
Rational Software Corporation
Extensibility Interface Reference

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026116-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©1993-2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026116-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface .xv
Audience. .xv

Other Resources .xv

Rational Rose RealTime Integrations With Other Rational Products xvi

Contacting Rational Customer Support . xvii

1 Concepts .1
Overview. 1

The RRTEI Model and Rational Rose RealTime Extensibility 2

Scripting . 3

Automation . 3

Type Libraries . 3

About Default Properties and Property Sets (Extensibility) 4

About Collection Attributes and Operations . 4

Rational Rose RealTime Menu Extensibility. 6

2 How To... .7
Customizing Rational Rose RealTime Menus . 7

Creating New Rational Rose RealTime Scripts . 13

Getting the Rational Rose RealTime Application Object 14

Specifying a Virtual Path for Scripts . 15

Working with Rational Rose RealTime Diagrams. 17

Working with Model Properties. 17

Working with Collections . 29

Working with Classes . 32

Working with Rose RealTime Automation . 32

Working with the Rational Rose RealTime Script Editor 33

Opening a Model . 66

Modifying a Property Value . 67

Setting the Top Capsule of a Component. 69
Contents v

3 Rational Rose RealTime Extensibility Interface Reference 75
Logical Package Structure .80

Application Classes .81

AddIn .86

AddInManager .93

Application .93

ContextMenuItem. .122

MenuState .123

PathMap. .124

RsMenuState .127

Workspace .128

Extensibility Classes .130

Collection .131

RoseBase .139

RRTEIObject .140

RichTypes .141

RichType .142

RichTypeValuesCollection .144

Model Classes .145

Component View Classes .145

Component .149

ComponentPackage. .170

Core Model Classes. .178

ControllableElement. .184

DefaultModelProperties .194

Element .204

ExternalDocument .215

Model .218

ModelElement .236

Package .239

Property .243

RsExternalDocumentType .244
vi Contents

StructuredProperty. .244

Deployment View Classes .246

ComponentInstance .249

DeploymentPackage .252

Device .258

Processor .262

Logical View Classes .267

LogicalPackage .269

Association Classes .288

Association. .290

AssociationEnd .294

AssociationEndContainment .298

AssociationEndVisibilityKind .299

Classifier Classes. .299

Capsule .303

Class .304

ClassConcurrency .310

ClassKind .310

Classifier .310

ClassifierVisibilityKind .327

Parameter. .328

Protocol .329

RsClassKind. .332

RsConcurrency .334

RsChangeable .334

Signal .335

Feature Classes .336

Attribute .338

AttributeContainment .340

AttributeVisibilityKind .340

Operation .340

OperationConcurrency .345
Contents vii

OperationVisibilityKind .345

OwnerScope .346

RsOwnerScope .346

Collaboration Classes .347

AssociationEndRole. .350

AssociationRole .351

CapsuleRole .352

CapsuleStructure .353

ClassifierRole. .356

Collaboration .358

Connector .364

Genericity. .367

Port .367

PortRole .369

PortVisibilityKind .370

RegistrationMode. .370

RsGenericity .370

RsRegistrationMode .371

Common Logical View Enumerations .372

RsContainment .372

RsVisibilityKind .373

Interaction Classes .374

Environment .376

Interaction .376

InteractionInstance. .382

Message .385

MessageEnd .386

RsActionKind .387

State Machine Classes .387

RsSourceRegionType .388

SourceRegionType. .389

StateMachine .389
viii Contents

Transition .390

Action Classes .393

Action .396

ActionMode .398

CallAction .399

Coregion. .399

CreateAction .401

DestroyAction. .401

LocalState .402

ReplyAction .402

RequestAction .402

ResponseAction .403

ReturnAction .404

RsActionMode .404

RsSendActionPriority .405

SendAction. .406

SendActionPriority .407

TerminateAction .407

UninterpretedAction .407

Event Classes .407

Event .409

EventGuard .409

PortEvent .411

ProtocolRoleEvent .415

State Classes .416

ChoicePoint .418

CompositeState .419

FinalState .424

InitialPoint. .425

JunctionContinuationMode. .425

JunctionPoint .425

RsJunctionContinuationMode .427
Contents ix

RsStateKind .427

StateKind .428

StateVertex .429

Relation Classes .431

ClassDependency .433

ClassRelation. .434

ComponentDependency .435

Generalization .436

GeneralizationVisibilityKind .438

InstantiateRelation .438

LogicalPackageDependency .439

RealizeRelation .440

Relation .442

UsesRelationVisibilityKind .444

Use Case View Classes. .444

UseCase .445

View Classes .450

AnchorNoteView .453

Diagram .454

NoteView .464

RsNoteViewType .466

RsStereotypeDisplay .466

StereotypeDisplay .467

ViewElement .467

Class Diagram Classes .475

CapsuleView .477

ClassDiagram. .477

ClassView .490

ClassifierView. .490

ProtocolView .492

Collaboration Diagram Classes .493

CapsuleRoleView. .494
x Contents

CollaborationDiagram .496

PortRoleView .499

PortView. .500

StructurePerimeterView .500

Component Diagram Classes .501

ComponentDiagram .502

ComponentPackageView .508

ComponentView. .509

Deployment Diagram Classes .509

DeploymentDiagram. .510

Sequence Diagram Classes. .513

ClassifierRoleView .514

CreateMessageView .514

InteractionInstanceView .515

LifeLineView .515

MessageView. .516

SequenceDiagram .516

State Diagram Classes .517

BranchPointView .519

ChoicePointView .519

CompositeStateView .521

CoregionView. .522

FinalStateView .522

InitialPointView .523

JunctionAdornmentView .523

JunctionPointView .524

LocalStateOrActionView .525

StateDiagram .525

StatePerimeterView .527

View Property Classes .528

LineVertex .529

View_FillColor .530
Contents xi

View_Font .531

View_LineColor .532

4 BasicScript Reference . 535
Special Characters. .536

Directives .573

Functions .578

Keywords .851

Methods .857

Operators .888

Properties .913

Statements .949

Picture Caching .1030

Optional Parameters .1061

Arrays (topic) .1198

Comments (topic). .1201

Constants (topic) .1205

Cross-Platform Scripting (topic) .1214

Dialogs (topic) .1219

Error Handling (topic). .1220

Expression Evaluation (topic). .1221

Keywords (topic). .1223

Line Numbers (topic) .1225

Literals (topic) .1225

Named Parameters (topic) .1227

Objects (topic) .1228

Operator Precedence (topic) .1231

Operator Precision (topic) .1232

User-Defined Types (topic) .1232

Index . 1235
xii Contents

Figures
Figure 1 Rational Rose extensibility interface components 2
Figure 2 Portion of a Rational RoseRT menu file . 9
Figure 3 Virtual Path Map . 16
Figure 4 Specification Editor . 19
Figure 5 Rose RealTime Script Editor . 33
Figure 6 Goto Line dialog . 35
Figure 7 Selected Scripts Text . 37
Figure 8 Find Script Text dialog\ . 39
Figure 9 Replace dialog. 40
Figure 10 Script Calls dialog . 42
Figure 11 Add Watch dialog. 44
Figure 12 Modify Variable dialog . 47
Figure 13 Grid Dialog. 49
Figure 14 Dialog Edition with Grid Displayed. 50
Figure 15 Capturing a Dialog. 52
Figure 16 Sample Dialog in Basic Script . 54
Figure 17 Dialog Information Dialog . 61
Figure 18 Control Information dialog . 62
Figures xiii

xiv Figures

Preface
The information in this document supersedes all other manuals and documentation
included in this release.

This manual is organized as follows:

■ Concepts on page 1
■ How To... on page 7
■ Rational Rose RealTime Extensibility Interface Reference on page 75
■ BasicScript Reference on page 535

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.
xv

http://www.rational.com/documentation/

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT
components in ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can
create baselines of Rose RT
projects in UCM and create Rose
RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify
installed on the system,
developers can invoke the
Purify executable using the
Build > Run with Purify
command. While the model
executes and when it completes,
the integration displays a report
in a Purify Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents
with Rose RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that
extract information from a Rose
RealTime model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
xvi Preface

http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xvii

xviii Preface

1Concepts
Contents

This chapter is organized as follows:

■ Overview on page 1
■ The RRTEI Model and Rational Rose RealTime Extensibility on page 2
■ Scripting on page 3
■ Automation on page 3
■ Type Libraries on page 3
■ About Default Properties and Property Sets (Extensibility) on page 4
■ About Collection Attributes and Operations on page 4
■ Rational Rose RealTime Menu Extensibility on page 6

Overview

Rational Rose RealTime provides several ways for you to extend and customize its
capabilities to meet your specific software development needs. You can:

■ Customize Rational Rose RealTime menus

■ Automate manual Rational Rose RealTime functions with Rational Rose RealTime
Scripts (for example, diagram and class creation, model updates, document
generation, etc.)

■ Execute Rational Rose RealTime functions from within another application by
using the Rational Rose RealTime Automation object.

■ Access Rational Rose RealTime classes, properties and methods right within your
software development environment by including the Rational Rose RealTime
Extensibility Type Library in your environment.

■ Use the Add-In Manager
1

The RRTEI Model and Rational Rose RealTime Extensibility

The purpose of Rational Rose RealTime is to enable component-based software
development. As you would expect, the Rational Rose RealTime application is itself
component-based, and is defined in the Rational Rose RealTime Extensibility
Interface (RRTEI) Model.

The RRTEI Model is essentially a metamodel of a Rational Rose RealTime model,
exposing the packages, classes, properties and methods that define and control the
Rational Rose RealTime application and all of its functions.

You communicate with the Rational Rose RealTime Extensibility Interface through
Rational Rose RealTime Scripts or through Rational Rose RealTime Automation. In
either case, you will use the RRTEI calls defined in the Rational Rose RealTime
Extensibility Interface Reference. This reference is available in printed form, and is
also part of this online help.

Figure 1 shows the core Rational Rose RealTime components, the Rational Rose
extensibility interface components, and the relationships between them.

Figure 1 Rational Rose extensibility interface components
2 Chapter 1 - Concepts

Scripting

The Rational Rose RealTime Scripting language is an extended version of the Summit
Basic Scriptlanguage. The Rational Rose RealTime extensions to basic scripting allow
you to automate Rational Rose RealTime-specific functions, and in some cases
perform functions that are not available through the Rational Rose RealTime user
interface.

The Rational Rose RealTime script editor runs in the Rational Rose RealTime
environment and provides your access to the scripting environment. Start the script
editor by selecting either New Script or Open Script from the Tools menu.

Automation

Rational Rose RealTime automation allows you to integrate other applications with
Rational Rose RealTime in two ways:

■ Using Rational Rose RealTime as an automation controller, you can call an OLE
automation object from within a Rational Rose RealTime script. For example, a
Rational Rose RealTime script can use OLE automation to execute functions in
applications such as Word and Excel.

■ Using Rational Rose RealTime as an automation server, you can call its OLE
automation object from within other OLE-compliant applications.

Rational Rose RealTime Automation is accessible to automation controller
environments such as Visual Basic, Summit BasicScript, Softbridge Basic Language,
Visual C++, and others.

Use the online BasicScript and Rational Rose RealTime Script Language References for
complete script language information.

Type Libraries

Loading a type library for Rational Rose RealTime automation allows you to use
Rational Rose RealTime class names to access the Rational Rose RealTime
Extensibility Interface from your programming environment.

For example, if you are working in Visual Basic, instead of using the Basic object type
Object, you can use the name of the actual Rational Rose RealTime class. You can also
check the syntax of the properties and methods at compile time (early binding)
instead of when the code is executed (late binding).
Scripting 3

If you are working in Visual C++, you can import Rose RealTime's type library, which
is embedded in RrtRes.dll, into an MFC project. This generates COleDispatchDriver
subclasses for each RRTEI class, and methods allowing access to RRTEI properties
and methods.

About Default Properties and Property Sets (Extensibility)

Each Rational Rose RealTime model has its own default properties. These default
properties are defined in a property file and are grouped into sets based on:

■ Type of model element

Class, component, relation, attributes, operations; and so on; the objects that make
up the model

■ Tool

Corresponds to a tab in the property specification. A tool can be a programming
language tool (such as C++), a user-defined add-in to Rational Rose RealTime, or
some other tool.

■ Properties

The actual properties and property values defined in the set; these must be
appropriate to the model element and tool for which they are being defined.

Note: You can define multiple sets of default properties for the same tool and model
element. For example, you might want one set of properties for a class with a
stereotype of Actor and a different set of properties for a class with a stereotype of
Interface. Both of these sets are considered default properties in that they are
predefined for the model. Defining multiple sets saves you work by minimizing the
need to override properties as you go.

About Collection Attributes and Operations

For most elements of a Rose RealTime model there is a corresponding collection. So,
for example, for every class there is a class collection; for every logical package there is
a logical package collection; for every property, there is a property collection, and so
on.

Rational Rose RealTime extensibility provides a set of properties and methods that
allow you to access a particular element in any given collection.
4 Chapter 1 - Concepts

Collection Property

Count is the only property that applies to collections.

Count - Number of objects within a collection

Methods for All Collections

The following table describes the collection methods that allow you to locate and
retrieve the elements in any collection. While all of these properties and methods are
the same, they act upon different types of objects. For example, the
ClassCollection.GetAt method retrieves a class object, the
LogicalPackageCollection.GetAt method retrieves a logical package, and so on.

Method Description

Exists Indicates whether an object exists in a given collection

FindFirst Retrieves the index (position) of the first instance of an
object in a given collection

FindNext Retrieves the index (position) of the next instance of an

object in a given collection

GetWithUniqueID Retrieves the instance of an object in a given collection,

given the object’s unique ID
Note: Objects that do not have a uniqueID (for
example, ExternalDocument and Property objects)
cannot be retrieved using this method.

GetAt Retrieves a specified instance of an object in a given
collection

GetFirst Retrieves the first instance of an object from a given
collection

GetObject Returns the OLE interface object associated with the
given collection

IndexOf Finds the index (position) of an object in a given
collection
About Collection Attributes and Operations 5

Methods for User-defined Collections

The following table describes the four additional collection methods, which allow you
to add and remove objects from a collection. However, these methods are only valid
for user-defined collections and cannot be used with Rose RealTime Model
collections:

User-defined collections are created by the CreateCollection function of the Rational
Rose RealTime Application object.

Rational Rose RealTime Menu Extensibility

You extend, or customize, Rational Rose RealTime menus by updating the Rational
Rose RealTime menu file, rosert.mnu, which Rational Rose RealTime reads during
startup.

You can extend Rational Rose RealTime menus by adding:

■ Submenus

■ Menu options that execute any of the following:

➑ Rational Rose RealTime primitives

➑ Rational Rose RealTime scripts

➑ System commands

➑ External programs

■ Menu separators (lines between menu options, used to group similar menu items)

Note: You can add information to existing menus (for example, File, Edit, etc.);
however, you cannot add new menus to the Rational Rose RealTime menu bar.

Method Description

Add Adds an object to the object collection

AddCollection Adds a collection to an object collection

Remove Removes a collection from an object collection

RemoveAll Removes the entire contents of a collection
6 Chapter 1 - Concepts

2How To...
Contents

This chapter is organized as follows:

■ Customizing Rational Rose RealTime Menus on page 7
■ Creating New Rational Rose RealTime Scripts on page 13
■ Getting the Rational Rose RealTime Application Object on page 14
■ Specifying a Virtual Path for Scripts on page 15
■ Working with Rational Rose RealTime Diagrams on page 17
■ Working with Model Properties on page 17
■ Working with Collections on page 29
■ Working with Classes on page 32
■ Working with Rose RealTime Automation on page 32
■ Working with the Rational Rose RealTime Script Editor on page 33
■ Opening a Model on page 66
■ Modifying a Property Value on page 67
■ Setting the Top Capsule of a Component on page 69

Customizing Rational Rose RealTime Menus

The content of Rational Rose RealTime menus is defined in the rosert.mnu file. If you
want to customize Rational Rose RealTime menus, you must edit this file.

While you cannot add new menus to the Rational Rose RealTime menu bar, you can
add commands to the existing Rational Rose RealTime menus. The menu actions
defined for the Rational Rose RealTime menu file allow you to add commands that:

■ Execute a program or shell script
■ Execute a Rational Rose RealTime script
■ Display a dialog for user input
7

To customize Rational Rose RealTime menus:

1 Using any text editor, open the rosert.mnu file.

2 Add entries to rosert.mnu for any or all of the following:

➑ Submenus

➑ Menu options

➑ Menu separators

Ensure that you follow the appropriate syntax rules as you add the entries in the
file.

3 If your menu item executes a script, add or edit Rational Rose RealTime’s virtual
path for scripts (if one is not already defined).

4 Save the file:

➑ To create another menu file while leaving rosert.mnu intact, save the file
under a different name. (Recommended)

➑ To overwrite the file, save it as rosert.mnu.

Adding Entries to a Rational Rose RealTime Menu File

Using any text editor and the following information, you can add menu entries to the
Rational Rose RealTime menu file. The entries appear on the Rational Rose RealTime
menu in the order you specify.

As you add menu entries, you specify:

■ Keywords that determine what to add to the menu (a submenu, a menu option, a
separator)

■ Arguments that further define a menu action, or that determine the conditions
under which a menu action command is enabled or disabled in Rational Rose
RealTime.

■ Menu actions that specify what action occurs when the menu item is selected.

Pay close attention to the syntax rules that apply to your entries to the Rational Rose
RealTime menu file. For example, the syntax of the menu specifications includes
opening and closing braces. You must include these braces in your specifications for
them to work properly. Remember that each opening brace ({) requires a
corresponding closing brace (}).
8 Chapter 2 - How To...

Creating a New Rational Rose RealTime Menu File

The best way to create a new Rational Rose RealTime menu file is to save an existing
menu file using a new name. This keeps the existing file intact, while providing a
complete menu file to make changes.

Sample Rational RoseRT Menu File

The following example shows a portion of a Rational RoseRT menu file.

Figure 2 Portion of a Rational RoseRT menu file
Customizing Rational Rose RealTime Menus 9

Syntax Rules for Rational Rose RealTime Menu File Entries

Follow these rules when specifying menu text:

■ When a text string contains embedded spaces, enclose the string in double
quotation marks.

Example: “Run Script”

■ When a text string has no embedded spaces (a single word, for example), enter the
string without any quotation marks.

Example: Validate

■ When a text string that is not enclosed in quotes includes a special character, the
special character could be misinterpreted as a variable. For this reason, you must
precede any special characters (such as ^, ì, or %) with an escape character. The
escape character for all special characters is ^.

Examples:

Option Calculate^% creates a menu option whose text reads Calculate %

exec Notepad ^””c:\my files\file.txt”^” creates a menu action that executes the
following command line: notepad “c:\my files\file.txt” Note the escape character
followed by an additional set of quotation marks. One set of quotation marks is
necessary because there is a space in my files. The second set, each of which is
preceded by the ^ escape character, causes the actual command line to include the
quotation marks as part of the command.

■ To create a mnemonic for the menu, add an & before the menu text.

Example: “&Run Script”

Allows users to execute the menu item by entering CTL+R

■ Menu text can include Variables on page 12 and Modifiers on page 11

Example: Option “Validate “%model

Creates a menu option with the text Validate MyModel if the currently loaded model
is MyModel.mdl.
10 Chapter 2 - How To...

Menu File Keywords

Valid keywords for your entries to the Rational Rose RealTime menu file are described
below:

■ Menu RoseRTMenu - Enter the Menu keyword, followed by the Rational Rose
RealTime menu name to indicate the name of the menu being extended. Example:
Enter Menu Tools as the first line of an entry that extends the Tools menu.

■ Menu "Menu Text" - Enter the Menu keyword, followed by a text string to indicate
the name of a submenu being added to the menu. Note that quotation marks are
required if the text string contains spaces. Example: Enter Menu “RoseRT Scripts”
to add a submenu called RoseRT Scripts.

■ Separator - Enter the Separator keyword to add a separator to a list of menu
options. Remember the placement of the Separator keyword controls the
placement of the separator line on the menu.

■ Option "Command text" - Enter the Option keyword, followed by a text string to
indicate the name of the menu command being added to the menu. Note that
quotation marks are required if the text string contains spaces. Example: Enter
Option “Run My Script” to add a menu command called Run My Script.

Modifiers

Rational Rose RealTime provides a set of Variables on page 12 that correspond to
various Rational Rose model items. You can use these variables in conjunction with a
set of Modifiers on page 11 to determine the conditions under which menu items are
enabled or disabled, as well as to specify specific menu actions.

The format for specifying variables with modifiers is:

variable[:mod1[:mod2[...[:mod10]]]

Modifiers

The modifiers [cmumod.cpp] are:

■ :not
■ :writeable
■ :home_unit
■ :empty
■ :unary
■ :first
■ :file
■ :basename
■ :directory
Customizing Rational Rose RealTime Menus 11

■ :elide
■ :codefile
■ :headerfile
■ :sourcefile
■ :allfiles
■ :multiple

Variables

The variables [cmuvar.cpp] are:

■ %current_diagram
■ %selected_items
■ %model
■ %selected_units
■ %all_units
■ %false
■ %true

Menu Actions

An action defines the result of activating a menu entry. The required arguments can be
supplied as constants, variables, or Variables on page 12 with Modifiers on page 11.

■ Block - Displays a modal dialog with ‘arg’ as its prompt. Used following ‘exec’
and an action to suspend the following action until the user chooses to continue

■ Rosescript - Executes a source or compiled image of a script. You can specify the
script name without its extension. The Rosescript command will search for the
source script first and execute it if found. If not found, it will search for and execute
the compiled script.

■ Exec pathname [arg2 [arg3 ...[arg10]]] - Executes the program or shell script
contained in the file designated by program-name. (If the program is not located in
the current directory, it must be in a directory in the execute path.) If the final
argument is of the form 'F<filename>' then a file named <filename> is created (if it
does not already exist). All arguments, except the last one are written to the file,
and <filename> is passed as the sole argument to the program.

Notes:

➑ F must be uppercase.

➑ It is up to ‘program’ to delete the file

➑ To pass a string beginning with ‘-F’ as the final parameter of an exec action,
use ‘--F’. (The character ‘^’ does NOT work in this case.)
12 Chapter 2 - How To...

Adding Scripts to a Rational Rose RealTime Menu

To add a script to a Rational RoseRealTime menu:

1 Open the Rational Rose RealTime Menu file, or create a new one to use in its place.

2 Edit the Path Map so that it includes a virtual script path.

3 Modify the Rational Rose RealTime menu file to add the script under the
appropriate menu, being careful to follow all of the menufile syntax rules. To do
this:

■ In the menu file, locate the menu specification that corresponds to the Rational
Rose RealTime menu to which you want to add the script. Each menu specification
is comprised of the Menu keyword followed by the name of a Rational Rose
RealTime menu. For example, the Tools menu specification begins with Menu Tools.

■ Within the appropriate menu specification, add a menu option that specifies the
text of the menu command that will run the script (for example, “Run Conversion
Wizard”)

■ Enter a Rational RoseScript menu action to cause the script to execute when a user
selects the menu command.

4 Save the updated menu file.

Creating New Rational Rose RealTime Scripts

To create a new Rational Rose RealTime script:

1 Select Tools/New Script from the Rational Rose RealTime menu bar.

2 Enter your script text.

3 Select File/Save As from the Rational Rose RealTime menu bar and save the new
script.

Creating a New Script from an Existing Script

To modify an existing script:

1 Select Tools/Open Script from the Rational Rose RealTime menu bar.

2 Select a file from the list of available scripts
Creating New Rational Rose RealTime Scripts 13

3 Click OK to enter the script editor and display the script.

4 Select File/Save As from the Rational Rose RealTime menu bar and save the new
script.

Getting the Rational Rose RealTime Application Object

Whether you are using Rational Rose RealTime Script or Rational Rose RealTime
Automation, you must get the Rational Rose RealTime Application object in order to
control the Rational Rose application.

Using Rational Rose RealTime Script

All Rational Rose RealTime Script programs have a global object called RoseRTApp,
which represents the Rose RealTime Application object.

Using Rational Rose RealTime Automation

To use Rational Rose RealTime as an automation server, you must initialize an
instance of a Rational Rose RealTime application object. You do this by calling either
CreateObject or GetObject (or their equivalents) from within the application you are
using as the OLE controller.

These calls return the OLE Object which implements Rational Rose RealTime API’s
application object.

Refer to the documentation for the application you are using as OLE controller for
details on calling OLE automation objects.

RoseRTApp.CurrentModel Example (Scripting)

The following sample code shows how to get the Rational Rose RealTime application
object in a Rational Rose RealTime Scripting context:

Sub GenerateCode (theModel As RoseRTModel)

'This generates code

End Sub

Sub Main

GenerateCode RoseRTApp.CurrentModel

End Sub
14 Chapter 2 - How To...

RoseRTApp.CurrentModel Example (Automation)

The following sample code shows how to get the Rational Rose RealTime application
object in a Rational Rose RealTime Automation context:

Sub GenerateCode (theModel As Object)

'This generates code

End Sub

Sub Main

Dim RoseRTApp As Object

Set RoseRTApp = CreateObject

(“RoseRT.Application”)

GenerateCode RoseRTApp.CurrentModel

End Sub

A Polling Add-In (automation)

A polling add-in can make calls to sleep and do events, thus interacting with the
toolset at the same time that this script is running. Note, however, that the toolset has
a visible state accessible from the Application object. If you exit the toolset and at least
one Add-In is still running, the toolset becomes invisible and runs in the background
until the Add-In releases its application pointer.

Specifying a Virtual Path for Scripts

Adding or Editing the Virtual Path for Scripts

When you edit the Rational Rose RealTime menu file to include script commands, you
must include one of the following:

■ The fully qualified name of the script file to execute
■ The virtual path that maps to the actual path

Defining a virtual path for scripts simplifies the process of editing the menu file by
allowing you to specify the symbolic virtual path name instead of the complete file
path.

To add or edit a virtual path for scripts:

1 Start Rational Rose RealTime.

2 Select Edit Path Map from the File menu to display the Virtual Path Map dialog.
Specifying a Virtual Path for Scripts 15

3 Check for the $SCRIPT_PATH virtual symbol and do one of the following:

❑ If the symbol exists, select it in the dialog to display its current mapping
information in the lower portion of the dialog.

❑ If the symbol does not exist, enter it in the Symbol field in the lower portion of
the dialog.

Figure 3 Virtual Path Map

4 Enter the actual path to your Rational Rose RealTime scripts, or use the Browse
button to locate and select the path. (Normally these scripts reside in a Scripts
subdirectory of the Rational Rose RealTime installation directory.) Press Add.

5 When you make changes in the dialog, the Close button becomes an OK button.
Select OK to save your changes and exit the Virtual Path Map.
16 Chapter 2 - How To...

Working with Rational Rose RealTime Diagrams

Each kind of Rational Rose RealTime diagram (class, component, scenario, etc.)
inherits from the Diagram class.

A diagram is made up of ModelElements and ViewElements. A ViewElement is the
physical representation of the actual Rose RealTime Model Element. As such, it is an
object with properties and methods that define its appearance in the diagram window
(position, color, size, etc). You can define multiple ViewElements for any given
ModelElement.

■ Use Diagram.ViewElements to iterate through the collection of ViewElements
belonging to a diagram.

■ Use Diagram.ModelElements to iterate through the ModelElements that exist in
the diagram.

■ Use Diagram.GetViewFrom to find the first ViewElement of a given
ModelElement.

Note: You can only use GetViewFrom to retrieve the first ViewElement defined for the
ModelElement. Even if you have more than one view, you’ll always only get the first.

■ To find out which ViewElements are currently selected in a diagram, iterate
through the diagram’s ViewElements. As you retrieve each ViewElement, use the
ViewElement.IsSelected method to find out whether it is currently selected in the
diagram. You can then retrieve the selected ModelElement, or do any other
processing you want to do based on whether ViewElement is selected.

■ A short way to retrieve all selected ModelElements from a diagram is to use the
Diagram.GetSelectedModelElements method. Instead of iterating through the
diagram and checking each ViewElement, this method simply returns everything
that is selected.

Working with Model Properties

Working with model properties includes

■ Managing Default Properties (Extensibility) on page 18
■ Creating a New Property on page 20
■ Deleting Model Properties on page 20
■ Creating a New Property Set on page 20
■ Getting and Setting the Current Property Set on page 21
■ Getting Model Properties on page 22
■ Deleting a Model Property on page 22
Working with Rational Rose RealTime Diagrams 17

■ Adding a Property to a Set on page 23
■ Creating a User-Defined Property Type on page 24
■ Cloning a Property Set on page 25
■ Setting Model Properties on page 27
■ Setting Model Properties Using InheritProperty on page 27
■ Setting Model Properties Using OverrideProperty on page 28
■ Creating a New Tool on page 29

Managing Default Properties (Extensibility)

In the Rational Rose RealTime user interface environment, you manage a model’s
properties by using the specification editor.

To access the specification editor, you point to Model Properties on the Tools menu and
select Edit.

You then select the appropriate tool tab, element type, and property set to edit. For
example, in the following figure, the tool is C++, the model element type is Class, and
the property set is default.
18 Chapter 2 - How To...

Figure 4 Specification Editor

From this point on, you can use the specification editor to edit individual properties,
as well as clone (copy) and edit property sets. However, you cannot create new tools
(tabs), new default property sets, or property types. For these capabilities, you must
use the Rational Rose RealTime Extensibility Interface.

For more information on editing default properties and sets in the Rational Rose
RealTime user interface, check the online help for information on Specifications.

In the Extensibility Interface, the DefaultModelProperties object manages the default
model properties for the current model, and is itself a property of the model
(RoseRTApp.CurrentModel.DefaultProperties). For this reason, default properties are
applied to the current model only. When you create default properties they are
applied and saved for the current model, but are not available to any new models you
create.
Working with Model Properties 19

To apply new properties to another model, re-run the script that creates the
properties, specifying the new model as the current model.

Creating a New Property

How To

To create a new property that is not based on an existing property, use the
CreateProperty method. However, if you simply want to set an existing property to a
different current value, you should use InheritProperty or OverrideProperty instead.

Example
' Property creation:

b = theModel.RootLogicalPackage.CreateProperty (myTool, "Saved",
"True", "Boolean")

' Property destruction:

b = theModel.RootLogicalPackage.InheritProperty (myTool, "Saved")

Notes on the Example

1 The CreateProperty call in the example creates a new property called Saved. It
applies to the tool MyTool, its value is True and its type is Boolean.

2 The InheritProperty call in the example deletes the property just created.

Deleting Model Properties

If you are deleting a property that belongs to a property set, you can use the
DeleteDefaultProperty method to delete the property from a model.

However, if you created a property using the CreateProperty method, that property is
not part of a property set. To delete such a property, use the InheritPropertymethod.

Creating a New Property Set

To create a new property set from scratch, use the CreateDefaultPropertySet method.
20 Chapter 2 - How To...

Getting and Setting the Current Property Set

How To

To find out the which property set is the current set for a tool, use the
GetCurrentPropertySetName method.

To set the current property set to a particular set name, use the
SetCurrentPropertySetName to the set of your choice.

Note: When setting the current property set, you must supply a set name that is valid
for the specified tool. To retrieve a list of valid set names for a tool, use the
GetDefaultSetNames Method (Element).

Example
Sub RetrieveElementProperties (theElement As RoseRT.Element)

Dim AllTools As RoseRT.StringCollection

Dim theProperties As RoseRT.PropertyCollection

Dim theProperty As RoseRT.Property

Set AllTools = theElement.GetToolNames ()

For ToolID = 1 To AllTools.Count

ThisTool$ = AllTools.GetAt (ToolID)

theSet$ = theElement.GetCurrentPropertySetName (ThisTool$)

Set theProperties = theElement.GetToolProperties (ThisTool$)

For PropID = 1 To theProperties.Count

Set theProperty = theProperties.GetAt (PropID)

Next PropID

Next ToolID

End Sub

Notes on the Example

1 GetToolNames retrieves the tool names that apply to the model element type
called Element and returns them as a string collection called AllTools.

2 The current property set is retrieved for each tool name.

3 GetToolProperties retrieves the property collection that belongs to the current tool.

4 Each property that belongs to the tool’s property collection is retrieved.
Working with Model Properties 21

Getting Model Properties

The Element class provides two methods for retrieving information about model
properties:

■ To get the current value for a model property, whether inherited or overridden, use
the GetPropertyValue method. This method returns the value as a string

■ To retrieve the property object itself, use the FindProperty.

Deleting a Model Property

How To

To delete an entire property set from a model, use the DeleteDefaultPropertySet
method.

Example
Sub DeleteDefaultProperties (theModel As RoseRT.Model)

Dim DefaultProps As RoseRT.DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

myClass$ = theModel.RootLogicalPackage.GetPropertyClassName ()

b = DefaultProps.DeleteDefaultPropertySet (myClass$, myTool$,

"SecondSet")

b = DefaultProps.DeleteDefaultPropertySet (myClass$, myTool$,

"ThirdSet")

b = theModel.RootLogicalPackage.SetCurrentPropertySetName

(myTool$, "default")

End Sub
22 Chapter 2 - How To...

Notes on the Example

1 The GetPropertyClassName retrieves the valid internal class name to pass as a
parameter on the delete calls.

2 Each DeleteDefaultPropertySet call deletes a property set from the model.

3 The SetCurrentPropertySetName call sets the tool’s current property set its
original set, which happens to be called default.

Adding a Property to a Set

To add a property to a property set, define a subroutine that uses the
AddDefaultProperty method. Notice that this method requires you to pass six
parameters:

■ Class Name
■ Tool Name
■ Set Name
■ Name of the New Property
■ Property Type
■ Value of the New Property

Example
Sub AddDefaultProperties (theModel As RoseRT.Model)

Dim DefaultProps As RoseRT.DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties myClass$ =

theModel.RootLogicalPackage.GetPropertyClassName ()

b = DefaultProps.AddDefaultProperty (myClass$,myTool$, "Set1",

"StringProperty", "String", "")

b = DefaultProps.AddDefaultProperty (myClass$,myTool$, "Set1",

"IntegerProperty", "Integer", "0")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$,*Set1","FloatProperty", "Float", "0")

b = DefaultProps.AddDefaultProperty (myClass$,myTool$, "Set1",

"CharProperty", "Char", " ")

b = DefaultProps.AddDefaultProperty (myClass$,myTool$, "Set1",

"BooleanProperty", "Boolean","True")

End Sub
Working with Model Properties 23

Notes on the Example

1 When you specify the Class Name parameter, you must specify the internal name
of the model element. There are two ways to obtain this information:

❑ If properties are already defined for this element, it will appear in the
specification dialog in the Rational Rose RealTime user interface. Simply check
the specification editor and use the Type drop-down list to find the appropriate
class name.

❑ Use the GetPropertyClassName method. This is the method used in the sample
script. This example retrieves the internal name and returns it in myClass$,
which is then passed as the class name parameter.

2 If the tool you specify does not exist, a new tool will be created. This is actually the
only way to add a new tool to a model.

3 This example adds a property of each of the predefined property types, except the
enumeration type. You use the enumerated type to create your own property types
and add enumerated properties to a set. See Creating a User-Defined Property
Type for instructions and an example.

Creating a User-Defined Property Type

Rational Rose RealTime Extensibility defines a set of predefined property types. When
you add properties to a set, you specify one of these types.

In addition, you can define your own property types and add properties of that type
to a property set.

To create a user-defined property type, add a property whose type is enumeration and
whose value is a string that defines the possible values for the enumeration.

Once you have defined the new type, adding a property of this new type is like
adding any other type of property.

Example
Sub AddDefaultProperties (theModel As RoseRT.Model)

Dim DefaultProps As

RoseRT.DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

myClass$ =

theModel.RootLogicalPackage.GetPropertyClassName
24 Chapter 2 - How To...

()

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "MyNewEnumeration",

"Enumeration", "Value1,Value2,Value3")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "MyEnumeratedProperty",

"MyNewEnumeration", "Value1")

End Sub

Notes on the Example

1 This example uses the GetPropertyClassName to retrieve the internal name of the
class to which the property type will apply.

2 The first AddDefaultProperty call adds the enumeration and defines its possible
values in the string ìValue1,Value2,Value3î.

3 The second AddDefaultProperty call adds a new property of the new enumerated
type; the property value is set to ìValue1î.

4 If you want a new type to appear in the specification dialog in the Rational Rose
Realtime user interface, you must actually add a property of that type to the set.
Using the above example, if you simply created the type MyNewEnumeration, but did
not add the property MyEnumeratedProperty, MyNewEnumeration would not appear in
Type drop-down. Once you add the actual property, MyNewEnumeration would
appear in the list of types.

Cloning a Property Set

How To

Cloning allows you to create a copy of an existing property set for the purpose of
creating another property set. This is the easiest way to create a new property set, and
is particularly useful for creating multiple sets of the same properties, but with
different values specified for some or all of the properties.

To clone a property set in a model, use the CloneDefaultPropertySet method.
Working with Model Properties 25

Example
Sub CloneDefaultProperties (theModel As RoseRT.Model)

Dim DefaultProps As

RoseRT.DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

AddDefaultProperties theModel

myClass$ = theModel.RootLogicalPackage.GetPropertyClassName

()

b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "SecondSet")

b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "ThirdSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "StringProperty", "String", "Unique to SecondSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "IntegerProperty", "Integer", "11")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "FloatProperty", "Float", "89.9000")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "EnumeratedProperty", "EnumerationDefinition",

"Value2")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"ThirdSet", "StringProperty", "String", "Unique to ThirdSet")
26 Chapter 2 - How To...

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"ThirdSet", "IntegerProperty", "Integer", "20")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"ThirdSet", "FloatProperty", "Float", "90.9000")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"ThirdSet", "EnumeratedProperty", "EnumerationDefinition",

"Value3")

End Sub

Notes on the Example

1 This example clones an existing property set twice in order to define a total of three
sets for the class and tool to which the sets apply.

2 All three sets have the same properties as those defined in the original set. In
addition, several new properties are added to the second set and several other new
properties are added to the third set.

Setting Model Properties

There are several ways to set model properties using the Extensibility Interface:

■ Use the OverrideProperty method to change only the value of a property, and keep
all other aspects of the property definition intact

■ Use the InheritProperty method to return a previously overridden property to its
original value

■ Use the CreateProperty or the AddDefaultProperty method to define a new
property from scratch

Setting Model Properties Using InheritProperty

How To

Use the InheritProperty method to reset an overridden property to its original value.

You can also use this method to delete a property that you created using the
CreateProperty method. Because there is no default value to which such a property
can return, InheritProperty effectively deletes it from the model.
Working with Model Properties 27

Example
Sub InheritRadioProps (theLogicalPackage As RoseRT.LogicalPackage)

b = theLogicalPackage.InheritProperty (myTool$, "StringProperty")

b = theLogicalPackage.InheritProperty (myTool$,

"IntegerProperty")

b = theLogicalPackage.InheritProperty (myTool$, "FloatProperty")

b = theLogicalPackage.InheritProperty (myTool$,

"EnumeratedProperty")

End Sub

Notes on the Example

Each of the four lines of the sample subroutine returns the current value of the
specified property to its original value.

Setting Model Properties Using OverrideProperty

How To

The OverrideProperty method allows you to use the default property definition and
simply change its current value. Alternately, you could create a brand new property
by calling the CreateProperty method, but that would require you to specify the
complete property definition, not just the new value.

If the property you specify does not exist in the model’s default set, a new property is
created for the specified object only. This new property is created as a string property.

Example
Sub OverrideRadioProps (theLogicalPackage As RoseRT.LogicalPackage)

b = theLogicalPackage.OverrideProperty (myTool$,

"StringProperty", "This string is overridden")

b = theLogicalPackage.OverrideProperty (myTool$,

"IntegerProperty", "1")
28 Chapter 2 - How To...

b = theLogicalPackage.OverrideProperty (myTool$, "FloatProperty",

"111.1")

b = theLogicalPackage.OverrideProperty

(myTool$,"EnumeratedProperty", "Value2")

End Sub

Notes on the Example

1 Each of the four lines of the sample subroutine changes the current value of a
specific property as follows:

❑ The property called StringProperty now has a value of This string is
overridden.

❑ The property called IntegerProperty now has value of 1.

❑ The property called FloatProperty now has a value of 111.1

❑ The property called EnumeratedProperty now has a value of Value2.

2 Everything except for current value (tool name, class name, set, property name
and property type) remains the same for the properties.

Creating a New Tool

There is no explicit way to add a new tool (tab) to a model. However, when you create
a new property set or add a new property to a model, you must specify the tool to
which the property or set applies. If the tool you specify does not already exist, it will
be added during the create or add process.

Working with Collections

Working with collections includes

■ Getting an Element from a Collection (Overview) on page 30

■ Accessing Collection Elements By Count on page 30

■ Accessing Collection Elements By Name on page 30

■ Accessing Collection Elements By Unique ID on page 31
Working with Collections 29

Getting an Element from a Collection (Overview)

There are three ways to get an individual model element from a collection:

■ Use the GetwithUniqueID method to directly access the element.

■ Iterate through the collection using the element’s name using FindFirst, FindNext,
and GetAt.

■ Iterate through the collection using Count followed by GetAt.

Accessing Collection Elements By Count

How To

Follow these steps to access collection elements by count:

1 Iterate through the collection using the Count property.

2 Retrieve the specific element using the GetAt method when the specific element is
found.

Example
Dim AllClasses As RoseRT.ClassCollection

Dim theClass As RoseRT.Class

For ClsID = 1 To AllClasses.Count

Set theClass = AllClasses.GetAt (ClsID)

' ToDo: Add your code here...

Next ClsID

Accessing Collection Elements By Name

How To

Follow these steps to access an operation belonging to a class:

1 Use FindFirst to find the first occurrence of the specified operation in the
collection.

2 Use FindNext to iterate through subsequent occurrences of the operation.

3 Retrieve the specific operation using the GetAt method when the specific
operation is found.
30 Chapter 2 - How To...

Example
Sub PrintOperations (theClass As RoseRT.Class, OperationName As

String)

Dim theOperation As RoseRT.Operation

OperID = theClass.Operations.FindFirst (OperationName$)

Do Until OperID = 0

Set theOperation = theClass.Operations.GetAt (OperID)

' ToDo: Add your code here...

OperID = theClass.Operations.FindNext (OperID, OperationName$)

Loop

End Sub

Accessing Collection Elements By Unique ID

How To

The most direct and easiest way to get an element from within a collection is by
unique id. Follow these steps to access collection elements by unique ID:

1 Use the GetUniqueID method to obtain the element’s unique id.

2 Use the GetwithUniqueID method, specifying the id you obtained in step 1.

Example
Dim theClasses As RoseRT.ClassCollection

Dim theClass As RoseRT.Class

theID=theClasses.theClass.GetUniqueID ()

theClass = theClass.GetwithUniqueID (theID)
Working with Collections 31

Working with Classes

Placing Classes in LogicalPackages
■ To create a new class and place it in a LogicalPackage, you use the AddClass

method.

■ To relocate an existing class from one LogicalPackage to another, use the
RelocateClass method.

Working with Rose RealTime Automation

Whether you are using Rational Rose RealTime Script or Rational Rose RealTime
Automation, you must get the Rational Rose RealTime Application object in order to
control the Rational Rose application.

Using Rational Rose RealTime Script

All Rational Rose RealTime Script programs have a global object called RoseRTApp,
which represents the Rose RealTime Application object.

Using Rational Rose RealTime Automation

To use Rational Rose RealTime as an automation server, you must initialize an
instance of a Rational Rose RealTime application object. You do this by calling either
CreateObject or GetObject (or their equivalents) from within the application you are
using as the OLE controller.

These calls return the OLE Object which implements Rational Rose RealTime API’s
application object.

Refer to the documentation for the application you are using as OLE controller for
details on calling OLE automation objects.
32 Chapter 2 - How To...

Working with the Rational Rose RealTime Script Editor

The Rose RealTime Script Editor provides your environment for creating, debugging,
and compiling scripts that work with the Rose RealTime Extensibility Interface.

The Script Editor Window

As shown in Figure 5, the Script Editor's application window contains the following
elements:

■ Toolbar: a collection of tools that you can use to provide instructions to the Script
Editor

■ Edit pane: a window containing the source code for the script you are currently
editing

■ Watch pane: a window that opens to display the watch variable list after you have
added one or more variables to that list

■ Pane separator: a divider that appears between the edit pane and the watch pane
when the watch pane is open

■ Status bar: displays the current location of the insertion point within your script

Figure 5 Rose RealTime Script Editor
Working with the Rational Rose RealTime Script Editor 33

Opening a Script

To open a script in the Script Editor.

1 Click Open Script from the Tools menu.

2 Select the script to open and select OK.

The script is displayed in a new Script Editor window.

Creating New Rational Rose RealTime Scripts

Creating a New Script from Scratch

To create a new script in the Script Editor.

1 Click New Script from the Tools menu.

2 Enter your script in the new Script Editor window.

3 Enter your script text.

4 Click Save Script from the File menu and save the new script.

Creating a New Script from an Existing Script

To create a new script from an existing script:

1 Click Open Script from the Tools menu.

2 Select a file from the list of available scripts

3 Click OK to enter the Script Editor and display the script.

4 Click Save Scripts from the File menu and save the new script.

Moving the Insertion Point in a Script

There are two ways to move the insertion point in a script:

■ With the mouse

■ By specifying a line number
34 Chapter 2 - How To...

Moving the Insertion Point with the Mouse

Use the following procedure to use the mouse to reposition the insertion point. This
approach is especially fast if the area of the screen to which you want to move the
insertion point is currently visible.

1 Use the scroll bars at the right and bottom of the display to scroll the target area of
the script into view if it is not already visible.

2 Place the mouse pointer where you want to position the insertion point.

3 Click the left mouse button.

The insertion point is repositioned.

Note: When you scroll the display with the mouse, the insertion point remains in its
original position until you reposition it with a mouse click. If you attempt to perform
an editing operation when the insertion point is not in view, the Script Editor
automatically scrolls the insertion point into view before performing the operation.

Moving the Insertion Point to a Specified Line in Your Script

Use the following procedure to jump directly to a specified line in your script. This
approach is especially fast if the area of the screen to which you want to move the
insertion point is not currently visible but you know the number of the target line.

1 Select Goto Line… from the Edit menu.

The Script Editor displays the Goto Line dialog.

Figure 6 Goto Line dialog

2 Enter the number of the line in your script to which you want to move the
insertion point.

3 Click OK button or press ENTER.
Working with the Rational Rose RealTime Script Editor 35

4 The insertion point is positioned at the start of the line you specified. If that line
was not already displayed, the Script Editor scrolls it into view.

Note: The insertion point cannot be moved so far below the end of a script as to scroll
the script entirely off the display. When the last line of your script becomes the first
line on your screen, the script will stop scrolling, and you will be unable to move the
insertion point below the bottom of that screen.

Selecting Text

There are three ways to select text in an open script:

■ With the mouse

■ With the keyboard

■ By selecting an entire line

Selecting Text with the Mouse

To use the mouse to select text in your script:

1 Place the mouse pointer where you want your selection to begin.

2 Do one of the following:

❑ While pressing the left mouse button, drag the mouse until you reach the end
of your selection, and release the mouse button.

❑ While pressing SHIFT, place the mouse pointer where you want your selection
to end and click the left mouse button.

❑ The selected text is highlighted on your display.
36 Chapter 2 - How To...

Figure 7 Selected Scripts Text

Selecting Text with the Keyboard

To use keyboard shortcuts to select text in your script:

1 Place the insertion point where you want your selection to begin.

2 While pressing SHIFT, use one of the navigating keyboard shortcuts to extend the
selection to the desired ending point.

The selected text is highlighted on your display.

Selecting an Entire Line

To use the keyboard to select one or more whole lines in your script:

1 Place the insertion point at the beginning of the line you want to select.

2 Press SHIFT + DOWN ARROW.

The entire line, including the end-of-line character, is selected.

3 To extend your selection to include additional whole lines of text, repeat step 2.
Working with the Rational Rose RealTime Script Editor 37

Deleting, Cutting, Copying, and Pasting Text

Deleting Text

To remove characters, selected text, or entire lines from your script:

■ To remove a single character to the left of the insertion point, press BACKSPACE
once; to remove a single character to the right of the insertion point, press DELETE
once. To remove multiple characters, hold down BACKSPACE or DELETE.

■ To remove text that you have selected, press BACKSPACE or DELETE.

Cutting a Selection

To cut text from your script and place it on the Clipboard, press CTRL+X.

Copying a Selection

To copy text from your script and place it on the Clipboard, press CTRL+C.

Pasting the Contents of the Clipboard into Your Script

To paste the contents of the Clipboard into your script:

1 Position the insertion point where you want to place the contents of the Clipboard.

2 Press CTRL+V.

Adding Comments to a Script

There are two types of comments you can add to a script:

■ Adding a Full-Line Comment

■ Adding a Comment at the End of a Line of Code

Adding a Full-Line Comment

To designate an entire line as a comment:

1 Type an apostrophe (') at the start of the line.

2 Type your comment following the apostrophe.

When your script is run, the presence of the apostrophe at the start of the line will
cause the entire line to be ignored.
38 Chapter 2 - How To...

Adding a Comment at the End of a Line of Code

To designate the last part of a line as a comment:

1 Position the insertion point in the empty space beyond the end of the line of code.

2 Type an apostrophe (').

3 Type your comment following the apostrophe.

When your script is run, the code on the first portion of the line will be executed, but
the presence of the apostrophe at the start of the comment will cause the remainder of
the line to be ignored.

Finding and Replacing Text

Finding Specified Text

To locate instances of specified text quickly anywhere within your script:

1 Move the insertion point to where you want to start your search. (To start at the
beginning of your script, press CTRL+HOME.)

2 Press CTRL+F.

The Script Editor displays the Find dialog:

Figure 8 Find Script Text dialog\

3 In the Find what field, specify the text you want to find or select it from the list of
previous searches.

4 Click Find Next or press ENTER.

The Find dialog remains displayed, and the Script Editor either highlights the first
instance of the specified text or indicates that it cannot be found.
Working with the Rational Rose RealTime Script Editor 39

5 If the specified text has been found, repeat step 4 to search for the next instance of
it.

Note: If the Find dialog blocks your view of an instance of the specified text, you can
move the dialog out of your way and continue with your search. You can also click
Cancel, which removes the Find dialog while maintaining the established search
criteria, and then press F3 to find successive occurrences of the specified text.

Replacing Specified Text

To automatically replace either all instances or selected instances of specified
text:

1 Move the insertion point to where you want to start the replacement operation. (To
start at the beginning of your script, press CTRL+HOME.)

2 Click Replace from the Edit menu.

The Script Editor displays the Replace dialog:

Figure 9 Replace dialog

3 In the Find What field, specify the text you want to replace or select it from the list of
previous searches.

4 In the Replace With field, specify the replacement text or select it from the list of
previous replacements.

5 To replace selected instances of the specified text, click Find Next.

The Script Editor either highlights the first instance of the specified text or
indicates that it cannot be found.

6 If the specified text has been found, either click Replace to replace that instance of it
or click Find Next to highlight the next instance (if any).

Each time you click Replace, the Script Editor replaces that instance of the specified
text and automatically highlights the next instance.
40 Chapter 2 - How To...

Running, Pausing, and Stopping Your Script

Running Your Script

To compile and run your script from within the Script Editor, click Go on the toolbar or
press F5.

The script is compiled (if it has not already been compiled), the focus is switched to
the parent window, and the script is executed.

You can also use the Application Class ExecuteScript method to run scripts. See the
ExecuteScript method for details.

Pausing an Executing Script

To suspend the execution of a script that you are running, press CTRL+BREAK.

Execution of the script is suspended, and the instruction pointer (a gray highlight)
appears on the line of code where the script stopped executing.

Note: The instruction pointer designates the line of code that will be executed next if
you resume running your script.

Stopping an Executing Script

Use the following procedure to stop the execution of a script that you are running.

1 If it is not paused, pause the script.

2 Click StopDebugging tool on the toolbar (or press SHIFT+F5).

Tracing Script Execution

Stepping Through Your Script

To trace the execution of your script with either the StepInto or StepOver
method:

1 Do one of the following:

❑ Click the StepInto or StepOver tool on the toolbar.

❑ Press F11(StepInto) or F10 (StepOver).
Working with the Rational Rose RealTime Script Editor 41

The Script Editor places the instruction pointer on the sub main line of your
script.

Note: When you initiate execution of your script using either of these methods, the
script will first be compiled, if necessary. Therefore, there may be a slight pause
before execution actually begins. If your script contains any compile errors, it will
not be executed. To debug your script, first correct any compile errors, and then
execute it again.

2 To continue tracing the execution of your script, repeat step 1.

3 Each time you repeat step 1, the Script Editor executes the line or the procedure
that contains the instruction pointer and then moves the instruction pointer to the
next line or procedure to be executed.

4 When you finish tracing the execution of your script, either click Go on the toolbar
(or press F5) to run the script at full speed or click Stop Debugging to halt execution
of the script.

Displaying the Calls dialog

When you are stepping through a subroutine, you may need to determine the
procedure calls by which you arrived at that point in your script. Use the following
procedure to use the Calls dialog to obtain this information.

1 Click Calls on the toolbar.

The Script Editor displays the Calls dialog, which lists the procedure calls made by
your script in the course of arriving at the present subroutine.

Figure 10 Script Calls dialog

2 From the Calls dialog, select the name of the procedure you want to view.

3 Click the Show button.

The Script Editor highlights the currently executing line in the procedure you
selected, scrolling that line into view if necessary. (During this process, the
instruction pointer remains in its original location in the subroutine.)
42 Chapter 2 - How To...

Setting and Removing Breakpoints

You set and remove breakpoints in your script as part of the debugging process.

Starting Debugging Partway through a Script

To begin the debugging process at a selected point in your script:

1 Place the insertion point in the line where you want to start debugging.

2 To set a breakpoint on that line, click Toggle Breakpoint on the toolbar (or press F9).

The line on which you set the breakpoint now appears in contrasting type.

3 Click Go on the toolbar (or press F5).

The Script Editor runs your script at full speed from the beginning and then
pauses prior to executing the line containing the breakpoint. It places the
instruction pointer on that line to designate it as the line that will be executed next
when you either proceed with debugging or resume running the script.

Continuing Debugging at a Line Outside the Current Subroutine

To continue debugging at a line that isn't within the same subroutine, use the
following procedure to move the instruction pointer to that line.

1 Place the insertion point in the line where you want to continue debugging.

2 To set a breakpoint on that line, press F9.

3 To run your script, click Go on the toolbar (or press F5).

The script executes at full speed until it reaches the line containing the breakpoint
and then pauses with the instruction pointer on that line. You can now resume
stepping through your script from that point.

Debugging Selected Portions of Your Script

To debug parts of your script, use the following procedure to facilitate the task by
using breakpoints.

1 Place a breakpoint at the start of each portion of your script that you want to
debug.

Note: Up to 255 lines in your script can contain breakpoints.

2 To run the script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the first
breakpoint and then pauses with the instruction pointer on that line.
Working with the Rational Rose RealTime Script Editor 43

3 Step through as much of the code as you need to.

4 To resume running your script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the second
breakpoint and then pauses with the instruction pointer on that line.

5 Repeat steps 3 and 4 until you have finished debugging the selected portions of
your script.

Removing a Single Breakpoint Manually

To delete breakpoints manually one at a time:

1 Place the insertion point on the line containing the breakpoint that you want to
remove.

2 Click Toggle Breakpoint on the toolbar, or press F9.

The breakpoint is removed, and the line no longer appears in contrasting type.

Removing All Breakpoints Manually

To delete all breakpoints manually in a single operation, click Clear All Breakpoints from
the Debugger menu.

Working with Watch Variables

Watch variables allow you to track the changing values of variables in a script.

Adding Watch Variables

To add a variable to the Script Editor's watch variable list:

1 Click Add Watch on the toolbar or press CTRL+F9.

The Script Editor displays the Add Watch dialog.

Figure 11 Add Watch dialog
44 Chapter 2 - How To...

2 Use the controls in the Context box to specify where the variable is defined (locally,
publicly, or privately) and, if it is defined locally, in which routine it is defined.

3 In the Variable Name field, enter the name of the variable you want to add to the
watch variable list.

You can only watch variables of fundamental data types, such as Integer, Long,
Variant, and so on; you cannot watch complex variables such as structures or
arrays. You can, however, watch individual elements of arrays or structure
members.

Use the following syntax to watch individual elements of arrays or structure
members in a script:

[variable [(index,...)] [.member [(index,...)]]...]

Where variable is the name of the structure or array variable, index is a literal
number, and member is the name of a structure member.

For example, the following are valid watch expressions:

Table 1 Sample Watch Expressions

Note: If you are executing the script, you can display the names of all the variables
that are “in scope,” or defined within the current function or subroutine, on the
drop-down Variable Name list and select the variable you want from that list.

4 Click OK or press ENTER.

If this is the first variable you are placing on the watch variable list, the watch pane
opens far enough to display that variable. If the watch pane was already open, it
expands far enough to display the variable you just added.

Note: Although you can add as many watch variables to the list as you want, the
watch pane only expands until it fills half of the Script Editor's application window. If
your list of watch variables becomes longer than that, you can use the watch pane's
scroll bars to bring hidden portions of the list into view.

Watch Variable Description

a(1) Element 1 of array a

person.age Member age of structure person

company(10,23).person.age Member age of structure person that is at element 10,23
within the array of structures called company
Working with the Rational Rose RealTime Script Editor 45

Selecting Variables on the Watch List

In order to delete a variable from the Script Editor's watch variable list or modify the
value of a variable on the list, do one of the following:

■ Place the mouse pointer on the variable you want to select and click the left mouse
button.

■ If one of the variables on the watch list is already selected, use the arrow keys to
move the selection highlight to the desired variable.

■ If the insertion point is in the edit pane, press F6 to highlight the most recently
selected variable on the watch list and then use the arrow keys to move the
selection highlight to the desired variable.

Note: Pressing F6 again returns the insertion point to its previous position in the
edit pane.

Deleting Watch Variables

To delete a selected variable from the Script Editor's watch variable list:

1 Select the variable on the watch list.

2 Click Delete Watch from the Debugger menu, or press DELETE.

Modifying the Value of Variables on the Watch Variable List

When the debugger has control, you can modify the value of any of the variables on
the Script Editor's watch variable list. Use the following procedure to change the
value of a selected watch variable.

1 Place the mouse pointer on the name of the variable whose value you want to
modify and double-click the left mouse button.

2 Select the name of the variable whose value you want to modify and press ENTER
or F2.
46 Chapter 2 - How To...

The Script Editor displays the Modify Variable dialog.

Figure 12 Modify Variable dialog

Note: The name of the variable you selected on the watch variable list appears in
the Name field.

When you use the Modify Variable dialog to change the value of a variable, you don't
have to specify the context. The Script Editor first searches locally for the definition
of that variable, then privately, then publicly.

3 Enter the new value for your variable in the Value field.

4 Click the OK button.

The new value of your variable appears on the watch variable list.

Compiling Your Script

To create compiled script files from your script source:

1 Click Open Script from the Tools menu and select the file that contains the script you
want to compile.

2 Click Compile from the Debugger menu, or press F7.

3 Enter the name of the file in which to save the compiled script and select OK.

The script is compiled and saved in a file with a .ebx extension.

Note: You can also use the Application.CompileScriptFile method to compile scripts.
Check the Extensibility Reference or the Extensibility Online Help for more details.
Working with the Rational Rose RealTime Script Editor 47

Using Interscript Calls

Guidelines for Using a Script to Call Another Script

You can write a script that includes code that calls and executes another script. The
following guidelines apply to this process:

■ You can only call and execute a compiled script from within another script.

■ Use the LoadScript method to load the script into memory.

■ Use the FreeScript to unload the script from memory.

■ Even if you call LoadScript multiple times, the script is only loaded into memory
one time. However, for each LoadScript call you make, you must include a
corresponding FreeScript call. If you do not do this, the script will not be unloaded
from memory.

Debugging Interscript Calls

To debug a script that uses interscript calls:

1 Enter the call to the compiled script you are including and set a breakpoint on the
call.

2 Click StepInto from the Debugger menu.

The Script Editor displays the source code for the compiled script you are calling, and
steps through it line by line.

When the trace of the called script is complete, the Script Editor redisplays the calling
script.

Note: The script you are calling must be compiled with debugging turned on. See
Compiling Your Script, earlier in this chapter, for details.

Working with the Dialog Editor

Inserting a Dialog into Your Script

To insert a dialog into your script:

1 Place the insertion point where you want the BasicScript code for the dialog to
appear in your script.

2 From the Edit menu, click Insert Dialog.
48 Chapter 2 - How To...

The Script Editor's application window is temporarily disabled, and Dialog Editor
appears, displaying a new dialog in its application window.

3 Use the Dialog Editor to create your dialog.

4 Exit and Return from Dialog Editor and return to the Script Editor.

The Script Editor automatically places the code for the dialog in your script at the
location of the insertion point.

Editing an Existing Dialog

To edit an existing dialog template in your script:

1 Select the BasicScript code for the entire dialog template.

2 From the Edit menu, click Edit Dialog.

The Script Editor's application window is temporarily disabled, and Dialog Editor
appears, displaying in its application window a dialog created from the code you
selected.

3 Use the Dialog Editor to modify your dialog.

4 Exit from the Dialog Editor and return to the Script Editor.

The Script Editor automatically replaces the BasicScript code you originally
selected with the revised code generated by the Dialog Editor.

Displaying and Adjusting the Grid

To display and adjust the X and Y settings, which can help you position controls
more precisely within your dialog:

1 Press CTRL+G.

The Dialog Editor displays the following dialog:

Figure 13 Grid Dialog
Working with the Rational Rose RealTime Script Editor 49

2 To display the grid in your dialog, click Show grid.

3 To change the current X and Y settings, enter new values in the X and Y fields.

Note: The values of X and Y in the Grid dialog determine the grid's spacing.
Assigning smaller X and Y values produces a more closely spaced grid, which
enables you to move the mouse pointer in smaller horizontal and vertical
increments as you position controls. Assigning larger X and Y values produces the
opposite effect on both the grid's spacing and the movement of the mouse pointer.
The X and Y settings entered in the Grid dialog remain in effect regardless of
whether you choose to display the grid.

4 Click OK or press ENTER.

The Dialog Editor displays the grid with the settings you specified.

Figure 14 Dialog Edition with Grid Displayed

5 With the grid displayed, line up the crosshairs on the mouse pointer with the dots
on the grid to position controls precisely and align them with respect to other
controls.
50 Chapter 2 - How To...

Changing Titles and Labels

Use the following procedure to change the title of a dialog, as well as the labels of
group boxes, option buttons, push buttons, text controls, and check boxes:

1 Display the Information dialog for the dialog whose title you want to change or for
the control whose label you want to change.

2 Enter the new title or label in the Text$ field.

Note: Dialog titles and control labels are optional. Therefore, you can leave the Text$
field blank.

3 If the information in the Text$ field should be interpreted as a variable name rather
than a literal string, click Variable Name.

4 Click OK or press ENTER.

The new title or label is now displayed on the title bar or on the control.

Assigning Accelerator Keys

To designate a letter from a control's label to serve as the accelerator key for
that control:

1 Display the Information dialog for the control to which you want to assign an
accelerator key.

2 In the Text$ field, type an ampersand (&) before the letter you want to designate as
the accelerator key.

3 Click OK or press ENTER.

The letter you designated is now underlined on the control's label, and users will be
able to access the control by pressing ALT + the underlined letter.

Capturing Standard Windows Dialogs

Use the following procedure to capture the standard Windows controls from any
standard Windows dialog in another application, and insert those controls into the
Dialog Editor for editing:

1 Display the dialog you want to capture.

2 Open the Dialog Editor.

3 Click Capture Dialog from the File menu.
Working with the Rational Rose RealTime Script Editor 51

The Dialog Editor displays a dialog that lists all open dialogs that it is able to
capture:

Figure 15 Capturing a Dialog

4 Select the dialog that you want to capture, then click OK.

Note: The Dialog Editor only supports standard Windows controls and standard
Windows dialogs. Therefore, if the target dialog contains both standard Windows
controls and custom controls, only the standard Windows controls will appear in the
Dialog Editor's application window. If the target dialog is not a standard Windows
dialog, you will be unable to capture the dialog or any of its controls.

Testing Your Dialogs

The Dialog Editor lets you run your edited dialog purposes. When you click Test, your
dialog comes alive, which gives you an opportunity to make sure it functions
properly and fix any problems before you incorporate the dialog template into your
script.

Before you run your dialog, take a moment to look it over for basic problems such as
the following:

■ Does the dialog contain a command button - that is, a default OK or Cancel
button, a push button, or a picture button?

■ Does the dialog contain all the necessary push buttons?

■ Does the dialog contain a Help button if one is needed?

■ Are the controls aligned and sized properly?

■ If there is a text control, is its font set properly?

■ Are the close box and title bar displayed (or hidden) as you intended?

■ Are the control labels and dialog title spelled and capitalized correctly?

■ Do all the controls fit within the borders of the dialog?
52 Chapter 2 - How To...

■ Could you improve the design of the dialog by adding one or more group boxes to
set off groups of related controls?

■ Could you clarify the purpose of any unlabeled control (such as a text box, list box,
combo box, drop list box, picture, or picture button) by adding a text control to
serve as a de facto label for it?

■ Have you made all the necessary accelerator key assignments?

■ After you’ve fixed any elementary problems, you’re ready to run your dialog so
you can check for problems that don’t become apparent until a dialog is activated.

Testing your dialog is an iterative process that involves running the dialog to see how
well it works, identifying problems, stopping the test and fixing those problems, then
running the dialog again to make sure the problems are fixed and to identify any
additional problems, and so forth—until the dialog functions the way you intend.

To test your dialog and fine-tune its performance:

1 Click Run on the toolbar, or press F5, to make the dialog operational.

2 Check the dialog’s functions.

3 To stop the test, click Run, press F5, or double-click the dialog's close box (if it has
one).

4 Make any necessary adjustments to the dialog.

5 Repeat steps 1-4 as many times as you need in order to get the dialog working
properly.

Incorporating Dialogs or Controls into Your Script

You create dialogs and dialog controls in the Dialog Editor. To incorporate them into a
script, you copy them to the Clipboard. When you copy the dialog to the Clipboard, it
is stored in the form of Basic Script statements. You then paste the contents of the
Clipboard into the script.

To incorporate a dialog or control into your script:

1 Select the dialog or control that you want to incorporate into your script.

2 Press CTRL+C.

3 Open your script and paste in the contents of the Clipboard at the desired point.

The dialog template or control is now described in BasicScript statements in your
script, as shown in the following example
Working with the Rational Rose RealTime Script Editor 53

Figure 16 Sample Dialog in Basic Script

Selecting Controls

Do one of the following to select a control in a dialog:

■ With the Pick tool active, place the mouse pointer on the desired control and click
the mouse button.

■ With the Pick tool active, press the TAB key repeatedly until the focus moves to the
desired control.

The control is now surrounded by a thick frame to indicate that it is selected and
you can edit it.

Selecting Dialogs

Do one of the following to select an entire dialog:

■ With the Pick tool active, place the mouse pointer on the title bar of the dialog or on
an empty area within the borders of the dialog (that is, on an area where there are
no controls) and click the mouse button.

■ With the Pick tool active, press the TAB key repeatedly until the focus moves to the
dialog.

The dialog is now surrounded by a thick frame to indicate that it is selected and you
can edit it.
54 Chapter 2 - How To...

Repositioning Items

Repositioning Items with the Mouse

To reposition items in a dialog or control by dragging it with the mouse:

1 With the Pick tool active, place the mouse pointer on an empty area of the dialog or
on a control.

2 Depress the mouse button and drag the dialog or control to the desired location.

Note: The increments by which you can move a control with the mouse are governed
by the grid setting. For example, if the grid's X setting is 4 and its Y setting is 6, you'll
be able to move the control horizontally only in increments of 4 X units and vertically
only in increments of 6 Y units. This feature is handy if you're trying to align controls
in your dialog. If you want to move controls in smaller or larger increments, press
CTRL+G to display the Grid dialog and adjust the X and Y settings.

Repositioning Items with the Arrow Keys

To reposition items in a dialog or control by dragging it with the arrow keys:

1 Select the dialog or control that you want to move.

2 Do one of the following:

➑ Press an arrow key once to move the item by 1 X or Y unit in the desired
direction.

➑ Steadily press an arrow key to “nudge” the item gradually along in the
desired direction.

Note: When you reposition an item with the arrow keys, a faint, partial afterimage of
the item may remain visible in the item's original position. These afterimages are rare
and will disappear once you test your dialog.

Repositioning Dialogs with the Dialog Information Dialog

Use the following procedure to reposition items in a dialog or control by using the
Dialog Information dialog.

1 Display the Information dialog.

Note: For information on displaying the Dialog Information dialog, see Displaying
the Dialog Information dialog, later in this chapter.
Working with the Rational Rose RealTime Script Editor 55

2 Do one of the following:

❑ Change the X and Y coordinates in the Position group box.

❑ Leave the X and/or Y coordinates blank.

3 Click OK or press ENTER.

If you specified X and Y coordinates, the dialog moves to that position. If you left
the X coordinate blank, the dialog will be centered horizontally relative to the
parent window of the dialog when the dialog is run. If you left the Y coordinate
blank, the dialog will be centered vertically relative to the parent window of the
dialog when the dialog is run.

Repositioning Controls with the Dialog Information Dialog

1 Use the following procedure to move a selected control by changing its
coordinates in the Dialog Information dialog for that control.

Note: For information on displaying the Dialog Information dialog, see Displaying
the Dialog Information dialog, later in this chapter.

2 Display the Information dialog for the control that you want to move.

3 Change the X and Y coordinates in the Position group box.

4 Click OK or press ENTER.

The control moves to the specified position.

Resizing Items

Resizing Items with the Mouse

To change the size of a selected dialog or control by dragging its borders or corners
with the mouse:

1 With the Pick tool active, select the dialog or control that you want to resize.

2 Place the mouse pointer over a border or corner of the item.

3 Depress the mouse button and drag the border or corner until the item reaches the
desired size.
56 Chapter 2 - How To...

Resizing Items with the Information Dialog

To change the size of a selected dialog or control by changing its Width or Height
settings in the Information dialog.

1 Display the Information dialog for the dialog or control that you want to resize.

2 Change the Width and Height settings in the Size group box.

3 Click the OK button or press ENTER.

The dialog or control is resized to the dimensions you specified.

Resizing Selected Items Automatically

You can adjust the borders of certain controls automatically to fit the text displayed on
them.

To resize selected controls automatically:

1 With the Pick tool active, select the option button, text control, push button, check
box, or text box that you want to resize.

2 Press F2.

The borders of the control will expand or contract to fit the text displayed on it.

Adding Controls

Use the following procedure to add one or more controls to your dialog using simple
mouse and keyboard methods.

1 From the toolbar, choose the tool corresponding to the type of control you want to
add.

Note: When you pass the mouse pointer over an area of the display where a
control can be placed, the pointer becomes an image of the selected control with
crosshairs (for positioning purposes) to its upper left. The name and position of the
selected control appear on the status bar. When you pass the pointer over an area
of the display where a control cannot be placed, the pointer changes into a circle
with a slash through it (the “prohibited” symbol).

Note: You can only insert a control within the borders of the dialog you are
creating. You cannot insert a control on the dialog's title bar or outside its borders.

2 Place the pointer where you want the control to be positioned and click the mouse
button.
Working with the Rational Rose RealTime Script Editor 57

The control you just created appears at the specified location. (To be more specific,
the upper left corner of the control will correspond to the position of the pointer's
crosshairs at the moment you clicked the mouse button.) The control is
surrounded by a thick frame, which means that it is selected, and it may also have
a default label.

After the new control has appeared, the mouse pointer becomes an arrow, to
indicate that the Pick tool is active and you can once again select any of the
controls in your dialog.

3 To add another control of the same type as the one you just added, press CTRL+D.

A duplicate copy of the control appears.

4 To add a different type of control, repeat steps 1 and 2.

5 To reactivate the Pick tool, do one of the following:

❑ Click the arrow-shaped tool on the toolbar.

❑ Place the mouse pointer on the title bar of the dialog or outside the borders of
the dialog (that is, on any area where the mouse pointer turns into the
“prohibited” symbol) and click the mouse button.

Duplicating Controls

Use the following procedure to use the Dialog Editor's duplicating feature, which
saves you the work of creating additional controls individually if you need one or
more copies of a particular control:

1 Select the control that you want to duplicate.

2 Press CTRL+D.

A duplicate copy of the selected control appears in your dialog.

3 Repeat step 2 as many times as necessary to create the desired number of duplicate
controls.
58 Chapter 2 - How To...

Adding Pictures to a Dialog

You can add pictures to a dialog from a file or from a picture library.

Adding Pictures from Files

Use the following procedure to display a Windows bitmap or metafile from a file on a
picture control or picture button control by using the control's Information dialog to
indicate the file in which the picture is contained.

1 Display the Information dialog for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the Name$ field, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File dialog and
use it to find the file.

4 Click OK or press ENTER.

The picture control or picture button control now displays the picture you
specified.

Adding Pictures from Picture Libraries

Use the following procedure to display a Windows bitmap or metafile from a file on a
picture control or picture button control by using the control's Information dialog to
indicate the file in which the picture is contained.

1 Display the Information dialog for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the Name$ field, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File dialog and
use it to find the file.

4 Click OK or press ENTER.

The picture control or picture button control now displays the picture you
specified.
Working with the Rational Rose RealTime Script Editor 59

Pasting Items into Dialog Editor

Pasting Existing Dialogs into Dialog Editor

If you want to modify a BasicScript dialog template contained in your script, use the
following procedure to select the template and paste it into dialog editor for editing:

1 Copy the entire BasicScript dialog template (from the Begin Dialog instruction
to the End Dialog instruction) from your script to the Clipboard.

2 Open the Dialog Editor.

3 Press CTRL+V.

4 When the Dialog Editor asks whether you want to replace the existing dialog, click
Yes.

The Dialog Editor creates a new dialog corresponding to the template contained
on the Clipboard.

Pasting Controls from Existing Dialogs into Dialog Editor

If you want to modify the BasicScript statements in your script that correspond to one
or more dialog controls, use the following procedure to select the statements and
paste them into Dialog Editor for editing:

1 Copy the BasicScript description of the control(s) from your script to the
Clipboard.

2 Open Dialog Editor.

3 Press CTRL+V.

Dialog Editor adds to your current dialog one or more controls corresponding to
the description contained on the Clipboard.

Displaying the Information Dialogs

There are two types of Information dialogs:

■ Information dialog for Dialogs

■ Information dialog for Controls
60 Chapter 2 - How To...

Displaying the Information Dialogs for Dialogs

Do one of the following to display the Information dialog to check and adjust
attributes that pertain to the dialog as a whole:

■ With the Pick tool active, place the mouse pointer on an area of the dialog where
there are no controls and double-click the mouse button.

■ With the Pick tool active, select the dialog and either click the Information tool on
the toolbar, press ENTER, or press CTRL+I.

The following figure shows the dialog Information dialog:

Figure 17 Dialog Information Dialog

Attributes You Can Adjust with the Dialog Information dialog

The dialog Information dialog can be used to check and adjust the following
attributes, which pertain to the dialog as a whole.

■ Position (optional): X and Y coordinates on the display, in dialog units

■ Size (mandatory): width and height of the dialog, in dialog units

■ Style (optional): options that allow you to determine whether the close box and
title bar are displayed

■ Text$ (optional): text displayed on the title bar of the dialog
Working with the Rational Rose RealTime Script Editor 61

■ Name (mandatory): name by which you refer to this dialog template in your
BasicScript code

■ Function (optional): name of a BasicScript function in your dialog

■ Picture Library (optional): picture library from which one or more pictures in the
dialog are obtained

Displaying the Information Dialogs for Controls

Do one of the following to display the Information dialog for a control to check and
adjust attributes that pertain to that particular control.

■ With the Pick tool active, place the mouse pointer on the desired control and
double-click the mouse button.

■ With the Pick tool active, select the control and either click the Information tool on
the toolbar, press ENTER, or press CTRL+I.

The Dialog Editor displays an Information dialog corresponding to the control you
selected. For example:

Figure 18 Control Information dialog
62 Chapter 2 - How To...

Attributes You Can Adjust with the Information Dialogs for Controls

Control Information dialogs can be used to check and adjust the attributes of the
following controls:

■ Default OK Button Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

❑ Default Cancel Button Information dialog

➑ Position (mandatory): X and Y coordinates within the dialog, in dialog
units.

➑ Size (mandatory): width and height of the control, in dialog units.

➑ Identifier (optional): name by which you refer to a control in your
BasicScript code.

■ Help Button Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ FileName$ (optional): Name of the help file that you want to invoke.

❑ Context& (mandatory): The context ID specifying which help topic to jump to.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

■ Push Button Information dialog.

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Text$ (optional): text displayed on a control.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.
Working with the Rational Rose RealTime Script Editor 63

■ Option Button Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units

❑ Text$ (optional): text displayed on a control.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

❑ Option Group (mandatory): name by which you refer to a group of option
buttons in your BasicScript code.

■ Check Box Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Text$ (optional): text displayed on a control.

❑ Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

■ Group Box Information dialog.

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Text$ (optional): text displayed on a control.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

■ Text Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Text$ (optional): text displayed on a control.

❑ Font (optional): font in which text is displayed.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.
64 Chapter 2 - How To...

■ Text Box Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units

❑ Multiline (optional): option that allows you to determine whether users can
enter a single line of text or multiple lines.

❑ Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

■ List Box Information dialog.

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

❑ Array$ (mandatory): name of an array variable in your BasicScript code.

■ Combo Box Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

❑ Array$ (mandatory): name of an array variable in your BasicScript code.

■ Drop List Box Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Identifier (mandatory): name by which you refer to a control in your
BasicScript code; also contains the result of the control after the dialog has been
processed.

❑ Array$ (mandatory): name of an array variable in your BasicScript code.
Working with the Rational Rose RealTime Script Editor 65

■ Picture Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units.

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

❑ Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library.

❑ Frame (optional): option that allows you to display a 3-D frame.

■ Picture Button Information dialog

❑ Position (mandatory): X and Y coordinates within the dialog, in dialog units.

❑ Size (mandatory): width and height of the control, in dialog units

❑ Identifier (optional): name by which you refer to a control in your BasicScript
code.

❑ Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library.

Opening a Model

OpenModel will always return a model. If OpenModel fails to open the specified
model, it will return the default empty model. To verify that the model you wanted
was opened, use code similar to the following:

Set theModel = theApplication.OpenModel(modelFileName)

If Not theModel.GetFileName () = modelFileName Then

 theApplication.WriteErrorLog "Bad model"

End If
66 Chapter 2 - How To...

Modifying a Property Value

A property is a user-extensible part of the RRTEI that allows name-value pairs to be
attached to every model element. Properties capture information that is specific to a
particular project or add-in.

We will use RRTEI to modify a value for a protocol. For example, the
TypeSafeSignals property on the C++ TargetRTS tab for a Protocol specification
property (C++ Language Add-In). The Property class has the following public
attributes (see the Extensibility Interface Reference for Rational Rose RealTime):

The OverrideProperty operation allows you to modify the value of a property for a
particular element:

OverrideProperty (theToolName : String, thePropName : String,

theValue : String) : Boolean

To use this function, you need to know the tool name, which does not necessarily
match the title on the tab (for example, C++ TargetRTS). To find this information, we
can create a Rose RealTime script that queries a protocol element to find its properties
and their associated tool names. The following subroutine takes a protocol element
and prints all of its properties:

Sub PrintProperties (theProtocol As RoseRT.Protocol)

 Dim allProperties As RoseRT.PropertyCollection

 Dim theProperty As RoseRT.Property

 Set allProperties = theProtocol.GetAllProperties()

 For i = 1 To allProperties.Count

 Set theProperty = allProperties.GetAt(i)

 Print "Name: "; theProperty.Name

 Print Spc(5); "Value: "; theProperty.Value

 Print Spc(5); "ToolName: "; theProperty.ToolName

Name : String Name of the property

ToolName : String A tool can be a programming language tool (such as C++) or a
user-defined Add-in to Rational Rose RealTime. A tool
corresponds to a tab in the property specification; however the
ToolName and the tab title are not always identical.

Type : String Indicates the type of information stored by the property.

Value : String Indicates the value of the property
Modifying a Property Value 67

 Print Spc(5); "Type: "; theProperty.Type

 Next i

End Sub

The output looks similar to the following:

Name: BackwardsCompatible

 Value: False

 ToolName: OT::CppTargetRTS

 Type: Boolean

Name: Version

 Value: 0

 ToolName: OT::CppTargetRTS

 Type: Integer

Name: TypeSafeSignals

 Value: True

 ToolName: OT::CppTargetRTS

 Type: Boolean

You now have all the information required to use the OverrideProperties function.

Note: It is important to use caution when using the OverrideProperties function;
specifying a property name that does not exist causes the creation of a new property
instead of modifying an existing one.

The following subroutine de-selects (un-checks) the TypeSafeSignals box for the
specified protocol:

Sub TurnOffTypeSafeSignals (theProtocol As RoseRT.Protocol)

 If theProtocol.IsModifiable Then

 Print "Changing properties of: "; theProtocol.Name

 If Not theProtocol.OverrideProperty("OT::CppTargetRTS",

 "TypeSafeSignals", "False") Then

 Print "Error modifying the properties of protocol:
";

theProtocol.Name

 End If

 End If

End Sub

Note: The IsModifiable function call is necessary to verify that the model element can
be modified (for example, it was checked out, if necessary, and not read-only).
68 Chapter 2 - How To...

This example illustrates how to modify the TypeSafeSignals property for a protocol
defined by the C++ Language Add-In. However, you can create subroutines to
modify any of the properties available for Rose RealTime Add-Ins. The properties are
not always documented in the online help, but you can use the GetAllProperties
function to determine the name, type, and associated tool for all properties.

For additional information, contact Rational Customer Support.

Setting the Top Capsule of a Component

The TopCapsule field for a component is a property of the specific Language Add-In
used. This property is a structured property which is not thoroughly documented in
the online help.

The following subroutine sets the TopCapsule field for a component given the
component and the capsule:

Sub SetTopCapsule (theComponent As RoseRT.Component, theCapsule As

RoseRT.Capsule)

 ' First add the capsule as a reference if it isn't already

 If theComponent.AssignedClasses.FindFirst(theCapsule.Name) = 0
Then

 If Not theComponent.AssignClass(theCapsule) Then

 MsgBox "Error configuring component."

 Exit Sub

 End If

 End If

toolName$ = "OT::CppExec" 'Modify this for other Language
Add-Ins

 propertyName$ = "TopCapsule"

' If you print out the "TopCapsule"property it looks like this:

 ' [event_ui

 ' description='MyCapsule'

 ' caption='Select...']

 ' "Logical View::MyCapsule" 39B53F390336

 ' This is a structured property, that is, it contains sections

 ' (e.g. event_ui) that contain field names (e.g. description) and

 ' values (for example, MyCapsule). It also contains the model
path

 ' and unique id entry.
Setting the Top Capsule of a Component 69

 ' Since there is no OverrideProperty function that takes a

 ' StructuredProperty, we first have to override the default
property,

 ' get its StructuredPropery, and modify this.

 If Not theComponent.OverrideProperty(toolName, propertyName, "")
Then

 MsgBox "Error configuring component."

 Exit Sub

 End If

 Dim sp As RoseRT.StructuredProperty

 Set sp =
theComponent.GetToolProperties(toolName).GetFirst(propertyName)

 sp.SetFieldValue "event_ui", "description", theCapsule.Name

 sp.SetFieldValue "event_ui", "caption", "Select..."

 Dim fullCapsuleName As String

 fullCapsuleName = """" + theCapsule.GetQualifiedName() + """" + "
" + theCapsule.GetUniqueID()

 sp.SetFieldValue "", "", fullCapsuleName

End Sub

The following script illustrates how to use the SetTopCapsule subroutine (described
above). This script creates components for all the capsules in the model, and puts
them in to a component package called ComponentsForAll.

Dim theModel As RoseRT.Model

Sub SetTopCapsule (theComponent As RoseRT.Component, theCapsule As

RoseRT.Capsule)

 ' First add the capsule as a reference if it isn't already

 If theComponent.AssignedClasses.FindFirst(theCapsule.Name) = 0
Then

 If Not theComponent.AssignClass(theCapsule) Then

 MsgBox "Error configuring component."

 Exit Sub

 End If

 End If

 toolName$ = "OT::CppExec" 'Modify this for other Language
Add-Ins

 propertyName$ = "TopCapsule"

 ' If you print out the "TopCapsule"property it looks like this:

 ' [event_ui

 ' description='MyCapsule'

 ' caption='Select...']

 ' "Logical View::MyCapsule" 39B53F390336

 ' This is a structured property, that is, it contains sections

 ' (e.g. event_ui) that contain field names (e.g. description) and

 ' values (e.g. MyCapsule). It also contains the model path

 ' and unique id entry.

 ' Since there is no OverrideProperty function that takes a

 ' StructuredProperty, we first have to override the default
property,

 ' get its StructuredPropery, and modify this.

 If Not theComponent.OverrideProperty(toolName, propertyName, "")
Then

 MsgBox "Error configuring component."

 Exit Sub

 End If

 Dim sp As RoseRT.StructuredProperty

 Set sp =
theComponent.GetToolProperties(toolName).GetFirst(propertyName)

 sp.SetFieldValue "event_ui", "description", theCapsule.Name

 sp.SetFieldValue "event_ui", "caption", "Select..."

 Dim fullCapsuleName As String

 fullCapsuleName = """" + theCapsule.GetQualifiedName() + """" + "
" +

theCapsule.GetUniqueID()

 sp.SetFieldValue "", "", fullCapsuleName

End Sub

Sub myCreateComponent (thisCapsule As RoseRT.Capsule)
Setting the Top Capsule of a Component 71

 ' local strings

 ComponentsForAll$ = "ComponentsForAll"

 ' for retrieving the component

 Dim myComponent As RoseRT.Component

 Dim myComponents As RoseRT.ComponentCollection

 Dim theComponentPackages As RoseRT.ComponentPackageCollection

 Dim myComponentPackage As RoseRT.ComponentPackage

 ' set up Package for Components created with script if it does
not exist.

 Set theComponentPackages =
theModel.RootComponentPackage.GetAllComponentPack

ages()

 i = theComponentPackages.FindFirst(ComponentsForAll)

 If i = 0 Then

 Set myComponentPackage =
theModel.RootComponentPackage.AddComponentPacka

ge (ComponentsForAll)

 Else

 Set myComponentPackage = theComponentPackages.GetAt(i)

 End If

 ' add component if it does not already exist

 Set myComponents = myComponentPackage.GetAllComponents()

 i = myComponents.FindFirst(thisCapsule.Name)

 If i = 0 Then

 Set myComponent =
myComponentPackage.AddComponent(thisCapsule.Name)

 SetTopCapsule myComponent, thisCapsule

 End If

End Sub

Sub Main

 Dim theCapsules As RoseRT.CapsuleCollection

 Dim myCapsule As RoseRT.Capsule
72 Chapter 2 - How To...

 Set theModel = RoseRTApp.CurrentModel

 ' retrieve the capsules

 Set theCapsules = theModel.GetAllCapsules ()

 For i = 1 To theCapsules.Count

 Set myCapsule = theCapsules.GetAt (i)

 ' the next if statement is to avoid creating

 ' components that reference capsules not owned

 ' by the Model (i.e. in RTClasses)

 If myCapsule.isOwned Then

 myCreateComponent myCapsule

 End If

 Next i

End Sub

For additional information, contact Rational Customer Support.
Setting the Top Capsule of a Component 73

74 Chapter 2 - How To...

3Rational Rose RealTime
Extensibility Interface
Reference
Contents

This chapter is organized as follows:

■ Logical Package Structure on page 80
■ Application Classes on page 81
■ AddIn on page 86
■ Application on page 93
■ ContextMenuItem on page 122
■ MenuState on page 123
■ PathMap on page 124
■ RsMenuState on page 127
■ Workspace on page 128
■ Extensibility Classes on page 130
■ Collection on page 131
■ RoseBase on page 139
■ RRTEIObject on page 140
■ RichTypes on page 141
■ RichType on page 142
■ RichTypeValuesCollection on page 144
■ Model Classes on page 145
■ Component View Classes on page 145
■ Component on page 149
■ ComponentPackage on page 170
■ Core Model Classes on page 178
■ ControllableElement on page 184
■ DefaultModelProperties on page 194
■ Element on page 204
■ ExternalDocument on page 215
■ Model on page 218
■ ModelElement on page 236
■ Package on page 239
■ Property on page 243
■ RsExternalDocumentType on page 244
■ StructuredProperty on page 244
75

■ Deployment View Classes on page 246
■ ComponentInstance on page 249
■ DeploymentPackage on page 252
■ Device on page 258
■ Processor on page 262
■ Logical View Classes on page 267
■ LogicalPackage on page 269
■ Association Classes on page 288
■ Association on page 290
■ AssociationEnd on page 294
■ AssociationEndContainment on page 298
■ AssociationEndVisibilityKind on page 299
■ Classifier Classes on page 299
■ Capsule on page 303
■ Class on page 304
■ ClassConcurrency on page 310
■ ClassKind on page 310
■ Classifier on page 310
■ ClassifierVisibilityKind on page 327
■ Parameter on page 328
■ Protocol on page 329
■ RsClassKind on page 332
■ RsConcurrency on page 334
■ Signal on page 335
■ Feature Classes on page 336
■ Attribute on page 338
■ AttributeContainment on page 340
■ AttributeVisibilityKind on page 340
■ Operation on page 340
■ OperationConcurrency on page 345
■ OperationVisibilityKind on page 345
■ OwnerScope on page 346
■ RsOwnerScope on page 346
■ Collaboration Classes on page 347
■ AssociationEndRole on page 350
■ AssociationRole on page 351
■ CapsuleRole on page 352
■ CapsuleStructure on page 353
■ ClassifierRole on page 356
■ Collaboration on page 358
■ Connector on page 364
76 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ Genericity on page 367
■ Port on page 367
■ PortRole on page 369
■ PortVisibilityKind on page 370
■ RegistrationMode on page 370
■ RsGenericity on page 370
■ RsRegistrationMode on page 371
■ Common Logical View Enumerations on page 372
■ RsContainment on page 372
■ RsVisibilityKind on page 373Interaction Classes on page 374
■ Interaction Classes on page 374
■ Environment on page 376
■ Interaction on page 376
■ InteractionInstance on page 382
■ Message on page 385
■ MessageEnd on page 386
■ RsActionKind on page 387
■ State Machine Classes on page 387
■ RsSourceRegionType on page 388
■ SourceRegionType on page 389
■ StateMachine on page 389
■ Transition on page 390
■ Action Classes on page 393
■ Action on page 396
■ ActionMode on page 398
■ CallAction on page 399
■ Coregion on page 399
■ CreateAction on page 401
■ DestroyAction on page 401
■ LocalState on page 402
■ ReplyAction on page 402
■ RequestAction on page 402
■ ResponseAction on page 403
■ ReturnAction on page 404
■ RsActionMode on page 404
■ RsSendActionPriority on page 405
■ SendAction on page 406
■ SendActionPriority on page 407
■ TerminateAction on page 407
■ UninterpretedAction on page 407
■ Event Classes on page 407
77

■ Event on page 409
■ EventGuard on page 409
■ PortEvent on page 411
■ ProtocolRoleEvent on page 415
■ State Classes on page 416
■ ChoicePoint on page 418
■ CompositeState on page 419
■ FinalState on page 424
■ InitialPoint on page 425
■ JunctionContinuationMode on page 425
■ JunctionPoint on page 425
■ RsJunctionContinuationMode on page 427
■ RsStateKind on page 427
■ StateKind on page 428
■ StateVertex on page 429
■ Relation Classes on page 431
■ ClassDependency on page 433
■ ClassRelation on page 434
■ ComponentDependency on page 435
■ Generalization on page 436
■ GeneralizationVisibilityKind on page 438
■ InstantiateRelation on page 438
■ LogicalPackageDependency on page 439
■ RealizeRelation on page 440
■ Relation on page 442
■ UsesRelationVisibilityKind on page 444
■ Use Case View Classes on page 444
■ UseCase on page 445
■ View Classes on page 450
■ AnchorNoteView on page 453
■ Diagram on page 454
■ NoteView on page 464
■ RsNoteViewType on page 466
■ RsStereotypeDisplay on page 466
■ StereotypeDisplay on page 467
■ ViewElement on page 467
■ Class Diagram Classes on page 475
■ CapsuleView on page 477
■ ClassDiagram on page 477
■ ClassView on page 490
■ ClassifierView on page 490
78 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ ProtocolView on page 492
■ Collaboration Diagram Classes on page 493
■ CapsuleRoleView on page 494
■ CollaborationDiagram on page 496
■ PortRoleView on page 499
■ PortView on page 500
■ StructurePerimeterView on page 500
■ Component Diagram Classes on page 501
■ ComponentDiagram on page 502
■ ComponentPackageView on page 508
■ ComponentView on page 509
■ Deployment Diagram Classes on page 509
■ DeploymentDiagram on page 510
■ Sequence Diagram Classes on page 513
■ ClassifierRoleView on page 514
■ CreateMessageView on page 514
■ InteractionInstanceView on page 515
■ LifeLineView on page 515
■ MessageView on page 516
■ SequenceDiagram on page 516
■ State Diagram Classes on page 517
■ BranchPointView on page 519
■ ChoicePointView on page 519
■ CompositeStateView on page 521
■ CoregionView on page 522
■ FinalStateView on page 522
■ InitialPointView on page 523
■ JunctionAdornmentView on page 523
■ JunctionPointView on page 524
■ LocalStateOrActionView on page 525
■ StateDiagram on page 525
■ StatePerimeterView on page 527
■ View Property Classes on page 528
■ LineVertex on page 529
■ View_FillColor on page 530
■ View_Font on page 531
■ View_LineColor on page 532
79

Logical Package Structure

The logical package structure is as follows:

Logical View

Application Classes on page 81

Extensibility Classes on page 130

RichTypes on page 141

Model Classes on page 145

Component View Classes on page 145

Core Model Classes on page 178

Deployment View Classes on page 246

Logical View Classes on page 267

Association Classes on page 288

Classifier Classes on page 299

Feature Classes on page 336

Collaboration Classes on page 347

Common Logical View Enumerations on page 372

Interaction Classes on page 374

State Machine Classes on page 387

Action Classes on page 393

Event Classes on page 407

State Classes on page 416

Relation Classes on page 431

Use Case View Classes on page 444

View Classes on page 450

Class Diagram Classes on page 475

Collaboration Diagram Classes on page 493

Component Diagram Classes on page 501

Deployment Diagram Classes on page 509
80 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Sequence Diagram Classes on page 513

State Diagram Classes on page 517

View Property Classes on page 528

Application Classes

Application classes include the following:

AddIn on page 86

■ Public Attributes

CompanyName : String on page 86

Copyright : String on page 86

EventHandler : Object on page 86

FundamentalTypes : StringCollection on page 86

HelpFilePath : String on page 87

InstallDirectory : String on page 87

MenuFilePath : String on page 87

Name : String on page 87

PropertyFilePath : String on page 87

RootRegistryPath : String on page 87

ServerName : String on page 87

ToolNames : StringCollection on page 88

Version : String on page 88

Activate () : on page 88

AddContextMenuItemForClass (itemType : String, fullCaption : String, internalName :
String) : ContextMenuItem on page 88

Deactivate () : on page 89

ExecuteScript (FileName : String) : on page 89

GetContextMenuItemsForClass (itemType : String) : ContextMenuItemCollection on
page 90
Application Classes 81

IsActive () : Boolean on page 90

IsLanguageAddIn () : Boolean on page 90

IsRTAddIn () : Boolean on page 91

ReadSetting (Section : String, Entry : String, Default : String) : String on page 91

WriteSetting (Section : String, Entry : String, Value : String) : Boolean on page 92

AddInManager on page 93

■ Public Attributes

AddIns : AddInCollection on page 93

Application on page 93

■ Public Attributes

AddInManager : AddInManager on page 94

ApplicationPath : String on page 94

BrowserVisible : Boolean on page 94

CommandLine : String on page 94

CurrentModel : Model on page 94

CurrentWorkspace : Workspace on page 94

Height : Integer on page 95

Left : Integer on page 95

PathMap : PathMap on page 95

ProductName : String on page 95

Top : Integer on page 95

Version : String on page 95

Visible : Boolean on page 95

Width : Integer on page 96

■ Public Operations

Add (pElements : ControllableElementCollection, addDirsToo : Boolean, comment : String)
: Boolean on page 96
82 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddDir (pElements : ControllableElementCollection, comment : String) : Boolean on
page 97

Browse (pElement : Element, pContext : ModelElement, nLineNumber : Integer) on
page 98

CheckIn (pElements : ControllableElementCollection, comment : String) : Boolean on
page 99

CheckInDir (pElements : ControllableElementCollection, comment : String) : Boolean on
page 100

CheckOut (pElements : ControllableElementCollection) : Boolean on page 101

CompileScriptFile (FileName : String, BinaryName : String, bDebug : Boolean) : on
page 101

CreateCollection () : Collection on page 102

ExecuteScript (pFileName : String) : on page 103

Exit () : on page 103

FreeScript (Parameter1 : String) : on page 103

Get (pElements : ControllableElementCollection) : Boolean on page 104

GetLicensedApplication (theKey : String) : Application on page 105

GetObject () : Object on page 105

GetProfileString (Section : String, Entry : String, Default : String) : String on page 106

IsSourceControlEnabled () : Boolean on page 107

LoadScript (Parameter1 : String) : on page 107

NewModel () : Model on page 108

NewScript () : on page 108

OpenExternalDocument (FileName : String) : Boolean on page 109

OpenModel (theModel : String) : Model on page 109OpenModelAsTemplate (szFileName
: String) : Model on page 110

OpenModelAsTemplate (szFileName : String) : Model on page 110

OpenScript (FileName : String) : on page 110

OpenURL (theURL : String) : Boolean on page 111

OpenWorkspace (FileName : String) : Workspace on page 111
Application Classes 83

RefreshStatus (pElements : ControllableElementCollection) : Boolean

ReportCodeSync (ocModelElements : Collection, ocContextElements : Collection,
ocReplaceStrings : StringCollection) on page 113

Save (bSaveUnits : Boolean) : on page 113

SaveAs (theFile : String, bSaveUnits : Boolean) : on page 114

SaveGenerationResultsAs (filename : String) : Boolean on page 115

SaveLogAs on page 115

SaveWorkspace () : on page 116

SaveWorkspaceAs (FileName : String) : on page 116

SelectObjectsInBrowsers (theObjects : Collection) : on page 117

SetBuildSettings (ShowWarnings : Boolean, VerifyConnectorCardinality : Boolean,
VerifyBranchTransitions : Boolean, VerifyDeadUnreachableStates : Boolean,
VerifyUntriggeredTransitions : Boolean) : on page 117

UnCheckOut (pElements : ControllableElementCollection) : Boolean on page 118

WriteBuildError (strError : String, pElement : Element, nLineNumber : Integer,
bIsWarning : Boolean) : on page 119

WriteBuildOutput (strMessage : String) : on page 120

WriteErrorLog (theMsg : String) : on page 120

WriteErrorLogEx (pszMessage : String, pModelElement : ModelElement, bIsWarning :
Boolean) : on page 121

WriteProfileString (Section : String, Entry : String, Value : String) : Boolean on page 121

ContextMenuItem on page 122

■ Public Attributes

Caption : String on page 123

InternalName : String on page 123

MenuID : Integer on page 123

MenuState : MenuState on page 123

MenuState

■ PathMap on page 124
84 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ Public Operations

AddEntry (Symbol : String, Path : String, Comment : String) : Boolean on page 124

DeleteEntry (Symbol : String) : Boolean on page 125

Get Actual Path (VirtualPath : String) : String

GetObject () : Object on page 126

GetVirtualPath (ActualPath : String) : String on page 126

HasEntry (Symbol : String) : Boolean on page 127

■ RsMenuState on page 127

❑ Public Attributes

rsDisabled : Integer = 0 on page 128

rsDisabledAndChecked : Integer = 2 on page 128

rsDisabledAndUnchecked : Integer = 3 on page 128

rsDisabledRadioChecked : Integer = 100 on page 128

rsDisabledRadioUnchecked : Integer = 102 on page 128

rsEnabled : Integer = 1 on page 128

rsEnabledAndChecked : Integer = 4 on page 128

rsEnabledAndUnchecked : Integer = 5 on page 128

rsEnabledRadioChecked : Integer = 101 on page 128

rsEnabledRadioUnchecked : Integer = 103 on page 128

Workspace on page 128

■ Public Operations

GetAddInProfileString (theAddIn : AddIn, Entry : String, Default : String) : String on
page 128

WriteAddInProfileString (theAddIn : AddIn, Entry : String, Value : String) :
Boolean
Application Classes 85

AddIn

Description

AddIn class attributes and operations describe and control the characteristics of the
AddIns that are part of the currently active Rational Rose RealTime application.

For example, you can

■ Find out whether an AddIn is active

■ Activate or deactivate an AddIn

■ Define the path to the AddIn’s menu, property, and help files

■ Execute scripts that are specific to the AddIn

Check the lists of attributes and operations for complete information.

Derived from RRTEIObject

Public Attributes

CompanyName : String

Description

Specifies the name of the Company that created the AddIn.

Copyright : String

Description

Specifies copyright information for the AddIn.

EventHandler : Object

Description

Specifies an instance of a custom OLE object implemented by the AddIn developer to
provide access to the AddIn from other applications.

FundamentalTypes : StringCollection

Description

Specifies the collection of Fundamental Types that are specific to this AddIn.
86 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

HelpFilePath : String

Description

Specifies the path to the AddIn’s help file.

InstallDirectory : String

Description

Directory in which the AddIn’s executable is installed.

MenuFilePath : String

Description

Specifies the path to the AddIn’s menu file.

Name : String

Description

Name of the AddIn.

PropertyFilePath : String

Description

Specifies the path to the AddIn’s property file.

RootRegistryPath : String

Description

Specifies the complete registry tree path (from the root) that allows access to the
registry entries for this AddIn.

ServerName : String

Description

Specifies the OLE class name that corresponds to the AddIn’s EventHandler object.
AddIn 87

ToolNames : StringCollection

Description

Specifies the collection of tool names belonging to the AddIn. (Each tool defines its
own property sets and corresponds to a tab in the property specification dialog.)

Version : String

Description

Specifies the version number of the AddIn.

Public Operations

Activate () :

Description

Activates the specified AddIn.

Syntax

theAddIn.Activate

theAddIn As RoseRT.AddIn

AddIn to activate.

AddContextMenuItemForClass (itemType : String, fullCaption : String,
internalName : String) : ContextMenuItem

Description

Creates and adds the specified ContextMenuItem to the RoseRT shortcut menu.

Syntax

Set theCntxMenuItem = theAddin.AddContextMenuItem(className,
fullCaption, internalName)

Parameters

■ className - string indicating the type of model element that is in context when the
menu option is added to the shortcut menu

■ fullCaption - string indicating the caption to display when for the menu option
88 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ internalName - string indicating the name that the item is referenced by in
automation

Returns:

A new ContextMenuItem reference to the created item

Deactivate () :

Description

Deactivates the specified AddIn.

Syntax

theAddIn.Deactivate

theAddIn As RoseRT.AddIn

AddIn to deactivate.

ExecuteScript (FileName : String) :

Description

Executes the source or compiled image of a script that resides in the AddIn’s install
directory. This subroutine executes the source or compiled image of a script contained
the specified file. You can specify the file without its extension. If the script is
currently open in the script editor, Rational Rose RealTime will execute the open
script. Otherwise, Rational Rose RealTime will search for the source script (.ebs) and
execute it, if found. If not found, Rational Rose RealTime will search for and execute
the compiled script (.ebx file).

Syntax

theAddIn.ExecuteScript FileName

theAddIn As RoseRT.AddIn

AddIn in which the script is being executed.

FileName As String

File that contains the script to be executed.
AddIn 89

GetContextMenuItemsForClass (itemType : String) :
ContextMenuItemCollection

Description

Returns a collection of context menu items based on the requested class.

Syntax

Set theItemCollection = =
theAddin.GetContextMenuItemsForClass(itemType)

Parameters

■ itemType — string indicating the model element that we want to extract the
context menu items for

IsActive () : Boolean

Description

Determines whether the specified AddIn is currently active.

Syntax

IsActive = theAddIn.IsActive ()

IsActive As Boolean

Returns a value of True if the specified AddIn is currently active.

theAddIn As RoseRT.AddIn

AddIn being checked.

IsLanguageAddIn () : Boolean

Description

Determines whether the specified AddIn is a programming language.

Syntax

IsLanguage = theAddIn.IsLanguageAddIn ()

IsLanguage As Boolean
90 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True if the specified AddIn is a programming language.

theAddIn As RoseRT.AddIn

AddIn being checked.

IsRTAddIn () : Boolean

Description

Function that determines whether an AddIn is a Rational Rose RealTime specific
AddIn.

Syntax

IsRTAddIn = theAddIn.IsRTAddIn()

IsRTAddIn As Boolean

Returns a value of True if the specified AddIn is a Rational Rose RealTime specific
AddIn.

theAddin As RoseRT.AddIn

The instance of AddIn tested as a Rational Rose RealTime AddIn.

ReadSetting (Section : String, Entry : String, Default : String) : String

Description

Retrieves a registry setting for this AddIn.

Syntax

theString = theAddIn.ReadSetting (Section, Entry, Default)

theString As String

Returns the actual value of registry setting given its section, entry, and default value.
If no corresponding entry exists, returns the specified default value.

theAddIn As RoseRT.AddIn
AddIn 91

The AddIn whose registry entry is being retrieved.

theSection As String

Section name of the registry entry. For example: PathMap.

theEntry As String

Name of the entry. For example: $SCRIPT_PATH.

theDefault As String

Default value of the entry.

WriteSetting (Section : String, Entry : String, Value : String) : Boolean

Description

Creates a registry entry for this AddIn.

Syntax

IsWritten = theAddIn.WriteSetting (Section, Entry, Value)

IsWritten As Boolean

Returns a value of True when the entry is successfully added to the registry.

theAddIn As RoseRT.AddIn

AddIn for which the registry setting is being created.

theSection As String

User-defined section name for the custom entry.

theEntry As String

User-defined entry name.

theValue As String
92 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

User-defined default value for the custom entry.

AddInManager

Description

The AddInManager class has a single attribute, the AddIns attribute, which contains
the collection of AddIns available to the currently active Rational Rose RealTime
executable. The AddInManager class inherits all RRTEIObject operations, but has no
operations of its own.

Derived from RRTEIObject

Public Attributes

AddIns : AddInCollection

Description

Specifies the collection of AddIns managed by the RoseAddInManager

Application

Description

Use the application class to

■ Create a new model

■ Select an existing model as the current model

■ Determine the characteristics of the Rational Rose RealTime application being
controlled by your script

Here are a few of the application characteristics you can control with application class
attributes and operations:

■ How (and if) the Rational Rose RealTime application appears on the computer
screen while the script is running

■ The size and position of the Rational Rose RealTime application window

■ Whether to write errors to the error log
AddInManager 93

Derived from RoseBase

Public Attributes

AddInManager : AddInManager

Description

Specifies the Rose AddIn Manager belonging to the currently active Rational Rose
RealTime executable.

ApplicationPath : String

Description

Specifies the path to the Rational Rose RealTime application to execute.

BrowserVisible : Boolean

Description

Controls whether the Rational Rose RealTime application is visible on the computer
screen.

CommandLine : String

Description

Returns the command line option string that is passed when the Rose executable is
run.

CurrentModel : Model

Description

Specifies the model that is currently open in Rational Rose RealTime.

CurrentWorkspace : Workspace

Description

Specifies the workspace that is currently open in Rational Rose RealTime.
94 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Height : Integer

Description

Specifies the height of the main window.

Left : Integer

Description

Specifies the distance between the left side of the main window and the left side of the
screen.

PathMap : PathMap

Description

Returns the path map defined for the current Rose application.

ProductName : String

Description

Returns the product name for the currently active Rose RealTime application.

Top : Integer

Description

Specifies the distance between the top of the main window and top of the screen.

Version : String

Description

Returns the version of the currently active Rose RealTime application. Corresponds to
the information provided when you select About from the Help menu in Rose
RealTime.

Visible : Boolean

Description

Controls whether the Rose RealTime application is visible on the computer screen.
Application 95

Width : Integer

Description

Specifies the width of the main window.

Public Operations

Add (pElements : ControllableElementCollection, addDirsToo : Boolean,
comment : String) : Boolean

Description

Adds a collection of ControllableElement to Source Control.

Syntax

Added = theApplication.Add(pElements, AddDirsToo, comment)

Added As Boolean

Returns a value of True if Controllable Elements in pElements Collection were added
successfully to Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to add to Source Control.

AddDirsToo As Boolean

Always False. Reserved for future use.

comment As String

Comments to provide to Source Control server for the operation.
96 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.Add(theCECollection, True, "My Add Comment")

Set theCECollection = Nothing

AddDir (pElements : ControllableElementCollection, comment : String) :
Boolean

Description

Adds the directories associated with a collection of Controllable Elements to source
control. This only applies to Packages. The only circumstance under which this is
needed is when a model is placed under source control without all elements
controlled. In this situation, the model's directory is not source controlled. If the
model is subsequently controlled, then the model's directory must be added to source
control before any of the model's child elements can be added to source control.

Syntax

Added = theApplication.AddDir(pElements, comment)

Added As Boolean

Returns a value of True if the directories associated with the Controllable Elements in
pElements Collection were added successfully to Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to add to

Source Control.

comment As String
Application 97

Comments to provide to Source Control server for the operation.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.AddDir(theCECollection, "My AddDir Comment")

Set theCECollection = Nothing

Browse (pElement : Element, pContext : ModelElement, nLineNumber :
Integer)

Description

Opens the diagram & spec sheet corresponding to the given model element & context.

Syntax

theApplication.Browse(pElement, pContext, nLineNumber)

theApplication As RoseRT.Application

The running instance of Application.

pElement As RoseRT.Element

The element to browse to.

pContext As RoseRT.ModelElement

The context of the given element.

nLineNumber As Integer

The line of code to highlight. (if appropriate).
98 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CheckIn (pElements : ControllableElementCollection, comment : String) :
Boolean

Description

CheckIn a collection of ControllableElement in Source Control.

Syntax

CheckedIn = theApplication.CheckIn(pElements, comment)

CheckedIn As Boolean

Returns a value of True if Controllable Elements in pElements Collection were
checked in successfully to Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to checkin in Source Control.

comment As String

Comments to provide to Source Control server for the operation.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.CheckIn(theCECollection, "My CheckIn Comment")

Set theCECollection = Nothing
Application 99

CheckInDir (pElements : ControllableElementCollection, comment :
String) : Boolean

Description

CheckIn directories used for child controllable element storage of a collection of
ControllableElement's in Source Control.

Syntax

CheckedChildDirIn = theApplication.CheckInDir(pElements, comment)

CheckedIn As Boolean

Returns a value of True if the child directory of Controllable Elements in pElements
Collection were checked in successfully to Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements whose child directory are to be
checked in Source Control.

comment As String

Comments to provide to Source Control server for the operation.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.CheckInDir(theCECollection, "My CheckIn Comment")

Set theCECollection = Nothing
100 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CheckOut (pElements : ControllableElementCollection) : Boolean

Description

CheckOut a collection of ControllableElement from Source Control.

Syntax

CheckedOut = theApplication.CheckOut(pElements)

CheckedOut As Boolean

Returns a value of True if Controllable Elements in pElements Collection were
checked out successfully from Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to checkout from Source Control.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.CheckOut(theCECollection)

Set theCECollection = Nothing

CompileScriptFile (FileName : String, BinaryName : String, bDebug :
Boolean) :

Description

Compiles the script contained in the specified file.

Syntax

theApplication.CompileScriptFile theFileName, theBinaryName, Debug
Application 101

theApplication As RoseRT.Application

Instance of the Rose application in which the script is being compiled.

theFileName As String

Name of the file that contains the script being compiled; include the .ebs file
extension.

theBinaryName As String

Name of the binary file in which to save the compiled script; use the .ebx file
extension.

Debug As Boolean

Set to True to embed the script’s source code in the compiled file. This allows the
script debugger to display the source code when it enters external modules.

CreateCollection () : Collection

Description

Returns a new empty generic collection.

Syntax

Set theCollection = theApplication.CreateCollection()

theCollection As RoseRT.Collection

Newly created generic empty collection.

theApplication As RoseRT.Application

Instance of the Rose RealTime application owning the returned collection.
102 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ExecuteScript (pFileName : String) :

Description

Executes the source or compiled image of a script contained the specified file. You can
specify the file without its extension. If the script is currently open in the script editor,
Rose RealTime will execute the open script. Otherwise, Rose RealTime will search for
the source script (.ebs) and execute it, if found. If not found, Rose RealTime will search
for and execute the compiled script (.ebx file).

Syntax

theApplication.ExecuteScript theFileName

theApplication As RoseRT.Application

Instance of the Rose application in which the script is being executed.

theFileName As String

Name of the file that contains the script to execute.

Exit () :

Description

Exits the Rose RealTime application.

Syntax

theApplication.Exit

theApplication As RoseRT.Application

Instance of the Rose application being exited.

FreeScript (Parameter1 : String) :

Description

Unloads the source or compiled image of a script contained in the specified file.
Specify the file without its extension and Rose RealTime frees the source script (.ebs),
if found. If not found, Rose RealTime frees the compiled script (.ebx file).
Application 103

Notes

■ This subroutine is only valid for Rose Script; it does not exist in Rose RealTime
Automation

■ Every LoadScript call should have a subsequent FreeScript call. See LoadScript
Method for more information.

Syntax

theApplication.FreeScript theFileName

theApplication As RoseRT.Application

Instance of the Rose RealTime from which the script is being unloaded.

theFileName As String

The name of the file that contains script to unload. Do not specify a file extension.

Get (pElements : ControllableElementCollection) : Boolean

Description

Get a collection of ControllableElement from Source Control.

Syntax

GetDone = theApplication.Get(pElements)

GetDone As Boolean

Returns a value of True if Controllable Elements in pElements Collection were Get
successfully to Source Control.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to get from Source Control.
104 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.Get(theCECollection)

Set theCECollection = Nothing

GetLicensedApplication (theKey : String) : Application

Description

Retrieves an instance of the licensed application given the application’s licensing key.

Syntax

Set theInstance = theApplication.GetLicensedApplication (theKey)

theInstance As RoseRT.Application

Returns the instance of the licensed application.

theApplication As RoseRT.Application

Currently active application.

theKey As String

Licensing key for the application being retrieved.

GetObject () : Object

Description

Retrieves the OLE automation interface object associated with the specified
application.

Note: This operation is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.
Application 105

Syntax

Set theOLEObject = theApplication.GetObject ()

theOLEObject As RoseRT.Object

Returns the OLE automation interface object associated with the application.

theApplication As RoseRT.Application

Instance of the Rose application whose OLE automation interface object is being
returned.

GetProfileString (Section : String, Entry : String, Default : String) : String

Description

Retrieves a profile string entry in the RoseRT.ini file, given a section, entry, and default
value.

Syntax

Set theProfileString = theApplication.GetProfileString (theSection,
the Entry, theDefault)

theProfileString As String

Returns the profile string that corresponds to the given section, entry, and default
value.

theApplication As RoseRT.Application

Currently active application and therefore the application whose RoseRT.ini file entry
is being retrieved.

theSection As String

Name of the RoseRT.ini file section from which the profile string is being retrieved.
For example: [PathMap]

theEntry As String

The name of the RoseRT.ini file entry whose profile string is being retrieved. For
example: $SCRIPT_PATH
106 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDefault As String

Default value of the entry being retrieved. In the [PathMap] $SCRIPT_PATH example,
the default value is the path to the folder that contains the scripts being called by the
application.

IsSourceControlEnabled () : Boolean

Description

Determines whether Source Control is enabled for the current Workspace.

Syntax

SourceControlEnabled = theApplication.IsSourceControlEnabled()

SourceControlEnabled As Boolean

Returns a value of True if Source Control is enabled for the current Workspace.

theApplication As RoseRT.Application

The running instance of Application.

LoadScript (Parameter1 : String) :

Description

Loads the source or compiled image of a script contained in the specified file. You can
specify the file without its extension and Rose RealTime will load the source script
(.ebs), if found. If not found, Rose RealTime will load the compiled script (.ebx file).

Notes

■ This subroutine is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.

■ When finished with the script, you should make a call to FreeScript. Because
scripts contain reference counting information, if you call LoadScript on a given
script 10 times, you should subsequently call FreeScript 10 times; otherwise, the
script will not be unloaded.
Application 107

Syntax

theApplication.LoadScript theFileName

theApplication As RoseRT.Application

Instance of the Rose RealTime application in which the script is being loaded.

theFileName As String

Name of the file that contains the script. Do not specify a file extension.

NewModel () : Model

Description

Creates a new Rose RealTime model and returns it as a model object.

Syntax

Set theModel = theApplication.NewModel ()

theModel As RoseRT.Model

Contains the newly created Rose RealTime model.

theApplication As RoseRT.Application

Instance of the Rose RealTime application in which the model is being created.

NewScript () :

Description

Opens a script editor window in which to create a new script.

Note: This subroutine is only valid for Rose RealTimeScript; it does not exist in Rose
RealTime Automation.

Syntax

theApplication.NewScript

theApplication As RoseRT.Application
108 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application in which the new script is being created.

OpenExternalDocument (FileName : String) : Boolean

Description

Opens an external document, given a fully qualified name of the file that contains the
document.

Syntax

IsOpen = theApplication.Open (theFileName)

IsOpen As Boolean

Returns a value of true when the specified document is successfully opened.

theApplication As RoseRT.Application

Currently active application.

theFileName As String

Fully qualified file name or the URL that contains the external document.

OpenModel (theModel : String) : Model

Description

Opens a Rose RealTime model and returns it as a model object.

Syntax

Set theModel = theApplication.OpenModel (theName)

theModel As RoseRT.Model

Contains the model being opened.

theApplication As RoseRT.Application

Instance of the Rose RealTime application from which the model is being retrieved.

theName As String
Application 109

Name of the model being opened.

OpenModelAsTemplate (szFileName : String) : Model

Description

Retrieves an existing model to be used as a template from which to create a new
model.

Syntax

Set theModel = theApplication.OpenModelAsTemplate (FileName)

theModel As RoseRT.Model

Returns the model contained in the specified file.

theApplication As RoseRT.Application

Currently active application.

theFileName As String

Name of the file that contains the model being returned.

OpenScript (FileName : String) :

Description

Opens the source or compiled image of a script contained in the specified file in the
script editor window. You can specify the file without its extension and Rose RealTime
will search for the source script (.ebs) and open it, if found. If not found, Rose
RealTime will search for and open the compiled script (.ebx file).

Note: This subroutine is only valid for Rose RealTime Script; it does not exist in Rose
RealTime Automation.

Syntax

theApplication.OpenScript FileName

theApplication As RoseRT.Application
110 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application in which the script is being opened.

FileName As String

Name of the script file being opened.

OpenURL (theURL : String) : Boolean

Description

Opens a URL, given the URL string.

