Rational Software Corporation

Extensibility Interface Reference

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026116-000

WINDOWS/UNIX

R a t] O N a] support@rational.com

the software development company http://www.rational.com

L egal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026116-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectX], DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense,] /Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, Map Vision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDeyv,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents

Preface XV
AUIENCE. . .o XV
Other RESOUICES . .. oottt e e e e e e e e e e e e XV
Rational Rose RealTime Integrations With Other Rational Products.. XVi
Contacting Rational Customer Support Xvii
1 CONCEPIS .o 1
OVEIVIBW. . . o ottt 1
The RRTEI Model and Rational Rose RealTime Extensibility 2
SCIIPUNG o o e e 3
AULOMALION 3
Type Libraries 3
About Default Properties and Property Sets (Extensibility) 4
About Collection Attributes and Operations 4
Rational Rose RealTime Menu Extensibility. 6
2 HOW T0. . e 7
Customizing Rational Rose RealTime Menus 7
Creating New Rational Rose RealTime Scripts 13
Getting the Rational Rose RealTime Application Object 14
Specifying a Virtual Path for Scripts. 15
Working with Rational Rose RealTime Diagrams. 17
Working with Model Properties. i 17
Working with Collections i 29
Working with Classes 32
Working with Rose RealTime Automation 32
Working with the Rational Rose RealTime Script Editor 33
OpeningaModel 66
Modifying a Property Value 67
Setting the Top Capsule ofa Component. 69

Contents v

3 Rational Rose RealTime Extensibility Interface Reference 75

Logical Package Structure i 80
Application ClasSes 81
AddIN . 86
AddINManagero 93
ApPlicatioNn 93
ContextMenultem. 122
MeNUSTALE 123
PathMap. 124
RsSMenuState 127
WOIKSPACE . . . oo 128
Extensibility Classes 130
ColleCtioN . . . 131
ROSEBASE 139
RRTEIODJeCt 140
RICNTYPES . . o 141
RIChTYpe . .. 142
RichTypeValuesCollection 144
Model Classeso 145
Component View ClasSesttt 145
COMPONENT . .. 149
ComponentPackage. 170
Core Model ClasSes.ot 178
ControllableElement. 184
DefaultModelProperties e 194
Element 204
ExternalDocument 215
Model . . o 218
ModelElement e 236
Package 239
PropEItY . . oo 243
RsExternalDocumentType e 244

vi Contents

StructuredProperty.o 244

Deployment View Classesot 246
ComponentinstanCe. 249
DeploymentPackage 252
DEVICE .. 258
PrOCESSOr. . . 262
Logical View Classest 267
LogicalPackage 269
Association Classes. 288
ASSOCIAtION. o 290
AssociationEnd 294
AssociationEndContainment 298
AssociationEndVisibilityKind 299
Classifier Classes.o 299
CapsuUle . .. 303
ClaSS . .o 304
ClasSSCONCUITEINCY . . o e e e e e e e e e 310
ClassKind 310
ClasSIfier . 310
ClassifierVisibilityKind 327
Parameter. 328
Protocol 329
RSCIassKind. 332
RSCONCUITENCY . . ot e e e e e e 334
RsChangeable 334
SIgNal . . e 335
Feature Classes. 336
Attribute 338
AttributeContainment 340
AttributeVisibilityKind 340
OPeratiON . . . o e 340
OperatioNCONCUITENCY e e e e e e e e e 345

Contents vii

viii

OperationVisibilityKind 345

OWNEBISCOPE . . oot 346
RSOWNEISCOPE . . . oo 346
Collaboration Classest e e 347
AssociationEndRole. 350
AssociationRole 351
CapsuleRole 352
CapsuleStruCture 353
ClassifierRole. 356
Collaboration 358
CONNECIOr . . L e 364
GENEIICIY. . . e 367
POrt 367
PortROle . . .o 369
PortVisibilityKind 370
RegistrationMode. e 370
RSGENETICILY o e 370
RsRegistrationMode 371
Common Logical View Enumerations i, 372
RsContainment 372
RsVisibilityKind e 373
Interaction Classes 374
ENVIrONmeENt. 376
INteraction 376
Interactioninstance. 382
MEBSSAGE . . . ottt 385
MessageENnd 386
RSACHONKING . . .o 387
State Machine Classes e 387
RsSourceRegionType e 388
SOUICEREQIONTYPE. . . e 389
StateMachine 389

Contents

TranSItioNo ot 390

ACtion ClassSesS oot 393
ACHON . . 396
ActionMode e 398
CallAction. e 399
(O] =T 1o o 399
Create AcCtioNn 401
DeStroyACHON. . . . ottt 401
LocalState 402
ReplyACtion 402
ReqUEeSIACHION 402
ReSpONSEACHiON. 403
RetUrnACHON 404
RSACtiONMOdE 404
RsSendActionPriority 405
SENdACHON. e 406
SeNdACHONPIIONLY . . . e 407
TerminateACtion 407
UninterpretedACtiono e 407
Event Classeso e 407
Y o 409
EventGuard e 409
POrtEVeNt . .. e e 411
ProtocolRoleEvent 415
State Classes. . .. oo 416
ChoicePoint e 418
CompositeState e 419
FinalState. 424
InitialPoint. e 425
JunctionContinuationMode. 425
JunctionPoint e 425
RsJunctionContinuationMode 427

Contents ix

RsStateKind.o 427

StateKind 428
StateVerteX 429
Relation Classes 431
ClassDependencyot t 433
ClassRelation. 434
ComponentDependency« 435
Generalization 436
GeneralizationVisibilityKind 438
InstantiateRelation 438
LogicalPackageDependency 439
RealizeRelation 440
Relation 442
UsesRelationVisibilityKind o 444
Use Case View Classes.ot 444
USECaSE . ..ottt 445
VieW ClasSeso e 450
ANChorNOtEVIEW e 453
Diagram 454
NOtBVIBW . .. 464
RSNOtEVIEWTYPE . . .o 466
RsStereotypeDisplay e 466
StereotypeDisplay 467
VIieWEIeMENt 467
Class Diagram ClassSesot i e 475
CapsUleVIEW 477
ClassDiagram.o 477
ClasSSViIBW . . o 490
ClassifierView.o 490
ProtocoIVIew 492
Collaboration Diagram Classeso 493
CapsuleRoleView. 494

x Contents

CollaborationDiagram 496

PortRoleView 499
POrtVIEW. . .. 500
StructurePerimeterView 500
Component Diagram Classest 501
ComponentDiagram 502
ComponentPackageView. 508
COMPONENTVIBW. .« . . o e e 509
Deployment Diagram Classes i 509
DeploymentDiagram. 510
Sequence Diagram Classes.o 513
ClassifierRoleView 514
CreateMessageVieW e 514
InteractioninstanceView. 515
LifeLineView 515
MeESSAgEVIEW. . . . ot 516
SequenceDiagram e 516
State Diagram ClasSes e 517
BranchPointView e 519
ChoicePointVIew 519
CompositeStateVIEWo e 521
COregIONVIBW . .« . . o i e e e 522
FinalStateView 522
InitialPoINTVIEW 523
JunctionAdornmentView 523
JunctionPoiNtVIEW o 524
LocalStateOrACtiONVIEW i e 525
StateDiagram o 525
StatePerimeterView 527
View Property Classes. 528
LiNEVErteX . .t 529
View_FillColor e 530

Contents xi

Xii

VieW _FONt ... 531

View_LineColor 532
BasicScript Reference 535
Special CharacCters. 536
DIrECHVES . . . e 573
FUNCHIONS . . . 578
KeYWOIS . . . 851
Methods 857
OPEIalOrS . . . oot 888
Properties 913
StatEMENTS. 949
Picture Caching 1030
Optional Parameters 1061
Arrays (TOPIC) . . . o oo 1198
Comments (IOPIC). « . v v vt e 1201
Constants (tOPIC) .« . v vttt 1205
Cross-Platform Scripting (topic). o o 1214
Dialogs (TOPIC) . . .o oo e 1219
Error Handling (topic).o 1220
Expression Evaluation (topic). 1221
Keywords (fOpiC).o ot 1223
Line Numbers (topiC) oo 1225
Literals (1OPIC)o oot 1225
Named Parameters (topiC) oottt e 1227
ODbJECtS (TOPIC) .« . v et 1228
Operator Precedence (fOpiC)ot e 1231
Operator Precision (topIiC)o e 1232
User-Defined Types (IOPIC)ottt e 1232
INdeX .. 1235

Contents

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Rational Rose extensibility interface components.
Portion of a Rational RoseRT menufile
Virtual Path Map
Specification Editor
Rose RealTime Script Editor. i
GotoLinedialog
Selected ScriptS TeXt. oot
Find Script Textdialog\
Replace dialog.
ScriptCallsdialog
Add Watch dialog. o
Modify Variable dialog
Grid Dialog. . . o
Dialog Edition with Grid Displayed.
CapturingaDialog.
Sample Dialog in Basic Script.o
Dialog Information Dialog i
Control Informationdialog

Figures

xiii

xiv Figures

Preface

The information in this document supersedes all other manuals and documentation
included in this release.

This manual is organized as follows:

Concepts on page 1

How To... on page 7

Rational Rose RealTime Extensibility Interface Reference on page 75
BasicScript Reference on page 535

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

Online Help is available for Rational Rose RealTime.
Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

To send feedback about documentation for Rational products, please send e-mail

tot echpubs@ ati onal . com

For more information about Rational Software technical publications, see:
http://ww. rational.con docurmentation.

XV

http://www.rational.com/documentation/

+ For more information on training opportunities, see the Rational University Web

site: ht t p: //www. r ati onal . com uni versi ty.

* For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by

selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational

Products

Integration

Description

Where it is Documented

Rose RealTime—
ClearCase

You can archive Rose RT
components in ClearCase.

Toolset Guide: Rational Rose RealTime

Guide to Team Development: Rational
Rose RealTime

Rose RealTime—
UCM

Rose RealTime developers can
create baselines of Rose RT
projects in UCM and create Rose
RealTime projects from
baselines.

Toolset Guide: Rational Rose RealTime

Guide to Team Development: Rational
Rose RealTime

Rose RealTime—
Purify

When linking or running a Rose
RealTime model with Purify
installed on the system,
developers can invoke the
Purify executable using the
Build > Run with Purify
command. While the model
executes and when it completes,
the integration displays a report
in a Purify Tab in RoseRealTime.

Rational Rose RealTime Help
Toolset Guide: Rational Rose RealTime

Installation Guide: Rational Rose
RealTime

Rose RealTime—
RequisitePro

You can associate RequisitePro
requirements and documents
with Rose RealTime elements.

Addins, Tools, and Wizards Reference:
Rational Rose RealTime

Using RequisitePro

Installation Guide: Rational Rose
RealTime

Rose RealTime—
SoDa

You can create reports that
extract information from a Rose
RealTime model.

Installation Guide: Rational Rose
RealTime

Rational SoDA User’s Guide
SoDA Help

xvi Preface

http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Your Location Telephone Facsimile E-mail

North, Central, +1 (800) 433-5444 +1 (781) 676-2460 support@rational.com

and South (toll free) Lexington, MA
America +1 (408) 863-4000
Cupertino, CA
Europe, Middle +31 20 4546-200 +31 20 4546-201 support@europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

* Your name, company name, telephone number, and e-mail address

* Your operating system, version number, and any service packs or patches you
have applied

= Product name and release number

= Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Contacting Rational Customer Support xvii

xviii Preface

Concepts

Contents
This chapter is organized as follows:

Overview on page 1

The RRTEI Model and Rational Rose RealTime Extensibility on page 2
Scripting on page 3

Automation on page 3

Type Libraries on page 3

About Default Properties and Property Sets (Extensibility) on page 4
About Collection Attributes and Operations on page 4

Rational Rose RealTime Menu Extensibility on page 6

Overview

Rational Rose RealTime provides several ways for you to extend and customize its
capabilities to meet your specific software development needs. You can:

Customize Rational Rose RealTime menus

Automate manual Rational Rose RealTime functions with Rational Rose RealTime
Scripts (for example, diagram and class creation, model updates, document
generation, etc.)

Execute Rational Rose RealTime functions from within another application by
using the Rational Rose RealTime Automation object.

Access Rational Rose RealTime classes, properties and methods right within your
software development environment by including the Rational Rose RealTime
Extensibility Type Library in your environment.

Use the Add-In Manager

The RRTEI Model and Rational Rose RealTime Extensibility

The purpose of Rational Rose RealTime is to enable component-based software
development. As you would expect, the Rational Rose RealTime application is itself
component-based, and is defined in the Rational Rose RealTime Extensibility
Interface (RRTEI) Model.

The RRTEI Model is essentially a metamodel of a Rational Rose RealTime model,
exposing the packages, classes, properties and methods that define and control the
Rational Rose RealTime application and all of its functions.

You communicate with the Rational Rose RealTime Extensibility Interface through
Rational Rose RealTime Scripts or through Rational Rose RealTime Automation. In
either case, you will use the RRTEI calls defined in the Rational Rose RealTime
Extensibility Interface Reference. This reference is available in printed form, and is
also part of this online help.

Figure 1 shows the core Rational Rose RealTime components, the Rational Rose
extensibility interface components, and the relationships between them.

Figure 1 Rational Rose extensibility interface components

Rational Rational
Fose , Rose
RealTime RealTime

Applicatian _ =cript
Rational
Fose
R ational
Diagrams — RealTime] Foze
RealTime
Altomation
Extensibility
Interface
hlod el
T —
Elements

2 Chapter 1 - Concepts

Scripting

The Rational Rose RealTime Scripting language is an extended version of the Summit
Basic Scriptlanguage. The Rational Rose RealTime extensions to basic scripting allow
you to automate Rational Rose RealTime-specific functions, and in some cases
perform functions that are not available through the Rational Rose RealTime user
interface.

The Rational Rose RealTime script editor runs in the Rational Rose RealTime
environment and provides your access to the scripting environment. Start the script
editor by selecting either New Script or Open Script from the Tools menu.

Automation

Rational Rose RealTime automation allows you to integrate other applications with
Rational Rose RealTime in two ways:

+ Using Rational Rose RealTime as an automation controller, you can call an OLE
automation object from within a Rational Rose RealTime script. For example, a
Rational Rose RealTime script can use OLE automation to execute functions in
applications such as Word and Excel.

+ Using Rational Rose RealTime as an automation server, you can call its OLE
automation object from within other OLE-compliant applications.

Rational Rose RealTime Automation is accessible to automation controller
environments such as Visual Basic, Summit BasicScript, Softbridge Basic Language,
Visual C++, and others.

Use the online BasicScript and Rational Rose RealTime Script Language References for
complete script language information.

Type Libraries

Loading a type library for Rational Rose RealTime automation allows you to use
Rational Rose RealTime class names to access the Rational Rose RealTime
Extensibility Interface from your programming environment.

For example, if you are working in Visual Basic, instead of using the Basic object type
Object, you can use the name of the actual Rational Rose RealTime class. You can also
check the syntax of the properties and methods at compile time (early binding)
instead of when the code is executed (late binding).

Scripting 3

If you are working in Visual C++, you can import Rose RealTime's type library, which
is embedded in RrtRes.dll, into an MFC project. This generates COleDispatchDriver
subclasses for each RRTEI class, and methods allowing access to RRTEI properties
and methods.

About Default Properties and Property Sets (Extensibility)

Each Rational Rose RealTime model has its own default properties. These default
properties are defined in a property file and are grouped into sets based on:

Type of model element

Class, component, relation, attributes, operations; and so on; the objects that make
up the model

Tool

Corresponds to a tab in the property specification. A tool can be a programming
language tool (such as C++), a user-defined add-in to Rational Rose RealTime, or
some other tool.

Properties

The actual properties and property values defined in the set; these must be
appropriate to the model element and tool for which they are being defined.

Note: You can define multiple sets of default properties for the same tool and model
element. For example, you might want one set of properties for a class with a
stereotype of Actor and a different set of properties for a class with a stereotype of
Interface. Both of these sets are considered default properties in that they are
predefined for the model. Defining multiple sets saves you work by minimizing the
need to override properties as you go.

About Collection Attributes and Operations

For most elements of a Rose RealTime model there is a corresponding collection. So,
for example, for every class there is a class collection; for every logical package there is
a logical package collection; for every property, there is a property collection, and so
on.

Rational Rose RealTime extensibility provides a set of properties and methods that
allow you to access a particular element in any given collection.

4 Chapter 1 - Concepts

Collection Property

Count is the only property that applies to collections.

Count - Number of objects within a collection

Methods for All Collections

The following table describes the collection methods that allow you to locate and
retrieve the elements in any collection. While all of these properties and methods are
the same, they act upon different types of objects. For example, the
ClassCollection.GetAt method retrieves a class object, the
LogicalPackageCollection.GetAt method retrieves a logical package, and so on.

Method Description

Exists Indicates whether an object exists in a given collection

FindFirst Retrieves the index (position) of the first instance of an
object in a given collection

FindNext Retrieves the index (position) of the next instance of an
object in a given collection

GetWithUniquelD Retrieves the instance of an object in a given collection,
given the object’s unique ID
Note: Objects that do not have a uniquelD (for
example, ExternalDocument and Property objects)
cannot be retrieved using this method.

GetAt Retrieves a specified instance of an object in a given
collection

GetFirst Retrieves the first instance of an object from a given
collection

GetObject Returns the OLE interface object associated with the
given collection

IndexOf Finds the index (position) of an object in a given
collection

About Collection Attributes and Operations 5

Methods for User-defined Collections

The following table describes the four additional collection methods, which allow you
to add and remove objects from a collection. However, these methods are only valid
for user-defined collections and cannot be used with Rose RealTime Model

collections:

Method Description

Add Adds an object to the object collection
AddCollection Adds a collection to an object collection
Remove Removes a collection from an object collection
RemoveAll Removes the entire contents of a collection

User-defined collections are created by the CreateCollection function of the Rational
Rose RealTime Application object.

Rational Rose RealTime Menu Extensibility

You extend, or customize, Rational Rose RealTime menus by updating the Rational
Rose RealTime menu file, rosert.mnu, which Rational Rose RealTime reads during

startup.

You can extend Rational Rose RealTime menus by adding:

Submenus

Menu options that execute any of the following:

Rational Rose RealTime primitives
Rational Rose RealTime scripts
System commands

External programs

Menu separators (lines between menu options, used to group similar menu items)

Note: You can add information to existing menus (for example, File, Edit, etc.);
however, you cannot add new menus to the Rational Rose RealTime menu bar.

6 Chapter 1 - Concepts

How To...

Contents
This chapter is organized as follows:

Customizing Rational Rose RealTime Menus on page 7

Creating New Rational Rose RealTime Scripts on page 13

Getting the Rational Rose RealTime Application Object on page 14
Specifying a Virtual Path for Scripts on page 15

Working with Rational Rose RealTime Diagrams on page 17
Working with Model Properties on page 17

Working with Collections on page 29

Working with Classes on page 32

Working with Rose RealTime Automation on page 32

Working with the Rational Rose RealTime Script Editor on page 33
Opening a Model on page 66

Modifying a Property Value on page 67

Setting the Top Capsule of a Component on page 69

Customizing Rational Rose RealTime Menus

The content of Rational Rose RealTime menus is defined in the rosert.mnu file. If you
want to customize Rational Rose RealTime menus, you must edit this file.

While you cannot add new menus to the Rational Rose RealTime menu bar, you can
add commands to the existing Rational Rose RealTime menus. The menu actions
defined for the Rational Rose RealTime menu file allow you to add commands that:

Execute a program or shell script
Execute a Rational Rose RealTime script
Display a dialog for user input

To customize Rational Rose RealTime menus:

Using any text editor, open the rosert.mnu file.
Add entries to rosert.mnu for any or all of the following:
© Submenus
Menu options
© Menu separators

Ensure that you follow the appropriate syntax rules as you add the entries in the
file.

If your menu item executes a script, add or edit Rational Rose RealTime’s virtual
path for scripts (if one is not already defined).

Save the file:

= To create another menu file while leaving rosert.mnu intact, save the file
under a different name. (Recommended)

To overwrite the file, save it as rosert.mnu.

Adding Entries to a Rational Rose RealTime Menu File

Using any text editor and the following information, you can add menu entries to the
Rational Rose RealTime menu file. The entries appear on the Rational Rose RealTime

menu in the order you specify.

As you add menu entries, you specify:

Keywords that determine what to add to the menu (a submenu, a menu option, a
separator)

Arguments that further define a menu action, or that determine the conditions
under which a menu action command is enabled or disabled in Rational Rose
RealTime.

Menu actions that specify what action occurs when the menu item is selected.

Pay close attention to the syntax rules that apply to your entries to the Rational Rose
RealTime menu file. For example, the syntax of the menu specifications includes
opening and closing braces. You must include these braces in your specifications for
them to work properly. Remember that each opening brace ({) requires a
corresponding closing brace (}).

8 Chapter 2 - How To...

Creating a New Rational Rose RealTime Menu File

The best way to create a new Rational Rose RealTime menu file is to save an existing
menu file using a new name. This keeps the existing file intact, while providing a

complete menu file to make changes.

Sample Rational RoseRT Menu File

The following example shows a portion of a Rational RoseRT menu file.

Figure 2 Portion of a Rational RoseRT menu file

File Edit Seach Help

M= E3

Menu Help
{
Separator
Menu “Rational on the &Web"
1
Option "&0nline Support™
{
RoseScript
$SCRIPT_PATH\webgorationalsupport.ebx
}
Option "Rational &Home Page"
{
RoseScript $SCRIPT_PATH\webgorationalsupport.ebx
¥
¥
}

Menu Report

option "Show &Participants in uc*

{
enable %selected_items:empty:false
RoseScript &SCRIPT_PATH\participants.ebx

option "&Documentation Report..."

{
RoseScript $SCRIPT_PATH\reportgen.ebx
¥
’
Menu Tools
{

Customizing Rational Rose RealTime Menus 9

Syntax Rules for Rational Rose RealTime Menu File Entries

Follow these rules when specifying menu text:
When a text string contains embedded spaces, enclose the string in double
quotation marks.

Example: “Run Script”
When a text string has no embedded spaces (a single word, for example), enter the
string without any quotation marks.

Example: Validate

When a text string that is not enclosed in quotes includes a special character, the
special character could be misinterpreted as a variable. For this reason, you must
precede any special characters (such as #, 1, or %) with an escape character. The
escape character for all special characters is /.

Examples:

Option Calculate”% creates a menu option whose text reads Calculate %

exec Notepad N””c:\my files\file.txt”~” creates a menu action that executes the
following command line: notepad “c:\my files\file.txt” Note the escape character
followed by an additional set of quotation marks. One set of quotation marks is
necessary because there is a space in my files. The second set, each of which is
preceded by the ” escape character, causes the actual command line to include the
quotation marks as part of the command.

To create a mnemonic for the menu, add an & before the menu text.

Example: “&Run Script”
Allows users to execute the menu item by entering CTL+R

Menu text can include Variables on page 12 and Modifiers on page 11

Example: Option “Validate “%model

Creates a menu option with the text Validate MyModel if the currently loaded model
is MyModel.mdl.

10 Chapter 2 - How To...

Menu File Keywords

Valid keywords for your entries to the Rational Rose RealTime menu file are described
below:

Menu RoseRTMenu - Enter the Menu keyword, followed by the Rational Rose
RealTime menu name to indicate the name of the menu being extended. Example:
Enter Menu Tools as the first line of an entry that extends the Tools menu.

Menu "Menu Text" - Enter the Menu keyword, followed by a text string to indicate
the name of a submenu being added to the menu. Note that quotation marks are
required if the text string contains spaces. Example: Enter Menu “RoseRT Scripts”
to add a submenu called RoseRT Scripts.

Separator - Enter the Separator keyword to add a separator to a list of menu
options. Remember the placement of the Separator keyword controls the
placement of the separator line on the menu.

Option "Command text" - Enter the Option keyword, followed by a text string to
indicate the name of the menu command being added to the menu. Note that
quotation marks are required if the text string contains spaces. Example: Enter
Option “Run My Script” to add a menu command called Run My Script.

Modifiers

Rational Rose RealTime provides a set of Variables on page 12 that correspond to
various Rational Rose model items. You can use these variables in conjunction with a
set of Modifiers on page 11 to determine the conditions under which menu items are
enabled or disabled, as well as to specify specific menu actions.

The format for specifying variables with modifiers is:

vari abl e[: mod1[: npd2[...[: nDd10]]]

Modifiers
The modifiers [cmumod.cpp] are:

mnot
:writeable
:home_unit
:empty
‘unary
first

file
:basename
:directory

Customizing Rational Rose RealTime Menus 11

:elide
:codefile
:headerfile
:sourcefile
:allfiles
:multiple

Variables
The variables [cmuvar.cpp] are:

%current_diagram
Y%selected_items
%model

Y%selected _units
Y%all_units

Y%false

Yotrue

Menu Actions

An action defines the result of activating a menu entry. The required arguments can be
supplied as constants, variables, or Variables on page 12 with Modifiers on page 11.

Block - Displays a modal dialog with ‘arg’ as its prompt. Used following ‘exec’
and an action to suspend the following action until the user chooses to continue

Rosescript - Executes a source or compiled image of a script. You can specify the
script name without its extension. The Rosescript command will search for the
source script first and execute it if found. If not found, it will search for and execute
the compiled script.

Exec pathname [arg2 [arg3 ...[arg10]]] - Executes the program or shell script
contained in the file designated by program-name. (If the program is not located in
the current directory, it must be in a directory in the execute path.) If the final
argument is of the form 'F<filename>' then a file named <filename> is created (if it
does not already exist). All arguments, except the last one are written to the file,
and <filename> is passed as the sole argument to the program.

Notes:
F must be uppercase.
It is up to ‘program’ to delete the file

To pass a string beginning with ’-F” as the final parameter of an exec action,
use ‘--F’. (The character ‘A" does NOT work in this case.)

12 Chapter 2 - How To...

Adding Scripts to a Rational Rose RealTime Menu

To add a script to a Rational RoseRealTime menu:

1
2
3

Open the Rational Rose RealTime Menu file, or create a new one to use in its place.
Edit the Path Map so that it includes a virtual script path.

Modify the Rational Rose RealTime menu file to add the script under the
appropriate menu, being careful to follow all of the menufile syntax rules. To do
this:

In the menu file, locate the menu specification that corresponds to the Rational
Rose RealTime menu to which you want to add the script. Each menu specification
is comprised of the Menu keyword followed by the name of a Rational Rose
RealTime menu. For example, the Tools menu specification begins with Menu Tools.

Within the appropriate menu specification, add a menu option that specifies the
text of the menu command that will run the script (for example, “Run Conversion
Wizard”)

Enter a Rational RoseScript menu action to cause the script to execute when a user
selects the menu command.

4 Save the updated menu file.

Creating New Rational Rose RealTime Scripts

To create a new Rational Rose RealTime script:

1
2
3

Select Tools/New Script from the Rational Rose RealTime menu bar.
Enter your script text.

Select File/Save As from the Rational Rose RealTime menu bar and save the new
script.

Creating a New Script from an Existing Script

To modify an existing script:

1

2

Select Tools/Open Script from the Rational Rose RealTime menu bar.

Select a file from the list of available scripts

Creating New Rational Rose RealTime Scripts 13

3 Click OK to enter the script editor and display the script.

4 Select File/Save As from the Rational Rose RealTime menu bar and save the new
script.

Getting the Rational Rose RealTime Application Object

Whether you are using Rational Rose RealTime Script or Rational Rose RealTime
Automation, you must get the Rational Rose RealTime Application object in order to
control the Rational Rose application.

Using Rational Rose RealTime Script

All Rational Rose RealTime Script programs have a global object called RoseRTApp,
which represents the Rose RealTime Application object.

Using Rational Rose RealTime Automation

To use Rational Rose RealTime as an automation server, you must initialize an
instance of a Rational Rose RealTime application object. You do this by calling either
CreateObject or GetObject (or their equivalents) from within the application you are
using as the OLE controller.

These calls return the OLE Object which implements Rational Rose RealTime API’s
application object.

Refer to the documentation for the application you are using as OLE controller for
details on calling OLE automation objects.

RoseRTApp.CurrentModel Example (Scripting)

The following sample code shows how to get the Rational Rose RealTime application
object in a Rational Rose RealTime Scripting context:

Sub GenerateCode (theModel As RoseRTModel)

'Thi s generates code

End Sub

Sub Main

Gener at eCode RoseRTApp. Cur r ent Model
End Sub

14 Chapter 2 - How To...

RoseRTApp.CurrentModel Example (Automation)

The following sample code shows how to get the Rational Rose RealTime application
object in a Rational Rose RealTime Automation context:

Sub GenerateCode (theModel As Object)

'This generates code

End Sub

Sub Main

Di m RoseRTApp As hj ect

Set RoseRTApp = Creat eObj ect
(“RoseRT. Appl i cation”)

Gener at eCode RoseRTApp. Cur r ent Model
End Sub

A Polling Add-In (automation)

A polling add-in can make calls to sleep and do events, thus interacting with the
toolset at the same time that this script is running. Note, however, that the toolset has
a visible state accessible from the Application object. If you exit the toolset and at least
one Add-In is still running, the toolset becomes invisible and runs in the background
until the Add-In releases its application pointer.

Specifying a Virtual Path for Scripts

Adding or Editing the Virtual Path for Scripts

When you edit the Rational Rose RealTime menu file to include script commands, you
must include one of the following;:

The fully qualified name of the script file to execute
The virtual path that maps to the actual path

Defining a virtual path for scripts simplifies the process of editing the menu file by
allowing you to specify the symbolic virtual path name instead of the complete file
path.

To add or edit a virtual path for scripts:

1 Start Rational Rose RealTime.

2 Select Edit Path Map from the File menu to display the Virtual Path Map dialog.

Specifying a Virtual Path for Scripts 15

3 Check for the $SCRIPT_PATH virtual symbol and do one of the following:

If the symbol exists, select it in the dialog to display its current mapping
information in the lower portion of the dialog.

= If the symbol does not exist, enter it in the Symbol field in the lower portion of
the dialog.
Figure 3 Virtual Path Map

Yirtual Path Map

Wirtual gymbol to actual path mapping:

SROSERT HOME

—I: Program F|IeskF|at|onaI'\F|nse FIeaITlme\E.

EREOTYPES RealTime\E,
$TARGET_SCRIPTS = “Frogram Files'R ational\Roze RealTime\k.
| | »

—Wirtual Symbal, Actual Path, and Cornment
Symbal |$SI2F|IF'T_F'MH
Actual path: IE:\F‘rogram Filez\FationalhRoze Real Browse... |
LComment: I
fdd Delete |

Clear | Cloge | Cancel |

4 Enter the actual path to your Rational Rose RealTime scripts, or use the Browse
button to locate and select the path. (Normally these scripts reside in a Scripts
subdirectory of the Rational Rose RealTime installation directory.) Press Add.

5 When you make changes in the dialog, the Close button becomes an OK button.
Select OK to save your changes and exit the Virtual Path Map.

16 Chapter 2 - How To...

Working with Rational Rose RealTime Diagrams

Each kind of Rational Rose RealTime diagram (class, component, scenario, etc.)
inherits from the Diagram class.

A diagram is made up of ModelElements and ViewElements. A ViewElement is the
physical representation of the actual Rose RealTime Model Element. As such, it is an
object with properties and methods that define its appearance in the diagram window
(position, color, size, etc). You can define multiple ViewElements for any given
ModelElement.

Use Diagram.ViewElements to iterate through the collection of ViewElements
belonging to a diagram.

Use Diagram.ModelElements to iterate through the ModelElements that exist in
the diagram.

Use Diagram.GetViewFrom to find the first ViewElement of a given
ModelElement.

Note: You can only use GetViewFrom to retrieve the first ViewElement defined for the
ModelElement. Even if you have more than one view, you'll always only get the first.

To find out which ViewElements are currently selected in a diagram, iterate
through the diagram’s ViewElements. As you retrieve each ViewElement, use the
ViewElement.IsSelected method to find out whether it is currently selected in the
diagram. You can then retrieve the selected ModelElement, or do any other
processing you want to do based on whether ViewElement is selected.

A short way to retrieve all selected ModelElements from a diagram is to use the
Diagram.GetSelectedModelElements method. Instead of iterating through the
diagram and checking each ViewElement, this method simply returns everything
that is selected.

Working with Model Properties

Working with model properties includes

Managing Default Properties (Extensibility) on page 18
Creating a New Property on page 20

Deleting Model Properties on page 20

Creating a New Property Set on page 20

Getting and Setting the Current Property Set on page 21
Getting Model Properties on page 22

Deleting a Model Property on page 22

Working with Rational Rose RealTime Diagrams 17

Adding a Property to a Set on page 23

Creating a User-Defined Property Type on page 24

Cloning a Property Set on page 25

Setting Model Properties on page 27

Setting Model Properties Using InheritProperty on page 27
Setting Model Properties Using OverrideProperty on page 28
Creating a New Tool on page 29

Managing Default Properties (Extensibility)

In the Rational Rose RealTime user interface environment, you manage a model’s
properties by using the specification editor.

To access the specification editor, you point to Model Properties on the Tools menu and
select Edit.

You then select the appropriate tool tab, element type, and property set to edit. For
example, in the following figure, the tool is C++, the model element type is Class, and
the property set is default.

18 Chapter 2 - How To...

Figure 4 Specification Editor

DOptions EE
Language ¢ Environment I Toolbars I C I C Executable

C External Library I C Library I C TargetRTS I C Generation I C Compilation
C++ TargetRTS I C++ Generation I C++ Compilation I E ditor

Generall File I FDnh"Cc-Iu:-rI Diagraml Filteringl C-:-mpartmentsl Br-:-wserl
Cat | C++ Executable I C++ External Libram I C++ Library

Tupe: [|

Set: Idefault j Clone | Hemaye |

Set properties
¥ GereratelClass
ClassKind: [class =]

ImplementationT ype: I

HeaderPrefacs:

=
< L|_I
Headerk nding:
=l
= =l

0k, I Cancel | Sppll | Help |

From this point on, you can use the specification editor to edit individual properties,
as well as clone (copy) and edit property sets. However, you cannot create new tools
(tabs), new default property sets, or property types. For these capabilities, you must
use the Rational Rose RealTime Extensibility Interface.

For more information on editing default properties and sets in the Rational Rose
RealTime user interface, check the online help for information on Specifications.

In the Extensibility Interface, the DefaultModelProperties object manages the default
model properties for the current model, and is itself a property of the model
(RoseRTApp.CurrentModel.DefaultProperties). For this reason, default properties are
applied to the current model only. When you create default properties they are
applied and saved for the current model, but are not available to any new models you
create.

Working with Model Properties 19

To apply new properties to another model, re-run the script that creates the
properties, specifying the new model as the current model.

Creating a New Property

How To

To create a new property that is not based on an existing property, use the
CreateProperty method. However, if you simply want to set an existing property to a
different current value, you should use InheritProperty or OverrideProperty instead.

Example

Property creation:

b = theModel . Root Logi cal Package. Creat eProperty (myTool, "Saved",
"True", "Bool ean")

Property destruction:
b = theMdel . Root Logi cal Package. | nheritProperty (myTool, "Saved")
Notes on the Example

1 The CreateProperty call in the example creates a new property called Saved. It
applies to the tool MyTool, its value is True and its type is Boolean.

2 The InheritProperty call in the example deletes the property just created.

Deleting Model Properties

If you are deleting a property that belongs to a property set, you can use the
DeleteDefaultProperty method to delete the property from a model.

However, if you created a property using the CreateProperty method, that property is
not part of a property set. To delete such a property, use the InheritPropertymethod.

Creating a New Property Set

To create a new property set from scratch, use the CreateDefaultPropertySet method.

20 Chapter 2 - How To...

Getting and Setting the Current Property Set

How To

To find out the which property set is the current set for a tool, use the
GetCurrentPropertySetName method.

To set the current property set to a particular set name, use the
SetCurrentPropertySetName to the set of your choice.

Note: When setting the current property set, you must supply a set name that is valid
for the specified tool. To retrieve a list of valid set names for a tool, use the
GetDefaultSetNames Method (Element).

Example
Sub RetrieveEl enent Properties (theEl enent As RoseRT. El ement)

Dim Al l Tool s As RoseRT. StringCol |l ection

DimtheProperties As RoseRT. PropertyColl ection

Di mtheProperty As RoseRT. Property

Set Al lTool s = theEl enent. Get Tool Narmes ()

For ToolID = 1 To All Tool s. Count
Thi sTool $ = All Tool s. Get At (Tool I D)
theSet $ = t heEl enent. Get Current PropertySet Name (Thi sTool $)
Set theProperties = theEl ement. Get Tool Properties (ThisTool $)
For ProplD = 1 To theProperties. Count

Set theProperty = theProperties. GetAt (ProplD)

Next ProplD
Next Tool I D
End Sub

Notes on the Example

1 GetToolNames retrieves the tool names that apply to the model element type
called Element and returns them as a string collection called AllTools.

2 The current property set is retrieved for each tool name.
3 GetToolProperties retrieves the property collection that belongs to the current tool.

4 Each property that belongs to the tool’s property collection is retrieved.

Working with Model Properties 21

Getting Model Properties

The Element class provides two methods for retrieving information about model
properties:

To get the current value for a model property, whether inherited or overridden, use
the GetPropertyValue method. This method returns the value as a string

To retrieve the property object itself, use the FindProperty.

Deleting a Model Property

How To

To delete an entire property set from a model, use the DeleteDefaultPropertySet
method.

Example
Sub Del et eDef aul t Properties (theMbdel As RoseRT. Model)
Di m Def aul t Props As RoseRT. Def aul t Model Properti es

Set Defaul t Props = theModel . Defaul t Properties
nmyd ass$ = theMbdel . Root Logi cal Package. Get Propert yCl assNanme ()

b = Defaul t Props. Del et eDefaul t PropertySet (nyC ass$, nyTool $,
"SecondSet ")

b = Defaul t Props. Del et eDefaul t PropertySet (nyC ass$, nyTool $,
"ThirdSet")

b = theMdel . Root Logi cal Package. Set Current Propert ySet Nanme
(nyTool $, "default")

End Sub

22 Chapter 2 - How To...

Notes on the Example

1 The GetPropertyClassName retrieves the valid internal class name to pass as a
parameter on the delete calls.

2 Each DeleteDefaultPropertySet call deletes a property set from the model.

3 The SetCurrentPropertySetName call sets the tool’s current property set its
original set, which happens to be called default.

Adding a Property to a Set

To add a property to a property set, define a subroutine that uses the
AddDefaultProperty method. Notice that this method requires you to pass six
parameters:

Class Name

Tool Name

Set Name

Name of the New Property
Property Type

Value of the New Property

Example
Sub AddDef aul t Properties (theMbdel As RoseRT. Model)
Di m Def aul t Props As RoseRT. Def aul t Model Properti es

Set Defaul t Props = theModel . Defaul t Properties nyCl ass$ =
t heModel . Root Logi cal Package. Get Propert yCl assNanme ()

b = Defaul t Props. AddDef aul t Property (myCl ass$, nyTool $, "Set1",

"StringProperty", "String", "")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $, " Set 1",
"I ntegerProperty", "Integer", "0")

b = Defaul t Props. AddDef aul t Property (nyCl ass$,
nmyTool $, *Set 1", "Fl oat Property", "Float", "0")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $, " Set 1",
"CharProperty", "Char", " ")

b = Defaul t Props. AddDef aul t Property (myCl ass$, nyTool $, "Set1",

"Bool eanProperty", "Bool ean", " True")
End Sub

Working with Model Properties 23

Notes on the Example

1 When you specify the Class Name parameter, you must specify the internal name
of the model element. There are two ways to obtain this information:

If properties are already defined for this element, it will appear in the
specification dialog in the Rational Rose RealTime user interface. Simply check
the specification editor and use the Type drop-down list to find the appropriate
class name.

Use the GetPropertyClassName method. This is the method used in the sample
script. This example retrieves the internal name and returns it in myClass$,
which is then passed as the class name parameter.

2 If the tool you specify does not exist, a new tool will be created. This is actually the
only way to add a new tool to a model.

3 This example adds a property of each of the predefined property types, except the
enumeration type. You use the enumerated type to create your own property types
and add enumerated properties to a set. See Creating a User-Defined Property
Type for instructions and an example.

Creating a User-Defined Property Type

Rational Rose RealTime Extensibility defines a set of predefined property types. When
you add properties to a set, you specify one of these types.

In addition, you can define your own property types and add properties of that type
to a property set.

To create a user-defined property type, add a property whose type is enumeration and
whose value is a string that defines the possible values for the enumeration.

Once you have defined the new type, adding a property of this new type is like
adding any other type of property.

Example
Sub AddDef aul t Properties (theMbdel As RoseRT. Model)
Di m Def aul t Props As
RoseRT. Def aul t Model Properties

Set Defaul t Props = theModel . Defaul t Properties
nyd ass$ =

t heModel . Root Logi cal Package. Get Propert yCl assNane

24 Chapter 2 - How To...

0

b = Defaul t Props. AddDef aul t Property (nyCl ass$,
nmyTool $, "Set1", "MyNewEnuneration",

"Enuneration", "Valuel, Val ue2, Val ue3")

b = Defaul t Props. AddDef aul t Property (nyCl ass$,
nmyTool $, "Set 1", "MyEnuneratedProperty",
"MyNewEnuneration", "Valuel")

End Sub

Notes on the Example

1 This example uses the GetPropertyClassName to retrieve the internal name of the
class to which the property type will apply.

2 The first AddDefaultProperty call adds the enumeration and defines its possible
values in the string iValuel,Value2,Value3i.

3 The second AddDefaultProperty call adds a new property of the new enumerated
type; the property value is set to iValueli.

4 If you want a new type to appear in the specification dialog in the Rational Rose
Realtime user interface, you must actually add a property of that type to the set.
Using the above example, if you simply created the type MyNewEnumeration, but did
not add the property MyEnumeratedProperty, MyNewEnumeration would not appear in
Type drop-down. Once you add the actual property, MyNewEnumeration would
appear in the list of types.

Cloning a Property Set

How To

Cloning allows you to create a copy of an existing property set for the purpose of
creating another property set. This is the easiest way to create a new property set, and
is particularly useful for creating multiple sets of the same properties, but with
different values specified for some or all of the properties.

To clone a property set in a model, use the CloneDefaultPropertySet method.

Working with Model Properties 25

Example
Sub C oneDefaul t Properties (theMdel As RoseRT. Mbdel)
Di m Def aul t Props As
RoseRT. Def aul t Model Properties

Set Defaul t Props = theModel . Defaul t Properties

AddDef aul t Properties theModel

nmyd ass$ = theMbdel . Root Logi cal Package. Get Propert yCl assNane
0

b = Defaul t Props. d oneDef aul t PropertySet (myCl ass$, myTool $,
"default", "SecondSet")

b = Defaul t Props. d oneDef aul t PropertySet (myCl ass$, myTool $,
"default", "ThirdSet")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"SecondSet", "StringProperty", "String", "Unique to SecondSet")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"SecondSet", "IntegerProperty", "Integer", "11")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"SecondSet", "FloatProperty", "Float", "89.9000")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"SecondSet", "EnuneratedProperty", "EnunerationDefinition",
"Val ue2")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"ThirdSet", "StringProperty", "String", "Unique to ThirdSet")

26 Chapter 2 - How To...

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"ThirdSet", "IntegerProperty", "Integer", "20")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"ThirdSet", "FloatProperty", "Float", "90.9000")

b = Defaul t Props. AddDef aul t Property (nyCl ass$, nyTool $,
"Thi rdSet", "EnuneratedProperty", "EnunerationDefinition",
"Val ue3")

End Sub

Notes on the Example

1 This example clones an existing property set twice in order to define a total of three
sets for the class and tool to which the sets apply.

2 All three sets have the same properties as those defined in the original set. In
addition, several new properties are added to the second set and several other new
properties are added to the third set.

Setting Model Properties

There are several ways to set model properties using the Extensibility Interface:

Use the OverrideProperty method to change only the value of a property, and keep
all other aspects of the property definition intact

Use the InheritProperty method to return a previously overridden property to its
original value

Use the CreateProperty or the AddDefaultProperty method to define a new

property from scratch

Setting Model Properties Using InheritProperty

How To
Use the InheritProperty method to reset an overridden property to its original value.

You can also use this method to delete a property that you created using the
CreateProperty method. Because there is no default value to which such a property
can return, InheritProperty effectively deletes it from the model.

Working with Model Properties 27

Example
Sub I nherit Radi oProps (thelLogi cal Package As RoseRT. Logi cal Package)
b = t heLogi cal Package. I nheritProperty (myTool $, "StringProperty")

b = thelogi cal Package. | nheritProperty (nyTool $,
"I nteger Property")

t heLogi cal Package. | nheritProperty (nyTool $, "Fl oat Property")

o
1

b t heLogi cal Package. | nheritProperty (nyTool $,
"Enuner at edPr operty")

End Sub

Notes on the Example

Each of the four lines of the sample subroutine returns the current value of the
specified property to its original value.

Setting Model Properties Using OverrideProperty

How To

The OverrideProperty method allows you to use the default property definition and
simply change its current value. Alternately, you could create a brand new property
by calling the CreateProperty method, but that would require you to specify the
complete property definition, not just the new value.

If the property you specify does not exist in the model’s default set, a new property is
created for the specified object only. This new property is created as a string property.

Example
Sub Overri deRadi oProps (thelLogi cal Package As RoseRT. Logi cal Package)

b = thelogi cal Package. Overri deProperty (nyTool $,
"StringProperty", "This string is overridden")

b = thelogi cal Package. Overri deProperty (nyTool $,
"I ntegerProperty", "1")

28 Chapter 2 - How To...

b = t heLogi cal Package. Overri deProperty (myTool $, "Fl oat Property",
"111.1")

b = thelogi cal Package. Overri deProperty
(myTool $, "Enuner at edProperty”, "Val ue2")

End Sub

Notes on the Example

1 Each of the four lines of the sample subroutine changes the current value of a
specific property as follows:

The property called StringProperty now has a value of This string is
overridden.

The property called IntegerProperty now has value of 1.
The property called FloatProperty now has a value of 111.1

The property called EnumeratedProperty now has a value of Value2.

2 Everything except for current value (tool name, class name, set, property name
and property type) remains the same for the properties.

Creating a New Tool

There is no explicit way to add a new tool (tab) to a model. However, when you create
a new property set or add a new property to a model, you must specify the tool to
which the property or set applies. If the tool you specify does not already exist, it will
be added during the create or add process.

Working with Collections

Working with collections includes
Getting an Element from a Collection (Overview) on page 30
Accessing Collection Elements By Count on page 30
Accessing Collection Elements By Name on page 30
Accessing Collection Elements By Unique ID on page 31

Working with Collections 29

Getting an Element from a Collection (Overview)
There are three ways to get an individual model element from a collection:
Use the GetwithUniquelD method to directly access the element.

Iterate through the collection using the element’s name using FindFirst, FindNext,
and GetAt.

Iterate through the collection using Count followed by GetAt.

Accessing Collection Elements By Count

How To
Follow these steps to access collection elements by count:
1 Iterate through the collection using the Count property.

2 Retrieve the specific element using the GetAt method when the specific element is
found.

Example
Dim Al | Cl asses As RoseRT. C assCol | ection
Di mtheCl ass As RoseRT. d ass
For AsID =1 To Al Cl asses. Count
Set theClass = Al Classes. GetAt (ClsID)
ToDo: Add your code here...
Next ClsID

Accessing Collection Elements By Name

How To
Follow these steps to access an operation belonging to a class:

1 Use FindFirst to find the first occurrence of the specified operation in the
collection.

2 Use FindNext to iterate through subsequent occurrences of the operation.

3 Retrieve the specific operation using the GetAt method when the specific
operation is found.

30 Chapter 2 - How To...

Example

Sub PrintQperations (theClass As RoseRT. d ass, OperationNane As
String)

Di m theOperati on As RoseRT. Operation

Oper I D = theCl ass. Operati ons. FindFirst (QperationNane$)
Do Until OperlD =0

Set theOperation = theCl ass. Operations. Get At (Operl D)

ToDo: Add your code here...
Oper I D = theCl ass. Operati ons. Fi ndNext (Oper|D, OperationNanme$)
Loop

End Sub

Accessing Collection Elements By Unique ID

How To

The most direct and easiest way to get an element from within a collection is by
unique id. Follow these steps to access collection elements by unique ID:

1 Use the GetUniquelD method to obtain the element’s unique id.

2 Use the GetwithUniquelD method, specifying the id you obtained in step 1.

Example

Di m t heCl asses As RoseRT. Cl assCol | ecti on

Di mtheCl ass As RoseRT. d ass

t hel D=t hed asses. t heCl ass. Get Uni quel D ()
theCl ass = theCl ass. Getwi t hUni quel D (t hel D)

Working with Collections 31

Working with Classes

Placing Classes in LogicalPackages

To create a new class and place it in a LogicalPackage, you use the AddClass
method.

To relocate an existing class from one LogicalPackage to another, use the
RelocateClass method.

Working with Rose RealTime Automation

Whether you are using Rational Rose RealTime Script or Rational Rose RealTime
Automation, you must get the Rational Rose RealTime Application object in order to
control the Rational Rose application.

Using Rational Rose RealTime Script

All Rational Rose RealTime Script programs have a global object called RoseRTApp,
which represents the Rose RealTime Application object.

Using Rational Rose RealTime Automation

To use Rational Rose RealTime as an automation server, you must initialize an
instance of a Rational Rose RealTime application object. You do this by calling either
CreateObject or GetObject (or their equivalents) from within the application you are
using as the OLE controller.

These calls return the OLE Object which implements Rational Rose RealTime API’s
application object.

Refer to the documentation for the application you are using as OLE controller for
details on calling OLE automation objects.

32 Chapter 2 - How To...

Working with the Rational Rose RealTime Script Editor

The Rose RealTime Script Editor provides your environment for creating, debugging,
and compiling scripts that work with the Rose RealTime Extensibility Interface.

The Script Editor Window

As shown in Figure 5, the Script Editor's application window contains the following

elements:

Toolbar: a collection of tools that you can use to provide instructions to the Script

Editor

Edit pane: a window containing the source code for the script you are currently

editing

Watch pane: a window that opens to display the watch variable list after you have

added one or more variables to that list

Pane separator: a divider that appears between the edit pane and the watch pane

when the watch pane is open

Status bar: displays the current location of the insertion point within your script

Figure5 Rose RealTime Script Editor

1 Script Editor - AddLineNumbers
Hle Edt Mew EBrowss Debugper Took Window Help
flEal] = o] 0] w| Mmlee|Ea|7=GE] —Taokar
Canbas Mame Walba
AddLinpHumbers .Hain i [} U wrich
fddLineHunbers.Hain startline @ =] Eh pane
—
Sub Haing} | Bcpgmtor
Hotepad.XelectAll
skartline = Hotepad _Sellnfao{l) b
endline = Hotepad_SelInfof?))
For i = startline To endline —Edil Pane
Hotepad _Insert "[" & 1 & "] "
Hext i
End Sub
4] | ;IJ
| |Line: E |Cal: 1 | ——tais har

Working with the Rational Rose RealTime Script Editor 33

Opening a Script

To open a script in the Script Editor.

1

2

Click Open Script from the Tools menu.
Select the script to open and select OK.

The script is displayed in a new Script Editor window.

Creating New Rational Rose RealTime Scripts

Creating a New Script from Scratch

To create a new script in the Script Editor.

1
2
3

4

Click New Script from the Tools menu.
Enter your script in the new Script Editor window.
Enter your script text.

Click Save Script from the File menu and save the new script.

Creating a New Script from an Existing Script

To create a new script from an existing script:

1
2
3

4

Click Open Script from the Tools menu.
Select a file from the list of available scripts
Click OK to enter the Script Editor and display the script.

Click Save Scripts from the File menu and save the new script.

Moving the Insertion Point in a Script

There are two ways to move the insertion point in a script:

With the mouse

By specifying a line number

34 Chapter 2 - How To...

Moving the Insertion Point with the Mouse

Use the following procedure to use the mouse to reposition the insertion point. This
approach is especially fast if the area of the screen to which you want to move the
insertion point is currently visible.

1 Use the scroll bars at the right and bottom of the display to scroll the target area of
the script into view if it is not already visible.

2 Place the mouse pointer where you want to position the insertion point.
3 Click the left mouse button.
The insertion point is repositioned.

Note: When you scroll the display with the mouse, the insertion point remains in its
original position until you reposition it with a mouse click. If you attempt to perform
an editing operation when the insertion point is not in view, the Script Editor
automatically scrolls the insertion point into view before performing the operation.

Moving the Insertion Point to a Specified Line in Your Script

Use the following procedure to jump directly to a specified line in your script. This
approach is especially fast if the area of the screen to which you want to move the
insertion point is not currently visible but you know the number of the target line.

1 Select Goto Line... from the Edit menu.

The Script Editor displays the Goto Line dialog.

Figure 6 Goto Line dialog

Line Mumber; |

(1] I Eancell Help |

2 Enter the number of the line in your script to which you want to move the
insertion point.

3 Click OK button or press ENTER.

Working with the Rational Rose RealTime Script Editor 35

4 The insertion point is positioned at the start of the line you specified. If that line
was not already displayed, the Script Editor scrolls it into view.

