructions

Unix 54
installing

compiler environment setup 50
floating license key for Unix 92
instructions 27
license key 95
license keys 89, 92
mixed versions 24
Multiple OS Versions 52
permanent license keys 89
permanent license on Unix 93
permanent license on Windows 89
Rational Rose RealTime on Windows 28
startup license on Unix 92
startup license on Windows 89
testing your environment 49
upgrade information 28

Installing license keys
Before You Begin 89

installing on windows
types 28

installing startup license keys 89
integration xvii

Microsoft Development Environment 138
naming directories 139
Rational Purify 138
Rational RequisitePro 137
Rational Robot 138
Rational SoDA for Word 137

integration notes 135
Integration With Rational Suites Licensing 95
Index 171

J
Java

sending message specification data field for-
mat for 160

Java language support 9

K
key file for licenses 82
keys

emergency 75

L
Language Add-in Changes 110
Layout tools 100
Library browser 106
license

floating key for Unix 92
Node-Locked 74

license activation process 83
license agreements 30, 36
license daemon 79

start 80
license file 79

format 85
license file format 85
license files 85
license key file 78, 82
license keys 53

importing 77
installing 89, 92
receiving 77
requesting 76
returning 75
validity 28

License Manager 79
commands 80

license manager
verify 80

license manager daemon 81
license_check 81
license_setup 78

licenses
Emergency 75
Evaluation 75
Floating 74
key file 82
License Manager 80
node-locked 74
on Unix 84
Permanent 75
Temporary 75
types 74
upgrading 76
Windows 79

licensing
integration with Rational Suites 95
troubleshooting 96

licensing on Unix 84
administration commands 85

Licensing Options (UNIX) 57
limit stacksize 157
limitations

RQA-RT 161
line styles 100
List headers 107
lmdiag 81, 85
lmdown 81, 85
lmgrd 79, 81, 84

running from command prompt 84
lmhostid 81, 85
lmread 81
lmremove 85
lmreread 85
lmstat 81, 85
Log messages 158
log messages 102

M
Macros 130
Mainsoft 20
MainWin 20
makefile override changes 133
Makefile overrides changes 133
manual mode 8
172 Index

message 158
Message Reply 123
messages

creating 160
migrating

building 101
C language migration 112
C++ language migration 115
code generation 101
Compilation 107
converting a C++ model to C 112
customized CM scripts 109
file format changes 108
from ObjecTime Developer 136
from ObjecTime Developer 5.2 and 5.2.1 105
from Rational Rose 99, 136
from Rational Rose and ObjecTime

Developer 136
from Rose RealTime 6.0, 6.0.1, 6.0.2, 6.1 108
importation log messages 102
importing Rational Rose generated code 104
limitations and restrictions 103
new modelling language elements 101
ObjecTime Developer for C migration 113
opening models from Rational Rose 102
RRTEI changes 110
running 101
source control migration 108
terminology changes 105
user interface differences 99

Migrating customized CM scripts 109
Migrating from Rational Rose 99
migration 119

language add-in changes 110
RRTEI Changes 110
running two different releases of Rose

RealTime 110
workspace files 110

Minimum Run Time 162
mixed versions 24
Model browser 106
model browsers 100
Model Integrator 149

Suggested Workflow 149
Model Integrator add-in 149

Model Properties 133
model timing services 9
modelling language elements 101
models

converting Connexis models 67
opening from Rational Rose 102

mounting the CD-ROM 55
MSCs

converting 159
multiple model browsers 100

N
Naming Directories 139
node-locked license 74
Node-Locked Licenses 74
-noEmulateREI 145
-nologo 145
nstall 92

O
ObjecTime Developer for C migration 113
opening

Rational Rose model 102
opening models from Rational Rose 102
order policy for windows 144
Ordering Information 10
Output windows 100

P
Parameters available in transition code 132
passivation 106
Permanent License 75
permanent license key

receiving 78
permanent licenses 75
platforms (see referenced configurations) 13, 16
Point to a FLEXlm Server 82
Port cardinality 133
Port Indexes 125
ports 20, 120
Index 173