Syntax

IsOpen = theApplication.Open (theURL)

IsOpen As Boolean

Returns a value of true when the specified URL is successfully opened.

theApplication As RoseRT.Application

Currently active application.

theURL As String

URL that contains the external document.

OpenWorkspace (FileName : String) : Workspace

Description

Opens a Rose RealTime workspace and the model associated with it.

Syntax

Set theWorkspace = theApplication.OpenWorkspace (FileName)

theWorkspace As RoseRT.Workspace

Contains the workspace being opened.
Application 111

theApplication As RoseRT.Application

Instance of the Rose RealTime application from which the workspace is being
retrieved.

FileName As String

Name of the workspace being opened.

RefreshStatus (pElements : ControllableElementCollection) : Boolean

Description

Refresh the Source Control status of a collection of ControllableElement.

Syntax

Refreshed = theApplication.RefreshStatus(pElements)

Refreshed As Boolean

Returns a value of True if the Source Control status of the Controllable Elements in
pElements Collection were Refreshed successfully.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements whose Source Control status are
to be refreshed.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.RefreshStatus(theCECollection)
112 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Set theCECollection = Nothing

ReportCodeSync (ocModelElements : Collection, ocContextElements :
Collection, ocReplaceStrings : StringCollection)

Description:

Updates the model elements with the new code corresponding to changes in the
generated code.

Syntax:

theApplication.ReportCodeSync(ocModelElements, ocContextElements,
ocReplaceStrings)

ocModelElements As Collection

Contains the model elements that need to be code synchronized with the modified
generated code.

ocContextElements As Collection

Contains the elements that are the contexts for the elements in the
ocModelElementsCollection. This collection corresponds one to one with the
ModelElements collection.

ocReplaceStrings As StringCollection

Contains the new code changes that need to be code synchronized back to the original
model elements. This collection corresponds one to one with the model element
collection.

Save (bSaveUnits : Boolean) :

Description

Saves the current Rose RealTime model.

Note: This operation is not valid if any of the following is true:

■ The file containing the Rose RealTime model is ReadOnly

■ The file containing the Rose RealTime model is unnamed

■ SaveUnits is True and any Unit cannot be saved
Application 113

Syntax

theApplication.Save SaveUnits

theApplication As RoseRT.Application

Instance of the Rose RealTime application whose current model is being saved.

SaveUnits As Boolean

Indicates whether the current model is comprised of controlled units.

SaveAs (theFile : String, bSaveUnits : Boolean) :

Description

Names and saves the current Rose RealTime model.

Note: This operation is not valid under the following conditions:

■ The file containing the Rose RealTime model is ReadOnly

■ The file containing the Rose RealTime model is unnamed

■ SaveUnits is True and any Unit cannot be saved

Syntax

theApplication.SaveAs theName, SaveUnits

theApplication As RoseRT.Application

Instance of the Rose RealTime application whose current model is being saved.

theName As String

Name of the model being saved.

SaveUnits As Boolean

Indicates whether the current model is comprised of controlled units.
114 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SaveGenerationResultsAs (filename : String) : Boolean

Description

Saves the Code Generation Results in a file

Syntax

Saved = theApplication.RefreshStatus(filename)

Saved As Boolean

Returns a value of True if the Code Generation Results were saved successfully.

theApplication As RoseRT.Application

The running instance of Application.

filename As String

The filename of the file to save Code Generation Results to.

SaveLogAs

Description

Saves the error log in a file

Syntax

Saved = theApplication.SaveLogAs(filename)

Saved As Boolean

Returns a value of True if the error log was saved successfully

theApplication As RoseRT.Application

The running instance of Application

filename As String

The filename of the file to save thet error log to
Application 115

SaveWorkspace () :

Description

Saves the current workspace.

Note: This operation is not valid if any of the following is true:

■ The file containing the workspace is ReadOnly

■ The Rose RealTime model is unnamed

Syntax

theApplication.SaveWorkspace

theApplication As RoseRT.Application

Instance of the Rose RealTime application whose current workspace is being saved.

SaveWorkspaceAs (FileName : String) :

Description

Names and saves the current workspace.

Note: This operation is not valid under the following conditions:

■ The file with the passed in filename already exist

■ The Rose RealTime model is unnamed

Syntax

theApplication.SaveWorkspaceAs FileName

theApplication As RoseRT.Application

Instance of the Rose RealTime application whose current workspace is being saved.

FileName As String

Name of the workspace being saved.
116 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SelectObjectsInBrowsers (theObjects : Collection) :

Description

Selects objects in visible browsers.

Syntax

theApplication.SelectObjectsInBrowsers(theObjectCollection)

theApplication As RoseRT.Application

The running instance of Application.

theObjectCollection As RoseRT.Collection

The collection of objects to select in visible browsers.

Example

Dim theObjects As RoseRT.Collection

Set theObjects = theApplication.CreateCollection()

b = theObjectCollection.Add(RoseRTApp.CurrentModel)

b = theObjectCollection.Add(RoseRTApp.CurrentModel.RootLogicalPackage
)

b = RoseRTApp.SelectObjectsInBrowsers(theObjects)

Set theObjects = Nothing

SetBuildSettings (ShowWarnings : Boolean, VerifyConnectorCardinality
: Boolean, VerifyBranchTransitions : Boolean,
VerifyDeadUnreachableStates : Boolean, VerifyUntriggeredTransitions :
Boolean) :

Description

Allows configuration of common build settings that will be used when building any
component.
Application 117

Syntax

theApplication.SetBuildsSettings(ShowWarnings,
VerifyConnectorCardinality, VerifyBranchTransitions,
VerifyDeadUnreachableStates, VerifyUntriggeredTransitions)

theApplication As RoseRT.Application

The running instance of Application.

ShowWarnings As Boolean

Whether to show warning.

VerifyConnectorCardinality As Boolean

Whether to test if cardinalities on both side of a connection are equivalents.

VerifyBranchTransitions As Boolean

Whether to check for missing true or false transitions on choice points.

VerifyDeadUnreachableStates As Boolean

Whether to check for all states that are not reachable in a state diagram and for all
states that cannot be exited.

VerifyUntriggeredTransitions As Boolean

Whether to check for transitions with no triggering event

UnCheckOut (pElements : ControllableElementCollection) : Boolean

Description

Undo a CheckOut operation for a collection of ControllableElement.

Syntax

UndidCheckedOut = theApplication.UndoCheckOut(pElements)

UndidCheckedOut As Boolean
118 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True if Controllable Elements in pElements Collection had their
CheckOut operation successfully undone.

theApplication As RoseRT.Application

The running instance of Application.

pElements As RoseRT.ControllableElementCollection

The collection containing the ControllableElements to undo the checkout operation
from.

Example

Dim theCECollection As RoseRT.Collection

Set theCECollection = theApplication.CreateCollection()

b = theCECollection.Add(RoseRTApp.CurrentModel)

b = RoseRTApp.UndoCheckOut(theCECollection)

Set theCECollection = Nothing

WriteBuildError (strError : String, pElement : Element, nLineNumber :
Integer, bIsWarning : Boolean) :

Description

Writes an entry in the error/warning list section of the build log window.

Syntax

theApplication.WriteBuildError(strError, pElement, nLineNumber,
bIsWarning)

theApplication As RoseRT.Application

The running instance of Application.

strError As String
Application 119

Description of error/warning.

pElement As RoseRT.Element

The element that owns the source code where an error/warning was detected.

nLineNumber As Integer

The line number where the error/warning was detected in source code

bIsWarning As Boolean

Whether the new entry represents a warning or an error

WriteBuildOutput (strMessage : String) :

Description

Writes a message to the output section of the build log window.

Syntax

theApplication.WriteBuildOutput(strMessage)

theApplication As RoseRT.Application

The running instance of Application.

strMessage As String

Message to output.

WriteErrorLog (theMsg : String) :

Description

Writes an error message to a log window.

Syntax

theApplication.WriteErrorLog theMessage

theApplication As RoseRT.Application
120 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Instance of the Rose RealTime application for which errors are being logged.

theMessage As String

Message text to write to the error log window.

WriteErrorLogEx (pszMessage : String, pModelElement : ModelElement,
bIsWarning : Boolean) :

Description

Writes an entry in the error log window.

Syntax

theApplication.WriteErrorLogEx(pszMessage, pModelElement, bIsWarning
)

theApplication As RoseRT.Application

The running instance of Application.

strMessage As String

Description of error/warning.

pModelElement As RoseRT.ModelElement

The model element related to the error/warning.

bIsWarning As Boolean

Whether the new entry represents a warning or an error

WriteProfileString (Section : String, Entry : String, Value : String) :
Boolean

Description

Retrieves a profile string entry in the RoseRT.ini file, given a section, entry, and default
value.
Application 121

Syntax

IsWritten = theApplication.WriteProfileString (Section, Entry, Value)

IsWritten As Boolean

Returns a value of true when the specified ProfileString is successfully written to the
Rose.ini file.

theApplication As RoseRT.Application

Currently active application and therefore the application whose RoseRT.ini file entry
is being written.

theSection As String

Name of the RoseRT.ini file section to which the profile string is being written. For
example: [PathMap]

theEntry As String

The name of the RoseRT.ini file entry whose profile string is being written. For
example: $SCRIPT_PATH

theValue As String

Value of the entry being written. In the [PathMap] $SCRIPT_PATH example, the value
is the actual path to the folder that contains the scripts being called by the application.

ContextMenuItem

Description

This class represents a context menu option that was added through RRTEI by an
addin. References to this class are returned by the AddContextMenuItemForClass
method of AddIn
122 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RRTEIObject

Public Attributes

Caption : String

Description

The text that is displayed when the item is added to a context menu

InternalName : String

Description

The string that is returned to the automation server when an item is selected

MenuID : Integer

Description

The internal ID used to index the menu item for the class it corresponds to

MenuState : MenuState

Description

The state the menu item is displayed in. See the RsMenuState enumeration for
possible values.

MenuState

Description

Rich type used to determine the state of a context menu. Valid values are defined in
the RsMenuState enumeration.

Derived from RichType
MenuState 123

PathMap

Description

Use the PathMap class to create and edit path map entries for the current model. For
example, you can create entries to define paths to controlled units, to scripts executed
from the Rose RealTime menu, and to the root directory for a multi-user project.
Executing PathMap class operations is equivalent to updating the PathMap dialog in
the Rose RealTime user interface. There are no attributes associated with the PathMap
class.

Derived from RoseBase

Public Operations

AddEntry (Symbol : String, Path : String, Comment : String) : Boolean

Description

Adds an entry to the current application’s PathMap definition.

Syntax

IsAdded = thePathMap.AddEntry (theSymbol, theActualPath, theComment))

IsAdded As Boolean

Returns a value of true when the entry is successfully added.

thePathMap As RoseRT.PathMap

PathMap to which the entry is being added.

thelSymbol As String

Virtual symbol being added to the PathMap. For example, $SCRIPT_PATH

theActualPath As String

Actual path to which the virtual symbol refers.
124 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theComment As String

Description of the PathMap entry being added.

DeleteEntry (Symbol : String) : Boolean

Description

Deletes an entry from the current application’s PathMap definition.

Syntax

IsDeleted = thePathMap.DeleteEntry (theSymbol)

IsDeleted As Boolean

Returns a value of true when the entry is successfully deleted.

thePathMap As RoseRT.PathMap

PathMap to which the entry is being added.

theSymbol As String

Virtual symbol for the entry being deleted from the PathMap. For example,
$SCRIPT_PATH

Get Actual Path (VirtualPath : String) : String

Description

Retrieves from the PathMap the actual path that corresponds to the given virtual
symbol.

Syntax

theActualPath = thePathMap.GetActualPath (theSymbol)

theActualPath As String

Returns the actual path given the virtual symbol.

thePathMap As RoseRT.PathMap

PathMap from which to retrieve the actual path.
PathMap 125

theSymbol As String

Virtual symbol whose corresponding actual path is being retrieved.

GetObject () : Object

Description

Retrieves the object’s OLE interface object.

Note: This function is only valid for Rose RealTime Script; it has no meaning in Rose
RealTime Automation.

Syntax

Set theOLEObject = thePathMap.GetObject ()

theOLEObject As RoseRT.Object

Returns the OLE automation interface object associated with the specified object.

thePathMap As RoseRT.PathMap

Instance of the object whose OLE interface object is being returned.

GetVirtualPath (ActualPath : String) : String

Description

Retrieves the virtual path that corresponds to the given actual path.

Syntax

theString = thePathMap.GetVirtualPath (theActualPath)

theVirtualPath As String

Returns the virtual path given the actual path.

thePathMap As RoseRT.PathMap

PathMap from which to retrieve the virtual path.
126 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theActualPath As String

Actual path whose corresponding virtual path is being retrieved.

HasEntry (Symbol : String) : Boolean

Description

Checks the PathMap for an entry based on the given virtual path symbol.

Syntax

HasEntry = thePathMap.HasEntry (theSymbol)

HasEntry As Boolean

Returns a value of True if the PathMap has an entry for the given virtual path symbol.

thePathMap As RoseRT.PathMap

PathMap being checked.

theSymbol As String

Virtual symbol to search for in the PathMap.

RsMenuState

Description

Enumeration used to set the Value property of the MenuState rich type. Values
determine what state add-in context menu items are displayed in.

Public Attributes
RsMenuState 127

rsDisabled : Integer = 0

rsDisabledAndChecked : Integer = 2

rsDisabledAndUnchecked : Integer = 3

rsDisabledRadioChecked : Integer = 100

rsDisabledRadioUnchecked : Integer = 102

rsEnabled : Integer = 1

rsEnabledAndChecked : Integer = 4

rsEnabledAndUnchecked : Integer = 5

rsEnabledRadioChecked : Integer = 101

rsEnabledRadioUnchecked : Integer = 103

Workspace

Description

Represents a workspace file. The workspace maintains information about the current
model, open windows and window positions, etc. The workspace information is
stored in a separate file (a .rtwks file). This class allows clients to inquire and modify
settings saved within the workspace file.

Derived from RoseBase

Public Operations

GetAddInProfileString (theAddIn : AddIn, Entry : String, Default : String) :
String

Description

Retrieves a profile string entry for an Add-In in the workspace, given an Add-In, and
entry and a default value.
128 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theProfileString = theWorkspace.GetAddInProfileString (theAddIn,
Entry, Default)

theProfileString As String

Returns the profile string that corresponds to the given Add-In, entry, and default
value.

theWorkspace As RoseRT.Workspace

Workspace whose entry is being retrieved.

theAddIn As RoseRT.AddIn

Add-In whose entry profile string is being retrieved for.

theEntry As String

The name of the entry whose profile string is being retrieved.

theDefault As String

Default value of the entry being retrieved. This is the string returned if the entry does
not exists in the workspace for the Add-In.

WriteAddInProfileString (theAddIn : AddIn, Entry : String, Value : String) :
Boolean

Description

Write a profile string entry for an Add-In in the workspace, given an Add-In, an entry,
and a value.

Note: This operation is not valid if any of the following is true:

■ The file containing the workspace is ReadOnly

■ The Rose RealTime model is unnamed

Syntax

IsWritten = theWorkspace.WriteAddInProfileString (theAddIn, Entry,
Value)
Workspace 129

IsWritten As Boolean

Returns a value of true when the specified ProfileString is successfully written in the
workspace.

theWorkspace As RoseRT.Application

Workspace that gets an entry written to.

theAddIn As RoseRT.AddIn

Add-In whose entry profile string is being written to.

theEntry As String

The name of the entry whose profile string is being written.

theValue As String

Value of the entry being written.

Extensibility Classes

Extensibility classes include

■ Collection on page 131

➑ Public Attributes

Count : Integer on page 131

➑ Public Operations

Add (theObject : RoseBase) : on page 132

AddCollection (theCollection : Collection) : on page 132

Exists (pObject : RoseBase) : Boolean on page 133

FindFirst (Name : String) : Integer on page 133

FindNext (iCurID : Integer, Name : String) : Integer on page 134

GetAt (Index : Integer) : RoseBase on page 135
130 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetFirst (Name : String) : RoseBase on page 135

GetObject () : Object on page 136

GetWithUniqueID (UniqueID : String) : Object on page 137

IndexOf (theObject : RoseBase) : Integer on page 137

Remove (theObject : RoseBase) : on page 138

RemoveAll () : on page 139

■ RoseBase on page 139

➑ Public Attributes

GetObject () : Object on page 139

■ RRTEIObject on page 140

➑ Public Operations

IdentifyClass () : String on page 140

Collection

Description

For most elements of a RoseRT model there is a corresponding collection. So, for
example, for every class there is a class collection; for every logical package there is a
logical package collection; for every property, there is a property collection, and so on.

RoseRT extensibility provides a set of properties and methods that allow you to access
a particular element in any given collection.

Derived from RoseBase

Public Attributes

Count : Integer

Description

Number of elements in the collection.
Collection 131

Public Operations

Add (theObject : RoseBase) :

Description

Adds an object to a collection.

Syntax

theCollection.Add theObject

theCollection As RoseRT.Collection

Collection to which the object is being added.

theObject As Object

Object being added to the collection.

AddCollection (theCollection : Collection) :

Description

Adds a collection of objects to a collection.

Note: The objects are added as individual objects, not as a collection. For this reason,
should you need to remove one or more of these objects from the destination
collection, you can simply use the Remove or RemoveAll method.

Syntax

theCollection.AddCollection theObjectCollection

theCollection As RoseRT.Collection

Collection to which the collection of objects is being added.

theObjectCollection As Collection

Collection whose objects are being added.
132 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Exists (pObject : RoseBase) : Boolean

Description

Checks for the existence of an object in a collection

Syntax

Exists = theCollection.Exists (theObject)

Exists As Boolean

Returns a value of True if the object exists in the collection.

theCollection As RoseRT.Collection

The collection being checked.

theObject As Object

Instance of the object whose existence is being checked.

FindFirst (Name : String) : Integer

Description

Returns the index (position) of the first instance of the named object from a collection.

Note: To retrieve the object itself, use the GetAt method and specify the index
returned by this method.

Syntax

Set theIndex = theCollection.FindFirst (theName)

theIndex As Integer

Returns the index of the first instance of the named object in the collection. Returns a
value of 0 if the named object is not found.

theObject As RoseRT.Collection

Collection from which the index is being retrieved.
Collection 133

theName As String

Name of the object whose index is being retrieved.

See also

FindNext (iCurID : Integer, Name : String) : Integer on page 134

IndexOf (theObject : RoseBase) : Integer on page 137

GetFirst (Name : String) : RoseBase on page 135

FindNext (iCurID : Integer, Name : String) : Integer

Description

When iterating through a collection, this function retrieves the index (position) of the
next instance of the named object, given the index of the current instance.

Note: To retrieve the object itself, use the GetAt method and specify the index
returned by this method.

Syntax

NextIndex = theCollection.FindNext (CurrentIndex, theName)

NextIndex As Integer

Returns the index of the next instance of an object from the collection.

Returns a value of 0 if the named object is not found.

theCollection As RoseRT.Collection

Collection from which the next index is being retrieved.

CurrentIndex As Integer

Index of the current object instance in the collection.

theName As String

Name of the object whose index is being retrieved.
134 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

See also

FindFirst (Name : String) : Integer on page 133

GetFirst (Name : String) : RoseBase on page 135

IndexOf (theObject : RoseBase) : Integer on page 137

GetFirst (Name : String) : RoseBase on page 135

GetAt (Index : Integer) : RoseBase

Description

Retrieves a particular object from a collection, given the object’s position in the
collection.

Syntax

Set theObject = theCollection.GetAt (theIndex)

Note: To get the index of the object, use the IndexOf, FindFirst or FindNext method.

theObject As Object

Returns an object from the collection.

theCollection As RoseRT.Collection

Collection from which to retrieve the object.

theIndex As Integer

Index (position) of the object in the collection.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurID : Integer, Name : String) : Integer on page 134

IndexOf (theObject : RoseBase) : Integer on page 137

GetFirst (Name : String) : RoseBase on page 135

GetFirst (Name : String) : RoseBase

Description

Retrieves the first instance of the named object from a collection.
Collection 135

Syntax

Set theObject = theCollection.GetFirst (theName)

theObject As Object

Returns the first instance of the named object from the collection.

theCollection As RoseRT.Collection

Collection from which to retrieve the object.

theName As String

Name of the object to retrieve.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurID : Integer, Name : String) : Integer on page 134

IndexOf (theObject : RoseBase) : Integer on page 137

GetObject () : Object

Description

Retrieves the OLE object associated with a specified collection.

Note: This function is only valid for Rose Script; it does not exist in Rose Automation.

Syntax

Set theOLEObject = theCollection.GetObject ()

theOLEObject As Object

Returns the OLE automation interface object associated with the specified object.

theCollection As RoseRT.Collection

Instance of the object whose interface object is being returned.
136 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetWithUniqueID (UniqueID : String) : Object

Description

Retrieves an object from a collection, given the object’s unique ID. This is simpler than
iterating through the collection to find a named or indexed object. Every element in a
model has a unique ID. You cannot set this ID, but you can retrieve it.

Syntax

Set theObject = theCollection.GetWithUniqueID (theUniqueID)

theObject As Object

Returns the object whose unique ID you specify.

theCollection As RoseRT.Collection

Collection from which to retrieve the object.

theUniqueID As String

UniqueID of the object to retrieve.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurID : Integer, Name : String) : Integer on page 134

IndexOf (theObject : RoseBase) : Integer on page 137

IndexOf (theObject : RoseBase) : Integer

Description

Retrieves the index (position) of an instance of an object in a collection.

Syntax

Set theIndex = theCollection.IndexOf (theObject)

theIndex As Integer
Collection 137

Returns the index (position) of the given objectReturns a value of 0 if the class is not
found.

theCollection As RoseRT.Collection

Collection from which the index is being retrieved.

theObject As Object

Instance of the object whose index is being retrieved.

See also

FindFirst (Name : String) : Integer on page 133

FindNext (iCurID : Integer, Name : String) : Integer on page 134

GetFirst (Name : String) : RoseBase on page 135

Remove (theObject : RoseBase) :

Description

Removes an object from a collection.

Syntax

theCollection.Remove theObject

theCollection As RoseRT.Collection

Collection from which the class is being removed.

theObject As Object

Object being removed from the collection.

See also

RemoveAll () : on page 139
138 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RemoveAll () :

Description

Removes all objects from a collection.

Syntax

theCollection.RemoveAll

theCollection As RoseRT.Collection

Collection from which all objects are being removed.

See also

Remove (theObject : RoseBase) : on page 138

RoseBase

Description

RoseBase is the root class of the RRTEI.

Public Operations

GetObject () : Object

Description

Retrieves the object’s OLE interface object.

Note: This function is only valid for Rose Script; it has no meaning in Rose
Automation.

Syntax

Set theOLEObject = theRoseBase.GetObject ()

theOLEObject As Object

Returns the OLE automation interface object associated with the specified object.

theRoseBase As RoseRT.RoseBase
RoseBase 139

Instance of the object whose OLE interface object is being returned.

RRTEIObject

Description

Most elements in a Rose RealTime model derive, either directly or indirectly, from the
RRTEIObject class. When you retrieve a model element as an object, you may not
know what type of object you have retrieved.

Using RRTEIObject class operations, you can determine the type of the object.

Derived from RoseBase

Public Operations

IdentifyClass () : String

Description

Identifies the class of a Rose RealTime object

Note: For Rose RealTime Script, use the CanTypeCast method.

Syntax

theString = theRRTEIObject.IdentifyClass ()

theString As String

Returns the RRTEIObject’s class name.

ctheRRTEIObject As RoseRT. RRTEIObject

RRTEIObject whose class is being identified.
140 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsClass (theClassName : String) : Boolean

Description

Determines whether an object is a specified class.

Note: For Rose RealTime Script, use the CanTypeCast method.

Syntax

IsClass = theRRTEIObject.IsClass (theClassName)

IsClass As Boolean

Returns a value of True if its class matches the specified class name.

theRRTEIObject As RoseRT. RRTEIObject

RRTEIObject whose class is being checked.

theClassName As String

Name of the class for which the RRTEIObject is being checked.

RichTypes

RichTypes include

■ RichType

➑ Public Attributes

Name : String on page 143

Types : RichTypeValuesCollection on page 143

Value : Integer on page 143

➑ Public Operations

GetObject () : Object on page 143

■ RichTypeValuesCollection on page 144

➑ Public Attributes

Count : Integer on page 144
RichTypes 141

GetAt (id : Integer) : String on page 144

GetObject () : Object on page 145

RichType

Description

A rich type contains a set of values, of which only one is active at a time. They can be
compared to a smart enumeration capable of being set using either the numeric or the
string version of their values.

e.g.

ClassifierVisibilityKind' set of values are as follows:

(string version : numeric version)

"rsPublic" : 0

"rsProtected" : 1

"rsPrivate" : 2

"rsImplementation" : 3

A rich type derived class is always associated with an enumeration whose name is
made of the rich type name (or substring of it) prefixed by “Rs”.

e.g.

ClassifierVisibilityKind rich type is associated with RsVisibilityKind enumeration.

The name of the enumeration's elements is made from the string version of the rich
type value it represents.

e.g.

The ClassifierVisibilityKind rich type string value “rsPublic” is associated with the
enumeration RsVisibilityKind's rsPublic element.

Here are valid ways to set a variable of type ClassifierVisibilityKind to public:

Set theClassifierVisibilityKind.Name = "rsPublic"

Set theClassifierVisibilityKind.Value = 0

Set theClassifierVisibilityKind.Value = rsPublic
142 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

To ease the use of rich types, the Value property is the default property of a rich type.
This means that the Value property is assumed whenever a property or an operation
is omitted while using a rich type.

e.g.

Set theClassifierVisibilityKind = 0

Set theClassifierVisibilityKind = rsPublic

Derived from RRTEIObject

Public Attributes

Name : String

Description

String version of the active value of the rich type.

Types : RichTypeValuesCollection

Description

Collection of the all the values that can be activated in the rich type, in string version.

Value : Integer

Description

Numeric version of the active value of the rich type.

Public Operations

GetObject () : Object

Description

Retrieves the object’s OLE interface object.

Note: This operation is only valid for Rose RealTime Script; it has no meaning in Rose
RealTime Automation.

Syntax

Set theOLEObject = theRichType.GetObject ()
RichType 143

theOLEObject As Object

Returns the OLE automation interface object associated with the specified object.

theRichType As RoseRT.RichType

Instance of the rich type whose OLE interface object is being returned.

RichTypeValuesCollection

Description

Collection of all values that can be activated in a particular rich type.

Derived from RRTEIObject

Public Attributes

Count : Integer

Description

Number of values in the collection.

Public Operations

GetAt (id : Integer) : String

Description

Retrieves a particular value from the collection, given the value’s position in the
collection.

Syntax

Value = theRichTypeValuesCollection.GetAt (theIndex)

Value As String

Returns the value from the collection.
144 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theRichTypeValuesCollection As RichTypeValuesCollection

Collection from which to retrieve the value.

theIndex As Integer

Index (position) of the value in the collection. First value is at index 1.

GetObject () : Object

Description

Retrieves the object’s OLE interface object.

Note: This function is only valid for Rose Script; it has no meaning in Rose
Automation.

Syntax

Set theOLEObject = theRichTypeValuesCollection.GetObject ()

theOLEObject As Object

Returns the OLE automation interface object associated with the specified object.

theRichTypeValuesCollection As RoseRT.RichTypeValuesCollection

Instance of the rich type values collection whose OLE interface object is being
returned.

Model Classes

Model classes include

■ Component View Classes on page 145

Component View Classes

Component View classes include

■ Component on page 149

➑ Public Attributes
Model Classes 145

AssignedClasses : ClassifierCollection on page 149

AssignedLogicalPackages : LogicalPackageCollection on page 149

CodeGenMakeDescription : String on page 149

CodeGenMakeFlags : String on page 149

CodeGenMakeName : String on page 150

CodeGenMakeOverridesFile : String on page 150

CodeGenMakeType : String on page 150

CompilationMakeDescription : String on page 150

CompilationMakeFlags : String on page 150

CompilationMakeName : String on page 150

CompilationMakeOverridesFile : String on page 150

CompilationMakeType : String on page 151

CompilerDescription : String on page 151

CompilerFlags : String on page 151

CompilerLibrary : String on page 151

CompilerName : String on page 151

DefaultArgs : String on page 152

Environment : String on page 152

ExecutableFileName : String on page 152

InclusionPaths : StringCollection on page 152

Inclusions : StringCollection on page 152

LinkerFlags : String on page 152

LinkerName : String on page 153

MultiThreaded : Boolean on page 153

OutputPath : String on page 153

ParentComponentPackage : ComponentPackage on page 153

Platform : String on page 153

RTSDescription : String on page 153
146 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RTSType : String on page 154

TargetDescription : String on page 154

TargetLibrary : String on page 154

TopCapsule : Capsule on page 154

Type : String on page 155

UserLibraries : StringCollection on page 155

UserLibraryPaths : StringCollection on page 156

➑ Public Operations

AddComponentDependency (theDep : Component) : ComponentDependency on
page 156

AddInclusion (inclusion : String) : Boolean on page 156

AddInclusionPath (pathName : String, ComputeDependencies : Boolean) : Boolean
on page 157

AddRealizeRelation (theRelName : String, theInterfaceName : String) :
RealizeRelation on page 158

AddUserLibrary (libraryName : String) : Boolean on page 158

AddUserLibraryPath (pathName : String) : Boolean on page 159

AssignClass (theClass : Classifier) : Boolean on page 159

AssignPackage (thePackage : LogicalPackage) : Boolean on page 160

Build (bUpdateAssignedClassList : Boolean) : Boolean

DeleteComponentDependency (theDep : ComponentDependency) : Boolean on
page 161

DeleteInclusion (inclusion : String) : Boolean on page 161

DeleteInclusionPath (pathName : String) : Boolean on page 162

DeleteRealizeRelation (theRel : RealizeRelation) : Boolean on page 162

DeleteUserLibrary (libraryName : String) : Boolean on page 163

DeleteUserLibraryPath (pathName : String) : Boolean on page 163

Generate (bUpdateAssignedClassList : Boolean) : Boolean on page 164

GetAllClasses () : ClassifierCollection on page 165

GetComponentDependencies () : ComponentDependencyCollection on page 165
Component View Classes 147

GetInclusionPathFlag (pathName : String) : Boolean on page 165

GetRealizeRelations () : RealizeRelationCollection on page 166

RebuildAll (bUpdateAssignedClassList : Boolean) : Boolean on page 166

RegenerateAll (bUpdateAssignedClassList : Boolean) : Boolean on page 167

ReverifyAll (bUpdateAssignedClassList : Boolean) : Boolean on page 168

UnassignClass (theClass : Classifier) : Boolean on page 168

UnassignPackage (thePackage : LogicalPackage) : Boolean on page 169

UpdateAssignedClassList () : Boolean on page 169

Verify (bUpdateAssignedClassList : Boolean) : Boolean on page 170

■ ComponentPackage on page 170

➑ Public Attributes

ComponentDiagrams : ComponentDiagramCollection on page 170

ComponentPackages : ComponentPackageCollection on page 171

Components : ComponentCollection on page 171

ParentComponentPackage : ComponentPackage on page 171

➑ Public Operations

AddComponent (theName : String) : Component on page 171

AddComponentDiagram (name : String) : ComponentDiagram on page 172

AddComponentPackage (theName : String) : ComponentPackage on page 172

DeleteComponent (pIDispatch : Component) : Boolean on page 173

DeleteComponentPackage (pIDispatch : ComponentPackage) : Boolean on
page 173

GetAllComponentPackages () : ComponentPackageCollection on page 174

GetAllComponents () : ComponentCollection on page 174

GetComponentDependencies () : ComponentDependencyCollection on page 175

GetComponentPackageDependencies (theComponentPackage : ComponentPackage)
: ComponentDependencyCollection on page 175

GetVisibleComponentPackages () : ComponentPackageCollection on page 176

RelocateComponent (theComponent : Component) : on page 176
148 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RelocateComponentDiagram (theModDiagram : ComponentDiagram) : on
page 177

RelocateComponentPackage (theComponentPackage : ComponentPackage) : on
page 177

TopLevel () : Boolean on page 177

Component

Description

Components are used to model the physical elements that may reside on a node, such
as executables, libraries, source files, documents. The component therefore represents
the physical packaging of the logical elements, such as classes and capsules.

Derived from ModelElement

Public Attributes

AssignedClasses : ClassifierCollection

Description

Collection of classifiers assigned to a Component.

AssignedLogicalPackages : LogicalPackageCollection

Description

Collection of logical packages assigned to a Component.

CodeGenMakeDescription : String

Description

Used to describe any details regarding Code Generation Make configuration.

CodeGenMakeFlags : String

Description

Any flags supported to be passed to the make utility during Code Generation.
Component 149

CodeGenMakeName : String

Description

The name of the make utility being used to control the code generation.

CodeGenMakeOverridesFile : String

Description

The overrides file is a makefile fragment which is included in the code generation
makefile that allows for the addition of user-defined dependencies, compile, and link
options in the code generation make files.

CodeGenMakeType : String

Description

Can be one of “Unix_make”, “Messmate” or “Gnu_make”.

CompilationMakeDescription : String

Description

Used to describe any details regarding Compilation Make configuration.

CompilationMakeFlags : String

Description

Any flags supported to be passed to the make utility during Compilation.

CompilationMakeName : String

Description

The name of the make utility being used to control the compilation and link of a
component. The make name must be the exact name of the make command.

CompilationMakeOverridesFile : String

Description

The overrides file is a makefile fragment which is included in the compilation
makefile that allows for the addition of user-defined dependencies, compile, and link
options.
150 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CompilationMakeType : String

Description

Can be one of “Unix_make”, “Messmate” or “Manlike”.

CompilerDescription : String

Description

Used to describe any details regarding Compiler configuration.

CompilerFlags : String

Description

Any flags supported by your compiler utility. This is where you would specify a
parallel make flag to increase compilation efficiency.

CompilerLibrary : String

Description

Used to uniquely identify the Services Library set and build utilities that will be used
to compile and link the component. The library name, which is actually a directory
name of where to find the utilities and Services Library files, can be any legal
directory name. However, in order to differentiate between the different variations of
compiler and processors, a standard notation is commonly used. The compiler library
name is composed of three parts: processor-compiler-version.

For example, the library name for an x86 processor built with version 6.0 of Microsoft
Visual C++ would be called: x86-VisualC++-6.0

CompilerName : String

Description

Used to replace the pre-configured compiler shell command defined in libset.mk.
Component 151

DefaultArgs : String

Description

Some platforms do not allow command line arguments to be passed to an executable
at load time (namely, on some real-time operating systems). In this case, the default
arguments provides a mechanism for getting execution arguments into the
executable.

Note: The default arguments property will only be used for targets that cannot accept
command line arguments. Targets that accept command line arguments will ignore
the content of this property.

Environment : String

Description

Component build environment.

ExecutableFileName : String

Description

The name, or a name with an absolute path, of the executable that will be created as a
result of the component being built.

InclusionPaths : StringCollection

Description

Collection of strings that represent the directory search set used by the compiler to
find user-specified inclusion files. They are searched in the ordered specified in the
collection.

Inclusions : StringCollection

Description

Component level inclusion files.

LinkerFlags : String

Description

Any flags supported by your linker utility.
152 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

LinkerName : String

Description

Used to replace the pre-configured linker shell command defined in libset.mk.

MultiThreaded : Boolean

Description

Indicates whether the component is compiled for a multi-threaded or single-threaded
platform.

OutputPath : String

Description

The output path can be changed to allow you to set the directory into which the
generated files resulting from a component build will be written. If left unspecified
the generation and compilation results are stored in $ROSERT_HOME/[component
name].

ParentComponentPackage : ComponentPackage

Description

Identifies the Component Package that contains the Component.

Platform : String

Description

The hardware on which you will run the executable, and hence identifies the platform
for which to build the component. The target does not necessarily have to the same as
the toolset is running on.

RTSDescription : String

Description

Used to describe any details regarding RTS configuration.
Component 153

RTSType : String

Description

A pre-defined type that maps directly to a specific directory in the Rose RealTime
installation directory. e.g. “C++ Target RTS”

TargetDescription : String

Description

Used to describe any details regarding Target configuration.

TargetLibrary : String

Description

Used to uniquely identify the Services Library set and build utilities that will be used
to compile and link the component. The library name, which is actually a directory
name of where to find the utilities and Services Library files, can be any legal
directory name. However, in order to differentiate between the different variations of
compiler and processors, a standard notation is commonly used. The compiler library
name is composed of three parts: processor-compiler-version.

For example, the library name for an x86 processor built with version 6.0 of Microsoft
Visual C++ would be called: x86-VisualC++-6.0

TopCapsule : Capsule

Description

Obsolete Property. This property is now implemented independently in each of the
language add-ins if needed. Below is an example of how to address this in C++

Sub SetTopCapsule (theComponent As RoseRT.Component, theCapsule As
RoseRT.Capsule)

' First add the capsule as a reference if it isn't
already
If
theComponent.AssignedClasses.FindFirst(theCapsule.Name
) = 0 Then

If Not theComponent.AssignClass(theCapsule) Then
154 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

MsgBox "Error configuring component."
Exit Sub

End If
End If

toolName$ = "OT::CppExec"
propertyName$ = "TopCapsule"

If Not theComponent.OverrideProperty(toolName,
propertyName, "") Then

MsgBox "Error configuring component."
Exit Sub

End If

Dim sp As RoseRT.StructuredProperty
Set sp =
theComponent.GetToolProperties(toolName).GetFirst(prop
ertyName)
sp.SetFieldValue "event_ui", "description",
theCapsule.Name
sp.SetFieldValue "event_ui", "caption", "Select..."

Dim fullCapsuleName As String
fullCapsuleName = """" + theCapsule.GetQualifiedName()
+ """" + " " + theCapsule.GetUniqueID()
sp.SetFieldValue "", "", fullCapsuleName

End Sub

Type : String

Description

Component build type.

UserLibraries : StringCollection

Description

Any number of user libraries can be specified to be linked into an executable through
user library items. The entry names themselves follow the convention associated with
your compiler or operating system.
Component 155

UserLibraryPaths : StringCollection

Description

Any number of entries can appear as library path items and as a group they comprise
the directory search set used by the compiler to find user-specified libraries. They are
searched in the order specified in the list (top to bottom).

Public Operations

AddComponentDependency (theDep : Component) :
ComponentDependency

Description

Adds a Dependency relationship between two Components.

Syntax

Set theComponentDependency = theComponent.AddComponentDependency(
theDep)

theComponentDependency As RoseRT.ComponentDependency

Returns a new ComponentDependency whose dependent is theComponent and
whose provider is theDep.

theComponent As RoseRT.Component

The ComponentDependency dependent component.

theDep As String

The ComponentDependency provider.

AddInclusion (inclusion : String) : Boolean

Description

Adds a component level inclusion file to be used by compiler.
156 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

InclusionAdded = theComponent.AddInclusion(inclusion)

InclusionAdded As Boolean

Returns whether the new inclusion was added to theComponent.

theComponent As RoseRT.Component

The Component who gets a new inclusion added.

inclusion As String

The filename of the new inclusion file.

AddInclusionPath (pathName : String, ComputeDependencies : Boolean)
: Boolean

Description

Adds a component level inclusion path to be used by the compiler.

Syntax

InclusionPathAdded = theComponent.AddInclusionPath(pathName,
ComputeDependencies)

InclusionPathAdded As Boolean

Returns a whether the new inclusion path was added to theComponent.

theComponent As RoseRT.Component

The Component who gets a new inclusion path added.

pathName As String

The pathname of the new inclusion path.

ComputeDependencies As Boolean
Component 157

When set to True, the inclusion files in that directory are not considered during the
dependency calculations.

AddRealizeRelation (theRelName : String, theInterfaceName : String) :
RealizeRelation

Description

Adds a Realize relationship to a Component.

Syntax

Set theRealizeRel = theComponent.AddRealizeRel(theRelName,
theInterfaceName)

theRealizeRel As RoseRT.RealizeRel

Returns a new RealizeRelation whose client is theComponent and whose supplier is
theInterfaceName.

theComponent As RoseRT.Component

The Component that realizes.

theRelName As String

The name of the new RealizeRelation.

theInterfaceName As String

The name of the supplier of the new RealizeRelation.

AddUserLibrary (libraryName : String) : Boolean

Description

Adds a component level library file to be used during builds.

Syntax

LibraryAdded = theComponent.AddUserLibrary(libraryName)
158 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

LibraryAdded As Boolean

Returns whether the new library was added to theComponent.

theComponent As RoseRT.Component

The Component who gets a new library added.

libraryName As String

The filename of the new library file.

AddUserLibraryPath (pathName : String) : Boolean

Description

Adds a component level library path to be used by during builds.

Syntax

LibraryPathAdded = theComponent.AddInclusionPath(pathName)

LibraryPathAdded As Boolean

Returns a whether the new library path was added to theComponent.

theComponent As RoseRT.Component

The Component who gets a new library path added.

pathName As String

The pathname of the new library path.

AssignClass (theClass : Classifier) : Boolean

Description

Assigns a classifier to a Component.

Syntax

ClassifierAssigned = theComponent.AssignClass(theClass)
Component 159

ClassifierAssigned As Boolean

Returns whether theClass was assigned to theComponent.

theComponent As RoseRT.Component

The Component who gets assigned a theClass.

theClass As RoseRT.Classifier

Classifier to assign to theComponent.

AssignPackage (thePackage : LogicalPackage) : Boolean

Description

Assigns a package to a Component.

Syntax

PackageAssigned = theComponent.AssignPackage(thePackage)

PackageAssigned As Boolean

Returns whether thePackage was assigned to theComponent.

theComponent As RoseRT.Component

The Component who gets assigned thePackage.

thePackage As RoseRT.LogicalPackage

LogicalPackage to assign to theComponent.

Build (bUpdateAssignedClassList : Boolean) : Boolean

Description

Generates the source code for the component, and invokes the external compiler and
linker to create an executable version of the component. Only the model elements that
have changed will be generated and recompiled.

Syntax

BuildDone = theComponent.Build(bUpdateAssignedClassList)
160 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

BuildDone As Boolean

Returns whether Build operation was performed.

theComponent As RoseRT.Component

The Component who gets built.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual build.

DeleteComponentDependency (theDep : ComponentDependency) :
Boolean

Description

Deletes a ComponentDependency relationship.

Syntax

ComponentDependencyDeleted = theComponent.DeleteComponentDependency(
theDep)

ComponentDependencyDeleted As Boolean

Returns whether theDep was deleted.

theComponent As RoseRT.Component

The Component to remove ComponentDependency from.

theDep As RoseRT.ComponentDependency

The ComponentDependency to remove from theComponent.

DeleteInclusion (inclusion : String) : Boolean

Description

Deletes an inclusion.
Component 161

Syntax

InclusionDeleted = theComponent.DeleteInclusion(inclusion)

InclusionDeleted As Boolean

Returns whether inclusion was deleted.

theComponent As RoseRT.Component

The Component to remove inclusion from.

inclusion As String

The inclusion to remove from theComponent.

DeleteInclusionPath (pathName : String) : Boolean

Description

Deletes an inclusion path.

Syntax

InclusionPathDeleted = theComponent.DeleteInclusionPath(pathName)

InclusionPathDeleted As Boolean

Returns whether inclusion path was deleted.

theComponent As RoseRT.Component

The Component to remove inclusion path from.

pathName As String

The inclusion path to remove from theComponent.

DeleteRealizeRelation (theRel : RealizeRelation) : Boolean

Description

Deletes a realize relation.
162 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

RealizeRelationDeleted = theComponent.DeleteRealizeRelation(theRel)

RealizeRelationDeleted As Boolean

Returns whether theRel Realize relation was deleted.

theComponent As RoseRT.Component

The Component to remove theRel from.

theRel As RoseRT.RealizeRelation

The Realize relation to remove from theComponent.

DeleteUserLibrary (libraryName : String) : Boolean

Description

Deletes a library.

Syntax

LibraryDeleted = theComponent.DeleteUserLibrary(libraryName)

LibraryDeleted As Boolean

Returns whether libraryName was deleted.

theComponent As RoseRT.Component

The Component to remove libraryName from.

libraryName As String

The library to remove from theComponent.

DeleteUserLibraryPath (pathName : String) : Boolean

Description

Deletes a library path.
Component 163

Syntax

LibraryPathDeleted = theComponent.DeleteUserLibraryPath(pathName)

LibraryPathDeleted As Boolean

Returns whether library path was deleted.

theComponent As RoseRT.Component

The Component to remove library path from.

pathName As String

The library path to remove from theComponent.

Generate (bUpdateAssignedClassList : Boolean) : Boolean

Description

Generates the source code for the component but does not invoke the external
compiler. Generation is incremental to previous build and generate requests. The
Generate operation is usually used if the compilation is going to be invoked from
outside the toolset.

Syntax

GenerationDone = theComponent.Generate(bUpdateAssignedClassList)

GenerationDone As Boolean

Returns whether Generation operation was performed.

theComponent As RoseRT.Component

The Component to generated code for.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual code
generation.
164 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetAllClasses () : ClassifierCollection

Description

Returns all classifiers assigned to a Component.

Syntax

theClassifiers = theComponent.GetAllClasses()

theClassifiers As RoseRT.ClassifierCollection

Classifiers assigned to theComponent

theComponent As RoseRT.Component

The Component to return Classifiers assigned to.

GetComponentDependencies () : ComponentDependencyCollection

Description

Returns all ComponentDependency relations a Component is client of.

Syntax

theComponentDependencies = theComponent.GetComponentDependencies()

theComponentDependencies As RoseRT.ComponentDependencyCollection

ComponentDependencies of theComponent

theComponent As RoseRT.Component

The Component to return ComponentDependencies of.

GetInclusionPathFlag (pathName : String) : Boolean

Description

Returns the ComputeDependencies flag of an inclusion path of a Component.
Component 165

Syntax

ComputeDependencies = theComponent.GetInclusionPathFlag(pathName)

ComputeDependencies As Boolean

Returns whether the ComputeDependencies flag is set for the pathname Inclusion
Path.

theComponent As RoseRT.Component

The Component to that contains the Inclusion Path pathName.

pathName As String

Pathname of Inclusion Path to retrieve ComputeDependencies flag for.

GetRealizeRelations () : RealizeRelationCollection

Description

Returns all Realize relations of a Component.

Syntax

theRealizeRelations = theComponent.GetRealizeRelations()

theRealizeRelations As RoseRT.RealizeRelationCollection

Realize relations of theComponent

theComponent As RoseRT.Component

The Component to return Realize relations of.

RebuildAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Forces a complete build on a component. All classes referenced by the component will
be regenerated, compiled, and linked.

Syntax

RebuildAllDone = theComponent.RebuildAll(bUpdateAssignedClassList)
166 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RebuildAllDone As Boolean

Returns whether RebuildAll operation was performed.

theComponent As RoseRT.Component

The Component who gets rebuilt.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual RebuildAll.

RegenerateAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Initiates a model verification and generates the source code for the component but the
external compiler is not invoked. Generation is not incremental to previous build and
generate requests. The complete component is regenerated.

Syntax

RegeneratAllDone = theComponent.RegenerateAll(
bUpdateAssignedClassList)

RegeneratAllDone As Boolean

Returns whether RegenerateAll operation was performed.

theComponent As RoseRT.Component

The Component who gets regenerated.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual RegenerateAll.
Component 167

ReverifyAll (bUpdateAssignedClassList : Boolean) : Boolean

Description

Run a complete verification of all elements. Normally, the toolset performs an
incremental verification, checking only those elements that have changed since the
last verify, and any elements affected by the changes. The reverify all command
ignores the incremental changes and verifies the entire Component.

Syntax

ReverifyAllDone = theComponent.ReverifyAll(bUpdateAssignedClassList)

ReverifyAllDone As Boolean

Returns whether ReverifyAll operation was performed.

theComponent As RoseRT.Component

The Component who gets reverified.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual ReverifyAll.

UnassignClass (theClass : Classifier) : Boolean

Description

Unassigns a classifier from a Component.

Syntax

UnassignDone = theComponent.UnassignClass(theClass)

UnassignDone As Boolean

Returns whether Unassign operation was performed.

theComponent As RoseRT.Component

The Component who gets theClass unassigned from.
168 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theClass As RoseRT.Classifier

The Classifier to unassign from the theComponent.

UnassignPackage (thePackage : LogicalPackage) : Boolean

Description

Unassigns a Logical Package from a Component.

Syntax

UnassignDone = theComponent.UnassignPackage(thePackage)

UnassignDone As Boolean

Returns whether Unassign operation was performed.

theComponent As RoseRT.Component

The Component who gets thePackage unassigned from.

thePackage As RoseRT.LogicalPackage

The Logical Package to unassign from the theComponent.

UpdateAssignedClassList () : Boolean

Description

Updates the assigned Classifier list of a Component based on the set of Classifiers
referenced by the top Capsule or by any of its referenced Classifiers.

Syntax

UpdateDone = theComponent.UpdateAssignedClassList()

UpdateDone As Boolean

Returns whether Update operation was performed.

theComponent As RoseRT.Component

The Component who gets its classifier list updated.
Component 169

Verify (bUpdateAssignedClassList : Boolean) : Boolean

Description

Initiate an internal check of the Component for consistency and errors. A Component
verification is run every time a Component is either generated or built.

Syntax

VerifyDone = theComponent.Verify(bUpdateAssignedClassList)

VerifyDone As Boolean

Returns whether Verify operation was performed.

theComponent As RoseRT.Component

The Component who gets verified.

bUpdateAssignedClassList As Boolean

Whether to update the assigned class list before performing the actual Verify.

ComponentPackage

Description

A ComponentPackage is a collection of logically related components. (The
ComponentPackage/component relationship is analogous to the logical
package/class relationship).The ComponentPackage class exposes attributes and
operations that allow you to define and manipulate ComponentPackages and their
characteristics. Check the lists of attributes and operations for complete information.

Derived from Package

Public Attributes

ComponentDiagrams : ComponentDiagramCollection

Description

Contains the component diagrams belonging to the ComponentPackage.
170 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ComponentPackages : ComponentPackageCollection

Description

Contains the ComponentPackages belonging to the ComponentPackage.

Components : ComponentCollection

Description

Contains the modules belonging to the subsystem.

ParentComponentPackage : ComponentPackage

Description

Identifies the ComponentPackage object that contains the ComponentPackage. If the
ComponentPackage is the root ComponentPackage, then the value of parent
ComponentPackage is set to Nothing.

Note: You can also use the TopLevel method to check for this condition.

Public Operations

AddComponent (theName : String) : Component

Description

Creates a new component in a ComponentPackage and returns it in the specified
object.

Syntax

Set theComponent = theComponentPackage.AddComponent (theName)

theComponent As RoseRT.Component

Returns the newly created component object.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage to which new component is being added.
ComponentPackage 171

theName As String

Name of the component to be created.

AddComponentDiagram (name : String) : ComponentDiagram

Description

Creates a new component diagram in a ComponentPackage and returns it in the
specified object.

Syntax

Set theComponentDiagram = theComponentPackage.AddComponentDiagram
(theName)

theComponentDiagram As RoseRT.ComponentDiagram

Returns the newly created component diagram object.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage to which new component diagram is being added.

theName As String

Name of the component diagram to be created.

AddComponentPackage (theName : String) : ComponentPackage

Description

Creates a new ComponentPackage in a model and returns it in the specified
ComponentPackage object.

Syntax

Set theComponentPackage = theObject.AddComponentPackage (theName)

theComponentPackage As RoseRT.ComponentPackage

Returns the newly created ComponentPackage.

theObject As RoseRT.ComponentPackage

Instance of the ComponentPackage being created.
172 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theName As String

Name of the ComponentPackage being created.

DeleteComponent (pIDispatch : Component) : Boolean

Description

Deletes a component from a ComponentPackage.

Syntax

IsDeleted = theComponentPackage.DeleteComponent (theComponent)

IsDeleted As Boolean

Returns a value of True when the component is successfully deleted.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage from which to delete the module.

theComponent As RoseRT.Component

Component being deleted.

DeleteComponentPackage (pIDispatch : ComponentPackage) : Boolean

Description

Deletes a ComponentPackage from a ComponentPackage.

Syntax

IsDeleted = theComponentPackage.DeleteComponentPackage
(theComponentPackage)

IsDeleted As Boolean

Returns a value of True when the ComponentPackage is successfully deleted.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage from which to delete the ComponentPackage.
ComponentPackage 173

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage being deleted.

GetAllComponentPackages () : ComponentPackageCollection

Description

Retrieves all ComponentPackages belonging to a ComponentPackage.

Syntax

Set theComponentPackages = theComponentPackage.GetAllComponentPackages
()

theComponentPackages As RoseRT.ComponentPackageCollection

Returns all ComponentPackage belonging to the ComponentPackage.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage whose ComponentPackages are being retrieved.

GetAllComponents () : ComponentCollection

Description

Retrieves all components belonging to a ComponentPackage.

Syntax

Set theComponents = theComponentPackage.GetAllComponents ()

theComponents As RoseRT.ComponentCollection

Returns all components belonging to the ComponentPackage.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage whose components are being retrieved.
174 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetComponentDependencies () : ComponentDependencyCollection

Description

Returns all ComponentDependency relations a ComponentPackage is client of.

Syntax

theComponentDependencies =
theComponentPackage.GetComponentDependencies()

theComponentDependencies As RoseRT.ComponentDependencyCollection

ComponentDependencies theComponentPackage is client of.

theComponentPackage As RoseRT.ComponentPackage

The ComponentPackage to the ComponentDependencies it is client of.

GetComponentPackageDependencies (theComponentPackage :
ComponentPackage) : ComponentDependencyCollection

Description

Retrieves the ComponentDependency collection owned by a ComponentPackage
whose supplier is another specified ComponentPackage. The clients of these relations
are Components.

Syntax

Set theComponentDependencies =
theComponentPackage.GetComponentPackageDependencies(
theSupplierComponentPackage)

theComponentDependencies As RoseRT.ComponentDependencyCollection

Returns the component dependency collection owned by the theComponentPackage
whose supplier is theSupplierComponentPackage.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage that owns the collection of ComponentDependency being
retrieved.
ComponentPackage 175

theSupplierComponentPackage As RoseRT.ComponentPackage

Supplier of the component dependencies retrieved.

GetVisibleComponentPackages () : ComponentPackageCollection

Description

Retrieves all ComponentPackages that are visible from a ComponentPackage. This
includes ComponentPackage containing Component that are visible from the queried
Component Package.

Syntax

Set theComponentPackages =
theComponentPackage.GetVisibleComponentPackages ()

theComponentPackages As RoseRT.ComponentPackageCollection

Returns all ComponentPackage visible from the ComponentPackage.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage whose visible ComponentPackages are being retrieved.

RelocateComponent (theComponent : Component) :

Description

Relocates a component in a ComponentPackage.

Syntax

theComponentPackage.RelocateComponent theComponent

theComponentPackage As RoseRT.ComponentPackage

The component package to relocate a component into.

theComponent As RoseRT.Component

The component to relocate.
176 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RelocateComponentDiagram (theModDiagram : ComponentDiagram) :

Description

Relocates a component diagram in a ComponentPackage.

Syntax

theComponentPackage.RelocateComponentDiagram theComponentDiagram

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage that contains the component diagram being relocated.

theComponentDiagram As RoseRT.ComponentDiagram

Component diagram being relocated.

RelocateComponentPackage (theComponentPackage :
ComponentPackage) :

Description

Relocates a ComponentPackage in a model.

Syntax

theComponentPackage.RelocateComponentPackage theComponentPackage

theComponentPackage As RoseRT.ComponentPackage

Component package that contains the ComponentPackage being relocated.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage being relocated.

TopLevel () : Boolean

Description

Determines whether the specified object is the root ComponentPackage.
ComponentPackage 177

Syntax

IsTopLevel = theComponentPackage.TopLevel ()

IsTopLevel As Boolean

Returns a value of True if the specified object is the root component package.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage object being tested as root ComponentPackage.

Core Model Classes

Core Model classes include

■ ControllableElement on page 184

➑ Public Attributes

ControlNewUnits : Boolean on page 184

➑ Public Operations

Control () : Boolean on page 185

ControlChildElements (Recursive : Boolean) : Boolean on page 185

ControlTo (Path : String) : Boolean on page 185

GetChildDirName () : String on page 186

GetContainingControlledElement () : ControllableElement on page 186

GetControlledChildElements (bRecursive : Boolean) :
ControllableElementCollection on page 187

GetFileName () : String on page 187

GetVersion () : String on page 188

IsCheckedOut () : Boolean on page 188

IsChildDirCheckedOut () : Boolean on page 189

IsChildDirUnderSourceControl () : Boolean on page 189

IsControllableElementContainer () : Boolean on page 190

IsControlled () : Boolean on page 190

IsLoaded () : Boolean on page 191

IsModifiable () : Boolean on page 191
178 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsModified () : Boolean on page 192

IsOwned () : Boolean on page 192

IsUnderSourceControl () : Boolean on page 192

Save () : Boolean on page 193

Uncontrol () : Boolean on page 193

UncontrolChildElements (Recursive : Boolean) : Boolean on page 194

■ DefaultModelProperties on page 194

➑ Public Operations

AddDefaultProperty (ClassName : String, ToolName : String, SetName : String,
PropName : String, PropType : String, Value : String) : Boolean on page 195

CloneDefaultPropertySet (ClassName : String, ToolName : String,
ExistingSetName : String, NewSetName : String) : Boolean on page 196

CreateDefaultPropertySet (ClassName : String, ToolName : String, NewSetName :
String) : Boolean on page 197

DeleteDefaultProperty (ClassName : String, ToolName : String, SetName : String,
PropName : String) : Boolean on page 198

DeleteDefaultPropertySet (ClassName : String, ToolName : String, SetName :
String) : Boolean on page 199

FindDefaultProperty (ClassName : String, ToolName : String, SetName : String,
PropName : String) : Property on page 200

GetDefaultPropertySet (ClassName : String, ToolName : String, SetName : String)
: PropertyCollection on page 201

GetDefaultSetNames (ClassName : String, ToolName : String) : StringCollection
on page 201

GetToolNames (Parameter1 : String) : StringCollection on page 202

IsToolVisible (theToolName : String) : Boolean on page 203

SetToolVisibility (theToolName : String, Visibility : Boolean) : on page 203
Core Model Classes 179

■ Element on page 204

➑ Public Attributes

Application : Application on page 204

Model : Model on page 204

Name : String on page 205

➑ Public Operations

CreateProperty (theToolName : String, thePropName : String, theValue : String,
theType : String) : Boolean on page 205

FindDefaultProperty (theToolName : String, thePropName : String) : Property on
page 206

FindProperty (theToolName : String, thePropName : String) : Property on
page 206

GetAllProperties () : PropertyCollection on page 207

GetCurrentPropertySetName (ToolName : String) : String on page 207

GetDefaultPropertyValue (theToolName : String, thePropName : String) : String
on page 208

GetDefaultSetNames (ToolName : String) : StringCollection on page 208

GetPropertyClassName () : String on page 209

GetPropertyValue (theToolName : String, thePropName : String) : String on
page 209

GetQualifiedName () : String on page 210

GetToolNames () : StringCollection on page 211

GetToolProperties (theToolName : String) : PropertyCollection on page 211

GetUniqueID () : String on page 211

InheritProperty (theToolName : String, thePropName : String) : Boolean on
page 212

IsDefaultProperty (theToolName : String, thePropName : String) : Boolean on
page 213

IsOverriddenProperty (theToolName : String, thePropName : String) : Boolean on
page 213
180 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

OverrideProperty (theToolName : String, thePropName : String, theValue : String)
: Boolean on page 214

SetCurrentPropertySetName (ToolName : String, SetName : String) : Boolean on
page 215

■ ExternalDocument on page 215

➑ Public Attributes

ParentLogicalPackage : LogicalPackage on page 216

Path : String on page 216

URL : String on page 216

➑ Public Operations

IsURL () : Boolean on page 216

Open (szAppPath : String) : Boolean on page 217

■ Model on page 218

➑ Public Attributes

ActiveComponent : Component on page 218

DefaultProperties : DefaultModelProperties on page 218

DeploymentDiagram : DeploymentDiagram on page 218

RootComponentPackage : ComponentPackage on page 219

RootDeploymentPackage : DeploymentPackage on page 219

RootLogicalPackage : LogicalPackage on page 219

RootUseCaseLogicalPackage : LogicalPackage on page 219

UseCases : UseCaseCollection on page 219

➑ Public Operations

AddActiveComponentInstance (ComponentInstanceToAdd : ComponentInstance) :
Boolean on page 219

AddDevice (pName : String) : Device on page 220

ControlAllUnits (bControlAllUnits : Boolean) : Boolean on page 221

DeleteDevice (pDevice : Device) : Boolean on page 221

DeleteProcessor (pProcessor : Processor) : Boolean on page 222
Core Model Classes 181

FindCapsuleWithID (UniqueID : String) : Capsule on page 222

FindCapsules (CapsuleName : String) : CapsuleCollection on page 223

FindClassWithID (UniqueID : String) : Class on page 223

FindClasses (ClassName : String) : ClassCollection on page 224

FindLogicalPackageWithID (UniqueID : String) : LogicalPackage on page 224

FindLogicalPackages (LogicalPackageName : String) : LogicalPackageCollection on
page 225

FindModelElementWithID (UniqueID : String) : ModelElement on page 225

FindModelElements (ModelElementName : String) : ModelElementCollection on
page 226

FindProtocolWithID (UniqueID : String) : Protocol on page 226

FindProtocols (ProtocolName : String) : ProtocolCollection on page 227

GetActiveComponentInstances () : ComponentInstanceCollection on page 227

GetActiveDiagram () : Diagram on page 228

GetAllAssociations () : AssociationCollection on page 228

GetAllCapsules () : CapsuleCollection on page 229

GetAllClasses () : ClassCollection on page 229

GetAllComponentPackages () : ComponentPackageCollection on page 230

GetAllComponents () : ComponentCollection on page 230

GetAllDevices () : DeviceCollection on page 230

GetAllLogicalPackages () : LogicalPackageCollection on page 231

GetAllProcessors () : ProcessorCollection on page 231

GetAllProtocols () : ProtocolCollection on page 232

GetAllUseCases () : UseCaseCollection on page 232

GetSelectedCapsules () : CapsuleCollection on page 232

GetSelectedClasses () : ClassCollection on page 233

GetSelectedComponentPackages () : ComponentPackageCollection on page 233

GetSelectedComponents () : ComponentCollection on page 234

GetSelectedLogicalPackages () : LogicalPackageCollection on page 234
182 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetSelectedModelElements () : ModelElementCollection on page 234

GetSelectedProtocols () : ProtocolCollection on page 235

GetSelectedUseCases () : UseCaseCollection on page 235

RemoveActiveComponentInstance (ComponentInstanceToRemove :
ComponentInstance) : Boolean on page 236

■ ModelElement on page 236

➑ Public Attributes

Documentation : String on page 237

ExternalDocuments : ExternalDocumentCollection on page 237

LocalizedStereotype : String on page 237

Stereotype : String on page 237

➑ Public Operations

AddExternalDocument (szName : String, iType : RsExternalDocumentType) :
ExternalDocument on page 237

DeleteExternalDocument (pIDispatch : ExternalDocument) : Boolean on page 238

GetModelElement () : ModelElement on page 238

OpenSpecification () : Boolean on page 239

■ Package on page 239

➑ Public Operations

AddSharedUnit (FileName : String) : Boolean on page 240

AddUnit (FileName : String) : Boolean on page 240

ImportFile (FileName : String) : Boolean on page 241

ImportFileEx (FileName : String) : ControllableElementCollection on page 241

IsRootPackage () : Boolean on page 242

TopLevel () : Boolean on page 242
Core Model Classes 183

■ Property on page 243

➑ Public Attributes

Name : String on page 243

ToolName : String on page 243

Type : String on page 243

Value : String on page 244

■ RsExternalDocumentType on page 244

➑ Public Attributes

rsFile : Integer = 1 on page 244

rsURL : Integer = 2 on page 244

■ StructuredProperty on page 244

➑ Public Operations

GetFieldValue on page 245

SetFieldValue on page 246

ControllableElement

Description

The ControllableElement class is an abstract class that exposes Rational Rose
RealTime unit functionality in the RRTEI. ControllableElements are either controlled,
or contained in a controlled ControllableElement. A controlled ControllableElement
has an associated file where it stores its persistent state and the one of its contained
ControllableElements.

Derived from Element

Public Attributes

ControlNewUnits : Boolean

Description

Determines whether new child units will be created as controlled units.
184 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations

Control () : Boolean

Description

Controls a ControllableElement in default unit file.

Syntax

IsControlled = theControllableElement.Control()

IsControlled As Boolean

Whether theControllableElement is controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to control.

ControlChildElements (Recursive : Boolean) : Boolean

Description

Controls all children of a ControllableElement.

Syntax

AreControlled = theControllableElement.ControlChildElements(Recursive
As Boolean)

AreControlled As Boolean

Whether all controllable children of theControllableElement are controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to control children of.

Recursive As Boolean

Specifies whether to control children's children units two.

ControlTo (Path : String) : Boolean

Description

Controls a ControllableElement.
ControllableElement 185

Syntax

IsControlled = theControllableElement.ControlTo(Path As String)

IsControlled As Boolean

Whether theControllableElement is controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to control.

Path As String

Pathname of controlled element.

GetChildDirName () : String

Description

Returns the directory name of the folder containing the persistent state of a controlled
ControllableElement's children controllable elements.

Syntax

theDirectoryName = theControllableElement.GetChildDirName()

theDirectoryName As String

The directory name where theControllableElement's children controllable elements
are stores. Notice that an empty string is returned if theControllableElement is NOT
controlled or if it can not contain children Controllable Elements.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the directory name used to store that
Controllable Element's children.

GetContainingControlledElement () : ControllableElement

Description

Returns the ControllableElement that controls a ControllableElement. May return self.
186 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

theContainingControlledElement =
theControllableElement.GetContainingControlledElement()

theContainingControlledElement As RoseRT.ControllableElement

The ControllableElement that controls theControllableElement

theControllableElement As RoseRT.ControllableElement

The Controllable Element to get the controlled ControllableElement it is contained in.

GetControlledChildElements (bRecursive : Boolean) :
ControllableElementCollection

Description

Returns the collection of ControllableElement contained in a ControllableElement.

Syntax

theChildControlledElements =
theControllableElement.GetControlledChildElements(bRecursive)

theChildControlledElements As RoseRT.ControllableElementCollection

The ControllableElement that controls theControllableElement

theControllableElement As RoseRT.ControllableElement

The Controllable Element to get the controlled ControllableElement it is contained in.

bRecursive As Boolean

Whether get the child ControllableElement's child recursively.

GetFileName () : String

Description

Returns the fully qualified name of the file containing the persistent state to a
controlled ControllableElement and its children.
ControllableElement 187

Syntax

theFileName = theControllableElement.GetFileName()

theFileName As String

The fully qualified name of theControllableElement's unit file. Notice that an empty
string is returned if theControllableElement is NOT controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the unit fully qualified filename from.

GetVersion () : String

Description

Returns the Source Control version associated with a controlled ControllableElement.

Syntax

theVersion = theControllableElement.GetVersion()

theVersion As String

The Source Control version of theControllableElement. Notice that an empty string is
returned if theControllableElement is NOT controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the Source Control version from.

IsCheckedOut () : Boolean

Description

Returns whether a controlled ControllableElement is checked out of Source Control.

Syntax

IsCheckedOut = theControllableElement.IsCheckedOut()

IsCheckedOut As Boolean
188 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Whether theControllableElement is checked out from Source Control. Notice that
False is always returned if theControllableElement is NOT controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve Source Control checkout status from.

IsChildDirCheckedOut () : Boolean

Description

Returns whether a controlled ControllableElement's child controllable elements'
directory is checked out of Source Control.

Syntax

IsChildDirCheckedOut = theControllableElement.IsCheckedOut()

IsChildDirCheckedOut As Boolean

Whether theControllableElement's child controllable elements' directory is checked
out from Source Control. Notice that False is always returned if
theControllableElement is NOT controlled. Controllable Element that can not contain
children Controllable Elements always return False.

theControllableElement As RoseRT.ControllableElement

The Controllable Element whose child controllable elements' directory is used to
retrieve Source Control checkout status from.

IsChildDirUnderSourceControl () : Boolean

Description

Returns whether a controlled ControllableElement's child controllable elements'
directory is under Source Control.

Syntax

IsChildDirUserSourceControl =
theControllableElement.IsChildDirUserSourceControl()

IsChildDirUserSourceControl As Boolean
ControllableElement 189

Whether child directory of theControllableElement is under SourceControl. Non
Controlled ControllableElement always return False. Controllable Element that can
not contain children Controllable Elements always return False.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the IsChildDirUserSourceControl status from.

IsControllableElementContainer () : Boolean

Description

Returns whether the Controllable Element can contain child Controllable Elements.

Syntax

IsControllableElementContainer =
theControllableElement.IsControllableElementContainer()

IsControllableElementContainer As Boolean

Whether theControllableElement can contain child Controllable Elements.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve whether it can contain child Controllable
Element.

IsControlled () : Boolean

Description

Returns whether a ControllableElement is controlled.

Syntax

IsControlled = theControllableElement.IsControlled()

IsControlled As Boolean

Whether theControllableElement is controlled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the Controlled status from.
190 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsLoaded () : Boolean

Description

Returns whether a Controlled ControllableElement is Loaded. A controlled
ControllableElement is always in the Loaded state except in very rare situations.

Syntax

IsLoaded = theControllableElement.IsLoaded()

IsLoaded As Boolean

Whether theControllableElement is loaded. Notice that a non controlled Controllable
Element will always return False.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the Loaded status from.

IsModifiable () : Boolean

Description

Returns whether a ControllableElement is modifiable.

Syntax

IsModifiable = theControllableElement.IsModifiable()

IsModifiable As Boolean

Whether theControllableElement can be modified. Notice that a non controlled
Controllable Element will always base its ModifiableState on the one of its Containing
ControllableElement.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the Modifiable status from.
ControllableElement 191

IsModified () : Boolean

Description

Returns whether the ControllableElement's ContainingControllableElement, or its
children have been modified.

Syntax

IsModified = theControllableElement.IsModified()

IsModified As Boolean

Whether theControllableElement's ContainingControllableElemtn or its children has
been modified since last save.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the Modified status from.

IsOwned () : Boolean

Description

Returns whether a ControllableElement is owned by the Model.

Syntax

IsOwned = theControllableElement.IsOwned()

IsOwned As Boolean

Whether theControllableElement IsOwned by the Model. The RTSClasses logical
package is an example of a ControllableElement not owned by the model.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the IsOwned status from.

IsUnderSourceControl () : Boolean

Description

Returns whether a controlled ControllableElement is under Source Control.
192 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

IsUserSourceControl = theControllableElement.IsUserSourceControl()

IsUserSourceControl As Boolean

Whether theControllableElement is under SourceControl. Non Controlled
ControllableElement always return False.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to retrieve the IsUnderSourceControl status from.

Save () : Boolean

Description

Saves a controlled ControllableElement.

Syntax

Saved = theControllableElement.Save()

Saved As Boolean

Whether theControllableElement was saved. Non Controlled ControllableElement
always return False.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to save.

Uncontrol () : Boolean

Description

Uncontrols a ControllableElement.

Syntax

IsUncontrolled = theControllableElement.Control()

IsUncontrolled As Boolean

Whether theControllableElement is uncontrolled.
ControllableElement 193

theControllableElement As RoseRT.ControllableElement

The Controllable Element to uncontrol.

UncontrolChildElements (Recursive : Boolean) : Boolean

Description

Uncontrols all children of a ControllableElement.

Syntax

AreUncontrolled = theControllableElement.UncontrolChildElements(
Recursive As Boolean)

AreUncontrolled As Boolean

Whether all controllable children of theControllableElement are uncontrolled.

theControllableElement As RoseRT.ControllableElement

The Controllable Element to uncontrol children of.

Recursive As Boolean

Specifies whether to uncontrol children's children units two.

DefaultModelProperties

Description

The DefaultModelProperties Class is a container for the default model properties that
belong to a model. There is one and only one DefaultModelProperties object per
model.

Note: If you use PropertyCollection methods to retrieve model properties, the
collection can include both default and non-default model properties.
194 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Operations

AddDefaultProperty (ClassName : String, ToolName : String, SetName :
String, PropName : String, PropType : String, Value : String) : Boolean

Description

Adds a default property to a model:

■ The class name, tool name and set name determine where the property is added.

■ The property name, property type, and property type define the property itself.

Syntax

IsAdded = theProperties.AddDefaultProperty (theClassName, theToolName,
theSetName, thePropName, thePropType, theValue)

IsAdded As Boolean

Returns a value of True when the default property is successfully added.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the class to which the default property applies; corresponds to the Type field
in the property specification editor of the Rose user interface. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

theToolName As String

Name of the tool to which the default property applies; If the tool does not exist, it
will be created.

theSetName As String

Name of the property set to which the default property applies.
DefaultModelProperties 195

thePropName As String

Name of the default property.

thePropType As String

PropertyType of the default property.

theValue As String

Value of the default property.

See also

AddDefaultProperty (ClassName : String, ToolName : String, SetName : String, PropName :
String, PropType : String, Value : String) : Boolean on page 195

CloneDefaultPropertySet (ClassName : String, ToolName : String,
ExistingSetName : String, NewSetName : String) : Boolean

Description

Creates a new default property set by cloning an existing property set.

Syntax

IsCloned = theProperties.CloneDefaultPropertySet (theClassName,
theToolName, theExistingSetName, theNewSetName)

IsCloned As Boolean

Returns a value of True when the default property set is successfully cloned.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the extensibility class to which the new default property set applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.
196 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theToolName As String

Name of the tool to which the new default property set applies.

theExistingSetName As String

Name of the existing default property set being cloned.

theNewSetName As String

Name of the new default property set created from the clone.

See also

CreateDefaultPropertySet (ClassName : String, ToolName : String, NewSetName : String) :
Boolean on page 197

CreateDefaultPropertySet (ClassName : String, ToolName : String,
NewSetName : String) : Boolean

Description

Creates a new default property set without using an existing property set as a base.

Syntax

IsCreated = theProperties.CreateDefaultPropertySet (theClassName,
theToolName, theNewSetName)

IsCreated As Boolean

Returns a value of True when the default property set is successfully created.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the extensibility class to which the new default property set applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.
DefaultModelProperties 197

theToolName As String

Name of the tool to which the new default property set applies.

theNewSetName As String

Name of the newly created default property set.

See also

CloneDefaultPropertySet (ClassName : String, ToolName : String, ExistingSetName : String,
NewSetName : String) : Boolean on page 196

DeleteDefaultProperty (ClassName : String, ToolName : String, SetName
: String, PropName : String) : Boolean

Description

Deletes a default property from a model. This method only deletes the property that
belongs to the given class, tool, and set. If a different combination of class, tool, and
set contains a default property with the same property name, that default property
will remain intact and will not be deleted.

Syntax

IsDeleted = theProperties.DeleteDefaultProperty (theClassName,
theToolName, theSetName, thePropName)

IsDeleted As Boolean

Returns a value of True when the default property is successfully deleted.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the extensibility class to which the default property applies. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

theToolName As String

Name of the tool to which the default property applies.
198 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theSetName As String

Name of the property set to which the default property applies.

thePropName As String

Name of the default property to delete.

DeleteDefaultPropertySet (ClassName : String, ToolName : String,
SetName : String) : Boolean

Description

Deletes a default property set from a model.

Syntax

IsDeleted = theProperties.DeleteDefaultPropertySet (theClassName,
theToolName, theSetName)

IsDeleted As Boolean

Returns a value of True when the default property set is successfully deleted.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the extensibility class to which the deleted default property set applies. Use
the Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

theToolName As String

Name of the tool to which the deleted default property set applies.

theSetName As String

Name of the default property set to delete.
DefaultModelProperties 199

FindDefaultProperty (ClassName : String, ToolName : String, SetName :
String, PropName : String) : Property

Description

Finds a specific default model property, given the name of the class, tool, and
property set that contain it.

Syntax

theProperty = theProperties.FindDefaultProperty (theClassName,
theToolName, theSetName, thePropName)

theProperty As RoseRT.Property

Returns the default model property, if found. Returns an empty value if the property
does not exist.

theProperties As RoseRT.DefaultModelProperties

Contains the properties belonging to the model .

theClassName As String

Name of the extensibility class to search Use the Element.GetPropertyClassName
method to retrieve the valid string to pass as theClassName for a model element.

theToolName As String

Name of the tool to search.

theSetName As String

Name of the default property set to search.

thePropName As String

Name of the default property to find.
200 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetDefaultPropertySet (ClassName : String, ToolName : String, SetName
: String) : PropertyCollection

Description

Retrieves the set of default model properties that belongs to a given extensibility class
and tool.

Syntax

Set theSet = theProperties.GetDefaultPropertySet (theClassName,
theToolName)

theSet As DefaultModelProperties

Returns the set of default model properties that belongs to the specified extensibility
class and tool.

theProperties As RoseRT.DefaultModelProperties

Contains the properties belonging to the model.

theClassName As String

Name of the extensibility class to which the retrieved default property set belongs.
Use the Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

theToolName As String

Name of the tool to which the retrieved default property set belongs.

GetDefaultSetNames (ClassName : String, ToolName : String) :
StringCollection

Description

Retrieves the names of the default property sets that contain the model’s default
properties.

Syntax

theSetNames = theProperties.GetDefaultSetNames (theClassName,
theToolName)
DefaultModelProperties 201

theSetNames As StringCollection

Returns a StringCollection containing the valid default property set names for the
given extensibility class and tool.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String

Name of the extensibility class for which you are retrieving valid default property set
names. Use the Element.GetPropertyClassName method to retrieve the valid string to
pass as theClassName for a model element.

theToolName As String

Name of the tool for which you are retrieving valid default property set names.

GetToolNames (Parameter1 : String) : StringCollection

Description

Retrieves the names of the tools associated with the given properties and class name.

Syntax

Set theToolNames = theProperties.GetToolNames (theClassName)

theToolNames As RoseRT.StringCollection

Returns a StringCollection containing the valid tool names for the given extensibility
class.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theClassName As String
202 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Name of the extensibility class for which you are retrieving valid tool names. Use the
Element.GetPropertyClassName method to retrieve the valid string to pass as
theClassName for a model element.

IsToolVisible (theToolName : String) : Boolean

Description

Determines whether the property tab for the given tool will appear in the property
specification.

Syntax

IsVisible = theProperties.IsToolVisible (theToolName)

IsVisible As Boolean

Returns a value of True if the default model properties’ tool is visible.

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theToolName As String

Name of the tool to which the default properties belong.

SetToolVisibility (theToolName : String, Visibility : Boolean) :

Description

Sets the tool’s visibility; that is, whether the property tab for the given tool will appear
in the property specification.

Syntax

theProperties.SetToolVisibility theToolName, Visibility

theProperties As RoseRT.DefaultModelProperties

Contains the default properties belonging to the model.

theToolName As String
DefaultModelProperties 203

Name of the tool whose visibility is being set.

Visibility As Boolean

Set to True to make the tool visible; set to False to make the tool invisible.

Element

Description

The element class provides the interface to model properties.

Every object in a Rose RealTime model (including the model itself) is an element. And
every element in a Rose RealTime model has a name and /or a unique ID. Following
this logic, you can use Element Class methods to obtain the ID for any item in the
current model, and from there get or set its properties and property sets.

The unique element ID also provides the most direct means of accessing an item from
a collection. While you can still use GetFirst and GetNext methods to iterate through a
collection, you can also use the GetwithUniqueID method to obtain the item right
away, without searching through the collection.

Derived from RRTEIObject

Public Attributes

Application : Application

Description

Name of a model element

Model : Model

Description

Name of a model element
204 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Name : String

Description

Name of a model element

Public Operations

CreateProperty (theToolName : String, thePropName : String, theValue :
String, theType : String) : Boolean

Description

Creates a new property for a given model element and tool.

Syntax

IsCreated = theElement.CreateProperty (theToolName, thePropName,
theValue, theType)

IsCreated As Boolean

Returns a value of True when the property is created for the element.

theElement As RoseRT.Element

Element for which the property is being created.

theToolName As String

Name of the tool to which the property applies.

thePropName As String

Name of the property being created.

theValue As String

Default value of the new property.

theType As String
Element 205

Property type of the property.

FindDefaultProperty (theToolName : String, thePropName : String) :
Property

Description

Returns the default property given the tool name and property name.

Syntax

Set theProperty = theElement.FindDefaultProperty (theToolName,
thePropName)

theProperty As RoseRT.Property

Returns the default property given its name and associated tool name.

theElement As RoseRT.Element

Model element whose default property is being returned.

theToolName As String

Name of the tool to which the default property applies.

thePropName As String

Name of the property being retrieved.

FindProperty (theToolName : String, thePropName : String) : Property

Description

Returns the property given the tool name and property names.

Syntax

Set theProperty = theElement.FindDefaultProperty (theToolName,
thePropName)

theProperty As RoseRT.Property
206 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the property given its name and its associated tool name.

theElement As RoseRT.Element

Model element whose property is being returned.

theToolName As String

Name of the tool to which the property applies.

thePropName As String

Name of the property to return.

GetAllProperties () : PropertyCollection

Description

Returns the collection of properties belonging to the specified element

Syntax

Set theProperties = theElement.GetAllProperties ()

theProperties As RoseRT.PropertyCollection

Returns the collection of properties belonging to the specified element.

theElement As RoseRT.Element

Model element whose properties are being returned.

GetCurrentPropertySetName (ToolName : String) : String

Description

Returns the name of the currently active property set given the element and a tool
name.

Syntax

theName = theElement.GetCurrentPropertySetName (theToolName)

theName As String
Element 207

Returns the name of the currently active property set.

theElement As RoseRT.Element

Element to which the property set belongs.

theToolName As String

Name of the tool to which the property set belongs.

GetDefaultPropertyValue (theToolName : String, thePropName : String) :
String

Description

Retrieves the default property value given a tool name and property name.

Syntax

theValue = theElement.FindDefaultProperty (theToolName, thePropName)

theValue As String

Returns the default property value for the specified tool name and property name.

theElement As RoseRT.Element

Element for which the default property value is being retrieved.

theToolName As String

Name of the tool to which the property applies.

thePropName As String

Name of the property being retrieved.

GetDefaultSetNames (ToolName : String) : StringCollection

Description

Retrieves the names of the default property sets defined for the specified element and
tool.
208 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theStringCollection = theElement.GetDefaultSetNames (theToolName)

theStringCollection As StringCollection

Returns the names of the default property sets defined for the given element and tool
name.

theElement As RoseRT.Element

Element whose default set names are being retrieved.

theToolName As String

Name of the tool whose default set names are being retrieved.

GetPropertyClassName () : String

Description

Retrieves the class name of a given element.

Syntax

theClassName = theElement.GetPropertyClassName ()

theClassName As String

Returns the class name for the given element.

theElement as RoseRT.Element

Element whose class name is being retrieved.

GetPropertyValue (theToolName : String, thePropName : String) : String

Description

Retrieves the current value of a property of an element, given a property and tool
name.

Syntax

theValue = theElement.GetPropertyValue (theToolName, thePropName)
Element 209

theValue As String

Returns the current value for the given tool and property .

theElement As RoseRT.Element

Element for which the property value is being retrieved.

theToolName As String

Name of the tool for which a property value is being retrieved.

thePropName As String

Name of the property whose value is being retrieved.

GetQualifiedName () : String

Description

Retrieves the qualified name of a model element.

The qualified name includes the names of the packages to which the element belongs.
This allows the name to resolve to a specific class, since the Rose allows multiple
classes of the same name to exist in a model, as long as they are in different packages.

Examples

■ The qualified name of the ComponentPackageView Class is:

■ Logical View::Physical Classes::ComponentPackageView

■ The qualified name of the PathMap Class is: Logical View::Application
Classes::PathMap

Syntax

Set theName = theElement.GetQualifiedName ()

theName As String

Returns the qualified name of the element.

theElement As RoseRT.Element
210 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Element whose qualified name is being returned.

GetToolNames () : StringCollection

Description

Retrieves the names of the tools defined for the specified element.

Syntax

Set theStringCollection = theElement.GetToolNames

theStringCollection As StringCollection

Returns the names of the tools for the given element.

theElement As RoseRT.Element

Element whose tool names are being retrieved.

GetToolProperties (theToolName : String) : PropertyCollection

Description

Retrieves the properties for the given element and tool name.

Syntax

Set thePropertyCollection = theElement.GetToolProperties (theToolName)

thePropertyCollection As PropertyCollection

Returns the collection of properties defined for the specified tool name and element .

theElement As RoseRT.Element

Element whose tool properties are being retrieved.

GetUniqueID () : String

Description

Retrieves the unique ID for a model element. Each element in a model has a unique
ID, which is set internally. You cannot set this value, but you can retrieve it.
Element 211

Syntax

Set theUniqueID = theElement.GetUniqueID ()

theUniqueId As String

Returns the string value of the element’s unique ID.

theElement As RoseRT.Element

Element whose ID is being returned.

InheritProperty (theToolName : String, thePropName : String) : Boolean

Description

Removes the overridden value from an element’s property so that the default value is
used . If there is no default value, then a call to the GetPropertyValue method on the
inherited property returns an empty string.

Syntax

IsInherited = theElement.InheritProperty (theToolName, thePropName)

IsInherited as Boolean

Returns a value of True when the property is returned to its inherited (default) value.

theElement As RoseRT.Element

Element to which the property belongs.

theToolName As String

Name of the tool to which the property applies.

thePropName As String

Name of the property whose value is being inherited.
212 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsDefaultProperty (theToolName : String, thePropName : String) :
Boolean

Description

Indicates whether the current value of a property is set to its default value.

Syntax

IsDefault = theElement.IsDefaultProperty (theToolName, thePropName)

IsDefault As Boolean

Returns a value of True if the current value of the property is set to its default value .

theElement As RoseRT.Element

The model element whose property value is being checked.

theToolName As String

Tool name to which the property applies.

thePropName As String

Name of the property whose default status is being checked.

IsOverriddenProperty (theToolName : String, thePropName : String) :
Boolean

Description

Indicates whether the default value of a property is currently overridden by a
different value.

Syntax

IsOverridden = theElement.IsOverriddenProperty (theToolName,
thePropName)

IsOverridden As Boolean

Returns a value of True if the default value of a property is currently overridden.
Element 213

theElement As RoseRT.Element

The model element whose property value is being checked.

theToolName As String

Tool name to which the property applies.

thePropName As String

Name of the property whose overridden status is being checked.

OverrideProperty (theToolName : String, thePropName : String, theValue
: String) : Boolean

Description

Overrides the default value of a element’s property. If the given property does not
exist in the default set, a new string type property is created for this element only.

Syntax

IsOverridden = theElement.OverrideProperty (theToolName, thePropName,
theValue)

IsOverrridden As Boolean

Returns a value of True when the property value is successfully overridden.

theElement as RoseRT.Element

Element to which the property applies.

theToolName As String

Name of the tool to which the property applies.

thePropName As String

Name of the property whose default value is being overridden.

theValue As String

Value being set in place of the default value.
214 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SetCurrentPropertySetName (ToolName : String, SetName : String) :
Boolean

Description

Specifies a given property set as the current property set for the element

Syntax

IsCurrentSet = theElement.SetCurrentPropertySetName (theToolName,
theSetName)

IsCurrentSet As Boolean

Returns a value of True when the given property set is set to the current property set
for the element .

theElement As RoseRT.Element

Element whose current property set is being set.

theToolname As String

Name of the tool to which the property set applies.

theSetName As String

Name of the property set to become the current set.

ExternalDocument

Description

The ExternalDocument class exposes attributes and operations that allow you to
create external documents (reports) from within the Rose RealTime environment. For
example, you can start Word for Windows and output information from a Rose
RealTime model into a Word document.
ExternalDocument 215

Derived from RRTEIObject

Public Attributes

ParentLogicalPackage : LogicalPackage

Description

Specifies the LogicalPackage that contains the external document.

Path : String

Description

Specifies the path to the external document.

Note: An external document is created with a type parameter of either Path or URL.
When accessing an external document, you must specify the correct property (Path or
URL) or a runtime error will occur. For example, you cannot access an external
document whose type is Path by specifying a URL.

URL : String

Description

Specifies the Universal Resource Locator (URL) of an internet document.

Note: An external document is created with a type parameter of either Path or URL.
When accessing an external document, you must specify the correct property (Path or
URL), or a runtime error will occur. For example, you cannot access an external
document whose type is URL by specifying a Path.

Public Operations

IsURL () : Boolean

Description

Checks whether the document is an internet document and therefore has a universal
resource locator (URL).

Syntax

IsURL = theExternalDocument.IsURL ()
216 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

IsURL As Boolean

Returns a value of true if the object has a URL.

theExternalDocument As RoseRT.ExternalDocument

Contains the document being checked.

Open (szAppPath : String) : Boolean

Description

Opens an external document based on a specified application path.

If you do not specify an application path, the Rose RealTime application attempts to
locate and launch the application based on the external document’s type (file
extension).

For example, if the ExternalDocument is linked to a file with the .txt extension, and
you have associated .txt files with the Notepad application, Rose RealTime attempts
to locate and start Notepad and opens the .txt file that contains the external document.

Syntax

IsOpen = theExternalDocument.Open (AppPath)

IsOpen As Boolean

Returns a value of true when the specified document is successfully opened.

theExternalDocument As RoseRT.ExternalDocument

Document being opened.

AppPath As String

Path to the application executable being used to open the document.

Note: You can specify any appropriate application to open the document. For
example, you can use Word or WordPad to open a .doc file.
ExternalDocument 217

Model

Description

Once you use the application class methods to set the current model, the model class
provides attributes and operations that allow you to work with the objects in that
model.

For example, you can:

■ Add objects (classes, categories, relationships, processors, devices, diagrams, etc.)
to the model

■ Retrieve objects from the model

■ Delete objects from the model

Check the lists of attributes and operations for complete information.

Note: In addition to the Model Class attributes and operations, all ModelElement
operations that manipulate properties also apply to the Model Class.

Derived from Package

Public Attributes

ActiveComponent : Component

Description

Used to select an active component. When a component is configured as being active
the toolbar build icons and menu items become available for easy access to common
build and run commands.

DefaultProperties : DefaultModelProperties

Description

Collection of default properties belonging to the model.

DeploymentDiagram : DeploymentDiagram

Description

Specifies a deployment diagram belonging to the model.
218 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RootComponentPackage : ComponentPackage

Description

ComponentPackage named <Top Level> in Rose RealTime. RootComponentPackage
corresponds to the model’s component view. This value can be retrieved, but not set.

RootDeploymentPackage : DeploymentPackage

RootLogicalPackage : LogicalPackage

Description

LogicalPackage named <Top Level> in Rose RealTime. RootLogicalPackage
corresponds to the model’s logical view. This value can be retrieved, but not set.

RootUseCaseLogicalPackage : LogicalPackage

Description

Root LogicalPackage to which the use cases belong. RootUseCaseLogicalPackage
corresponds to the model’s UseCase view. This value can be retrieved, but not set.

UseCases : UseCaseCollection

Description

Specifies the collection that contains the use cases that belong to the model

Public Operations

AddActiveComponentInstance (ComponentInstanceToAdd :
ComponentInstance) : Boolean

Description

Adds a Component Instance to the collection of active Component Instances owned
by the model. Notice the active component instance collection is actually stored in the
Workspace.

Syntax

Added = theModel.AddActiveComponentInstance(ComponentInstanceToAdd)

Added As Boolean
Model 219

Returns a value of True when the component instance has been successfully added to
the active component instances collection.

theModel As RoseRT.Model

The model owning the active component instances collection from which the active
component instance is being added to.

ComponentInstanceToAdd As RoseRT.ComponentInstance

The component instance to add to the active component instance collection.

AddDevice (pName : String) : Device

Description

Creates a new device and adds it to a model.

Syntax

Set theDevice = theModel.AddDevice (theName)

theDevice As RoseRT.Device

Returns the newly created device.

theModel As RoseRT.Model

Instance of the model to which the device is being added.

theName As String

Name of the device being added to the model.

AddProcessor (pName : String) : Processor

Description

Creates a new processor and adds it to a model.

Syntax

Set theProcessor = theModel.AddProcessor (theName)
220 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theProcessor As RoseRT.Processor

Returns the processor being added to the model.

theModel As RoseRT.Model

Instance of the Processor being added to the model.

theName As String

Name of the Processor being added to the model.

ControlAllUnits (bControlAllUnits : Boolean) : Boolean

Description

Specifies whether the tool will load/save classes, packages and diagrams as
individual files.

Syntax

UnitControlled = theModel.ControlAllUnits(bControlAllUnits)

UnitControlled As Boolean

Returns a value of True if the controlled units status was successfully set to
bControllAllUnits.

theModel As RoseRT.Model

The model to set the controlled unit status.

bControlAllUnits As Boolean

The state to set the controlled unit status to.

DeleteDevice (pDevice : Device) : Boolean

Description

Deletes a device from a model.

Syntax

Deleted = theModel.DeleteDevice (theDevice)
Model 221

Deleted As Boolean

Returns a value of True when the device is deleted.

theModel As RoseRT.Model

Instance of the model from which the device is being deleted.

theDevice As RoseRT.Device

Instance of the device being deleted.

DeleteProcessor (pProcessor : Processor) : Boolean

Description

Deletes a processor from a model.

Syntax

Deleted = theModel.DeleteProcessor (theProcessor)

Deleted As Boolean

Returns a value of True when the processor is deleted from the model.

theModel As RoseRT.Model

Instance of the model from which the processor is being deleted.

theProcessor As RoseRT.Processor

Instance of the processor being deleted.

FindCapsuleWithID (UniqueID : String) : Capsule

Description

Returns a specific capsule given the capsule's unique ID.

Syntax

Set theCapsule = theModel.FindCapsuleWithID (theUniqueID)
222 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCapsule As RoseRT.Capsule

Returns the capsule that corresponds to the given UniqueID.

theModel As RoseRT.Model

Model that contains the capsule.

theUniqueID As String

UniqueID of the capsule for which to search.

FindCapsules (CapsuleName : String) : CapsuleCollection

Description

Returns a collection of capsules belonging to the model.

Syntax

Set theCapsuleCollection = theModel.FindCapsules (CapsuleName)

theCapsuleCollection As RoseRT.CapsuleCollection

Returns a collection of capsules that match the given capsule name.

theModel As RoseRT.Model

Model that contains the capsules.

CapsuleName As String

Name of the capsule for which to search the model.

FindClassWithID (UniqueID : String) : Class

Description

Returns a specific class given the class’s unique ID.

Syntax

Set theClass = theModel.FindClassWithID (theUniqueID)
Model 223

theClass As RoseRT.Class

Returns the Class that corresponds to the given UniqueID.

theModel As RoseRT.Model

Model that contains the Class.

theUniqueID As String

UniqueID of the Class for which to search.

FindClasses (ClassName : String) : ClassCollection

Description

Returns a collection of classes belonging to the model.

Syntax

Set theClassCollection = theModel.FindClasses (theClassName)

theClassCollection As RoseRT.ClassCollection

Returns a collection of classes that match the given class name.

theModel As RoseRT.Model

Model that contains the classes.

theClassName As String

Name of the class for which to search the model.

FindLogicalPackageWithID (UniqueID : String) : LogicalPackage

Description

Returns a specific LogicalPackage given the LogicalPackage’s unique ID.

Syntax

Set theLogicalPackage = theModel.FindLogicalPackageWithID
(theUniqueID)
224 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theLogicalPackage As RoseRT.LogicalPackage

Returns the LogicalPackage that corresponds to the given UniqueID.

theModel As RoseRT.Model

Model that contains the LogicalPackage.

theUniqueID As String

UniqueID of the LogicalPackage for which to search.

FindLogicalPackages (LogicalPackageName : String) :
LogicalPackageCollection

Description

Returns a collection of LogicalPackages belonging to the model.

Syntax

Set theLogicalPackageCollection = theModel.FindLogicalPackage
(theLogicalPackageName)

theLogicalPackageCollection As RoseRT.LogicalPackageCollection

Returns a collection of LogicalPackages that match the given LogicalPackage name.

theModel As RoseRT.Model

Model that contains the LogicalPackages.

theLogicalPackageName As String

Name of the LogicalPackage for which to search the model.

FindModelElementWithID (UniqueID : String) : ModelElement

Description

Returns a specific ModelElement given the ModelElement’s unique ID.

Syntax

Set theModelElement = theModel.FindModelElementWithID (theUniqueID)
Model 225

theModelElement As RoseRT.ModelElement

Returns the ModelElement that corresponds to the given UniqueID.

theModel As RoseRT.Model

Model that contains the ModelElement.

theUniqueID As String

UniqueID of the ModelElement for which to search.

FindModelElements (ModelElementName : String) :
ModelElementCollection

Description

Returns a collection of ModelElements belonging to the model.

Syntax

Set theModelElementCollection = theModel.FindModelElements
(theModelElementName)

theModelElementCollection As RoseRT.ModelElementCollection

Returns a collection of ModelElements that match the given ModelElement name.

theModel As RoseRT.Model

Model that contains the ModelElements.

theModelElementName As String

Name of the ModelElement for which to search the model.

FindProtocolWithID (UniqueID : String) : Protocol

Description

Returns a specific protocol given the protocol's unique ID.
226 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theProtocol = theModel.FindProtocolWithID (theUniqueID)

theProtocol As RoseRT.Protocol

Returns the protocol that corresponds to the given UniqueID.

theModel As RoseRT.Model

Model that contains the protocol.

theUniqueID As String

UniqueID of the protocol for which to search.

FindProtocols (ProtocolName : String) : ProtocolCollection

Description

Returns a collection of protocols belonging to the model.

Syntax

Set theProtocolCollection = theModel.FindProtocols (ProtocolName)

theProtocolCollection As RoseRT.ProtocolCollection

Returns a collection of protocols that match the given protocol name.

theModel As RoseRT.Model

Model that contains the protocols.

ProtocolName As String

Name of the protocol for which to search the model.

GetActiveComponentInstances () : ComponentInstanceCollection

Description

Returns the collection of active Component Instances owned by a model. Notice the
active component instance collection is actually stored in the Workspace.
Model 227

Syntax

Set theActiveComponents = theModel.GetActiveComponentInstances()

theActiveComponents As RoseRT.ComponentInstanceCollection

Returns the collection of active Component Instances owned by the model.

theModel As RoseRT.Model

The model from which the active component instance collection is being retrieved
from.

GetActiveDiagram () : Diagram

Description

Returns the currently active diagram from the current model. The active diagram is
the window in Rose RealTime that currently has the focus.

Syntax

Set theDiagram = theModel.GetActiveDiagram ()

theDiagram As RoseRT.Diagram

Returns the currently active Rose RealTime diagram from the model. Returns nothing
if a window that is not a diagram, such as a script window or the Browser, has the
focus.

theModel As RoseRT.Model

Instance of the model from which the diagram is being retrieved.

GetAllAssociations () : AssociationCollection

Description

Returns all Associations belonging to all Logical Packages the model.

Syntax

Set theAssociations = theModel.GetAllAssociations()
228 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theAssociations As RoseRT.AssociationCollection

The associations contained in theModel.

theModel As RoseRT.Model

Model to retrieve all the associations from.

GetAllCapsules () : CapsuleCollection

Description

Returns all Capsules belonging to all Logical Packages the model.

Syntax

Set theCapsules = theModel.GetAllCapsules()

theCapsules As RoseRT.CapsuleCollection

The capsules contained in theModel.

theModel As RoseRT.Model

Model to retrieve all the capsules from.

GetAllClasses () : ClassCollection

Description

Returns all classes belonging to all categories in the model.

Syntax

Set theClasses = theModel.GetAllClasses ()

theClasses As RoseRT.ClassCollection

Returns the collection of classes retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which classes are being retrieved.
Model 229

GetAllComponentPackages () : ComponentPackageCollection

Description

Returns all ComponentPackages belonging to the model.

Syntax

Set theComponentPackage = theModel.GetAllComponentPackage ()

theComponentPackages As RoseRT.ComponentPackageCollection

Returns the collection of ComponentPackage retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which ComponentPackage are being retrieved.

GetAllComponents () : ComponentCollection

Description

Returns all components belonging to the model.

Syntax

Set theComponents = theModel.GetAllComponents ()

theComponents As RoseRT.ComponentCollection

Returns the collection of components retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which components are being retrieved.

GetAllDevices () : DeviceCollection

Description

Returns all devices belonging to the model.

Syntax

Set theDevices = theModel.GetAllDevices ()
230 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDevices As RoseRT.DeviceCollection

Returns the collection of devices retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which devices are being retrieved.

GetAllLogicalPackages () : LogicalPackageCollection

Description

Returns all LogicalPackages belonging to the model.

Syntax

Set theLogicalPackage = theModel.GetAllLogicalPackages ()

theLogicalPackagez As RoseRT.LogicalPackageCollection

Returns the collection of LogicalPackages retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which LogicalPackages are being retrieved.

GetAllProcessors () : ProcessorCollection

Description

Returns all processors belonging to the model

Syntax

Set theProcessors = theModel.GetAllProcessors ()

theProcessors As RoseRT.ProcessorCollection

Returns the collection of processors retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which processors are being retrieved.
Model 231

GetAllProtocols () : ProtocolCollection

Description

Returns all Protocols belonging to all Logical Packages the model.

Syntax

Set theProtocols = theModel.GetAllProtocols()

theProtocols As RoseRT.ProtocolCollection

The protocols contained in theModel.

theModel As RoseRT.Model

Model to retrieve all the protocols from.

GetAllUseCases () : UseCaseCollection

Description

Returns all use cases belonging to the model.

Syntax

Set theUseCases = theModel.GetAllUseCases ()

theUseCases As RoseRT.UseCaseCollection

Returns the collection of use cases retrieved from the model.

theModel As RoseRT.Model

Instance of the model from which use cases are being retrieved.

GetSelectedCapsules () : CapsuleCollection

Description

Returns all capsules selected in the current model.

Syntax

Set theCapsules = theModel.GetSelectedCapsules ()
232 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCapsules As RoseRT.CapsuleCollection

Returns the collection of capsules currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which capsules are being retrieved.

GetSelectedClasses () : ClassCollection

Description

Returns all classes selected in the current model.

Syntax

Set theClasses = theModel.GetSelectedClasses ()

theClasses As RoseRT.ClassCollection

Returns the collection of classes currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which classes are being retrieved.

GetSelectedComponentPackages () : ComponentPackageCollection

Description

Returns all ComponentPackages selected in the current model.

Syntax

Set theComponentPackages = theModel.GetSelectedComponentPackages ()

theComponentPackages As RoseRT.ComponentPackageCollection

Returns the collection of ComponentPackages currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which ComponentPackages are being retrieved.
Model 233

GetSelectedComponents () : ComponentCollection

Description

Returns all components selected in the current model.

Syntax

Set theComponents = theModel.GetSelectedComponents ()

theComponents As RoseRT.ComponentCollection

Contains the collection of components currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which components are being retrieved.

GetSelectedLogicalPackages () : LogicalPackageCollection

Description

Returns all LogicalPackages selected in the current model.

Syntax

Set theLogicalPackages = theModel.GetSelectedLogicalPackages ()

theLogicalPackages As RoseRT.LogicalPackageCollection

Returns the collection of LogicalPackages currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which LogicalPackages are being retrieved.

GetSelectedModelElements () : ModelElementCollection

Description

Returns all model elements selected in the current model.

Syntax

Set theModelElements = theModel.GetSelectedModelElements()
234 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theModelElements As RoseRT.ModelElementCollection

Returns the collection of model elements currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which model elements are being retrieved.

GetSelectedProtocols () : ProtocolCollection

Description

Returns all protocols selected in the current model.

Syntax

Set theProtocols = theModel.GetSelectedProtocols ()

theProtocols As RoseRT.ProtocolCollection

Returns the collection of protocols currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which protocols are being retrieved.

GetSelectedUseCases () : UseCaseCollection

Description

Returns all use cases selected in the current model.

Syntax

Set theUseCases = theModel.GetSelectedUseCases ()

theUseCases As RoseRT.UseCaseCollection

Returns the collection of use cases currently selected in the model.

theModel As RoseRT.Model

Instance of the model from which use cases are being retrieved.
Model 235

RemoveActiveComponentInstance (ComponentInstanceToRemove :
ComponentInstance) : Boolean

Description

Removes a Component Instance from the collection of active Component Instances
owned by the model. Notice the active component instance collection is actually
stored in the Workspace.

Syntax

Removed = theModel.RemoveActiveComponentInstance(
ComponentInstanceToRemove)

Removed As Boolean

Returns a value of True when the component instance has been successfully removed
from the active component instances collection.

theModel As RoseRT.Model

The model owning the active component instances collection from which the active
component instance is being removed from.

ComponentInstanceToRemove As RoseRT.ComponentInstance

The component instance to remove from the active component instance collection.

ModelElement

Description

Every ModelElement is a model element and therefore inherits all Element attributes
and operations. Use ModelElement attributes and operations to specify or manipulate
ModelElement documentation, stereotypes, external documents, as well as to open a
ModelElement's specification
236 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ControllableElement

Public Attributes

Documentation : String

Description

Specifies the documentation belonging to the ModelElement.

ExternalDocuments : ExternalDocumentCollection

Description

Specifies the external documents belonging to the ModelElement.

LocalizedStereotype : String

Description

Specifies the localized equivalent of the ModelElement stereotype.

Stereotype : String

Description

Specifies the stereotype of the ModelElement

Public Operations

AddExternalDocument (szName : String, iType :
RsExternalDocumentType) : ExternalDocument

Description

Creates a new external document and adds it to a ModelElement.

Syntax

Added = theModelElement.AddExternalDocument (theName, theType)

Added As Boolean

Returns a value of true when the document is added to the ModelElement.
ModelElement 237

theModelElement As RoseRT.ModelElement

ModelElement to which the document is being added.

theName As String

Name of the document being added.

theType As Integer

Type of document being added Valid values are:

1 = Path

2 = URL

DeleteExternalDocument (pIDispatch : ExternalDocument) : Boolean

Description

Deletes an external document from a ModelElement.

Syntax

Deleted = theModelElement.DeleteExternalDocument (theDocument)

deleted As Boolean

Returns a value of true when the document is deleted from the ModelElement.

theModelElement As RoseRT.ModelElement

ModelElement from which the document is being deleted.

theDocument As RoseRT.ExternalDocument

Instance of the document being deleted.

GetModelElement () : ModelElement

Description

Retrieves a ModelElement as an object.

Note: Use this operation to convert classes derived from ModelElement into
ModelElement objects.
238 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theModelElement = theObject.GetModelElement()

theModelElement As RoseRT.ModelElement

Returns the Rose item as an object.

theModelElement As RoseRT.ModelElement

Instance of the ModelElement being returned.

OpenSpecification () : Boolean

Description

Opens the specification window for the specified ModelElement.

Syntax

Opened = theModelElement.OpenSpecification ()

Opened As Boolean

Returns a value of TRUE when the specification is successfully opened.

theModelElement As RoseRT.ModelElement

ModelElement whose specification is being opened.

Package

Description

The Package Class is a container for the model elements that correspond to the UML
Package concept.

Package class operations allow you to determine whether a package is the root
package in a model, as well as to obtain the OLE object associated with the package.
Package 239

Derived from ModelElement

Public Operations

AddSharedUnit (FileName : String) : Boolean

Description

Shares Model Elements from a unit in a Package.

Syntax

Added = thePackage.AddSharedUnit(FileName As String)

Added As Boolean

Returns True when successfully shared Model Elements of a unit into thePackage.

thePackage As RoseRT.Package

The package to share unit's Model Elements with.

FileName As String

The name of the shared unit file.

AddUnit (FileName : String) : Boolean

Description

Adds Model Elements from a unit in a Package.

Syntax

Added = thePackage.AddUnit(FileName As String)

Added As Boolean

Returns True when successfully added Model Elements of a unit into thePackage.

thePackage As RoseRT.Package

The package to add unit's Model Elements to.
240 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

FileName As String

The name of the unit file to add to the package.

ImportFile (FileName : String) : Boolean

Description

Imports Model Elements from a file and place them into a Package.

Syntax

Imported = thePackage.ImportFile(FileName As String)

Imported As Boolean

Returns True when successfully imported Model Elements into thePackage.

thePackage As RoseRT.Package

The package to put imported Model Elements into.

FileName As String

The name of the file to import.

ImportFileEx (FileName : String) : ControllableElementCollection

Description

Imports Model Elements from a file and place them into a Package.

Syntax

ImportedControllableElements = thePackage.ImportFile(FileName As
String)

ImportedControllableElements As RoseRT.ControllableElementCollection

Returns a collection containing the Controllable Elements imported into thePackage.

thePackage As RoseRT.Package
Package 241

The package to put imported Model Elements into.

FileName As String

The name of the file to import.

IsRootPackage () : Boolean

Description

Finds out if the specified package is the root package (category) of the model.

Syntax

IsRoot = thePackage.IsRootPackage ()

IsRoot As Boolean

Returns a value of True if the package is the root package (category) of the model.

thePackage As RoseRT.Package

Package being checked as root package.

TopLevel () : Boolean

Description

Returns whether the Package is the Root Package, i.e. direct child of the Model
Package.

Syntax

IsTopLevel = thePackage.TopLevel()

IsTopLevel As Boolean

Returns a value of True when the package is a direct child of the Model Package

thePackage As RoseRT.Package

Package to determine whether it is the Top Level.
242 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Property

Description

The Property class exposes a set of attributes and operations that

■ Determine the characteristics of attributes in a model (for example, property name
and type, as well as the development tool associated with the property).

■ Allow you to retrieve attributes from a model.

Derived from RRTEIObject

Public Attributes

Name : String

Description

Indicates the name of the property (without specifying a path).

ToolName : String

Description

Corresponds to a tab in the property specification. A tool can be a programming
language tool (such as C++), a user-defined add-in to Rational Rose RealTime, or
some other tool.

Type : String

Description

Indicates the type of information stored by the property.

Values:

■ String

■ Integer

■ Float

■ Char

■ Boolean
Property 243

■ Enumeration

Note: Other values may be valid if user-defined enumerated types exist.

Value : String

Description

Indicates the value of the property

RsExternalDocumentType

Description

Enumeration used in ModelElement::AddExternalDocument() to determine the
location of the document added to the Model Element.

Public Attributes

rsFile : Integer = 1

Description

The document's location is specified using a file system specific path.

rsURL : Integer = 2

Description

The document's location is specified using a URL.

StructuredProperty

Description

This class allows easy parsing of Structured Properties. Structured properties are text
properties with the following format:

[<section-name1> {section-default-value1}{section-default-value2}{...}

<field-name1>=<value1>
244 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

<field-name1>=<value2>

...]

[<section-name2 ...]

default-value

Derived from Property

Public Operations

GetFieldValue

Description

Returns the value stored in field of a section within the StructuredProperty. An empty
string is returned if the field or section do not exist.

Syntax

FieldValue = theStructuredProperty.GetFieldValue (SectionName,
FieldName)

FieldValue As String

Returns the value stored in field FieldName of section SectionName.

theStructuredProperty As RoseRT.StructuredProperty

The property to retrieve a field value from.

SectionName As String

The name of the section where a field named FieldName can be found. Passing an
empty string is interpreted as a request to retrieve the string property value string that
is not included in any section.

FieldName As String

The name of the field to retrieve a value from. Passing an empty string is interpreted
as a request to retrieve the section's default value.
StructuredProperty 245

SetFieldValue

Description

Sets the value to store in a section's field within the StructuredProperty. The section
and/or the field will get created if they do not exist within the structured property.

Syntax

theStructuredProperty.SetFieldValue (SectionName, FieldName, Value)

theStructuredProperty As RoseRT.StructuredProperty

The property to set a section's field value.

SectionName As String

The name of the section where a field named FieldName can be found. Passing an
empty string is interpreted as a request to set the string property value string that is
not included in any section.

FieldName As String

The name of the field to set a value into. Passing an empty string is interpreted as a
request to set the section's default value.

Value As String

The value to store in the section's field.

Deployment View Classes

Deployment View classes include

■ ComponentInstance on page 249

➑ Public Attributes

AttachTo : Boolean on page 249

Component : Component on page 249

ConnectionDelay : Integer on page 250

ConsolePort : Integer on page 250
246 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

LoadDelay : Integer on page 250

LoadOrder : Integer on page 250

LogsPort : Integer on page 250

MyProcessor : Processor on page 251

OperationMode : String on page 251

Priority : String on page 251

TargetTimeout : Integer on page 251

TOPort : Integer on page 251

UserParameters : String on page 252

➑ Public Operations

ConnectionDelay : Integer on page 250

Priority : String on page 251

GetDefaultOperationModes () : StringCollection on page 252

■ DeploymentPackage on page 252

➑ Public Attributes

DeploymentDiagrams : DeploymentDiagramCollection on page 253

DeploymentPackages : DeploymentPackageCollection on page 253

ParentDeploymentPackage : DeploymentPackage on page 253

➑ Public Operations

AddDeploymentDiagram (name : String) : DeploymentDiagram on page 253

AddDeploymentPackage (theName : String) : DeploymentPackage on page 254

AddDevice (pName : String) : Device on page 254

AddProcessor (pName : String) : Processor on page 254

DeleteDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) :
Boolean on page 254

DeleteDeploymentPackage (theDeploymentPackageToDelete : DeploymentPackage)
: Boolean on page 255

DeleteDevice (pDevice : Device) : Boolean on page 256

DeleteProcessor (pProcessor : Processor) : Boolean on page 256
Deployment View Classes 247

GetAllDevices () : DeviceCollection on page 256

GetAllProcessors () : ProcessorCollection on page 256

RelocateDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) :
Boolean on page 256

RelocateDeploymentPackage (theDeploymentPackage : DeploymentPackage) :
Boolean on page 256

RelocateDevice (theDevice : Device) : Boolean on page 257

RelocateProcessor (theProcessor : Processor) : Boolean on page 257

■ Device on page 258

➑ Public Attributes

Characteristics : String on page 258

ParentDeploymentPackage : DeploymentPackage on page 258

➑ Public Operations

AddDeviceConnection (theDevice : Device) : Boolean on page 259

AddProcessorConnection (theProcessor : Processor) : Boolean on page 259

GetConnectedDevices () : DeviceCollection on page 260

GetConnectedProcessors () : ProcessorCollection on page 260

RemoveDeviceConnection (theDevice : Device) : Boolean on page 260

RemoveProcessorConnection (theProcessor : Processor) : Boolean on page 261

■ Processor on page 262

➑ Public Attributes

Address : String on page 262

CPU : String on page 262

ComponentInstances : ComponentInstanceCollection on page 262

OS : String on page 262

ParentDeploymentPackage : DeploymentPackage on page 262

ServerAddress : String on page 263

UserScriptDirectory : String on page 263

➑ Public Operations
248 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddComponentInstance (Name : String) : ComponentInstance on page 263

AddDeviceConnection (theDevice : Device) : Boolean on page 264

AddProcessorConnection (Processor : Processor) : Boolean on page 265

DeleteComponentInstance (theComponentInstance : ComponentInstance) : Boolean
on page 265

GetConnectedDevices () : DeviceCollection on page 266

GetConnectedProcessors () : ProcessorCollection on page 266

RemoveDeviceConnection (theDevice : Device) : Boolean on page 266

RemoveProcessorConnection (theProcessor : Processor) : Boolean on page 267

ComponentInstance

Description

A component instance describes a runable instance of a component built on a
particular processor.

Derived from ModelElement

Public Attributes

AttachTo : Boolean

Description

Determines whether the toolset is to automatically observe a Component Instance
when it is loaded by the target control scripts.

Component : Component

Description

Component this Component Instance instantiates.
ComponentInstance 249

ConnectionDelay : Integer

Description:

An integer value representing the number of seconds to delay before attempting to
connect to the target. This allows Purify time to instrument the executable as
necessary. For a large module, you will need to adjust the connection delay to be more
than the default of 60 seconds.

ConsolePort : Integer

Description

Specify a TCP/IP port number which can be used to connect to the Services Library
command line debugger via a telnet window.

Note: Rose RealTime 6.0 restriction - the console port number must be the same as the
Target observability port.

LoadDelay : Integer

Description

An integer value representing the number of X delay before the component instance is
loaded or run.

LoadOrder : Integer

Description

An integer value representing the relative order in which this component instance will
be loaded, or run, in relation to other component instances listed and selection in the
Build Settings dialog.

LogsPort : Integer

Description

Specify a TCP/IP port number which can be used to connect to the log via a telnet
window.
250 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

MyProcessor : Processor

OperationMode : String

Description

The Operation Mode specifies the target control configuration for the process.
Options are:

Basic - Use the target control utilities to automatically load and run the component
instance.

Debugger MSDEV - Use the target control utilities and load the executable using the
Microsoft Visual Studio debugger.

Debugger Tornado - Use the target control utilities and load the executable using the
Tornado debugger

Debugger xxgdb - Use the target control utilities and load the executable in the GNU
xxgdb debugger (UNIX only).

Manual - the toolset will not attempt to load the executable. The user must manually
load the executable.

Priority : String

Description:

Sets the priority the component instance will run at.

TargetTimeout : Integer

Description:

Number of seconds to wait for a response from the target before assuming something
is wrong.

TOPort : Integer

Description

Specify a TCP/IP port number to use for connecting the toolset's execution
environment to the target executable. The port number must not already be in use by
another process.
ComponentInstance 251

UserParameters : String

Description

Represents command line arguments that are passed on the command line when the
process is loaded.

Public Operations

GetDefaultOperationModes () : StringCollection

Description

Returns the default Operation Modes that can be used to set the OperationMode
attribute.

Syntax

Set DefaultOperationModes =
theComponentInstance.GetDefaultOperationModes()

DefaultOperationModes As RoseRT.StringCollection

Returns an array of strings, each corresponding to a default Operation Mode.

theComponentInstance As RoseRT.ComponentInstance

The Component Instance to retrieve default Operation Modes for.

DeploymentPackage

Description

The deployment package allows you to define and manipulate collections of device,
processors and deployment diagrams. They can even be nested.
252 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Package

Public Attributes

DeploymentDiagrams : DeploymentDiagramCollection

Description

Deployment diagrams owned by the deployment package.

DeploymentPackages : DeploymentPackageCollection

Description

Deployment packages owned by the deployment package.

ParentDeploymentPackage : DeploymentPackage

Description

Deployment package owning the deployment package.

Public Operations

AddDeploymentDiagram (name : String) : DeploymentDiagram

Description

Adds a deployment diagram to the deployment package.

Syntax

Set theDeploymentDiagram = theDeploymentPackage.AddDeploymentDiagram(
name)

theDeploymentDiagram As RoseRT.DeploymentDiagram

Returns the new deployment diagram added to the deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package to which a new deployment diagram is being added.

name As String
DeploymentPackage 253

Name of the new deployment diagram added to the deployment package.

AddDeploymentPackage (theName : String) : DeploymentPackage

Description

Adds a deployment package to the deployment package.

Syntax

Set theNewDeploymentPackage =
theDeploymentPackage.AddDeploymentPackage(theName)

theNewDeploymentPackage As RoseRT.DeploymentPackage

Returns the new deployment package added to the deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package to which a new deployment package is being added.

theName As String

Name of the new deployment package added to the deployment package.