Note: The insertion point cannot be moved so far below the end of a script as to scroll
the script entirely off the display. When the last line of your script becomes the first
line on your screen, the script will stop scrolling, and you will be unable to move the
insertion point below the bottom of that screen.
Selecting Text

There are three ways to select text in an open script:

With the mouse

With the keyboard

By selecting an entire line

Selecting Text with the Mouse

To use the mouse to select text in your script:
1 Place the mouse pointer where you want your selection to begin.
2 Do one of the following:

While pressing the left mouse button, drag the mouse until you reach the end
of your selection, and release the mouse button.

While pressing SHIFT, place the mouse pointer where you want your selection
to end and click the left mouse button.

The selected text is highlighted on your display.

36 Chapter 2 - How To...

Figure 7 Selected Scripts Text

ational Rose RealTime - [untitled] - [compile.ebs]

#Eile Edit Wiew Browse Debugger Tools Addlns Window Help -|E|£|
% |Eal@| o] o] il o s [5=C2]
CatchError: d
#IF UNIX Then
tEl=e
Viewport . Open
#End If
Print "#**Error Compiling: " Err . Description
Frint J

CompileScript = FALSE
End Function

Din Module

Sourcelate = FileDateTimne (Sourcelams$)
If FileEzist=(HoduleNan=%) Then
ModuleDate = FileDateTime (HoduleNanes) _IJ
»

<] |

|Line: 47 [Cob1 | v

Selecting Text with the Keyboard

To use keyboard shortcuts to select text in your script:

1 Place the insertion point where you want your selection to begin.

2 While pressing SHIFT, use one of the navigating keyboard shortcuts to extend the

selection to the desired ending point.

The selected text is highlighted on your display.

Selecting an Entire Line

To use the keyboard to select one or more whole lines in your script:

1 Place the insertion point at the beginning of the line you want to select.

2 Press SHIFT + DOWN ARROW.

The entire line, including the end-of-line character, is selected.

3 To extend your selection to include additional whole lines of text, repeat step 2.

Working with the Rational Rose RealTime Script Editor

37

Deleting, Cutting, Copying, and Pasting Text

Deleting Text

To remove characters, selected text, or entire lines from your script:

To remove a single character to the left of the insertion point, press BACKSPACE
once; to remove a single character to the right of the insertion point, press DELETE
once. To remove multiple characters, hold down BACKSPACE or DELETE.

To remove text that you have selected, press BACKSPACE or DELETE.

Cutting a Selection
To cut text from your script and place it on the Clipboard, press CTRL+X.

Copying a Selection
To copy text from your script and place it on the Clipboard, press CTRL+C.

Pasting the Contents of the Clipboard into Your Script

To paste the contents of the Clipboard into your script:
1 Position the insertion point where you want to place the contents of the Clipboard.

2 Press CTRL+V.

Adding Comments to a Script
There are two types of comments you can add to a script:
Adding a Full-Line Comment
Adding a Comment at the End of a Line of Code

Adding a Full-Line Comment

To designate an entire line as a comment:
1 Type an apostrophe (') at the start of the line.
2 Type your comment following the apostrophe.

When your script is run, the presence of the apostrophe at the start of the line will
cause the entire line to be ignored.

38 Chapter 2 - How To...

Adding a Comment at the End of a Line of Code

To designate the last part of a line as a comment:

1 Position the insertion point in the empty space beyond the end of the line of code.
2 Type an apostrophe ().

3 Type your comment following the apostrophe.

When your script is run, the code on the first portion of the line will be executed, but
the presence of the apostrophe at the start of the comment will cause the remainder of
the line to be ignored.

Finding and Replacing Text
Finding Specified Text

To locate instances of specified text quickly anywhere within your script:

1 Move the insertion point to where you want to start your search. (To start at the
beginning of your script, press CTRL+HOME.)

2 Press CTRL+E
The Script Editor displays the Find dialog:

Figure 8 Find Script Text dialog\
Find E E

Fitid what: =] |_EindNext |
Direction: ¢ Up Cancel |
& Down

3 In the Find what field, specify the text you want to find or select it from the list of
previous searches.

4 Click Find Next or press ENTER.

The Find dialog remains displayed, and the Script Editor either highlights the first
instance of the specified text or indicates that it cannot be found.

Working with the Rational Rose RealTime Script Editor 39

5 If the specified text has been found, repeat step 4 to search for the next instance of
it.

Note: If the Find dialog blocks your view of an instance of the specified text, you can

move the dialog out of your way and continue with your search. You can also click

Cancel, which removes the Find dialog while maintaining the established search

criteria, and then press F3 to find successive occurrences of the specified text.

Replacing Specified Text
To automatically replace either all instances or selected instances of specified
text:

1 Move the insertion point to where you want to start the replacement operation. (To
start at the beginning of your script, press CTRL+HOME.)

2 Click Replace from the Edit menu.

The Script Editor displays the Replace dialog;:

Figure 9 Replace dialog
Findwhat: [Hello] | EndNex |
i00d0ye ﬂ Beplace |
Direction: Y
- ﬁzwn Cancel |

Feplace with:

3 In the Find What field, specify the text you want to replace or select it from the list of
previous searches.

4 In the Replace With field, specify the replacement text or select it from the list of
previous replacements.

5 To replace selected instances of the specified text, click Find Next.

The Script Editor either highlights the first instance of the specified text or
indicates that it cannot be found.

6 If the specified text has been found, either click Replace to replace that instance of it
or click Find Next to highlight the next instance (if any).

Each time you click Replace, the Script Editor replaces that instance of the specified
text and automatically highlights the next instance.

40 Chapter 2 - How To...

Running, Pausing, and Stopping Your Script

Running Your Script

To compile and run your script from within the Script Editor, click Go on the toolbar or
press F5.

The script is compiled (if it has not already been compiled), the focus is switched to
the parent window, and the script is executed.

You can also use the Application Class ExecuteScript method to run scripts. See the
ExecuteScript method for details.

Pausing an Executing Script
To suspend the execution of a script that you are running, press CTRL+BREAK.

Execution of the script is suspended, and the instruction pointer (a gray highlight)
appears on the line of code where the script stopped executing.

Note: The instruction pointer designates the line of code that will be executed next if
you resume running your script.

Stopping an Executing Script
Use the following procedure to stop the execution of a script that you are running.
1 Ifitis not paused, pause the script.

2 Click StopDebugging tool on the toolbar (or press SHIFT+F5).

Tracing Script Execution

Stepping Through Your Script

To trace the execution of your script with either the StepInto or StepOver
method:
1 Do one of the following:

Click the StepInto or StepOver tool on the toolbar.

Press F11(StepInto) or F10 (StepOver).

Working with the Rational Rose RealTime Script Editor 41

The Script Editor places the instruction pointer on the sub mai n line of your
script.

Note: When you initiate execution of your script using either of these methods, the
script will first be compiled, if necessary. Therefore, there may be a slight pause
before execution actually begins. If your script contains any compile errors, it will
not be executed. To debug your script, first correct any compile errors, and then
execute it again.

2 To continue tracing the execution of your script, repeat step 1.

3 Each time you repeat step 1, the Script Editor executes the line or the procedure
that contains the instruction pointer and then moves the instruction pointer to the
next line or procedure to be executed.

4 When you finish tracing the execution of your script, either click Go on the toolbar
(or press F5) to run the script at full speed or click Stop Debugging to halt execution
of the script.

Displaying the Calls dialog

When you are stepping through a subroutine, you may need to determine the
procedure calls by which you arrived at that point in your script. Use the following
procedure to use the Calls dialog to obtain this information.

1 Click Calls on the toolbar.

The Script Editor displays the Calls dialog, which lists the procedure calls made by
your script in the course of arriving at the present subroutine.

Figure 10 Script Calls dialog

Calls

[Show

LClose

Help

duly).

2 From the Calls dialog, select the name of the procedure you want to view.
3 Click the Show button.

The Script Editor highlights the currently executing line in the procedure you
selected, scrolling that line into view if necessary. (During this process, the
instruction pointer remains in its original location in the subroutine.)

42 Chapter 2 - How To...

Setting and Removing Breakpoints

You set and remove breakpoints in your script as part of the debugging process.

Starting Debugging Partway through a Script

To begin the debugging process at a selected point in your script:

1 Place the insertion point in the line where you want to start debugging.

2 To set a breakpoint on that line, click Toggle Breakpoint on the toolbar (or press F9).
The line on which you set the breakpoint now appears in contrasting type.

3 Click Go on the toolbar (or press F5).

The Script Editor runs your script at full speed from the beginning and then
pauses prior to executing the line containing the breakpoint. It places the
instruction pointer on that line to designate it as the line that will be executed next
when you either proceed with debugging or resume running the script.

Continuing Debugging at a Line Outside the Current Subroutine

To continue debugging at a line that isn't within the same subroutine, use the
following procedure to move the instruction pointer to that line.

1 Place the insertion point in the line where you want to continue debugging.
2 To set a breakpoint on that line, press F9.
3 To run your script, click Go on the toolbar (or press F5).

The script executes at full speed until it reaches the line containing the breakpoint
and then pauses with the instruction pointer on that line. You can now resume
stepping through your script from that point.

Debugging Selected Portions of Your Script

To debug parts of your script, use the following procedure to facilitate the task by
using breakpoints.

1 Place a breakpoint at the start of each portion of your script that you want to
debug.

Note: Up to 255 lines in your script can contain breakpoints.
2 To run the script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the first
breakpoint and then pauses with the instruction pointer on that line.

Working with the Rational Rose RealTime Script Editor 43

3 Step through as much of the code as you need to.
4 To resume running your script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the second
breakpoint and then pauses with the instruction pointer on that line.

5 Repeat steps 3 and 4 until you have finished debugging the selected portions of
your script.

Removing a Single Breakpoint Manually

To delete breakpoints manually one at a time:

1 Place the insertion point on the line containing the breakpoint that you want to
remove.

2 Click Toggle Breakpoint on the toolbar, or press F9.

The breakpoint is removed, and the line no longer appears in contrasting type.

Removing All Breakpoints Manually

To delete all breakpoints manually in a single operation, click Clear All Breakpoints from
the Debugger menu.

Working with Watch Variables

Watch variables allow you to track the changing values of variables in a script.

Adding Watch Variables

To add a variable to the Script Editor's watch variable list:
1 Click Add Watch on the toolbar or press CTRL+F9.
The Script Editor displays the Add Watch dialog.

Figure 11 Add Watch dialog

Add Watch

Yariable: =] oK |
Procedure: I[,&II Procedures) j Cancel |
=] Help |

Script: I

44 Chapter 2 - How To...

2 Use the controls in the Context box to specify where the variable is defined (locally,
publicly, or privately) and, if it is defined locally, in which routine it is defined.

3 In the Variable Name field, enter the name of the variable you want to add to the
watch variable list.

You can only watch variables of fundamental data types, such as Integer, Long,
Variant, and so on; you cannot watch complex variables such as structures or
arrays. You can, however, watch individual elements of arrays or structure
members.

Use the following syntax to watch individual elements of arrays or structure
members in a script:

[variable [(index,...)] [.menmber [(index,...)]]...]

Where vari abl e is the name of the structure or array variable, i ndex is a literal
number, and member is the name of a structure member.

For example, the following are valid watch expressions:

Table 1 Sample Watch Expressions

Watch Variable Description
a(l) Element 1 of array a
person.age Member age of structure person

company(10,23).person.age Member age of structure pPerson that is at element 10,23
within the array of structures called company

Note: If you are executing the script, you can display the names of all the variables
that are “in scope,” or defined within the current function or subroutine, on the
drop-down Variable Name list and select the variable you want from that list.

4 Click OK or press ENTER.

If this is the first variable you are placing on the watch variable list, the watch pane
opens far enough to display that variable. If the watch pane was already open, it
expands far enough to display the variable you just added.

Note: Although you can add as many watch variables to the list as you want, the
watch pane only expands until it fills half of the Script Editor's application window. If
your list of watch variables becomes longer than that, you can use the watch pane's
scroll bars to bring hidden portions of the list into view.

Working with the Rational Rose RealTime Script Editor 45

Selecting Variables on the Watch List

In order to delete a variable from the Script Editor's watch variable list or modify the
value of a variable on the list, do one of the following;:

Place the mouse pointer on the variable you want to select and click the left mouse
button.

If one of the variables on the watch list is already selected, use the arrow keys to
move the selection highlight to the desired variable.

If the insertion point is in the edit pane, press F6 to highlight the most recently
selected variable on the watch list and then use the arrow keys to move the
selection highlight to the desired variable.

Note: Pressing F6 again returns the insertion point to its previous position in the
edit pane.

Deleting Watch Variables

To delete a selected variable from the Script Editor's watch variable list:
1 Select the variable on the watch list.

2 Click Delete Watch from the Debugger menu, or press DELETE.

Modifying the Value of Variables on the Watch Variable List

When the debugger has control, you can modify the value of any of the variables on
the Script Editor's watch variable list. Use the following procedure to change the
value of a selected watch variable.

1 Place the mouse pointer on the name of the variable whose value you want to
modify and double-click the left mouse button.

2 Select the name of the variable whose value you want to modify and press ENTER
or F2.

46 Chapter 2 - How To...

The Script Editor displays the Modify Variable dialog.

Figure 12 Modify Variable dialog

Modify Variable

Mame: || QK I
_Cencel |

Walue: | Cancel

Help |

Note: The name of the variable you selected on the watch variable list appears in
the Name field.

When you use the Modify Variable dialog to change the value of a variable, you don't
have to specify the context. The Script Editor first searches locally for the definition
of that variable, then privately, then publicly.

Enter the new value for your variable in the Value field.
Click the OK button.

The new value of your variable appears on the watch variable list.

Compiling Your Script

To create compiled script files from your script source:

1

Click Open Script from the Tools menu and select the file that contains the script you
want to compile.

Click Compile from the Debugger menu, or press F7.
Enter the name of the file in which to save the compiled script and select OK.

The script is compiled and saved in a file with a .ebx extension.

Note: You can also use the Application.CompileScriptFile method to compile scripts.
Check the Extensibility Reference or the Extensibility Online Help for more details.

Working with the Rational Rose RealTime Script Editor 47

Using Interscript Calls

Guidelines for Using a Script to Call Another Script

You can write a script that includes code that calls and executes another script. The
following guidelines apply to this process:

You can only call and execute a compiled script from within another script.
Use the LoadScript method to load the script into memory.
Use the FreeScript to unload the script from memory.

Even if you call LoadScript multiple times, the script is only loaded into memory
one time. However, for each LoadScript call you make, you must include a
corresponding FreeScript call. If you do not do this, the script will not be unloaded
from memory.

Debugging Interscript Calls

To debug a script that uses interscript calls:

1 Enter the call to the compiled script you are including and set a breakpoint on the
call.

2 Click Steplinto from the Debugger menu.

The Script Editor displays the source code for the compiled script you are calling, and
steps through it line by line.

When the trace of the called script is complete, the Script Editor redisplays the calling
script.

Note: The script you are calling must be compiled with debugging turned on. See
Compiling Your Script, earlier in this chapter, for details.

Working with the Dialog Editor

Inserting a Dialog into Your Script

To insert a dialog into your script:

1 Place the insertion point where you want the BasicScript code for the dialog to
appear in your script.

2 From the Edit menu, click Insert Dialog.

48 Chapter 2 - How To...

3

4

The Script Editor's application window is temporarily disabled, and Dialog Editor
appears, displaying a new dialog in its application window.

Use the Dialog Editor to create your dialog.
Exit and Return from Dialog Editor and return to the Script Editor.

The Script Editor automatically places the code for the dialog in your script at the
location of the insertion point.

Editing an Existing Dialog

To edit an existing dialog template in your script:

1

2

Select the BasicScript code for the entire dialog template.
From the Edit menu, click Edit Dialog.

The Script Editor's application window is temporarily disabled, and Dialog Editor
appears, displaying in its application window a dialog created from the code you
selected.

Use the Dialog Editor to modify your dialog.
Exit from the Dialog Editor and return to the Script Editor.

The Script Editor automatically replaces the BasicScript code you originally
selected with the revised code generated by the Dialog Editor.

Displaying and Adjusting the Grid

To display and adjust the X and Y settings, which can help you position controls
more precisely within your dialog:

1

Press CTRL+G.

The Dialog Editor displays the following dialog:

Figure 13 Grid Dialog

Grid
2
Spacing
Horizantal <] : |4_ Cancel |
Wertical [17] : |4_ Help |

Working with the Rational Rose RealTime Script Editor 49

2 To display the grid in your dialog, click Show grid.
3 To change the current X and Y settings, enter new values in the X and Y fields.

Note: The values of X and Y in the Grid dialog determine the grid's spacing.
Assigning smaller X and Y values produces a more closely spaced grid, which
enables you to move the mouse pointer in smaller horizontal and vertical
increments as you position controls. Assigning larger X and Y values produces the
opposite effect on both the grid's spacing and the movement of the mouse pointer.
The X and Y settings entered in the Grid dialog remain in effect regardless of
whether you choose to display the grid.

4 Click OK or press ENTER.

The Dialog Editor displays the grid with the settings you specified.

Figure 14 Dialog Edition with Grid Displayed

#. Dialog Editor _ (O] x|
File Edit Contrals Help

R N o= (= SO = i a8 ol e A

| Dialog: x: 51, 38, Width: 180, Height: 96

5 With the grid displayed, line up the crosshairs on the mouse pointer with the dots
on the grid to position controls precisely and align them with respect to other
controls.

50 Chapter 2 - How To...

Changing Titles and Labels

Use the following procedure to change the title of a dialog, as well as the labels of
group boxes, option buttons, push buttons, text controls, and check boxes:

1 Display the Information dialog for the dialog whose title you want to change or for
the control whose label you want to change.

2 Enter the new title or label in the Text$ field.

Note: Dialog titles and control labels are optional. Therefore, you can leave the Text$
field blank.

3 If the information in the Text$ field should be interpreted as a variable name rather
than a literal string, click Variable Name.

4 Click OK or press ENTER.

The new title or label is now displayed on the title bar or on the control.

Assigning Accelerator Keys
To designate a letter from a control's label to serve as the accelerator key for
that control:

1 Display the Information dialog for the control to which you want to assign an
accelerator key.

2 In the Text$ field, type an ampersand (&) before the letter you want to designate as
the accelerator key.

3 Click OK or press ENTER.

The letter you designated is now underlined on the control's label, and users will be
able to access the control by pressing ALT + the underlined letter.

Capturing Standard Windows Dialogs

Use the following procedure to capture the standard Windows controls from any
standard Windows dialog in another application, and insert those controls into the
Dialog Editor for editing:

1 Display the dialog you want to capture.
2 Open the Dialog Editor.

3 Click Capture Dialog from the File menu.

Working with the Rational Rose RealTime Script Editor 51

The Dialog Editor displays a dialog that lists all open dialogs that it is able to
capture:

Figure 15 Capturing a Dialog
Select the Dialog Box to Capture

Available Dialogs:

4 Select the dialog that you want to capture, then click OK.

Note: The Dialog Editor only supports standard Windows controls and standard
Windows dialogs. Therefore, if the target dialog contains both standard Windows
controls and custom controls, only the standard Windows controls will appear in the
Dialog Editor's application window. If the target dialog is not a standard Windows
dialog, you will be unable to capture the dialog or any of its controls.

Testing Your Dialogs

The Dialog Editor lets you run your edited dialog purposes. When you click Test, your
dialog comes alive, which gives you an opportunity to make sure it functions
properly and fix any problems before you incorporate the dialog template into your
script.

Before you run your dialog, take a moment to look it over for basic problems such as
the following:

Does the dialog contain a command button - that is, a default OK or Cancel
button, a push button, or a picture button?

Does the dialog contain all the necessary push buttons?

Does the dialog contain a Help button if one is needed?

Are the controls aligned and sized properly?

If there is a text control, is its font set properly?

Are the close box and title bar displayed (or hidden) as you intended?
Are the control labels and dialog title spelled and capitalized correctly?

Do all the controls fit within the borders of the dialog?

52 Chapter 2 - How To...

Could you improve the design of the dialog by adding one or more group boxes to
set off groups of related controls?

Could you clarify the purpose of any unlabeled control (such as a text box, list box,
combo box, drop list box, picture, or picture button) by adding a text control to
serve as a de facto label for it?

Have you made all the necessary accelerator key assignments?

After you've fixed any elementary problems, you're ready to run your dialog so
you can check for problems that don’t become apparent until a dialog is activated.

Testing your dialog is an iterative process that involves running the dialog to see how
well it works, identifying problems, stopping the test and fixing those problems, then
running the dialog again to make sure the problems are fixed and to identify any
additional problems, and so forth—until the dialog functions the way you intend.

To test your dialog and fine-tune its performance:

1 Click Run on the toolbar, or press F5, to make the dialog operational.

2 Check the dialog’s functions.

3 To stop the test, click Run, press F5, or double-click the dialog's close box (if it has
one).

4 Make any necessary adjustments to the dialog.

5 Repeat steps 1-4 as many times as you need in order to get the dialog working
properly.

Incorporating Dialogs or Controls into Your Script

You create dialogs and dialog controls in the Dialog Editor. To incorporate them into a

script, you copy them to the Clipboard. When you copy the dialog to the Clipboard, it

is stored in the form of Basic Script statements. You then paste the contents of the

Clipboard into the script.

To incorporate a dialog or control into your script:

1 Select the dialog or control that you want to incorporate into your script.

2 Press CTRL+C.

3 Open your script and paste in the contents of the Clipboard at the desired point.

The dialog template or control is now described in BasicScript statements in your
script, as shown in the following example

Working with the Rational Rose RealTime Script Editor 53

Figure 16 Sample Dialog in Basic Script

{;’*'Hatinnal Roze RealTime - [untitled] - [adddep.ebsz]

G%Eile Edit Wiew Browse Debugger Toolz Addins Window Help =121
o ol ol uf oofss]E[==(c=|
Begin Dialog UserDialog ., 180,96,"" ﬂ

COEButton 132.18,40,14

CancelButton 132.54,40,14

CheckBox 6,24,.47. 8, "Checl Box". CheckBoxl
CheckBox 6,54 47,8, "Check Box" ., . CheckBox?Z
LiztBox 66.24.48,40 ListBoxl%. ListBo=l

End Dialog -
<] | _’|_I

|Line: 8 |Col 17 |Modified

Selecting Controls
Do one of the following to select a control in a dialog:

+ With the Pick tool active, place the mouse pointer on the desired control and click
the mouse button.

+ With the Pick tool active, press the TAB key repeatedly until the focus moves to the
desired control.

The control is now surrounded by a thick frame to indicate that it is selected and
you can edit it.

Selecting Dialogs
Do one of the following to select an entire dialog:

= With the Pick tool active, place the mouse pointer on the title bar of the dialog or on
an empty area within the borders of the dialog (that is, on an area where there are
no controls) and click the mouse button.

+ With the Pick tool active, press the TAB key repeatedly until the focus moves to the
dialog.

The dialog is now surrounded by a thick frame to indicate that it is selected and you
can edit it.

54 Chapter 2 - How To...

Repositioning Items

Repositioning Items with the Mouse
To reposition items in a dialog or control by dragging it with the mouse:

1 With the Pick tool active, place the mouse pointer on an empty area of the dialog or
on a control.

2 Depress the mouse button and drag the dialog or control to the desired location.

Note: The increments by which you can move a control with the mouse are governed
by the grid setting. For example, if the grid's X setting is 4 and its Y setting is 6, you'll
be able to move the control horizontally only in increments of 4 X units and vertically
only in increments of 6 Y units. This feature is handy if you're trying to align controls
in your dialog. If you want to move controls in smaller or larger increments, press
CTRLAG to display the Grid dialog and adjust the X and Y settings.

Repositioning Items with the Arrow Keys

To reposition items in a dialog or control by dragging it with the arrow keys:
1 Select the dialog or control that you want to move.

2 Do one of the following:

Press an arrow key once to move the item by 1 X or Y unit in the desired
direction.

Steadily press an arrow key to “nudge” the item gradually along in the
desired direction.

Note: When you reposition an item with the arrow keys, a faint, partial afterimage of
the item may remain visible in the item's original position. These afterimages are rare
and will disappear once you test your dialog.

Repositioning Dialogs with the Dialog Information Dialog

Use the following procedure to reposition items in a dialog or control by using the
Dialog Information dialog.

1 Display the Information dialog.

Note: For information on displaying the Dialog Information dialog, see Displaying
the Dialog Information dialog, later in this chapter.

Working with the Rational Rose RealTime Script Editor 55

2 Do one of the following:
Change the X and Y coordinates in the Position group box.
Leave the X and/or Y coordinates blank.

3 Click OK or press ENTER.

If you specified X and Y coordinates, the dialog moves to that position. If you left
the X coordinate blank, the dialog will be centered horizontally relative to the
parent window of the dialog when the dialog is run. If you left the Y coordinate
blank, the dialog will be centered vertically relative to the parent window of the
dialog when the dialog is run.

Repositioning Controls with the Dialog Information Dialog

1 Use the following procedure to move a selected control by changing its
coordinates in the Dialog Information dialog for that control.

Note: For information on displaying the Dialog Information dialog, see Displaying
the Dialog Information dialog, later in this chapter.

2 Display the Information dialog for the control that you want to move.
3 Change the X and Y coordinates in the Position group box.
4 Click OK or press ENTER.

The control moves to the specified position.

Resizing Items

Resizing Items with the Mouse

To change the size of a selected dialog or control by dragging its borders or corners
with the mouse:

1 With the Pick tool active, select the dialog or control that you want to resize.
2 Place the mouse pointer over a border or corner of the item.

3 Depress the mouse button and drag the border or corner until the item reaches the
desired size.

56 Chapter 2 - How To...

Resizing Items with the Information Dialog

To change the size of a selected dialog or control by changing its Width or Height
settings in the Information dialog.

1
2
3

Display the Information dialog for the dialog or control that you want to resize.
Change the Width and Height settings in the Size group box.
Click the OK button or press ENTER.

The dialog or control is resized to the dimensions you specified.

Resizing Selected Items Automatically

You can adjust the borders of certain controls automatically to fit the text displayed on
them.

To resize selected controls automatically:

1

With the Pick tool active, select the option button, text control, push button, check
box, or text box that you want to resize.

Press F2.

The borders of the control will expand or contract to fit the text displayed on it.

Adding Controls

Use the following procedure to add one or more controls to your dialog using simple
mouse and keyboard methods.

1

From the toolbar, choose the tool corresponding to the type of control you want to
add.

Note: When you pass the mouse pointer over an area of the display where a
control can be placed, the pointer becomes an image of the selected control with
crosshairs (for positioning purposes) to its upper left. The name and position of the
selected control appear on the status bar. When you pass the pointer over an area
of the display where a control cannot be placed, the pointer changes into a circle
with a slash through it (the “prohibited” symbol).

Note: You can only insert a control within the borders of the dialog you are
creating. You cannot insert a control on the dialog's title bar or outside its borders.

Place the pointer where you want the control to be positioned and click the mouse
button.

Working with the Rational Rose RealTime Script Editor 57

The control you just created appears at the specified location. (To be more specific,
the upper left corner of the control will correspond to the position of the pointer's
crosshairs at the moment you clicked the mouse button.) The control is
surrounded by a thick frame, which means that it is selected, and it may also have
a default label.

After the new control has appeared, the mouse pointer becomes an arrow, to
indicate that the Pick tool is active and you can once again select any of the
controls in your dialog.

3 To add another control of the same type as the one you just added, press CTRL+D.
A duplicate copy of the control appears.
4 To add a different type of control, repeat steps 1 and 2.
5 To reactivate the Pick tool, do one of the following:
Click the arrow-shaped tool on the toolbar.

Place the mouse pointer on the title bar of the dialog or outside the borders of
the dialog (that is, on any area where the mouse pointer turns into the
“prohibited” symbol) and click the mouse button.

Duplicating Controls

Use the following procedure to use the Dialog Editor's duplicating feature, which
saves you the work of creating additional controls individually if you need one or
more copies of a particular control:

1 Select the control that you want to duplicate.
2 Press CTRL+D.
A duplicate copy of the selected control appears in your dialog.

3 Repeat step 2 as many times as necessary to create the desired number of duplicate
controls.

58 Chapter 2 - How To...

Adding Pictures to a Dialog

You can add pictures to a dialog from a file or from a picture library.

Adding Pictures from Files

Use the following procedure to display a Windows bitmap or metafile from a file on a
picture control or picture button control by using the control's Information dialog to
indicate the file in which the picture is contained.

1 Display the Information dialog for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the NameS$ field, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File dialog and
use it to find the file.

4 Click OK or press ENTER.
The picture control or picture button control now displays the picture you
specified.

Adding Pictures from Picture Libraries

Use the following procedure to display a Windows bitmap or metafile from a file on a
picture control or picture button control by using the control's Information dialog to
indicate the file in which the picture is contained.

1 Display the Information dialog for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the NameS$ field, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File dialog and
use it to find the file.

4 Click OK or press ENTER.

The picture control or picture button control now displays the picture you
specified.

Working with the Rational Rose RealTime Script Editor 59

Pasting Items into Dialog Editor

Pasting Existing Dialogs into Dialog Editor

If you want to modify a BasicScript dialog template contained in your script, use the
following procedure to select the template and paste it into dialog editor for editing:

1 Copy the entire BasicScript dialog template (from the Begi n Di al og instruction
to the End Di al og instruction) from your script to the Clipboard.

2 Open the Dialog Editor.
3 Press CTRL+V.

4 When the Dialog Editor asks whether you want to replace the existing dialog, click
Yes.

The Dialog Editor creates a new dialog corresponding to the template contained
on the Clipboard.
Pasting Controls from Existing Dialogs into Dialog Editor

If you want to modify the BasicScript statements in your script that correspond to one
or more dialog controls, use the following procedure to select the statements and
paste them into Dialog Editor for editing:

1 Copy the BasicScript description of the control(s) from your script to the
Clipboard.

2 Open Dialog Editor.
3 DPress CTRL+V.

Dialog Editor adds to your current dialog one or more controls corresponding to
the description contained on the Clipboard.

Displaying the Information Dialogs
There are two types of Information dialogs:
Information dialog for Dialogs

Information dialog for Controls

60 Chapter 2 - How To...

Displaying the Information Dialogs for Dialogs

Do one of the following to display the Information dialog to check and adjust
attributes that pertain to the dialog as a whole:

With the Pick tool active, place the mouse pointer on an area of the dialog where
there are no controls and double-click the mouse button.

With the Pick tool active, select the dialog and either click the Information tool on
the toolbar, press ENTER, or press CTRL+1.

The following figure shows the dialog Information dialog;:

Figure 17 Dialog Information Dialog

i Dialog Box Information

Poaszition Size Style

I “idth: I-IB':I ¥ Cloze box
. Cancel
N I Height: ISE ¥ Titie

Help

Texts: I ™ “ariable Name

Harne: IUserDiaIDg

il B

Function: |

Picture Librany: | [~ “arablz Mame

Browse... |

Attributes You Can Adjust with the Dialog Information dialog

The dialog Information dialog can be used to check and adjust the following
attributes, which pertain to the dialog as a whole.

Position (optional): X and Y coordinates on the display, in dialog units
Size (mandatory): width and height of the dialog, in dialog units

Style (optional): options that allow you to determine whether the close box and
title bar are displayed

Text$ (optional): text displayed on the title bar of the dialog

Working with the Rational Rose RealTime Script Editor 61

Name (mandatory): name by which you refer to this dialog template in your
BasicScript code

Function (optional): name of a BasicScript function in your dialog
Picture Library (optional): picture library from which one or more pictures in the
dialog are obtained

Displaying the Information Dialogs for Controls

Do one of the following to display the Information dialog for a control to check and
adjust attributes that pertain to that particular control.

With the Pick tool active, place the mouse pointer on the desired control and
double-click the mouse button.

With the Pick tool active, select the control and either click the Information tool on
the toolbar, press ENTER, or press CTRL+1.

The Dialog Editor displays an Information dialog corresponding to the control you
selected. For example:

Figure 18 Control Information dialog

i Puzh Button Information |
Pozitian Size
e |35 Safidth: |44

Cancel
T |3D Height: I‘l‘1r

Help

il

[“ariable Mame

Q=T 6o (Puish Buttan

dentifier: I.F'ushButtu:um

62 Chapter 2 - How To...

Attributes You Can Adjust with the Information Dialogs for Controls

Control Information dialogs can be used to check and adjust the attributes of the
following controls:

Default OK Button Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Default Cancel Button Information dialog

Position (mandatory): X and Y coordinates within the dialog, in dialog
units.

Size (mandatory): width and height of the control, in dialog units.

Identifier (optional): name by which you refer to a control in your
BasicScript code.

Help Button Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.
FileName$ (optional): Name of the help file that you want to invoke.
Context& (mandatory): The context ID specifying which help topic to jump to.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Push Button Information dialog.
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.
Text$ (optional): text displayed on a control.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Working with the Rational Rose RealTime Script Editor 63

Option Button Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units
Text$ (optional): text displayed on a control.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Option Group (mandatory): name by which you refer to a group of option
buttons in your BasicScript code.

Check Box Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.
Text$ (optional): text displayed on a control.

Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

Group Box Information dialog.
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.
Text$ (optional): text displayed on a control.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Text Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.
Text$ (optional): text displayed on a control.
Font (optional): font in which text is displayed.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

64 Chapter 2 - How To...

Text Box Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units

Multiline (optional): option that allows you to determine whether users can
enter a single line of text or multiple lines.

Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been

processed.

List Box Information dialog.
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.

Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

Array$ (mandatory): name of an array variable in your BasicScript code.
Combo Box Information dialog

Position (mandatory): X and Y coordinates within the dialog, in dialog units.

Size (mandatory): width and height of the control, in dialog units.

Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been

processed.

Array$ (mandatory): name of an array variable in your BasicScript code.
Drop List Box Information dialog

Position (mandatory): X and Y coordinates within the dialog, in dialog units.

Size (mandatory): width and height of the control, in dialog units.

Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

Array$ (mandatory): name of an array variable in your BasicScript code.

Working with the Rational Rose RealTime Script Editor 65

Picture Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units.

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library.

Frame (optional): option that allows you to display a 3-D frame.

Picture Button Information dialog
Position (mandatory): X and Y coordinates within the dialog, in dialog units.
Size (mandatory): width and height of the control, in dialog units

Identifier (optional): name by which you refer to a control in your BasicScript
code.

Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library.

Opening a Model

66

OpenModel will always return a model. If OpenModel fails to open the specified
model, it will return the default empty model. To verify that the model you wanted
was opened, use code similar to the following:

Set theModel = theApplication. QpenhMdel (nodel Fi | eNane)

If Not theModel.GetFileNane () = nodel Fil eName Then
theApplication. WiteErrorLog "Bad nodel "

End |f

Chapter 2 - How To...

Modifying a Property Value

A property is a user-extensible part of the RRTEI that allows name-value pairs to be
attached to every model element. Properties capture information that is specific to a
particular project or add-in.

We will use RRTEI to modify a value for a protocol. For example, the
TypeSafeSignals property on the C++ TargetRTS tab for a Protocol specification
property (C++ Language Add-In). The Property class has the following public
attributes (see the Extensibility Interface Reference for Rational Rose RealTime):

Name : String Name of the property

ToolName : String A tool can be a programming language tool (such as C++) or a
user-defined Add-in to Rational Rose RealTime. A tool
corresponds to a tab in the property specification; however the
ToolName and the tab title are not always identical.

Type: String Indicates the type of information stored by the property.

Value : String Indicates the value of the property

The OverrideProperty operation allows you to modify the value of a property for a
particular element:

OverrideProperty (theTool Name : String, thePropNane : String,
theValue : String) : Bool ean

To use this function, you need to know the tool name, which does not necessarily
match the title on the tab (for example, C++ TargetRTS). To find this information, we
can create a Rose RealTime script that queries a protocol element to find its properties
and their associated tool names. The following subroutine takes a protocol element
and prints all of its properties:
Sub PrintProperties (theProtocol As RoseRT. Protocol)
Di mall Properties As RoseRT. PropertyCol | ection
Di mtheProperty As RoseRT. Property
Set all Properties = theProtocol. GetAl |l Properties()
For i = 1 To allProperties. Count
Set theProperty = allProperties. Get At (i)
Print "Name: "; theProperty. Nane
Print Spc(5); "Value: "; theProperty. Val ue
Print Spc(5); "Tool Name: "; theProperty. Tool Nane

Modifying a Property Value 67

Print Spc(5); "Type: "; theProperty. Type
Next i
End Sub

The output looks similar to the following:

Name: Backwar dsConpati bl e
Val ue: Fal se
Tool Nane: OT: : CppTar get RTS
Type: Bool ean

Name: Version
Val ue: 0
Tool Nane: OT: : CppTar get RTS
Type: |nteger

Narme: TypeSafeSignals
Val ue: True
Tool Nane: OT: : CppTar get RTS
Type: Bool ean

You now have all the information required to use the OverrideProperties function.

Note: Itis important to use caution when using the OverrideProperties function;
specifying a property name that does not exist causes the creation of a new property
instead of modifying an existing one.

The following subroutine de-selects (un-checks) the TypeSafeSignals box for the
specified protocol:
Sub TurnOf f TypeSaf eSi gnal s (theProtocol As RoseRT. Protocol)
If theProtocol.IsMdifiable Then
Print "Changing properties of: "; theProtocol.Nane
If Not theProtocol.OverrideProperty("OT:: CppTarget RTS",
"TypeSaf eSi gnal s", "False") Then
Print "Error nodifying the properties of protocol:

"o
1

t hePr ot ocol . Name
End |f
End I f
End Sub

Note: The IsModifiable function call is necessary to verify that the model element can
be modified (for example, it was checked out, if necessary, and not read-only).

Chapter 2 - How To...

This example illustrates how to modify the TypeSafeSignals property for a protocol
defined by the C++ Language Add-In. However, you can create subroutines to
modify any of the properties available for Rose RealTime Add-Ins. The properties are
not always documented in the online help, but you can use the GetAllProperties
function to determine the name, type, and associated tool for all properties.

For additional information, contact Rational Customer Support.

Setting the Top Capsule of a Component

The TopCapsule field for a component is a property of the specific Language Add-In
used. This property is a structured property which is not thoroughly documented in
the online help.

The following subroutine sets the TopCapsule field for a component given the
component and the capsule:
Sub Set TopCapsul e (theConponent As RoseRT. Conponent, theCapsul e As
RoseRT. Capsul e)
First add the capsule as a reference if it isn't already
I f theConponent . Assi gnedC asses. Fi ndFirst (theCapsul e. Namre) = 0

Then
If Not theConponent. Assi gnCl ass(theCapsul e) Then
MsgBox "Error configuring conponent."
Exit Sub
End |f
End I f
t ool Name$ = " OT: : CppExec" "Modify this for other Language
Add- | ns

propertyName$ = "TopCapsul e"
If you print out the "TopCapsul e"property it |ooks like this:

' [event _ui
descri pti on=" MyCapsul e'
caption="Select...']
"Logi cal View : MyCapsul e" 39B53F390336
This is a structured property, that is, it contains sections
(e.g. event_ui) that contain field nanes (e.g. description) and

val ues (for exanple, MyCapsule). It also contains the nodel
path

and unique id entry.

Setting the Top Capsule of a Component 69

Since there is no OverrideProperty function that takes a

StructuredProperty, we first have to override the default
property,
get its StructuredPropery, and nodify this.

If Not theConponent.OverrideProperty(tool Name, propertyName, "")
Then

MsgBox "Error configuring conponent."
Exit Sub
End |f

Dimsp As RoseRT. StructuredProperty

Set sp =
t heConponent . Get Tool Properti es(t ool Name) . Get Fi r st (propertyName)

sp. Set Fi el dval ue "event _ui", "description", theCapsule.Nanme
sp. Set Fi el dval ue "event _ui ", "caption", "Select..."

Di m ful | Capsul eNane As String

ful | Capsul eName = """" + theCapsul e. Get Qual i fi edName() + """" + "
+ theCapsul e. Get Uni quel D()

sp. SetFieldvalue "", "", full Capsul eName
End Sub

The following script illustrates how to use the SetTopCapsule subroutine (described
above). This script creates components for all the capsules in the model, and puts
them in to a component package called ComponentsForAll.

Di m t heModel As RoseRT. Mbdel

Sub Set TopCapsul e (theConponent As RoseRT. Conponent, theCapsul e As
RoseRT. Capsul e)
First add the capsule as a reference if it isn't already

I f theConponent . Assi gnedC asses. Fi ndFirst (t heCapsul e. Namre) = 0
Then

If Not theConponent. Assi gnCl ass(theCapsul e) Then
MsgBox "Error configuring conponent."
Exit Sub
End | f
End |f

t ool Name$ = "OT: : CppExec" "Modify this for other Language
Add- I ns

propertyName$ = "TopCapsul e"

" If you print out the "TopCapsule"property it looks like this:
' [event _ui
' description=" MyCapsul e’
' caption='"Select..."']
' "Logi cal View :MCapsul e" 39B53F390336
' This is a structured property, that is, it contains sections
' (e.g. event_ui) that contain field nanes (e.g. description) and
' values (e.g. MyCapsule). It also contains the nodel path
' and unique id entry.
' Since there is no OverrideProperty function that takes a

' StructuredProperty, we first have to override the default
property,
' get its StructuredPropery, and nodify this.

If Not theConponent.OverrideProperty(tool Name, propertyName, "")
Then

MsgBox "Error configuring conponent."
Exit Sub
End |f

Dimsp As RoseRT. StructuredProperty

Set sp =

t heConponent . Get Tool Properti es(t ool Name) . Get Fi r st (propertyName)
sp. Set Fi el dval ue "event _ui", "description", theCapsule.Nanme
sp. Set Fi el dval ue "event _ui ", "caption", "Select..."

Di m ful | Capsul eNane As String

full Capsul eName = """" + theCapsul e. Get Qual i fi edName() + """" + "
"o+
t heCapsul e. Get Uni quel ()

sp. SetFieldvalue "", "", full Capsul eName
End Sub

Sub nyCr eat eConponent (thisCapsul e As RoseRT. Capsul e)

Setting the Top Capsule of a Component 71

local strings
Conponent sFor Al | $ = " Conponent sFor Al | "

for retrieving the conponent
Di m myConponent As RoseRT. Conponent
Di m myConponents As RoseRT. Conponent Col | ecti on
Di m t heConponent Packages As RoseRT. Conponent PackageCol | ecti on
Di m myConponent Package As RoseRT. Conponent Package

set up Package for Conponents created with script if it does
not exi st.

Set t heComponent Packages =
t heMbdel . Root Conponent Package. Get Al | Conponent Pack

ages()
i = theConponent Packages. Fi ndFi r st (Conponent sFor Al |)
If i =0 Then

Set myConponent Package =
t heModel . Root Component Package. AddConponent Packa

ge (ConponentsForAll)
El se
Set myConponent Package = t heConponent Packages. Get At (i)
End I f

add conponent if it does not already exist
Set myConponents = myConponent Package. Get Al | Corponent s()
i = myConponent s. Fi ndFi r st (t hi sCapsul e. Nane)
If i =0 Then

Set myConponent =
nmy Conponent Package. AddConponent (t hi sCapsul e. Nare)

Set TopCapsul e nyConponent, thisCapsul e
End I f
End Sub

Sub Main

Di mt heCapsul es As RoseRT. Capsul eCol | ecti on
Di m nyCapsul e As RoseRT. Capsul e

72 Chapter 2 - How To...

Set theMbdel = RoseRTApp. Current Model

' retrieve the capsul es

Set theCapsul es = theMbdel . Get Al | Capsul es ()

For i = 1 To theCapsul es. Count
Set nyCapsul e = theCapsul es. Get At (i)
' the next if statement is to avoid creating
' conponents that reference capsul es not owned
' by the Mbdel (i.e. in RTd asses)
| f myCapsul e. i sOwmed Then

myCr eat eConponent mnyCapsul e

End |f

Next i

End Sub

For additional information, contact Rational Customer Support.

Setting the Top Capsule of a Component 73

74 Chapter 2 - How To...

Rational Rose RealTime
Extensibility Interface
Reference

Contents
This chapter is organized as follows:

Logical Package Structure on page 80
Application Classes on page 81
AddIn on page 86

Application on page 93
ContextMenultem on page 122
MenuState on page 123

PathMap on page 124

RsMenuState on page 127
Workspace on page 128

Extensibility Classes on page 130
Collection on page 131

RoseBase on page 139

RRTEIObject on page 140

RichTypes on page 141

RichType on page 142
RichTypeValuesCollection on page 144
Model Classes on page 145
Component View Classes on page 145
Component on page 149
ComponentPackage on page 170

Core Model Classes on page 178
ControllableElement on page 184
DefaultModelProperties on page 194
Element on page 204
ExternalDocument on page 215
Model on page 218

ModelElement on page 236

Package on page 239

Property on page 243
RsExternalDocumentType on page 244
StructuredProperty on page 244

Deployment View Classes on page 246
ComponentInstance on page 249
DeploymentPackage on page 252
Device on page 258

Processor on page 262

Logical View Classes on page 267
LogicalPackage on page 269
Association Classes on page 288
Association on page 290
AssociationEnd on page 294
AssociationEndContainment on page 298
AssociationEndVisibilityKind on page 299
Classifier Classes on page 299
Capsule on page 303

Class on page 304
ClassConcurrency on page 310
ClassKind on page 310

Classifier on page 310

Classifier VisibilityKind on page 327
Parameter on page 328

Protocol on page 329

RsClassKind on page 332
RsConcurrency on page 334

Signal on page 335

Feature Classes on page 336
Attribute on page 338
AttributeContainment on page 340
AttributeVisibilityKind on page 340
Operation on page 340
OperationConcurrency on page 345
OperationVisibilityKind on page 345
OwnerScope on page 346
RsOwnerScope on page 346
Collaboration Classes on page 347
AssociationEndRole on page 350
AssociationRole on page 351
CapsuleRole on page 352
CapsuleStructure on page 353
ClassifierRole on page 356
Collaboration on page 358
Connector on page 364

76 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Genericity on page 367

Port on page 367

PortRole on page 369
PortVisibilityKind on page 370
RegistrationMode on page 370
RsGenericity on page 370
RsRegistrationMode on page 371
Common Logical View Enumerations on page 372
RsContainment on page 372
RsVisibilityKind on page 373Interaction Classes on page 374
Interaction Classes on page 374
Environment on page 376
Interaction on page 376
Interactionlnstance on page 382
Message on page 385
MessageEnd on page 386
RsActionKind on page 387

State Machine Classes on page 387
RsSourceRegionType on page 388
SourceRegionType on page 389
StateMachine on page 389
Transition on page 390

Action Classes on page 393
Action on page 396

ActionMode on page 398
CallAction on page 399

Coregion on page 399
CreateAction on page 401
DestroyAction on page 401
LocalState on page 402
ReplyAction on page 402
RequestAction on page 402
ResponseAction on page 403
ReturnAction on page 404
RsActionMode on page 404
RsSendActionPriority on page 405
SendAction on page 406
SendActionPriority on page 407
TerminateAction on page 407
Uninterpreted Action on page 407
Event Classes on page 407

77

Event on page 409

EventGuard on page 409

PortEvent on page 411
ProtocolRoleEvent on page 415

State Classes on page 416

ChoicePoint on page 418
CompositeState on page 419

FinalState on page 424

Initial Point on page 425
JunctionContinuationMode on page 425
JunctionPoint on page 425
RsJunctionContinuationMode on page 427
RsStateKind on page 427

StateKind on page 428

StateVertex on page 429

Relation Classes on page 431
ClassDependency on page 433
ClassRelation on page 434
ComponentDependency on page 435
Generalization on page 436
GeneralizationVisibilityKind on page 438
InstantiateRelation on page 438
LogicalPackageDependency on page 439
RealizeRelation on page 440

Relation on page 442
UsesRelationVisibilityKind on page 444
Use Case View Classes on page 444
UseCase on page 445

View Classes on page 450
AnchorNoteView on page 453

Diagram on page 454

NoteView on page 464
RsNoteViewType on page 466
RsStereotypeDisplay on page 466
StereotypeDisplay on page 467
ViewElement on page 467

Class Diagram Classes on page 475
CapsuleView on page 477
ClassDiagram on page 477

ClassView on page 490

ClassifierView on page 490

78 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ProtocolView on page 492
Collaboration Diagram Classes on page 493
CapsuleRoleView on page 494
CollaborationDiagram on page 496
PortRoleView on page 499

PortView on page 500
StructurePerimeterView on page 500
Component Diagram Classes on page 501
ComponentDiagram on page 502
ComponentPackageView on page 508
ComponentView on page 509
Deployment Diagram Classes on page 509
DeploymentDiagram on page 510
Sequence Diagram Classes on page 513
ClassifierRoleView on page 514
CreateMessageView on page 514
InteractionlnstanceView on page 515
LifeLineView on page 515
MessageView on page 516
SequenceDiagram on page 516

State Diagram Classes on page 517
BranchPointView on page 519
ChoicePointView on page 519
CompositeStateView on page 521
CoregionView on page 522
FinalStateView on page 522

Initial PointView on page 523
JunctionAdornmentView on page 523
JunctionPointView on page 524
LocalStateOrActionView on page 525
StateDiagram on page 525
StatePerimeterView on page 527

View Property Classes on page 528
LineVertex on page 529
View_FillColor on page 530

View_Font on page 531
View_LineColor on page 532

79

Logical Package Structure

The logical package structure is as follows:
Logical View

Application Classes on page 81
Extensibility Classes on page 130
RichTypes on page 141
Model Classes on page 145
Component View Classes on page 145
Core Model Classes on page 178
Deployment View Classes on page 246
Logical View Classes on page 267
Association Classes on page 288
Classifier Classes on page 299
Feature Classes on page 336
Collaboration Classes on page 347
Common Logical View Enumerations on page 372
Interaction Classes on page 374
State Machine Classes on page 387
Action Classes on page 393
Event Classes on page 407
State Classes on page 416
Relation Classes on page 431
Use Case View Classes on page 444
View Classes on page 450
Class Diagram Classes on page 475
Collaboration Diagram Classes on page 493
Component Diagram Classes on page 501

Deployment Diagram Classes on page 509

80 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Sequence Diagram Classes on page 513
State Diagram Classes on page 517
View Property Classes on page 528

Application Classes

Application classes include the following:

AddIn on page 86
Public Attributes
CompanyName : String on page 86
Copyright : String on page 86
EventHandler : Object on page 86
FundamentalTypes : StringCollection on page 86
HelpFilePath : String on page 87
InstallDirectory : String on page 87
MenuFilePath : String on page 87
Name : String on page 87
PropertyFilePath : String on page 87
RootRegistryPath : String on page 87
ServerName : String on page 87
ToolNames : StringCollection on page 88
Version : String on page 88
Activate () : on page 88

AddContextMenultemForClass (itemType : String, fullCaption : String, internalName :
String) : ContextMenultem on page 88

Deactivate () : on page 89
ExecuteScript (FileName : String) : on page 89

GetContextMenultemsForClass (itemType : String) : ContextMenultemCollection on
page 90

Application Classes 81

IsActive () : Boolean on page 90

IsLanguageAddIn () : Boolean on page 90

IsRTAddIn () : Boolean on page 91

ReadSetting (Section : String, Entry : String, Default : String) : String on page 91
WriteSetting (Section : String, Entry : String, Value : String) : Boolean on page 92

AddInManager on page 93
Public Attributes
AddlIns : AddInCollection on page 93

Application on page 93
Public Attributes
AddInManager : AddInManager on page 94
ApplicationPath : String on page 94
BrowserVisible : Boolean on page 94
CommandLine : String on page 94
CurrentModel : Model on page 94
CurrentWorkspace : Workspace on page 94
Height : Integer on page 95
Left : Integer on page 95
PathMap : PathMap on page 95
ProductName : String on page 95
Top : Integer on page 95
Version : String on page 95
Visible : Boolean on page 95
Width : Integer on page 96
Public Operations

Add (pElements : ControllableElementCollection, addDirsToo : Boolean, comment : String)
: Boolean on page 96

82 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddDir (pElements : ControllableElementCollection, comment : String) : Boolean on
page 97

Browse (pElement : Element, pContext : ModelElement, nLineNumber : Integer) on
page 98

Checkln (pElements : ControllableElementCollection, comment : String) : Boolean on
page 99

CheckInDir (pElements : ControllableElementCollection, comment : String) : Boolean on
page 100

CheckOut (pElements : ControllableElementCollection) : Boolean on page 101

CompileScriptFile (FileName : String, BinaryName : String, bDebug : Boolean) : on
page 101

CreateCollection () : Collection on page 102

ExecuteScript (pFileName : String) : on page 103

Exit () : on page 103

FreeScript (Parameter1 : String) : on page 103

Get (pElements : ControllableElementCollection) : Boolean on page 104
GetLicensed Application (theKey : String) : Application on page 105
GetObject () : Object on page 105

GetProfileString (Section : String, Entry : String, Default : String) : String on page 106
IsSourceControlEnabled () : Boolean on page 107

LoadScript (Parameter] : String) : on page 107

NewModel () : Model on page 108

NewScript () : on page 108

OpenExternalDocument (FileName : String) : Boolean on page 109

OpenModel (theModel : String) : Model on page 1090penModel AsTemplate (szFileName
: String) : Model on page 110

OpenModel AsTemplate (szFileName : String) : Model on page 110
OpenScript (FileName : String) : on page 110

OpenURL (theURL : String) : Boolean on page 111
OpenWorkspace (FileName : String) : Workspace on page 111

Application Classes 83

RefreshStatus (pElements : ControllableElementCollection) : Boolean

ReportCodeSync (ocModelElements : Collection, ocContextElements : Collection,
ocReplaceStrings : StringCollection) on page 113

Save (bSavelnits : Boolean) : on page 113

SaveAs (theFile : String, bSavelnits : Boolean) : on page 114
SaveGenerationResultsAs (filename : String) : Boolean on page 115
SaveLogAs on page 115

SaveWorkspace () : on page 116

SaveWorkspaceAs (FileName : String) : on page 116
SelectObjectsInBrowsers (theObjects : Collection) : on page 117

SetBuildSettings (ShowWarnings : Boolean, VerifyConnectorCardinality : Boolean,
VerifyBranchTransitions : Boolean, VerifyDeadUnreachableStates : Boolean,
VerifyUntriggeredTransitions : Boolean) : on page 117

UnCheckOut (pElements : ControllableElementCollection) : Boolean on page 118

WriteBuildError (strError : String, pElement : Element, nLineNumber : Integer,
blsWarning : Boolean) : on page 119

WriteBuildOutput (strMessage : String) : on page 120
WriteErrorLog (theMsg : String) : on page 120

WriteErrorLogEx (pszMessage : String, pModelElement : ModelElement, blsWarning :
Boolean) : on page 121

WriteProfileString (Section : String, Entry : String, Value : String) : Boolean on page 121

ContextMenultem on page 122
Public Attributes
Caption : String on page 123
InternalName : String on page 123
MenulD : Integer on page 123
MenuState : MenuState on page 123

MenuState

PathMap on page 124

84 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations
AddEntry (Symbol : String, Path : String, Comment : String) : Boolean on page 124
DeleteEntry (Symbol : String) : Boolean on page 125
Get Actual Path (VirtualPath : String) : String
GetObject () : Object on page 126
GetVirtualPath (ActualPath : String) : String on page 126
HasEntry (Symbol : String) : Boolean on page 127
RsMenuState on page 127
Public Attributes
rsDisabled : Integer = 0 on page 128
rsDisabled AndChecked : Integer = 2 on page 128
rsDisabled AndUnchecked : Integer = 3 on page 128
rsDisabledRadioChecked : Integer = 100 on page 128
rsDisabledRadioUnchecked : Integer = 102 on page 128
rsEnabled : Integer = 1 on page 128
rsEnabled AndChecked : Integer = 4 on page 128
rsEnabled AndUnchecked : Integer = 5 on page 128
rsEnabledRadioChecked : Integer = 101 on page 128
rsEnabledRadiollnchecked : Integer = 103 on page 128

Workspace on page 128
Public Operations

GetAddInProfileString (theAddIn : AddIn, Entry : String, Default : String) : String on
page 128

WriteAddInProfileString (theAddIn : AddIn, Entry : String, Value : String) :
Boolean

Application Classes 85

AddIn

Description

Addln class attributes and operations describe and control the characteristics of the
AddlIns that are part of the currently active Rational Rose RealTime application.