PrinterPorts 21
printing

adding a printer on UNIX 20
Project files 106
property editors 133
protocols 120
PSCRIPT driver 20
Purge 124
Purify 138
Purify on UNIX 138

Q
-q 142
-quiet 142

R
rational

vendor daemon 79
Rational Connexis

overview 7
Rational Customer Service

contacting xviii
Rational Quality Architect

description 8
overview 8

Rational Setup Wizard
procedure 25

Rational SoDA for Word 137
Rational Web site 10
rational_dir 52
read

license file 81
Recall 124
Receiving License Keys 77
-recreate_registry 141, 142
referenced configuration requirements

Windows 2000 14
Windows NT 13
Windows UNIX 15
Windows XP Pro 14

referenced configurations 13, 14
referenced configurations and targets 17

referenced host configurations 16
-regedit 142
-register 145
-regserver 145
replication values 118
repository setup for ClearCase 48, 60
Request a Copy of a License File 76
Requesting License Keys 76
requirements 15

referenced configurations 13, 14, 15
Toolchain 15

Requirements Management Tools
Integration 137

requirements management tools integration 137
RequisitePro 137
Restarting an Installation 52
Returning License Keys 75
RGB values 148
Robot 138
ROOM 105
ROOM_InSignal 114
ROOM_PortSend 115
ROOM_Signal 114
Rose C++ Analyzer add-in 150
Rose RealTime for Unix 142
RoseRT -recreate_registry 141
ROSERT_HOME 11
RQA-RT

allow data qualifier in data field of send
message 9

allow drivers to model timing services 9
allow sub-capsule instances to be drivers 8
Capsule interface generation 9
Java language support 9
Verification mode changes to allow more con-

trol in manual mode 8
RQA-RT limitations 161
RRTEI changes 110
rs_hostinfo 77
rs_install 55

license_check 81
license_setup 78

RTDDCSRunning 156
RTDDCSrunningReply 156
RTPortRef operations 128
174 Index

RTSignalNames 130
RTTimespec Parameters 130
run

install program 55
-runScriptAndQuit 146, 158
Run-Time connectivity viewing 7
RunVerifyBehavior 158

S
send

asynchronous 122
synchronous 123

SEND_SCALAR 117
sending

message specification data field format for
Java 160

messages to the Log 158
Sequence Diagram

customizing from a Trace 160
Sequence diagrams

creating 160
Setup Script 58
signals 120
silent installation

overview of procedure 43
performing 44

SoDA for Word 137
softlink 54
source control

command line access to ClearCase 48, 59
Source Control Migration 108
start

license daemon 80
new vendor daemon 81

start script
single server 80

starting
command line options 145
Rational Rose RealTime (UNIX) 66

starting Rational Rose RealTime on UNIX 141
starting Rational Rose RealTime on

Windows 141

starting Rose RealTime
Unix 141
Unix startup options 142
Windows 141

Start-up keys 87
Start-up options for UNIX 142
-startuplicense 142
Static Forwarding Pattern 127
status

feature usage 81
license daemons 81

stopping an Installation 52
sub-capsule instances 8
synchronous sends 123

T
Target Deployment Package 155
Target Observability Behavior 157
targets 17
Technical Support

contacting 9
Temporary License 75

converting to permanent 78
Terminology mappings (from ROOM to

UML) 105
test your environment 49
testing 8
Timing service 115
timing services 9
TLA 88
To Port 158
Toolchain requirements 15

compiler 16
Help Viewer 15
real-time Operating System 16

Toolchan requirements 15
trace

customizing a Sequence diagram from 160
transition code parameters 132
troubleshooting

licensing 96
Rational Connexis 156
Rational Quality Architect 157
Index 175

Rational Rose RealTime Professional
Edition 155

Signals no longer supported 156
Transport Integration Framework 156
Turning off auditing for a single transport is

not recommended 156
type safety 120
Type safety explained 120

U
ulimit -s 157
UML 105
unattended installations. See silent installations
Uninstalling 153