AddDevice (pName : String) : Device

AddProcessor (pName : String) : Processor

DeleteDeploymentDiagram (theDeploymentDiagram :
DeploymentDiagram) : Boolean

Description

Deletes a deployment diagram from the deployment package.

Syntax

Deleted = theDeploymentPackage.DeleteDeploymentDiagram(
theDeploymentDiagram)

Deleted As Boolean

Returns a value of True when the deployment diagram is successfully deleted from
the deployment package.
254 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a deployment diagram is being deleted.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Deployment diagram to delete from the deployment package.

DeleteDeploymentPackage (theDeploymentPackageToDelete :
DeploymentPackage) : Boolean

Description

Deletes a deployment package from the deployment package.

Syntax

Deleted = theDeploymentPackage.DeleteDeploymentPackage(
theDeploymentPackageToDelete)

Deleted As Boolean

Returns a value of True when the deployment package is successfully deleted from
the deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a deployment package is being deleted.

theDeploymentPackageToDelete As RoseRT.DeploymentPackage

Deployment package to delete from the deployment package.
DeploymentPackage 255

DeleteDevice (pDevice : Device) : Boolean

DeleteProcessor (pProcessor : Processor) : Boolean

GetAllDevices () : DeviceCollection

GetAllProcessors () : ProcessorCollection

RelocateDeploymentDiagram (theDeploymentDiagram :
DeploymentDiagram) : Boolean

Description

Relocates a deployment diagram into the deployment package.

Syntax

Relocated = theDeploymentPackage.RelocateDeploymentDiagram(
theDeploymentDiagram)

Relocated As Boolean

Returns a value of True when the deployment diagram is successfully relocated into
the deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a deployment diagram is being relocated into.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Deployment diagram to relocate into the deployment package.

RelocateDeploymentPackage (theDeploymentPackage :
DeploymentPackage) : Boolean

Description

Relocates a deployment package into the deployment package.

Syntax

Relocated = theDeploymentPackage.RelocateDeploymentPackage(
theRelocatedDeploymentPackage)
256 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Relocated As Boolean

Returns a value of True when the deployment package is successfully relocated into
the deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a deployment package is being relocated into.

theRelocatedDeploymentPackage As RoseRT.DeploymentPackage

Deployment package to relocate into the deployment package.

RelocateDevice (theDevice : Device) : Boolean

Description

Relocates a device into the deployment package.

Syntax

Relocated = theDeploymentPackage.RelocateDevice(theDevice)

Relocated As Boolean

Returns a value of True when the device is successfully relocated into the deployment
package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a device is being relocated into.

theDevice As RoseRT.Device

Device to relocate into the deployment package.

RelocateProcessor (theProcessor : Processor) : Boolean

Description

Relocates a processor into the deployment package.

Syntax

Relocated = theDeploymentPackage.RelocateProcessor(theProcessor)
DeploymentPackage 257

Relocated As Boolean

Returns a value of True when the processor is successfully relocated into the
deployment package.

theDeploymentPackage As RoseRT.DeploymentPackage

Deployment package from which a processor is being relocated into.

theProcessor As RoseRT.Processor

Processor to relocate into the deployment package.

Device

Description

A device is hardware that is not capable of executing a program (a printer, for
example). The device class exposes properties and methods that allow you to define
and manipulate the characteristics of devices. Check the lists of attributes and
operations for complete information.

Derived from ModelElement

Public Attributes

Characteristics : String

Description

Specifies the characteristics of the device

ParentDeploymentPackage : DeploymentPackage

Description

Deployment Package that owns this device.
258 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations

AddDeviceConnection (theDevice : Device) : Boolean

Description

Creates a new device connection and adds it to the device.

Syntax

Connected = theDevice.AddDeviceConnection (theDevice)

Connected As Boolean

Returns a value of True when the device is connected.

theDevice As RoseRT.Device

Device to which the connection is being added.

theDevice As RoseRT.Device

Device at the other end of the connection being added.

AddProcessorConnection (theProcessor : Processor) : Boolean

Description

Creates a new device processor and adds it to the device.

Syntax

Connected = theDevice.AddProcessorConnection (theProcessor)

Connected As Boolean

Returns a value of True when the processor is connected.

theDevice As RoseRT.Device

Device to which the connection is being added.

theProcessor As RoseRT.Processor
Device 259

Processor at the other end of the connection being added.

GetConnectedDevices () : DeviceCollection

Description

Retrieves the collection of devices that are connected to the device.

Syntax

Set theDevices = theDevice.GetConnectedDevices ()

theDevices As RoseRT.DeviceCollection

Returns the collection of devices belonging to the device.

theDevice As RoseRT.Device

Device whose connected devices are being retrieved.

GetConnectedProcessors () : ProcessorCollection

Description

Retrieves the collection of processors that are connected to this device.

Syntax

Set theProcessors = theDevice.GetConnectedProcessors ()

theProcessors As RoseRT.ProcessorCollection

Returns the collection of processors that are connected to the specified processor.

theDevice As RoseRT.Device

Device whose connected processors are being retrieved.

RemoveDeviceConnection (theDevice : Device) : Boolean

Description

Removes a device connection from the device.
260 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Removed = theDevice.RemoveDeviceConnection (theDevice)

Removed As Boolean

Returns a value of True when the device connection is removed.

theDevice As RoseRT.Device

Device from which the connection is being removed.

theDevice As RoseRT.Device

Device connection being removed.

RemoveProcessorConnection (theProcessor : Processor) : Boolean

Description

Removes a processor connection from the device.

Syntax

Removed = theDevice.RemoveProcessorConnection (theProcessor)

Removed As Boolean

Returns a value of True when the processor connection is removed.

theDevice As RoseRT.Device

Device from which the connection is being removed.

theProcessor As RoseRT.Processor

Processor connection being removed.
Device 261

Processor

Description

A processor is hardware that is capable of executing programs. Processors are
assigned to implement Component Instances.

Derived from ModelElement

Public Attributes

Address : String

Description

Network address for the processor, this field can contain a hostname, or an IP address.
For example jhostl or 145.34.5.6.

Note: For systems not connected to a network, you must use 127.0.0.1 in this field.

CPU : String

Description

Name of the type of central processing unit for this processor element.

ComponentInstances : ComponentInstanceCollection

Description

List of component instances that will run on this processor

OS : String

Description

Name of the operating system running on this processor.

ParentDeploymentPackage : DeploymentPackage

Description

Deployment Package that owns this processor.
262 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ServerAddress : String

Description

In some environments there is a server that handles loading, executing of a
component instance for the target RTOS. This is the name or the address of this server.

UserScriptDirectory : String

Description

Path to the target control utility directory which contains the scripts and programs
that are responsible for loading and unloading processes on that processor. If this
property does not point to a valid script directory you won't be able to execute
component instances from within the toolset.

Public Operations

AddComponentInstance (Name : String) : ComponentInstance

Description

Creates a new Component Instance to ran on a Processor. Notice that you should
associate a Component with the Component Instance by setting the Component
Instance's Component Property immediately after this creation. Undetermined
behavior may occur otherwise.

Syntax

Set theComponentInstance = theProcessor.AddComponentInstance(Name)

theComponentInstance As RoseRT.ComponentInstance

Returns a new Component Instance to ran on theProcessor. The Component Instance
is not associated with any Component at this point and should not be used until such
an association is created by assigning a Component to the Component Instance's
Component attribute.

theProcessor As RoseRT.Processor

The Processor to add a new Component Instance to.

Name As String
Processor 263

The new Component Instance's Name.

Example

Dim co As RoseRT.Component

Set co =
RoseRTApp.CurrentModel.RootComponentPackage.Components.GetAt(1)

Dim pr As RoseRT.Processor

Set pr = RoseRTApp.CurrentModel.GetAllProcessors().GetAt(1)

Dim ci As RoseRT.ComponentInstance

Set ci = pr.AddComponentInstance("MyComponentInstance")

Set ci.Component = co

AddDeviceConnection (theDevice : Device) : Boolean

Description

Creates a new device connection and adds it to the processor.

Syntax

DeviceConnectionAdded = theProcessor.AddDeviceConnection(theDevice)

DeviceConnectionAdded As Boolean

Returns a value of True when the device is connected

theProcessor As RoseRT.Processor

The Processor to which the connection is being added

theDevice As RoseRT.Device

Device to add connection to.
264 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddProcessorConnection (Processor : Processor) : Boolean

Description

Creates a new processor connection and adds it to the processor.

Syntax

ProcessorConnectionAdded = theProcessor.AddProcessorConnection(
Processor)

ProcessorConnectionAdded As Boolean

Returns a value of True when the processor is connected

theProcessor As RoseRT.Processor

The Processor to which the connection is being added

Processor As RoseRT.Processor

Processor to add connection to.

DeleteComponentInstance (theComponentInstance :
ComponentInstance) : Boolean

Description

Deletes a Component Instance from a processor.

Syntax

ComponentInstanceDeleted = theProcessor.DeleteComponentInstance(
theComponentInstance)

ComponentInstanceDeleted As Boolean

Returns a value of True when the Component Instance is deleted

theProcessor As RoseRT.Processor

The Processor from which the Component Instance is being deleted

theComponentInstance As RoseRT.ComponentInstance
Processor 265

The Component Instance to delete from theProcessor.

GetConnectedDevices () : DeviceCollection

Description

Retrieves the collection of devices that are connected to this processor.

Syntax

Devices = theProcessor.GetConnectedDevices()

Devices As RoseRT.DeviceCollection

Returns the collection of devices that are connected to theProcessor.

theProcessor As RoseRT.Processor

The Processor whose connected devices are being retrieved.

GetConnectedProcessors () : ProcessorCollection

Description

Retrieves the collection of processors that are connected to this processor.

Syntax

Processors = theProcessor.GetConnectedProcessors()

Processors As RoseRT.ProcessorCollection

Returns the collection of processors that are connected to theProcessor.

theProcessor As RoseRT.Processor

The Processor whose connected processors are being retrieved.

RemoveDeviceConnection (theDevice : Device) : Boolean

Description

Removes a device connection from a processor.
266 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Removed = theProcessor.RemoveDeviceConnection(theDevice)

Removed As Boolean

Returns a value of True when the device connection is removed.

theProcessor As RoseRT.Processor

The Processor from which the connection is being removed.

theDevice As RoseRT.Device

The device to remove a connection to.

RemoveProcessorConnection (theProcessor : Processor) : Boolean

Description

Removes a processor connection from a processor.

Syntax

Removed = theProcessor.RemoveProcessorConnection(theProcessor)

Removed As Boolean

Returns a value of True when the processor connection is removed.

theProcessor As RoseRT.Processor

The Processor from which the connection is being removed.

theProcessor As RoseRT.Processor

The processor to remove a connection to.

Logical View Classes

Logical View classes include

■ LogicalPackage on page 269
Logical View Classes 267

➑ Public Attributes

Associations : AssociationCollection on page 270

Capsules : CapsuleCollection on page 270

ClassDiagrams : ClassDiagramCollection on page 270

Classes : ClassCollection on page 270

Collaborations : CollaborationCollection on page 270

Global : Boolean on page 270

LogicalPackages : LogicalPackageCollection on page 270

ParentLogicalPackage : LogicalPackage on page 271

Protocols : ProtocolCollection on page 271

UseCases : UseCaseCollection on page 271

➑ Public Operations

AddCapsule (name : String) : Capsule on page 271

AddClass (theName : String) : Class on page 272

AddClassDiagram (name : String) : ClassDiagram on page 272

AddCollaboration (name : String) : Collaboration on page 273

AddGeneralization (theRelationName : String, theParentLogicalPackageName :
String) : Generalization on page 273

AddLogicalPackage (theName : String) : LogicalPackage on page 274

AddLogicalPackageDependency (theName : String,
theSupplierLogicalPackageName : String) : LogicalPackageDependency on
page 274

AddProtocol (name : String) : Protocol on page 275

AddUseCase (szName : String) : UseCase on page 275

DeleteCapsule (theCapsule : Capsule) : Boolean on page 276

DeleteClass (theClass : Class) : Boolean on page 277

DeleteClassDiagram (theClassDiagram : ClassDiagram) : Boolean on page 277

DeleteCollaboration (theCollaboration : Collaboration) : Boolean on page 278

DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 278
268 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean on page 279

DeleteLogicalPackageDependency (theDependency : LogicalPackageDependency) :
Boolean on page 279

DeleteProtocol (theProtocol : Protocol) : Boolean on page 280

DeleteUseCase (theUseCase : UseCase) : Boolean on page 280

GetAllCapsules () : CapsuleCollection on page 281

GetAllClasses () : ClassCollection on page 281

GetAllLogicalPackages () : LogicalPackageCollection on page 282

GetAllProtocols () : ProtocolCollection on page 282

GetAllUseCases () : UseCaseCollection on page 282

GetAssignedComponentPackage () : ComponentPackage on page 283

GetGeneralizations () : GeneralizationCollection on page 283

GetLogicalPackageDependencies () : LogicalPackageDependencyCollection on
page 283

GetSubLogicalPackages () : LogicalPackageCollection on page 284

GetSuperLogicalPackages () : LogicalPackageCollection on page 284

HasAssignedComponentPackage () : Boolean on page 285

RelocateCapsule (theCapsule : Capsule) : Boolean on page 285

RelocateClass (theClass : Class) : on page 285

RelocateClassDiagram (theClsDiagram : ClassDiagram) : on page 286

RelocateCollaboration (theCollaboration : Collaboration) : Boolean on page 286

RelocateLogicalPackage (theLogicalPackage : LogicalPackage) : on page 287

RelocateProtocol (theProtocol : Protocol) : Boolean on page 288

SetAssignedComponentPackage (newValue : ComponentPackage) : on page 288

LogicalPackage

Description

The logical package allows you to define and manipulate logical collections of
classifiers, collaborations and diagrams.
LogicalPackage 269

Derived from Package

Public Attributes

Associations : AssociationCollection

Description

Associations owned by the logical package.

Capsules : CapsuleCollection

Description

Capsules owned by the logical package.

ClassDiagrams : ClassDiagramCollection

Description

Class diagrams owned by the logical package.

Classes : ClassCollection

Description

Classes owned by the logical package.

Collaborations : CollaborationCollection

Description

Collaborations owned by the logical package.

Global : Boolean

Description

Indicates that all public classes in the logical package can be used by any other logical
package.

LogicalPackages : LogicalPackageCollection

Description

Logical packages owned by the logical package.
270 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentLogicalPackage : LogicalPackage

Description

Logical package owning the logical package.

Protocols : ProtocolCollection

Description

Protocols owned by the logical package.

UseCases : UseCaseCollection

Description

Use cases owned by the logical package.

Public Operations

AddCapsule (name : String) : Capsule

Description

Adds a capsule to the logical package.

Syntax

Set theCapsule = theLogicalPackage.AddCapsule(name)

theCapsule As RoseRT.Capsule

Returns the new capsule added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new capsule is being added.

name As String

Name of the new capsule added to the logical package.
LogicalPackage 271

AddClass (theName : String) : Class

Description

Adds a class to the logical package.

Syntax

Set theClass = theLogicalPackage.AddClass(theName)

theClass As RoseRT.Class

Returns the new class added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new class is being added.

theName As String

Name of the new class added to the logical package.

AddClassDiagram (name : String) : ClassDiagram

Description

Adds a class diagram to the logical package.

Syntax

Set theClassDiagram = theLogicalPackage.AddClassDiagram(name)

theClassDiagram As RoseRT.ClassDiagram

Returns the new class diagram added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new class diagram is being added.

name As String

Name of the new class diagram added to the logical package.
272 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddCollaboration (name : String) : Collaboration

Description

Adds a collaboration to the logical package.

Syntax

Set theCollaboration = theLogicalPackage.AddCollaboration(name)

theCollaboration As RoseRT.Collaboration

Returns the new collaboration added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new collaboration is being added.

name As String

Name of the new collaboration added to the logical package.

AddGeneralization (theRelationName : String,
theParentLogicalPackageName : String) : Generalization

Description

Adds a Generalization relationship to a Logical Package and returns it in the specified
object.

Syntax

Set theGeneralization = theLogicalPackage.AddGeneralization(
theRelationName, theParentLogicalPackageName)

theGeneralization As RoseRT.Generalization

Returns the Generalization being added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical Package to which the Generalization is being added.
LogicalPackage 273

theRelationName As String

Name of the new Generalization.

theParentLogicalPackageName As String

Name of the parent logical package in the Generalize relationship.

AddLogicalPackage (theName : String) : LogicalPackage

Description

Adds a logical package to the logical package.

Syntax

Set theLogicalPackage = theLogicalPackage.AddLogicalPackage(theName)

theLogicalPackage As RoseRT.LogicalPackage

Returns the new logical package added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new logical package is being added.

theName As String

Name of the new logical package added to the logical package.

AddLogicalPackageDependency (theName : String,
theSupplierLogicalPackageName : String) : LogicalPackageDependency

Description

Adds a logical package dependency relation to the logical package.

Syntax

Set theLogicalPackageDependency =
theLogicalPackage.AddLogicalPackageDependency(theName,
theSupplierLogicalPackageName)

theLogicalPackageDependency As RoseRT.LogicalPackageDependency
274 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the new logical package dependency added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new logical package dependency is being added.

theName As String

Name of the new logical package dependency added to the logical package.

theSupplierLogicalPackageName As String

Name of the logical package that theLogicalPackage is client of.

AddProtocol (name : String) : Protocol

Description

Adds a protocol to the logical package.

Syntax

Set theProtocol = theLogicalPackage.AddProtocol(name)

theProtocol As RoseRT.Capsule

Returns the new protocol added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new protocol is being added.

name As String

Name of the new protocol added to the logical package.

AddUseCase (szName : String) : UseCase

Description

Adds a use case to the logical package.
LogicalPackage 275

Syntax

Set theUseCase = theLogicalPackage.AddUseCase(szName)

theUseCase As RoseRT.UseCase

Returns the new use case added to the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to which a new use case is being added.

szName As String

Name of the new use case added to the logical package.

DeleteCapsule (theCapsule : Capsule) : Boolean

Description

Deletes a capsule from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteCapsule(theCapsule)

Deleted As Boolean

Returns a value of True when the capsule is successfully deleted from the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a capsule is being deleted.

theCapsule As RoseRT.Capsule

Capsule to delete from the logical package.
276 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteClass (theClass : Class) : Boolean

Description

Deletes a class from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteClass(theClass)

Deleted As Boolean

Returns a value of True when the class is successfully deleted from the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a class is being deleted.

theClass As RoseRT.Class

Class to delete from the logical package.

DeleteClassDiagram (theClassDiagram : ClassDiagram) : Boolean

Description

Deletes a class diagram from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteClassDiagram(theClass)

Deleted As Boolean

Returns a value of True when the class diagram is successfully deleted from the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a class diagram is being deleted.

theClassDiagram As RoseRT.ClassDiagram

Class diagram to delete from the logical package.
LogicalPackage 277

DeleteCollaboration (theCollaboration : Collaboration) : Boolean

Description

Deletes a collaboration from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteCollaboration(theCollaborations)

Deleted As Boolean

Returns a value of True when the collaboration is successfully deleted from the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a collaboration is being deleted.

theCollaboration As RoseRT.Collaboration

Collaboration to delete from the logical package.

DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

Deletes a Generalization relation from a logical package.

Syntax

Deleted = theLogicalPackage.DeleteGeneralization(theGeneralization)

Deleted As Boolean

Returns a value of True when the generalization gets deleted successfully from the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical Package from which the generalization is being deleted.

theGeneralization As RoseRT.Generalization
278 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

The generalization being deleted.

DeleteLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean

Description

Deletes a logical package from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteLogicalPackage(
theLogicalPackageToDelete)

Deleted As Boolean

Returns a value of True when the logical package is successfully deleted from the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a logical package is being deleted.

theLogicalPackageToDelete As RoseRT.LogicalPackage

Logical package to delete from the logical package.

DeleteLogicalPackageDependency (theDependency :
LogicalPackageDependency) : Boolean

Description

Deletes a logical package dependency from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteLogicalPackageDependency(
theDependency)

Deleted As Boolean

Returns a value of True when the logical package dependency is successfully deleted
from the logical package.

theLogicalPackage As RoseRT.LogicalPackage
LogicalPackage 279

Logical package from which a logical package dependency is being deleted.

theDependency As RoseRT.LogicalPackageDependency

Logical package dependency to delete from the logical package.

DeleteProtocol (theProtocol : Protocol) : Boolean

Description

Deletes a protocol from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteProtocol(theProtocol)

Deleted As Boolean

Returns a value of True when the protocol is successfully deleted from the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a protocol is being deleted.

theProtocol As RoseRT.Protocol

Protocol to delete from the logical package.

DeleteUseCase (theUseCase : UseCase) : Boolean

Description

Deletes a use case from the logical package.

Syntax

Deleted = theLogicalPackage.DeleteUseCase(theUseCase)

Deleted As Boolean

Returns a value of True when the use case is successfully deleted from the logical
package.
280 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a use case is being deleted.

theUseCase As RoseRT.Protocol

Use case to delete from the logical package.

GetAllCapsules () : CapsuleCollection

Description

Returns all capsules owned by the logical package and any of its subpackages.

Syntax

Set theCapsules = theLogicalPackage.GetAllCapsules()

theCapsules As RoseRT.CapsuleCollection

Returns a collection containing all capsules owned by the logical package and any of
its subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which capsules are being retrieved from.

GetAllClasses () : ClassCollection

Description

Returns all classes owned by the logical package and any of its subpackages.

Syntax

Set theClasses = theLogicalPackage.GetAllClasses()

theClasses As RoseRT.ClassCollection

Returns a collection containing all classes owned by the logical package and any of its
subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which classes are being retrieved from.
LogicalPackage 281

GetAllLogicalPackages () : LogicalPackageCollection

Description

Returns all logical packages owned by the logical package and any of its subpackages.

Syntax

Set theLogicalPackages = theLogicalPackage.GetAllLogicalPackages()

theLogicalPackages As RoseRT.LogicalPackageCollection

Returns a collection containing all logical packages owned by the logical package and
any of its subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which logical packages are being retrieved from.

GetAllProtocols () : ProtocolCollection

Description

Returns all protocols owned by the logical package and any of its subpackages.

Syntax

Set theProtocols = theLogicalPackage.GetAllProtocols()

theProtocols As RoseRT.ProtocolCollection

Returns a collection containing all protocols owned by the logical package and any of
its subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which protocols are being retrieved from.

GetAllUseCases () : UseCaseCollection

Description

Returns all use cases owned by the logical package and any of its subpackages.
282 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theUseCases = theLogicalPackage.GetAllUseCases()

theUseCases As RoseRT.UseCaseCollection

Returns a collection containing all use cases owned by the logical package and any of
its subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which use cases are being retrieved from.

GetAssignedComponentPackage () : ComponentPackage

Description

Do not use, obsolete.

GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a Logical Package is client of.

Syntax

Set Generalizations = theLogicalPackage.GetGeneralizations()

Generalizations As RoseRT.GeneralizationCollection

The collection of all Generalization relationships the Logical Package is client of.

theLogicalPackage As RoseRT.LogicalPackage

The Logical Package to return Generalization it is client of.

GetLogicalPackageDependencies () :
LogicalPackageDependencyCollection

Description

Returns all logical package dependencies owned by the logical package and any of its
subpackages.
LogicalPackage 283

Syntax

Set theLogicalPackageDependencies =
theLogicalPackage.GetAllLogicalPackagesDependencies()

theLogicalPackageDependencies As
RoseRT.LogicalPackageDependencyCollection

Returns a collection containing all logical packages dependencies owned by the
logical package and any of its subpackages.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which logical packages dependencies are being retrieved from.

GetSubLogicalPackages () : LogicalPackageCollection

Description

Retrieves the sub logical packages derived from the logical package.

Syntax

Set theSubLogicalPackages = theLogicalPackage.GetSubLogicalPackages (
)

theSubLogicalPackages As RoseRT.LogicalPackageCollection

Returns the collection of sub logical packages derived from the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical Package from which the collection is being retrieved.

GetSuperLogicalPackages () : LogicalPackageCollection

Description

Retrieves the super logical packages parent of the logical package.

Syntax

Set theSuperLogicalPackages =
theLogicalPackage.GetSuperLogicalPackages ()
284 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theSuperLogicalPackages As RoseRT.LogicalPackageCollection

Returns the collection of super logical packages parent of the logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical Package from which the collection is being retrieved.

HasAssignedComponentPackage () : Boolean

Description

Do not use, obsolete.

RelocateCapsule (theCapsule : Capsule) : Boolean

Description

Relocates a capsule into the logical package.

Syntax

Relocated = theLogicalPackage.RelocateCapsule(theCapsule)

Relocated As Boolean

Returns a value of True when the capsule is successfully relocated into the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a capsule is being relocated into.

theCapsule As RoseRT.Capsule

Capsule to relocate into the logical package.

RelocateClass (theClass : Class) :

Description

Relocates a class into the logical package.

Syntax

Relocated = theLogicalPackage.RelocateClass(theClass)
LogicalPackage 285

Relocated As Boolean

Returns a value of True when the class is successfully relocated into the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a class is being relocated into.

theClass As RoseRT.Class

Class to relocate into the logical package.

RelocateClassDiagram (theClsDiagram : ClassDiagram) :

Description

Relocates a class diagram into the logical package.

Syntax

Relocated = theLogicalPackage.RelocateClassDiagram(theClsDiagram)

Relocated As Boolean

Returns a value of True when the class diagram is successfully relocated into the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a class diagram is being relocated into.

theClsDiagram As RoseRT.ClassDiagram

Class diagram to relocate into the logical package.

RelocateCollaboration (theCollaboration : Collaboration) : Boolean

Description

Relocates a collaboration into the logical package.
286 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Relocated = theLogicalPackage.RelocateCollaboration(thecollaboration
)

Relocated As Boolean

Returns a value of True when the collaboration is successfully relocated into the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a collaboration is being relocated into.

theCollaboration As RoseRT.Collaboration

Collaboration to relocate into the logical package.

RelocateLogicalPackage (theLogicalPackage : LogicalPackage) :

Description

Relocates a logical package into the logical package.

Syntax

Relocated = theLogicalPackage.RelocateLogicalPackage(
theLogicalPackage)

Relocated As Boolean

Returns a value of True when the logical package is successfully relocated into the
logical package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a logical package is being relocated into.

theLogicalPackage As RoseRT.LogicalPackage

Logical package to relocate into the logical package.
LogicalPackage 287

RelocateProtocol (theProtocol : Protocol) : Boolean

Description

Relocates a protocol into the logical package.

Syntax

Relocated = theLogicalPackage.RelocateClass(theProtocol)

Relocated As Boolean

Returns a value of True when the class is successfully relocated into the logical
package.

theLogicalPackage As RoseRT.LogicalPackage

Logical package from which a class is being relocated into.

theClass As RoseRT.Class

Class to relocate into the logical package.

SetAssignedComponentPackage (newValue : ComponentPackage) :

Description

Do not use, obsolete.

Association Classes

Association Classes include

■ Association on page 290

➑ Public Attributes

AssociationClass : Class on page 290

Derived : Boolean on page 290

End1 : AssociationEnd on page 290

End2 : AssociationEnd on page 291

Ends : AssociationEndCollection on page 291
288 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

➑ Public Operations

ClearAssociationEndForNameDirection () : on page 291

GetAssociationEndForNameDirection () : AssociationEnd on page 291

GetCorrespondingAssociationEnd (Classifier : Classifier) : AssociationEnd on
page 292

GetOtherAssociationEnd (Classifier : Classifier) : AssociationEnd on page 292

NameIsDirectional () : Boolean on page 293

SetAssociationEndForNameDirection (theAssociationEnd : AssociationEnd) : on
page 293

SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean on page 293

■ AssociationEnd on page 294

➑ Public Attributes

Aggregate : Boolean on page 294

AssociateModelElement : ModelElement on page 295

Association : Association on page 295

Classifier : Classifier on page 295

Constraints : String on page 295

Containment : AssociationEndContainment on page 295

Friend : Boolean on page 295

Keys : AttributeCollection on page 295

Multiplicity : String on page 296

Navigable : Boolean on page 296

Static : Boolean on page 296

UseCase : UseCase on page 296

Visibility : AssociationEndVisibilityKind

➑ Public Operations

AddKey (theName : String, theType : String) : Attribute on page 296

DeleteKey (theAttr : Attribute) : Boolean on page 297

GetClassName () : String on page 297
Association Classes 289

IsAssociateClass () : Boolean on page 298

■ AssociationEndContainment on page 298

■ AssociationEndVisibilityKind on page 299

Association

Description

An association is a connection, or a link, between classes. The association class
exposes a set of attributes and operations that

■ Determine the characteristics of associations between classes

■ Allow you to retrieve associations from a model

Check the lists of attributes and operations for complete information.

Derived from ModelElement

Public Attributes

AssociationClass : Class

Description

Class holding attributes and operations of an Association Class. May point to nothing
if the Association is not an Association Class.

Derived : Boolean

Description

Indicates whether this object is derived from another object.

End1 : AssociationEnd

Description

Specifies an object as being End1 in an association.
290 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

End2 : AssociationEnd

Description

Specifies an object as being End2 in an association.

Ends : AssociationEndCollection

Description

Specifies the collection of AssociationEnds belonging to the Association.

Public Operations

ClearAssociationEndForNameDirection () :

Description

Clears name direction setting for the association.

Syntax

theAssociation.ClearAssociationEndForNameDirectionn

theAssociation As RoseRT.Association

The association to clear the association end.

GetAssociationEndForNameDirection () : AssociationEnd

Description

Retrieves the AssociationEnd that is set as the name direction for the association.

Syntax

Set theAssociationEnd =
theAssociation.GetAssociationEndForNameDirection ()

theAssociationEnd As RoseRT.AssociationEnd

Returns the AssociationEnd that is set as the association’s name direction.

theAssociation As RoseRT.Association

Association from which the AssociationEnd is being retrieved.
Association 291

GetCorrespondingAssociationEnd (Classifier : Classifier) :
AssociationEnd

Description

Retrieves the AssociationEnd associated with a specified class.

Syntax

Set theAssociationEnd = theAssociation.GetCorrespondingAssociationEnd
(theClass)

theAssociationEnd As RoseRT.AssociationEnd

Returns the AssociationEnd that corresponds to the specified class.

theAssociationEnd As RoseRT.AssociationEnd

Association from which the AssociationEnd is being retrieved.

theClass As RoseRT.Class

The Class whose AssociationEnd is being returned.

GetOtherAssociationEnd (Classifier : Classifier) : AssociationEnd

Description

Retrieves an AssociationEnd associated with a specified class.

Syntax

Set theAssociationEnd = theAssociation.GetOtherAssociationEnd
(theClass)

theAssociationEnd As RoseRT.AssociationEnd

Returns the AssociationEnd that corresponds to the specified class.

theAssociationEnd As RoseRT.AssociationEnd

Association from which the AssociationEnd is being retrieved.

theClass As RoseRT.Class
292 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Class whose AssociationEnd is being returned.

NameIsDirectional () : Boolean

Description

Checks whether the association has a name directional AssociationEnd setting.

Syntax

IsDirectional = theAssociation.NameIsDirectional ()

IsDirectional As Boolean

Returns a value of True is the association has a name directional setting.

theAssociation As RoseRT.Association

Association whose name direction setting is being checked.

SetAssociationEndForNameDirection (theAssociationEnd :
AssociationEnd) :

Description

Sets the AssociationEnd that is the name direction for the association.

Syntax

theAssociation.SetAssociationEndForNameDirection theAssociationEnd

theAssociation As RoseRT.Association

Association whose name direction AssociationEnd is being set.

theAssociationEnd As RoseRT.AssociationEnd

AssociationEnd being set as the association’s name direction.

SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean

Description

Sets the ends of an Association.
Association 293

Syntax

EndSets = theAssociation.SetEnds(End1, End2)

EndSets As Boolean

Returns a value of True when ends are set successfully.

theAssociationAs RoseRT.Association

Association to which the Ends are being set.

End1 As RoseRT.ModelElement

Model Element at first end of the Association.

End2 As RoseRT.ModelElement

Model Element at second end of the Association.

AssociationEnd

Description

AssociationEnds denote the purpose or capacity in which one class associates with
another. The AssociationEnd class exposes a set of attributes and operations that

■ Determine the characteristics of AssociationEnd

■ Allow you to retrieve AssociationEnds from a model

Check the lists of attributes and operations for complete information.

Derived from Relation

Public Attributes

Aggregate : Boolean

Description

Indicates whether the AssociationEnd is an aggregate class.
294 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AssociateModelElement : ModelElement

Description

Model Element belonging to the AssociationEnd.

Association : Association

Description

Specifies an association belonging to the AssociationEnd.

Classifier : Classifier

Description

Model Element belonging to the AssociationEnd, casted as a Classifier. Nothing gets
returned if the Associate Model Element is not a Classifier.

Constraints : String

Description

Specifies any constraints (expressions of semantic conditions that must be preserved)
on the AssociationEnd.

Containment : AssociationEndContainment

Description

The Containment property is a rich data type that controls the containment
relationship of an association end.

Friend : Boolean

Description

Indicates whether the AssociationEnd is a Friend, allowing access to its non-public
attributes and operations.

Keys : AttributeCollection

Description

Specifies the keys belonging to the AssociationEnd.
AssociationEnd 295

Multiplicity : String

Description

Multiplicity of an Association End.

Navigable : Boolean

Description

Indicates whether the AssociationEnd is navigable.

Static : Boolean

Description

Indicates whether the AssociationEnd is static.

UseCase : UseCase

Description

Model Element belonging to the AssociationEnd, casted as a UseCase. Nothing gets
returned if the Associate Model Element is not a UseCase.

Visibility : AssociationEndVisibilityKind

Description

The Visibility property is a rich data type that controls access to the Association End
object.

Public Operations

AddKey (theName : String, theType : String) : Attribute

Description

Returns a key for an AssociationEnd based on a specified attribute name and type.

Syntax

Set theKey = theAssociationEnd.AddKey (theAttrNam, theAttrType)

theKey As RoseRT.Attribute
296 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns the key as an attribute.

theAssociationEnd As RoseRT.AssociationEnd

AssociationEndto which the key is being added.

theAttrName As String

Name of the attribute to use as a key.

theAttrType As String

Attribute type to use as a key.

DeleteKey (theAttr : Attribute) : Boolean

Description

Deletes a key from an AssociationEnd.

Syntax

Deleted = theAssociationEnd.DeleteKey (theAttribute)

Deleted As Boolean

Set to True when the key is deleted.

theAssociationEnd As RoseRT.AssociationEnd

AssociationEnd from which the key is being deleted.

theAttribute As Attribute

Name of the attribute whose key is being deleted.

GetClassName () : String

Description

Returns the name of the class belonging to the AssociationEnd.
AssociationEnd 297

Syntax

theName = theAssociationEnd.GetClassName ()

theName As String

Returns the name of the class belonging to the AssociationEnd. If the class does not
exist, a name other than a class name may be returned by the function.

theAssociationEnd As RoseRT.AssociationEnd

AssociationEnd whose class name is being retrieved.

IsAssociateClass () : Boolean

Description

Returns whether the Associate Model Element is a Class.

Syntax

IsAClass = theAssociationEnd.IsAssociateClass()

IsAClass As Boolean

Returns a value of True if the Associate Model Element is a Class.

theAssociationEnd As RoseRT.AssociationEnd

The Association End to determine whether the associate Model Element is a Class

AssociationEndContainment

Description

Rich type used to determine how an association end containment attribute.Valid
values are defined in RsContainment enumeration.

Derived from RichType
298 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AssociationEndVisibilityKind

Description

Rich type used to determine how an association end can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

Classifier Classes

Classifier Classes include

■ Capsule on page 303

➑ Public Attributes

Structure : CapsuleStructure on page 303

■ Class on page 304

➑ Public Attributes

ClassKind : ClassKind on page 304

Concurrency : ClassConcurrency on page 304

FundamentalType : Boolean on page 304

Multiplicity : String on page 305

Parameters : ParameterCollection on page 305

ParentClass : Class on page 305

Persistence : Boolean on page 305

Space : String on page 305

➑ Public Operations

AddInstantiateRel (theRelationName : String, theParentClassName : String) :
InstantiateRelation on page 305

AddNestedClass (theName : String) : Class on page 306
AssociationEndVisibilityKind 299

AddParameter (theName : String, theType : String, theDef : String, position :
Integer) : Parameter on page 307

DeleteInstantiateRel (theInstantiateRel : InstantiateRelation) : Boolean on
page 307

DeleteNestedClass (theClass : Class) : Boolean on page 308

GetInstantiateRelations () : InstantiateRelationCollection on page 308

GetNestedClasses () : ClassCollection on page 309

IsNestedClass () : Boolean on page 309

■ ClassConcurrency on page 310

■ ClassKind on page 310

■ Classifier on page 310

➑ Public Attributes

Abstract : Boolean on page 311

AssignedLanguage : String on page 311

Attributes : AttributeCollection on page 311

Collaborations : CollaborationCollection on page 311

Operations : OperationCollection on page 312

ParentLogicalPackage : LogicalPackage on page 312

StateMachine : StateMachine on page 312

SystemClass : Boolean on page 313

Visibility : ClassifierVisibilityKind on page 313

➑ Public Operations

AddAssociation (theSupplierRoleName : String, theSupplierRoleType : String) :
Association on page 313

AddAttribute (theName : String, theType : String, initVal : String) : Attribute on
page 314

AddClassDependency (thSupplierName : String, theSupplierType : String) :
ClassDependency on page 315

AddCollaboration (theCollabName : String) : Collaboration on page 315
300 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddGeneralization (theRelationName : String, theParentClassName : String) :
Generalization on page 316

AddGeneralizationEx (theRelationName : String, theParentClassName : String,
ExcludeSuperclassProps : Boolean) : Generalization on page 316

AddOperation (theName : String, retType : String) : Operation on page 317

AddRealizeRel (theRelationName : String, theSupplierName : String) :
RealizeRelation on page 318

CreateStateMachine () : on page 318

DeleteAssociation (thAss : Association) : Boolean on page 319

DeleteAttribute (theAttr : Attribute) : Boolean on page 319

DeleteClassDependency (theDependency : ClassDependency) : Boolean on
page 320

DeleteCollaboration (theCollab : Collaboration) : Boolean

DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 321

DeleteGeneralizationEx (theGeneralization : Generalization,
AbsorbSuperClassProps : Boolean) : Boolean on page 322

DeleteOperation (theOper : Operation) : Boolean on page 322

DeleteRealizeRel (theRel : RealizeRelation) : Boolean on page 323

DeleteStateMachine () : on page 323

GetAssociateAssociationEnds () : AssociationEndCollection on page 324

GetAssociationEnds () : AssociationEndCollection on page 324

GetAssociations () : AssociationCollection

GetClassDependencies () : ClassDependencyCollection on page 325

GetClassifier () : Classifier on page 325

GetGeneralizations () : GeneralizationCollection on page 326

GetRealizeRelations () : RealizeRelationCollection on page 326

GetSubClasses () : ClassifierCollection on page 326

GetSuperClasses () : ClassifierCollection on page 327

■ ClassifierVisibilityKind on page 327

■ Parameter on page 328
Classifier Classes 301

➑ Public Attributes

Const : Boolean on page 328

InitValue : String on page 328

Type : String on page 328

■ Protocol on page 329

➑ Public Attributes

InSignals : SignalCollection on page 329

Interactions : InteractionCollection on page 329

OutSignals : SignalCollection on page 329

➑ Public Operations

AddInSignal () : Signal on page 329

AddInteraction (name : String) : Interaction on page 330

AddOutSignal () : Signal on page 330

DeleteInSignal (theSignal : Signal) : Boolean on page 331

DeleteInteraction (theInteraction : Interaction) : Boolean on page 331

DeleteOutSignal (theSignal : Signal) : Boolean

■ RsClassKind on page 332

➑ Public Attributes

rsInstantiatedClass : Integer = 2 on page 332

rsInstantiatedUtility : Integer = 5 on page 333

rsMeta : Integer = 6 on page 333

rsNormalClass : Integer = 0 on page 333

rsParametrizedClass : Integer = 1 on page 333

rsParametrizedUtility : Integer = 4 on page 333

rsUtilityClass : Integer = 3 on page 333

■ RsConcurrency on page 334

➑ Public Attributes

rsActiveConcurrency : Integer = 2 on page 334
302 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsGuardedConcurrency : Integer = 1 on page 334

rsSequentialConcurrency : Integer = 0 on page 334

rsSynchronousConcurrency : Integer = 3 on page 334

■ Signal on page 335

➑ Public Attributes

Class : Class on page 335

ClassName : String on page 336

In : Boolean on page 336

ParentProtocol : Protocol on page 336

Capsule

Description

Capsules are the fundamental modeling element of real-time systems. A capsule
represents independent flows of control in a system. Capsules have much of the same
properties as classes; for example they can have operations and attributes. Capsules
may also participate in dependency, generalization, and association relationships.
However they also have several specialized properties which distinguish them from
classes.

Derived from Classifier

Public Attributes

Structure : CapsuleStructure

Description

The CapsuleStructure Model Element object that maps to a capsule's Structure
Diagram.
Capsule 303

Class

Description

The Class class allows you to get and set the characteristics and relationships of
specific classes in a model.

Some of the questions answered by class properties are

■ Is this an abstract class?

■ Is this class a fundamental type?

■ Is this class persistent?

■ Can this class be concurrent with any other classes?

■ What set of attributes and operations belong to this class?

■ What relationships are defined between this class and other objects in the model?

Class operations allow you to get and set this information for the classes in the model.
Check the lists of attributes and operations for complete information.

Derived from Classifier

Public Attributes

ClassKind : ClassKind

Description

The ClassKind property is a rich data type that determines the type of the class.

Concurrency : ClassConcurrency

Description

The Concurrency property is a rich data type that denotes the semantics in the
presence of multiple threads of control.

FundamentalType : Boolean

Description

Defines this class as a fundamental type.
304 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Multiplicity : String

Description

Multiplicity of the Class.

Parameters : ParameterCollection

Description

Used for class of kind “Parameterized Class” or “Parameterized Class Utility”.
Formal parameters to be used for their instantiation.

ParentClass : Class

Description

Specifies the parent class of this class.

Persistence : Boolean

Description

Defines the lifetime of the instances of a class. A persistent element is expected to have
a life span beyond that of the program or one that is shared with other threads of
control or other processes.

Space : String

Description

Defines the space algorithm to use for the class.

Public Operations

AddInstantiateRel (theRelationName : String, theParentClassName :
String) : InstantiateRelation

Description

Adds an instantiate relation to a class.

Syntax

Set theIntantiateRelation = theClass.AddInstantiateRel(
theRelationName, theParentClassName)
Class 305

theIntantiateRelation As RoseRT.InstantiateRelation

Returns a new Instantiate Relation denoting theClass as an instantiation of the
parametrized class named theParentClassName.

theClass As RoseRT.Class

The Class to instantiate from the parametrized class whose name is
theParentClassName.

theRelationName As String

The name of the relation.

theParentClassName As String

Name of the parametrized class that instantiates theClass.

AddNestedClass (theName : String) : Class

Description

Creates a new nested class and adds it to a class.

Syntax

Set theNestedClass = theClass.AddNestedClass (theName)

theNestedClass As RoseRT.Class

Returns the nested class being added to the class.

theClass As RoseRT.Class

Class to which the nested class is being added.

theName As String

Name of the class being added to the class.
306 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddParameter (theName : String, theType : String, theDef : String,
position : Integer) : Parameter

Description

Adds a formal/actual parameter to a parametrized/instantiated class.

Syntax

Set theParameter = theClass.AddParameter(theName, theType, theDef,
position)

theParameter As RoseRT.Parameter

Returns a new formal/actual Parameter for the parametrized/instantiated class
theClass.

theClass As RoseRT.Class

The parametrized/instantiated class to add a parameter to.

theName As String

The name of the new formal/actual Parameter.

theType As String

The type of the new formal/actual Parameter.

theDef As String

The default value of the new formal/actual Parameter.

position As Integer

The position of the new formal Parameter in the parameter list.

DeleteInstantiateRel (theInstantiateRel : InstantiateRelation) : Boolean

Description

Deletes an instantiate relation from a class.
Class 307

Syntax

IsDeleted = theClass.DeleteInstantiateClass(theInstantiateRel)

IsDeleted As Boolean

Returns whether theInstantiateRel was deleted successfully from theClass.

theClass As RoseRT.Class

The Class to delete an Instantiate Relation from.

theInstantiateRel As RoseRT.InstantiateRelation

The relation to delete.

DeleteNestedClass (theClass : Class) : Boolean

Description

Deletes an association from a class.

Syntax

Deleted = theClass.DeleteNestedClass (theNestedClass)

Deleted As Boolean

Returns a value of True when the nested class is deleted.

theClass As RoseRT.Class

Class from which the nested class is being deleted.

theNestedClass As RoseRT.Class

Nested class being deleted.

GetInstantiateRelations () : InstantiateRelationCollection

Description

Returns the collection of Instantiate Relations that belong to a class.
308 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theInstantiateRelations = theClass.GetInstantiateRelations()

theInstantiateRelations As RoseRT.InstantiateRelationCollection

Returns the collection of Instantiate Relations that belong to a theClass.

theClass As RoseRT.Class

The Class to return Instantiate Relation Collection from.

GetNestedClasses () : ClassCollection

Description

Retrieves the nested class collection from a class and returns it in the specified object.

Syntax

Set theNestedClasses = theClass.GetNestedClasses ()

theNestedClasses As RoseRT.ClassCollection

Returns the nested class collection from the class.

theClass As RoseRT.Class

Class from which the collection is being retrieved.

IsNestedClass () : Boolean

Description

Determines whether a class is nested.

Syntax

IsNested = theClass.IsNestedClass ()

IsNested As Boolean

Returns a value of True if the specified class is nested.
Class 309

theClass As RoseRT.Class

The instance of the class being checked for nesting.

ClassConcurrency

Description

Rich type used to determine concurrency of an operation or of a Class.

Valid values are defined in RsConcurrency enumeration.

Derived from RichType

ClassKind

Description

Rich type used to determine kind of a Class. Valid values are defined in RsClassKind
enumeration.

Derived from RichType

Classifier

Description

A classifier is a base class that describes behavioral and structural features (attributes
and operations).
310 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Abstract : Boolean

Description

Indicates whether the classifier is an abstract classifier.

Syntax

Classifier.Abstract

Property Type:

Boolean

AssignedLanguage : String

Description

The implementation language for the classifier from the available languages. The
analysis selection indicates that no code will be generated for the classifier.

Attributes : AttributeCollection

Description

Causes the classifier to inherit all of the attributes of a specified attribute collection.

Syntax

Classifier.Attributes

Property Type:

AttributeCollection

Collaborations : CollaborationCollection

Description

Collaborations that belong to this classifier.
Classifier 311

Operations : OperationCollection

Description

Causes the classifier to inherit all of the operations of a specified operation collection.

Syntax

Classifier.Operations

Property Type:

OperationsCollection

ParentLogicalPackage : LogicalPackage

Description

Indicates the LogicalPackage that contains the classifier.

Syntax

Classifier.ParentLogicalPackage

Property Type

LogicalPackage

StateMachine : StateMachine

Description

Specifies the state machine that belongs to the classifier. A state machine defines all of
the state information, including states, transitions, and state diagrams, defined for a
given classifier.

A classifier can have zero or one state machine.

Syntax

Classifier.StateMachine

Property Type:

StateMachine
312 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SystemClass : Boolean

Description

Determines whether a class is a system class.

Examples of system classes are

■ Exception

■ Frame

■ Log

■ Timing

Visibility : ClassifierVisibilityKind

Description

The Visibility property is a RichType that specifies how a classifier and its elements
are viewed outside of the defined package.

Public Operations

AddAssociation (theSupplierRoleName : String, theSupplierRoleType :
String) : Association

Description

Adds an association to a classifier and returns it in the specified object.

Syntax

Set theAssociation = theClassifier.AddAssociation
(theSupplierRoleName, theSupplierRoleType)

theAssociation As RoseRT.Association

Returns the association being added to the class.

theClassifier As RoseRT.Class

Classifier to which the association is being added.

theSupplierRoleName As String
Classifier 313

Name of the supplier role in the association.

theSupplierRoleType As String

Type of the supplier role in the association.

AddAttribute (theName : String, theType : String, initVal : String) :
Attribute

Description

Creates a new attribute and adds it to a classifier.

Syntax

Set theAttribute = theClassifier.AddAttribute (AttName, AttrType,
InitValue)

theAttribute As RoseRT.Attribute

Returns the attribute being added to the classifier.

theClassifier As RoseRT.Class

Classifier to which the attribute is being added.

AttName As String

Name of the attribute being added to the classifier.

AttrType As String

Type of attribute being added to the classifier.

InitValue As String

Initial value of the attribute.
314 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddClassDependency (thSupplierName : String, theSupplierType :
String) : ClassDependency

Description

Creates a new class dependency and adds it to a class.

Syntax

Set theDependency = theClass.AddClassDependency (theSupplierName,
theSupplierType)

theClassDependency As ClassDependency

Returns the class dependency being added to the class.

theClass As Class

Class to which the class dependency is being added.

theSupplierName As String

Name of the supplier class of the class dependency.

theSupplierType As String

Type of supplier of the class dependency.

AddCollaboration (theCollabName : String) : Collaboration

Description

Adds a collaboration to a classifier and returns it in the specified object.

Syntax

Set theCollaboration = theClassifier.AddCollaboration(theCollabName)

theCollaboration As RoseRT.Collaboration

Returns the Collaboration being added to the classifier.

theClassifier As RoseRT.Classifier
Classifier 315

Classifier to which the collaboration is being added.

theCollabName As String

Name of the new Collaboration.

AddGeneralization (theRelationName : String, theParentClassName :
String) : Generalization

Description

Adds a Generalization relationship to a classifier and returns it in the specified object.

Syntax

Set theGeneralization = theClassifier.AddGeneralization(
theRelationName, theParentClassifierName)

theGeneralization As RoseRT.Generalization

Returns the Generalization being added to the classifier.

theClassifier As RoseRT.Classifier

Classifier to which the Generalization is being added.

theRelationName As String

Name of the new Generalization.

theParentClassName As String

Name of the parent classifier in the Generalize relationship.

AddGeneralizationEx (theRelationName : String, theParentClassName :
String, ExcludeSuperclassProps : Boolean) : Generalization

Description

Adds a Generalization relationship to a classifier and returns it in the specified object.
316 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theGeneralization = theClassifier.AddGeneralizationEx(
theRelationName, theParentClassifierName, ExcludeSuperclassProps)

theGeneralization As RoseRT.Generalization

Returns the Generalization being added to the classifier.

theClassifier As RoseRT.Classifier

Classifier to which the Generalization is being added.

theRelationName As String

Name of the new Generalization.

theParentClassName As String

Name of the parent classifier in the Generalize relationship.

ExcludeSuperclassProps As Boolean

Determines whether to exclude the new superclass' properties. Only meaningful for
Capsule and Protocol derived classes.

AddOperation (theName : String, retType : String) : Operation

Description

Creates a new operation and adds it to a classifier.

Syntax

Set theOperation = theClassifier.AddOperation (OperationName,
OperationType)

theOperation As RoseRT.Operation

Returns the operation being added to the class.

theClass As RoseRT.Classifier

Classifier to which the operation is being added.
Classifier 317

OperationName As String

Name of the operation being added to the classifier.

OperationType As String

Type of operation being added to the classifier.

AddRealizeRel (theRelationName : String, theSupplierName : String) :
RealizeRelation

Description

Creates a new realize relation and adds it to a classifier.

Syntax

Set theRealizeRelation = theClassifier.AddRealizeRel (theRelationName,
theInterfaceName)

theRealizeRelation As RoseRT.RealizeRelation

Returns the realize relation being added to the class.

theClassifier As RoseRT.Classifier

Classifier to which the realize relation is being added.

theRelationName As String

Name of the relation being added.

theInterfaceName As String

Name of the interface with which to create the realize relation.

CreateStateMachine () :

Description

Creates a state machine for a classifier.
318 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Note: A classifier can have zero or one state machine. Multiple state machines are not
allowed.

Syntax

theClassifier.CreateStateMachine

theClassifier As RoseRT.Classifier

Classifier to which you are adding the state machine.

DeleteAssociation (thAss : Association) : Boolean

Description

Deletes an association from a classifier.

Syntax

Deleted = theClassifier.DeleteAssociation (theAssociation)

Deleted As Boolean

Returns a value of True when the association is deleted.

theClassifier As RoseRT.Classifier

Class from which the association is being deleted.

theAssociation As RoseRT.Association

Name of the association being deleted. (The association must belong to the specified
classifier.)

DeleteAttribute (theAttr : Attribute) : Boolean

Description

Deletes an attribute from a classifier.

Syntax

Deleted = theClassifier.DeleteAttribute (theAttribute)
Classifier 319

Deleted As Boolean

Returns a value of True when the attribute is deleted.

theClassifier As RoseRT.Classifier

Classifier from which the attribute is being deleted.

theAttribute As RoseRT.Attribute

Attribute being deleted from the classifier.

DeleteClassDependency (theDependency : ClassDependency) : Boolean

Description

Deletes a classifier dependency from a classifier.

Syntax

IsDeleted = theClassifier.DeleteClassifierDependency (theDependency)

IsDeleted As Boolean

Returns a value of True when the classifier dependency is deleted.

theClassifier As RoseRT.Classifier

Classifier from which the classifier dependency is being deleted.

theDependency As RoseRT.ClassifierDependency

Classifier dependency being deleted.

DeleteCollaboration (theCollab : Collaboration) : Boolean

Description

Deletes a collaboration from a classifier.

Syntax

Deleted = theClassifier.DeleteCollaboration(theCollab)
320 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Deleted As Boolean

Returns a value of True when the collaboration gets deleted successfully from the
classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collaboration is being deleted.

theCollab As RoseRT.Collaboration

The collaboration being deleted.

DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

Deletes a Generalization relation from a classifier.

Syntax

Deleted = theClassifier.DeleteGeneralization(theGeneralization)

Deleted As Boolean

Returns a value of True when the generalization gets deleted successfully from the
classifier.

theClassifier As RoseRT.Classifier

Classifier from which the generalization is being deleted.

theGeneralization As RoseRT.Generalization

The generalization being deleted.
Classifier 321

DeleteGeneralizationEx (theGeneralization : Generalization,
AbsorbSuperClassProps : Boolean) : Boolean

Description

Deletes a Generalization relation from a classifier.

Syntax

Deleted = theClassifier.DeleteGeneralizationEx(theGeneralization,
AbsorbSuperClassProps)

Deleted As Boolean

Returns a value of True when the generalization gets deleted successfully from the
classifier.

theClassifier As RoseRT.Classifier

Classifier from which the generalization is being deleted.

theGeneralization As RoseRT.Generalization

The generalization being deleted.

AbsorbSuperClassProps As Boolean

Determines whether to absorb all of the superclass' properties. Only meaningful for
Capsule and Protocol derived classes.

DeleteOperation (theOper : Operation) : Boolean

Description

Deletes an operation from a classifier.

Syntax

Deleted = theClassifier.DeleteOperation (theOperation)

Deleted As Boolean

Returns a value of True when the operation is deleted from the classifier.
322 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theClassifier As RoseRT.Classifier

Classifier from which the operation is being deleted.

theOperation As RoseRT.Operation

Operation being deleted from the classifier.

DeleteRealizeRel (theRel : RealizeRelation) : Boolean

Description

Deletes a realize relation from a classifier.

Syntax

IsDeleted = theClassifier.DeleteRealizeRel (theRealizeRel)

IsDeleted As Boolean

Returns a value of True relation being added to the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the realize relation is being deleted.

theRealizeRel As RoseRT.RealizeRelation

Realize relation being deleted.

DeleteStateMachine () :

Description

Deletes a classifier’s state machine from the model.

Syntax

theClassifier.DeleteStateMachine

theClassifier As RoseRT.Classifier

Classifier whose state machine is being deleted.
Classifier 323

GetAssociateAssociationEnds () : AssociationEndCollection

Description

Retrieves an associate AssociationEnd collection from a classifier and returns it in the
specified object.

Syntax

Set theAssocAssociationEnd = theClassifier.GetAssociateAssociationEnd
()

theAssocAssociationEnd As AssocAssociationEndCollection

Returns the associate AssociationEnd collection from the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

GetAssociationEnds () : AssociationEndCollection

Description

Retrieves an AssociationEndCollection from a classifier and returns it in the specified
object.

Syntax

Set theAssociationEnd = theClassifier.GetAssociationEnds ()

theAssociationEnds As RoseRT.AssociationEndCollection

Returns the AssociationEndCollection from the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

GetAssociations () : AssociationCollection

Description

Retrieves an association collection from a classifier and returns it in the specified
object.
324 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theAssociationCollection = theClassifier.GetAssociations ()

theAssociationCollection As RoseRT.AssociationCollection

Returns the association collection from the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

GetClassDependencies () : ClassDependencyCollection

Description

Retrieves the classifier dependencies belonging to the classifier.

Syntax

Set theClassifierDependencies = theClassifier.GetUsesRelations ()

theClassifierDependencies As RoseRT.ClassifierDependencyCollection

Returns the classifier dependency collection belonging to the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the dependencies are being retrieved.

GetClassifier () : Classifier

Description

Returns self as a Classifier.

Syntax

Set theClassifier = theClassifier.GetClassifier()

theClassifier As RoseRT.Classifier

Returns self as a Classifier.
Classifier 325

theClassifier As RoseRT.Classifier

Classifier to remove self as a classifier.

GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a Classifier is client of.

Syntax

Set Generalizations = theClassifier.GetGeneralizations()

Generalizations As RoseRT.GeneralizationCollection

The collection of all Generalization relationships the Classifier is client of.

theClassifier As RoseRT.Classifier

The classifier to return Generalization it is client of.

GetRealizeRelations () : RealizeRelationCollection

Description

Retrieves the collection of realize relations belonging to the classifier.

Syntax

Set theRealizesRelations = theClassifier.GetRealizeRelations ()

theRealizesRelations As RoseRT.RealizeRelationsCollection

Returns the collection of realize relations belonging the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

GetSubClasses () : ClassifierCollection

Description

Retrieves the subclasses belonging to the classifier.
326 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theSubclasses = theClassifier.GetSubclasses ()

theSubclasses As RoseRT.ClassifierCollection

Returns the collection of classes belonging to the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

GetSuperClasses () : ClassifierCollection

Description

Retrieves the superclasses belonging to the classifier.

Syntax

Set theSuperClassifiers = theClassifier.GetSuperClassifiers ()

theSuperclassifiers As RoseRT.ClassifierCollection

Returns the collection of superclassifiers belonging to the classifier.

theClassifier As RoseRT.Classifier

Classifier from which the collection is being retrieved.

ClassifierVisibilityKind

Description

Rich type used to determine how a Classifier can be accessed from other Classifiers.
Valid values are defined in RsVisibility enumeration.
ClassifierVisibilityKind 327

Derived from RichType

Parameter

Description

Parameters further qualify the behavior of an operation. The parameter class exposes
a set of attributes and operations that

■ Determine the parameter characteristics such as type and initial value

■ Allow you to retrieve parameters

Check the lists of attributes and operations for complete information.

Derived from ModelElement

Public Attributes

Const : Boolean

Description

Indicates that the parameter is a constant

InitValue : String

Description

Indicates the initial value of the parameter object.

Type : String

Description

Indicates the data type of the parameter object
328 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Protocol

Description

Represents the set of messages exchanged between two objects in order to conform to
some communication pattern.

Derived from Classifier

Public Attributes

InSignals : SignalCollection

Description

The collection of in signals described by a protocol.

Interactions : InteractionCollection

Description

The collection of interactions describing a protocol.

OutSignals : SignalCollection

Description

The collection of out signals described by a protocol.

Public Operations

AddInSignal () : Signal

Description

Adds an in signal to a protocol and returns it in the specified object.

Syntax

Set theSignal = theProtocol.AddInSignal()

theSignal As RoseRT.Signal

Returns the in signal being added to the protocol.
Protocol 329

theProtocol As RoseRT.Protocol

Protocol to which the in signal is being added.

AddInteraction (name : String) : Interaction

Description

This function adds an interaction to a protocol and returns it in the specified object.

Syntax

Set theInteraction = theProtocol.AddInteraction(name)

theInteraction As RoseRT.Interaction

Returns the interaction being added to the protocol.

theProtocol As RoseRT.Protocol

Protocol to which the interaction is being added.

name As String

Name of the interaction to add to the protocol.

AddOutSignal () : Signal

Description

Adds an out signal to a protocol and returns it in the specified object.

Syntax

Set theSignal = theProtocol.AddOutSignal()

theSignal As RoseRT.Signal

Returns the out signal being added to the protocol.

theProtocol As RoseRT.Protocol

Protocol to which the out signal is being added.
330 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteInSignal (theSignal : Signal) : Boolean

Description

Deletes an in signal from a protocol.

Syntax

Deleted = theProtocol.DeleteInSignal(theSignal)

Deleted As Boolean

Returns a value of True when the in signal is successfully deleted from the protocol.

theProtocol As RoseRT.Protocol

Protocol to which the in signal is being deleted.

theSignal As RoseRT.Signal

The in signal being deleted.

DeleteInteraction (theInteraction : Interaction) : Boolean

Description

Deletes an interaction from a protocol.

Syntax

Deleted = theProtocol.DeleteInteraction(theInteraction)

Deleted As Boolean

Returns a value of True when the interaction is successfully deleted from the protocol.

theProtocol As RoseRT.Protocol

Protocol to which the interaction is being deleted.

theInteraction As RoseRT.Interaction

The interaction being deleted.
Protocol 331

DeleteOutSignal (theSignal : Signal) : Boolean

Description

Deletes an out signal from a protocol.

Syntax

Deleted = theProtocol.DeleteOutSignal(theSignal)

Deleted As Boolean

Returns a value of True when the out signal is successfully deleted from the protocol.

theProtocol As RoseRT.Protocol

Protocol to which the out signal is being deleted.

theSignal As RoseRT.Signal

The out signal being deleted.

RsClassKind

Description

Enumeration used to set the Value property of the ClassKind Rich Type.

Public Attributes

rsInstantiatedClass : Integer = 2

Description

Class formed from a parameterized class by supplying actual values for parameters.
332 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsInstantiatedUtility : Integer = 5

Description

Utility class formed from a parameterized class by supplying actual values for
parameters.

rsMeta : Integer = 6

Description

Class which describes or is used to instantiate classes instead of objects.

rsNormalClass : Integer = 0

Description

Design-time specification for one or more distinct objects with common structure,
attributes, and common behavior, operations.

rsParametrizedClass : Integer = 1

Description

Template for creating any number of instantiated classes that follow its format. A
parameterized class declares formal parameters.

rsParametrizedUtility : Integer = 4

Description

Template for creating any number of instantiated utility classes that follow its format.
A parameterized class declares formal parameters.

rsUtilityClass : Integer = 3

Description

Specifies a class whose attributes and operations are all class scoped. An instantiated
utility class represents an instance of a utility class.
RsClassKind 333

RsConcurrency

Description

Enumeration used to set the Value property of the ClassConcurrency and of the
OperationConcurrency Rich Types.

Public Attributes

rsActiveConcurrency : Integer = 2

Description

The class has its own thread of control.

rsGuardedConcurrency : Integer = 1

Description

The semantics of the class are guaranteed in the presence of multiple threads of
control. A guarded class requires collaboration among client threads to achieve
mutual exclusion.

rsSequentialConcurrency : Integer = 0

Description

The semantics of the class are guaranteed only in the presence of a single thread of
control. Only one thread of control can be executing in the method at any one time.

rsSynchronousConcurrency : Integer = 3

Description

The semantics of the class are guaranteed in the presence of multiple threads of
control; mutual exclusion is supplied by the class.

RsChangeable

Description

Enumeration used to set the Value property of the Changeable RichType.
334 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Attributes

rsChangeableChangeableKind : Integer = 0

Description

Specifies that the attribute can be modified.

rsFrozenChangeableKind : Integer = 1

Description

Specifies that the attribute cannot be modified.

rsAddOnlyChangeableKind : Integer = 2

Description

Specifies that the attribute can only be updated. For example, items in an array can be
appended to, not replaced.

Note: This options is not enforceable in most programming languages.

Signal

Description

A signal is a specification of an asynchronous stimulus communicated between
instances.

Derived from ModelElement

Public Attributes

Class : Class

Description

Specifies the class of the data object that is expected as a payload of the message.
Signal 335

ClassName : String

Description

Specifies the classname of the data object that is expected as a payload of the message.

In : Boolean

Description

Specifies whether the signal is an in signal.

ParentProtocol : Protocol

Description

Protocol that own the signal.

Feature Classes

Feature Classes include

■ Attribute on page 338

➑ Public Attributes

Containment : AttributeContainment on page 338

Derived : Boolean on page 338

InitValue : String on page 339

OwnerScope : OwnerScope on page 339

ParentClassifier : Classifier on page 339

Type : String on page 339

Visibility : AttributeVisibilityKind on page 339

■ AttributeContainment on page 340

■ AttributeVisibilityKind on page 340

■ Operation on page 340

➑ Public Attributes

Abstract : Boolean on page 341

Code : String on page 341
336 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Concurrency : OperationConcurrency on page 341

Exceptions : String on page 341

OwnerScope : OwnerScope on page 341

Parameters : ParameterCollection on page 341

ParentClassifier : Classifier on page 342

Postconditions : String on page 342

Preconditions : String on page 342

Protocol : String on page 342

Qualification : String on page 342

Query : Boolean on page 342

ReturnType : String on page 342

Semantics : String on page 343

Size : String on page 343

Time : String on page 343

Virtual : Boolean on page 343

Visibility : OperationVisibilityKind on page 343

➑ Public Operations

AddParameter (theName : String, theType : String, theDef : String, position :
Integer) : Parameter on page 343

DeleteParameter (theParameter : Parameter) : Boolean on page 344

RemoveAllParameters () : on page 345

■ OperationConcurrency on page 345

■ OperationVisibilityKind on page 345

■ OwnerScope on page 346

■ RsOwnerScope on page 346

➑ Public Attributes

rsClassifierScopeKind : Integer = 1 on page 346

rsInstanceScopeKind : Integer = 0 on page 346
Feature Classes 337

Attribute

Description

Attributes define the characteristics of a class. Each object in a classifier has the same
attributes, but the values of the attributes may be different.

The attribute class exposes a set of attributes and operations that determine the
characteristics of these attributes and that allow you to retrieve them from a model.

Some of the characteristics determined by attribute class properties are

■ Type

■ Initial value

■ Whether the attribute is static; whether it is derived

■ Attribute visibility

Check the lists of attributes and operations for complete information.

Derived from ModelElement

Public Attributes

Containment : AttributeContainment

Description

The Containment property is a rich data type that controls the containment
relationship of an attribute.

Derived : Boolean

Description

Indicates whether the attribute is derived.

Changeability : Changeability

The Changeable property is a RichType that specifies the manner in which you can
modify an attribute. The options available are:

■ Changeable - The attribute can be modified.

■ Frozen - The attribute cannot be modified.
338 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ Add-only - The attribute can only be updated. For example, items in an array can
be appended to, not replaced.

Note: This options is not enforceable in most programming languages.

Example

Dim changeability As RoseRT.RichType

Set changeability = myAttribute.Changeable

changeability.Value = RsFrozenChangeableKind

For additional information on the possible values, see RsChangeable on page 334.

InitValue : String

Description

Indicates the initial value of the attribute object.

OwnerScope : OwnerScope

Description

The OwnerScope property is a RichType that determines whether a single instance of
the attribute is shared for all instances of the classifier or if each instance of the class
have a separate attribute instance.

ParentClassifier : Classifier

Description

Specifies the Classifier to which the attribute belongs.

Type : String

Description

Indicates the data type of the attribute object.

Visibility : AttributeVisibilityKind

Description

The Visibility property is a RichType that determines how an attribute can be accessed
from other classifiers.
Attribute 339

AttributeContainment

Description

Rich type used to determine the containment of an attribute within a Classifier. Valid
values are defined in RsContainment enumeration.

Derived from RichType

AttributeVisibilityKind

Description

Rich type used to determine the visibility of an attribute within a Classifier. Valid
values are defined in RsVisibilityKind enumeration.

Derived from RichType

Operation

Description

Objects in a class carry out their defined responsibilities by using operations. Each
operation performs a single, cohesive function. The operation classifier exposes a set
of attributes and operations that

■ Determine operation characteristics

■ Add or remove parameters from operations

■ Allow you to retrieve operations

Check the lists of attributes and operations for complete information.
340 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Abstract : Boolean

Description

Indicates that the operation is an abstract definition that should be overridden by
specific implementations in subclasses.

Code : String

Description

Detailed implementation code for the operation.

Concurrency : OperationConcurrency

Description

The Operation Concurrency property is a rich data type that denotes the semantics in
the presence of multiple threads of control.

Exceptions : String

Description

Identifies the set of exceptions that can be raised by an operation.

OwnerScope : OwnerScope

Description:

The OwnerScope property is a RichType that determines whether an operation is
scoped as a class operation or whether it is an instance operation.

Parameters : ParameterCollection

Description

Defines the collection of parameters that is valid for the operation.
Operation 341

ParentClassifier : Classifier

Description

Specifies the classifier to which the operation belongs.

Postconditions : String

Description

Controls invariants that are satisfied by the operation; that is, the exit behavior of the
operation.

Preconditions : String

Description

Controls invariants assumed by the operation; that is, the entry behavior of an
operation.

Protocol : String

Description

Specifies the set of operations that a client may perform on an object and the legal
order in which the operations can be called.

Qualification : String

Description

Identifies language-specific features used to qualify an operation.

Query : Boolean

Description

Indicates that the operation is read-only and does not modify the object's state.

ReturnType : String

Description

Determines the object type to be returned by an operation; can be set to any valid data
type, rich data type, or object type.
342 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Semantics : String

Description

Controls the action of an operation.

Size : String

Description

Identifies the relative or absolute amount of storage used when the operation is called.

Time : String

Description

Identifies the relative or absolute amount of time required to complete the operation.

Virtual : Boolean

Description

Indicates whether the operation is virtual

Visibility : OperationVisibilityKind

Description

The Visibility property is a RichType that determines how an operation can be
accessed from other classifiers.

Public Operations

AddParameter (theName : String, theType : String, theDef : String,
position : Integer) : Parameter

Description

Creates a new parameter and adds it to an operation.

Syntax

Set theParameter = theOperation.AddParameter (ParameterName,
ParameterType, InitValue, Position)

theParameter As RoseRT.Parameter
Operation 343

Returns the parameter being added to the operation.

theOperation As RoseRT.Operation

Operation to which the parameter is being added.

ParameterName As String

Name of the parameter being added to the operation.

ParameterType As String

Type of parameter being added to the operation.

InitValue As String

Initial value of the added parameter.

Position As Integer

Order of the parameter in the operation’s parameter list.

DeleteParameter (theParameter : Parameter) : Boolean

Description

Deletes a parameter from an operation.

Syntax

Deleted = theOperation.DeleteParameter (theParameter)

Deleted As Boolean

Returns a value of True when the specified parameter is deleted from the operation.

theOperation As RoseRT.Operation

Operation from which the parameter is being deleted.

theParameter As RoseRT.Parameter
344 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Parameter being deleted from the operation.

RemoveAllParameters () :

Description

Removes all parameters from an operation.

Syntax

theOperation.RemoveAllParameters

theOperation As RoseRT.Operation

Operation from which the parameters are being removed.

OperationConcurrency

Description

Rich type used to determine the concurrency of an operation within a Classifier. Valid
values are defined in RsConcurrency enumeration.

Derived from RichType

OperationVisibilityKind

Description

Rich type used to determine the visibility of an operation within a Classifier. Valid
values are defined in RsVisibilityKind enumeration.
OperationConcurrency 345

Derived from RichType

OwnerScope

Description

Rich type used to determine the scope of an attribute within a Classifier. Valid values
are defined in RsOwnerScope enumeration.

Derived from RichType

RsOwnerScope

Description

Enumeration used to set the Value property of the OwnerScope Rich Type.

Public Attributes

rsClassifierScopeKind : Integer = 1

Description

There is a single instance of the attribute for all instances of the class (a static member
in C++ terminology).

rsInstanceScopeKind : Integer = 0

Description

Each instance of the class will have a separate attribute instance.
346 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Collaboration Classes

Collaboration classes include

■ AssociationEndRole on page 350

➑ Public Attributes

AssociationRole : AssociationRole on page 351

Base : AssociationEnd on page 351

■ AssociationRole on page 351

➑ Public Attributes

Base : Association on page 351

BaseName : String on page 351

Multiplicity : String on page 351

ParentCollaboration : Collaboration on page 352

■ CapsuleRole on page 352

➑ Public Attributes

Capsule : Capsule on page 352

Cardinality : String on page 352

Genericity : Genericity on page 352

PortRoles : PortRoleCollection on page 352

Substitutable : Boolean on page 353

■ CapsuleStructure on page 353

➑ Public Attributes

Ports : PortCollection on page 353

➑ Public Operations

AddCapsuleRole (capsuleName : String) : CapsuleRole on page 353

AddPort (name : String, protocolName : String) : Port on page 354

CopyToCollaboration (toContext : ModelElement, fromContext : ModelElement) :
Collaboration on page 354

DeleteCapsuleRole (role : CapsuleRole) : Boolean on page 355
Collaboration Classes 347

DeletePort (port : Port) : Boolean on page 356

■ ClassifierRole on page 356

➑ Public Attributes

Classifier : Classifier on page 356

ClassifierName : String on page 357

Multiplicity : String on page 357

ParentCollaboration : Collaboration on page 357

➑ Public Operations

ClassifierRole () : ClassifierRole on page 357

■ Collaboration on page 358

➑ Public Attributes

AssociationRoles : AssociationRoleCollection on page 358

ClassifierRoles : ClassifierRoleCollection on page 358

Connectors : ConnectorCollection on page 358

Diagram : CollaborationDiagram on page 358

Interactions : InteractionCollection on page 358

ParentClassifier : Classifier on page 359

ParentLogicalPackage : LogicalPackage on page 359

➑ Public Operations

AddAssociationRole () : AssociationRole on page 359

AddCapsuleRole (capsuleName : String) : CapsuleRole on page 353

AddClassifierRole () : ClassifierRole on page 360

AddConnector () : Connector on page 360

AddInteraction (name : String) : Interaction on page 361

DeleteAssociationRole (role : AssociationRole) : Boolean on page 361

DeleteCapsuleRole (role : CapsuleRole) : Boolean on page 355

DeleteClassifierRole (role : ClassifierRole) : Boolean on page 362

DeleteConnector (connector : Connector) : Boolean on page 363
348 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteInteraction (interaction : Interaction) : Boolean on page 363

GetLocalInteractions (classifierContext : Classifier) : InteractionCollection on
page 364

■ Connector on page 364

➑ Public Attributes

Cardinality : String on page 364

Delay : String on page 365

Port1 : Port on page 365

Port2 : Port on page 365

PortRole1 : PortRole on page 365

PortRole2 : PortRole on page 365

➑ Public Attributes

SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean on page 365

SetEndsByNames (End1Name : String, End2Name : String) : Boolean on
page 366

■ Genericity on page 367

■ Port on page 367

➑ Public Attributes

Cardinality : String on page 367

Conjugated : Boolean on page 367

Notification : Boolean on page 368

Protocol : Protocol on page 368

Published : Boolean on page 368

RegistrationMode : RegistrationMode

RegistrationString : String on page 368

Relay : Boolean on page 369

Visibility : PortVisibilityKind on page 369

Wired : Boolean on page 369

■ PortRole on page 369
Collaboration Classes 349

➑ Public Attributes

ParentCapsuleRole : CapsuleRole on page 369

Port : Port on page 369

■ PortVisibilityKind on page 370

➑ Public Attributes

rsFixed : Integer = 1 on page 370

rsOptional : Integer = 2 on page 371

rsPlugIn : Integer = 3 on page 371

■ RegistrationMode on page 370

■ RsGenericity on page 370

➑ Public Attributes

rsFixed : Integer = 1 on page 370

rsOptional : Integer = 2 on page 371

rsPlugIn : Integer = 3 on page 371

■ RsRegistrationMode on page 371

➑ Public Attributes

rsApplication : Integer = 2 on page 371

rsAutomatic : Integer = 1 on page 371

rsNoMode : Integer = 0 on page 372

AssociationEndRole

Description

An association-end role specifies an endpoint of an association as used in a
collaboration.
350 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from AssociationEnd

Public Attributes

AssociationRole : AssociationRole

Description

AssociationRole the AssociationEndRole is an endpoint of.

Base : AssociationEnd

Description

AssociationEnd the AssociationEndRole is a projection of.

AssociationRole

Description

An association role is a specific usage of an association needed in a collaboration.

Derived from Association

Public Attributes

Base : Association

Description

Association the AssociationRole is a projection of.

BaseName : String

Description

Name of the Association the AssociationRole is a projection of.

Multiplicity : String

Description

The number of Association playing this role in a Collaboration.
AssociationRole 351

ParentCollaboration : Collaboration

Description

Collaboration that owns the AssociationRole.

CapsuleRole

Description

Represent a specification of the type of capsules that can occupy a particular position
in a capsule's collaboration, or structure.

Derived from ClassifierRole

Public Attributes

Capsule : Capsule

Description

Capsule the CapsuleRole is a projection of.

Cardinality : String

Description

The number of Capsule playing this role in a Collaboration.

Genericity : Genericity

Description

Determines the Genericity of the CapsuleRole.

PortRoles : PortRoleCollection

Description

Port Roles of the Capsule role.
352 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Substitutable : Boolean

Description

Determines whether subclasses of the specified capsule role's class can be instantiated
into this role.

CapsuleStructure

Description

Specialization of a Collaboration whose communication pattern is owned by a
particular capsule and represents the composite structure of it's capsule roles, ports,
and connectors.

Derived from Collaboration

Public Attributes

Ports : PortCollection

Description

Ports involved in the communication pattern described by the CapsuleStructure.

Public Operations

AddCapsuleRole (capsuleName : String) : CapsuleRole

Description

Adds a new CapsuleRole into the CapsuleStructure and returns it.

Syntax

Set theCapsuleRole = theCapsuleStructure.AddCapsuleRole(capsuleName)

theCapsuleRole As RoseRT.CapsuleRole

Returns the new CapsuleRole added to the CapsuleStructure.

theCapsuleStructure As RoseRT.Classifier
CapsuleStructure 353

CapsuleStructure to which the CapsuleRole is being added.

capsuleName As String

Name of a Capsule the CapsuleRole is a projection of.

AddPort (name : String, protocolName : String) : Port

Description

Adds a new Port into the CapsuleStructure and returns it.

Syntax

Set thePort = theCapsuleStructure.AddPort(name , protocolName)

thePort As RoseRT.CapsuleRole

Returns the new Port added to the CapsuleStructure.

theCapsuleStructure As RoseRT.Classifier

CapsuleStructure to which the Port is being added.

name As String

Name of the port added to the CapsuleStructure.

protocolName As String

Protocol class name for the Port.

CopyToCollaboration (toContext : ModelElement, fromContext :
ModelElement) : Collaboration

Description:

Copies the CapsuleStructure into a generic Collaboration. Items specific to
CapsuleStructure won't be copied over, i.e. Ports.
354 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax:

theCollaboration = theCapsuleStructure.CopyToCollaboration(
theToContext, theFromContext)

theCollaboration As RoseRT.Collaboration

Returns the converted collaboration.

theCapsuleStructure As RoseRT.Classifier

CapsuleStructure that is to be copied and converted to a generic Collaboration.

theToContext As RoseRT.ModelElement

Owning item of the new converted Collaboration.

theFromContext As RoseRT.ModelElement

Owning item of the original CapsuleStructure.

DeleteCapsuleRole (role : CapsuleRole) : Boolean

Description

Deletes a CapsuleRole from the CapsuleStructure.

Syntax

Deleted = theCapsuleStructure.DeleteCapsuleRole(role)

Deleted As Boolean

Returns a value of True when the CapsuleRole is deleted successfully from the
CapsuleStructure.

theCapsuleStructure As RoseRT.Classifier

CapsuleStructure from which the CapsuleRole is being deleted.

role As RoseRT.CapsuleRole

CapsuleRole to delete from the CapsuleStructure.
CapsuleStructure 355

DeletePort (port : Port) : Boolean

Description

Deletes a Port from the CapsuleStructure.

Syntax

Deleted = theCapsuleStructure.DeletePort(port)

Deleted As Boolean

Returns a value of True when the Port is deleted successfully from the
CapsuleStructure.

theCapsuleStructure As RoseRT.Classifier

CapsuleStructure from which the Port is being deleted.

port As RoseRT.CapsuleRole

Port to delete from the CapsuleStructure.

ClassifierRole

Description

A classifier role is a specific role played by a participant in a collaboration. It specifies
a restricted view of a classifier, defined by what is required in the collaboration.

Derived from ModelElement

Public Attributes

Classifier : Classifier

Description

Classifier the ClassifierRole is a projection of.
356 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ClassifierName : String

Description

Name of the Classifier the ClassifierRole is a projection of.

Multiplicity : String

Description

The number of Classifier playing this role in a Collaboration.

ParentCollaboration : Collaboration

Description

Collaboration that owns the ClassifierRole.

Public Operations

ClassifierRole () : ClassifierRole

Description

Returns the ClassifierRole as a ClassifierRole. This is useful for derived classes'
instances type casting.

Syntax

Set theClassifierRoleRet = theClassifierRole.ClassifierRole()

theClassifierRoleRet As RoseRT.ClassifierRole

Returns the ClassifierRole derived class's instance as a ClassifierRole.

theClassifierRole As RoseRT.ClassifierRole

ClassifierRole to return as a ClassifierRole.
ClassifierRole 357

Collaboration

Description

A Collaboration is a Model Element associated with a Collaboration Diagram. It
contains the various Model Elements involved in the communication patterns
described in the Collaboration Diagram.

Derived from ModelElement

Public Attributes

AssociationRoles : AssociationRoleCollection

Description

AssociationRoles involved in the communication pattern described by the
Collaboration.

ClassifierRoles : ClassifierRoleCollection

Description

ClassifierRoles involved in the communication pattern described by the
Collaboration.

Connectors : ConnectorCollection

Description

Connectors involved in the communication pattern described by the Collaboration.

Diagram : CollaborationDiagram

Description

Diagram showing the communication patterns described by the Collaboration.

Interactions : InteractionCollection

Description

Interactions involved in the communication pattern described by the Collaboration.
358 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentClassifier : Classifier

Description

Classifier owning the Collaboration. Maybe nothing if owned by a Logical Package.

ParentLogicalPackage : LogicalPackage

Description

Logical Package owning the Collaboration. Maybe nothing if owned by a Classifier.

Public Operations

AddAssociationRole () : AssociationRole

Description

Adds a new AssociationRole into the Collaboration and returns it.

Syntax

Set theAssociationRole = theCollaboration.AddAssociationRole()

theAssociationRole As RoseRT.AssociationRole

Returns the new AssociationRole added to the Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration to which the AssociationRole is being added.

AddCapsuleRole (capsuleName : String) : CapsuleRole (New 09Jun00)

Description:

Adds a new CapsuleRole into the Collaboration and returns it.

Syntax:

Set theCapsuleRole = theCollaboration.AddCapsuleRole(capsuleName)

theCapsuleRole As RoseRT.CapsuleRole
Collaboration 359

Returns the new CapsuleRole added to the CapsuleStructure.

theCollaboration As RoseRT.Collaboration

Collaboration to which the CapsuleRole is being added.

capsuleName As String

Name of a Capsule the CapsuleRole is a projection of.

AddClassifierRole () : ClassifierRole

Description

Adds a new ClassifierRole into the Collaboration and returns it.

Syntax

Set theClassifierRole = theCollaboration.AddClassifierRole()

theClassifierRole As RoseRT.ClassifierRole

Returns the new ClassifierRole added to the Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration to which the ClassifierRole is being added.

AddConnector () : Connector

Description

Adds a new Connector into the Collaboration and returns it.

Syntax

Set theConnector = theCollaboration.AddConnector()

theConnector As RoseRT.Connector

Returns the new Connector added to the Collaboration.

theCollaboration As RoseRT.Collaboration
360 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Collaboration to which the Connector is being added.

AddInteraction (name : String) : Interaction

Description

Adds a new Interaction into the Collaboration and returns it.

Syntax

Set theInteraction = theCollaboration.AddInteraction(name)

theInteraction As RoseRT.Interaction

Returns the new Interaction added to the Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration to which the Connector is being added.

name As String

Name of the Interaction to add to the Collaboration.

DeleteAssociationRole (role : AssociationRole) : Boolean

Description

Deletes an AssociationRole from the Collaboration.

Syntax

Deleted = theCollaboration.DeleteAssociationRole(role)

Deleted As Boolean

Returns a value of True when the AssociationRole is deleted successfully from the
Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration from which the AssociationRole is being deleted.

role As RoseRT.AssociationRole

The AssociationRole to delete from the Collaboration.
Collaboration 361

DeleteCapsuleRole (role : CapsuleRole) : Boolean (New 09Jun00)

Description:

Deletes a CapsuleRole from the CapsuleStructure.

Syntax:

Deleted = theCapsuleStructure.DeleteCapsuleRole(role)

Deleted As Boolean

Returns a value of True when the CapsuleRole is deleted successfully from the
CapsuleStructure.

theCapsuleStructure As RoseRT.Classifier

CapsuleStructure from which the CapsuleRole is being deleted.

role As RoseRT.CapsuleRole

CapsuleRole to delete from the CapsuleStructure.

DeleteClassifierRole (role : ClassifierRole) : Boolean

Description

Deletes an ClassifierRole from the Collaboration.

Syntax

Deleted = theCollaboration.DeleteClassifierRole(role)

Deleted As Boolean

Returns a value of True when the ClassifierRole is deleted successfully from the
Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration from which the ClassifierRole is being deleted.

role As RoseRT.ClassifierRole

The ClassifierRole to delete from the Collaboration.
362 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

DeleteConnector (connector : Connector) : Boolean

Description

Deletes an Connector from the Collaboration.

Syntax

Deleted = theCollaboration.DeleteConnector(connector)

Deleted As Boolean

Returns a value of True when the Connector is deleted successfully from the
Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration from which the Connector is being deleted.

connector As RoseRT.Connector

The Connector to delete from the Collaboration.

DeleteInteraction (interaction : Interaction) : Boolean

Description

Deletes an Interaction from the Collaboration.

Syntax

Deleted = theCollaboration.DeleteInteraction(interaction)

Deleted As Boolean

Returns a value of True when the Interaction is deleted successfully from the
Collaboration.

theCollaboration As RoseRT.Collaboration

Collaboration from which the Interaction is being deleted.

interaction As RoseRT.Interaction
Collaboration 363

The Interaction to delete from the Collaboration.

GetLocalInteractions (classifierContext : Classifier) :
InteractionCollection

Description:

Retrieves the interactions local to a specific classifier context.

Syntax:

Set theLocalInteractions = theCollaboration.GetLocalInteractions(
classifier)

theLocalInteractions As RoseRT.InteractionCollection

Returns the collection of local interactions in the given classifier context.

theCollaborationAs RoseRT.Collaboration

Collaboration from which the collection is being retrieved.

classifier As RoseRT.Classifier

Classifier context which the interaction is local to.

Connector

Description

Connectors capture the key communication relationships between capsule roles.

Derived from ModelElement

Public Attributes

Cardinality : String

Description

Specifies the number of connectors indicated by a connector line.
364 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Delay : String

Description

Specifies a communication delay across a connector.

Port1 : Port

Description

Port at first end of the Connector. Set when the connector is within a
CapsuleStructure. Nothing when the connector is within a Collaboration.

Port2 : Port

Description

Port at second end of the Connector. Set when the connector is within a
CapsuleStructure. Nothing when the connector is within a Collaboration.

PortRole1 : PortRole

Description

PortRole at first end of the Connector. Set when the connector is within a
Collaboration. Nothing when the connector is within a CapsuleStructure.

PortRole2 : PortRole

Description

PortRole at second end of the Connector. Set when the connector is within a
Collaboration. Nothing when the connector is within a CapsuleStructure.

Public Operations

SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean

Description

Sets the ends of a Connector. Ends can be Port in the context of a CapsuleStructure or
PortRole in the context of a Collaboration.
Connector 365

Syntax

EndSets = theConnector.SetEnds(End1, End2)

EndSets As Boolean

Returns a value of True when ends are set successfully.

theConnector As RoseRT.Connector

Connector to which the Ends are being set.

End1 As RoseRT.ModelElement

Model Element at first end of the Connector.

End2 As RoseRT.ModelElement

Model Element at second end of the Connector.

SetEndsByNames (End1Name : String, End2Name : String) : Boolean

Description

Sets the ends of a Connector. Ends can be Port in the context of a CapsuleStructure or
PortRole in the context of a Collaboration.

Syntax

EndSets = theConnector.SetEndsByNames(End1Name, End2Name)

EndSets As Boolean

Returns a value of True when ends are set successfully.

theConnector As RoseRT.Connector

Connector to which the Ends are being set.

End1Name As String

Fully qualified name of Model Element at first end of the Connector.
366 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

End2Name As String

Fully qualified name of Model Element at second end of the Connector.

Genericity

Description

Rich type used to determine the Genericity of an attribute within a CapsuleRole. Valid
values are defined in RsGenericity enumeration.

Derived from RichType

Port

Description

Ports are objects whose purpose is to send and receive messages to and from capsules
instances.

Derived from ClassifierRole

Public Attributes

Cardinality : String

Description

Specifies the number of instances of the port that will appear at run-time.

Conjugated : Boolean

Description

A conjugated port is one in which the standard protocol class definition of in and out
signals is reversed.
Genericity 367

Notification : Boolean

Description

Determines whether the port will receive rtBound and rtUnbound messages from the
services library when ports get connected and unconnected.

Note: rtBound is sent at system priority and rtUnbound is sent at background
priority.

Protocol : Protocol

Description

Specifies the protocol class to be used for the port.

Published : Boolean

Description

Determines whether the port is published.

RegistrationMode : RegistrationMode

Description

Only used for non-wired ports. Non-wired ports are registered by name with a name
service that performs the connection. Connections are made between protected
non-wired ports (service clients) and a single public non-wired port (the service
provider). If automatic registration is used, the registration name must be supplied in
the RegistrationString attribute and the Services Library will register the name at
startup. In the case of application registration, the SAP or SPP is registered at run-time
by calling a communication service operation, such as RTEndPortRef::registerSAP()
and RTEndPortRef::deregisterSAP(), in the detail level code of a capsule.

RegistrationString : String

Description

Name of service that performs the connection. See RegistrationMode attribute.
368 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Relay : Boolean

Description

Determines whether the port is a Relay port. Relay ports cannot be protected, they
must be public. If set to False, then the Port is an End port.

Visibility : PortVisibilityKind

Description

The Visibility property is a RichType that determines whether the port is visible
outside of the capsule boundary or not.

Wired : Boolean

Description

Determines whether the port is Wired. Wired ports are connected to other wired ports
using connectors. Non-wired ports are connected to other non-wired ports by name.

PortRole

Description

A Port role is a specific usage of an port needed in a collaboration.

Derived from ModelElement

Public Attributes

ParentCapsuleRole : CapsuleRole

Description

Capsule role that owns the port role.

Port : Port

Description

Port the PortRole is a projection of.
PortRole 369

PortVisibilityKind

Description

Rich type used to determines whether the port is visible outside of the capsule
boundary. Valid values are defined in RsVisibilityKind enumeration.

Derived from RichType

RegistrationMode

Description

Rich type used to determine the RegistrationMode of a Port.

Valid values are defined in RsRegistrationMode enumeration.

Derived from RichType

RsGenericity

Description

Enumeration used to set the Value property of the Genericity Rich Type.

Public Attributes

rsFixed : Integer = 1

Description

A capsule of the specified class is automatically instantiated into the role in every
instance of the container capsule at run-time. A number of instances equal to the
specified cardinality will be created at initialization time.
370 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsOptional : Integer = 2

Description

The capsule role is instantiated under the program control of the container class. The
container class must explicitly instantiate the capsule role within the detailed code of
the container capsule state machine.

rsPlugIn : Integer = 3

Description

The capsule role is never directly instantiated, but rather an already existing
instantiation from another capsule decomposition is imported into the role. That is, an
existing capsule is dynamically “plugged in” to the specified role under the program
control of the container class. The container class state machine must explicitly
request the plug-in of a capsule at run-time within the detailed code.

RsRegistrationMode

Description

Enumeration used to set the Value property of the Registration Rich Type.

Public Attributes

rsApplication : Integer = 2

Description

The connection of non-wired ports is not connected at initialization time, it is
connected when the capsule's behavior invokes a service function to register the port
by a specified name. The same port may in fact be registered under different names at
different points in the model execution.

rsAutomatic : Integer = 1

Description

The connection of non-wired ports is done automatically by name at the time the
capsule is initialized.
RsRegistrationMode 371

rsNoMode : Integer = 0

Description

No registration mode specified.

Common Logical View Enumerations

Common Logical View Enumerations include

■ RsContainment on page 372

➑ Public Attributes

rsByVal : Integer = 1 on page 372

rsRef : Integer = 2 on page 373

rsUnspecified : Integer = 0 on page 373

■ RsVisibilityKind on page 373

➑ Public Attributes

rsImplementation : Integer = 3 on page 373

rsPrivate : Integer = 2 on page 373

rsProtected : Integer = 1 on page 374

rsPublic : Integer = 0 on page 374

RsContainment

Description

Enumeration used to set the Value property of the AttributeContainment and the
AssociationEndContainment Rich Types.

Public Attributes

rsByVal : Integer = 1

Description

Containment by value.
372 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

rsRef : Integer = 2

Description

Containment by reference.

rsUnspecified : Integer = 0

Description

Containment undefined.

RsVisibilityKind

Description

Enumeration used to set the Value property of the following Rich Types:

■ ClassifierVisibilityKind on page 327

■ AttributeVisibilityKind on page 340

■ OperationVisibilityKind on page 345

■ AssociationEndVisibilityKind on page 299

■ PortVisibilityKind on page 370

■ GeneralizationVisibilityKind on page 438

■ UsesRelationVisibilityKind on page 444

Public Attributes

rsImplementation : Integer = 3

Description

Accessible only to the classifier itself.

rsPrivate : Integer = 2

Description

Accessible only to the classifier itself or to its friends.
RsVisibilityKind 373

rsProtected : Integer = 1

Description

Accessible only to subclasses, friends, or to the classifier itself.

rsPublic : Integer = 0

Description

Accessible to all clients.

Interaction Classes

Interaction classes include

■ Environment on page 376

■ Interaction on page 376

➑ Public Attributes

Instances : InteractionInstanceCollection on page 377

Messages : MessageCollection on page 377

ParentCollaboration : Collaboration on page 377

ParentProtocol : Protocol on page 377

SequenceDiagram : SequenceDiagram on page 377

➑ Public Operations

AddInteractionInstance (name : String) : InteractionInstance on page 377

AddMessage (name : String, sender : InteractionInstance, receiver :
InteractionInstance) : Message on page 378

AddMessageWithAction (name : String, sender : InteractionInstance, receiver :
InteractionInstance, ActionKind : RsActionKind) : Message on page 379

DeleteInteractionInstance (theInstance : InteractionInstance) : Boolean on
page 380

DeleteMessage (theMessage : Message) : Boolean on page 380

GetOwnerClassifierContext () : Classifier on page 381
374 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ReorderInteractionInstance (theInstance : InteractionInstance, pBefore :
InteractionInstance) : Boolean on page 381

ReorderMessage (theMessage : Message, pInsertBefore : Message) : Boolean on
page 382

■ InteractionInstance on page 382

➑ Public Attributes

ClassifierRoles : ClassifierRoleCollection on page 383

Events : MessageEndCollection on page 383

ParentInteraction : Interaction on page 383

RootClassifier : Classifier on page 383

➑ Public Attributes

AddClassifierRole (theRole : ClassifierRole) : Boolean on page 383

RemoveClassifierRole (theRole : ClassifierRole) : Boolean on page 384

ReorderMessageEnd (theEnd : MessageEnd, pBefore : MessageEnd) : Boolean on
page 385

■ Message on page 385

➑ Public Attributes

Action : Action on page 386

Activator : Message on page 386

ParentInteraction : Interaction on page 386

ReceiverEnd : MessageEnd on page 386

SenderEnd : MessageEnd on page 386

■ MessageEnd on page 386

➑ Public Attributes

Instance : InteractionInstance on page 387

ParentMessage : Message on page 387

■ RsActionKind on page 387

➑ Public Attributes

rsCallAction : Integer = 1 on page 387
Interaction Classes 375

rsCoregion : Integer = 5 on page 387

rsCreateAction : Integer = 4 on page 387

rsDestroyAction : Integer = 3 on page 387

rsLocalState : Integer = 2 on page 387

rsSendAction : Integer = 8 on page 387

rsTerminateAction : Integer = 7 on page 387

rsUninterpretedAction : Integer = 6 on page 387

Environment

Description

An Environment is an Interaction Instance associated with a Sequence Diagram's
Environment View. This latter consists of the rectangular perimeter around the
Sequence Diagram. It represents the external environment (hardware timers,
SAPs/SPPs...) which can be communicated with but are not contained in the Capsule
hierarchy. While it is possible to Send or Receive Call or Send messages it cannot be
used as the Receiver of a “Destroy” message or as the location for Local States or
Actions.

Derived from InteractionInstance

Interaction

Description

An Interaction is a Model Element associated with a Sequence Diagram. It contains
the various Model Elements involved in the communication patterns described in the
Sequence Diagram.
376 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Instances : InteractionInstanceCollection

Description

Interaction instances involved into the communication pattern expressed by the
Interaction.

Messages : MessageCollection

Description

Messages involved into the communication pattern expressed by the Interaction.

ParentCollaboration : Collaboration

Description

Collaboration owning the Interaction. May be nothing if the Interaction is owned by a
Protocol.

ParentProtocol : Protocol

Description

Protocol owning the Interaction. May be nothing if the Interaction is owned by a
Collaboration.

SequenceDiagram : SequenceDiagram

Description

Diagram showing the communication patterns described by the Interaction.

Public Operations

AddInteractionInstance (name : String) : InteractionInstance

Description

Adds a new InteractionInstance into the Interaction and returns it.
Interaction 377

Syntax

Set theInteractionInstance = theInteraction.AddInteractionInstance(
name)

theInteractionInstance As RoseRT.InteractionInstance

Returns the new InteractionInstance added to the Interaction.

theInteraction As RoseRT.Interaction

Interaction to which the InteractionInstance is being added.

name As String

Name of the new Interaction Instance added to the Interaction.

AddMessage (name : String, sender : InteractionInstance, receiver :
InteractionInstance) : Message

Description

Adds a new Message into the Interaction and returns it. The action of the message is a
Send Action.

Syntax

Set theMessage = theInteraction.AddMessage(name, sender, receiver)

theMessage As RoseRT.Message

Returns the new Message added to the Interaction.

theInteraction As RoseRT.Interaction

Interaction to which the message is being added.

name As String

Name of the new message added to the Interaction.

sender As RoseRT.InteractionInstance
378 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Interaction Instance that sends the newly created message.

receiver As RoseRT.InteractionInstance

Interaction Instance that received the newly created message.

AddMessageWithAction (name : String, sender : InteractionInstance,
receiver : InteractionInstance, ActionKind : RsActionKind) : Message

Description

Creates a new Message with an action of type specified and adds it into the
Interaction and returns it.

Syntax

Set theMessage = theInteraction.AddMessage(name, sender, receiver,
ActionKind)

theMessage As RoseRT.Message

Returns the new Message added to the Interaction.

theInteraction As RoseRT.Interaction

Interaction to which the message is being added.

name As String

Name of the new message added to the Interaction.

sender As RoseRT.InteractionInstance

Interaction Instance that sends the newly created message.

receiver As RoseRT.InteractionInstance

Interaction Instance that received the newly created message.

ActionKind As RoseRT.RsActionKind

Kind of action to add to message.
Interaction 379

Note: sender and receiver should be the same interaction instances when ActionKind
is one of rsLocalState, rsCoregion or rsUninterpretedAction.

DeleteInteractionInstance (theInstance : InteractionInstance) : Boolean

Description

Deleted an InteractionInstance from the Interaction.

Syntax

Deleted = theInteraction.DeleteInteractionInstance(theInstance)

Deleted As Boolean

Returns a value of True when the InteractionInstance is being deleted successfully
from the Interaction.

theInteraction As RoseRT.Interaction

Interaction from which the InteractionInstance is being deleted.

theInstance As RoseRT.InterationInstance

Interaction Instance to delete from the Interaction.

DeleteMessage (theMessage : Message) : Boolean

Description

Deleted a Message from the Interaction.

Syntax

Deleted = theInteraction.DeleteMessage(theMessage)

Deleted As Boolean

Returns a value of True when the message is being deleted successfully from the
Interaction.

theInteraction As RoseRT.Interaction
380 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Interaction from which the Message is being deleted.

theMessage As RoseRT.Message

Message to delete from the Interaction.

GetOwnerClassifierContext () : Classifier

Description:

Gets the owner context of the particular interaction. This is useful for interactions that
are owned by the structure of derived capsules. There is no path to the derived
capsule except through this API.

Syntax:

Set theClassifier = theInteraction.GetOwnerClassifierContext()

theClassifier As RoseRT.Classifier

Returns the classifier that owns the collaboration that owns the interaction

ReorderInteractionInstance (theInstance : InteractionInstance, pBefore :
InteractionInstance) : Boolean

Description

Reorders an InteractionInstance within the Interaction.

Syntax

Reordered = theInteraction.ReorderInteractionInstance(theInstance,
pBefore)

Reordered As Boolean

Returns a value of True when the reordering gets executed successfully.

theInteraction As RoseRT.Interaction

Interaction whose InteractionInstance is being reordered.

theInstance As RoseRT.InterationInstance
Interaction 381

The Interaction Instance to be reordered.

pBefore As RoseRT.InterationInstance

The Interaction Instance to precede theInstance.

ReorderMessage (theMessage : Message, pInsertBefore : Message) :
Boolean

Description

Reorders a Message within the Interaction.

Syntax

Reordered = theInteraction.ReorderMessage(theMessage, pInsertBefore)

Reordered As Boolean

Returns a value of True when the reordering gets executed successfully.

theInteraction As RoseRT.Interaction

Interaction whose message is being reordered.

theMessage As RoseRT.Message

The Message Instance to be reordered.

pInsertBefore As RoseRT.Message

The Message to precede theInstance.

InteractionInstance

Description

Model Element that maps to the Interaction Instance View of a Sequence Diagram.
382 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

ClassifierRoles : ClassifierRoleCollection

Description

Identifies an object role in a collaboration to which the interaction instance is mapped.
This property's type is a Collection representing a path to the mapped Classifier Role.
Each element in the Collection corresponds to an element of the path. The last element
is the actual Classifier Role the Interaction Instance maps to. Use with extreme care.

Events : MessageEndCollection

Description

Message Ends involved in the communication pattern described by the Interaction.

ParentInteraction : Interaction

Description

Interaction owning the Interaction Instance.

RootClassifier : Classifier

Description

Classifier whose projection is the ClassifierRole this InteractionInstance represents.

Public Operations

AddClassifierRole (theRole : ClassifierRole) : Boolean

Description

Adds a Classifier Role at the end of the path leading to the Classifier Role mapped by
the Interaction Instance.

Syntax

Added = theInteractionInstance.AddClassifierRole(theRole)

Added As Boolean
InteractionInstance 383

Returns a value of True if the Classifier Role is added successfully at the end of the
path.

theInteractionInstance As RoseRT.InteractionInstance

Interaction Instance whose mapped Classifier Role path gets added a Classifier Role.

theRole As RoseRT.ClassifierRole

Classifier Role that gets added at the end of the path leading to the Classifier Role
mapped by the Interaction Instance.

RemoveClassifierRole (theRole : ClassifierRole) : Boolean

Description

Removes a Classifier Role from the path leading to the Classifier Role mapped by the
Interaction Instance.

Syntax

Deleted = theInteractionInstance.RemoveClassifierRole(theRole)

Deleted As Boolean

Returns a value of True if the Classifier Role is removed successfully from the path.

theInteractionInstance As RoseRT.InteractionInstance

Interaction Instance whose mapped Classifier Role path gets removed a Classifier
Role.

theRole As RoseRT.ClassifierRole

Classifier Role that gets removed from the path leading to the Classifier Role mapped
by the Interaction Instance.
384 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ReorderMessageEnd (theEnd : MessageEnd, pBefore : MessageEnd) :
Boolean

Description

Reorders a Message End within the Interaction Instance.

Syntax

Reordered = theInteractionInstance.ReorderMessageEnd(theEnd, pBefore
)

Reordered As Boolean

Returns a value of True when the reordering gets executed successfully.

theInteractionInstance As RoseRT.InteractionInstance

Interaction Instance whose message end is being reordered.

theEnd As RoseRT.MessageEnd

The Message End to be reordered.

pBefore As RoseRT.MessageEnd

The Message End to precede theEnd.

Message

Description

A message defines how a particular request is used in an Interaction.
Message 385

Derived from ModelElement

Public Attributes

Action : Action

Description

Action executed upon message activation.

Activator : Message

Description

Message activating the message.

ParentInteraction : Interaction

Description

Interaction owning the message.

ReceiverEnd : MessageEnd

Description

Message End connecting to the Interaction Instance receiving the message.

SenderEnd : MessageEnd

Description

Message End connecting to the Interaction Instance sending the message.

MessageEnd

Description

Links a Message to an Interaction Instance.
386 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Instance : InteractionInstance

Description

Interaction Instance linked by the Message End.

ParentMessage : Message

Description

Message linked by the Message End.

RsActionKind

Public Attributes

rsCallAction : Integer = 1

rsCoregion : Integer = 5

rsCreateAction : Integer = 4

rsDestroyAction : Integer = 3

rsLocalState : Integer = 2

rsSendAction : Integer = 8

rsTerminateAction : Integer = 7

rsUninterpretedAction : Integer = 6

State Machine Classes

State Machine classes include

■ RsSourceRegionType on page 388

➑ Public Attributes
RsActionKind 387

rsFalseSourceRegion : Integer = 0 on page 389

rsTrueSourceRegion : Integer = 1 on page 389

■ SourceRegionType on page 389

■ StateMachine on page 389

➑ Public Attributes

Diagram : StateDiagram on page 389

ParentClassifier : Classifier on page 390

Top : CompositeState on page 390

GetAllStates () : StateVertexCollection on page 390

■ Transition

➑ Public Attributes

Action : Action on page 391

EventGuards : EventGuardCollection on page 391

Internal : Boolean on page 391

ParentState : CompositeState on page 391

ParentStateMachine : StateMachine on page 391

Source : StateVertex on page 391

SourceRegion : SourceRegionType on page 392

Target : StateVertex on page 392

➑ Public Operations

AddEventGuard () : EventGuard on page 392

DeleteEventGuard (theEventGuard : EventGuard) : Boolean on page 392

SetUninterpretedAction (action : String) : UninterpretedAction on page 393

RsSourceRegionType

Description

Enumeration used to set the Value property of the SourceRegionType Rich Type.
388 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Attributes

rsFalseSourceRegion : Integer = 0

Description

Source region associated to a FALSE transition.

rsTrueSourceRegion : Integer = 1

Description

Source region associated to a TRUE transition.

SourceRegionType

Description

Rich type used to determine SourceRegion property of a Transition. Also used when
adding a transition to a Choice Point.

Valid values are defined in RsSourceRegionType enumeration.

Derived from RichType

StateMachine

Description

Class responsible for specifying the behavior on a Classifier.

Derived from Element

Public Attributes

Diagram : StateDiagram

Description

State Diagram projection of the State Machine.
SourceRegionType 389

ParentClassifier : Classifier

Description

Classifier owning the State Machine.

Top : CompositeState

Description

Composite State at the top of the State Machine.

Public Operations

GetAllStates () : StateVertexCollection

Description

Returns all states owned by the State Machine.

Syntax

Set theStateVertexCollection = theStateMachine.GetAllStates()

theStateVertexCollection As RoseRT.StateVertexCollection

Returns the collection of all states owned by the State Machine.

theStateMachine As RoseRT.StateMachine

The State Machine to retrieve owned states from.

Transition

Description

A transition is a relationship between two states, a source state and a destination state.
It specifies that when an object in the source state receives a specified event and
certain conditions are meet, the behavior will move from the source state to the
destination state.
390 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ModelElement

Public Attributes

Action : Action

Description

Action executed when a transition is triggered. For capsules, the transition action code
will be output as part of the generated code, and the code will be executed when the
transition is triggered at run-time. Transition actions defined in state diagrams for
protocols or regular (non-capsule) classes is not generated or executed, it is for
information purposes only.

EventGuards : EventGuardCollection

Description

Collection of Event Guards used to determine whether the transition should be
triggered.

Internal : Boolean

Description

Indicates that a self-transition should not cause an exit from the state when triggered.
The result is that when an internal transition is triggered, no exit or entry code is run.

ParentState : CompositeState

Description

Composite State owning the transition.

ParentStateMachine : StateMachine

Description

State Machine owning the parent state.

Source : StateVertex

Description

State at source end of the transition.
Transition 391

SourceRegion : SourceRegionType

Description

When the source of the transition is a Choice Point, determines whether the transition
occurs on a TRUE or FALSE evaluation of the Choice Point condition. Irrelevant for
other type of source state.

Target : StateVertex

Description

State at target end of the transition.

Public Operations

AddEventGuard () : EventGuard

Description

Adds a new event guard to the Transition.

Syntax

Set theEventGuard = theTransition.AddEventGuard()

theEventGuard As RoseRT.EventGuard

Returns the Event Guard added to the Transition.

theTransition As RoseRT.Transition

Transition to which a new event guard is being added.

DeleteEventGuard (theEventGuard : EventGuard) : Boolean

Description

Deletes an event guard from the Transition.

Syntax

Deleted = theTransition.DeleteEventGuard(theEventGuard)

Deleted As Boolean
392 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Returns a value of True when the Event Guard is deleted successfully from the
Transition.

theTransition As RoseRT.Transition

Transition from which an event guard is being deleted.

theEventGuard As RoseRT.EventGuard

The Event Guard deleted from the Transition.

SetUninterpretedAction (action : String) : UninterpretedAction

Description

Sets the action to execute when the transition is triggered.

Syntax

Set theUninterpretedAction = theTransition.SetUninterpretedAction(
action)

theUninterpretedAction As RoseRT.UninterpretedAction

Returns the new Uninterpreted Action to execute when the transition is triggered.

theTransition As RoseRT.Transition

Transition to which an uninterpreted action is being set.

action As String

The body of the new uninterpreted action.

Action Classes

Action Classes include

■ Action on page 396

➑ Public Attributes

Arguments : StringCollection on page 396

ParentMessage : Message on page 396
Action Classes 393

ParentState : CompositeState on page 396

ParentTransition : Transition on page 396

Time : String on page 397

➑ Public Operations

Action () : Action on page 397

AddArgument (szArg : String, nPosition : Integer) : Boolean on page 397

DeleteArgument (nPosition : Integer) : Boolean on page 398

■ ActionMode on page 398

■ CallAction on page 399

➑ Public Attributes

Operation : String on page 399

■ Coregion on page 399

➑ Public Attributes

Events : MessageEndCollection on page 399

➑ Public Operations

AddEvent (event : MessageEnd) : Boolean on page 399

RemoveEvent (event : MessageEnd) : Boolean on page 400

ReorderEvent (event : MessageEnd, pBefore : MessageEnd) : Boolean on page 400

■ CreateAction on page 401

➑ Public Attributes

Operation : String on page 401

■ DestroyAction on page 401

■ LocalState on page 402

■ ReplyAction on page 402

➑ Public Attributes

Signal : String on page 402

■ RequestAction on page 402

➑ Public Attributes
394 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Mode : ActionMode on page 403

Return : ResponseAction on page 403

➑ Public Operations

RequestAction () : RequestAction on page 403

■ ResponseAction on page 403

➑ Public Attributes

Request : RequestAction on page 404

■ ReturnAction on page 404

■ RsActionMode on page 404

➑ Public Operations

rsAsynchronousMode : Integer = 1 on page 404

rsSynchronousMode : Integer = 0 on page 404

■ RsSendActionPriority on page 405

➑ Public Attributes

rsBackground : Integer = 5 on page 405

rsGeneral : Integer = 3 on page 405

rsHigh : Integer = 2 on page 405

rsLow : Integer = 4 on page 405

rsPanic : Integer = 1 on page 405

rsSystem : Integer = 0 on page 406

■ SendAction on page 406

➑ Public Attributes

DeliveryTime : String on page 406

Priority : SendActionPriority on page 406

ReceiverPort : String on page 406

SenderPort : String on page 406

Signal : String on page 406

■ SendActionPriority on page 407
Action Classes 395

■ TerminateAction on page 407

■ UninterpretedAction on page 407

➑ Public Attributes

Body : String on page 407

Action

Description

Actions are the things the behavior does when a transition is taken. They represent
executable atomic computations that are written as statements in a detail-level
programming language and incorporated into a state machine. Actions are atomic, in
the sense that they cannot be interrupted by the arrival of a higher priority event. An
action therefore runs to completion.

Derived from ModelElement

Public Attributes

Arguments : StringCollection

Description

Name of arguments passed to the action.

ParentMessage : Message

Description

Message owning the Action. Nothing if the Action is owned by a State or a Transition.

ParentState : CompositeState

Description

State owning the Action. Nothing if the Action is owned by a Message or a Transition.

ParentTransition : Transition

Description

Transition owning the Action. Nothing if the Action is owned by a Message or a State.
396 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Time : String

Description

Capture the time of the state change.

Public Operations

Action () : Action

Description

Returns an Action derived class as an Action.

Syntax

theCastedAction = theAction.Action()

theCastedAction As RoseRT.Action

Returns the Action derived class as an Action.

theAction As RoseRT.Action

Action to cast to an Action.

AddArgument (szArg : String, nPosition : Integer) : Boolean

Description

Adds an argument to the argument list of the action.

Syntax

Added = theAction.AddArgument(szArg, nPosition)

Added As Boolean

Returns a value of True when the argument is added successfully to the action's
arguments' list.

theAction As RoseRT.Action

Action to which an argument is being added.
Action 397

szArg As String

Name of the argument added to the action arguments' list.

nPosition As Integer

Position of the new argument in the action argument list.

DeleteArgument (nPosition : Integer) : Boolean

Description

Deletes an argument from the argument list of the action.

Syntax

Deleted = theAction.DeleteArgument(nPosition)

Deleted As Boolean

Returns a value of True when the argument is deleted successfully from the action's
arguments' list.

theAction As RoseRT.Action

Action to which an argument is being deleted.

nPosition As Integer

Position of the argument to deleted from the action argument list.

ActionMode

Description

Rich type used to determine the Mode of a RequestAction.

Valid values are defined in RsActionMode enumeration.
398 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RichType

CallAction

Description

Action resulting in the synchronous invocation of an operation on an instance.

Derived from RequestAction

Public Attributes

Operation : String

Description

Name of the receiver operation to call upon execution of the action.

Coregion

Description

Identifies a collection of incoming and outgoing messages where the order in which
these messages are received/sent is not important.

Derived from Action

Public Attributes

Events : MessageEndCollection

Description

Message Ends connecting to messages that belong to the coregion.

Public Operations

AddEvent (event : MessageEnd) : Boolean

Description

Adds a Message End within the coregion.
CallAction 399

Syntax

Added = theCoregion.AddEvent(event)

Added As Boolean

Returns a value of True when the Message End is added successfully to the coregion.

theCoregion As RoseRT.Coregion

Coregion to which a Message End is being added.

event As RoseRT.MessageEnd

Message End to add within the coregion.

RemoveEvent (event : MessageEnd) : Boolean

Description

Removes a Message End from within the coregion.

Syntax

Removed = theCoregion.RemoveEvent(event)

Removed As Boolean

Returns a value of True when the Message End is removed successfully from the
coregion.

theCoregion As RoseRT.Coregion

Coregion to which a Message End is being removed.

event As RoseRT.MessageEnd

Message End to remove from within the coregion.

ReorderEvent (event : MessageEnd, pBefore : MessageEnd) : Boolean

Description

Reorders a Message End within the coregion.
400 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Reordered = theCoregion.ReorderEvent(event, pBefore)

Reordered As Boolean

Returns a value of True when the reordering gets executed successfully.

theCoregion As RoseRT.Coregion

Coregion whose message end is being reordered.

event As RoseRT.MessageEnd

The Message End to be reordered.

pBefore As RoseRT.MessageEnd

The Message End to precede event.

CreateAction

Description

Action resulting in the creation of an instance of some classifier.

Derived from Action

Public Attributes

Operation : String

Description

Name of the receiver operation to call upon creation of the instance.

DestroyAction

Description

Action that results in the destruction of an object specified in the action.
CreateAction 401

Derived from Action

LocalState

Description

Specifies a local state of the instance it is attached to. May correspond to a state within
the state machine of the class of that instance.

Derived from Action

ReplyAction

Description

Response action from a Send Message.

Derived from ResponseAction

Public Attributes

Signal : String

Description

The name of the signal from the ports' protocol.

RequestAction

Description

Action enforcing an answer from the receiving end.
402 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Action

Public Attributes

Mode : ActionMode

Description

The Mode property is a RichType that specifies whether an action is synchronous.

Return : ResponseAction

Description

The Response Action of the Request Action.

Public Operations

RequestAction () : RequestAction

Description

Returns a RequestAction derived class as a RequestAction.

Syntax

theCastedRequestAction = theRequestAction.RequestAction()

theCastedRequestAction As RoseRT.RequestAction

Returns the RequestAction derived class as a RequestAction.

theRequestAction As RoseRT.RequestAction

RequestAction to cast to a RequestAction.

ResponseAction

Description

Action triggered as a response to a Request Action.
ResponseAction 403

Derived from Action

Public Attributes

Request : RequestAction

Description

Request Action that triggers the Response Action.

ReturnAction

Description

Response action from a Call Message.

Derived from ResponseAction

RsActionMode

Description

Enumeration used to set the Value property of the ActionMode Rich Type.

Public Attributes

rsAsynchronousMode : Integer = 1

Description

Asynchronous action.

rsSynchronousMode : Integer = 0

Description

Synchronous action.
404 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RsSendActionPriority

Description

Enumeration used to set the Value property of the SendActionPriority Rich Type.

Public Attributes

rsBackground : Integer = 5

Description

Lowest priority used for background-type activities.

rsGeneral : Integer = 3

Description

Used for most processing; also the default.

rsHigh : Integer = 2

Description

Used for high-priority processing.

rsLow : Integer = 4

Description

Used for low-priority processing.

rsPanic : Integer = 1

Description
RsSendActionPriority 405

rsSystem : Integer = 0

Description

SendAction

Description

Action that results in the sending of a Signal, synchronous or asynchronous.

Derived from RequestAction

Public Attributes

DeliveryTime : String

Description

The time the message was delivered.

Priority : SendActionPriority

Description

The priority at which the message is sent.

ReceiverPort : String

Description

The name of the port on the receiver capsule.

SenderPort : String

Description

The name of the port on the sender capsule.