For example, you can
Find out whether an AddIn is active
Activate or deactivate an AddIn
Define the path to the AddIn’s menu, property, and help files
Execute scripts that are specific to the AddIn

Check the lists of attributes and operations for complete information.

Derived from RRTEIObject

Public Attributes
CompanyName : String

Description

Specifies the name of the Company that created the AddIn.
Copyright : String

Description

Specifies copyright information for the AddIn.
EventHandler : Object

Description

Specifies an instance of a custom OLE object implemented by the AddIn developer to
provide access to the AddIn from other applications.

FundamentalTypes : StringCollection

Description

Specifies the collection of Fundamental Types that are specific to this AddIn.

86 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

HelpFilePath : String

Description

Specifies the path to the AddIn’s help file.
InstallDirectory : String

Description

Directory in which the AddIn’s executable is installed.
MenuFilePath : String

Description

Specifies the path to the AddIn’s menu file.
Name : String

Description

Name of the AddIn.
PropertyFilePath : String

Description

Specifies the path to the AddIn’s property file.
RootRegistryPath : String

Description

Specifies the complete registry tree path (from the root) that allows access to the
registry entries for this AddIn.

ServerName : String

Description

Specifies the OLE class name that corresponds to the AddIn’s EventHandler object.

AddIn

87

ToolNames : StringCollection

Description

Specifies the collection of tool names belonging to the AddIn. (Each tool defines its
own property sets and corresponds to a tab in the property specification dialog.)

Version : String
Description
Specifies the version number of the AddIn.
Public Operations

Activate () :

Description

Activates the specified AddIn.

Syntax
t heAddl n. Acti vate

t heAddl n As RoseRT. Addl n
AddIn to activate.

AddContextMenultemForClass (itemType : String, fullCaption : String,
internalName : String) : ContextMenultem

Description

Creates and adds the specified ContextMenultem to the RoseRT shortcut menu.

Syntax

Set theCntxMenultem = t heAddi n. AddCont ext Menul t en{ cl assNane,
full Caption, internal Nane)

Parameters

className - string indicating the type of model element that is in context when the
menu option is added to the shortcut menu

fullCaption - string indicating the caption to display when for the menu option

88 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

internalName - string indicating the name that the item is referenced by in
automation
Returns:

A new ContextMenultem reference to the created item
Deactivate () :

Description

Deactivates the specified AddIn.

Syntax
t heAddl n. Deacti vat e

t heAddl n As RoseRT. Addl n
AddlIn to deactivate.

ExecuteScript (FileName : String) :

Description

Executes the source or compiled image of a script that resides in the AddIn’s install
directory. This subroutine executes the source or compiled image of a script contained
the specified file. You can specify the file without its extension. If the script is
currently open in the script editor, Rational Rose RealTime will execute the open
script. Otherwise, Rational Rose RealTime will search for the source script (.ebs) and
execute it, if found. If not found, Rational Rose RealTime will search for and execute
the compiled script (.ebx file).

Syntax
t heAddl n. Execut eScri pt Fi |l eName

theAddl n As RoseRT. Addl n
AddlIn in which the script is being executed.

FileName As String

File that contains the script to be executed.

Addin 89

GetContextMenultemsForClass (itemType : String) :
ContextMenultemCollection

Description

Returns a collection of context menu items based on the requested class.

Syntax

Set theltenCollection = =
t heAddi n. Get Cont ext Menul t enmsFor Cl ass(i t enType)

Parameters

itemType — string indicating the model element that we want to extract the
context menu items for

IsActive () : Boolean

Description

Determines whether the specified AddIn is currently active.
Syntax

IsActive = theAddln.lsActive ()

IsActive As Bool ean

Returns a value of True if the specified AddIn is currently active.

theAddl n As RoseRT. Addl n
AddlIn being checked.

IsLanguageAddin () : Boolean

Description

Determines whether the specified AddIn is a programming language.

Syntax
I sLanguage = theAddl n.|sLanguageAddl n ()

I sLanguage As Bool ean

90 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True if the specified AddIn is a programming language.

theAddl n As RoseRT. Addl n
AddlIn being checked.

ISRTAddIn () : Boolean

Description

Function that determines whether an AddIn is a Rational Rose RealTime specific
AddIn.

Syntax
I SRTAddI n = t heAddl n. | sRTAddI n()

| sRTAddl n As Bool ean

Returns a value of True if the specified AddIn is a Rational Rose RealTime specific
AddIn.

t heAddi n As RoseRT. Addl n
The instance of AddIn tested as a Rational Rose RealTime AddIn.

ReadSetting (Section : String, Entry : String, Default : String) : String

Description

Retrieves a registry setting for this AddIn.

Syntax
theString = theAddl n. ReadSetting (Section, Entry, Default)

theString As String

Returns the actual value of registry setting given its section, entry, and default value.
If no corresponding entry exists, returns the specified default value.

t heAddl n As RoseRT. Addl n

Addin 91

The AddIn whose registry entry is being retrieved.

theSection As String

Section name of the registry entry. For example: PathMap.

theEntry As String
Name of the entry. For example: $SCRIPT_PATH.

theDefault As String

Default value of the entry.
WriteSetting (Section : String, Entry : String, Value : String) : Boolean

Description

Creates a registry entry for this AddIn.

Syntax
IsWitten = theAddln. WiteSetting (Section, Entry, Value)

IsWitten As Bool ean

Returns a value of True when the entry is successfully added to the registry.

theAddl n As RoseRT. Addl n
AddIn for which the registry setting is being created.

theSection As String

User-defined section name for the custom entry.

theEntry As String

User-defined entry name.

theVal ue As String

92 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

User-defined default value for the custom entry.

AddInManager

Description

The AddInManager class has a single attribute, the AddIns attribute, which contains
the collection of AddIns available to the currently active Rational Rose RealTime
executable. The AddInManager class inherits all RRTEIObject operations, but has no
operations of its own.

Derived from RRTEIObject

Public Attributes
AddIns : AddInCollection

Description

Specifies the collection of AddIns managed by the RoseAddInManager

Application

Description
Use the application class to
Create a new model
Select an existing model as the current model

Determine the characteristics of the Rational Rose RealTime application being
controlled by your script

Here are a few of the application characteristics you can control with application class
attributes and operations:

How (and if) the Rational Rose RealTime application appears on the computer
screen while the script is running

The size and position of the Rational Rose RealTime application window

Whether to write errors to the error log

AddIinManager 93

Derived from RoseBase

Public Attributes
AddInManager : AddinManager

Description

Specifies the Rose AddIn Manager belonging to the currently active Rational Rose
RealTime executable.

ApplicationPath : String

Description

Specifies the path to the Rational Rose RealTime application to execute.
BrowserVisible : Boolean

Description

Controls whether the Rational Rose RealTime application is visible on the computer
screen.

CommandLine : String

Description

Returns the command line option string that is passed when the Rose executable is
run.

CurrentModel : Model

Description

Specifies the model that is currently open in Rational Rose RealTime.
CurrentWorkspace : Workspace

Description

Specifies the workspace that is currently open in Rational Rose RealTime.

94 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Height : Integer

Description

Specifies the height of the main window.
Left : Integer

Description

Specifies the distance between the left side of the main window and the left side of the
screen.

PathMap : PathMap

Description

Returns the path map defined for the current Rose application.
ProductName : String

Description

Returns the product name for the currently active Rose RealTime application.
Top : Integer

Description

Specifies the distance between the top of the main window and top of the screen.
Version : String

Description

Returns the version of the currently active Rose RealTime application. Corresponds to
the information provided when you select About from the Help menu in Rose
RealTime.

Visible : Boolean

Description

Controls whether the Rose RealTime application is visible on the computer screen.

Application 95

Width : Integer
Description
Specifies the width of the main window.
Public Operations

Add (pElements : ControllableElementCollection, addDirsToo : Boolean,
comment : String) : Boolean

Description

Adds a collection of ControllableElement to Source Control.

Syntax
Added = theApplication. Add(pEl enents, AddDirsToo, coment)

Added As Bool ean

Returns a value of True if Controllable Elements in pElements Collection were added
successfully to Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements to add to Source Control.

AddDi r sToo As Bool ean

Always False. Reserved for future use.

comment As String

Comments to provide to Source Control server for the operation.

96 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. Add(theCECol | ecti on, True, "My Add Conment")

Set theCECol | ecti on = Not hi ng

AddDir (pElements : ControllableElementCollection, comment : String) :
Boolean

Description

Adds the directories associated with a collection of Controllable Elements to source
control. This only applies to Packages. The only circumstance under which this is
needed is when a model is placed under source control without all elements
controlled. In this situation, the model's directory is not source controlled. If the
model is subsequently controlled, then the model's directory must be added to source
control before any of the model's child elements can be added to source control.

Syntax
Added = theApplication. AddDi r(pEl ements, comrent)

Added As Bool ean

Returns a value of True if the directories associated with the Controllable Elements in
pElements Collection were added successfully to Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.
pEl enents As RoseRT. Control | abl eEl ement Col | ecti on
The collection containing the ControllableElements to add to

Source Control.

commrent As String

Application 97

Comments to provide to Source Control server for the operation.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. AddDi r (t heCECol | ection, "My AddDir Conment")

Set theCECol | ecti on = Not hi ng

Browse (pElement : Element, pContext : ModelElement, nLineNumber :
Integer)

Description

Opens the diagram & spec sheet corresponding to the given model element & context.

Syntax

t heAppli cation. Browse(pEl ement, pContext, nLineNumber)

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl ement As RoseRT. El enent

The element to browse to.

pCont ext As RoseRT. Model El enent

The context of the given element.

nLi neNunber As | nteger
The line of code to highlight. (if appropriate).

98 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ChecklIn (pElements : ControllableElementCollection, comment : String) :
Boolean

Description

ChecklIn a collection of ControllableElement in Source Control.

Syntax

Checkedl n = t heApplication. Checkln(pEl ements, coment)

Checkedl n As Bool ean

Returns a value of True if Controllable Elements in pElements Collection were
checked in successfully to Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements to checkin in Source Control.

comment As String

Comments to provide to Source Control server for the operation.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. Checkl n(theCECol | ection, "My Checkln Comrent")

Set theCECol | ecti on = Not hi ng

Application 99

CheckInDir (pElements : ControllableElementCollection, comment :
String) : Boolean

Description

Checkln directories used for child controllable element storage of a collection of
ControllableElement's in Source Control.

Syntax
CheckedChil dDirln = t heApplication. ChecklnDir(pElements, comrent)

Checkedl n As Bool ean

Returns a value of True if the child directory of Controllable Elements in pElements
Collection were checked in successfully to Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements whose child directory are to be
checked in Source Control.

comment As String

Comments to provide to Source Control server for the operation.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. Checkl nDi r (theCECol | ection, "My Checkln Comrent")

Set theCECol | ecti on = Not hi ng

100 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CheckOut (pElements : ControllableElementCollection) : Boolean

Description

CheckOut a collection of ControllableElement from Source Control.

Syntax
CheckedOQut = theApplication. CheckQut(pEl enments)

CheckedOQut As Bool ean

Returns a value of True if Controllable Elements in pElements Collection were
checked out successfully from Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements to checkout from Source Control.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. CheckCQut (t heCECol | ection)

Set theCECol | ecti on = Not hi ng

CompileScriptFile (FileName : String, BinaryName : String, bDebug :
Boolean) :

Description

Compiles the script contained in the specified file.

Syntax
t heAppl i cation. Conpil eScriptFile theFileName, theBi naryNane, Debug

Application 101

t heApplication As RoseRT. Appli cation

Instance of the Rose application in which the script is being compiled.

theFil eName As String

Name of the file that contains the script being compiled; include the .ebs file
extension.

t heBi naryNane As String

Name of the binary file in which to save the compiled script; use the .ebx file
extension.

Debug As Bool ean

Set to True to embed the script’s source code in the compiled file. This allows the
script debugger to display the source code when it enters external modules.

CreateCollection () : Collection

Description

Returns a new empty generic collection.

Syntax
Set theCollection = theApplication.CreateCollection()

theCol | ecti on As RoseRT. Col | ecti on

Newly created generic empty collection.

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application owning the returned collection.

102 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ExecuteScript (pFileName : String) :

Description

Executes the source or compiled image of a script contained the specified file. You can
specify the file without its extension. If the script is currently open in the script editor,
Rose RealTime will execute the open script. Otherwise, Rose RealTime will search for
the source script (.ebs) and execute it, if found. If not found, Rose RealTime will search
for and execute the compiled script (.ebx file).

Syntax
t heAppl i cation. Execut eScript theFi | eName

t heApplication As RoseRT. Appli cation

Instance of the Rose application in which the script is being executed.

theFil eName As String

Name of the file that contains the script to execute.

Exit () :

Description

Exits the Rose RealTime application.

Syntax
theApplication. Exit

t heApplication As RoseRT. Appli cation

Instance of the Rose application being exited.
FreeScript (Parameterl : String) :

Description

Unloads the source or compiled image of a script contained in the specified file.
Specify the file without its extension and Rose RealTime frees the source script (.ebs),
if found. If not found, Rose RealTime frees the compiled script (.ebx file).

Application 103

Notes

This subroutine is only valid for Rose Script; it does not exist in Rose RealTime
Automation

Every LoadScript call should have a subsequent FreeScript call. See LoadScript
Method for more information.

Syntax
t heApplication. FreeScri pt theFil eNane

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime from which the script is being unloaded.

theFil eName As String

The name of the file that contains script to unload. Do not specify a file extension.
Get (pElements : ControllableElementCollection) : Boolean

Description

Get a collection of ControllableElement from Source Control.

Syntax
GetDone = theApplication.Get(pElements)

Cet Done As Bool ean

Returns a value of True if Controllable Elements in pElements Collection were Get
successfully to Source Control.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements to get from Source Control.

104 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. Get (theCECol | ection)

Set theCECol | ecti on = Not hi ng

GetLicensedApplication (theKey : String) : Application

Description

Retrieves an instance of the licensed application given the application’s licensing key.

Syntax
Set thelnstance = t heApplication. GetLi censedApplication (theKey)

thel nstance As RoseRT. Application

Returns the instance of the licensed application.

t heApplication As RoseRT. Appli cation

Currently active application.

theKey As String

Licensing key for the application being retrieved.
GetObject () : Object

Description

Retrieves the OLE automation interface object associated with the specified
application.

Note: This operation is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.

Application 105

Syntax
Set theOLEObj ect = theApplication. GetObject ()

t heOLEObj ect As RoseRT. Obj ect

Returns the OLE automation interface object associated with the application.

t heApplication As RoseRT. Appli cation

Instance of the Rose application whose OLE automation interface object is being
returned.

GetProfileString (Section : String, Entry : String, Default : String) : String

Description

Retrieves a profile string entry in the RoseRT.ini file, given a section, entry, and default
value.

Syntax

Set theProfileString = theApplication. GetProfileString (theSection,
the Entry, theDefault)

theProfileString As String

Returns the profile string that corresponds to the given section, entry, and default
value.

t heApplication As RoseRT. Appli cation

Currently active application and therefore the application whose RoseRT.ini file entry
is being retrieved.

theSection As String

Name of the RoseRT.ini file section from which the profile string is being retrieved.
For example: [PathMap]

theEntry As String

The name of the RoseRT.ini file entry whose profile string is being retrieved. For
example: $SCRIPT_PATH

106 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDefault As String

Default value of the entry being retrieved. In the [PathMap] $SCRIPT_PATH example,
the default value is the path to the folder that contains the scripts being called by the
application.

IsSourceControlEnabled () : Boolean

Description

Determines whether Source Control is enabled for the current Workspace.

Syntax
Sour ceCont r ol Enabl ed = theApplication. | sSourceControl Enabl ed()

Sour ceCont r ol Enabl ed As Bool ean

Returns a value of True if Source Control is enabled for the current Workspace.

t heApplication As RoseRT. Appli cation

The running instance of Application.

LoadScript (Parameterl : String) :

Description

Loads the source or compiled image of a script contained in the specified file. You can
specify the file without its extension and Rose RealTime will load the source script
(.ebs), if found. If not found, Rose RealTime will load the compiled script (.ebx file).

Notes

This subroutine is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.

When finished with the script, you should make a call to FreeScript. Because
scripts contain reference counting information, if you call LoadScript on a given
script 10 times, you should subsequently call FreeScript 10 times; otherwise, the
script will not be unloaded.

Application 107

Syntax
t heAppl i cation. LoadScri pt theFil eNane

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application in which the script is being loaded.

theFil eName As String

Name of the file that contains the script. Do not specify a file extension.
NewModel () : Model

Description

Creates a new Rose RealTime model and returns it as a model object.
Syntax

Set theMbdel = theApplication. Newvbdel ()

t heModel As RoseRT. Mbdel

Contains the newly created Rose RealTime model.

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application in which the model is being created.
NewScript () :

Description

Opens a script editor window in which to create a new script.

Note: This subroutine is only valid for Rose RealTimeScript; it does not exist in Rose
RealTime Automation.

Syntax
t heAppl i cation. NewScri pt

t heApplication As RoseRT. Appli cation

108 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application in which the new script is being created.
OpenExternalDocument (FileName : String) : Boolean

Description

Opens an external document, given a fully qualified name of the file that contains the
document.

Syntax

I sOpen = theApplication.Open (theFil eNane)

I sOpen As Bool ean

Returns a value of true when the specified document is successfully opened.

t heApplication As RoseRT. Appli cation

Currently active application.

theFil eName As String

Fully qualified file name or the URL that contains the external document.
OpenModel (theModel : String) : Model

Description

Opens a Rose RealTime model and returns it as a model object.

Syntax
Set theModel = theApplication. QpenMdel (theNane)

t heMbdel As RoseRT. Mbdel

Contains the model being opened.

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application from which the model is being retrieved.

theName As String

Application 109

Name of the model being opened.
OpenModelAsTemplate (szFileName : String) : Model

Description
Retrieves an existing model to be used as a template from which to create a new

model.

Syntax
Set theModel = theApplication. QpenMdel AsTenpl ate (Fil eNange)

t heModel As RoseRT. Mbdel

Returns the model contained in the specified file.

t heApplication As RoseRT. Appli cation

Currently active application.

theFil eName As String

Name of the file that contains the model being returned.
OpenScript (FileName : String) :

Description

Opens the source or compiled image of a script contained in the specified file in the
script editor window. You can specify the file without its extension and Rose RealTime
will search for the source script (.ebs) and open it, if found. If not found, Rose
RealTime will search for and open the compiled script (.ebx file).

Note: This subroutine is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.

Syntax
t heApplication. OpenScript Fil eNane

t heApplication As RoseRT. Appli cation

110 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application in which the script is being opened.

FileName As String
Name of the script file being opened.

OpenURL (theURL : String) : Boolean

Description

Opens a URL, given the URL string.
Syntax

I sOpen = theApplication.Open (theURL)

I sOpen As Bool ean

Returns a value of true when the specified URL is successfully opened.

t heApplication As RoseRT. Appli cation

Currently active application.

theURL As String

URL that contains the external document.
OpenWorkspace (FileName : String) : Workspace

Description

Opens a Rose RealTime workspace and the model associated with it.

Syntax
Set theWbrkspace = theApplication. QpenWorkspace (Fil eNane)

t heWor kspace As RoseRT. Wr kspace

Contains the workspace being opened.

Application 111

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application from which the workspace is being
retrieved.

FileName As String

Name of the workspace being opened.
RefreshStatus (pElements : ControllableElementCollection) : Boolean

Description

Refresh the Source Control status of a collection of ControllableElement.

Syntax
Refreshed = theApplication. RefreshStatus(pEl ements)

Refreshed As Bool ean

Returns a value of True if the Source Control status of the Controllable Elements in
pElements Collection were Refreshed successfully.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements whose Source Control status are
to be refreshed.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. Ref reshSt at us(t heCECol | ection)

112 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Set theCECol | ecti on = Not hi ng

ReportCodeSync (ocModelElements : Collection, ocContextElements :
Collection, ocReplaceStrings : StringCollection)
Description:

Updates the model elements with the new code corresponding to changes in the
generated code.

Syntax:

t heAppl i cati on. Report CodeSync(ocModel El ements, ocContext El enents,
ocRepl aceStrings)

ocMbdel El enents As Col | ection

Contains the model elements that need to be code synchronized with the modified
generated code.

ocCont ext El ements As Col | ection

Contains the elements that are the contexts for the elements in the
ocModelElementsCollection. This collection corresponds one to one with the
ModelElements collection.

ocRepl aceStrings As StringCollection

Contains the new code changes that need to be code synchronized back to the original
model elements. This collection corresponds one to one with the model element
collection.

Save (bSaveUnits : Boolean) :

Description

Saves the current Rose RealTime model.

Note: This operation is not valid if any of the following is true:
The file containing the Rose RealTime model is ReadOnly
The file containing the Rose RealTime model is unnamed

SaveUnits is True and any Unit cannot be saved

Application 113

Syntax

t heAppl i cation. Save SaveUnits

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application whose current model is being saved.

SaveUnits As Bool ean

Indicates whether the current model is comprised of controlled units.

SaveAs (theFile : String, bSaveUnits : Boolean) :

Description

Names and saves the current Rose RealTime model.

Note: This operation is not valid under the following conditions:
The file containing the Rose RealTime model is ReadOnly
The file containing the Rose RealTime model is unnamed

SaveUnits is True and any Unit cannot be saved

Syntax
t heAppli cation. SaveAs t heName, SaveUnits

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application whose current model is being saved.

theName As String

Name of the model being saved.

SaveUnits As Bool ean

Indicates whether the current model is comprised of controlled units.

114 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SaveGenerationResultsAs (filename : String) : Boolean

Description

Saves the Code Generation Results in a file

Syntax

Saved = theApplication. RefreshStatus(filenanme)

Saved As Bool ean

Returns a value of True if the Code Generation Results were saved successfully.

t heApplication As RoseRT. Appli cation
The running instance of Application.
filename As String

The filename of the file to save Code Generation Results to.
SavelLogAs

Description

Saves the error log in a file

Syntax
Saved = theApplication. SaveLogAs(filenane)

Saved As Bool ean

Returns a value of True if the error log was saved successfully

t heApplication As RoseRT. Appli cation

The running instance of Application

filename As String

The filename of the file to save thet error log to

Application 115

SaveWorkspace () :

Description

Saves the current workspace.

Note: This operation is not valid if any of the following is true:
The file containing the workspace is ReadOnly

The Rose RealTime model is unnamed

Syntax
t heAppl i cati on. SaveWr kspace

t heApplication As RoseRT. Appli cation
Instance of the Rose RealTime application whose current workspace is being saved.
SaveWorkspaceAs (FileName : String) :

Description

Names and saves the current workspace.

Note: This operation is not valid under the following conditions:
The file with the passed in filename already exist

The Rose RealTime model is unnamed

Syntax
t heAppl i cati on. SaveWr kspaceAs Fil eNane

t heApplication As RoseRT. Appli cation

Instance of the Rose RealTime application whose current workspace is being saved.

FileName As String

Name of the workspace being saved.

116 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SelectObjectsinBrowsers (theObjects : Collection) :

Description

Selects objects in visible browsers.

Syntax

t heAppl i cation. Sel ect Obj ect sl nBrowsers(theCbjectCollection)

t heApplication As RoseRT. Appli cation

The running instance of Application.

t heObj ect Col | ecti on As RoseRT. Col | ecti on

The collection of objects to select in visible browsers.

Example

Di mtheObjects As RoseRT. Col | ection
Set theObjects = theApplication. CreateCollection()

b = theObject Col |l ecti on. Add(RoseRTApp. Current Mbdel)

b = theObj ect Col | ecti on. Add(RoseRTApp. Current Model . Root Logi cal Package
)

b = RoseRTApp. Sel ect Obj ect sl nBrowsers(theCbjects)

Set theObjects = Nothing

SetBuildSettings (ShowWarnings : Boolean, VerifyConnectorCardinality
: Boolean, VerifyBranchTransitions : Boolean,
VerifyDeadUnreachableStates : Boolean, VerifyUntriggeredTransitions :
Boolean) :

Description

Allows configuration of common build settings that will be used when building any
component.

Application 117

Syntax

t heApplication. SetBuil dsSettings(Showwarni ngs,
Veri fyConnectorCardinality, VerifyBranchTransitions,
Veri f yDeadUnr eachabl eSt at es, VerifyUntriggeredTransitions)

t heApplication As RoseRT. Appli cation

The running instance of Application.

ShowMar ni ngs As Bool ean

Whether to show warning.

Veri fyConnect or Cardinal ity As Bool ean

Whether to test if cardinalities on both side of a connection are equivalents.

Veri fyBranchTransitions As Bool ean

Whether to check for missing true or false transitions on choice points.

Veri f yDeadUnr eachabl eSt at es As Bool ean

Whether to check for all states that are not reachable in a state diagram and for all
states that cannot be exited.

VerifyUntriggeredTransiti ons As Bool ean

Whether to check for transitions with no triggering event
UnCheckOut (pElements : ControllableElementCollection) : Boolean

Description

Undo a CheckOut operation for a collection of ControllableElement.

Syntax
Undi dCheckedQut = t heApplication. UndoCheckQut (pEl enments)

Undi dCheckedQut As Bool ean

118 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True if Controllable Elements in pElements Collection had their
CheckOut operation successfully undone.

t heApplication As RoseRT. Appli cation

The running instance of Application.

pEl enents As RoseRT. Control | abl eEl ement Col | ecti on

The collection containing the ControllableElements to undo the checkout operation
from.

Example

Di m t heCECol | ecti on As RoseRT. Col | ecti on
Set theCECol | ecti on = theApplication.CreateCollection()

t heCECol | ecti on. Add(RoseRTApp. Current Model)
RoseRTApp. UndoCheckQut (t heCECol | ection)

Set theCECol | ecti on = Not hi ng

WriteBuildError (strError : String, pElement : Element, nLineNumber :
Integer, blIsWarning : Boolean) :

Description

Writes an entry in the error/warning list section of the build log window.

Syntax

theApplication. WiteBuildError(strError, pEl ement, nLineNunber,
bl sWar ni ng)

t heApplication As RoseRT. Appli cation

The running instance of Application.

strError As String

Application 119

Description of error/warning.

pEl ement As RoseRT. El enent

The element that owns the source code where an error/warning was detected.

nLi neNunber As | nteger

The line number where the error/warning was detected in source code

bl s\War ni ng As Bool ean

Whether the new entry represents a warning or an error
WriteBuildOutput (strMessage : String) :

Description

Writes a message to the output section of the build log window.

Syntax
theApplication. WiteBuildQutput(strMssage)

t heApplication As RoseRT. Appli cation

The running instance of Application.

strMessage As String

Message to output.
WriteErrorLog (theMsg : String) :

Description

Writes an error message to a log window.

Syntax
t heApplication. WiteErrorLog t heMessage

t heApplication As RoseRT. Appli cation

120 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application for which errors are being logged.

theMessage As String

Message text to write to the error log window.

WriteErrorLogEx (pszMessage : String, pModelElement : ModelElement,
blsWarning : Boolean) :

Description

Writes an entry in the error log window.

Syntax
theApplication. WiteErrorLogEx(pszMessage, pMdel El ement, bl sWarning

t heApplication As RoseRT. Appli cation

The running instance of Application.

strMessage As String

Description of error/warning.

pModel El ement As RoseRT. Model El enent

The model element related to the error/warning.

bl s\War ni ng As Bool ean

Whether the new entry represents a warning or an error

WriteProfileString (Section : String, Entry : String, Value : String) :
Boolean

Description

Retrieves a profile string entry in the RoseRT.ini file, given a section, entry, and default
value.

Application 121

Syntax
IsWitten = theApplication.WiteProfileString (Section, Entry, Val ue)

IsWitten As Bool ean

Returns a value of true when the specified ProfileString is successfully written to the
Rose.ini file.

t heApplication As RoseRT. Appli cation

Currently active application and therefore the application whose RoseRT.ini file entry
is being written.

theSection As String

Name of the RoseRT.ini file section to which the profile string is being written. For
example: [PathMap]

theEntry As String

The name of the RoseRT.ini file entry whose profile string is being written. For
example: $SCRIPT_PATH

theVal ue As String

Value of the entry being written. In the [PathMap] $SCRIPT_PATH example, the value
is the actual path to the folder that contains the scripts being called by the application.

ContextMenultem

Description

This class represents a context menu option that was added through RRTEI by an
addin. References to this class are returned by the AddContextMenultemForClass
method of AddIn

122 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RRTEIObject

Public Attributes
Caption : String

Description

The text that is displayed when the item is added to a context menu
InternalName : String

Description

The string that is returned to the automation server when an item is selected
MenulD : Integer

Description

The internal ID used to index the menu item for the class it corresponds to
MenuState : MenuState

Description

The state the menu item is displayed in. See the RsMenuState enumeration for
possible values.

MenuState

Description

Rich type used to determine the state of a context menu. Valid values are defined in
the RsMenuState enumeration.

Derived from RichType

MenuState 123

PathMap

Description

Use the PathMap class to create and edit path map entries for the current model. For
example, you can create entries to define paths to controlled units, to scripts executed
from the Rose RealTime menu, and to the root directory for a multi-user project.
Executing PathMap class operations is equivalent to updating the PathMap dialog in
the Rose RealTime user interface. There are no attributes associated with the PathMap
class.

Derived from RoseBase

Public Operations
AddEntry (Symbol : String, Path : String, Comment : String) : Boolean

Description

Adds an entry to the current application’s PathMap definition.

Syntax
I sAdded = t hePat hvap. AddEntry (theSynbol, theActual Path, theComrent))

| sAdded As Bool ean

Returns a value of true when the entry is successfully added.

t hePat hMap As RoseRT. Pat hMap
PathMap to which the entry is being added.

thel Symbol As String
Virtual symbol being added to the PathMap. For example, $SCRIPT_PATH

t heAct ual Path As String
Actual path to which the virtual symbol refers.

124 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heConment As String
Description of the PathMap entry being added.

DeleteEntry (Symbol : String) : Boolean

Description

Deletes an entry from the current application’s PathMap definition.

Syntax
I sDel eted = t hePat hMap. Del et eEntry (theSynbol)

| sDel eted As Bool ean

Returns a value of true when the entry is successfully deleted.

t hePat hMap As RoseRT. Pat hMap
PathMap to which the entry is being added.

theSynbol As String

Virtual symbol for the entry being deleted from the PathMap. For example,
$SCRIPT_PATH

Get Actual Path (VirtualPath : String) : String

Description

Retrieves from the PathMap the actual path that corresponds to the given virtual
symbol.

Syntax
t heAct ual Path = t hePat hMap. Get Actual Path (theSynbol)

t heAct ual Path As String

Returns the actual path given the virtual symbol.

t hePat hMap As RoseRT. Pat hMap
PathMap from which to retrieve the actual path.

PathMap 125

theSynmbol As String

Virtual symbol whose corresponding actual path is being retrieved.
GetObject () : Object

Description
Retrieves the object’s OLE interface object.

Note: This function is only valid for Rose RealTime Script; it has no meaning in Rose
RealTime Automation.

Syntax
Set theOLEObj ect = thePat hMap. Get Obj ect ()

t heOLEObj ect As RoseRT. Obj ect

Returns the OLE automation interface object associated with the specified object.

t hePat hMap As RoseRT. Pat hMap

Instance of the object whose OLE interface object is being returned.
GetVirtualPath (ActualPath : String) : String

Description

Retrieves the virtual path that corresponds to the given actual path.

Syntax
theString = thePathMap.GetVirtualPath (theActualPath)

theVirtual Path As String
Returns the virtual path given the actual path.

t hePat hMap As RoseRT. Pat hMap
PathMap from which to retrieve the virtual path.

126 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heAct ual Path As String

Actual path whose corresponding virtual path is being retrieved.
HasEntry (Symbol : String) : Boolean

Description

Checks the PathMap for an entry based on the given virtual path symbol.

Syntax
HasEntry = thePat hMap. HasEntry (theSynbol)

HasEntry As Bool ean

Returns a value of True if the PathMap has an entry for the given virtual path symbol.

t hePat hMap As RoseRT. Pat hMap
PathMap being checked.

theSynbol As String
Virtual symbol to search for in the PathMap.

RsMenuState

Description

Enumeration used to set the Value property of the MenuState rich type. Values
determine what state add-in context menu items are displayed in.

Public Attributes

RsMenuState 127

rsDisabled : Integer =0
rsDisabledAndChecked : Integer = 2
rsDisabledAndUnchecked : Integer =3
rsDisabledRadioChecked : Integer = 100
rsDisabledRadioUnchecked : Integer = 102
rsEnabled : Integer =1
rsEnabledAndChecked : Integer = 4
rsEnabledAndUnchecked : Integer =5
rsEnabledRadioChecked : Integer = 101
rsEnabledRadioUnchecked : Integer = 103

Workspace

Description

Represents a workspace file. The workspace maintains information about the current
model, open windows and window positions, etc. The workspace information is
stored in a separate file (a .rtwks file). This class allows clients to inquire and modify
settings saved within the workspace file.

Derived from RoseBase

Public Operations

GetAddInProfileString (theAddIn : AddIn, Entry : String, Default : String) :
String

Description

Retrieves a profile string entry for an Add-In in the workspace, given an Add-In, and
entry and a default value.

128 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theProfileString = theWrkspace. Get Addl nProfileString (theAddln,
Entry, Default)

theProfileString As String

Returns the profile string that corresponds to the given Add-In, entry, and default
value.

t heWor kspace As RoseRT. Wr kspace

Workspace whose entry is being retrieved.

t heAddl n As RoseRT. Addl n

Add-In whose entry profile string is being retrieved for.

theEntry As String
The name of the entry whose profile string is being retrieved.
theDefault As String

Default value of the entry being retrieved. This is the string returned if the entry does
not exists in the workspace for the Add-In.

WriteAddInProfileString (theAddIn : AddIn, Entry : String, Value : String) :
Boolean
Description

Write a profile string entry for an Add-In in the workspace, given an Add-In, an entry,
and a value.

Note: This operation is not valid if any of the following is true:
The file containing the workspace is ReadOnly

The Rose RealTime model is unnamed

Syntax

IsWitten = theWrkspace. WiteAddl nProfileString (theAddln, Entry,
Val ue)

Workspace 129

IsWitten As Bool ean

Returns a value of true when the specified ProfileString is successfully written in the
workspace.

t heWor kspace As RoseRT. Application

Workspace that gets an entry written to.

t heAddl n As RoseRT. Addl n

Add-In whose entry profile string is being written to.

theEntry As String

The name of the entry whose profile string is being written.

theVal ue As String

Value of the entry being written.

Extensibility Classes

Extensibility classes include
Collection on page 131

Public Attributes
Count : Integer on page 131
Public Operations
Add (theObject : RoseBase) : on page 132
AddCollection (theCollection : Collection) : on page 132
Exists (pObject : RoseBase) : Boolean on page 133
FindFirst (Name : String) : Integer on page 133
FindNext (iCurlD : Integer, Name : String) : Integer on page 134
GetAt (Index : Integer) : RoseBase on page 135

130 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetFirst (Name : String) : RoseBase on page 135
GetObject () : Object on page 136
GetWithUniquelD (UniquelD : String) : Object on page 137
IndexOf (theObject : RoseBase) : Integer on page 137
Remove (theObject : RoseBase) : on page 138
RemoveAll () : on page 139

RoseBase on page 139
Public Attributes
GetObject () : Object on page 139

RRTEIObject on page 140
Public Operations
IdentifyClass () : String on page 140

Collection

Description

For most elements of a RoseRT model there is a corresponding collection. So, for
example, for every class there is a class collection; for every logical package there is a
logical package collection; for every property, there is a property collection, and so on.

RoseRT extensibility provides a set of properties and methods that allow you to access
a particular element in any given collection.

Derived from RoseBase
Public Attributes

Count : Integer

Description

Number of elements in the collection.

Collection 131

Public Operations

Add (theObject : RoseBase) :

Description

Adds an object to a collection.

Syntax
theCol | ecti on. Add t heObj ect

theCol | ecti on As RoseRT. Col | ecti on
Collection to which the object is being added.

t heCbj ect As Obj ect
Object being added to the collection.

AddCollection (theCollection : Collection) :

Description
Adds a collection of objects to a collection.

Note: The objects are added as individual objects, not as a collection. For this reason,
should you need to remove one or more of these objects from the destination
collection, you can simply use the Remove or RemoveAll method.

Syntax
t heCol | ecti on. AddCol | ecti on theObj ect Col | ecti on

theCol | ecti on As RoseRT. Col | ecti on

Collection to which the collection of objects is being added.

t heObj ect Col | ection As Collection

Collection whose objects are being added.

132 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Exists (pObject : RoseBase) : Boolean

Description

Checks for the existence of an object in a collection

Syntax
Exi sts = theCol | ection. Exi sts (theObject)

Exi sts As Bool ean

Returns a value of True if the object exists in the collection.

theCol | ecti on As RoseRT. Col | ecti on
The collection being checked.

t heCbj ect As Obj ect

Instance of the object whose existence is being checked.
FindFirst (Name : String) : Integer

Description
Returns the index (position) of the first instance of the named object from a collection.

Note: To retrieve the object itself, use the GetAt method and specify the index
returned by this method.

Syntax
Set thelndex = theCol |l ection. FindFirst (theNane)

thel ndex As Integer

Returns the index of the first instance of the named object in the collection. Returns a
value of 0 if the named object is not found.

t heObj ect As RoseRT. Col | ecti on

Collection from which the index is being retrieved.

Collection 133

theName As String

Name of the object whose index is being retrieved.

See also

FindNext (iCurlD : Integer, Name : String) : Integer on page 134
IndexOf (theObject : RoseBase) : Integer on page 137

GetFirst (Name : String) : RoseBase on page 135

FindNext (iCurlD : Integer, Name : String) : Integer

Description

When iterating through a collection, this function retrieves the index (position) of the
next instance of the named object, given the index of the current instance.

Note: To retrieve the object itself, use the GetAt method and specify the index
returned by this method.

Syntax
Next I ndex = theCol | ecti on. Fi ndNext (Currentlndex, theNane)

Next I ndex As | nteger

Returns the index of the next instance of an object from the collection.

Returns a value of 0 if the named object is not found.

theCol | ecti on As RoseRT. Col | ecti on

Collection from which the next index is being retrieved.

Currentlndex As |nteger

Index of the current object instance in the collection.

theName As String

Name of the object whose index is being retrieved.

134 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

See also

FindFirst (Name : String) : Integer on page 133
GetFirst (Name : String) : RoseBase on page 135
IndexOf (theObject : RoseBase) : Integer on page 137
GetFirst (Name : String) : RoseBase on page 135

GetAt (Index : Integer) : RoseBase

Description
Retrieves a particular object from a collection, given the object’s position in the

collection.

Syntax
Set theObject = theCollection.GetAt (thelndex)
Note: To get the index of the object, use the IndexOf, FindFirst or FindNext method.

t heCbj ect As Obj ect

Returns an object from the collection.

theCol | ecti on As RoseRT. Col | ecti on
Collection from which to retrieve the object.
thel ndex As | nteger

Index (position) of the object in the collection.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurlID : Integer, Name : String) : Integer on page 134
IndexOf (theObject : RoseBase) : Integer on page 137

GetFirst (Name : String) : RoseBase on page 135

GetFirst (Name : String) : RoseBase
Description

Retrieves the first instance of the named object from a collection.

Collection 135

Syntax
Set theObject = theCollection. GetFirst (theNane)

t heObj ect As Obj ect

Returns the first instance of the named object from the collection.

theCol | ecti on As RoseRT. Col | ecti on

Collection from which to retrieve the object.

theName As String

Name of the object to retrieve.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurlD : Integer, Name : String) : Integer on page 134
IndexOf (theObject : RoseBase) : Integer on page 137

GetObject () : Object

Description
Retrieves the OLE object associated with a specified collection.

Note: This function is only valid for Rose Script; it does not exist in Rose Automation.

Syntax
Set theOLEObj ect = theCol | ection. Get Cbject ()

t heOLEOhj ect As Obj ect

Returns the OLE automation interface object associated with the specified object.

theCol | ecti on As RoseRT. Col | ecti on

Instance of the object whose interface object is being returned.

136 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetWithUniquelD (UniquelD : String) : Object

Description

Retrieves an object from a collection, given the object’s unique ID. This is simpler than
iterating through the collection to find a named or indexed object. Every element in a
model has a unique ID. You cannot set this ID, but you can retrieve it.

Syntax
Set theObject = theCollection. GetWthUni quel D (theUni quel D)

t heCbj ect As Obj ect

Returns the object whose unique ID you specify.

theCol | ecti on As RoseRT. Col | ecti on

Collection from which to retrieve the object.

theUni quel D As String
UniquelD of the object to retrieve.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurlID : Integer, Name : String) : Integer on page 134
IndexOf (theObject : RoseBase) : Integer on page 137

IndexOf (theObject : RoseBase) : Integer

Description

Retrieves the index (position) of an instance of an object in a collection.

Syntax
Set theIndex = theCollection.IndexOf (theObject)

thelndex As Integer

Collection 137

Returns the index (position) of the given objectReturns a value of 0 if the class is not
found.

theCollection As RoseRT.Collection

Collection from which the index is being retrieved.

theObject As Object

Instance of the object whose index is being retrieved.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurlD : Integer, Name : String) : Integer on page 134
GetFirst (Name : String) : RoseBase on page 135

Remove (theObject : RoseBase) :

Description

Removes an object from a collection.

Syntax

t heCol | ecti on. Renove t heObj ect

theCol | ecti on As RoseRT. Col | ecti on

Collection from which the class is being removed.

theObj ect As Obj ect

Object being removed from the collection.

See also

RemoveAll () : on page 139

138 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RemoveAll () :

Description

Removes all objects from a collection.
Syntax

theCol | ecti on. RenpveAl |

theCol | ecti on As RoseRT. Col | ecti on

Collection from which all objects are being removed.

See also

Remove (theObject : RoseBase) : on page 138

RoseBase

Description
RoseBase is the root class of the RRTEI
Public Operations

GetObject () : Object

Description
Retrieves the object’s OLE interface object.

Note: This function is only valid for Rose Script; it has no meaning in Rose
Automation.

Syntax
Set theOLEObj ect = theRoseBase. Get Obj ect ()

t heOLEOhj ect As Obj ect

Returns the OLE automation interface object associated with the specified object.

t heRoseBase As RoseRT. RoseBase

RoseBase 139

Instance of the object whose OLE interface object is being returned.

RRTEIODbject

Description

Most elements in a Rose RealTime model derive, either directly or indirectly, from the
RRTEIObject class. When you retrieve a model element as an object, you may not
know what type of object you have retrieved.

Using RRTEIObject class operations, you can determine the type of the object.

Derived from RoseBase

Public Operations
IdentifyClass () : String

Description

Identifies the class of a Rose RealTime object

Note: For Rose RealTime Script, use the CanTypeCast method.

Syntax
theString = theRRTElI Obj ect.ldentifyClass ()

theString As String
Returns the RRTEIODbject’s class name.

ct heRRTEI Obj ect As RoseRT. RRTEI Obj ect
RRTEIObject whose class is being identified.

140 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsClass (theClassName : String) : Boolean

Description
Determines whether an object is a specified class.

Note: For Rose RealTime Script, use the CanTypeCast method.

Syntax
Isd ass = t heRRTEI Obj ect. | sCl ass (theCl assNane)

Isd ass As Bool ean

Returns a value of True if its class matches the specified class name.

t heRRTEI Obj ect As RoseRT. RRTEI Obj ect
RRTEIObject whose class is being checked.

theCl assNane As String
Name of the class for which the RRTEIObject is being checked.

RichTypes

RichTypes include
RichType
Public Attributes
Name : String on page 143
Types : RichTypeValuesCollection on page 143
Value : Integer on page 143
Public Operations
GetObject () : Object on page 143
RichTypeValuesCollection on page 144
Public Attributes

Count : Integer on page 144

RichTypes 141

GetAt (id : Integer) : String on page 144
GetObject () : Object on page 145

RichType

Description

A rich type contains a set of values, of which only one is active at a time. They can be
compared to a smart enumeration capable of being set using either the numeric or the
string version of their values.

e.g.

ClassifierVisibilityKind' set of values are as follows:

(string version : numeric version)

“rsPublic" : 0O

"rsProtected" : 1
"rsPrivate" : 2
"rslnplenmentation" : 3

A rich type derived class is always associated with an enumeration whose name is
made of the rich type name (or substring of it) prefixed by “Rs”.

e.g.
ClassifierVisibilityKind rich type is associated with RsVisibilityKind enumeration.

The name of the enumeration's elements is made from the string version of the rich
type value it represents.
e.g.

The ClassifierVisibilityKind rich type string value “rsPublic” is associated with the
enumeration RsVisibilityKind's rsPublic element.

Here are valid ways to set a variable of type ClassifierVisibilityKind to public:

Set theCl assifierVisibilityKind. Name = "rsPublic"
Set theCl assifierVisibilityKind. Value = 0
Set theCl assifierVisibilityKind.Value = rsPublic

142 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

To ease the use of rich types, the Value property is the default property of a rich type.
This means that the Value property is assumed whenever a property or an operation
is omitted while using a rich type.

e.g.
Set theClassifierVisibilityKind = 0
Set theClassifierVisibilityKind = rsPublic

Derived from RRTEIObject

Public Attributes
Name : String

Description

String version of the active value of the rich type.
Types : RichTypeValuesCollection

Description

Collection of the all the values that can be activated in the rich type, in string version.
Value : Integer

Description

Numeric version of the active value of the rich type.

Public Operations

GetObject () : Object

Description
Retrieves the object’s OLE interface object.

Note: This operation is only valid for Rose RealTime Script; it has no meaning in Rose
RealTime Automation.

Syntax
Set theOLEObj ect = theRichType. Get Obj ect ()

RichType 143

t heOLEOhj ect As Obj ect

Returns the OLE automation interface object associated with the specified object.

theRi chType As RoseRT. Ri chType

Instance of the rich type whose OLE interface object is being returned.

RichTypeValuesCollection

Description

Collection of all values that can be activated in a particular rich type.

Derived from RRTEIObject

Public Attributes
Count : Integer

Description

Number of values in the collection.

Public Operations
GetAt (id : Integer) : String

Description

Retrieves a particular value from the collection, given the value’s position in the
collection.

Syntax
Val ue = theRi chTypeVal uesCol | ection. GetAt (thelndex)

Value As String

Returns the value from the collection.

144 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heRi chTypeVal uesCol | ecti on As Ri chTypeVal uesCol | ecti on

Collection from which to retrieve the value.

t hel ndex As | nteger

Index (position) of the value in the collection. First value is at index 1.
GetObject () : Object

Description
Retrieves the object’s OLE interface object.
Note: This function is only valid for Rose Script; it has no meaning in Rose

Automation.

Syntax
Set theOLEObj ect = theRi chTypeVal uesCol |l ection. Get Obj ect ()

t heOLEOhj ect As Obj ect

Returns the OLE automation interface object associated with the specified object.

t heRi chTypeVal uesCol | ecti on As RoseRT. Ri chTypeVal uesCol | ecti on

Instance of the rich type values collection whose OLE interface object is being
returned.

Model Classes

Model classes include

Component View Classes on page 145

Component View Classes

Component View classes include
Component on page 149

Public Attributes

Model Classes 145

AssignedClasses : ClassifierCollection on page 149
AssignedLogicalPackages : LogicalPackageCollection on page 149
CodeGenMakeDescription : String on page 149
CodeGenMakeFlags : String on page 149
CodeGenMakeName : String on page 150
CodeGenMakeQwerridesFile : String on page 150
CodeGenMakeType : String on page 150
CompilationMakeDescription : String on page 150
CompilationMakeFlags : String on page 150
CompilationMakeName : String on page 150
CompilationMakeOwverridesFile : String on page 150
CompilationMakeType : String on page 151
CompilerDescription : String on page 151
CompilerFlags : String on page 151
CompilerLibrary : String on page 151
CompilerName : String on page 151

DefaultArgs : String on page 152

Environment : String on page 152
ExecutableFileName : String on page 152
InclusionPaths : StringCollection on page 152
Inclusions : StringCollection on page 152
LinkerFlags : String on page 152

LinkerName : String on page 153

MultiThreaded : Boolean on page 153

OutputPath : String on page 153
ParentComponentPackage : ComponentPackage on page 153
Platform : String on page 153

RTSDescription : String on page 153

146 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RTSType : String on page 154

TargetDescription : String on page 154
TargetLibrary : String on page 154

TopCapsule : Capsule on page 154

Type : String on page 155

UserLibraries : StringCollection on page 155
UserLibraryPaths : StringCollection on page 156
Public Operations

AddComponentDependency (theDep : Component) : ComponentDependency on
page 156

AddInclusion (inclusion : String) : Boolean on page 156

AddInclusionPath (pathName : String, ComputeDependencies : Boolean) : Boolean
on page 157

AddRealizeRelation (theRelName : String, thelnterfaceName : String) :
RealizeRelation on page 158

AddUserLibrary (libraryName : String) : Boolean on page 158
AddUserLibraryPath (pathName : String) : Boolean on page 159
AssignClass (theClass : Classifier) : Boolean on page 159
AssignPackage (thePackage : LogicalPackage) : Boolean on page 160
Build (bUpdateAssignedClassList : Boolean) : Boolean

DeleteComponentDependency (theDep : ComponentDependency) : Boolean on
page 161

Deletelnclusion (inclusion : String) : Boolean on page 161

DeletelnclusionPath (pathName : String) : Boolean on page 162
DeleteRealizeRelation (theRel : RealizeRelation) : Boolean on page 162
DeleteUserLibrary (libraryName : String) : Boolean on page 163
DeleteUserLibraryPath (pathName : String) : Boolean on page 163

Generate (bUpdateAssignedClassList : Boolean) : Boolean on page 164
GetAllClasses () : ClassifierCollection on page 165
GetComponentDependencies () : ComponentDependencyCollection on page 165

Component View Classes 147

GetInclusionPathFlag (pathName : String) : Boolean on page 165

GetRealizeRelations () : RealizeRelationCollection on page 166

RebuildAll (bUpdateAssignedClassList : Boolean) : Boolean on page 166

RegenerateAll (bUpdateAssignedClassList : Boolean) : Boolean on page 167

ReverifyAll (bUpdateAssignedClassList : Boolean) : Boolean on page 168

UnassignClass (theClass : Classifier) : Boolean on page 168

UnassignPackage (thePackage : LogicalPackage) : Boolean on page 169

UpdateAssignedClassList () : Boolean on page 169

Verify (bUpdateAssignedClassList : Boolean) : Boolean on page 170
ComponentPackage on page 170

Public Attributes

ComponentDiagrams : ComponentDiagramCollection on page 170

ComponentPackages : ComponentPackageCollection on page 171

Components : ComponentCollection on page 171

ParentComponentPackage : ComponentPackage on page 171

Public Operations

AddComponent (theName : String) : Component on page 171

AddComponentDiagram (name : String) : ComponentDiagram on page 172

AddComponentPackage (theName : String) : ComponentPackage on page 172

DeleteComponent (pIDispatch : Component) : Boolean on page 173

DeleteComponentPackage (pIDispatch : ComponentPackage) : Boolean on
page 173

GetAllComponentPackages () : ComponentPackageCollection on page 174
GetAllComponents () : ComponentCollection on page 174
GetComponentDependencies () : ComponentDependencyCollection on page 175

GetComponentPackageDependencies (theComponentPackage : ComponentPackage)
: ComponentDependencyCollection on page 175

GetVisibleComponentPackages () : ComponentPackageCollection on page 176

RelocateComponent (theComponent : Component) : on page 176

148 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RelocateComponentDiagram (theModDiagram : ComponentDiagram) : on
page 177

RelocateComponentPackage (theComponentPackage : ComponentPackage) : on
page 177

TopLevel () : Boolean on page 177

Component

Description

Components are used to model the physical elements that may reside on a node, such
as executables, libraries, source files, documents. The component therefore represents
the physical packaging of the logical elements, such as classes and capsules.