UNIX 153
Windows 153

uninstalling
Rational Rose RealTime on Unix 153
Rational Rose RealTime on Windows 153

unit testing tools integration 137
UNIX

adding printer on 20
after you install 58
before you Install 51
configuration requirements 15
installation instructions 54
installation Overview 54
set Connexis Variable 61
Setup Script 58
softlink 54
starting Rational Rose RealTime 66
unmount CD-ROM 58
upgrade Information 52

UNIX and the X Window System 142
UNIX server 97
unmount

CD-ROM 58
unmount CD-ROM 58
-unregister 146
-unregserver 146
unresolved references 102
unsafe sends 118
Updating Batch Files 46

upgrade information (Windows) 28
Upgrading Licenses 76
User Interface Differences 99, 107

V
-v 142
vcvars32.bat 50
vendor daemon 79, 81

licenses 81
-verbose 142
verify

license manager operation 80
Verify Behavior 157
verifying

Component Compatibility with Connexis
Version 70

Connexis Installation 61
host platform installation 61
installation 61

W
Web Publisher 147

Limitations 148
Suggested Workflow 147

web site
Rational 10

window order policy 144
window order policy (X window system) 144
Windows

after you install 46
before you install 27
licenses 79
Toolchain requirements 15

windows 20
Windows 2000 14
Windows NT

configuration requirements 13
Windows XP Pro

configuration requirements 14
with other Rational products xvii
Workspace browser 106
workspace files 110
176 Index

X
X clients 143
X servers 143
X window managers 143
X Window system 142, 143, 144
Index 177

	Installation Guide
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Service

	Introduction
	Welcome to Rational Rose RealTime
	Release Notes
	Installation Guide Updates

	What’s New?
	Improved UML Support
	New Features to Improve Usability
	Improved Rose Compatibility
	Build and Target Enhancements
	Improved Code Generation
	Enhanced Configuration Management Integration and Faster Loading
	Installation and Platform Support

	Overview of Rational Rose RealTime Capabilities
	Rational Connexis
	Run-Time Connectivity Viewing

	Rational Quality Architect - RealTime Edition
	Allow Sub-Capsule Instances to be Drivers
	Verification Mode Changes to Allow more Control in Manual Mode
	Allow Data Qualifier in Data Field of Send Message
	Allow Drivers to Model Timing Services
	Capsule Interface Generation for Instances on Sequence Diagram Without Role Specified
	Java Language Support

	How to Get Help
	Contacting Rational Customer Service Using the Help Menu
	Contacting Rational Customer Service by Email or Telephone
	Evaluation and Ordering Information
	Rational Web Site

	Directory Contents
	Accessing the Online Help System

	Referenced Configurations and Toolchain Requirements
	Referenced Configurations
	Requirements for Windows NT
	Requirements for Windows 2000
	Requirements for Windows XP Pro
	Requirements for UNIX

	Toolchain Requirements
	Help Viewer (Windows Only)
	Compiler
	Real-time Operating System

	Referenced Host Configurations
	Creating Executables for Hosts Without Toolset Support
	Generating an Executable Without a Common File System

	Adding a Printer on UNIX

	Installing Rational Rose RealTime on Windows
	Removing Previous Releases of Rational Products
	Installing Mixed Versions of Rational Products
	Using the Rational Installation Program
	Using the Rational Setup Wizard
	Rational_Install Log
	Before You Start the Rational Setup Wizard

	Before You Install
	Preparing for a Rational Rose RealTime Installation

	Upgrade Information
	Specifying the Rational License Server
	Performing a Client Installation
	Post-Installation Tasks
	Licensing
	Canceling an Installation from CD-ROM
	Reinstalling Rational Rose RealTime from CD-ROM (Modify, Repair, Remove)