Signal : String

Description

The name of the signal from the ports' protocol.
406 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

SendActionPriority

Description

Rich type used to determine the Priority of a SendAction.

Valid values are defined in RsSendActionPriority enumeration.

Derived from RichType

TerminateAction

Description

Action resulting in the self destruction of an instance.

Derived from Action

UninterpretedAction

Description

Action whose result is not classified.

Derived from Action

Public Attributes

Body : String

Description

Code describing the result of the Uninterpreted Action.

Event Classes

Event classes include

■ Event on page 409

➑ Public Attributes
SendActionPriority 407

ParentEventGuard : EventGuard on page 409

■ EventGuard on page 409

➑ Public Attributes

Event : Event on page 409

Guard : String on page 409

ParentTransition : Transition on page 410

➑ Public Operations

CreateEvent (name : String) : Event on page 410

CreatePortEvent () : PortEvent on page 410

CreateProtocolRoleEvent () : ProtocolRoleEvent on page 411

■ PortEvent on page 411

➑ Public Attributes

Ports : PortCollection on page 411

Signals : SignalCollection on page 412

➑ Public Operations

AddPort (port : Port) : Boolean on page 412

AddPortByName (pszPortName : String) : Boolean on page 412

AddSignal (signal : Signal) : Boolean on page 413

AddSignalByName (pszSignalName : String) : Boolean on page 413

RemovePort (port : Port) : Boolean on page 414

RemoveSignal (signal : Signal) : Boolean on page 414

■ ProtocolRoleEvent on page 415

➑ Public Attributes

Signals : SignalCollection on page 412

➑ Public Operations

AddPort (port : Port) : Boolean on page 412

AddPortByName (pszPortName : String) : Boolean on page 412

AddSignal (signal : Signal) : Boolean on page 413
408 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddSignalByName (pszSignalName : String) : Boolean on page 413

RemovePort (port : Port) : Boolean on page 414

RemoveSignal (signal : Signal) : Boolean on page 414

Event

Description

Events trigger transitions.

Derived from ModelElement

Public Attributes

ParentEventGuard : EventGuard

Description

Event Guard owning the event.

EventGuard

Description

An EventGuard is a grouping of an Event and a Guard that will trigger a transition.

Derived from ModelElement

Public Attributes

Event : Event

Description

Event to be activated by Event Guard.

Guard : String

Description

Code guarding the Event.
Event 409

ParentTransition : Transition

Description

Transition owning the Event Guard.

Public Operations

CreateEvent (name : String) : Event

Description

Created the Event to guard. Use only for events created for analysis. For code
generation, use CreatePortEvent() and CreateProtocolRoleEvent().

Syntax

Set theEvent = theEventGuard.CreateEvent(name)

theEvent As RoseRT.Event

Returns the newly created event.

theEventGuard As RoseRT.EventGuard

Event Guard to which an event is being created.

name As String

Name of the new event to guard.

CreatePortEvent () : PortEvent

Description

Created the a Port Event to guard.

Syntax

Set theEvent = theEventGuard.CreatePortEvent()

theEvent As RoseRT.PortEvent

Returns the newly created Port Event.
410 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theEventGuard As RoseRT.EventGuard

Event Guard to which a Port Event is being created.

CreateProtocolRoleEvent () : ProtocolRoleEvent

Description

Created the a Protocol Role Event to guard.

Syntax

Set theEvent = theEventGuard.CreateProtocolRoleEvent()

theEvent As RoseRT.ProtocolRoleEvent

Returns the newly created Protocol Role Event.

theEventGuard As RoseRT.EventGuard

Event Guard to which a Protocol Role Event is being created.

PortEvent

Description

Event that results from the reception of a Signal from a specified set of Signals on any
Port from a specified set of Ports.

Derived from Event

Public Attributes

Ports : PortCollection

Descriptions:

Collection of ports whose signals trigger transitions.
PortEvent 411

Signals : SignalCollection

Descriptions:

Collection of signals that trigger transitions.

Public Operations

AddPort (port : Port) : Boolean

Description

Adds a Port to the collection of ports whose signals cause the event to trigger a
transition.

Syntax

Added = thePortEvent.AddPort(port)

Added As Boolean

Returns a value of True when the port is added successfully to the Port Event.

thePortEvent As RoseRT.PortEvent

Port Event to which a port is being added.

port As RoseRT.Port

Port to add to the Port Event.

AddPortByName (pszPortName : String) : Boolean

Description

Adds a Port to the collection of ports whose signals cause the event to trigger a
transition.

Syntax

Added = thePortEvent.AddPortByName(pszPortName)

Added As Boolean

Returns a value of True when the port is added successfully to the Port Event.
412 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

thePortEvent As RoseRT.PortEvent

Port Event to which a port is being added.

pszPortNameAs String

Fully qualified name of the port to add to the Port Event.

AddSignal (signal : Signal) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.

Syntax

Added = thePortEvent.AddSignal(signal)

Added As Boolean

Returns a value of True when the signal is added successfully to the Port Event.

thePortEvent As RoseRT.PortEvent

Port Event to which a signal is being added.

signal As RoseRT.Signal

Signal to add to the Port Event.

AddSignalByName (pszSignalName : String) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.

Syntax

Added = thePortEvent.AddSignalByName(pszSignalName)

Added As Boolean

Returns a value of True when the signal is added successfully to the Port Event.

thePortEvent As RoseRT.PortEvent
PortEvent 413

Port Event to which a signal is being added.

pszSignalName As String

Name of the signal to add to the Port Event.

RemovePort (port : Port) : Boolean

Description

Removes a Port from the collection of ports whose signals cause the event to trigger a
transition.

Syntax

Removed = thePortEvent.RemovePort(port)

Removed As Boolean

Returns a value of True when the port is removed successfully from the Port Event.

thePortEvent As RoseRT.PortEvent

Port Event to which a port is being removed.

port As RoseRT.Port

Port to remove from the Port Event.

RemoveSignal (signal : Signal) : Boolean

Description

Removes a signal from the collection of signals that cause the event to trigger a
transition.

Syntax

Removed = thePortEvent.RemoveSignal(signal)

Removed As Boolean

Returns a value of True when the signal is removed successfully from the Port Event.
414 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

thePortEvent As RoseRT.PortEvent

Port Event to which a signal is being removed.

signal As RoseRT.Signal

Signal to remove from the Port Event.

ProtocolRoleEvent

Description

Event that results from the reception of a Signal in a Protocol Role.

Derived from Event

Public Attributes

Signals : SignalCollection

Description

Collection of signals that trigger transitions.

Public Operations

AddSignal (signal : Signal) : Boolean

Description

Adds a Signal to the collection of signals that cause the event to trigger a transition.

Syntax

Added = theProtocolRoleEvent.AddSignal(signal)

Added As Boolean

Returns a value of True when the signal is added successfully to the Protocol Role
Event.

theProtocolRoleEvent As RoseRT.ProtocolRoleEvent
ProtocolRoleEvent 415

Protocol Role Event to which a signal is being added.

signal As RoseRT.Signal

Signal to add to the Protocol Role Event.

RemoveSignal (signal : Signal) : Boolean

Description

Removes a signal from the collection of signals that cause the event to trigger a
transition.

Syntax

Removed = theProtocolRoleEvent.RemoveSignal(signal)

Removed As Boolean

Returns a value of True when the signal is removed successfully from the Protocol
Role Event.

theProtocolRoleEvent As RoseRT.ProtocolRoleEvent

Protocol Role Event to which a signal is being removed.

signal As RoseRT.Signal

Signal to remove from the Protocol Role Event.

State Classes

State classes include

■ ChoicePoint on page 418

➑ Public Attributes

Condition : String on page 419

FALSETransition : Transition on page 419

InTransition : Transition on page 419

TRUETransition : Transition on page 419
416 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

■ CompositeState on page 419

➑ Public Attributes

EntryAction : Action on page 419

ExitAction : Action on page 420

States : StateVertexCollection on page 420

Transitions : TransitionCollection on page 420

➑ Public Operations

AddState (type : RsStateKind) : StateVertex on page 420

AddTransition (source : String, sourceRegion : RsSourceRegionType, target :
String) : Transition on page 421

AddTransitionUsingStates (source : StateVertex, sourceRegion :
RsSourceRegionType, target : StateVertex) : Transition on page 421

DeleteState (theState : StateVertex) : Boolean on page 422

DeleteTransition (theTransition : Transition) : Boolean on page 423

SetUninterpretedEntryAction (action : String) : UninterpretedAction on page 423

SetUninterpretedExitAction (action : String) : UninterpretedAction on page 424

■ FinalState on page 424

■ InitialPoint on page 425

■ JunctionContinuationMode on page 425

■ JunctionPoint on page 425

➑ Public Attributes

Continuation : JunctionContinuationMode on page 425

ExternallyVisible : Boolean on page 426

➑ Public Operations

IsEntry () : Boolean on page 426

IsExit () : Boolean on page 426

■ RsJunctionContinuationMode on page 427

➑ Public Attributes

rsDeepHistory : Integer = 2 on page 427
State Classes 417

rsDefault : Integer = 0 on page 427

rsShallowHistory : Integer = 1 on page 427

rsTransition : Integer = 3 on page 427

■ RsStateKind on page 427

➑ Public Attributes

rsChoicePoint : Integer = 4 on page 428

rsFinalState : Integer = 2 on page 428

rsInitialPoint : Integer = 1 on page 428

rsJunctionPoint : Integer = 3 on page 428

rsNormalState : Integer = 0 on page 428

■ StateKind on page 428

■ StateVertex on page 429

➑ Public Attributes

ParentCompositeState : CompositeState on page 429

ParentStateMachine : StateMachine on page 429

GetIncomingTransitions () : TransitionCollection on page 429

GetOutgoingTransitions () : TransitionCollection on page 430

GetStateVertex () : StateVertex on page 430

ChoicePoint

Description

Choice points allow a single transition to be split into two outgoing transition
segments, each of which can terminate on a different state.
418 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from StateVertex

Public Attributes

Condition : String

Description

Condition to be evaluated in order to determine which of the TRUE or FALSE
transition to trigger.

FALSETransition : Transition

Description

The transition to trigger if the condition is evaluated to FALSE.

InTransition : Transition

Description

The transition that cause the condition to be evaluated.

TRUETransition : Transition

Description

The transition to trigger if the condition is evaluated to TRUE.

CompositeState

Description

State which owns a set of substates.

Derived from StateVertex

Public Attributes

EntryAction : Action

Description

Action executed on entering the state.
CompositeState 419

ExitAction : Action

Description

Action executed on exiting the state.

States : StateVertexCollection

Description

Substates owned by the Composite State.

Transitions : TransitionCollection

Description

Transitions owned by the Composite State. These are the transitions connecting
substates.

Public Operations

AddState (type : RsStateKind) : StateVertex

Description

Adds a substate to the Composite State.

Syntax

Set theStateVertex = theCompositeState.AddState(type)

theStateVertex As RoseRT.StateVertex

Returns the State Vertex added to the Composite State.

theCompositeState As RoseRT.CompositeState

Composite State to which a substate is being added.

type As RoseRT.RsRichType

Type of the substate to add to the Composite State.
420 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

AddTransition (source : String, sourceRegion : RsSourceRegionType,
target : String) : Transition

Description

Adds a transition to the Composite State.

Syntax

Set theTransition = theCompositeState.AddTransition(source,
sourceRegion, target)

theTransition As RoseRT.Transition

Returns the transition added to the Composite State.

theCompositeState As RoseRT.CompositeState

Composite State to which a transition is being added.

source As String

Name of substate attached to the source end of the new transition.

sourceRegion As RoseRT.RsSourceRegionType

If the source state kind is ChoicePoint, determines which of the TRUE or FALSE
evaluation of the condition should trigger the new transition.

For other source state kind, this parameter is ignored.

target As String

Name of substate attached to the target end of the new transition.

AddTransitionUsingStates (source : StateVertex, sourceRegion :
RsSourceRegionType, target : StateVertex) : Transition

Description

Adds a transition to the Composite State.
CompositeState 421

Syntax

Set theTransition = theCompositeState.AddTransitionUsingStates(
source, sourceRegion, target)

theTransition As RoseRT.Transition

Returns the transition added to the Composite State.

theCompositeState As RoseRT.CompositeState

Composite State to which a transition is being added.

source As RoseRT.StateVertex

Substate attached to the source end of the new transition.

sourceRegion As RoseRT.RsSourceRegionType

If the source state kind is ChoicePoint, determines which of the TRUE or FALSE
evaluation of the condition should trigger the new transition.

For other source state kind, this parameter is ignored.

target As RoseRT.StateVertex

Substate attached to the target end of the new transition.

DeleteState (theState : StateVertex) : Boolean

Description

Deletes a substate from the Composite State.

Syntax

Deleted = theCompositeState.DeleteState(theState)

Deleted As Boolean

Returns a Value of True if the substate is deleted successfully from the Composite
State.
422 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theCompositeState As RoseRT.CompositeState

Composite State from which a substate is being deleted.

theState As RoseRT.StateVertex

Substate to delete from the Composite State.

DeleteTransition (theTransition : Transition) : Boolean

Description

Deletes a transition from the Composite State.

Syntax

Deleted = theCompositeState.DeleteTransition(theTransition)

Deleted As Boolean

Returns a Value of True if the transition is deleted successfully from the Composite
State.

theCompositeState As RoseRT.CompositeState

Composite State from which a transition is being deleted.

theTransition As RoseRT.Transition

Transition to delete from the Composite State.

SetUninterpretedEntryAction (action : String) : UninterpretedAction

Description

Sets the entry action to execute on entering the Composite State.

Syntax

Set theUninterpretedAction =
theCompositeState.SetUninterpretedEntryAction(action)

theUninterpretedAction As RoseRT.UninterpretedAction
CompositeState 423

Returns the new Uninterpreted Action to execute on entering the Composite State.

theCompositeState As RoseRT.CompositeState

Composite State to which an entry action is being set.

action As String

The body of the new uninterpreted entry action.

SetUninterpretedExitAction (action : String) : UninterpretedAction

Description

Sets the exit action to execute on exiting the Composite State.

Syntax

Set theUninterpretedAction =
theCompositeState.SetUninterpretedExitAction(action)

theUninterpretedAction As RoseRT.UninterpretedAction

Returns the new Uninterpreted Action to execute on exiting the Composite State.

theCompositeState As RoseRT.CompositeState

Composite State to which an exit action is being set.

action As String

The body of the new uninterpreted exit action.

FinalState

Description

The end state of a Composite State.
424 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from StateVertex

InitialPoint

Description

Initial state of a Composite State. The InitialPoint can only have one outgoing
transition.

Derived from StateVertex

JunctionContinuationMode

Description

Rich type used to determine Continuation property of a JunctionPoint. Valid values
are defined in RsJunctionContinuationMode enumeration.

Derived from RichType

JunctionPoint

Description

State that sits on the border of a Composite State whose main purpose is to allow the
continuation and joining of transitions.

Derived from StateVertex

Public Attributes

Continuation : JunctionContinuationMode

Description

The Continuation property is a RichType that specifies the semantics for how the state
history will be used when there is no continuing transition.
InitialPoint 425

ExternallyVisible : Boolean

Description

Indicates whether the junction point is visible on the outside of the state boundary

Public Operations

IsEntry () : Boolean

Description

Indicates whether the junction point connects to an incoming transition.

Syntax

IsEntry = theJunctionPoint.IsEntry()

IsEntry As Boolean

Returns a value of True if the transition connected to the Junction Point is an incoming
transition.

theJunctionPoint As RoseRT.JunctionPoint

Junction point used to evaluate IsEntry.

IsExit () : Boolean

Description

Indicates whether the junction point connects to an outgoing transition.

Syntax

IsExit = theJunctionPoint.IsExit()

IsExit As Boolean

Returns a value of True if the transition connected to the Junction Point is an outgoing
transition.

theJunctionPoint As RoseRT.JunctionPoint

Junction point used to evaluate IsExit.
426 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RsJunctionContinuationMode

Description

Enumeration used to set the Value property of the JunctionContinuationMode Rich
Type.

Public Attributes

rsDeepHistory : Integer = 2

Description

Specifies that the state should return to deep history, meaning that all substates also
return to history.

rsDefault : Integer = 0

Description

Specifies that the default (initial) transition should be run.

rsShallowHistory : Integer = 1

Description

Specifies that the junction state should return to shallow history.

rsTransition : Integer = 3

Description

The Transition continuation mode cannot be set, it is returned if there is an
exiting/continuing transition from the junction point.

RsStateKind

Description

Enumeration used to set the Value property of the StateKind Rich Type.
RsJunctionContinuationMode 427

Public Attributes

rsChoicePoint : Integer = 4

Description

Choice point.

rsFinalState : Integer = 2

Description

Final state.

rsInitialPoint : Integer = 1

Description

Initial state.

rsJunctionPoint : Integer = 3

Description

Junction point.

rsNormalState : Integer = 0

Description

Normal state.

StateKind

Description

Rich type used to determine the kind of state added to a Composite State. See
CompositeState's AddState operation. Notice this rich type exists only to strengthen
the duality between enum and rich type. It is not used in the RRTEI API.

Valid values are defined in RsStateKind enumeration.
428 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RichType

StateVertex

Description

Abstract class base of all states that are the source and destination of transitions.

Derived from ModelElement

Public Attributes

ParentCompositeState : CompositeState

Description

Composite State owning the state. Nothing if the state is the top state of a state
machine.

ParentStateMachine : StateMachine

Description

State Machine owning the topmost parent Composite State.

Public Operations

GetIncomingTransitions () : TransitionCollection

Description

Return the collection of all incoming transitions of the State Vertex.

Syntax

Set theTransitions = theStateVertex.GetIncomingTransitions()

theTransitions As RoseRT.TransitionCollection

The collection of all incoming transitions of the State Vertex.

theStateVertex As RoseRT.StateVertex
StateVertex 429

State vertex to return incoming transitions from.

GetOutgoingTransitions () : TransitionCollection

Description

Return the collection of all outgoing transitions of the State Vertex.

Syntax

Set theTransitions = theStateVertex.GetOutgoingTransitions()

theTransitions As RoseRT.TransitionCollection

The collection of all outgoing transitions of the State Vertex.

theStateVertex As RoseRT.StateVertex

State vertex to return outgoing transitions from.

GetStateVertex () : StateVertex

Description

Return a State Vertex derived class instance as a State Vertex.

Syntax

Set theCastedStateVertex = theStateVertex.GetStateVertex()

theCastedStateVertex As RoseRT.StateVertex

The State Vertex derived class instance casted as a State Vertex.

theStateVertex As RoseRT.StateVertex

State vertex derived class instance to cast as a State Vertex.
430 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Relation Classes

Relation classes include

■ ClassDependency on page 433

➑ Public Attributes

ClientCardinality : String on page 433

InvolvesFriendship : Boolean on page 433

SupplierCardinality : String on page 434

Visibility : UsesRelationVisibilityKind on page 434

■ ClassRelation on page 434

➑ Public Operations

GetContextClassifier () : Classifier on page 434

GetSupplierClassifier () : Classifier on page 435

■ ComponentDependency on page 435

➑ Public Attributes

ContextClass : Class on page 435

ContextComponent : Component on page 436

ContextComponentPackage : ComponentPackage on page 436

SupplierClass : Class on page 436

SupplierComponent : Component on page 436

SupplierComponentPackage : ComponentPackage on page 436

■ Generalization on page 436

➑ Public Attributes

FriendshipRequired : Boolean on page 437

Virtual : Boolean on page 437

Visibility : GeneralizationVisibilityKind on page 437

➑ Public Operations

GetContextPackage () : LogicalPackage on page 437

GetSupplierPackage () : LogicalPackage on page 438
Relation Classes 431

■ GeneralizationVisibilityKind on page 438

■ InstantiateRelation on page 438

➑ Public Attributes

ContextClass : Class on page 439

SupplierClass : Class on page 439

■ LogicalPackageDependency on page 439

➑ Public Operations

GetContextLogicalPackage () : LogicalPackage on page 439

GetSupplierLogicalPackage () : LogicalPackage on page 440

■ RealizeRelation on page 440

➑ Public Operations

GetContextCapsule () : Capsule on page 441

GetContextClass () : Class on page 441

GetContextComponent () : Component on page 441

GetContextProtocol () : Protocol on page 441

GetSupplierClass () : Class on page 441

GetSupplierUseCase () : UseCase on page 441

■ Relation on page 442

➑ Public Attributes

SupplierName : String on page 442

➑ Public Operations

GetClient () : ModelElement on page 442

GetSupplier () : ModelElement on page 442

HasClient () : Boolean on page 443

HasSupplier () : Boolean on page 443

■ UsesRelationVisibilityKind on page 444
432 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ClassDependency

Description

The ClassDependency class exposes a set of attributes and operations that

■ Determine the characteristics of dependencies between classes

■ Allow you to retrieve class dependencies

Derived from ClassRelation

Public Attributes

ClientCardinality : String

Description

Specifies the number of clients allowable for the ClassDependency.

Syntax

ClassDependency.ClientCardinality

Property Type:

String

InvolvesFriendship : Boolean

Description

Indicates whether the ClassDependency involves friendship.

Syntax

ClassDependency.InvolvesFriendship

Property Type:

Boolean
ClassDependency 433

SupplierCardinality : String

Description

Specifies the number of suppliers allowable for the ClassDependency.

Syntax

ClassDependency.SupplierCardinality

Property Type:

String

Visibility : UsesRelationVisibilityKind

Description

The Visibility property is a RichType that specifies how a class dependency is viewed
outside of the owner class.

ClassRelation

Description

The ClassRelation class inherits from the Relation class and is the parent class of the
ClassDependency, and InheritRelation classes.

Check the lists attributes and operations for details.

Derived from Relation

Public Operations

GetContextClassifier () : Classifier

Description

Retrieves the Classifier relation’s context (client) classifier.

Syntax

Set theClassifier = theClassifierRelation.GetContextClassifier ()
434 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theClassifier As RoseRT.Classifier

Returns the realize relation’s context (client) classifier.

theClassifierRelation As RoseRT.ClassifierRelation

ClassifierRelation whose context classifier is being retrieved.

GetSupplierClassifier () : Classifier

Description

Retrieves the Classifier relation’s supplier classifier.

Syntax

Set theClassifier = theClassifierRelation.GetSupplierClassifier ()

theClassifier As RoseRT.Classifier

Returns the realize relation’s supplier classifier.

theClassifierRelation As RoseRT.ClassifierRelation

ClassifierRelation whose supplier classifier is being retrieved.

ComponentDependency

Description

Describes the context and supplier relationship between components, component
packages and classes.

Derived from Relation

Public Attributes

ContextClass : Class

Description

Returns the client (owner) class of the dependency. Nothing if the owner is not a class.
ComponentDependency 435

ContextComponent : Component

Description

Returns the client (owner) component of the dependency. Nothing if the owner is not
a component.

ContextComponentPackage : ComponentPackage

Description

Returns the client (owner) component package of the dependency. Nothing if the
owner is not a component package .

SupplierClass : Class

Description

Returns the supplier class of the dependency. Nothing if the supplier is not a class.

SupplierComponent : Component

Description

Returns the supplier component of the dependency. Nothing if the supplier is not a
component.

SupplierComponentPackage : ComponentPackage

Description

Returns the supplier component package of the dependency. Nothing if the supplier
is not a component package.

Generalization

Description

Generalization indicates a hierarchical relationship between classifiers in which one
classifier shares the structure and/or behavior of another classifier. The
Generalization class exposes a set of attributes and operations that

■ Determine the characteristics of Inherit Relations between classifiers

■ Allow you to retrieve Inherit Relations
436 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Check the lists of attributes and operations for complete information.

Derived from ClassRelation

Public Attributes

FriendshipRequired : Boolean

Description

Indicates whether the generalization requires friendship. Friendship can be required

between a supplier and a client in the relationship.

Virtual : Boolean

Description

Indicates whether the generalization is virtual.

Visibility : GeneralizationVisibilityKind

Description

The Visibility property is a RichType that specifies how the client of a Generalization
relation exposes the inherited features of the supplier.

Public Operations

GetContextPackage () : LogicalPackage

Description

Returns the context logical package. Nothing if the context is not a logical package.

Syntax

Set theLogicalPackage = theGeneralizationn.GetContextPackage()

theLogicalPackage As RoseRT.LogicalPackage

The logical package that is the context of the generalization.
Generalization 437

theGeneralization As RoseRT.Generalization

The generalization to retrieve the context from.

GetSupplierPackage () : LogicalPackage

Description

Returns the supplier logical package. Nothing if the supplier is not a logical package.

Syntax

Set theLogicalPackage = theGeneralizationn.GetSupplierPackage()

theLogicalPackage As RoseRT.LogicalPackage

The logical package that is the supplier of the generalization.

theGeneralization As RoseRT.Generalization

The generalization to retrieve the supplier from.

GeneralizationVisibilityKind

Description

Rich type used to determine how a Generalization relation can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

InstantiateRelation

Description

Describes the instantiate relationship between a parametrized class and an
instantiated class.
438 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ClassRelation

Public Attributes

ContextClass : Class

Description

Context side of the instantiate relationship. The client is an instantiated class or an
instantiated class utility.

SupplierClass : Class

Description

Supplier side of the instantiate relationship. The client is a parametrized class or an
parametrized class utility.

LogicalPackageDependency

Description

The LogicalPackageDependency class allows you to define and manipulate
dependency relationships between LogicalPackages.

See the list of attributes and operations for details.

Derived from Relation

Public Operations

GetContextLogicalPackage () : LogicalPackage

Description

Retrieves the context (client) LogicalPackage belonging to the given LogicalPackage

dependency.

Syntax

Set theLogicalPackage =
theLogicalPackageDependency.GetContextLogicalPackage ()
LogicalPackageDependency 439

theLogicalPackage As RoseRT.LogicalPackage

Returns the context (client) LogicalPackage belonging to the LogicalPackage
dependency.

theLogicalPackageDependency As RoseRT.LogicalPackageDependency

LogicalPackage dependency whose context LogicalPackage is being retrieved.

GetSupplierLogicalPackage () : LogicalPackage

Description

Retrieves the supplier LogicalPackage belonging to the given LogicalPackage
dependency.

Syntax

Set theLogicalPackage =
theLogicalPackageDependency.GetSupplierLogicalPackage ()

theLogicalPackage As RoseRT.LogicalPackage

Returns the supplier LogicalPackage belonging to the LogicalPackage dependency.

theLogicalPackageDependency As RoseRT.LogicalPackageDependency

LogicalPackage dependency whose supplier LogicalPackage is being retrieved.

RealizeRelation

Description

A realize relationship shows that the client realizes the operations defined by the
supplier.
440 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Relation

Public Operations

GetContextCapsule () : Capsule

Description

Context (Client) capsule of the realize relation. Nothing if the context is not a capsule.

GetContextClass () : Class

Description

Context (Client) class of the realize relation. Nothing if the context is not a class.

GetContextComponent () : Component

Description

Context (Client) component of the realize relation. Nothing if the context is not a
component.

GetContextProtocol () : Protocol

Description

Context (Client) protocol of the realize relation. Nothing if the context is not a
protocol.

GetSupplierClass () : Class

Description

Supplier class of the realize relation. Nothing if the supplier is not a class.

GetSupplierUseCase () : UseCase

Description

Supplier use case of the realize relation. Nothing if the supplier is not a use case.
RealizeRelation 441

Relation

Description

All relations (ClassRelation, Inherits, Has, Realizes) inherit from the Relation Class.
Relation Class properties and methods allow you to specify and retrieve the client and
supplier information for the relations in a model.

Check the lists of attributes and operations for details.

Derived from ModelElement

Public Attributes

SupplierName : String

Description

Specifies the name of the supplier belonging to the relation.

Public Operations

GetClient () : ModelElement

Description

Retrieves the ModelElement that is the client belonging to the Relation.

Syntax

theModelElement = theRelation.GetClient ()

theModelElement As RoseRT.ModelElement

Returns the ModelElement that is the client belonging to the relation.

theRelation As RoseRT.Relation

Relation whose client is being retrieved.

GetSupplier () : ModelElement

Description

Retrieves the ModelElement that is the supplier belonging to the Relation.
442 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

theModelElement = theRelation.GetSupplier ()

theModelElement As RoseRT.ModelElement

Returns the ModelElement that is the supplier belonging to the relation.

theRelation As RoseRT.Relation

Relation whose supplier is being retrieved.

HasClient () : Boolean

Description

Indicates whether the relation has a client.

Syntax

HasClient = theRelation.HasClient ()

HasClient As RoseRT.Relation

Returns a value of True if the relation has a client.

theRelation As RoseRT.Relation

Relation being checked for a client.

HasSupplier () : Boolean

Description

Indicates whether the relation has a supplier.

Syntax

HasSupplier = theRelation.HasSupplier ()

HasSupplier As RoseRT.Relation

Returns a value of True if the relation has a supplier.
Relation 443

theRelation As RoseRT.Relation

Relation being checked for a supplier.

UsesRelationVisibilityKind

Description

Rich type used to determine how a Uses relation can be accessed from other
Classifiers. Valid values are defined in RsVisibility enumeration.

Derived from RichType

Use Case View Classes

Use Case View classes include

■ UseCase on page 445

➑ Public Attributes

ClassDiagrams : ClassDiagramCollection on page 445

Rank : String on page 445

➑ Public Operations

AddAssociation (szSupplierAssociationEndName : String,
szSupplierAssociationEndType : String) : Association on page 445

AddClassDiagram (szName : String) : ClassDiagram on page 446

AddGeneralization (szName : String, szParentName : String) : Generalization on
page 446

DeleteAssociation (pDispatchAssociation : Association) : Boolean on page 447

DeleteClassDiagram (pIDispatch : ClassDiagram) : Boolean on page 447

DeleteGeneralization (theGeneralization : Generalization) : Boolean on page 448

GetAssociationEnds () : AssociationEndCollection on page 449

GetAssociations () : AssociationCollection on page 449

GetGeneralizations () : GeneralizationCollection on page 449

GetSuperUseCases () : UseCaseCollection on page 450
444 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

UseCase

Description

The Use Case class exposes a set of properties and methods that allow you to define
and manipulate the sets of class diagrams and scenario diagrams that comprise a
model’s use cases.

Check the lists of attributes and operations for complete information.

Derived from Classifier

Public Attributes

ClassDiagrams : ClassDiagramCollection

Description

Specifies the collection of class diagrams belonging to the use case

Rank : String

Description

Specifies the rank of the use case.

Public Operations

AddAssociation (szSupplierAssociationEndName : String,
szSupplierAssociationEndType : String) : Association

Description

Adds an association to a use case and returns it in the specified object.

Syntax

Set theAssociation = theUseCase.AddAssociation (theSupplierRoleName,
theSupplierRoleType)

theAssociation As RoseRT.Association

Returns the association being added to the use case.

theUseCase As RoseRT.UseCase
UseCase 445

Use case to which the association is being added.

theSupplierRoleName As String

Name of the supplier role in the association.

theSupplierRoleType As String

Type of the supplier role in the association.

AddClassDiagram (szName : String) : ClassDiagram

Description

Creates a new class diagram and adds it to a use case.

Syntax

Set theClassDiagram = theUseCase.AddClassDiagram (theName)

theClassDiagram As RoseRT.ClassDiagram

Returns the class diagram being added to the use case.

theUseCase As RoseRT.UseCase

UseCase to which the diagram is being added.

theName As String

The name of the class diagram to be added.

AddGeneralization (szName : String, szParentName : String) :
Generalization

Description

This function adds a Generalization relationship to a use case and returns it in the
specified object.

Syntax

Set theGeneralization = theUseCase.AddGeneralization(szName,
szParentName)
446 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theGeneralization As RoseRT.Generalization

Returns the Generalization being added to the classifier.

theUseCase As RoseRT.UseCase

Use case to which the Generalization is being added.

szName As String

Name of the new Generalization.

szParentName As String

Name of the parent use case in the Generalize relationship.

DeleteAssociation (pDispatchAssociation : Association) : Boolean

Description

Deletes an association from a use case.

Syntax

Deleted = theUseCase.DeleteAssociation (theAssociation)

Deleted As Boolean

Returns a value of True when the association is deleted.

theUseCase As RoseRT.UseCase

Use case from which the association is being deleted.

theAssociation As RoseRT.Association

Instance of the association being deleted (The association must belong to the specified
use case.)

DeleteClassDiagram (pIDispatch : ClassDiagram) : Boolean

Description

Deletes a class diagram from a use case.
UseCase 447

Syntax

deleted = theUseCase.DeleteClassDiagram (theClassDiagram)

deleted As Boolean

Returns a value of True when the class diagram is deleted.

theUseCase As RoseRT.UseCase

Use case from which the class diagram is being deleted.

theClassDiagram As RoseRT.ClassDiagram

Instance of the class diagram being deleted.

DeleteGeneralization (theGeneralization : Generalization) : Boolean

Description

This function deleted a Generalization relation from a use case.

Syntax

Deleted = theUseCase.DeleteGeneralization(theGeneralization)

Deleted As Boolean

Returns a value of True when the generalization gets deleted successfully from the use
case.

theUseCase As RoseRT.UseCase

Use case from which the generalization is being deleted.

theGeneralization As RoseRT.Generalization

The generalization being deleted.
448 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetAssociationEnds () : AssociationEndCollection

Description

Retrieves an AssociationEnd collection from a use case and returns it in the specified
object.

Syntax

Set theAssociationEnds = theUseCase.GetAssociationEnds ()

theAssociationEnds As RoseRT.AssociationEndCollection

Returns the AssociationEnd collection from the class.

theUseCase As RoseRT.UseCase

UseCase from which the collection is being retrieved.

GetAssociations () : AssociationCollection

Description

Retrieves an association collection from a use case and returns it in the specified
object.

Syntax

Set theAssociations = theUseCase.GetAssociations

theAssociations As RoseRT.AssociationCollection

Returns the association collection from the use case.

theUseCase As RoseRT.UseCase

Use case from which the collection is being retrieved.

GetGeneralizations () : GeneralizationCollection

Description

Returns the set of Generalization a use case is client of.
UseCase 449

Syntax

Set Generalizations = theUseCase.GetGeneralizations()

Generalizations As RoseRT.Classifier

The collection of all Generalization relationships the use case is client of.

theUseCase As RoseRT.UseCase

The use case to return Generalization it is client of.

GetSuperUseCases () : UseCaseCollection

Description

Retrieves a super use case collection from a use case and returns it in the specified
object.

Syntax

Set theSuperUseCases = theUseCase.GetSuperUseCases ()

theSuperUseCases As RoseRT.UseCaseCollection

Returns the super use case collection from the use case.

theUseCase As RoseRT.UseCase

Use case from which the collection is being retrieved.

View Classes

View classes include

■ AnchorNoteView on page 453

➑ Public Attributes

Text : String on page 454

■ Diagram on page 454

➑ Public Attributes

Documentation : String on page 454

ExternalDocuments : ExternalDocumentCollection on page 454
450 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ModelElements : ModelElementCollection on page 454

ParentModelElement : ModelElement on page 455

ViewElements : ViewElementCollection on page 455

Visible : Boolean on page 455

ZoomFactor : Integer on page 455

➑ Public Operations

Activate () : on page 455

AddAnchorNoteView (FromView : ViewElement, ToView : ViewElement) :
AnchorNoteView on page 456

AddExternalDocument (szName : String, iType : RsExternalDocumentType) :
ExternalDocument on page 456

AddNoteView (szNoteText : String, nType : RsNoteViewType) : NoteView on
page 457

DeleteExternalDocument (theExtDoc : ExternalDocument) : Boolean on page 458

Exists (theModelElement : ModelElement) : Boolean on page 458

GetNoteViews () : NoteViewCollection on page 459

GetSelectedModelElements () : ModelElementCollection on page 459

GetViewFrom (theModelElement : ModelElement) : ViewElement on page 459

Invalidate () : on page 460

IsActive () : Boolean on page 460

Layout () : on page 461

RemoveAnchorNoteView (anchorNoteView : AnchorNoteView) : Boolean on
page 461

RemoveNoteView (pIDispNoteView : NoteView) : Boolean on page 462

Render (FileName : String) : on page 462

RenderEnhanced (FileName : String) : on page 463

RenderEnhancedToClipboard () : on page 463

RenderToClipboard () : on page 463

Update () : on page 464

■ NoteView on page 464
View Classes 451

➑ Public Attributes

Text : String on page 464

➑ Public Operations

GetNoteViewType () : RsNoteViewType on page 465

LinkToDiagram (diagramToLink : Diagram) : Boolean on page 465

■ RsNoteViewType on page 466

➑ Public Attributes

rsConstraint : Integer = 3 on page 466

rsFloatingTextLabel : Integer = 1 on page 466

rsNoteWithBox : Integer = 2 on page 466

■ RsStereotypeDisplay on page 466

➑ Public Attributes

rsDecorationAndLabel : Integer = 2 on page 467

rsDecorationOnly : Integer = 3 on page 467

rsIcon : Integer = 4 on page 467

rsLabel : Integer = 1 on page 467

rsNone : Integer = 0 on page 467

■ StereotypeDisplay on page 467

■ ViewElement on page 467

➑ Public Attributes

FillColor : View_FillColor on page 467

Font : View_Font on page 468

Height : Integer on page 468

LineColor : View_LineColor on page 468

LineVertices : LineVertexCollection on page 468

ModelElement : ModelElement on page 468

ParentDiagram : Diagram on page 468

ParentView : ViewElement
452 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

StereotypeDisplay : StereotypeDisplay on page 469

SubViews : ViewElementCollection on page 469

Width : Integer on page 469

XPosition : Integer on page 469

YPosition : Integer on page 469

➑ Public Operations

GetDefaultHeight () : Integer on page 469

GetDefaultWidth () : Integer on page 470

GetMinHeight () : Integer on page 470

GetMinWidth () : Integer on page 471

HasModelElement () : Boolean on page 471

HasParentView () : Boolean on page 471

Invalidate () : on page 472

IsSelected () : Boolean on page 472

PointInView (x : Integer, y : Integer) : Boolean on page 473

SetSelected (bSelect : Boolean) : on page 473

SupportsFillColor () : Boolean on page 474

SupportsLineColor () : Boolean on page 474

AnchorNoteView

Description

The anchor note view class inherits the ViewElement attributes and operations that
determine the size and placement of the anchor note view on a diagram.

Check the lists of attributes and operations for complete information.
AnchorNoteView 453

Derived from ViewElement

Public Attributes

Text : String

Description

Contains the text that appears in the AnchorNoteView object.

Diagram

Description

The Diagram class exposes a set of attributes and operations, which all other diagram
classes (for example, class diagrams, sequence diagrams, Collaboration diagrams,
etc.) inherit. These attributes and operations determine the size and placement of a
diagram on the Rose RealTime user’s computer screen.

Check the lists of attributes and operations for complete information.

Derived from ControllableElement

Public Attributes

Documentation : String

Description

Specifies the documentation belonging to the Diagram.

ExternalDocuments : ExternalDocumentCollection

Description

Specifies the external documents belonging to the diagram.

ModelElements : ModelElementCollection

Description

Specifies the collection of ModelElements belonging to the diagram.
454 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ParentModelElement : ModelElement

Description

Model element the diagram belongs to.

ViewElements : ViewElementCollection

Description

Specifies the collection of element views belonging to the diagram.

Visible : Boolean

Description

Indicates whether the diagram is visible on the computer sc

ZoomFactor : Integer

Public Operations

Activate () :

Description

Makes the specified diagram the active diagram in Rose RealTime. The active diagram
is the window in Rose RealTime which currently has the focus.

Syntax

theDiagram.Activate

theDiagram As RoseRT.Diagram

Diagram to activate.

See also

IsActive Method

GetActiveDiagram Method
Diagram 455

AddAnchorNoteView (FromView : ViewElement, ToView : ViewElement) :
AnchorNoteView

Description:

Adds an anchor note view object to a diagram.

Syntax:

Set theAnchorNoteView = theDiagram.AddAnchorNoteView (theFromView,
theToView)

theAnchorNoteView as RoseRT.AnchorNoteView

Returns the anchor note view object added to the diagram.

theDiagram As RoseRT.Diagram

Diagram to which the anchor note view object is being added.

theFromView As RoseRT.ViewElement

ViewElement from which the note anchor starts at.

theToView As RoseRT.ViewElement

ViewElement to which the note anchor ends at.

AddExternalDocument (szName : String, iType :
RsExternalDocumentType) : ExternalDocument

Description

Creates a new external document and adds it to a diagram.

Syntax

Added = theDiagram.AddExternalDocument (theName, theType)

Added As Boolean

Returns a value of true when the document is added to the diagram.
456 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDiagram As RoseRT.Diagram

Diagram to which the document is being added.

theName As String

Name of the document being added.

theType As Integer

Type of document being added Valid values are:

1 = Path

2 = URL

AddNoteView (szNoteText : String, nType : RsNoteViewType) : NoteView

Description

Adds a note view object to a diagram

Syntax

Set theNoteView = theDiagram.AddNoteView (theNoteText,
theNoteViewType)

theNoteView as RoseRT.NoteView

Returns the note view object added to the diagram.

theDiagram As RoseRT.Diagram

Diagram to which the note view object is being added.

theNoteText As String

Contains the text of the note view object.

theNoteViewType As Integer

Indicates whether the note is free floating or enclosed in a box:

1 = Free floating text label
Diagram 457

2 = Note with box

DeleteExternalDocument (theExtDoc : ExternalDocument) : Boolean

Description

Deletes an external document from a diagram.

Syntax

Deleted = theDiagram.DeleteExternalDocument (theDocument)

deleted As Boolean

Returns a value of true when the document is deleted from the diagram.

theDiagram As RoseRT.Diagram

Diagram from which the document is being deleted.

theDocument As RoseRT.ExternalDocument

Instance of the document being deleted.

Exists (theModelElement : ModelElement) : Boolean

Description

Determines whether a specified diagram object exists.

Syntax

Exists = theDiagram.Exists (theModelElement)

Exists As Boolean

Returns the value of TRUE if the diagram object exists.

theDiagram As RoseRT.Diagram

Instance of the diagram whose existence is being checked.
458 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theModelElement As RoseRT.ModelElement

Instance of the Rose item that corresponds to the diagram object.

GetNoteViews () : NoteViewCollection

Description

Returns the collection of note views belonging to a diagram.

Syntax

Set theNoteViews = theDiagram.GetNoteViews ()

theNoteViews As RoseRT.NoteViewCollection

Returns the collection of note views belonging to the diagram.

theDiagram As RoseRT.Diagram

Instance of the diagram whose note view objects are being retrieved.

GetSelectedModelElements () : ModelElementCollection

Description

Returns all currently selected items in a diagram

Syntax

Set theItemCollection = theDiagram.GetSelectedItems ()

theItemCollection As RoseRT.ItemCollection

Returns the Rose item view (view object) that represents the specified Rose item.

theDiagram As RoseRT.Diagram

Instance of the diagram whose selected items are being retrieved.

GetViewFrom (theModelElement : ModelElement) : ViewElement

Description

Retrieves the Rose item view that represents the specified Rose item.
Diagram 459

Syntax

Set theView = theDiagram.GetViewFrom (theModelElement)

theView As RoseRT.ModelElementView

Returns the Rose item view (view object) that represents the specified Rose item.

theDiagram As RoseRT.Diagram

Instance of the diagram that contains the view object.

theModelElement As RoseRT.ModelElement

Instance of the Rose item whose view item is being returned.

Invalidate () :

Description

Invalidates a Rose diagram; that is, it causes the diagram to be redrawn.

Syntax

theDiagram.Invalidate

theDiagram As RoseRT.Diagram

Diagram being redrawn.

IsActive () : Boolean

Description

Indicates whether the diagram is the currently active diagram in the application

Syntax

IsActive = theDiagram.IsActive ()

IsActive As Boolean

Returns a value of True if the diagram is the current active in Rose; otherwise, returns
a value of False.
460 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theDiagram As RoseRT.Diagram

Diagram being checked as current diagram.

See also

Activate Method

GetActiveDiagram Method

Layout () :

Description

Draws a Rose RealTime diagram.

Syntax

theDiagram.Layout

theDiagram As RoseRT.Diagram

Diagram being drawn.

RemoveAnchorNoteView (anchorNoteView : AnchorNoteView) : Boolean

Description:

Removes an anchor note view object to a diagram

Syntax:

bRet = theDiagram.RemoveAnchorNoteView (theAnchorNoteView)

bRet as Boolean

True if the view was removed sucessfully, False otherwise.

theAnchorNoteView As RoseRT.AnchorNoteView

The anchor note view object which is being removed from the diagram.
Diagram 461

RemoveNoteView (pIDispNoteView : NoteView) : Boolean

Description

Removes a note view object from a diagram

Syntax

Set IsRemoved = theDiagram.RemoveNoteView (theNoteView)

cIsRemoved As Boolean

Returns a value of True when the note view object is successfully removed.

theDiagram As RoseRT.Diagram

Diagram from which the note view object is being removed.

theNoteView as RoseRT.NoteView

Note view object to be removed from the diagram.

Render (FileName : String) :

Renders a Rose RealTime diagram to a Windows metafile, allowing the diagram to be
opened and edited in any application that works with Windows metafiles.

Syntax

theDiagram.Render theFileName

theDiagram As RoseRT.Diagram

Diagram to render.

theFileName As String

Name of the Windows metafile in which to save the diagram.
462 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

RenderEnhanced (FileName : String) :

Description

Renders a Rose RealTime diagram to an enhanced Windows metafile, allowing the
diagram to be opened and edited in any application that works with Windows
metafiles.

Syntax

theDiagram.RenderEnhanced theFileName

theDiagram As RoseRT.Diagram

Diagram to render.

theFileName As String

Name of the enhanced Windows metafile in which to save the diagram.

RenderEnhancedToClipboard () :

Description

Renders a Rose RealTime diagram to the Clipboard, preserving its Enhanced metafile
formatting information. As with any Clipboard object, it can then be pasted into other
windows or compatible applications.

Syntax

theDiagram.RenderEnhancedToClipboard

theDiagram As RoseRT.Diagram

Diagram to render.

RenderToClipboard () :

Description

Renders a Rose RealTime diagram to the Clipboard in Windows metafile format. As
with any Clipboard object, it can then be pasted into other windows or compatible
applications.
Diagram 463

Syntax

theDiagram.RenderToClipboard

theDiagram As RoseRT.Diagram

Diagram to render.

Update () :

Description

Updates a Rose RealTime diagram.

Syntax

theDiagram.Update

theDiagram As RoseRT.Diagram

Diagram being updated.

NoteView

Description

The note view class inherits the ModelElement attributes and operations that
determine the size and placement of the note view on a diagram.

Check the lists of attributes and operations for complete information.

Derived from ViewElement

Public Attributes

Text : String

Description

Contains the text that appears in the NoteView object.
464 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations

GetNoteViewType () : RsNoteViewType

Description

Returns the Type value of a NoteView object.

Syntax

theType = theNoteView.GetNoteViewType ()

theType As RsNoteViewType

Retrieves the integer value that corresponds to the NoteView type.

theNoteView As RoseRT.NoteView

Instance of the NoteView whose type is being retrieved.

LinkToDiagram (diagramToLink : Diagram) : Boolean

Description:

Allows a note to be linked to a specific diagram. When user double clicks on the note
subsequently, the linked diagram will be opened up and activated.

Syntax:

theReturn = theNoteView.LinkToDiagram (theDiagramToLink)

theReturn As Boolean

Returns whether the linkage was successful or not.

theNoteView As RoseRT.NoteView

Instance of the NoteView whose type is being retrieved.

theDiagramToLink As RoseRT.Diagram

Diagram the note will link to.
NoteView 465

RsNoteViewType

Description

Enumeration used in NoteView::GetNoteViewType() and in
Diagram::AddNoteView() to determine the type of the NoteView.

Public Attributes

rsConstraint : Integer = 3

Description

The Note View is a constraint

rsFloatingTextLabel : Integer = 1

Description

The Note View is floating text.

rsNoteWithBox : Integer = 2

Description

The Note View is a textual note with a box around it.

RsStereotypeDisplay

Description

Enumeration used to set the Value property of the StereotypeDisplay Rich Type.
466 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Attributes

rsDecorationAndLabel : Integer = 2

rsDecorationOnly : Integer = 3

rsIcon : Integer = 4

rsLabel : Integer = 1

rsNone : Integer = 0

StereotypeDisplay

Description

Rich type used to how a view element stereotype will get displayed.

Valid values are defined in RsStereotypeDisplay enumeration.

Derived from RichType

ViewElement

Description

The ViewElement class exposes a set of attributes and operations that determine the
size and placement of a ModelElement on a diagram.

Check the lists of attributes and operations for complete information.

Derived from Element

Public Attributes

FillColor : View_FillColor

Description

Specifies the amount of red, green, or blue to use in the fill color for the
ModelElementView object, or whether it is transparent.
StereotypeDisplay 467

Font : View_Font

Description

Specifies the amount of red, green, or blue to use in the text color of a
ModelElementView object.

Height : Integer

Description

Specifies the height of the object.

LineColor : View_LineColor

Description

Specifies the amount of red, green, or blue to use in the line color for the
ModelElementView object.

LineVertices : LineVertexCollection

Description

Collection of line vertex objects representing the path of connector-like objects. Will be
empty for non connector-like objects.

ModelElement : ModelElement

Description

Specifies the ModelElement represented by this ModelElementView.

ParentDiagram : Diagram

Description

Specifies the diagram that contains this ModelElementView.

ParentView : ViewElement

Description

Specifies the ModelElementView that contains this ModelElementView.
468 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

StereotypeDisplay : StereotypeDisplay

Description

The StereotypeDisplay property is a RichType that specifies how the stereotype of a
model element will get displayed.

SubViews : ViewElementCollection

Description

Specifies the collection of item views that belong to the ModelElement.

Width : Integer

Description

Specifies the width of the ModelElement view.

XPosition : Integer

Description

Specifies the value of the horizontal coordinate (x) for the center point of the view.

YPosition : Integer

Description

Specifies the value of the vertical coordinate (y) for the center point of the view.

Public Operations

GetDefaultHeight () : Integer

Description

Retrieves the ideal height of the ModelElementView object, based on the object’s
formatting. This value is calculated by Rose and cannot be set.

Syntax

theHeight = theModelElementView.GetDefaultHeight ()

theHeight As RoseRT.Integer
ViewElement 469

Returns the ideal height of the ModelElementView, given the formatting of the object.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView whose ideal height you are determining.

GetDefaultWidth () : Integer

Description

Retrieves the ideal width of the ModelElementView object, based on the object’s
formatting. This value is calculated by Rose and cannot be set.

Syntax

theWidth = theModelElementView.GetDefaultWidth ()

theWidth As Integer

Returns the ideal width of the ModelElementView, given the formatting of the object.

theModelElementView As ModelElementView

Specifies the ModelElementView whose ideal width you are determining.

GetMinHeight () : Integer

Description

Retrieves the minimum height of the ModelElementView object, based on the object’s
formatting. This value is calculated by Rose and cannot be set.

Syntax

theHeight = theModelElementView.GetMinHeight ()

theHeight As Integer

Returns the minimum height of the ModelElementView, given the formatting of the
object.

theModelElementView As RoseRT.ModelElementView
470 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Specifies the ModelElementView whose minimum height you are determining.

GetMinWidth () : Integer

Description

Retrieves the minimum width of the ModelElementView object, based on the object’s
formatting. This value is calculated by Rose and cannot be set.

Syntax

theHeight = theModelElementView.GetMinWidth ()

theWidth As Integer

Returns the minimum width of the ModelElementView, given the formatting of the
object.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView whose minimum width you are determining.

HasModelElement () : Boolean

Description

Indicates whether the ModelElementView has a corresponding ModelElement.

Syntax

HasItem = theModelElementView.HasItem ()

HasItem As Boolean

Returns a value of True if the ModelElementView has a corresponding ModelElement.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView being checked for a ModelElement.

HasParentView () : Boolean

Description

Indicates whether the ModelElementView belongs to another ModelElementView.
ViewElement 471

Syntax

HasParentView = theModelElementView.HasParentView ()

HasParentView As Boolean

Returns a value of True if the ModelElementView belongs to another
ModelElementView.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView being checked for a parent view.

Invalidate () :

Description

Redraws the ModelElementView on the screen.

Syntax

theObject.Invalidate

theObject As RoseRT.ModelElementView

Instance of the ModelElementView being redrawn.

IsSelected () : Boolean

Description

Indicates whether the ModelElementView is currently selected in the diagram.

Syntax

IsSelected = theModelElementView.IsSelected ()

IsSelected As Boolean

Returns a value of True if the ModelElementView is currently selected in the diagram.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView being checked for in the diagram.
472 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

PointInView (x : Integer, y : Integer) : Boolean

Description

Determines whether a given x,y coordinate lies within the specified
ModelElementView.

Syntax

InView = theModelElementView.PointInView ()

IsInView As Boolean

Returns a value of True if the given x,y coordinate lies within the specified
ModelElementView.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView being checked for a ModelElement.

SetSelected (bSelect : Boolean) :

Description

Selects the given ModelElementView in the diagram.

Syntax

theModelElementView.SetSelected Selected

theModelElementView As RoseRT.ModelElementView

ModelElementView to select.

Selected As Boolean

Set to True to select the ModelElementView in the diagram; set to False to deselect the
ModelElementView in the diagram.
ViewElement 473

SupportsFillColor () : Boolean

Description

Causes the ModelElementView to support fill color, if the type of ModelElementView
can support fill color. For example, a ModelElementView that represents a class can
use a fill color. However, a ModelElementView that represents a relationship line, it
cannot support fill color. (It can, however, support a line color.)

Syntax

SupportsFill = theModelElementView.SupportsFillColor ()

SupportsFill As Boolean

Returns a value of True if the specified ModelElementView is to support a fill color.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView to support fill color.

SupportsLineColor () : Boolean

Description

Causes the ModelElementView to support line color, if the type of
ModelElementView can support line color. For example, a ModelElementView that
represents a relationship line can support line color. However, a ModelElementView
that displays a metafile cannot support a line color.

Syntax

SupportsLine = theModelElementView.SupportsLineColor ()

SupportsLine As Boolean

Returns a value of True if the specified ModelElementView is to support a line color.

theModelElementView As RoseRT.ModelElementView

Specifies the ModelElementView to support line color.
474 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Class Diagram Classes

Class Diagram classes include

■ CapsuleView on page 477

➑ Public Attributes

ShowAllPorts : Boolean on page 477

SuppressPorts : Boolean on page 477

■ ClassDiagram on page 477

➑ Public Attributes

ParentLogicalPackage : LogicalPackage on page 478

➑ Public Operations

AddAssociation (theAssociation : Association) : Boolean on page 478

AddCapsule (theCapsule : Capsule) : Boolean on page 478

AddClass (theClass : Class) : Boolean on page 479

AddLogicalPackage (theCat : LogicalPackage) : Boolean on page 479

AddProtocol (theProtocol : Protocol) : Boolean on page 480

AddUseCase (theUseCase : UseCase) : Boolean on page 480

GetAssociations () : AssociationCollection on page 481

GetCapsuleView (theCapsule : Capsule) : CapsuleView on page 481

GetCapsules () : CapsuleCollection on page 482

GetClassView (theClass : Class) : ClassView on page 482

GetClasses () : ClassCollection on page 483

GetLogicalPackages () : LogicalPackageCollection on page 483

GetProtocolView (theProtocol : Protocol) : ProtocolView on page 484

GetProtocols () : ProtocolCollection on page 484

GetSelectedCapsules () : CapsuleCollection on page 485

GetSelectedClasses () : ClassCollection on page 485

GetSelectedLogicalPackages () : LogicalPackageCollection on page 485

GetSelectedProtocols () : ProtocolCollection on page 486
Class Diagram Classes 475

GetUseCases () : UseCaseCollection on page 486

IsUseCaseDiagram () : Boolean on page 487

RemoveAssociation (theAssociation : Association) : Boolean on page 487

RemoveCapsule (theCapsule : Capsule) : Boolean on page 488

RemoveClass (theClass : Class) : Boolean on page 488

RemoveLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean on
page 489

RemoveProtocol (theProtocol : Protocol) : Boolean on page 489

RemoveUseCase (theUseCase : UseCase) : Boolean on page 490

■ ClassView on page 490

■ ClassifierView on page 490

➑ Public Attributes

AutomaticResize : Boolean on page 491

ShowAllAttributes : Boolean on page 491

ShowAllOperations : Boolean on page 491

ShowCompartmentStereotypes : Boolean on page 491

ShowOperationSignature : Boolean on page 491

ShowVisibility : Boolean on page 492

SuppressAttributes : Boolean on page 492

SuppressOperations : Boolean on page 492

■ ProtocolView on page 492

➑ Public Attributes

ShowAllInSignals : Boolean on page 492

ShowAllOutSignals : Boolean on page 493

SuppressInSignals : Boolean on page 493

SuppressOutSignals : Boolean on page 493
476 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CapsuleView

Description

The CapsuleView is the view elements representing capsules. CapsuleView allows
changing the visibility of ports.

Derived from ClassifierView

Public Attributes

ShowAllPorts : Boolean

Description

Indicates whether the capsule’s ports will be visible when the capsule view is
displayed.

SuppressPorts : Boolean

Description

Indicates whether to suppress the capsule's ports compartment when the capsule
view is displayed.

ClassDiagram

Description

The class diagram class allows you to add, retrieve and delete classes and categories
to and from a class diagram. The class diagram class has a set of attributes and
operations that apply specifically to class diagrams. In addition, it inherits all diagram
class attributes and operations.

Check the lists of attributes and operations for complete information.
CapsuleView 477

Derived from Diagram

Public Attributes

ParentLogicalPackage : LogicalPackage

Description

Specifies the LogicalPackage that contains the class diagram.

Public Operations

AddAssociation (theAssociation : Association) : Boolean

Description

Adds an association icon to a class diagram.

Syntax

Added = theClassDiagram.AddAssociation (theAssociation)

Added As Boolean

Returns a value of True when the association icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the association icon is being added.

theAssociation As RoseRT.Association

Association whose icon is being added to this class diagram.

AddCapsule (theCapsule : Capsule) : Boolean

Description

Adds a capsule icon to a class diagram.

Syntax

Added = theClassDiagram.AddCapsule(theCapsule)
478 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Added As Boolean

Returns a value of True when the capsule icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the capsule icon is being added.

theCapsule As RoseRT.Capsule

Capsule whose icon is being added to this class diagram.

AddClass (theClass : Class) : Boolean

Description

Adds a class icon to a class diagram.

Syntax

Added = theClassDiagram.AddClass (theClass)

Added As Boolean

Returns a value of True when the class icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the class icon is being added.

theClass As RoseRT.Class

Class whose icon is being added to this class diagram.

AddLogicalPackage (theCat : LogicalPackage) : Boolean

Description

adds a LogicalPackage icon to a class diagram.

Syntax

Added = theClassDiagram.AddLogicalPackage (theLogicalPackage)
ClassDiagram 479

Added As Boolean

Returns a value of True when the LogicalPackage icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the LogicalPackage icon is being added.

theLogicalPackage As RoseRT.LogicalPackage

LogicalPackage whose icon is being added to the diagram.

AddProtocol (theProtocol : Protocol) : Boolean

Description

Adds a protocol icon to a class diagram.

Syntax

Added = theClassDiagram.AddProtocol(theProtocol)

Added As Boolean

Returns a value of True when the protocol icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the protocol icon is being added.

theProtocol As RoseRT.Protocol

Protocol whose icon is being added to this class diagram.

AddUseCase (theUseCase : UseCase) : Boolean

Description

Adds a use case icon to a class diagram.

Syntax

Added = theClassDiagram.AddUseCase (theUseCase)
480 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Added As Boolean

Returns a value of True when the use case icon is added to the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram to which the use case icon is being added.

theUseCase As RoseRT.UseCase

Use case whose icon is being added to the diagram.

GetAssociations () : AssociationCollection

Description

Retrieves a collection of associations from a class diagram.

Syntax

Set theAssociations = theClassDiagram.GetAssociations ()

theAssociations As RoseRT.AssociationCollection

Returns the collection of associations from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the associations.

GetCapsuleView (theCapsule : Capsule) : CapsuleView

Description

Retrieves a capsule view from a class diagram. If the view does not yet exist, the
method creates the view.

Syntax

Set theCapsuleView = theClassDiagram.GetCapsuleView (theCapsule)

theCapsuleView As RoseRT.CapsuleView

Returns a capsule view from a class diagram.
ClassDiagram 481

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the capsule view.

theCapsule As RoseRT.Capsule

Capsule whose view is being retrieved.

GetCapsules () : CapsuleCollection

Description

Retrieves a collection of capsules from a class diagram.

Syntax

Set theCapsules = theClassDiagram.GetCapsules ()

theCapsules As RoseRT.CapsuleCollection

Returns the collection of capsules from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the capsules.

GetClassView (theClass : Class) : ClassView

Description

Retrieves a class view from a class diagram. If the view does not yet exist, the method
creates the view.

Syntax

Set theClassView = theClassDiagram.GetClassView (theClass)

theClassView As RoseRT.ClassView

Returns a class view from a class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the class view.
482 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theClass As RoseRT.Class

Class whose view is being retrieved.

GetClasses () : ClassCollection

Description

Retrieves a collection of classes from a class diagram.

Syntax

Set theClasses = theClassDiagram.GetClasses ()

theClasses As RoseRT.ClassCollection

Returns the collection of classes from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the classes.

GetLogicalPackages () : LogicalPackageCollection

Description

Retrieves a collection of LogicalPackages from a class diagram.

Syntax

Set theLogicalPackages = theClassDiagram.GetLogicalPackages ()

theLogicalPackages As RoseRT.LogicalPackageCollection

Returns the collection of LogicalPackages from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the LogicalPackages.
ClassDiagram 483

GetProtocolView (theProtocol : Protocol) : ProtocolView

Description

Retrieves a protocol view from a class diagram. If the view does not yet exist, the
method creates the view.

Syntax

Set theProtocolView = theClassDiagram.GetProtocolView (theProtocol)

theProtocolView As RoseRT.ProtocolView

Returns a protocol view from a class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the protocol view.

theProtocol As RoseRT.Protocol

Protocol whose view is being retrieved.

GetProtocols () : ProtocolCollection

Description

Retrieves a collection of protocols from a class diagram.

Syntax

Set theProtocols = theClassDiagram.GetProtocols ()

theProtocols As RoseRT.ProtocolCollection

Returns the collection of protocols from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the protocols.
484 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

GetSelectedCapsules () : CapsuleCollection

Description

Retrieves the collection of currently selected capsules from a class diagram.

Syntax

Set theCapsules = theClassDiagram.GetSelectedCapsules ()

theCapsules As RoseRT.CapsuleCollection

Returns the collection of currently selected capsules from the classes diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the capsules.

GetSelectedClasses () : ClassCollection

Description

Retrieves the collection of currently selected classes from a class diagram.

Syntax

Set theClasses = theClassDiagram.GetSelectedClasses ()

theClasses As RoseRT.ClassCollection

Returns the collection of currently selected classes from the classes diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the classes.

GetSelectedLogicalPackages () : LogicalPackageCollection

Description

Retrieves the collection of currently selected LogicalPackages from a class diagram.
ClassDiagram 485

Syntax

Set theLogicalPackages = theClassDiagram.GetSelectedLogicalPackages (
)

theLogicalPackages As RoseRT.LogicalPackageCollection

Returns the collection of currently selected LogicalPackages from the class diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the LogicalPackages.

GetSelectedProtocols () : ProtocolCollection

Description

Retrieves the collection of currently selected protocols from a class diagram.

Syntax

Set theProtocols = theClassDiagram.GetSelectedProtocols ()

theProtocols As RoseRT.ProtocolCollection

Returns the collection of currently selected protocols from the classes diagram.

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the protocols.

GetUseCases () : UseCaseCollection

Description

Retrieves a collection of use cases from a class diagram.

Syntax

Set theUseCases = theClassDiagram.GetUseCases ()

theUseCases As RoseRT.UseCaseCollection

Returns the collection of use cases from the class diagram.
486 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

theClassDiagram As RoseRT.ClassDiagram

Class diagram from which to retrieve the use cases.

IsUseCaseDiagram () : Boolean

Description

Determines whether a class diagram is a use case diagram.

Syntax

IsUseCase = theClassDiagram.IsUseCaseDiagram ()

IsUseCase As Boolean

Returns a value of True if the specified class diagram is a use case diagram.

theClassDiagram As RoseRT.ClassDiagram

The instance of the class diagram being tested as a use case diagram.

RemoveAssociation (theAssociation : Association) : Boolean

Description

Removes an association icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveAssociation (theAssociation)

Removed As Boolean

Returns a value of True when the association icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the association icon is being removed.

theAssociation As RoseRT.Association
ClassDiagram 487

Association whose icon is being removed from the diagram.

RemoveCapsule (theCapsule : Capsule) : Boolean

Description

Removes a capsule icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveCapsule (theCapsule)

Removed As Boolean

Returns a value of True when the capsule icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the capsule icon is being removed.

theCapsule As RoseRT.Capsule

Capsule whose icon is being removed from the diagram.

RemoveClass (theClass : Class) : Boolean

Description

Removes a class icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveClass (theClass)

Removed As Boolean

Returns a value of True when the class icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the class icon is being removed.

theClass As RoseRT.Class
488 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Class whose icon is being removed from the diagram.

RemoveLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean

Description

Removes a LogicalPackage icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveLogicalPackage (theLogicalPackage)

Removed As Boolean

Returns a value of True when the LogicalPackage icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the LogicalPackage icon is being removed.

theLogicalPackage As RoseRT.LogicalPackage

LogicalPackage whose icon is being removed from the diagram.

RemoveProtocol (theProtocol : Protocol) : Boolean

Description

Removes a protocol icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveProtocol (theProtocol)

Removed As Boolean

Returns a value of True when the protocol icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the protocol icon is being removed.

theProtocol As RoseRT.Protocol

Protocol whose icon is being removed from the diagram.
ClassDiagram 489

RemoveUseCase (theUseCase : UseCase) : Boolean

Description

Removes a use case icon from a class diagram.

Syntax

Removed = theClassDiagram.RemoveUseCase (theUseCase)

Removed As Boolean

Returns a value of True when the use case icon is removed from the diagram.

theClassDiagram As RoseRT.ClassDiagram

Diagram from which the use case icon is being removed.

theUseCase As RoseRT.UseCase

Use case whose icon is being removed from the diagram.

ClassView

Description

The ClassView is the view elements representing classes. ClassView allows changing
the visibility of attributes and operations.

Derived from ClassifierView

ClassifierView

Description

The ClassifierView is the base class of the view elements representing classifiers.
ClassifierView allows changing the visibility of different common classifier features
such as attributes and operations.
490 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ViewElement

Public Attributes

AutomaticResize : Boolean

Description

Indicates whether the class view will be automatically resized when displayed in the
view port. Corresponds to the Automatic Resize option in Rose context menus.

ShowAllAttributes : Boolean

Description

Indicates whether the class’s attributes will be visible when the class view is displayed
in the view port

ShowAllOperations : Boolean

Description

Indicates whether the class’s operations will be visible when the class view is
displayed in the view port. Corresponds to the Show All Operations option in Rose
context menus.

ShowCompartmentStereotypes : Boolean

Description

Indicates whether to show stereotypes of features in compartments when the classifier
view is displayed.

ShowOperationSignature : Boolean

Description

Indicates whether the class’s operations signature will be shown when the class view
is displayed in the view port. Corresponds to the Show Operations Signature option
in Rose context menus.
ClassifierView 491

ShowVisibility : Boolean

Description

Indicates whether to show the classifier visibility when the classifier view is
displayed.

SuppressAttributes : Boolean

Description

Indicates whether to suppress the class’s attributes compartment when the class view
is displayed in the view port.

SuppressOperations : Boolean

Description

Indicates whether to suppress the class’s operations compartment when the class
view is displayed in the view port.

ProtocolView

Description

The ProtocolView is the view elements representing protocols. ProtocolView allows
changing the visibility of signals.

Derived from ClassifierView

Public Attributes

ShowAllInSignals : Boolean

Description

Indicates whether protocol's in signals will be visible when the protocol view is
displayed.
492 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ShowAllOutSignals : Boolean

Description

Indicates whether protocol's out signals will be visible when the protocol view is
displayed.

SuppressInSignals : Boolean

Description

Indicates whether to suppress the protocol's in signals compartment when the
protocol view is displayed.

SuppressOutSignals : Boolean

Description

Indicates whether to suppress the protocol's out signals compartment when the
protocol view is displayed.

Collaboration Diagram Classes

Collaboration Diagram classes include

■ CapsuleRoleView on page 494

➑ Public Attributes

EditingInside : Boolean on page 495

PositionBySuperClass : Boolean on page 495

➑ Public Operations

AutoAdjustConnectors () : on page 495

GoInside () : on page 495

■ CollaborationDiagram on page 496

➑ Public Operations

AddAssociationRoleView (pAssocRole : AssociationRole) : ViewElement on
page 496

AddCapsuleRoleView (pCapsulerRole : CapsuleRole) : CapsuleRoleView on
page 496
Collaboration Diagram Classes 493

AddClassifierRoleView (pClassifierRole : ClassifierRole) : ClassifierRoleView on
page 497

AddConnectorView (pConnector : Connector) : ViewElement on page 498

AddPortView (pPort : Port) : PortView on page 498

■ PortRoleView on page 499

➑ Public Attributes

AutoAdjustOn : Boolean on page 499

CapsuleRoleView : ViewElement on page 499

PositionBySuperClass : Boolean on page 499

➑ Public Operations

AutoAdjust () : on page 499

■ PortView on page 500

➑ Public Attributes

PositionBySuperClass : Boolean on page 500

StructurePerimeterView : ViewElement on page 500

■ StructurePerimeterView on page 500

➑ Public Attributes

PositionBySuperClass : Boolean on page 501

CapsuleRoleView

Description

CapsuleRoleView contains properties and methods that define the appearance of a
Capsule Role within a structure (collaboration) diagram.
494 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ViewElement

Public Attributes

EditingInside : Boolean

Description

Whether a user is allowed to directly edit the inside of a capsule role that appears on a
structure diagram.

PositionBySuperClass : Boolean

Description

Whether the CapsuleRoleView inherits its position information from that of its
superclass.

Public Operations

AutoAdjustConnectors () :

Description

Allows connectors to auto adjust themsleves to the shortest path between an
originating and a destination capsule role.

Syntax

theCapsuleRoleView.AutoAdjustConnectors()

theCapsuleRoleView As RoseRT.CapsuleRoleView

The capsule role view to adjust connectors to.

GoInside () :

Description

Open the structure diagram that represents the inside of the CapsuleRole.

Syntax

theCapsuleRoleView.GoInside()
CapsuleRoleView 495

theCapsuleRoleView As RoseRT.CapsuleRoleView

The capsule role view to go inside.

CollaborationDiagram

Description

CollaborationDiagram graphically shows the capsule roles, and ports contained
within a Collaboration (Structure) Diagram.

Derived from Diagram

Public Operations

AddAssociationRoleView (pAssocRole : AssociationRole) : ViewElement

Description

Add a ViewElement that represents an association role to the inside of a Collaboration
Diagram.

Syntax

Set theViewElement =
theCollaborationDiagram.AddAssociationRoleView(pAssocRole)

theViewElement As RoseRT.ViewElement

Returns the view object being added to the diagram.

theCollaborationDiagram As RoseRT.CollaborationDiagram

CollaborationDiagram to which the object is being added.

pAssocRole As RoseRT.AssociationRole

The Association Role for which a view object is being added.

AddCapsuleRoleView (pCapsulerRole : CapsuleRole) : CapsuleRoleView

Description

Add a CapsuleRoleView to the inside of a Collaboration Diagram.
496 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Set theCapRoleView =
theCollaborationDiagram.AddCapsuleRoleView(pCapRole)

theCapRoleView As RoseRT.CapsuleRoleView

Returns the view object being added to the diagram.

theCollaborationDiagram As RoseRT.CollaborationDiagram

CollaborationDiagram to which the object is being added.

pCapRole As RoseRT.CapsuleRole

The CapsuleRole for which a view object is being added.

AddClassifierRoleView (pClassifierRole : ClassifierRole) :
ClassifierRoleView

Description

Add a ClassifierRoleView to the inside of a Collaboration Diagram.

Syntax

Set theClassRoleView = theCollaborationDiagram.AddClassifierRoleView
(pClassRole)

theClassRoleView As RoseRT.ClassifierRoleView

Returns the view object being added to the diagram.

theCollaborationDiagram As RoseRT.CollaborationDiagram

CollaborationDiagram to which the object is being added.

pClassRole As RoseRT.ClassifierRole

The ClassifierRole for which a view object is being added.
CollaborationDiagram 497

AddConnectorView (pConnector : Connector) : ViewElement

Description

Add a ViewElement that represents an connector to the inside of a Collaboration
Diagram.

Syntax

Set theViewElement =
theCollaborationDiagram.AddConnectorView(pConnector)

theViewElement As RoseRT.ViewElement

Returns the view object being added to the diagram.

theCollaborationDiagram As RoseRT.CollaborationDiagram

CollaborationDiagram to which the object is being added.

pConnector As RoseRT.Connector

The Connector for which a view object is being added.

AddPortView (pPort : Port) : PortView

Description

Add a PortView to the inside of a Collaboration Diagram.

Syntax

Set thePortView = theCollaborationDiagram.AddPortView(pPort)

thePortView As RoseRT.PortView

Returns the view object being added to the diagram.

theCollaborationDiagram As RoseRT.CollaborationDiagram

CollaborationDiagram to which the object is being added.
498 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

pPort As RoseRT.Port

The Port for which a view object is being added.

PortRoleView

Description

PortRoleView contains properties and methods that define the appearance of a Port
Role within a structure (collaboration) diagram. A Port Role is a port bound to a
capsule role.

Derived from ViewElement

Public Attributes

AutoAdjustOn : Boolean

Description

Whether AutoAdjust has been selected.

CapsuleRoleView : ViewElement

Description

The CapsuleRoleView to which the PortRoleView is bound.

PositionBySuperClass : Boolean

Description

Whether the PortRoleView inherits its position information from that of its superclass.

Public Operations

AutoAdjust () :

Description

Allows connectors to auto adjust themsleves to the shortest path between port roles.
PortRoleView 499

Syntax

thePortRoleView.AutoAdjust()

thePortRoleView As RoseRT.PortRoleView

The port role view to auto adjust.

PortView

Description

PortView contains properties and methods that define the appearance of a Port within
a structure (collaboration) diagram.

Derived from ViewElement

Public Attributes

PositionBySuperClass : Boolean

Description

Whether the PortView inherits its position information from that of its superclass.

StructurePerimeterView : ViewElement

Description

If it's a public port, this is the StructurePerimeterView that this PortView is bound to.
If it's a protected port, the PortView is not bound to a StructurePerimeterView.

StructurePerimeterView

Description

StructurePerimeterView contains properties and methods that define the appearance
of the outer boundary shown in a collaboration (structure) diagram.
500 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ViewElement

Public Attributes

PositionBySuperClass : Boolean

Description

Whether the StructurePerimeterView inherits its position information from that of its
superclass.

Component Diagram Classes

Component Diagram classes include

■ ComponentDiagram on page 502

➑ Public Attributes

ComponentPackageViews : ComponentPackageViewCollection on page 502

ComponentViews : ComponentViewCollection on page 502

ParentComponentPackage : ComponentPackage on page 502

➑ Public Operations

AddComponent (theMod : Component) : Boolean on page 503

AddComponentPackage (theComponentPackage : ComponentPackage) : Boolean on
page 503

AddComponentPackageView (aComponentPackage : ComponentPackage) :
ComponentPackageView on page 504

AddComponentView (aComponent : Component) : ComponentView on page 504

GetComponentPackages () : ComponentPackageCollection on page 505

GetComponents () : ComponentCollection on page 505

GetSelectedComponentPackages () : ComponentPackageCollection on page 506

GetSelectedComponents () : ComponentCollection on page 506

RemoveComponentPackageView (aComponentPackageView :
ComponentPackageView) : Boolean on page 506

RemoveComponentView (aComponentView : ComponentView) : Boolean on
page 507
Component Diagram Classes 501

■ ComponentPackageView on page 508

➑ Public Operations

GetComponentPackage () : ComponentPackage on page 508

■ ComponentView on page 509

➑ Public Operations

GetComponent () : Component on page 509

ComponentDiagram

Description

A component diagram maps the allocation classes and objects to components. The
component diagram class exposes attributes and operations that allow you to add,
retrieve, and delete classes and objects in a component diagram.

Check the lists of attributes and operations for complete information.

Derived from Diagram

Public Attributes

ComponentPackageViews : ComponentPackageViewCollection

Description

The collection of ComponentPackageView shown in a component diagram.

ComponentViews : ComponentViewCollection

Description

The collection of ComponentView shown in a component diagram.

ParentComponentPackage : ComponentPackage

Description

Identifies the ComponentPackage object that contains the component and is always
set to a valid object (is never set to Nothing)
502 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Public Operations

AddComponent (theMod : Component) : Boolean

Description

Adds a component icon to a component diagram.

Syntax

Added = theDiagram.AddComponent (theComponent)

Added As Boolean

Returns a value of True when the component is added.

theDiagram As RoseRT.ComponentDiagram

Component diagram to which the component is being added.

theComponent As RoseRT.Component

Component being added to the diagram.

AddComponentPackage (theComponentPackage : ComponentPackage) :
Boolean

Description

Adds the view associated with a ComponentPackage to a component diagram.

Syntax

Added = theDiagram.AddComponentPackage (theComponentPackage)

Added As Boolean

Returns a value of True when the view associated with a ComponentPackage is
added.

theDiagram As RoseRT.ComponentDiagram

Component diagram to which the ComponentPackageView is being added.
ComponentDiagram 503

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage whose associated view is being added to the diagram.

AddComponentPackageView (aComponentPackage :
ComponentPackage) : ComponentPackageView

Description

Adds the view associated with a ComponentPackage to a component diagram.

Syntax

Added = theDiagram.AddComponentPackageView (theComponentPackage)

Added As Boolean

Returns a value of True when the view associated with a ComponentPackage is
added.

theDiagram As RoseRT.ComponentDiagram

Component diagram to which the ComponentPackageView is being added.

theComponentPackage As RoseRT.ComponentPackage

ComponentPackage whose associated view is being added to the diagram.

AddComponentView (aComponent : Component) : ComponentView

Description

Adds a ComponentView to a component diagram.

Syntax

Added = theDiagram.AddComponentView (aComponent)

Added As Boolean

Returns a value of True when the ComponentView is added.

theDiagram As RoseRT.ComponentDiagram
504 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Component diagram to which the ComponentPackage is being added.

aComponent As RoseRT.Component

Component whose view is being added to the diagram.

GetComponentPackages () : ComponentPackageCollection

Description

Retrieves the collection of the ComponentPackages associated with each of the
ComponentPackageViews shown in a component diagram.

Syntax

Set theComponentPackages = theDiagram.GetComponentPackages()

theComponentPackages As RoseRT.ComponentPackageCollection

Returns the collection of the ComponentPackages.

theDiagram As RoseRT.ComponentDiagram

Component diagram whose ComponentPackages are being retrieved.

GetComponents () : ComponentCollection

Description

Retrieves the collection of the Components associated with each of the
ComponentViews shown in a component diagram.

Syntax

Set theComponents = theDiagram.GetComponents()

theComponents As RoseRT.ComponentCollection

Returns the collection of the Components.

theDiagram As RoseRT.ComponentDiagram

Component diagram whose Components are being retrieved.
ComponentDiagram 505

GetSelectedComponentPackages () : ComponentPackageCollection

Description

Retrieves the collection of currently selected component packages from a component
diagram.

Syntax

Set theComponentPackagess = theDiagram.GetSelectedComponentPackages (
)

theComponentPackages As RoseRT.ComponentPackageCollection

Returns the collection of currently selected component packages from the component
diagram.

theDiagram As RoseRT.ComponentDiagram

Component diagram from which to retrieve the component packages.

GetSelectedComponents () : ComponentCollection

Description

Retrieves the collection of currently selected components from a component diagram.

Syntax

Set theComponents = theDiagram.GetSelectedComponents ()

theComponents As RoseRT.ComponentCollection

Returns the collection of currently selected components from the component diagram.

theDiagram As RoseRT.ComponentDiagram

Component diagram from which to retrieve the components.

RemoveComponentPackageView (aComponentPackageView :
ComponentPackageView) : Boolean

Description

Removes a ComponentPackageView from a component diagram.
506 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Syntax

Removed = theDiagram.RemoveComponentPackageView
(aComponentPackageView)

Removed As Boolean

Returns a value of True when the ComponentPackageView is successfully removed
from the diagram.

theDiagram As RoseRT.ComponentDiagram

Component diagram from which the ComponentPackageView is being removed.

aComponentPackageView As RoseRT.ComponentPackageView

ComponentPackageView being removed from the diagram.

RemoveComponentView (aComponentView : ComponentView) : Boolean

Description

Removes a ComponentView from a component diagram.

Syntax

Removed = theDiagram.RemoveComponentView (aComponentView)

Removed As Boolean

Returns a value of True when the ComponentView is successfully removed from the
diagram.

theDiagram As RoseRT.ComponentDiagram

Component diagram from which the ComponentView is being removed.

aComponentView As RoseRT.ComponentView

ComponentView being removed from the diagram.
ComponentDiagram 507

ComponentPackageView

Description

ComponentPackages contain components, as well as other ComponentPackages. The
ComponentPackage view is the visual representation of a ComponentPackage, and is
what appears on a diagram in the model. The ComponentPackage view class inherits
the ViewElement attributes and operations that determine the size and placement of
the ComponentPackage view. It also allows you to retrieve the ComponentPackage
object itself from the ComponentPackage view.

Check the lists of attributes and operations for complete information.

Derived from ViewElement

Public Operations

GetComponentPackage () : ComponentPackage

Description

Retrieves the ComponentPackage represented by the ComponentPackage view.

Syntax

Set theComponentPackage = theComponentPackageView.GetObject ()

theComponentPackage As RoseRT.ComponentPackage

Returns the ComponentPackage represented by the ComponentPackageview. Note
that the REI return class is currently called component, not ComponentPackage.

theComponentPackageView As RoseRT.ComponentPackageView

Instance of the ComponentPackage view whose corresponding ComponentPackage
(component) is being retrieved.
508 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

ComponentView

Description

ComponentView contains properties and methods that define the appearance of a
Component within a component diagram.

Derived from ViewElement

Public Operations

GetComponent () : Component

Description

Gets the Component associated with this ComponentView.

Syntax

Set theComponent = theComponentView.GetComponent()

theComponent As RoseRT.Component

Returns the component.

theComponentView As RoseRT.ComponentView

ComponentView from which to get the component.

Deployment Diagram Classes

Deployment Diagram classes include

■ DeploymentDiagram on page 510

➑ Public Operations

AddDevice (theDevice : Device, x : Integer, y : Integer) : ViewElement on page 510

AddProcessor (theProcessor : Processor, x : Integer, y : Integer) : ViewElement on
page 511

GetDevices () : DeviceCollection on page 512

GetProcessors () : ProcessorCollection on page 512
ComponentView 509

RemoveDevice (theDevice : Device) : Boolean on page 512

RemoveProcessor (theProcessor : Processor) : Boolean on page 513

DeploymentDiagram

Description

A deployment diagram is a visual representation of devices and processors. The
deployment diagram class exposes properties and methods that allow you to add,
retrieve and delete devices and processors in a deployment diagram.

Check the lists of attributes and operations for complete information.

Derived from Diagram

Public Operations

AddDevice (theDevice : Device, x : Integer, y : Integer) : ViewElement

Description

Adds a device icon to a deployment diagram.

Syntax

Set theView = theDeploymentDiagram.AddDevice (theDevice, XPosition,
YPosition)

theView As RoseRT.ModelElementView

Returns the device icon being added to the diagram.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Diagram to which the icon is being added.

theDevice As RoseRT.Device

Device whose icon is being added to the diagram.
510 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Xposition As Integer

X axis coordinate of the icon in the diagram.

YPosition As Integer

Y axis coordinate of the icon in the diagram.

AddProcessor (theProcessor : Processor, x : Integer, y : Integer) :
ViewElement

Description

Adds a processor icon to a deployment diagram.

Syntax

Set theView = theDeploymentDiagram.AddProcessor (theProcessor,
XPosition, YPosition)

theView As RoseRT.ModelElementView

Returns the processor icon being added to the diagram.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Diagram to which the icon is being added.

theProcessor As RoseRT.Processor

Processor whose icon is being added to the diagram.

XPosition As Integer

X axis coordinate of the icon in the diagram.

YPosition As Integer

Y axis coordinate of the icon in the diagram.
DeploymentDiagram 511

GetDevices () : DeviceCollection

Description

Retrieves the collection of devices belonging to the deployment diagram.

Syntax

Set theDevices = theDeploymentDiagram.GetDevices ()

theDevices As RoseRT.DeviceCollection

Returns the collection of devices belonging to the deployment diagram.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Deployment diagram from which to retrieve the devices.

GetProcessors () : ProcessorCollection

Description

Retrieves the collection of processors belonging to the deployment diagram.

Syntax

Set theProcessors = theDeploymentDiagram.GetProcessors ()

theProcessors As RoseRT.ProcessorCollection

Returns the collection of processors belonging to the deployment diagram.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Deployment diagram from which to retrieve the processors.

RemoveDevice (theDevice : Device) : Boolean

Description

Removes a device icon from a deployment diagram.

Syntax

Removed = theDeploymentDiagram.RemoveDevice (theDevice)
512 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Removed As Boolean

Returns a value of True when the device icon is removed.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Diagram from which the icon is being removed.

theDevice As RoseRT.Device

Device whose icon is being removed from the diagram.

RemoveProcessor (theProcessor : Processor) : Boolean

Description

Removes a processor icon from a deployment diagram.

Syntax

Removed = theDeploymentDiagram.RemoveProcessor (theProcessor)

Removed As Boolean

Returns a value of True when the processor icon is removed.

theDeploymentDiagram As RoseRT.DeploymentDiagram

Diagram from which the icon is being removed.

theProcessor As RoseRT.Processor

Processor whose icon is being removed from the diagram.

Sequence Diagram Classes

Sequence Diagram classes

■ ClassifierRoleView on page 514

■ CreateMessageView on page 514
Sequence Diagram Classes 513

■ InteractionInstanceView on page 515

➑ Public Attributes

CreateMessageView : MessageView on page 515

DestroyMessageView : MessageView on page 515

■ LifeLineView on page 515

➑ Public Attributes

InteractionInstanceView : InteractionInstanceView on page 516

■ MessageView on page 516

➑ Public Attributes

FromInstanceView : InteractionInstanceView on page 516

ToInstanceView : InteractionInstanceView on page 516

■ SequenceDiagram on page 516

ClassifierRoleView

Description

ClassifierRoleView contains properties and methods that define the appearance of a
Classifier Role on a collaboration diagram.

Derived from ViewElement

CreateMessageView

Description

CreateMessageView contains properties and methods that define the appearance of a
Create Message within a sequence diagram.
514 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ViewElement

InteractionInstanceView

Description

InteractionInstanceView contains properties and methods that define the appearance
of an interaction instance within a sequence diagram.

Derived from ViewElement

Public Attributes

CreateMessageView : MessageView

Description

The MessageView representing the optional Create Message for this interaction
instance.

DestroyMessageView : MessageView

Description

The MessageView representing the optional Destroy Message for this interaction
instance.

LifeLineView

Description

LifeLineView contains properties and methods that define the appearance of the Life
Line of an interaction instance within a sequence diagram. The life line is the line that
descends from the interaction instance rectangle.
InteractionInstanceView 515

Derived from ViewElement

Public Attributes

InteractionInstanceView : InteractionInstanceView

Description

The InteractionInstanceView associated with this LifeLineView.

MessageView

Description

MessageView contains properties and methods that define the appearance of a
Message within a sequence diagram.

Derived from ViewElement

Public Attributes

FromInstanceView : InteractionInstanceView

Description

The InteractionInstanceView that represents the originator of the message.

ToInstanceView : InteractionInstanceView

Description

The InteractionInstance that represents the destination of the message.

SequenceDiagram

Description

SequenceDiagram graphically shows the interaction instances, messages, local states,
local actions and coregions contained within a Sequence Diagram.
516 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from Diagram

State Diagram Classes

State Diagram classes include

■ BranchPointView on page 519

➑ Public Attributes

BranchView : ChoicePointView on page 519

■ ChoicePointView on page 519

➑ Public Attributes

Angle : Double on page 519

BranchPointViewFalse : BranchPointView on page 519

BranchPointViewIn : BranchPointView on page 520

BranchPointViewTrue : BranchPointView on page 520

Flipped : Boolean on page 520

PositionBySuperClass : Boolean on page 520

AutoAdjustTransitions () : on page 520

■ CompositeStateView on page 521

➑ Public Attributes

EditingInside : Boolean on page 521

PositionBySuperClass : Boolean on page 521

SubDiagram : StateDiagram on page 521

➑ Public Operations

AutoAdjustTransitions () : on page 521

GoInside () : on page 522

■ CoregionView on page 522

■ FinalStateView on page 522

➑ Public Attributes

PositionBySuperClass : Boolean on page 523
State Diagram Classes 517

■ InitialPointView on page 523

➑ Public Attributes

PositionBySuperClass : Boolean on page 523

■ JunctionAdornmentView on page 523

➑ Public Attributes

JunctionView : JunctionPointView on page 524

■ JunctionPointView on page 524

➑ Public Attributes

AutoAdjustOn : Boolean on page 524

CompositeStateView : CompositeStateView on page 524

JunctionAdornmentView : JunctionAdornmentView on page 524

PositionBySuperClass : Boolean on page 525

➑ Public Operations

AutoAdjust () : on page 525

■ LocalStateOrActionView on page 525

■ StateDiagram on page 525

➑ Public Operations

AddChoicePointView (pChoicePoint : ChoicePoint) : ChoicePointView on
page 526

AddFinalStateView (pFinal : FinalState) : FinalStateView on page 526

AddStateView (pState : CompositeState) : CompositeStateView on page 527

■ StatePerimeterView on page 527

➑ Public Attributes

PositionBySuperClass : Boolean on page 528
518 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

BranchPointView

Description

Each ChoicePointView contains three BranchPointView elements representing the
incoming state transition, and the outgoing true and false state transitions.

Derived from ViewElement

Public Attributes

BranchView : ChoicePointView

Description

The ChoicePointView to which this BranchPointView belongs.

ChoicePointView

Description

A Choice Point encapsulates action code that returns a conditional value of True or
False. ChoicePointView contains properties and methods that define the appearance
of a Choice Point within a state diagram.

Derived from ViewElement

Public Attributes

Angle : Double

Description

Rotation angle of the ChoicePointView, expressed in radians.

BranchPointViewFalse : BranchPointView

Description

Identifies the BranchPointView located at the outgoing False state transition.
BranchPointView 519

BranchPointViewIn : BranchPointView

Description

Identifies the BranchPointView located at the incoming state transition.

BranchPointViewTrue : BranchPointView

Description

Identifies the BranchPointView located at the outgoing True state transition.

Flipped : Boolean

Description

Whether the ChoicePoint is shown flipped on the diagram.

PositionBySuperClass : Boolean

Description

Whether the ChoicePointView inherits its position information from the
ChoicePointView in the state diagram of its superclass.

Public Operations

AutoAdjustTransitions () :

Description

Allows transitions to auto adjust themsleves to the shortest path between a choice
point and an originating or destination state.

Syntax

theChoicePointView.AutoAdjustTransitions()

theChoicePointView As RoseRT.ChoicePointView

The choice point view to auto adjust.
520 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

CompositeStateView

Description

A CompositeState is a normal State as found on state diagrams. CompositeStateView
contains properties and methods that define the appearance of a CompositeState
within a state diagram.

Derived from ViewElement

Public Attributes

EditingInside : Boolean

Description

Whether a user is allowed to directly edit the inside of a state that appears on a state
diagram.

PositionBySuperClass : Boolean

Description

Whether the CompositeStateView inherits its position information from that of its
superclass.

SubDiagram : StateDiagram

Description

The state diagram that represents the inside of the CompositeState.

Public Operations

AutoAdjustTransitions () :

Description

Allows transitions to auto adjust themsleves to the shortest path between an
originating and a destination state.
CompositeStateView 521

Syntax

theCompositeStateView.AutoAdjustTransitions()

theCompositeStateView As RoseRT.CompositeStateView

The composite state view to auto adjust.

GoInside () :

Description

Open the state diagram that represents the inside of the CompositeState.

Syntax

theCompositeStateView.GoInside()

theCompositeStateView As RoseRT.CompositeStateView

The composite state view to go inside.

CoregionView

Description

CoregionView contains properties and methods that define the appearance of a
Coregion within a sequence diagram.

Derived from ViewElement

FinalStateView

Description

FinalStateView contains properties and methods that define the appearance of a
FinalState within a state diagram.
522 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from ViewElement

Public Attributes

PositionBySuperClass : Boolean

Description

Whether the FinalStateView inherits its position information from that of its
superclass.

InitialPointView

Description

InitialPointView contains properties and methods that define the appearance of a
InitialPoint within a state diagram.

Derived from ViewElement

Public Attributes

PositionBySuperClass : Boolean

Description

Whether the InitialPointView inherits its position information from that of its
superclass.

JunctionAdornmentView

Description

JunctionAdornmentView contains properties and methods that define the appearance
of a Junction Adornment within a state diagram.
InitialPointView 523

Derived from ViewElement

Public Attributes

JunctionView : JunctionPointView

Description

The JunctionView associated with this JunctionAdornmentView.

JunctionPointView

Description

Composite States contain Junction Points where they join with incoming and
outgoing state transitions. JunctionPointView contains properties and methods that
define the appearance of a JunctionPoint within a state diagram.

Derived from ViewElement

Public Attributes

AutoAdjustOn : Boolean

Description

Whether AutoAdjust has been selected.

CompositeStateView : CompositeStateView

Description

The CompositeStateView associated with this JunctionPointView.

JunctionAdornmentView : JunctionAdornmentView

Description

The JunctionAdornmentView associated with this JunctionView.
524 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

PositionBySuperClass : Boolean

Description

Whether the JunctionPointView inherits its position information from that of its
superclass.

Public Operations

AutoAdjust () :

Description

Allows transitions to auto adjust themsleves to the shortest path between an
originating and a destination state.

Syntax

theJunctionPointView.AutoAdjust()

theJunctionPointView As RoseRT.JunctionPointView

The junction point view to auto adjust.

LocalStateOrActionView

Description

LocalStateOrActionView contains properties and methods that define the appearance
of Local States and Local Actions within sequence diagrams.

Derived from ViewElement

StateDiagram

Description

A State Diagram graphically shows the states and transitions within the behavior of a
capsule, class or use case.
LocalStateOrActionView 525

Derived from Diagram

Public Operations

AddChoicePointView (pChoicePoint : ChoicePoint) : ChoicePointView

Description

Add a ChoicePointView to the inside of a State Diagram.

Syntax

Set theChoicePointView =
theStateDiagram.AddChoicePointView(pChoicePoint)

theChoicePointView As RoseRT.ChoicePointView

Returns the view object being added to the diagram.

theStateDiagram As RoseRT.StateDiagram

StateDiagram to which the object is being added.

pChoicePoin As RoseRT.ChoicePoint

The ChoicePoint for which a view object is being added.

AddFinalStateView (pFinal : FinalState) : FinalStateView

Description

Add a FinalStateView to the inside of a State Diagram.

Syntax

Set theFinalStateView = theStateDiagram.AddFinalStateView(pFinal)

theFinalStateView As RoseRT.FinalStateView

Returns the view object being added to the diagram.

theStateDiagram As RoseRT.StateDiagram
526 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

StateDiagram to which the object is being added.

pFinal As RoseRT.FinalState

The FinalState for which a view object is being added.

AddStateView (pState : CompositeState) : CompositeStateView

Description

Add a CompositeStateView to the inside of a State Diagram.

Syntax

Set theCompositeStateView = theStateDiagram.AddStateView(pState)

theCompositeStateView As RoseRT.CompositeStateView

Returns the view object being added to the diagram.

theStateDiagram As RoseRT.StateDiagram

StateDiagram to which the object is being added.

pState As RoseRT.CompositeState

The CompositeState for which a view object is being added.

StatePerimeterView

Description

StatePerimeterView contains properties and methods that define the appearance of
the outer state boundary shown in a state diagram.
StatePerimeterView 527

Derived from ViewElement

Public Attributes

PositionBySuperClass : Boolean

Description

Whether the StatePerimeterView inherits its position information from that of its
superclass.

View Property Classes

View Property classes include

■ LineVertex on page 529

➑ Public Operations

GetXPosition () : Integer on page 529

GetYPosition () : Integer on page 530

■ View_FillColor on page 530

➑ Public Attributes

Blue : Integer on page 530

Green : Integer on page 530

Red : Integer on page 531

Transparent : Boolean on page 531

■ View_Font on page 531

➑ Public Attributes

Blue : Integer on page 531

Bold : Boolean on page 531

FaceName : String on page 531

Green : Integer on page 532

Italic : Boolean on page 532

Red : Integer on page 532
528 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Size : Integer on page 532

StrikeThrough : Boolean on page 532

Underline : Boolean on page 532

■ View_LineColor on page 532

➑ Public Attributes

Blue : Integer on page 533

Green : Integer on page 533

Red : Integer on page 533

LineVertex

Description

Represents a point of a line.

Derived from RRTEIObject

Public Operations

GetXPosition () : Integer

Description

Retrieves a vertex' X coordinate.

Syntax

X = theLineVertex.GetXPosition()

X As Integer

The X coordinate of the vertex.

theLineVertex As RoseRT.LineVertex

LineVertex from which to retrieve coordinate.
LineVertex 529

GetYPosition () : Integer

Description

Retrieves a vertex' Y coordinate.

Syntax

Y = theLineVertex.GetYPosition()

Y As Integer

The Y coordinate of the vertex.

theLineVertex As RoseRT.LineVertex

LineVertex from which to retrieve coordinate.

View_FillColor

Description

Specifies the amount of red, green, or blue to use in the fill color for the
ModelElementView object, or whether it is transparent.

Derived from RRTEIObject

Public Attributes

Blue : Integer

Description

Specifies the amount of blue to use in the fill color for the RoseItemView object.

Green : Integer

Description

Specifies the amount of green to use in the fill color for the RoseItemView object.

Red : Integer

Description

Specifies the amount of red to use in the fill color for the RoseItemView object.

Transparent : Boolean

Description

Indicates whether the fill color of the RoseItemView object is transparent.

View_Font

Description

Specifies the amount of color, size, and style of the font to use in the for the
ModelElementView object.

Derived from RRTEIObject

Public Attributes

Blue : Integer

Description

Specifies the amount of blue to use in the text color of a RoseItemView object.

Bold : Boolean

Description

Indicates whether the text’s font style is Bold.

FaceName : String

Description

Specifies the text font name (such as Arial, Courier, etc.) of a RoseItemView object.
View_Font 531

Green : Integer

Description

Specifies the amount of green to use in the text color of a RoseItemView object.

Italic : Boolean

Description

Indicates whether the text’s font style is Italic.

Red : Integer

Description

Specifies the amount of red to use in the fill color for the RoseItemView object.

Size : Integer

Description

Specifies the text point size for a RoseItemView object.

StrikeThrough : Boolean

Description

Indicates whether the text’s font style is Strikethrough.

Underline : Boolean

Description

Indicates whether the text’s font style is Underline.

View_LineColor

Description

Specifies the amount of blue, green, or red to use in the line color for the
ModelElementView object.
532 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

Derived from RRTEIObject

Public Attributes

Blue : Integer

Description

Specifies the amount of blue to use in the line color for the ModelElementView object.

Green : Integer

Description

Specifies the amount of green to use in the line color for the ModelElementView
object.

Red : Integer

Description

Specifies the amount of red to use in the line color for the ModelElementView object.
View_LineColor 533

534 Chapter 3 - Rational Rose RealTime Extensibility Interface Reference

4BasicScript Reference
Contents

■ Special Characters on page 536
■ Directives on page 573
■ Functions on page 578
■ Keywords on page 851
■ Methods on page 857
■ Operators on page 888
■ Properties on page 913
■ Statements on page 949
■ Optional Parameters on page 1061
■ Arrays (topic) on page 1198
■ Dialogs (topic) on page 1219
■ Error Handling (topic) on page 1220
■ Expression Evaluation (topic) on page 1221
■ Keywords (topic) on page 1223
■ Line Numbers (topic) on page 1225
■ Literals (topic) on page 1225
■ Named Parameters (topic) on page 1227
■ Objects (topic) on page 1228
■ Operator Precedence (topic) on page 1231
■ Operator Precision (topic) on page 1232
■ User-Defined Types (topic) on page 1232
535

Special Characters

This chapter describes all of BasicScript reserved words available to you when
creating your scripts.

' (keyword)

Syntax
'text

Description

Causes the compiler to skip all characters between this character and the end of the
current line.

Comments

This is very useful for commenting your code to make it more readable.

Example
Sub Main()

'This whole line is treated as a comment.

i$="Strings" 'This is a valid assignment with a comment.

This line will cause an error (the apostrophe is missing).

End Sub

See Also

Rem (statement)

Comments (topic)

Platform(s)

All.
536 Chapter 4 - BasicScript Reference

- (operator)

Syntax 1
expression1 - expression2

Syntax 2
-expression

Description

Returns the difference between expression1 and expression2 or, in the second syntax,
returns the negation of expression.

Comments

Syntax 1

The type of the result is the same as that of the most precise expression, with the
following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions are Variant, then the following additional rules
apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

■ If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

■ If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

If one expression is and the other expression is then the result type is

Long Single Double

Boolean Boolean Integer
Special Characters 537

Syntax 2

If expression is numeric, then the type of the result is the same type as expression,
with the following exception:

■ If expression is Boolean, then the result is Integer.

Note: In 2's complement arithmetic, unary minus may result in an overflow with
Integer and Long variables when the value of expression is the largest negative
number representable for that data type. For example, the following generates an
overflow error:

Sub Main()

Dim a As Integer

a = -32768

a = -a'Generates overflow here.

End Sub

When negating variants, overflow will never occur because the result will be
automatically promoted: integers to longs and longs to doubles.

Example
'This example assigns values to two numeric variables and

'their difference to a third variable, then displays the

'result.

Sub Main()

i% = 100

j# = 22.55

k# = i% - j#

MsgBox "The difference is: " & k#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.
538 Chapter 4 - BasicScript Reference

#Const (directive)

Syntax
#Const constname = expression

Description

Defines a preprocessor constant for use in the #If...Then...#Else statement.

Comments

Internally, all preprocessor constants are of type Variant. Thus, the expression
parameter can be any type.

Variables defined using #Const can only be used within the #If...Then...#Else
statement and other #Const statements. Use the Const statement to define constants
that can be used within your code.

Example
#Const SUBPLATFORM = "NT"

#Const MANUFACTURER = "Windows"

#Const TYPE = "Workstation"

#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE

Sub Main()

#If PLATFORM = "Windows NT Workstation" Then

MsgBox "Running under Windows NT Workstation"

#End If

End Sub

See Also

#If...Then...#Else (directive)

Const (statement)

Platform(s)

All.
Special Characters 539

#If...Then...#Else (directive)

Syntax
#If expression Then

[statements]

[#ElseIf expression Then

[statements]]

[#Else

[statements]]

#End If

Description

Causes the compiler to include or exclude sections of code based on conditions.

Comments

The expression represents any valid BasicScript Boolean expression evaluating to True
of False. The expression may consist of literals, operators, constants defined with
#Const, and any of the following predefined constants:

Constant Value

AIX True if development environment is AIX.

HPUX True if development environment is HPUX.

Irix True if development environment is Irix.

LINUX True if development environment is LINUX.

Macintosh True if development environment is Macintosh (68K or PowerPC).

MacPPC True if development environment is PowerMac.

Mac68K True if development environment is 68K Macintosh.

Netware True if development environment is NetWare.

OS2 True if development environment is OS/2.

OSF1 True if development environment is OSF/1.

SCO True if development environment is SCO.

Solaris True if development environment is Solaris.
540 Chapter 4 - BasicScript Reference

The expression can use any of the following operators: +, -, *, /, \, ^, + (unary), -
(unary), Mod, &, =, <>, >=, >, <=, <, And, Or, Xor, Imp, Eqv.

If the expression evaluates to a numeric value, then it is considered True if non-zero,
False if zero. If the expression evaluates to String not convertible to a number or
evaluates to Null, then a “Type mismatch” error is generated.

Text comparisons within expression are always case-insensitive, regardless of the
Option Compare setting

You can define your own constants using the #Const directive, and test for these
constants within the expression parameter as shown below:

#Const VERSION = 2

Sub Main

#If VERSION = 1 Then

directory$ = "\apps\widget"

#ElseIf VERSION = 2 Then

directory$ = "\apps\widget32"

#Else

MsgBox "Unknown version."

#End If

End Sub

SunOS True if development environment is SunOS.

Ultrix True if development environment is Ultrix.

UNIX True if development environment is any UNIX platform.

UnixWare True if development environment is UnixWare.

VMS True if development environment is VMS.

Win16 True if development environment is 16-bit Windows.

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True

Constant Value
Special Characters 541

Any constant not already defined evaluates to Empty.

A common use of the #If...Then...#Else directive is to optionally include debugging
statements in your code. The following example shows how debugging code can be
conditionally included to check parameters to a function:

#Const DEBUG = 1

Sub ChangeFormat(NewFormat As Integer,StatusText As String)

#If DEBUG = 1 Then

If NewFormat <> 1 And NewFormat <> 2 Then

MsgBox "Parameter ""NewFormat"" is invalid."

Exit Sub

End If

If Len(StatusText) > 78 Then

MsgBox "Parameter ""StatusText"" is too long."

Exit Sub

End If

#End If

Rem Change the format here...

End Sub

Excluded section are not compiled by BasicScript, allowing you to exclude sections of
code that has errors or doesn’t even represent valid BasicScript syntax. For example,
the following code uses the #If...Then...#Else statement to include a multi-line
comment:

Sub Main

#If 0

The following section of code displays

a dialog box containing a message and an

OK button.

#End If

MsgBox "Hello, world."

End Sub

In the above example, since the expression #If 0 never evaluates to True, the text
between that and the matching #End If will never be compiled.

Example
'The following example calls an external routine. Calling

'External routines is very specific to the platform--thus,
542 Chapter 4 - BasicScript Reference

'we have different code for each platform.

#If Win16 Then

Declare Sub GetWindowsDirectory Lib "KERNEL" (ByVal _

DirName As String,ByVal MaxLen As Integer)

#ElseIf Win32 Then

Declare Sub GetWindowsDirectory Lib "KERNEL32" Alias _

"GetWindowsDirectoryA" (ByVal DirName As String,ByVal _

MaxLen As Long)

#End If

Sub Main()

Dim DirName As String * 256

GetWindowsDirectory DirName,len(DirName)

MsgBox "Windows directory = " & DirName

End Sub

See Also

#Const (directive)

Platform(s)

All.

& (operator)

Syntax
expression1 & expression2

Description

Returns the concatenation of expression1 and expression2.

Comments

If both expressions are strings, then the type of the result is String. Otherwise, the
type of the result is a String variant.
Special Characters 543

When nonstring expressions are encountered, each expression is converted to a String
variant. If both expressions are Null, then a Null variant is returned. If only one
expression is Null, then it is treated as a zero-length string. Empty variants are also
treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of &. The difference is
that + attempts addition when used with at least one numeric expression, whereas &
always concatenates.

Example
'This example assigns a concatenated string to variable s$ and

'a string to s2$, then concatenates the two variables and

'displays the result in a dialog box.

Sub Main()

s$ = "This string" & " is concatenated"

s2$ = " with the & operator."

MsgBox s$ & s2$

End Sub

See Also

+ (operator), Operator Precedence (topic)

Platform(s)

All.

() (keyword)

Syntax 1
...(expression)...

Syntax 2
...,(parameter),...Description
544 Chapter 4 - BasicScript Reference

Comments

Parentheses within Expressions

Parentheses override the normal precedence order of BasicScript operators, forcing a
subexpression to be evaluated before other parts of the expression. For example, the
use of parentheses in the following expressions causes different results:

Use of parentheses can make your code easier to read, removing any ambiguity in
complicated expressions.

Parentheses Used in Parameter Passing

Parentheses can also be used when passing parameters to functions or subroutines to
force a given parameter to be passed by value, as shown below:

Enclosing parameters within parentheses can be misleading. For example, the
following statement appears to be calling a function called ShowForm without
assigning the result:

ShowForm(i)

The above statement actually calls a subroutine called ShowForm, passing it the
variable i by value. It may be clearer to use the ByVal keyword in this case, which
accomplishes the same thing:

ShowForm ByVal i

Note: The result of an expression is always passed by value.

Example
'This example uses parentheses to clarify an expression.

Sub Main()

bill = False

dave = True

i = 1 + 2 * 3 'Assigns 7.

i = (1 + 2) * 3 'Assigns 9.

ShowForm i 'Pass i by reference.

ShowForm (i) 'Pass i by value.
Special Characters 545

jim = True

If (dave And bill) Or (jim And bill) Then

MsgBox "The required parties for the meeting are here."

Else

MsgBox "Someone is late again!"

End If

End Sub

See Also

ByVal (keyword)

Operator Precedence (topic)

Platform(s)

All.

* (operator)

Syntax
expression1 * expression2

Description

Returns the product of expression1 and expression2.

Comments

The result is the same type as the most precise expression, with the following
exceptions:

When the * operator is used with variants, the following additional rules apply:

■ Empty is treated as 0.

If one expression is and the other expression is then the result type is

Single Long Double

Boolean Boolean Integer

Date Date Double
546 Chapter 4 - BasicScript Reference

■ If the type of the result is an Integer variant that overflows, then the result is
automatically promoted to a Long variant.

■ If the type of the result is a Single, Long, or Date variant that overflows, then the
result is automatically promoted to a Double variant.

■ If either expression is Null, then the result is Null.

Example
'This example assigns values to two variables and their product

'to a third variable, then displays the product of s# * t#.

Sub Main()

s# = 123.55

t# = 2.55

u# = s# * t#

MsgBox s# & " * " & t# & " = " & s# * t#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.

. (keyword)

Syntax 1
object.property

Syntax 2
structure.member

Description

Separates an object from a property or a structure from a structure member.

Examples
'This example uses the period to separate an object from a

'property.
Special Characters 547

Sub Main()

MsgBox Clipboard.GetText()

End Sub

'This example uses the period to separate a structure from a

'member.

Type Rect

left As Integer

top As Integer

right As Integer

bottom As Integer

End Type

Sub Main()

Dim r As Rect

r.left = 10

r.right = 12

End Sub

See Also

Objects (topic)

Platform(s)

All.

/ (operator)

Syntax
expression1 / expression2

Description

Returns the quotient of expression1 and expression2.
548 Chapter 4 - BasicScript Reference

Comments

The type of the result is Double, with the following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions is Variant, then the following additional rules apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

■ If both expressions are either Integer or Single variants and the result overflows,
then the result is automatically promoted to a Double variant.

Example
'This example assigns values to two variables and their

'quotient to a third variable, then displays the result.

Sub Main()

i% = 100

j# = 22.55

k# = i% / j#

MsgBox "The quotient of i/j is: " & k#

End Sub

See Also

\ (operator)

Operator Precedence (topic)

Platform(s)

All.

If one expression is and the other expression is then the result type is

Integer Integer Single

Single Single Single

Boolean Boolean Single
Special Characters 549

\ (operator)

Syntax
expression1 \ expression2

Description

Returns the integer division of expression1 and expression2.

Comments

Before the integer division is performed, each expression is converted to the data type
of the most precise expression. If the type of the expressions is either Single, Double,
Date, or Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

Example
'This example assigns the quotient of two literals to a variable

'and displays the result.

Sub Main()

s% = 100.99 \ 2.6

MsgBox "Integer division of 100.99\2.6 is: " & s%

End Sub

See Also

/ (operator)

Operator Precedence (topic)

Platform(s)

All.

^ (operator)

Syntax
expression1 ^ expression2
550 Chapter 4 - BasicScript Reference

Description

Returns expression1 raised to the power specified in expression2.

Comments

The following are special cases:

The type of the result is always Double, except with Boolean expressions, in which
case the result is Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a
fractional result.

Example
Sub Main()

s# = 2 ^ 5 Returns 2 to the 5th power.

r# = 16 ^ .5 'Returns the square root of 16.

MsgBox "2 to the 5th power is: " & s#

MsgBox "The square root of 16 is: " & r#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.

_ (keyword)

Syntax
text1 _

Special Case
Value

n^01

0^-nUndefined 0^+n0

1^n1
Special Characters 551

text2

Description

Line-continuation character, which allows you to split a single BasicScript statement
onto more than one line.

Comments

The line-continuation character cannot be used within strings and must be preceded
by white space (either a space or a tab).

The line-continuation character can be followed by a comment, as shown below:

i = 5 + 6 & _ 'Continue on the next line.

"Hello"

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main()

'The line-continuation operator is useful when concatenating

'long strings.

message = "This line is a line of text that" + crlf + _

 + "extends beyond the borders of the editor" + crlf + _

 + "so it is split into multiple lines"

'It is also useful for separating and continuing long

'calculation lines.

b# = .124

a# = .223

s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00

MsgBox message & crlf & "The value of s# is: " & s#

End Sub

Platform(s)

All.
552 Chapter 4 - BasicScript Reference

+ (operator)

Syntax
expression1 + expression2

Description

Adds or concatenates two expressions.

Comments

Addition operates differently depending on the type of the two expressions:

When using + to concatenate two variants, the result depends on the types of each
variant at runtime. You can remove any ambiguity by using the & operator.

Numeric Add

A numeric add is performed when both expressions are numeric (i.e., not variant or
string). The result is the same type as the most precise expression, with the following
exceptions:

If one expression
is

And the other
expression is

then

Numeric Numeric Perform a numeric add (see below).

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a String variant.

Variant Numeric Perform a variant add (see below).

Empty variant Empty variant Return an Integer variant, value 0.

Empty variant Any data type Return the non-Empty operand unchanged.

Null variant Any data type Return Null.

Variant Variant Add if either is numeric; otherwise, concatenate.

If one expression is and the other expression is then the result type is

Single Long Double
Special Characters 553

A runtime error is generated if the result overflows its legal range.

Variant Add

If both expressions are variants, or one expression is Numeric and the other
expression is Variant, then a variant add is performed. The rules for variant add are
the same as those for normal numeric add, with the following exceptions:

■ If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

■ If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

Example
'This example assigns string and numeric variable values and

'then uses the + operator to concatenate the strings and form

'the sums of numeric variables.

Sub Main()

i$ = "Concatenation" + " is fun!"

j% = 120 + 5 'Addition of numeric literals

k# = j% + 2.7 'Addition of numeric variable

MsgBox "This concatenation becomes: '" i$ + _

Str(j%) + Str(k#) & "'"

End Sub

See Also

& (operator)

Operator Precedence (topic)

Platform(s)

All.

< (operator)

See Comparison Operators (topic).

Boolean Boolean Integer

If one expression is and the other expression is then the result type is
554 Chapter 4 - BasicScript Reference

<= (operator)

See Comparison Operators (topic).

<> (operator)

See Comparison Operators (topic).

= (statement)

Syntax
variable = expression

Description

Assigns the result of an expression to a variable.

Comments

When assigning expressions to variables, internal type conversions are performed
automatically between any two numeric quantities. Thus, you can freely assign
numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting from larger to smaller types. This occurs
when the larger type contains a numeric quantity that cannot be represented by the
smaller type. For example, the following code will produce a runtime error:

Dim amount As Long

Dim quantity As Integer

amount = 400123 'Assign a value out of range for int.

quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

The assignment operator (=) cannot be used to assign objects. Use the Set statement
instead.

Example
Sub Main()

a$ = "This is a string"

b% = 100

c# = 1213.3443

MsgBox a$ & "," & b% & "," & c#

End Sub
Special Characters 555

See Also

Let (statement

Operator Precedence (topic)

Set (statement)

Expression Evaluation (topic)

Platform(s)

All.

= (operator)

See Comparison Operators (topic).

> (operator)

See Comparison Operators (topic).

>= (operator)

See Comparison Operators (topic).

Data Types

Any (data type)

Description

Used with the Declare statement to indicate that type checking is not to be performed
with a given argument.

Comments

Given the following declaration:

Declare Sub Foo Lib "FOO.DLL" (a As Any)

the following calls are valid:

Foo 10

Foo "Hello, world."

Example
'This example calls the FindWindow to determine whether Program
556 Chapter 4 - BasicScript Reference

'Manager is running. This example will only run under Windows and

'Win32 platforms.

'This example uses the Any keyword to pass a NULL pointer, which

'is accepted by the FindWindow function.

Declare Function FindWindow16 Lib "user" Alias "FindWindow" _

(ByVal Class As Any,ByVal Title As Any) As Integer

Declare Function FindWindow32 Lib "user32" Alias "FindWindowA" _

(ByVal Class As Any,ByVal Title As Any) As Long

Sub Main()

Dim hWnd As Variant

If Basic.Os = ebWin16 Then

hWnd = FindWindow16("PROGMAN",0&)

ElseIf Basic.Os = ebWin32 Then

hWnd = FindWindow32("PROGMAN",0&)

Else

hWnd = 0

End If

If hWnd <> 0 Then

MsgBox "Program Manager is running, handle = " & hWnd

End If

End Sub

See Also

Declare (statement).

Platform(s)

All.

Boolean (data type)

Syntax
Boolean

Description

A data type capable of representing the logical values True and False.
Special Characters 557

Comments

Boolean variables are used to hold a binary value—either True or False. Variables can
be declared as Boolean using the Dim, Public, or Private statement.

Variants can hold Boolean values when assigned the results of comparisons or the
constants True or False.

Internally, a Boolean variable is a two-byte value holding –1 (for True) or 0 (for False).

Any type of data can be assigned to Boolean variables. When assigning, non-0 values
are converted to True, and 0 values are converted to False. When converting strings to
Boolean, BasicScript recognizes localized versions of the strings “True” and “False”,
converting these to the True and False respectively

When appearing as a structure member, Boolean members require two bytes of
storage.

When used within binary or random files, two bytes of storage are required.

When passed to external routines, Boolean values are sign-extended to the size of an
integer on that platform (either 16 or 32 bits) before pushing onto the stack.

There is no type-declaration character for Boolean variables.

Boolean variables that have not yet been assigned are given an initial value of False.

See Also
■ Currency (data type)

■ Date (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)

■ DefType (statement)

■ CBool (function)
558 Chapter 4 - BasicScript Reference

Platform(s)

All.

Currency (data type)

Syntax
Currency

Description

A data type used to declare variables capable of holding fixed-point numbers with 15
digits to the left of the decimal point and 4 digits to the right.

Comments

Currency variables are used to hold numbers within the following range:

-922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving
money.

The type-declaration character for Currency is @.

Storage

Internally, currency values are 8-byte integers scaled by 10000. Thus, when appearing
within a structure, currency values require 8 bytes of storage. When used with binary
or random files, 8 bytes of storage are required.

See Also
■ Date (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)
Special Characters 559

■ Boolean (data type)

■ DefType (statement)

■ CCur (function)

Platform(s)

All.

Date (data type)

Syntax
Date

Description

A data type capable of holding date and time values.