Derived from ModelElement

Public Attributes
AssignedClasses : ClassifierCollection

Description

Collection of classifiers assigned to a Component.
AssignedLogicalPackages : LogicalPackageCollection

Description

Collection of logical packages assigned to a Component.
CodeGenMakeDescription : String

Description

Used to describe any details regarding Code Generation Make configuration.
CodeGenMakeFlags : String

Description

Any flags supported to be passed to the make utility during Code Generation.

Component 149

CodeGenMakeName : String

Description

The name of the make utility being used to control the code generation.
CodeGenMakeOverridesFile : String

Description

The overrides file is a makefile fragment which is included in the code generation
makefile that allows for the addition of user-defined dependencies, compile, and link
options in the code generation make files.

CodeGenMakeType : String

Description

Can be one of “Unix_make”, “Messmate” or “Gnu_make”.
CompilationMakeDescription : String

Description

Used to describe any details regarding Compilation Make configuration.
CompilationMakeFlags : String

Description

Any flags supported to be passed to the make utility during Compilation.
CompilationMakeName : String

Description

The name of the make utility being used to control the compilation and link of a
component. The make name must be the exact name of the make command.

CompilationMakeOverridesFile : String

Description

The overrides file is a makefile fragment which is included in the compilation
makefile that allows for the addition of user-defined dependencies, compile, and link
options.

150 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CompilationMakeType : String

Description

Can be one of “Unix_make”, “Messmate” or “Manlike”.
CompilerDescription : String

Description

Used to describe any details regarding Compiler configuration.
CompilerFlags : String

Description
Any flags supported by your compiler utility. This is where you would specify a
parallel make flag to increase compilation efficiency.

CompilerLibrary : String

Description

Used to uniquely identify the Services Library set and build utilities that will be used
to compile and link the component. The library name, which is actually a directory
name of where to find the utilities and Services Library files, can be any legal
directory name. However, in order to differentiate between the different variations of
compiler and processors, a standard notation is commonly used. The compiler library
name is composed of three parts: processor-compiler-version.

For example, the library name for an x86 processor built with version 6.0 of Microsoft
Visual C++ would be called: x86-VisualC++-6.0
CompilerName : String

Description

Used to replace the pre-configured compiler shell command defined in libset.mk.

Component 151

DefaultArgs : String

Description

Some platforms do not allow command line arguments to be passed to an executable
at load time (namely, on some real-time operating systems). In this case, the default
arguments provides a mechanism for getting execution arguments into the
executable.

Note: The default arguments property will only be used for targets that cannot accept
command line arguments. Targets that accept command line arguments will ignore
the content of this property.

Environment : String

Description

Component build environment.
ExecutableFileName : String

Description

The name, or a name with an absolute path, of the executable that will be created as a
result of the component being built.

InclusionPaths : StringCollection

Description

Collection of strings that represent the directory search set used by the compiler to
find user-specified inclusion files. They are searched in the ordered specified in the
collection.

Inclusions : StringCollection

Description

Component level inclusion files.
LinkerFlags : String

Description

Any flags supported by your linker utility.

152 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

LinkerName : String

Description

Used to replace the pre-configured linker shell command defined in libset.mk.
MultiThreaded : Boolean

Description

Indicates whether the component is compiled for a multi-threaded or single-threaded
platform.

OutputPath : String

Description

The output path can be changed to allow you to set the directory into which the
generated files resulting from a component build will be written. If left unspecified
the generation and compilation results are stored in $ROSERT_HOME/[component
name].

ParentComponentPackage : ComponentPackage

Description

Identifies the Component Package that contains the Component.
Platform : String

Description

The hardware on which you will run the executable, and hence identifies the platform
for which to build the component. The target does not necessarily have to the same as
the toolset is running on.

RTSDescription : String

Description

Used to describe any details regarding RTS configuration.

Component 153

RTSType : String

Description

A pre-defined type that maps directly to a specific directory in the Rose RealTime
installation directory. e.g. “C++ Target RTS”

TargetDescription : String

Description

Used to describe any details regarding Target configuration.
TargetLibrary : String

Description

Used to uniquely identify the Services Library set and build utilities that will be used
to compile and link the component. The library name, which is actually a directory
name of where to find the utilities and Services Library files, can be any legal
directory name. However, in order to differentiate between the different variations of
compiler and processors, a standard notation is commonly used. The compiler library
name is composed of three parts: processor-compiler-version.

For example, the library name for an x86 processor built with version 6.0 of Microsoft
Visual C++ would be called: x86-VisualC++-6.0

TopCapsule : Capsule

Description

Obsolete Property. This property is now implemented independently in each of the
language add-ins if needed. Below is an example of how to address this in C++

Sub Set TopCapsul e (theConponent As RoseRT. Conponent, theCapsul e As
RoseRT. Capsul e)
First add the capsule as a reference if it isn't
al ready
| f
t heConponent . Assi gnedC asses. Fi ndFi r st (t heCapsul e. Nane
) = 0 Then
If Not theConponent. Assignd ass(theCapsul e) Then

154 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

MsgBox "Error configuring conponent.”
Exit Sub
End If
End |f

t ool Name$ = " OT: : CppExec"
propertyName$ = "TopCapsul e"

If Not theConponent.OverrideProperty(tool Nane,
propertyNane, "") Then

MsgBox "Error configuring conponent."”

Exit Sub
End |f

Dim sp As RoseRT. StructuredProperty

Set sp =

t heConponent . Get Tool Properti es(t ool Name) . Get Fi r st (prop
ertyNane)

sp. Set Fi el dval ue "event _ui", "description",

t heCapsul e. Name

sp. Set Fi el dval ue "event _ui", "caption", "Select..."

Di m ful | Capsul eNane As String

full Capsul eName = """" + theCapsul e. Get Qual i fi edNane()
+ "ttto+ " "+ theCapsul e. Get Uni quel D()
sp. Set Fi el dvalue "", "", full Capsul eNanme
End Sub
Type : String
Description
Component build type.

UserLibraries : StringCollection

Description

Any number of user libraries can be specified to be linked into an executable through
user library items. The entry names themselves follow the convention associated with
your compiler or operating system.

Component 155

UserLibraryPaths : StringCollection

Description

Any number of entries can appear as library path items and as a group they comprise
the directory search set used by the compiler to find user-specified libraries. They are
searched in the order specified in the list (top to bottom).

Public Operations

AddComponentDependency (theDep : Component) :
ComponentDependency

Description

Adds a Dependency relationship between two Components.

Syntax

Set theConmponent Dependency = t heConponent. AddConponent Dependency(
t heDep)

t heConponent Dependency As RoseRT. Conponent Dependency

Returns a new ComponentDependency whose dependent is theComponent and
whose provider is theDep.

t heConponent As RoseRT. Conponent

The ComponentDependency dependent component.

theDep As String
The ComponentDependency provider.

AddInclusion (inclusion : String) : Boolean

Description

Adds a component level inclusion file to be used by compiler.

156 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

I ncl usi onAdded = t heConponent. Addl ncl usi on(i ncl usion)

I ncl usi onAdded As Bool ean

Returns whether the new inclusion was added to theComponent.

t heConponent As RoseRT. Conponent

The Component who gets a new inclusion added.

inclusion As String

The filename of the new inclusion file.

AddInclusionPath (pathName : String, ComputeDependencies : Boolean)
: Boolean

Description

Adds a component level inclusion path to be used by the compiler.

Syntax

I ncl usi onPat hAdded = t heConponent. Addl ncl usi onPat h(pat hNane,
Conput eDependenci es)

I ncl usi onPat hAdded As Bool ean

Returns a whether the new inclusion path was added to theComponent.

t heConponent As RoseRT. Conponent

The Component who gets a new inclusion path added.

pathNane As String

The pathname of the new inclusion path.

Conput eDependenci es As Bool ean

Component 157

When set to True, the inclusion files in that directory are not considered during the
dependency calculations.

AddRealizeRelation (theRelName : String, thelnterfaceName : String) :
RealizeRelation

Description

Adds a Realize relationship to a Component.

Syntax

Set theRealizeRel = theConponent.AddReal i zeRel (theRel Nane,
t hel nt er f aceName)

theReal i zeRel As RoseRT. Real i zeRel

Returns a new RealizeRelation whose client is theComponent and whose supplier is
thelnterfaceName.

t heConponent As RoseRT. Conponent

The Component that realizes.

theRel Name As String

The name of the new RealizeRelation.

thel nterfaceNane As String

The name of the supplier of the new RealizeRelation.

AddUserLibrary (libraryName : String) : Boolean

Description

Adds a component level library file to be used during builds.

Syntax
Li brar yAdded = t heConponent . AddUser Li brary(|i braryNane)

158 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Li brar yAdded As Bool ean

Returns whether the new library was added to theComponent.

t heConponent As RoseRT. Conponent
The Component who gets a new library added.

I'i braryName As String

The filename of the new library file.

AddUserLibraryPath (pathName : String) : Boolean

Description

Adds a component level library path to be used by during builds.

Syntax
Li br ar yPat hAdded = t heConponent . Addl ncl usi onPat h(pat hNane)

Li br ar yPat hAdded As Bool ean

Returns a whether the new library path was added to theComponent.
t heConponent As RoseRT. Conponent

The Component who gets a new library path added.

pathNane As String
The pathname of the new library path.

AssignClass (theClass : Classifier) : Boolean

Description

Assigns a classifier to a Component.

Syntax
Cl assi fi erAssigned = theConponent . Assi gnCl ass(theCl ass)

Component 159

Cl assi fi er Assigned As Bool ean

Returns whether theClass was assigned to theComponent.

t heConponent As RoseRT. Conponent

The Component who gets assigned a theClass.

t heCl ass As RoseRT. d assifier

Classifier to assign to theComponent.
AssignPackage (thePackage : LogicalPackage) : Boolean

Description

Assigns a package to a Component.

Syntax
PackageAssi gned = t heConponent . Assi gnPackage(thePackage)

PackageAssi gned As Bool ean

Returns whether thePackage was assigned to theComponent.

t heConponent As RoseRT. Conponent
The Component who gets assigned thePackage.

t hePackage As RoseRT. Logi cal Package

LogicalPackage to assign to theComponent.
Build (bUpdateAssignedClassList : Boolean) : Boolean

Description

Generates the source code for the component, and invokes the external compiler and
linker to create an executable version of the component. Only the model elements that
have changed will be generated and recompiled.

Syntax
Bui | dDone = t heConmponent. Bui | d(bUpdat eAssi gnedd assLi st)

160 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Bui | dDone As Bool ean

Returns whether Build operation was performed.

t heConponent As RoseRT. Conponent
The Component who gets built.

bUpdat eAssi gnedC assLi st As Bool ean
Whether to update the assigned class list before performing the actual build.

DeleteComponentDependency (theDep : ComponentDependency) :
Boolean

Description

Deletes a ComponentDependency relationship.

Syntax

Conponent DependencyDel et ed = t heConponent . Del et eConponent Dependency/(
t heDep)

Conponent DependencyDel et ed As Bool ean
Returns whether theDep was deleted.

t heConponent As RoseRT. Conponent

The Component to remove ComponentDependency from.

theDep As RoseRT. Conponent Dependency
The ComponentDependency to remove from theComponent.

Deletelnclusion (inclusion : String) : Boolean

Description

Deletes an inclusion.

Component 161

Syntax

I ncl usi onDel et ed = t heConponent. Del et el ncl usi on(inclusion)

I ncl usi onDel eted As Bool ean

Returns whether inclusion was deleted.

t heConponent As RoseRT. Conponent

The Component to remove inclusion from.

inclusion As String

The inclusion to remove from theComponent.
DeletelnclusionPath (pathName : String) : Boolean

Description

Deletes an inclusion path.

Syntax

I ncl usi onPat hDel et ed = t heConponent. Del et el ncl usi onPat h(pat hNane)

I ncl usi onPat hDel et ed As Bool ean

Returns whether inclusion path was deleted.

t heConponent As RoseRT. Conponent
The Component to remove inclusion path from.
pathNane As String

The inclusion path to remove from theComponent.

DeleteRealizeRelation (theRel : RealizeRelation) : Boolean

Description

Deletes a realize relation.

162 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
Real i zeRel ati onDel eted = theConponent. Del et eReal i zeRel ati on(theRel)

Real i zeRel ati onDel et ed As Bool ean

Returns whether theRel Realize relation was deleted.

t heConponent As RoseRT. Conponent

The Component to remove theRel from.

theRel As RoseRT. Real i zeRel ati on

The Realize relation to remove from theComponent.
DeleteUserLibrary (libraryName : String) : Boolean

Description

Deletes a library.
Syntax

Li braryDel eted = theConponent. Del eteUser Li brary(|i braryName)

Li braryDel eted As Bool ean

Returns whether libraryName was deleted.

t heConponent As RoseRT. Conponent

The Component to remove libraryName from.

I'i braryName As String

The library to remove from theComponent.

DeleteUserLibraryPath (pathName : String) : Boolean

Description

Deletes a library path.

Component 163

Syntax
Li braryPat hDel et ed = t heConponent. Del et eUser Li braryPat h(pat hNane)

Li braryPat hDel eted As Bool ean
Returns whether library path was deleted.

t heConponent As RoseRT. Conponent

The Component to remove library path from.

pathNane As String

The library path to remove from theComponent.
Generate (bUpdateAssignedClassList : Boolean) : Boolean

Description

Generates the source code for the component but does not invoke the external
compiler. Generation is incremental to previous build and generate requests. The
Generate operation is usually used if the compilation is going to be invoked from
outside the toolset.

Syntax
Gener ati onDone = t heConponent . Generat e(bUpdat eAssi gnedC assLi st)

CGener ati onDone As Bool ean
Returns whether Generation operation was performed.
t heConponent As RoseRT. Conponent

The Component to generated code for.

bUpdat eAssi gnedC assLi st As Bool ean

Whether to update the assigned class list before performing the actual code
generation.

164 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetAllClasses () : ClassifierCollection

Description

Returns all classifiers assigned to a Component.

Syntax
theCl assifiers = theConponent. Get Al | Cl asses()

theCl assifiers As RoseRT.Cl assifierCollection

Classifiers assigned to theComponent

t heConponent As RoseRT. Conponent

The Component to return Classifiers assigned to.
GetComponentDependencies () : ComponentDependencyCollection

Description

Returns all ComponentDependency relations a Component is client of.
Syntax

t heConponent Dependenci es = t heConponent . Get Conponent Dependenci es()

t heConponent Dependenci es As RoseRT. Conponent DependencyCol | ecti on

ComponentDependencies of theComponent

t heConponent As RoseRT. Conponent

The Component to return ComponentDependencies of.
GetinclusionPathFlag (pathName : String) : Boolean

Description

Returns the ComputeDependencies flag of an inclusion path of a Component.

Component 165

Syntax
Conput eDependenci es = t heConponent . Get | ncl usi onPat hFl ag(pat hName)

Conput eDependenci es As Bool ean

Returns whether the ComputeDependencies flag is set for the pathname Inclusion
Path.

t heConponent As RoseRT. Conponent

The Component to that contains the Inclusion Path pathName.

pathNane As String

Pathname of Inclusion Path to retrieve ComputeDependencies flag for.
GetRealizeRelations () : RealizeRelationCollection

Description

Returns all Realize relations of a Component.

Syntax
theReal i zeRel ati ons = t heConponent . Get Real i zeRel ati ons()

theReal i zeRel ati ons As RoseRT. Real i zeRel ati onCol | ecti on

Realize relations of theComponent

t heConponent As RoseRT. Conponent

The Component to return Realize relations of.
RebuildAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Forces a complete build on a component. All classes referenced by the component will
be regenerated, compiled, and linked.

Syntax
Rebui | dAI'| Done = t heConponent. Rebui | dAI'l (bUpdat eAssi gnedC assLi st)

166 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Rebui | dAlI | Done As Bool ean

Returns whether RebuildAll operation was performed.

t heConponent As RoseRT. Conponent
The Component who gets rebuilt.

bUpdat eAssi gnedC assLi st As Bool ean
Whether to update the assigned class list before performing the actual Rebuild All.

RegenerateAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Initiates a model verification and generates the source code for the component but the
external compiler is not invoked. Generation is not incremental to previous build and
generate requests. The complete component is regenerated.

Syntax

Regenerat Al | Done = t heConponent. Regenerat eAl | (
bUpdat eAssi gnedC assLi st)

Regener at Al | Done As Bool ean

Returns whether RegenerateAll operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets regenerated.

bUpdat eAssi gnedC assLi st As Bool ean
Whether to update the assigned class list before performing the actual RegenerateAll.

Component 167

ReverifyAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Run a complete verification of all elements. Normally, the toolset performs an
incremental verification, checking only those elements that have changed since the
last verify, and any elements affected by the changes. The reverify all command
ignores the incremental changes and verifies the entire Component.

Syntax
Reveri fyAl | Done = t heConponent . ReverifyAll (bUpdat eAssi gnedCl assLi st)

Reveri fyAl | Done As Bool ean

Returns whether ReverifyAll operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets reverified.

bUpdat eAssi gnedC assLi st As Bool ean
Whether to update the assigned class list before performing the actual ReverifyAll

UnassignClass (theClass : Classifier) : Boolean

Description

Unassigns a classifier from a Component.

Syntax
Unassi gnDone = t heConponent . Unassi gnd ass(theCl ass)

Unassi gnDone As Bool ean

Returns whether Unassign operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets theClass unassigned from.

168 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heCl ass As RoseRT. d assifier

The Classifier to unassign from the theComponent.

UnassignPackage (thePackage : LogicalPackage) : Boolean

Description

Unassigns a Logical Package from a Component.

Syntax
Unassi gnDone = t heConponent . Unassi gnPackage(thePackage)

Unassi gnDone As Bool ean

Returns whether Unassign operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets thePackage unassigned from.

t hePackage As RoseRT. Logi cal Package

The Logical Package to unassign from the theComponent.
UpdateAssignedClassList () : Boolean

Description

Updates the assigned Classifier list of a Component based on the set of Classifiers
referenced by the top Capsule or by any of its referenced Classifiers.

Syntax
Updat eDone = theConponent . Updat eAssi gnedd assLi st ()

Updat eDone As Bool ean

Returns whether Update operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets its classifier list updated.

Component 169

Verify (bUpdateAssignedClassList : Boolean) : Boolean

Description

Initiate an internal check of the Component for consistency and errors. A Component
verification is run every time a Component is either generated or built.

Syntax
Veri fyDone = theConponent. Verify(bUpdat eAssi gnedd assLi st)

Veri fyDone As Bool ean

Returns whether Verify operation was performed.

t heConponent As RoseRT. Conponent

The Component who gets verified.

bUpdat eAssi gnedC assLi st As Bool ean
Whether to update the assigned class list before performing the actual Verify.

ComponentPackage

Description

A ComponentPackage is a collection of logically related components. (The
ComponentPackage/component relationship is analogous to the logical
package/class relationship).The ComponentPackage class exposes attributes and
operations that allow you to define and manipulate ComponentPackages and their
characteristics. Check the lists of attributes and operations for complete information.

Derived from Package
Public Attributes

ComponentDiagrams : ComponentDiagramCollection

Description

Contains the component diagrams belonging to the ComponentPackage.

170 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ComponentPackages : ComponentPackageCollection

Description

Contains the ComponentPackages belonging to the ComponentPackage.
Components : ComponentCollection

Description

Contains the modules belonging to the subsystem.
ParentComponentPackage : ComponentPackage

Description

Identifies the ComponentPackage object that contains the ComponentPackage. If the
ComponentPackage is the root ComponentPackage, then the value of parent
ComponentPackage is set to Nothing.

Note: You can also use the TopLevel method to check for this condition.

Public Operations
AddComponent (theName : String) : Component

Description

Creates a new component in a ComponentPackage and returns it in the specified
object.

Syntax
Set theConmponent = theConponent Package. AddConponent (theNane)

t heConponent As RoseRT. Conponent

Returns the newly created component object.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage to which new component is being added.

ComponentPackage 171

theName As String

Name of the component to be created.
AddComponentDiagram (name : String) : ComponentDiagram

Description
Creates a new component diagram in a ComponentPackage and returns it in the

specified object.

Syntax

Set theConponent Di agram = t heConponent Package. AddConponent Di agr am
(t heNan®)

t heConponent Di agr am As RoseRT. Conponent Di agr am

Returns the newly created component diagram object.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage to which new component diagram is being added.

theName As String

Name of the component diagram to be created.
AddComponentPackage (theName : String) : ComponentPackage

Description

Creates a new ComponentPackage in a model and returns it in the specified
ComponentPackage object.

Syntax
Set theConmponent Package = theObj ect. AddConponent Package (theNane)

t heConponent Package As RoseRT. Conponent Package

Returns the newly created ComponentPackage.

t heObj ect As RoseRT. Conponent Package

Instance of the ComponentPackage being created.

172 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theName As String

Name of the ComponentPackage being created.
DeleteComponent (pIDispatch : Component) : Boolean

Description

Deletes a component from a ComponentPackage.

Syntax
I sDel eted = theConponent Package. Del et eConponent (theConponent)

| sDel eted As Bool ean

Returns a value of True when the component is successfully deleted.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage from which to delete the module.

t heConponent As RoseRT. Conponent
Component being deleted.

DeleteComponentPackage (pIDispatch : ComponentPackage) : Boolean

Description

Deletes a ComponentPackage from a ComponentPackage.

Syntax

I sDel eted = t heConmponent Package. Del et eConponent Package
(t heConponent Package)

| sDel eted As Bool ean

Returns a value of True when the ComponentPackage is successfully deleted.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage from which to delete the ComponentPackage.

ComponentPackage 173

t heConponent Package As RoseRT. Conponent Package
ComponentPackage being deleted.

GetAllComponentPackages () : ComponentPackageCollection

Description

Retrieves all ComponentPackages belonging to a ComponentPackage.

Syntax

Set t heConmponent Packages = t heConponent Package. Get Al | Conrponent Packages
()

t heConponent Packages As RoseRT. Conponent PackageCol | ecti on

Returns all ComponentPackage belonging to the ComponentPackage.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage whose ComponentPackages are being retrieved.
GetAllComponents () : ComponentCollection

Description

Retrieves all components belonging to a ComponentPackage.

Syntax
Set theConmponents = t heConponent Package. Get Al | Conponents ()

t heConponents As RoseRT. Conponent Col | ecti on

Returns all components belonging to the ComponentPackage.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage whose components are being retrieved.

174 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetComponentDependencies () : ComponentDependencyCollection

Description

Returns all ComponentDependency relations a ComponentPackage is client of.

Syntax

t heConponent Dependenci es =
t heConponent Package. Get Conponent Dependenci es()

t heConponent Dependenci es As RoseRT. Conponent DependencyCol | ecti on

ComponentDependencies theComponentPackage is client of.

t heConponent Package As RoseRT. Conponent Package

The ComponentPackage to the ComponentDependencies it is client of.

GetComponentPackageDependencies (theComponentPackage :
ComponentPackage) : ComponentDependencyCollection

Description

Retrieves the ComponentDependency collection owned by a ComponentPackage
whose supplier is another specified ComponentPackage. The clients of these relations
are Components.

Syntax

Set theConponent Dependenci es =
t heConponent Package. Get Conponent PackageDependenci es(
t heSuppl i er Conponent Package)

t heConponent Dependenci es As RoseRT. Conmponent DependencyCol | ecti on

Returns the component dependency collection owned by the theComponentPackage
whose supplier is theSupplierComponentPackage.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage that owns the collection of ComponentDependency being
retrieved.

ComponentPackage 175

t heSuppl i er Conponent Package As RoseRT. Conponent Package

Supplier of the component dependencies retrieved.
GetVisibleComponentPackages () : ComponentPackageCollection

Description

Retrieves all ComponentPackages that are visible from a ComponentPackage. This
includes ComponentPackage containing Component that are visible from the queried
Component Package.

Syntax

Set theComponent Packages =
t heConponent Package. Get Vi si bl eConponent Packages ()

t heConponent Packages As RoseRT. Conponent PackageCol | ecti on

Returns all ComponentPackage visible from the ComponentPackage.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage whose visible ComponentPackages are being retrieved.
RelocateComponent (theComponent : Component) :

Description

Relocates a component in a ComponentPackage.

Syntax
t heConponent Package. Rel ocat eConponent theConponent

t heConponent Package As RoseRT. Conponent Package

The component package to relocate a component into.

t heConponent As RoseRT. Conponent

The component to relocate.

176 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RelocateComponentDiagram (theModDiagram : ComponentDiagram) :

Description

Relocates a component diagram in a ComponentPackage.

Syntax
t heConponent Package. Rel ocat eConponent Di agr am t heConponent Di agr am

t heConponent Package As RoseRT. Conponent Package

ComponentPackage that contains the component diagram being relocated.

t heConponent Di agr am As RoseRT. Conponent Di agr am

Component diagram being relocated.

RelocateComponentPackage (theComponentPackage :
ComponentPackage) :

Description

Relocates a ComponentPackage in a model.
Syntax

t heConponent Package. Rel ocat eConmponent Package t heConponent Package

t heConponent Package As RoseRT. Conponent Package

Component package that contains the ComponentPackage being relocated.

t heConponent Package As RoseRT. Conponent Package

ComponentPackage being relocated.
TopLevel () : Boolean

Description

Determines whether the specified object is the root ComponentPackage.

ComponentPackage 177

Syntax

I sTopLevel = theConponent Package. TopLevel ()
| sTopLevel As Bool ean

Returns a value of True if the specified object is the root component package.
t heConponent Package As RoseRT. Conponent Package

ComponentPackage object being tested as root ComponentPackage.

Core Model Classes

Core Model classes include
ControllableElement on page 184

Public Attributes
ControlNewUnits : Boolean on page 184
Public Operations
Control () : Boolean on page 185
ControlChildElements (Recursive : Boolean) : Boolean on page 185
ControlTo (Path : String) : Boolean on page 185
GetChildDirName () : String on page 186
GetContainingControlledElement () : ControllableElement on page 186

GetControlledChildElements (bRecursive : Boolean) :
ControllableElementCollection on page 187

GetFileName () : String on page 187

GetVersion () : String on page 188

IsCheckedOut () : Boolean on page 188
IsChildDirCheckedOut () : Boolean on page 189
IsChildDirUnderSourceControl () : Boolean on page 189
IsControllableElementContainer () : Boolean on page 190
IsControlled () : Boolean on page 190

IsLoaded () : Boolean on page 191

IsModifiable () : Boolean on page 191

178 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsModified () : Boolean on page 192

IsOwned () : Boolean on page 192

IsUnderSourceControl () : Boolean on page 192

Save () : Boolean on page 193

Uncontrol () : Boolean on page 193

UncontrolChildElements (Recursive : Boolean) : Boolean on page 194
DefaultModelProperties on page 194

Public Operations

AddDefaultProperty (ClassName : String, ToolName : String, SetName : String,
PropName : String, PropType : String, Value : String) : Boolean on page 195

CloneDefaultPropertySet (ClassName : String, ToolName : String,
ExistingSetName : String, NewSetName : String) : Boolean on page 196

CreateDefaultPropertySet (ClassName : String, ToolName : String, NewSetName :
String) : Boolean on page 197

DeleteDefaultProperty (ClassName : String, TooIName : String, SetName : String,
PropName : String) : Boolean on page 198

DeleteDefaultPropertySet (ClassName : String, ToolName : String, SetName :
String) : Boolean on page 199

FindDefaultProperty (ClassName : String, TooIName : String, SetName : String,
PropName : String) : Property on page 200

GetDefaultPropertySet (ClassName : String, ToolName : String, SetName : String)
: PropertyCollection on page 201

GetDefaultSetNames (ClassName : String, ToolName : String) : StringCollection
on page 201

GetToolNames (Parameterl : String) : StringCollection on page 202
IsToolVisible (theToolName : String) : Boolean on page 203
SetToolVisibility (theToolName : String, Visibility : Boolean) : on page 203

Core Model Classes 179

Element on page 204
Public Attributes
Application : Application on page 204
Model : Model on page 204
Name : String on page 205
Public Operations

CreateProperty (theToolName : String, thePropName : String, theValue : String,
theType : String) : Boolean on page 205

FindDefaultProperty (theToolName : String, thePropName : String) : Property on
page 206

FindProperty (theToolName : String, thePropName : String) : Property on
page 206

GetAllProperties () : PropertyCollection on page 207
GetCurrentPropertySetName (ToolName : String) : String on page 207

GetDefaultPropertyValue (theToolName : String, thePropName : String) : String
on page 208

GetDefaultSetNames (ToolName : String) : StringCollection on page 208
GetPropertyClassName () : String on page 209

GetPropertyValue (theToolName : String, thePropName : String) : String on
page 209

GetQualifiedName () : String on page 210

GetToolNames () : StringCollection on page 211

GetToolProperties (theToolName : String) : PropertyCollection on page 211
GetUniquelD () : String on page 211

InheritProperty (theToolName : String, thePropName : String) : Boolean on
page 212

IsDefaultProperty (theToolName : String, thePropName : String) : Boolean on
page 213

IsOverriddenProperty (theToolName : String, thePropName : String) : Boolean on
page 213

180 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

OwerrideProperty (theToolName : String, thePropName : String, theValue : String)
: Boolean on page 214

SetCurrentPropertySetName (ToolName : String, SetName : String) : Boolean on
page 215

ExternalDocument on page 215
Public Attributes
ParentLogicalPackage : LogicalPackage on page 216
Path : String on page 216
URL : String on page 216
Public Operations
IsURL () : Boolean on page 216
Open (szAppPath : String) : Boolean on page 217

Model on page 218
Public Attributes
ActiveComponent : Component on page 218
DefaultProperties : DefaultModelProperties on page 218
DeploymentDiagram : DeploymentDiagram on page 218
RootComponentPackage : ComponentPackage on page 219
RootDeploymentPackage : DeploymentPackage on page 219
RootLogicalPackage : LogicalPackage on page 219
RootUseCaseLogicalPackage : LogicalPackage on page 219
UseCases : UseCaseCollection on page 219
Public Operations

AddActiveComponentInstance (ComponentInstanceToAdd : Componentinstance) :
Boolean on page 219

AddDevice (pName : String) : Device on page 220
Control AllUnits (bControlAllUnits : Boolean) : Boolean on page 221
DeleteDevice (pDevice : Device) : Boolean on page 221

DeleteProcessor (pProcessor : Processor) : Boolean on page 222

Core Model Classes 181

FindCapsuleWithID (UniquelD : String) : Capsule on page 222

FindCapsules (CapsuleName : String) : CapsuleCollection on page 223
FindClassWithID (UniquelD : String) : Class on page 223

FindClasses (ClassName : String) : ClassCollection on page 224
FindLogicalPackageWithID (UniquelD : String) : LogicalPackage on page 224

FindLogicalPackages (LogicalPackageName : String) : LogicalPackageCollection on
page 225

FindModelElementWithID (UniquelD : String) : ModelElement on page 225

FindModelElements (ModelElementName : String) : ModelElementCollection on
page 226

FindProtocolWithID (UniquelD : String) : Protocol on page 226
FindProtocols (ProtocolName : String) : ProtocolCollection on page 227
GetActiveComponentInstances () : ComponentInstanceCollection on page 227
GetActiveDiagram () : Diagram on page 228

GetAllAssociations () : AssociationCollection on page 228

GetAllCapsules () : CapsuleCollection on page 229

GetAllClasses () : ClassCollection on page 229

GetAllComponentPackages () : ComponentPackageCollection on page 230
GetAllComponents () : ComponentCollection on page 230

GetAllDevices () : DeviceCollection on page 230

GetAllLogicalPackages () : Logical PackageCollection on page 231
GetAllProcessors () : ProcessorCollection on page 231

GetAllProtocols () : ProtocolCollection on page 232

GetAllUseCases () : UseCaseCollection on page 232

GetSelectedCapsules () : CapsuleCollection on page 232

GetSelectedClasses () : ClassCollection on page 233
GetSelectedComponentPackages () : ComponentPackageCollection on page 233
GetSelectedComponents () : ComponentCollection on page 234
GetSelectedLogicalPackages () : LogicalPackageCollection on page 234

182 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetSelectedModelElements () : ModelElementCollection on page 234
GetSelectedProtocols () : ProtocolCollection on page 235
GetSelectedUseCases () : UseCaseCollection on page 235

RemoveActiveComponentInstance (ComponentInstanceToRemove :
Componentlnstance) : Boolean on page 236

ModelElement on page 236
Public Attributes
Documentation : String on page 237
ExternalDocuments : ExternalDocumentCollection on page 237
LocalizedStereotype : String on page 237
Stereotype : String on page 237
Public Operations

AddExternalDocument (szName : String, iType : RsExternalDocumentType) :
ExternalDocument on page 237

DeleteExternalDocument (pIDispatch : ExternalDocument) : Boolean on page 238
GetModelElement () : ModelElement on page 238
OpenSpecification () : Boolean on page 239
Package on page 239
Public Operations
AddSharedUnit (FileName : String) : Boolean on page 240
AddUnit (FileName : String) : Boolean on page 240
ImportFile (FileName : String) : Boolean on page 241
ImportFileEx (FileName : String) : ControllableElementCollection on page 241
IsRootPackage () : Boolean on page 242
TopLevel () : Boolean on page 242

Core Model Classes 183

= Property on page 243

Public Attributes

Name : String on page 243

ToolName : String on page 243

Type : String on page 243

Value : String on page 244
RsExternalDocumentType on page 244

Public Attributes

rsFile : Integer = 1 on page 244

rsURL : Integer = 2 on page 244
StructuredProperty on page 244

Public Operations

GetFieldValue on page 245

SetFieldValue on page 246

ControllableElement

Description

The ControllableElement class is an abstract class that exposes Rational Rose
RealTime unit functionality in the RRTEI. ControllableElements are either controlled,
or contained in a controlled ControllableElement. A controlled ControllableElement
has an associated file where it stores its persistent state and the one of its contained
ControllableElements.

Derived from Element
Public Attributes

ControlNewUnits : Boolean

Description

Determines whether new child units will be created as controlled units.

184 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations
Control () : Boolean

Description

Controls a ControllableElement in default unit file.

Syntax

IsControlled = theControl |l abl eEl enent. Control ()
IsControlled As Bool ean

Whether theControllableElement is controlled.
t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to control.
ControlChildElements (Recursive : Boolean) : Boolean

Description

Controls all children of a ControllableElement.

Syntax

AreControll ed = theControl | abl eEl ement. Cont r ol Chi | dEl ement s(Recursi ve
As Bool ean)

AreControl | ed As Bool ean
Whether all controllable children of theControllableElement are controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to control children of.

Recursive As Bool ean

Specifies whether to control children's children units two.
ControlTo (Path : String) : Boolean

Description

Controls a ControllableElement.

ControllableElement 185

Syntax
IsControlled = theControl | abl eEl enent. Control To(Path As String)

IsControll ed As Bool ean
Whether theControllableElement is controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to control.

Path As String

Pathname of controlled element.

GetChildDirName () : String

Description
Returns the directory name of the folder containing the persistent state of a controlled

ControllableElement's children controllable elements.

Syntax
theDirectoryName = theControll abl eEl enment. Get Chi | dDi r Nane()

theDirectoryNane As String

The directory name where theControllableElement's children controllable elements
are stores. Notice that an empty string is returned if theControllableElement is NOT
controlled or if it can not contain children Controllable Elements.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the directory name used to store that
Controllable Element's children.

GetContainingControlledElement () : ControllableElement
Description

Returns the ControllableElement that controls a ControllableElement. May return self.

186 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

t heCont ai ni ngControl | edEl enent =
t heControl | abl eEl ement. Get Cont ai ni ngCont rol | edEl ement ()

t heCont ai ni ngControl | edEl enent As RoseRT. Control | abl eEl ement
The ControllableElement that controls theControllableElement

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to get the controlled ControllableElement it is contained in.

GetControlledChildElements (bRecursive : Boolean) :
ControllableElementCollection

Description

Returns the collection of ControllableElement contained in a ControllableElement.

Syntax

t heChil dControl | edEl ements =
theControl | abl eEl ement. Get Control | edChi | dEl ement s(bRecursive)

t heChi | dControl | edEl enents As RoseRT. Control | abl eEl ement Col | ecti on
The ControllableElement that controls theControllableElement

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to get the controlled ControllableElement it is contained in.

bRecur sive As Bool ean
Whether get the child ControllableElement's child recursively.

GetFileName () : String

Description

Returns the fully qualified name of the file containing the persistent state to a
controlled ControllableElement and its children.

ControllableElement 187

Syntax

theFil eNane = theControll abl eEl ement . Get Fi | eNane()

theFil eName As String

The fully qualified name of theControllableElement's unit file. Notice that an empty
string is returned if theControllableElement is NOT controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the unit fully qualified filename from.
GetVersion () : String

Description

Returns the Source Control version associated with a controlled ControllableElement.

Syntax

theVersi on = theControll abl eEl ement. Get Version()

theVersion As String

The Source Control version of theControllableElement. Notice that an empty string is
returned if theControllableElement is NOT controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the Source Control version from.
IsCheckedOut () : Boolean

Description

Returns whether a controlled ControllableElement is checked out of Source Control.

Syntax
| sCheckedQut = theControllabl eEl enent. | sCheckedQut ()

| sCheckedQut As Bool ean

188 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Whether theControllableElement is checked out from Source Control. Notice that
False is always returned if theControllableElement is NOT controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve Source Control checkout status from.
IsChildDirCheckedOut () : Boolean

Description

Returns whether a controlled ControllableElement's child controllable elements
directory is checked out of Source Control.

Syntax
I sChi | dDi r CheckedQut = theControll abl eEl enent . | sCheckedCut ()

| sChi | dDi r CheckedQut As Bool ean

Whether theControllableElement's child controllable elements' directory is checked
out from Source Control. Notice that False is always returned if
theControllableElement is NOT controlled. Controllable Element that can not contain
children Controllable Elements always return False.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element whose child controllable elements' directory is used to
retrieve Source Control checkout status from.

IsChildDirUnderSourceControl () : Boolean

Description

Returns whether a controlled ControllableElement's child controllable elements'
directory is under Source Control.

Syntax

I sChi | dDi r User Sour ceControl =
theControl | abl eEl ement. | sChi | dDi r User Sour ceCont rol ()

I sChi | dDi r User Sour ceControl As Bool ean

ControllableElement 189

Whether child directory of theControllableElement is under SourceControl. Non
Controlled ControllableElement always return False. Controllable Element that can
not contain children Controllable Elements always return False.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the IsChildDirUserSourceControl status from.
IsControllableElementContainer () : Boolean

Description

Returns whether the Controllable Element can contain child Controllable Elements.

Syntax

I sCont rol | abl eEl ement Cont ai ner =
theControl | abl eEl enment. | sContr ol | abl eEl enent Cont ai ner ()

| sCont rol | abl eEl enent Cont ai ner As Bool ean

Whether theControllableElement can contain child Controllable Elements.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve whether it can contain child Controllable
Element.

IsControlled () : Boolean

Description

Returns whether a ControllableElement is controlled.
Syntax

IsControlled = theControl | abl eEl enent.|sControlled()

IsControll ed As Bool ean
Whether theControllableElement is controlled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the Controlled status from.

190 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsLoaded () : Boolean

Description
Returns whether a Controlled ControllableElement is Loaded. A controlled

ControllableElement is always in the Loaded state except in very rare situations.

Syntax
I sLoaded = theControll abl eEl emrent. | sLoaded()

| sLoaded As Bool ean

Whether theControllableElement is loaded. Notice that a non controlled Controllable
Element will always return False.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the Loaded status from.
IsModifiable () : Boolean

Description

Returns whether a ControllableElement is modifiable.

Syntax
I shodi fiabl e = theControl | abl eEl enent. | shbdi fi abl e()

| sModi fi abl e As Bool ean

Whether theControllableElement can be modified. Notice that a non controlled
Controllable Element will always base its ModifiableState on the one of its Containing
ControllableElement.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the Modifiable status from.

ControllableElement 191

IsModified () : Boolean

Description

Returns whether the ControllableElement’s ContainingControllableElement, or its
children have been modified.

Syntax
I shodi fied = theControl |l abl eEl ement. | sModified()

| sModi fi ed As Bool ean

Whether theControllableElement's ContainingControllableElemtn or its children has
been modified since last save.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the Modified status from.
IsOwned () : Boolean

Description

Returns whether a ControllableElement is owned by the Model.

Syntax
I sOwmed = theControll abl eEl ement . | sOwned()

I sOmed As Bool ean

Whether theControllableElement IsOwned by the Model. The RTSClasses logical
package is an example of a ControllableElement not owned by the model.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the IsOwned status from.
IsUnderSourceControl () : Boolean

Description

Returns whether a controlled ControllableElement is under Source Control.

192 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
I sUser SourceControl = theControllabl eEl ement. | sUser Sour ceControl ()

I sUser Sour ceControl As Bool ean

Whether theControllableElement is under SourceControl. Non Controlled
ControllableElement always return False.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to retrieve the IsUnderSourceControl status from.
Save () : Boolean

Description

Saves a controlled ControllableElement.

Syntax

Saved = theControll abl eEl enment. Save()

Saved As Bool ean

Whether theControllableElement was saved. Non Controlled ControllableElement
always return False.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to save.
Uncontrol () : Boolean

Description

Uncontrols a ControllableElement.

Syntax

I'sUncontrol led = theControll abl eEl ement. Control ()

IsUncontrol | ed As Bool ean

Whether theControllableElement is uncontrolled.

ControllableElement 193

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to uncontrol.
UncontrolChildElements (Recursive : Boolean) : Boolean

Description

Uncontrols all children of a ControllableElement.

Syntax

AreUncontrol |l ed = theControl | abl eEl ement . Uncont r ol Chi | dEl enent s(
Recursive As Bool ean)

AreUncontrol |l ed As Bool ean

Whether all controllable children of theControllableElement are uncontrolled.

t heControl |l abl eEl enent As RoseRT. Control | abl eEl enent

The Controllable Element to uncontrol children of.

Recursive As Bool ean

Specifies whether to uncontrol children's children units two.

DefaultModelProperties

Description

The DefaultModelProperties Class is a container for the default model properties that
belong to a model. There is one and only one DefaultModelProperties object per
model.

Note: If you use PropertyCollection methods to retrieve model properties, the
collection can include both default and non-default model properties.

194 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Operations

AddDefaultProperty (ClassName : String, TooIName : String, SetName :
String, PropName : String, PropType : String, Value : String) : Boolean

Description
Adds a default property to a model:

The class name, tool name and set name determine where the property is added.

The property name, property type, and property type define the property itself.

Syntax

I sAdded = t heProperties. AddDef aul t Property (theC assNane, theTool Nane,
t heSet Nanme, thePropNanme, thePropType, theVal ue)

| sAdded As Bool ean

Returns a value of True when the default property is successfully added.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theCl assNane As String

Name of the class to which the default property applies; corresponds to the Type field
in the property specification editor of the Rose user interface. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

theTool Name As String

Name of the tool to which the default property applies; If the tool does not exist, it
will be created.

theSet Nane As String
Name of the property set to which the default property applies.

DefaultModelProperties 195

thePropName As String
Name of the default property.

thePropType As String
PropertyType of the default property.

theVal ue As String
Value of the default property.

See also
AddDefaultProperty (ClassName : String, ToolName : String, SetName : String, PropName :
String, PropType : String, Value : String) : Boolean on page 195

CloneDefaultPropertySet (ClassName : String, ToolIName : String,
ExistingSetName : String, NewSetName : String) : Boolean

Description

Creates a new default property set by cloning an existing property set.

Syntax

IsC oned = theProperties. doneDefaul t PropertySet (theC assNane,
t heTool Nane, theExi stingSet Name, theNewSet Nanme)

I sd oned As Bool ean

Returns a value of True when the default property set is successfully cloned.
t heProperti es As RoseRT. Def aul t Model Properties

Contains the default properties belonging to the model.

theCl assNane As String

Name of the extensibility class to which the new default property set applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

196 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heTool Name As String
Name of the tool to which the new default property set applies.

t heExi stingSet Name As String
Name of the existing default property set being cloned.

t heNewSet Nane As String

Name of the new default property set created from the clone.

See also
CreateDefaultPropertySet (ClassName : String, ToolName : String, NewSetName : String) :
Boolean on page 197

CreateDefaultPropertySet (ClassName : String, ToolName : String,
NewSetName : String) : Boolean

Description

Creates a new default property set without using an existing property set as a base.

Syntax

IsCreated = theProperties. CreateDefaul tPropertySet (thed assNane,
t heTool Nane, theNewSet Nane)

I sCreated As Bool ean

Returns a value of True when the default property set is successfully created.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theCl assNane As String

Name of the extensibility class to which the new default property set applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

DefaultModelProperties 197

theTool Name As String
Name of the tool to which the new default property set applies.

t heNewSet Nane As String
Name of the newly created default property set.

See also

CloneDefaultPropertySet (ClassName : String, TooIName : String, ExistingSetName : String,
NewSetName : String) : Boolean on page 196

DeleteDefaultProperty (ClassName : String, ToolName : String, SetName
: String, PropName : String) : Boolean

Description

Deletes a default property from a model. This method only deletes the property that
belongs to the given class, tool, and set. If a different combination of class, tool, and
set contains a default property with the same property name, that default property
will remain intact and will not be deleted.

Syntax

IsDel eted = theProperties. Del eteDefaul t Property (theCl assNaneg,
t heTool Nane, theSet Nanme, thePropNane)

| sDel eted As Bool ean

Returns a value of True when the default property is successfully deleted.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.
theCl assNane As String

Name of the extensibility class to which the default property applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

t heTool Name As String
Name of the tool to which the default property applies.

198 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theSet Nane As String
Name of the property set to which the default property applies.

t hePropName As String
Name of the default property to delete.

DeleteDefaultPropertySet (ClassName : String, ToolName : String,
SetName : String) : Boolean

Description

Deletes a default property set from a model.

Syntax

IsDel eted = theProperties. Del eteDefaul t PropertySet (thed assNane,
t heTool Nane, theSet Nane)

| sDel eted As Bool ean

Returns a value of True when the default property set is successfully deleted.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theCl assNane As String

Name of the extensibility class to which the deleted default property set applies. Use
the Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

t heTool Name As String
Name of the tool to which the deleted default property set applies.

theSet Name As String
Name of the default property set to delete.

DefaultModelProperties 199

FindDefaultProperty (ClassName : String, TooIName : String, SetName :
String, PropName : String) : Property
Description
Finds a specific default model property, given the name of the class, tool, and
property set that contain it.

Syntax

theProperty = theProperties. Fi ndDefaul t Property (theCl assNane,
t heTool Nane, theSet Nanme, thePropNane)

theProperty As RoseRT. Property

Returns the default model property, if found. Returns an empty value if the property
does not exist.

theProperti es As RoseRT. Def aul t Model Properties

Contains the properties belonging to the model .

theCl assNane As String

Name of the extensibility class to search Use the Element.GetPropertyClassName
method to retrieve the valid string to pass as theClassName for a model element.

theTool Name As String

Name of the tool to search.

theSet Nanme As String
Name of the default property set to search.

thePropName As String
Name of the default property to find.

200 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetDefaultPropertySet (ClassName : String, ToolIName : String, SetName
: String) : PropertyCollection

Description

Retrieves the set of default model properties that belongs to a given extensibility class
and tool.

Syntax

Set theSet = theProperties. Get Defaul t PropertySet (thed assNane,
t heTool Nane)

theSet As Def aul t Model Properties

Returns the set of default model properties that belongs to the specified extensibility
class and tool.

theProperti es As RoseRT. Def aul t Model Properties

Contains the properties belonging to the model.

theCl assNane As String

Name of the extensibility class to which the retrieved default property set belongs.
Use the Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

t heTool Name As String
Name of the tool to which the retrieved default property set belongs.

GetDefaultSetNames (ClassName : String, ToolName : String) :
StringCollection

Description

Retrieves the names of the default property sets that contain the model’s default

properties.

Syntax

t heSet Names = t heProperties. Get Def aul t Set Nanes (t hed assNane,
t heTool Nane)

DefaultModelProperties 201

t heSet Names As StringCollection

Returns a StringCollection containing the valid default property set names for the
given extensibility class and tool.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theCl assNane As String

Name of the extensibility class for which you are retrieving valid default property set
names. Use the Element.GetPropertyClassName method to retrieve the valid string to
pass as theClassName for a model element.

t heTool Name As String

Name of the tool for which you are retrieving valid default property set names.
GetToolNames (Parameterl : String) : StringCollection

Description

Retrieves the names of the tools associated with the given properties and class name.

Syntax
Set theTool Nanes = theProperties. Get Tool Names (theCl assNang)

t heTool Nanes As RoseRT. StringCol |l ection

Returns a StringCollection containing the valid tool names for the given extensibility
class.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theCl assNane As String

202 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Name of the extensibility class for which you are retrieving valid tool names. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

IsToolVisible (theToolIName : String) : Boolean

Description

Determines whether the property tab for the given tool will appear in the property
specification.

Syntax

IsVisible = theProperties.|sTool Vi si bl e (theTool Nane)

IsVisible As Bool ean

Returns a value of True if the default model properties’ tool is visible.

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theTool Name As String
Name of the tool to which the default properties belong.

SetToolVisibility (theTooIName : String, Visibility : Boolean) :

Description

Sets the tool’s visibility; that is, whether the property tab for the given tool will appear
in the property specification.

Syntax
theProperties. Set Tool Visibility theTool Name, Visibility

theProperti es As RoseRT. Def aul t Model Properties
Contains the default properties belonging to the model.

theTool Name As String

DefaultModelProperties 203

Name of the tool whose visibility is being set.

Visibility As Bool ean

Set to True to make the tool visible; set to False to make the tool invisible.

Element

Description
The element class provides the interface to model properties.

Every object in a Rose RealTime model (including the model itself) is an element. And
every element in a Rose RealTime model has a name and /or a unique ID. Following
this logic, you can use Element Class methods to obtain the ID for any item in the
current model, and from there get or set its properties and property sets.

The unique element ID also provides the most direct means of accessing an item from
a collection. While you can still use GetFirst and GetNext methods to iterate through a
collection, you can also use the GetwithUniquelD method to obtain the item right
away, without searching through the collection.

Derived from RRTEIObject

Public Attributes
Application : Application

Description

Name of a model element
Model : Model

Description

Name of a model element

204 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Name : String

Description

Name of a model element

Public Operations

CreateProperty (theToolName : String, thePropName : String, theValue :
String, theType : String) : Boolean

Description

Creates a new property for a given model element and tool.

Syntax

IsCreated = t heEl enent. Creat eProperty (theTool Nane, thePropNane,
t heVal ue, theType)

I sCreated As Bool ean

Returns a value of True when the property is created for the element.

t heEl enent As RoseRT. El enent

Element for which the property is being created.

t heTool Name As String
Name of the tool to which the property applies.

thePropName As String
Name of the property being created.

theVal ue As String

Default value of the new property.

theType As String

Element 205

Property type of the property.