	Creating a Release Area
	Using the Rational Setup Wizard to Create a Release Area
	Installing Rational Rose RealTime on Your Computer

	Post-Installation Tasks
	Licensing

	Running the Site Preparation Wizard to Create Multiple Sitedef Files

	Installing Rational Rose RealTime from a Release Area
	Using a Standard Configuration
	Customizing Your Own Configuration
	Post-Installation Tasks
	Licensing

	Canceling a Product Installation From a Release Area
	Reinstalling Rational Rose RealTime From a Release Area (Modify, Repair, Remove)

	Using Silent Installation Commands
	Silent Installation Overview
	Running a Silent Installation on your Desktop
	Licensing Your Rational Product

	Setting Up Silent Installations of Rational Rose RealTime from a Release Area
	Running a Silent Installation
	Canceling a Silent Installation
	Command Line Syntax to Run Silent Install
	Syntax

	After You Install
	Updating Batch Files
	Configuring Your Environment

	ClearCase Workstation Setup
	Command Line Access to the Source Control Tool
	Element type setup: type manager
	ClearCase Options
	Configuring the ClearCase Repository

	Testing your Environment

	Installing Rational Rose RealTime on UNIX
	Before You Install
	Installing in Secure Environments
	Installing Multiple OS Versions of Rational Suite DevelopmentStudio RealTime (UNIX)
	Stopping and Restarting an Installation

	Upgrade Information
	Upgrading to New Version Only (Uninstalling Earlier Version)
	Upgrading to 2003.06.00 While Maintaining an Earlier Version

	Installation Instructions
	After You Install
	Sourcing to the Setup Script
	Unmounting the CD-ROM Drive
	ClearCase Workstation Setup
	Command Line Access to the Source Control Tool
	Element type setup: type manager
	ClearCase Options

	ClearCase Repository Setup
	Setting the TORNADO 2.0 Debugger Environment Variable
	Setting Other TORNADO Environment Variables
	Setting the Connexis Variable
	Verifying the Connexis Installation
	Verifying your Installation using BasicTest
	Host Configuration Installation Verification
	BasicTest Server Output
	BasicTest Client Output

	Starting Rational Rose RealTime (UNIX)

	Converting Connexis Models
	Converting Connexis version 2000.02.10 Models to Connexis Version 2003.06.00 Models
	Verifying Component Compatibility

	Understanding Rational Rose RealTime Licenses
	How Licenses Work
	Types of Licenses
	Node-Locked Licenses
	Floating Licenses
	Permanent Licenses and Temporary License Keys
	Emergency and Evaluation Keys
	Suite Licenses and Point Product Licenses
	Returning License Keys
	Upgrading Licenses

	Requesting License Keys
	Receiving and Importing License Keys
	Requesting License Keys by Fax
	Receiving Permanent License Keys

	Converting a Temporary License to a Permanent License
	Licenses for Windows
	The License Manager - UNIX
	License Manager Commands
	Additional Licensing Commands
	License Manager Daemon (lmgrd)
	Vendor Daemon
	License Key File
	Application Program

	Configuring a UNIX Workstation to Point to a FLEXlm Server
	License Activation Process

	Licensing on UNIX
	Running the lmgrd from a Command Prompt
	Example
	Administration Commands

	The License File
	Format

	UNIX Licenses
	Start-up or Emergency keys
	Node-Locked keys
	Floating keys
	TLA (Temporary License Agreement)

	Frequently Asked Questions

	Installing License Keys
	Before You Begin
	Installing a Startup or Permanent License on Windows
	Installing a Permanent License on Windows
	Installing the License Key
	Installing a Floating License Key on a UNIX server

	Installing a Startup or Permanent License on UNIX
	Installing a Startup License on UNIX
	Installing a Permanent License on UNIX
	Installing the License Key

	Integration With Rational Suites Licensing
	Troubleshooting
	Windows
	UNIX server
	UNIX