Comments

Date variables are used to hold dates within the following range:

January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59

-6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the
number of days since December 31, 1899, and the fractional part holds the number of
seconds as a fraction of the day. For example, the number 32874.5 represents January
1, 1990 at 12:00:00.

When appearing within a structure, dates require 8 bytes of storage. Similarly, when
used with binary or random files, 8 bytes of storage are required.

There is no type-declaration character for Date.

Date variables that haven't been assigned are given an initial value of 0 (i.e., December
31, 1899).

Date Literals

Literal dates are specified using number signs, as shown below:

Dim d As Date

d = #January 1, 1990#
560 Chapter 4 - BasicScript Reference

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs
at runtime, using the current country settings. This is a problem when interpreting
dates such as 1/2/1990. If the date format is M/D/Y, then this date is January 2, 1990.
If the date format is D/M/Y, then this date is February 1, 1990. To remove any
ambiguity when interpreting dates, use the universal date format:

date_variable = #YY/MM/DD HH:MM:SS#

The following example specifies the date June 3, 1965, using the universal date format:

Dim d As Date

d = #1965/6/3 10:23:45#

See Also
■ Currency (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)

■ Boolean (data type)

■ DefType (statement)

■ CDate, CVDate (functions)

Platform(s)

All.

Double (data type)

Syntax
Double

Description

A data type used to declare variables capable of holding real numbers with 15–16
digits of precision.
Special Characters 561

Comment

Double variables are used to hold numbers within the following ranges:

The type-declaration character for Double is #.

Storage

Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a
structure, doubles require 8 bytes of storage. When used with binary or random files,
8 bytes of storage are required.

Each Double consists of the following:

■ A 1-bit sign

■ An 11-bit exponent

■ A 53-bit significand (mantissa)

See Also
■ Currency (data type)

■ Date (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)

■ Boolean (data type)

■ DefType (statement)

■ CDbl (function)

Sign Range

Negative –1.797693134862315E308 <= double <= –4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308
562 Chapter 4 - BasicScript Reference

Platform(s)

All.

Integer (data type)

Syntax
Integer

Description

A data type used to declare whole numbers with up to four digits of precision.

Comments

Integer variables are used to hold numbers within the following range:

–32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure,
integers require 2 bytes of storage. When used with binary or random files, 2 bytes of
storage are required.

When passed to external routines, Integer values are sign-extended to the size of an
integer on that platform (either 16 or 32 bits) before pushing onto the stack.

The type-declaration character for Integer is %.

See Also
■ Currency (data type)

■ Date (data type)

■ Double (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)

■ Boolean (data type)

■ DefType (statement)

■ CInt (function)
Special Characters 563

Platform(s)

All.

Object (data type)

Syntax
Object

Description

A data type used to declare OLE Automation variables.

Comments

The Object type is used to declare variables that reference objects within an
application using OLE Automation.

Each object is a 4-byte (32-bit) value that references the object internally. The value 0
(or Nothing) indicates that the variable does not reference a valid object, as is the case
when the object has not yet been given a value. Accessing properties or methods of
such Object variables generates a runtime error.

Using Objects

Object variables are declared using the Dim, Public, or Private statement:

Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object)
using the Set statement:

Set MyApp = CreateObject("phantom.application")

Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:

MyApp.Color = 10

i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:

MyApp.Open "sample.txt"

isSuccess = MyApp.Save("new.txt",15)

Automatic Destruction

BasicScript keeps track of the number of variables that reference a given object so that
the object can be destroyed when there are no longer any references to it:
564 Chapter 4 - BasicScript Reference

Sub Main() 'Number of references
to object

Dim a As Object '0

Dim b As Object '0

Set a = CreateObject("phantom.application)
'1

Set b = a '2

Set a = Nothing '1

End Sub '0bject destroyed

Note: An OLE Automation object is instructed by BasicScript to destroy itself when
no variables reference that object. However, it is the responsibility of the OLE
Automation server to destroy it. Some servers do not destroy their objects, usually
when the objects have a visual component and can be destroyed manually by the user.

See Also
■ Currency (data type)

■ Date (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Single (data type)

■ String (data type)

■ Variant (data type)

■ Boolean (data type)

■ DefType (statement)

Platform(s)

Windows, Win32, Macintosh.

Single (data type)

Syntax
Single
Special Characters 565

Description

A data type used to declare variables capable of holding real numbers with up to
seven digits of precision.

Comments

Single variables are used to hold numbers within the following ranges:

The type-declaration character for Single is !.

Storage

Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing
within a structure, singles require 4 bytes of storage. When used with binary or
random files, 4 bytes of storage is required.

Each single consists of the following

■ A 1-bit sign

■ An 8-bit exponent

■ A 24-bit mantissa

See Also

Currency (data type)

Date (data type)

Double (data type)

Integer (data type)

Long (data type)

Object (data type)

String (data type)

Variant (data type)

Boolean (data type)

Sign Range

Negative -3.402823E38 <= single <= -1.401298E-45

Positive 1.401298E-45 <= single <= 3.402823E38
566 Chapter 4 - BasicScript Reference

DefType (statement)

CSng (function)

Platform(s)

All.

String (data type)

Syntax
String

Description

A data type capable of holding a number of characters.

Comments

Strings are used to hold sequences of characters, each character having a value
between 0 and 255. Strings can be any length up to a maximum length of 32767
characters.

Strings can contain embedded nulls, as shown in the following example:

s$ = "Hello" + Chr$(0) + "there"

The length of a string can be determined using the Len function. This function returns
the number of characters that have been stored in the string, including unprintable
characters.

The type-declaration character for String is $.

String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required
for storage of the string depends on the size of its content. The following BasicScript
statements declare a variable-length string and assign it a value of length 5:

Dim s As String

s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration:

Dim s As String * 20

s = "Hello" String length = 20 with spaces to

'end of string.
Special Characters 567

When a string expression is assigned to a fixed-length string, the following rules
apply:

■ If the string expression is less than the length of the fixed-length string, then the
fixed-length string is padded with spaces up to its declared length.

■ If the string expression is greater than the length of the fixed-length string, then the
string expression is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as
when passing structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as
described in the following table:

See Also
■ Currency (data type)

■ Date (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ Variant (data type)

■ Boolean (data type)

■ DefType (statement)

■ CStr (function)

Strings
Declared

Are Stored

In structures In the same data area as that of the structure. Local structures are on the stack;
public structures are stored in the public data space; and private structures are
stored in the private data space. Local structures should be used sparingly as
stack space is limited.

In arrays In the global string space along with all the other array elements.

In local
routines

On the stack. The stack is limited in size, so local fixed-length strings should be
used sparingly.
568 Chapter 4 - BasicScript Reference

Platform(s)

All.

Variant (data type)

Syntax
Variant

Description

A data type used to declare variables that can hold one of many different types of
data.

Comments

During a variant's existence, the type of data contained within it can change. Variants
can contain any of the following types of data:

There is no type-declaration character for variants.

The number of significant digits representable by a variant depends on the type of
data contained within the variant.

Variant is the default data type for BasicScript. If a variable is not explicitly declared
with Dim, Public, or Private, and there is no type-declaration character (i.e., #, @, !, %,
or &), then the variable is assumed to be Variant.

Type of Data BasicScript Data Types

Numeric Integer, Long, Single, Double, Boolean, Date, Currency.

Logical Boolean

Dates and times Date.

String String.

Object Object.

No valid data A variant with no valid data is considered Null.

Uninitialized An uninitialized variant is considered Empty.
Special Characters 569

Determining the Subtype of a Variant

The following functions are used to query the type of data contained within a variant:

Assigning to Variants

Before a Variant has been assigned a value, it is considered empty. Thus, immediately
after declaration, the VarType function will return ebEmpty. An uninitialized variant
is 0 when used in numeric expressions and is a zero-length string when used within
string expressions.

A Variant is Empty only after declaration and before assigning it a value. The only
way for a Variant to become Empty after having received a value is for that variant to
be assigned to another Variant containing Empty, for it to be assigned explicitly to the
constant Empty, or for it to be erased using the Erase statement.

When a variant is assigned a value, it is also assigned that value's type. Thus, in all
subsequent operations involving that variant, the variant will behave like the type of
data it contains.

Operations on Variants

Normally, a Variant behaves just like the data it contains. One exception to this rule is
that, in arithmetic operations, variants are automatically promoted when an overflow
occurs. Consider the following statements:

Dim a As Integer,b As Integer,c As Integer

Function Description

VarType Returns a number representing the type of data contained within the variant.

IsNumeric Returns True if a variant contains numeric data. The following are considered
numeric:Integer, Long, Single, Double, Date, Boolean, CurrencyIf a
variant contains a string, this function returns True if the string can be
converted to a number.If a variant contains an Object whose default property
is numeric, then IsNumeric returns True.

IsObject Returns True if a variant contains an object.

IsNull Returns True if a variant contains no valid data.

IsEmpty Returns True if a variant is uninitialized.

IsDate Returns True if a variant contains a date. If the variant contains a string, then
this function returns True if the string can be converted to a date. If the variant
contains an Object, then this function returns True if the default property of
that object can be converted to a date.
570 Chapter 4 - BasicScript Reference

Dim x As Variant,y As Variant,z As Variant

a% = 32767

b% = 1

c% = a% + b% 'This will overflow.

x = 32767

y = 1

z = x + y 'z becomes a Long because of Integer
overflow.

In the above example, the addition involving Integer variables overflows because the
result (32768) overflows the legal range for integers. With Variant variables, on the
other hand, the addition operator recognizes the overflow and automatically
promotes the result to a Long.

Adding Variants

The + operator is defined as performing two functions: when passed strings, it
concatenates them; when passed numbers, it adds the numbers.

With variants, the rules are complicated because the types of the variants are not
known until execution time. If you use +, you may unintentionally perform the wrong
operation.

It is recommended that you use the & operator if you intend to concatenate two
String variants. This guarantees that string concatenation will be performed and not
addition.

Variants That Contain No Data

A Variant can be set to a special value indicating that it contains no valid data by
assigning the Variant to Null:

Dim a As Variant

a = Null

The only way that a Variant becomes Null is if you assign it as shown above.

The Null value can be useful for catching errors since its value propagates through an
expression.

Variant Storage

Variants require 16 bytes of storage internally:

■ A 2-byte type

■ A 2-byte extended type for data objects
Special Characters 571

■ 4 bytes of padding for alignment

■ An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not write 16
bytes. With variants, a 2-byte type is written, followed by the data (2 bytes for Integer
and so on).

Disadvantages of Variants

The following list describes some disadvantages of variants:

1 Using variants is slower than using the other fundamental data types (i.e., Integer,
Long, Single, Double, Date, Object, String, Currency, and Boolean). Each
operation involving a Variant requires examination of the variant's type.

2 Variants require more storage than other data types (16 bytes as opposed to 8 bytes
for a Double, 2 bytes for an Integer, and so on).

3 Unpredictable behavior. You may write code to expect an Integer variant. At
runtime, the variant may be automatically promoted to a Long variant, causing
your code to break.

Passing Nonvariant Data to Routines Taking Variants

Passing nonvariant data to a routine that is declared to receive a variant by reference
prevents that variant from changing type within that routine. For example:

Sub Foo(v As Variant)

v = 50 'OK.

v = "Hello, world." 'Get a type-mismatch
error here!

End Sub

Sub Main()

Dim i As Integer

Foo i 'Pass an integer by
reference.

End Sub

In the above example, since an Integer is passed by reference (meaning that the caller
can change the original value of the Integer), the caller must ensure that no attempt is
made to change the variant's type.

Passing Variants to Routines Taking Nonvariants

Variant variables cannot be passed to routines that accept nonvariant data by
reference, as demonstrated in the following example:
572 Chapter 4 - BasicScript Reference

Sub Foo(i as Integer)

End Sub

Sub Main()

Dim a As Variant

Foo a 'Compiler gives type-mismatch error
here.

End Sub

See Also
■ Currency (data type)

■ Date (data type)

■ Double (data type)

■ Integer (data type)

■ Long (data type)

■ Object (data type)

■ Single (data type)

■ String (data type)

■ Boolean (data type)

■ DefType (statement)

■ CVar (function)

■ VarType (function)

Platform(s)

All.

Directives

#Const (directive)

Syntax
#Const constname = expression
Directives 573

Description

Defines a preprocessor constant for use in the #If...Then...#Else statement.

Comments

Internally, all preprocessor constants are of type Variant. Thus, the expression
parameter can be any type.

Variables defined using #Const can only be used within the #If...Then...#Else
statement and other #Const statements. Use the Const statement to define constants
that can be used within your code.

Example
#Const SUBPLATFORM = "NT"

#Const MANUFACTURER = "Windows"

#Const TYPE = "Workstation"

#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE

Sub Main()

#If PLATFORM = "Windows NT Workstation" Then

MsgBox "Running under Windows NT Workstation"

#End If

End Sub

See Also
■ #If...Then...#Else (directive)

■ Const (statement)

Platform(s)

All.

#If...Then...#Else (directive)

Syntax
#If expression Then

[statements]

[#ElseIf expression Then

[statements]]

[#Else
574 Chapter 4 - BasicScript Reference

[statements]]

#End If

Description

Causes the compiler to include or exclude sections of code based on conditions.

Comments

The expression represents any valid BasicScript Boolean expression evaluating to True
of False. The expression may consist of literals, operators, constants defined with
#Const, and any of the following predefined constants:

Constant Value

AIX True if development environment is AIX.

HPUX True if development environment is HPUX.

Irix True if development environment is Irix.

LINUX True if development environment is LINUX.

Macintosh True if development environment is Macintosh (68K or
PowerPC).

MacPPC True if development environment is PowerMac.

Mac68K True if development environment is 68K Macintosh.

Netware True if development environment is NetWare.

OS2 True if development environment is OS/2.

OSF1 True if development environment is OSF/1.

SCO True if development environment is SCO.

Solaris True if development environment is Solaris.

SunOS True if development environment is SunOS.

Ultrix True if development environment is Ultrix.

UNIX True if development environment is any UNIX
platform.

UnixWare True if development environment is UnixWare.

VMS True if development environment is VMS.

Win16 True if development environment is 16-bit Windows.
Directives 575

The expression can use any of the following operators: +, -, *, /, \, ^, + (unary), -
(unary), Mod, &, =, <>, >=, >, <=, <, And, Or, Xor, Imp, Eqv.

If the expression evaluates to a numeric value, then it is considered True if non-zero,
False if zero. If the expression evaluates to String not convertible to a number or
evaluates to Null, then a “Type mismatch” error is generated.

Text comparisons within expression are always case-insensitive, regardless of the
Option Compare setting

You can define your own constants using the #Const directive, and test for these
constants within the expression parameter as shown below:

#Const VERSION = 2

Sub Main

#If VERSION = 1 Then

directory$ = "\apps\widget"

#ElseIf VERSION = 2 Then

directory$ = "\apps\widget32"

#Else

MsgBox "Unknown version."

#End If

End Sub

Any constant not already defined evaluates to Empty.

A common use of the #If...Then...#Else directive is to optionally include debugging
statements in your code. The following example shows how debugging code can be
conditionally included to check parameters to a function:

#Const DEBUG = 1

Sub ChangeFormat(NewFormat As Integer,StatusText As String)

#If DEBUG = 1 Then

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True

Constant Value
576 Chapter 4 - BasicScript Reference

If NewFormat <> 1 And NewFormat <> 2 Then

MsgBox "Parameter ""NewFormat"" is
invalid."

Exit Sub

End If

If Len(StatusText) > 78 Then

MsgBox "Parameter ""StatusText"" is too
long."

Exit Sub

End If

#End If

Rem Change the format here...

End Sub

Excluded section are not compiled by BasicScript, allowing you to exclude sections of
code that has errors or doesn’t even represent valid BasicScript syntax. For example,
the following code uses the #If...Then...#Else statement to include a multi-line
comment:

Sub Main

#If 0

The following section of code displays

a dialog box containing a message and an

OK button.

#End If

MsgBox "Hello, world."

End Sub

In the above example, since the expression #If 0 never evaluates to True, the text
between that and the matching #End If will never be compiled.

Example
'The following example calls an external routine. Calling

'External routines is very specific to the platform--thus,

'we have different code for each platform.

#If Win16 Then

Declare Sub GetWindowsDirectory Lib "KERNEL" (ByVal _

DirName As String,ByVal MaxLen As Integer)

#ElseIf Win32 Then

Declare Sub GetWindowsDirectory Lib "KERNEL32" Alias _
Directives 577

"GetWindowsDirectoryA" (ByVal DirName As String,ByVal _

MaxLen As Long)

#End If

Sub Main()

Dim DirName As String * 256

GetWindowsDirectory DirName,len(DirName)

MsgBox "Windows directory = " & DirName

End Sub

See Also

#Const (directive)

Platform(s)

All.

Functions

Abs (function)

Syntax
Abs(expression)

Description

Returns the absolute value of expression.

Comments

If expression is Null, then Null is returned. Empty is treated as 0.

The type of the result is the same as that of expression, with the following exceptions:

■ If expression is an Integer that overflows its legal range, then the result is returned
as a Long. This only occurs with the largest negative Integer:

Dim a As Variant

Dim i As Integer

i = -32768

a = Abs(i) 'Result is a Long.
578 Chapter 4 - BasicScript Reference

i = Abs(i) 'Overflow!

■ If expression is a Long that overflows its legal range, then the result is returned as
a Double. This only occurs with the largest negative Long:

Dim a As Variant

Dim l As Long

l = -2147483648

a = Abs(l) 'Result is a Double.

l = Abs(l) 'Overflow!

■ If expression is a Currency value that overflows its legal range, an overflow error
is generated.

Example
'This example assigns absolute values to variables of four types

'and displays the result.

Sub Main()

s1% = Abs(-10.55)

s2& = Abs(-10.55)

s3! = Abs(-10.55)

s4# = Abs(-10.55)

MsgBox "The absolute values are: " & s1% & "," & _

s2& & "," & s3! & "," & s4#

End Sub

See Also

Sgn (function)

Platform(s)

All.

AnswerBox (function)

Syntax
AnswerBox(prompt [,[button1] [,[button2] [,[button3] [,[title]
[,helpfile,context]]]]]]])
Functions 579

Description

Displays a dialog box prompting the user for a response and returns an Integer
indicating which button was clicked (1 for the first button, 2 for the second, and so
on).

Comments

The AnswerBox function takes the following parameters:

The width of each button is determined by the width of the widest button.

The AnswerBox function returns 0 if the user selects Cancel.

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can be
any expression convertible to a String.

BasicScript resizes the dialog box to hold the entire contents of
prompt, up to a maximum width of 5/8 of the width of the screen and
a maximum height of 5/8 of the height of the screen. BasicScript
word-wraps any lines too long to fit within the dialog box and
truncates all lines beyond the maximum number of lines that fit in the
dialog box.

You can insert a carriage-return/line-feed character in a string to
cause a line break in your message.

A runtime error is generated if this parameter is Null.

button1 The text for the first button. If omitted, then “OK and “Cancel” are
used. A runtime error is generated if this parameter is Null.

button2 The text for the second button. A runtime error is generated if this
parameter is Null.

button3 The text for the third button. A runtime error is generated if this
parameter is Null.

title String specifying the title of the dialog. If missing, then the default title
is used.

helpfile Name of the file containing context-sensitive help for this dialog. If
this parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's
help. If this parameter is specified, then helpfile must also be
specified.
580 Chapter 4 - BasicScript Reference

If both the helpfile and context parameters are specified, then context-sensitive help
can be invoked using the help key (F1 on most platforms). Invoking help does not
remove the dialog.

Example
'This example displays a dialog box containing three

'buttons. It displays an additional message based on

' which of the three buttons is selected.

Sub Main()

r% = AnswerBox("Copy files?", "Save", "Restore", "Cancel")

Select Case r%

Case 1

MsgBox "Files will be saved."

Case 2

MsgBox "Files will be restored."

Case Else

MsgBox "Operation canceled."

End Select

End Sub

See Also
■ MsgBox (statement)

■ AskBox, AskBox$ (functions)

■ AskPassword, AskPassword$ (functions)

■ InputBox, InputBox$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ SelectBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Functions 581

AppFileName$ (function)

Syntax
AppFileName$([title | taskID])

Description

Returns the filename of the named application.

Comments

The title parameter is a String containing the name of the desired application. If the
title parameter is omitted, then the AppFileName$ function returns the filename of
the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
'This example switches the focus to Excel, then changes the

'current directory to be the same as that of Excel.

Sub Main()

If AppFind$("Microsoft Excel") = "" Then

MsgBox "Excel is not running."

Exit Sub

End If

AppActivate "Microsoft Excel" 'Activate
Excel.

s$ = AppFileName$ 'Find where the
Excel executable is.

d$ = FileParse$(s$,2) 'Get the path
portion of the filename.

MsgBox d$ 'Display
directory name.

End Sub

See Also
■ AppFind, AppFind$ (functions)

Platform(s)

Windows, OS/2.
582 Chapter 4 - BasicScript Reference

Platform Notes: Windows, Win32

For DOS applications launched from Windows, the AppFileName function returns
the name of the DOS program, not winoldap.exe.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppFind, AppFind$ (functions)

Syntax
AppFind[$] (title | taskID)

Description

Returns a String containing the full name of the application matching either title or
taskID.

Comments

The title parameter specifies the title of the application to find. If there is no exact
match, BasicScript will find an application whose title begins with title.

Alternatively, you can specify the ID of the task as returned by the Shell function.

The AppFind$ functions returns a String, whereas the AppFind function returns a
String variant. If the specified application cannot be found, then AppFind$ returns a
zero-length string and AppFind returns Empty. Using AppFind allows you detect
failure when attempting to find an application with no caption (i.e., Empty is returned
instead of a zero-length String).

AppFind$ is generally used to determine whether a given application is running. The
following expression returns True if Microsoft Word is running:

AppFind$("Microsoft Word")
Functions 583

Example
'This example checks to see whether Excel is running before

'activating it.

Sub Main()

If AppFind$("Microsoft Excel") <> "" Then

AppActivate "Microsoft Excel"

Else

MsgBox "Excel is not running."

End If

End Sub

See Also

■ AppFileName$ (function)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, this function returns a String containing the exact text appearing in
the title bar of the active application's main window.

AppGetActive$ (function)

Syntax
AppGetActive$()

Description

Returns a String containing the name of the application.

Comments

If no application is active, the AppGetActive$ function returns a zero-length string.

You can use AppGetActive$ to retrieve the name of the active application. You can
then use this name in calls to routines that require an application name.

Example
Sub Main()
584 Chapter 4 - BasicScript Reference

n$ = AppGetActive$()

AppMinimize n$

End Sub

See Also
■ AppActivate (statement)

■ WinFind (function)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, this function returns a String containing the exact text appearing in
the title bar of the active application's main window.

AppGetState (function)

Syntax
AppGetState[([title | taskID])]

Description

Returns an Integer specifying the state of the specified top-level window.

Comments

The AppGetState function returns any of the following values:

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppGetState function returns the name of the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

If the window is Then AppGetState returnsValue

Maximized ebMinimized1

Minimized ebMaximized2

Restored ebRestored3
Functions 585

Example
'This example saves the state of Program Manager, changes it,

'then restores it to its original setting.

Sub Main()

If AppFind$("Program Manager") = "" Then

MsgBox "Can't find Program Manager."

Exit Sub

End If

AppActivate "Program Manager" 'Activate
ProgMan

state = AppGetState 'Save its
state.

AppMinimize 'Minimize it.

MsgBox "Program Manager is minimized. " & _

"Select OK to restore it."

AppActivate "Program Manager"

AppSetState state 'Restore it.

End Sub

See Also
■ AppMaximize (statement)

■ AppMinimize (statement)

■ AppRestore (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows, the title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the
first application encountered is used.
586 Chapter 4 - BasicScript Reference

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppType (function)

Syntax
AppType [(title | taskID)]

Description

Returns an Integer indicating the executable file type of the named application:

Comments

The title parameter is a String containing the name of the application. If this
parameter is omitted, then the active application is used.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
'This example creates an array of strings containing the names

'of all the running Windows applications. It uses the AppType

'command to determine whether an application is a Windows

'application or a DOS application.

Sub Main()

Dim apps$(),wapps$()

AppList apps 'Retrieve a list of all Windows
and DOS apps.

If ArrayDims(apps) = 0 Then

MsgBox "There are no running applications."

Exit Sub

End If

Returns If the file type is:

ebDos DOS executable

ebWindows Windows executable
Functions 587

'Create an array to hold only the Windows apps.

ReDim wapps$(UBound(apps))

n = 0 'Copy the Windows apps from one array to the
target array.

For i = LBound(apps) to UBound(apps)

If AppType(apps(i)) = ebWindows Then

wapps(n) = apps(i)

n = n + 1

End If

Next i

If n = 0 Then 'Make sure at least one Windows
app was found.

MsgBox "There are no running Windows applications."

Exit Sub

End If

ReDim Preserve wapps(n - 1) 'Resize to
hold the exact number.

'Let the user
pick one.

index% = SelectBox("Apps","Select an application:",wapps)

End Sub

See Also
■ AppFileName$ (function)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows, the title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the
first application encountered is used.
588 Chapter 4 - BasicScript Reference

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

ArrayDims (function)

Syntax
ArrayDims(arrayvariable)

Description

Returns an Integer containing the number of dimensions of a given array.

Comments

This function can be used to determine whether a given array contains any elements
or if the array is initially created with no dimensions and then redimensioned by
another function, such as the FileList function, as shown in the following example.

Example
'This example allocates an empty (null-dimensioned) array; fills

'the array with a list of filenames, which resizes the array;

'then tests the array dimension and displays an appropriate

'message.

Sub Main()

Dim f$()

FileList f$,"c:*.bat"

If ArrayDims(f$) = 0 Then

MsgBox "The array is empty."

Else

MsgBox "The array size is: " & (UBound(f$) - UBound(f$) +
1)

End If

End Sub

See Also
■ LBound (function)
Functions 589

■ UBound (function)

■ Arrays (topic)

Platform(s)

All.

Asc, AscB, AscW (functions)

Syntax
Asc(string)

AscB(string)

AscW(string)

Description

Returns an Integer containing the numeric code for the first character of string.

Comments

This function returns the character value of the first character of string. On single-byte
systems, this function returns a number between 0 and 255, whereas on MBCS
systems, this function returns a number between -32768 and 32767. On wide
platforms, this function returns the MBCS character code after converting the wide
character to MBCS.

To return the value of the first byte of a string, use the AscB function. This function is
used when you need the value of the first byte of a string known to contain byte data
rather than character data. On single-byte systems, the AscB function is identical to
the Asc function.

On platforms where BasicScript uses wide string internally (such as Win32), the AscW
function returns the character value native to that platform. For example, on Win32
platforms, this function returns the UNICODE character code. On single-byte and
MBCS platforms, the AscW function is equivalent to the Asc function.

The following table summarizes the values returned by these functions:

Function String FormatReturns

Asc Value of the first byte of string (between 0 and 255)

MBCSValue of the first character of string (between -32769 and 32767)

WideValue of the first character of string after conversion to MBCS.
590 Chapter 4 - BasicScript Reference

Example
'This example fills an array with the ASCII values of the

'string's components and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

s$ = InputBox("Please enter a string.","Enter String")

If s$ = "" Then End 'Exit if no string
entered.

For i = 1 To Len(s$)

message = message & Asc(Mid$(s$,i,1)) & crlf

Next i

MsgBox "The Asc values of the string are:" & message

End Sub

Platform(s)

All.

AskBox, AskBox$ (functions)

Syntax
AskBox[$](prompt$ [,[default$] [,[title$][,helpfile,context]]])

Description

Displays a dialog box requesting input from the user and returns that input as a
String.

AscB Value of the first byte of string.

MBCSValue of the first byte of string.

WideValue of the first byte of string.

AscW Same as Asc.

MBCSSame as Asc.

WideValue of the wide character native to the operating system.

Function String FormatReturns
Functions 591

Comments

The AskBox/AskBox$ functions take the following parameters:

The AskBox$ function returns a String containing the input typed by the user in the
text box. A zero-length string is returned if the user selects Cancel.

The AskBox function returns a String variant containing the input typed by the user
in the text box. An Empty variant is returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus.

The user can type a maximum of 255 characters into the text box displayed by
AskBox$.

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example
'This example asks the user to enter a filename and then

'displays what he or she has typed.

Sub Main()

s$ = AskBox$("Type in the filename:")

MsgBox "The filename was: " & s$

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog box
is sized to the appropriate width depending on the width of prompt$. A
runtime error is generated if prompt$ is Null.

default$ String containing the initial content of the text box. The user can return the
default by immediately selecting OK. A runtime error is generated if default$
is Null.

title$ String specifying the title of the dialog. If missing, then the default title is
used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If
this parameter is specified, then helpfile must also be specified.
592 Chapter 4 - BasicScript Reference

End Sub

See Also
■ MsgBox (statement)

■ AskPassword

■ AskPassword$ (functions)

■ InputBox, InputBox$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ SelectBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

AskPassword, AskPassword$ (functions)

Syntax
AskPassword[$](prompt$ [,[title$] [,helpfile,context]])

Description

Returns a String containing the text that the user typed.

Comments

Unlike the AskBox/AskBox$ functions, the user sees asterisks in place of the
characters that are actually typed. This allows the hidden input of passwords.

The AskPassword/AskPassword$ functions take the following parameters:

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog box is
sized to the appropriate width depending on the width of prompt$. A runtime
error is generated if prompt$ is Null.

title$ String specifying the title of the dialog. If missing, then the default title is used.

helpfile Name of the file containing context-sensitive help for this dialog. If this
parameter is specified, then context must also be specified.
Functions 593

When the dialog box is first displayed, the text box has the focus.

A maximum of 255 characters can be typed into the text box.

The AskPassword$ function returns the text typed into the text box, up to a
maximum of 255 characters. A zero-length string is returned if the user selects Cancel.

The AskPassword function returns a String variant. An Empty variant is returned if
the user selects Cancel.

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example
Sub Main()

s$ = AskPassword$("Type in the password:")

MsgBox "The password entered is: " & s$

End Sub

See Also
■ MsgBox (statement)

■ AskBox, AskBox$ (functions)

■ InputBox, InputBox$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ SelectBox (function)

■ AnswerBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

context Number specifying the ID of the topic within helpfile for this dialog's help. If
this parameter is specified, then helpfile must also be specified.

Parameter Description
594 Chapter 4 - BasicScript Reference

Atn (function)

Syntax
Atn(number)

Description

Returns the angle (in radians) whose tangent is number.

Comments

Some helpful conversions:

■ Pi (3.1415926536) radians = 180 degrees.

■ 1 radian = 57.2957795131 degrees.

■ 1 degree = .0174532925 radians.

Example
'This example finds the angle whose tangent is 1 (45 degrees)

'and displays the result.

Sub Main()

a# = Atn(1.00)

MsgBox "1.00 is the tangent of " & a# & _

" radians (45 degrees)."

End Sub

See Also
■ Tan (function)

■ Sin (function)

■ Cos (function)

Platform(s)

All.

ButtonEnabled (function)

Syntax
ButtonEnabled(name$ | id)
Functions 595

Description

Returns True if the specified button within the current window is enabled; returns
False otherwise.

Comments

The ButtonEnabled function takes the following parameters:

When a button is enabled, it can be clicked using the SelectButton statement.

Note: The ButtonEnabled function is used to determine whether a push button is
enabled in another application's dialog box. Use the DlgEnable function to retrieve
the enabled state of a push button in a dynamic dialog box.

Example
'This code fragment checks to see whether a button is enabled

'before clicking it.

Sub Main()

If ButtonEnabled("Browse...") Then

SelectButton "Browse..."

Else

MsgBox "Can't browse right now."

End If

End Sub

See Also
■ ButtonExists (function)

■ SelectButton (statement)

Platform(s)

Windows.

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.
596 Chapter 4 - BasicScript Reference

ButtonExists (function)

Syntax
ButtonExists(name$ | id)

Description

Returns True if the specified button exists within the current window; returns False
otherwise.

Comments

The ButtonExists function takes the following parameters:

Note: The ButtonExists function is used to determine whether a push button exists in
another application's dialog box. There is no equivalent function for use with dynamic
dialog boxes.

Example
'This code fragment selects the More button if it exists. If it

'does not exist, then this code fragment does nothing.

Sub Main()

If ButtonExists("More >>") Then

SelectButton "More >>" 'Display more
stuff.

End If

End Sub

See Also
■ ButtonEnabled (function)

■ SelectButton (statement)

Parameter Description

name$ String containing the name of the push button.

id Integer specifying the ID of the push button.
Functions 597

Platform(s)

Windows.

CBool (function)

Syntax
CBool(expression)

Description

Converts expression to True or False, returning a Boolean value.

Comments

The expression parameter is any expression that can be converted to a Boolean. A
runtime error is generated if expression is Null.

All numeric data types are convertible to Boolean. If expression is zero, then the
CBool returns False; otherwise, CBool returns True. Empty is treated as False.

If expression is a String, then CBool first attempts to convert it to a number, then
converts the number to a Boolean. A runtime error is generated if expression cannot
be converted to a number.

A runtime error is generated if expression cannot be converted to a Boolean.

Example
'This example uses CBool to determine whether a string is

'numeric or just plain text.

Sub Main()

Dim IsNumericOrDate As Boolean

s$ = "34224.54"

IsNumericOrDate = CBool(IsNumeric(s$) Or IsDate(s$))

If IsNumericOrDate = True Then

MsgBox s$ & " is either a valid date or number!"

Else

MsgBox s$ & " is not a valid date or number!"

End If

End Sub
598 Chapter 4 - BasicScript Reference

See Also
■ CCur (function)

■ CDate

■ CVDate (functions)

■ CDbl (function)

■ CInt (function)

■ CLng (function)

■ CSng (function)

■ CStr (function)

■ Var (function)

■ CVErr (function)

■ Boolean (data type)

Platform(s)

All.

CCur (function)

Syntax
CCur(expression)

Description

Converts any expression to a Currency.

Comments

This function accepts any expression convertible to a Currency, including strings. A
runtime error is generated if expression is Null or a String not convertible to a
number. Empty is treated as 0.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression number to a Currency.

When used with variants, this function guarantees that the variant will be assigned a
Currency (VarType 6).
Functions 599

Example
'This example displays the value of a String converted into

'a Currency value.

Sub Main()

i$ = "100.44"

MsgBox "The currency value is: " & CCur(i$)

End Sub

See Also
■ CBool (function)

■ CDate

■ CVDate (functions)

■ CDbl (function)

■ CInt (function)

■ CLng (function)

■ CSng (function)

■ CStr (function)

■ CVar (function)

■ CVErr (function)

■ Currency (data type)

Platform(s)

All.

CDate, CVDate (functions)

Syntax
CDate(expression)

CVDate(expression)

Description

Converts expression to a date, returning a Date value.

Comments
600 Chapter 4 - BasicScript Reference

The expression parameter is any expression that can be converted to a Date. A
runtime error is generated if expression is Null.

If expression is a String, an attempt is made to convert it to a Date using the current
country settings. If expression does not represent a valid date, then an attempt is made
to convert expression to a number. A runtime error is generated if expression cannot
be represented as a date.

These functions are sensitive to the date and time formats of your computer.

The CDate and CVDate functions are identical.

Example
'This example takes two dates and computes the difference

'between them.

Sub Main()

Dim date1 As Date

Dim date2 As Date

Dim diff As Date

date1 = CDate(#1/1/1994#)

date2 = CDate("February 1, 1994")

diff = DateDiff("d",date1,date2)

MsgBox "The date difference is " & CInt(diff) & " days."

End Sub

See Also
■ CCur (function)

■ CBool (function)

■ CDbl (function)

■ CInt (function)

■ CLng (function)

■ CSng (function)

■ CStr (function)

■ CVar (function)

■ CVErr (function)

■ Date (data type)
Functions 601

Platform(s)

All.

CDbl (function)

Syntax
CDbl(expression)

Description

Converts any expression to a Double.

Comments

This function accepts any expression convertible to a Double, including strings. A
runtime error is generated if expression is Null. Empty is treated as 0.0.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression number to a Double.

When used with variants, this function guarantees that the variant will be assigned a
Double (VarType 5).

Example
'This example displays the result of two numbers

'as a Double.

Sub Main()

i% = 100

j! = 123.44

MsgBox "The double value is: " & CDbl(i% * j!)

End Sub

See Also
■ CCur (function)

■ CBool (function)

■ CDate

■ CVDate (functions)

■ CInt (function)
602 Chapter 4 - BasicScript Reference

■ CLng (function)

■ CSng (function)

■ CStr (function)

■ CVar (function)

■ CVErr (function), Double (data type)

Platform(s)

All.

CheckBoxEnabled (function)

Syntax
CheckBoxEnabled(name$ | id)

Description

Returns True if the specified check box within the current window is enabled; returns
False otherwise.

Comments

The CheckBoxEnabled function takes the following parameters:

When a check box is enabled, its state can be set using the SetCheckBox statement.

Note: The CheckBoxEnabled function is used to determine whether a check box is
enabled in another application's dialog box. Use the DlgEnable function within
dynamic dialog boxes.

Example
'This code checks to see whether a check box is enabled.

Sub Main()

If CheckBoxEnabled("Portrait") Then

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.
Functions 603

SetCheckBox "Portrait",1

End If

End Sub

See Also
■ CheckBoxExists (function)

■ GetCheckBox (function)

■ SetCheckBox (statement)

Platform(s)

Windows.

CheckBoxExists (function)

Syntax
CheckBoxExists(name$ | id)

Description

Returns True if the specified check box exists within the current window; returns
False otherwise.

Comments

The CheckBoxExists function takes the following parameters:

Note: The CheckBoxExists function is used to determine whether a check box exists
in another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Example
'This code fragment checks to ensure that the Portrait check

'box is selectable before selecting it.

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.
604 Chapter 4 - BasicScript Reference

Sub Main()

If CheckBoxExists("Portrait") Then

If CheckBoxEnabled("Portrait") Then

SetCheckBox "Portrait",1

End If

End If

End Sub

See Also
■ CheckBoxEnabled (function)

■ GetCheckBox (function)

■ SetCheckBox (statement)

Platform(s)

Windows.

Choose (function)

Syntax
Choose(index,expression1,expression2,...,expression13)

Description

Returns the expression at the specified index position.

Comments

The index parameter specifies which expression is to be returned. If index is 1, then
expression1 is returned; if index is 2, then expression2 is returned, and so on. If index is
less than 1 or greater than the number of supplied expressions, then Null is returned.

The index parameter is rounded down to the nearest whole number.

The Choose function returns the expression without converting its type. Each
expression is evaluated before returning the selected one.

Example
'This example assigns a variable of indeterminate type to a.

Sub Main()
Functions 605

Dim a As Variant

Dim c As Integer

c% = 2

a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)

'Displays the date passed as parameter 2.

MsgBox "Item " & c% & " is '" & a & "'"

End Sub

See Also
■ Switch (function)

■ If (function)

■ If...Then...Else (statement)

■ Select...Case (statement)

Platform(s)

All.

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)

Syntax
Chr[$](charcode)

ChrB[$](charcode)

ChrW[$](charcode)

Description

Returns the character whose value is charcode.

Comments

The Chr$, ChrB$, and ChrW$ functions return a String, whereas the Chr, ChrB, and
ChrW functions return a String variant.
606 Chapter 4 - BasicScript Reference

These functions behave differently depending on the string format used by
BasicScript. These differences are summarized in the following table:

The Chr$ function can be used within constant declarations, as in the following
example:

Const crlf = Chr$(13) + Chr$(10)

Some common uses of this function are:

Examples
Sub Main()

Function String Format Value Between Returns

Chr[$] SBCS 0 and 255 A 1-byte character string.

MBCS -32768 and 32767 A 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 A 2-byte character string.

ChrB[$] SBCS 0 and 255 A 1-byte character string.

MBCS 0 and 255 A 1-byte character string.

Wide 0 and 255 A 1-byte character string.

ChrW[$] SBCS 0 and 255 A 1-byte character string (same as the Chr and
Chr$ functions)

MBCS -32768 and 32767 A 1-byte or 2-byte MBCS character string
depending on charcode.

Wide -32768 and 32767 A 2-byte character string.

Chr$(9) Tab

Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)

Chr$(26) End-of-file

Chr$(0) Null
Functions 607

'Concatenates carriage return (13) and line feed (10) to

'CRLF$, then displays a multiple-line message using CRLF$

'to separate lines.

crlf$ = Chr$(13) + Chr$(10)

MsgBox "First line." & crlf$ & "Second line."

'Fills an array with the ASCII characters for ABC and

'displays their corresponding characters.

Dim a%(2)

For i = 0 To 2

a%(i) = (65 + i)

Next i

MsgBox "The first three elements of the array are: " _

& Chr$(a%(0)) & Chr$(a%(1)) & Chr$(a%(2))

End Sub

See Also
■ Asc, AscB, AscW (functions)

■ Str, Str$ (functions)

Platform(s)

All.

CInt (function)

Syntax
CInt(expression)

Description

Converts expression to an Integer.

Comments

This function accepts any expression convertible to an Integer, including strings. A
runtime error is generated if expression is Null. Empty is treated as 0.

The passed numeric expression must be within the valid range for integers:
608 Chapter 4 - BasicScript Reference

-32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning a
numeric expression to an Integer. Note that integer variables are rounded before
conversion.

When used with variants, this function guarantees that the expression is converted to
an Integer variant (VarType 2).

Example
'This example demonstrates the various results of integer

'manipulation with CInt.

Sub Main()

'(1) Assigns i# to 100.55 and displays its integer

'representation (101).

i# = 100.55

MsgBox "The value of CInt(i) = " & CInt(i#)

'(2) Sets j# to 100.22 and displays the CInt representation

'(100).

j# = 100.22

MsgBox "The value of CInt(j) = " & CInt(j#)

'(3) Assigns k% (integer) to the CInt sum of j# and k% and

'displays k% (201).

k% = CInt(i# + j#)

 MsgBox "The integer sum of 100.55 and 100.22 is: " & k%

'(4) Reassigns i# to 50.35 and recalculates k%, then

'displays the result (note rounding).

i# = 50.35

k% = CInt(i# + j#)

MsgBox "The integer sum of 50.35 and 100.22 is: " & k%

End Sub
Functions 609

See Also
■ CCur (function)

■ CBool (function)

■ CDate, CVDate (functions)

■ CDbl (function)

■ CLng (function)

■ CSng (function)

■ CStr (function)

■ CVar (function)

■ CVErr (function)

■ Integer (data type)

Platform(s)

All.

Clipboard$ (function)

Syntax
Clipboard$[()]

Description

Returns a String containing the contents of the Clipboard.

Comments

If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-length
string is returned.

Example
'This example puts text on the Clipboard, displays it, clears

'the Clipboard, and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
610 Chapter 4 - BasicScript Reference

Clipboard$ "Hello out there!"

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

Clipboard.Clear

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

End Sub

See Also
■ Clipboard$ (statement)

■ Clipboard.GetText (method)

■ Clipboard.SetText (method)

Platform(s)

Windows, Win32, Macintosh, OS/2.

CLng (function)

Syntax
CLng(expression)

Description

Converts expression to a Long.

Comments

This function accepts any expression convertible to a Long, including strings. A
runtime error is generated if expression is Null. Empty is treated as 0.

The passed expression must be within the following range:

-2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression to a Long. Note that long variables are rounded before
conversion.

When used with variants, this function guarantees that the expression is converted to
a Long variant (VarType 3).
Functions 611

Example
'This example displays the results for various conversions of i

'and j (note rounding).

Sub Main()

i% = 100

j& = 123.666

'Displays 12367.

MsgBox "The result is: " & CLng(i% * j&)

MsgBox "The variant type is: " & Vartype(CLng(i%))

End Sub

See Also
■ CCur (function)

■ CBool (function)

■ CDate, CVDate (functions)

■ CDbl (function)

■ CInt (function)

■ CSng (function)

■ CStr (function)

■ CVar (function)

■ CVErr (function)

■ Long (data type)

Platform(s)

All.

ComboBoxEnabled (function)

Syntax
ComboBoxEnabled(name$ | id)
612 Chapter 4 - BasicScript Reference

Description

Returns True if the specified combo box is enabled within the current window or
dialog box; returns False otherwise.

Comments

The ComboBoxEnabled function takes the following parameters:

Note: The ComboBoxEnabled function is used to determine whether a combo box is
enabled in another application's dialog box. Use the DlgEnable function in dynamic
dialog boxes.

Example
'This example checks to see whether a combo box is active. If it

'is, then it inserts some text into it.

Sub Main()

If ComboBoxEnabled("Filename:") Then

SelectComboBoxItem "Filename:","sample.txt"

End If

If ComboBoxEnabled(365) Then

SelectComboBoxItem 365,3 'Select the
third item.

End If

End Sub

See Also
■ ComboBoxExists (function)

■ GetComboBoxItem$ (function)

■ GetComboBoxItemCount (function)

Parameter Description

name$ String containing the name of the combo box.The name of a combo box is determined by
scanning the window list looking for a text control with the given name that is
immediately followed by a combo box. A runtime error is generated if a combo box with
that name cannot be found within the active window.A runtime error is generated if
the specified combo box does not exist.

id Integer specifying the ID of the combo box.
Functions 613

■ SelectComboBoxItem (statement)

Platform(s)

Windows.

ComboBoxExists (function)

Syntax
ComboBoxExists(name$ | id)

Description

Returns True if the specified combo box exists within the current window or dialog
box; returns False otherwise.

Comments

The ComboBoxExists function takes the following parameters:

Note: The ComboBoxExists function is used to determine whether a combo box exists
in another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Example
'This code fragment checks to ensure that a combo box exists

'and is enabled before selecting the last item.

Sub Main()

If ComboBoxExists("Filename:") Then

If ComboBoxEnabled("Filename:") Then

NumItems = GetComboBoxItemCount("Filename:")

Parameter Description

name$ String containing the name of the combo box.The name of a combo box is
determined by scanning the window list looking for a text control with the
given name that is immediately followed by a combo box. A runtime error is
generated if a combo box with that name cannot be found within the active
window

id Integer specifying the ID of the combo box.
614 Chapter 4 - BasicScript Reference

SelectComboBoxItem "Filename:",NumItems

End If

End If

End Sub

See Also
■ ComboBoxEnabled (function)

■ GetComboBoxItem$ (function)

■ GetComboBoxItemCount (function)

■ SelectComboBoxItem (statement)

Platform(s)

Windows.

Command, Command$ (functions)

Syntax
Command[$][()]

Description

Returns the argument from the command line used to start the application.

Comments

Command$ returns a string, whereas Command returns a String variant.

Example
'This example gets the command line and parameters, checks to

'see whether the string "/s" is present, and displays the result.

Sub Main()

cmd$ = Command$

If (InStr(cmd$,"/s")) <> 0 Then

MsgBox "Application was started with the /s switch."

Else

MsgBox "Application was started without the /s switch."

End If
Functions 615

If cmd$ <> "" Then

MsgBox "The command line startup options were: " & cmd$

Else

MsgBox "No command line startup options were used!"

End If

End Sub

See Also
■ Environ

■ Environ$ (functions)

Platform(s)

All.

Cos (function)

Syntax
Cos(number)

Description

Returns a Double representing the cosine of number.

Comments

The number parameter is a Double specifying an angle in radians.

Example
'This example assigns the cosine of pi/4 radians

'(45 degrees) to C# and displays its value.

Sub Main()

c# = Cos(3.14159 / 4)

MsgBox "The cosine of 45 degrees is: " & c#

End Sub

See Also
■ Tan (function)

■ Sin (function)
616 Chapter 4 - BasicScript Reference

■ Atn (function)

Platform(s)

All.

CreateObject (function)

Syntax
CreateObject(class)

Description

Creates an OLE Automation object and returns a reference to that object.

Comments

The class parameter specifies the application used to create the object and the type of
object being created. It uses the following syntax:

“application.class”,

where application is the application used to create the object and class is the type of
the object to create.

At runtime, CreateObject looks for the given application and runs that application if
found. Once the object is created, its properties and methods can be accessed using
the dot syntax (e.g., object.property = value).

There may be a slight delay when an automation server is loaded (this depends on the
speed with which a server can be loaded from disk). This delay is reduced if an
instance of the automation server is already loaded.

Examples
'This first example instantiates Microsoft Excel. It then uses

'the resulting object to make Excel visible and then close

'Excel.

Sub Main()

Dim Excel As Object

On Error GoTo Trap1 'Set error trap.

Set Excel = CreateObject("excel.application")

Excel.Visible = True 'Make Excel visible

Sleep 5000 'Wait 5 seconds
Functions 617

Excel.Quit 'Close Excel

Exit Sub 'Exit before error
trap.

Trap1:

MsgBox "Can't create Excel object."
'Display error msg

Exit Sub 'Reset error
handler.

End Sub

'This example uses CreateObject to instantiate a Visio

'object. It then uses the resulting object to create a new

'document.

Sub Main()

Dim Visio As Object

Dim doc As Object

Dim page As Object

Dim shape As Object

'Create Visio object.

Set Visio = CreateObject("visio.application")

Set doc = Visio.Documents.Add("")
'Create a new doc.

Set page = doc.Pages(1) 'Get
first page.

Set shape = page.DrawRectangle(1,1,4,4)

shape.text = "Hello, world." 'Set
text within shape.

End Sub

See Also
■ GetObject (function)

■ Object (data type)

Platform(s)

Windows, Win32, Macintosh.
618 Chapter 4 - BasicScript Reference

CSng (function)

Syntax
CSng(expression)

Description

Converts expression to a Single.

Comments

This function accepts any expression convertible to a Single, including strings. A
runtime error is generated if expression is Null. Empty is treated as 0.0.

A runtime error results if the passed expression is not within the valid range for
Single.

When passed a numeric expression, this function has the same effect as assigning the
numeric expression to a Single.

When used with variants, this function guarantees that the expression is converted to
a Single variant (VarType 4).

Example
'This example displays the value of a String converted to a

'Single.

Sub Main()

s$ = "100"

MsgBox "The single value is: " & CSng(s$)

End Sub

See Also
■ CCur (function)

■ CBool (function)

■ CDate, CVDate (functions)

■ CDbl (function), CInt (function)

■ CLng (function)

■ CStr (function)

■ CVar (function)
Functions 619

■ CVErr (function)

■ Single (data type)

Platform(s)

All.

CStr (function)

Syntax
CStr(expression)

Description

Converts expression to a String.

Comments

Unlike Str$ or Str, the string returned by CStr will not contain a leading space if the
expression is positive. Further, the CStr function correctly recognizes thousands and
decimal separators for your locale.

Different data types are converted to String in accordance with the following rules:

Example
'This example displays the value of a Double converted to a

'String.

Sub Main()

s# = 123.456

MsgBox "The string value is: " & CStr(s#)

Data Type CStr Returns

Any numeric type A string containing the number without the leading space for positive
values

Date A string converted to a date using the short date format

Boolean A string containing either “True” or “False”

Null variant A runtime error

Empty variant A zero-length string
620 Chapter 4 - BasicScript Reference

End Sub

See Also
■ CCur (function)

■ CBool (function)

■ CDate, CVDate (functions)

■ CDbl (function)

■ CInt (function)

■ CLng (function)

■ CSng (function)

■ CVar (function)

■ CVErr (function)

■ String (data type)

■ Str, Str$ (functions)

Platform(s)

All.

CurDir, CurDir$ (functions)

Syntax

CurDir[$][(drive)]

Description

Returns the current directory on the specified drive. If no drive is specified or drive is
zero-length, then the current directory on the current drive is returned.

Comments

CurDir$ returns a String, whereas CurDir returns a String variant.

BasicScript generates a runtime error if drive is invalid.

Example
'This example saves the current directory, changes to the
Functions 621

'next higher directory, and displays the change; then

'restores the original directory and displays the change.

'Note: The dot designators will not work with all platforms.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

save$ = CurDir$

ChDir ("..")

MsgBox "Old directory: " & save$ & crlf & _

"New directory: " & CurDir$

ChDir (save$)

MsgBox "Directory restored to: " & CurDir$

End Sub

See Also
■ ChDir (statement)

■ ChDrive (statement)

■ Dir, Dir$ (functions)

■ MkDir (statement)

■ RmDir (statement)

Platform(s)

All.

Platform Notes: UNIX

On UNIX platforms, the drive parameter is ignored. Since UNIX platforms do not
support drive letters, the current directory is always returned.

Platform Notes: NetWare

Since NetWare does not support drive letters, the drive parameter specifies a volume
name (up to 14 characters). The returned value will have the following format:

volume:[dir[\dir]...]

CVar (function)

Syntax
CVar(expression)
622 Chapter 4 - BasicScript Reference

Description

Converts expression to a Variant.

Comments

This function is used to convert an expression into a variant. Use of this function is not
necessary (except for code documentation purposes) because assignment to variant
variables automatically performs the necessary conversion:

Sub Main()

Dim v As Variant

v = 4 & "th" 'Assigns "4th"
to v.

MsgBox "You came in: " & v

v = CVar(4 & "th") 'Assigns "4th"
to v.

MsgBox "You came in: " & v

End Sub

Example
'This example converts an expression into a Variant.

Sub Main()

Dim s As String

Dim a As Variant

s = CStr("The quick brown fox ")

message = CVar(s & "jumped over the lazy dog.")

MsgBox message

End Sub

See Also

CCur (function), CBool (function), CDate, CVDate (functions), CDbl (function), CInt
(function), CLng (function), CSng (function), CStr (function), CVErr (function),
Variant (data type)

Platform(s)

All.
Functions 623

CVErr (function)

Syntax
CVErr(expression)

Description

Converts expression to an error.

Comments

This function is used to convert an expression into a user-defined error number.

A runtime error is generated under the following conditions:

■ If expression is Null.

■ If expression is a number outside the legal range for errors, which is as follows:

■ 0 <= expression <= 65535

■ If expression is Boolean.

■ If expression is a String that can't be converted to a number within the legal range.

■ Empty is treated as 0.

Example
'This example simulates a user-defined error and displays

'the error number.

Sub Main()

MsgBox "The error is: " & CStr(CVErr(2046))

End Sub

See Also

CCur (function)

CBool (function)

CDate, CVDate (functions)

CDbl (function)

CInt (function)

CLng (function)
624 Chapter 4 - BasicScript Reference

CSng (function)

CStr (function)

CVar (function)

IsError (function)

Platform(s)

All.

Date, Date$ (functions)

Syntax
Date[$][()]

Description

Returns the current system date.

Comments

The Date$ function returns the date using the short date format. The Date function
returns the date as a Date variant.

Use the Date/Date$ statements to set the system date.

Note: In prior versions of BasicScript, the Date$ function returned the date using a
fixed date format. The date is now returned using the current short date format
(defined by the operating system), which may differ from the previous fixed format.

Example
'This example saves the current date to TheDate$, then 'changes the
date and displays the result. It then changes 'the date back to the
saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

TheDate$ = Date$()

Date$ = "01/01/95"

MsgBox "Saved date is: " & TheDate$ & _

crlf & "Changed date is: " & Date$()

Date$ = TheDate$

MsgBox "Restored date to: " & TheDate$
Functions 625

End Sub

See Also
■ CDate, CVDate (functions)

■ Time, Time$ (functions)

■ Date, Date$ (statements)

■ Now (function)

■ Format, Format$ (functions)

■ DateSerial (function)

■ DateValue (function)

Platform(s)

All.

DateAdd (function)

Syntax
DateAdd(interval, number, date)

Description

Returns a Date variant representing the sum of date and a specified number (number)
of time intervals (interval).

Comments

This function adds a specified number (number) of time intervals (interval) to the
specified date (date). The following table describes the named parameters to the
DateAdd function:

Named Parameter Description

interval String expression indicating the time interval used in the addition.

number Integer indicating the number of time intervals you wish to add. Positive
values result in dates in the future; negative values result in dates in the
past.

date Any expression convertible to a Date string expression. An example of a
valid date/time string would be “January 1, 1993".
626 Chapter 4 - BasicScript Reference

The interval parameter specifies what unit of time is to be added to the given date. It
can be any of the following:

To add days to a date, you may use either day, day of the year, or weekday, as they are
all equivalent (“d”, “y”, “w”).

The DateAdd function will never return an invalid date/time expression. The
following example adds two months to December 31, 1992:

s# = DateAdd("m", 2, "December 31, 1992")

In this example, s is returned as the double-precision number equal to “February 28,
1993", not “February 31, 1993".

BasicScript generates a runtime error if you try subtracting a time interval that is
larger than the time value of the date.

Example
'This example gets today's date using the Date$ function; adds

'three years, two months, one week, and two days to it; and

'then displays the result in a dialog box.

Sub Main()

Dim sdate$

sdate$ = Date$

NewDate# = DateAdd("yyyy", 4, sdate$)

Time Interval

“y” Day of the year

“yyyy” Year

“d” Day

“m” Month

“q” Quarter

“ww” Week

“h” Hour

“n” Minute

“s” Second

“w” Weekday
Functions 627

NewDate# = DateAdd("m", 3, NewDate#)

NewDate# = DateAdd("ww", 2, NewDate#)

NewDate# = DateAdd("d", 1, NewDate#)

s$ = "Four years, three months, two weeks, "

s$ = s$ & "and one day from now will be: "

s$ = s$ & Format(NewDate#, "long date")

MsgBox s$

End Sub

See Also
■ DateDiff (function)

Platform(s)

All.

DateDiff (function)

Syntax
DateDiff(interval, date1, date2 [, [firstdayofweek]
[,firstweekofyear]])

Description

Returns a Date variant representing the number of given time intervals between date1
and date2.

Comments

The following describes the named parameters:

Named Parameter Description

interval String expression indicating the specific time interval you wish to find the
difference between. An error is generated if interval is Null.

date1 Any expression convertible to a Date. An example of a valid date/time
string would be “January 1, 1994".

date2 Any expression convertible to a Date. An example of a valid date/time
string would be “January 1, 1994".
628 Chapter 4 - BasicScript Reference

The following lists the valid time interval strings and the meanings of each. The
Format$ function uses the same expressions.

To find the number of days between two dates, you may use either day or day of the
year, as they are both equivalent (“d”, “y”).

The time interval weekday (“w”) will return the number of weekdays occurring
between date1 and date2, counting the first occurrence but not the last. However, if
the time interval is week (“ww”), the function will return the number of calendar
weeks between date1 and date2, counting the number of Sundays. If date1 falls on a
Sunday, then that day is counted, but if date2 falls on a Sunday, it is not counted.

firstdayofweek Indicates the first day of the week. If omitted, then sunday is assumed
(i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that containing January 1 (i.e., the constant
ebFirstJan1 as described bellow).

Time Interval

“y” Day of the year

“yyyy” Year

“d” Day

“m” Month

“q” Quarter

“ww” Week

“h” Hour

“n” Minute

“s” Second

“w” Weekday

Named Parameter Description
Functions 629

The firstdayofweek parameter, if specified, can be any of the following constants:

The firstdayofyear parameter, if specified, can be any of the following constants:

The DateDiff function will return a negative date/time value if date1 is a date later in
time than date2. If date1 or date2 are Null, then Null is returned.

Example
'This example gets today's date and adds ten days to it. It

'then calculates the difference between the two dates in days

'and weeks and displays the result.

Sub Main()

today$ = Format(Date$,"Short Date")

NextWeek = Format(DateAdd("d", 14, today$),"Short Date")

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebFirstJan1 1 The first week of the year is that in which January 1
occurs (the default).

ebFirstFourDays 2 The first week of the year is that containing at least four
days in the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the
year.
630 Chapter 4 - BasicScript Reference

DifDays# = DateDiff("d", today$, NextWeek)

DifWeek# = DateDiff("w", today$, NextWeek)

s$ = "The difference between " & today$ & _

" and " & NextWeek & " is: " & DifDays# & _

" days or " & DifWeek# & " weeks"

MsgBox s$

End Sub

See Also
■ DateAdd (function)

Platform(s)

All.

DatePart (function)

Syntax
DatePart(interval, date [, [firstdayofweek] [,firstweekofyear]])

Description

Returns an Integer representing a specific part of a date/time expression.

Comments

The DatePart function decomposes the specified date and returns a given date/time
element. The following table describes the named parameters:

Named Parameter Description

interval String expression that indicates the specific time interval you wish to
identify within the given date.

date Any expression convertible to a Date. An example of a valid date/time
string would be “January 1, 2000".

firstdayofweek Indicates the first day of the week. If omitted, then sunday is assumed
(i.e., the constant ebSunday described below).

firstweekofyear Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that January 1 (i.e., the constant ebFirstJan1 as
described bellow).
Functions 631

The following table lists the valid time interval strings and the meanings of each.

The Format$ function uses the same expressions.

The firstdayofweek parameter, if specified, can be any of the following constants:

Time Interval

“y” Day of the year

“yyyy” Year

“d” Day

“m” Month

“q” Quarter

“ww” Week

“h” Hour

“n” Minute

“s” Second

“w” Weekday

Constant Value Description

ebUseSystem 0 Use the system setting for
firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday
632 Chapter 4 - BasicScript Reference

The firstdayofyear parameter, if specified, can be any of the following constants:

Example
'This example displays the parts of the current date.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

today$ = Date$

qtr = DatePart("q",today$)

yr = DatePart("yyyy",today$)

mo = DatePart("m",today$)

wk = DatePart("ww",today$)

da = DatePart("d",today$)

s$ = "Quarter: " & qtr & crlf

s$ = s$ & "Year : " & yr & crlf

s$ = s$ & "Month : " & mo & crlf

s$ = s$ & "Week : " & wk & crlf

s$ = s$ & "Day : " & da & crlf

MsgBox s$

End Sub

See Also
■ Day (function)

ebFriday 6 Friday

ebSaturday 6 Saturday

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebFirstJan1 1 The first week of the year is that in which January 1 occurs (the
default).

ebFirstFourDays 2 The first week of the year is that containing at least four days in
the year.

ebFirstFullWeek 3 The week of the year is the first full week of the year.

Constant Value Description
Functions 633

■ Minute (function)

■ Second (function)

■ Month (function)

■ Year (function)

■ Hour (function)

■ Weekday (function)

■ Format, Format$ (functions)

Platform(s)

All.

DateSerial (function)

Syntax
DateSerial(year, month, day)

Description

Returns a Date variant representing the specified date.

Comments

The DateSerial function takes the following named parameters:

Example
'This example converts a date to a real number representing the

'serial date in days since December 30, 1899 (which is day 0).

Sub Main()

tdate# = DateSerial(1993,08,22)

MsgBox "The DateSerial value for August 22, 1993, is: " _

Named Parameter Description

year Integer between 100 and 9999

month Integer between 1 and 12

day Integer between 1 and 31
634 Chapter 4 - BasicScript Reference

& tdate#

End Sub

See Also
■ DateValue (function)

■ TimeSerial (function)

■ TimeValue (function)

■ CDate, CVDate (functions)

Platform(s)

All.

DateValue (function)

Syntax
DateValue(date)

Description

Returns a Date variant representing the date contained in the specified string
argument.

Example
'This example returns the day of the month for today's date.

Sub Main()

tdate$ = Date$

tday = DateValue(tdate$)

MsgBox tdate & " date value is: " & tday$

End Sub

See Also
■ TimeSerial (function)

■ TimeValue (function)

■ DateSerial (function)
Functions 635

Platform(s)

All.

Platform Notes: Windows

Under Windows, date specifications vary depending on the international settings
contained in the “intl” section of the win.ini file. The date items must follow the
ordering determined by the current date format settings in use by Windows.

Day (function)

Syntax
Day(date)

Description

Returns the day of the month specified by date.

Comments

The value returned is an Integer between 0 and 31 inclusive.

The date parameter is any expression that converts to a Date.

Example
'This example gets the current date and then displays it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

CurDate = Now()

MsgBox "Today is day " & Day(CurDate) & _

" of the month." & crlf & "Tomorrow is day " _

& Day(CurDate + 1)

End Sub

See Also
■ Minute (function)

■ Second (function)

■ Month (function)

■ Year (function)
636 Chapter 4 - BasicScript Reference

■ Hour (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

DDB (function)

Syntax
DDB(cost, salvage, life, period [,factor])

Description

Calculates the depreciation of an asset for a specified period of time using the
double-declining balance method.

Comments

The double-declining balance method calculates the depreciation of an asset at an
accelerated rate. The depreciation is at its highest in the first period and becomes
progressively lower in each additional period. DDB uses the following formula to
calculate the depreciation:

DDB =((Cost-Total_depreciation_from_all_other_periods) * 2)/Life

The DDB function uses the following named parameters:

Named Parameter Description

cost Double representing the initial cost of the asset

salvage Double representing the estimated value of the asset at the end of its
predicted useful life

life Double representing the predicted length of the asset's useful life

period Double representing the period for which you wish to calculate the
depreciation

factor Depreciation factor determining the rate the balance declines. If this
parameter is missing, then 2 is assumed (double-declining method).
Functions 637

The life and period parameters must be expressed using the same units. For example,
if life is expressed in months, then period must also be expressed in months.

Example
'This example calculates the depreciation for capital equipment

'that cost $10,000, has a service life of ten years, and is

'worth $2,000 as scrap. The dialog box displays the depreciation

'for each of the first four years.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

s$ = "Depreciation Table" & crlf & crlf

For yy = 1 To 4

CurDep# = DDB(10000.0,2000.0,10,yy)

s$ = s$ & "Year " & yy & " : " & CurDep# & crlf

Next yy

MsgBox s$

End Sub

See Also
■ Sln (function)

■ SYD (function)

Platform(s)

All.

DDEInitiate (function)

Syntax
DDEInitiate(application$, topic$)

Description

Initializes a DDE link to another application and returns a unique number
subsequently used to refer to the open DDE channel.
638 Chapter 4 - BasicScript Reference

Comments

The DDEInitiate statement takes the following parameters:

This function returns 0 if BasicScript cannot establish the link. This will occur under
any of the following circumstances:

The specified application is not running.

The topic was invalid for that application.

Memory or system resources are insufficient to establish the DDE link.

Example
'This example selects a range of cells in an Excel spreadsheet.

Sub Main()

q$ = Chr(34)

ch% = DDEInitiate("Excel","c:\sheets\test.xls")

cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"

DDEExecute ch%,cmd$

DDETerminate ch%

End Sub

See Also
■ DDEExecute (statement)

■ DDEPoke (statement)

■ DDERequest, DDERequest$ (functions)

■ DDESend (statement)

■ DDETerminate (statement)

■ DDETerminateAll (statement)

Parameter Description

application$ String containing the name of the application (the server) with which a DDE
conversation will be established.

topic$ String containing the name of the topic for the conversation. The possible
values for this parameter are described in the documentation for the server
application.
Functions 639

■ DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.

DDERequest, DDERequest$ (functions)

Syntax
DDERequest[$](channel,DataItem$)

Description

Returns the value of the given data item in the receiving application associated with
the open DDE channel.

Comments

DDERequest$ returns a String, whereas DDERequest returns a String variant.

The DDERequest/DDERequest$ functions take the following parameters:

The format for the returned value depends on the server.

Example
'This example gets a value from an Excel spreadsheet.

Sub Main()

ch% = DDEInitiate("Excel","c:\excel\test.xls")

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An
error will result if channel is invalid.

DataItem$ String containing the name of the data item to request. The format for this
parameter depends on the server.
640 Chapter 4 - BasicScript Reference

s$ = DDERequest$(ch%,"R1C1")

DDETerminate ch%

MsgBox s$

End Sub

See Also
■ DDEExecute (statement)

■ DDEInitiate (function)

■ DDEPoke (statement)

■ DDETerminate (statement)

■ DDETerminateAll (statement)

■ DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.

Dialog (function)

Syntax
Dialog(DialogVariable [,[DefaultButton] [,Timeout]])

Description

Displays the dialog box associated with DialogVariable, returning an Integer
indicating which button was clicked.

Comments

The Dialog function returns any of the following values:

■ –1 — The OK button was clicked.

■ 0 — The Cancel button was clicked.
Functions 641

■ >0 — A push button was clicked. The returned number represents which button
was clicked based on its order in the dialog box template (1 is the first push button,
2 is the second push button, and so on).

The Dialog function accepts the following parameters:

A runtime error is generated if the dialog template specified by DialogVariable does
not contain at least one of the following statements:

PushButton CancelButton

OKButton PictureButton

Example
'This example displays an abort/retry/ignore disk error dialog

Parameter Description

DialogVariable Name of a variable that has previously been dimensioned as a user dialog
box. This is accomplished using the Dim statement:

Dim MyDialog As MyTemplate

All dialog variables are local to the Sub or Function in which they are
defined. Private and public dialog variables are not allowed.

DefaultButton An Integer specifying which button is to act as the default button in the
dialog box. The value of DefaultButton can be any of the following:
■ -1 — This value indicates that the OK button, if present, should be used

as the default.

■ 0 — This value indicates that the Cancel button, if present, should be
used as the default.

■ >0 — This value indicates that the Nth button should be used as the
default. This number is the index of a push button within the dialog box
template.

If DefaultButton is not specified, then ñ1 is used. If the number specified by
DefaultButton does not correspond to an existing button, then there will be
no default button.

The default button appears with a thick border and is selected when the
user presses Enter on a control other than a push button.

Timeout An Integer specifying the number of milliseconds to display the dialog box
before automatically dismissing it. If Timeout is not specified or is equal to
0, then the dialog box will be displayed until dismissed by the user.

If a dialog box has been dismissed due to a timeout, the Dialog function
returns 0.
642 Chapter 4 - BasicScript Reference

'box.

Sub Main()

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"

Text 8,8,100,8,"The disk drive door is open."

PushButton 8,24,40,14,"Abort",.Abort

PushButton 56,24,40,14,"Retry",.Retry

PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog

Dim DiskError As DiskErrorTemplate

r% = Dialog(DiskError,3,0)

MsgBox "You selected button: " & r%

End Sub

See Also
■ CancelButton (statement)

■ CheckBox (statement)

■ ComboBox (statement)

■ Dialog (statement)

■ DropListBox (statement)

■ GroupBox (statement)

■ ListBox (statement)

■ OKButton (statement)

■ OptionButton (statement)

■ OptionGroup (statement)

■ Picture (statement)

■ PushButton (statement)

■ Text (statement)

■ TextBox (statement)

■ Begin Dialog (statement)

■ PictureButton (statement)

■ HelpButton (statement)
Functions 643

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Dir, Dir$ (functions)

Syntax
Dir[$] [(pathname [,attributes])]

Dir[$] [(pathname, filetype [,attributes])]

Description

Returns a String containing the first or next file matching pathname.

If pathname is specified, then the first file matching that pathname is returned. If
pathname is not specified, then the next file matching the initial pathname is returned.

Comments

Dir$ returns a String, whereas Dir returns a String variant.

The Dir$/Dir functions take the following named parameters:

Named
Parameter

Description

pathname String containing a file specification.

If this parameter is specified, then Dir$ returns the first file matching this file
specification.

If this parameter is omitted, then the next file matching the initial file
specification is returned.

If no path is specified in pathname, then all files are returned from the current
directory.

An error is generated if pathname is Null.

filetype Indicates the type of file to return. If pathname is also specified, then files of
this type are returned from that directory. Otherwise, files of this type are
returned from the current directory.

File types are specified using the MacID function.

attributes Integer specifying attributes of files you want included in the list, as described
below. If this parameter is omitted, then only the normal, read-only, and
archive files are returned.
644 Chapter 4 - BasicScript Reference

An error is generated if Dir$ is called without first calling it with a valid pathname.

If there is no matching pathname, then a zero-length string is returned.

Wildcards

The pathname argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple *'s and ?'s can appear within the expression to form
complete searching patterns. The following table shows some examples:

Attributes

You can control which files are included in the search by specifying the optional
attributes parameter. The Dir, Dir$ functions always return all normal, read-only, and
archive files (ebNormal Or ebReadOnly Or ebArchive). To include additional files,
you can specify any combination of the following attributes (combined with the Or
operator):

This patternMatches these files Doesn't match these files

S.TXT SAMPLE.TXTGOOSE.TXTSAMS.TXT

.SAMPLESAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXTA-

CATS.TXT

C*T CATCAP.TXT CAT.DOC

C?T CATCUT CAT.TXTCAPITCT

* (All files)

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, and none

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories
Functions 645

Example
'This exam

See Also
■ ChDir (statement)

■ ChDrive (statement)

■ CurDir, CurDir$ (functions)

■ MkDir (statement)

■ RmDir (statement)

■ FileList (statement)

Platform(s)

All.

Platform Notes: Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are valid
filename characters. Instead of wildcards, the Macintosh uses the MacID function to
specify a collection of files of the same type. The syntax for this function is:

Dir$(pathname,MacID(text$) [,attributes])

The text$ parameter is a four-character string containing a file type, a resource type,
an application signature, or an Apple event. A runtime error occurs if the MacID
function is used on platforms other than the Macintosh.

When the MacID function is used, the pathname parameter specifies the directory in
which to search for files of the indicated type.

Platform Notes: Windows

For compatibility with DOS wildcard matching, BasicScript special-cases the pattern
"*.*" to indicate all files, not just files with a periods in their names.

Platform Notes: UNIX

On UNIX platforms, the hidden file attribute corresponds to files without the read or
write attributes.
646 Chapter 4 - BasicScript Reference

DiskFree (function)

 Syntax
DiskFree&([drive$])

Description

Returns a Long containing the free space (in bytes) available on the specified drive.

Comments

If drive$ is zero-length or not specified, then the current drive is assumed.

Only the first character of the drive$ string is used.

On systems that do not support drive letters, the drive$ parameter specifies the name
of the path from which to retrieve the free disk space.

Example
'This example uses DiskFree to set the value of i and then

'displays the result in a message box.

Sub Main()

s$ = "c"

i# = DiskFree(s$)

MsgBox "Free disk space on drive '" & s$ & "' is: " & i#

End Sub

See Also

ChDrive (statement), DiskDrives (statement)

Platform(s)

All.

Platform Notes: NetWare

Since NetWare does not support drive letters, the drive$ parameter specifies a volume
name (up to 14 characters).
Functions 647

DlgCaption (function)

Syntax
DlgCaption[()]

Description

Returns a string containing the caption of the active user-defined dialog box.

Comments

This function returns a zero-length string if the active dialog has no caption.

See Also
■ Begin Dialog (statement)

Platform(s)

All.

DlgControlId (function)

Syntax
DlgControlId(ControlName$)

Description

Returns an Integer containing the index of the specified control as it appears in the
dialog box template.

Comments

The first control in the dialog box template is at index 0, the second is at index 1, and
so on.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with that control in the dialog box template.

The BasicScript statements and functions that dynamically manipulate dialog box
controls identify individual controls using either the .Identifier name of the control or
the control's index. Using the index to refer to a control is slightly faster but results in
code that is more difficult to maintain.
648 Chapter 4 - BasicScript Reference

Example
Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

'If a control is clicked, disable the next

'three controls.

If Action% = 2 Then

'Enable the next three controls.

start% = DlgControlId(ControlName$)

For i = start% + 1 To start% + 3

DlgEnable i,True

Next i

DlgProc = 1 'Don't close the dialog box.

End If

End Function

See Also
■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (function)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Functions 649

DlgEnable (function)

Syntax
DlgEnable(ControlName$ | ControlIndex)

Description

Returns True if the specified control is enabled; returns False otherwise.

Comments

Disabled controls are dimmed and cannot receive keyboard or mouse input.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

If you attempt to disable the control with the focus, BasicScript will automatically set
the focus to the next control in the tab order.

Example
If DlgEnable("SaveOptions") Then

MsgBox "The Save Options are enabled."

End If

If DlgEnable(10) And DlgVisible(12) Then

code = 1

Else

code = 2

End If

See Also
■ DlgControlId (function)

■ DlgEnable (statement)

■ DlgFocus (function)
650 Chapter 4 - BasicScript Reference

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgFocus (function)

Syntax
DlgFocus$[()]

Description

Returns a String containing the name of the control with the focus.

Comments

The name of the control is the .Identifier parameter associated with the control in the
dialog box template.

Example
'This code fragment makes sure that the control being disabled

'does not currently have the focus (otherwise, a runtime error

'would occur).

If DlgFocus$ = "Files" Then

'Does it have the focus?

DlgFocus "OK"
Functions 651

'set focus to another control

End If

DlgEnable "Files", False

'Now disable the control

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgFocus (function)

Syntax
DlgFocus$[()]

Description

Returns a String containing the name of the control with the focus.
652 Chapter 4 - BasicScript Reference

Comments

The name of the control is the .Identifier parameter associated with the control in the
dialog box template.

Example
'This code fragment makes sure that the control being disabled

'does not currently have the focus (otherwise, a runtime error

'would occur).

'Does it have the focus?

DlgFocus "OK"

'set focus to another control

End If

DlgEnable "Files", False

'Now disable the control

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Functions 653

DlgListBoxArray (function)

Syntax
DlgListBoxArray({ControlName$ | ControlIndex}, ArrayVariable)

Description

Fills a list box, combo box, or drop list box with the elements of an array, returning an
Integer containing the number of elements that were actually set into the control.

Comments

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize
the elements of the control. If this array has no dimensions, then the control will be
initialized with no elements. A runtime error results if the specified array contains
more than one dimension. ArrayVariable can specify an array of any fundamental
data type (structures are not allowed). Null and Empty values are treated as
zero-length strings.

Example
'This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 And ControlName$ = "Files" Then

Dim NewFiles$() 'Create a new
dynamic array.

FileList NewFiles$,"*.txt" 'Fill the array
with files.

r% = DlgListBoxArray "Files",NewFiles$ 'Set items in list
box.

DlgValue "Files",0 'Set the selection
to the first item.

DlgProc = 1 'Don't close the
dialog box.
654 Chapter 4 - BasicScript Reference

End If

MsgBox r% & " items were added to the list box."

End Function

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (function)

■ DlgFocus (statement)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgProc (function)

Syntax
Function DlgProc(ControlName$, Action, SuppValue) As Integer

Description

Describes the syntax, parameters, and return value for dialog functions.
Functions 655

Comments

Dialog functions are called by BasicScript during the processing of a custom dialog
box. The name of a dialog function (DlgProc) appears in the Begin Dialog statement
as the .DlgProc parameter.

Dialog functions require the following parameters:
:

When BasicScript displays a custom dialog box, you may click on buttons, type text
into edit fields, select items from lists, and perform other actions. When these actions
occur, BasicScript calls the dialog function, passing it the action, the name of the
control on which the action occurred, and relevant information associated with the
action.The following table describes the different actions sent to dialog functions:

Parameter Description

ControlName$ String containing the name of the control associated with Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some actions, this
parameter is not used.

Action Description

1 This action is sent immediately before the dialog box is shown for the first time.
This gives the dialog function a chance to prepare the dialog box for use. When this
action is sent, ControlName$ contains a zero-length string, and SuppValue is 0.

The return value from the dialog function is ignored in this case.

Before Showing the Dialog Box

After action 1 is sent, BasicScript performs additional processing before the dialog
box is shown. Specifically, it cycles though the dialog box controls checking for
visible picture or picture button controls. For each visible picture or picture button
control, BasicScript attempts to load the associated picture.

Action Description

1 In addition to checking picture or picture button controls, BasicScript will
automatically hide any control outside the confines of the visible portion of the
dialog box. This prevents the user from tabbing to controls that cannot be seen.
However, it does not prevent you from showing these controls with the DlgVisible
statement in the dialog function.
656 Chapter 4 - BasicScript Reference

2 This action is sent when:

■ A button is clicked, such as OK, Cancel, or a push button. In this case,
ControlName$ contains the name of the button. SuppValue contains 1 if
an OK button was clicked and 2 if a Cancel button was clicked;
SuppValue is undefined otherwise.

If the dialog function returns 0 in response to this action, then the dialog
box will be closed. Any other value causes BasicScript to continue
dialog processing.

■ A check box's state has been modified. In this case, ControlName$
contains the name of the check box, and SuppValue contains the new
state of the check box (1 if on, 0 if off).

■ An option button is selected. In this case, ControlName$ contains the
name of the option button that was clicked, and SuppValue contains the
index of the option button within the option button group (0-based).

■ The current selection is changed in a list box, drop list box, or combo
box. In this case, ControlName$ contains the name of the list box,
combo box, or drop list box, and SuppValue contains the index of the
new item (0 is the first item, 1 is the second, and so on).

3 This action is sent when the content of a text box or combo box has been changed.
This action is only sent when the control loses focus. When this action is sent,
ControlName$ contains the name of the text box or combo box, and SuppValue
contains the length of the new content.

The dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent,
ControlName$ contains the name of the control gaining the focus, and SuppValue
contains the index of the control that lost the focus (0-based).

The dialog function's return value is ignored with this action.

5 This action is sent continuously when the dialog box is idle. If the dialog function
returns 1 in response to this action, then the idle action will continue to be sent. If
the dialog function returns 0, then BasicScript will not send any additional idle
actions.

When the idle action is sent, ControlName$ contains a zero-length string, and
SuppValue contains the number of times the idle action has been sent so far.

6 This action is sent when the dialog box is moved. The ControlName$ parameter
contains a zero-length string, and SuppValue is 0.

The dialog function's return value is ignored with this action.

Action Description
Functions 657

User-defined dialog boxes cannot be nested. In other words, the dialog function of
one dialog box cannot create another user-defined dialog box. You can, however,
invoke any built-in dialog box, such as MsgBox or InputBox$.

Within dialog functions, you can use the following additional BasicScript statements
and functions. These statements allow you to manipulate the dialog box controls
dynamically.

For compatibility with previous versions of BasicScript, the dialog function can
optionally be declared to return a Variant. When returning a variable, BasicScript will
attempt to convert the variant to an Integer. If the returned variant cannot be
converted to an Integer, then 0 is assumed to be returned from the dialog function.

Example
'This dialog function enables/disables a group of option 'buttons when
a check box is clicked.

Function SampleDlgProc(ControlName$, Action%, SuppValue%)

If Action% = 2 And ControlName$ = "Printing" Then

DlgEnable "PrintOptions",SuppValue%

SampleDlgProc = 1 'Don't close the dialog
box.

End If

End Function

Sub Main()

Begin Dialog SampleDlgTemplate 34,39,106,45,_

"Sample",.SampleDlgProc

OKButton 4,4,40,14

CancelButton 4,24,40,14

CheckBox 56,8,38,8,"Printing",.Printing

OptionGroup .PrintOptions

OptionButton 56,20,51,8,"Landscape",.Landscape

OptionButton 56,32,40,8,"Portrait",.Portrait

DlgVisible DlgText$ DlgText

DlgSetPicture DlgListBoxArray DlgFocus

DlgEnable DlgControlId
658 Chapter 4 - BasicScript Reference

End Dialog

Dim SampleDialog As SampleDlgTemplate

SampleDialog.Printing = 1

r% = Dialog(SampleDialog)

End Sub

See Also
■ Begin Dialog (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgText$ (function)

Syntax
DlgText$(ControlName$ | ControlIndex)

Description

Returns the text content of the specified control.

Comments

The text returned depends on the type of the specified control:

Control Type Value Returned by DlgText$

Picture No value is returned. A runtime error occurs.

Option group No value is returned. A runtime error occurs.

Drop list box Returns the currently selected item. A zero-length string is returned if no
item is currently selected.

OK button Returns the label of the control.

Cancel button Returns the label of the control.

Push button Returns the label of the control.

List box Returns the currently selected item. A zero-length string is returned if no
item is currently selected.

Combo box Returns the content of the edit field portion of the combo box.
Functions 659

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Example
'Display the text in the tenth control.

MsgBox DlgText$(10)

If DlgText$("SaveOptions") = "EditingOptions" Then

MsgBox "You are currently viewing the editing options."

End If

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (function)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

Text Returns the label of the control.

Text box Returns the label of the control.

Group box Returns the label of the control.

Option button Returns the label of the control.

Control Type Value Returned by DlgText$
660 Chapter 4 - BasicScript Reference

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgValue (function)

Syntax
DlgValue(ControlName$ | ControlIndex)

Description

Returns an Integer indicating the value of the specified control.

Comments

The value of any given control depends on its type, according to the following table:

A runtime error is generated if DlgValue is used with controls other than those listed
in the above table.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Control Type Control Type

Option group The index of the selected option button within the group (0 is the first
option button, 1 is the second, and so on).

List box The index of the selected item.

Drop list box The index of the selected item.

Check box 1 if the check box is checked; 0 otherwise.
Functions 661

Example
See DlgValue (statement).

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (function)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (statement)

■ DlgVisible (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgVisible (function)

Syntax
DlgVisible(ControlName$ | ControlIndex)

Description

Returns True if the specified control is visible; returns False otherwise.
662 Chapter 4 - BasicScript Reference

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the template (0
is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

A runtime error is generated if DlgVisible is called when no user dialog is active.

Example
If DlgVisible("Portrait") Then Beep

If DlgVisible(10) And DlgVisible(12) Then

MsgBox "The 10th and 12th controls are visible."

End If

See Also
■ DlgControlId (function)

■ DlgEnable (function)

■ DlgEnable (statement)

■ DlgFocus (function)

■ DlgFocus (statement)

■ DlgListBoxArray (function)

■ DlgListBoxArray (statement)

■ DlgSetPicture (statement)

■ DlgText (statement)

■ DlgText$ (function)

■ DlgValue (function)

■ DlgValue (statement)

■ DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Functions 663

DoEvents (function)

Syntax
DoEvents[()]

Description

Yields control to other applications, returning an Integer 0.

Comments

This statement yields control to the operating system, allowing other applications to
process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue
have been processed.

Example
See DoEvents (statement).

See Also
■ DoEvents (statement)

Platform(s)

All.

Platform Notes: Win32

Under Win32, this statement does nothing. Since Win32 systems are preemptive, use
of this statement under these platforms is not necessary.

EditEnabled (function)

Syntax
EditEnabled(name$ | id)

Description

Returns True if the given text box is enabled within the active window or dialog box;
returns False otherwise.
664 Chapter 4 - BasicScript Reference

Comments

The EditEnabled function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

If enabled, the text box can be given the focus using the ActivateControl statement.

Note: The EditEnabled function is used to determine whether a text box is enabled in
another application's dialog box. Use the DlgEnable function in dynamic dialog
boxes.

Example
'This example adjusts the left margin if this control is enabled.

Sub Main()

Menu "Format.Paragraph"

If EditEnabled("Left:") Then

SetEditText "Left:","5 pt"

End If

End Sub

See Also
■ EditExists (function)

■ GetEditText$ (function)

■ SetEditText (statement)

Platform(s)

Windows.

Parameter Description

name$ String containing the name of the text box. The name of a text box is
determined by scanning the window list looking for a text control with the
given name that is immediately followed by a text box.

id Integer specifying the ID of the text box.
Functions 665

EditExists (function)

Syntax
EditExists(name$ | id)

Description

Returns True if the given text box exists within the active window or dialog box;
returns False otherwise.

Comments

The EditExists function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

If there is no active window, False will be returned.

Note: The EditExists function is used to determine whether a text box exists in
another application's dialog box. There is no equivalent function for use with dynamic
dialog boxes.

Example
'This example adjusts the left margin if this control exists and

'is enabled.

Sub Main()

Menu "Format.Paragraph"

If EditExists("Left:") Then

If EditEnabled("Left:") Then

SetEditText "Left:","5 pt"

End If

End If

Parameter Description

name$ String containing the name of the text box. The name of a text box is
determined by scanning the window list looking for a text control with the
given name that is immediately followed by a text box.

id Integer specifying the ID of the text box.
666 Chapter 4 - BasicScript Reference

End Sub

See Also
■ EditEnabled (function)

■ GetEditText$ (function)

■ SetEditText (statement)

Platform(s)

Windows.

Environ, Environ$ (functions)

Syntax
Environ[$](variable$ | VariableNumber)

Description

Returns the value of the specified environment variable.

Comments

Environ$ returns a String, whereas Environ returns a String variant.

If variable$ is specified, then this function looks for that variable$ in the environment.
If the variable$ name cannot be found, then a zero-length string is returned.

If VariableNumber is specified, then this function looks for the Nth variable within the
environment (the first variable being number 1). If there is no such environment
variable, then a zero-length string is returned. Otherwise, the entire entry from the
environment is returned in the following format:

variable = value

Example
'This example looks for the DOS Comspec variable and displays

'the value in a dialog box.

Sub Main()

Dim a$(1)

a$(1) = Environ$("COMSPEC")

MsgBox "The DOS Comspec variable is set to: " & a$(1)

End Sub
Functions 667

See Also
■ Command

■ Command$ (functions)

Platform(s)

All.

EOF (function)

Syntax
EOF(filenumber)

Description

Returns True if the end-of-file has been reached for the given file; returns False
otherwise.

Comments

The filenumber parameter is an Integer used by BasicScript to refer to the open
file—the number passed to the Open statement.

With sequential files, EOF returns True when the end of the file has been reached (i.e.,
the next file read command will result in a runtime error).

With Random or Binary files, EOF returns True after an attempt has been made to
read beyond the end of the file. Thus, EOF will only return True when Get was unable
to read the entire record.

Example
'This example opens the autoexec.bat file and reads lines from

'the file until the end-of-file is reached.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim s$

Open "c:\autoexec.bat" For Input As #1

Do While Not EOF(1)

Input #1,s$

Loop

Close
668 Chapter 4 - BasicScript Reference

 MsgBox "The last line was:" & crlf & s$

End Sub

See Also
■ Open (statement

■ Lof (function)

Platform(s)

All.

Erl (function)

Syntax
Erl[()]

Description

Returns the line number of the most recent error.

Comments

The first line of the script is 1, the second line is 2, and so on.

The internal value of Erl is reset to 0 with any of the following statements: Resume,
Exit Sub, Exit Function. Thus, if you want to use this value outside an error handler,
you must assign it to a variable.

Example
'This example generates an error and then determines the line

'on which the error occurred.

Sub Main()

Dim i As Integer

On Error Goto Trap1

i = 32767 'Generate an error--overflow.

i = i + 1

Exit Sub

Trap1:

MsgBox "Error on line: " & Erl

Exit Sub 'Reset the error handler.
Functions 669

End Sub

See Also
■ Error Handling (topic)

Platform(s)

All.

Error, Error$ (functions)

Syntax
Error[$][(errornumber)]

Description

Returns a String containing the text corresponding to the given error number or the
most recent error.

Comments

Error$ returns a String, whereas Error returns a String variant.

The errornumber parameter is an Integer containing the number of the error message
to retrieve. If this parameter is omitted, then the function returns the text
corresponding to the most recent runtime error (i.e., the same as returned by the
Err.Description property). If no runtime error has occurred, then a zero-length string
is returned.

If the Error statement was used to generate a user-defined runtime error, then this
function will return a zero-length string ("").

Example
'This example forces error 10, with a subsequent transfer to

'the TestError label. TestError tests the error and, if not

'error 55, resets Err to 999 (user-defined error) and returns

'to the Main subroutine.

Sub Main()

On Error Goto TestError

Error 10

MsgBox "The returned error is: '" & Err() & " - " & _
670 Chapter 4 - BasicScript Reference

Error$ & "'"

Exit Sub

TestError:

If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."

Else

MsgBox "Error '" & Err & "' has occurred."

Err = 999

End If

Resume Next

End Sub

See Also
■ Error Handling (topic)

Platform(s)

All.

Exp (function)

Syntax
Exp(number)

Description

Returns the value of e raised to the power of number.

Comments

The number parameter is a Double within the following range:

0 <= number <= 709.782712893.

A runtime error is generated if number is out of the range specified above.

The value of e is 2.71828.

Example
'This example assigns a to e raised to the 12.4 power and

'displays it in a dialog box.

Sub Main()
Functions 671

a# = Exp(12.40)

MsgBox "e to the 12.4 power is: " & a#

End Sub

See Also
■ Log (function)

Platform(s)

All.

FileAttr (function)

Syntax
FileAttr(filenumber, returntype)

Description

Returns an Integer specifying the file mode (if returntype is 1) or the operating system
file handle (if returntype is 2).

Comments

The FileAttr function takes the following named parameters:

Named Parameter Description

filenumber Integer value used by BasicScript to refer to the open file—the
number passed to the Open statement.

returntype Integer specifying the type of value to be returned. If returntype is 1,
then one of the following values is returned:

1 Input

2 Output

4 Random

6 Append

32 Binary

If returntype is 2, then the operating system file handle is returned.
On most systems, this is a special Integer value identifying the file.
672 Chapter 4 - BasicScript Reference

Example
'This example opens a file for input, reads the file attributes,

'and determines the file mode for which it was opened. The

'result is displayed in a dialog box.

Sub Main()

Open "c:\autoexec.bat" For Input As #1

a% = FileAttr(1,1)

Select Case a%

Case 1

MsgBox "Opened for input."

Case 2

MsgBox "Opened for output."

Case 4

MsgBox "Opened for random."

Case 8

MsgBox "Opened for append."

Case 32

MsgBox "Opened for binary."

Case Else

MsgBox "Unknown file mode."

End Select

a% = FileAttr(1,2)

MsgBox "File handle is: " & a%

Close

End Sub

See Also
■ FileLen (function)

■ GetAttr (function)

■ FileType (function)

■ FileExists (function)

■ Open (statement)

■ SetAttr (statement)
Functions 673

Platform(s)

All.

FileDateTime (function)

Syntax
FileDateTime(pathname)

Description

Returns a Date variant representing the date and time of the last modification of a file.

Comments

This function retrieves the date and time of the last modification of the file specified
by pathname (wildcards are not allowed). A runtime error results if the file does not
exist. The value returned can be used with the date/time functions (i.e., Year, Month,
Day, Weekday, Minute, Second, Hour) to extract the individual elements.

Some operating systems (such as Win32) store the file creation date, last modification
date, and the date the file was last written to. The FileDateTime function only returns
the last modification date.

Example
'This example gets the file date/time of the autoexec.bat file

'and displays it in a dialog box.

Sub Main()

If FileExists("c:\autoexec.bat") Then

a# = FileDateTime("c:\autoexec.bat")

MsgBox "The date/time information for the file is: " & _

Year(a#) & "-" & Month(a#) & "-" & Day(a#)

Else

MsgBox "The file does not exist."

End If

End Sub

See Also
■ FileLen (function)

■ GetAttr (function)
674 Chapter 4 - BasicScript Reference

■ FileType (function)

■ FileAttr (function)

■ FileExists (function)

Platform(s)

All.

FileExists (function)

Syntax
FileExists(filename$)

Description

Returns True if filename$ exists; returns False otherwise.

Comments

This function determines whether a given filename$ is valid.

This function will return False if filename$ specifies a subdirectory.

Note: On some file systems, the directories "." and ".." will be returned.

Example
'This example checks to see whether there is an autoexec.bat

'file in the root directory of the C drive, then displays either

'its date and time of creation or the fact that it does not exist.

Sub Main()

If FileExists("c:\autoexec.bat") Then

Msgbox "This file exists!"

Else

MsgBox "File does not exist."

End If

End Sub

See Also
■ FileLen (function)

■ GetAttr (function)
Functions 675

■ FileType (function)

■ FileAttr (function)

■ FileParse$ (function)

Platform(s)

All.

FileLen (function)

Syntax
FileLen(pathname)

Description

Returns a Long representing the length of pathname in bytes.

Comments

This function is used in place of the LOF function to retrieve the length of a file
without first opening the file. A runtime error results if the file does not exist.

Example
'This example checks to see whether there is a c:\autoexec.bat

'file and, if there is, displays the length of the file.

Sub Main()

If (FileExists("c:\autoexec.bat") And _

(FileLen("c:\autoexec.bat") <> 0)) Then

b% = FileLen("c:\autoexec.bat")

MsgBox "The length of autoexec.bat is: " & b%

Else

MsgBox "File does not exist."

End If

End Sub

See Also
■ GetAttr (function)

■ FileType (function)
676 Chapter 4 - BasicScript Reference

■ FileAttr (function)

■ FileParse$ (function)

■ FileExists (function)

■ Loc (function)

Platform(s)

All.

FileParse$ (function)

Syntax
FileParse$(filename$[, operation])

Description

Returns a String containing a portion of filename$ such as the path, drive, or file
extension.

Comments

The filename$ parameter can specify any valid filename (it does not have to exist). For
example:

..\test.dat

c:\sheets\test.dat

test.dat

A runtime error is generated if filename$ is a zero-length string.

The optional operation parameter is an Integer specifying which portion of the
filename$ to extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat

1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test
Functions 677

If operation is not specified, then the full name is returned. A runtime error will result
if operation is not one of the above values.

A runtime error results if filename$ is empty.

On systems that do not support drive letters, operation 1 will return a zero-length
string.

Example
'This example parses the file string "c:\testsub\autoexec.bat"

'into its component parts and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim a$(6)

For i = 1 To 5

a$(i) = FileParse$("c:\testsub\autoexec.bat",i - 1)

Next i

MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) &
crlf & a$(5)

End Sub

See Also
■ FileLen (function)

■ GetAttr (function)

■ FileType (function)

■ FileAttr (function)

■ FileExists (function)

Platform(s)

All.

5 Extension dat

Value Meaning Example
678 Chapter 4 - BasicScript Reference

Platform Notes: Win32, Windows, OS/2

The path separator is different on different platforms. Under Windows, OS/2, and
Win32, the backslash and forward slash can be used interchangeably. For example,
“c:\test.dat” is the same as “c:/test.dat”.

Platform Notes: UNIX

Under UNIX systems, the backslash and colon are valid filename characters.

Platform Notes: Macintosh

On the Macintosh, all characters are valid within filenames except colons, which are
seen as path separators.

Platform Notes: NetWare

Under NetWare, operation 1 returns the volume name (up to 14 characters).

FileType (function)

Syntax
FileType(filename$)

Description

Returns the type of the specified file.

Comments

One of the following Integer constants is returned:

If one of the above values is not returned, then the file type is unknown.

Example
'This example looks at c:\windows\winfile.exe and determines

Constant Value Description

ebDos 1 DOS executable file(exe files only; com files are not recognized).

ebWindows 2 Windows executable file

If one of the above values is not returned, then the file type is
unknown.
Functions 679

'whether it is a DOS or a Windows file. The result is displayed

'in a dialog box.

Sub Main()

a = FileType("c:\windows\winfile.exe")

If a = ebDos Then

MsgBox "This is a DOS file."

Else

MsgBox "This is a Windows file of type '" & a & "'"

End If

End Sub

See Also
■ FileLen (function)

■ GetAttr (function)

■ FileAttr (function)

■ FileExists (function)

Platform(s)

Windows.

Platform Notes: Windows

Currently, only files with a “.exe” extension can be used with this function. Files with
a “.com” or “.bat” extension will return 3 (unknown).

Fix (function)

Syntax
Fix(number)

Description

Returns the integer part of number.

Comments

This function returns the integer part of the given value by removing the fractional
part. The sign is preserved.
680 Chapter 4 - BasicScript Reference

The Fix function returns the same type as number, with the following exceptions:

■ If number is Empty, then an Integer variant of value 0 is returned.

■ If number is a String, then a Double variant is returned.

■ If number contains no valid data, then a Null variant is returned.

Example
'This example returns the fixed part of a number and assigns it

'to b, then displays the result in a dialog box.

Sub Main()

a# = -19923.45

b% = Fix(a#)

MsgBox "The fixed portion of -19923.45 is: " & b%

End Sub

See Also

Int (function)

CInt (function)

Platform(s)

All.

Format, Format$ (functions)

Syntax
Format[$](expression [, [format] [, [firstdayofweek] [,
firstweekofyear]]])

Description

Returns a String formatted to user specification.

Comments

Format$ returns a String, whereas Format returns a String variant.
Functions 681

The Format$/Format functions take the following named parameters:

If format is omitted and the expression is numeric, then these functions perform the
same function as the Str$ or Str statements, except that they do not preserve a leading
space for positive values.

If expression is Null, then a zero-length string is returned.

The maximum length of the string returned by Format or Format$ functions is 255.

The firstdayofweek parameter, if specified, can be any of the following constants:

Named Parameter Description

expression String or numeric expression to be formatted.BasicScript will only
examine the first 255 characters of expression.

format Format expression that can be either one of the built-in BasicScript
formats or a user-defined format consisting of characters that specify
how the expression should be displayed.

String, numeric, and date/time formats cannot be mixed in a single
format expression.

firstdayofweek Indicates the first day of the week. If omitted, then sunday is assumed
(i.e., the constant ebSunday described below).

firstdayofweek Indicates the first week of the year. If omitted, then the first week of the
year is considered to be that containing January 1 (i.e., the constant
ebFirstJan1 as described bellow).

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default)

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday
682 Chapter 4 - BasicScript Reference

The firstdayofyear parameter, if specified, can be any of the following constants:

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofyear.

ebFirstJan1 1 The first week of the year is that in which January 1 occurs (the
default).

ebFirstFourDays 2 The first week of the year is that containing at least four days in
the year.

ebFirstFullWeek 3 The first week of the year is the first full week of the year.
Functions 683

Built-In Formats

To format numeric expressions, you can specify one of the built-in formats. There are
two categories of built-in formats: one deals with numeric expressions and the other
with date/time values.The following tables list the built-in numeric and date/time
format strings, followed by an explanation of what each does.

Format Description

General Number Displays the numeric expression as is, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator
if necessary.The built-in Currency format allows the specification of an
optional user-defined format specification used only for zero values:

Currency;zero-format-string

Where zero-format-string is a user-defined format used specifically for
zero values.

Fixed Displays at least one digit to the left of the decimal separator and two
digits to the right.

Standard Displays the numeric expression with thousands separator if necessary.
Displays at least one digit to the left of the decimal separator and two
digits to the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%)
will appear at the right of the formatted output. Two digits are displayed
to the right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before
the decimal separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other
values.

True/False Displays False if the numeric expression is 0. Displays True for all other
values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other
values.

Format Description

General date Displays the date and time. If there is no fractional part in the numeric
expression, then only the date is displayed. If there is no integral part in
the numeric expression, then only the time is displayed. Output is in the
following form: 1/1/95 01:00:00 AM.
684 Chapter 4 - BasicScript Reference

User-Defined Formats

In addition to the built-in formats, you can specify a user-defined format by using
characters that have special meaning when used in a format expression. The following
list the characters you can use for numeric, string, and date/time formats and explain
their functions.

Medium date Displays a medium date—prints out only the abbreviated name of the
month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium time Displays the time using a 12-hour clock. Hours and minutes are
displayed, and the AM/PM designator is at the end.

Short time Displays the time using a 24-hour clock. Hours and minutes are
displayed.

Character Meaning

Empty string Displays the numeric expression as is, with no additional formatting.

0 This is a digit placeholder.Displays a number or a 0. If a number exists in
the numeric expression in the position where the 0 appears, the number
will be displayed. Otherwise, a 0 will be displayed. If there are more 0s
in the format string than there are digits, the leading and trailing 0s are
displayed without modification.

This is a digit placeholder.Displays a number or nothing. If a number
exists in the numeric expression in the position where the number sign
appears, the number will be displayed. Otherwise, nothing will be
displayed. Leading and trailing 0s are not displayed.

.This is the decimal placeholder.Designates the number of digits to the
left of the decimal and the number of digits to the right. The character
used in the formatted string depends on the decimal placeholder, as
specified by your locale.

% This is the percentage operator.The numeric expression is multiplied by
100, and the percent character is inserted in the same position as it
appears in the user-defined format string.

Format Description
Functions 685

Numeric formats can contain one to three parts. Each part is separated by a
semicolon. If you specify one format, it applies to all values. If you specify two
formats, the first applies to positive values and the second to negative values. If you

. This is the thousands separator.The common use for the thousands
separator is to separate thousands from hundreds. To specify this use,
the thousands separator must be surrounded by digit placeholders.
Commas appearing before any digit placeholders are specified are just
displayed. Adjacent commas with no digit placeholders specified
between them and the decimal mean that the number should be divided
by 1,000 for each adjacent comma in the format string. A comma
immediately to the left of the decimal has the same function. The actual
thousands separator character used depends on the character specified
by your locale.

E- E+ e- e+ These are the scientific notation operators, which display the number in
scientific notation. At least one digit placeholder must exist to the left of
E-, E+, e-, or e+. Any digit placeholders displayed to the left of E-, E+, e-,
or e+ determine the number of digits displayed in the exponent. Using
E+ or e+ places a + in front of positive exponents and a – in front of
negative exponents. Using E- or e- places a – in front of negative
exponents and nothing in front of positive exponents.

: :This is the time separator.Separates hours, minutes, and seconds when
time values are being formatted. The actual character used depends on
the character specified by your locale.

/ This is the date separator.Separates months, days, and years when date
values are being formatted. The actual character used depends on the
character specified by your locale.

- + $ () space These are the literal characters you can display.To display any other
character, you should precede it with a backslash or enclose it in quotes.

\ This designates the next character as a displayed character.To display
characters, precede them with a backslash. To display a backslash, use
two backslashes. Double quotation marks can also be used to display
characters. Numeric formatting characters, date/time formatting
characters, and string formatting characters cannot be displayed
without a preceding backslash.

“ABC” Displays the text between the quotation marks, but not the quotation
marks. To designate a double quotation mark within a format string, use
two adjacent double quotation marks.

* This will display the next character as the fill character.Any empty space
in a field will be filled with the specified fill character.

Character Meaning
686 Chapter 4 - BasicScript Reference

specify three formats, the first applies to positive values, the second to negative
values, and the third to 0s. If you include semicolons with no format between them,
the format for positive values is used.

Character Meaning

@ This is a character placeholder. It displays a character if one exists in the
expression in the same position; otherwise, it displays a space.
Placeholders are filled from right to left unless the format string specifies
left to right.

& This is a character placeholder. It displays a character if one exists in the
expression in the same position; otherwise, it displays nothing.
Placeholders are filled from right to left unless the format string specifies
left to right.

< This character forces lowercase. It displays all characters in the
expression in lowercase.

> This character forces uppercase. It displays all characters in the
expression in uppercase.

! This character forces placeholders to be filled from left to right. The
default is right to left.

Character Meaning

c Displays the date as ddddd and the time as ttttt. Only the date is
displayed if no fractional part exists in the numeric expression. Only the
time is displayed if no integral portion exists in the numeric expression.

d Displays the day without a leading 0 (1ñ31).

dd Displays the day with a leading 0 (01ñ31).

ddd Displays the day of the week abbreviated (SunñSat).

dddd Displays the day of the week (SundayñSaturday).

ddddd Displays the date as a short date.

dddddd Displays the date as a long date.

w Displays the number of the day of the week (1ñ7). Sunday is 1; Saturday
is 7.

ww Displays the week of the year (1ñ53).
Functions 687

m Displays the month without a leading 0 (1ñ12). If m immediately
follows h or hh, m is treated as minutes (0ñ59).

mm Displays the month with a leading 0 (01ñ12). If mm immediately
follows h or hh, mm is treated as minutes with a leading 0 (00ñ59).

mmm Displays the month abbreviated (JanñDec).

mmmm Displays the month (JanuaryñDecember).

q Displays the quarter of the year (1ñ4).

yy Displays the year, not the century (00ñ99).

yyyy Displays the year (1000ñ9999).

h Displays the hour without a leading 0 (0ñ24).

hh Displays the hour with a leading 0 (00ñ24).

n Displays the minute without a leading 0 (0ñ59).

nn Displays the minute with a leading 0 (00ñ59).

s Displays the second without a leading 0 (0ñ59).

ss Displays the second with a leading 0 (00ñ59).

ttttt Displays the time. A leading 0 is displayed if specified by your locale.

AM/PM Displays the time using a 12-hour clock. Displays an uppercase AM for
time values before 12 noon. Displays an uppercase PM for time values
after 12 noon and before 12 midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm
at the end.

A/P Displays the time using a 12-hour clock. Displays an uppercase A or P
at the end.

a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at
the end.

AMPM Displays the time using a 12-hour clock. Displays the string s1159 for
values before 12 noon and s2359 for values after 12 noon and before 12
midnight.

Character Meaning
688 Chapter 4 - BasicScript Reference

Example
Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a# = 1199.234

message = "Some general formats for '" & a# & "' are:"

message = message & Format$(a#,"General Number") & crlf

message = message & Format$(a#,"Currency") & crlf

message = message & Format$(a#,"Standard") & crlf

message = message & Format$(a#,"Fixed") & crlf

message = message & Format$(a#,"Percent") & crlf

message = message & Format$(a#,"Scientific") & crlf

message = message & Format$(True,"Yes/No") & crlf

message = message & Format$(True,"True/False") & crlf

message = message & Format$(True,"On/Off") & crlf

message = message & Format$(a#,"0,0.00") & crlf

message = message & Format$(a#,"##,###,###.###") & crlf

MsgBox message

da$ = Date$

message = "Some date formats for '" & da$ & "' are:"

message = message & Format$(da$,"General Date") & crlf

message = message & Format$(da$,"Long Date") & crlf

message = message & Format$(da$,"Medium Date") & crlf

message = message & Format$(da$,"Short Date") & crlf

MsgBox message

ti$ = Time$

message = "Some time formats for '" & ti$ & "' are:"

message = message & Format$(ti$,"Long Time") & crlf

message = message & Format$(ti$,"Medium Time") & crlf

message = message & Format$(ti$,"Short Time") & crlf

MsgBox message

End Sub

See Also
■ Str, Str$ (functions)

■ CStr (function)
Functions 689

Platform(s)

All.

Platform Notes: Windows, Win32

Under Windows and Win32, default date/time formats are read from the [Intl] section
of the win.ini file.

FreeFile (function)

Syntax
FreeFile [([rangenumber])]

Description

Returns an Integer containing the next available file number.

Comments

This function returns the next available file number within the specified range. If
rangenumber is 0, then a number between 1 and 255 is returned; if 1, then a number
between 256 and 511 is returned. If rangenumber is not specified, then a number
between 1 and 255 is returned.

The function returns 0 if there is no available file number in the specified range.

The number returned is suitable for use in the Open statement.

Example
'This example assigns A to the next free file number and

'displays it in a dialog box.

Sub Main()

a = FreeFile

MsgBox "The next free file number is: " & a

End Sub

See Also
■ FileAttr (function)

■ Open (statement)
690 Chapter 4 - BasicScript Reference

Platform(s)

All.

Fv (function)

Syntax
Fv(rate, nper, pmt, pv, due)

Description

Calculates the future value of an annuity based on periodic fixed payments and a
constant rate of interest.

Comments

An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The Fv function requires the following named parameters:

The rate and nper values must be expressed in the same units. If rate is expressed as a
percentage per month, then nper must also be expressed in months. If rate is an
annual rate, then the nper value must also be given in years.

Named Parameter Description

rate Double representing the interest rate per period. Make sure that annual
rates are normalized for monthly periods (divided by 12).

nper Double representing the total number of payments (periods) in the
annuity.

pmt Double representing the amount of each payment per period. Payments
are entered as negative values, whereas receipts are entered as positive
values.

pmt Double representing the present value of your annuity. In the case of a
loan, the present value would be the amount of the loan, whereas in the
case of a retirement annuity, the present value would be the amount of
the fund.

due Integer indicating when payments are due for each payment period. A 0
specifies payment at the end of each period, whereas a 1 indicates
payment at the start of each period.
Functions 691

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example
'This example calculates the future value of 100 dollars paid

'periodically for a period of 10 years (120 months) at a rate of

'10% per year (or .10/12 per month) with payments made on the

'first of the month. The value is displayed in a dialog box.

'Note that payments are negative values.

Sub Main()

a# = Fv((.10/12),120,-100.00,0,1)

MsgBox "Future value is: " & Format(a#,"Currency")

End Sub

See Also
■ IRR (function)

■ MIRR (function)

■ Npv (function)

■ Pv (function)

Platform(s)

All.

GetAllSettings (function)

Syntax
GetAllSettings(appname [,section])

Description

Returns all of the keys within the specified section, or all of the sections within the
specified application from the system registry.
692 Chapter 4 - BasicScript Reference

Comments

The GetAllSettings function takes the following named parameters:

The GetAllSettings function returns a Variant containing an array of strings.

Example
Sub Main()

Dim NewAppSettings() As Variant

SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200

SaveSetting appname := "NewApp", section := "Startup _

", key := "Width", setting := 320

GetAllSettings appname := "NewApp", _

section := "Startup ", resultarray :=
NewAppSettings

For i = LBound(NewAppSettings) To UBound(NewAppSettings)

NewAppSettings(i) = NewAppSettings(i) & "=" & _

GetSetting("NewApp", "Startup", NewAppSettings(i))

Next i

r = SelectBox("Registry Settings","", NewAppSettings)

End Sub

See Also
■ GetSetting (function)

■ DeleteSetting (statement)

■ SaveSetting (statement)

Named Parameter Description

appname A String expression specifying the name of the application from which
settings or keys will be returned.

section A String expression specifying the name of the section from which keys
will be returned. If omitted, then all of the section names within
appname will be returned.
Functions 693

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Win32

Under Win32, this statement operates on the system registry. All settings are read
from the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname\section

Platform Notes: Windows, OS/2

Settings are stored in INI files. The name of the INI file is specified by appname. If
appname is omitted, then this command operates on the WIN.INI file. For example, to
enumerate all of the keys within the intl section of the WIN.INI file, you could use the
following statements:

Dim a As Variant

a = GetAllSettings(,"intl")

GetAttr (function)

Syntax
GetAttr(pathname)

Description

Returns an Integer containing the attributes of the specified file.

Comments

The attribute value returned is the sum of the attributes set for the file. The value of
each attribute is as follows:

Constant Value Includes

ebNormal 0 Read-only files, archive files, subdirectories, and files with no
attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 9 Volume label
694 Chapter 4 - BasicScript Reference

To determine whether a particular attribute is set, you can And the values shown
above with the value returned by GetAttr. If the result is True, the attribute is set, as
shown below:

Dim w As Integer

w = GetAttr("sample.txt")

If w And ebReadOnly Then MsgBox "This file is read-only."

Example
'This example tests to see whether the file test.dat exists. If

'it does not, then it creates the file. The file attributes are

'then retrieved with the GetAttr function, and the result is

'displayed.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

If Not FileExists("test.dat") Then

Open "test.dat" For Random Access Write As #1

Close

End If

y% = GetAttr("test.dat")

If y% And ebNone Then message = message & _

"No archive bit is set." & crlf

If y% And ebReadOnly Then message = message & _

"The read-only bit is set." & crlf

If y% And ebHidden Then message = message & _

"The hidden bit is set." & crlf

If y% And ebSystem Then message = message & _

"The system bit is set." & crlf

If y% And ebVolume Then message = message & _

"Volume bit is set." & crlf

If y% And ebDirectory Then message = message & _

ebDirectory 16 Subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

Constant Value Includes
Functions 695

"Directory bit is set." & crlf

If y% And ebArchive Then message = message & _

"The archive bit is set."

MsgBox message

Kill "test.dat"

End Sub

See Also
■ SetAttr (statement)

■ FileAttr (function)

Platform(s)

All.

Platform Notes: Windows

Under Windows, these attributes are the same as those used by DOS.

Platform Notes: UNIX

On UNIX platforms, the hidden file attribute corresponds to files without the read or
write attributes.

GetCheckBox (function)

Syntax
GetCheckBox(name$ | id)

Description

Returns an Integer representing the state of the specified check box.

Comments

This function is used to determine the state of a check box, given its name or ID. The
returned value will be one of the following:

Returned Value Description

0 Check box contains no check.
696 Chapter 4 - BasicScript Reference

The GetCheckBox function takes the following parameters:

Note: The GetCheckBox function is used to retrieve the state of a check box in
another application's dialog box. Use the DlgValue function to retrieve the state of a
check box in a dynamic dialog box.

Example

'This example toggles the Match Case check box in the Find

'dialog box.

Sub Main()

Menu "Search.Find"

If GetCheckBox("Match Case") = 0 Then

SetCheckBox "Match Case",1

Else

SetCheckBox "Match Case",0

End If

End Sub

See Also
■ CheckBoxExists (function)

■ CheckBoxEnabled (function)

■ SetCheckBox (statement)

■ DlgValue (function)

1 Check box contains a check.

2 Check box is grayed.

Parameter Description

name$ String containing the name of the check box.

id Integer specifying the ID of the check box.

Returned Value Description
Functions 697

Platform(s)

Windows NT.

GetComboBoxItem$ (function)

Syntax
GetComboBoxItem$(name$ | id [,ItemNumber])

Description

Returns a String containing the text of an item within a combo box.

Comments

The GetComboBoxItem$ function takes the following parameters:

Note: The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo box. A
runtime error is generated if a combo box with that name cannot be found within the
active window.

The combo box must exist within the current window or dialog box; otherwise, a
runtime error is generated.

A zero-length string will be returned if the combo box does not contain textual items.

Note: The GetComboBoxItem$ function is used to retrieve the current item of a
combo box in another application's dialog box. Use the DlgText function to retrieve
the current item of a combo box in a dynamic dialog box.

Example
'This example retrieves the last item from a combo box.

Parameter Description

name$ String specifying the name of the combo box containing the item to be
returned.

id Integer specifying the ID of the combo box containing the item to be
returned.

ItemNumber Integer containing the line number of the desired combo box item to be
returned. If omitted, then the currently selected item in the combo box is
returned.
698 Chapter 4 - BasicScript Reference

Sub Main()

last% = GetComboBoxItemCount("Directories:")

s$ = GetComboBoxItem$("Directories:",last% - 1)

'Number is 0-based.

MsgBox "The last item in the combo box is " & s$

End Sub

See Also
■ ComboBoxEnabled (function)

■ ComboBoxExists (function)

■ GetComboBoxItemCount (function)

■ SelectComboBoxItem (statement)

Platform(s)

Windows NT.

GetComboBoxItemCount (function)

Syntax
GetComboBoxItemCount(name$ | id)

Description

Returns an Integer containing the number of items in the specified combo box.
Functions 699

Comments

The GetComboBoxItemCount function takes the following parameters:

Note: The name of a combo box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a combo box. A
runtime error is generated if a combo box with that name cannot be found within the
active window.

A runtime error is generated if the specified combo box does not exist within the
current window or dialog box.

Note: The GetComboBoxItemCount function is used to determine the number of
items in a combo box in another application's dialog box. There is no equivalent
function for use with dynamic dialog boxes.

Example
'This example copies all the items out of a combo box and into

'an array.

Sub Main()

Dim MyList$()

last% = GetComboBoxItemCount("Directories:")

ReDim MyList$(0 To last - 1)

For i = 0 To last - 1

MyList$(i) = GetComboBoxItem$("Directories:",i)

Next i

End Sub

See Also
■ ComboBoxEnabled (function)

■ ComboBoxExists (function)

Parameter Description

name$ The GetComboBoxItem$ function is used to retrieve the current item of a
combo box in another application's dialog box. Use the DlgText function
to retrieve the current item of a combo box in a dynamic dialog box.String
containing the name of the combo box.

id Integer specifying the ID of the combo box.
700 Chapter 4 - BasicScript Reference

■ GetComboBoxItem$ (function)

■ SelectComboBoxItem (statement)

Platform(s)

Windows NT.

GetEditText$ (function)

Syntax
GetEditText$(name$ | id)

Description

Returns a String containing the content of the specified text box control.

Comments

The GetEditText$ function takes the following parameters:

A runtime error is generated if a text box control with the given name or ID cannot be
found within the active window.

Note: The GetEditText$ function is used to retrieve the content of a text box in
another application's dialog box. Use the DlgText$ function to retrieve the content of a
text box in a dynamic dialog box.