FindDefaultProperty (theTooIName : String, thePropName : String) :
Property

Description

Returns the default property given the tool name and property name.

Syntax

Set theProperty = theEl ement. Fi ndDef aul t Property (theTool Nane,
t hePr opNan®)

theProperty As RoseRT. Property

Returns the default property given its name and associated tool name.

t heEl enent As RoseRT. El enent

Model element whose default property is being returned.

theTool Name As String
Name of the tool to which the default property applies.

thePropName As String
Name of the property being retrieved.

FindProperty (theToolName : String, thePropName : String) : Property

Description

Returns the property given the tool name and property names.

Syntax

Set theProperty = theEl ement. Fi ndDef aul t Property (theTool Nane,
t hePr opNane)

theProperty As RoseRT. Property

206 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the property given its name and its associated tool name.

t heEl enent As RoseRT. El enent

Model element whose property is being returned.

t heTool Name As String
Name of the tool to which the property applies.

thePropName As String

Name of the property to return.
GetAllProperties () : PropertyCollection

Description

Returns the collection of properties belonging to the specified element

Syntax
Set theProperties = theEl ement. Get Al | Properties ()

theProperti es As RoseRT. PropertyColl ection

Returns the collection of properties belonging to the specified element.

t heEl enent As RoseRT. El enent

Model element whose properties are being returned.
GetCurrentPropertySetName (ToolName : String) : String

Description

Returns the name of the currently active property set given the element and a tool
name.

Syntax
theNane = t heEl enent. Get Current PropertySet Nanme (theTool Nane)
theName As String

Element 207

Returns the name of the currently active property set.

t heEl enent As RoseRT. El enent

Element to which the property set belongs.

t heTool Name As String
Name of the tool to which the property set belongs.

GetDefaultPropertyValue (theToolName : String, thePropName : String) :
String

Description

Retrieves the default property value given a tool name and property name.

Syntax

t heVal ue = theEl enent. Fi ndDef aul t Property (theTool Nane, thePropNane)

thevalue As String

Returns the default property value for the specified tool name and property name.

t heEl enent As RoseRT. El enent

Element for which the default property value is being retrieved.

t heTool Name As String
Name of the tool to which the property applies.

thePropName As String
Name of the property being retrieved.

GetDefaultSetNames (ToolName : String) : StringCollection

Description

Retrieves the names of the default property sets defined for the specified element and
tool.

208 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
Set theStringCollection = theEl enent. Get Def aul t Set Names (t heTool Nane)

theStringColl ection As StringCollection

Returns the names of the default property sets defined for the given element and tool
name.

t heEl enent As RoseRT. El enent

Element whose default set names are being retrieved.

t heTool Name As String

Name of the tool whose default set names are being retrieved.
GetPropertyClassName () : String

Description

Retrieves the class name of a given element.

Syntax
theCl assNane = theEl ement. Get Propert yCl assNanme ()

theCl assNane As String

Returns the class name for the given element.

t heEl enent as RoseRT. El enent

Element whose class name is being retrieved.
GetPropertyValue (theToolName : String, thePropName : String) : String

Description

Retrieves the current value of a property of an element, given a property and tool
name.

Syntax
theVal ue = theEl enent. Get PropertyVal ue (theTool Nane, thePropNane)

Element 209

theVal ue As String

Returns the current value for the given tool and property .

t heEl enent As RoseRT. El enent

Element for which the property value is being retrieved.

t heTool Name As String

Name of the tool for which a property value is being retrieved.

thePropName As String

Name of the property whose value is being retrieved.
GetQualifiedName () : String

Description
Retrieves the qualified name of a model element.

The qualified name includes the names of the packages to which the element belongs.
This allows the name to resolve to a specific class, since the Rose allows multiple
classes of the same name to exist in a model, as long as they are in different packages.
Examples

The qualified name of the ComponentPackageView Class is:

Logical View::Physical Classes::ComponentPackageView

The qualified name of the PathMap Class is: Logical View::Application

Classes::PathMap

Syntax
Set theNarme = t heEl ement. Get Qual i fi edNanme ()

theName As String

Returns the qualified name of the element.

t heEl enent As RoseRT. El enent

210 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Element whose qualified name is being returned.
GetToolNames () : StringCollection

Description

Retrieves the names of the tools defined for the specified element.

Syntax
Set theStringCollection = theEl ement. Get Tool Nanes

theStringColl ection As StringCollection

Returns the names of the tools for the given element.

t heEl enent As RoseRT. El enent

Element whose tool names are being retrieved.
GetToolProperties (theTooIName : String) : PropertyCollection

Description

Retrieves the properties for the given element and tool name.

Syntax
Set thePropertyCollection = theEl ement. Get Tool Properties (theTool Nane)

thePropertyCol | ection As PropertyCol |l ection

Returns the collection of properties defined for the specified tool name and element .

t heEl enent As RoseRT. El enent

Element whose tool properties are being retrieved.
GetUniquelD () : String

Description

Retrieves the unique ID for a model element. Each element in a model has a unique
ID, which is set internally. You cannot set this value, but you can retrieve it.

Element 211

Syntax
Set theUni quel D = t heEl ement . Get Uni quel D ()

theUni queld As String

Returns the string value of the element’s unique ID.

t heEl enent As RoseRT. El enent

Element whose ID is being returned.
InheritProperty (theToolName : String, thePropName : String) : Boolean

Description

Removes the overridden value from an element’s property so that the default value is
used . If there is no default value, then a call to the GetPropertyValue method on the
inherited property returns an empty string.

Syntax
Islnherited = theEl ement. I nheritProperty (theTool Nane, thePropNane)

Islnherited as Bool ean

Returns a value of True when the property is returned to its inherited (default) value.

t heEl enent As RoseRT. El enent

Element to which the property belongs.

t heTool Name As String
Name of the tool to which the property applies.

thePropName As String

Name of the property whose value is being inherited.

212 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsDefaultProperty (theTooIName : String, thePropName : String) :
Boolean
Description

Indicates whether the current value of a property is set to its default value.

Syntax
IsDefault = theEl enent.|sDefaultProperty (theTool Nane, thePropNane)

| sDefault As Bool ean

Returns a value of True if the current value of the property is set to its default value .

t heEl enent As RoseRT. El enent

The model element whose property value is being checked.

theTool Nane As String
Tool name to which the property applies.

thePropName As String
Name of the property whose default status is being checked.

IsOverriddenProperty (theToolName : String, thePropName : String) :
Boolean

Description

Indicates whether the default value of a property is currently overridden by a

different value.

Syntax

I sOverridden = theEl ement.|sOverriddenProperty (theTool Nane,
t hePr opNane)

IsOverridden As Bool ean

Returns a value of True if the default value of a property is currently overridden.

Element 213

t heEl enent As RoseRT. El enent

The model element whose property value is being checked.

theTool Nane As String
Tool name to which the property applies.

thePropName As String

Name of the property whose overridden status is being checked.

OverrideProperty (theToolName : String, thePropName : String, theValue
: String) : Boolean

Description

Overrides the default value of a element’s property. If the given property does not
exist in the default set, a new string type property is created for this element only.

Syntax

IsOverridden = theEl ement. Overri deProperty (theTool Nanme, thePropNane,
t heVval ue)

IsOverrridden As Bool ean

Returns a value of True when the property value is successfully overridden.

t heEl enent as RoseRT. El enent

Element to which the property applies.

theTool Name As String
Name of the tool to which the property applies.

thePropName As String

Name of the property whose default value is being overridden.

theVal ue As String

Value being set in place of the default value.

214 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SetCurrentPropertySetName (ToolName : String, SetName : String) :
Boolean
Description

Specifies a given property set as the current property set for the element

Syntax

IsCurrentSet = theEl enent. Set Current PropertySet Name (theTool Nane,
t heSet Nane)

I sCurrent Set As Bool ean

Returns a value of True when the given property set is set to the current property set
for the element .

t heEl enent As RoseRT. El enent

Element whose current property set is being set.

theTool name As String
Name of the tool to which the property set applies.

theSet Nanme As String

Name of the property set to become the current set.

ExternalDocument

Description

The ExternalDocument class exposes attributes and operations that allow you to
create external documents (reports) from within the Rose RealTime environment. For
example, you can start Word for Windows and output information from a Rose
RealTime model into a Word document.

ExternalDocument 215

Derived from RRTEIObject

Public Attributes

ParentLogicalPackage : LogicalPackage

Path :

URL :

Description

Specifies the LogicalPackage that contains the external document.
String

Description
Specifies the path to the external document.

Note: An external document is created with a type parameter of either Path or URL.
When accessing an external document, you must specify the correct property (Path or
URL) or a runtime error will occur. For example, you cannot access an external
document whose type is Path by specifying a URL.

String

Description
Specifies the Universal Resource Locator (URL) of an internet document.

Note: An external document is created with a type parameter of either Path or URL.
When accessing an external document, you must specify the correct property (Path or
URL), or a runtime error will occur. For example, you cannot access an external
document whose type is URL by specifying a Path.

Public Operations

ISURL () : Boolean

Description
Checks whether the document is an internet document and therefore has a universal

resource locator (URL).

Syntax
IsURL = theExternal Docunent.|sURL ()

216 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

I sURL As Bool ean

Returns a value of true if the object has a URL.

t heExt er nal Docunent As RoseRT. Ext er nal Docunment

Contains the document being checked.
Open (szAppPath : String) : Boolean

Description
Opens an external document based on a specified application path.

If you do not specify an application path, the Rose RealTime application attempts to
locate and launch the application based on the external document’s type (file
extension).

For example, if the ExternalDocument is linked to a file with the .txt extension, and
you have associated .txt files with the Notepad application, Rose RealTime attempts
to locate and start Notepad and opens the .txt file that contains the external document.
Syntax

I sOpen = theExternal Docunent. Open (AppPat h)

I sOpen As Bool ean

Returns a value of true when the specified document is successfully opened.

t heExt er nal Docunent As RoseRT. Ext er nal Docunment

Document being opened.

AppPath As String

Path to the application executable being used to open the document.

Note: You can specify any appropriate application to open the document. For
example, you can use Word or WordPad to open a .doc file.

ExternalDocument 217

Model

Description

Once you use the application class methods to set the current model, the model class
provides attributes and operations that allow you to work with the objects in that
model.

For example, you can:

Add objects (classes, categories, relationships, processors, devices, diagrams, etc.)
to the model

Retrieve objects from the model
Delete objects from the model
Check the lists of attributes and operations for complete information.

Note: In addition to the Model Class attributes and operations, all ModelElement
operations that manipulate properties also apply to the Model Class.

Derived from Package

Public Attributes
ActiveComponent : Component

Description

Used to select an active component. When a component is configured as being active
the toolbar build icons and menu items become available for easy access to common
build and run commands.

DefaultProperties : DefaultModelProperties

Description

Collection of default properties belonging to the model.
DeploymentDiagram : DeploymentDiagram

Description

Specifies a deployment diagram belonging to the model.

218 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RootComponentPackage : ComponentPackage

Description

ComponentPackage named <Top Level> in Rose RealTime. RootComponentPackage
corresponds to the model’s component view. This value can be retrieved, but not set.

RootDeploymentPackage : DeploymentPackage
RootLogicalPackage : LogicalPackage

Description

LogicalPackage named <Top Level> in Rose RealTime. RootLogicalPackage
corresponds to the model’s logical view. This value can be retrieved, but not set.

RootUseCaselLogicalPackage : LogicalPackage

Description

Root LogicalPackage to which the use cases belong. RootUseCaseLogicalPackage
corresponds to the model’s UseCase view. This value can be retrieved, but not set.

UseCases : UseCaseCollection
Description
Specifies the collection that contains the use cases that belong to the model
Public Operations

AddActiveComponentinstance (ComponentinstanceToAdd :
Componentinstance) : Boolean

Description

Adds a Component Instance to the collection of active Component Instances owned
by the model. Notice the active component instance collection is actually stored in the
Workspace.

Syntax
Added = theMbddel . AddAct i veConponent | nst ance(Conponent| nstanceToAdd)

Added As Bool ean

Model 219

Returns a value of True when the component instance has been successfully added to
the active component instances collection.

t heModel As RoseRT. Mbdel

The model owning the active component instances collection from which the active
component instance is being added to.

Conponent | nst anceToAdd As RoseRT. Conponent | nst ance

The component instance to add to the active component instance collection.
AddDevice (pName : String) : Device

Description

Creates a new device and adds it to a model.

Syntax
Set theDevi ce = t heMdel . AddDevi ce (theNane)

t heDevi ce As RoseRT. Devi ce

Returns the newly created device.

t heMbdel As RoseRT. Mbdel

Instance of the model to which the device is being added.

theName As String
Name of the device being added to the model.

AddProcessor (pName : String) : Processor

Description

Creates a new processor and adds it to a model.

Syntax

Set theProcessor = theModel . AddProcessor (theNane)

220 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heProcessor As RoseRT. Processor

Returns the processor being added to the model.

t heMbdel As RoseRT. Mbdel

Instance of the Processor being added to the model.

theName As String
Name of the Processor being added to the model.

ControlAllUnits (bControlAllUnits : Boolean) : Boolean

Description
Specifies whether the tool will load/save classes, packages and diagrams as

individual files.

Syntax
Unit Control led = theModel . Control All Units(bControl AllUnits)

Unit Control l ed As Bool ean

Returns a value of True if the controlled units status was successfully set to
bControll AllUnits.

t heMbdel As RoseRT. Model
The model to set the controlled unit status.
bControl All Units As Bool ean

The state to set the controlled unit status to.
DeleteDevice (pDevice : Device) : Boolean

Description

Deletes a device from a model.

Syntax
Del eted = t heModel . Del et eDevi ce (theDevi ce)

Model 221

Del eted As Bool ean

Returns a value of True when the device is deleted.

t heMbdel As RoseRT. Mbdel

Instance of the model from which the device is being deleted.

t heDevi ce As RoseRT. Device

Instance of the device being deleted.
DeleteProcessor (pProcessor : Processor) : Boolean

Description

Deletes a processor from a model.

Syntax

Del eted = t heModel . Del et eProcessor (theProcessor)

Del eted As Bool ean
Returns a value of True when the processor is deleted from the model.
theMbdel As RoseRT. Model

Instance of the model from which the processor is being deleted.

t heProcessor As RoseRT. Processor

Instance of the processor being deleted.
FindCapsuleWithID (UniquelD : String) : Capsule

Description

Returns a specific capsule given the capsule's unique ID.

Syntax
Set theCapsul e = theModel . Fi ndCapsul eWthl D (theUni quel D)

222 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heCapsul e As RoseRT. Capsul e

Returns the capsule that corresponds to the given UniquelD.

t heMbdel As RoseRT. Mbdel

Model that contains the capsule.

theUni quel D As String
UniquelD of the capsule for which to search.

FindCapsules (CapsuleName : String) : CapsuleCollection

Description

Returns a collection of capsules belonging to the model.
Syntax

Set theCapsul eCol | ection = t heMdel . Fi ndCapsul es (Capsul eNane)

t heCapsul eCol | ecti on As RoseRT. Capsul eCol | ection

Returns a collection of capsules that match the given capsule name.

t heModel As RoseRT. Mbdel

Model that contains the capsules.

Capsul eName As String

Name of the capsule for which to search the model.
FindClassWithID (UniquelD : String) : Class

Description

Returns a specific class given the class’s unique ID.

Syntax
Set theCl ass = theModel . Fi ndd assWt hl D (theUni quel D)

Model 223

theCl ass As RoseRT. d ass
Returns the Class that corresponds to the given UniquelD.

t heMbdel As RoseRT. Model
Model that contains the Class.

theUni quel D As String
UniquelD of the Class for which to search.

FindClasses (ClassName : String) : ClassCollection

Description

Returns a collection of classes belonging to the model.

Syntax
Set theCl assCol l ection = theMdel . Fi ndd asses (theCl assNang)

t heCl assCol | ecti on As RoseRT. Cl assCol | ection

Returns a collection of classes that match the given class name.

t heModel As RoseRT. Mbdel

Model that contains the classes.

theCl assNane As String

Name of the class for which to search the model.
FindLogicalPackageWithID (UniquelD : String) : LogicalPackage

Description

Returns a specific LogicalPackage given the LogicalPackage’s unique ID.

Syntax

Set thelLogi cal Package = theModel . Fi ndLogi cal PackageW t hl D
(t heUni quel D)

224 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heLogi cal Package As RoseRT. Logi cal Package
Returns the LogicalPackage that corresponds to the given UniquelD.

theModel As RoseRT. Model
Model that contains the LogicalPackage.

theUni quel D As String
UniquelD of the LogicalPackage for which to search.

FindLogicalPackages (LogicalPackageName : String) :
LogicalPackageCollection

Description

Returns a collection of LogicalPackages belonging to the model.

Syntax

Set thelogi cal PackageCol | ecti on = theModel . Fi ndLogi cal Package
(t heLogi cal PackageNane)

t heLogi cal PackageCol | ecti on As RoseRT. Logi cal PackageCol | ecti on

Returns a collection of LogicalPackages that match the given LogicalPackage name.

theModel As RoseRT. Model
Model that contains the LogicalPackages.

t heLogi cal PackageNanme As String
Name of the LogicalPackage for which to search the model.

FindModelElementWithID (UniquelD : String) : ModelElement

Description

Returns a specific ModelElement given the ModelElement’s unique ID.

Syntax
Set theModelElement = theModel. FindModelElementWithID (theUniquelD)

Model 225

theModel El enent As RoseRT. Mbdel El enent
Returns the ModelElement that corresponds to the given UniquelD.

t heMbdel As RoseRT. Model
Model that contains the ModelElement.

theUni quel D As String
UniquelD of the ModelElement for which to search.

FindModelElements (ModelElementName : String) :
ModelElementCollection

Description

Returns a collection of ModelElements belonging to the model.

Syntax

Set theModel El enent Col | ecti on = t heMbdel . Fi ndMbdel El enent s
(t heMbdel El ement Nane)

t heModel El enent Col | ecti on As RoseRT. Mbdel El enent Col | ecti on

Returns a collection of ModelElements that match the given ModelElement name.

t heMbdel As RoseRT. Model
Model that contains the ModelElements.

t heModel El enent Name As String
Name of the ModelElement for which to search the model.

FindProtocolWithID (UniquelD : String) : Protocol

Description

Returns a specific protocol given the protocol's unique ID.

226 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
Set theProtocol = theMdel.FindProtocol WthlD (theUni quel D)

theProtocol As RoseRT. Protocol

Returns the protocol that corresponds to the given UniquelD.
theMbdel As RoseRT. Model

Model that contains the protocol.

theUni quel D As String
UniquelD of the protocol for which to search.

FindProtocols (ProtocolName : String) : ProtocolCollection

Description

Returns a collection of protocols belonging to the model.
Syntax

Set theProtocol Coll ection = theModel . Fi ndProt ocol s (Protocol Nane)

t heProt ocol Col |l ecti on As RoseRT. Prot ocol Col | ection

Returns a collection of protocols that match the given protocol name.

theMbdel As RoseRT. Model
Model that contains the protocols.

Prot ocol Nane As String

Name of the protocol for which to search the model.

GetActiveComponentinstances () : ComponentinstanceCollection

Description

Returns the collection of active Component Instances owned by a model. Notice the
active component instance collection is actually stored in the Workspace.

Model 227

Syntax
Set theActiveConponents = theMdel . Get Acti veConponent | nst ances()

t heAct i veConponents As RoseRT. Conponent | nst anceCol | ecti on

Returns the collection of active Component Instances owned by the model.

t heModel As RoseRT. Mbdel

The model from which the active component instance collection is being retrieved
from.

GetActiveDiagram () : Diagram

Description
Returns the currently active diagram from the current model. The active diagram is

the window in Rose RealTime that currently has the focus.

Syntax
Set theDi agram = theModel . Get Acti veDi agram ()

t heDi agram As RoseRT. Di agram

Returns the currently active Rose RealTime diagram from the model. Returns nothing
if a window that is not a diagram, such as a script window or the Browser, has the
focus.

t heMobdel As RoseRT. Mbdel

Instance of the model from which the diagram is being retrieved.
GetAllAssociations () : AssociationCollection

Description

Returns all Associations belonging to all Logical Packages the model.

Syntax
Set theAssoci ations = theMdel . Get Al | Associ ations()

228 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heAssoci ati ons As RoseRT. Associ ati onCol | ecti on

The associations contained in theModel.

t heMbdel As RoseRT. Mbdel

Model to retrieve all the associations from.
GetAllCapsules () : CapsuleCollection

Description

Returns all Capsules belonging to all Logical Packages the model.

Syntax
Set theCapsul es = t heMbdel . Get Al | Capsul es()

t heCapsul es As RoseRT. Capsul eCol | ection

The capsules contained in theModel.

t heModel As RoseRT. Mbdel

Model to retrieve all the capsules from.
GetAllClasses () : ClassCollection

Description

Returns all classes belonging to all categories in the model.

Syntax
Set theCl asses = theModel . Get All d asses ()

t heCl asses As RoseRT. O assCol | ecti on

Returns the collection of classes retrieved from the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which classes are being retrieved.

Model 229

GetAllComponentPackages () : ComponentPackageCollection

Description

Returns all ComponentPackages belonging to the model.
Syntax

Set theConmponent Package = theMbdel . Get Al | Conponent Package ()

t heConponent Packages As RoseRT. Conponent PackageCol | ecti on

Returns the collection of ComponentPackage retrieved from the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which ComponentPackage are being retrieved.
GetAllComponents () : ComponentCollection

Description

Returns all components belonging to the model.

Syntax
Set theComponents = t heMdel . Get Al | Conponents ()

t heConponents As RoseRT. Conponent Col | ecti on

Returns the collection of components retrieved from the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which components are being retrieved.
GetAllDevices () : DeviceCollection

Description

Returns all devices belonging to the model.

Syntax
Set theDevi ces = theModel . Get Al | Devi ces ()

230 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heDevi ces As RoseRT. Devi ceCol | ecti on

Returns the collection of devices retrieved from the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which devices are being retrieved.
GetAllLogicalPackages () : LogicalPackageCollection

Description

Returns all LogicalPackages belonging to the model.
Syntax

Set thelogi cal Package = t heModel . Get Al | Logi cal Packages ()

t heLogi cal Packagez As RoseRT. Logi cal PackageCol | ecti on

Returns the collection of LogicalPackages retrieved from the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which LogicalPackages are being retrieved.
GetAllProcessors () : ProcessorCollection

Description

Returns all processors belonging to the model

Syntax

Set theProcessors = theMdel . Get Al |l Processors ()

t heProcessors As RoseRT. Processor Col | ection

Returns the collection of processors retrieved from the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which processors are being retrieved.

Model 231

GetAllProtocols () : ProtocolCollection

Description

Returns all Protocols belonging to all Logical Packages the model.

Syntax
Set theProtocols = theModel. Get All Protocol s()

t heProt ocol s As RoseRT. Prot ocol Col | ection

The protocols contained in theModel.

t heMbdel As RoseRT. Mbdel

Model to retrieve all the protocols from.
GetAllUseCases () : UseCaseCollection

Description

Returns all use cases belonging to the model.
Syntax

Set theUseCases = t heMbdel . Get Al | UseCases ()

t heUseCases As RoseRT. UseCaseCol | ection

Returns the collection of use cases retrieved from the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which use cases are being retrieved.
GetSelectedCapsules () : CapsuleCollection

Description

Returns all capsules selected in the current model.

Syntax
Set theCapsul es = t heMbdel . Get Sel ect edCapsul es ()

232 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heCapsul es As RoseRT. Capsul eCol | ecti on

Returns the collection of capsules currently selected in the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which capsules are being retrieved.
GetSelectedClasses () : ClassCollection

Description

Returns all classes selected in the current model.

Syntax
Set theCl asses = thelMbdel . Get Sel ect edCl asses ()

theCl asses As RoseRT. d assCol | ection
Returns the collection of classes currently selected in the model.
t heModel As RoseRT. Model

Instance of the model from which classes are being retrieved.
GetSelectedComponentPackages () : ComponentPackageCollection

Description

Returns all ComponentPackages selected in the current model.

Syntax
Set theConmponent Packages = t heModel . Get Sel ect edConponent Packages ()

t heConponent Packages As RoseRT. Conponent PackageCol | ecti on

Returns the collection of ComponentPackages currently selected in the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which ComponentPackages are being retrieved.

Model 233

GetSelectedComponents () : ComponentCollection

Description

Returns all components selected in the current model.

Syntax
Set theConmponents = t heMbdel . Get Sel ect edConponents ()

t heConponents As RoseRT. Conponent Col | ecti on

Contains the collection of components currently selected in the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which components are being retrieved.
GetSelectedLogicalPackages () : LogicalPackageCollection

Description

Returns all LogicalPackages selected in the current model.
Syntax

Set thelogi cal Packages = theMdel . Get Sel ect edLogi cal Packages ()

t heLogi cal Packages As RoseRT. Logi cal PackageCol | ecti on

Returns the collection of LogicalPackages currently selected in the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which LogicalPackages are being retrieved.
GetSelectedModelElements () : ModelElementCollection

Description

Returns all model elements selected in the current model.

Syntax
Set theModel El enrents = t heModel . Get Sel ect edMvbdel El enent s()

234 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heModel El enent s As RoseRT. Model El ement Col | ecti on

Returns the collection of model elements currently selected in the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which model elements are being retrieved.
GetSelectedProtocols () : ProtocolCollection

Description

Returns all protocols selected in the current model.

Syntax
Set theProtocols = theMdel . Get Sel ectedProtocol s ()

t heProt ocol s As RoseRT. Prot ocol Col | ection

Returns the collection of protocols currently selected in the model.

t heMobdel As RoseRT. Mbdel

Instance of the model from which protocols are being retrieved.
GetSelectedUseCases () : UseCaseCollection

Description

Returns all use cases selected in the current model.

Syntax
Set theUseCases = t heMWbdel . Get Sel ect edUseCases ()

t heUseCases As RoseRT. UseCaseCol | ection

Returns the collection of use cases currently selected in the model.

t heMbdel As RoseRT. Mbdel

Instance of the model from which use cases are being retrieved.

Model 235

RemoveActiveComponentinstance (ComponentinstanceToRemove :
Componentinstance) : Boolean

Description

Removes a Component Instance from the collection of active Component Instances
owned by the model. Notice the active component instance collection is actually
stored in the Workspace.

Syntax

Rermoved = t heMbdel . RenbveAct i veConponent | nst ance(
Conponent | nst anceToRenove)

Renoved As Bool ean

Returns a value of True when the component instance has been successfully removed
from the active component instances collection.

t heMbdel As RoseRT. Mbdel

The model owning the active component instances collection from which the active
component instance is being removed from.

Conponent | nst anceToRenove As RoseRT. Conponent | nst ance

The component instance to remove from the active component instance collection.

ModelElement

Description

Every ModelElement is a model element and therefore inherits all Element attributes
and operations. Use ModelElement attributes and operations to specify or manipulate
ModelElement documentation, stereotypes, external documents, as well as to open a
ModelElement's specification

236 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ControllableElement

Public Attributes
Documentation : String

Description

Specifies the documentation belonging to the ModelElement.
ExternalDocuments : ExternalDocumentCollection

Description

Specifies the external documents belonging to the ModelElement.
LocalizedStereotype : String

Description

Specifies the localized equivalent of the ModelElement stereotype.
Stereotype : String

Description

Specifies the stereotype of the ModelElement

Public Operations

AddExternalDocument (szName : String, iType:
RsExternalDocumentType) : ExternalDocument

Description

Creates a new external document and adds it to a ModelElement.

Syntax
Added = t heMbdel El enent . AddExt er nal Docunment (theName, theType)

Added As Bool ean

Returns a value of true when the document is added to the ModelElement.

ModelElement 237

theModel El enent As RoseRT. Mbdel El enent
ModelElement to which the document is being added.

theNane As String
Name of the document being added.

theType As Integer
Type of document being added Valid values are:

1= Path
2 =URL

DeleteExternalDocument (pIDispatch : ExternalDocument) : Boolean

Description

Deletes an external document from a ModelElement.

Syntax
Del eted = t heMbdel El ement . Del et eExt er nal Docunment ('t heDocumnent)

del eted As Bool ean

Returns a value of true when the document is deleted from the ModelElement.

t heMbdel El enent As RoseRT. Mbdel El enent

ModelElement from which the document is being deleted.

t heDocunment As RoseRT. Ext er nal Docunent

Instance of the document being deleted.
GetModelElement () : ModelElement

Description
Retrieves a ModelElement as an object.

Note: Use this operation to convert classes derived from ModelElement into
ModelElement objects.

238 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
Set theMbdel El enent = t hebj ect. Get Model El ement ()

t heModel El enent As RoseRT. Mbdel El enent

Returns the Rose item as an object.

t heModel El enent As RoseRT. Mbdel El enent

Instance of the ModelElement being returned.

OpenSpecification () : Boolean

Description

Opens the specification window for the specified ModelElement.

Syntax
Opened = theModel El ement. OpenSpeci fication ()

Opened As Bool ean

Returns a value of TRUE when the specification is successfully opened.

t heMbdel El enent As RoseRT. Mbdel El enent

ModelElement whose specification is being opened.

Package

Description

The Package Class is a container for the model elements that correspond to the UML
Package concept.

Package class operations allow you to determine whether a package is the root
package in a model, as well as to obtain the OLE object associated with the package.

Package 239

Derived from ModelElement

Public Operations

AddSharedUnit (FileName : String) : Boolean

Description

Shares Model Elements from a unit in a Package.

Syntax
Added = thePackage. AddSharedUnit(FileNane As String)

Added As Bool ean

Returns True when successfully shared Model Elements of a unit into thePackage.

t hePackage As RoseRT. Package
The package to share unit's Model Elements with.

FileName As String

The name of the shared unit file.
AddUnit (FileName : String) : Boolean

Description

Adds Model Elements from a unit in a Package.

Syntax
Added = thePackage. AddUnit(FileName As String)

Added As Bool ean

Returns True when successfully added Model Elements of a unit into thePackage.

t hePackage As RoseRT. Package
The package to add unit's Model Elements to.

240 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

FileName As String
The name of the unit file to add to the package.

ImportFile (FileName : String) : Boolean

Description

Imports Model Elements from a file and place them into a Package.
Syntax

Imported = thePackage. | nportFile(FileNane As String)

I nported As Bool ean

Returns True when successfully imported Model Elements into thePackage.

t hePackage As RoseRT. Package
The package to put imported Model Elements into.

FileName As String

The name of the file to import.
ImportFileEx (FileName : String) : ControllableElementCollection

Description

Imports Model Elements from a file and place them into a Package.

Syntax

I mport edControl | abl eEl ements = thePackage. | nportFil e(Fil eNane As
String)

I nport edControl | abl eEl ements As RoseRT. Control | abl eEl enent Col | ecti on

Returns a collection containing the Controllable Elements imported into thePackage.

t hePackage As RoseRT. Package

Package 241

The package to put imported Model Elements into.

FileName As String

The name of the file to import.
IsRootPackage () : Boolean

Description

Finds out if the specified package is the root package (category) of the model.

Syntax
I sRoot = thePackage. | sRoot Package ()

| sRoot As Bool ean

Returns a value of True if the package is the root package (category) of the model.

t hePackage As RoseRT. Package
Package being checked as root package.

TopLevel () : Boolean

Description

Returns whether the Package is the Root Package, i.e. direct child of the Model
Package.

Syntax
| sTopLevel = thePackage. TopLevel ()

| sTopLevel As Bool ean

Returns a value of True when the package is a direct child of the Model Package

t hePackage As RoseRT. Package
Package to determine whether it is the Top Level.

242 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Property

Description
The Property class exposes a set of attributes and operations that

Determine the characteristics of attributes in a model (for example, property name
and type, as well as the development tool associated with the property).

Allow you to retrieve attributes from a model.

Derived from RRTEIObject

Public Attributes
Name : String

Description

Indicates the name of the property (without specifying a path).
ToolName : String

Description

Corresponds to a tab in the property specification. A tool can be a programming
language tool (such as C++), a user-defined add-in to Rational Rose RealTime, or
some other tool.

Type : String

Description

Indicates the type of information stored by the property.

Values:
String
Integer
Float
Char

Boolean

Property 243

Enumeration

Note: Other values may be valid if user-defined enumerated types exist.
Value : String

Description

Indicates the value of the property

RsExternalDocumentType

Description

Enumeration used in ModelElement::AddExternalDocument() to determine the
location of the document added to the Model Element.

Public Attributes
rsFile : Integer =1

Description

The document's location is specified using a file system specific path.
rsURL : Integer = 2

Description

The document's location is specified using a URL.

StructuredProperty

Description

This class allows easy parsing of Structured Properties. Structured properties are text
properties with the following format:

[<section-namel> {section-default-valuel}{section-default-value2}{...}

<field-namel>=<valuel>

244 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

<field-namel>=<value2>
o]
[<section-name?2 ...]

default-value

Derived from Property

Public Operations

GetFieldValue

Description

Returns the value stored in field of a section within the StructuredProperty. An empty
string is returned if the field or section do not exist.

Syntax

Fi el dval ue = theStructuredProperty. Get Fi el dvVal ue (SectionNane,
Fi el dNane)

Fi el dval ue As String

Returns the value stored in field FieldName of section SectionName.

theStructuredProperty As RoseRT. StructuredProperty

The property to retrieve a field value from.

SectionName As String

The name of the section where a field named FieldName can be found. Passing an
empty string is interpreted as a request to retrieve the string property value string that
is not included in any section.

Fi el dName As String

The name of the field to retrieve a value from. Passing an empty string is interpreted
as a request to retrieve the section's default value.

StructuredProperty 245

SetFieldValue

Description

Sets the value to store in a section's field within the StructuredProperty. The section
and/or the field will get created if they do not exist within the structured property.

Syntax
theStructuredProperty. Set Fi el dVal ue (Secti onNane, Fiel dNane, Val ue)

theStructuredProperty As RoseRT. StructuredProperty

The property to set a section's field value.

SectionName As String

The name of the section where a field named FieldName can be found. Passing an
empty string is interpreted as a request to set the string property value string that is
not included in any section.

Fi el dName As String

The name of the field to set a value into. Passing an empty string is interpreted as a
request to set the section's default value.

Value As String

The value to store in the section's field.

Deployment View Classes

Deployment View classes include
ComponentInstance on page 249
Public Attributes
AttachTo : Boolean on page 249
Component : Component on page 249
ConnectionDelay : Integer on page 250
ConsolePort : Integer on page 250

246 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

LoadDelay : Integer on page 250

LoadOrder : Integer on page 250

LogsPort : Integer on page 250

MyProcessor : Processor on page 251

OperationMode : String on page 251

Priority : String on page 251

TargetTimeout : Integer on page 251

TOPort : Integer on page 251

UserParameters : String on page 252

Public Operations

ConnectionDelay : Integer on page 250

Priority : String on page 251

GetDefaultOperationModes () : StringCollection on page 252
DeploymentPackage on page 252

Public Attributes

DeploymentDiagrams : DeploymentDiagramCollection on page 253

DeploymentPackages : DeploymentPackageCollection on page 253

ParentDeploymentPackage : DeploymentPackage on page 253

Public Operations

AddDeploymentDiagram (name : String) : DeploymentDiagram on page 253

AddDeploymentPackage (theName : String) : DeploymentPackage on page 254

AddDevice (pName : String) : Device on page 254

AddProcessor (pName : String) : Processor on page 254

DeleteDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) :
Boolean on page 254

DeleteDeploymentPackage (theDeploymentPackageToDelete : DeploymentPackage)
: Boolean on page 255

DeleteDevice (pDevice : Device) : Boolean on page 256

DeleteProcessor (pProcessor : Processor) : Boolean on page 256

Deployment View Classes 247

GetAllDevices () : DeviceCollection on page 256
GetAllProcessors () : ProcessorCollection on page 256

RelocateDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) :
Boolean on page 256

RelocateDeploymentPackage (theDeploymentPackage : DeploymentPackage) :
Boolean on page 256

RelocateDevice (theDevice : Device) : Boolean on page 257

RelocateProcessor (theProcessor : Processor) : Boolean on page 257
Device on page 258

Public Attributes

Characteristics : String on page 258

ParentDeploymentPackage : DeploymentPackage on page 258

Public Operations

AddDeviceConnection (theDevice : Device) : Boolean on page 259

AddProcessorConnection (theProcessor : Processor) : Boolean on page 259

GetConnectedDevices () : DeviceCollection on page 260

GetConnectedProcessors () : ProcessorCollection on page 260

RemoveDeviceConnection (theDevice : Device) : Boolean on page 260

RemoveProcessorConnection (theProcessor : Processor) : Boolean on page 261
Processor on page 262

Public Attributes

Address : String on page 262

CPU : String on page 262

Componentlnstances : ComponentInstanceCollection on page 262

OS : String on page 262

ParentDeploymentPackage : DeploymentPackage on page 262

ServerAddress : String on page 263

UserScriptDirectory : String on page 263

Public Operations

248 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddComponentInstance (Name : String) : ComponentInstance on page 263
AddDeviceConnection (theDevice : Device) : Boolean on page 264
AddProcessorConnection (Processor : Processor) : Boolean on page 265

DeleteComponentInstance (theComponentInstance : ComponentInstance) : Boolean
on page 265

GetConnectedDevices () : DeviceCollection on page 266
GetConnectedProcessors () : ProcessorCollection on page 266
RemoveDeviceConnection (theDevice : Device) : Boolean on page 266

RemoveProcessorConnection (theProcessor : Processor) : Boolean on page 267

Componentinstance

Description

A component instance describes a runable instance of a component built on a
particular processor.

Derived from ModelElement

Public Attributes
AttachTo : Boolean

Description

Determines whether the toolset is to automatically observe a Component Instance
when it is loaded by the target control scripts.

Component : Component

Description

Component this Component Instance instantiates.

Componentinstance 249

ConnectionDelay : Integer

Description:

An integer value representing the number of seconds to delay before attempting to
connect to the target. This allows Purify time to instrument the executable as
necessary. For a large module, you will need to adjust the connection delay to be more

than the default of 60 seconds.
ConsolePort : Integer

Description

Specify a TCP/IP port number which can be used to connect to the Services Library
command line debugger via a telnet window.

Note: Rose RealTime 6.0 restriction - the console port number must be the same as the

Target observability port.
LoadDelay : Integer

Description

An integer value representing the number of X delay before the component instance is

loaded or run.
LoadOrder : Integer

Description

An integer value representing the relative order in which this component instance will
be loaded, or run, in relation to other component instances listed and selection in the

Build Settings dialog.
LogsPort : Integer

Description

Specify a TCP/IP port number which can be used to connect to the log via a telnet

window.

250 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

MyProcessor : Processor
OperationMode : String

Description

The Operation Mode specifies the target control configuration for the process.
Options are:

Basic - Use the target control utilities to automatically load and run the component
instance.

Debugger MSDEYV - Use the target control utilities and load the executable using the
Microsoft Visual Studio debugger.

Debugger Tornado - Use the target control utilities and load the executable using the
Tornado debugger

Debugger xxgdb - Use the target control utilities and load the executable in the GNU
xxgdb debugger (UNIX only).

Manual - the toolset will not attempt to load the executable. The user must manually
load the executable.

Priority : String

Description:

Sets the priority the component instance will run at.
TargetTimeout : Integer

Description:

Number of seconds to wait for a response from the target before assuming something
is wrong.

TOPort : Integer

Description

Specify a TCP/IP port number to use for connecting the toolset's execution
environment to the target executable. The port number must not already be in use by
another process.

Componentinstance 251

UserParameters : String

Description

Represents command line arguments that are passed on the command line when the
process is loaded.

Public Operations
GetDefaultOperationModes () : StringCollection

Description

Returns the default Operation Modes that can be used to set the OperationMode
attribute.

Syntax

Set Defaul t Operati onMbdes =
t heConponent | nst ance. Get Def aul t Oper ati onModes()

Def aul t Oper ati onMbdes As RoseRT. StringCol |l ection

Returns an array of strings, each corresponding to a default Operation Mode.

t heConponent I nstance As RoseRT. Conponent | nst ance

The Component Instance to retrieve default Operation Modes for.

DeploymentPackage

Description

The deployment package allows you to define and manipulate collections of device,
processors and deployment diagrams. They can even be nested.

252 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Package

Public Attributes
DeploymentDiagrams : DeploymentDiagramCollection

Description

Deployment diagrams owned by the deployment package.
DeploymentPackages : DeploymentPackageCollection

Description

Deployment packages owned by the deployment package.
ParentDeploymentPackage : DeploymentPackage

Description

Deployment package owning the deployment package.

Public Operations
AddDeploymentDiagram (name : String) : DeploymentDiagram

Description

Adds a deployment diagram to the deployment package.

Syntax

Set theDepl oynent Di agram = t heDepl oynent Package. AddDepl oyrment Di agr am(
nane)

t heDepl oyment Di agr am As RoseRT. Depl oyment Di agr am
Returns the new deployment diagram added to the deployment package.

t heDepl oynent Package As RoseRT. Depl oynent Package
Deployment package to which a new deployment diagram is being added.

name As String

DeploymentPackage 253

Name of the new deployment diagram added to the deployment package.
AddDeploymentPackage (theName : String) : DeploymentPackage

Description

Adds a deployment package to the deployment package.

Syntax

Set t heNewDepl oynent Package =
t heDepl oynent Package. AddDepl oynent Package(theNane)

t heNewDepl oyrment Package As RoseRT. Depl oynent Package
Returns the new deployment package added to the deployment package.

t heDepl oynent Package As RoseRT. Depl oynent Package
Deployment package to which a new deployment package is being added.

theName As String
Name of the new deployment package added to the deployment package.

AddDevice (pName : String) : Device
AddProcessor (pName : String) : Processor

DeleteDeploymentDiagram (theDeploymentDiagram :
DeploymentDiagram) : Boolean
Description

Deletes a deployment diagram from the deployment package.

Syntax

Del eted = t heDepl oynment Package. Del et eDepl oyrment Di agr an(
t heDepl oynment Di agram)

Del eted As Bool ean

Returns a value of True when the deployment diagram is successfully deleted from
the deployment package.

254 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heDepl oynent Package As RoseRT. Depl oynent Package
Deployment package from which a deployment diagram is being deleted.

t heDepl oyment Di agr am As RoseRT. Depl oyment Di agr am
Deployment diagram to delete from the deployment package.

DeleteDeploymentPackage (theDeploymentPackageToDelete :
DeploymentPackage) : Boolean

Description

Deletes a deployment package from the deployment package.

Syntax

Del eted = t heDepl oynment Package. Del et eDepl oyrment Package(
t heDepl oyment PackageToDel ete)

Del eted As Bool ean

Returns a value of True when the deployment package is successfully deleted from
the deployment package.

t heDepl oynent Package As RoseRT. Depl oynent Package
Deployment package from which a deployment package is being deleted.

t heDepl oyment PackageToDel ete As RoseRT. Depl oynent Package
Deployment package to delete from the deployment package.

DeploymentPackage 255

DeleteDevice (pDevice : Device) : Boolean
DeleteProcessor (pProcessor : Processor) : Boolean
GetAllDevices () : DeviceCollection
GetAllProcessors () : ProcessorCollection

RelocateDeploymentDiagram (theDeploymentDiagram :
DeploymentDiagram) : Boolean
Description

Relocates a deployment diagram into the deployment package.

Syntax

Rel ocat ed = t heDepl oynent Package. Rel ocat eDepl oynent Di agr an(
t heDepl oynment Di agram)

Rel ocat ed As Bool ean

Returns a value of True when the deployment diagram is successfully relocated into
the deployment package.

t heDepl oynment Package As RoseRT. Depl oynent Package

Deployment package from which a deployment diagram is being relocated into.

t heDepl oynment Di agr am As RoseRT. Depl oyment Di agr am

Deployment diagram to relocate into the deployment package.

RelocateDeploymentPackage (theDeploymentPackage :
DeploymentPackage) : Boolean

Description

Relocates a deployment package into the deployment package.

Syntax

Rel ocat ed = t heDepl oynent Package. Rel ocat eDepl oynent Package(
t heRel ocat edDepl oynent Package)

256 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Rel ocat ed As Bool ean

Returns a value of True when the deployment package is successfully relocated into
the deployment package.

t heDepl oynment Package As RoseRT. Depl oynent Package

Deployment package from which a deployment package is being relocated into.

t heRel ocat edDepl oynment Package As RoseRT. Depl oynent Package
Deployment package to relocate into the deployment package.

RelocateDevice (theDevice : Device) : Boolean

Description

Relocates a device into the deployment package.

Syntax
Rel ocat ed = t heDepl oynent Package. Rel ocat eDevi ce(theDevice)

Rel ocat ed As Bool ean

Returns a value of True when the device is successfully relocated into the deployment
package.

t heDepl oynment Package As RoseRT. Depl oynent Package

Deployment package from which a device is being relocated into.

t heDevi ce As RoseRT. Devi ce

Device to relocate into the deployment package.
RelocateProcessor (theProcessor : Processor) : Boolean

Description

Relocates a processor into the deployment package.

Syntax

Rel ocat ed = t heDepl oynent Package. Rel ocat ePr ocessor(t heProcessor)

DeploymentPackage 257

Rel ocat ed As Bool ean

Returns a value of True when the processor is successfully relocated into the
deployment package.

t heDepl oynment Package As RoseRT. Depl oynent Package

Deployment package from which a processor is being relocated into.

t heProcessor As RoseRT. Processor

Processor to relocate into the deployment package.

Device

Description

A device is hardware that is not capable of executing a program (a printer, for
example). The device class exposes properties and methods that allow you to define
and manipulate the characteristics of devices. Check the lists of attributes and
operations for complete information.

Derived from ModelElement

Public Attributes
Characteristics : String

Description

Specifies the characteristics of the device
ParentDeploymentPackage : DeploymentPackage

Description

Deployment Package that owns this device.

258 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations
AddDeviceConnection (theDevice : Device) : Boolean

Description

Creates a new device connection and adds it to the device.
Syntax

Connect ed = t heDevi ce. AddDevi ceConnection (theDevice)

Connect ed As Bool ean

Returns a value of True when the device is connected.

t heDevi ce As RoseRT. Device

Device to which the connection is being added.

t heDevi ce As RoseRT. Device

Device at the other end of the connection being added.
AddProcessorConnection (theProcessor : Processor) : Boolean

Description

Creates a new device processor and adds it to the device.

Syntax

Connect ed = t heDevi ce. AddProcessor Connecti on (theProcessor)

Connect ed As Bool ean

Returns a value of True when the processor is connected.

t heDevi ce As RoseRT. Device

Device to which the connection is being added.

t heProcessor As RoseRT. Processor

Device 259

Processor at the other end of the connection being added.
GetConnectedDevices () : DeviceCollection

Description

Retrieves the collection of devices that are connected to the device.

Syntax
Set theDevi ces = theDevice. Get Connect edDevi ces ()

t heDevi ces As RoseRT. Devi ceCol | ecti on

Returns the collection of devices belonging to the device.

t heDevi ce As RoseRT. Device

Device whose connected devices are being retrieved.
GetConnectedProcessors () : ProcessorCollection

Description

Retrieves the collection of processors that are connected to this device.

Syntax

Set theProcessors = theDevice. Get Connect edProcessors ()

t heProcessors As RoseRT. Processor Col | ection

Returns the collection of processors that are connected to the specified processor.

t heDevi ce As RoseRT. Device

Device whose connected processors are being retrieved.
RemoveDeviceConnection (theDevice : Device) : Boolean

Description

Removes a device connection from the device.

260 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Rermoved = t heDevi ce. RenpveDevi ceConnecti on (theDevi ce)

Renoved As Bool ean

Returns a value of True when the device connection is removed.

t heDevi ce As RoseRT. Device

Device from which the connection is being removed.

t heDevi ce As RoseRT. Devi ce

Device connection being removed.
RemoveProcessorConnection (theProcessor : Processor) : Boolean

Description

Removes a processor connection from the device.

Syntax

Rermoved = t heDevi ce. RenovePr ocessor Connecti on (theProcessor)

Renoved As Bool ean

Returns a value of True when the processor connection is removed.

t heDevi ce As RoseRT. Devi ce

Device from which the connection is being removed.

t heProcessor As RoseRT. Processor

Processor connection being removed.

Device 261

Processor

Description

A processor is hardware that is capable of executing programs. Processors are
assigned to implement Component Instances.

Derived from ModelElement

Public Attributes

Address : String

CPU:

Description

Network address for the processor, this field can contain a hostname, or an IP address.
For example jhostl or 145.34.5.6.

Note: For systems not connected to a network, you must use 127.0.0.1 in this field.
String

Description

Name of the type of central processing unit for this processor element.

Componentinstances : ComponentinstanceCollection

Description

List of component instances that will run on this processor

OS : String

Description

Name of the operating system running on this processor.

ParentDeploymentPackage : DeploymentPackage

Description

Deployment Package that owns this processor.

262 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ServerAddress : String

Description
In some environments there is a server that handles loading, executing of a
component instance for the target RTOS. This is the name or the address of this server.

UserScriptDirectory : String

Description

Path to the target control utility directory which contains the scripts and programs
that are responsible for loading and unloading processes on that processor. If this
property does not point to a valid script directory you won't be able to execute
component instances from within the toolset.

Public Operations
AddComponentinstance (Name : String) : Componentinstance

Description

Creates a new Component Instance to ran on a Processor. Notice that you should
associate a Component with the Component Instance by setting the Component
Instance's Component Property immediately after this creation. Undetermined
behavior may occur otherwise.

Syntax

Set theConmponent| nstance = theProcessor. AddConponent | nstance(Nane)

t heConponent I nstance As RoseRT. Conponent | nst ance

Returns a new Component Instance to ran on theProcessor. The Component Instance
is not associated with any Component at this point and should not be used until such
an association is created by assigning a Component to the Component Instance's
Component attribute.

t heProcessor As RoseRT. Processor

The Processor to add a new Component Instance to.

Name As String

Processor 263

The new Component Instance's Name.

Example

Dim co As RoseRT. Conponent

Set co =
RoseRTApp. Cur rent Model . Root Conponent Package. Conmponent s. Get At (1)

Di m pr As RoseRT. Processor
Set pr = RoseRTApp. Current Model . Get Al | Processors(). Get At (1)

Dimci As RoseRT. Conponentl nstance
Set ci = pr.AddConponent| nstance("MConponentl nstance")

Set ci . Conmponent = co

AddDeviceConnection (theDevice : Device) : Boolean

Description

Creates a new device connection and adds it to the processor.

Syntax

Devi ceConnect i onAdded = t heProcessor. AddDevi ceConnecti on(theDevice)

Devi ceConnect i onAdded As Bool ean

Returns a value of True when the device is connected

t heProcessor As RoseRT. Processor

The Processor to which the connection is being added

t heDevi ce As RoseRT. Device

Device to add connection to.

264 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddProcessorConnection (Processor : Processor) : Boolean

Description

Creates a new processor connection and adds it to the processor.

Syntax

Processor Connecti onAdded = t heProcessor. AddProcessor Connecti on(
Processor)

Pr ocessor Connecti onAdded As Bool ean

Returns a value of True when the processor is connected

t heProcessor As RoseRT. Processor

The Processor to which the connection is being added

Processor As RoseRT. Processor

Processor to add connection to.

DeleteComponentinstance (theComponentinstance :
Componentinstance) : Boolean

Description

Deletes a Component Instance from a processor.

Syntax

Conponent | nst anceDel et ed = t heProcessor. Del et eConponent | nst ance(
t heConponent | nstance)

Conponent | nst anceDel et ed As Bool ean

Returns a value of True when the Component Instance is deleted

t heProcessor As RoseRT. Processor

The Processor from which the Component Instance is being deleted

t heConponent I nstance As RoseRT. Conponent | nst ance

Processor 265

The Component Instance to delete from theProcessor.
GetConnectedDevices () : DeviceCollection

Description

Retrieves the collection of devices that are connected to this processor.

Syntax

Devi ces = theProcessor. Get Connect edDevi ces()

Devi ces As RoseRT. Devi ceCol | ecti on

Returns the collection of devices that are connected to theProcessor.

t heProcessor As RoseRT. Processor

The Processor whose connected devices are being retrieved.
GetConnectedProcessors () : ProcessorCollection

Description

Retrieves the collection of processors that are connected to this processor.
Syntax

Processors = theProcessor. Get Connect edPr ocessor s()

Processors As RoseRT. Processor Col | ecti on

Returns the collection of processors that are connected to theProcessor.

t heProcessor As RoseRT. Processor

The Processor whose connected processors are being retrieved.
RemoveDeviceConnection (theDevice : Device) : Boolean

Description

Removes a device connection from a processor.

266 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Rermoved = t heProcessor. RenoveDevi ceConnecti on(theDevice)

Renoved As Bool ean

Returns a value of True when the device connection is removed.

t heProcessor As RoseRT. Processor

The Processor from which the connection is being removed.

t heDevi ce As RoseRT. Devi ce

The device to remove a connection to.
RemoveProcessorConnection (theProcessor : Processor) : Boolean

Description

Removes a processor connection from a processor.