	Migration
	Migrating from Rational Rose
	User Interface Differences
	New Modeling Language Elements
	Code Generation, Building, and Running
	Opening Models from Rational Rose
	List of Importation Log Messages
	Limitations and Restrictions
	Importing Rational Rose Generated Code
	Limitations and Restrictions

	Migrating from ObjecTime Developer 5.2/5.2.1
	Terminology
	User Interface Differences
	Compilation

	Migrating from Rational Rose RealTime 6.0/6.0.1/6.0.2/6.1
	File Format Changes
	Source Control Migration
	Migrating Customized CM Scripts

	Language Add-in Changes
	Running Two Different Releases of Rational Rose RealTime
	Workspace Files
	RRTEI �Changes

	C Language Migration
	Converting a C++ Model to C
	ObjecTime Developer for C Migration
	Importing Models
	Converting Global Signals to Local Signals
	Timing Service

	C++ Language Migration
	Backwards Compatibility Mode
	Migrating in Two Steps
	What Does Backwards Compatibility Do?
	Compiler Will Find All Errors
	Building a Model in Backwards Compatibility Mode
	Full Migration

	Changes
	C++ UML Services Library
	Code Generation and Compilation
	New Classes for Protocols, Signals, and Ports
	Type Safety Explained
	How Has This Changed?
	API Changes Summary
	Asynchronous Sends
	Synchronous Sends
	Message Reply
	Defer, Recall, and Purge
	Port Indexes
	Discriminating in Code the Signal of a Received Message
	Forwarding
	RTPortRef Operations
	RTTimespec Parameters
	RTSignalNames
	Macros
	External Layer Service (ELS)

	Code Generation
	Components
	Directory Structure
	Parameters Available in Transition Code
	Port Cardinality Cannot be Unspecified
	Makefile Override Changes

	Model Properties
	Advanced property Editors

	Integration Notes
	Overview
	Configuration Management (CM) Tools Integration
	ClearCase on a UNIX Server and Clients on both NT and UNIX
	Migrating from Rational Rose and ObjecTime Developer

	Requirements Management Tools Integration
	Rational SoDA for Word
	Rational RequisitePro

	Unit Testing Tools Integration
	Rational Purify
	Adding Options to Purify on UNIX

	Microsoft Development Environment
	Integration with Rational Robot
	Naming Directories

	Starting Rational Rose RealTime
	Starting Rational Rose RealTime on Windows
	Starting Rational Rose RealTime on UNIX
	Start-up Options for UNIX

	Rational Rose RealTime for UNIX and the X Window System
	X Clients
	X Servers
	X Window Managers
	Input Focus (Active Window) Policy
	Window Order Policy

	Automating Rational Rose RealTime
	Command Line Options

	Add-Ins
	Web Publisher
	Suggested Workflow
	Limitations

	Model Integrator
	Suggested Workflow

	Rose C++ Analyzer
	Suggested Workflow
	Limitations

	Uninstalling Rational Rose RealTime
	Windows
	UNIX

	Troubleshooting, Known Issues, and Updates
	Overview
	Rational Connexis
	Troubleshooting
	Transport Integration Framework
	Turning Off Auditing for a Single Transport is Not Recommended
	Signals No Longer Supported

	Rational Quality Architect - RealTime Edition
	Target Observability Behavior When the Model is Modified
	Running Verify Behavior with Eighty or More Sequence Diagrams (UNIX)
	Driver Methods for Sending Messages to the Log and Custom Comparison
	Lost Information in To Port for a Message
	Do Not Use -runScriptAndQuit When Running RQART From a Script
	Creation of Container Capsules
	Converting MSCs in Rational Rose RealTime Using the RQA-RT
	Creating Messages and Sequence Diagrams
	Sending Message Specification Data Field Format for Java
	Customizing a Sequence Diagram Created From a Trace
	RQA-RT Limitations

	Technical Support
	Submitting Problem Reports
	Submitting Feature Requests
	Submitting Support Requests
	Contacting Rational Customer Service by Email or Telephone
	License Support Contact Information

	Index