Example
'This example retrieves the filename and prepends it with the

'current directory.

Sub Main()

Parameter Description

name$ String containing the name of the text box whose content will be returned.

The name of a text box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a
text box. A runtime error is generated if a text box with that name cannot
be found within the active window.

id Integer specifying the ID of the text box whose content will be returned.
Functions 701

s$ = GetEditText$("Filename:")
'Retrieve edit control content

s$ = CurDir$ & Basic.PathSeparator & s$
'Prepend current dir

SetEditText "Filename:",s$
'Put it back

End Sub

See Also
■ EditEnabled (function)

■ EditExists (function)

■ SetEditText (statement)

Platform(s)

Windows.

GetListBoxItem$ (function)

Syntax
GetListBoxItem$(name$ | id,[item])

Description

Returns a String containing the specified item in a list box.

Comments

The GetListBoxItem$ function takes the following parameters:

Parameter Description

name$ String specifying the name of the list box containing the item to be
returned.

The name of a list box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a
list box. A runtime error is generated if a list box with that name cannot
be found within the active window.

id Integer specifying the ID of the list box containing the item to be returned.
702 Chapter 4 - BasicScript Reference

A runtime error is generated if the specified list box cannot be found within the active
window.

Note: The GetListBoxItem$ function is used to retrieve an item from a list box in
another application's dialog box. There is no equivalent function for use with dynamic
dialog boxes.

Example
'This example sees whether my name appears as an item in the

'"Users" list box.

Sub Main()

last% = GetListBoxItemCount("Users")

IsThere = False

For i = 0 To last% - 1'Number is zero-based.

If GetListBoxItem$("Users",i) = Net.User$ Then _

isThere = True

Next i

If IsThere Then MsgBox "I am a member!",ebOKOnly

End Sub

See Also
■ GetListBoxItemCount (function)

■ ListBoxEnabled (function)

■ ListBoxExists (function)

■ SelectListBoxItem (statement)

Platform(s)

Windows.

item Integer containing the line number of the desired list box item to be
returned. This number must be between 1 and the number of items in the
list box.If omitted, then the currently selected item in the list box is
returned.

Parameter Description
Functions 703

GetListBoxItemCount (function)

Syntax
GetListBoxItemCount(name$ | id)

Description

Returns an Integer containing the number of items in a specified list box.

Comments

The GetListBoxItemCount function takes the following parameters:

A runtime error is generated if the specified list box cannot be found within the active
window.

Note: The GetListBoxItemCount function is used to retrieve the number of items in a
list box in another application's dialog box. There is no equivalent function for use
with dynamic dialog boxes.

Example
See GetListBoxItem$ (function).

See Also
■ GetListBoxItem$ (function)

■ ListBoxEnabled (function)

■ ListBoxExists (function)

■ SelectListBoxItem (statement)

Parameter Description

name$ String containing the name of the list box.

The name of a list box is determined by scanning the window list looking
for a text control with the given name that is immediately followed by a
list box. A runtime error is generated if a list box with that name cannot
be found within the active window.

id Integer specifying the ID of the list box.
704 Chapter 4 - BasicScript Reference

Platform(s)

Windows.

GetObject (function)

Syntax
GetObject(pathname [, class])

Description

Returns the object specified by pathname or returns a previously instantiated object of
the given class.

Comments

This function is used to retrieve an existing OLE Automation object, either one that
comes from a file or one that has previously been instantiated.

The pathname argument specifies the full pathname of the file containing the object to
be activated. The application associated with the file is determined by OLE at
runtime. For example, suppose that a file called c:\docs\resume.doc was created by a
word processor called wordproc.exe. The following statement would invoke
wordproc.exe, load the file called c:\docs\resume.doc, and assign that object to a
variable:

Dim doc As Object

Set doc = GetObject("c:\docs\resume.doc")

To activate a part of an object, add an exclamation point to the filename followed by a
string representing the part of the object that you want to activate. For example, to
activate the first three pages of the document in the previous example:

Dim doc As Object

Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first named
parameter is omitted. The following table summarizes the different behaviors of
GetObject:

pathname class GetObject Returns

Not specified Specified A reference to an existing instance of the specified
object. A runtime error results if the object is not
already loaded.
Functions 705

Examples
'This first example instantiates the existing copy of Excel.

Dim Excel As Object

Set Excel = GetObject(,"Excel.Application")

'This second example loads the OLE server associated with a

'document.

Dim MyObject As Object

Set MyObject = GetObject("c:\documents\resume.doc",)

See Also
■ CreateObject (function)

■ Object (data type)

Platform(s)
■ Windows

■ Win32

■ Macintosh.

GetOption (function)

Syntax
GetOption(name$ | id)

Description

Returns True if the option is set; returns False otherwise.

** Specified A reference to a new object (as specified by class). A
runtime error occurs if an object of the specified class
cannot be found.This is the same as CreateObject.

Specified Not specified The default object from pathname. The application to
activate is determined by OLE based on the given
filename.

Specified Specified The object given class from the file given by
pathname. A runtime error occurs if an object of the
given class cannot be found in the given file.

pathname class GetObject Returns
706 Chapter 4 - BasicScript Reference

Comments

The GetOption function takes the following parameters:

Note: The GetOption function is used to retrieve the state of an option button in
another application's dialog box. Use the DlgValue function to retrieve the state of an
option button in a dynamic dialog box.

Example
'This example figures out which option is set in the Desktop

'dialog box of the Control Panel.

Sub Main()

id = Shell("control",7) 'Run the
Control Panel.

WinActivate "Control Panel" 'Activate
the Control Panel window.

Menu "Settings.Desktop" 'Select
Desktop dialog box.

WinActivate "Control Panel|Desktop"
'Activate it.

If GetOption("Tile") Then
'Retrieve which option is set.

MsgBox "Your wallpaper is tiled."

Else

MsgBox "Your wallpaper is centered."

End If

End Sub

See Also
■ OptionEnabled (function)

■ OptionExists (function)

■ SetOption (statement)

Parameter Description

name$ String containing the name of the option button.

id Integer containing the ID of the option button. The id must be used when
the name of the option button is not known in advance.
Functions 707

Platform(s)

Windows.

GetSetting (function)

Syntax
GetSetting([appname], section, key[, default])

Description

Retrieves an specific setting from the system registry.

Comments

The GetSetting function has the following named parameters:

Example
Sub Main()

SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200

SaveSetting appname := "NewApp", section := "Startup", _

key := "Width", setting := 320

MsgBox GetSetting(appname := "NewApp", section := "Startup", _

key := "Height", default := "50")

DeleteSetting "NewApp" ' Delete the NewApp
key

End Sub

Named Parameter Description

appname A String expression specifying the name of the application from
which the setting will be read.

section A String expression specifying the name of the section within
appname to be read.

key A String expression specifying the name of the key within section to
be read.

default An optional String expression specifying the default value to be
returned if the desired key does not exist in the system registry. If
omitted, then an empty string is returned if the key doesn’t exist.
708 Chapter 4 - BasicScript Reference

See Also
■ GetAllSettings (function)

■ DeleteSetting (statement)

■ SaveSetting (statement)

Platform(s)

Win32, Windows, OS/2.

Platform Notes: Win32

Under Win32, this statement operates on the system registry. All settings are read
from the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\appname\section\key

On this platform, the appname parameter is not optional.

Platform Notes: Windows, OS/2

Settings are stored in INI files. The name of the INI file is specified by appname. If
appname is omitted, then this command operates on the WIN.INI file. For example, to
read the sLanguage setting from the intl section of the WIN.INI file, you could use the
following statement:

s$ = GetSetting(,"intl","sLanguage")

Hex, Hex$ (functions)

Syntax
Hex[$](number)

Description

Returns a String containing the hexadecimal equivalent of number.

Comments

Hex$ returns a String, whereas Hex returns a String variant.

The returned string contains only the number of hexadecimal digits necessary to
represent the number, up to a maximum of eight.
Functions 709

The number parameter can be any type but is rounded to the nearest whole number
before converting to hex. If the passed number is an integer, then a maximum of four
digits are returned; otherwise, up to eight digits can be returned.

The number parameter can be any expression convertible to a number. If number is
Null, then Null is returned. Empty is treated as 0.

Example
'This example inputs a number and displays it in decimal and

'hex until the input number is 0 or an invalid input.

Sub Main()

Do

xs$ = InputBox$("Enter a number to convert:","Hex Convert")

x = Val(xs$)

If x <> 0 Then

MsgBox "Dec: " & x & " Hex: " & Hex$(x)

Else

MsgBox "Goodbye."

End If

Loop While x <> 0

End Sub

See Also
■ Oct

■ Oct$ (functions)

Platform(s)

All.

Hour (function)

Syntax
Hour(time)

Description

Returns the hour of the day encoded in the specified time parameter.
710 Chapter 4 - BasicScript Reference

Comments

The value returned is as an Integer between 0 and 23 inclusive.

The time parameter is any expression that converts to a Date.

Example
'This example takes the current time; extracts the hour, minute,

'and second; and displays them as the current time.

Sub Main()

xt# = TimeValue(Time$())

xh# = Hour(xt#)

xm# = Minute(xt#)

xs# = Second(xt#)

MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also
■ Day (function)

■ Minute (function)

■ Second (function)

■ Month (function)

■ Year (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

IIf (function)

Syntax
IIf(expression, truepart, falsepart)

Description

Returns truepart if condition is True; otherwise, returns falsepart.
Functions 711

Comments

Both expressions are calculated before IIf returns.

The IIf function is shorthand for the following construct:

If condition Then

variable = truepart

Else

variable = falsepart

End If

Example
Sub Main()

s$ = "Car"

MsgBox IIf(s$ = "Car","Nice Car","Nice Automobile")

End Sub

See Also
■ Choose (function)

■ Switch (function)

■ If...Then...Else (statement)

■ Select...Case (statement)

Platform(s)

All.

IMEStatus (function)

Syntax
IMEStatus[()]

Description

Returns the current status of the input method editor.
712 Chapter 4 - BasicScript Reference

Comments

The IMEStatus function returns one of the following constants for Japanese locales:

For Chinese locales, one of the following constants are returned:

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 IME disabled.

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.
Functions 713

For Korean locales, this function returns a value with the first 5 bits having the
following meaning:

Note: You can test for the different bits using the And operator as follows:

a = IMEStatus()

If a And 1 Then ... 'Test for bit 0

If a And 2 Then ... 'Test for bit 1

If a And 4 Then ... 'Test for bit 2

If a And 8 Then ... 'Test for bit 3

If a And 16 Then ... ’Test for bit 4

This function always returns 0 if no input method editor is installed.

Example
'This example retrieves the IMEStatus and displays the results.

Sub Main()

a = IMEStatus()

Select case a

Case 0

MsgBox "IME not installed."

Case 1

MsgBox "IME on."

Case 2

Msgbox "IME off."

End Select

End Sub

Bit If not set (or 0) If set (or 1)

Bit 0 IME not installed IME installed

Bit 1 IME disabled IME enabled

Bit 2 English mode Hanguel mode

Bit 3 Banja mode (single-byte) Junga mode (double-byte)

Bit 4 Normal mode Hanja conversation mode
714 Chapter 4 - BasicScript Reference

See Also
■ Constants (topic)

Platform(s)

Windows, Win32, OS/2, Macintosh. UNIX.

Input, Input$, InputB, InputB$ (functions)

Syntax
Input[$](numchars,[#]filenumber)

InputB[$](numbytes,[#]filenumber)

Description

Returns a specified number of characters or bytes read from a given sequential file.

Comments

The Input$ and InputB$ functions return a String, whereas Input and InputB return
a String variant.

The following parameters are required:

The Input and Input$ functions read all characters, including spaces and end-of-lines.
Null characters are ignored.

The InputB and InputB$ functions are used to read byte data from a file.

Example
'This example opens the autoexec.bat file and displays it in a

'dialog box.

Const crlf = Chr$(13) & Chr$(10)

Parameter Description

numchars Integer containing the number of characters to be read from the file.

numbytes Integer containing the number of bytes to be read from the file.

filenumber Integer referencing a file opened in either Input or Binary mode. This is the same
number passed to the Open statement.
Functions 715

Sub Main()

x& = FileLen("c:\autoexec.bat")

If x& > 0 Then

Open "c:\autoexec.bat" For Input As #1

Else

MsgBox "File not found or empty."

Exit Sub

End If

If x& > 80 Then

ins = Input(80,#1)

Else

ins = Input(x,#1)

End If

Close

MsgBox "File length: " & x& & crlf & ins

End Sub

See Also
■ Open (statement)

■ Get (statement)

■ Input# (statement)

■ Line Input# (statement)

Platform(s)

All.

InputBox, InputBox$ (functions)

Syntax
InputBox[$](prompt [, [title] [, [default] [,[xpos],[ypos]
[,helpfile,context]]]])

Description

Displays a dialog box with a text box into which the user can type.
716 Chapter 4 - BasicScript Reference

Comments

The content of the text box is returned as a String (in the case of InputBox$) or as a
String variant (in the case of InputBox). A zero-length string is returned if the user
selects Cancel.

The InputBox/InputBox$ functions take the following named parameters:

You can type a maximum of 255 characters into InputBox.

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

When Cancel is selected, an empty string is returned. An empty string is also returned
when the user selects the OK button with no text in the input box. Thus, it is not
possible to determine the difference between these two situations. If you need to
determine the difference, you should create a user-defined dialog or use the AskBox
function.

Named Parameter Description

prompt Text to be displayed above the text box. The prompt
parameter can contain multiple lines, each separated
with an end-of-line (a carriage return, line feed, or
carriage-return/line-feed pair). A runtime error is
generated if prompt is Null.

title Caption of the dialog box. If this parameter is omitted,
then no title appears as the dialog box's caption. A
runtime error is generated if title is Null.

default Default response. This string is initially displayed in the
text box. A runtime error is generated if default is Null.

xpos, ypos Integer coordinates, given in twips (twentieths of a
point), specifying the upper left corner of the dialog box
relative to the upper left corner of the screen. If the
position is omitted, then the dialog box is positioned on
or near the application executing the script.

helpfile Name of the file containing context-sensitive help for
this dialog. If this parameter is specified, then context
must also be specified.

context Number specifying the ID of the topic within helpfile for
this dialog's help. If this parameter is specified, then
helpfile must also be specified.
Functions 717

Example
Sub Main()

s$ = InputBox$("File to copy:","Copy","sample.txt")

End Sub

See Also
■ MsgBox (statement

■ AskBox

■ AskBox$ (functions)

■ AskPassword

■ AskPassword$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ SelectBox (function)

■ AnswerBox (function)

Platform(s)

Windows, Win32, OS/2, Macintosh, UNIX.

InStr, InStrB (functions)

Syntax
InStr([start,] search, find [,compare])

InStrB([start,] search, find [,compare])

Description

Returns the first character position of string find within string search.
718 Chapter 4 - BasicScript Reference

Comments

The InStr function takes the following parameters:

The InStr and InStrB functions observe the following additional rules:

■ If either search or find is Null, then Null is returned.

■ If the compare parameter is specified, then start must also be specified. In other
words, if there are three parameters, then it is assumed that these parameters
correspond to start, search, and find.

■ A runtime error is generated if start is Null.

■ A runtime error is generated if compare is not 0 or 1.

■ If search is Empty, then 0 is returned.

■ If find is Empty, then start is returned. If start is greater than the length of search,
then 0 is returned.

■ A runtime error is generated if start is less than or equal to zero.

Parameter Description

start Integer specifying the character position (for Instr) or
byte position (for InstrB) where searching begins. The
start parameter must be between 1 and 32767.If this
parameter is omitted, then the search starts at the
beginning (start = 1).

search Text to search. This can be any expression convertible to
a String.

find Text for which to search. This can be any expression
convertible to a String.

compare Integer controlling how string comparisons are
performed. It can be any of the following values:

0String comparisons are case-sensitive.

1String comparisons are case-insensitive.

Any other value produces a runtime error.If this
parameter is omitted, then string comparisons use the
current Option Compare setting. If no Option Compare
statement has been encountered, then Binary is used (i.e.,
string comparisons are case-sensitive).

If the string is found, then its character position within
search is returned, with 1 being the character position of
the first character.
Functions 719

■ The InStr and InStrB functions operate on character and byte data respectively.
The Instr function interprets the start parameter as a character, performs a textual
comparisons, and returns a character position. The InStrB function, on the other
hand, interprets the start parameter as a byte position, performs binary
comparisons, and returns a byte position.

On SBCS platforms, the InStr and InStrB functions are identical.

Example
'This example checks to see whether one string is in another

'and, if it is, then it copies the string to a variable and

'displays the result.

Sub Main()

a$ = "This string contains the name Stuart."

x% = InStr(a$,"Stuart",1)

If x% <> 0 Then

b$ = Mid$(a$,x%,6)

MsgBox b$ & " was found."

Exit Sub

Else

MsgBox "Stuart not found."

End If

End Sub

See Also
■ Mid, Mid$

■ MidB

■ MidB$ (functions)

■ Option Compare (statement)

■ Item$ (function)

■ Word$ (function)

■ Line$ (function)

Platform(s)

All.
720 Chapter 4 - BasicScript Reference

Int (function)

Syntax
Int(number)

Description

Returns the integer part of number.

Comments

This function returns the integer part of a given value by returning the first integer
less than the number. The sign is preserved.

The Int function returns the same type as number, with the following exceptions:

■ If number is Empty, then an Integer variant of value 0 is returned.

■ If number is a String, then a Double variant is returned.

■ If number is Null, then a Null variant is returned.

Example
'This example extracts the integer part of a number.

Sub Main()

a# = -1234.5224

b% = Int(a#)

MsgBox "The integer part of -1234.5224 is: " & b%

End Sub

See Also

Fix (function)

CInt (function)

Platform(s)

All.

IPmt (function)

Syntax
IPmt(rate, per, nper, pv, fv, due)
Functions 721

Description

Returns the interest payment for a given period of an annuity based on periodic, fixed
payments and a fixed interest rate.

Comments

An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages,
monthly savings plans, and retirement plans.

The following table describes the named parameters:

Named Parameter Description

rate Double representing the interest rate per period. If the
payment periods are monthly, be sure to divide the
annual interest rate by 12 to get the monthly rate.

per Double representing the payment period for which you
are calculating the interest payment. If you want to know
the interest paid or received during period 20 of an
annuity, this value would be 20.

nper Double representing the total number of payments in the
annuity. This is usually expressed in months, and you
should be sure that the interest rate given above is for the
same period that you enter here.

pv Double representing the present value of your annuity.
In the case of a loan, the present value would be the
amount of the loan because that is the amount of cash
you have in the present. In the case of a retirement plan,
this value would be the current value of the fund
because you have a set amount of principal in the plan.

fv Double representing the future value of your annuity. In
the case of a loan, the future value would be zero
because you will have paid it off. In the case of a savings
plan, the future value would be the balance of the
account after all payments are made.

due Integer indicating when payments are due. If this
parameter is 0, then payments are due at the end of each
period (usually, the end of the month). If this value is 1,
then payments are due at the start of each period (the
beginning of the month).
722 Chapter 4 - BasicScript Reference

The rate and nper parameters must be in expressed in the same units. If rate is
expressed in percentage paid per month, then nper must also be expressed in months.
If rate is an annual rate, then the period given in nper should also be in years or the
annual rate should be divided by 12 to obtain a monthly rate.

If the function returns a negative value, it represents interest you are paying out,
whereas a positive value represents interest paid to you.

Example
'This example calculates the amount of interest paid on a

'$1,000.00 loan financed over 36 months with an annual interest

'rate of 10%. Payments are due at the beginning of the month.

'The interest paid during the first 10 months is displayed in a

'table.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

For x = 1 to 10

ipm# = IPmt((.10/12),x,36,1000,0,1)

message = message & Format(x,"00") & " : " & Format(ipm#,"
0,0.00") & crlf

Next x

MsgBox message

End Sub

See Also
■ NPer (function)

■ Pmt (function)

■ PPmt (function)

■ Rate (function)

Platform(s)

All.

IRR (function)

Syntax
IRR(valuearray(),guess)
Functions 723

Description

Returns the internal rate of return for a series of periodic payments and receipts.

Comments

The internal rate of return is the equivalent rate of interest for an investment
consisting of a series of positive and/or negative cash flows over a period of regular
intervals. It is usually used to project the rate of return on a business investment that
requires a capital investment up front and a series of investments and returns on
investment over time.

The IRR function requires the following named parameters:

The value of IRR is found by iteration. It starts with the value of guess and cycles
through the calculation adjusting guess until the result is accurate within 0.00001
percent. After 20 tries, if a result cannot be found, IRR fails, and the user must pick a
better guess.

Example
'This example illustrates the purchase of a lemonade stand for

'$800 and a series of incomes from the sale of lemonade over 12

'months. The projected incomes for this example are generated

'in two For...Next Loops, and then the internal rate of return

'is calculated and displayed. (Not a bad investment!)

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim valu#(12)

Named Parameter Description

valuearray Array of Double numbers that represent payments and
receipts. Positive values are payments, and negative
values are receipts.

There must be at least one positive and one negative
value to indicate the initial investment (negative value)
and the amount earned by the investment (positive
value).

guess Double containing your guess as to the value that the
IRR function will return. The most common guess is .1
(10 percent).
724 Chapter 4 - BasicScript Reference

valu(1) = -800 'Initial investment

message = valu#(1) & ", "

'Calculate the second through fifth months' sales.

For x = 2 To 5

valu(x) = 100 + (x * 2)

message = message & valu(x) & ", "

Next x

'Calcluate the sixth through twelfth months' sales.

For x = 6 To 12

valu(x) = 100 + (x * 10)

message = message & valu(x) & ", "

Next x

'Calcluate the equivalent investment return rate.

retrn# = IRR(valu,.1)

message = "The values: " & crlf & message & crlf & crlf

MsgBox message & "Return rate: " & Format(retrn#,"Percent")

End Sub

See Also
■ Fv (function)

■ MIRR (function)

■ Npv (function)

■ Pv (function)

Platform(s)

All.

IsDate (function)

Syntax
IsDate(expression)

Description

Returns True if expression can be legally converted to a date; returns False otherwise.
Functions 725

Example
Sub Main()

Dim a As Variant

Retry:

a = InputBox("Enter a date.", "Enter Date")

If IsDate(a) Then

MsgBox Format(a,"long date")

Else

Msgbox "Not quite, please try again!"

Goto Retry

End If

End Sub

See Also
■ Variant (data type

■ IsEmpty (function)

■ IsError (function)

■ IsObject (function)

■ VarType (function)

■ IsNull (function)

Platform(s)

All.

IsEmpty (function)

Syntax
IsEmpty(expression)

Description

Returns True if expression is a Variant variable that has never been initialized; returns
False otherwise.

Comments

The IsEmpty function is the same as the following:
726 Chapter 4 - BasicScript Reference

(VarType(expression) = ebEmpty)

Example
Sub Main()

Dim a As Variant

If IsEmpty(a) Then

a = 1.0# 'Give uninitialized data a Double value 0.0.

MsgBox "The variable has been initialized to: " & a

Else

MsgBox "The variable was already initialized!"

End If

End Sub

See Also
■ Variant (data type)

■ IsDate (function)

■ IsError (function)

■ IsObject (function)

■ VarType (function)

■ IsNull (function)

Platform(s)

All.

IsError (function)

Syntax
IsError(expression)

Description

Returns True if expression is a user-defined error value; returns False otherwise.

Example
'This example creates a function that divides two numbers. If

'there is an error dividing the numbers, then a variant of type
Functions 727

'"error" is returned. Otherwise, the function returns the result

'of the division. The IsError function is used to determine

'whether the function encountered an error.

Function Div(ByVal a,ByVal b) As Variant

If b = 0 Then

Div = CVErr(2112) 'Return a special error
value.

Else

Div = a / b 'Return the division.

End If

End Function

Sub Main()

Dim a As Variant

a = Div(10,12)

If IsError(a) Then

MsgBox "The following error occurred: " & CStr(a)

Else

MsgBox "The result is: " & a

End If

End Sub

See Also
■ Variant (data type)

■ IsEmpty (function)

■ IsDate (function)

■ IsObject (function)

■ VarType (function)

■ IsNull (function)

Platform(s)

All.
728 Chapter 4 - BasicScript Reference

IsMissing (function)

Syntax
IsMissing(argname)

Description

Returns True if argname was passed to the current subroutine or function; returns
False if omitted.

Comments

The IsMissing function is used with variant variables passed as optional parameters
(using the Optional keyword) to the current subroutine or function. For nonvariant
variables or variables that were not declared with the Optional keyword, IsMissing
will always return True.

Example
'The following function runs an application and optionally

'minimizes it. If the optional isMinimize parameter is not

'specified by the caller, then the application is not minimized.

Sub Test(AppName As String,Optional isMinimize As Variant)

app = Shell(AppName)

If Not IsMissing(isMinimize) Then

AppMinimize app

Else

AppMaximize app

End If

End Sub

Sub Main

Test "Notepad" 'Maximize this application

Test "Notepad",True 'Mimimize this application

End Sub

See Also
■ Declare (statement)

■ Sub...End Sub (statement)

■ Function...End Function (statement)
Functions 729

Platform(s)

All.

IsNull (function)

Syntax
IsNull(expression)

Description

Returns True if expression is a Variant variable that contains no valid data; returns
False otherwise.

Comments

The IsNull function is the same as the following:

(VarType(expression) = ebNull)

Example
Sub Main()

Dim a As Variant 'Initialized as Empty

If IsNull(a) Then MsgBox "The variable contains no valid
data."

a = Empty * Null

If IsNull(a) Then MsgBox "Null propagated through the
expression."

End Sub

See Also
■ Variant (data type)

■ IsEmpty (function)

■ IsDate (function)

■ IsError (function)

■ IsObject (function)

■ VarType (function)
730 Chapter 4 - BasicScript Reference

Platform(s)

All.

IsNumeric (function)

Syntax
IsNumeric(expression)

Description

Returns True if expression can be converted to a number; returns False otherwise.

Comments

If passed a number or a variant containing a number, then IsNumeric always returns
True.

If a String or String variant is passed, then IsNumeric will return True only if the
string can be converted to a number. The following syntaxes are recognized as valid
numbers:

■ &Hhexdigits[&|%|!|#|@]

■ &[O]octaldigits[&|%|!|#|@]

■ [-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is retrieved and
one of the above rules is applied.

IsNumeric returns False if expression is a Date.

Example
Sub Main()

Dim s$ As String

s$ = InputBox("Enter a number.","Enter Number")

If IsNumeric(s$) Then

MsgBox "You did good!"

Else

MsgBox "You didn't do so good!"

End If

End Sub
Functions 731

See Also
■ Variant (data type)

■ IsEmpty (function)

■ IsDate (function)

■ IsError (function)

■ IsObject (function)

■ VarType (function)

■ IsNull (function)

Platform(s)

All.

IsObject (function)

Syntax
IsObject(expression)

Description

Returns True if expression is a Variant variable containing an Object; returns False
otherwise.

Example
'This example will attempt to find a running copy of Excel and

'create an Excel object that can be referenced as any other

'object in BasicScript.

Sub Main()

Dim v As Variant

On Error Resume Next

Set v = GetObject(,"Excel.Application")

If IsObject(v) Then

MsgBox "The default object value is: " & v = v.Value
'Access value property of the object.

Else

MsgBox "Excel not loaded."

End If
732 Chapter 4 - BasicScript Reference

End Sub

See Also
■ Variant (data type)

■ IsEmpty (function)

■ IsDate (function)

■ IsError (function)

■ VarType (function)

■ IsNull (function)

Platform(s)

All.

Item$ (function)

Syntax
Item$(text$,first [,[last] [,delimiters$]])

Description

Returns all the items between first and last within the specified formatted text list.

Comments

The Item$ function takes the following parameters:

Parameter Description

text String containing the text from which a range of items is
returned.

first Integer containing the index of the first item to be
returned. If first is greater than the number of items in
text$, then a zero-length string is returned.
Functions 733

The Item$ function treats embedded null characters as regular characters.

An empty string is returned if first is less than 1. If last is less than first, the values are
swapped

Example
'This example creates two delimited lists and extracts a range

'from each, then displays the result in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"

slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"

list1$ = Item$(ilist$,5,12)

list2$ = Item$(slist$,2,9,"/")

MsgBox "The returned lists are: " & crlf & list1$ & crlf &
list2$

End Sub

See Also
■ ItemCount (function)

■ Line$ (function)

■ LineCount (function)

■ Word$ (function)

■ WordCount (function)

last Integer containing the index of the last item to be
returned. All of the items between first and last are
returned. If last is greater than the number of items in
text$, then all items from first to the end of text are
returned.

If last is missing, then only the item specified by first is
returned. An “Invalid use of Null” error is returned if
this parameter is Null.

delimiters String containing different item delimiters.By default,
items are separated by commas and end-of-lines. This
can be changed by specifying different delimiters in the
delimiters$ parameter.

Parameter Description
734 Chapter 4 - BasicScript Reference

Platform(s)

All.

ItemCount (function)

Syntax
ItemCount(text$ [,delimiters$])

Description

Returns an Integer containing the number of items in the specified delimited text.

Comments

Items are substrings of a delimited text string. Items, by default, are separated by
commas and/or end-of-lines. This can be changed by specifying different delimiters
in the delimiters$ parameter. For example, to parse items using a backslash:

n = ItemCount(text$,"\")

The ItemCount function treats embedded null characters as regular characters.

Example
'This example creates two delimited lists and then counts the

'number of items in each. The counts are displayed in a dialog

'box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"

slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"

l1% = ItemCount(ilist$)

l2% = ItemCount(slist$,"/")

message = "The first lists contains: " & l1% & " items." & crlf

message = message & "The second list contains: " & l2% & "
items."

MsgBox message

End Sub

See Also
■ Item$ (function)
Functions 735

■ Line$ (function)

■ LineCount (function)

■ Word$ (function)

■ WordCount (function)

Platform(s)

All.

LBound (function)

Syntax
LBound(ArrayVariable() [,dimension])

Description

Returns an Integer containing the lower bound of the specified dimension of the
specified array variable.

Comments

The dimension parameter is an integer specifying the desired dimension. If this
parameter is not specified, then the lower bound of the first dimension is returned.

The LBound function can be used to find the lower bound of a dimension of an array
returned by an OLE Automation method or property:

LBound(object.property [,dimension])

LBound(object.method [,dimension])

Examples
Sub Main()

'This example dimensions two arrays and displays their

'lower bounds.

Dim a(5 To 12)

Dim b(2 To 100, 9 To 20)

lba = LBound(a)

lbb = LBound(b,2)

MsgBox "The lower bound of a is: " & lba & _

" The lower bound of b is: " & lbb
736 Chapter 4 - BasicScript Reference

'This example uses LBound and UBound to dimension a

'dynamic array to hold a copy of an array redimmed by the

'FileList statement.

Dim fl$()

FileList fl$,"*.*"

count = UBound(fl$)

If ArrayDims(a) Then

Redim nl$(LBound(fl$) To UBound(fl$))

For x = 1 To count

nl$(x) = fl$(x)

Next x

MsgBox "The last element of the new array is: " & _

nl$(count)

End If

End Sub

See Also
■ UBound (function)

■ ArrayDims (function)

■ Arrays (topic)

Platform(s)

All.

LCase, LCase$ (functions)

Syntax
LCase[$](string)

Description

Returns the lowercase equivalent of the specified string.

Comments

LCase$ returns a String, whereas LCase returns a String variant.

Null is returned if string is Null.
Functions 737

Example
'This example shows the LCase function used to change 'uppercase names
to lowercase with an uppercase first 'letter.

Sub Main()

lname$ = "WILLIAMS"

fl$ = Left$(lname$,1)

rest$ = Mid$(lname$,2,Len(lname$))

lname$ = fl$ & LCase$(rest$)

MsgBox "The converted name is: " & lname$

End Sub

See Also
■ UCase

■ UCase$ (functions)

Platform(s)

All.

Left, Left$, LeftB, LeftB$ (functions)

Syntax
Left[$](string, length)

LeftB[$](string,length)

Description

Returns the leftmost length characters (for Left and Left$) or bytes (for LeftB and
LeftB$) from a given string.

Comments

Left$ returns a String, whereas Left returns a String variant.

The length parameter is an Integer value specifying the number of characters to
return. If length is 0, then a zero-length string is returned. If length is greater than or
equal to the number of characters in the specified string, then the entire string is
returned.
738 Chapter 4 - BasicScript Reference

The LeftB and LeftB$ functions are used to return a sequence of bytes from a string
containing byte data. In this case, length specifies the number of bytes to return. If
length is greater than the number of bytes in string, then the entire string is returned.

Null is returned if string is Null.

Example
'This example shows the Left$ function used to change

'uppercase names to lowercase with an uppercase first

'letter.

Sub Main()

lname$ = "WILLIAMS"

fl$ = Left$(lname$,1)

rest$ = Mid$(lname$,2,Len(lname$))

lname$ = fl$ & LCase$(rest$)

MsgBox "The converted name is: " & lname$

End Sub

See Also
■ Right, Right$

■ RightB

■ RightB$ (functions)

Platform(s)

All.

Len, LenB (functions)

Syntax
Len(expression)

LenB(expression)

Description

Returns the number of characters (for Len) or bytes (for LenB) in String expression or
the number of bytes required to store the specified variable.
Functions 739

Comments

If expression evaluates to a String, then Len returns the number of characters in a
given string or 0 if the string is empty. When used with a Variant variable, the length
of the variant when converted to a String is returned. If expression is a Null, then Len
returns a Null variant.

The LenB function is used to return the number of bytes in a given string. On SBCS
systems, the LenB and Len functions are identical.

If used with a non-String or non-Variant variable, these functions returns the number
of bytes occupied by that data element.

When used with user-defined data types, these functions return the combined size of
each member within the structure. Since variable-length strings are stored elsewhere,
the size of each variable-length string within a structure is 2 bytes.

The following table describes the sizes of the individual data elements when
appearing within a structure:

Variable-length strings within structures require 2 bytes of storage.

Data Element Size

Integer 2 bytes

Long 4 bytes

Float 4 bytes

Double 8 bytes

Currency 8 bytes

String (variable-length) 2 bytes

String (fixed-length) The length of the string as it appears
in the string's declaration in
characters for Len and bytes for
LenB.

Objects 0 bytes. Both data object variables
and variables of type Object are
always returned as 0 size.

User-defined type Combined size of each structure
member.
740 Chapter 4 - BasicScript Reference

Arrays within structures are fixed in their dimensions. The elements for fixed arrays
are stored within the structure and therefore require the number of bytes for each
array element multiplied by the size of each array dimension:

element_size*dimension1*dimension2...

The Len and LenB functions always returns 0 with object variables or any data object
variable.

Examples
Const crlf = Chr$(13) + Chr$(10)

Sub Main()

'This example shows the Len function used in a routine to

'change uppercase names to lowercase with an uppercase

'first letter.

lname$ = "WILLIAMS"

fl$ = Left$(lname$,1)

ln% = Len(lname$)

rest$ = Mid$(lname$,2,ln%)

lname$ = fl$ & LCase$(rest$)

MsgBox "The converted name is: " & lname$

'This example returns a table of lengths for standard

'numeric types.

Dim lns(4)

a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22

lns(1) = Len(a%)

lns(2) = Len(b&)

lns(3) = Len(c!)

lns(4) = Len(d#)

message = "Lengths of standard types:" & crlf

message = message & "Integer: " & lns(1) & crlf

message = message & "Long: " & lns(2) & crlf

message = message & "Single: " & lns(3) & crlf

message = message & "Double: " & lns(4) & crlf

MsgBox message

End Sub
Functions 741

See Also
■ InStr

■ InStrB (functions)

Platform(s)

All.

Line$ (function)

Syntax
Line$(text$,first[,last])

Description

Returns a String containing a single line or a group of lines between first and last.

Comments

Lines are delimited by carriage return, line feed, or carriage-return/line-feed pairs.
Embedded null characters are treated as regular characters.

The Line$ function takes the following parameters:

Example
'This example reads five lines of the autoexec.bat file,

'extracts the third and fourth lines with the Line$ function,

'and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Parameter Description

text String containing the text from which the lines will be
extracted.

first Integer representing the index of the first line to return. If
last is omitted, then this line will be returned. If first is
greater than the number of lines in text$, then a
zero-length string is returned.

last Integer representing the index of the last line to return
742 Chapter 4 - BasicScript Reference

Open "c:\autoexec.bat" For Input As #1

For x = 1 To 5

Line Input #1,lin$

txt = txt & lin$ & crlf

Next x

lines$ = Line$(txt,3,4)

MsgBox lines$

End Sub

See Also
■ Item$ (function)

■ ItemCount (function)

■ LineCount (function)

■ Word$ (function)

■ WordCount (function)

Platform(s)

All.

LineCount (function)

Syntax
LineCount(text$)

Description

Returns an Integer representing the number of lines in text$.

Comments

Lines are delimited by carriage return, line feed, or both. Embedded null characters
are treated as regular characters.

Example
'This example reads the first ten lines of your autoexec.bat

'file, uses the LineCount function to determine the number

'of lines, and then displays them in a message box.
Functions 743

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

x = 1

Open "c:\autoexec.bat" For Input As #1

While (x < 10) And Not EOF(1)

Line Input #1,lin$

txt = txt & lin$ & crlf

x = x + 1

Wend

lines! = LineCount(txt)

MsgBox "The number of lines in txt is: " _

& lines! & crlf & crlf & txt

End Sub

See Also
■ Item$ (function)

■ ItemCount (function)

■ Line$ (function)

■ Word$ (function)

■ WordCount (function)

Platform(s)

All.

ListBoxEnabled (function)

Syntax
ListBoxEnabled(name$ | id)

Description

Returns True if the given list box is enabled within the active window or dialog box;
returns False otherwise.
744 Chapter 4 - BasicScript Reference

Comments

This function is used to determine whether a list box is enabled within the current
window or dialog box. If there is no active window, False will be returned.

The ListBoxEnabled function takes the following parameters:

Note: The ListBoxEnabled function is used to determine whether a list box is enabled
in another application's dialog box. Use the DlgEnable function in dynamic dialog
boxes.

Example
'This example checks to see whether the list box is enabled

'before setting the focus to it.

Sub Main()

If ListBoxEnabled("Files:") Then ActivateControl "Files:"

End Sub

See Also
■ GetListBoxItem$ (function)

■ GetListBoxItemCount (function)

■ ListBoxExists (function)

■ SelectListBoxItem (statement)

Platform(s)

Windows.

Parameter Description

name$ String containing the name of the list box.The name of a list
box is determined by scanning the window list looking for a
text control with the given name that is immediately followed
by a list box. A runtime error is generated if a list box with that
name cannot be found within the active window.

id Integer specifying the ID of the list box.
Functions 745

ListBoxExists (function)

Syntax
ListBoxExists(name$ | id)

Description

Returns True if the given list box exists within the active window or dialog box;
returns False otherwise.

Comments

This function is used to determine whether a list box exists within the current window
or dialog box. If there is no active window, False will be returned.

The ListBoxExists function takes the following parameters:

Note: The ListBoxExists function is used to determine whether a list box exists in
another application's dialog box. There is no equivalent function for use with dynamic
dialog boxes.

Example
'This example checks to see whether the list box exists and is

'enabled before setting the focus to it.

Sub Main()

If ListBoxExists("Files:") Then

If ListBoxEnabled("Files:") Then

ActivateControl "Files:"

End If

End If

End Sub

Parameter Description

name$ String containing the name of the list box.The name of a list
box is determined by scanning the window list looking for a
text control with the given name that is immediately followed
by a list box. A runtime error is generated if a list box with that
name cannot be found within the active window.

id Integer specifying the ID of the list box.
746 Chapter 4 - BasicScript Reference

See Also
■ GetListBoxItem$ (function)

■ GetListBoxItemCount (function)

■ ListBoxEnabled (function)

■ SelectListBoxItem (statement)

Platform(s)

Windows.

Loc (function)

Syntax
Loc(filenumber)

Description

Returns a Long representing the position of the file pointer in the given file.

Comments

The filenumber parameter is an Integer used by BasicScript to refer to the number
passed by the Open statement to BasicScript.

The Loc function returns different values depending on the mode in which the file
was opened:

Example
'This example reads five lines of the autoexec.bat file,

'determines the current location of the file pointer, and

File Mode Returns

Input Current byte position divided by 128

Output Current byte position divided by 128

Append Current byte position divided by 128

Binary Position of the last byte read or written

Random Number of the last record read or written
Functions 747

'displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Open "c:\autoexec.bat" For Input As #1

For x = 1 To 5

If Not EOF(1) Then Line Input #1,lin$

Next x

lc% = Loc(1)

Close

MsgBox "The file location is: " & lc%

End Sub

See Also
■ Seek (function)

■ Seek (statement)

■ FileLen (function)

Platform(s)

All.

Lof (function)

Syntax
Lof(filenumber)

Description

Returns a Long representing the number of bytes in the given file.

Comments

The filenumber parameter is an Integer used by BasicScript to refer to the open file the
number passed to the Open statement.

The file must currently be open.

Example
'This example creates a test file, writes ten records into
748 Chapter 4 - BasicScript Reference

'it, then finds the length of the file and displays it in a 'message
box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = "This is record number: "

Open "test.dat" For Random Access Write Shared As #1

For x = 1 To 10

rec$ = a$ & x

put #1,,rec$

message = message & rec$ & crlf

Next x

Close

Open "test.dat" For Random Access Read Write Shared As #1

r% = Lof(1)

Close

MsgBox "The length of test.dat is: " & r%

End Sub

See Also
■ Loc (function)

■ Open (statement)

■ FileLen (function)

Platform(s)

All.

Log (function)

Syntax
Log(number)

Description

Returns a Double representing the natural logarithm of a given number.

Comments

The value of number must be a Double greater than 0.
Functions 749

The value of e is 2.71828.

Example
'This example calculates the natural log of 100 and displays

'it in a message box.

Sub Main()

x# = Log(100)

MsgBox "The natural logarithm of 100 is: " & x#

End Sub

See Also
■ Exp (function)

Platform(s)

All.

LTrim, LTrim$ (functions)

See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions).

MacID (function)

Syntax
MacID(constant)

Description

Returns a value representing a collection of same-type files on the Macintosh.

Comments

Since this platform does not support wildcards (i.e., * or ?), this function is the only
way to specify a group of files. This function can only be used with the following
statements:

KillDir$ShellAppActivate
750 Chapter 4 - BasicScript Reference

The constant parameter is a four-character string containing a file type, a resource
type, an application signature, or an Apple event. A runtime error occurs if the MacID
function is used on platforms other than the Macintosh.

Example
'This example retrieves the names of all the text files.

Sub Main()

s$ = Dir$(MacID("TEXT")) 'Get the first text
file.

While s$ <> ""

MsgBox s$ 'Display it.

s$ = Dir$ 'Get the next text
file in the list.

Wend

'Delete all the text
files.

Kill MacID("TEXT")

End Sub

See Also
■ Kill (statement)

■ Dir, Dir$ (functions)

■ Shell (function)

■ AppActivate (statement)

Platform(s)

Macintosh.

Mci (function)

Syntax
Mci(command$,result$ [,error$])

Description

Executes an Mci command, returning an Integer indicating whether the command
was successful.
Functions 751

Comments

The Mci function takes the following parameters:

The Mci function returns 0 if successful. Otherwise, an non-zero Integer is returned
indicating the error.

Examples
'This first example plays a wave file. The wave file is

'played to completion before execution can continue.

Sub Main()

Dim result As String

Dim ErrorMessage As String

Dim Filename As String

Dim rc As Integer

'Establish name of file in the Windows directory.

Filename = FileParse$(System.WindowsDirectory$ + _

"\" + "chimes.wav")

'Open the file and driver.

rc = Mci("open " & Filename & _

" type waveaudio alias CoolSound","",ErrorMessage)

If (rc) Then

'Error occurred--display error message to user.

MsgBox ErrorMessage

Exit Sub

End If

Parameter Description

command$ String containing the command to be executed.

result$ String variable into which the result is placed. If the command
doesn't return anything, then a zero-length string is returned.

To ignore the returned string, pass a zero-length string:

s$ = “open chimes.wav type waveaudio”

r% = Mci(s$,"")

error$ Optional String variable into which an error string will be
placed. A zero-length string will be returned if the function is
successful.
752 Chapter 4 - BasicScript Reference

'Wait for sound to finish.

rc = Mci("play CoolSound wait","","")

'Close driver and file.

rc = Mci("close CoolSound","","")

End Sub

'This next example shows how to query an Mci device and play

'an MIDI file in the background.

Sub Main()

Dim result As String

Dim ErrMsg As String

Dim Filename As String

Dim rc As Integer

'Check to see whether MIDI device can play for us.

rc = Mci("capability sequencer can play",result,ErrorMessage)

'Check for error.

If rc Then

MsgBox ErrorMessage

Exit Sub

End If

'Can it play?

If result <> "true" Then

MsgBox "MIDI device is not capable of playing."

Exit Sub

End If

'Assemble a filename from the Windows directory.

Filename = FileParse$(System.WindowsDirectory$ & _

"\" & "canyon.mid")

'Open the driver and file.
Functions 753

rc = Mci("open " & Filename & _

" type sequencer alias song",result$,ErrMsg)

If rc Then

MsgBox ErrMsg

Exit Sub

End If

rc = Mci("play song","","") 'Play
in the background.

MsgBox "Press OK to stop the music.",ebOKOnly

rc = Mci("close song","","")

End Sub

See Also
■ Beep (statement)

Platform(s)

Windows, Win32.

Platform Notes: Windows

The Mci function accepts any Mci command as defined in the Multimedia
Programmers Reference in the Windows 3.1 SDK.

MenuItemChecked (function)

Syntax
MenuItemChecked(MenuItemName$)

Description

Returns True if the given menu item exists and is checked; returns False otherwise.

Comments

The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

Example
'This example turns the ruler off if it is on.

Sub Main()
754 Chapter 4 - BasicScript Reference

If MenuItemChecked("View.Ruler") Then Menu "View.Ruler"

End Sub

See Also
■ Menu (statement)

■ MenuItemEnabled (function)

■ MenuItemExists (function)

Platform(s)

Windows.

MenuItemEnabled (function)

Syntax
MenuItemEnabled(MenuItemName$)

Description

Returns True if the given menu item exists and is enabled; returns False otherwise.

Comments

The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

Example
'This example only pastes if there is something in the Clipboard.

Sub Main()

If MenuItemEnabled("Edit.Paste") Then

Menu "Edit.Paste"

Else

MsgBox "There is nothing in the Clipboard.",ebOKOnly

End If

End Sub

See Also
■ Menu (statement)
Functions 755

■ MenuItemChecked (function)

■ MenuItemExists (function)

Platform(s)

Windows.

MenuItemExists (function)

Syntax
MenuItemExists(MenuItemName$)

Description

Returns True if the given menu item exists; returns False otherwise.

Comments

The MenuItemName$ parameter specifies a complete menu item or menu item
pop-up following the same format as that used by the Menu statement.

Examples
Sub Main()

If MenuItemExists("File.Open") Then Beep

If MenuItemExists("File") Then MsgBox _

"There is a File menu."

End Sub

See Also
■ Menu (statement)

■ MenuItemChecked (function)

■ MenuItemEnabled (function)

Platform(s)

Windows.
756 Chapter 4 - BasicScript Reference

Mid, Mid$, MidB, MidB$ (functions)

Syntax
Mid[$](string, start [,length])

MidB[$](string, start [,length])

Description

Returns a substring of the specified string, beginning with start, for length characters
(for Mid and Mid$) or bytes (for MidB and MidB$).

Comments

The Mid and Mid$ functions return a substring starting at character position start
and will be length characters long. The MidB and MidB functions return a substring
starting at byte position start and will be length bytes long.

The Mid$ and MidB$ functions return a String, whereas the Mid and MidB functions
return a String variant.

These functions take the following named parameters:

The Mid function will return Null if string is Null.

The MidB and MidB$ functions are used to return a substring of bytes from a string
containing byte data.

Example
'This example displays a substring from the middle of a

'string variable using the Mid$ function and replaces the

'first four characters with "NEW " using the Mid$ statement.

Named Parameter Description

string Any String expression containing the text from which data are
returned.

start Integer specifying the position where the substring begins. If
start is greater than the length of string, then a zero-length
string is returned.

length Integer specifying the number of characters or bytes to return.
If this parameter is omitted, then the entire string is returned,
starting at start.
Functions 757

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = "This is the Main string containing text."

b$ = Mid$(a$,13,Len(a$))

Mid$ (b$,1) = NEW "

MsgBox a$ & crlf & b$

End Sub

See Also
■ InStr

■ InStrB (functions)

■ Option Compare (statement)

■ Mid

■ Mid$

■ MidB

■ MidB$ (statements)

Platform(s)

All.

Minute (function)

Syntax
Minute(time)

Description

Returns the minute of the day encoded in the specified time parameter.

Comments

The value returned is as an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example
'This example takes the current time; extracts the hour,
758 Chapter 4 - BasicScript Reference

'minute, and second; and displays them as the current time.

Sub Main()

xt# = TimeValue(Time$())

xh# = Hour(xt#)

xm# = Minute(xt#)

xs# = Second(xt#)

MsgBox "The current time is: " & xh# & ":" & xm# & ":" & xs#

End Sub

See Also
■ Day (function)

■ Second (function)

■ Month (function)

■ Year (function)

■ Hour (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

MIRR (function)

Syntax
MIRR(valuearray(),financerate,reinvestrate)

Description

Returns a Double representing the modified internal rate of return for a series of
periodic payments and receipts.

Comments

The modified internal rate of return is the equivalent rate of return on an investment
in which payments and receipts are financed at different rates. The interest cost of
investment and the rate of interest received on the returns on investment are both
factors in the calculations.
Functions 759

The MIRR function requires the following named parameters:

The financerate and reinvestrate parameters should be expressed as percentages. For
example, 11 percent should be expressed as 0.11.

To return the correct value, be sure to order your payments and receipts in the correct
sequence.

Example
'This example illustrates the purchase of a lemonade stand

'for $800 financed with money borrowed at 10%. The returns

'are estimated to accelerate as the stand gains popularity.

'The proceeds are placed in a bank at 9 percent interest.

'The incomes are estimated (generated) over 12 months. This

'program first generates the income stream array in two

'For...Next loops, and then the modified internal rate of

'return is calculated and displayed. Notice that the annual

'rates are normalized to monthly rates by dividing them by

'12.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim valu#(12)

valu(1) = -800 'Initial investment
message = valu(1) & ", "

For x = 2 To 5

valu(x) = 100 + (x * 2) 'Incomes months 2-5

message = message & valu(x) & ", "

Named Parameter Description

valuearray Array of Double numbers representing the payments and
receipts. Positive values are payments (invested capital), and
negative values are receipts (returns on investment).There
must be at least one positive (investment) value and one
negative (return) value.

financerate Double representing the interest rate paid on invested monies
(paid out).

reinvestrate Double representing the rate of interest received on incomes
from the investment (receipts).
760 Chapter 4 - BasicScript Reference

Next x

For x = 6 To 12

valu(x) = 100 + (x * 10) 'Incomes months 6-12

message = message & valu(x) & ", "

Next x

retrn# = MIRR(valu,.1/12,.09/12) 'Note:
normalized annual rates

message = "The values: " & crlf & message & crlf & crlf

MsgBox message & "Modified rate: " & _

Format(retrn#,"Percent")

End Sub

See Also
■ Fv (function)

■ IRR (function)

■ Npv (function)

■ Pv (function)

Platform(s)

All.

Month (function)

Syntax
Month(date)

Description

Returns the month of the date encoded in the specified date parameter.

Comments

The value returned is as an Integer between 1 and 12 inclusive.

The date parameter is any expression that converts to a Date.

Example
'This example returns the current month in a dialog box.
Functions 761

Sub Main()

mons$ = "Jan., Feb., Mar., Apr., May, Jun., Jul., "

mons$ = mons$ + "Aug., Sep., Oct., Nov., Dec."

tdate$ = Date$

tmonth! = Month(DateValue(tdate$))

MsgBox "The current month is: " & Item$(mons$,tmonth!)

End Sub

See Also
■ Day (function)

■ Minute (function)

■ Second (function)

■ Year (function)

■ Hour (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

MsgBox (function)

Syntax
MsgBox(prompt [, [buttons] [,[title] [,helpfile,context]]])

Description

Displays a message in a dialog box with a set of predefined buttons, returning an
Integer representing which button was selected.
762 Chapter 4 - BasicScript Reference

Comments

The MsgBox function takes the following named parameters:

The MsgBox function returns one of the following values:

Named Parameter Description

prompt Message to be displayed—any expression convertible to a
String.End-of-lines can be used to separate lines (either a
carriage return, line feed, or both). If a given line is too long, it
will be word-wrapped. If prompt contains character 0, then
only the characters up to the character 0 will be displayed.

The width and height of the dialog box are sized to hold the
entire contents of prompt.A runtime error is generated if
prompt is Null.

buttons Integer specifying the type of dialog box (see below).

title Caption of the dialog box. This parameter is any expression
convertible to a String. If it is omitted, then “BasicScript” is
used.A runtime error is generated if title is Null.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.

Constant Value Description

ebOK 1 OK was pressed.

ebCancel 2 Cancel was pressed.

ebAbort 3 Abort was pressed.

ebRetry 4 Retry was pressed.

ebIgnore 5 Ignore was pressed.

ebYes 6 Yes was pressed.

ebNo 7 No was pressed.
Functions 763

The buttons parameter is the sum of any of the following values:

The default value for buttons is 0 (display only the OK button, making it the default).

If both the helpfile and context parameters are specified, then context-sensitive help
can be invoked using the help key (F1 on most platforms). Invoking help does not
remove the dialog.

Breaking Text across Lines

The prompt parameter can contain end-of-line characters, forcing the text that follows
to start on a new line. The following example shows how to display a string on two
lines:

MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

Constant Value Description

ebOKOnly 1 Displays OK button only.

ebOKCancel 2 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 DisplaysYes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Retry and Cancel buttons.

ebCritical 16 Displays “stop” icon.

ebQuestion 32 Displays “question mark” icon.

ebExclamation 48 Displays “exclamation point” icon.

ebInformation 64 Displays “information” icon.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebApplicationModal 0 The current application is suspended until
the dialog box is closed.

ebSystemModal 4096 All applications are suspended until the
dialog box is closed.
764 Chapter 4 - BasicScript Reference

The carriage-return or line-feed characters can be used by themselves to designate an
end-of-line.

Example
Sub Main

MsgBox "This is a simple message box."

MsgBox "This is a message box with a title and an icon.", _

ebExclamation,"Simple"

MsgBox "This message box has OK and Cancel buttons.", _

ebOkCancel,"MsgBox"

MsgBox "This message box has Abort, Retry, and Ignore
buttons.", _

ebAbortRetryIgnore,"MsgBox"

MsgBox "This message box has Yes, No, and Cancel buttons.", _

ebYesNoCancel Or ebDefaultButton2,"MsgBox"

MsgBox "This message box has Yes and No
buttons.",ebYesNo,"MsgBox"

MsgBox "This message box has Retry and Cancel buttons." , _

ebRetryCancel,"MsgBox"

MsgBox "This message box is system modal!",ebSystemModal

End Sub

See Also
■ AskBox

■ AskBox$ (functions)

■ AskPassword

■ AskPassword$ (functions)

■ InputBox

■ InputBox$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ SelectBox (function)

■ AnswerBox (function)
Functions 765

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes:

The appearance of the MsgBox dialog box and its icons differs slightly depending on
the platform.

Now (function)

Syntax
Now[()]

Description

Returns a Date variant representing the current date and time.

Example
'This example shows how the Now function can be used as an
'elapsed-time counter.

Sub Main()

t1# = Now()

MsgBox "Wait a while and click OK."

t2# = Now()

t3# = Second(t2#) - Second(t1#)

MsgBox "Elapsed time was: " & t3# & " seconds."

End Sub

See Also
■ Date

■ Date$ (functions)

■ Time,

■ Time$ (functions)

Platform(s)

All.
766 Chapter 4 - BasicScript Reference

NPer (function)

Syntax
NPer(rate, pmt, pv, fv, due)

Description

Returns the number of periods for an annuity based on periodic fixed payments and a
constant rate of interest.

Comments

An annuity is a series of fixed payments paid to or received from an investment over a
period of time. Examples of annuities are mortgages, retirement plans, monthly
savings plans, and term loans.

The NPer function requires the following named parameters:

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example
'This example calculates the number of $100.00 monthly

Named Parameter Description

rate Double representing the interest rate per period. If the periods
are monthly, be sure to normalize annual rates by dividing
them by 12.

pmt Double representing the amount of each payment or income.
Income is represented by positive values, whereas payments
are represented by negative values.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan, and the future value (see below) would be zero.

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be zero, and the present
value would be the amount of the loan.

due Integer indicating when payments are due for each payment
period. A 0 specifies payment at the end of each period,
whereas a 1 indicates payment at the start of each period.
Functions 767

'payments necessary to accumulate $10,000.00 at an annual rate of 10%.
Payments are made at the beginning of the month.

Sub Main()

ag# = NPer((.10/12),100,0,10000,1)

MsgBox "The number of monthly periods is: " &
Format(ag#,"Standard")

End Sub

See Also
■ IPmt (function)

■ Pmt (function)

■ PPmt (function)

■ Rate (function)

Platform(s)

All.

Npv (function)

Syntax
Npv(rate, valuearray())

Description

Returns the net present value of an annuity based on periodic payments and receipts,
and a discount rate.

Comments

The Npv function requires the following named parameters:

Named Parameter Description

rate Double that represents the interest rate over the length of the
period. If the values are monthly, annual rates must be
divided by 12 to normalize them to monthly rates.

valuearray Array of Double numbers representing the payments and
receipts. Positive values are payments, and negative values
are receipts.There must be at least one positive and one
negative value.
768 Chapter 4 - BasicScript Reference

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

For accurate results, be sure to enter your payments and receipts in the correct order
because Npv uses the order of the array values to interpret the order of the payments
and receipts.

If your first cash flow occurs at the beginning of the first period, that value must be
added to the return value of the Npv function. It should not be included in the array
of cash flows.

Npv differs from the Pv function in that the payments are due at the end of the period
and the cash flows are variable. Pv's cash flows are constant, and payment may be
made at either the beginning or end of the period.

Example
This example illustrates the purchase of a lemonade stand for '$800
financed with money borrowed at 10%. The returns are 'estimated to
accelerate as the stand gains popularity. The 'incomes are estimated
(generated) over 12 months. This program 'first generates the income
stream array in two For...Next loops, 'and then the net present value
(Npv) is calculated and

'displayed. Note normalization of the annual 10% rate.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim valu#(12)

valu(1) = -800 'Initial investment

message = valu(1) & ", "

For x = 2 To 5 'Months 2-5

valu(x) = 100 + (x * 2)

message = message & valu(x) & ", "

Next x

For x = 6 To 12 'Months 6-12

valu(x) = 100 + (x * 10) 'Accelerated income

message = message & valu(x) & ", "

Next x

NetVal# = NPV((.10/12),valu)

message = "The values:" & crlf & message & crlf & crlf

MsgBox message & "Net present value: " & _

Format(NetVal#,"Currency")

End Sub
Functions 769

See Also
■ Fv (function)

■ IRR (function)

■ MIRR (function)

■ Pv (function)

Platform(s)

All.

Oct, Oct$ (functions)

Syntax
Oct[$](number)

Description

Returns a String containing the octal equivalent of the specified number.

Comments

Oct$ returns a String, whereas Oct returns a String variant.

The returned string contains only the number of octal digits necessary to represent the
number.

The number parameter is any numeric expression. If this parameter is Null, then Null
is returned. Empty is treated as 0. The number parameter is rounded to the nearest
whole number before converting to the octal equivalent.

Example
'This example displays the octal equivalent of several numbers.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

st$ = "The octal values are: " & crlf

For x = 1 To 5

y% = x * 10

st$ = st$ & y% & " : " & Oct$(y%) & crlf

Next x

MsgBox st$
770 Chapter 4 - BasicScript Reference

End Sub

See Also
■ Hex

■ Hex$ (functions)

Platform(s)

All.

OpenFileName$ (function)

Syntax
OpenFileName$[([title$ [,[extensions$] [,helpfile,context]]])]

Description

Displays a dialog box that prompts the user to select from a list of files, returning the
full pathname of the file the user selects or a zero-length string if the user selects
Cancel.

Comments

This function displays the standard file open dialog box, which allows the user to
select a file. It takes the following parameters:

 Parameter Description

title String specifying the title that appears in the dialog box's title
bar. If this parameter is omitted, then “Open” is used.

extension$ String specifying the available file types. The format for this
string depends on the platform on which BasicScript is
running. If this parameter is omitted, then all files are
displayed.

hellofile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.
Functions 771

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example
'This example asks the user for the name of a file, then proceeds 'to
read the first line from that file.

Sub Main

Dim f As String,s As String

f$ = OpenFileName$("Open Picture","Text Files:*.TXT")

If f$ <> "" Then

Open f$ For Input As #1

Line Input #1,s$

Close #1

MsgBox "First line from " & f$ & " is " & s$

End If

End Sub

See Also
■ MsgBox (statement)

■ AskBox

■ AskBox$ (functions)

■ AskPassword

■ AskPassword$ (functions)

■ InputBox

■ InputBox$ (functions)

■ SaveFileName$ (function)

■ SelectBox (function)

■ AnswerBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
772 Chapter 4 - BasicScript Reference

Platform Notes: Windows, Win32, OS/2

The extensions$ parameter must be in the following format:

type:ext[,ext][;type:ext[,ext]]...

For example, the following are valid extensions$ specifications:

"All Files:*.*"

"Documents:*.TXT,*.DOC"

"All Files:*.*;Documents:*.TXT,*.DOC"

Platform Notes: Macintosh

On the Macintosh, the extensions$ parameter contains a comma-separated list of
four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

OptionEnabled (function)

Syntax
OptionEnabled(name$ | id)

Description

Returns True if the specified option button is enabled within the current window or
dialog box; returns False otherwise.

Comments

This function is used to determine whether a given option button is enabled within
the current window or dialog box. If an option button is enabled, then its value can be
set using the SetOption statement.

 Placeholder Description

type Specifies the name of the grouping of files, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.
Functions 773

The OptionEnabled statement takes the following parameters:

Note: The OptionEnabled function is used to determine whether an option button is
enabled in another application's dialog box. Use the DlgEnable function with
dynamic dialog boxes.

Example
'This example checks to see whether the option button is enabled
'before setting it.

If OptionEnabled("Tile") Then

SetOption "Tile"

End If

See Also
■ GetOption (function)

■ OptionExists (function)

■ SetOption (statement)

Platform(s)

Windows.

OptionExists (function)

Syntax
OptionExists(name$ | id)

Description

Returns True if the specified option button exists within the current window or dialog
box; returns False otherwise.

 Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.
774 Chapter 4 - BasicScript Reference

Comments

This function is used to determine whether a given option button exists within the
current window or dialog box.

The OptionExists statement takes the following parameters:

Note: The OptionExists function is used to determine whether an option button
exists in another application's dialog box. There is no equivalent function for use with
dynamic dialog boxes.

Example
'This example checks to see whether the option button exists and 'is
enabled before setting it.

If OptionExists("Tile") Then

If OptionEnabled("Tile") Then

SetOption("Tile")

End If

End If

See Also
■ GetOption (function)

■ OptionEnabled (function)

■ SetOption (statement)

Platform(s)

Windows.

Pmt (function)

Syntax
Pmt(rate, nper, pv, fv, due)

 Parameter Description

name$ String containing the name of the option button.

id Integer specifying the ID of the option button.
Functions 775

Description

Returns the payment for an annuity based on periodic fixed payments and a constant
rate of interest.

Comments

An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The Pmt function requires the following named parameters:

The rate and nper parameters must be expressed in the same units. If rate is expressed
in months, then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example
'This example calculates the payment necessary to repay a

'$1,000.00 loan over 36 months at an annual rate of 10%.

'Payments are due at the beginning of the period.

Sub Main()

x = Pmt((.1/12),36,1000.00,0,1)

 Named Parameter Description

rate Double representing the interest rate per period. If the periods
are given in months, be sure to normalize annual rates by
dividing them by 12.

nper Double representing the total number of payments in the
annuity.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan.

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be 0.

due Integer indicating when payments are due for each payment
period. A 0 specifies payment at the end of each period,
whereas a 1 specifies payment at the start of each period.
776 Chapter 4 - BasicScript Reference

message = "The payment is: "

MsgBox message & Format(x,"Currency")

End Sub

See Also
■ IPmt (function)

■ NPer (function)

■ PPmt (function)

■ Rate (function)

Platform(s)

All.

PopupMenu (function)

Syntax
PopupMenu(MenuItems$())

Description

Displays a pop-up menu containing the specified items, returning an Integer
representing the index of the selected item.

Comments

If no item is selected (i.e., the pop-up menu is canceled), then a value of 1 less than the
lower bound of the array is returned.

This function creates a pop-up menu using the string elements in the given array.
Each array element is used as a menu item. A zero-length string results in a separator
bar in the menu.

The pop-up menu is created with the upper left corner at the current mouse position.

A runtime error results if MenuItems$ is not a single-dimension array.

Only one pop-up menu can be displayed at a time. An error will result if another
script executes this function while a pop-up menu is visible.

Example
Sub Main()
Functions 777

Dim a$()

AppList a$

w% = PopupMenu(a$)

End Sub

See Also
■ SelectBox (function)

Platform(s)

Windows, Win32.

PPmt (function)

Syntax
PPmt(rate, per, nper, pv, fv, due)

Description

Calculates the principal payment for a given period of an annuity based on periodic,
fixed payments and a fixed interest rate.

Comments

An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.

The PPmt function requires the following named parameters:

 Named Parameter Description

rate Double representing the interest rate per period.

per Double representing the number of payment periods. The per
parameter can be no less than 1 and no greater than nper.

nper Double representing the total number of payments in your
annuity.

pv Double representing the present value of your annuity. In the
case of a loan, the present value would be the amount of the
loan.
778 Chapter 4 - BasicScript Reference

The rate and nper parameters must be in the same units to calculate correctly. If rate is
expressed in months, then nper must also be expressed in months.

Negative values represent payments paid out, whereas positive values represent
payments received.

Example
'This example calculates the principal paid during each year on

'a loan of $1,000.00 with an annual rate of 10% for a period of

'10 years. The result is displayed as a table containing the

'following information: payment, principal payment, principal

'balance.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

pay = Pmt(.1,10,1000.00,0,1)

message = "Amortization table for"

message = message & " 10 years: " & crlf & crlf

bal = 1000.00

For per = 1 to 10

prn = PPmt(.1,per,10,1000,0,0)

bal = bal + prn

message = message & Format(pay,"Currency") & " " & _

& Format$(Prn,"Currency")

message = message & " " & Format(bal,"Currency") & crlf

Next per

MsgBox message

End Sub

See Also
■ IPmt (function)

fv Double representing the future value of your annuity. In the
case of a loan, the future value would be 0.

due Integer indicating when payments are due. If this parameter is
0, then payments are due at the end of each period; if it is 1,
then payments are due at the start of each period.

 Named Parameter Description
Functions 779

■ NPer (function)

■ Pmt (function)

■ Rate (function)

Platform(s)

All.

PrinterGetOrientation (function)

Syntax
PrinterGetOrientation[()]

Description

Returns an Integer representing the current orientation of paper in the default printer.

Comments

PrinterGetOrientation returns ebPortrait if the printer orientation is set to portrait;
otherwise, it returns ebLandscape. Zero is returned if there is no installed default
printer.

This function loads the printer driver and therefore may be slow.

Example
'This example toggles the printer orientation.

Sub Main()

If PrinterGetOrientation = ebLandscape Then

PrinterSetOrientation ebPortrait

Else

PrinterSetOrientation ebLandscape

End If

End Sub

See Also
■ PrinterSetOrientation (statement)
780 Chapter 4 - BasicScript Reference

Platform(s)

Windows.

Platform Notes: Windows

The default printer is determined by examining the device= line in the [windows]
section of the win.ini file.

PrintFile (function)

Syntax
PrintFile(filename$)

Description

Prints the filename$ using the application to which the file belongs.

Comments

PrintFile returns an Integer indicating success or failure.

If an error occurs executing the associated application, then PrintFile generates a
trappable runtime error, returning 0 for the result. Otherwise, PrintFile returns a
value representing that application to the system. This value is suitable for calling the
AppActivate statement.

Example
'This example asks the user for the name of a text file, then

'prints it.

Sub Main()

f$ = OpenFilename$("Print Text File","Text Files:*.txt")

If f$ <> "" Then

rc% = PrintFile(f$)

If rc% > 32 Then

MsgBox "File is printing."

End If

End If

End Sub
Functions 781

See Also
■ Shell (function)

Platform(s)

Windows.

Platform Notes: Windows

This function invokes the Windows 3.1 shell functions that cause an application to
execute and print a file. The application executed by PrintFile depends on your
system's file associations.

Pv (function)

Syntax
Pv(rate, nper, pmt, fv, due)

Description

Calculates the present value of an annuity based on future periodic fixed payments
and a constant rate of interest.

Comments

The Pv function requires the following named parameters:

 Named Parameter Description

rate Double representing the interest rate per period. When used
with monthly payments, be sure to normalize annual
percentage rates by dividing them by 12.

nper Double representing the total number of payments in the
annuity.

pmt Double representing the amount of each payment per period.

fv Double representing the future value of the annuity after the
last payment has been made. In the case of a loan, the future
value would be 0.

due Integer indicating when the payments are due for each
payment period. A 0 specifies payment at the end of each
period, whereas a 1 specifies payment at the start of each
period.
782 Chapter 4 - BasicScript Reference

The rate and nper parameters must be expressed in the same units. If rate is expressed
in months, then nper must also be expressed in months.

Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example
'This example demonstrates the present value (the amount you'd

'have to pay now) for a $100,000 annuity that pays an annual

'income of $5,000 over 20 years at an annual interest rate of 10%.

Sub Main()

pval = Pv(.1,20,-5000,100000,1)

MsgBox "The present value is: " & Format(pval,"Currency")

End Sub

See Also
■ Fv (function)

■ IRR (function)

■ MIRR (function)

■ Npv (function)

Platform(s)

All.

Random (function)

Syntax
Random(min,max)

Description

Returns a Long value greater than or equal to min and less than or equal to max.

Comments

Both the min and max parameters are rounded to Long. A runtime error is generated
if min is greater than max.
Functions 783

Example
'This example uses the random number generator to generate ten

'lottery numbers.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Randomize 'Start with new random seed.

For x = 1 To 10

y = Random(0,100) 'Generate numbers.

message = message & y & crlf

Next x

MsgBox "Ten numbers for the lottery: " & crlf & message

End Sub

See Also
■ Randomize (statement)

■ Random (function)

Platform(s)

All.

Rate (function)

Syntax
Rate(nper, pmt, pv, fv, due, guess)

Description

Returns the rate of interest for each period of an annuity.

Comments

An annuity is a series of fixed payments made to an insurance company or other
investment company over a period of time. Examples of annuities are mortgages and
monthly savings plans.
784 Chapter 4 - BasicScript Reference

The Rate function requires the following named parameters:

Positive numbers represent cash received, whereas negative values represent cash
paid out.

The value of Rate is found by iteration. It starts with the value of guess and cycles
through the calculation adjusting guess until the result is accurate within 0.00001
percent. After 20 tries, if a result cannot be found, Rate fails, and the user must pick a
better guess.

Example
'This example calculates the rate of interest necessary to save

'$8,000 by paying $200 each year for 48 years. The guess rate

'is 10%.

Sub Main()

r# = Rate(48,-200,8000,0,1,.1)

MsgBox "The rate required is: " & Format(r#,"Percent")

End Sub

See Also
■ IPmt (function)

 Named Parameter Description

nper Double representing the total number of payments in the
annuity.

pmt Double representing the amount of each payment per period.

pv Double representing the present value of your annuity. In a
loan situation, the present value would be the amount of the
loan.

fv Double representing the future value of the annuity after the
last payment has been made. In the case of a loan, the future
value would be 0.

due Integer indicating when the payments are due for each
payment period. A 0 specifies payment at the end of each
period, whereas a 1 specifies payment at the start of each
period.

guess Double specifying a guess as to the value the Rate function
will return. The most common guess is .1 (10 percent).
Functions 785

■ NPer (function)

■ Pmt (function)

■ PPmt (function)

Platform(s)

All.

ReadIni$ (function)

Syntax
ReadIni$(section$,item$[,filename$])

Description

Returns a String containing the specified item from an ini file.

Comments

The ReadIni$ function takes the following parameters:

The maximum length of a string returned by this function is 4096 characters.

See Also
■ WriteIni (statement)

■ ReadIniSection (statement)

Platform(s)

Windows, Win32, OS/2.

 Parameter Description

selection$ String specifying the section that contains the desired variable,
such as “windows”. Section names are specified without the
enclosing brackets.

item String specifying the item whose value is to be retrieved.

filename$ String containing the name of the ini file to read.
786 Chapter 4 - BasicScript Reference

Platform Notes: Windows, Win32

Under Windows and Win32, if the name of the ini file is not specified, then win.ini is
assumed.

If the filename$ parameter does not include a path, then this statement looks for ini
files in the Windows directory.

Right, Right$, RightB, RightB$ (functions)

Syntax
Right[$](string, length)

RightB[$](string, length)

Description

Returns the rightmost length characters (for Right and Right$) or bytes (for RightB
and RightB$) from a specified string.

Comments

The Right$ and RightB$ functions return a String, whereas the Right and RightB
functions return a String variant.

These functions take the following named parameters:

The RightB and RightB$ functions are used to return byte data from strings
containing byte data.

Example
'This example shows the Right$ function used in a routine to

'change uppercase names to lowercase with an uppercase first

'letter.

 Named Parameter Description

string String from which characters are returned. A runtime error is
generated if string is Null.

length Integer specifying the number of characters or bytes to return.
If length is greater than or equal to the length of the string,
then the entire string is returned. If length is 0, then a
zero-length string is returned.
Functions 787

Sub Main()

lname$ = "WILLIAMS"

x = Len(lname$)

rest$ = Right$(lname$,x - 1)

fl$ = Left$(lname$,1)

lname$ = fl$ & LCase$(rest$)

MsgBox "The converted name is: " & lname$

End Sub

See Also
■ Left

■ Left$

■ LeftB

■ LeftB$ (functions)

Platform(s)

All.

Rnd (function)

Syntax
Rnd[(number)]

Description

Returns a random Single number between 0 and 1.

Comments

If number is omitted, the next random number is returned. Otherwise, the number
parameter has the following meaning:

If Then

number <0 Always returns the same number.

number = 0 Returns the last number generated.

number > 0 Returns the next random number.
788 Chapter 4 - BasicScript Reference

Example
'This routine generates a list of random numbers and displays

'them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

For x = -1 To 8

y! = Rnd(1) * 100

message = message & x & " : " & y! & crlf

Next x

MsgBox message & "Last form: " & Rnd

End Sub

See Also
■ Randomize (statement)

■ Random (function)

Platform(s)

All.

RTrim, RTrim$ (functions)
Note: See Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions).

SaveFileName$ (function)

Syntax
SaveFileName$[([title$ [,[extensions$] [helpfile,context]]])]

Description

Displays a dialog box that prompts the user to select from a list of files and returns a
String containing the full path of the selected file.
Functions 789

Comments

The SaveFileName$ function accepts the following parameters:

The SaveFileName$ function returns a full pathname of the file that the user selects.
A zero-length string is returned if the user selects Cancel. If the file already exists,
then the user is prompted to overwrite it.

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 key on most platforms). Invoking help
does not remove the dialog.

Example
'This example creates a save dialog box, giving the user the

'ability to save to several different file types.

Sub Main()

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"

f$ = SaveFileName$("Save Picture",e$)

If Not f$ = "" Then

MsgBox "User choose to save file as: " + f$

Else

MsgBox "User canceled."

End If

End Sub

Parameter Description

title$ String containing the title that appears on the dialog box's
caption. If this string is omitted, then “Save As” is used.

extensions$ String containing the available file types. Its format depends
on the platform on which BasicScript is running. If this string
is omitted, then all files are used.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.
790 Chapter 4 - BasicScript Reference

See Also
■ MsgBox (statement)

■ AskBox

■ AskBox$ (functions)

■ AskPassword

■ AskPassword$ (functions)

■ InputBox

■ InputBox$ (functions)

■ OpenFileName$ (function)

■ SelectBox (function)

■ AnswerBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes: Windows, Win32

Under Windows andWin32, the extensions$ parameter must be in the following
format:

description:ext[,ext][;description:ext[,ext]]...

For example, the following are valid extensions$ specifications:

"All Files:*"

"Documents:*.TXT,*.DOC"

"All Files:*;Documents:*.TXT,*.DOC"

Placeholder Description

description Specifies the grouping of files for the user, such as All Files.

ext Specifies a valid file extension, such as *.BAT or *.?F?.
Functions 791

Platform Notes: OS/2

Under OS/2, the extensions$ parameter is a comma-delimited list of extended
attribute names. An entry for <All Files> will always appear in the File Types list,
regardless of the contents of the extensions$ parameter. For example, the following is
a valid extensions$ specification:

"OS/2 Command File,Plain Text"

Platform Notes: Macintosh

On the Macintosh, the extensions$ parameter contains a comma-separated list of
four-character file types. For example:

"TEXT,XLS4,MSWD"

On the Macintosh, the title$ parameter is ignored.

Second (function)

Syntax
Second(time)

Description

Returns the second of the day encoded in the specified time parameter.

Comments

The value returned is an Integer between 0 and 59 inclusive.

The time parameter is any expression that converts to a Date.

Example
'This example takes the current time; extracts the hour, minute,

'and second; and displays them as the current time.

Sub Main()

xt# = TimeValue(Time$())

xh# = Hour(xt#)

xm# = Minute(xt#)

xs# = Second(xt#)

Msgbox "The current time is: " & CStr(xh#) & ":" & CStr(xm#) _

& ":" & CStr(xs#)

End Sub
792 Chapter 4 - BasicScript Reference

See Also
■ Day (function)

■ Minute (function)

■ Month (function)

■ Year (function)

■ Hour (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

Seek (function)

Syntax
Seek(filenumber)

Description

Returns the position of the file pointer in a file relative to the beginning of the file.

Comments

The filenumber parameter is a number that BasicScript uses to refer to the open file -
the number passed to the Open statement.

The value returned depends on the mode in which the file was opened:

File Mode Returns

iInput Byte position for the next read.

Output Byte position for the next write.

Append Byte position for the next write.

Random Number of the next record to be written or read.

Binary Byte position for the next read or write.
Functions 793

The value returned is a Long between 1 and 2147483647, where the first byte (or first
record) in the file is 1.

Example
'This example opens a file for random write, then writes ten

'records into the file using the Put statement. The file

'position is displayed using the Seek function, and the file is

'closed.

Sub Main()

Open "test.dat" For Random Access Write As #1

For x = 1 To 10

r% = x * 10

Put #1,x,r%

Next x

y = Seek(1)

MsgBox "The current file position is: " & y

Close

End Sub

See Also
■ Seek (statement)

■ Loc (function)

Platform(s)

All.

SelectBox (function)

Syntax
SelectBox([title],prompt,ArrayOfItems [,helpfile,context])

Description

Displays a dialog box that allows the user to select from a list of choices and returns
an Integer containing the index of the item that was selected.
794 Chapter 4 - BasicScript Reference

Comments

The SelectBox statement accepts the following parameters:

The value returned is an Integer representing the index of the item in the list box that
was selected relative to the lower bound of ArrayOfElements. If the user selects
Cancel, a value 1 less then the lower bound of the array is returned.

If both the helpfile and context parameters are specified, then a Help button is added
in addition to the OK and Cancel buttons. Context-sensitive help can be invoked by
selecting this button or using the help key (F1 on most platforms). Invoking help does
not remove the dialog.

Example
'This example gets the current apps running, puts them in to an

'array and then asks the user to select one from a list.

Sub Main()

Dim a$()

AppList a$

result% = SelectBox("Picker","Pick an application:",a$)

Parameter Description

title Title of the dialog box. This can be an expression convertible to
a String. A runtime error is generated if title is Null.If title is
missing, then the default title is used.

prompt Text to appear immediately above the list box containing the
items. This can be an expression convertible to a String. A
runtime error is generated if prompt is Null.

ArrayOfItems Single-dimensioned array. Each item from the array will
occupy a single entry in the list box. A runtime error is
generated if ArrayOfItems is not a single-dimensioned
array.ArrayOfItems can specify an array of any fundamental
data type (structures are not allowed). Null and Empty values
are treated as zero-length strings.

helpfile Name of the file containing context-sensitive help for this
dialog. If this parameter is specified, then context must also be
specified.

context Number specifying the ID of the topic within helpfile for this
dialog's help. If this parameter is specified, then helpfile must
also be specified.
Functions 795

If Not result% = -1 then

Msgbox "User selected: " & a$(result%)

Else

Msgbox "User canceled"

End If

End Sub

See Also
■ MsgBox (statement)

■ AskBox

■ AskBox$ (functions)

■ AskPassword

■ AskPassword$ (functions)

■ InputBox

■ InputBox$ (functions)

■ OpenFileName$ (function)

■ SaveFileName$ (function)

■ AnswerBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Sgn (function)

Syntax
Sgn(number)

Description

Returns an Integer indicating whether a number is less than, greater than, or equal to
0.

Comments
■ Returns 1 if number is greater than 0.

■ Returns 0 if number is equal to 0.
796 Chapter 4 - BasicScript Reference

■ Returns –1 if number is less than 0.

The number parameter is a numeric expression of any type. If number is Null, then a
runtime error is generated. Empty is treated as 0.

Example
'This example tests the product of two numbers and displays a

'message based on the sign of the result.

Sub Main()

a% = -100

b% = 100

c% = a% * b%

Select Case Sgn(c%)

Case -1

MsgBox "The product is negative " & Sgn(c%)

Case 0

MsgBox "The product is 0 " & Sgn(c%)

Case 1

MsgBox "The product is positive " & Sgn(c%)

End Select

End Sub

See Also
■ Abs (function)

Platform(s)

All.

Shell (function)

Syntax
Shell(pathname [,windowstyle])

Description

Executes another application, returning the task ID if successful.
Functions 797

Comments

The Shell statement accepts the following named parameters:

Note: An error is generated if unsuccessful running pathname.

The Shell command runs programs asynchronously: the statement following the
Shell statement will execute before the child application has exited. On some
platforms, the next statement will run even before the child application has finished
loading.

The Shell function returns a value suitable for activating the application using the
AppActivate statement. It is important that this value be placed into a Variant, as its
type depends on the platform.

Example
'This example displays the Windows Clock, delays a while, then

'closes it.

Sub Main()

id = Shell("clock.exe",1)

AppActivate "Clock"

Sleep(2000)

Named Parameter Description

pathname String containing the name of the application and any
parameters.

windowstyle Optional Integer specifying the state of the application
window after execution. It can be any of the following values:
■ ebHide: Application is hidden.

■ ebNormal: Focus: Application is displayed in default
position with the focus.

■ ebMinimizedFocus: Application is minimized with the
focus (this is the default).

■ MaximizedFocus: Application is maximized with the focus.

■ ebNormalNoFocus: Application is displayed in default
position without the focus.

■ ebMinimizedNoFocus: Application is minimized without
the focus.

A runtime error is generated if windowstyle is not one of the
above values.
798 Chapter 4 - BasicScript Reference

AppClose "Clock"

End Sub

See Also
■ PrintFile (function)

■ SendKeys (statement

■ AppActivate (statement)

Platform(s)

All.

Platform Notes: Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are valid
filename characters. Instead of wildcards, the Macintosh uses the MacID function to
specify a collection of files of the same type. The syntax for this function is:

Shell(MacID(text$) [,windowstyle])

The text$ parameter is a four-character string containing an application signature. A
runtime error occurs if the MacID function is used on platforms other than the
Macintosh.

On the Macintosh, the windowstyle parameter only specifies whether the application
receives the focus.

Platform Notes: Windows

Under Windows, this function returns the hInstance of the application. Since this
value is only a WORD in size, the upper WORD of the result is always zero.

The Shell function under Windows supports file associations. In other words, you can
specify the name of a file, and the Shell function executes the associated application
with that file as a parameter. (File associations are specified in the WIN.INI file.)

Platform Notes: Win32

Under Win32, this function returns a global process ID that can be used to identify the
new process. Under Win32, the Shell function does not support file associations (i.e.,
setting pathname to “sample.txt” will not execution Notepad).
Functions 799

When specifying long filenames as parameters, you may have to enclose the
parameters in double quotes. For example, under Windows 95, to run WordPad,
passing it a file called “Sample Document”, you would use the following statement:

r = Shell("WordPad ""Sample Document""")

Platform Notes: UNIX

Under all versions of UNIX, the windowstyle parameter is ignored. This function
returns the process identifier of the new process.

Under UNIX, BasicScript attempts to execute the command line using one of the
installed shells. BasicScript looks for a shell using the following precedence:

■ BasicScript examines the SHELL environment variable, which is normally set to
the path of the currently executing shell (e.g., /bin/sh, /bin/csh, and so on).

■ BasicScript examines the PATH environment variable for an executable program
called sh (the Bourne shell).

■ In the unlikely event that a shell was not located with the above rules, BasicScript
will search for sh in the following areas:

/bin

/usr/bin

/usr/sbin

Once a suitable shell has been located, it is executed with pathname as a parameter.
The environment of the calling process is made available to the new process and will
be use by the shell in a manner specific to that shell.

Due to the asynchronous nature of the shell process, failure to find and start the
program is not reported to BasicScript.

Platform Notes: OS/2

Under OS/2, the Shell function is capable of running both Presentation Manager
applications and command line applications. When running command line
applications, the Shell function always returns 0.

Sin (function)

Syntax
Sin(number)
800 Chapter 4 - BasicScript Reference

Description

Returns a Double value specifying the sine of number.

Comments

The number parameter is a Double specifying an angle in radians.

Example
'This example displays the sine of pi/4 radians (45 degrees).

Sub Main()

c# = Sin(Pi / 4)

MsgBox "The sine of 45 degrees is: " & c#

End Sub

See Also
■ Tan (function)

■ Cos (function)

■ Atn (function)

Platform(s)

All.

Sln (function)

Syntax
Sln(cost, salvage, life)

Description

Returns the straight-line depreciation of an asset assuming constant benefit from the
asset.

Comments

The Sln of an asset is found by taking an estimate of its useful life in years, assigning
values to each year, and adding up all the numbers.

The formula used to find the Sln of an asset is as follows:

(Cost - Salvage Value) / Useful Life
Functions 801

The Sln function requires the following named parameters:

The unit of time used to express the useful life of the asset is the same as the unit of
time used to express the period for which the depreciation is returned.

Example
'This example calculates the straight-line depreciation of an

'asset that cost $10,000.00 and has a salvage value of $500.00

'as scrap after ten years of service life.

Sub Main()

dep# = Sln(10000.00,500.00,10)

MsgBox "The annual depreciation is: " &
Format(dep#,"Currency")

End Sub

See Also
■ SYD (function)

■ DDB (function)

Platform(s)

All.

Spc (function)

Syntax
Spc(numspaces)

Description

Prints out the specified number of spaces. This function can only be used with the
Print and Print# statements.

Named Parameter Description

cost Double representing the initial cost of the asset.

salvage Double representing the estimated value of the asset at the
end of its useful life.

life Double representing the length of the asset's useful life.
802 Chapter 4 - BasicScript Reference

Comments

The numspaces parameter is an Integer specifying the number of spaces to be printed.
It can be any value between 0 and 32767.

If a line width has been specified (using the Width statement), then the number of
spaces is adjusted as follows:

numspaces = numspaces Mod width

If the resultant number of spaces is greater than width – print_position, then the
number of spaces is recalculated as follows:

numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line
length. Furthermore, with a large value for column and a small line width, the file
pointer will never advance more than one line.

Example
'This example displays 20 spaces between the arrows.

Sub Main()

Viewport.Open

Print "I am"; Spc(20); "20 spaces apart!"

Sleep (10000) 'Wait 10 seconds.

Viewport.Close

End Sub

See Also

Tab (function), Print (statement), Print# (statement)

Platform(s)

All.

SQLBind (function)

Syntax
SQLBind(connectionnum, array [,column])

Description

Specifies which fields are returned when results are requested using the SQLRetrieve
or SQLRetrieveToFile function.
Functions 803

Comments

The following table describes the named parameters to the SQLBind function:

This function returns the number of bound columns on the connection. If no columns
are bound, then 0 is returned. If there are no pending queries, then calling SQLBind
will cause an error (queries are initiated using the SQLExecQuery function).

If supported by the driver, row numbers can be returned by binding column 0.

BasicScript generates a trappable runtime error if SQLBind fails. Additional error
information can then be retrieved using the SQLError function.

Example
'This example binds columns to data.

Sub Main()

Dim columns() As Variant

id& = SQLOpen("dsn=SAMPLE",,3)

t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")

i% = SQLBind(id&,columns,3)

i% = SQLBind(id&,columns,1)

i% = SQLBind(id&,columns,2)

i% = SQLBind(id&,columns,6)

For x = 0 To (i% - 1)

MsgBox columns(x)

Named Parameter Description

connectionnum Long parameter specifying a valid connection.

array Any array of variants. Each call to SQLBind adds a new
column number (an Integer) in the appropriate slot in the
array. Thus, as you bind additional columns, the array
parameter grows, accumulating a sorted list (in ascending
order) of bound columns.If array is fixed, then it must be a
one-dimensional variant array with sufficient space to hold all
the bound column numbers. A runtime error is generated if
array is too small.If array is dynamic, then it will be resized to
exactly hold all the bound column numbers.

column Optional Long parameter that specifies the column to which
to bind data. If this parameter is omitted, all bindings for the
connection are dropped.
804 Chapter 4 - BasicScript Reference

Next x

id& = SQLClose(id&)

End Sub

See Also
■ SQLRetrieve (function)

■ SQLRetrieveToFile (function)

Platform(s)

Windows, Win32.

SQLClose (function)

Syntax
SQLClose(connectionnum)

Description

Closes the connection to the specified data source.

Comments

The unique connection ID (connectionnum) is a Long value representing a valid
connection as returned by SQLOpen. After SQLClose is called, any subsequent calls
made with the connectionnum will generate runtime errors.

The SQLClose function returns 0 if successful; otherwise, it returns the passed
connection ID and generates a trappable runtime error. Additional error information
can then be retrieved using the SQLError function.

BasicScript automatically closes all open SQL connections when either the script or
the application terminates. You should use the SQLClose function rather than relying
on BasicScript to automatically close connections in order to ensure that your
connections are closed at the proper time.

Example
'This example disconnects the the data source sample.

Sub Main()

id& = SQLOpen("dsn=SAMPLE",,3)

id& = SQLClose(id&)
Functions 805

End Sub

See Also

SQLOpen (function)

Platform(s)

Windows, Win32.

SQLError (function)

Syntax
SQLError(resultarray, connectionnum)

Description

Retrieves driver-specific error information for the most recent SQL functions that
failed.

Comments

This function is called after any other SQL function fails. Error information is returned
in a two-dimensional array (resultarray). The following table describes the named
parameters to the SQLError function:

Named Parameter Description

resultarray Two-dimensional Variant array, which can be dynamic or
fixed.

If the array is fixed, it must be (x,3), where x is the number of
errors you want returned. If x is too small to hold all the
errors, then the extra error information is discarded. If x is
greater than the number of errors available, all errors are
returned, and the empty array elements are set to Empty.

If the array is dynamic, it will be resized to hold the exact
number of errors.

connectionnum Optional Long parameter specifying a connection ID. If this
parameter is omitted, error information is returned for the
most recent SQL function call.
806 Chapter 4 - BasicScript Reference

Each array entry in the resultarray parameter describes one error. The three elements
in each array entry contain the following information:

For example, to retrieve the ODBC text error message of the first returned error, the
array is referenced as:

resultarray(0,2)

The SQLError function returns the number of errors found.

BasicScript generates a runtime error if SQLError fails. (You cannot use the SQLError
function to gather additional error information in this case.)

Example
'This example forces a connection error and traps it for use

'with the SQLError function.

Sub Main()

Dim a() As Variant

On Error Goto Trap

id& = SQLOpen("",,4)

id& = SQLClose(id&)

Exit Sub

Trap:

rc% = SQLError(a)

If (rc%) Then

For x = 0 To (rc% - 1)

MsgBox "The SQLState returned was: " & a(x,0)

MsgBox "The native error code returned was: " & a(x,1)

MsgBox a(x,2)

Next x

End If

Element Value

(entry,0) The ODBC error state, indicated by a Long containing the
error class and subclass.

(entry,1) The ODBC native error code, indicated by a Long.

(entry,2) The text error message returned by the driver. This field is
String type.
Functions 807

End Sub

Platform(s)

Windows, Win32.

SQLExecQuery (function)

Syntax
SQLExecQuery(connectionnum, querytext)

Description

Executes an SQL statement query on a data source.

Comments

This function is called after a connection to a data source is established using the
SQLOpen function. The SQLExecQuery function may be called multiple times with
the same connection ID, each time replacing all results.

The following table describes the named parameters to the SQLExecQuery function:

The return value of this function depends on the result returned by the SQL
statement:

BasicScript generates a runtime error if SQLExecQuery fails. Additional error
information can then be retrieved using the SQLError function.

Named Parameter Description

connectionnum Long parameter identifying a valid connected data source.
This parameter is returned by the SQLOpen function.

querytext String specifying an SQL query statement. The SQL syntax of
the string must strictly follow that of the driver.

SQL Statement Value

SELECT...FROM The value returned is the number of columns returned by the
SQL statement.

DELETE,INSERT,

UPDATE

The value returned is the number of rows affected by the SQL
statement.
808 Chapter 4 - BasicScript Reference

Example
'This example executes a query on the connected data source.

Sub Main()

Dim s As String

Dim qry As Long

Dim a() As Variant

On Error Goto Trap

id& = SQLOpen("dsn=SAMPLE", s$, 3)

qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")

MsgBox "There are " & qry & " columns in the result set."

id& = SQLClose(id&)

Exit Sub

Trap:

rc% = SQLError(a)

If (rc%) Then

For x = 0 To (rc% - 1)

MsgBox "The SQLState returned was: " & a(x,0)

MsgBox "The native error code returned was: " & a(x,1)

MsgBox a(x,2)

Next x

End If

End Sub

See Also

SQLOpen (function), SQLClose (function), SQLRetrieve (function),
SQLRetrieveToFile (function)

Platform(s)

Windows, Win32.

SQLGetSchema (function)

Syntax
SQLGetSchema(connectionnum, typenum, [, [resultarray] [,
qualifiertext]])
Functions 809

Description

Returns information about the data source associated with the specified connection.

Comments

The following table describes the named parameters to the SQLGetSchema function
:

Named Parameter Description

Value 12 - Returns a string containing the table qualifier used by
the data source (e.g., “table,” “file”).

Value 13 - Returns a string containing the database qualifier used
by the data source (e.g., “database,” “directory”).

Value 14 - Returns a string containing the procedure qualifier
used by the data source (e.g., “database procedure,” “stored
procedure,” “procedure”).

resultarray Optional Variant array parameter. This parameter is only
required for action values 1, 2, 3, 4, and 5. The returned
information is put into this array.

If resultarray is fixed and it is not the correct size necessary to
hold the requested information, then SQLGetSchema will fail. If
the array is larger than required, then any additional elements
are erased.

If resultarray is dynamic, then it will be redimensioned to hold
the exact number of elements requested.

qualifiertext Optional String parameter required for actions 3, 4, or 5. The
values are as follows:

Action 3 - The qualifiertext parameter must be the name of the
database represented by ID.

Action 4 - The qualifiertext parameter specifies a database name
and an owner name. The syntax for this string is:
DatabaseName.OwnerName

Action 5 - The qualifiertext parameter specifies the name of a
table on the current connection.

Named Parameter Description

connectionnum Long parameter identifying a valid connected data source.
This parameter is returned by the SQLOpen function.
810 Chapter 4 - BasicScript Reference

BasicScript generates a runtime error if SQLGetSchema fails. Additional error
information can then be retrieved using the SQLError function.

If you want to retrieve the available data sources (where typenum = 1) before
establishing a connection, you can pass 0 as the connectionnum parameter. This is the
only action that will execute successfully without a valid connection.

typenum Integer parameter specifying the results to be returned. The
following are the values for this parameter:

Value 1 - Returns a one-dimensional array of available data
sources. The array is returned in the resultarray parameter.

Value 2 - Returns a one-dimensional array of databases (either
directory names or database names, depending on the driver)
associated with the current connection. The array is returned
in the resultarray parameter.

Value 3 - Returns a one-dimensional array of owners (user
IDs) of the database associated with the current connection.
The array is returned in the resultarray parameter.

Value 4 - Returns a one-dimensional array of table names for a
specified owner and database associated with the current
connection. The array is returned in the resultarray parameter.

Value 5 - Returns a two-dimensional array (n by 2) containing
information about a specified table. The first element contains
the column name. The second element contains the data type
of the column

Value 6 - Returns a string containing the ID of the current user.

Value 7 - Returns a string containing the name (either the
directory name or the database name, depending on the
driver) of the current database.

Value 8 - Returns a string containing the name of the data
source on the current connection.

Value 9 - Returns a string containing the name of the DBMS of
the data source on the current connection (e.g., “FoxPro 2.5" or
“Excel Files”).

Value 10 - Returns a string containing the name of the server
for the data source.

Value 11 - Returns a string containing the owner qualifier used
by the data source (e.g., “owner,” “Authorization ID,”
“Schema”).

Named Parameter Description
Functions 811

This function calls the ODBC functions SQLGetInfo and SQLTables in order to
retrieve the requested information. Some database drivers do not support these calls
and will therefore cause the SQLGetSchema function to fail.

Example
'This example gets all available data sources.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim dsn() As Variant

numdims% = SQLGetSchema(0,1,dsn)

If (numdims%) Then

message = "Valid data sources are:" & crlf

For x = 0 To numdims% - 1

message = message & dsn(x) & crlf

Next x

Else

message = "There are no available data sources."

End If

MsgBox message

End Sub

See Also

SQLOpen (function)

Platform(s)

Windows, Win32.

SQLOpen (function)

Syntax
SQLOpen(connectionstr [, [outputref] [, driverprompt]])

Description

Establishes a connection to the specified data source, returning a Long representing
the unique connection ID.
812 Chapter 4 - BasicScript Reference

Comments

This function connects to a data source using a login string (connectionstr) and
optionally sets the completed login string (outputref) that was used by the driver. The
following table describes the named parameters to the SQLOpen function:

The SQLOpen function will never return an invalid connection ID. The following
example establishes a connection using the driver's login dialog box:

id& = SQLOpen("",,1)

BasicScript returns 0 and generates a trappable runtime error if SQLOpen fails.
Additional error information can then be retrieved using the SQLError function.

Before you can use any SQL statements, you must set up a data source and relate an
existing database to it. This is accomplished using the odbcadm.exe program.

Example
'This example connects the data source called "sample,"

'returning the completed connction string, and then displays it.

Sub Main()

Dim s As String

id& = SQLOpen("dsn=SAMPLE",s$,3)

Named Parameter Description

connectionstr String expression containing information required by the
driver to connect to the requested data source. The syntax
must strictly follow the driver's SQL syntax.

outputref Optional String variable that will receive a completed
connection string returned by the driver. If this parameter is
missing, then no connection string will be returned.

driverprompt Integer expression specifying any of the following values:

Value 1 - The driver's login dialog box is always displayed.

Value 2 - The driver's dialog box is only displayed if the
connection string does not contain enough information to
make the connection. This is the default behavior.

Value 3 - The driver's dialog box is only displayed if the
connection string does not contain enough information to
make the connection. Dialog box options that were passed as
valid parameters are dimmed and unavailable.

Value 4 - The driver's login dialog box is never displayed.
Functions 813

MsgBox "The completed connection string is: " & s$

id& = SQLClose(id&)

End Sub

See Also

SQLClose (function)

Platform(s)

Windows, Win32.

SQLRequest (function)

Syntax
SQLRequest(connectionstr, querytext, resultarray [, [outputref] [,
[driverprompt] [, colnameslogical]]])

Description

Opens a connection, runs a query, and returns the results as an array.

Comments

The SQLRequest function takes the following named parameters:

Named Parameter Description

connectionstr String specifying the connection information required to
connect to the data source.

querytext String specifying the query to execute. The syntax of this
string must strictly follow the syntax of the ODBC driver.

resultarray Array of variants to be filled with the results of the query.The
resultarray parameter must be dynamic: it will be resized to
hold the exact number of records and fields.

outputref Optional String to receive the completed connection string as
returned by the driver.
814 Chapter 4 - BasicScript Reference

BasicScript generates a runtime error if SQLRequest fails. Additional error
information can then be retrieved using the SQLError function.

driverprompt Optional Integer specifying the behavior of the driver's dialog
box:

Value 1 - The driver's login dialog box is always displayed.

Value 2 - The driver's dialog box is only displayed if the
connection string does not contain enough information to
make the connection. This is the default behavior.

Value 3 - The driver's dialog box is only displayed if the
connection string does not contain enough information to
make the connection. Dialog box options that were passed as
valid parameters are dimmed and unavailable.

Value 4 - The driver's login dialog box is never displayed.

colnameslogical Optional Boolean specifying whether the column names are
returned as the first row of results. The default is False.

Named Parameter Description
Functions 815

The SQLRequest function performs one of the following actions, depending on the
type of query being performed:

Example
'This example opens a data source, runs a select query on it,

'and then displays all the data found in the result set.

Sub Main()

Dim a() As Variant

l& = SQLRequest("dsn=SAMPLE;","Select * From
c:\sample.dbf",a,,3,True)

For x = 0 To Ubound(a)

For y = 0 To l - 1

MsgBox a(x,y)

Next y

Next x

Type of Query Action

SELECT The SQLRequest function fills resultarray with the results of
the query, returning a Long containing the number of results
placed in the array. The array is filled as follows (assuming an
x by y query):

(record 1,field 1)

(record 1,field 2)

:

(record 1,field y)

(record 2,field 1)

(record 2,field 2)

:

(record 2,field y)

:

:

(record x,field 1)

(record x,field 2)

:

(record x,field y)

INSERT,DELETE,
UPDATE

The SQLRequest function erases resultarray and returns a
Long containing the number of affected rows.
816 Chapter 4 - BasicScript Reference

End Sub

Platform(s)

Windows, Win32.

SQLRetrieve (function)

Syntax
SQLRetrieve(connectionnum, resultarray[, [maxcolumns] [, [maxrows] [,
[colnameslogical] [, fetchfirstlogical]]]])

Description

Retrieves the results of a query.

Comments

This function is called after a connection to a data source is established, a query is
executed, and the desired columns are bound. The following table describes the
named parameters to the SQLRetrieve function:

Named Parameter Description

connectionnum Long identifying a valid connected data source with pending
query results.

resultarray Two-dimensional array of variants to receive the results. The
array has x rows by y columns. The number of columns is
determined by the number of bindings on the connection.

maxcolumns Optional Integer expression specifying the maximum number
of columns to be returned. If maxcolumns is greater than the
number of columns bound, the additional columns are set to
empty. If maxcolumns is less than the number of bound
results, the rightmost result columns are discarded until the
result fits.

maxrows Optional Integer specifying the maximum number of rows to
be returned. If maxrows is greater than the number of rows
available, all results are returned, and additional rows are set
to empty. If maxrows is less than the number of rows
available, the array is filled, and additional results are placed
in memory for subsequent calls to SQLRetrieve.

colnameslogical Optional Boolean specifying whether column names should
be returned as the first row of results. The default is False.
Functions 817

Before you can retrieve the results from a query, you must (1) initiate a query by
calling the SQLExecQuery function and (2) specify the fields to retrieve by calling the
SQLBind function.

This function returns a Long specifying the number of rows available in the array.

BasicScript generates a runtime error if SQLRetrieve fails. Additional error
information is placed in memory.

Example
'This example executes a query on the connected data source,

'binds columns, and retrieves them.

Sub Main()

Dim a() As Variant

Dim b() As Variant

Dim c() As Variant

On Error Goto Trap

id& = SQLOpen("DSN=SAMPLE",,3)

qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf"")

i% = SQLBind(id&,b,3)

i% = SQLBind(id&,b,1)

i% = SQLBind(id&,b,2)

i% = SQLBind(id&,b,6)

l& = SQLRetrieve(id&,c)

For x = 0 To Ubound(c)

For y = 0 To l& - 1

MsgBox c(x,y)

Next y

Next x

id& = SQLClose(id&)

Exit Sub

Trap:

fetchfirstlogical Optional Boolean expression specifying whether results are
retrieved from the beginning of the result set. The default is
False.

Named Parameter Description
818 Chapter 4 - BasicScript Reference

rc% = SQLError(a)

If (rc%) Then

For x = 0 To (rc% - 1)

MsgBox "The SQLState returned was: " & a(x,0)

MsgBox "The native error code returned was: " & a(x,1)

MsgBox a(x,2)

Next x

End If

End Sub

See Also
■ SQLOpen (function)

■ SQLExecQuery (function)

■ SQLClose (function)

■ SQLBind (function)

■ SQLRetrieveToFile (function)

Platform(s)

Windows, Win32.

SQLRetrieveToFile (function)

Syntax
SQLRetrieveToFile(connectionnum, destination [, [colnameslogical] [,
columndelimiter]])

Description

Retrieves the results of a query and writes them to the specified file.

Comments

The following table describes the named parameters to the SQLRetrieveToFile
function:

Named Parameter Description

connectionnum Long parameter specifying a valid connection ID.
Functions 819

Before you can retrieve the results from a query, you must (1) initiate a query by
calling the SQLExecQuery function and (2) specify the fields to retrieve by calling the
SQLBind function.

This function returns the number of rows written to the file. A runtime error is
generated if there are no pending results or if BasicScript is unable to open the
specified file.

BasicScript generates a runtime error if SQLRetrieveToFile fails. Additional error
information may be placed in memory for later use with the SQLError function.

Example
'This example opens a connection, runs a query, binds columns,

'and writes the results to a file.

Sub Main()

Dim a() As Variant

Dim b() As Variant

On Error Goto Trap

id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)

t& = SQLExecQuery(id&, "Select * From c:\sample.dbf"")

i% = SQLBind(id&,b,3)

i% = SQLBind(id&,b,1)

i% = SQLBind(id&,b,2)

i% = SQLBind(id&,b,6)

l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")

id& = SQLClose(id&)

Exit Sub

Trap:

rc% = SQLError(a)

destination String specifying the file where the results are written.

colnameslogical Optional Boolean specifying whether the first row of results
returned are the bound column names. By default, the column
names are not returned.

columndelimiter Optional String specifying the column separator. A tab
(Chr$(9)) is used as the default.

Named Parameter Description
820 Chapter 4 - BasicScript Reference

If (rc%) Then

For x = 0 To (rc-1)

MsgBox "The SQLState returned was: " & a(x,0)

MsgBox "The native error code returned was: " & a(x,1)

MsgBox a(x,2)

Next x

End If

End Sub

See Also
■ SQLOpen (function)

■ SQLExecQuery (function)

■ SQLClose (function)

■ SQLBind (function)

■ SQLRetrieve (function)

Platform(s)

Windows, Win32.

Sqr (function)

Syntax
Sqr(number)

Description

Returns a Double representing the square root of number.

Comments

The number parameter is a Double greater than or equal to 0.

Example
'This example calculates the square root of the numbers from 1

'to 10 and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
Functions 821

For x = 1 To 10

sx# = Sqr(x)

message = message & Format(x,"Fixed") & " - " &_
Format(sx#,"Fixed") & crlf

Next x

MsgBox message

End Sub

Platform(s)

All.

Str, Str$ (functions)

Syntax
Str[$](number)

Description

Returns a string representation of the given number.

Comments

The number parameter is any numeric expression or expression convertible to a
number. If number is negative, then the returned string will contain a leading minus
sign. If number is positive, then the returned string will contain a leading space.

Singles are printed using only 7 significant digits. Doubles are printed using 15–16
significant digits.

These functions only output the period as the decimal separator and do not output
thousands separators. Use the CStr, Format, or Format$ function for this purpose.

Example
'In this example, the Str$ function is used to display the

'value of a numeric variable.

Sub Main()

x# = 100.22

MsgBox "The string value is: " + Str(x#)

End Sub
822 Chapter 4 - BasicScript Reference

See Also

Format, Format$ (functions), CStr (function)

Platform(s)

All.

StrComp (function)

Syntax
StrComp(string1,string2 [,compare])

Description

Returns an Integer indicating the result of comparing the two string arguments.

Comments

One of the following values is returned:

The StrComp function accepts the following parameters:

0 string1 = string2

1 string1 > string2

1 string1 < string2

Null string1 or string2 is Null.

 Parameter Description

string1 First string to be compared, which can be any expression
convertible to a String.

string2 Second string to be compared, which can be any expression
convertible to a String.
Functions 823

Example
'This example compares two strings and displays the results. It

'illustrates that the function compares two strings to the

'length of the shorter string in determining equivalency.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = "This string is UPPERCASE and lowercase"

b$ = "This string is uppercase and lowercase"

c$ = "This string"

d$ = "This string is uppercase and lowercase characters"

abc = StrComp(a$,b$,0)

message = message & "a and c (sensitive) : " & _

Format(abc,"True/False") & crlf

abi = StrComp(a$,b$,1)

message = message & "a and b (insensitive): " & _

Format(abi,"True/False") & crlf

aci = StrComp(a$,c$,1)

message = message & "a and c (insensitive): " & _

Format(aci,"True/False") & crlf

bdi = StrComp(b$,d$,1)

message = message & "b and d (sensitive) : " & _

Format(bdi,"True/False") & crlf

MsgBox message

End Sub

compare Optional Integer specifying how the comparison is to be
performed. It can be either of the following values:

Value 0 - Case-sensitive comparison

Value 1 - Case-insensitive comparison

If compare is not specified, then the current Option Compare
setting is used. If no Option Compare statement has been
encountered, then Binary is used (i.e., string comparison is
case-sensitive).

 Parameter Description
824 Chapter 4 - BasicScript Reference

See Also

Comparison Operators (topic), Like (operator), Option Compare (statement)

Platform(s)

All.

StrConv (function)

Syntax
StrConv(string, conversion)

Description

Converts a string based on a conversion parameter.

Comments

The StrConv function takes the following named parameters:

The conversion parameter can be any combination of the following constants:

 Named Parameter Description

string A String expression specifying the string to be converted.

conversion An integer specifying the types of conversions to be
performed.

Constant Value Description

ebUpperCase 1 Converts a string to uppercase. This constant is
supported on all platforms.

ebLowerCase 2 Converts a string to lowercase. This constant is
supported on all platforms.

ebProperCase 3 Capitalizes the first letter of each word and lower-cases
all letters. This constant is supported on all platforms.

ebWide 4 Converts narrow characters to wide characters. This
constant is supported on Japanese locales only.

ebNarrow 8 Converts wide characters to narrow characters. This
constant is supported on Japanese locales only.
Functions 825

A runtime error is generated when a conversion is requested that is not supported on
the current platform. For example, the ebWide and ebNarrow constants can only be
used on an MBCS platform. (You can determine platform capabilities using the
Basic.Capabilities method.)

The following groupings of constants are mutually exclusive and therefore cannot be
specified at the same time:

ebUpperCase, ebLowerCase, ebProperCase

ebWide, ebNarrow

ebUnicode, ebFromUnicode

Many of the constants can be combined. For example, ebLowerCase Or ebNarrow.

When converting to proper case (i.e., the ebProperCase constant), the following are
seen as word delimiters: tab, linefeed, carriage-return, formfeed, vertical tab, space,
null.

Example
Sub Main()

a = InputBox("Type any string:")

MsgBox "Upper case: " & StrConv(a,ebUpperCase)

MsgBox "Lower case: " & StrConv(a,ebLowerCase)

MsgBox "Proper case: " & StrConv(a,ebProperCase)

If Basic.Capability(10) And Basic.OS = ebWin16 Then

'This is an MBCS locale

MsgBox "Narrow: " & StrConv(a,ebNarrow)

MsgBox "Wide: " & StrConv(a,ebWide)

MsgBox "Katakana: " & StrConv(a,ebKatakana)

ebKataKana 16 Converts Hiragana characters to Katakana characters.
This constant is supported on Japanese locales only.

ebHiragana 32 Converts Katakana characters to Hiragana characters.
This constant is supported on Japanese locales only.

ebUnicode 64 Converts string from MBCS to UNICODE. This
constant can only be used on platforms supporting
UNICODE.

ebFromUnicode 128 Converts string from INICODE to MBCS. This constant
can only be used on platforms supporting UNICODE.

Constant Value Description
826 Chapter 4 - BasicScript Reference

MsgBox "Hiragana: " & StrConv(a,ebHiragana)

End If

End Sub

See Also
■ UCase

■ UCase$ (functions)

■ LCase, LCase$ (functions)

■ Basic.Capability (method)

Platform(s)

All.

String, String$ (functions)

Syntax
String[$](number, character)

Description

Returns a string of length number consisting of a repetition of the specified filler
character.

Comments

String$ returns a String, whereas String returns a String variant.

These functions take the following named parameters:

 Named Parameter Description

number Long parameter specifying the number of repetitions.

character Integer specifying the character code to be used as the filler
character. If character is greater than 255 (the largest character
value), then BasicScript converts it to a valid character using
the following formula:character Mod 256If character is a
string, then the first character of that string is used as the filler
character.
Functions 827

Example
'This example uses the String function to create a line of "="

'signs the length of another string and then displays the

'character string underlined with the generated string.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = "This string will appear underlined."

b$ = String$(Len(a$),"=")

MsgBox a$ & crlf & b$

End Sub

See Also
■ Space

■ Space$ (functions)

Platform(s)

All.

Switch (function)

Syntax
Switch(condition1,expression1 [,condition2,expression2 ...
[,condition7,expression7]])

Description

Returns the expression corresponding to the first True condition.

Comments

The Switch function evaluates each condition and expression, returning the
expression that corresponds to the first condition (starting from the left) that evaluates
to True. Up to seven condition/expression pairs can be specified.

A runtime error is generated it there is an odd number of parameters (i.e., there is a
condition without a corresponding expression).

The Switch function returns Null if no condition evaluates to True.
828 Chapter 4 - BasicScript Reference

Example
'This code fragment displays the current operating platform. If

'the platform is unknown, then the word "Unknown" is displayed.

Sub Main()

Dim a As Variant

a = Switch(Basic.OS = 0,"Windows 3.1", _

Basic.OS = 2,"Win32",Basic.OS = 11,"OS/2")

MsgBox "The current platform is: " & _

IIf(IsNull(a),"Unknown",a)

End Sub

See Also
■ Choose (function)

■ IIf (function)

■ If...Then...Else (statement)

■ Select...Case (statement)

Platform(s)

All.

SYD (function)

Syntax
SYD(cost, salvage, life, period)

Description

Returns the sum of years' digits depreciation of an asset over a specific period of time.

Comments

The SYD of an asset is found by taking an estimate of its useful life in years, assigning
values to each year, and adding up all the numbers.

The formula used to find the SYD of an asset is as follows:

(Cost – Salvage_Value) * Remaining_Useful_Life / SYD
Functions 829

The SYD function requires the following named parameters:

To receive accurate results, the parameters life and period must be expressed in the
same units. If life is expressed in terms of months, for example, then period must also
be expressed in terms of months.

Example
'In this example, an asset that cost $1,000.00 is depreciated

'over ten years. The salvage value is $100.00, and the sum of

'the years' digits depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

For x = 1 To 10

dep# = SYD(1000,100,10,x)

message = message & "Year: " & x & " Dep: " &_
Format(dep#,"Currency") & crlf

Next x

MsgBox message

End Sub

See Also
■ Sln (function)

■ DDB (function)

Platform(s)

All.

 Named Parameter Description

cost Double representing the initial cost of the asset.

salvage Double representing the estimated value of the asset at the
end of its useful life.

life Double representing the length of the asset’s useful life.

period Double representing the period for which the depreciation is
to be calculated. It cannot exceed the life of the asset.
830 Chapter 4 - BasicScript Reference

Tab (function)

Syntax
Tab (column)

Description

Prints the number of spaces necessary to reach a given column position.

Comments

This function can only be used with the Print and Print# statements.

The column parameter is an Integer specifying the desired column position to which
to advance. It can be any value between 0 and 32767 inclusive.

Rule 1: If the current print position is less than or equal to column, then the number of
spaces is calculated as:

column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are
printed on the next line.

If a line width is specified (using the Width statement), then the column position is
adjusted as follows before applying the above two rules:

column = column Mod width

The Tab function is useful for making sure that output begins at a given column
position, regardless of the length of the data already printed on that line.

Example
'This example prints three column headers and three numbers

'aligned below the column headers.

Sub Main()

Viewport.Open

Print "Column1";Tab(10);"Column2";Tab(20);"Column3"

Print Tab(3);"1";Tab(14);"2";Tab(24);"3"

Sleep(10000) 'Wait 10 seconds.

Viewport.Close

End Sub
Functions 831

See Also
■ Spc (function)

■ Print (statement)

■ Print# (statement)

Platform(s)

All.

Tan (function)

Syntax
Tan(number)

Description

Returns a Double representing the tangent of number.

Comments

The number parameter is a Double value given in radians.

Example
'This example computes the tangent of pi/4 radians (45 degrees).

Sub Main()

c# = Tan(Pi / 4)

MsgBox "The tangent of 45 degrees is: " & c#

End Sub

See Also
■ Sin (function)

■ Cos (function)

■ Atn (function)

Platform(s)

All.
832 Chapter 4 - BasicScript Reference

Time, Time$ (functions)

Syntax
Time[$][()]

Description

Returns the system time as a String or as a Date variant.

Comments

The Time$ function returns a string that contains the time in a 24-hour time format,
whereas Time returns a Date variant.

To set the time, use the Time/Time$ statements.

Example
'This example returns the system time and displays it in a

'dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

oldtime$ = Time$

message = "Time was: " & oldtime$ & crlf

Time$ = "10:30:54"

message = message & "Time set to: " & Time$ & crlf

Time$ = oldtime$

message = message & "Time restored to: " & Time$

MsgBox msg

End Sub

See Also
■ Time, Time$ (statements)

■ Date, Date$ (functions)

■ Date, Date$ (statements)

■ Now (function)

Platform(s)

All.
Functions 833

Timer (function)

Syntax
Timer

Description

Returns a Single representing the number of seconds that have elapsed since
midnight.

Example
'This example displays the elapsed time between execution start

'and the time you clicked the OK button on the first message.

Sub Main()

start& = Timer

MsgBox "Click the OK button, please."

total& = Timer - start&

MsgBox "The elapsed time was: " & total& & " seconds."

End Sub

See Also
■ Time

■ Time$ (functions)

■ Now (function)

Platform(s)

All.

TimeSerial (function)

Syntax
TimeSerial(hour, minute, second)

Description

Returns a Date variant representing the given time with a date of zero.
834 Chapter 4 - BasicScript Reference

Comments

The TimeSerial function requires the following named parameters:

Example
Sub Main()

start# = TimeSerial(10,22,30)

finish# = TimeSerial(10,35,27)

dif# = Abs(start# - finish#)

MsgBox "The time difference is: " & Format(dif#, "hh:mm:ss")

End Sub

See Also
■ DateValue (function)

■ TimeValue (function)

■ DateSerial (function)

Platform(s)

All.