Syntax

Rermoved = t heProcessor. RenoveProcessor Connection(theProcessor)

Renoved As Bool ean

Returns a value of True when the processor connection is removed.

t heProcessor As RoseRT. Processor

The Processor from which the connection is being removed.

t heProcessor As RoseRT. Processor

The processor to remove a connection to.

Logical View Classes

Logical View classes include

= LogicalPackage on page 269

Logical View Classes 267

Public Attributes

Associations : AssociationCollection on page 270

Capsules : CapsuleCollection on page 270

ClassDiagrams : ClassDiagramCollection on page 270
Classes : ClassCollection on page 270

Collaborations : CollaborationCollection on page 270

Global : Boolean on page 270

LogicalPackages : LogicalPackageCollection on page 270
ParentLogicalPackage : LogicalPackage on page 271

Protocols : ProtocolCollection on page 271

UseCases : UseCaseCollection on page 271

Public Operations

AddCapsule (name : String) : Capsule on page 271

AddClass (theName : String) : Class on page 272
AddClassDiagram (name : String) : ClassDiagram on page 272
AddCollaboration (name : String) : Collaboration on page 273

AddGeneralization (theRelationName : String, theParentLogicalPackageName :
String) : Generalization on page 273

AddLogicalPackage (theName : String) : LogicalPackage on page 274

AddLogicalPackageDependency (theName : String,
theSupplierLogicalPackageName : String) : Logical PackageDependency on
page 274

AddProtocol (name : String) : Protocol on page 275

AddUseCase (szName : String) : UseCase on page 275

DeleteCapsule (theCapsule : Capsule) : Boolean on page 276

DeleteClass (theClass : Class) : Boolean on page 277

DeleteClassDiagram (theClassDiagram : ClassDiagram) : Boolean on page 277
DeleteCollaboration (theCollaboration : Collaboration) : Boolean on page 278

DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 278

268 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean on page 279

DeleteLogicalPackageDependency (theDependency : LogicalPackageDependency) :
Boolean on page 279

DeleteProtocol (theProtocol : Protocol) : Boolean on page 280
DeleteUseCase (thellseCase : UseCase) : Boolean on page 280
GetAllCapsules () : CapsuleCollection on page 281

GetAllClasses () : ClassCollection on page 281
GetAllLogicalPackages () : Logical PackageCollection on page 282
GetAllProtocols () : ProtocolCollection on page 282

GetAllUseCases () : UseCaseCollection on page 282
GetAssignedComponentPackage () : ComponentPackage on page 283
GetGeneralizations () : GeneralizationCollection on page 283

GetLogicalPackageDependencies () : LogicalPackageDependencyCollection on
page 283

GetSubLogicalPackages () : LogicalPackageCollection on page 284
GetSuperLogicalPackages () : LogicalPackageCollection on page 284
HasAssignedComponentPackage () : Boolean on page 285

RelocateCapsule (theCapsule : Capsule) : Boolean on page 285

RelocateClass (theClass : Class) : on page 285

RelocateClassDiagram (theClsDiagram : ClassDiagram) : on page 286
RelocateCollaboration (theCollaboration : Collaboration) : Boolean on page 286
RelocateLogicalPackage (theLogicalPackage : LogicalPackage) : on page 287
RelocateProtocol (theProtocol : Protocol) : Boolean on page 288

Set AssignedComponentPackage (newValue : ComponentPackage) : on page 288

LogicalPackage

Description

The logical package allows you to define and manipulate logical collections of
classifiers, collaborations and diagrams.

LogicalPackage 269

Derived from Package

Public Attributes
Associations : AssociationCollection

Description

Associations owned by the logical package.
Capsules : CapsuleCollection

Description

Capsules owned by the logical package.
ClassDiagrams : ClassDiagramCollection

Description

Class diagrams owned by the logical package.
Classes : ClassCollection

Description

Classes owned by the logical package.
Collaborations : CollaborationCollection

Description

Collaborations owned by the logical package.
Global : Boolean

Description

Indicates that all public classes in the logical package can be used by any other logical
package.

LogicalPackages : LogicalPackageCollection

Description

Logical packages owned by the logical package.

270 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentLogicalPackage : LogicalPackage

Description

Logical package owning the logical package.
Protocols : ProtocolCollection

Description

Protocols owned by the logical package.
UseCases : UseCaseCollection

Description

Use cases owned by the logical package.

Public Operations
AddCapsule (name : String) : Capsule

Description

Adds a capsule to the logical package.

Syntax
Set theCapsul e = thelLogi cal Package. AddCapsul e(nane)

t heCapsul e As RoseRT. Capsul e
Returns the new capsule added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package to which a new capsule is being added.

name As String
Name of the new capsule added to the logical package.

LogicalPackage 271

AddClass (theName : String) : Class

Description

Adds a class to the logical package.

Syntax
Set theCl ass = thelogical Package. Addd ass(theName)

t heCl ass As RoseRT. d ass

Returns the new class added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package to which a new class is being added.

theName As String
Name of the new class added to the logical package.

AddClassDiagram (name : String) : ClassDiagram

Description

Adds a class diagram to the logical package.

Syntax
Set theCl assDi agram = t helLogi cal Package. Addd assDi agr am(name)

t heCl assDi agram As RoseRT. O assDi agr am

Returns the new class diagram added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package to which a new class diagram is being added.
name As String

Name of the new class diagram added to the logical package.

272 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddCollaboration (name : String) : Collaboration

Description

Adds a collaboration to the logical package.

Syntax
Set theCol | aboration = thelLogi cal Package. AddCol | aborati on(nane)

t heCol | aborati on As RoseRT. Col | aborati on

Returns the new collaboration added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package to which a new collaboration is being added.

name As String

Name of the new collaboration added to the logical package.

AddGeneralization (theRelationName : String,
theParentLogicalPackageName : String) : Generalization

Description

Adds a Generalization relationship to a Logical Package and returns it in the specified

object.

Syntax

Set theGeneralization = thelLogi cal Package. AddGeneral i zati on(
t heRel ati onNane, theParentLogi cal PackageNane)

t heGeneralizati on As RoseRT. Generali zati on

Returns the Generalization being added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical Package to which the Generalization is being added.

LogicalPackage 273

theRel ati onNane As String

Name of the new Generalization.

t hePar ent Logi cal PackageNanme As String

Name of the parent logical package in the Generalize relationship.
AddLogicalPackage (theName : String) : LogicalPackage

Description

Adds a logical package to the logical package.

Syntax
Set thelogi cal Package = thelLogi cal Package. AddLogi cal Package(theNane)

t heLogi cal Package As RoseRT. Logi cal Package
Returns the new logical package added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package to which a new logical package is being added.

theName As String
Name of the new logical package added to the logical package.

AddLogicalPackageDependency (theName : String,
theSupplierLogicalPackageName : String) : LogicalPackageDependency

Description

Adds a logical package dependency relation to the logical package.

Syntax
Set thelogi cal PackageDependency =

t heLogi cal Package. AddLogi cal PackageDependency(theNane,
t heSuppl i er Logi cal PackageNane)

t heLogi cal PackageDependency As RoseRT. Logi cal PackageDependency

274 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the new logical package dependency added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package to which a new logical package dependency is being added.

theName As String
Name of the new logical package dependency added to the logical package.

t heSuppl i er Logi cal PackageName As String
Name of the logical package that theLogicalPackage is client of.

AddProtocol (name : String) : Protocol

Description

Adds a protocol to the logical package.

Syntax

Set theProtocol = thelLogi cal Package. AddProt ocol (nane)

t heProtocol As RoseRT. Capsul e
Returns the new protocol added to the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package to which a new protocol is being added.

name As String
Name of the new protocol added to the logical package.

AddUseCase (szName : String) : UseCase

Description

Adds a use case to the logical package.

LogicalPackage 275

Syntax
Set theUseCase = thelLogi cal Package. AddUseCase(szNane)

t heUseCase As RoseRT. UseCase
Returns the new use case added to the logical package.
t heLogi cal Package As RoseRT. Logi cal Package

Logical package to which a new use case is being added.

szNanme As String

Name of the new use case added to the logical package.
DeleteCapsule (theCapsule : Capsule) : Boolean

Description

Deletes a capsule from the logical package.
Syntax

Del eted = t helLogi cal Package. Del et eCapsul e(theCapsul e)

Del eted As Bool ean

Returns a value of True when the capsule is successfully deleted from the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a capsule is being deleted.

t heCapsul e As RoseRT. Capsul e
Capsule to delete from the logical package.

276 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteClass (theClass : Class) : Boolean

Description

Deletes a class from the logical package.

Syntax
Del eted = thelLogi cal Package. Del et el ass(theCl ass)

Del eted As Bool ean

Returns a value of True when the class is successfully deleted from the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package from which a class is being deleted.
theCl ass As RoseRT. d ass

Class to delete from the logical package.

DeleteClassDiagram (theClassDiagram : ClassDiagram) : Boolean

Description

Deletes a class diagram from the logical package.
Syntax

Del eted = thelLogi cal Package. Del et eCl assDi agran(thed ass)

Del eted As Bool ean

Returns a value of True when the class diagram is successfully deleted from the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a class diagram is being deleted.

t heCl assDi agram As RoseRT. O assDi agr am

Class diagram to delete from the logical package.

LogicalPackage 277

DeleteCollaboration (theCollaboration : Collaboration) : Boolean

Description

Deletes a collaboration from the logical package.

Syntax
Del eted = t helLogi cal Package. Del et eCol | aborati on(theCol | aborations)

Del eted As Bool ean

Returns a value of True when the collaboration is successfully deleted from the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a collaboration is being deleted.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration to delete from the logical package.
DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

Deletes a Generalization relation from a logical package.

Syntax

Del eted = t helLogi cal Package. Del et eGeneralization(theCGeneralization)

Del eted As Bool ean

Returns a value of True when the generalization gets deleted successfully from the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical Package from which the generalization is being deleted.

theGeneralizati on As RoseRT. Generali zati on

278 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

The generalization being deleted.
DeleteLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean

Description

Deletes a logical package from the logical package.

Syntax

Del eted = thelLogi cal Package. Del et eLogi cal Package(
t heLogi cal PackageToDel ete)

Del eted As Bool ean

Returns a value of True when the logical package is successfully deleted from the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package from which a logical package is being deleted.

t heLogi cal PackageToDel ete As RoseRT. Logi cal Package
Logical package to delete from the logical package.

DeleteLogicalPackageDependency (theDependency :
LogicalPackageDependency) : Boolean

Description

Deletes a logical package dependency from the logical package.

Syntax

Del eted = thelLogi cal Package. Del et eLogi cal PackageDependency(
t heDependency)

Del eted As Bool ean

Returns a value of True when the logical package dependency is successfully deleted
from the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

LogicalPackage 279

Logical package from which a logical package dependency is being deleted.

t heDependency As RoseRT. Logi cal PackageDependency
Logical package dependency to delete from the logical package.

DeleteProtocol (theProtocol : Protocol) : Boolean

Description

Deletes a protocol from the logical package.

Syntax
Del eted = t helLogi cal Package. Del et ePr ot ocol (t heProtocol)

Del eted As Bool ean

Returns a value of True when the protocol is successfully deleted from the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package from which a protocol is being deleted.

t heProt ocol As RoseRT. Prot ocol

Protocol to delete from the logical package.
DeleteUseCase (theUseCase : UseCase) : Boolean

Description

Deletes a use case from the logical package.
Syntax

Del eted = t helLogi cal Package. Del et eUseCase(theUseCase)

Del eted As Bool ean

Returns a value of True when the use case is successfully deleted from the logical
package.

280 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a use case is being deleted.

t heUseCase As RoseRT. Pr ot ocol

Use case to delete from the logical package.
GetAllCapsules () : CapsuleCollection

Description

Returns all capsules owned by the logical package and any of its subpackages.

Syntax
Set theCapsul es = t heLogi cal Package. Get Al | Capsul es()

t heCapsul es As RoseRT. Capsul eCol | ection

Returns a collection containing all capsules owned by the logical package and any of
its subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which capsules are being retrieved from.
GetAllClasses () : ClassCollection

Description

Returns all classes owned by the logical package and any of its subpackages.
Syntax

Set theCl asses = thelLogi cal Package. Get Al | Cl asses()

t heCl asses As RoseRT. O assCol | ecti on

Returns a collection containing all classes owned by the logical package and any of its
subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which classes are being retrieved from.

LogicalPackage 281

GetAllLogicalPackages () : LogicalPackageCollection

Description

Returns all logical packages owned by the logical package and any of its subpackages.

Syntax
Set thelogi cal Packages = thelogi cal Package. Get Al | Logi cal Packages()

t heLogi cal Packages As RoseRT. Logi cal PackageCol | ecti on

Returns a collection containing all logical packages owned by the logical package and
any of its subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which logical packages are being retrieved from.
GetAllProtocols () : ProtocolCollection

Description

Returns all protocols owned by the logical package and any of its subpackages.
Syntax

Set theProtocols = thelLogi cal Package. Get Al | Prot ocol s()

t heProt ocol s As RoseRT. Prot ocol Col | ection

Returns a collection containing all protocols owned by the logical package and any of
its subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which protocols are being retrieved from.
GetAllUseCases () : UseCaseCollection

Description

Returns all use cases owned by the logical package and any of its subpackages.

282 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
Set theUseCases = thelogi cal Package. Get Al | UseCases()

t heUseCases As RoseRT. UseCaseCol | ection

Returns a collection containing all use cases owned by the logical package and any of
its subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which use cases are being retrieved from.
GetAssignedComponentPackage () : ComponentPackage

Description

Do not use, obsolete.
GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a Logical Package is client of.

Syntax

Set Generalizations = thelLogical Package. Get General i zati ons()

Ceneralizations As RoseRT. GeneralizationCollection

The collection of all Generalization relationships the Logical Package is client of.

t heLogi cal Package As RoseRT. Logi cal Package

The Logical Package to return Generalization it is client of.

GetLogicalPackageDependencies () :
LogicalPackageDependencyCollection

Description

Returns all logical package dependencies owned by the logical package and any of its
subpackages.

LogicalPackage 283

Syntax

Set thelogi cal PackageDependenci es =
t heLogi cal Package. Get Al | Logi cal PackagesDependenci es()

t heLogi cal PackageDependenci es As
RoseRT. Logi cal PackageDependencyCol | ecti on

Returns a collection containing all logical packages dependencies owned by the
logical package and any of its subpackages.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which logical packages dependencies are being retrieved from.
GetSubLogicalPackages () : LogicalPackageCollection

Description

Retrieves the sub logical packages derived from the logical package.

Syntax

Set theSublLogi cal Packages = thelLogi cal Package. Get SubLogi cal Packages (
)

t heSubLogi cal Packages As RoseRT. Logi cal PackageCol | ecti on

Returns the collection of sub logical packages derived from the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical Package from which the collection is being retrieved.
GetSuperLogicalPackages () : LogicalPackageCollection

Description

Retrieves the super logical packages parent of the logical package.

Syntax

Set theSuperlLogi cal Packages =
t heLogi cal Package. Get Super Logi cal Packages ()

284 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heSuper Logi cal Packages As RoseRT. Logi cal PackageCol | ecti on

Returns the collection of super logical packages parent of the logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical Package from which the collection is being retrieved.
HasAssignedComponentPackage () : Boolean

Description

Do not use, obsolete.
RelocateCapsule (theCapsule : Capsule) : Boolean

Description

Relocates a capsule into the logical package.

Syntax
Rel ocated = thelLogi cal Package. Rel ocat eCapsul e(theCapsule)

Rel ocat ed As Bool ean

Returns a value of True when the capsule is successfully relocated into the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package
Logical package from which a capsule is being relocated into.
t heCapsul e As RoseRT. Capsul e

Capsule to relocate into the logical package.
RelocateClass (theClass : Class) :

Description

Relocates a class into the logical package.

Syntax

Rel ocat ed = t helLogi cal Package. Rel ocat eC ass(theCl ass)

LogicalPackage 285

Rel ocat ed As Bool ean

Returns a value of True when the class is successfully relocated into the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a class is being relocated into.

t heCl ass As RoseRT. d ass

Class to relocate into the logical package.
RelocateClassDiagram (theClsDiagram : ClassDiagram) :

Description

Relocates a class diagram into the logical package.

Syntax
Rel ocated = thelLogi cal Package. Rel ocat ed assDi agran(thed sDi agram)

Rel ocat ed As Bool ean

Returns a value of True when the class diagram is successfully relocated into the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a class diagram is being relocated into.

theCl sDi agram As RoseRT. Cl assDi agr am

Class diagram to relocate into the logical package.
RelocateCollaboration (theCollaboration : Collaboration) : Boolean

Description

Relocates a collaboration into the logical package.

286 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Rel ocat ed = t helLogi cal Package. Rel ocat eCol | aborati on(thecol | aboration

)

Rel ocat ed As Bool ean

Returns a value of True when the collaboration is successfully relocated into the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a collaboration is being relocated into.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration to relocate into the logical package.
RelocateLogicalPackage (theLogicalPackage : LogicalPackage) :

Description

Relocates a logical package into the logical package.

Syntax

Rel ocat ed = t helLogi cal Package. Rel ocat eLogi cal Package(
t heLogi cal Package)

Rel ocat ed As Bool ean

Returns a value of True when the logical package is successfully relocated into the
logical package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a logical package is being relocated into.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package to relocate into the logical package.

LogicalPackage 287

RelocateProtocol (theProtocol : Protocol) : Boolean

Description

Relocates a protocol into the logical package.

Syntax

Rel ocated = thelLogi cal Package. Rel ocat ed ass(theProtocol)

Rel ocat ed As Bool ean

Returns a value of True when the class is successfully relocated into the logical
package.

t heLogi cal Package As RoseRT. Logi cal Package

Logical package from which a class is being relocated into.

t heCl ass As RoseRT. d ass

Class to relocate into the logical package.
SetAssignedComponentPackage (newValue : ComponentPackage) :

Description

Do not use, obsolete.

Association Classes

Association Classes include

Association on page 290
Public Attributes
AssociationClass : Class on page 290
Derived : Boolean on page 290
End1 : AssociationEnd on page 290
End?2 : AssociationEnd on page 291
Ends : AssociationEndCollection on page 291

288 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations
ClearAssociationEndForNameDirection () : on page 291
GetAssociationEndForNameDirection () : AssociationEnd on page 291

GetCorrespondingAssociationEnd (Classifier : Classifier) : AssociationEnd on
page 292

GetOtherAssociationEnd (Classifier : Classifier) : AssociationEnd on page 292
NamelsDirectional () : Boolean on page 293

SetAssociationEndForNameDirection (theAssociationEnd : AssociationEnd) : on
page 293

SetEnds (Endl : ModelElement, End2 : ModelElement) : Boolean on page 293
AssociationEnd on page 294

Public Attributes

Aggregate : Boolean on page 294

AssociateModelElement : ModelElement on page 295

Association : Association on page 295

Classifier : Classifier on page 295

Constraints : String on page 295

Containment : AssociationEndContainment on page 295

Friend : Boolean on page 295

Keys : AttributeCollection on page 295

Multiplicity : String on page 296

Navigable : Boolean on page 296

Static : Boolean on page 296

UseCase : UseCase on page 296

Visibility : AssociationEndVisibilityKind

Public Operations

AddKey (theName : String, theType : String) : Attribute on page 296

DeleteKey (theAttr : Attribute) : Boolean on page 297

GetClassName () : String on page 297

Association Classes 289

IsAssociateClass () : Boolean on page 298
AssociationEndContainment on page 298

AssociationEndVisibilityKind on page 299

Association

Description

An association is a connection, or a link, between classes. The association class
exposes a set of attributes and operations that

Determine the characteristics of associations between classes
Allow you to retrieve associations from a model

Check the lists of attributes and operations for complete information.

Derived from ModelElement

Public Attributes
AssociationClass : Class

Description

Class holding attributes and operations of an Association Class. May point to nothing
if the Association is not an Association Class.

Derived : Boolean

Description

Indicates whether this object is derived from another object.
End1 : AssociationEnd

Description

Specifies an object as being End1 in an association.

290 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

End2 : AssociationEnd

Description

Specifies an object as being End?2 in an association.
Ends : AssociationEndCollection
Description
Specifies the collection of AssociationEnds belonging to the Association.
Public Operations
ClearAssociationEndForNameDirection () :

Description

Clears name direction setting for the association.

Syntax

t heAssoci ati on. O ear Associ at i onEndFor NaneDi r ect i onn

t heAssoci ati on As RoseRT. Associ ati on

The association to clear the association end.
GetAssociationEndForNameDirection () : AssociationEnd

Description

Retrieves the AssociationEnd that is set as the name direction for the association.
Syntax

Set theAssoci ationEnd =
t heAssoci ati on. Get Associ ati onEndFor NameDi rection ()

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

Returns the AssociationEnd that is set as the association’s name direction.

t heAssoci ati on As RoseRT. Associ ati on

Association from which the AssociationEnd is being retrieved.

Association 291

GetCorrespondingAssociationEnd (Classifier : Classifier) :
AssociationEnd

Description

Retrieves the AssociationEnd associated with a specified class.

Syntax

Set theAssoci ationEnd = t heAssoci ati on. Get Cor respondi ngAssoci ati onEnd
(thed ass)

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

Returns the AssociationEnd that corresponds to the specified class.

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

Association from which the AssociationEnd is being retrieved.

t heCl ass As RoseRT. d ass

The Class whose AssociationEnd is being returned.
GetOtherAssociationEnd (Classifier : Classifier) : AssociationEnd

Description

Retrieves an AssociationEnd associated with a specified class.

Syntax

Set theAssoci ati onEnd = t heAssoci ati on. Get Ot her Associ at i onEnd
(thed ass)

t heAssoci ati onEnd As RoseRT. Associ ati onEnd

Returns the AssociationEnd that corresponds to the specified class.

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

Association from which the AssociationEnd is being retrieved.

t heCl ass As RoseRT. d ass

292 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Class whose AssociationEnd is being returned.
NamelsDirectional () : Boolean

Description

Checks whether the association has a name directional AssociationEnd setting.

Syntax

IsDirectional = theAssociation. Nanel sDirectional ()

IsDirectional As Bool ean

Returns a value of True is the association has a name directional setting.

t heAssoci ati on As RoseRT. Associ ati on

Association whose name direction setting is being checked.

SetAssociationEndForNameDirection (theAssociationEnd :
AssociationEnd) :

Description

Sets the AssociationEnd that is the name direction for the association.
Syntax

t heAssoci ati on. Set Associ ati onEndFor NaneDi recti on t heAssoci ati onEnd

t heAssoci ati on As RoseRT. Associ ati on

Association whose name direction AssociationEnd is being set.

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

AssociationEnd being set as the association’s name direction.
SetEnds (Endl : ModelElement, End2 : ModelElement) : Boolean

Description

Sets the ends of an Association.

Association 293

Syntax
EndSets = t heAssoci ati on. Set Ends(Endl, End2)

EndSet s As Bool ean

Returns a value of True when ends are set successfully.

t heAssoci ati onAs RoseRT. Associ ati on

Association to which the Ends are being set.

Endl As RoseRT. Mbdel El enent

Model Element at first end of the Association.

End2 As RoseRT. Mbdel El enent

Model Element at second end of the Association.

AssociationEnd

Description

AssociationEnds denote the purpose or capacity in which one class associates with
another. The AssociationEnd class exposes a set of attributes and operations that

* Determine the characteristics of AssociationEnd
+ Allow you to retrieve AssociationEnds from a model

Check the lists of attributes and operations for complete information.

Derived from Relation

Public Attributes
Aggregate : Boolean

Description

Indicates whether the AssociationEnd is an aggregate class.

294 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AssociateModelElement : ModelElement

Description

Model Element belonging to the AssociationEnd.
Association : Association

Description

Specifies an association belonging to the AssociationEnd.
Classifier : Classifier

Description

Model Element belonging to the AssociationEnd, casted as a Classifier. Nothing gets
returned if the Associate Model Element is not a Classifier.

Constraints : String

Description

Specifies any constraints (expressions of semantic conditions that must be preserved)
on the AssociationEnd.

Containment : AssociationEndContainment

Description

The Containment property is a rich data type that controls the containment
relationship of an association end.

Friend : Boolean

Description

Indicates whether the AssociationEnd is a Friend, allowing access to its non-public
attributes and operations.

Keys : AttributeCollection

Description

Specifies the keys belonging to the AssociationEnd.

AssociationEnd 295

Multiplicity : String

Description

Multiplicity of an Association End.
Navigable : Boolean

Description

Indicates whether the AssociationEnd is navigable.
Static : Boolean

Description

Indicates whether the AssociationEnd is static.
UseCase : UseCase

Description

Model Element belonging to the AssociationEnd, casted as a UseCase. Nothing gets
returned if the Associate Model Element is not a UseCase.

Visibility : AssociationEndVisibilityKind

Description

The Visibility property is a rich data type that controls access to the Association End
object.

Public Operations
AddKey (theName : String, theType : String) : Attribute

Description

Returns a key for an AssociationEnd based on a specified attribute name and type.

Syntax
Set theKey = theAssociati onEnd. AddKey (theAttrNam theAttrType)

theKey As RoseRT. Attribute

296 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the key as an attribute.

theAssoci ati onEnd As RoseRT. Associ at i onEnd
AssociationEndto which the key is being added.

theAttrName As String

Name of the attribute to use as a key.

theAttrType As String
Attribute type to use as a key.

DeleteKey (theAttr : Attribute) : Boolean

Description

Deletes a key from an AssociationEnd.

Syntax
Del eted = t heAssoci ati onEnd. Del et eKey (theAttri bute)

Del eted As Bool ean
Set to True when the key is deleted.

theAssoci ati onEnd As RoseRT. Associ at i onEnd
AssociationEnd from which the key is being deleted.

theAttribute As Attribute
Name of the attribute whose key is being deleted.

GetClassName () : String

Description

Returns the name of the class belonging to the AssociationEnd.

AssociationEnd 297

Syntax
theNane = t heAssoci ati onEnd. Get Cl assNane ()

theName As String

Returns the name of the class belonging to the AssociationEnd. If the class does not
exist, a name other than a class name may be returned by the function.

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

AssociationEnd whose class name is being retrieved.
IsAssociateClass () : Boolean

Description

Returns whether the Associate Model Element is a Class.

Syntax
I sACl ass = theAssoci ati onEnd. | sAssoci ated ass()

I sACl ass As Bool ean

Returns a value of True if the Associate Model Element is a Class.

t heAssoci ati onEnd As RoseRT. Associ at i onEnd

The Association End to determine whether the associate Model Element is a Class

AssociationEndContainment

Description

Rich type used to determine how an association end containment attribute.Valid
values are defined in RsContainment enumeration.

Derived from RichType

298 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AssociationEndVisibilityKind

Description

Rich type used to determine how an association end can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

Classifier Classes

Classifier Classes include

Capsule on page 303
Public Attributes
Structure : CapsuleStructure on page 303

Class on page 304
Public Attributes
ClassKind : ClassKind on page 304
Concurrency : ClassConcurrency on page 304
FundamentalType : Boolean on page 304
Multiplicity : String on page 305
Parameters : ParameterCollection on page 305
ParentClass : Class on page 305
Persistence : Boolean on page 305
Space : String on page 305
Public Operations

AddInstantiateRel (theRelationName : String, theParentClassName : String) :
InstantiateRelation on page 305

AddNestedClass (theName : String) : Class on page 306

AssociationEndVisibilityKind 299

AddParameter (theName : String, theType : String, theDef : String, position :
Integer) : Parameter on page 307

DeletelnstantiateRel (thelnstantiateRel : InstantiateRelation) : Boolean on
page 307

DeleteNestedClass (theClass : Class) : Boolean on page 308
GetInstantiateRelations () : InstantiateRelationCollection on page 308
GetNestedClasses () : ClassCollection on page 309
IsNestedClass () : Boolean on page 309

ClassConcurrency on page 310

ClassKind on page 310

Classifier on page 310
Public Attributes
Abstract : Boolean on page 311
AssignedLanguage : String on page 311
Attributes : AttributeCollection on page 311
Collaborations : CollaborationCollection on page 311
Operations : OperationCollection on page 312
ParentLogicalPackage : LogicalPackage on page 312
StateMachine : StateMachine on page 312
SystemClass : Boolean on page 313
Visibility : Classifier VisibilityKind on page 313
Public Operations

AddAssociation (theSupplierRoleName : String, theSupplierRoleType : String) :
Association on page 313

AddAttribute (theName : String, theType : String, initVal : String) : Attribute on
page 314

AddClassDependency (thSupplierName : String, theSupplierType : String) :
ClassDependency on page 315

AddCollaboration (theCollabName : String) : Collaboration on page 315

300 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddGeneralization (theRelationName : String, theParentClassName : String) :
Generalization on page 316

AddGeneralizationEx (theRelationName : String, theParentClassName : String,
ExcludeSuperclassProps : Boolean) : Generalization on page 316

AddQOperation (theName : String, retType : String) : Operation on page 317

AddRealizeRel (theRelationName : String, theSupplierName : String) :
RealizeRelation on page 318

CreateStateMachine () : on page 318
DeleteAssociation (thAss : Association) : Boolean on page 319
DeleteAttribute (theAttr : Attribute) : Boolean on page 319

DeleteClassDependency (theDependency : ClassDependency) : Boolean on
page 320

DeleteCollaboration (theCollab : Collaboration) : Boolean
DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 321

DeleteGeneralizationEx (theGeneralization : Generalization,
AbsorbSuperClassProps : Boolean) : Boolean on page 322

DeleteOperation (theOper : Operation) : Boolean on page 322
DeleteRealizeRel (theRel : RealizeRelation) : Boolean on page 323
DeleteStateMachine () : on page 323
GetAssociateAssociationEnds () : AssociationEndCollection on page 324
GetAssociationEnds () : AssociationEndCollection on page 324
GetAssociations () : AssociationCollection
GetClassDependencies () : ClassDependencyCollection on page 325
GetClassifier () : Classifier on page 325
GetGeneralizations () : GeneralizationCollection on page 326
GetRealizeRelations () : RealizeRelationCollection on page 326
GetSubClasses () : ClassifierCollection on page 326
GetSuperClasses () : ClassifierCollection on page 327

Classifier VisibilityKind on page 327

Parameter on page 328

Classifier Classes 301

Public Attributes

Const : Boolean on page 328
InitValue : String on page 328
Type : String on page 328

Protocol on page 329

Public Attributes

InSignals : SignalCollection on page 329

Interactions : InteractionCollection on page 329
OutSignals : SignalCollection on page 329

Public Operations

AddInSignal () : Signal on page 329

AddInteraction (name : String) : Interaction on page 330
AddOutSignal () : Signal on page 330

DeletelnSignal (theSignal : Signal) : Boolean on page 331

Deletelnteraction (thelnteraction : Interaction) : Boolean on page 331

DeleteOutSignal (theSignal : Signal) : Boolean
RsClassKind on page 332

Public Attributes

rsInstantiatedClass : Integer = 2 on page 332

rsInstantiatedUtility : Integer = 5 on page 333

rsMeta : Integer = 6 on page 333

rsNormalClass : Integer = 0 on page 333

rsParametrizedClass : Integer = 1 on page 333

rsParametrizedUtility : Integer = 4 on page 333

rsUtilityClass : Integer = 3 on page 333
RsConcurrency on page 334

Public Attributes

rsActiveConcurrency : Integer = 2 on page 334

302 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsGuardedConcurrency : Integer = 1 on page 334

rsSequentialConcurrency : Integer = 0 on page 334

rsSynchronousConcurrency : Integer = 3 on page 334
Signal on page 335

Public Attributes

Class : Class on page 335

ClassName : String on page 336

In : Boolean on page 336

ParentProtocol : Protocol on page 336

Capsule

Description

Capsules are the fundamental modeling element of real-time systems. A capsule
represents independent flows of control in a system. Capsules have much of the same
properties as classes; for example they can have operations and attributes. Capsules
may also participate in dependency, generalization, and association relationships.
However they also have several specialized properties which distinguish them from
classes.

Derived from Classifier
Public Attributes
Structure : CapsuleStructure

Description

The CapsuleStructure Model Element object that maps to a capsule's Structure
Diagram.

Capsule 303

Class

Description

The Class class allows you to get and set the characteristics and relationships of
specific classes in a model.

Some of the questions answered by class properties are

Is this an abstract class?

Is this class a fundamental type?

Is this class persistent?

Can this class be concurrent with any other classes?

What set of attributes and operations belong to this class?

What relationships are defined between this class and other objects in the model?
Class operations allow you to get and set this information for the classes in the model.

Check the lists of attributes and operations for complete information.

Derived from Classifier

Public Attributes
ClassKind : ClassKind

Description

The ClassKind property is a rich data type that determines the type of the class.
Concurrency : ClassConcurrency

Description

The Concurrency property is a rich data type that denotes the semantics in the
presence of multiple threads of control.

FundamentalType : Boolean

Description

Defines this class as a fundamental type.

304 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Multiplicity : String
Description
Multiplicity of the Class.

Parameters : ParameterCollection

Description

Used for class of kind “Parameterized Class” or “Parameterized Class Utility”.
Formal parameters to be used for their instantiation.

ParentClass : Class

Description

Specifies the parent class of this class.
Persistence : Boolean

Description

Defines the lifetime of the instances of a class. A persistent element is expected to have
a life span beyond that of the program or one that is shared with other threads of
control or other processes.

Space : String
Description
Defines the space algorithm to use for the class.
Public Operations

AddInstantiateRel (theRelationName : String, theParentClassName :
String) : InstantiateRelation

Description

Adds an instantiate relation to a class.

Syntax

Set thelntantiateRelation = theCl ass. Addl nstanti ateRel (
t heRel ati onNane, theParentd assNane)

Class 305

thel ntanti ateRel ati on As RoseRT. I nstanti ateRel ati on

Returns a new Instantiate Relation denoting theClass as an instantiation of the
parametrized class named theParentClassName.

t heCl ass As RoseRT. d ass

The Class to instantiate from the parametrized class whose name is
theParentClassName.

theRel ati onNane As String

The name of the relation.

t hePar ent d assName As String

Name of the parametrized class that instantiates theClass.
AddNestedClass (theName : String) : Class

Description

Creates a new nested class and adds it to a class.

Syntax
Set theNestedd ass = theCl ass. AddNest edCl ass (t heNane)

t heNest edd ass As RoseRT. d ass

Returns the nested class being added to the class.

theCl ass As RoseRT. d ass
Class to which the nested class is being added.

theName As String
Name of the class being added to the class.

306 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddParameter (theName : String, theType : String, theDef : String,
position : Integer) : Parameter

Description

Adds a formal/actual parameter to a parametrized/instantiated class.

Syntax

Set theParameter = theCl ass. AddPar anet er (t heNane, theType, theDef,
position)

t hePar anet er As RoseRT. Par anet er

Returns a new formal/actual Parameter for the parametrized/instantiated class
theClass.

t heCl ass As RoseRT. d ass

The parametrized/instantiated class to add a parameter to.

theName As String

The name of the new formal/actual Parameter.

theType As String

The type of the new formal/actual Parameter.

theDef As String

The default value of the new formal/actual Parameter.

posi tion As | nteger

The position of the new formal Parameter in the parameter list.

DeletelnstantiateRel (thelnstantiateRel : InstantiateRelation) : Boolean

Description

Deletes an instantiate relation from a class.

Class 307

Syntax

IsDel eted = thed ass. Del etel nstantiated ass(thelnstantiateRel)

| sDel eted As Bool ean

Returns whether thelnstantiateRel was deleted successfully from theClass.

t heCl ass As RoseRT. d ass

The Class to delete an Instantiate Relation from.

thel nstanti ateRel As RoseRT.Instanti at eRel ati on

The relation to delete.
DeleteNestedClass (theClass : Class) : Boolean

Description

Deletes an association from a class.

Syntax
Del eted = thed ass. Del et eNest edCl ass (theNest edd ass)

Del eted As Bool ean

Returns a value of True when the nested class is deleted.

t heCl ass As RoseRT. d ass

Class from which the nested class is being deleted.

theNestedC ass As RoseRT. d ass
Nested class being deleted.

GetlnstantiateRelations () : InstantiateRelationCollection

Description

Returns the collection of Instantiate Relations that belong to a class.

308 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set thelnstantiateRel ations = theCl ass. Getlnstanti ateRel ations()

thel nstanti at eRel ati ons As RoseRT. | nst anti ateRel ati onCol | ecti on

Returns the collection of Instantiate Relations that belong to a theClass.

t heCl ass As RoseRT. d ass

The Class to return Instantiate Relation Collection from.
GetNestedClasses () : ClassCollection

Description

Retrieves the nested class collection from a class and returns it in the specified object.
Syntax

Set theNestedd asses = theC ass. Get Nest edCl asses ()

t heNest edCl asses As RoseRT. Cl assCol | ecti on

Returns the nested class collection from the class.

t heCl ass As RoseRT. d ass

Class from which the collection is being retrieved.
IsNestedClass () : Boolean

Description

Determines whether a class is nested.

Syntax
IsNested = theCl ass. | sNestedd ass ()

I sNest ed As Bool ean

Returns a value of True if the specified class is nested.

Class 309

t heCl ass As RoseRT. d ass

The instance of the class being checked for nesting.

ClassConcurrency

Description

Rich type used to determine concurrency of an operation or of a Class.

Valid values are defined in RsConcurrency enumeration.

Derived from RichType

ClassKind

Description
Rich type used to determine kind of a Class. Valid values are defined in RsClassKind

enumeration.

Derived from RichType

Classifier

Description
A classifier is a base class that describes behavioral and structural features (attributes

and operations).

310 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Abstract : Boolean

Description

Indicates whether the classifier is an abstract classifier.

Syntax

C assifier. Abstract

Property Type:

Boolean

AssignedLanguage : String

Description

The implementation language for the classifier from the available languages. The
analysis selection indicates that no code will be generated for the classifier.

Attributes : AttributeCollection

Description

Causes the classifier to inherit all of the attributes of a specified attribute collection.

Syntax

Classifier.Attributes

Property Type:

AttributeCollection

Collaborations : CollaborationCollection

Description

Collaborations that belong to this classifier.

Classifier

311

Operations : OperationCollection

Description

Causes the classifier to inherit all of the operations of a specified operation collection.

Syntax

Cl assifier. Qperations

Property Type:

OperationsCollection
ParentLogicalPackage : LogicalPackage

Description

Indicates the LogicalPackage that contains the classifier.

Syntax

Cl assifier. Parent Logi cal Package

Property Type
LogicalPackage

StateMachine : StateMachine

Description

Specifies the state machine that belongs to the classifier. A state machine defines all of
the state information, including states, transitions, and state diagrams, defined for a
given classifier.

A classifier can have zero or one state machine.

Syntax

C assifier. StateMachi ne

Property Type:

StateMachine

312 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SystemClass : Boolean

Description
Determines whether a class is a system class.
Examples of system classes are
Exception
Frame
Log
Timing
Visibility : ClassifierVisibilityKind
Description

The Visibility property is a RichType that specifies how a classifier and its elements
are viewed outside of the defined package.

Public Operations

AddAssociation (theSupplierRoleName : String, theSupplierRoleType :
String) : Association

Description

Adds an association to a classifier and returns it in the specified object.

Syntax

Set theAssociation = theCl assifier. AddAssoci ati on
(theSuppl i erRol eNanme, theSupplierRol eType)

t heAssoci ati on As RoseRT. Associ ati on

Returns the association being added to the class.

theCl assifier As RoseRT.Cl ass

Classifier to which the association is being added.

t heSuppl i er Rol eName As String

Classifier 313

Name of the supplier role in the association.

t heSuppl i er Rol eType As String

Type of the supplier role in the association.

AddAttribute (theName : String, theType : String, initVal : String) :
Attribute

Description

Creates a new attribute and adds it to a classifier.

Syntax

Set theAttribute = theCl assifier.AddAttribute (AttName, AttrType,
I ni tVal ue)

theAttribute As RoseRT. Attribute
Returns the attribute being added to the classifier.

theCl assifier As RoseRT.C ass
Classifier to which the attribute is being added.

AttName As String
Name of the attribute being added to the classifier.

AttrType As String
Type of attribute being added to the classifier.

InitValue As String

Initial value of the attribute.

314 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddClassDependency (thSupplierName : String, theSupplierType :
String) : ClassDependency

Description

Creates a new class dependency and adds it to a class.

Syntax

Set theDependency = thed ass. Addd assDependency (theSupplier Nane,
t heSuppl i er Type)

t heCl assDependency As Cl assDependency
Returns the class dependency being added to the class.

theCl ass As Cl ass
Class to which the class dependency is being added.

t heSuppl i erNane As String

Name of the supplier class of the class dependency.

t heSuppl i er Type As String
Type of supplier of the class dependency.

AddCollaboration (theCollabName : String) : Collaboration

Description

Adds a collaboration to a classifier and returns it in the specified object.

Syntax
Set theCol | aboration = theC assifier.AddCol | aborati on(theColl abNane)

t heCol | abor ati on As RoseRT. Col | aborati on
Returns the Collaboration being added to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier 315

Classifier to which the collaboration is being added.

t heCol | abNane As String

Name of the new Collaboration.

AddGeneralization (theRelationName : String, theParentClassName :
String) : Generalization

Description

Adds a Generalization relationship to a classifier and returns it in the specified object.

Syntax

Set theGeneralization = theCl assifier. AddGenerali zation(
t heRel ati onNane, theParentd assifierNane)

t heGeneralizati on As RoseRT. Generali zati on

Returns the Generalization being added to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier to which the Generalization is being added.

theRel ati onNane As String

Name of the new Generalization.

t heParent d assName As String

Name of the parent classifier in the Generalize relationship.

AddGeneralizationEx (theRelationName : String, theParentClassName :
String, ExcludeSuperclassProps : Boolean) : Generalization

Description

Adds a Generalization relationship to a classifier and returns it in the specified object.

316 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theGeneralization = theClassifier. AddGenerali zati onEx(
t heRel ati onNane, theParentd assifierNane, ExcludeSuperclassProps)

t heGeneralizati on As RoseRT. Generali zati on

Returns the Generalization being added to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier to which the Generalization is being added.

theRel ati onNane As String

Name of the new Generalization.

t heParent d assName As String

Name of the parent classifier in the Generalize relationship.

Excl udeSupercl assProps As Bool ean

Determines whether to exclude the new superclass' properties. Only meaningful for
Capsule and Protocol derived classes.

AddOperation (theName : String, retType : String) : Operation

Description

Creates a new operation and adds it to a classifier.

Syntax

Set theOperation = theCl assifier. AddOperati on (Operati onNaneg,
Oper ati onType)

theOperati on As RoseRT. Qperati on

Returns the operation being added to the class.

theCl ass As RoseRT. d assifier
Classifier to which the operation is being added.

Classifier 317

Oper ationName As String

Name of the operation being added to the classifier.

OperationType As String
Type of operation being added to the classifier.

AddRealizeRel (theRelationName : String, theSupplierName : String) :
RealizeRelation

Description

Creates a new realize relation and adds it to a classifier.

Syntax

Set theRealizeRel ation = thed assi fi er. AddReal i zeRel (theRel ati onNane,
t hel nt er f aceNane)

theReal i zeRel ati on As RoseRT. Real i zeRel ati on

Returns the realize relation being added to the class.

theCl assifier As RoseRT.Cl assifier

Classifier to which the realize relation is being added.

theRel ati onNane As String

Name of the relation being added.

thel nterfaceNane As String

Name of the interface with which to create the realize relation.
CreateStateMachine () :

Description

Creates a state machine for a classifier.

318 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Note: A classifier can have zero or one state machine. Multiple state machines are not
allowed.

Syntax
t heCl assifi er. Creat eSt at eMachi ne

theCl assifier As RoseRT.Cl assifier

Classifier to which you are adding the state machine.
DeleteAssociation (thAss : Association) : Boolean

Description

Deletes an association from a classifier.

Syntax

Del eted = thed assifier.Del eteAssoci ati on (theAssoci ati on)

Del eted As Bool ean

Returns a value of True when the association is deleted.

theCl assifier As RoseRT.Cl assifier

Class from which the association is being deleted.

t heAssoci ati on As RoseRT. Associ ati on

Name of the association being deleted. (The association must belong to the specified
classifier.)

DeleteAttribute (theAttr : Attribute) : Boolean

Description

Deletes an attribute from a classifier.

Syntax
Deleted = theC assifier.DeleteAttribute (theAttribute)

Classifier 319

Del eted As Bool ean

Returns a value of True when the attribute is deleted.

theClassifier As RoseRT.Cl assifier
Classifier from which the attribute is being deleted.

theAttribute As RoseRT. Attribute
Attribute being deleted from the classifier.

DeleteClassDependency (theDependency : ClassDependency) : Boolean

Description

Deletes a classifier dependency from a classifier.

Syntax
IsDel eted = thed assifier.Del eted assifi erDependency (theDependency)

| sDel eted As Bool ean

Returns a value of True when the classifier dependency is deleted.

theCl assifier As RoseRT.Cl assifier

Classifier from which the classifier dependency is being deleted.

t heDependency As RoseRT. Cl assi fi er Dependency
Classifier dependency being deleted.

DeleteCollaboration (theCollab : Collaboration) : Boolean

Description

Deletes a collaboration from a classifier.

Syntax
Del eted = thed assifier.Del eteCol | aboration(theCollab)

320 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Del eted As Bool ean

Returns a value of True when the collaboration gets deleted successfully from the
classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collaboration is being deleted.

theCol I ab As RoseRT. Col | abor ation
The collaboration being deleted.

DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

Deletes a Generalization relation from a classifier.
Syntax

Del eted = theCd assifier.Del eteCGeneralization(theGeneralization)

Del eted As Bool ean

Returns a value of True when the generalization gets deleted successfully from the
classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the generalization is being deleted.

t heGeneralizati on As RoseRT. Generali zati on

The generalization being deleted.

Classifier 321

DeleteGeneralizationEx (theGeneralization : Generalization,
AbsorbSuperClassProps : Boolean) : Boolean
Description

Deletes a Generalization relation from a classifier.

Syntax

Del eted = thed assifier.Del eteGeneralizationEx(theCGeneralization,
Absor bSuper d assProps)

Del eted As Bool ean

Returns a value of True when the generalization gets deleted successfully from the
classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the generalization is being deleted.

t heGeneralizati on As RoseRT. Generali zati on

The generalization being deleted.

Absor bSuper d assProps As Bool ean

Determines whether to absorb all of the superclass' properties. Only meaningful for
Capsule and Protocol derived classes.

DeleteOperation (theOper : Operation) : Boolean

Description

Deletes an operation from a classifier.

Syntax
Del eted = thed assifier.Del eteCperation (theOperation)

Del eted As Bool ean

Returns a value of True when the operation is deleted from the classifier.

322 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCl assifier As RoseRT.Cl assifier

Classifier from which the operation is being deleted.

theOperati on As RoseRT. Qperati on

Operation being deleted from the classifier.
DeleteRealizeRel (theRel : RealizeRelation) : Boolean

Description

Deletes a realize relation from a classifier.

Syntax
IsDel eted = thed assifier.Del eteRealizeRel (theRealizeRel)

| sDel eted As Bool ean

Returns a value of True relation being added to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the realize relation is being deleted.

theReal i zeRel As RoseRT. Real i zeRel ation

Realize relation being deleted.
DeleteStateMachine () :

Description

Deletes a classifier’s state machine from the model.

Syntax

t heCl assifi er. Del et eSt at eMachi ne

theCl assifier As RoseRT.Cl assifier

Classifier whose state machine is being deleted.

Classifier 323

GetAssociateAssociationEnds () : AssociationEndCollection

Description
Retrieves an associate AssociationEnd collection from a classifier and returns it in the

specified object.

Syntax

Set theAssocAssoci ati onEnd = t hed assi fi er. Get Associ at eAssoci ati onEnd

()

t heAssocAssoci ati onEnd As AssocAssoci ati onEndCol | ecti on

Returns the associate AssociationEnd collection from the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collection is being retrieved.
GetAssociationEnds () : AssociationEndCollection

Description
Retrieves an AssociationEndCollection from a classifier and returns it in the specified

object.

Syntax
Set theAssoci ati onEnd = theCl assifier. GetAssoci ati onEnds ()

t heAssoci ati onEnds As RoseRT. Associ ati onEndCol | ecti on
Returns the AssociationEndCollection from the classifier.
theCl assifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.
GetAssociations () : AssociationCollection

Description

Retrieves an association collection from a classifier and returns it in the specified
object.

324 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theAssoci ationCol l ection = theCd assifier. GetAssociations ()

t heAssoci ationCol | ecti on As RoseRT. Associ ati onCol | ecti on

Returns the association collection from the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collection is being retrieved.
GetClassDependencies () : ClassDependencyCollection

Description

Retrieves the classifier dependencies belonging to the classifier.
Syntax

Set theCl assifierDependencies = theClassifier.GetUsesRelations ()

t heCl assi fi er Dependenci es As RoseRT. d assi fi er DependencyCol | ecti on

Returns the classifier dependency collection belonging to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the dependencies are being retrieved.
GetClassifier () : Classifier

Description

Returns self as a Classifier.

Syntax
Set theClassifier = theC assifier.GetCl assifier()

theCl assifier As RoseRT.Cl assifier

Returns self as a Classifier.

Classifier 325

theCl assifier As RoseRT.Cl assifier

Classifier to remove self as a classifier.
GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a Classifier is client of.

Syntax

Set Generalizations = thed assifier.GetGeneralizations()

Ceneralizations As RoseRT. GeneralizationCollection

The collection of all Generalization relationships the Classifier is client of.

theCl assifier As RoseRT.Cl assifier

The classifier to return Generalization it is client of.
GetRealizeRelations () : RealizeRelationCollection

Description

Retrieves the collection of realize relations belonging to the classifier.
Syntax

Set theReal i zesRel ations = theC assifier.GetRealizeRelations ()

theReal i zesRel ati ons As RoseRT. Real i zeRel ati onsCol | ecti on

Returns the collection of realize relations belonging the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collection is being retrieved.
GetSubClasses () : ClassifierCollection

Description

Retrieves the subclasses belonging to the classifier.

326 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theSubcl asses = thed assifier. GetSubcl asses ()

t heSubcl asses As RoseRT. Cl assifierColl ection

Returns the collection of classes belonging to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collection is being retrieved.
GetSuperClasses () : ClassifierCollection

Description

Retrieves the superclasses belonging to the classifier.

Syntax

Set theSuperClassifiers = theCl assifier. GetSuperClassifiers ()

t heSuperclassifiers As RoseRT. d assifierCollection

Returns the collection of superclassifiers belonging to the classifier.

theCl assifier As RoseRT.Cl assifier

Classifier from which the collection is being retrieved.

ClassifierVisibilityKind

Description

Rich type used to determine how a Classifier can be accessed from other Classifiers.
Valid values are defined in RsVisibility enumeration.

ClassifierVisibilityKind 327

Derived from RichType

Parameter

Description

Parameters further qualify the behavior of an operation. The parameter class exposes
a set of attributes and operations that

Determine the parameter characteristics such as type and initial value
Allow you to retrieve parameters

Check the lists of attributes and operations for complete information.

Derived from ModelElement

Public Attributes
Const : Boolean

Description

Indicates that the parameter is a constant
InitValue : String

Description

Indicates the initial value of the parameter object.
Type : String

Description

Indicates the data type of the parameter object

328 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Protocol

Description

Represents the set of messages exchanged between two objects in order to conform to
some communication pattern.

Derived from Classifier

Public Attributes
InSignals : SignalCollection

Description

The collection of in signals described by a protocol.
Interactions : InteractionCollection

Description

The collection of interactions describing a protocol.
OutSignals : SignalCollection

Description

The collection of out signals described by a protocol.

Public Operations

AddInSignal () : Signal

Description

Adds an in signal to a protocol and returns it in the specified object.

Syntax
Set theSignal = theProtocol.Addl nSignal ()

theSi gnal As RoseRT. Signal
Returns the in signal being added to the protocol.

Protocol 329

theProtocol As RoseRT. Protocol
Protocol to which the in signal is being added.

AddInteraction (name : String) : Interaction

Description

This function adds an interaction to a protocol and returns it in the specified object.
Syntax

Set thelnteraction = theProtocol . Addlnteracti on(nane)

thel nteraction As RoseRT.Interaction

Returns the interaction being added to the protocol.

t heProt ocol As RoseRT. Prot ocol

Protocol to which the interaction is being added.

name As String

Name of the interaction to add to the protocol.
AddOutSignal () : Signal

Description

Adds an out signal to a protocol and returns it in the specified object.

Syntax
Set theSignal = theProtocol.AddQut Si gnal ()

theSi gnal As RoseRT. Si gnal
Returns the out signal being added to the protocol.

theProtocol As RoseRT. Protocol
Protocol to which the out signal is being added.

330 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeletelnSignal (theSignal : Signal) : Boolean

Description

Deletes an in signal from a protocol.

Syntax
Del eted = t heProtocol . Del etel nSignal (theSignal)

Del eted As Bool ean

Returns a value of True when the in signal is successfully deleted from the protocol.

t hePr ot ocol As RoseRT. Prot ocol

Protocol to which the in signal is being deleted.

theSi gnal As RoseRT. Signal
The in signal being deleted.

Deletelnteraction (thelnteraction : Interaction) : Boolean

Description

Deletes an interaction from a protocol.

Syntax

Del eted = theProtocol . Del etelnteraction(thelnteraction)

Del eted As Bool ean

Returns a value of True when the interaction is successfully deleted from the protocol.

t hePr ot ocol As RoseRT. Prot ocol

Protocol to which the interaction is being deleted.

thel nteraction As RoseRT.Interaction

The interaction being deleted.

Protocol 331

DeleteOutSignal (theSignal : Signal) : Boolean

Description

Deletes an out signal from a protocol.

Syntax
Del eted = t heProtocol . Del eteQut Signal (theSignal)

Del eted As Bool ean

Returns a value of True when the out signal is successfully deleted from the protocol.

theProtocol As RoseRT. Protocol
Protocol to which the out signal is being deleted.

theSi gnal As RoseRT. Signal
The out signal being deleted.

RsClassKind

Description
Enumeration used to set the Value property of the ClassKind Rich Type.

Public Attributes

rsinstantiatedClass : Integer = 2

Description

Class formed from a parameterized class by supplying actual values for parameters.

332 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsinstantiated Utility : Integer =5

Description

Utility class formed from a parameterized class by supplying actual values for
parameters.

rsMeta : Integer =6

Description

Class which describes or is used to instantiate classes instead of objects.
rsNormalClass : Integer =0

Description

Design-time specification for one or more distinct objects with common structure,
attributes, and common behavior, operations.

rsParametrizedClass : Integer = 1

Description

Template for creating any number of instantiated classes that follow its format. A
parameterized class declares formal parameters.

rsParametrizedUtility : Integer = 4

Description

Template for creating any number of instantiated utility classes that follow its format.
A parameterized class declares formal parameters.

rsUtilityClass : Integer =3

Description

Specifies a class whose attributes and operations are all class scoped. An instantiated
utility class represents an instance of a utility class.

RsClassKind 333

RsConcurrency

Description

Enumeration used to set the Value property of the ClassConcurrency and of the
OperationConcurrency Rich Types.

Public Attributes
rsActiveConcurrency : Integer = 2

Description

The class has its own thread of control.
rsGuardedConcurrency : Integer = 1

Description

The semantics of the class are guaranteed in the presence of multiple threads of
control. A guarded class requires collaboration among client threads to achieve
mutual exclusion.

rsSequentialConcurrency : Integer =0

Description

The semantics of the class are guaranteed only in the presence of a single thread of
control. Only one thread of control can be executing in the method at any one time.

rsSynchronousConcurrency : Integer =3

Description

The semantics of the class are guaranteed in the presence of multiple threads of
control; mutual exclusion is supplied by the class.

RsChangeable

Description

Enumeration used to set the Value property of the Changeable RichType.

334 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Attributes

rsChangeableChangeableKind : Integer =0

Description

Specifies that the attribute can be modified.

rsFrozenChangeableKind : Integer = 1

Description

Specifies that the attribute cannot be modified.

rsAddOnlyChangeableKind : Integer = 2

Description

Specifies that the attribute can only be updated. For example, items in an array can be
appended to, not replaced.

Note: This options is not enforceable in most programming languages.

Signal

Description

A signal is a specification of an asynchronous stimulus communicated between
instances.

Derived from ModelElement

Public Attributes
Class : Class

Description

Specifies the class of the data object that is expected as a payload of the message.

Signal 335

ClassName : String

Description

Specifies the classname of the data object that is expected as a payload of the message.
In : Boolean

Description

Specifies whether the signal is an in signal.
ParentProtocol : Protocol

Description

Protocol that own the signal.

Feature Classes

Feature Classes include
Attribute on page 338
Public Attributes
Containment : AttributeContainment on page 338
Derived : Boolean on page 338
InitValue : String on page 339
OwnerScope : OwnerScope on page 339
ParentClassifier : Classifier on page 339
Type : String on page 339
Visibility : AttributeVisibilityKind on page 339
AttributeContainment on page 340
AttributeVisibilityKind on page 340
Operation on page 340
Public Attributes
Abstract : Boolean on page 341
Code : String on page 341

336 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Concurrency : OperationConcurrency on page 341
Exceptions : String on page 341

OwnerScope : OwnerScope on page 341
Parameters : ParameterCollection on page 341
ParentClassifier : Classifier on page 342
Postconditions : String on page 342
Preconditions : String on page 342

Protocol : String on page 342

Qualification : String on page 342

Query : Boolean on page 342

ReturnType : String on page 342

Semantics : String on page 343

Size : String on page 343

Time : String on page 343

Virtual : Boolean on page 343

Visibility : OperationVisibilityKind on page 343
Public Operations

AddParameter (theName : String, theType : String, theDef : String, position :
Integer) : Parameter on page 343

DeleteParameter (theParameter : Parameter) : Boolean on page 344
RemoveAllParameters () : on page 345

OperationConcurrency on page 345

OperationVisibilityKind on page 345

OwnerScope on page 346

RsOwnerScope on page 346
Public Attributes
rsClassifier ScopeKind : Integer = 1 on page 346
rslnstanceScopeKind : Integer = 0 on page 346

Feature Classes 337

Attribute

Description

Attributes define the characteristics of a class. Each object in a classifier has the same
attributes, but the values of the attributes may be different.

The attribute class exposes a set of attributes and operations that determine the
characteristics of these attributes and that allow you to retrieve them from a model.

Some of the characteristics determined by attribute class properties are
Type
Initial value
Whether the attribute is static; whether it is derived
Attribute visibility

Check the lists of attributes and operations for complete information.
Derived from ModelElement
Public Attributes

Containment : AttributeContainment

Description

The Containment property is a rich data type that controls the containment
relationship of an attribute.

Derived : Boolean

Description
Indicates whether the attribute is derived.
Changeability : Changeability

The Changeable property is a RichType that specifies the manner in which you can
modify an attribute. The options available are:

Changeable - The attribute can be modified.

Frozen - The attribute cannot be modified.

338 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Add-only - The attribute can only be updated. For example, items in an array can
be appended to, not replaced.

Note: This options is not enforceable in most programming languages.

Example

Di m changeability As RoseRT. R chType
Set changeability = myAttribute. Changeabl e
changeability. Val ue = RsFrozenChangeabl eKi nd

For additional information on the possible values, see RsChangeable on page 334.
InitValue : String

Description

Indicates the initial value of the attribute object.
OwnerScope : OwnerScope

Description

The OwnerScope property is a RichType that determines whether a single instance of
the attribute is shared for all instances of the classifier or if each instance of the class
have a separate attribute instance.

ParentClassifier : Classifier

Description

Specifies the Classifier to which the attribute belongs.
Type : String

Description

Indicates the data type of the attribute object.
Visibility : AttributeVisibilityKind

Description

The Visibility property is a RichType that determines how an attribute can be accessed
from other classifiers.

Attribute 339

AttributeContainment

Description
Rich type used to determine the containment of an attribute within a Classifier. Valid
values are defined in RsContainment enumeration.

Derived from RichType

AttributeVisibilityKind

Description
Rich type used to determine the visibility of an attribute within a Classifier. Valid
values are defined in RsVisibilityKind enumeration.

Derived from RichType

Operation

340

Description

Objects in a class carry out their defined responsibilities by using operations. Each
operation performs a single, cohesive function. The operation classifier exposes a set

of attributes and operations that
Determine operation characteristics
Add or remove parameters from operations
Allow you to retrieve operations

Check the lists of attributes and operations for complete information.

Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes
Abstract : Boolean

Description

Indicates that the operation is an abstract definition that should be overridden by
specific implementations in subclasses.

Code : String

Description

Detailed implementation code for the operation.
Concurrency : OperationConcurrency

Description

The Operation Concurrency property is a rich data type that denotes the semantics in
the presence of multiple threads of control.

Exceptions : String

Description

Identifies the set of exceptions that can be raised by an operation.
OwnerScope : OwnerScope

Description:

The OwnerScope property is a RichType that determines whether an operation is
scoped as a class operation or whether it is an instance operation.

Parameters : ParameterCollection

Description

Defines the collection of parameters that is valid for the operation.

Operation 341

ParentClassifier : Classifier

Description

Specifies the classifier to which the operation belongs.
Postconditions : String

Description

Controls invariants that are satisfied by the operation; that is, the exit behavior of the
operation.

Preconditions : String

Description

Controls invariants assumed by the operation; that is, the entry behavior of an
operation.

Protocol : String

Description

Specifies the set of operations that a client may perform on an object and the legal
order in which the operations can be called.

Qualification : String

Description

Identifies language-specific features used to qualify an operation.
Query : Boolean

Description

Indicates that the operation is read-only and does not modify the object's state.
ReturnType : String

Description

Determines the object type to be returned by an operation; can be set to any valid data
type, rich data type, or object type.

342 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Semantics : String

Description

Controls the action of an operation.
Size : String

Description

Identifies the relative or absolute amount of storage used when the operation is called.
Time : String

Description

Identifies the relative or absolute amount of time required to complete the operation.

Virtual : Boolean

Description

Indicates whether the operation is virtual
Visibility : OperationVisibilityKind

Description

The Visibility property is a RichType that determines how an operation can be
accessed from other classifiers.

Public Operations

AddParameter (theName : String, theType : String, theDef : String,
position : Integer) : Parameter

Description

Creates a new parameter and adds it to an operation.

Syntax

Set theParameter = theOperation. AddPar aneter (Paramet er Nane,
Par anet er Type, InitValue, Position)

t hePar anet er As RoseRT. Par anet er

Operation 343

Returns the parameter being added to the operation.

theOperati on As RoseRT. Qperati on

Operation to which the parameter is being added.

Par anmet er Name As String

Name of the parameter being added to the operation.

Par anet er Type As String
Type of parameter being added to the operation.

InitValue As String

Initial value of the added parameter.

Position As | nteger

Order of the parameter in the operation’s parameter list.
DeleteParameter (theParameter : Parameter) : Boolean

Description

Deletes a parameter from an operation.

Syntax

Del eted = theQperation. Del et ePar anet er (theParaneter)

Del eted As Bool ean

Returns a value of True when the specified parameter is deleted from the operation.

theOperati on As RoseRT. Qperati on

Operation from which the parameter is being deleted.

t hePar anet er As RoseRT. Par anet er

344 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Parameter being deleted from the operation.

RemoveAllParameters () :

Description

Removes all parameters from an operation.

Syntax

t heOperati on. RenoveAl | Par anet ers

theOperati on As RoseRT. Qperati on

Operation from which the parameters are being removed.

OperationConcurrency

Description

Rich type used to determine the concurrency of an operation within a Classifier. Valid
values are defined in RsConcurrency enumeration.

Derived from RichType

OperationVisibilityKind

Description

Rich type used to determine the visibility of an operation within a Classifier. Valid
values are defined in RsVisibilityKind enumeration.

OperationConcurrency 345

Derived from RichType

OwnerScope

Description
Rich type used to determine the scope of an attribute within a Classifier. Valid values

are defined in RsOwnerScope enumeration.

Derived from RichType

RsOwnerScope

Description
Enumeration used to set the Value property of the OwnerScope Rich Type.

Public Attributes
rsClassifierScopeKind : Integer =1

Description
There is a single instance of the attribute for all instances of the class (a static member

in C++ terminology).
rsinstanceScopeKind : Integer =0

Description

Each instance of the class will have a separate attribute instance.

346 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Collaboration Classes

Collaboration classes include
AssociationEndRole on page 350
Public Attributes
AssociationRole : AssociationRole on page 351
Base : AssociationEnd on page 351
AssociationRole on page 351
Public Attributes
Base : Association on page 351
BaseName : String on page 351
Multiplicity : String on page 351
ParentCollaboration : Collaboration on page 352
CapsuleRole on page 352
Public Attributes
Capsule : Capsule on page 352
Cardinality : String on page 352
Genericity : Genericity on page 352
PortRoles : PortRoleCollection on page 352
Substitutable : Boolean on page 353
CapsuleStructure on page 353
Public Attributes
Ports : PortCollection on page 353
Public Operations
AddCapsuleRole (capsuleName : String) : CapsuleRole on page 353
AddPort (name : String, protocolName : String) : Port on page 354

CopyToCollaboration (toContext : ModelElement, fromContext : ModelElement) :
Collaboration on page 354

DeleteCapsuleRole (role : CapsuleRole) : Boolean on page 355

Collaboration Classes 347

DeletePort (port : Port) : Boolean on page 356

ClassifierRole on page 356
Public Attributes
Classifier : Classifier on page 356
ClassifierName : String on page 357
Multiplicity : String on page 357
ParentCollaboration : Collaboration on page 357
Public Operations
ClassifierRole () : ClassifierRole on page 357

Collaboration on page 358
Public Attributes
AssociationRoles : AssociationRoleCollection on page 358
ClassifierRoles : ClassifierRoleCollection on page 358
Connectors : ConnectorCollection on page 358
Diagram : CollaborationDiagram on page 358
Interactions : InteractionCollection on page 358
ParentClassifier : Classifier on page 359
ParentLogicalPackage : LogicalPackage on page 359
Public Operations
AddAssociationRole () : AssociationRole on page 359
AddCapsuleRole (capsuleName : String) : CapsuleRole on page 353
AddClassifierRole () : ClassifierRole on page 360
AddConnector () : Connector on page 360
AddInteraction (name : String) : Interaction on page 361
DeleteAssociationRole (role : AssociationRole) : Boolean on page 361
DeleteCapsuleRole (role : CapsuleRole) : Boolean on page 355
DeleteClassifierRole (role : ClassifierRole) : Boolean on page 362

DeleteConnector (connector : Connector) : Boolean on page 363

348 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Deletelnteraction (interaction : Interaction) : Boolean on page 363

GetLocallnteractions (classifierContext : Classifier) : InteractionCollection on
page 364

Connector on page 364
Public Attributes
Cardinality : String on page 364
Delay : String on page 365
Port1 : Port on page 365
Port2 : Port on page 365
PortRolel : PortRole on page 365
PortRole2 : PortRole on page 365
Public Attributes
SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean on page 365

SetEndsByNames (End1Name : String, End2Name : String) : Boolean on
page 366

Genericity on page 367

Port on page 367
Public Attributes
Cardinality : String on page 367
Conjugated : Boolean on page 367
Notification : Boolean on page 368
Protocol : Protocol on page 368
Published : Boolean on page 368
RegistrationMode : RegistrationMode
RegistrationString : String on page 368
Relay : Boolean on page 369
Visibility : PortVisibilityKind on page 369
Wired : Boolean on page 369

PortRole on page 369

Collaboration Classes 349

Public Attributes
ParentCapsuleRole : CapsuleRole on page 369
Port : Port on page 369
PortVisibilityKind on page 370
Public Attributes
rsFixed : Integer = 1 on page 370
rsOptional : Integer = 2 on page 371
rsPlugln : Integer = 3 on page 371
RegistrationMode on page 370
RsGenericity on page 370
Public Attributes
rsFixed : Integer = 1 on page 370
rsOptional : Integer = 2 on page 371
rsPlugln : Integer = 3 on page 371
RsRegistrationMode on page 371
Public Attributes
rsApplication : Integer = 2 on page 371
rsAutomatic : Integer = 1 on page 371
rsNoMode : Integer = 0 on page 372

AssociationEndRole

Description

An association-end role specifies an endpoint of an association as used in a
collaboration.

350 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from AssociationEnd

Public Attributes
AssociationRole : AssociationRole

Description

AssociationRole the AssociationEndRole is an endpoint of.
Base : AssociationEnd

Description

AssociationEnd the AssociationEndRole is a projection of.

AssociationRole

Description

An association role is a specific usage of an association needed in a collaboration.

Derived from Association

Public Attributes
Base : Association

Description

Association the AssociationRole is a projection of.
BaseName : String

Description

Name of the Association the AssociationRole is a projection of.
Multiplicity : String

Description

The number of Association playing this role in a Collaboration.

AssociationRole 351

ParentCollaboration : Collaboration

Description

Collaboration that owns the AssociationRole.

CapsuleRole

Description

Represent a specification of the type of capsules that can occupy a particular position
in a capsule's collaboration, or structure.

Derived from ClassifierRole

Public Attributes
Capsule : Capsule

Description

Capsule the CapsuleRole is a projection of.
Cardinality : String

Description

The number of Capsule playing this role in a Collaboration.
Genericity : Genericity

Description

Determines the Genericity of the CapsuleRole.
PortRoles : PortRoleCollection

Description

Port Roles of the Capsule role.

352 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Substitutable : Boolean

Description

Determines whether subclasses of the specified capsule role's class can be instantiated
into this role.

CapsuleStructure

Description

Specialization of a Collaboration whose communication pattern is owned by a
particular capsule and represents the composite structure of it's capsule roles, ports,
and connectors.

Derived from Collaboration
Public Attributes

Ports : PortCollection

Description

Ports involved in the communication pattern described by the CapsuleStructure.
Public Operations
AddCapsuleRole (capsuleName : String) : CapsuleRole

Description

Adds a new CapsuleRole into the CapsuleStructure and returns it.

Syntax
Set theCapsul eRol e = theCapsul eStructure. AddCapsul eRol e(capsul eNane)

t heCapsul eRol e As RoseRT. Capsul eRol e
Returns the new CapsuleRole added to the CapsuleStructure.

t heCapsul eStructure As RoseRT. d assifier

CapsuleStructure 353

CapsuleStructure to which the CapsuleRole is being added.

capsul eName As String

Name of a Capsule the CapsuleRole is a projection of.

AddPort (name : String, protocolName : String) : Port

Description

Adds a new Port into the CapsuleStructure and returns it.

Syntax

Set thePort = theCapsul eStructure. AddPort(nanme , protocol Nane)

thePort As RoseRT. Capsul eRol e
Returns the new Port added to the CapsuleStructure.

t heCapsul eStructure As RoseRT. d assifier
CapsuleStructure to which the Port is being added.

name As String
Name of the port added to the CapsuleStructure.

prot ocol Name As String

Protocol class name for the Port.

CopyToCollaboration (toContext : ModelElement, fromContext :
ModelElement) : Collaboration

Description:

Copies the CapsuleStructure into a generic Collaboration. Items specific to
CapsuleStructure won't be copied over, i.e. Ports.

354 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax:

t heCol | aboration = theCapsul eStructure. CopyToCol | abor ati on(
t heToCont ext, theFronContext)

t heCol | aborati on As RoseRT. Col | aborati on

Returns the converted collaboration.

t heCapsul eStructure As RoseRT. d assifier

CapsuleStructure that is to be copied and converted to a generic Collaboration.

t heToCont ext As RoseRT. Model El enent

Owning item of the new converted Collaboration.

t heFr onCont ext As RoseRT. Model El enent

Owning item of the original CapsuleStructure.
DeleteCapsuleRole (role : CapsuleRole) : Boolean

Description

Deletes a CapsuleRole from the CapsuleStructure.

Syntax
Del eted = t heCapsul eStructure. Del eteCapsul eRol e(role)

Del eted As Bool ean

Returns a value of True when the CapsuleRole is deleted successfully from the
CapsuleStructure.

t heCapsul eStructure As RoseRT. d assifier
CapsuleStructure from which the CapsuleRole is being deleted.

role As RoseRT. Capsul eRol e

CapsuleRole to delete from the CapsuleStructure.

CapsuleStructure 355

DeletePort (port : Port) : Boolean

Description

Deletes a Port from the CapsuleStructure.
Syntax

Del eted = theCapsul eStructure. Del etePort(port)

Del eted As Bool ean

Returns a value of True when the Port is deleted successfully from the
CapsuleStructure.

t heCapsul eStructure As RoseRT. d assifier
CapsuleStructure from which the Port is being deleted.

port As RoseRT. Capsul eRol e

Port to delete from the CapsuleStructure.

ClassifierRole

Description

A classifier role is a specific role played by a participant in a collaboration. It specifies
a restricted view of a classifier, defined by what is required in the collaboration.

Derived from ModelElement
Public Attributes
Classifier : Classifier

Description

Classifier the ClassifierRole is a projection of.

356 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ClassifierName : String

Description

Name of the Classifier the ClassifierRole is a projection of.
Multiplicity : String

Description

The number of Classifier playing this role in a Collaboration.
ParentCollaboration : Collaboration

Description

Collaboration that owns the ClassifierRole.

Public Operations
ClassifierRole () : ClassifierRole

Description

Returns the ClassifierRole as a ClassifierRole. This is useful for derived classes'
instances type casting.

Syntax

Set theCl assifierRoleRet = theC assifierRole.C assifierRole()
theCl assifi erRol eRet As RoseRT.Cl assifierRole

Returns the ClassifierRole derived class's instance as a ClassifierRole.
theCl assifierRole As RoseRT. d assifierRole

ClassifierRole to return as a ClassifierRole.

ClassifierRole 357

Collaboration

Description

A Collaboration is a Model Element associated with a Collaboration Diagram. It
contains the various Model Elements involved in the communication patterns
described in the Collaboration Diagram.

Derived from ModelElement

Public Attributes
AssociationRoles : AssociationRoleCollection

Description

AssociationRoles involved in the communication pattern described by the
Collaboration.

ClassifierRoles : ClassifierRoleCollection

Description

ClassifierRoles involved in the communication pattern described by the
Collaboration.

Connectors : ConnectorCollection

Description

Connectors involved in the communication pattern described by the Collaboration.
Diagram : CollaborationDiagram

Description

Diagram showing the communication patterns described by the Collaboration.
Interactions : InteractionCollection

Description

Interactions involved in the communication pattern described by the Collaboration.

358 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentClassifier : Classifier

Description

Classifier owning the Collaboration. Maybe nothing if owned by a Logical Package.
ParentLogicalPackage : LogicalPackage

Description

Logical Package owning the Collaboration. Maybe nothing if owned by a Classifier.

Public Operations
AddAssociationRole () : AssociationRole

Description

Adds a new AssociationRole into the Collaboration and returns it.
Syntax

Set theAssoci ati onRol e = theCol | aborati on. AddAssoci ati onRol e()

t heAssoci ati onRol e As RoseRT. Associ ati onRol e

Returns the new AssociationRole added to the Collaboration.

theCol | aboration As RoseRT. Col | aborati on
Collaboration to which the AssociationRole is being added.

AddCapsuleRole (capsuleName : String) : CapsuleRole (New 09Jun00)

Description:

Adds a new CapsuleRole into the Collaboration and returns it.

Syntax:
Set theCapsul eRol e = theCol | abor ati on. AddCapsul eRol e(capsul eName)

t heCapsul eRol e As RoseRT. Capsul eRol e

Collaboration 359

Returns the new CapsuleRole added to the CapsuleStructure.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration to which the CapsuleRole is being added.

capsul eName As String

Name of a Capsule the CapsuleRole is a projection of.
AddClassifierRole () : ClassifierRole

Description

Adds a new ClassifierRole into the Collaboration and returns it.

Syntax
Set theCl assifierRole = theCol |l aborati on. AddCl assifierRol e()

theCl assifierRole As RoseRT. d assifierRole

Returns the new ClassifierRole added to the Collaboration.

t heCol | abor ati on As RoseRT. Col | aborati on
Collaboration to which the ClassifierRole is being added.

AddConnector () : Connector

Description

Adds a new Connector into the Collaboration and returns it.

Syntax
Set theConnector = theCol | aboration. AddConnect or ()

t heConnect or As RoseRT. Connect or

Returns the new Connector added to the Collaboration.

t heCol | aborati on As RoseRT. Col | aborati on

360 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Collaboration to which the Connector is being added.
AddInteraction (name : String) : Interaction

Description

Adds a new Interaction into the Collaboration and returns it.

Syntax

Set thelnteraction = theColl aboration. Addl nteracti on(nane)

thel nteraction As RoseRT.Interaction

Returns the new Interaction added to the Collaboration.
t heCol | aboration As RoseRT. Col | aborati on
Collaboration to which the Connector is being added.

name As String

Name of the Interaction to add to the Collaboration.
DeleteAssociationRole (role : AssociationRole) : Boolean

Description

Deletes an AssociationRole from the Collaboration.
Syntax

Del eted = theCol | aboration. Del et eAssoci ati onRole(role)

Del eted As Bool ean

Returns a value of True when the AssociationRole is deleted successfully from the
Collaboration.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration from which the AssociationRole is being deleted.

role As RoseRT. Associ ati onRol e

The AssociationRole to delete from the Collaboration.

Collaboration 361

DeleteCapsuleRole (role : CapsuleRole) : Boolean (New 09Jun00)

Description:

Deletes a CapsuleRole from the CapsuleStructure.

Syntax:
Del eted = t heCapsul eStructure. Del eteCapsul eRol e(role)

Del eted As Bool ean

Returns a value of True when the CapsuleRole is deleted successfully from the
CapsuleStructure.

t heCapsul eStructure As RoseRT. d assifier
CapsuleStructure from which the CapsuleRole is being deleted.

role As RoseRT. Capsul eRol e

CapsuleRole to delete from the CapsuleStructure.
DeleteClassifierRole (role : ClassifierRole) : Boolean

Description

Deletes an ClassifierRole from the Collaboration.

Syntax
Del eted = theCol | aboration.Del eteClassifierRole(role)

Del eted As Bool ean

Returns a value of True when the ClassifierRole is deleted successfully from the
Collaboration.

t heCol | aboration As RoseRT. Col | aborati on
Collaboration from which the ClassifierRole is being deleted.
role As RoseRT. d assifierRol e

The ClassifierRole to delete from the Collaboration.

362 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteConnector (connector : Connector) : Boolean

Description

Deletes an Connector from the Collaboration.

Syntax

Del eted = theCol | abor ati on. Del et eConnect or (connector)

Del eted As Bool ean

Returns a value of True when the Connector is deleted successfully from the
Collaboration.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration from which the Connector is being deleted.

connect or As RoseRT. Connect or

The Connector to delete from the Collaboration.
Deletelnteraction (interaction : Interaction) : Boolean

Description

Deletes an Interaction from the Collaboration.

Syntax

Del eted = theCol | aboration. Del etelnteraction(interaction)

Del eted As Bool ean

Returns a value of True when the Interaction is deleted successfully from the
Collaboration.

t heCol | aborati on As RoseRT. Col | aborati on

Collaboration from which the Interaction is being deleted.

interaction As RoseRT.Interaction

Collaboration 363

The Interaction to delete from the Collaboration.

GetLocallnteractions (classifierContext : Classifier) :
InteractionCollection

Description:

Retrieves the interactions local to a specific classifier context.

Syntax:

Set thelLocal I nteractions = theColl aboration. GetLocal I nteractions(
classifier)

theLocal I nteracti ons As RoseRT. | nteractionCollection

Returns the collection of local interactions in the given classifier context.

t heCol | abor ati onAs RoseRT. Col | abor ati on

Collaboration from which the collection is being retrieved.

classifier As RoseRT.d assifier

Classifier context which the interaction is local to.

Connector

Description

Connectors capture the key communication relationships between capsule roles.
Derived from ModelElement
Public Attributes

Cardinality : String

Description

Specifies the number of connectors indicated by a connector line.

364 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Delay : String
Description
Specifies a communication delay across a connector.

Portl : Port

Description

Port at first end of the Connector. Set when the connector is within a
CapsuleStructure. Nothing when the connector is within a Collaboration.

Port2 : Port

Description

Port at second end of the Connector. Set when the connector is within a
CapsuleStructure. Nothing when the connector is within a Collaboration.

PortRolel : PortRole

Description

PortRole at first end of the Connector. Set when the connector is within a
Collaboration. Nothing when the connector is within a CapsuleStructure.

PortRole2 : PortRole

Description

PortRole at second end of the Connector. Set when the connector is within a
Collaboration. Nothing when the connector is within a CapsuleStructure.

Public Operations

SetEnds (Endl : ModelElement, End2 : ModelElement) : Boolean

Description

Sets the ends of a Connector. Ends can be Port in the context of a CapsuleStructure or
PortRole in the context of a Collaboration.

Connector 365

Syntax
EndSets = t heConnector. Set Ends(Endl, End2)

EndSet s As Bool ean

Returns a value of True when ends are set successfully.

t heConnect or As RoseRT. Connect or

Connector to which the Ends are being set.

Endl As RoseRT. Mbdel El enent

Model Element at first end of the Connector.

End2 As RoseRT. Mbdel El enent

Model Element at second end of the Connector.
SetEndsByNames (End1Name : String, End2Name : String) : Boolean

Description

Sets the ends of a Connector. Ends can be Port in the context of a CapsuleStructure or
PortRole in the context of a Collaboration.

Syntax
EndSets = t heConnector. Set EndsByNanes(EndlNane, End2Nane)

EndSet s As Bool ean

Returns a value of True when ends are set successfully.

t heConnect or As RoseRT. Connect or

Connector to which the Ends are being set.

EndlName As String

Fully qualified name of Model Element at first end of the Connector.

366 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

End2Name As String

Fully qualified name of Model Element at second end of the Connector.

Genericity

Description

Rich type used to determine the Genericity of an attribute within a CapsuleRole. Valid
values are defined in RsGenericity enumeration.

Derived from RichType

Port

Description

Ports are objects whose purpose is to send and receive messages to and from capsules
instances.

Derived from ClassifierRole

Public Attributes
Cardinality : String
Description
Specifies the number of instances of the port that will appear at run-time.

Conjugated : Boolean

Description

A conjugated port is one in which the standard protocol class definition of in and out
signals is reversed.

Genericity 367

Notification : Boolean

Description

Determines whether the port will receive rtBound and rtUnbound messages from the
services library when ports get connected and unconnected.

Note: rtBound is sent at system priority and rtUnbound is sent at background
priority.
Protocol : Protocol

Description

Specifies the protocol class to be used for the port.
Published : Boolean

Description

Determines whether the port is published.
RegistrationMode : RegistrationMode

Description

Only used for non-wired ports. Non-wired ports are registered by name with a name
service that performs the connection. Connections are made between protected
non-wired ports (service clients) and a single public non-wired port (the service
provider). If automatic registration is used, the registration name must be supplied in
the RegistrationString attribute and the Services Library will register the name at
startup. In the case of application registration, the SAP or SPP is registered at run-time
by calling a communication service operation, such as RTEndPortRef::registerSAP()
and RTEndPortRef::deregisterSAP(), in the detail level code of a capsule.

RegistrationString : String

Description

Name of service that performs the connection. See RegistrationMode attribute.

368 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Relay : Boolean

Description

Determines whether the port is a Relay port. Relay ports cannot be protected, they
must be public. If set to False, then the Port is an End port.

Visibility : PortVisibilityKind

Description

The Visibility property is a RichType that determines whether the port is visible
outside of the capsule boundary or not.

Wired : Boolean

Description

Determines whether the port is Wired. Wired ports are connected to other wired ports
using connectors. Non-wired ports are connected to other non-wired ports by name.

PortRole

Description

A Port role is a specific usage of an port needed in a collaboration.

Derived from ModelElement

Public Attributes
ParentCapsuleRole : CapsuleRole

Description

Capsule role that owns the port role.
Port : Port

Description

Port the PortRole is a projection of.

PortRole 369

PortVisibilityKind

Description

Rich type used to determines whether the port is visible outside of the capsule
boundary. Valid values are defined in RsVisibilityKind enumeration.

Derived from RichType

RegistrationMode

Description
Rich type used to determine the RegistrationMode of a Port.

Valid values are defined in RsRegistrationMode enumeration.

Derived from RichType

RsGenericity

Description
Enumeration used to set the Value property of the Genericity Rich Type.

Public Attributes
rsFixed : Integer =1

Description

A capsule of the specified class is automatically instantiated into the role in every
instance of the container capsule at run-time. A number of instances equal to the
specified cardinality will be created at initialization time.

370 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsOptional : Integer = 2

Description

The capsule role is instantiated under the program control of the container class. The
container class must explicitly instantiate the capsule role within the detailed code of

the container capsule state machine.
rsPlugin : Integer =3

Description

The capsule role is never directly instantiated, but rather an already existing
instantiation from another capsule decomposition is imported into the role. That is, an
existing capsule is dynamically “plugged in” to the specified role under the program
control of the container class. The container class state machine must explicitly
request the plug-in of a capsule at run-time within the detailed code.

RsRegistrationMode

Description
Enumeration used to set the Value property of the Registration Rich Type.

Public Attributes
rsApplication : Integer = 2

Description

The connection of non-wired ports is not connected at initialization time, it is
connected when the capsule's behavior invokes a service function to register the port
by a specified name. The same port may in fact be registered under different names at
different points in the model execution.

rsAutomatic : Integer =1

Description

The connection of non-wired ports is done automatically by name at the time the
capsule is initialized.

RsRegistrationMode 371

rsNoMode : Integer =0

Description

No registration mode specified.

Common Logical View Enumerations

Common Logical View Enumerations include
RsContainment on page 372
Public Attributes
rsByVal : Integer = 1 on page 372
rsRef : Integer = 2 on page 373
rsUnspecified : Integer = 0 on page 373
RsVisibilityKind on page 373
Public Attributes
rsImplementation : Integer = 3 on page 373
rsPrivate : Integer = 2 on page 373
rsProtected : Integer = 1 on page 374
rsPublic : Integer = 0 on page 374

RsContainment

Description

Enumeration used to set the Value property of the AttributeContainment and the
AssociationEndContainment Rich Types.

Public Attributes
rsByVal : Integer =1

Description

Containment by value.

372 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsRef : Integer =2

Description

Containment by reference.
rsUnspecified : Integer =0

Description

Containment undefined.

RsVisibilityKind

Description
Enumeration used to set the Value property of the following Rich Types:
ClassifierVisibilityKind on page 327
AttributeVisibilityKind on page 340
OperationVisibilityKind on page 345
AssociationEndVisibilityKind on page 299
PortVisibilityKind on page 370
GeneralizationVisibilityKind on page 438
UsesRelationVisibilityKind on page 444

Public Attributes
rsimplementation : Integer =3

Description

Accessible only to the classifier itself.
rsPrivate : Integer = 2

Description

Accessible only to the classifier itself or to its friends.

RsVisibilityKind

373

rsProtected : Integer =1

Description

Accessible only to subclasses, friends, or to the classifier itself.
rsPublic : Integer =0

Description

Accessible to all clients.

Interaction Classes

Interaction classes include

Environment on page 376

Interaction on page 376
Public Attributes
Instances : InteractionlnstanceCollection on page 377
Messages : MessageCollection on page 377
ParentCollaboration : Collaboration on page 377
ParentProtocol : Protocol on page 377
SequenceDiagram : SequenceDiagram on page 377
Public Operations
AddInteractionInstance (name : String) : InteractionInstance on page 377

AddMessage (name : String, sender : Interactionlnstance, receiver :
Interactionlnstance) : Message on page 378

AddMessageWithAction (name : String, sender : InteractionInstance, receiver :
InteractionInstance, ActionKind : RsActionKind) : Message on page 379

Deletelnteractionlnstance (thelnstance : Interactionlnstance) : Boolean on
page 380

DeleteMessage (theMessage : Message) : Boolean on page 380
GetOwnerClassifierContext () : Classifier on page 381

374 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ReorderInteractionlnstance (thelnstance : InteractionInstance, pBefore :
Interactionlnstance) : Boolean on page 381

ReorderMessage (theMessage : Message, pInsertBefore : Message) : Boolean on
page 382

Interactionlnstance on page 382
Public Attributes
ClassifierRoles : ClassifierRoleCollection on page 383
Events : MessageEndCollection on page 383
ParentInteraction : Interaction on page 383
RootClassifier : Classifier on page 383
Public Attributes
AddClassifierRole (theRole : ClassifierRole) : Boolean on page 383
RemoveClassifierRole (theRole : ClassifierRole) : Boolean on page 384

ReorderMessageEnd (theEnd : MessageEnd, pBefore : MessageEnd) : Boolean on
page 385

Message on page 385
Public Attributes
Action : Action on page 386
Activator : Message on page 386
ParentInteraction : Interaction on page 386
ReceiverEnd : MessageEnd on page 386
SenderEnd : MessageEnd on page 386
MessageEnd on page 386
Public Attributes
Instance : InteractionInstance on page 387
ParentMessage : Message on page 387
RsActionKind on page 387
Public Attributes

rsCallAction : Integer = 1 on page 387

Interaction Classes 375

rsCoregion : Integer = 5 on page 387
rsCreateAction : Integer = 4 on page 387
rsDestroyAction : Integer = 3 on page 387
rsLocalState : Integer = 2 on page 387
rsSendAction : Integer = 8 on page 387
rslerminateAction : Integer = 7 on page 387

rsUninterpreted Action : Integer = 6 on page 387

Environment

Description

An Environment is an Interaction Instance associated with a Sequence Diagram's
Environment View. This latter consists of the rectangular perimeter around the
Sequence Diagram. It represents the external environment (hardware timers,
SAPs/SPPs...) which can be communicated with but are not contained in the Capsule
hierarchy. While it is possible to Send or Receive Call or Send messages it cannot be
used as the Receiver of a “Destroy” message or as the location for Local States or
Actions.

Derived from Interactioninstance

Interaction

Description

An Interaction is a Model Element associated with a Sequence Diagram. It contains
the various Model Elements involved in the communication patterns described in the
Sequence Diagram.

376 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes
Instances : InteractioninstanceCollection

Description

Interaction instances involved into the communication pattern expressed by the
Interaction.

Messages : MessageCollection

Description

Messages involved into the communication pattern expressed by the Interaction.
ParentCollaboration : Collaboration

Description

Collaboration owning the Interaction. May be nothing if the Interaction is owned by a
Protocol.

ParentProtocol : Protocol

Description

Protocol owning the Interaction. May be nothing if the Interaction is owned by a
Collaboration.

SequenceDiagram : SequenceDiagram

Description

Diagram showing the communication patterns described by the Interaction.

Public Operations
AddInteractioninstance (name : String) : Interactioninstance

Description

Adds a new InteractionInstance into the Interaction and returns it.

Interaction 377

Syntax

Set thelnteractionlnstance = thelnteraction. Addlnteractionlnstance(
nane)

thel nteractionl nstance As RoseRT. | nteractionlnstance

Returns the new InteractionInstance added to the Interaction.

thel nteraction As RoseRT.Interaction

Interaction to which the InteractionInstance is being added.

name As String

Name of the new Interaction Instance added to the Interaction.

AddMessage (name : String, sender : Interactioninstance, receiver :
Interactioninstance) : Message

Description

Adds a new Message into the Interaction and returns it. The action of the message is a
Send Action.

Syntax

Set theMessage = thelnteraction. AddMessage(nanme, sender, receiver)

theMessage As RoseRT. Message

Returns the new Message added to the Interaction.

thel nteraction As RoseRT.Interaction

Interaction to which the message is being added.

name As String

Name of the new message added to the Interaction.

sender As RoseRT. | nteractionlnstance

378 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Interaction Instance that sends the newly created message.

recei ver As RoseRT.|nteractionlnstance

Interaction Instance that received the newly created message.

AddMessageWithAction (name : String, sender : Interactioninstance,
receiver : Interactioninstance, ActionKind : RsActionKind) : Message
Description
Creates a new Message with an action of type specified and adds it into the

Interaction and returns it.

Syntax

Set theMessage = thelnteraction. AddMessage(nane, sender, receiver,
ActionKi nd)

theMessage As RoseRT. Message

Returns the new Message added to the Interaction.

thel nteraction As RoseRT.Interaction

Interaction to which the message is being added.

name As String

Name of the new message added to the Interaction.

sender As RoseRT. |nteractionlnstance

Interaction Instance that sends the newly created message.

recei ver As RoseRT.|nteractionlnstance

Interaction Instance that received the newly created message.

ActionKind As RoseRT.RsActi onKi nd

Kind of action to add to message.

Interaction 379

Note: sender and receiver should be the same interaction instances when ActionKind
is one of rsLocalState, rsCoregion or rsUninterpreted Action.

Deletelnteractioninstance (thelnstance : Interactioninstance) : Boolean

Description

Deleted an InteractionInstance from the Interaction.

Syntax

Del eted = thelnteraction. Del etel nteractionlnstance(thelnstance)

Del eted As Bool ean

Returns a value of True when the InteractionInstance is being deleted successfully
from the Interaction.

thel nteraction As RoseRT.Interaction

Interaction from which the InteractionInstance is being deleted.

t hel nstance As RoseRT. | nterationlnstance

Interaction Instance to delete from the Interaction.
DeleteMessage (theMessage : Message) : Boolean

Description

Deleted a Message from the Interaction.

Syntax

Del eted = thelnteraction. Del et eMessage(theMessage)

Del eted As Bool ean

Returns a value of True when the message is being deleted successfully from the
Interaction.

thel nteraction As RoseRT.Interaction

380 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Interaction from which the Message is being deleted.

theMessage As RoseRT. Message

Message to delete from the Interaction.
GetOwnerClassifierContext () : Classifier

Description:

Gets the owner context of the particular interaction. This is useful for interactions that
are owned by the structure of derived capsules. There is no path to the derived
capsule except through this APL

Syntax:

Set theClassifier = thelnteraction. Get Owmerd assifierContext ()

theCl assifier As RoseRT.Cl assifier

Returns the classifier that owns the collaboration that owns the interaction

Reorderinteractioninstance (thelnstance : Interactioninstance, pBefore:
Interactioninstance) : Boolean

Description

Reorders an InteractionInstance within the Interaction.

Syntax

Reordered = thelnteraction. Reorderlnteractionlnstance(thelnstance,
pBefore)

Reor dered As Bool ean

Returns a value of True when the reordering gets executed successfully.

thel nteraction As RoseRT.Interaction

Interaction whose InteractionInstance is being reordered.

t hel nstance As RoseRT. | nterationlnstance

Interaction 381

The Interaction Instance to be reordered.

pBef ore As RoseRT.Interationlnstance

The Interaction Instance to precede thelnstance.

ReorderMessage (theMessage : Message, pIinsertBefore : Message) :
Boolean

Description

Reorders a Message within the Interaction.

Syntax

Reordered = thelnteraction. Reorder Message(theMessage, plnsertBefore)

Reor dered As Bool ean

Returns a value of True when the reordering gets executed successfully.

thel nteraction As RoseRT.Interaction

Interaction whose message is being reordered.

theMessage As RoseRT. Message

The Message Instance to be reordered.

pl nsert Before As RoseRT. Message

The Message to precede thelnstance.

Interactioninstance

Description

Model Element that maps to the Interaction Instance View of a Sequence Diagram.

382 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes
ClassifierRoles : ClassifierRoleCollection

Description

Identifies an object role in a collaboration to which the interaction instance is mapped.
This property's type is a Collection representing a path to the mapped Classifier Role.
Each element in the Collection corresponds to an element of the path. The last element
is the actual Classifier Role the Interaction Instance maps to. Use with extreme care.

Events : MessageEndCollection

Description

Message Ends involved in the communication pattern described by the Interaction.
Parentinteraction : Interaction

Description

Interaction owning the Interaction Instance.
RootClassifier : Classifier

Description

Classifier whose projection is the ClassifierRole this InteractionInstance represents.

Public Operations
AddClassifierRole (theRole : ClassifierRole) : Boolean

Description

Adds a Classifier Role at the end of the path leading to the Classifier Role mapped by
the Interaction Instance.

Syntax
Added = thelnteractionlnstance. Addd assifierRol e(theRole)

Added As Bool ean

Interactioninstance 383

Returns a value of True if the Classifier Role is added successfully at the end of the
path.

thel nteractionl nstance As RoseRT. | nteractionlnstance

Interaction Instance whose mapped Classifier Role path gets added a Classifier Role.

theRol e As RoseRT. Cl assifierRole

Classifier Role that gets added at the end of the path leading to the Classifier Role
mapped by the Interaction Instance.

RemoveClassifierRole (theRole : ClassifierRole) : Boolean

Description

Removes a Classifier Role from the path leading to the Classifier Role mapped by the
Interaction Instance.

Syntax

Del eted = thelnteractionl nstance. RenoveCl assifi erRol e(theRole)

Del eted As Bool ean

Returns a value of True if the Classifier Role is removed successfully from the path.

thel nteractionl nstance As RoseRT. | nteractionlnstance

Interaction Instance whose mapped Classifier Role path gets removed a Classifier
Role.

theRol e As RoseRT.Cl assifierRole

Classifier Role that gets removed from the path leading to the Classifier Role mapped
by the Interaction Instance.

384 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ReorderMessageEnd (theEnd : MessageEnd, pBefore : MessageEnd) :
Boolean

Description

Reorders a Message End within the Interaction Instance.

Syntax

Reordered = thelnteractionlnstance. Reorder MessageEnd(theEnd, pBefore

)

Reor dered As Bool ean

Returns a value of True when the reordering gets executed successfully.

thel nteractionl nstance As RoseRT. | nteractionlnstance

Interaction Instance whose message end is being reordered.

theEnd As RoseRT. MessageEnd
The Message End to be reordered.

pBef ore As RoseRT. MessageEnd
The Message End to precede theEnd.

Message

Description

A message defines how a particular request is used in an Interaction.

Message 385

Derived from ModelElement

Public Attributes
Action : Action

Description

Action executed upon message activation.
Activator : Message

Description

Message activating the message.
Parentinteraction : Interaction

Description

Interaction owning the message.
ReceiverEnd : MessageEnd

Description

Message End connecting to the Interaction Instance receiving the message.
SenderEnd : MessageEnd

Description

Message End connecting to the Interaction Instance sending the message.

MessageEnd

Description

Links a Message to an Interaction Instance.

386 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes
Instance : Interactionlnstance

Description

Interaction Instance linked by the Message End.

ParentMessage : Message

Description

Message linked by the Message End.

RsActionKind

Public Attributes
rsCallAction : Integer =1
rsCoregion : Integer =5
rsCreateAction : Integer = 4
rsDestroyAction : Integer = 3
rsLocalState : Integer = 2
rsSendAction : Integer =8
rsTerminateAction : Integer =7

rsUninterpretedAction : Integer = 6

State Machine Classes

State Machine classes include
RsSourceRegionType on page 388

Public Attributes

RsActionKind 387

rsFalseSourceRegion : Integer = 0 on page 389
rsTrueSourceRegion : Integer = 1 on page 389
SourceRegionType on page 389
StateMachine on page 389
Public Attributes
Diagram : StateDiagram on page 389
ParentClassifier : Classifier on page 390
Top : CompositeState on page 390
GetAllStates () : StateVertexCollection on page 390
Transition
Public Attributes
Action : Action on page 391
EventGuards : EventGuardCollection on page 391
Internal : Boolean on page 391
ParentState : CompositeState on page 391
ParentStateMachine : StateMachine on page 391
Source : StateVertex on page 391
SourceRegion : SourceRegionType on page 392
Target : StateVertex on page 392
Public Operations
AddEventGuard () : EventGuard on page 392
DeleteEventGuard (theEventGuard : EventGuard) : Boolean on page 392
SetUninterpreted Action (action : String) : Uninterpreted Action on page 393

RsSourceRegionType

Description

Enumeration used to set the Value property of the SourceRegionType Rich Type.

388 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Attributes
rsFalseSourceRegion : Integer =0

Description

Source region associated to a FALSE transition.
rsTrueSourceRegion : Integer =1

Description

Source region associated to a TRUE transition.

SourceRegionType

Description

Rich type used to determine SourceRegion property of a Transition. Also used when
adding a transition to a Choice Point.

Valid values are defined in RsSourceRegionType enumeration.

Derived from RichType

StateMachine

Description

Class responsible for specifying the behavior on a Classifier.
Derived from Element
Public Attributes

Diagram : StateDiagram

Description

State Diagram projection of the State Machine.

SourceRegionType 389

ParentClassifier : Classifier

Description

Classifier owning the State Machine.
Top : CompositeState

Description

Composite State at the top of the State Machine.

Public Operations

GetAllStates () : StateVertexCollection

Description

Returns all states owned by the State Machine.

Syntax
Set theStateVertexCollection = theStateMachine. Get All St at es()

t heSt at eVert exCol | ecti on As RoseRT. StateVertexCol | ection

Returns the collection of all states owned by the State Machine.

t heSt at eMachi ne As RoseRT. St at eMachi ne

The State Machine to retrieve owned states from.

Transition

Description

A transition is a relationship between two states, a source state and a destination state.
It specifies that when an object in the source state receives a specified event and
certain conditions are meet, the behavior will move from the source state to the
destination state.

390 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes
Action : Action

Description

Action executed when a transition is triggered. For capsules, the transition action code
will be output as part of the generated code, and the code will be executed when the
transition is triggered at run-time. Transition actions defined in state diagrams for
protocols or regular (non-capsule) classes is not generated or executed, it is for
information purposes only.

EventGuards : EventGuardCollection

Description

Collection of Event Guards used to determine whether the transition should be
triggered.

Internal : Boolean

Description

Indicates that a self-transition should not cause an exit from the state when triggered.
The result is that when an internal transition is triggered, no exit or entry code is run.

ParentState : CompositeState

Description

Composite State owning the transition.
ParentStateMachine : StateMachine

Description

State Machine owning the parent state.
Source : StateVertex

Description

State at source end of the transition.

Transition 391

SourceRegion : SourceRegionType

Description

When the source of the transition is a Choice Point, determines whether the transition
occurs on a TRUE or FALSE evaluation of the Choice Point condition. Irrelevant for
other type of source state.

Target : StateVertex

Description

State at target end of the transition.

Public Operations

AddEventGuard () : EventGuard

Description

Adds a new event guard to the Transition.
Syntax

Set theEventGuard = theTransition. AddEvent Guard()

t heEvent Guard As RoseRT. Event Guard
Returns the Event Guard added to the Transition.

theTransition As RoseRT. Transition

Transition to which a new event guard is being added.
DeleteEventGuard (theEventGuard : EventGuard) : Boolean

Description

Deletes an event guard from the Transition.

Syntax
Del eted = theTransition. Del et eEvent Guard(theEvent Guard)

Del eted As Bool ean

392 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True when the Event Guard is deleted successfully from the
Transition.

theTransition As RoseRT. Transition

Transition from which an event guard is being deleted.

t heEvent Guard As RoseRT. Event Guard
The Event Guard deleted from the Transition.

SetUninterpretedAction (action : String) : UninterpretedAction

Description

Sets the action to execute when the transition is triggered.

Syntax

Set theUninterpretedAction = theTransition. SetUninterpretedAction(
action)

t heUni nt erpretedAction As RoseRT. Uni nt er pretedAction

Returns the new Uninterpreted Action to execute when the transition is triggered.

theTransition As RoseRT. Transition
Transition to which an uninterpreted action is being set.
action As String

The body of the new uninterpreted action.

Action Classes

Action Classes include
Action on page 396
Public Attributes
Arguments : StringCollection on page 396
ParentMessage : Message on page 396

Action Classes 393

ParentState : CompositeState on page 396
ParentTransition : Transition on page 396
Time : String on page 397
Public Operations
Action () : Action on page 397
AddArgument (szArg : String, nPosition : Integer) : Boolean on page 397
DeleteArgqument (nPosition : Integer) : Boolean on page 398
ActionMode on page 398
CallAction on page 399
Public Attributes
Operation : String on page 399
Coregion on page 399
Public Attributes
Events : MessageEndCollection on page 399
Public Operations
AddEvent (event : MessageEnd) : Boolean on page 399
RemoveEvent (event : MessageEnd) : Boolean on page 400
ReorderEvent (event : MessageEnd, pBefore : MessageEnd) : Boolean on page 400
CreateAction on page 401
Public Attributes
Operation : String on page 401
DestroyAction on page 401
LocalState on page 402
ReplyAction on page 402
Public Attributes
Signal : String on page 402
RequestAction on page 402

Public Attributes

394 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Mode : ActionMode on page 403

Return : ResponseAction on page 403

Public Operations

RequestAction () : RequestAction on page 403
ResponseAction on page 403

Public Attributes

Request : RequestAction on page 404
ReturnAction on page 404
RsActionMode on page 404

Public Operations

rsAsynchronousMode : Integer = 1 on page 404

rsSynchronousMode : Integer = 0 on page 404
RsSendActionPriority on page 405

Public Attributes

rsBackground : Integer = 5 on page 405

rsGeneral : Integer = 3 on page 405

rsHigh : Integer = 2 on page 405

rsLow : Integer = 4 on page 405

rsPanic : Integer = 1 on page 405

rsSystem : Integer = 0 on page 406
SendAction on page 406

Public Attributes

DeliveryTime : String on page 406

Priority : SendActionPriority on page 406

ReceiverPort : String on page 406

SenderPort : String on page 406

Signal : String on page 406
SendActionPriority on page 407

Action Classes 395

TerminateAction on page 407
Uninterpreted Action on page 407
Public Attributes

Body : String on page 407

Action

Description

Actions are the things the behavior does when a transition is taken. They represent
executable atomic computations that are written as statements in a detail-level
programming language and incorporated into a state machine. Actions are atomic, in
the sense that they cannot be interrupted by the arrival of a higher priority event. An
action therefore runs to completion.

Derived from ModelElement

Public Attributes
Arguments : StringCollection

Description

Name of arguments passed to the action.
ParentMessage : Message

Description

Message owning the Action. Nothing if the Action is owned by a State or a Transition.
ParentState : CompositeState

Description

State owning the Action. Nothing if the Action is owned by a Message or a Transition.
ParentTransition : Transition

Description

Transition owning the Action. Nothing if the Action is owned by a Message or a State.