TimeValue (function)

Syntax
TimeValue(time)

Description

Returns a Date variant representing the time contained in the specified string
argument.

 Named Parameter Description

hour Integer between 0 and 23.

minute Integer between 0 and 59.

second Integer between 0 and 59.
Functions 835

Comments

This function interprets the passed time parameter looking for a valid time
specification.

The time parameter can contain valid time items separated by time separators such as
colon (:) or period (.).

Time strings can contain an optional date specification, but this is not used in the
formation of the returned value.

If a particular time item is missing, then it is set to 0. For example, the string “10 pm”
would be interpreted as “22:00:00.”

Example
'This example calculates the current time and displays it in a

'dialog box.

Sub Main()

t1$ = "10:15"

t2# = TimeValue(t1$)

MsgBox "The TimeValue of " & t1$ & " is: " & t2#

End Sub

See Also
■ DateValue (function)

■ TimeSerial (function)

■ DateSerial (function)

Platform(s)

All.

Platform Notes: Windows

Under Windows, time specifications vary, depending on the international settings
contained in the [intl] section of the win.ini file.

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)

Syntax
Trim[$](string)
836 Chapter 4 - BasicScript Reference

LTrim[$](string)

RTrim[$](string)

Description

Returns a copy of the passed string expression (string) with leading and/or trailing
spaces removed.

Comments

Trim returns a copy of the passed string expression (string) with both the leading and
trailing spaces removed. LTrim returns string with the leading spaces removed, and
RTrim returns string with the trailing spaces removed.

Trim$, LTrim$, and RTrim$ return a String, whereas Trim, LTrim, and RTrim return a
String variant.

Null is returned if string is Null.

Examples
'This first example uses the Trim$ function to extract the

'nonblank part of a string and display it.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

text$ = " This is text "

tr$ = Trim$(text$)

MsgBox "Original =>" & text$ & "<=" & crlf & _

"Trimmed =>" & tr$ & "<="

End Sub

'This second example displays a right-justified string and its

'LTrim result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = " <= This is a right-justified string"

b$ = LTrim$(a$)

MsgBox a$ & crlf & b$

End Sub

'This third example displays a left-justified string and its

'RTrim result.

Const crlf = Chr$(13) + Chr$(10)
Functions 837

Sub Main()

a$ = "This is a left-justified string. "

b$ = RTrim$(a$)

MsgBox a$ & "<=" & crlf & b$ & "<="

End Sub

Platform(s)

All.

TypeName (function)

Syntax
TypeName(varname)

Description

Returns the type name of the specified variable.

Comments

The returned string can be any of the following:

 Returned String Returned if varname is

“String” A String.

objecttype A data object variable. In this case, objecttype is the name of
the specific object type.

“Integer” An integer.

“Long” A long.

“Single” A single.

“Double” A double.

“Currency” A currency value.

“Date” A date value.

“Boolean” A boolean value.

“Error” An error value.

“Empty” An uninitialized variable.
838 Chapter 4 - BasicScript Reference

If varname is an array, then the returned string can be any of the above strings follows
by a empty parenthesis. For example, “Integer()” would be returned for an array of
integers.

If varname is an expression, then the expression is evaluated and a String
representing the resultant data type is returned.

If varname is an OLE collection, then TypeName returns the name of that object
collection.

Example
'The following example defines a subroutine that only accepts

'Integer variables. If not passed an Integer, it will inform

'the user that there was an error, displaying the actual type

'of variable that was passed.

Sub Foo(a As Variant)

If VarType(a) <> ebInteger Then

MsgBox "Foo does not support " & TypeName(a) & " variables"

End If

End Sub

See Also

TypeOf (function)

Platform(s)

All.

“Null” A variant containing no valid data.

“Object” An OLE automation object.

“Unknown” An unknown type of OLE automation object.

“Nothing” An uninitialized object variable.

class A specific type of OLE automation object. In this case, class is
the name of the object as known to OLE.

 Returned String Returned if varname is
Functions 839

TypeOf (function)

Syntax
TypeOf objectvariable Is objecttype

Description

Returns True if objectvariable the specified typel False otherwise.

Comments

This function is used within the If...Then statement to determine if a variable is of a
particular type. This function is particularly useful for determining the type of OLE
automation objects.

Example
Sub Main()

Dim a As Object

Set a = CreateObject("Excel.Application")

If TypeOf a Is "Application" Then

MsgBox "We have an Application object."

End If

End Sub

See Also

TypeName (function)

Platform(s)

All.

UBound (function)

Syntax
UBound(ArrayVariable() [,dimension])

Description

Returns an Integer containing the upper bound of the specified dimension of the
specified array variable.
840 Chapter 4 - BasicScript Reference

Comments

The dimension parameter is an integer that specifies the desired dimension. If not
specified, then the upper bound of the first dimension is returned.

The UBound function can be used to find the upper bound of a dimension of an array
returned by an OLE Automation method or property:

UBound(object.property [,dimension])

UBound(object.method [,dimension])

Examples
'This example dimensions two arrays and displays their upper

'bounds.

Sub Main()

Dim a(5 To 12)

Dim b(2 To 100, 9 To 20)

uba = UBound(a)

ubb = UBound(b,2)

MsgBox "The upper bound of a is: " & uba & _

" The upper bound of b is: " & ubb

'This example uses Lbound and Ubound to dimension a dynamic

'array to hold a copy of an array redimmed by the FileList

'statement.

Dim fl$()

FileList fl$,"*"

count = Ubound(fl$)

If ArrayDims(a) Then

Redim nl$(Lbound(fl$) To Ubound(fl$))

For x = 1 To count

nl$(x) = fl$(x)

Next x

MsgBox "The last element of the new array is: " & nl$(count)

End If

End Sub

See Also
■ LBound (function)
Functions 841

■ ArrayDims (function)

■ Arrays (topic)

Platform(s)

All.

UCase, UCase$ (functions)

Syntax
UCase[$](string)

Description

Returns the uppercase equivalent of the specified string.

Comments

UCase$ returns a String, whereas UCase returns a String variant.

Null is returned if string is Null.

Example
'This example uses the UCase$ function to change a string from

'lowercase to uppercase.

Sub Main()

a1$ = "this string was lowercase, but was converted."

a2$ = UCase$(a1$)

MsgBox a2$

End Sub

See Also

LCase, LCase$ (functions)

Platform(s)

All.
842 Chapter 4 - BasicScript Reference

Val (function)

Syntax
Val(string)

Description

Converts a given string expression to a number.

Comments

The string parameter can contain any of the following:

■ Leading minus sign (for nonhex or octal numbers only)

■ Hexadecimal number in the format &Hhexdigits

■ Octal number in the format &Ooctaldigits

■ Floating-point number, which can contain a decimal point and an optional
exponent

Spaces, tabs, and line feeds are ignored.

If string does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first
nonnumeric character.

The Val function always returns a double-precision floating-point value. This value is
forced to the data type of the assigned variable.

Example
'This example inputs a number string from an InputBox and

'converts it to a number variable.

Sub Main()

a$ = InputBox$("Enter anything containing a number", _

"Enter Number")

b# = Val(a$)

MsgBox "The value is: " & b#

End Sub

See Also

CDbl (function)
Functions 843

Str, Str$ (functions)

Platform(s)

All.

VarType (function)

Syntax
VarType(varname)

Description

Returns an Integer representing the type of data in varname.

Comments

The varname parameter is the name of any Variant.

The following table shows the different values that can be returned by VarType:

Value Constant Data Type

0 ebEmpty Uninitialized

1 ebNull No valid data.

2 ebInteger Integer.

3 ebLong Long.

4 ebSingle Single.

5 ebDouble Double.

6 ebCurrency Currency.

7 ebDate Date.

8 ebString String.

9 ebObject Object (OLE Automation object).

10 ebError User-defined error.

11 ebBoolean Boolean.

12 ebVariant Variant (not returned by this
function).
844 Chapter 4 - BasicScript Reference

When passed an object, the VarType function returns the type of the default property
of that object. If the object has no default property, then either ebObject or
ebDataObject is returned, depending on the type of variable.

Example
Sub Main()

Dim v As Variant

v = 5& 'Set v to a Long.

If VarType(v) = ebInteger Then

Msgbox "v is an Integer."

ElseIf VarType(v) = ebLong Then

Msgbox "v is a Long."

End If

End Sub

See Also

Variant (data type)

Platform(s)

All.

Weekday (function)

Syntax
Weekday(date [,firstdayofweek])

Description

Returns an Integer value representing the day of the week given by date. Sunday is 1,
Monday is 2, and so on.

13 ebDataObject Non-OLE Automation object.

Value Constant Data Type

 Named Parameter Description

date Any expression representing a valid date.
Functions 845

The Weekday function takes the following named parameters:

The firstdayofweek parameter, if specified, can be any of the following constants:

Example
'This example gets a date in an input box and displays the day

'of the week and its name for the date entered.

Sub Main()

Dim a$(7)

a$(1) = "Sunday"

a$(2) = "Monday"

a$(3) = "Tuesday"

a$(4) = "Wednesday"

a$(5) = "Thursday"

a$(6) = "Friday"

a$(7) = "Saturday"

Reprompt:

bd = InputBox$("Please enter your birthday.","Enter Birthday")

If Not(IsDate(bd)) Then Goto Reprompt

firstdayofweek Indicates the first day of the week. If omitted, then Sunday is
assumed (that is, the constant ebSunday described below).

Constant Value Description

ebUseSystem 0 Use the system setting for firstdayofweek.

ebSunday 1 Sunday (the default).

ebMonday 2 Monday.

ebTuesday 3 Tuesday.

ebWednesday 4 Wednesday.

ebThursday 5 Thursday.

ebFriday 6 Friday.

ebSaturday 7 Saturday.

 Named Parameter Description
846 Chapter 4 - BasicScript Reference

dt = DateValue(bd)

dw = WeekDay(dt)

Msgbox "You were born on day " & dw & ", which was a " & a$(dw)

End Sub

See Also
■ Day (function)

■ Minute (function)

■ Second (function)

■ Month (function)

■ Year (function)

■ Hour (function)

■ DatePart (function)

Platform(s)

All.

WinFind (function)

Syntax
WinFind(name$) As HWND

Description

Returns an object variable referencing the window having the given name.

Comments

The name$ parameter is specified using the same format as that used by the
WinActivate statement.

Example
'This example closes Microsoft Word if its object reference is

'found.

Sub Main()

Dim WordHandle As HWND

Set WordHandle = WinFind("Word")
Functions 847

If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also

WinActivate (statement)

Platform(s)

Windows, Win32.

Word$ (function)

Syntax
Word$(text$,first[,last])

Description

Returns a String containing a single word or sequence of words between first and
last.

Comments

The Word$ function requires the following parameters:

Words are separated by any nonalphanumeric characters such as spaces, tabs,
end-of-lines, and punctuation. On multi-byte and wide character platforms,
double-byte spaces are treated as separators as well. Embedded null characters are
treated as regular characters.

If first is greater than the number of words in text$, then a zero-length string is
returned.

 Named Parameter Description

text$ String from which the sequence of words will be extracted.

firstInteger Specifies the index of the first word in the sequence to return.
If last is not specified, then only that word is returned.

lastInteger Specifies the index of the last word in the sequence to return. If
last is specified, then all words between first and last will be
returned, including all spaces, tabs, and end-of-lines that
occur between those words.
848 Chapter 4 - BasicScript Reference

If last is greater than the number of words in text$, then all words from first to the
end of the text are returned.

Example
'This example finds the name "Stuart" in a string and then

'extracts two words from the string.

Sub Main()

s$ = "My last name is Williams; Stuart is my surname."

c$ = Word$(s$,5,6)

MsgBox "The extracted name is: " & c$

End Sub

See Also
■ Item$ (function)

■ ItemCount (function)

■ Line$ (function)

■ LineCount (function)

■ WordCount (function)

Platform(s)

All.

WordCount (function)

Syntax
WordCount(text$)

Description

Returns an Integer representing the number of words in the specified text.

Comments

Words are separated by spaces, tabs, and end-of-lines. Embedded null characters are
treated as regular characters.
Functions 849

Example
'This example counts the number of words in a particular string.

Sub Main()

s$ = "My last name is Williams; Stuart is my surname."

i% = WordCount(s$)

MsgBox "'" & s$ & "' has " & i% & " words."

End Sub

See Also
■ Item$ (function)

■ ItemCount (function)

■ Line$ (function)

■ LineCount (function)

■ Word$ (function)

Platform(s)

All.

Year (function)

Syntax
Year(date)

Description

Returns the year of the date encoded in the specified date parameter. The value
returned is between 100 and 9999 inclusive.

The date parameter is any expression representing a valid date.

Example
'This example returns the current year in a dialog box.

Sub Main()

tdate$ = Date$

tyear! = Year(DateValue(tdate$))

MsgBox "The current year is: " & tyear$

End Sub
850 Chapter 4 - BasicScript Reference

See Also
■ Day (function)

■ Minute (function)

■ Second (function)

■ Month (function)

■ Hour (function)

■ Weekday (function)

■ DatePart (function)

Platform(s)

All.

Keywords

_ (keyword)

Syntax
text1 _

text2

Description

Line-continuation character, which allows you to split a single BasicScript statement
onto more than one line.

Comments

The line-continuation character cannot be used within strings and must be preceded
by white space (either a space or a tab).

The line-continuation character can be followed by a comment, as shown below:

i = 5 + 6 & _ 'Continue on the
next line.

"Hello"

Example
Const crlf = Chr$(13) + Chr$(10)
Keywords 851

Sub Main()

'The line-continuation operator is useful when concatenating

'long strings.

message = "This line is a line of text that" + crlf + _

 + "extends beyond the borders of the editor" + crlf + _

 + "so it is split into multiple lines"

'It is also useful for separating and continuing long

'calculation lines.

b# = .124

a# = .223

s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _

 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00

MsgBox message & crlf & "The value of s# is: " & s#

End Sub

Platform(s)

All.

. (keyword)

Syntax 1
object.property

Syntax 2
structure.member

Description

Separates an object from a property or a structure from a structure member.

Examples
'This example uses the period to separate an object from a

'property.

Sub Main()

MsgBox Clipboard.GetText()

End Sub
852 Chapter 4 - BasicScript Reference

'This example uses the period to separate a structure from a

'member.

Type Rect

left As Integer

top As Integer

right As Integer

bottom As Integer

End Type

Sub Main()

Dim r As Rect

r.left = 10

r.right = 12

End Sub

See Also

Objects (topic)

Platform(s)

All.

' (keyword)

Syntax
'text

Description

Causes the compiler to skip all characters between this character and the end of the
current line.

Comments

This is very useful for commenting your code to make it more readable.

Example
Sub Main()
Keywords 853

'This whole line is treated as a comment.

i$="Strings" 'This is a valid assignment with a
comment.

This line will cause an error (the apostrophe is missing).

End Sub

See Also
■ Rem (statement)

■ Comments (topic)

Platform(s)

All.

ByRef (keyword)

Syntax
...,ByRef parameter,...

Description

Used within the Sub...End Sub, Function...End Function, or Declare statement to
specify that a given parameter can be modified by the called routine.

Comments

Passing a parameter by reference means that the caller can modify that variable's
value.

Unlike the ByVal keyword, the ByRef keyword cannot be used when passing a
parameter. The absence of the ByVal keyword is sufficient to force a parameter to be
passed by reference:

MySub ByVal i ‘Pass i by value.

MySub ByRef i ‘Illegal (will not compile).

MySub i ‘Pass i by reference.

Example
Sub Test(ByRef a As Variant)

a = 14

End Sub
854 Chapter 4 - BasicScript Reference

Sub Main()

b = 12

Test b

MsgBox "The ByRef value is: " & b 'Displays 14.

End Sub

See Also

ByVal (keyword)

Platform(s)

All.

ByVal (keyword)

Syntax
...ByVal parameter...

Description

Forces a parameter to be passed by value rather than by reference.

Comments

The ByVal keyword can appear before any parameter passed to any function,
statement, or method to force that parameter to be passed by value. Passing a
parameter by value means that the caller cannot modify that variable's value.

Enclosing a variable within parentheses has the same effect as the ByVal keyword:

Foo ByVal i 'Forces i to be passed by value.

Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (i.e., routines defined using the
Declare statement), the ByVal keyword forces the parameter to be passed by value
regardless of the declaration of that parameter in the Declare statement. The
following example shows the effect of the ByVal keyword used to passed an Integer
to an external routine:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

i% = 6

Foo ByVal i% 'Pass a 2-byte Integer.

Foo i% 'Pass a 4-byte pointer to an Integer.
Keywords 855

Since the Foo routine expects to receive a pointer to an Integer, the first call to Foo will
have unpredictable results.

Example
'This example demonstrates the use of the ByVal keyword.

Sub Foo(a As Integer)

a = a + 1

End Sub

Sub Main()

Dim i As Integer

i = 10

Foo i

'The following displays 11 (Foo changed the value)

MsgBox "The ByVal value is: " & i

Foo ByVal i

'The following displays 11 (Foo did not change the value)

MsgBox "The ByVal value is still: " & i

End Sub

See Also

ByRef (keyword)

Platform(s)

All.

New (keyword)

Syntax 1
Dim ObjectVariable As New ObjectType

Syntax 2
Set ObjectVariable = New ObjectType
856 Chapter 4 - BasicScript Reference

Description

Creates a new instance of the specified object type, assigning it to the specified object
variable.

Comments

The New keyword is used to declare a new instance of the specified data object. This
keyword can only be used with data object types.

At runtime, the application or extension that defines that object type is notified that a
new object is being defined. The application responds by creating a new physical
object (within the appropriate context) and returning a reference to that object, which
is immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs
some appropriate action, such as destroying the physical object.

See Also
■ Dim (statement)

■ Set (statement)

Platform(s)

All.

Methods

Basic.Capability (method)

Syntax
Basic.Capability(which)

Description

Returns True if the specified capability exists on the current platform; returns False
otherwise.
Methods 857

Comments

The which parameter is an Integer specifying the capability for which to test. It can be
any of the following values:

Example
'This example tests to see whether your current platform

'supports disk drives and hidden file attributes and displays

'the result.

Sub Main()

message = "This operating system "

If Basic.Capability(1) Then

message = message & "supports disk drives."

Else

message = message & "does not support disk drives."

End If

MsgBox message

End Sub

Value Returns true if

1 The platform supports disk drives.

2 The platform supports system file attribute (ebSystem).

3 The platform supports the hidden file attribute (ebHidden).

4 The platform supports the volume label file attribute (ebVolume).

5 The platform supports the archive file attribute (ebArchive).

6 The platform supports denormalized floating-point math.

7 The platform supports file locking (that is, the Lock and Unlock statements).

8 The platform uses big endian byte ordering.

9 The internal string format used by BasicScript uses 2-byte characters.

10 The internal string format used by BasicScript is MBCS.

11 The platform supports wide characters.

12 The platform is MBCS.
858 Chapter 4 - BasicScript Reference

See Also
■ Cross-Platform Scripting (topic

■ Basic.OS (property)

Platform(s)

All.

Clipboard.Clear (method)

Syntax
Clipboard.Clear

Description

This method clears the Clipboard by removing any content.

Example
'This example puts text on the Clipboard, displays it, clears

'the Clipboard, and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Clipboard$ "Hello out there!"

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

Clipboard.Clear

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

End Sub

Platform(s)

Windows, Win32, Macintosh, OS/2.

Clipboard.GetFormat (method)

Syntax
WhichFormat = Clipboard.GetFormat(format)
Methods 859

Description

Returns True if data of the specified format is available in the Clipboard; returns False
otherwise.

Comments

This method is used to determine whether the data in the Clipboard is of a particular
format. The format parameter is an Integer representing the format to be queried:

Example
'This example puts text on the Clipboard, checks whether'

'there is text on the Clipboard, and if there is,

'displays it.

Sub Main()

Clipboard$ "Hello out there!"

If Clipboard.GetFormat(ebCFText) Then

 MsgBox Clipboard$

Else

MsgBox "There is no text in the Clipboard."

End If

End Sub

See Also
■ Clipboard$ (function)

■ Clipboard$ (statement)

Format Value Description

ebCFText 1 Text.

ebCFBitmap 2 Bitmap.

ebCFMetafile 3 Metafile.

ebCFDIB 8 Device-independent bitmap (DIB).

ebCFPalette 9 Color palette.

ebCFUnicodeText 13 Unicode text.
860 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32, Macintosh, OS/2.

Clipboard.GetText (method)

Syntax
text$ = Clipboard.GetText([format])

Description

Returns the text contained in the Clipboard.

Comments

The format parameter, if specified, must be ebCFText (1).

Example
'This example retrieves the text from the Clipboard and

'checks to make sure that it contains the word "dog."

Option Compare Text

Sub Main()

If Clipboard.GetFormat(1) Then

If Instr(Clipboard.GetText(1),"dog",1) = 0 Then

MsgBox "The Clipboard doesn't contain the word
""dog."""

Else

MsgBox "The Clipboard contains the word ""dog""."

End If

Else

MsgBox "The Clipboard does not contain text."

End If

End Sub

See Also
■ Clipboard$ (statement)

■ Clipboard$ (function)

■ Clipboard.SetText (method)
Methods 861

Platform(s)

Windows, Win32, Macintosh, OS/2.

Platform Notes: Win32

Under Win32, the format parameter must be either ebCFText or ebCFUnicodeText. If
the format parameter is omitted, then BasicScript first looks for text of the specified
type depending on the platform:

Clipboard.SetText (method)

Syntax
Clipboard.SetText data$ [,format]

Description

Copies the specified text string to the Clipboard.

Comments

The data$ parameter specifies the text to be copied to the Clipboard. The format
parameter, if specified, must be ebCFText (1).

Example
'This example gets the contents of the Clipboard and

'uppercases it.

Sub Main()

If Not Clipboard.GetFormat(1) Then Exit Sub

Clipboard.SetText UCase$(Clipboard.GetText(1)),1

End Sub

 Platform Clipboard Format

Windows NT UNICODE

Windows 95 MBCS

Win32s MBCS
862 Chapter 4 - BasicScript Reference

See Also
■ Clipboard$ (statement)

■ Clipboard.GetText (method)

■ Clipboard$ (function)

Platform(s)

Windows, Win32, Macintosh, OS/2.

Platform Notes: Win32

Under Win32, the format parameter must be either ebCFText or ebCFUnicodeText. If
the format parameter is omitted, then BasicScript places the text into the clipboard in
the following format depending on the platform.

Desktop.ArrangeIcons (method)

Syntax
Desktop.ArrangeIcons

Description

Reorganizes the minimized applications on the desktop.

Example
Sub Main()

Desktop.ArrangeIcons

End Sub

See Also
■ Desktop.Cascade (method)

 Platform Clipboard Format

Windows NT UNICODE

Windows 95 MBCS

Win32s MBCS
Methods 863

■ Desktop.Tile (method)

Platform(s)

Windows.

Desktop.Cascade (method)

Syntax
Desktop.Cascade

Description

Cascades all non-minimized windows.

Example
'This example cascades all the windows on the desktop. It first

'restores any minimized applications so that they are included

'in the cascade.

Sub Main()

Dim apps$()

AppList apps$

For i = LBound(apps) To UBound(apps)

AppRestore apps(i)

Next i

Desktop.Cascade

End Sub

See Also
■ Desktop.Tile (method)

■ Desktop.ArrangeIcons (method)

Platform(s)

Windows.
864 Chapter 4 - BasicScript Reference

Desktop.SetColors (method)

Syntax
Desktop.SetColors ControlPanelItemName$

Description

Changes the system colors to one of a predefined color set.

Example
'This example allows the user to select any of the available

'Windows color schemes.

Sub Main()

'Get color schemes from Windows

Dim names$()

ReadINISection "color schemes",names$,"CONTROL.INI"

SelectAgain:

'Allow user to select color scheme

item = SelectBox("Set Colors","Available Color Sets:",names$)

If item <> -1 Then

Desktop.SetColors names$(item)

Goto SelectAgain

End If

End Sub

See Also

Desktop.SetWallpaper (method)

Platform(s)

Windows.

Platform Notes: Windows

Under Windows, the names of the color sets are contained in the control.ini file.
Methods 865

Desktop.SetWallpaper (method)

Syntax
Desktop.SetWallpaper filename$, isTile

Description

Changes the desktop wallpaper to the bitmap specified by filename$.

Comments

The wallpaper will be tiled if isTile is True; otherwise, the bitmap will be centered on
the desktop.

To remove the wallpaper, set the filename$ parameter to "", as in the following
example:

Desktop.SetWallpaper "",True

Example
'This example reads a list of .BMP files from the Windows

'directory and allows the user to select any of these as

'wallpaper.

Sub Main()

Dim list$()

' Create the prefix for the bitmap filenames

d$ = System.WindowsDirectory$

If Right(d$,1) <> "\" Then d$ = d$ & "\"

f$ = d$ & "*.BMP"

'Get list of bitmaps from Windows directory

FileList list$,f$

'Were there any bitmaps?

If ArrayDims(list$) = 0 Then

MsgBox "There aren't any bitmaps in the Windows directory"

Exit Sub

End If
866 Chapter 4 - BasicScript Reference

'Add "(none)".

ReDim Preserve list$ (UBound(list$) + 1)

list$(UBound(list$)) = "(none)"

SelectAgain:

'Allow user to select item

item = SelectBox("Set Wallpaper",_

"Available Wallpaper:",list$)

Select Case item

Case -1

End

Case UBound(list$)

Desktop.SetWallPaper "",True

Goto SelectAgain

Case Else

Desktop.SetWallPaper d$ & list$(item),True

Goto SelectAgain

End Select

End Sub

See Also

Desktop.SetColors (method)

Platform(s)

Windows.

Platform Notes: Windows

Under Windows, the Desktop.SetWallpaper method makes permanent changes to
the wallpaper by writing the new wallpaper information to the win.ini file.

Desktop.Snapshot (method)

Syntax
Desktop.Snapshot [spec]
Methods 867

Description

Takes a snapshot of a particular section of the screen and saves it to the Clipboard.

Comments

The spec parameter is an Integer specifying the screen area to be saved. It can be any
of the following:

Before the snapshot is taken, each application is updated. This ensures that any
application that is in the middle of drawing will have a chance to finish before the
snapshot is taken.

There is a slight delay if the specified window is large.

Example
'This example takes a snapshot of Program Manager and pastes

'the resulting bitmap into Windows Paintbrush.

Sub Main()

AppActivate "Program Manager" 'Activate Program Manager.

Desktop.Snapshot 2 'Place snapshot into Clipboard.

id = Shell("pbrush") 'Run Paintbrush.

Menu "Edit.Paste" 'Paste snapshot into Paintbrush.

End Sub

Platform(s)

Windows.

Platform Notes: Windows

Under Windows, pictures are placed into the Clipboard in bitmap format.

0 Entire Screen

1 Client area of the active application

2 Entire window of the active application

3 Client area of the active window

4 Entire window of the active window
868 Chapter 4 - BasicScript Reference

Desktop.Tile (method)

Syntax
Desktop.Tile

Description

Tiles all non-minimized windows.

Example
'This example tiles all the windows on the desktop. It first

'restores any minimized applications so that they are

'included in the tile.

Sub Main()

Dim apps$()

AppList apps$

For i = LBound(apps) To UBound(apps)

AppRestore apps(i)

Next i

Desktop.Tile

End Sub

See Also
■ Desktop.Cascade (method)

■ Desktop.ArrangeIcons (method)

Platform(s)

Windows.

Err.Clear (method)

Syntax
Err.Clear

Description

Clears the properties of the Err object.
Methods 869

Comments

After this method has been called, the properties of the Err object will have the
following values:

The properties of the Err object are automatically reset when any of the following
statements are executed:

Resume Exit Function

On Error Exit Sub

Example
'The following script gets input from the user using error

'checking.

Sub Main()

Dim x As Integer

On Error Resume Next

x = InputBox("Type in a number")

If Err.Number <> 0 Then

Err.Clear

x = 0

End If

MsgBox x

End Sub

See Also
■ Error Handling (topic)

 Property Value

Err.Description “ “

Err.HelpContext 0

Err.HelpFile “ “

Err.LastDLLError ()

Err.Number ()

Err.Source “ “
870 Chapter 4 - BasicScript Reference

■ Err.Description (property)

■ Err.HelpContext (property)

■ Err.HelpFile (property)

■ Err.LastDLLError (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

All.

Err.Raise (method)

Syntax
Err.Raise number [,[source] [,[description] [,[helpfile]
[,helpcontext]]]]

Description

Generates a runtime error, setting the specified properties of the Err object.

Comments

The Err.Raise method has the following named parameters:

 Named Parameter Description

number A Long value indicating the error number to be generated.
This parameter is required.

Errors predefined by BasicScript are in the range between 0
and 1000.

source An optional String expression specifying the source of the
error—i.e., the object or module that generated the error.

If omitted, then BasicScript uses the name of the currently
executing script.

description An optional String expression describing the error.

If omitted and number maps to a predefined BasicScript error
number, then the corresponding predefined description is
used. Otherwise, the error “Application-defined or
object-define error” is used.
Methods 871

If some arguments are omitted, then the current property values of the Err object are
used.

This method can be used in place of the Error statement for generating errors. Using
the Err.Raise method gives you the opportunity to set the desired properties of the Err
object in one statement.

Example
'The following example uses the Err.Raise method to generate

'a user-defined error.

Sub Main()

Dim x As Variant

On Error Goto TRAP

x = InputBox("Enter a number:")

If Not IsNumber(x) Then

Err.Raise 3000,,"Invalid number specified","WIDGET.HLP",30

End If

MsgBox x

Exit Sub

TRAP:

MsgBox Err.Description

End Sub

See Also
■ Error (statement)

■ Error Handling (topic)

■ Err.Clear (method)

■ Err.HelpContext (property)

helpfile An optional String expression specifying the name of the help
file containing context-sensitive help for this error.

If omitted and number maps to a predefined BasicScript error
number, then the default help file is assumed.

helpcontext An optional Long value specifying the topic within helpfile
containing context-sensitive help for this error.

 Named Parameter Description
872 Chapter 4 - BasicScript Reference

■ Err.Description (property)

■ Err.HelpFile (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

All.

Msg.Close (method)

Syntax
Msg.Close

Description

Closes the modeless message dialog box.

Comments

Nothing will happen if there is no open message dialog box.

Example
Sub Main()

Msg.Open "Printing. Please wait...",0,True,True

Sleep 3000

Msg.Close

End Sub

See Also
■ Msg.Open (method)

■ Msg.Thermometer (property)

■ Msg.Text (property)

Platform(s)

Windows, Win32.
Methods 873

Msg.Open (method)

Syntax
Msg.Open prompt,timeout,cancel,thermometer [,XPos,YPos]

Description

Displays a message in a dialog box with an optional Cancel button and thermometer.

Comments

The Msg.Open method takes the following named parameters:

Unlike other dialog boxes, a message dialog box remains open until the user selects
Cancel, the timeout has expired, or the Msg.Close method is executed (this is
sometimes referred to as modeless).

 Parameter Description

prompt String containing the text to be displayed.The text can be
changed using the Msg.Text property.

timeout Integer specifying the number of seconds before the dialog
box is automatically removed. The timeout parameter has no
effect if its value is 0.

cancel Boolean controlling whether or not a Cancel button appears
within the dialog box beneath the displayed message. If this
parameter is True, then a Cancel button appears. If it is not
specified or False, then no Cancel button is created.If a user
chooses the Cancel button at runtime, a trappable runtime
error is generated (error number 18). In this manner, a
message dialog box can be displayed and processing can
continue as normal, aborting only when the user cancels the
process by choosing the Cancel button.

thermometer Boolean controlling whether the dialog box contains a
thermometer. If this parameter is True, then a thermometer is
created between the text and the optional Cancel button. The
thermometer initially indicates 0% complete and can be
changed using the Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left
corner of the message box, in twips (twentieths of a point). If
these parameters are not specified, then the window is
centered on top of the application.
874 Chapter 4 - BasicScript Reference

Only a single message window can be opened at any one time. The message window
is removed automatically when a script terminates.

The Cancel button, if present, can be selected using either the mouse or keyboard.
However, these events will never reach the message dialog unless you periodically
call DoEvents from within your script.

Example
'This example displays several types of message boxes.

Sub Main()

Msg.Open "Printing. Please wait...",0,True,False

Sleep 3000

Msg.Close

Msg.Open "Printing. Please wait...",0,True,True

For x = 1 to 100

Msg.Thermometer = x

Next x

Sleep 1000

Msg.Close

End Sub

See Also
■ Msg.Close (method)

■ Msg.Thermometer (property)

■ Msg.Text (property)

Platform(s)

Windows, Win32.

Net.CancelCon (method)

Syntax
Net.CancelCon connection$ [[,isForce] [,isPermanent]]

Description

Cancels a network connection.
Methods 875

Comments

The Net.CancelCon method takes the following parameters:

A runtime error will result if no network is present.

Example
'This example deletes the drive mapping associated with

'drive N:.

Sub Main()

Net.CancelCon "N:"

End Sub

See Also
■ Net.AddCon (method)

■ Net.GetCon$ (method)

Platform(s)

Windows, Win32.

Parameter
Description

connection$ String containing the name of the device to cancel, such as
“LPT1” or “D:”.

If connection$ specifies a local device, then only that local device
is disconnected. If connection$ specifies a remote device, then all
local devices attached to that remote device are disconnected.

isForce Boolean specifying whether to force the cancellation of the
connection if there are open files or open print jobs. If this
parameter is True, then this method will close all open files and
open print jobs before the connection is closed. If this parameter
is False, this the method will issue a runtime error if there are
any open files or open print jobs.

If omitted, then isForce is assumed to be True.

isPermanent Boolean specifying whether the disconnection should be
temporary or should persist to subsequent logon operations. If
this parameter is missing, then it is assumed to be True.
876 Chapter 4 - BasicScript Reference

Platform Notes: Windows

Under Windows, isPermanent is ignored.

Platform Notes: Win32

The Net.CancelCon method requires Win32s version 1.3 or later.

Net.Dialog (method)

Syntax
Net.Dialog

Description

Displays the dialog box that allows configuration of the currently installed network.

Comments

The displayed dialog box depends on the currently installed network. The dialog box
is modal--script execution will be paused until the dialog box is completed.

A runtime error will result if no network is present.

Example
'This example invokes the network driver dialog box.

Sub Main()

Net.Dialog

End Sub

See Also

Net.Browse$ (method)

Platform(s)

Windows.

Net.GetCaps (method)

Syntax
Net.GetCaps(type [,localname$])
Methods 877

Description

Returns an Integer specifying information about the network and its capabilities.

Comments

The Net.GetCaps method takes the following parameters:

A runtime error will result if no network is present.

Examples
Sub Main()

'This example checks the type of network.

If Net.GetCaps(2) = 768 Then _

MsgBox "This is a Novell network."

'This checks whether the net supports retrieval of the

'user name.

If Net.GetCaps(4) And 1 Then _

MsgBox "User name is: " & Net.User$

'This checks whether this net supports the Browse dialog

'boxes.

If Net.GetCaps(6) And &H0010 Then MsgBox Net.Browse$(1)

End Sub

Platform(s)

Windows, Win32.

Parameter Description

type An Integer specifying what type of information to retrieve. This
parameter is different from platform to platform.

localname$ A String specifying the name of the local device to which is
attached to the network device to be queried. If this parameter is
missing, then information about the first network device is
returned.
878 Chapter 4 - BasicScript Reference

Platform Notes: Windows

Under Windows, since only one network connection is possible at any given time, the
localname$ parameter is ignored.

The type parameter for Win16 platforms can be any of the values described in the
following table:

Value of type Description

1 Returns the version of the driver specification to which the
currently installed network driver conforms. The high byte of
the returned value contains the major version number and the
low byte contains the minor version number. These values can
be retrieved using the following code:

MajorVersionNumber = Net.GetCaps(1) \ 256

MinorVersionNumber = Net.GetCaps(1) And &H00FF

2 Returns the type of network. The network type is returned in
the high byte and the subnetwork type is returned in the low
byte. These values can be obtained using the following code:

NetType = Net.GetCaps(2) \ 256

SubNetType = Net.GetCaps(2) And &H00FF
Methods 879

Using the above values, NetType can be any of the following values:

If NetType is 1 28, then SubNetType is any of the following values (you can test for any of these values using the And operator):

Value Type 3 Returns the network driver version number.

Value Type 4 Returns 1 if the Net.User$ property is supported; returns 0 otherwise.

0 No network is installed.

1 Microsoft Network.

2 Microsoft LAN Manager.

3 Novell NetWare.

4 Banyan Vines.

5 10Net.

6 Locus

7 SunSoft PC NFS.

8 LanStep.

9 9 Titles.

10 Articom Lantastic.

11 IBM AS/400.

12 FTP Software FTP NFS.

13 DEC Pathworks.

bit &H0001 Microsoft Network.

bit &H0002 Microsoft LAN Manager.

bit &H0004 Windows for Workgroups.

bit &H0008 Novell NetWare.

bit &H0010 Banyan Vines.

bit &H0080 Other unspecified network.
880 Chapter 4 - BasicScript Reference

Value Type 6 Returns any of the following values indicating which connections are
supported (you can test for these values using the And operator):

Value Type 7 Returns a value indicating which printer function are available (you can
test for these values using the And operator):

Value Type 8 Returns a value indicating which dialog functions are available (you can
test for these values using the And operator):

bit &H0001 Driver supports Net.AddCon.

bit &H0002 Driver supports Net.CancelCon.

bit &H0004 Driver supports Net.GetCon.

bit &H0008 Driver supports auto connect.

bit &H0010 Driver supports Net.Browse$.

bit &H0002 Driver supports open print job.

bit &H0004 Driver supports close print job.

bit &H0010 Driver supports hold print job.

bit &H0020 Driver supports release print job

bit &H0040 Driver supports cancel print job.

bit &H0080 Driver supports setting the number of print copies.

bit &H0100 Driver supports watch print queue

bit &H0200 Driver supports unwatch print queue.

bit &H0400 Driver supports locking queue data.

bit &H0800 Driver supports unlocking queue data.

bit &H1000 Driver supports queue change message.

bit &H2000 Driver supports abort print job.

bit &H4000 Driver supports no arbitrary lock.

bit &H8000 Driver supports write print job.

bit &H0001 Driver supports Device Mode dialog.
Methods 881

Platform Notes: Win32

For Win32 platforms, the type parameter can be any of the following values:

1 - Always returns 0.

2 - Network type:

bit &H0002 Driver supports the Browse dialog.

bit &H0004 Driver supports the Connect dialog.

bit &H0008 Driver supports the Disconnect dialog.

bit &H0010 Driver supports the View Queue dialog.

bit &H0020 Driver supports the Property dialog.

bit &H0040 Driver supports the Connection dialog.

bit &H0080 Driver supports the Printer Connect dialog.

bit &H0100 Driver supports the Shares dialog.

bit &H0200 Driver supports the Share As dialog.

Value of type Description

0 No network is installed.

1 Microsoft Network.

2 Microsoft LAN Manager.

3 Novell NetWare.

4 Banyan Vines.

5 10Net.

6 Locus

7 SunSoft PC NFS.

8 LanStep.

9 9 Titles.

10 Articom Lantastic.

11 IBM AS/400.
882 Chapter 4 - BasicScript Reference

3 - Version of the network with the major version in the high byte and the minor
version in the low byte:

Major = Net.GetCaps(2) \ 256

Minor = Net.GetCaps(2) And &H00FF

Net.GetCon$ (method)

Syntax
Net.GetCon$(localname$)

Description

Returns the name of the network resource associated with the specified redirected
local device.

Comments

The localname$ parameter specifies the name of the local device, such as “LPT1” or
“D:”.

The function returns a zero-length string if the specified local device is not redirected.

A runtime error will result if no network is present.

Example
'This example finds out where drive Z is mapped.

Sub Main()

NetPath$ = Net.GetCon$("Z:")

MsgBox "Drive Z is mapped as " & NetPath$

End Sub

See Also
■ Net.CancelCon (method)

■ Net.AddCon (method)

12 FTP Software FTP NFS.

13 DEC Pathworks.
Methods 883

Platform(s)

Windows, Win32.

Net.User$ (method)

Syntax
Net.User$ [([localname$])]

Description

Returns the name of the user on the network.

Comments

If localname$ is the name of a network device and the user is connected to that
resource using different names, then the network provider may not be able to resolve
which user name to return. In this case, the provider may make an arbitrary choice
from the possible user names.

Examples
Sub Main()

'This example tells the user who he or she is.

MsgBox "You are " & Net.User$

'This example makes sure this capability is supported.

If Net.GetCaps(4) And 1 Then MsgBox "You are " & _

Net.User$

End Sub

Platform(s)

Windows, Win32.

Platform Notes: Windows

On Win16 platforms, localname$ is ignored.

Viewport.Clear (method)

Syntax
Viewport.Clear
884 Chapter 4 - BasicScript Reference

Description

Clears the open viewport window.

Comments

The method has no effect if no viewport is open.

Example
Sub Main()

Viewport.Open

Print "This will be displayed in the viewport window."

Sleep 2000

Viewport.Clear

Print "This will replace the previous text."

Sleep 2000

Viewport.Close

End Sub

See Also
■ Viewport.Close (method)

■ Viewport.Open (method)

Platform(s)

Windows, Win32.

Viewport.Close (method)

Syntax
Viewport.Close

Description

This method closes an open viewport window.

Comments

The method has no effect if no viewport is opened.
Methods 885

Example
Sub Main()

Viewport.Open

Print "This will be displayed in the viewport window."

Sleep 2000

Viewport.Close

End Sub

See Also

Viewport.Open (method)

Platform(s)

Windows, Win32.

Viewport.Open (method)

Syntax
Viewport.Open [title [,XPos,YPos [,width,height]]]

Description

Opens a new viewport window or switches the focus to the existing viewport
window.

Comments

The Viewport.Open method accepts the following named :

If a viewport window is already open, then it is given the focus. Otherwise, a new
viewport window is created.

Named Parameter Description

title Specifies a String containing the text to appear in the
viewport's caption.

XPos, YPos Specifies Integer coordinates given in twips indicating the
initial position of the upper left corner of the viewport.

width,height Specifies Integer values indicating the initial width and
height of the viewport.
886 Chapter 4 - BasicScript Reference

Combined with the Print statement, a viewport window is a convenient place to
output debugging information.

The viewport window is closed when the BasicScript host application is terminated.

The following keys work within a viewport window:

Only one viewport window can be open at any given time. Any scripts with Print
statements will output information into the same viewport window.

When printing to viewports, the end-of-line character can be any of the following: a
carriage return, a line feed, or a carriage-return/line-feed pair. Embedded null
characters are printed as spaces.

Example
Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,500

Print "This will be displayed in the viewport window."

Sleep 2000

Viewport.Close

End Sub

See Also

Viewport.Close (method)

Platform(s)

Windows, Win32.

Up Scrolls up by one line.

Down Scrolls down by one line.

Home Scrolls to the first line in the viewport window.

End Scrolls to the last line in the viewport window.

PgDn Scrolls the viewport window down by one page.

PgUp Scrolls the viewport window up by one page.

Ctrl+PgUp Scrolls the viewport window left by one page.

Ctrl+PgDn Ctrl+PgDnScrolls the viewport window right by one page.
Methods 887

Platform Notes: Windows

The buffer size for the viewport is 32K. Information from the start of the buffer is
removed to make room for additional information being appended to the end of the
buffer.

Operators

& (operator)

Syntax
expression1 & expression2

Description

Returns the concatenation of expression1 and expression2.

Comments

If both expressions are strings, then the type of the result is String. Otherwise, the
type of the result is a String variant.

When nonstring expressions are encountered, each expression is converted to a String
variant. If both expressions are Null, then a Null variant is returned. If only one
expression is Null, then it is treated as a zero-length string. Empty variants are also
treated as zero-length strings.

In many instances, the plus (+) operator can be used in place of &. The difference is
that + attempts addition when used with at least one numeric expression, whereas &
always concatenates.

Example
'This example assigns a concatenated string to variable s$ and

'a string to s2$, then concatenates the two variables and

'displays the result in a dialog box.

Sub Main()

s$ = "This string" & " is concatenated"

s2$ = " with the & operator."

MsgBox s$ & s2$

End Sub
888 Chapter 4 - BasicScript Reference

See Also

+ (operator), Operator Precedence (topic)

Platform(s)

All.

\ (operator)

Syntax
expression1 \ expression2

Description

Returns the integer division of expression1 and expression2.

Comments

Before the integer division is performed, each expression is converted to the data type
of the most precise expression. If the type of the expressions is either Single, Double,
Date, or Currency, then each is rounded to Long.

If either expression is a Variant, then the following additional rules apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

Example
'This example assigns the quotient of two literals to a variable

'and displays the result.

Sub Main()

s% = 100.99 \ 2.6

MsgBox "Integer division of 100.99\2.6 is: " & s%

End Sub

See Also
■ / (operator)

■ Operator Precedence (topic)
Operators 889

Platform(s)

All.

/ (operator)

Syntax
expression1 / expression2

Description

Returns the quotient of expression1 and expression2.

Comments

The type of the result is Double, with the following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions is Variant, then the following additional rules apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

■ If both expressions are either Integer or Single variants and the result overflows,
then the result is automatically promoted to a Double variant.

Example
'This example assigns values to two variables and their

'quotient to a third variable, then displays the result.

Sub Main()

i% = 100

j# = 22.55

k# = i% / j#

If one expression is and the other expression is
then the result type is

Integer Integer Single

Single Single Single

Boolean Boolean Single
890 Chapter 4 - BasicScript Reference

MsgBox "The quotient of i/j is: " & k#

End Sub

See Also
■ \ (operator)

■ Operator Precedence (topic)

Platform(s)

All.

^ (operator)

Syntax
expression1 ^ expression2

Description

Returns expression1 raised to the power specified in expression2.

Comments

The following are special cases:

The type of the result is always Double, except with Boolean expressions, in which
case the result is Boolean. Fractional and negative exponents are allowed.

If either expression is a Variant containing Null, then the result is Null.

It is important to note that raising a number to a negative exponent produces a
fractional result.

Special Case Value

n^0 1

0^-n Undefined

0^+n 0

1^n 1
Operators 891

Example
Sub Main()

s# = 2 ^ 5 'Returns 2 to the 5th
power.

r# = 16 ^ .5 'Returns the square root
of 16.

MsgBox "2 to the 5th power is: " & s#

MsgBox "The square root of 16 is: " & r#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.

> (operator)

See Comparison Operators (topic).

< (operator)

See Comparison Operators (topic).

<> (operator)

See Comparison Operators (topic).

- (operator)

Syntax 1
expression1 - expression2

Syntax 2
-expression

Description

Returns the difference between expression1 and expression2 or, in the second syntax,
returns the negation of expression.
892 Chapter 4 - BasicScript Reference

Comments

Syntax 1

The type of the result is the same as that of the most precise expression, with the
following exceptions:

A runtime error is generated if the result overflows its legal range.

When either or both expressions are Variant, then the following additional rules
apply:

■ If either expression is Null, then the result is Null.

■ Empty is treated as an Integer of value 0.

■ If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

■ If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

Syntax 2

If expression is numeric, then the type of the result is the same type as expression,
with the following exception:

■ If expression is Boolean, then the result is Integer.

Note: In 2's complement arithmetic, unary minus may result in an overflow with
Integer and Long variables when the value of expression is the largest negative
number representable for that data type. For example, the following generates an
overflow error:

Sub Main()

Dim a As Integer

a = -32768

a = -a'Generates overflow here.

End Sub

If one expression is
and the other
expression is

then the result type is

Long Single Double

Boolean Boolean Integer
Operators 893

When negating variants, overflow will never occur because the result will be
automatically promoted: integers to longs and longs to doubles.

Example
'This example assigns values to two numeric variables and

'their difference to a third variable, then displays the

'result.

Sub Main()

i% = 100

j# = 22.55

k# = i% - j#

MsgBox "The difference is: " & k#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.

* (operator)

Syntax
expression1 * expression2

Description

Returns the product of expression1 and expression2.

Comments

The result is the same type as the most precise expression, with the following
exceptions:

If one expression is
and the other expression
is

then the result type is

Single Long Double

Boolean Boolean Integer
894 Chapter 4 - BasicScript Reference

When the * operator is used with variants, the following additional rules apply:

■ Empty is treated as 0.

■ If the type of the result is an Integer variant that overflows, then the result is
automatically promoted to a Long variant.

■ If the type of the result is a Single, Long, or Date variant that overflows, then the
result is automatically promoted to a Double variant.

■ If either expression is Null, then the result is Null.

Example
'This example assigns values to two variables and their product

'to a third variable, then displays the product of s# * t#.

Sub Main()

s# = 123.55

t# = 2.55

u# = s# * t#

MsgBox s# & " * " & t# & " = " & s# * t#

End Sub

See Also

Operator Precedence (topic)

Platform(s)

All.

+ (operator)

Syntax
expression1 + expression2

Description

Adds or concatenates two expressions.

Date Date Double

If one expression is
and the other expression
is

then the result type is
Operators 895

Comments

Addition operates differently depending on the type of the two expressions:

When using + to concatenate two variants, the result depends on the types of each
variant at runtime. You can remove any ambiguity by using the & operator.

Numeric Add

A numeric add is performed when both expressions are numeric (i.e., not variant or
string). The result is the same type as the most precise expression, with the following
exceptions:

If one expression is
and the other
expression is

then

Numeric Numeric Perform a numeric add (see
below).

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a String
variant.

Variant Numeric Perform a variant add (see
below).

Empty variant Empty variant Return an Integer variant, value
0.

Empty variant Any data type Return the non-Empty operand
unchanged.

Null variant Any data type Return Null.

Variant Variant Add if either is numeric;
otherwise, concatenate.

If one expression is
and the other expression
is

then the result type is

Single Long Double

Boolean Boolean Integer
896 Chapter 4 - BasicScript Reference

A runtime error is generated if the result overflows its legal range.

Variant Add

If both expressions are variants, or one expression is Numeric and the other
expression is Variant, then a variant add is performed. The rules for variant add are
the same as those for normal numeric add, with the following exceptions:

■ If the type of the result is an Integer variant that overflows, then the result is a
Long variant.

■ If the type of the result is a Long, Single, or Date variant that overflows, then the
result is a Double variant.

Example
'This example assigns string and numeric variable values and

'then uses the + operator to concatenate the strings and form

'the sums of numeric variables.

Sub Main()

i$ = "Concatenation" + " is fun!"

j% = 120 + 5 'Addition of
numeric literals

k# = j% + 2.7 'Addition of
numeric variable

MsgBox "This concatenation becomes: '" i$ + _

Str(j%) + Str(k#) & "'"

End Sub

See Also
■ & (operator)

■ Operator Precedence (topic)

Platform(s)

All.

And (operator)

Syntax
result = expression1 And expression2
Operators 897

Description

Performs a logical or binary conjunction on two expressions.

Comments

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical conjunction is performed as follows:

Binary Conjunction

If the two expressions are Integer, then a binary conjunction is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to
Long, and a binary conjunction is then performed, returning a Long result.

Binary conjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

If expression1 is and expression2 is then the result is

True True True

True False False

True Null Null

False True False

False False False

False Null Null

Null True Null

Null False False

Null Null Null

If bit in expression1 is
and bit in
expression2 is

the result is

1 1 1

0 1 0

1 0 0

0 0 0
898 Chapter 4 - BasicScript Reference

Examples
Sub Main()

n1 = 1001

n2 = 1000

b1 = True

b2 = False

'This example performs a numeric bitwise And operation and

'stores the result in N3.

n3 = n1 And n2

'This example performs a logical And comparing B1 and B2

'and displays the result.

If b1 And b2 Then

MsgBox "b1 and b2 are True; n3 is: " & n3

Else

MsgBox "b1 and b2 are False; n3 is: " & n3

End If

End Sub

See Also
■ Operator Precedence (topic)

■ Or (operator)

■ Xor (operator)

■ Eqv (operator)

■ Imp (operator)

Platform(s)

All.

Eqv (operator)

Syntax
result = expression1 Eqv expression2
Operators 899

Description

Performs a logical or binary equivalence on two expressions.

Comments

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical equivalence is performed as follows:

If either expression is Null, then Null is returned.

Binary Equivalence

If the two expressions are Integer, then a binary equivalence is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary equivalence is then performed, returning a Long result.

Binary equivalence forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:

Example
'This example assigns False to A, performs some equivalent

'operations, and displays a dialog box with the result. Since A

'is equivalent to False, and False is equivalent to 0, and by

If expression1 is and expression2 is then the result is

True True True

True False False

False True False

False False True

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 0

1 0 0

0 0 1
900 Chapter 4 - BasicScript Reference

'definition, A = 0, then the dialog box will display "A is False."

Sub Main()

a = False

If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then

MsgBox "a is False."

Else

MsgBox "a is True."

End If

End Sub

See Also
■ Operator Precedence (topic)

■ Or (operator)

■ Xor (operator)

■ Imp (operator)

■ And (operator)

Platform(s)

All.

Imp (operator)

Syntax
result = expression1 Imp expression2

Description

Performs a logical or binary implication on two expressions.

Comments

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical implication is performed as follows:

If expression1 is and expression2 is then the result is

True True True
Operators 901

Binary Implication

If the two expressions are Integer, then a binary implication is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary implication is then performed, returning a Long result.

Binary implication forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions, according to the following table:

Example
'This example compares the result of two expressions to

'determine whether one implies the other.

Sub Main()

a = 10 : b = 20 : c = 30 : d = 40

If (a < b) Imp (c < d) Then

MsgBox "a less than b implies that c is less than d."

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 1

1 0 0

0 0 1

If expression1 is and expression2 is then the result is
902 Chapter 4 - BasicScript Reference

Else

MsgBox "a less than b does not imply that c is less than d."

End If

If (a < b) Imp (c > d) Then

MsgBox "a less than b implies that c is greater than d."

Else

MsgBox "a less than b does not imply that c greater than d."

End If

End Sub

See Also
■ Operator Precedence (topic)

■ Or (operator)

■ Xor (operator)

■ Eqv (operator)

■ And (operator)

Platform(s)

All.

Is (operator)

Syntax
object Is [object | Nothing]

Description

Returns True if the two operands refer to the same object; returns False otherwise.

Comments

This operator is used to determine whether two object variables refer to the same
object. Both operands must be object variables of the same type (i.e., the same data
object type or both of type Object).

The Nothing constant can be used to determine whether an object variable is
uninitialized:

If MyObject Is Nothing Then MsgBox "MyObject is uninitialized."
Operators 903

Uninitialized object variables reference no object.

Example
'This function inserts the date into a Microsoft Word document.

Sub InsertDate(ByVal WinWord As Object)

If WinWord Is Nothing Then

MsgBox "Object variant is not set."

Else

WinWord.Insert Date$

End If

End Sub

Sub Main()

Dim WinWord As Object

On Error Resume Next

WinWord = CreateObject("word.basic")

InsertDate WinWord

End Sub

See Also
■ Operator Precedence (topic)

■ Like (operator)

Platform(s)

All.

Platform Notes: Windows, Win32, Macintosh

When comparing OLE Automation objects, the Is operator will only return True if the
operands reference the same OLE Automation object. This is different from data
objects. For example, the following use of Is (using the object class called
excel.application) returns True:

Dim a As Object

Dim b As Object

a = CreateObject("excel.application")

b = a

If a Is b Then Beep
904 Chapter 4 - BasicScript Reference

The following use of Is will return False, even though the actual objects may be the
same:

Dim a As Object

Dim b As Object

a = CreateObject("excel.application")

b = GetObject(,"excel.application")

If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b
reference the same object, they may be treated as different objects by OLE 2.0 (this is
dependent on the OLE 2.0 server application).

Like (operator)

Syntax
expression Like pattern

Description

Compares two strings and returns True if the expression matches the given pattern;
returns False otherwise.

Comments

Case sensitivity is controlled by the Option Compare setting.

The pattern expression can contain special characters that allow more flexible
matching:

Character Evaluates To

? Matches a single character.

* Matches one or more characters.

Matches any digit.

[range] Matches if the character in question is within the
specified range.

[!range] Matches if the character in question is within the
specified range.
Operators 905

A range specifies a grouping of characters. To specify a match of any of a group of
characters, use the syntax [ABCDE]. To specify a range of characters, use the syntax
[A-Z]. Special characters must appear within brackets, such as []*?#.

If expression or pattern is not a string, then both expression and pattern are converted
to String variants and compared, returning a Boolean variant. If either variant is
Null, then Null is returned.

The following table shows some examples:

Example
'This example demonstrates various uses of the Like function.

Sub Main()

a$ = "This is a string variable of 123456 characters"

b$ = "123.45"

If a$ Like "[A-Z][g-i]*" Then _

MsgBox "The first comparison is True."

If b$ Like "##3.##" Then _

MsgBox "The second comparison is True."

If a$ Like "*variable*" Then _

MsgBox "The third comparison is True."

End Sub

See Also
■ Operator Precedence (topic)

■ Is (operator)

■ Option Compare (statement)

expression True If pattern Is False If pattern Is

"EBW" "E*W", "E*" "E*B"

"BasicScript" "B*[r-t]icScript" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#","#?#" "###","#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]","[*]"
906 Chapter 4 - BasicScript Reference

Platform(s)

All.

Mod (operator)

Syntax
expression1 Mod expression2

Description

Returns the remainder of expression1 / expression2 as a whole number.

Comments

If both expressions are integers, then the result is an integer. Otherwise, each
expression is converted to a Long before performing the operation, returning a Long.

A runtime error occurs if the result overflows the range of a Long.

If either expression is Null, then Null is returned. Empty is treated as 0.

Example
'This example uses the Mod operator to determine the value

'of a randomly selected card where card 1 is the ace (1) of

'clubs and card 52 is the king (13) of spades. Since the

'values recur in a sequence of 13 cards within 4 suits, we

'can use the Mod function to determine the value of any

'given card number.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

cval$ = "ACE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,"

cval$ = cval$+"NINE,TEN,JACK,QUEEN,KING"

Randomize

card% = Random(1,52)

value = card% Mod 13

If value = 0 Then value = 13

CardNum$ = Item$(cval,value)

If card% < 53 Then suit$ = "spades"

If card% < 40 Then suit$ = "hearts"
Operators 907

If card% < 27 Then suit$ = "diamonds"

If card% < 14 Then suit$ = "clubs"

message = "Card number " & card% & " is the "

message = message & CardNum & " of " & suit$

MsgBox message

End Sub

See Also
■ / (operator)

■ \ (operator)

Platform(s)

All.

Not (operator)

Syntax
Not expression

Description

Returns either a logical or binary negation of expression.

Comments

The result is determined as shown in the following table:

If the expression is then the result is

True False

False True

Null Null

Any numeric type A binary negation of the number. If the number is an
Integer, then an Integer is returned. Otherwise, the
expression is first converted to a Long, then a binary
negation is performed, returning a Long.

Empty Treated as a Long value 0.
908 Chapter 4 - BasicScript Reference

Example
'This example demonstrates the use of the Not operator in 'comparing
logical expressions and for switching a True/False 'toggle variable.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a = False

b = True

If (Not a and b) Then _

message = "a = False, b = True" & crlf

toggle% = True

message = message & "toggle% is now " & _

Format(toggle%,"True/False") & crlf

toggle% = Not toggle%

message = message & "toggle% is now " & _

Format(toggle%,"True/False") & crlf

toggle% = Not toggle%

message = message & "toggle% is now " & _

Format(toggle%,"True/False")

MsgBox message

End Sub

See Also
■ Boolean (data type)

■ Comparison Operators (topic)

Platform(s)

All.

Or (operator)

Syntax
result = expression1 Or expression2

Description

Performs a logical or binary disjunction on two expressions.
Operators 909

Comments

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical disjunction is performed as follows:

Binary Disjunction

If the two expressions are Integer, then a binary disjunction is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to
Long and a binary disjunction is then performed, returning a Long result.

Binary disjunction forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Examples
'This first example shows the use of logical Or.

Dim s$ As String

If expression1 is and expression2 is then the result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

If bit in expression1 is and bit in expression2 is the result is

1 1 1

0 1 1

1 0 1

0 0 0
910 Chapter 4 - BasicScript Reference

s$ = InputBox$("Enter a string.")

If s$ = "" Or Mid$(s$,1,1) = "A" Then

s$ = LCase$(s$)

End If

'This second example shows the use of binary Or.

Dim w As Integer

TryAgain:

s$ = InputBox$("Enter a hex number (four digits max).")

If Mid$(s$,1,1) <> "&" Then

s$ = "&H" & s$

End If

If Not IsNumeric(s$) Then Goto TryAgain

w = CInt(s$)

MsgBox "Your number is &H" & Hex$(w)

w = w Or &H8000

MsgBox "Your number with the high bit set is &H" & _

Hex$(w)

See Also
■ Operator Precedence (topic)

■ Xor (operator)

■ Eqv (operator)

■ Imp (operator)

■ And (operator)

Platform(s)

All.

Xor (operator)

Syntax
result = expression1 Xor expression2
Operators 911

Description

Performs a logical or binary exclusion on two expressions.

Comments

If both expressions are either Boolean, Boolean variants, or Null variants, then a
logical exclusion is performed as follows:

If either expression is Null, then Null is returned.

Binary Exclusion

If the two expressions are Integer, then a binary exclusion is performed, returning an
Integer result. All other numeric types (including Empty variants) are converted to
Long, and a binary exclusion is then performed, returning a Long result.

Binary exclusion forms a new value based on a bit-by-bit comparison of the binary
representations of the two expressions according to the following table:

Example
'This example builds a logic table for the XOR function and

'displays it.

Sub Main()

If expression1 is and expression2 is then the result is

True True False

True False True

False True True

False False False

If bit in expression1 is and bit in expression2 is the result is

1 1 0

0 1 1

1 0 1

0 0 0
912 Chapter 4 - BasicScript Reference

For x = -1 To 0

For y = -1 To 0

z = x Xor y

message = message & Format(x,"True/False") & " Xor "

message = message & Format(y,"True/False") & " = "

message = message & Format(z,"True/False") & Basic.Eoln$

Next y

Next x

MsgBox message

End Sub

See Also
■ Operator Precedence (topic)

■ Or (operator)

■ Eqv (operator)

■ Imp (operator)

■ And (operator)

Platform(s)

All.

Properties

Basic.Architecture$ (property)

Syntax
Basic.Architecture$

Description

Returns a String containing the CPU architecture on which BasicScript is executing.
Properties 913

Comments

The following table describes what Basic.Architecture$ returns on various platforms:

The Basic.Architecture$ property returns an empty string if the architecture cannot
be determined by BasicScript.

Example
'

'Print the CPU architecture...

'

Sub Main()

MsgBox Basic.Architecture$

End Sub

See Also
■ Basic.Processor$ (property)

■ Basic.ProcessorCount (property)

Platform(s)

All.

Basic.CodePage (property)

Syntax
Basic.CodePage

Platform Sample Return Value from Basic.Architecture$

Windows "Intel"

Win32 "Intel", "MIPS", "Alpha AXP", or "PowerPC"

OS/2 "Intel"

NetWare "Intel", "Motorola"

Macintosh "PowerPC", "68K"

UNIX "i386", "i486"
914 Chapter 4 - BasicScript Reference

Description

Returns an Integer representing the code page for the current locale.

Comments

Under Windows, Win32, NetWare, and OS/2, this property returns ANSI code page
for the current locale, such as 437 for MS-DOS Latin US or 932 for Japanese.

On the Macintosh, this property returns a number from 0 to 32 containing the script
code (e.g., 0 for Roman, 1 for Japanese, and so on) as defined by Apple.

Example
Sub Main

If Basic.OS = ebWin16 And Basic.CodePage = 437 Then

MsgBox "Running US Windows"

Else if Basic.OS = ebWin32 And Basic.CodePage = 932 Then

MsgBox "Japanese NT"

End If

End Sub

See Also

Basic.Locale$ (property)

Basic.OS (property)

Platform(s)

All.

Basic.Eoln$ (property)

Syntax
Basic.Eoln$

Description

Returns a String containing the end-of-line character sequence appropriate to the
current platform.
Properties 915

Comments

This string will be either a carriage return, a carriage return/line feed, or a line feed.

Example
'This example writes two lines of text in a message box.

Sub Main()

MsgBox "This is the first line of text." & Basic.Eoln$ _

& "This is the second line of text."

End Sub

See Also
■ Cross-Platform Scripting (topic)

■ Basic.PathSeparator$ (property)

Platform(s)

All.

Basic.FreeMemory (property)

Syntax
Basic.FreeMemory

Description

Returns a Long representing the number of bytes of free memory in BasicScript's data
space.

Comments

This function returns the size of the largest free block in BasicScript's data space.
Before this number is returned, the data space is compacted, consolidating free space
into a single contiguous free block.

BasicScript's data space contains strings and dynamic arrays.

Example
'This example displays free memory in a dialog box.

Sub Main()
916 Chapter 4 - BasicScript Reference

MsgBox "The largest free memory block is: " &
Basic.FreeMemory

End Sub

See Also
■ System.TotalMemory (property)

■ System.FreeMemory (property),

■ System.FreeResources (property)

■ Basic.FreeMemory (property)

Platform(s)

All.

Basic.HomeDir$ (property)

Syntax
Basic.HomeDir$

Description

Returns a String specifying the directory containing BasicScript.

Comments

This method is used to find the directory in which the BasicScript files are located.

Example
'This example assigns the home directory to HD and displays it.

Sub Main()

hd$ = Basic.HomeDir$

MsgBox "The BasicScript home directory is: " & hd$

End Sub

See Also

System.WindowsDirectory$ (property)
Properties 917

Platform(s)

All.

Basic.Locale$ (property)

Syntax
Basic.Locale$

Description

Returns a String containing the locale under which BasicScript is running.

Comments

The locale helps you identify information about your environment, such as the date
formats, time format, and other country-sensitive information.

The following table describes the returned value from Basic.Locale$ on various
platforms:

Win32

Returns a string in the format:

■ abbrevlang,langid,nativelang,englang

■ abbrevlang: Three-letter name of the language. This name is formed by taking the
two-letter language abbreviation as found in the ISO Standard 639 and adding a
third letter, as appropriate, to indicate the sublanguage. This is the same as that
name found in the sLanguage item in the intl section of the Windows 3.1 WIN.INI
file.

■ langid: Language ID as defined by the operating system.

■ nativelang: Native name of the language.

■ englang: Full english name of the language as defined by ISO standard 639.

Windows

Returns a string in the format:

■ abbrevlang,country

■ country: Native name of the country.
918 Chapter 4 - BasicScript Reference

■ abbrevlang: Three-letter name of the language. This name is formed by taking the
two-letter language abbreviation as found in the ISO Standard 639 and adding a
third letter, as appropriate, to indicate the sublanguage. This is the same as that
name found in the sLanguage item in the intl section of the Windows 3.1 WIN.INI
file.

Netware

Returns a string in the following format:

■ countrycode [,countryname]

■ countrycode: Country code based on the telephone country code (1 = US, 2 =
Canada, and so on).

■ countryname: Name of the country (such as “USA”). The name of country is only
provided for NetWare version 4.0 or later.

OS/2

Returns a string in the following format:

■ countrycode,localename

■ countrycode: Country code based on the telephone country code (with the
exception of Canada, which uses 2).

■ localename: Name of the locale as identified by the LC_ALL or LANG
environment variables. If this parameter is missing, then the host application is
using the default C language locale

Macintosh

Returns a string in the following format:

■ langcode,langname

■ langcode: A number representing the current language (e.g., 0 for English, 1 for
French, 11 for Japanese, and so on).

■ langname: The English language name of the language.

Example
'This example checks to see if we are running in a Japanese

'version of Windows.

'

Sub Main
Properties 919

If Basic.OS = ebWin16 And Item$(Basic.Locale$,1) = "jpn"
Then

MsgBox "Running Windows on a Japanese computer."

End If

End Sub

See Also

Basic.OS (property)

Basic.CodePage (property)

Platform(s)

All.

Basic.OperatingSystem$ (property)

Syntax
Basic.OperatingSystem$

Description

Returns a String containing the name of the operating system.

Comments

The following table describes the values returned by this function:

The version of the operating system is determined by calling
Basic.OperatingSystemVersion$.

Platform Sample values returned by Basic.OperatingSystem$

Windows "Windows", "Windows for Workgroups"

Win32 "Win32s", "Windows 95", "Windows NT"

OS/2 "OS/2"

Macintosh "Macintosh"

Netware "NetWare"

UNIX "Lunix", "sco", "UNIX_SV"
920 Chapter 4 - BasicScript Reference

Example
'This script checks the Windows version for special networking

’capabilities.

'

Sub Main()

If Basic.OS = ebWin16 Then

If Basic.OperatingSystem$ = "Windows" Then

MsgBox "Special networking capabilities aren’t present."

ElseIf Basic.OperatingSystem$ = "Windows for Workgroups"
Then

MsgBox "Network capabilities are present."

End If

End Sub

See Also
■ Basic.OperatingSystemVendor$ (property) Basic.OperatingSystemVersion$

(property)

■ Basic.OS (property)

Platform(s)

All.

Basic.OperatingSystemVendor$ (property)

Syntax
Basic.OperatingSystemVendor$

Description

Returns a String containing the version of the operating system under which
BasicScript is running.
Properties 921

Comments

The following table describes the what this function returns for various platforms:

The name of the operating system is returned by the Basic.OperatingSystem$
property. The version of the operating system is determined by the
Basic.OperatingSystemVersion$ property.

Example
'

'The following example prints the operating system vendor

'

Sub Main

MsgBox "The manufacturer of the operating system is: " & _

Basic.OperatingSystemVendor$

End Sub

See Also
■ Basic.OperatingSystem$ (property)

■ Basic.OperatingSystemVersion$ (property)

■ Basic.OS (property)

Platform(s)

All.

Platform
Sample values returned from
Basic.OperatingSystemVendor$

Windows "Microsoft"

Win32 "Microsoft"

OS/2 "IBM"

Netware Returns the name of the company that distributed
NetWare.

Macintosh "Apple"

UNIX "Novell System Laboratories", "Lunix", "Santa Cruz
Operations"
922 Chapter 4 - BasicScript Reference

Basic.OperatingSystemVersion$ (property)

Syntax
Basic.OperatingSystemVersion$

Description

Returns a String containing the version of the operating system under which
BasicScript is running.

Example
'

'This example checks the Windows version to ensure that a

'feature is supported.

'

Sub Main

If Basic.OperatingSystem$ = "Windows"

If Basic.OperatingSystemVersion$ <= 3 Then

MsgBox "That feature is not supported."

Else

MsgBox "Windows version 3.1 or greater"

End If

End If

End Sub

See Also
■ Basic.OperatingSystem$ (property)

■ Basic.OperatingSystemVendor$ (property)

■ Basic.OS (property)

Platform(s)

All.

Platform Notes: Win32, Macintosh

The version number is returned in the following format:

major.minor.buildnumber
Properties 923

The parts of the version number are described in the following table:

Platform Notes: Windows, NetWare, OS/2

The version number is returns as major.minor.

Platform Notes: UNIX

The version returned does not follow a standard format and is specific to the
operating system.

Basic.OS (property)

Syntax
Basic.OS

Description

Returns an Integer indicating the current platform.

Comments

Part Description

major Identifies the major version number of the operating system.

minor Identifies the minor version number of the operating system.

buildnumber Identifies the build number of the operating system.

Value Constant Platform

0 ebWin16 Microsoft Windows

2 edWin32 Microsoft Windows 95Microsoft Windows NT Workstation
(Intel, Alpha, AXP, MIPS,)Microsoft Windows NT Server
(Intel, Alpha, AXP, MIPS)Microsoft Win32s running under
Windows 3.1

3 ebSolaris Sun Solaris 2.x

4 ebSunOS SunOS

5 ebHPUX HP-UX

6 ebU1trix DEC Ultrix
924 Chapter 4 - BasicScript Reference

The value returned is not necessarily the platform under which BasicScript is running
but rather an indicator of the platform for which BasicScript was created. For
example, it is possible to run BasicScript for Windows under Windows NT
Workstation. In this case, Basic.OS will return 0.

Example
'This example determines the operating system for which this

'version was created and displays the appropriate message.

Sub Main()

Select Case Basic.OS

Case ebWin16

s = "Windows"

Case ebNetWare

s = "NetWare"

Case Else

s = "neither Windows nor NetWare"

End Select

MsgBox "You are currently running " & s

End Sub

See Also

Cross-Platform Scripting (topic)

Platform(s)

All.

7 ebIrix Silicon Graphics IRIX

8 ebAIX IBM AIX

9 ebNetWare Novell NetWare

10 ebMacintos
h

Apple Macintosh

11 ebOS2 IBM OS/2

Value Constant Platform
Properties 925

Basic.PathSeparator$ (property)

Syntax
Basic.PathSeparator$

Description

Returns a String containing the path separator appropriate for the current platform.

Comments

The returned string is any one of the following characters: / (slash), \ (back slash), :
(colon).

Example
Sub Main()

MsgBox "The path separator for this platform is: " & _

Basic.PathSeparator$

End Sub

See Also
■ Basic.Eoln$ (property)

■ Cross-Platform Scripting (topic)

Platform(s)

All.

Basic.Processor$ (property)

Syntax
Basic.Processor$

Description

Returns a String containing the name of the CPU in the computer on which
BasicScript is running.
926 Chapter 4 - BasicScript Reference

Comments

You can retrieve the number of processors within the computer using the
Basic.ProcessorCount property.

The following table describes the possible values returned by this property:

An empty string is returned if BasicScript cannot determine the processor type.

Example
'

'This example prints the CPU of the computer on which

'BasicScript is executing.

'

Sub Main()

MsgBox "Processor = " & Basic.Processor$

End Sub

See Also

Basic.ProcessorCount (property)

Platform Sample values returned from Basic.Processor$

Windows "8086", "80186", "80286", "80386", "80486". On Pentium
computers, the value "80486" is returned.

Win32 On Intel platforms, one of the following is returned: "80386",
"80486", "Pentium". On MIPS platforms, the string "Rx" is
returned, such as "R4000". On Alpha platforms, one of the
following is returned: "321064", "321066", "321164". On PowerPC
platforms, one of the following is returned: "601", "603", "604",
"603+", "604+", "620".

OS/2 "80386", "80486", "Pentium".

UNIX "i386", "i486".

NetWare "680x0", "80x86".

Macintosh On 68K platforms, one of the following is returned: "68000",
"68010", "68020", "68030", "68040". On PowerMac platforms, the
string "601" is returned.
Properties 927

Platform(s)

All.

Basic.ProcessorCount (property)

Syntax
Basic.ProcessorCount

Description

Returns the number of CPUs installed on the computer on which BasicScript is
running.

Comments

You can determine the type of processor using the Basic.Processor$ property.

This property return 1 if the CPU has only one processor or is otherwise incapable of
containing more than one processor.

Example
'

'Print the number of processors in the computer.

'

Sub Main()

MsgBox "There are " & Basic.ProcessorCount & _

" processor(s) in the computer."

End Sub

See Also

Basic.Processor$ (property)

Platform(s)

All.

Basic.Version$ (property)

Syntax
Basic.Version$
928 Chapter 4 - BasicScript Reference

Description

Returns a String containing the version of BasicScript.

Comments

This function returns the major and minor version numbers in the format
major.minor.BuildNumber, as in “2.00.30.”

Example
'This example displays the current version of BasicScript.

Sub Main()

MsgBox "Version " & Basic.Version$ & _

" of BasicScript is running"

End Sub

Platform(s)

All.

Err.Description (property)

Syntax
Err.Description [= stringexpression]

Description

Sets or retrieves the description of the error.

Comments

For errors generated by BasicScript, the Err.Description property is automatically set.

For user-defined errors, you should set this property to be a description of your error.
If you set the Err.Number property to one of BasicScript’s internal error numbers and
you don’t set the Err.Description property, then the Err.Description property is
automatically set when the error is generated (i.e., with Err.Raise).

Example
'The following script gets input from the user using error

'checking. When an error occurs, the Err.Description property

'is displayed to the user and execution continues with a default
Properties 929

'value.

Sub Main()

Dim x As Integer

On Error Resume Next

x = InputBox("Type in a number")

If Err.Number <> 0 Then

MsgBox "The following error occurred: " & Err.Description

x = 0

End If

MsgBox x

End Sub

See Also
■ Error Handling (topic)

■ Err.Clear (method)

■ Err.HelpContext (property)

■ Err.HelpFile (property)

■ Err.LastDLLError (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

All.

Err.HelpContext (property)

Syntax
Err.HelpContext [= contextid]

Description

Sets or retrieves the help context ID that identifies the help topic for information on
the error.
930 Chapter 4 - BasicScript Reference

Comments

The Err.HelpContext property, together with the Err.HelpFile property, contain
sufficient information to display help for the error.

When BasicScript generates an error, the Err.HelpContext property is set to 0 and the
and the Err.HelpFile property is set to ""; the value of the Err.Number property is
sufficient for displaying help in this case. The exception is with errors generated by an
OLE automation server; both the Err.HelpFile and Err.HelpContext properties are set
by the server to values appropriate for the generated error.

When generating your own user-define errors, you should set the Err.HelpContext
property and the Err.HelpFile property appropriately for your error. If these are not
set, then BasicScript displays its own help at an appropriate place.

Example
'This example defines a replacement for InputBox that deals

'specifically with Integer values. If an error occurs, the

'function generates a user-defined error that can be trapped

'by the caller.

Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next

Dim x As Integer

x = InputBox(Prompt,Title,Def)

If Err.Number Then

Err.HelpFile = "AZ.HLP"

Err.HelpContext = 2

Err.Description = "Integer value expected"

InputInteger = Null

Err.Raise 3000

End If

InputInteger = x

End Function

Sub Main

Dim x As Integer

Do

On Error Resume Next

x = InputInteger("Enter a number:")
Properties 931

If Err.Number = 3000 Then

Msgbox "Invalid number, press ""F1"" to invoke help" _

,,,Err.HelpFile,Err.HelpContext

End If

Loop Until Err.Number <> 3000

End Sub

See Also
■ Error Handling (topic)

■ Err.Clear (method)

■ Err.Description (property)

■ Err.HelpFile (property)

■ Err.LastDLLError (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

All.

Err.HelpFile (property)

Syntax
Err.HelpFile [= filename]

Description

Sets or retrieves the name of the help file associated with the error.

Comments

The Err.HelpFile property, together with the Err.HelpContents property, contain
sufficient information to display help for the error.

When BasicScript generates an error, the Err.HelpContents property is set to 0 and the
Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient
for displaying help in this case. The exception is with errors generated by an OLE
automation server; both the Err.HelpFile and Err.HelpContext properties are set by
the server to values appropriate for the generated error.
932 Chapter 4 - BasicScript Reference

When generating your own user-define errors, you should set the Err.HelpContext
property and the Err.HelpFile property appropriately for your error. If these are not
set, then BasicScript displays its own help at an appropriate place.

Example
'This example defines a replacement for InputBox that deals

'specifically with Integer values. If an error occurs, the

'function generates a user-defined error that can be trapped

'by the caller.

Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next

Dim x As Integer

x = InputBox(Prompt,Title,Def)

If Err.Number Then

Err.HelpFile = "AZ.HLP"

Err.HelpContext = 2

Err.Description = "Integer value expected"

InputInteger = Null

Err.Raise 3000

End If

InputInteger = x

End Function

Sub Main

Dim x As Integer

Do

On Error Resume Next

x = InputInteger("Enter a number:")

If Err.Number = 3000 Then

MsgBox "Invalid number, press ""F1"" to invoke help" _

,,, Err.HelpFile,Err.HelpContext

End If

Loop Until Err.Number <> 3000

End Sub
Properties 933

See Also
■ Error Handling (topic)

■ Err.Clear (method)

■ Err.HelpContext (property)

■ Err.Description (property)

■ Err.LastDLLError (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

All.

Platform Notes: Windows and Win32

On these platforms, the Err.HelpFile property can be set to any valid Windows help
file (i.e., a file with a .HLP extension compatible with the WINHELP help engine).

Err.LastDLLError (property)

Syntax
Err.LastDLLError

Description

Returns the last error generated by an external call—i.e., a call to a routine declared
with the Declare statement that resides in an external module.

Comments

The Err.LastDLLError property is automatically set when calling a routine defined in
an external module. If no error occurs within the external call, then this property will
automatically be set to 0.

The Err.LastDLLError property will always return 0 on platform where this property
is not supported.,

Example
'The following script calls the GetCurrentDirectoryA. If an
934 Chapter 4 - BasicScript Reference

'error occurs, this Win32 function sets the Err.LastDLLError

'property which can be checked for.

Declare Sub GetCurrentDirectoryA Lib "kernel32" (ByVal DestLen _

As Integer,ByVal lpDest As String)

Sub Main()

Dim dest As String * 256

Err.Clear

GetCurrentDirectoryA len(dest),dest

If Err.LastDLLError <> 0 Then

MsgBox "Error " & Err.LastDLLError & " occurred."

Else

MsgBox "Current directory is " & dest

End If

End Sub

See Also
■ Error Handling (topic)

■ Err.Clear (method)

■ Err.HelpContext (property)

■ Err.Description (property)

■ Err.HelpFile (property)

■ Err.Number (property)

■ Err.Source (property)

Platform(s)

Win32, OS/2.

Platform Notes: Win32

On this platform, this property is set by DLL routines that set the last error using the
Win32 function SetLastError(). BasicScript uses the Win32 function GetLastError() to
retrieve the value of this property. The value 0 is returned when calling DLL routines
that do not set an error.
Properties 935

Platform Notes: OS/2

Err.Number (property)

Syntax
Err.Number [= errornumber]

Description

Returns or sets the number of the error.

Comments

The Err.Number property is set automatically when an error occurs. This property
can be used within an error trap to determine which error occurred.

You can set the Err.Number property to any Long value.

The Number property is the default property of the Err object. This allows you to use
older style syntax such as those shown below:

Err = 6

If Err = 6 Then MsgBox "Overflow"

The Err function can only be used while within an error trap.

The internal value of the Err.Number property is reset to 0 with any of the following
statements: Resume, Exit Sub, Exit Function. Thus, if you want to use this value
outside an error handler, you must assign it to a variable.

Setting Err.Number to –1 has the side effect of resetting the error state. This allows
you to perform error trapping within an error handler. The ability to reset the error
handler while within an error trap is not standard Basic. Normally, the error handler
is reset only with the Resume, Exit Sub, Exit Function, End Function, or End Sub
statements.

Example
'This example forces error 10, with a subsequent transfer to

'the TestError label. TestError tests the error and, if not

'error 55, resets Err to 999 (user-defined error) and returns

'to the Main subroutine.

Sub Main()

On Error Goto TestError

Error 10
936 Chapter 4 - BasicScript Reference

MsgBox "The returned error is: '" & Err() & " - " & _

Error$ & "'"

Exit Sub

TestError:

If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."

Else

MsgBox "Error '" & Err & "' has occurred!"

Err = 999

End If

Resume Next

End Sub

See Also

Error Handling (topic)

Platform(s)

All.

Err.Source (property)

Syntax
Err.Source [= stringexpression]

Description

Sets or retrieves the source of a runtime error.

Comments

For OLE automation errors generated by the OLE server, the Err.Source property is
set to the name of the object that generated the error. For all other errors generated by
BasicScript, the Err.Source property is automatically set to be the name of the script
that generated the error.

For user-defined errors, the Err.Source property can be set to any valid String
expression indicating the source of the error. If the Err.Source property is not
explicitly set for user-defined errors, the BasicScript sets the value to be the name of
the script in which the error was generated.
Properties 937

Example
'The following script generates an error, setting the source

'to the specific location where the error was generated.

Function InputInteger(Prompt,Optional Title,Optional Def)

On Error Resume Next

Dim x As Integer

x = InputBox(Prompt,Title,Def)

If Err.Number Then

Err.Source = "InputInteger"

Err.Description = "Integer value expected"

InputInteger = Null

Err.Raise 3000

End If

InputInteger = x

End Function

Sub Main

On Error Resume Next

x = InputInteger("Enter a number:")

If Err.Number Then MsgBox Err.Source & ":" & Err.Description

End Sub

See Also
■ Error Handling (topic)

■ Err.Clear (method)

■ Err.HelpContext (property)

■ Err.Description (property)

■ Err.HelpFile (property)

■ Err.Number (property)

■ Err.LastDLLError (property)

Platform(s)

All.
938 Chapter 4 - BasicScript Reference

HWND.Value (property)

Syntax
window.Value

Description

The default property of an HWND object that returns a Variant containing a
HANDLE to the physical window of an HWND object variable.

Comments

The Value property is used to retrieve the operating environment–specific value of a
given HWND object. The size of this value depends on the operating environment in
which the script is executing and thus should always be placed into a Variant
variable.

This property is read-only.

Example
'This example displays a dialog box containing the class name of

'Program Manager's Main window. It does so using the .Value

'property, passing it directly to a Windows external routine.

Declare Sub GetClassName Lib "user" (ByVal Win%,ByVal ClsName$,ByVal
ClsNameLen%)

Sub Main()

Dim ProgramManager As HWND

Set ProgramManager = WinFind("Program Manager")

ClassName$ = Space(40)

GetClassName ProgramManager.Value,ClassName$,Len(ClassName$)

MsgBox "The program classname is: " & ClassName$

End Sub

See Also

HWND (object)

Platform(s)

Windows, Win32.
Properties 939

Platform Notes: Windows, Win32

Under Windows, this value is an Integer. Under Win32, this value is a Long.

Msg.Thermometer (property)

Syntax
Msg.Thermometer [= percentage]

Description

Changes the percentage filled indicated within the thermometer of a message dialog
box (one that was previously opened with the Msg.Open method).

Comments

A runtime error will result if a message box is not currently open (using Msg.Open)
or if the value of percentage is not between 0 and 100 inclusive.

Example
'This example create a modeless message box with a

'thermometer and a Cancel button. This example also shows

'how to process the clicking of the Cancel button.

Sub Main()

On Error Goto ErrorTrap

Msg.Open "Reading records from file...",0,True,True

For i = 1 To 100 'Read a record here.

'Update the modeless message box.

Msg.Thermometer =i

DoEvents

Sleep 50

Next i

Msg.Close

On Error Goto 0 'Turn error trap off.

Exit Sub

ErrorTrap:

If Err = 809 Then

MsgBox "Cancel was pressed!"

Exit Sub 'Reset error handler.
940 Chapter 4 - BasicScript Reference

End If

End Sub

See Also
■ Msg.Close (method)

■ Msg.Open (method)

■ Msg.Text (property)

Platform(s)

Windows, Win32.

Screen.DlgBaseUnitsX (property)

Syntax
Screen.DlgBaseUnitsX

Description

Returns an Integer used to convert horizontal pixels to and from dialog units.

Comments

The number returned depends on the name and size of the font used to display dialog
boxes.

To convert from pixels to dialog units in the horizontal direction:

((XPixels * 4) + (Screen.DlgBaseUnitsX - 1)) / Screen.DlgBaseUnitsX

To convert from dialog units to pixels in the horizontal direction:

(XDlgUnits * Screen.DlgBaseUnitsX) / 4

Example
'This example converts the screen width from pixels to dialog

'units.

Sub Main()

XPixels = Screen.Width

conv% = Screen.DlgBaseUnitsX

XDlgUnits = (XPixels * 4) + (conv% -1) / conv%

MsgBox "The screen width is " & XDlgUnits & " dialog units."
Properties 941

End Sub

See Also

Screen.DlgBaseUnitsY (property)

Platform(s)

Windows Win32.

Screen.DlgBaseUnitsY (property)

Syntax
Screen.DlgBaseUnitsY

Description

Returns an Integer used to convert vertical pixels to and from dialog units.

Comments

The number returned depends on the name and size of the font used to display dialog
boxes.

To convert from pixels to dialog units in the vertical direction:

(YPixels * 8) + (Screen.DlgBaseUnitsY - 1) / Screen.DlgBaseUnitsY

To convert from dialog units to pixels in the vertical direction:

(YDlgUnits * Screen.DlgBaseUnitsY) / 8

Example
'This example converts the screen width from pixels to dialog

'units.

Sub Main()

YPixels = Screen.Height

conv% = Screen.DlgBaseUnitsY

YDlgUnits = (YPixels * 8) + (conv% -1) / conv%

MsgBox "The screen width is " & YDlgUnits & " dialog units."

End Sub

See Also

Screen.DlgBaseUnitsX (property)
942 Chapter 4 - BasicScript Reference

Platform(s)

Windows.

Screen.Height (property)

Syntax
Screen.Height

Description

Returns the height of the screen in pixels as an Integer.

Comments

This property is used to retrieve the height of the screen in pixels. This value will
differ depending on the display resolution.

This property is read-only.

Example
'This example displays the screen height in pixels.

Sub Main()

MsgBox "The Screen height is " & Screen.Height & " pixels."

End Sub

See Also

Screen.Width (property)

Platform(s)

Windows, Win32.

Screen.TwipsPerPixelX (property)

Syntax
Screen.TwipsPerPixelX

Description

Returns an Integer representing the number of twips per pixel in the horizontal
direction of the installed display driver.
Properties 943

Comments

This property is read-only.

Example
'This example displays the number of twips across the screen

'horizontally.

Sub Main()

XScreenTwips = Screen.Width * Screen.TwipsPerPixelX

MsgBox "Total horizontal screen twips = " & XScreenTwips

End Sub

See Also

Screen.TwipsPerPixelY (property)

Platform(s)

Windows.

Screen.TwipsPerPixelY (property)

Syntax
Screen.TwipsPerPixelY

Description

Returns an Integer representing the number of twips per pixel in the vertical direction
of the installed display driver.

Comments

This property is read-only.

Example
'This example displays the number of twips across the screen

'vertically.

Sub Main()

YScreenTwips = Screen.Height * Screen.TwipsPerPixelY

MsgBox "Total vertical screen twips = " & YScreenTwips

End Sub
944 Chapter 4 - BasicScript Reference

See Also

Screen.TwipsPerPixelX (property)

Platform(s)

Windows.

Screen.Width (property)

Syntax
Screen.Width

Description

Returns the width of the screen in pixels as an Integer.

Comments

This property is used to retrieve the width of the screen in pixels. This value will differ
depending on the display resolution.

This property is read-only.

Example
'This example displays the screen width in pixels.

Sub Main()

MsgBox "The screen width is " & Screen.Width & " pixels."

End Sub

See Also

Screen.Height (property)

Platform(s)

Windows, Win32.

System.FreeMemory (property)

Syntax
System.FreeMemory
Properties 945

Description

Returns a Long indicating the number of bytes of free memory.

Example
'The following example gets the free memory and converts it to

'kilobytes.

Sub Main()

FreeMem& = System.FreeMemory

FreeKBytes$ = Format(FreeMem& / 1000,"##,###")

MsgBox FreeKbytes$ & " Kbytes of free memory"

End Sub

See Also

System.TotalMemory (property)

System.FreeResources (property)

Basic.FreeMemory (property)

Platform(s)

Windows, Win32

System.FreeResources (property)

Syntax
System.FreeResources

Description

Returns an Integer representing the percentage of free system resources.

Comments

The returned value is between 0 and 100.

Example
'This example gets the percentage of free resources.

Sub Main()

FreeRes% = System.FreeResources
946 Chapter 4 - BasicScript Reference

MsgBox FreeRes% & "% of memory resources available."

End Sub

See Also

System.TotalMemory (property)

System.FreeMemory (property)

Basic.FreeMemory (property)

Platform(s)

Windows.

System.TotalMemory (property)

Syntax
System.TotalMemory

Description

Returns a Long representing the number of bytes of available free memory in
Windows.

Example
'This example displays the total system memory.

Sub Main()

TotMem& = System.TotalMemory

TotKBytes$ = Format(TotMem& / 1000,"##,###")

MsgBox TotKbytes$ & " Kbytes of total system memory exist"

End Sub

See Also

System.FreeMemory (property)

System.FreeResources (property)

Basic.FreeMemory (property)

Platform(s)

Windows, Win32.
Properties 947

System.WindowsDirectory$ (property)

Syntax
System.WindowsDirectory$

Description

Returns the home directory of the operating environment.

Example
'This example displays the Windows directory.

Sub Main

MsgBox "Windows directory = " & System.WindowsDirectory$

End Sub

See Also

Basic.HomeDir$ (property)

Platform(s)

Windows, Win32.

System.WindowsVersion$ (property)

Syntax
System.WindowsVersion$

Description

Returns the version of the operating environment, such as “3.0” or “3.1.”

Example
'This example sets the UseWin31 variable to True if the Windows

'version is greater than or equal to 3.1; otherwise, it sets the

'UseWin31 variable to False.

Sub Main()

If Val(System.WindowsVersion$) > 3.1 Then

MsgBox "You are running a Windows version later than 3.1"

Else
948 Chapter 4 - BasicScript Reference

MsgBox "You are running Windows version 3.1 or earlier"

End If

End Sub

See Also

Basic.Version$ (property)

Platform(s)

Windows, Win32.

Platform Notes

Windows: Under Windows, this property returns a value such as “3.1” or “3.11”.

Win32: On Win32 platforms, this property returns a value in the following format:

major.minor.buildnumber

Where major is the major version number, minor is the minor version number, and
buildnumber is the actual build number.

Statements

ActivateControl (statement)

Syntax
ActivateControl control

Description

Sets the focus to the control with the specified name or ID.
Statements 949

Comments

The control parameter specifies either the name or the ID of the control to be
activated, as shown in the following table:

The ActivateControl statement generates a runtime error if the dialog control
referenced by control cannot be found.

You can use the ActivateControl statement to set the focus to a custom control within
a dialog box. First, set the focus to the control that immediately precedes the custom
control, then simulate a Tab keypress, as in the following example:

ActivateControl "Portrait"

DoKeys "{TAB}"

Note: The ActivateControl statement is used to activate a control in another
application's dialog box. Use the DlgFocus statement to activate a control in a
dynamic dialog box.

Example
'This example runs Notepad using Program Manager's Run

'command. It uses the ActivateControl command to switch

'focus between the different controls of the Run dialog box.

Sub Main()

If AppFind$("Program Manager") = "" Then Exit Sub

AppActivate "Program Manager"

Menu "File.Run"

SendKeys "Notepad"

ActivateControl "Run minimized"

SendKeys " "

ActivateControl "OK"

SendKeys "{Enter}"

If control is Then

String A control by that name is activated. For push buttons, option
buttons, or check boxes, the control with this name is activated.
For list boxes, combo boxes, and text boxes, the control that
immediately follows the text control with this name is activated.

Numeric A control with this ID is activated. The ID is first converted to an
Integer.
950 Chapter 4 - BasicScript Reference

End Sub

See Also

DlgFocus (statement)

Platform(s)

Windows.

AppActivate (statement)

Syntax
AppActivate title | taskID,[wait]

Description

Activates an application given its name or task ID.

Comments

The AppActivate statement takes the following named parameters:

Note: When activating applications using the task ID, it is important to declare the
variable used to hold the task ID as a Variant. The type of the ID depends on the
platform on which BasicScript is running.

On some platforms, applications don’t activate immediately. To compensate, the
AppActivate statement will wait a maximum of 10 seconds before failing, giving the
activated application plenty of time to become activated.

Named Parameter Description

title A String containing the name of the application to be
activated.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

wait An optional boolean value indicating whether BasicScript
will wait for calling application to be activated before
activating the specified application. If False (the default),
then BasicScript will activate the specified application
immediately.
Statements 951

Examples
'This example activates Program Manager.

Sub Main()

AppActivate "Program Manager"

End Sub

'This example runs another application, then activates it.

Sub Main()

Dim id as variant

id = Shell("Notepad",7) 'Run Notepad minimized.

AppActivate "Program Manager" 'Activate Program Manager.

AppActivate id ‘Now activate Notepad.

End Sub

See Also
■ Shell (function

■ SendKeys (statement)

■ WinActivate (statement)

Platform(s)

Windows, Macintosh, Win32, OS/2.

Platform Notes: Windows, Win32

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Minimized applications are not restored before activation. Thus, activating a
minimized DOS application will not restore it; rather, it will highlight its icon.

A runtime error results if the window being activated is not enabled, as is the case if
that application is currently displaying a modal dialog box.
952 Chapter 4 - BasicScript Reference

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

Platform Notes: Macintosh

On the Macintosh, the title parameter specifies the title of the desired application. The
MacID function can be used to specify the application signature of the application to
be activated:

AppActivate MacID(text$) | task

The title parameter is a four-character string containing an application signature. A
runtime error occurs if the MacID function is used on platforms other than the
Macintosh.

AppClose (statement)

Syntax
AppClose [title | taskID]

Description

Closes the named application.

Comments

The title parameter is a String containing the name of the application. If the title
parameter is absent, then the AppClose statement closes the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
'This example activates Excel, then closes it.

Sub Main()

If AppFind$("Microsoft Excel") = "" Then

MsgBox "Excel is not running."

Exit Sub

End If

AppActivate "Microsoft Excel"

AppClose "Microsoft Excel"
Statements 953

End Sub

See Also

AppMaximize (statement)

AppMinimize (statement)

AppRestore (statement)

AppMove (statement)

AppSize (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

A runtime error results if the application being closed is not enabled, as is the case if
that application is currently displaying a modal dialog box.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppGetPosition (statement)

Syntax
AppGetPosition x,y,width,height [,title | taskID]

Description

Retrieves the position of the named application.
954 Chapter 4 - BasicScript Reference

Comments

The AppGetPosition statement takes the following parameters:

The x, y, width, and height variables are filled with the position and size of the
application's window. If an argument is not a variable, then the argument is ignored,
as in the following example, which only retrieves the x and y parameters and ignores
the width and height parameters:

Dim x as integer, y as integer

AppGetPosition x,y,0,0,"Program Manager"

Example
Sub Main()

Dim x As Integer, y As Integer

Dim cx As Integer, cy As Integer

AppGetPosition x,y,cx,cy,"Program Manager"

End Sub

See Also
■ AppMove (statement)

■ AppSize (statement)

Platform(s)

Windows, Win32, OS/2.

Parameter Description

x, y Names of Integer variables to receive the position of the
application's window.

width, height Names of Integer variables to receive the size of the
application's window.

title A string containing the name of the application. If the title
parameter is omitted, then the active application is used.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.
Statements 955

Platform Notes: Windows, Win32

The position and size of the window are returned in twips.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppHide (statement)

Syntax
AppHide [title | taskID]

Description

Hides the named application.

Comments

If the named application is already hidden, the AppHide statement will have no
effect.

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppHide statement hides the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

AppHide generates a runtime error if the named application is not enabled, as is the
case if that application is displaying a modal dialog box.

Example
'This example hides Program Manager.

Sub Main()

'See whether Program Manager is running.

If AppFind$("Program Manager") = "" Then Exit Sub

AppHide "Program Manager"
956 Chapter 4 - BasicScript Reference

MsgBox "Program Manager is hidden. Press OK to show it"

AppShow "Program Manager"

End Sub

See Also

AppShow (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows, the title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppList (statement)

Syntax
AppList AppNames$()

Description

Fills an array with the names of all open applications.

Comments

The AppNames$ parameter must specify either a zero- or one-dimensioned dynamic
String array or a one-dimensional fixed String array. If the array is dynamic, then it
will be redimensioned to match the number of open applications. For fixed arrays,
AppList first erases each array element, then begins assigning application names to
the elements in the array. If there are fewer elements than will fit in the array, then the
remaining elements are unused. BasicScript returns a runtime error if the array is too
small to hold the new elements.
Statements 957

After calling this function, you can use LBound and UBound to determine the new
size of the array.

Example
'This example minimizes all applications on the desktop.

Sub Main()

Dim apps$()

AppList apps

'Check to see whether any applications were found.

If ArrayDims(apps) = 0 Then Exit Sub

For i = LBound(apps) To UBound(apps)

AppMinimize apps(i)

Next i

End Sub

See Also

WinList (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the name of an application is considered to be the exact text that
appears in the title bar of the application's main window.

AppMaximize (statement)

Syntax
AppMaximize [title | taskID]

Description

Maximizes the named application.

Comments

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppMaximize function maximizes the active application.
958 Chapter 4 - BasicScript Reference

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
Sub Main()

AppMaximize "Program Manager" 'Maximize
Program Manager.

If AppFind$("NotePad") <> "" Then

AppActivate "NotePad" 'Set the
focus to NotePad.

AppMaximize 'Maximize it.

End If

End Sub

See Also
■ AppMinimize (statement)

■ AppRestore (statement)

■ AppMove (statement)

■ AppSize (statement)

■ AppClose (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

If the named application is maximized or hidden, the AppMaximize statement will
have no effect.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.
Statements 959

AppMaximize generates a runtime error if the named application is not enabled, as is
the case if that application is displaying a modal dialog box.

AppMinimize (statement)

Syntax
AppMinimize [title | taskID]

Description

Minimizes the named application.

Comments

The title parameter is a String containing the name of the desired application. If it is
omitted, then the AppMinimize function minimizes the active application.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
Sub Main()

AppMinimize "Program Manager" 'Maximize
Program Manager.

If AppFind$("NotePad") <> "" Then

AppActivate "NotePad" 'Set the
focus to NotePad.

AppMinimize 'Maximize
it.

End If

End Sub

See Also
■ AppMaximize (statement)

■ AppRestore (statement)

■ AppMove (statement)

■ AppSize (statement)

■ AppClose (statement)
960 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

If the named application is minimized or hidden, the AppMinimize statement will
have no effect.

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppMinimize generates a runtime error if the named application is not enabled, as is
the case if that application is displaying a modal dialog box.

AppMove (statement)

Syntax
AppMove x,y [,title | taskID]

Description

Sets the upper left corner of the named application to a given location.

Comments

The AppMove statement takes the following parameters:

Parameter Description

x, y Integer coordinates specifying the upper left corner of the new
location of the application, relative to the upper left corner of
the display.

title String containing the name of the application to move. If this
parameter is omitted, then the active application is moved.
Statements 961

Example
'This example activates Program Manager, then moves it 10

'pixels to the right.

Sub Main()

Dim x%,y%

AppActivate "Program Manager"
'Activate Program Mgr.

AppGetPosition x%,y%,0,0
'Retrieve its position.

x% = x% + Screen.TwipsPerPixelX * 10
'Add 10 pixels.

AppMove x% + 10,y%
'Nudge it 10 pixels

End Sub

See Also
■ AppMaximize (statement)

■ AppMinimize (statement)

■ AppRestore (statement)

■ AppSize (statement)

■ AppClose (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

If the named application is maximized or hidden, the AppMove statement will have
no effect.

The x and y parameters are specified in twips.

AppMove will accept x and y parameters that are off the screen.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.

Parameter Description
962 Chapter 4 - BasicScript Reference

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppMove generates a runtime error if the named application is not enabled, as is the
case if that application is currently displaying a modal dialog box.

AppRestore (statement)

Syntax
AppRestore [title | taskID]

Description

Restores the named application.

Comments

The title parameter is a String containing the name of the application to restore. If this
parameter is omitted, then the active application is restored.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example
'This example minimizes Program Manager, then restores it.

Sub Main()

If AppFind$("Program Manager") = "" Then Exit Sub

AppActivate "Program Manager"

AppMinimize "Program Manager"

MsgBox "Program Manager is now minimized. Press OK to
restore it."

AppRestore "Program Manager"

End Sub
Statements 963

See Also
■ AppMaximize (statement)

■ AppMinimize (statement)

■ AppMove (statement)

■ AppSize (statement)

■ AppClose (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows, the title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppRestore will have an effect only if the main window of the named application is
either maximized or minimized.

AppRestore will have no effect if the named window is hidden.

AppRestore generates a runtime error if the named application is not enabled, as is
the case if that application is currently displaying a modal dialog box.

AppSetState (statement)

Syntax
AppSetState newstate [,title | taskID]

Description

Maximizes, minimizes, or restores the named application, depending on the value of
newstate.
964 Chapter 4 - BasicScript Reference

Comments

The AppSetState statement takes the following parameters:

The newstate parameter can be any of the following values:

Example

See AppGetState (function).

See Also
■ AppGetState (function)

■ AppMinimize (statement)

■ AppMaximize (statement)

■ AppRestore (statement)

Platform(s)

Windows, Win32, OS/2.

Parameter Description

newstate An Integer specifying the new state of the window.

title A String containing the name of the application to change. If
omitted, then the active application is used.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell function.

Constant Value Description

ebMinimized 1 The named application is minimized.

ebMaximized 2 The named application is maximized.

ebRestored 3 The named application is restored.
Statements 965

Platform Notes: Windows, Win32

Under Windows, the title parameter is the exact string appearing in the title bar of the
named application's main window. If no application is found whose title exactly
matches title, then a second search is performed for applications whose title string
begins with title. If more than one application is found that matches title, then the
first application encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppShow (statement)

Syntax
AppShow [title | taskID]

Description

Makes the named application visible.

Comments

The title parameter is a String containing the name of the application to show. If this
parameter is omitted, then the active application is shown.

Alternatively, you can specify the ID of the task as returned by the Shell function.

Example

See AppHide (statement).

See Also

AppHide (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

If the named application is already visible, AppShow will have no effect.
966 Chapter 4 - BasicScript Reference

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

AppShow generates a runtime error if the named application is not enabled, as is the
case if that application is displaying a modal dialog box.

AppSize (statement)

Syntax
AppSize width,height [,title | taskID]

Description

Sets the width and height of the named application.

Comments

The AppSize statement takes the following parameters:

Example
'This example enlarges the active application by 10 pixels in

'both the vertical and horizontal directions.

Sub Main()

Parameter Description

width, height Integer coordinates specifying the new size of the application.

title String containing the name of the application to resize. If this
parameter is omitted, then the active application is use.

taskID A number specifying the task ID of the application to be
activated. Acceptable task IDs are returned by the Shell
function.
Statements 967

Dim w%,h%

AppGetPosition 0,0,w%,h% 'Get current
width/height.

x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.

y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.

AppSize w%,h% 'Change to new
size.

End Sub

See Also
■ AppMaximize (statement)

■ AppMinimize (statement)

■ AppRestore (statement)

■ AppMove (statement)

■ AppClose (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

The width and height parameters are specified in twips.

This statement will only work if the named application is restored (i.e., not minimized
or maximized).

The title parameter is the exact string appearing in the title bar of the named
application's main window. If no application is found whose title exactly matches
title, then a second search is performed for applications whose title string begins with
title. If more than one application is found that matches title, then the first application
encountered is used.

Under Windows 95, applications adhere to a convention where the caption contains
the name of the file before the name of the application. For example, under NT, the
caption for Notepad is “Notepad - (Untitled)”, whereas under Windows 95, the
caption is “Untitled - Notepad”. You must keep this in mind when specifying the title
parameter.

A runtime error results if the application being resized is not enabled, which is the
case if that application is displaying a modal dialog box when an AppSize statement
is executed.
968 Chapter 4 - BasicScript Reference

ArraySort (statement)

Syntax
ArraySort array()

Description

Sorts a single-dimensioned array in ascending order.

Comments

If a string array is specified, then the routine sorts alphabetically in ascending order
using case-sensitive string comparisons. If a numeric array is specified, the Reassert
statement sorts smaller numbers to the lowest array index locations.

BasicScript generates a runtime error if you specify an array with more than one
dimension.

When sorting an array of variants, the following rules apply:

■ A runtime error is generated if any element of the array is an object.

■ String is greater than any numeric type.

■ Null is less than String and all numeric types.

■ Empty is treated as a number with the value 0.

■ String comparison is case-sensitive (this function is not affected by the Option
Compare setting).

Example
'This example dimensions an array and fills it with filenames

'using FileList, then sorts the array and displays it in a

'select box.

Sub Main()

Dim f$()

FileList f$,"c:*.*"

ArraySort f$

r% = SelectBox("Files","Choose one:",f$)

End Sub
Statements 969

See Also
■ ArrayDims (function)

■ LBound (function)

■ UBound (function)

Platform(s)

All.

Beep (statement)

Syntax
Beep

Description

Makes a single system beep.

Example
'This example causes the system to beep five times and displays

'a reminder message.

Sub Main()

For i = 1 To 5

Beep

Sleep(200)

Next i

MsgBox "You have an upcoming appointment!"

End Sub

See Also

Mci (function)

Platform(s)

All.
970 Chapter 4 - BasicScript Reference

Begin Dialog (statement)

Syntax
Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc]
[,[PicName$] [,style]]]

Dialog Statements

End Dialog

Description

Defines a dialog box template for use with the Dialog statement and function.

Comments

A dialog box template is constructed by placing any of the following statements
between the Begin Dialog and End Dialog statements (no other statements besides
comments can appear within a dialog box template):

The Begin Dialog statement requires the following parameters:

Picture PictureButton OptionButton

OptionGroup CancelButton Text

TextBox GroupBox DropListBox

ListBox ComboBox CheckBox

PushButton OKButton

Parameter Description

x, y Integer coordinates specifying the position of the upper left corner
of the dialog box relative to the parent window. These coordinates
are in dialog units.

If either coordinate is unspecified, then the dialog box will be
centered in that direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog
box (in dialog units).

DialogName Name of the dialog box template. Once a dialog box template has
been created, a variable can be dimensioned using this name.
Statements 971

BasicScript generates an error if the dialog box template contains no controls.

A dialog box template must have at least one PushButton, OKButton, or
CancelButton statement. Otherwise, there will be no way to close the dialog box.

Dialog units are defined as 1/4 the width of the font in the horizontal direction and
1/8 the height of the font in the vertical direction.

Any number of user dialog boxes can be created, but each one must be created using a
different name as the DialogName. Only one user dialog box may be invoked at any
time.

Expression Evaluation within the Dialog Box Template

The Begin Dialog statement creates the template for the dialog box. Any expression
or variable name that appears within any of the statements in the dialog box template
is not evaluated until a variable is dimensioned of type DialogName. The following
example shows this behavior:

MyTitle$ = "Hello, World"

Begin Dialog MyTemplate 16,32,116,64,MyTitle$

OKButton 12,40,40,14

End Dialog

title$ String containing the name to appear in the title bar of the dialog
box. If this parameter specifies a zero-length string, then the name
"BasicScript" is used.

.DlgProc Name of the dialog function. The routine specified by .DlgProc
will be called by BasicScript when certain actions occur during
processing of the dialog box. (See DlgProc [prototype] for
additional information about dialog functions.)

If this parameter is omitted, then BasicScript processes the dialog
box using the default dialog box processing behavior.

PicName$ String specifying the name of a DLL containing pictures. This DLL
is used as the origin for pictures when the picture type is 10. If this
parameter is omitted, then no picture library will be used.

style Specifies extra styles for the dialog. It can be any of the following
values:

0 - Dialog does not contain a title or close box.

1 - Dialog contains a title and no close box.

2(or omitted) - Dialog contains both title and close box.

Parameter Description
972 Chapter 4 - BasicScript Reference

MyTitle$ = "Sample Dialog"

Dim Dummy As MyTemplate

rc% = Dialog(Dummy)

The above example creates a dialog box with the title “Sample Dialog”.

Expressions within dialog box templates cannot reference external subroutines or
functions.

All controls within a dialog box use the same font. The fonts used for the text and text
box controls can be changed explicitly by setting the font parameters in the Text and
TextBox statements. A maximum of 128 fonts can be used within a single dialog box,
although the practical limitation may be less.

Example
'This example creates an exit dialog box.

Sub Main()

Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"

Text 4,8,108,8,"Are you sure you want to exit?"

CheckBox 32,24,63,8,"Save Changes",.SaveChanges

OKButton 12,40,40,14

CancelButton 60,40,40,14

End Dialog

Dim QuitDialog As QuitDialogTemplate

rc% = Dialog(QuitDialog)

End Sub

See Also
■ CancelButton (statement)

■ CheckBox (statement)

■ ComboBox (statement)

■ Dialog (function)

■ Dialog (statement)

■ DropListBox (statement)

■ GroupBox (statement)

■ ListBox (statement)

■ OKButton (statement)
Statements 973

■ OptionButton (statement)

■ OptionGroup (statement)

■ Picture (statement)

■ PushButton (statement)

■ Text (statement)

■ TextBox (statement)

■ DlgProc (function)

■ HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Call (statement)

Syntax
Call subroutine_name [(arguments)]

Description

Transfers control to the given subroutine, optionally passing the specified arguments.

Comments

Using this statement is equivalent to:

subroutine_name [arguments]

Use of the Call statement is optional. The Call statement can only be used to execute
subroutines; functions cannot be executed with this statement. The subroutine to
which control is transferred by the Call statement must be declared outside of the
Main procedure, as shown in the following example.

Examples
'This example demonstrates the use of the Call statement to

'pass control to another function.

Sub Example_Call(s$)

'This subroutine is declared externally to Main

'and displays the text passed in the parameter s$.
974 Chapter 4 - BasicScript Reference

MsgBox "Call: " & s$

End Sub

Sub Main()

'This example assigns a string variable to display, then

'calls subroutine Example_Call, passing parameter S$ to

'be displayed in a message box within the subroutine.

s$ = "DAVE"

Example_Call s$

Call Example_Call("SUSAN")

End Sub

See Also

Goto (statement)

GoSub (statement)

Declare (statement)

Platform(s)

All.

CancelButton (statement)

Syntax
CancelButton x, y, width, height [,.Identifier]

Description

Defines a Cancel button that appears within a dialog box template.

Comments

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

Selecting the Cancel button (or pressing Esc) dismisses the user dialog box, causing
the Dialog function to return 0. (Note: A dialog function can redefine this behavior.)
Pressing the Esc key or double-clicking the close box will have no effect if a dialog box
does not contain a CancelButton statement.
Statements 975

The CancelButton statement requires the following parameters:

A dialog box must contain at least one OKButton, CancelButton, or PushButton
statement; otherwise, the dialog box cannot be dismissed.

Example
'This example creates a dialog box with OK and Cancel buttons.

Sub Main()

Begin Dialog SampleDialogTemplate 37,32,48,52,"Sample"

OKButton 4,12,40,14,.OK

CancelButton 4,32,40,14,.Cancel

End Dialog

Dim SampleDialog As SampleDialogTemplate

r% = Dialog(SampleDialog)

If r% = 0 Then MsgBox "Cancel was pressed!"

End Sub

See Also

CheckBox (statement), ComboBox (statement), Dialog (function), Dialog (statement),
DropListBox (statement), GroupBox (statement), ListBox (statement), OKButton
(statement), OptionButton (statement), OptionGroup (statement), Picture (statement),
PushButton (statement), Text (statement), TextBox (statement), Begin Dialog
(statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

.Identifier Optional parameter specifying the name by which this control
can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). If this parameter is omitted, then
the word "Cancel" is used.
976 Chapter 4 - BasicScript Reference

ChDir (statement)

Syntax
ChDir path

Description

Changes the current directory of the specified drive to path.

Comments

This routine will not change the current drive. (See ChDrive [statement].)

Example
'This example saves the current directory, then changes to

'the root directory, displays the old and new directories,

'restores the old directory, and displays it.

Const crlf = $(13) + Chr$(10)

Sub Main()

save$ = CurDir$

ChDir (Basic.PathSeparator$)

MsgBox "Old: " & save$ & crlf & "New: " & CurDir$

ChDir (save$)

MsgBox "Directory restored to: " & CurDir$

End Sub

See Also

ChDrive (statement), CurDir, CurDir$ (functions), Dir, Dir$ (functions), MkDir
(statement), RmDir (statement), FileList (statement)

Platform(s)

All.

Platform Notes: UNIX

UNIX platforms do not support drive letters.
Statements 977

Platform Notes: NetWare

NetWare (and other operating systems) may not support the use of dots to indicate
the current and parent directories unless configured to do so.

NetWare does not support drive letters. Directory specifications under NetWare use
the following format:

volume:[dir\ [dir\]...]file.ext

The volume specification can be up to 14 characters.

Platform Notes: Windows, Win32

BasicScript tracks and remembers the current directory for all drives in the system for
that process.

Platform Notes: Macintosh

The Macintosh does not support drive letters.

The Macintosh uses the colon (":") as the path separator. A double colon ("::") specifies
the parent directory.

ChDrive (statement)

Syntax
ChDrive drive

Description

Changes the default drive to the specified drive.

Comments

Only the first character of drive is used.

Also, drive is not case-sensitive.

If drive is empty, then the current drive is not changed.

Example
'This example saves the current directory in CD, then'

'extracts the current drive letter and saves it in Save$.

'If the current drive is D, then it is changed to C;

'otherwise, it is changed to D. Then the saved drive
978 Chapter 4 - BasicScript Reference

'is restored and displayed.

Const crlf$ = Chr$(13) + Chr$(10)

Sub Main()

cd$ = CurDir$

save$ = Mid$(CurDir$,1,1)

If save$ = "D" Then

ChDrive("C")

Else

ChDrive("D")

End If

MsgBox "Old: " & save$ & crlf & "New: " & CurDir$

ChDrive (save$)

MsgBox "Directory restored to: " & CurDir$

End Sub

See Also

ChDir (statement), CurDir, CurDir$ (functions), Dir, Dir$ (functions), MkDir
(statement), RmDir (statement), DiskDrives (statement)

Platform(s)

Windows, Win32, NetWare. OS/2.

Platform Notes: UNIX, Macintosh

UNIX platforms and the Macintosh do not support drive letters.

Platform Notes: NetWare

Since NetWare does not support drive letters, the drive parameter specifies a volume
name (up to 14 characters).

CheckBox (statement)

Syntax
CheckBox x, y, width, height, title$, .Identifier

Description

Defines a check box within a dialog box template.
Statements 979

Comments

Check box controls are either on or off, depending on the value of .Identifier.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The CheckBox statement requires the following parameters:

When the dialog box is first created, the value referenced by .Identifier is used to set
the initial state of the check box. When the dialog box is dismissed, the final state of
the check box is placed into this variable. By default, the .Identifier variable contains
0, meaning that the check box is unchecked.

Example
'This example displays a dialog box with two check boxes in

'different states.

Sub Main()

Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"

GroupBox 4,4,84,40,"GroupBox"

CheckBox 12,16,67,8,"Include heading",.IncludeHeading

CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords

OKButton 104,8,40,14,.OK

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

title$ String containing the text that appears within the check box.
This text may contain an ampersand character to denote an
accelerator letter, such as "&Font" for Font (indicating that the
Font control may be selected by pressing the F accelerator
key).

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates an integer variable whose value
corresponds to the state of the check box (1 = checked; 0 =
unchecked). This variable can be accessed using the syntax:
DialogVariable.Identifier.
980 Chapter 4 - BasicScript Reference

CancelButton 104,28,40,14,.Cancel

End Dialog

Dim SaveOptions As SaveOptionsTemplate

SaveOptions.IncludeHeading = 1
'Check box initially on.

SaveOptions.ExpandKeywords = 0
'Check box initially off.

r% = Dialog(SaveOptions)

If r% = -1 Then

MsgBox "OK was pressed."

End If

End Sub

See Also

CancelButton (statement), Dialog (function), Dialog (statement), DropListBox
(statement), GroupBox (statement), ListBox (statement), OKButton (statement),
OptionButton (statement), OptionGroup (statement), Picture (statement), PushButton
(statement), Text (statement), TextBox (statement), Begin Dialog (statement),
PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, OS/2, Macintosh, UNIX.

Platform Notes: Windows, Win32, OS/2

On Windows, Win32, and OS/2 platforms, accelerators are underlined, and the
accelerator combination Alt+letter is used.