396 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Time : String
Description
Capture the time of the state change.
Public Operations

Action () : Action

Description

Returns an Action derived class as an Action.

Syntax
theCast edActi on = theAction. Acti on()

t heCast edActi on As RoseRT. Acti on

Returns the Action derived class as an Action.

theAction As RoseRT. Action

Action to cast to an Action.
AddArgument (szArg : String, nPosition : Integer) : Boolean

Description

Adds an argument to the argument list of the action.
Syntax

Added = theActi on. AddArgunent (szArg, nPosition)

Added As Bool ean

Returns a value of True when the argument is added successfully to the action's
arguments' list.

theAction As RoseRT. Action

Action to which an argument is being added.

Action 397

szArg As String
Name of the argument added to the action arguments' list.
nPosition As Integer

Position of the new argument in the action argument list.
DeleteArgument (nPosition : Integer) : Boolean

Description

Deletes an argument from the argument list of the action.
Syntax

Del eted = t heActi on. Del et eArgunment (nPosition)

Del eted As Bool ean

Returns a value of True when the argument is deleted successfully from the action's
arguments' list.

theAction As RoseRT. Action

Action to which an argument is being deleted.

nPosition As Integer

Position of the argument to deleted from the action argument list.

ActionMode

Description
Rich type used to determine the Mode of a RequestAction.

Valid values are defined in RsActionMode enumeration.

398 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RichType

CallAction

Description

Action resulting in the synchronous invocation of an operation on an instance.
Derived from RequestAction
Public Attributes

Operation : String

Description

Name of the receiver operation to call upon execution of the action.

Coregion

Description

Identifies a collection of incoming and outgoing messages where the order in which
these messages are received /sent is not important.

Derived from Action
Public Attributes
Events : MessageEndCollection

Description

Message Ends connecting to messages that belong to the coregion.

Public Operations
AddEvent (event : MessageEnd) : Boolean

Description

Adds a Message End within the coregion.

CallAction 399

Syntax
Added = theCoregi on. AddEvent (event)

Added As Bool ean

Returns a value of True when the Message End is added successfully to the coregion.

t heCor egi on As RoseRT. Cor egi on
Coregion to which a Message End is being added.

event As RoseRT. MessageEnd

Message End to add within the coregion.
RemoveEvent (event : MessageEnd) : Boolean

Description

Removes a Message End from within the coregion.

Syntax

Renmoved = t heCoregi on. RenoveEvent (event)

Renoved As Bool ean

Returns a value of True when the Message End is removed successfully from the
coregion.

t heCor egi on As RoseRT. Cor egi on

Coregion to which a Message End is being removed.

event As RoseRT. MessageEnd

Message End to remove from within the coregion.
ReorderEvent (event : MessageEnd, pBefore : MessageEnd) : Boolean

Description

Reorders a Message End within the coregion.

400 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Reor dered = t heCoregi on. Reor der Event (event, pBefore)

Reor dered As Bool ean

Returns a value of True when the reordering gets executed successfully.

t heCor egi on As RoseRT. Cor egi on

Coregion whose message end is being reordered.

event As RoseRT. MessageEnd
The Message End to be reordered.

pBef ore As RoseRT. MessageEnd
The Message End to precede event.

CreateAction

Description

Action resulting in the creation of an instance of some classifier.
Derived from Action
Public Attributes

Operation : String

Description

Name of the receiver operation to call upon creation of the instance.

DestroyAction

Description

Action that results in the destruction of an object specified in the action.

CreateAction 401

Derived from Action

LocalState

Description

Specifies a local state of the instance it is attached to. May correspond to a state within
the state machine of the class of that instance.

Derived from Action

ReplyAction

Description

Response action from a Send Message.

Derived from ResponseAction
Public Attributes
Signal : String

Description

The name of the signal from the ports' protocol.

RequestAction

Description

Action enforcing an answer from the receiving end.

402 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Action

Public Attributes
Mode : ActionMode

Description

The Mode property is a RichType that specifies whether an action is synchronous.
Return : ResponseAction

Description

The Response Action of the Request Action.

Public Operations
RequestAction () : RequestAction

Description

Returns a RequestAction derived class as a RequestAction.

Syntax
t heCast edRequest Action = theRequest Action. Request Acti on()

t heCast edRequest Action As RoseRT. Request Action

Returns the RequestAction derived class as a RequestAction.

t heRequest Acti on As RoseRT. Request Acti on

RequestAction to cast to a RequestAction.

ResponseAction

Description

Action triggered as a response to a Request Action.

ResponseAction 403

Derived from Action
Public Attributes
Request : RequestAction

Description

Request Action that triggers the Response Action.

ReturnAction

Description

Response action from a Call Message.

Derived from ResponseAction

RsActionMode

Description
Enumeration used to set the Value property of the ActionMode Rich Type.

Public Attributes
rsAsynchronousMode : Integer = 1

Description

Asynchronous action.
rsSynchronousMode : Integer =0

Description

Synchronous action.

404 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RsSendActionPriority

Description
Enumeration used to set the Value property of the Send ActionPriority Rich Type.

Public Attributes
rsBackground : Integer =5

Description

Lowest priority used for background-type activities.
rsGeneral : Integer =3

Description

Used for most processing; also the default.
rsHigh : Integer = 2

Description

Used for high-priority processing.
rsLow : Integer = 4

Description

Used for low-priority processing.
rsPanic : Integer =1

Description

RsSendActionPriority 405

rsSystem : Integer =0

Description

SendAction

Description

Action that results in the sending of a Signal, synchronous or asynchronous.

Derived from RequestAction

Public Attributes
DeliveryTime : String

Description

The time the message was delivered.
Priority : SendActionPriority

Description

The priority at which the message is sent.
ReceiverPort : String

Description

The name of the port on the receiver capsule.
SenderPort : String

Description

The name of the port on the sender capsule.
Signal : String

Description

The name of the signal from the ports' protocol.

406 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SendActionPriority

Description
Rich type used to determine the Priority of a SendAction.

Valid values are defined in RsSend ActionPriority enumeration.

Derived from RichType

TerminateAction

Description

Action resulting in the self destruction of an instance.

Derived from Action

UninterpretedAction

Description

Action whose result is not classified.

Derived from Action
Public Attributes
Body : String

Description

Code describing the result of the Uninterpreted Action.

Event Classes

Event classes include
Event on page 409

Public Attributes

SendActionPriority 407

ParentEventGuard : EventGuard on page 409
EventGuard on page 409

Public Attributes

Event : Event on page 409

Guard : String on page 409

ParentTransition : Transition on page 410

Public Operations

CreateEvent (name : String) : Event on page 410

CreatePortEvent () : PortEvent on page 410

CreateProtocolRoleEvent () : ProtocolRoleEvent on page 411
PortEvent on page 411

Public Attributes

Ports : PortCollection on page 411

Signals : SignalCollection on page 412

Public Operations

AddPort (port : Port) : Boolean on page 412

AddPortByName (pszPortName : String) : Boolean on page 412

AddSignal (signal : Signal) : Boolean on page 413

AddSignalByName (pszSignalName : String) : Boolean on page 413

RemovePort (port : Port) : Boolean on page 414

RemoveSignal (signal : Signal) : Boolean on page 414
ProtocolRoleEvent on page 415

Public Attributes

Signals : SignalCollection on page 412

Public Operations

AddPort (port : Port) : Boolean on page 412

AddPortByName (pszPortName : String) : Boolean on page 412

AddSignal (signal : Signal) : Boolean on page 413

408 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddSignalByName (pszSignalName : String) : Boolean on page 413
RemovePort (port : Port) : Boolean on page 414
RemoveSignal (signal : Signal) : Boolean on page 414

Event

Description

Events trigger transitions.

Derived from ModelElement

Public Attributes
ParentEventGuard : EventGuard

Description

Event Guard owning the event.

EventGuard

Description

An EventGuard is a grouping of an Event and a Guard that will trigger a transition.

Derived from ModelElement

Public Attributes
Event : Event

Description

Event to be activated by Event Guard.
Guard : String
Description

Code guarding the Event.

Event 409

ParentTransition : Transition
Description
Transition owning the Event Guard.
Public Operations
CreateEvent (name : String) : Event

Description

Created the Event to guard. Use only for events created for analysis. For code
generation, use CreatePortEvent() and CreateProtocolRoleEvent().

Syntax

Set theEvent = theEvent Guard. Creat eEvent (nane)

t heEvent As RoseRT. Event

Returns the newly created event.

t heEvent Guard As RoseRT. Event Guard

Event Guard to which an event is being created.

name As String

Name of the new event to guard.
CreatePortEvent () : PortEvent

Description

Created the a Port Event to guard.

Syntax

Set theEvent = theEvent Guard. Creat ePort Event ()

t heEvent As RoseRT. Port Event

Returns the newly created Port Event.

410 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heEvent Guard As RoseRT. Event Guard

Event Guard to which a Port Event is being created.

CreateProtocolRoleEvent () : ProtocolRoleEvent

Description

Created the a Protocol Role Event to guard.
Syntax

Set theEvent = theEvent Guard. Creat eProtocol Rol eEvent ()

t heEvent As RoseRT. Pr ot ocol Rol eEvent

Returns the newly created Protocol Role Event.

t heEvent Guard As RoseRT. Event Guard

Event Guard to which a Protocol Role Event is being created.

PortEvent

Ports :

Description

Event that results from the reception of a Signal from a specified set of Signals on any
Port from a specified set of Ports.

Derived from Event
Public Attributes
PortCollection

Descriptions:

Collection of ports whose signals trigger transitions.

PortEvent 411

Signals : SignalCollection
Descriptions:
Collection of signals that trigger transitions.
Public Operations

AddPort (port : Port) : Boolean

Description
Adds a Port to the collection of ports whose signals cause the event to trigger a

transition.

Syntax
Added = thePortEvent. AddPort (port)

Added As Bool ean

Returns a value of True when the port is added successfully to the Port Event.

t hePort Event As RoseRT. Port Event
Port Event to which a port is being added.
port As RoseRT. Port

Port to add to the Port Event.

AddPortByName (pszPortName : String) : Boolean

Description

Adds a Port to the collection of ports whose signals cause the event to trigger a
transition.

Syntax
Added = thePortEvent. AddPort ByNane(pszPort Name)

Added As Bool ean

Returns a value of True when the port is added successfully to the Port Event.

412 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

thePort Event As RoseRT. Port Event
Port Event to which a port is being added.

pszPort NameAs String
Fully qualified name of the port to add to the Port Event.

AddSignal (signal : Signal) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.
Syntax

Added = thePort Event. AddSi gnal (signal)

Added As Bool ean

Returns a value of True when the signal is added successfully to the Port Event.

t hePort Event As RoseRT. Port Event
Port Event to which a signal is being added.

si gnal As RoseRT. Si gnal
Signal to add to the Port Event.

AddSignalByName (pszSignalName : String) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.

Syntax
Added = thePort Event. AddSi gnal ByNane(pszSi gnal Nane)

Added As Bool ean

Returns a value of True when the signal is added successfully to the Port Event.

t hePort Event As RoseRT. Port Event

PortEvent 413

Port Event to which a signal is being added.

pszSi gnal Name As String
Name of the signal to add to the Port Event.

RemovePort (port : Port) : Boolean

Description

Removes a Port from the collection of ports whose signals cause the event to trigger a
transition.

Syntax

Renmoved = t hePort Event. RenovePort (port)

Renoved As Bool ean

Returns a value of True when the port is removed successfully from the Port Event.

t hePort Event As RoseRT. Port Event

Port Event to which a port is being removed.

port As RoseRT. Port

Port to remove from the Port Event.
RemoveSignal (signal : Signal) : Boolean

Description

Removes a signal from the collection of signals that cause the event to trigger a
transition.

Syntax

Renmoved = t hePort Event. RenoveSi gnal (signal)

Renoved As Bool ean

Returns a value of True when the signal is removed successfully from the Port Event.

414 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t hePort Event As RoseRT. Port Event

Port Event to which a signal is being removed.

si gnal As RoseRT. Si gnal

Signal to remove from the Port Event.

ProtocolRoleEvent

Description

Event that results from the reception of a Signal in a Protocol Role.

Derived from Event

Public Attributes
Signals : SignalCollection

Description

Collection of signals that trigger transitions.

Public Operations
AddSignal (signal : Signal) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.

Syntax
Added = theProtocol Rol eEvent . AddSi gnal (signal)

Added As Bool ean

Returns a value of True when the signal is added successfully to the Protocol Role
Event.

t hePr ot ocol Rol eEvent As RoseRT. Prot ocol Rol eEvent

ProtocolRoleEvent 415

Protocol Role Event to which a signal is being added.

si gnal As RoseRT. Si gnal
Signal to add to the Protocol Role Event.

RemoveSignal (signal : Signal) : Boolean

Description
Removes a signal from the collection of signals that cause the event to trigger a

transition.

Syntax

Renmoved = t heProt ocol Rol eEvent . RenoveSi gnal (si gnal)

Renoved As Bool ean

Returns a value of True when the signal is removed successfully from the Protocol
Role Event.

t hePr ot ocol Rol eEvent As RoseRT. Pr ot ocol Rol eEvent

Protocol Role Event to which a signal is being removed.

si gnal As RoseRT. Si gnal

Signal to remove from the Protocol Role Event.

State Classes

State classes include
ChoicePoint on page 418
Public Attributes
Condition : String on page 419
FALSETransition : Transition on page 419
InTransition : Transition on page 419

TRUETransition : Transition on page 419

416 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CompositeState on page 419
Public Attributes
EntryAction : Action on page 419
ExitAction : Action on page 420
States : StateVertexCollection on page 420
Transitions : TransitionCollection on page 420
Public Operations
AddState (type : RsStateKind) : StateVertex on page 420

AddTransition (source : String, sourceRegion : RsSourceRegionType, target :
String) : Transition on page 421

AddTransitionUsingStates (source : StateVertex, sourceRegion :
RsSourceRegionType, target : StateVertex) : Transition on page 421

DeleteState (theState : StateVertex) : Boolean on page 422
DeleteTransition (theTransition : Transition) : Boolean on page 423
SetUninterpreted EntryAction (action : String) : Uninterpreted Action on page 423
SetUninterpreted Exit Action (action : String) : Uninterpreted Action on page 424
FinalState on page 424
Initial Point on page 425
JunctionContinuationMode on page 425
JunctionPoint on page 425
Public Attributes
Continuation : JunctionContinuationMode on page 425
ExternallyVisible : Boolean on page 426
Public Operations
IsEntry () : Boolean on page 426
IsExit () : Boolean on page 426
RsJunctionContinuationMode on page 427
Public Attributes

rsDeepHistory : Integer = 2 on page 427

State Classes 417

rsDefault : Integer = 0 on page 427
rsShallowHistory : Integer = 1 on page 427
rsTransition : Integer = 3 on page 427
RsStateKind on page 427
Public Attributes
rsChoicePoint : Integer = 4 on page 428
rsFinalState : Integer = 2 on page 428
rsInitialPoint : Integer = 1 on page 428
rsJunctionPoint : Integer = 3 on page 428
rsNormalState : Integer = 0 on page 428
StateKind on page 428
StateVertex on page 429
Public Attributes
ParentCompositeState : CompositeState on page 429
ParentStateMachine : StateMachine on page 429
GetIncomingTransitions () : TransitionCollection on page 429
GetOutgoingTransitions () : TransitionCollection on page 430
GetStateVertex () : StateVertex on page 430

ChoicePoint

Description

Choice points allow a single transition to be split into two outgoing transition
segments, each of which can terminate on a different state.

418 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from StateVertex

Public Attributes
Condition : String

Description

Condition to be evaluated in order to determine which of the TRUE or FALSE
transition to trigger.

FALSETransition : Transition

Description

The transition to trigger if the condition is evaluated to FALSE.
InTransition : Transition

Description

The transition that cause the condition to be evaluated.
TRUETransition : Transition

Description

The transition to trigger if the condition is evaluated to TRUE.

CompositeState

Description

State which owns a set of substates.

Derived from StateVertex

Public Attributes
EntryAction : Action

Description

Action executed on entering the state.

CompositeState 419

ExitAction : Action

Description

Action executed on exiting the state.
States : StateVertexCollection

Description

Substates owned by the Composite State.
Transitions : TransitionCollection

Description

Transitions owned by the Composite State. These are the transitions connecting
substates.

Public Operations
AddState (type : RsStateKind) : StateVertex

Description

Adds a substate to the Composite State.

Syntax
Set theStateVertex = theConpositeState. AddState(type)

theStateVertex As RoseRT. StateVertex
Returns the State Vertex added to the Composite State.

t heConpositeState As RoseRT. ConpositeState
Composite State to which a substate is being added.

type As RoseRT. RsRi chType
Type of the substate to add to the Composite State.

420 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddTransition (source : String, sourceRegion : RsSourceRegionType,
target : String) : Transition
Description

Adds a transition to the Composite State.

Syntax

Set theTransition = theConpositeState. AddTransiti on(source,
sour ceRegi on, target)

theTransition As RoseRT. Transition

Returns the transition added to the Composite State.

t heConposi teState As RoseRT. ConpositeState

Composite State to which a transition is being added.

source As String

Name of substate attached to the source end of the new transition.

sour ceRegi on As RoseRT. RsSour ceRegi onType

If the source state kind is ChoicePoint, determines which of the TRUE or FALSE
evaluation of the condition should trigger the new transition.

For other source state kind, this parameter is ignored.

target As String

Name of substate attached to the target end of the new transition.

AddTransitionUsingStates (source : StateVertex, sourceRegion :
RsSourceRegionType, target : StateVertex) : Transition

Description

Adds a transition to the Composite State.

CompositeState 421

Syntax

Set theTransition = theConpositeState. AddTransiti onUsi ngSt at es(
sour ce, sourceRegion, target)

theTransition As RoseRT. Transition

Returns the transition added to the Composite State.

t heConpositeState As RoseRT. ConpositeState

Composite State to which a transition is being added.

source As RoseRT. St at eVertex

Substate attached to the source end of the new transition.

sour ceRegi on As RoseRT. RsSour ceRegi onType

If the source state kind is ChoicePoint, determines which of the TRUE or FALSE
evaluation of the condition should trigger the new transition.

For other source state kind, this parameter is ignored.

target As RoseRT. St at eVertex

Substate attached to the target end of the new transition.

DeleteState (theState : StateVertex) : Boolean

Description

Deletes a substate from the Composite State.

Syntax
Del eted = theConpositeState. Del eteState(theState)

Del eted As Bool ean

Returns a Value of True if the substate is deleted successfully from the Composite
State.

422 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heConpositeState As RoseRT. ConpositeState

Composite State from which a substate is being deleted.

theState As RoseRT. St at eVert ex
Substate to delete from the Composite State.

DeleteTransition (theTransition : Transition) : Boolean

Description

Deletes a transition from the Composite State.

Syntax

Del eted = theConpositeState. Del eteTransition(theTransition)

Del eted As Bool ean

Returns a Value of True if the transition is deleted successfully from the Composite
State.

t heConposi teState As RoseRT. ConpositeState

Composite State from which a transition is being deleted.

theTransition As RoseRT. Transition

Transition to delete from the Composite State.
SetUninterpretedEntryAction (action : String) : UninterpretedAction

Description

Sets the entry action to execute on entering the Composite State.

Syntax

Set theUninterpretedAction =
t heConposi t eSt at e. Set Uni nt er pret edEntryActi on(action)

t heUni nt erpretedAction As RoseRT. Uni nt er pretedAction

CompositeState 423

Returns the new Uninterpreted Action to execute on entering the Composite State.

t heConposi teState As RoseRT. ConpositeState

Composite State to which an entry action is being set.

action As String

The body of the new uninterpreted entry action.
SetUninterpretedExitAction (action : String) : UninterpretedAction

Description

Sets the exit action to execute on exiting the Composite State.

Syntax

Set theUninterpretedAction =
t heConposi t eSt at e. Set Uni nt er pret edExit Acti on(action)

t heUni nt erpretedAction As RoseRT. Uni nt er pretedAction

Returns the new Uninterpreted Action to execute on exiting the Composite State.

t heConpositeState As RoseRT. ConpositeState

Composite State to which an exit action is being set.

action As String

The body of the new uninterpreted exit action.

FinalState

Description

The end state of a Composite State.

424 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from StateVertex

InitialPoint

Description

Initial state of a Composite State. The InitialPoint can only have one outgoing

transition.

Derived from StateVertex

JunctionContinuationMode

Description

Rich type used to determine Continuation property of a JunctionPoint. Valid values
are defined in RsJunctionContinuationMode enumeration.

Derived from RichType

JunctionPoint

Description

State that sits on the border of a Composite State whose main purpose is to allow the
continuation and joining of transitions.

Derived from StateVertex
Public Attributes
Continuation : JunctionContinuationMode

Description

The Continuation property is a RichType that specifies the semantics for how the state
history will be used when there is no continuing transition.

InitialPoint 425

ExternallyVisible : Boolean
Description
Indicates whether the junction point is visible on the outside of the state boundary
Public Operations

ISEntry () : Boolean

Description

Indicates whether the junction point connects to an incoming transition.

Syntax

IsEntry = theJunctionPoint.|sEntry()

IsEntry As Bool ean

Returns a value of True if the transition connected to the Junction Point is an incoming
transition.

t heJuncti onPoi nt As RoseRT. Juncti onPoi nt

Junction point used to evaluate IsEntry.
IsExit () : Boolean

Description

Indicates whether the junction point connects to an outgoing transition.
Syntax

IsExit = thedunctionPoint.|sExit()

IsExit As Bool ean

Returns a value of True if the transition connected to the Junction Point is an outgoing
transition.

t heJuncti onPoi nt As RoseRT. Juncti onPoi nt

Junction point used to evaluate IsExit.

426 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RsJunctionContinuationMode

Description

Enumeration used to set the Value property of the JunctionContinuationMode Rich
Type.

Public Attributes
rsDeepHistory : Integer = 2

Description

Specifies that the state should return to deep history, meaning that all substates also
return to history.

rsDefault : Integer =0

Description

Specifies that the default (initial) transition should be run.
rsShallowHistory : Integer = 1

Description

Specifies that the junction state should return to shallow history.
rsTransition : Integer =3

Description

The Transition continuation mode cannot be set, it is returned if there is an
exiting/continuing transition from the junction point.

RsStateKind

Description
Enumeration used to set the Value property of the StateKind Rich Type.

RsJunctionContinuationMode 427

Public Attributes
rsChoicePoint : Integer = 4

Description

Choice point.
rsFinalState : Integer = 2

Description

Final state.
rsinitialPoint : Integer =1

Description

Initial state.
rsJunctionPoint : Integer =3

Description

Junction point.
rsNormalState : Integer =0

Description

Normal state.

StateKind

Description

Rich type used to determine the kind of state added to a Composite State. See
CompositeState's AddState operation. Notice this rich type exists only to strengthen
the duality between enum and rich type. It is not used in the RRTEI APL

Valid values are defined in RsStateKind enumeration.

428 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RichType

StateVertex

Description

Abstract class base of all states that are the source and destination of transitions.

Derived from ModelElement

Public Attributes
ParentCompositeState : CompositeState

Description

Composite State owning the state. Nothing if the state is the top state of a state
machine.

ParentStateMachine : StateMachine

Description

State Machine owning the topmost parent Composite State.
Public Operations
GetincomingTransitions () : TransitionCollection

Description

Return the collection of all incoming transitions of the State Vertex.

Syntax

Set theTransitions = theStateVertex. Getlncom ngTransitions()

theTransiti ons As RoseRT. TransitionCol | ection

The collection of all incoming transitions of the State Vertex.

theSt at eVertex As RoseRT. St ateVert ex

StateVertex 429

State vertex to return incoming transitions from.

GetOutgoingTransitions () : TransitionCollection

Description

Return the collection of all outgoing transitions of the State Vertex.
Syntax

Set theTransitions = theStateVertex. Get Qut goi ngTransitions()

theTransiti ons As RoseRT. TransitionCol | ection

The collection of all outgoing transitions of the State Vertex.

theSt at eVertex As RoseRT. St ateVert ex

State vertex to return outgoing transitions from.
GetStateVertex () : StateVertex

Description

Return a State Vertex derived class instance as a State Vertex.

Syntax
Set theCastedStateVertex = theStateVertex. Get StateVertex()

t heCast edSt at eVertex As RoseRT. St ateVert ex

The State Vertex derived class instance casted as a State Vertex.

t heSt at eVertex As RoseRT. St ateVert ex

State vertex derived class instance to cast as a State Vertex.

430 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Relation Classes

Relation classes include
ClassDependency on page 433
Public Attributes
ClientCardinality : String on page 433
InvolvesFriendship : Boolean on page 433
SupplierCardinality : String on page 434
Visibility : UsesRelationVisibilityKind on page 434
ClassRelation on page 434
Public Operations
GetContextClassifier () : Classifier on page 434
GetSupplierClassifier () : Classifier on page 435
ComponentDependency on page 435
Public Attributes
ContextClass : Class on page 435
ContextComponent : Component on page 436
ContextComponentPackage : ComponentPackage on page 436
SupplierClass : Class on page 436
SupplierComponent : Component on page 436
SupplierComponentPackage : ComponentPackage on page 436
Generalization on page 436
Public Attributes
FriendshipRequired : Boolean on page 437
Virtual : Boolean on page 437
Visibility : Generalization VisibilityKind on page 437
Public Operations
GetContextPackage () : LogicalPackage on page 437
GetSupplierPackage () : LogicalPackage on page 438

Relation Classes 431

GeneralizationVisibilityKind on page 438
InstantiateRelation on page 438

Public Attributes

ContextClass : Class on page 439

SupplierClass : Class on page 439
LogicalPackageDependency on page 439

Public Operations

GetContextLogicalPackage () : LogicalPackage on page 439

GetSupplierLogicalPackage () : LogicalPackage on page 440
RealizeRelation on page 440

Public Operations

GetContextCapsule () : Capsule on page 441

GetContextClass () : Class on page 441

GetContextComponent () : Component on page 441

GetContextProtocol () : Protocol on page 441

GetSupplierClass () : Class on page 441

GetSupplierUseCase () : UseCase on page 441
Relation on page 442

Public Attributes

SupplierName : String on page 442

Public Operations

GetClient () : ModelElement on page 442

GetSupplier () : ModelElement on page 442

HasClient () : Boolean on page 443

HasSupplier () : Boolean on page 443
UsesRelationVisibilityKind on page 444

432 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ClassDependency

Description
The ClassDependency class exposes a set of attributes and operations that
Determine the characteristics of dependencies between classes

Allow you to retrieve class dependencies

Derived from ClassRelation

Public Attributes
ClientCardinality : String

Description

Specifies the number of clients allowable for the ClassDependency.

Syntax
Cl assDependency. ClientCardinality

Property Type:
String

InvolvesFriendship : Boolean

Description

Indicates whether the ClassDependency involves friendship.

Syntax

Cl assDependency. | nvol vesFri endship

Property Type:

Boolean

ClassDependency 433

SupplierCardinality : String

Description

Specifies the number of suppliers allowable for the ClassDependency.

Syntax
Cl assDependency. SupplierCardinality

Property Type:
String
Visibility : UsesRelationVisibilityKind

Description

The Visibility property is a RichType that specifies how a class dependency is viewed
outside of the owner class.

ClassRelation

Description

The ClassRelation class inherits from the Relation class and is the parent class of the
ClassDependency, and InheritRelation classes.
Check the lists attributes and operations for details.

Derived from Relation

Public Operations
GetContextClassifier () : Classifier

Description

Retrieves the Classifier relation’s context (client) classifier.

Syntax
Set theClassifier = theC assifierRel ation. GetContextClassifier ()

434 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCl assifier As RoseRT.Cl assifier

Returns the realize relation’s context (client) classifier.

theCl assifierRelation As RoseRT. C assifierRel ation

ClassifierRelation whose context classifier is being retrieved.
GetSupplierClassifier () : Classifier

Description

Retrieves the Classifier relation’s supplier classifier.

Syntax
Set theClassifier = theC assifierRel ation. GetSupplierdassifier ()

theCl assifier As RoseRT.Classifier
Returns the realize relation’s supplier classifier.
theCl assifierRelation As RoseRT. d assifierRel ation

ClassifierRelation whose supplier classifier is being retrieved.

ComponentDependency

Description

Describes the context and supplier relationship between components, component
packages and classes.

Derived from Relation
Public Attributes

ContextClass : Class

Description

Returns the client (owner) class of the dependency. Nothing if the owner is not a class.

ComponentDependency 435

ContextComponent : Component

Description

Returns the client (owner) component of the dependency. Nothing if the owner is not
a component.

ContextComponentPackage : ComponentPackage

Description

Returns the client (owner) component package of the dependency. Nothing if the
owner is not a component package .

SupplierClass : Class

Description

Returns the supplier class of the dependency. Nothing if the supplier is not a class.
SupplierComponent : Component

Description

Returns the supplier component of the dependency. Nothing if the supplier is not a
component.

SupplierComponentPackage : ComponentPackage

Description

Returns the supplier component package of the dependency. Nothing if the supplier
is not a component package.

Generalization

Description

Generalization indicates a hierarchical relationship between classifiers in which one
classifier shares the structure and/or behavior of another classifier. The
Generalization class exposes a set of attributes and operations that

Determine the characteristics of Inherit Relations between classifiers

Allow you to retrieve Inherit Relations

436 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Check the lists of attributes and operations for complete information.

Derived from ClassRelation

Public Attributes
FriendshipRequired : Boolean

Description
Indicates whether the generalization requires friendship. Friendship can be required

between a supplier and a client in the relationship.
Virtual : Boolean

Description

Indicates whether the generalization is virtual.
Visibility : GeneralizationVisibilityKind

Description

The Visibility property is a RichType that specifies how the client of a Generalization
relation exposes the inherited features of the supplier.

Public Operations
GetContextPackage () : LogicalPackage

Description

Returns the context logical package. Nothing if the context is not a logical package.

Syntax
Set thelogi cal Package = theGeneralizationn. Get Cont ext Package()

t heLogi cal Package As RoseRT. Logi cal Package

The logical package that is the context of the generalization.

Generalization 437

t heGeneralizati on As RoseRT. Generali zati on

The generalization to retrieve the context from.
GetSupplierPackage () : LogicalPackage

Description

Returns the supplier logical package. Nothing if the supplier is not a logical package.

Syntax
Set thelogi cal Package = theGeneralizationn. Get Suppl i er Package()

t heLogi cal Package As RoseRT. Logi cal Package
The logical package that is the supplier of the generalization.

t heGeneralizati on As RoseRT. Generali zati on

The generalization to retrieve the supplier from.

GeneralizationVisibilityKind

Description

Rich type used to determine how a Generalization relation can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

InstantiateRelation

Description

Describes the instantiate relationship between a parametrized class and an
instantiated class.

438 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ClassRelation

Public Attributes
ContextClass : Class

Description

Context side of the instantiate relationship. The client is an instantiated class or an
instantiated class utility.

SupplierClass : Class

Description

Supplier side of the instantiate relationship. The client is a parametrized class or an
parametrized class utility.

LogicalPackageDependency

Description

The LogicalPackageDependency class allows you to define and manipulate
dependency relationships between LogicalPackages.

See the list of attributes and operations for details.

Derived from Relation

Public Operations
GetContextLogicalPackage () : LogicalPackage

Description
Retrieves the context (client) LogicalPackage belonging to the given LogicalPackage

dependency.

Syntax

Set thelogi cal Package =
t heLogi cal PackageDependency. Get Cont ext Logi cal Package ()

LogicalPackageDependency 439

t heLogi cal Package As RoseRT. Logi cal Package

Returns the context (client) LogicalPackage belonging to the LogicalPackage
dependency.

t heLogi cal PackageDependency As RoseRT. Logi cal PackageDependency

LogicalPackage dependency whose context LogicalPackage is being retrieved.
GetSupplierLogicalPackage () : LogicalPackage

Description

Retrieves the supplier LogicalPackage belonging to the given LogicalPackage
dependency.

Syntax

Set thelogi cal Package =
t heLogi cal PackageDependency. Get Suppl i er Logi cal Package ()

t heLogi cal Package As RoseRT. Logi cal Package
Returns the supplier LogicalPackage belonging to the LogicalPackage dependency.

t heLogi cal PackageDependency As RoseRT. Logi cal PackageDependency
LogicalPackage dependency whose supplier LogicalPackage is being retrieved.

RealizeRelation

Description

A realize relationship shows that the client realizes the operations defined by the
supplier.

440 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Relation

Public Operations
GetContextCapsule () : Capsule

Description

Context (Client) capsule of the realize relation. Nothing if the context is not a capsule.
GetContextClass () : Class

Description

Context (Client) class of the realize relation. Nothing if the context is not a class.
GetContextComponent () : Component

Description

Context (Client) component of the realize relation. Nothing if the context is not a
component.

GetContextProtocol () : Protocol

Description

Context (Client) protocol of the realize relation. Nothing if the context is not a
protocol.

GetSupplierClass () : Class

Description

Supplier class of the realize relation. Nothing if the supplier is not a class.
GetSupplierUseCase () : UseCase

Description

Supplier use case of the realize relation. Nothing if the supplier is not a use case.

RealizeRelation 441

Relation

Description

All relations (ClassRelation, Inherits, Has, Realizes) inherit from the Relation Class.
Relation Class properties and methods allow you to specify and retrieve the client and
supplier information for the relations in a model.

Check the lists of attributes and operations for details.

Derived from ModelElement

Public Attributes
SupplierName : String

Description

Specifies the name of the supplier belonging to the relation.

Public Operations

GetClient () : ModelElement

Description

Retrieves the ModelElement that is the client belonging to the Relation.
Syntax

t heMbdel El enent = theRelation.GetClient ()

theModel El enent As RoseRT. Mbdel El enent
Returns the ModelElement that is the client belonging to the relation.

theRel ati on As RoseRT. Rel ati on

Relation whose client is being retrieved.
GetSupplier () : ModelElement

Description

Retrieves the ModelElement that is the supplier belonging to the Relation.

442 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax
t heMbdel El enent = t heRel ati on. Get Supplier ()

theModel El enent As RoseRT. Mbdel El enent
Returns the ModelElement that is the supplier belonging to the relation.

theRel ati on As RoseRT. Rel ati on

Relation whose supplier is being retrieved.
HasClient () : Boolean

Description

Indicates whether the relation has a client.

Syntax
HasClient = theRelation.HasClient ()

HasCl i ent As RoseRT. Rel ation

Returns a value of True if the relation has a client.

theRel ati on As RoseRT. Rel ati on

Relation being checked for a client.
HasSupplier () : Boolean

Description

Indicates whether the relation has a supplier.

Syntax
HasSupplier = theRel ation. HasSupplier ()

HasSuppl i er As RoseRT. Rel ati on

Returns a value of True if the relation has a supplier.

Relation 443

theRel ation As RoseRT. Rel ati on
Relation being checked for a supplier.

UsesRelationVisibilityKind

Description

Rich type used to determine how a Uses relation can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

Use Case View Classes

Use Case View classes include
UseCase on page 445
Public Attributes
ClassDiagrams : ClassDiagramCollection on page 445
Rank : String on page 445
Public Operations

AddAssociation (szSupplier AssociationEndName : String,
szSupplierAssociationEndType : String) : Association on page 445

AddClassDiagram (szName : String) : ClassDiagram on page 446

AddGeneralization (szName : String, szParentName : String) : Generalization on
page 446

DeleteAssociation (pDispatchAssociation : Association) : Boolean on page 447
DeleteClassDiagram (plDispatch : ClassDiagram) : Boolean on page 447
DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 448
GetAssociationEnds () : AssociationEndCollection on page 449

GetAssociations () : AssociationCollection on page 449

GetGeneralizations () : GeneralizationCollection on page 449

GetSuperUseCases () : UseCaseCollection on page 450

444 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

UseCase

Description

The Use Case class exposes a set of properties and methods that allow you to define
and manipulate the sets of class diagrams and scenario diagrams that comprise a
model’s use cases.

Check the lists of attributes and operations for complete information.

Derived from Classifier

Public Attributes
ClassDiagrams : ClassDiagramCollection

Description

Specifies the collection of class diagrams belonging to the use case
Rank : String

Description

Specifies the rank of the use case.

Public Operations

AddAssociation (szSupplierAssociationEndName : String,
szSupplierAssociationEndType : String) : Association
Description

Adds an association to a use case and returns it in the specified object.

Syntax

Set theAssoci ation = theUseCase. AddAssoci ation (theSuppli erRol eNane,
t heSuppl i er Rol eType)

t heAssoci ati on As RoseRT. Associ ati on

Returns the association being added to the use case.

t heUseCase As RoseRT. UseCase

UseCase 445

Use case to which the association is being added.

t heSuppl i er Rol eName As String

Name of the supplier role in the association.

t heSuppl i er Rol eType As String

Type of the supplier role in the association.
AddClassDiagram (szName : String) : ClassDiagram

Description

Creates a new class diagram and adds it to a use case.

Syntax
Set theCl assDi agram = t heUseCase. Addd assDi agram (t heNane)

t heCl assDi agram As RoseRT. O assDi agr am

Returns the class diagram being added to the use case.

theUseCase As RoseRT. UseCase
UseCase to which the diagram is being added.

theName As String

The name of the class diagram to be added.

AddGeneralization (szName : String, szParentName : String) :
Generalization

Description

This function adds a Generalization relationship to a use case and returns it in the

specified object.

Syntax

Set theGeneralization = theUseCase. AddGeneral i zati on(szNane,
szPar ent Nanme)

446 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCGeneral i zati on As RoseRT. Generali zati on
Returns the Generalization being added to the classifier.
t heUseCase As RoseRT. UseCase

Use case to which the Generalization is being added.

szNanme As String

Name of the new Generalization.

szParent Nane As String

Name of the parent use case in the Generalize relationship.
DeleteAssociation (pDispatchAssociation : Association) : Boolean

Description

Deletes an association from a use case.

Syntax
Del eted = t heUseCase. Del et eAssoci ati on (theAssoci ation)

Del eted As Bool ean

Returns a value of True when the association is deleted.

t heUseCase As RoseRT. UseCase

Use case from which the association is being deleted.

t heAssoci ati on As RoseRT. Associ ati on

Instance of the association being deleted (The association must belong to the specified
use case.)

DeleteClassDiagram (pIDispatch : ClassDiagram) : Boolean

Description

Deletes a class diagram from a use case.

UseCase 447

Syntax
del eted = theUseCase. Del et eCl assDi agram (theCl assDi agram

del eted As Bool ean

Returns a value of True when the class diagram is deleted.

t heUseCase As RoseRT. UseCase

Use case from which the class diagram is being deleted.

t heCl assDi agram As RoseRT. O assDi agr am

Instance of the class diagram being deleted.
DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

This function deleted a Generalization relation from a use case.
Syntax

Del eted = t heUseCase. Del eteGeneral i zation(theCGeneralization)

Del eted As Bool ean

Returns a value of True when the generalization gets deleted successfully from the use
case.

t heUseCase As RoseRT. UseCase

Use case from which the generalization is being deleted.

t heGeneralizati on As RoseRT. Generali zati on

The generalization being deleted.

448 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetAssociationEnds () : AssociationEndCollection

Description

Retrieves an AssociationEnd collection from a use case and returns it in the specified
object.

Syntax
Set theAssoci ati onEnds = theUseCase. Get Associ ati onEnds ()

t heAssoci ati onEnds As RoseRT. Associ ati onEndCol | ecti on

Returns the AssociationEnd collection from the class.

t heUseCase As RoseRT. UseCase

UseCase from which the collection is being retrieved.
GetAssociations () : AssociationCollection

Description

Retrieves an association collection from a use case and returns it in the specified
object.

Syntax
Set theAssoci ations = theUseCase. Get Associ ati ons

t heAssoci ati ons As RoseRT. Associ ati onCol | ecti on

Returns the association collection from the use case.

t heUseCase As RoseRT. UseCase

Use case from which the collection is being retrieved.
GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a use case is client of.

UseCase 449

Syntax

Set Generalizations = theUseCase. Get General izations()

Ceneralizations As RoseRT.d assifier

The collection of all Generalization relationships the use case is client of.

t heUseCase As RoseRT. UseCase

The use case to return Generalization it is client of.
GetSuperUseCases () : UseCaseCollection

Description

Retrieves a super use case collection from a use case and returns it in the specified
object.

Syntax

Set theSuperUseCases = theUseCase. Get Super UseCases ()
t heSuper UseCases As RoseRT. UseCaseCol | ection

Returns the super use case collection from the use case.

t heUseCase As RoseRT. UseCase

Use case from which the collection is being retrieved.

View Classes

View classes include
AnchorNoteView on page 453
Public Attributes
Text : String on page 454
Diagram on page 454
Public Attributes
Documentation : String on page 454

ExternalDocuments : ExternalDocumentCollection on page 454

450 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ModelElements : ModelElementCollection on page 454
ParentModelElement : ModelElement on page 455
ViewElements : ViewElementCollection on page 455
Visible : Boolean on page 455

ZoomkFactor : Integer on page 455

Public Operations

Activate () : on page 455

AddAnchorNoteView (FromView : ViewElement, ToView : ViewElement) :
AnchorNoteView on page 456

AddExternalDocument (szName : String, iType : RsExternalDocumentType) :
ExternalDocument on page 456

AddNoteView (szNoteText : String, nType : RsNoteViewType) : NoteView on
page 457

DeleteExternalDocument (theExtDoc : ExternalDocument) : Boolean on page 458
Exists (theModelElement : ModelElement) : Boolean on page 458

GetNoteViews () : NoteViewCollection on page 459

GetSelectedModelElements () : ModelElementCollection on page 459
GetViewFrom (theModelElement : ModelElement) : ViewElement on page 459
Invalidate () : on page 460

IsActive () : Boolean on page 460

Layout () : on page 461

RemoveAnchorNoteView (anchorNoteView : AnchorNoteView) : Boolean on
page 461

RemoveNoteView (pIDispNoteView : NoteView) : Boolean on page 462
Render (FileName : String) : on page 462
RenderEnhanced (FileName : String) : on page 463
RenderEnhancedToClipboard () : on page 463
RenderToClipboard () : on page 463
Update () : on page 464

NoteView on page 464

View Classes 451

Public Attributes

Text : String on page 464

Public Operations

GetNoteViewType () : RsNoteViewType on page 465

LinkToDiagram (diagramToLink : Diagram) : Boolean on page 465
RsNoteViewType on page 466

Public Attributes

rsConstraint : Integer = 3 on page 466

rsFloatingTextLabel : Integer = 1 on page 466

rsNoteWithBox : Integer = 2 on page 466
RsStereotypeDisplay on page 466

Public Attributes

rsDecorationAndLabel : Integer = 2 on page 467

rsDecorationOnly : Integer = 3 on page 467

rslcon : Integer = 4 on page 467

rsLabel : Integer =1 on page 467

rsNone : Integer = 0 on page 467
StereotypeDisplay on page 467
ViewElement on page 467

Public Attributes

FillColor : View_FillColor on page 467

Font : View_Font on page 468

Height : Integer on page 468

LineColor : View_LineColor on page 468

LineVertices : LineVertexCollection on page 468

ModelElement : ModelElement on page 468

ParentDiagram : Diagram on page 468

ParentView : ViewElement

452 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

StereotypeDisplay : StereotypeDisplay on page 469
SubViews : ViewElementCollection on page 469
Width : Integer on page 469

XPosition : Integer on page 469

YPosition : Integer on page 469

Public Operations

GetDefaultHeight () : Integer on page 469
GetDefaultWidth () : Integer on page 470
GetMinHeight () : Integer on page 470
GetMinWidth () : Integer on page 471
HasModelElement () : Boolean on page 471
HasParentView () : Boolean on page 471
Invalidate () : on page 472

IsSelected () : Boolean on page 472

PointInView (x : Integer, y : Integer) : Boolean on page 473
SetSelected (bSelect : Boolean) : on page 473
SupportsFillColor () : Boolean on page 474
SupportsLineColor () : Boolean on page 474

AnchorNoteView

Description

The anchor note view class inherits the ViewElement attributes and operations that
determine the size and placement of the anchor note view on a diagram.

Check the lists of attributes and operations for complete information.

AnchorNoteView 453

Derived from ViewElement
Public Attributes
Text : String

Description

Contains the text that appears in the AnchorNoteView object.

Diagram

Description

The Diagram class exposes a set of attributes and operations, which all other diagram
classes (for example, class diagrams, sequence diagrams, Collaboration diagrams,
etc.) inherit. These attributes and operations determine the size and placement of a
diagram on the Rose RealTime user’s computer screen.

Check the lists of attributes and operations for complete information.

Derived from ControllableElement

Public Attributes
Documentation : String

Description

Specifies the documentation belonging to the Diagram.
ExternalDocuments : ExternalDocumentCollection

Description

Specifies the external documents belonging to the diagram.
ModelElements : ModelElementCollection

Description

Specifies the collection of ModelElements belonging to the diagram.

454 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentModelElement : ModelElement

Description

Model element the diagram belongs to.
ViewElements : ViewElementCollection

Description

Specifies the collection of element views belonging to the diagram.
Visible : Boolean

Description

Indicates whether the diagram is visible on the computer sc

ZoomFactor : Integer

Public Operations

Activate () :

Description
Makes the specified diagram the active diagram in Rose RealTime. The active diagram

is the window in Rose RealTime which currently has the focus.

Syntax

t heDi agram Acti vate
t heDi agram As RoseRT. Di agram
Diagram to activate.

See also
IsActive Method
GetActiveDiagram Method

Diagram 455

AddAnchorNoteView (FromView : ViewElement, ToView : ViewElement) :
AnchorNoteView

Description:

Adds an anchor note view object to a diagram.

Syntax:

Set theAnchor NoteVi ew = t heDi agr am AddAnchor Not eVi ew (t heFronVi ew,
theToVi ew)

t heAnchor Not eVi ew as RoseRT. Anchor Not eVi ew

Returns the anchor note view object added to the diagram.

t heDi agram As RoseRT. Di agram

Diagram to which the anchor note view object is being added.

t heFronVi ew As RoseRT. Vi ewEl enent

ViewElement from which the note anchor starts at.

theToVi ew As RoseRT. Vi ewEl enent

ViewElement to which the note anchor ends at.

AddExternalDocument (szName : String, iType:
RsExternalDocumentType) : ExternalDocument

Description

Creates a new external document and adds it to a diagram.

Syntax
Added = theDi agram AddExt er nal Docunent (theNane, theType)

Added As Bool ean

Returns a value of true when the document is added to the diagram.

456 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heDi agram As RoseRT. Di agram
Diagram to which the document is being added.

theNane As String
Name of the document being added.

theType As Integer
Type of document being added Valid values are:

1= Path
2 =URL

AddNoteView (szNoteText : String, nType : RsNoteViewType) : NoteView

Description

Adds a note view object to a diagram

Syntax

Set theNoteVi ew = t heDi agram AddNot eVi ew (t heNot eText ,
t heNot eVi ewType)

t heNot eVi ew as RoseRT. Not eVi ew

Returns the note view object added to the diagram.

t heDi agram As RoseRT. Di agram

Diagram to which the note view object is being added.

theNot eText As String

Contains the text of the note view object.

t heNot eVi ewType As | nteger

Indicates whether the note is free floating or enclosed in a box:

1 = Free floating text label

Diagram 457

2 = Note with box

DeleteExternalDocument (theExtDoc : ExternalDocument) : Boolean

Description

Deletes an external document from a diagram.

Syntax
Del eted = t heD agram Del et eExt er nal Docunent (theDocument)

del eted As Bool ean

Returns a value of true when the document is deleted from the diagram.

t heDi agram As RoseRT. Di agram

Diagram from which the document is being deleted.

t heDocunment As RoseRT. Ext er nal Docunent

Instance of the document being deleted.
Exists (theModelElement : ModelElement) : Boolean

Description

Determines whether a specified diagram object exists.

Syntax
Exi sts = theDi agram Exi sts (theMbdel El enent)

Exi sts As Bool ean
Returns the value of TRUE if the diagram object exists.

t heDi agram As RoseRT. Di agram

Instance of the diagram whose existence is being checked.

458 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heMbdel El enent As RoseRT. Mbdel El enent

Instance of the Rose item that corresponds to the diagram object.
GetNoteViews () : NoteViewCollection

Description

Returns the collection of note views belonging to a diagram.

Syntax
Set theNoteViews = theDi agram Get Not eViews ()

t heNot eVi ews As RoseRT. Not eVi ewCol | ecti on

Returns the collection of note views belonging to the diagram.

t heDi agram As RoseRT. Di agram

Instance of the diagram whose note view objects are being retrieved.
GetSelectedModelElements () : ModelElementCollection

Description

Returns all currently selected items in a diagram
Syntax

Set theltentColl ecti on = theDi agram Get Sel ectedltens ()

theltenCol |l ecti on As RoseRT.ItenCol | ecti on

Returns the Rose item view (view object) that represents the specified Rose item.

t heDi agram As RoseRT. Di agram

Instance of the diagram whose selected items are being retrieved.
GetViewFrom (theModelElement : ModelElement) : ViewElement

Description

Retrieves the Rose item view that represents the specified Rose item.

Diagram 459

Syntax
Set theView = theD agram Get Vi ewFr om (t heModel El ement)

t heVi ew As RoseRT. Model El enrent Vi ew

Returns the Rose item view (view object) that represents the specified Rose item.

t heDi agram As RoseRT. Di agram

Instance of the diagram that contains the view object.

t heMbdel El enent As RoseRT. Mbdel El enent

Instance of the Rose item whose view item is being returned.
Invalidate () :

Description

Invalidates a Rose diagram; that is, it causes the diagram to be redrawn.

Syntax

t heDi agram I nval i date

t heDi agram As RoseRT. Di agram

Diagram being redrawn.
IsActive () : Boolean

Description

Indicates whether the diagram is the currently active diagram in the application

Syntax

IsActive = theDiagram | sActive ()

IsActive As Bool ean

Returns a value of True if the diagram is the current active in Rose; otherwise, returns
a value of False.

460 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

t heDi agram As RoseRT. Di agram

Diagram being checked as current diagram.

See also
Activate Method
GetActiveDiagram Method

Layout () :

Description

Draws a Rose RealTime diagram.
Syntax

t heDi agr am Layout

t heDi agram As RoseRT. Di agram

Diagram being drawn.
RemoveAnchorNoteView (anchorNoteView : AnchorNoteView) : Boolean

Description:

Removes an anchor note view object to a diagram

Syntax:
bRet = theDiagram.RemoveAnchorNoteView (theAnchorNoteView)

bRet as Bool ean

True if the view was removed sucessfully, False otherwise.

t heAnchor Not eVi ew As RoseRT. Anchor Not eVi ew

The anchor note view object which is being removed from the diagram.

Diagram 461

RemoveNoteView (pIDispNoteView : NoteView) : Boolean

Description

Removes a note view object from a diagram

Syntax

Set |IsRenoved = t heD agram RenpveNot eVi ew (t heNot eVi ew)

cl sRenobved As Bool ean

Returns a value of True when the note view object is successfully removed.

t heDi agram As RoseRT. Di agram

Diagram from which the note view object is being removed.

t heNot eVi ew as RoseRT. Not eVi ew

Note view object to be removed from the diagram.

Render (FileName : String) :

Renders a Rose RealTime diagram to a Windows metafile, allowing the diagram to be
opened and edited in any application that works with Windows metafiles.

Syntax
t heDi agr am Render t heFi | eNane

t heDi agram As RoseRT. Di agram

Diagram to render.

theFil eName As String

Name of the Windows metafile in which to save the diagram.

462 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RenderEnhanced (FileName : String) :

Description

Renders a Rose RealTime diagram to an enhanced Windows metafile, allowing the
diagram to be opened and edited in any application that works with Windows
metafiles.

Syntax

t heDi agr am Render Enhanced theFi | eNane

t heDi agram As RoseRT. Di agram

Diagram to render.

theFil eName As String

Name of the enhanced Windows metafile in which to save the diagram.
RenderEnhancedToClipboard () :

Description

Renders a Rose RealTime diagram to the Clipboard, preserving its Enhanced metafile
formatting information. As with any Clipboard object, it can then be pasted into other
windows or compatible applications.

Syntax
t heDi agr am Render EnhancedTodCl i pboard

t heDi agram As RoseRT. Di agram

Diagram to render.
RenderToClipboard () :

Description

Renders a Rose RealTime diagram to the Clipboard in Windows metafile format. As
with any Clipboard object, it can then be pasted into other windows or compatible
applications.

Diagram 463

Syntax
t heDi agr am Render Tod i pboard

t heDi agram As RoseRT. Di agram

Diagram to render.
Update () :

Description

Updates a Rose RealTime diagram.

Syntax
t heDi agr am Updat e

t heDi agram As RoseRT. Di agram
Diagram being updated.

NoteView

Description

The note view class inherits the ModelElement attributes and operations that
determine the size and placement of the note view on a diagram.

Check the lists of attributes and operations for complete information.

Derived from ViewElement
Public Attributes

Text : String

Description

Contains the text that appears in the NoteView object.

464 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations
GetNoteViewType () : RsNoteViewType

Description

Returns the Type value of a NoteVi