Platform Notes: Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

Clipboard$ (statement)

Syntax
Clipboard$ NewContent$
Statements 981

Description

Copies NewContent$ into the Clipboard.

Example
'This example puts text on the Clipboard, displays it, clears

'the Clipboard, and displays the Clipboard again.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Clipboard$ "Hello out there!"

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

Clipboard.Clear

MsgBox "The text in the Clipboard is:" & _

crlf & Clipboard$

End Sub

See Also

Clipboard$ (function), Clipboard.GetText (method), Clipboard.SetText (method)

Platform(s)

Windows, Win32, Macintosh, OS/2.

Close (statement)

Syntax
Close [[#] filenumber [,[#] filenumber]...]

Description

Closes the specified files.

Comments

If no arguments are specified, then all files are closed.

Example
'This example opens four files and closes them in various

'combinations.
982 Chapter 4 - BasicScript Reference

Sub Main()

Open "test1" For Output As #1

Open "test2" For Output As #2

Open "test3" For Random As #3

Open "test4" For Binary As #4

MsgBox "The next available file number is :" & FreeFile()

Close #1 'Closes file 1 only.

Close #2, #3 'Closes files 2 and 3.

Close 'Closes all remaining files(4).

MsgBox "The next available file number is :" & FreeFile()

End Sub

See Also

Open (statement), Reset (statement), End (statement)

Platform(s)

All.

ComboBox (statement)

Syntax
ComboBox x,y,width,height,ArrayVariable,.Identifier

Description

This statement defines a combo box within a dialog box template.

Comments

When the dialog box is invoked, the combo box will be filled with the elements from
the specified array variable.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).
Statements 983

The ComboBox statement requires the following parameters:

When the dialog box is invoked, the elements from ArrayVariable are placed into the
combo box. The .Identifier variable defines the initial content of the edit field of the
combo box. When the dialog box is dismissed, the .Identifier variable is updated to
contain the current value of the edit field.

Example
'This example creates a dialog box that allows the user to

'select a day of the week.

Sub Main()

Dim days$(6)

days$(0) = "Monday"

days$(1) = "Tuesday"

days$(2) = "Wednesday"

days$(3) = "Thursday"

days$(4) = "Friday"

days$(5) = "Saturday"

Parameter Description

x, y Integer coordinates specifying the position of the control (in
dialog units) relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in
dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the
combo box. If this array has no dimensions, then the combo
box will be initialized with no elements. A runtime error
results if the specified array contains more than one
dimension.

ArrayVariable can specify an array of any fundamental data
type (structures are not allowed). Null and Empty values are
treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in
a dialog function (such as DlgFocus and DlgEnable). This
parameter also creates a string variable whose value
corresponds to the content of the edit field of the combo box.
This variable can be accessed using the syntax:
DialogVariable.Identifier.
984 Chapter 4 - BasicScript Reference

days$(6) = "Sunday"

Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"

OKButton 76,8,40,14,.OK

Text 8,10,39,8,"&Weekdays:"

ComboBox 8,20,60,72,days$,.Days

End Dialog

Dim DaysDialog As DaysDialogTemplate

DaysDialog.Days = "Tuesday"

r% = Dialog(DaysDialog)

MsgBox "You selected: " & DaysDialog.Days

End Sub

See Also

CancelButton (statement), CheckBox (statement), Dialog (function), Dialog
(statement), DropListBox (statement), GroupBox (statement), ListBox (statement),
OKButton (statement), OptionButton (statement), OptionGroup (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Const (statement)

Syntax
Const name [As type] = expression [,name [As type] = expression]...

Description

Declares a constant for use within the current script.

Comments

The name is only valid within the current BasicScript script. Constant names must
follow these rules:

■ Must begin with a letter.

■ May contain only letters, digits, and the underscore character.

■ Must not exceed 80 characters in length.
Statements 985

■ Cannot be a reserved word.

Constant names are not case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions
are not allowed except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration
character, as shown below:

Const a% = 5 'Constant Integer whose value is 5

Const b# = 5 'Constant Double whose value is 5.0

Const c$ = "5" 'Constant String whose value is "5"

Const d! = 5 'Constant Single whose value is 5.0

Const e& = 5 'Constant Long whose value is 5

The type can also be given by specifying the As type clause:

Const a As Integer = 5 'Constant Integer whose value is 5

Const b As Double = 5 'Constant Double whose value is 5.0

Const c As String = "5" 'Constant String whose value is "5"

Const d As Single = 5 'Constant Single whose value is 5.0

Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:

Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then BasicScript will choose the most imprecise type
that completely represents the data, as shown below:

Const a = 5 'Integer constant

Const b = 5.5 'Single constant

Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or function.
Constants defined outside of all subroutines and functions can be used anywhere
within that script. The following example demonstrates the scoping of constants:

Const DefFile = "default.txt"

Sub Test1

Const DefFile = "foobar.txt"

MsgBox DefFile 'Displays "foobar.txt".

End Sub

Sub Test2

MsgBox DefFile ‘Displays"default.txt".
986 Chapter 4 - BasicScript Reference

End Sub

Example
'This example displays the declared constants in a dialog box

'(crlf produces a new line in the dialog box).

Const crlf = Chr$(13) + Chr$(10)

Const s As String = "This is a constant."

Sub Main()

MsgBox s$ & crlf & "The constants are shown above."

End Sub

See Also

DefType (statement), Let (statement), = (statement), Constants (topic)

Platform(s)

All.

Date, Date$ (statements)

Syntax
Date[$] = newdate

Description

Sets the system date to the specified date.

Comments

The Date$ statement requires a string variable using one of the following formats:

MM-DD-YYYY

MM-DD-YY

MM/DD/YYYY

MM/DD/YY,

where MM is a two-digit month between 1 and 31, DD is a two-digit day between 1
and 31, and YYYY is a four-digit year between 1/1/100 and 12/31/9999.
Statements 987

The Date statement converts any expression to a date, including string and numeric
values. Unlike the Date$ statement, Date recognizes many different date formats,
including abbreviated and full month names and a variety of ordering options. If
newdate contains a time component, it is accepted, but the time is not changed. An
error occurs if newdate cannot be interpreted as a valid date.

Example
'This example saves the current date to TheDate$, then 'changes the
date and displays the result. It then changes 'the date back to the
saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

TheDate$ = Date$()

Date$ = "01/01/95"

MsgBox "Saved date is: " & TheDate$ & crlf & _

"Changed date is: " & Date$()

Date$ = TheDate$

MsgBox "Restored date to: " & TheDate$

End Sub

See Also

Date, Date$ (functions), Time, Time$ (statements)

Platform(s)

All.

Platform Notes

On some platforms, you may not have permission to change the date, causing
runtime error 70 to be generated. This can occur on all UNIX platforms, Win32, and
OS/2.

The range of valid dates varies from platform to platform. The following table
describes the minimum and maximum dates accepted by various platforms:

Platform Minimum Date Maximum Date

Macintosh January 1, 1904 February 6, 2040

Windows January 1, 1980 December 31, 2099
988 Chapter 4 - BasicScript Reference

DDEExecute (statement)

Syntax
DDEExecute channel, command$

Description

Executes a command in another application.

Comments

The DDEExecute statement takes the following parameters:

If the receiving application does not execute the instructions, BasicScript generates a
runtime error.

Example
'This example selects a cell in an Excel spreadsheet.

Sub Main()

q$ = Chr(34)

ch% = DDEInitiate("Excel","c:\sheets\test.xls")

cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"

DDEExecute ch%,cmd$

DDETerminate ch%

End Sub

Windows 95 January 1, 1980 December 31, 2099

OS/2 January 1, 1980 December 31, 2079

NetWare January 1, 1980 December 31, 2099

Platform Minimum Date Maximum Date

Parameter Description

channel Integer containing the DDE channel number returned from
DDEInitiate. An error will result if channel is invalid.

command$ String containing the command to be executed. The format of
command$ depends on the receiving application.
Statements 989

See Also

DDEInitiate (function), DDEPoke (statement), DDERequest, DDERequest$
(functions), DDESend (statement), DDETerminate (statement), DDETerminateAll
(statement), DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.

DDESend (statement)

Syntax
DDESend application$, topic$, DataItem, value

Description

Initiates a DDE conversation with the server as specified by application$ and topic$
and sends that server a new value for the specified item.

Comments

The DDESend statement takes the following parameters:

Parameter Description

application$ String containing the name of the application (the server) with
which a DDE conversation will be established.

topic$ String containing the name of the topic for the conversation. The
possible values for this parameter are described in the
documentation for the server application.

DataItem Data item to be set. This parameter can be any expression
convertible to a String. The format depends on the server.

value New value for the data item. This parameter can be any expression
convertible to a String. The format depends on the server. A
runtime error is generated if value is Null.
990 Chapter 4 - BasicScript Reference

The DDESend statement performs the equivalent of the following statements:

ch% = DDEInitiate(application$, topic$)

DDEPoke ch%, item, data

DDETerminate ch%

Example
'This code fragment sets the content of the first cell in an

'Excel spreadsheet.

Sub Main()

On Error Goto Trap1

DDESend "Excel","c:\excel\test.xls","R1C1","Hello, world."

On Error Goto 0

'Add more lines here.

Trap1:

MsgBox "Error sending data to Excel."

Exit Sub 'Reset error handler.

End Sub

See Also

DDEExecute (statement), DDEInitiate (function), DDEPoke (statement), DDERequest,
DDERequest$ (functions), DDETerminate (statement), DDETerminateAll (statement),
DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.

DDETerminate (statement)

Syntax
DDETerminate channel
Statements 991

Description

Closes the specified DDE channel.

Comments

The channel parameter is an Integer containing the DDE channel number returned
from DDEInitiate. An error will result if channel is invalid.

All open DDE channels are automatically terminated when the script ends.

Example
'This code fragment sets the content of the first cell in an

'Excel spreadsheet.

Sub Main()

q$ = Chr(34)

ch% = DDEInitiate("Excel","c:\sheets\test.xls")

cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"

DDEExecute ch%,cmd$

DDETerminate ch%

End Sub

See Also

DDEExecute (statement), DDEInitiate (function), DDEPoke (statement), DDERequest,
DDERequest$ (functions), DDESend (statement), DDETerminateAll (statement),
DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.
992 Chapter 4 - BasicScript Reference

DDETerminateAll (statement)

Syntax
DDETerminateAll

Description

Closes all open DDE channels.

Comments

All open DDE channels are automatically terminated when the script ends.

Example
'This code fragment selects the contents of the first cell 'in an Excel
spreadsheet.

Sub Main()

q$ = Chr(34)

ch% = DDEInitiate("Excel","c:\sheets\test.xls")

cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"

DDEExecute ch%,cmd$

DDETerminateAll

End Sub

See Also

DDEExecute (statement), DDEInitiate (function), DDEPoke (statement), DDERequest,
DDERequest$ (functions), DDESend (statement), DDETerminate (statement),
DDETimeout (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.
Statements 993

DDETimeout (statement)

Syntax
DDETimeout milliseconds

Description

Sets the number of milliseconds that must elapse before any DDE command times
out.

Comments

The milliseconds parameter is a Long and must be within the following range:

0 <= milliseconds <= 2,147,483,647

The default is 10,000 (10 seconds).

Example
Sub Main()

q$ = Chr(34)

ch% = DDEInitiate("Excel","c:\sheets\test.xls")

DDETimeout(20000)

cmd$ = "Select(" & q$ & "R1C1:R8C1" & q$ & ")"

DDEExecute ch%,cmd$

DDETerminate ch%

End Sub

See Also

DDEExecute (statement), DDEInitiate (function), DDEPoke (statement), DDERequest,
DDERequest$ (functions), DDESend (statement), DDETerminate (statement),
DDETerminateAll (statement)

Platform(s)

Windows, Win32, OS/2.
994 Chapter 4 - BasicScript Reference

Platform Notes: Windows

Under Windows, the DDEML library is required for DDE support. This library is
loaded when the first DDEInitiate statement is encountered and remains loaded until
the BasicScript system is terminated. Thus, the DDEML library is required only if
DDE statements are used within a script.

Declare (statement)

Syntax
Declare {Sub | Function} name[TypeChar] [CDecl | Pascal | System |
StdCall] [Lib "LibName$" [Alias "AliasName$"]] [([ParameterList])]
[As type]

Where ParameterList is a comma-separated list of the following (up to 30 parameters
are allowed):

[Optional] [ByVal | ByRef] ParameterName[()] [As ParameterType]

Description

Creates a prototype for either an external routine or a BasicScript routine that occurs
later in the source module or in another source module.

Comments

Declare statements must appear outside of any Sub or Function declaration.

Declare statements are only valid during the life of the script in which they appear.
Statements 995

The Declare statement uses the following parameters:

Note: Currency data cannot be returned from external functions. Thus, the @
type-declaration character cannot be used when declaring external functions.

Parameter Description

name Any valid BasicScript name. When you declare functions, you can
include a type-declaration character to indicate the return type.

This name is specified as a normal BasicScript keyword— i.e., it
does not appear within quotes.

TypeChar An optional type-declaration character used when defining the
type of data returned from functions. It can be any of the following
characters: #, !, $, @, %, or &. For external functions, the @ character
is not allowed.

Type-declaration characters can only appear with function
declarations, and take the place of the As type clause.

Parameter Description

Decl Optional keyword indicating that the external subroutine or
function uses the C calling convention. With C routines, arguments
are pushed right to left on the stack and the caller performs stack
cleanup.

Pascal Optional keyword indicating that this external subroutine or
function uses the Pascal calling convention. With Pascal routines,
arguments are pushed left to right on the stack and the called
function performs stack cleanup.

System Optional keyword indicating that the external subroutine or
function uses the System calling convention. With System routines,
arguments are pushed right to left on the stack, the caller performs
stack cleanup, and the number of arguments is specified in the AL
register.

StdCall Optional keyword indicating that the external subroutine or
function uses the StdCall calling convention. With StdCall
routines, arguments are pushed right to left on the stack and the
called function performs stack cleanup.
996 Chapter 4 - BasicScript Reference

Use an alias when the name of an external routine conflicts with the name of a
BasicScript internal routine or when the external routine name contains invalid
characters.

The AliasName$ parameter must appear within quotes.

LibName$ Must be specified if the routine is external. This parameter
specifies the name of the library or code resource containing the
external routine and must appear within quotes.

The LibName$ parameter can include an optional path specifying
the exact location of the library or code resource.Alias name that
must be given to provide the name of the routine if the name
parameter is not the routine's real name. For example, the
following two statements declare the same routine:
Declare Function GetCurrentTime _
Lib "user" () As IntegerDeclare _
Function GetTime Lib "user" Alias _
"GetCurrentTime" _As Integer

Parameter Description

type Indicates the return type for functions.

For external functions, the valid return types are: Integer, Long,
String, Single, Double, Date, Boolean, and data objects.

Note: Currency, Variant, fixed-length strings, arrays, user-defined
types, and OLE Automation objects cannot be returned by external
functions.

Optional Keyword indicating that the parameter is optional. All optional
parameters must be of type Variant. Furthermore, all parameters
that follow the first optional parameter must also be optional.

If this keyword is omitted, then the parameter being defined is
required when calling this subroutine or function.

ByVal Optional keyword indicating that the caller will pass the
parameter by value. Parameters passed by value cannot be
changed by the called routine.

ByRef Optional keyword indicating that the caller will pass the
parameter by reference. Parameters passed by reference can be
changed by the called routine. If neither ByVal or ByRef are
specified, then ByRef is assumed.
Statements 997

The Any data type can only be used when passing parameters to external routines.

Passing Parameters

By default, BasicScript passes arguments by reference. Many external routines require
a value rather than a reference to a value. The ByVal keyword does this. For example,
this C routine:

void MessageBeep(int);

would be declared as follows:

Declare Sub MessageBeep Lib "user" (ByVal n As Integer)

As an example of passing parameters by reference, consider the following C routine
which requires a pointer to an integer as the third parameter:

int SystemParametersInfo(int,int,int *,int);

This routine would be declared as follows (notice the ByRef keyword in the third
parameter):

Declare Function SystemParametersInfo Lib "user" (ByVal _

ParameterNa
me

Name of the parameter, which must follow BasicScript naming
conventions:

- Must start with a letter.

- May contain letters, digits, and the underscore character (_).
Punctuation and type-declaration characters are not allowed. The
exclamation point (!) can appear within the name as long as it is
not the last character, in which case it is interpreted as a
type-declaration character.

- Must not exceed 80 characters in length.

Additionally, ParameterName can end with an optional
type-declaration character specifying the type of that parameter
(i.e., any of the following characters: %, &, !, #, @).

() Indicates that the parameter is an array.

ParameterTyp
e

Specifies the type of the parameter (e.g., Integer, String, Variant,
and so on). The As ParameterType clause should only be included
if ParameterName does not contain a type-declaration character.

In addition to the default BasicScript data types, ParameterType
can specify any user-defined structure, data object, or OLE
Automation object. If the data type of the parameter is not known
in advance, then the Any keyword can be used. This forces the
BasicScript compiler to relax type checking, allowing any data type
to be passed in place of the given argument.

Declare Sub Convert Lib "mylib" (a As Any)
998 Chapter 4 - BasicScript Reference

action As Integer,ByVal uParam As Integer,_

ByRef pInfo As Integer,
ByVal updateINI As _

Integer) As Integer

Strings can be passed by reference or by value. When they are passed by reference, a
pointer to a pointer to a null-terminated string is passed. When they are passed by
value, BasicScript passes a pointer to a null-terminated string (i.e., a C string).

When passing a string by reference, the external routine can change the pointer or
modify the contents of the existing. If an external routine modifies a passed string
variable (regardless of whether the string was passed by reference or by value), then
there must be sufficient space within the string to hold the returned characters. This
can be accomplished using the Space function, as shown in the following example
which calls a Windows 16-bit DLL:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal _

dirname$, ByVal length%)

Sub Main()

Dim s As String

s = Space(128)

GetWindowsDirectory s,128

End Sub

Another alternative to ensure that a string has sufficient space is to declare the string
with a fixed length:

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal _

dirname$, ByVal length%)

Sub Main

Dim s As String * 128

GetWindowsDirectory s,len(s)

End Sub

Calling Conventions with External Routines

For external routines, the argument list must exactly match that of the referenced
routine. When calling an external subroutine or function, BasicScript needs to be told
how that routine expects to receive its parameters and who is responsible for cleanup
of the stack.
Statements 999

The following table describes BasicScript’s calling conventions and how these
translate to those supported by C.

The following table shows which calling conventions are supported on which
platform, and indicates what the default calling convention is when no explicit calling
convention is specified in the Declare statement.

Note: The Power Macintosh supports a single calling convention that evaluates
parameters left to right. No special calling convention keywords are required. On the
Power Macintosh, a runtime error occurs if any explicit calling convention keyword is
specified.

Basic Script Calling
Convention

C Calling
Convention

Characteristics

StdCall _stdcall Arguments are pushed right to
left.The called function performs
stack cleanup.

Pascal pascal Arguments are pushed left to
right.The called function performs
stack cleanup

System _System Arguments are pushed right to
left.The caller performs stack
cleanup.The number of arguments is
specified in the ax 1 register.

CDecl cdec1 Arguments are pushed right to
left.The caller performs stack
cleanup.

Supported Platform Default Calling Conventions Calling Convention

Windows Pascal, CDecl Pascal

Win32 Pascal, CDecl, StdCall StdCall

Macintosh 68K CDecl CDecl

OS/2 System, Pascal, CDecl System

NetWare CDecl, Pascal CDecl
1000 Chapter 4 - BasicScript Reference

Passing Null Pointers

For external routines defined to receive strings by value, BasicScript passes
uninitialized strings as null pointers (a pointer whose value is 0). The constant
ebNullString can be used to force a null pointer to be passed as shown below:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()

Foo ebNullString 'Pass a null
pointer

End Sub

Another way to pass a null pointer is to declare the parameter that is to receive the
null pointer as type Any, then pass a long value 0 by value:

Declare Sub Foo Lib "sample" (ByVal lpName As Any)

Sub Main()

Foo ByVal 0& 'Pass a null
pointer.

End Sub

Passing Data to External Routines

The following table shows how the different data types are passed to external
routines:

Data type Is passed as

ByRef Boolean A pointer to a 2-byte value containing –1 or 0.

ByVal Boolean A 2-byte value containing –1 or 0.

ByVal Integer A pointer to a 2-byte short integer.

ByRef Integer A 2-byte short integer.

ByVal Long A pointer to a 4-byte long integer.

ByRef Long A 4-byte long integer.

ByRef Single A pointer to a 4-byte IEEE floating-point value (a float).

ByVal Single A 4-byte IEEE floating-point value (a float).

ByRef Double A pointer to an 8-byte IEEE floating-point value (a double).

ByVal Double An 8-byte IEEE floating-point value (a double).
Statements 1001

ByVal String A pointer to a null-terminated string. With strings containing
embedded nulls (Chr$(0)), it is not possible to determine
which null represents the end of the string; therefore, the first
null is considered the string terminator.An external routine
can freely change the content of a string. It cannot, however,
write beyond the end of the null terminator.

ByRef String A pointer to a pointer to a null-terminated string. With strings
containing embedded nulls (Chr$(0)), it is not possible to
determine which null represents the end of the string;
therefore, the first null is considered the string terminator.An
external routine can freely change the content of a string. It
cannot, however, write beyond the end of the null terminator.

ByRef Variant A pointer to a 16-byte variant structure. This structure
contains a 2-byte type (the same as that returned by the
VarType function), followed by 6-bytes of slop (for alignment),
followed by 8-bytes containing the value.

ByVal Variant A 16-byte variant structure. This structure contains a 2-byte
type (the same as that returned by the VarType function),
followed by 6-bytes of slop (for alignment), followed by
8-bytes containing the value.

ByVal Object For data objects, a 4-byte unsigned long integer. This value can
only be used by external routines written specifically for
BasicScript.For OLE Automation objects, a 32-bit pointer to an
LPDISPATCH handle is passed.

ByRef Object For data objects, a pointer to a 4-byte unsigned long integer
that references the object. This value can only be used by
external routines written specifically for BasicScript.For OLE
Automation objects, a pointer an LPDISPATCH value is
passed.

ByVal User-defined
type

The entire structure is passed to the external routine.It is
important to remember that structures in BasicScript are
packed on 2-byte boundaries, meaning that the individual
structure members may not be aligned consistently with
similar structures declared in C.

ByRef User-defined
type

A pointer to the structure.It is important to remember that
structures in BasicScript are packed on 2-byte boundaries,
meaning that the individual structure members may not be
aligned consistently with similar structures declared in C.

Arrays A pointer to a packed array of elements of the given
type.Arrays can only be passed by reference.

Dialogs Dialogs cannot be passed to external routines.

Data type Is passed as
1002 Chapter 4 - BasicScript Reference

Only variable-length strings can be passed to external routines; fixed-length strings
are automatically converted to variable-length strings.

BasicScript passes data to external functions consistent with that routine's prototype
as defined by the Declare statement. There is one exception to this rule: you can
override ByRef parameters using the ByVal keyword when passing individual
parameters. The following example shows a number of different ways to pass an
Integer to an external routine called Foo:

Declare Sub Foo Lib "MyLib" (ByRef i As Integer)

Sub Main

Dim i As Integer

i = 6

Foo 6 'Passes a temporary integer
(value 6) by

'reference

Foo i 'Passes variable "i" by
reference

Foo (i) 'Passes a temporary integer
(value 6) by

'reference

Foo i + 1 'Passes temporary integer
(value 7) by

'reference

Foo ByVal i 'Passes i by value

End Sub

The above example shows that the only way to override passing a value by reference
is to use the ByVal keyword.

Note: Use caution when using the ByVal keyword in this way. The external routine
Foo expects to receive a pointer to an Integer—a 32-bit value; using ByVal causes
BasicScript to pass the Integer by value—a 16-bit value. Passing data of the wrong
size to any external routine will have unpredictable results.

Returning Values from External Routines

BasicScript supports the following values returned from external routines: Integer,
Long, Single, Double, String, Boolean, and all object types. When returning a String,
BasicScript assumes that the first null-terminator is the end of the string.
Statements 1003

Calling External Routines in Multi-Threaded Environments

In multi-threaded environments (such as Win32), BasicScript makes a copy of all data
passed to external routines. This allows other simultaneously executing scripts to
continue executing before the external routine returns.

Care must be exercised when passing a the same by-reference variable twice to
external routines. When returning from such calls, BasicScript must update the real
data from the copies made prior to calling the external function. Since the same
variable was passed twice, you will be unable to determine which variable will be
updated.

Example
Declare Function IsLoaded% Lib "Kernel" _

Alias "GetModuleHandle" (ByVal name$)

Declare Function GetProfileString Lib "Kernel" _

(ByVal SName$,ByVal KName$,ByVal Def$,ByVal Ret$,_

ByVal Size%) As Integer

Sub Main()

SName$ = "Intl" 'Win.ini section name.

KName$ = "sCountry" 'Win.ini country
setting.

ret$ = String$(255, 0) 'Initialize
return string.

If GetProfileString(SName$,KName$,"",ret$,Len(ret$)) Then

MsgBox "Your country setting is: " & ret$

Else

MsgBox "There is no country setting in your " & _

"win.ini file."

End If

If IsLoaded("Progman") Then

MsgBox "Progman is loaded."

Else

MsgBox "Progman is not loaded."

End If

End Sub

See Also

Call (statement), Sub...End Sub (statement), Function...End Function (statement)
1004 Chapter 4 - BasicScript Reference

Platform(s)

All platforms support Declare for forward referencing.

The following platforms currently support the use of Declare for referencing external
routines: Windows, Win32/Intel, Win32/PPC, Macintosh, OS/2, NetWare, and some
UNIX platforms. See below for details.

Platform Notes: Windows

Under Windows, external routines are contained in DLLs. The libraries containing the
routines are loaded when the routine is called for the first time (i.e., not when the
script is loaded). This allows a script to reference external DLLs that potentially do not
exist.

All the Windows API routines are contained in DLLs, such as “user”, “kernel”, and
“gdi”. The file extension “.exe” is implied if another extension is not given.

If the LibName$ parameter does not contain an explicit path to the DLL, the following
search will be performed for the DLL (in this order):

■ The current directory

■ The Windows directory

■ The Windows system directory

■ The directory containing BasicScript

■ All directories listed in the path environment variable

If the first character of AliasName$ is #, then the remainder of the characters specify
the ordinal number of the routine to be called. For example, the following two
statements are equivalent (under Windows, GetCurrentTime is defined as ordinal 15
in the user.exe module):

Declare Function GetTime Lib "user" _

Alias "GetCurrentTime" () As Integer

Declare Function GetTime Lib "user" _

Alias "#15" () As Integer

Under Windows, the names of external routines declared using the CDecl keyword
are usually preceded with an underscore character. When BasicScript searches for
your external routine by name, it first attempts to load the routine exactly as specified.
If unsuccessful, BasicScript makes a second attempt by prepending an underscore
character to the specified name. If both attempts fail, then BasicScript generates a
Statements 1005

runtime error. Under Windows, external routines declared using the Pascal keyword
are case insensitive, whereas external routines declared using the CDecl keyword are
case sensitive.

Windows has a limitation that prevents Double, Single, and Date values from being
returned from routines declared with the CDecl keyword. Routines that return data of
these types should be declared Pascal.

BasicScript does not perform an increment on OLE automation objects before passing
them to external routines.

Platform Notes: Win32

Under Win32, eternal routines are contained in DLLs. The libraries containing the
routines are loaded when the routine is called for the first time (i.e., not when the
script is loaded). This allows a script to reference external DLLs that potentially do not
exist.

Note: You cannot execute routines contained in 16-bit Windows DLLs from the 32-bit
version of BasicScript.

All the Win32 API routines are contained in DLLs, such as “user32”, “kernel32”, and
“gdi32”. The file extension “.exe” is implied if another extension is not given.

The Pascal and StdCall calling conventions are identical on Win32 platforms.
Furthermore, on this platform, the arguments are passed using C ordering regardless
of the calling convention— right to left on the stack.

If the LibName$ parameter does not contain an explicit path to the DLL, the following
search will be performed for the DLL (in this order):

4 The directory containing BasicScript

5 The current directory

6 The Windows system directory

7 The Windows directory

8 All directories listed in the path environment variable

If the first character of AliasName$ is #, then the remainder of the characters specify
the ordinal number of the routine to be called. For example, the following two
statements are equivalent (under Win32, GetCurrentTime is defined as
GetTickCount, ordinal 300, in kernel32.dll):

Declare Function GetTime Lib "kernel32.dll" _

Alias "GetTickCount" () As Long

Declare Function GetTime Lib "kernel32.dll" _
1006 Chapter 4 - BasicScript Reference

Alias "#300" () As Long

Under Win32, name and AliasName$ are case-sensitive.

Under Win32, all string passed by value are converted to MBCS strings. Similarly, any
string returned from an external routine is assumes to be a null-terminated MBCS
string.

BasicScript does not perform an increment on OLE automation objects before passing
them to external routines. When returned from an external function, BasicScript
assumes that the properties and methods of the OLE automation object are UNICODE
and that the object uses the default system locale.

Platform Notes: NetWare

Under NetWare, external routines are contained within NLMs. If no file extension is
specified in LibName$, then “.nlm” is assumed.

Since the standard C library is implemented as an NLM under NetWare, it is possible
to call many C routines directly from BasicScript. For example, the following code
calls Printf with a String and an Integer:

Declare Sub Printf Lib "CLIB.NLM" (ByVal F$, _

ByVal s$,ByVal i%)

Sub Main()

Printf "Hello, ","world.",10

End Sub

If LibName$ does not contain an explicit path, then NetWare looks in the system
directory. The NLM specified by LibName$ is loaded when the first call to an external
in that module is accessed, thus allowing execution of scripts containing calls to
NLMs that do not exist. (If the NLM is already loaded, then no work is done.)

Under NetWare, the name and AliasName$ parameters are case-sensitive.

Platform Notes: Macintosh

On the Macintosh, external routines are contained in code fragments as specified by
the LibName$ parameter. BasicScript uses the following rules for locating your code
fragment:

■ If LibName$ contains an explicit path, that code fragment will be loaded.

■ If no path is specified in LibName$, then BasicScript will look in the folder
containing BasicScript, then the System folder.
Statements 1007

■ If both of the above fail, then BasicScript will search for a code fragment whose
CFRG resource name is the same as LibName$. The search is performed in the
folder containing BasicScript, then the System folder.

The name is compared case-sensitive.

The name, AliasName$, and LibName$ parameters are case-sensitive.

For more information on the calling conventions for code fragments, Apple publishes
the following books:

■ Inside Macintosh: PowerPC System Software

■ Building CFM-68K Runtime Programs for Macintosh Computers

Platform Notes: OS/2

If the LibName$ parameter does not contain an explicit path to the DLL, the following
search will be performed for the DLL (in this order):

1 The current directory.

2 All directories listed in the path environment variable.

The Declare statement under OS/2 supports calling both 16-bit and 32-bit routines.
The following table shows how this relates to the supported calling conventions:

Note: BasicScript does not support passing of Single and Double values to external
16-bit subroutines or functions. These data types are also not supported as return
values from external 16-bit functions.

If the first character of AliasName$ is #, then the remainder of the characters specify
the ordinal number of the routine to be called. The following example shows an
ordinal used to access the DosQueryCurrentDisk function contained in the
doscall1.dll module:

Declare Function System DosQueryCurrentDisk Lib _

"doscall1.dll" Alias "#275" (ByRef Drive As Long, _

ByRef Map As Long) As Integer

Calling Convention Supports 16-Bit Calls Supports 32-Bit Calls

System No Yes

Pascal Yes Yes

CDec1 Yes No
1008 Chapter 4 - BasicScript Reference

Under OS/2, the name and AliasName$ parameters are case-sensitive.

Note: All external routines contained in the doscall1.dll module require the use of an
ordinal.

Platform Notes: UNIX

The Declare statement can be used to reference routines contained in shared libraries
on the following UNIX platforms: HP-UX, Solaris.

If LibPath$ does not contain an explicit path, then a search is made for the shared
library in each path in the colon separated list as specified by the following
environment variable:

Platform Environment Variable

HP-UX SHLIB_PATH

Solaris LD_LIBRARY_PATH

The following example shows how to call the printf function on the HP-UX platform:

Declare Sub PrintString Lib "/lib/libc.sl" Alias _

 "_printf" (ByVal FormatString As String,_

 ByVal s As String)

Sub Main

 PrintString "Hello, ","world."

End Sub

A special note when passing Single values to external routines on HP-UX: When
passing Single values to external routines compiled in ANSI mode, the parameter in
the Declare statement should be specified as Double. External routines compiled in
K&R mode should have float parameters defined as Single as normal. This is due to
calling convention differences between these two standards: In ANSI mode, floats are
promoted to double prior to passing

DefType (statement)

Syntax
DefInt letterrange

DefLng letterrange

DefStr letterrange

DefSng letterrange

DefDbl letterrange
Statements 1009

DefCur letterrange

DefObj letterrange

DefVar letterrange

DefBool letterrange

DefDate letterrange

Description

Establishes the default type assigned to undeclared or untyped variables.

Comments

The DefType statement controls automatic type declaration of variables. Normally, if
a variable is encountered that hasn't yet been declared with the Dim, Public, or
Private statement or does not appear with an explicit type-declaration character, then
that variable is declared implicitly as a variant (DefVar A–Z). This can be changed
using the DefType statement to specify starting letter ranges for Type other than
integer. The letterrange parameter is used to specify starting letters. Thus, any
variable that begins with a specified character will be declared using the specified
Type.

The syntax for letterrange is:

letter [-letter] [,letter [-letter]]...

DefType variable types are superseded by an explicit type declaration using either a
type-declaration character or the Dim, Public, or Private statement.

The DefType statement only affects how BasicScript compiles scripts and has no effect
at runtime.

The DefType statement can only appear outside all Sub and Function declarations.

The following table describes the data types referenced by the different variations of
the DefType statement:

Statement Data Type

DefInt Integer

DefLng Long

DefStr String

DefSng Single

DefDbl Double

DefCur Currency

DefObj Object
1010 Chapter 4 - BasicScript Reference

DefVar Variant

DefBool Boolean

DefDate Date

Example
DefStr a-l

DefLng m-r

DefSng s-u

DefDbl v-w

DefInt x-z

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a = 100.52

m = 100.52

s = 100.52

v = 100.52

x = 100.52

message = "The values are:"

message = message & "(String) a: " & a

message = message & "(Long) m: " & m

message = message & "(Single) s: " & s

message = message & "(Double) v: " & v

message = message & "(Integer) x: " & x

MsgBox message

End Sub

See Also

Currency (data type), Date (data type), Double (data type), Long (data type), Object
(data type), Single (data type), String (data type), Variant (data type), Boolean (data
type), Integer (data type)

Platform(s)

All.
Statements 1011

DeleteSetting (statement)

Syntax
DeleteSetting appname [,section [,key]]

Description

Deletes a setting from the registry.

Comments

You can control the behavior of DeleteSetting by omitting parameters. If you specify
all three parameters, then DeleteSetting deletes your specified setting. If you omit
key, then DeleteSetting deletes all of the keys from section. If both section and key are
omitted, then DeleteSetting removes that application’s entry from the system
registry.

The following table describes the named parameters to the DeleteSetting statement:

Example
'The following example adds two entries to the Windows registry

'if run under Win32 or to NEWAPP.INI on other platforms,

'using the SaveSetting statement. It then uses DeleteSetting

'first to remove the Startup section, then to remove

'the NewApp key altogether.

Sub Main()

SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200

SaveSetting appname := "NewApp", section := "Startup", _

key := "Width", setting := 320

Named Parameter Description

appname String expression indicating the name of the application
whose setting will be deleted.

section String expression indicating the name of the section whose
setting will be deleted.

key String expression indicating the name of the setting to be
deleted from the registry.
1012 Chapter 4 - BasicScript Reference

DeleteSetting "NewApp", "Startup"
'Remove Startup section

DeleteSetting "NewApp"
'Remove NewApp key

End Sub

See Also

SaveSetting (statement), GetSetting (function), GetAllSettings (function)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Win32

Under Win32, this statement operates on the system registry. All settings are saved
under the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\appname\section\key

Platform Notes: Windows, OS/2

Settings are stored in INI files. The name of the INI file is specified by appname. If
appname is omitted, then this command operates on the WIN.INI file. For example, to
delete the sLanguage setting from the intl section of the WIN.INI file, you could use
the following statement:

s$ = DeleteSetting(,"intl","sLanguage")

Dialog (statement)

Syntax
Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description

Same as the Dialog function, except that the Dialog statement does not return a value.
(See Dialog [function].)

Example
'This example displays an abort/retry/ignore disk error dialog

'box.

Sub Main()
Statements 1013

Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"

Text 8,8,100,8,"The disk drive door is open."

PushButton 8,24,40,14,"Abort",.Abort

PushButton 56,24,40,14,"Retry",.Retry

PushButton 104,24,40,14,"Ignore",.Ignore

End Dialog

Dim DiskError As DiskErrorTemplate

Dialog DiskError,3,0

End Sub

See Also

Dialog (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Dim (statement)

Syntax
Dim name [(<subscripts>)] [As [New] type] [,name [(<subscripts>)]
[As [New] type]]...

Description

Declares a list of local variables and their corresponding types and sizes.

Comments

If a type-declaration character is used when specifying name (such as %, @, &, $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Dim Temperature As Integer

Dim Temperature%

The subscripts parameter allows the declaration of dynamic and fixed arrays. The
subscripts parameter uses the following syntax:

[lower to] upper [,[lower to] upper]...
1014 Chapter 4 - BasicScript Reference

The lower and upper parameters are integers specifying the lower and upper bounds
of the array. If lower is not specified, then the lower bound as specified by Option
Base is used (or 1 if no Option Base statement has been encountered). BasicScript
supports a maximum of 60 array dimensions.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:

Dim a()

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type. When specifying explicit
object types, you can use the following syntax for type:

module.class

Where module is the name of the module in which the object is defined and class is
the type of object. For example, to specify the OLE automation variable for Excel’s
Application object, you could use the following code:

Dim a As Excel.Application

Note: Explicit object types can only be specified for data objects and early bound
OLE automation objects—i.e., objects whose type libraries have been registered with
BasicScript.

A Dim statement within a subroutine or function declares variables local to that
subroutine or function. If the Dim statement appears outside of any subroutine or
function declaration, then that variable has the same scope as variables declared with
the Private statement.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Dim name As String * length

where length is a literal number specifying the string's length.

Implicit Variable Declaration

If BasicScript encounters a variable that has not been explicitly declared with Dim,
then the variable will be implicitly declared using the specified type-declaration
character (#, %, @, $, or &). If the variable appears without a type-declaration
character, then the first letter is matched against any pending DefType statements,
using the specified type if found. If no DefType statement has been encountered
corresponding to the first letter of the variable name, then Variant is used.
Statements 1015

Declaring Explicit OLE Automation Objects

The Dim statement can be used to declare variables of an explicit object type for
objects known to BasicScript through type libraries. This is accomplished using the
following syntax:

Dim name As application.class

The application parameter specifies the application used to register the OLE
automation object and class specifies the specific object type as defined in the type
library. Objects declared in this manner are early bound, meaning that the BasicScript
is able resolve method and property information at compile time, improving the
performance when invoking methods and properties off that object variable.

Creating New Objects

The optional New keyword is used to declare a new instance of the specified data
object. This keyword cannot be used when declaring arrays or OLE automation
objects.

At runtime, the application or extension that defines that object type is notified that a
new object is being defined. The application responds by creating a new physical
object (within the appropriate context) and returning a reference to that object, which
is immediately assigned to the variable being declared.

When that variable goes out of scope (i.e., the Sub or Function procedure in which the
variable is declared ends), the application is notified. The application then performs
some appropriate action, such as destroying the physical object.

Initial Values

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Date December 31, 1899 00:00:00

Currency 0.0

Boolean False
1016 Chapter 4 - BasicScript Reference

Naming Conventions

Variable names must follow these naming rules:

■ Must start with a letter.

■ May contain letters, digits, and the underscore character (_); punctuation is not
allowed. The exclamation point (!) can appear within the name as long as it is not
the last character, in which case it is interpreted as a type-declaration character.

■ The last character of the name can be any of the following type-declaration
characters: #, @, %, !, &, and $.

■ Must not exceed 80 characters in length.

■ Cannot be a reserved word.

Examples
'The following examples use the Dim statement to declare various

'variable types.

Sub Main()

Dim i As Integer

Dim l& 'Long

Dim s As Single

Dim d# 'Double

Dim c$ 'String

Dim MyArray(10) As Integer '10 element integer array

Dim MyStrings$(2,10) '2-10 element string arrays

Dim Filenames$(5 to 10) '6 element string array

Dim Values(1 to 10, 100 to 200) '111 element variant array

Object Nothing

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given an initial value, as
described above.

Arrays Each element of the array is given an initial value, as
described above.

Data Type Initial Value
Statements 1017

End Sub

See Also

Public (statement), Private (statement), Option Base (statement)

Platform(s)

All.

DiskDrives (statement)

Syntax
DiskDrives array()

Description

Fills the specified String or Variant array with a list of valid drive letters.

Comments

The array() parameter specifies either a zero- or a one-dimensioned array of strings or
variants. The array can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new number of
elements. If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements are
placed into the array. If there are fewer elements than will fit in the array, then the
remaining elements are initialized to zero-length strings (for String arrays) or Empty
(for Variant arrays). A runtime error results if the array is too small to hold the new
elements.

Example
'This example builds and displays an array containing the first

'three available disk drives.

Sub Main()

Dim drive$()

DiskDrives drive$

r% = SelectBox("Available Disk Drives",,drive$)

End Sub
1018 Chapter 4 - BasicScript Reference

See Also

ChDrive (statement), DiskFree (function)

Platform(s)

Windows, Win32, NetWare.

Platform Notes: NetWare

Under NetWare, this command returns a list of volume names.

DlgCaption (statement)

Syntax
DlgCaption text

Description

Changes the caption of the current dialog to text.

Example
'This example displays a dialog box, adjusting the caption

'to contain the text of the currently selected option

'button.

Function DlgProc(c As String,a As Integer,v As Integer)

If a = 1 Then

DlgCaption choose(DlgValue("OptionGroup1") + 1, _

"Blue","Green")

ElseIf a = 2 Then

DlgCaption choose(DlgValue("OptionGroup1") + 1, _

"Blue","Green")

End If

End Function

Sub Main()

Begin Dialog UserDialog ,,149,45,"Untitled",.DlgProc

OKButton 96,8,40,14

OptionGroup .OptionGroup1

OptionButton 12,12,56,8,"Blue",.OptionButton1
Statements 1019

OptionButton 12,28,56,8,"Green",.OptionButton2

End Dialog

Dim d As UserDialog

Dialog d

End Sub

See Also

Begin Dialog (statement)

Platform(s)

All.

DlgEnable (statement)

Syntax
DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description

Enables or disables the specified control.

Comments

Disabled controls are dimmed and cannot receive keyboard or mouse input.

The isOn parameter is an Integer specifying the new state of the control. It can be any
of the following values:

Option buttons can be manipulated individually (by specifying an individual option
button) or as a group (by specifying the name of the option group).

0 The control is disabled.

1 The control is enabled.

Omitted Toggles the control between enabled and disabled.
1020 Chapter 4 - BasicScript Reference

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Example
'Disable the Save Options control.

DlgEnable "SaveOptions", False

'Toggle a group of option buttons.

DlgEnable "EditingOptions"

'Enable six controls.

For i = 0 To 5

DlgEnable i,True

Next i

See Also

DlgControlId (function), DlgEnable (function), DlgFocus (function), DlgFocus
(statement), DlgListBoxArray (function), DlgListBoxArray (statement), DlgSetPicture
(statement), DlgText (statement), DlgText$ (function), DlgValue (function), DlgValue
(statement), DlgVisible (statement), DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgFocus (statement)

Syntax
DlgFocus ControlName$ | ControlIndex

Description

Sets focus to the specified control.
Statements 1021

Comments

A runtime error results if the specified control is hidden, disabled, or nonexistent.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Example
'This code fragment makes sure that the control being disabled

'does not currently have the focus (otherwise, a runtime error

'would occur).

If DlgFocus$ = "Files" Then 'Does it have
the focus?

DlgFocus "OK" 'Set focus to
another control

End If

DlgEnable "Files", False 'Now disable the
control

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgListBoxArray (function), DlgListBoxArray (statement), DlgSetPicture
(statement), DlgText (statement), DlgText$ (function), DlgValue (function), DlgValue
(statement), DlgVisible (statement), DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgListBoxArray (statement)

Syntax
DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable
1022 Chapter 4 - BasicScript Reference

Description

Fills a list box, combo box, or drop list box with the elements of an array.

Comments

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

The ArrayVariable parameter specifies a single-dimensioned array used to initialize
the elements of the control. If this array has no dimensions, then the control will be
initialized with no elements. A runtime error results if the specified array contains
more than one dimension. ArrayVariable can specify an array of any fundamental
data type (structures are not allowed). Null and Empty values are treated as
zero-length strings.

Example
'This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer

If Action% = 2 And ControlName$ = "Files" Then

Dim NewFiles$() 'Create a new dynamic array.

FileList NewFiles$,"*.txt" 'Fill the array with files.

DlgListBoxArray "Files",NewFiles$ 'Set items in list box.

DlgValue "Files",0 'Set the selection to the first item.

End If

End Function

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgFocus (statement), DlgListBoxArray (function), DlgSetPicture
(statement), DlgText (statement), DlgText$ (function), DlgValue (function), DlgValue
(statement), DlgVisible (statement), DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Statements 1023

DlgSetPicture (statement)

Syntax
DlgSetPicture {ControlName$ |
ControlIndex},PictureName$,PictureType

Description

Changes the content of the specified picture or picture button control.

Comments

The DlgSetPicture statement accepts the following parameters:

Parameter Description

ControlName$ String containing the name of the .Identifier parameter associated
with a control in the dialog box template. A case-insensitive
comparison is used to locate the specified control within the
template. Alternatively, by specifying the ControlIndex
parameter, a control can be referred to using its index in the dialog
box template (0 is the first control in the template, 1 is the second,
and so on).

Note: When ControlIndex is specified, OptionGroup statements
do not count as a control.

PictureName$ String containing the name of the picture. If PictureType is 0, then
this parameter specifies the name of the file containing the image.
If PictureType is 10, then PictureName$ specifies the name of the
image within the resource of the picture library.

If PictureName$ is empty, then the current picture associated with
the specified control will be deleted. Thus, a technique for
conserving memory and resources would involve setting the
picture to empty before hiding a picture control.

If PictureName$ is empty, then the current picture associated with
the specified control will be deleted. Thus, a technique for
conserving memory and resources would involve setting the
picture to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following sources
are supported:

0 - The image is contained in a file on disk.

10 - The image is contained in the picture library specified by the
Begin Dialog statement. When this type is used, the
PictureName$ parameter must be specified with the Begin Dialog
statement.
1024 Chapter 4 - BasicScript Reference

Examples
'Set picture from a file.

DlgSetPicture "Picture1","\windows\checks.bmp",0

'Set control 10's image from a library.

DlgSetPicture 27,"FaxReport",10

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgFocus (statement), DlgListBoxArray (function), DlgListBoxArray
(statement), DlgText (statement), DlgText$ (function), DlgValue (function), DlgValue
(statement), DlgVisible (statement), DlgVisible (function), Picture (statement),
PictureButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes: Windows, Win32

Under Windows and Win32, picture controls can contain either bitmaps or WMFs
(Windows metafiles). When extracting images from a picture library, BasicScript
assumes that the resource type for metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

Platform Notes: OS/2

Under OS/2, picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it
appears within the DLL.

Platform Notes: Macintosh

Picture controls on the Macintosh can contain only PICT images. These are contained
in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it
appears within the file.
Statements 1025

DlgText (statement)

Syntax
DlgText {ControlName$ | ControlIndex}, NewText$

Description

Changes the text content of the specified control.

Comments

The effect of this statement depends on the type of the specified control:

Control Type Effect of DlgText

Picture Runtime error.

Option group Runtime error.

Drop list box If an exact match cannot be found, the DlgText statement searches
from the first item looking for an item that starts with NewText$. If
no match is found, then the selection is removed.

OK button Sets the label of the control to NewText$.

Cancel button Sets the label of the control to NewText$.

Push button Sets the label of the control to NewText$.

List box Sets the current selection to the item matching NewText$. If an
exact match cannot be found, the DlgText statement searches from
the first item looking for an item that starts with NewText$. If no
match is found, then the selection is removed.

Combo box Sets the content of the edit field of the combo box to NewText$.

Text Sets the label of the control to NewText$.

Text box Sets the content of the text box to NewText$.

Group box Sets the label of the control to NewText$.

Option button Sets the label of the control to NewText$.
1026 Chapter 4 - BasicScript Reference

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Example
'Change text of group box 1.

DlgText "GroupBox1","Save Options"

If DlgText$(9) = "Save Options" Then

'Change text to "Editing Options".

DlgText 9,"Editing Options"

End If

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgFocus (statement), DlgListBoxArray (function), DlgListBoxArray
(statement), DlgSetPicture (statement), DlgText$ (function), DlgValue (function),
DlgValue (statement), DlgVisible (statement), DlgVisible (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgValue (statement)

Syntax
DlgValue {ControlName$ | ControlIndex},Value

Description

Changes the value of the given control.
Statements 1027

Comments

The value of any given control is an Integer and depends on its type, according to the
following table:

A runtime error is generated if DlgValue is used with controls other than those listed
in the above table.

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

Example
'This code fragment toggles the value of a check box.

If DlgValue("MyCheckBox") = 1 Then

DlgValue "MyCheckBox",0

Else

DlgValue "MyCheckBox",1

End If

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgFocus (statement), DlgListBoxArray (function), DlgListBoxArray
(statement), DlgSetPicture (statement), DlgText (statement), DlgText$ (function),
DlgValue (function), DlgVisible (statement), DlgVisible (function)

Control Type Description of Value

Option group The index of the new selected option button within the
group (0 is the first option button, 1 is the second, and so
on).

List box The index of the new selected item.

Drop list box The index of the new selected item.

Check box 1 if the check box is to be checked; 0 to remove the check.
1028 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

DlgVisible (statement)

Syntax
DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description

Hides or shows the specified control.

Comments

Hidden controls cannot be seen in the dialog box and cannot receive the focus using
Tab.

The isOn parameter is an Integer specifying the new state of the control. It can be any
of the following values:

Option buttons can be manipulated individually (by specifying an individual option
button) or as a group (by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter
associated with a control in the dialog box template. A case-insensitive comparison is
used to locate the specific control within the template. Alternatively, by specifying the
ControlIndex parameter, a control can be referred to using its index in the dialog box
template (0 is the first control in the template, 1 is the second, and so on).

Note: When ControlIndex is specified, OptionGroup statements do not count as a
control.

If you hide the control that currently has the focus, BasicScript will automatically set
focus to the next control in the tab order

1 The control is shown.

0 The control is hidden.

Omitted Toggles the visibility of the control.
Statements 1029

Picture Caching

When the dialog box is first created and before it is shown, BasicScript calls the dialog
function with action set to 1. At this time, no pictures have been loaded into the
picture controls contained in the dialog box template. After control returns from the
dialog function and before the dialog box is shown, BasicScript will load the pictures
of all visible picture controls. Thus, it is possible for the dialog function to hide certain
picture controls, which prevents the associated pictures from being loaded and causes
the dialog box to load faster. When a picture control is made visible for the first time,
the associated picture will then be loaded.

Example
'This example creates a dialog box with two panels. The

'DlgVisible statement is used to show or hide the controls of

'the different panels.

Sub EnableGroup(start%, finish%)

For i = 6 To 13 'Disable all options.

DlgVisible i, False

Next i

For i = start% To finish% 'Enable only the right ones.

DlgVisible i, True

Next i

End Sub

Function DlgProc(ControlName$, Action%, SuppValue%)

If Action% = 1 Then

DlgValue "WhichOptions",0 'Set to save options.

EnableGroup 6, 8 'Enable the save options.

End If

If Action% = 2 And ControlName$ = "SaveOptions" Then

EnableGroup 6, 8 'Enable the save options.

DlgProc = 1 'Don't close the dialog box.

End If

If Action% = 2 And ControlName$ = "EditingOptions" Then

EnableGroup 9, 13 'Enable the editing options.

DlgProc = 1 'Don't close the dialog box.

End If

End Function
1030 Chapter 4 - BasicScript Reference

Sub Main()

Begin Dialog OptionsTemplate 33, 33, 171, 134, "Options",
.DlgProc

'Background (controls 0-5)

GroupBox 8, 40, 152, 84, ""

OptionGroup .WhichOptions

OptionButton 8, 8, 59, 8, "Save Options",.SaveOptions

OptionButton 8, 20, 65, 8, "Editing
Options",.EditingOptions

OKButton 116, 7, 44, 14

CancelButton 116, 24, 44, 14

'Save options (controls 6-8)

CheckBox 20, 56, 88, 8, "Always create backup",.CheckBox1

CheckBox 20, 68, 65, 8, "Automatic save",.CheckBox2

CheckBox 20, 80, 70, 8, "Allow overwriting",.CheckBox3

'Editing options (controls 9-13)

CheckBox 20, 56, 65, 8, "Overtype mode",.OvertypeMode

CheckBox 20, 68, 69, 8, "Uppercase only",.UppercaseOnly

CheckBox 20, 80, 105, 8, _

"Automatically check syntax",.AutoCheckSyntax

CheckBox 20, 92, 73, 8, _

"Full line selection",.FullLineSelection

CheckBox 20, 104, 102, 8, _

"Typing replaces selection",.TypingReplacesText

End Dialog

Dim OptionsDialog As OptionsTemplate

Dialog OptionsDialog

End Sub

See Also

DlgControlId (function), DlgEnable (function), DlgEnable (statement), DlgFocus
(function), DlgFocus (statement), DlgListBoxArray (function), DlgListBoxArray
(statement), DlgSetPicture (statement), DlgText (statement), DlgText$ (function),
DlgValue (function), DlgValue (statement), DlgVisible (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Picture Caching 1031

Do...Loop (statement)

Syntax 1
Do {While | Until} condition statements Loop

Syntax 2
Do

statements

Loop {While | Until} condition

Syntax 3
Do

statements

Loop

Description

Repeats a block of BasicScript statements while a condition is True or until a condition
is True.

Comments

If the {While | Until} conditional clause is not specified, then the loop repeats the
statements forever (or until BasicScript encounters an Exit Do statement).

The condition parameter specifies any Boolean expression.

Examples
Sub Main()

'This first example uses the Do...While statement, which

'performs the iteration, then checks the condition, and

'repeats if the condition is True.

Dim a$(100)

i% = -1

Do

i% = i% + 1

If i% = 0 Then

a(i%) = Dir$("*")

Else
1032 Chapter 4 - BasicScript Reference

a(i%) = Dir$

End If

Loop While (a(i%) <> "" And i% <= 99)

r% = SelectBox(i% & " files found",,a)

'This second example uses the Do While...Loop, which checks the

'condition and then repeats if the condition is True.

Dim a$(100)

i% = 0

a(i%) = Dir$("*")

Do While a(i%) <> "" And i% <= 99

i% = i% + 1

a(i%) = Dir$

Loop

r% = SelectBox(i% & " files found",,a)

'This third example uses checks the condition first, then

'does the iteration if the condition is True.

Dim a$(100)

i% = 0

a(i%) = Dir$("*")

Do Until a(i%) = "" Or i% = 100

i% = i% + 1

a(i%) = Dir$

Loop

r% = SelectBox(i% & " files found",,a)

'This last example uses the Do...Until Loop, which performs the

'iteration first, checks the condition, and repeats if the

'condition is True.

Dim a$(100)

i% = -1

Do

i% = i% + 1

If i% = 0 Then
Picture Caching 1033

a(i%) = Dir$("*")

Else

a(i%) = Dir$

End If

Loop Until (a(i%) = "" Or i% = 100)

r% = SelectBox(i% & " files found",,a)

End Sub

See Also

For...Next (statement), While...Wend (statement)

Platform(s)

All.

Platform Notes: Windows, Win32

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under Windows and Win 32, you can break out of infinite loops using
Ctrl+Break.

Platform Notes: UNIX

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Platform Notes: Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in your
code. On the Macintosh, you can break out of infinite loops using Command+Period.

Platform Notes OS/2

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

DoEvents (statement)

Syntax
DoEvents
1034 Chapter 4 - BasicScript Reference

Description

Yields control to other applications.

Comments

This statement yields control to the operating system, allowing other applications to
process mouse, keyboard, and other messages.

If a SendKeys statement is active, this statement waits until all the keys in the queue
have been processed.

Examples
'This first example shows a script that takes a long time and

'hogs the system. The subroutine explicitly yields to allow

'other applications to execute.

Sub Main()

Open "test.txt" For Output As #1

For i = 1 To 10000

Print #1,"This is a test of the system and stuff."

DoEvents

Next i

Close #1

End Sub

'In this second example, the DoEvents statement is used to

'wait until the queue has been completely flushed.

Sub Main()

AppActivate "Notepad" 'Activate Notepad.

SendKeys "This is a test.",False 'Send some keys.

DoEvents 'Wait for the keys to play back.

End Sub

See Also

DoEvents (function)

Platform(s)

All.
Picture Caching 1035

Platform Notes: Win32

Under Win32, this statement does nothing. Since Win32 systems are preemptive, use
of this statement under these platforms is not necessary.

DoKeys (statement)

Syntax
DoKeys KeyString$ [,time]

Description

Simulates the pressing of the specified keys.

Comments

The DoKeys statement accepts the following parameters:

Example
'This code fragment plays back the time and date

'into Notepad.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

id = Shell("Notepad",4) 'Run Notepad.

AppActivate "Notepad"

t$ = time$

d$ = date$

DoKeys "The time is: " & t$ & "." & crlf

DoKeys "The date is: " & d$ & "."

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is
described under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the
output of the entire KeyString$ parameter. It must be within the
following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$
parameter contains ten keys, then a key will be output every 1/2
second. If unspecified (or 0), the keys will play back at full speed.
1036 Chapter 4 - BasicScript Reference

End Sub

See Also

SendKeys (statement), QueKeys (statement), QueKeyDn (statement), QueKeyUp
(statement)

Platform(s)

Windows.

Platform Notes: Windows

This statement uses the Windows journalizing mechanism to play keystrokes into the
Windows environment.

DropListBox (statement)

Syntax
DropListBox x, y, width, height, ArrayVariable, .Identifier

Description

Creates a drop list box within a dialog box template.

Comments

When the dialog box is invoked, the drop list box will be filled with the elements
contained in ArrayVariable. Drop list boxes are similar to combo boxes, with the
following exceptions:

■ The list box portion of a drop list box is not opened by default. The user must open
it by clicking the down arrow.

■ The user cannot type into a drop list box. Only items from the list box may be
selected. With combo boxes, the user can type the name of an item from the list
directly or type the name of an item that is not contained within the combo box.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).
Picture Caching 1037

The DropListBox statement requires the following parameters:

Example
'This example allows the user to choose a field name from a drop

'list box.

Sub Main()

Dim FieldNames$(4)

FieldNames$(0) = "Last Name"

FieldNames$(1) = "First Name"

FieldNames$(2) = "Zip Code"

FieldNames$(3) = "State"

FieldNames$(4) = "City"

Begin Dialog FindTemplate 16,32,168,48,"Find"

Text 8,8,37,8,"&Find what:"

DropListBox 48,6,64,80,FieldNames,.WhichField

OKButton 120,7,40,14

CancelButton 120,27,40,14

End Dialog

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

ArrayVariable Single-dimensioned array used to initialize the elements of the drop list
box. If this array has no dimensions, then the drop list box will be
initialized with no elements. A runtime error results if the specified array
contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). Null and Empty values are treated as
zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
an integer variable whose value corresponds to the index of the drop list
box's selection (0 is the first item, 1 is the second, and so on). This variable
can be accessed using the following syntax:

DialogVariable.Identifier
1038 Chapter 4 - BasicScript Reference

Dim FindDialog As FindTemplate

FindDialog.WhichField = 1

Dialog FindDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), GroupBox (statement), ListBox (statement), OKButton
(statement), OptionButton (statement), OptionGroup (statement), Picture (statement),
PushButton (statement), Text (statement), TextBox (statement), Begin Dialog
(statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

End (statement)

Syntax
End

Description

Terminates execution of the current script, closing all open files.

Example
'This example uses the End statement to stop execution.

Sub Main()

MsgBox "The next line will terminate the script."

End

End Sub

See Also

Close (statement), Stop (statement), Exit For (statement), Exit Do (statement), Exit
Function (statement), Exit Sub (statement)

Platform(s)

All.
Picture Caching 1039

Erase (statement)

Syntax
Erase array1 [,array2]...

Description

Erases the elements of the specified arrays.

Comments

For dynamic arrays, the elements are erased, and the array is redimensioned to have
no dimensions (and therefore no elements). For fixed arrays, only the elements are
erased; the array dimensions are not changed.

After a dynamic array is erased, the array will contain no elements and no
dimensions. Thus, before the array can be used by your program, the dimensions
must be reestablished using the Redim statement.

Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being
erased:

Element Type What Erase Does to That Element

Integer Sets the element to 0.

Boolean Sets the element to False.

Long Sets the element to 0.

Double Sets the element to 0.0.

Date Sets the element to December 30, 1899.

Single Sets the element to 0.0.

String (variable-length) Frees the string, then sets the element to a zero-length
string.

String (fixed-length) Sets every character of each element to zero (Chr$(0)).

Object Decrements the reference count and sets the element to
Nothing.

Variant Sets the element to Empty.
1040 Chapter 4 - BasicScript Reference

Example
'This example puts a value into an array and displays it. Then

'it erases the value and displays it again.

Sub Main()

Dim a$(10) 'Declare an array.

a$(1) = Dir$("*") 'Fill element 1 with a filename.

'Display element 1.

MsgBox "Array before Erase: " & a$(1)

Erase a$ 'Erase all elements in the array.

'Display element 1 again (should be erased).

MsgBox "Array after Erase: " & a$(1)

End Sub

See Also

Arrays (topic)

Platform(s)

All.

Error (statement)

Syntax
Error errornumber

Description

Simulates the occurrence of the given runtime error.

User-defined type Sets each structure element as a separate variable.

Element Type What Erase Does to That Element
Picture Caching 1041

Comments

The errornumber parameter is any Integer containing either a built-in error number or
a user-defined error number. The Err.Number property can be used within the error
trap handler to determine the value of the error.

The Error statement is provided for backward compatibility. Use the Err.Raise
method instead. When using the Error statement to generate an error, the Err object's
properties are set to the following default values:

A runtime error is generated if errornumber is less than 0.

Example
'This example forces error 10, with a subsequent transfer to

'the TestError label. TestError tests the error and, if not

'error 55, resets Err to 999 (user-defined error) and returns

'to the Main subroutine.

Sub Main()

On Error Goto TestError

Error 10

MsgBox "The returned error is: '" & Err & " - " & Error$ & "'"

Exit Sub

TestError:

If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."

Else

MsgBox "Error '" & Err & "' has occurred."

Err = 999

Property Default Value

Number This property is set to errornumber as specified in the Error statement.

Source Name of the currently executing script.

Description Text of the error. If errornumber does not specify a known BasicScript
error, then Description is set to an empty string.

HelpFile Name of the BasicScript help file.

HelpContex Context ID corresponding to errornumber.
1042 Chapter 4 - BasicScript Reference

End If

Resume Next

End Sub

See Also

Error Handling (topic)

Platform(s)

All.

Exit Do (statement)

Syntax
Exit Do

Description

Causes execution to continue on the statement following the Loop clause.

Comments

This statement can only appear within a Do...Loop statement.

Example
'This example will load an array with directory entries unless

'there are more than ten entries--in which case, the Exit Do

'terminates the loop.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim a$(5)

Do

 i% = i% + 1

If i% = 1 Then

a(i%) = Dir$("*")

Else

 a(i%) = Dir$

End If

If i% >= 10 Then Exit Do
Picture Caching 1043

Loop While (a(i%) <> "")

If i% = 10 Then

MsgBox i% & " entries processed!"

Else

MsgBox "Less than " & i% & " entries processed!"

End If

End Sub

See Also

Stop (statement), Exit For (statement), Exit Function (statement), Exit Sub (statement),
End (statement), Do...Loop (statement)

Platform(s)

All.

Exit For (statement)

Syntax
Exit For

Description

Causes execution to exit the innermost For loop, continuing execution on the line
following the Next statement.

Comments

This statement can only appear within a For...Next block.

Example
'This example will fill an array with directory entries until a

'null entry is encountered or 100 entries have been processed--

'at which time, the loop is terminated by an Exit For statement.

'The dialog box displays a count of files found and then some

'entries from the array.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim a$(100)
1044 Chapter 4 - BasicScript Reference

For i = 1 To 100

If i = 1 Then

a$(i) = Dir$("*")

Else

a$(i) = Dir$

End If

If (a$(i) = "") Or (i >= 100) Then Exit For

Next i

message = "There are " & i & " files found." & crlf

MsgBox message & a$(1) & crlf & a$(2) & crlf & a$(3) _

& crlf & a$(10)

End Sub

See Also

Stop (statement), Exit Do (statement), Exit Function (statement), Exit Sub (statement),
End (statement), For...Next (statement)

Platform(s)

All.

Exit Function (statement)

Syntax
Exit Function

Description

Causes execution to exit the current function, continuing execution on the statement
following the call to this function.

Comments

This statement can only appear within a function.

Example
'This function displays a message and then terminates with Exit

'Function.

Function Test_Exit() As Integer
Picture Caching 1045

MsgBox "Testing function exit, returning to Main()."

Test_Exit = 0

Exit Function

MsgBox "This line should never execute."

End Function

Sub Main()

a% = Test_Exit()

MsgBox "This is the last line of Main()."

End Sub

See Also

Stop (statement), Exit For (statement), Exit Do (statement), Exit Sub (statement), End
(statement), Function...End Function (statement)

Platform(s)

All.

Exit Sub (statement)

Syntax
Exit Sub

Description

Causes execution to exit the current subroutine, continuing execution on the
statement following the call to this subroutine.

Comments

This statement can appear anywhere within a subroutine. It cannot appear within a
function.

Example
'This example displays a dialog box and then exits. The last

'line should never execute because of the Exit Sub statement.

Sub Main()

MsgBox "Terminating Main()."

Exit Sub
1046 Chapter 4 - BasicScript Reference

MsgBox "Still here in Main()."

End Sub

See Also

Stop (statement), Exit For (statement), Exit Do (statement), Exit Function (statement),
End (statement), Sub...End Sub (statement)

Platform(s)

All.

FileCopy (statement)

Syntax
FileCopy source, destination

Description

Copies a source file to a destination file.

Comments

The FileCopy function takes the following named parameters:

The file will be copied and renamed if the source and destination filenames are not
the same.

Some platforms do not support drive letters and may not support dots to indicate
current and parent directories.

Example
'This example copies the autoexec.bat file to "autoexec.sav",

'then opens the copied file and tries to copy it again--which

Named Parameter Description

source String containing the name of a single file to copy.The source
parameter cannot contain wildcards (? or *) but may contain path
information.

destination String containing a single, unique destination file, which may contain
a drive and path specification.
Picture Caching 1047

'generates an error.

Sub Main()

On Error Goto ErrHandler

FileCopy "c:\autoexec.bat", "c:\autoexec.sav"

Open "c:\autoexec.sav" For Input As # 1

FileCopy "c:\autoexec.sav", "c:\autoexec.sv2"

Close

Exit Sub

ErrHandler:

If Err = 55 Then 'File already open.

MsgBox "Cannot copy an open file. Close it and try again."

Else

MsgBox "An unspecified file copy error has occurred."

End If

Resume Next

End Sub

See Also

Kill (statement), Name (statement)

Platform(s)

All.

FileDirs (statement)

Syntax
FileDirs array() [,dirspec$]

Description

Fills a String or Variant array with directory names from disk.
1048 Chapter 4 - BasicScript Reference

Comments

The FileDirs statement takes the following parameters:

Example
'This example fills an array with directory entries and displays

'the first one.

Sub Main()

Dim a$()

FileDirs a$,"c:*.*"

MsgBox "The first directory is: " & a$(0)

End Sub

See Also

FileList (statement), Dir, Dir$ (functions), CurDir, CurDir$ (functions), ChDir
(statement)

Platform(s)

All.

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array can
be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound,
and ArrayDims functions to determine the number and size of the new
array's dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is
too small to hold the new elements.

dirspec$ String containing the file search mask, such as:

t*.

c:*.*

If this parameter is omitted or an empty string, then * is used, which fills the
array with all the subdirectory names within the current directory.
Picture Caching 1049

FileList (statement)

Syntax
FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

Description

Fills a String or Variant array with filenames from disk.

Comments

The FileList function takes the following parameters:

Parameter Description

array() Either a zero- or a one-dimensioned array of strings or variants. The array
can be either dynamic or fixed.

If array() is dynamic, then it will be redimensioned to exactly hold the new
number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound,
UBound, and ArrayDims functions to determine the number and size of the
new array's dimensions.

If the array is fixed, each array element is first erased, then the new elements
are placed into the array. If there are fewer elements than will fit in the array,
then the remaining elements are initialized to zero-length strings (for String
arrays) or Empty (for Variant arrays). A runtime error results if the array is
too small to hold the new elements.

filespec$ String specifying which filenames are to be included in the list.

The filespec$ parameter can include wildcards, such as * and ?. If this
parameter is omitted, then * is used.

include_attr Integer specifying attributes of files you want included in the list. It can be
any combination of the attributes listed below.

exclude_attr Integer specifying attributes of files you want excluded from the list. It can
be any combination of the attributes listed below.
1050 Chapter 4 - BasicScript Reference

The FileList function returns different files as specified by the include_attr and
exclude_attr and whether these parameter have been specified. The following table
shows these differences:If neither the include_attr or exclude_attr have been specified,
then the following defaults are assumed:

If include_attr is specified and exclude_attr is missing, then FileList excludes all files
not specified by include_attr. If include_attr is missing, its value is assumed to be
zero.

Wildcards

The * character matches any sequence of zero or more characters, whereas the ?
character matches any single character. Multiple *'s and ?'s can appear within the
expression to form complete searching patterns. The following table shows some
examples:

File Attributes

These numbers can be any combination of the following:

Parameter Default

exclude_attr ebHidden Or ebDirectory Or ebSystem Or ebVolume

include_attr ebNone Or ebArchive Or ebReadOnly

This pattern Matches these files Doesn't match these files

*S.*TXT SAMPLE.
TXTGOOSE.TXTSAMS.TXT

SAMPLESAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXTACATS.TXT

C*T CATCAP.TXT CAT.DOC

C?T CATCUT CAT.TXTCAPITCT

* (All files)

Constant Value Includes

ebNormal 0 Read-only, archive, subdir, none

ebReadOnly 1 Read-only files
Picture Caching 1051

Example
'This example fills an array a with the directory of the current

'drive for all files that have normal or no attributes and

'excludes those with system attributes. The dialog box displays

'four filenames from the array.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim a$()

FileList a$,"*.*", (ebNormal + ebNone), ebSystem

If ArrayDims(a$) > 0 Then

 MsgBox a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4)

Else

MsgBox "No files found."

End If

End Sub

See Also

FileDirs (statement), Dir, Dir$ (functions)

Platform(s)

All.

Platform Notes: Windows

For compatibility with DOS wildcard matching, BasicScript special-cases the pattern
"*.*" to indicate all files, not just files with a periods in their names.

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 Subdirectories

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes

Constant Value Includes
1052 Chapter 4 - BasicScript Reference

Platform Notes: UNIX

On UNIX platforms, the hidden file attribute corresponds to files without the read or
write attributes.

For Each...Next (statement)

Syntax
For Each member in group

[statements]

[Exit For]

[statements]

Next [member]

Description

Repeats a block of statements for each element in a collection or array.

Comments

The For Each...Next statement takes the following parameters:

BasicScript supports iteration through the elements of OLE collections or arrays,
unless the arrays contain user-defined types or fixed-length strings. The iteration
variable is a copy of the collection or array element in the sense that change to the
value of member within the loop has no effect on the collection or array.

The For Each...Next statement traverses array elements in the same order the
elements are stored in memory. For example, the array elements contained in the
array defined by the statement

Dim a(1 To 2,3 To 4)

are traversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the
elements are traversed should not be relevant to the correct operation of the script.

Parameter Description

member Name of the variable used for each iteration of the loop. If group is an array,
then member must be a Variant variable. If group is a collection, then member
must be an Object variable, an explicit OLE automation object, or a Variant.

group Name of a collection or array.

statements Any number of BasicScript statements.
Picture Caching 1053

The For Each...Next statement continues executing until there are no more elements in
group or until an Exit For statement is encountered.

For Each...Next statements can be nested. In such a case, the Next [member] statement
applies to the innermost For Each...Next or For...Next statement. Each member
variable of nested For Each...Next statements must be unique.

A Next statement appearing by itself (with no member variable) matches the
innermost For Each...Next or For...Next loop.

Example
’The following subroutine iterates through the elements

’of an array using For Each...Next.

Sub Main()

Dim a(3 To 10) As Single

Dim i As Variant

Dim s As String

For i = 3 To 10

a(i) = Rnd()

Next i

For Each i In a

i = i + 1

Next i

s = ""

For Each i In a

If s <> "" Then s = s & ","

s = s & i

Next i

MsgBox s

End Sub

’The following subroutine displays the names of each worksheet

’in an Excel workbook.

Sub Main()

Dim Excel As Object

Dim Sheets As Object

Set Excel = CreateObject("Excel.Application")

Excel.Visible = 1
1054 Chapter 4 - BasicScript Reference

Excel.Workbooks.Add

Set Sheets = Excel.Worksheets

For Each a In Sheets

MsgBox a.Name

Next a

End Sub

See Also

Do...Loop (statement), While...Wend (statement), For...Next (statement)

Platform(s)

All.

Platform Notes: Windows, Win32

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under Windows and Win32, you can break out of infinite loops using
Ctrl+Break.

Platform Notes: UNIX

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Platform Notes: Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in your
code. On the Macintosh, you can break out of infinite loops using Command+Period.

Platform Notes: OS/2

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

For...Next (statement)

Syntax
For counter = start To end [Step increment]

[statements]

[Exit For]
Picture Caching 1055

[statements]

Next [counter [,nextcounter]...]

Description

Repeats a block of statements a specified number of times, incrementing a loop
counter by a given increment each time through the loop.

Comments

The For statement takes the following parameters:

The For...Next statement continues executing until an Exit For statement is
encountered when counter is greater than end.

For...Next statements can be nested. In such a case, the Next [counter] statement
applies to the innermost For...Next.

The Next clause can be optimized for nested next loops by separating each counter
with a comma. The ordering of the counters must be consistent with the nesting order
(innermost counter appearing before outermost counter). The following example
shows two equivalent For statements:

For i = 1 To 10

For j = 1 To 10

Next j,i

Parameter Description

counter Name of a numeric variable. Variables of the following types can be used:
Integer, Long, Single, Double, Variant.

start Initial value for counter. The first time through the loop, counter is assigned
this value.

end Final value for counter. The statements will continue executing until counter
is equal to end.

increment Amount added to counter each time through the loop. If end is greater than
start, then increment must be positive. If end is less than start, then increment
must be negative.

If increment is not specified, then 1 is assumed. The expression given as
increment is evaluated only once. Changing the step during execution of the
loop will have no effect.

statements Any number of BasicScript statements.
1056 Chapter 4 - BasicScript Reference

For i = 1 To 10

For j = 1 To 10

Next j

Next i

A Next clause appearing by itself (with no counter variable) matches the innermost
For loop.

The counter variable can be changed within the loop but will have no effect on the
number of times the loop will execute.

Example
'This example constructs a truth table for the OR statement

'using nested For...Next loops.

Sub Main()

For x = -1 To 0

For y = -1 To 0

Z = x Or y

message = message & Format(Abs(x%),"0") & " Or "

message = message & Format(Abs(y%),"0") & " = "

message = message & Format(Z,"True/False") & Basic.Eoln$

Next y

Next x

MsgBox message

End Sub

See Also

Do...Loop (statement), While...Wend (statement)

Platform(s)

All.

Platform Notes: Windows, Win32

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under Windows and Win32, you can break out of infinite loops using
Ctrl+Break.
Picture Caching 1057

Platform Notes: UNIX

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under UNIX, you can break out of infinite loops using Ctrl+C.

Platform Notes: Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in your
code. On the Macintosh, you can break out of infinite loops using Command+Period.

Platform Notes: OS/2

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

Function...End Function (statement)

Syntax
[Private | Public] [Static] Function name[(arglist)] [As ReturnType]

[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are
allowed):

[Optional] [ByVal | ByRef] parameter [()] [As type]

Description

Creates a user-defined function.

Comments

The Function statement has the following parts:

Part Description

Private Indicates that the function being defined cannot be called from other
scripts.

Public Indicates that the function being defined can be called from other scripts. If
both the Private and Public keywords are missing, then Public is assumed.

Static Recognized by the compiler but currently has no effect.
1058 Chapter 4 - BasicScript Reference

A function returns to the caller when either of the following statements is
encountered:

End Function

Exit Function

Functions can be recursive.

name Name of the function, which must follow BasicScript naming conventions:

1 - Must start with a letter.

2 - May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point (!)
can appear within the name as long as it is not the last character, in which
case it is interpreted as a type-declaration character.

3 - Must not exceed 80 characters in length.Additionally, the name
parameter can end with an optional type-declaration character specifying
the type of data returned by the function (i.e., any of the following
characters: %, &, !, #, @.

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type Variant. Furthermore, all parameters that follow the first
optional parameter must also be optional.If this keyword is omitted, then
the parameter is required.

Note: You can use the IsMissing function to determine whether an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that parameter is passed by value.

ByRef Keyword indicating that parameter is passed by reference. If neither the
ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (Integer, String, and so on). Arrays are indicated with
parentheses. For example, an array of integers would be declared as
follows:Function Test(a() As Integer)End Function

ReturnType Type of data returned by the function. If the return type is not given, then
Variant is assumed. The ReturnType can only be specified if the function
name (i.e., the name parameter) does not contain an explicit
type-declaration character.

Part Description
Picture Caching 1059

Returning Values from Functions

To assign a return value, an expression must be assigned to the name of the function,
as shown below:

Function TimesTwo(a As Integer) As Integer

TimesTwo = a * 2

End Function

If no assignment is encountered before the function exits, then one of the following
values is returned:

The type of the return value is determined by the As ReturnType clause on the
Function statement itself. As an alternative, a type-declaration character can be added
to the Function name. For example, the following two definitions of Test both return
String values:

Function Test() As String

Test = "Hello, world"

End Function

Function Test$()

Test = "Hello, world"

End Function

Functions in BasicScript cannot return user-defined types or dialogs.

Passing Parameters to Functions

Parameters are passed to a function either by value or by reference, depending on the
declaration of that parameter in arglist. If the parameter is declared using the ByRef
keyword, then any modifications to that passed parameter within the function change
the value of that variable in the caller. If the parameter is declared using the ByVal

Value Data Type Returned by the Function

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean
1060 Chapter 4 - BasicScript Reference

keyword, then the value of that variable cannot be changed in the called function. If
neither the ByRef or ByVal keywords are specified, then the parameter is passed by
reference.

You can override passing a parameter by reference by enclosing that parameter within
parentheses. For instance, the following example passes the variable j by reference,
regardless of how the third parameter is declared in the arglist of UserFunction:

i = UserFunction(10,12,(j))

Optional Parameters

BasicScript allows you to skip parameters when calling functions, as shown in the
following example:

Function Test(a%,b%,c%) As Variant

End Function

Sub Main

a = Test(1,,4) 'Parameter 2 was
skipped.

End Sub

You can skip any parameter, with the following restrictions:

■ The call cannot end with a comma. For instance, using the above example, the
following is not valid:

a = Test(1,,)

■ 2.The call must contain the minimum number of parameters as required by the
called function. For instance, using the above example, the following are invalid:

'Only passes two out of three required parameters.

a = Test(,1)

'Only passes two out of three required parameters.

a = Test(1,2)
Optional Parameters 1061

When you skip a parameter in this manner, BasicScript creates a temporary variable
and passes this variable instead. The value of this temporary variable depends on the
data type of the corresponding parameter in the argument list of the called function,
as described in the following table:

Within the called function, you will be unable to determine whether a parameter was
skipped unless the parameter was declared as a variant in the argument list of the
function. In this case, you can use the IsMissing function to determine whether the
parameter was skipped:

Function Test(a,b,c)

If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Function

Example
Function Factorial(n%) As Integer

'This function calculates N! (N-factoral).

f% = 1

For i = n To 2 Step -1

f = f * i

Next i

Factorial = f

End Function

Sub Main()

'This example calls user-defined function Factoral and

'displays the result in a dialog box.

a% = 0

Value Data Type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean
1062 Chapter 4 - BasicScript Reference

prompt$ = "Enter an integer number greater than 2."

Do While a% < 2

a% = Val(InputBox$(prompt,"Compute Factorial"))

Loop

b# = Factorial(a%)

MsgBox "The factoral of " & a% & " is: " & b#

End Sub

See Also

Sub...End Sub (statement)

Platform(s)

All.

Get (statement)

Syntax
Get [#] filenumber, [recordnumber], variable

Description

Retrieves data from a random or binary file and stores that data into the specified
variable.

Comments

The Get statement accepts the following parameters:

Parameter Description

filenumber Integer used by BasicScript to identify the file. This is the same number
passed to the Open statement.
Optional Parameters 1063

With random files, a runtime error will occur if the length of the data being read
exceeds the reclen parameter specified with the Open statement. If the length of the
data being read is less than the record length, the file pointer is advanced to the start
of the next record. With binary files, the data elements being read are contiguous the
file pointer is never advanced.

Variable Types

The type of the variable parameter determines how data will be read from the file. It
can be any of the following types:
a

recordnumber Long specifying which record is to be read from the file.

For binary files, this number represents the first byte to be read starting with
the beginning of the file (the first byte is 1). For random files, this number
represents the record number starting with the beginning of the file (the first
record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is read from the file
(if no records have been read yet, then the first record in the file is read). When
this parameter is omitted, the commas must still appear, as in the following
example:

Get #1,,recvar

If recordnumber is specified, it overrides any previous change in file position
specified with the Seek statement.

variable Variable into which data will be read. The type of the variable determines
how the data is read from the file, as described below.

Parameter Description

Variable Type File Storage Description

Integer 2 bytes are read from the file.

Long 4 bytes are read from the file.

String
(variable-length)

In binary files, variable-length strings are read by first determining the
specified string variable's length and then reading that many bytes from
the file. For example, to read a string of eight characters:

s$=String$(8,"")Get#,,s$

In random files, variable-length strings are read by first reading a 2-byte
length and then reading that many characters from the file.

String
(fixed-length)

Fixed-length strings are read by reading a fixed number of characters
from the file equal to the string's declared length.

Double 8 bytes are read from the file (IEEE format).
1064 Chapter 4 - BasicScript Reference

Example
'This example opens a file for random write, then writes ten

'records into the file with the values 10...50. Then the file is

'closed and reopened in random mode for read, and the records

'are read with the Get statement. The result is displayed in a

'message box.

Sub Main()

Open "test.dat" For Random Access Write As #1

For x = 1 to 10

y% = x * 10

Put #1,x,y

Next x

Close

Open "test.dat" For Random Access Read As #1

For y = 1 to 5

Single 4 bytes are read from the file (IEEE format).

Date 8 bytes are read from the file (IEEE double format).

Boolean 2 bytes are read from the file. Nonzero values are True, and zero values
are False.

Variant A 2-byte VarType is read form the file, which determines the format of
the data that follows. Once the VarType is known, the data is read
individually, as described above. With user-defined errors, after the
2-byte VarType, a 2-byte unsigned integer is read and assigned as the
value of the user-defined error, followed by 2 additional bytes of
information about the error.

The exception is with strings, which are always preceded by a 2-byte
string length.

User-defined types Each member of a user-defined data type is read individually.In binary
files, variable-length strings within user-defined types are read by first
reading a 2-byte length followed by the string's content. This storage is
different from variable-length strings outside of user-defined types.

When reading user-defined types, the record length must be greater than
or equal to the combined size of each element within the data type.

Arrays Arrays cannot be read from a file using the Get statement.

Object Object variables cannot be read from a file using the Get statement.

Variable Type File Storage Description
Optional Parameters 1065

Get #1,y,x%

message = message & "Record " & y & ": " & x% & Basic.Eoln$

Next y

MsgBox message

Close

End Sub

See Also

Open (statement), Put (statement), Input# (statement), Line Input# (statement), Input,
Input$, InputB, InputB$ (functions)

Platform(s)

All.

Global (statement)

Description

See Public (statement).

Platform(s)

All.

GoSub (statement)

Syntax
GoSub label

Description

Causes execution to continue at the specified label.

Comments

Execution can later be returned to the statement following the GoSub by using the
Return statement.

The label parameter must be a label within the current function or subroutine. GoSub
outside the context of the current function or subroutine is not allowed.
1066 Chapter 4 - BasicScript Reference

Example
'This example gets a name from the user and then branches to a

'subroutine to check the input. If the user clicks Cancel or

'enters a blank name, the program terminates; otherwise, the

'name is set to MICHAEL, and a message is displayed.

Sub Main()

uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))

GoSub CheckName

MsgBox "Hello, " & uname$

Exit Sub

CheckName:

If (uname$ = "") Then

GoSub BlankName

ElseIf uname$ = "MICHAEL" Then

GoSub RightName

Else

GoSub OtherName

End If

Return

BlankName:

MsgBox "No name? Clicked Cancel? I'm shutting down."

Exit Sub

RightName:

Return

OtherName:

MsgBox "I am renaming you MICHAEL!"

uname$ = "MICHAEL"

Return

End Sub

See Also

Goto (statement), Return (statement)

Platform(s)

All.
Optional Parameters 1067

Goto (statement)

Syntax
Goto label

Description

Transfers execution to the line containing the specified label.

Comments

The compiler will produce an error if label does not exist.

The label must appear within the same subroutine or function as the Goto.

Labels are identifiers that follow these rules:

■ Must begin with a letter.

■ May contain letters, digits, and the underscore character.

■ Must not exceed 80 characters in length.

■ Must be followed by a colon (:).

Labels are not case-sensitive.

Example
'This example gets a name from the user and then branches to a

'statement, depending on the input name. If the name is not

'MICHAEL, it is reset to MICHAEL unless it is null or the user

'clicks Cancel--in which case, the program displays a message

'and terminates.

Sub Main()

uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))

If uname$ = "MICHAEL" Then

Goto RightName

Else

Goto WrongName

End If

WrongName:

If (uname$ = "") Then

MsgBox "No name? Clicked Cancel? I'm shutting down."
1068 Chapter 4 - BasicScript Reference

Else

MsgBox "I am renaming you MICHAEL!"

uname$ = "MICHAEL"

Goto RightName

End If

Exit Sub

RightName:

MsgBox "Hello, MICHAEL!"

End Sub

See Also

GoSub (statement), Call (statement)

Platform(s)

All.

Platform Notes: Windows, Win32

To break out of an infinite loop, press Ctrl+Break.

Platform Notes: UNIX

To break out of an infinite loop, press Ctrl+C.

Platform Notes: Macintosh

To break out of an infinite loop, press Ctrl+Period.

Platform Notes: OS/2

To break out of an infinite loop, press Ctrl+C or Ctrl+Break.

GroupBox (statement)

Syntax
GroupBox x,y,width,height,title$ [,.Identifier]

Description

Defines a group box within a dialog box template.
Optional Parameters 1069

Comments

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The group box control is used for static display only if the user cannot interact with a
group box control.

Separator lines can be created using group box controls. This is accomplished by
creating a group box that is wider than the width of the dialog box and extends below
the bottom of the dialog box--i.e., three sides of the group box are not visible.

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with
no title.

The GroupBox statement requires the following parameters:

Example
'This example shows the GroupBox statement being used both for

'grouping and as a separator line.

Sub Main()

Begin Dialog OptionsTemplate 16,32,128,84,"Options"

GroupBox 4,4,116,40,"Window Options"

CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar

CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar

GroupBox -12,52,152,48," ",.SeparatorLine

OKButton 16,64,40,14,.OK

CancelButton 68,64,40,14,.Cancel

End Dialog

Dim OptionsDialog As OptionsTemplate

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the label of the group box. If title$ is a zero-length string,
then no title will appear.

.Identifier Optional parameter that specifies the name by which this control can be
referenced by statements in a dialog function (such as DlgFocus and
DlgEnable). If omitted, then the first two words of title$ are used.
1070 Chapter 4 - BasicScript Reference

Dialog OptionsDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), ListBox (statement),
OKButton (statement), OptionButton (statement), OptionGroup (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, OS/2, Macintosh, UNIX.

HelpButton (statement)

Syntax
HelpButton x,y,width,height,HelpFileName$,HelpContext,
[,.Identifier]

Description

Defines a help button within a dialog template.

Comments

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The HelpButton statement takes the following parameters:

Parameter Description

x,y Integer position of the control (in dialog units) relative to the upper left
corner of the dialog box.

width,height Integer dimensions of the control in dialog units.

HelpFileName$ String expression specifying the name of the help file to be invoked when
the button is selected.

HelpContext Long expression specifying the ID of the topic within HelpFileName$
containing context-sensitive help.
Optional Parameters 1071

When the user selects a help button, the associated help file is located at the indicated
topic. Selecting a help button does not remove the dialog. Similarly, no actions are sent
to the dialog procedure when a help button is selected.

When a help button is present within a dialog, it can be automatically selected by
pressing the help key (F1 on most platforms).

Example
Sub Main()

Begin Dialog HelpDialogTemplate ,,180,96,"Untitled"

OKButton 132,8,40,14

CancelButton 132,28,40,14

HelpButton 132,48,40,14,"", 10

Text 16,12,88,12,"Please click ""Help"".",.Text1

End Dialog

Dim HelpDialog As HelpDialogTemplate

Dialog HelpDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), Picture (statement), PushButton (statement), Text (statement), Begin
Dialog (statement), PictureButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

HLine (statement)

Syntax
HLine [lines]

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

Parameter Description
1072 Chapter 4 - BasicScript Reference

Description

Scrolls the window with the focus left or right by the specified number of lines.

Comments

The lines parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled right by one line.

Example
'This example scrolls the Notepad window to the left by three

'"amounts." Each "amount" is equivalent to clicking the right

'arrow of the horizontal scroll bar once.

Sub Main()

AppActivate "Notepad"

HLine 3 'Move 3 lines in.

End Sub

See Also

HPage (statement), HScroll (statement)

Platform(s)

Windows, Win32.

HPage (statement)

Syntax
HPage [pages]

Description

Scrolls the window with the focus left or right by the specified number of pages.

Comments

The pages parameter is an Integer specifying the number of pages to scroll. If this
parameter is omitted, then the window is scrolled right by one page.

Example
'This example scrolls the Notepad window to the left by three
Optional Parameters 1073

'"amounts." Each "amount" is equivalent to clicking within the

'horizontal scroll bar on the right side of the thumb mark.

Sub Main()

AppActivate "Notepad"

HPage 3 'Move 3 pages down.

End Sub

See Also

HLine (statement), HScroll (statement)

Platform(s)

Windows, Win32.

HScroll (statement)

Syntax
HScroll percentage

Description

Sets the thumb mark on the horizontal scroll bar attached to the current window.

Comments

The position is given as a percentage of the total range associated with that scroll bar.
For example, if the percentage parameter is 50, then the thumb mark is positioned in
the middle of the scroll bar.

Example
'This example centers the thumb mark on the horizontal scroll

'bar of the Notepad window.

Sub Main()

AppActivate "Notepad"

HScroll 50 'Jump to the middle of the
document.

End Sub

See Also

HLine (statement), HPage (statement)
1074 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32.

If...Then...Else (statement)

Syntax 1
If condition Then statements [Else else_statements]

Syntax 2
If condition Then

[statements]

[ElseIf else_condition Then

[elseif_statements]]

[Else

[else_statements]]

End If

Description

Conditionally executes a statement or group of statements.

Comments

The single-line conditional statement (syntax 1) has the following parameters:

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements separated with colons. This group of statements is
executed when condition is True.

else_stateme
nts

One or more statements separated with colons. This group of statements is
executed when condition is False.

Parameter Description

condition Any expression evaluating to a Boolean value.
Optional Parameters 1075

There can be as many ElseIf conditions as required.

Example
'This example inputs a name from the user and checks to see

'whether it is MICHAEL or MIKE using three forms of the

'If...Then...Else statement. It then branches to a statement

'that displays a welcome message depending on the user's name.

Sub Main()

uname$ = UCase$(InputBox$("Enter your name:","Enter Name"))

If uname$ = "MICHAEL" Then GoSub MikeName

If uname$ = "MIKE" Then

GoSub MikeName

Exit Sub

End If

If uname$ = "" Then

MsgBox "Since you don't have a name, I'll call you MIKE!"

uname$ = "MIKE"

GoSub MikeName

ElseIf uname$ = "MICHAEL" Then

GoSub MikeName

Else

GoSub OtherName

End If

Exit Sub

MikeName:

statements One or more statements to be executed when condition is True.

else_condition Any expression evaluating to a Boolean value. The else_condition is
evaluated if condition is False.

elseif_statements One or more statements to be executed when condition is False and
else_condition is True.

else_statments One or more statements to be executed when both condition and
else_condition are False.

Parameter Description
1076 Chapter 4 - BasicScript Reference

MsgBox "Hello, MICHAEL!"

Return

OtherName:

MsgBox "Hello, " & uname$ & "!"

Return

End Sub

See Also

Choose (function), Switch (function), IIf (function), Select...Case (statement)

Platform(s)

All.

Inline (statement)

Syntax
Inline name [parameters]

anytext

End Inline

Description

Allows execution or interpretation of a block of text.

Comments

The Inline statement takes the following parameters:

Example
Sub Main()

Parameter Description

name Identifier specifying the type of inline statement

parameters Comma-separated list of parameters.

anytext Text to be executed by the Inline statement. This text must be in a format
appropriate for execution by the Inline statement.The end of the text is assumed
to be the first occurrence of the words End Inline appearing on a line.
Optional Parameters 1077

Inline MacScript

-- AppleScript comment.

Beep

Display Dialog "AppleScript" buttons "OK"

End Inline

End Sub

See Also

MacScript (statement)

Platform(s)

All.

Kill (statement)

Syntax
Kill pathname

Kill pathname [,filetype]

Kill filetype

Description

Deletes all files matching pathname.

Comments

The Kill statement accepts the following named parameters:

File types are specified using the MacID function.

Named Parameter Description

pathname Specifies the file to delete. If filetype is specified, then this parameter
must specify a path. Otherwise, this parameter can include both a path
and a file specification containing wildcards.

filetype Specifies the type of file on a Macintosh. If pathname is also specified, it
indicates the directory from which files will be removed. Otherwise, files
are removed from the current directory.
1078 Chapter 4 - BasicScript Reference

The pathname argument can include wildcards, such as * and ?. The * character
matches any sequence of zero or more characters, whereas the ? character matches
any single character. Multiple *'s and ?'s can appear within the expression to form
complex searching patterns.

Example
'This example looks to see whether file test1.dat exists. If it

'does not, then it creates both test1.dat and test2.dat. The

'existence of the files is tested again; if they exist, a

'message is generated, and then they are deleted. The final test

'looks to see whether they are still there and displays the

'result.

Sub Main()

If Not FileExists("test1.dat") Then

Open "test1.dat" For Output As #1

Open "test2.dat" For Output As #2

Close

End If

If FileExists ("test1.dat") Then

MsgBox "File test1.dat exists."

Kill "test?.dat"

End If

If FileExists ("test1.dat") Then

MsgBox "File test1.dat still exists."

Else

MsgBox "test?.dat sucessfully deleted."

End If

End Sub

See Also

Name (statement)

Platform(s)

All.
Optional Parameters 1079

Platform Notes: Windows

For compatibility with DOS wildcard matching, BasicScript special-cases the pattern
"*.*" to indicate all files, not just files with a periods in their names.

This function behaves the same as the “del” command in DOS.

Platform Notes: Macintosh

The Macintosh does not support wildcard characters such as * and ?. These are valid
filename characters. Instead of wildcards, the Macintosh uses the MacID function to
specify a collection of files of the same type. The syntax for this function is:

Kill MacID(text$)

The text$ parameter is a four-character string containing a file type, a resource type,
an application signature, or an Apple event. A runtime error occurs if the MacID
function is used on platforms other than the Macintosh.

Let (statement)

Syntax
[Let] variable = expression

Description

Assigns the result of an expression to a variable.

Comments

The use of the word Let is supported for compatibility with other implementations of
BasicScript. Normally, this word is dropped.

When assigning expressions to variables, internal type conversions are performed
automatically between any two numeric quantities. Thus, you can freely assign
numeric quantities without regard to type conversions. However, it is possible for an
overflow error to occur when converting from larger to smaller types. This happens
when the larger type contains a numeric quantity that cannot be represented by the
smaller type. For example, the following code will produce a runtime error:

Dim amount As Long

Dim quantity As Integer

amount = 400123 'Assign a value out of
range for int.

quantity = amount 'Attempt to assign to
Integer.
1080 Chapter 4 - BasicScript Reference

When performing an automatic data conversion, underflow is not an error.

Example
Sub Main()

Let a$ = "This is a string."

Let b% = 100

Let c# = 1213.3443

End Sub

See Also

= (operator), Expression Evaluation (topic)

Platform(s)

All.

ListBox (statement)

Syntax
ListBox x,y,width,height,ArrayVariable,.Identifier

Description

Creates a list box within a dialog box template.

Comments

When the dialog box is invoked, the list box will be filled with the elements contained
in ArrayVariable.

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The ListBox statement requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.
Optional Parameters 1081

Example
'This example creates a dialog box with two list boxes, one

'containing files and the other containing directories.

Sub Main()

Dim files() As String

Dim dirs() As String

Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"

Text 8,4,24,8,"&Files:"

ListBox 8,16,60,72,files$,.Files

Text 76,4,21,8,"&Dirs:"

ListBox 76,16,56,72,dirs$,.Dirs

OKButton 140,4,40,14

CancelButton 140,24,40,14

End Dialog

FileList files

FileDirs dirs

Dim ListBoxDialog As ListBoxTemplate

rc% = Dialog(ListBoxDialog)

End Sub

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the
elements of the list box. If this array has no dimensions, then the list box
will be initialized with no elements. A runtime error results if the
specified array contains more than one dimension.

ArrayVariable can specify an array of any fundamental data type
(structures are not allowed). Null and Empty values are treated as
zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates
an integer variable whose value corresponds to the index of the list box's
selection (0 is the first item, 1 is the second, and so on). This variable can
be accessed using the following syntax:DialogVariable.Identifier

Parameter Description
1082 Chapter 4 - BasicScript Reference

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
OKButton (statement), OptionButton (statement), OptionGroup (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Lock, Unlock (statements)

Syntax
Lock [#] filenumber [,{record | [start] To end}]

Unlock [#] filenumber [,{record | [start] To end}]

Description

Locks or unlocks a section of the specified file, granting or denying other processes
access to that section of the file.

Comments

The Lock statement locks a section of the specified file, preventing other processes
from accessing that section of the file until the Unlock statement is issued. The
Unlock statement unlocks a section of the specified file, allowing other processes
access to that section of the file.

The Lock and Unlock statements require the following parameters:

Parameter Description

filenumber Integer used by BasicScript to refer to the open file—the number passed to the
Open statement.

record Long specifying which record to lock or unlock.

start Long specifying the first record within a range to be locked or unlocked.

end Long specifying the last record within a range to be locked or unlocked.
Optional Parameters 1083

For sequential files, the record, start, and end parameters are ignored. The entire file
is locked or unlocked.

The section of the file is specified using one of the following:

The lock range must be the same as that used to subsequently unlock the file range,
and all locked ranges must be unlocked before the file is closed. Ranges within files
are not unlocked automatically by BasicScript when your script terminates, which can
cause file access problems for other processes. It is a good idea to group the Lock and
Unlock statements close together in the code, both for readability and so subsequent
readers can see that the lock and unlock are performed on the same range. This
practice also reduces errors in file locks.

Example
'This example creates a file named test.dat and fills it

'with 'ten string variable records. These are displayed in a

'dialog box. The file is then reopened for read/write, and

'each record is locked, modified, rewritten, and unlocked.

'The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

a$ = "This is record number: "

b$ = "0"

rec$ = ""

message = ""

Open "test.dat" For Random Access Write Shared As #1

For x = 1 To 10

rec$ = a$ & x

Syntax Description

No parameters Locks or unlocks the entire file (no record specification is given).

record Locks or unlocks the specified record number (for Random files) or byte (for
Binary files).

To end Locks or unlocks from the beginning of the file to the specified record (for
Random files) or byte (for Binary files).

start To end Locks or unlocks the specified range of records (for Random files) or bytes
(for Binary files).
1084 Chapter 4 - BasicScript Reference

Lock #1,x

Put #1,,rec$

Unlock #1,x

message = message & rec$ & crlf

Next x

Close

MsgBox "The records are:" & crlf & message

message = ""

Open "test.dat" For Random Access Read Write Shared As #1

For x = 1 To 10

rec$ = Mid$(rec$,1,23) & (11 - x)

Lock #1,x

Put #1,x,rec$

Unlock #1,x

message = message & rec$ & crlf

Next x

MsgBox "The records are: " & crlf & message

Close

Kill "test.dat"

End Sub

See Also

Open (statement)

Platform(s)

All.

Platform Notes: Macintosh

On the Macintosh, file locking will only succeed on volumes that are shared (i.e., file
sharing is on).

Platform Notes: UNIX

Under all versions of UNIX, file locking is ignored.
Optional Parameters 1085

LSet (statement)

Syntax 1
LSet dest = source

Syntax 2
LSet dest_variable = source_variable

Description

Left-aligns the source string in the destination string or copies one user-defined type
to another.

Comments

Syntax 1

The LSet statement copies the source string source into the destination string dest.
The dest parameter must be the name of either a String or Variant variable. The
source parameter is any expression convertible to a string.

If source is shorter in length than dest, then the string is left-aligned within dest, and
the remaining characters are padded with spaces. If source$ is longer in length than
dest, then source is truncated, copying only the leftmost number of characters that
will fit in dest.

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not
convertible to a String, then a runtime error occurs. A runtime error results if
destvariable is Null.

Syntax 2

The source structure is copied byte for byte into the destination structure. This is
useful for copying structures of different types. Only the number of bytes of the
smaller of the two structures is copied. Neither the source structure nor the
destination structure can contain strings.

Example
'This example replaces a 40-character string of asterisks

'(*) with an RSet and LSet string and then displays the

'result.
1086 Chapter 4 - BasicScript Reference

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim message, tmpstr$

tmpstr$ = String$(40, "*")

message = "Here are two strings that have been " & crlf

message = message & "right- and left-justified in a" & _

" 40-character string." & crlf & crlf

RSet tmpstr$ = "Right->"

message = message & tmpstr$ & crlf

LSet tmpstr$ = "<-Left"

message = message & tmpstr$ & crlf

MsgBox message

End Sub

See Also

RSet (statement)

Platform(s)

All.

MacScript (statement)

Syntax
MacScript script

Description

Executes the specified AppleScript script.

Comments

When using the MacScript statement, you can separate multiple lines by embedding
carriage returns:

MacScript "Beep" + Chr(13) + "Display Dialog ""Hello"""

If embedding carriage returns proves cumbersome, you can use the Inline statement.
The following Inline statement is equivalent to the above example:

Inline MacScript

Beep
Optional Parameters 1087

Display Dialog "Hello"

End Inline

Example
Sub Main()

MacScript "display dialog ""AppleScript"""

End Sub

See Also

Inline (statement)

Platform(s)

Macintosh.

Platform Notes: Macintosh

Requires Macintosh System 7.0 or later.

Main (statement)

Syntax
Sub Main()

End Sub

Description

Defines the subroutine where execution begins.

Example
Sub Main()

MsgBox "This is the Main() subroutine and entry point."

End Sub

Platform(s)

All.
1088 Chapter 4 - BasicScript Reference

Mid, Mid$, MidB, MidB$ (statements)

Syntax
Mid[$](variable,start[,length]) = newvalue

MidB[$](variable,start[,length]) = newvalue

Description

Replaces one part of a string with another.

Comments

The Mid/Mid$ statements take the following parameters:

The resultant string is never longer than the original length of variable.

With Mid and MidB, variable must be a Variant variable convertible to a String, and
newvalue is any expression convertible to a string. A runtime error is generated if
either variant is Null.

The MidB and MidB$ statements are used to replace a substring of bytes, whereas
Mid and Mid$ are used to replace a substring of characters.

Example
'This example displays a substring from the middle of a

'string variable using the Mid$ function, replacing the

'first four characters with "NEW " using the Mid$ statement.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Parameter Description

variable String or Variant variable to be changed.

start Integer specifying the character position (for Mid and Mid$) or byte position (for
MidB and MidB$) within variable where replacement begins. If start is greater
than the length of variable, then variable remains unchanged.

length Integer specifying the number of characters or bytes to change. If this parameter
is omitted, then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to a
String.
Optional Parameters 1089

a$ = "This is the Main string containing text."

b$ = Mid$(a$,13,Len(a$))

Mid$(b$,1) = "NEW "

MsgBox a$ & crlf & b$

End Sub

See Also

Mid, Mid$, MidB, MidB$ (functions), Option Compare (statement)

Platform(s)

All.

MkDir (statement)

Syntax
MkDir path

Description

Creates a new directory as specified by path.

Example
'This example creates a new directory on the default drive.

'If this causes an error, then the error is displayed and

'the program terminates. If no error is generated, the

'directory is removed with the RmDir statement.

Sub Main()

On Error Resume Next

MkDir "TestDir"

If Err <> 0 Then

MsgBox "The following error occurred: " & Error(Err)

Else

MsgBox "Directory was created and is about to be removed."

RmDir "TestDir"

End If

End Sub
1090 Chapter 4 - BasicScript Reference

See Also

ChDir (statement), ChDrive (statement), CurDir, CurDir$ (functions), Dir, Dir$
(functions), RmDir (statement)

Platform(s)

All.

Platform Notes: Windows

This command behaves the same as the DOS “mkdir” command.

MsgBox (statement)

Syntax
MsgBox prompt [, [buttons] [,[title] [, helpfile, context]]]

Description

This command is the same as the MsgBox function, except that the statement form
does not return a value. See MsgBox (function).

Example
Sub Main()

MsgBox "This is text displayed in a message box."
'Display text.

MsgBox "The result is: " & (10 * 45)
'Display a number.

End Sub

See Also

AskBox, AskBox$ (functions), AskPassword, AskPassword$ (functions), InputBox,
InputBox$ (functions), OpenFileName$ (function), SaveFileName$ (function),
SelectBox (function), AnswerBox (function)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
Optional Parameters 1091

Name (statement)

Syntax
Name oldfile$ As newfile$

Description

Renames a file.

Comments

Each parameter must specify a single filename. Wildcard characters such as * and ?
are not allowed.

Some platforms allow naming of files to different directories on the same physical
disk volume. For example, the following rename will work under Windows:

Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will
error under Windows:

Name "c:\samples\mydoc.txt" As "a:\mydoc.bak"

To rename a file to a different physical disk, you must first copy the file, then erase the
original:

FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak"

Kill "c:\samples\mydoc.txt"

Example
'This example creates a file called test.dat and then renames it 'to
test2.dat.

Sub Main()

On Error Resume Next

If FileExists("test.dat") Then

Name "test.dat" As "test2.dat"

If Err <> 0 Then

message = "File can't be renamed! Error: " & Err

Else

message = "File exists and renamed to test2.dat."

End If

Else

Open "test.dat" For Output As #1
1092 Chapter 4 - BasicScript Reference

Close

Name "test.dat" As "test2.dat"

If Err <> 0 Then

message = "File can't be renamed! Error: " & Err

Else

message = "File created and renamed to test2.dat."

End If

End If

MsgBox message

End Sub

See Also

Kill (statement), FileCopy (statement)

Platform(s)

All.

OKButton (statement)

Syntax
OKButton x,y,width,height [,.Identifier]

Description

Creates an OK button within a dialog box template.

Comments

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The OKButton statement accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.
Optional Parameters 1093

If the DefaultButton parameter is not specified in the Dialog statement, the OK
button will be used as the default button. In this case, the OK button can be selected
by pressing Enter on a nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton, or
PushButton statement (otherwise, the dialog box cannot be dismissed).

Example
'This example shows how to use the OK and Cancel buttons within a
'dialog box template and how to detect which one closed the

'dialog box.

Sub Main()

Begin Dialog ButtonTemplate 17,33,104,23,"Buttons"

OKButton 8,4,40,14,.OK

CancelButton 56,4,40,14,.Cancel

End Dialog

Dim ButtonDialog As ButtonTemplate

WhichButton = Dialog(ButtonDialog)

If WhichButton = -1 Then

MsgBox "OK was pressed."

ElseIf WhichButton = 0 Then

MsgBox "Cancel was pressed."

End If

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OptionButton (statement), OptionGroup (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).

Parameter Description
1094 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

On Error (statement)

Syntax
On Error {Goto label | Resume Next | Goto 0}

Description

Defines the action taken when a trappable runtime error occurs.

Comments

The form On Error Goto label causes execution to transfer to the specified label when
a runtime error occurs.

The form On Error Resume Next causes execution to continue on the line following
the line that caused the error.

The form On Error Goto 0 causes any existing error trap to be removed.

If an error trap is in effect when the script ends, then an error will be generated.

An error trap is only active within the subroutine or function in which it appears.

Once an error trap has gained control, appropriate action should be taken, and then
control should be resumed using the Resume statement. The Resume statement resets
the error handler and continues execution. If a procedure ends while an error is
pending, then an error will be generated. (The Exit Sub or Exit Function statement
also resets the error handler, allowing a procedure to end without displaying an error
message.)

Errors within an Error Handler

If an error occurs within the error handler, then the error handler of the caller (or any
procedure in the call stack) will be invoked. If there is no such error handler, then the
error is fatal, causing the script to stop executing. The following statements reset the
error state (i.e., these statements turn off the fact that an error occurred):

Resume

Err=-1
Optional Parameters 1095

The Resume statement forces execution to continue either on the same line or on the
line following the line that generated the error. The Err=-1 statement allows explicit
resetting of the error state so that the script can continue normal execution without
resuming at the statement that caused the error condition.

The On Error statement will not reset the error. Thus, if an On Error statement occurs
within an error handler, it has the effect of changing the location of a new error
handler for any new errors that may occur once the error has been reset.

Example
'This example will demonstrate three types of error handling. The
'first case simply by-passes an expected error and continues with
'program operation. The second case creates an error branch that 'jumps
to a common error handling routine that processes incoming 'errors,
clears the error (with the Resume statement) and resumes 'program
execution. The third case clears all internal error 'handling so that
execution will stop when the next error is 'encountered.

Sub Main()

Dim x%

a = 10000

b = 10000

On Error Goto Pass 'Branch to this label on error.

Do

x% = a * b

Loop

Pass:

Err = -1 'Clear error status.

MsgBox "Cleared error status and continued."

On Error Goto Overflow 'Branch to new error
routine on any

x% = 1000 'subsequent errors.

x% = a * b

x% = a / 0

On Error Goto 0 'Clear error branching.

x% = a * b 'Program will stop here.

Exit Sub 'Exit before common error
routine.
1096 Chapter 4 - BasicScript Reference

Overflow: 'Beginning of common error
routine.

If Err = 6 then

MsgBox "Overflow Branch."

Else

MsgBox Error(Err)

End If

Resume Next

End Sub

See Also

Error Handling (topic), Error (statement), Resume (statement)

Platform(s)

All.

Open (statement)

Syntax
Open filename$ [For mode] [Access accessmode] [lock] As [#]
filenumber _

[Len = reclen]

Description

Opens a file for a given mode, assigning the open file to the supplied filenumber.

Comments

The filename$ parameter is a string expression that contains a valid filename.

The filenumber parameter is a number between 1 and 255. The FreeFile function can
be used to determine an available file number.

The mode parameter determines the type of operations that can be performed on that
file:

File Mode Description

Input Opens an existing file for sequential input (filename$ must exist). The value of
accessmode, if specified, must be Read.
Optional Parameters 1097

If the mode parameter is missing, then Random is used.

The accessmode parameter determines what type of I/O operations can be performed
on the file:

If the accessmode parameter is not specified, the following defaults are used:

Output Opens an existing file for sequential output, truncating its length to zero, or
creates a new file. The value of accessmode, if specified, must be Write.

Append Opens an existing file for sequential output, positioning the file pointer at the
end of the file, or creates a new file. The value of accessmode, if specified, must
be Read Write.

Binary Opens an existing file for binary I/O or creates a new file. Existing binary files
are never truncated in length. The value of accessmode, if specified, determines
how the file can subsequently be accessed.

Random Opens an existing file for record I/O or creates a new file. Existing random files
are truncated only if accessmode is Write. The reclen parameter determines the
record length for I/O operations.

Access Description

Read Opens the file for reading only. This value is valid only for files opened in Binary,
Random, or Input mode.

Write Opens the file for writing only. This value is valid only for files opened in Binary,
Random, or Output mode.

Read Write Opens the file for both reading and writing. This value is valid only for files
opened in Binary, Random, or Append mode.

File Mode Default Value for accessmode

Input Read

Output Write

Append Read Write

File Mode Description
1098 Chapter 4 - BasicScript Reference

The lock parameter determines what access rights are granted to other processes that
attempt to open the same file. The following table describes the values for lock:

If lock is not specified, then the file is opened in Shared mode.

If the file does not exist and the lock parameter is specified, the file is opened twice
once to create the file and again to establish the correct sharing mode.

Files opened in Random mode are divided up into a sequence of records, each of the
length specified by the reclen parameter. If this parameter is missing, then 128 is used.
For files opened for sequential I/O, the reclen parameter specifies the size of the
internal buffer used by BasicScript when performing I/O. Larger buffers mean faster
file access. For Binary files, the reclen parameter is ignored.

For files opened in Append mode, BasicScript opens the file and positions the file
pointer after the last character in the file. The end-of-file character, if present, is not
removed by BasicScript.

Example
'This example opens several files in various configurations.

Sub Main()

Binary When the file is initially opened, access is attempted three times in the
following order:

1 - Read, Write

2 - Write

3 - Read

Random Same as Binary files

lock Value Description

Shared Another process can both read this file and write to it. (Deny none.)

Lock Read Another process can write to this file but not read it. (Deny read.)

Lock Write Another process can read this file but not write to it. (Deny write.)

Lock Read Write Another process is prevented both from reading this file and from writing
to it. (Exclusive.)

File Mode Default Value for accessmode
Optional Parameters 1099

Open "test.dat" For Output Access Write Lock Write As #2

Close

Open "test.dat" For Input Access Read Shared As #1

Close

Open "test.dat" For Append Access Write Lock Read Write as #3

Close

Open "test.dat" For Binary Access Read Write Shared As #4

Close

Open "test.dat" For Random Access Read Write Lock Read As #5

Close

Open "test.dat" For Input Access Read Shared As #6

Close

Kill "test.dat"

End Sub

See Also

Close (statement), Reset (statement), FreeFile (function)

Platform(s)

All.

Platform Notes: UNIX

BasicScript sets the permissions of new files to the logical conjunction of 0777 octal
and the process's umask.

Option Base (statement)

Syntax
Option Base {0 | 1}

Description

Sets the lower bound for array declarations.

Comments

By default, the lower bound used for all array declarations is 0.

This statement must appear outside of any functions or subroutines.
1100 Chapter 4 - BasicScript Reference

Example
Option Base 1

Sub Main()

Dim a(10) 'Contains 10 elements (not 11).

End Sub

See Also

Dim (statement), Public (statement), Private (statement)

Platform(s)

All.

Option Compare (statement)

Syntax
Option Compare [Binary | Text]

Description

Controls how strings are compared.

Comments

When Option Compare is set to Binary, then string comparisons are case-sensitive
(e.g., “A” does not equal “a”). When it is set to Text, string comparisons are
case-insensitive (e.g., “A” is equal to “a”).

The default value for Option Compare is Binary.

The Option Compare statement affects all string comparisons in any statements that
follow the Option Compare statement. Additionally, the setting affects the default
behavior of Instr, StrComp, and the Like operator. The following table shows the
types of string comparisons affected by this setting:

> < < >

<= >= Instr

StrComp Like
Optional Parameters 1101

The Option Compare statement must appear outside the scope of all subroutines and
functions. In other words, it cannot appear within a Sub or Function block.

Example
'This example shows the use of Option Compare.

Option Compare Binary

Sub CompareBinary

a$ = "This String Contains UPPERCASE."

b$ = "this string contains uppercase."

If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."

Else

MsgBox "The two strings were compared case-sensitive."

End If

End Sub

Option Compare Text

Sub CompareText

a$ = "This String Contains UPPERCASE."

b$ = "this string contains uppercase."

If a$ = b$ Then

MsgBox "The two strings were compared case-insensitive."

Else

MsgBox "The two strings were compared case-sensitive."

End If

End Sub

Sub Main()

CompareBinary 'Calls subroutine above.

CompareText 'Calls subroutine above.

End Sub

See Also

Like (operator), InStr, InStrB (functions), StrComp (function), Comparison Operators
(topic)
1102 Chapter 4 - BasicScript Reference

Platform(s)

All.

Option CStrings (statement)

Syntax
Option CStrings {On | Off}

Description

Turns on or off the ability to use C-style escape sequences within strings.

Comments

When Option CStrings On is in effect, the compiler treats the backslash character as
an escape character when it appears within strings. An escape character is simply a
special character that otherwise cannot ordinarily be typed by the computer
keyboard.

Escape Description Equivalent Expression

\r Carriage return Chr$(13)

\n Line Feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)

\f Form Feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0_

\" Double quote "" or Chr$(34)

\\ Backslash Chr$(92)

\? Question mark ?

\' Single quote '

\xhh Hexadecimal number Chr$(Val(&Hhh))

\ooo Octal number Chr$(Val(&Oooo))
Optional Parameters 1103

With hexadecimal values, BasicScript stops scanning for digits when it encounters a
nonhexadecimal digit or two digits, whichever comes first. Similarly, with octal
values, BasicScript stops scanning when it encounters a nonoctal digit or three digits,
whichever comes first.

When Option CStrings Off is in effect, then the backslash character has no special
meaning. This is the default.

Example
Option CStrings On

Sub Main()

MsgBox "They said, \"Watch out for that clump of grass!\""

MsgBox "First line.\r\nSecond line."

MsgBox "Char A: \x41 \r\n Char B: \x42"

End Sub

Platform(s)

All.

Option Default (statement)

Syntax
Option Default type

Description

Sets the default data type of variables and function return values when not otherwise
specified.

Comments

By default, the type of implicitly defined variables and function return values is
Variant. This statement is used for backward compatibility with earlier versions of
BasicScript where the default data type was Integer.

This statement must appear outside the scope of all functions and subroutines.

\anycharacter Any character anycharacter

Escape Description Equivalent Expression
1104 Chapter 4 - BasicScript Reference

Currently, type can only be set to Integer.

Example
'This script sets the default data type to Integer. This fact

'is used to declare the function AddIntegers which returns an

'Integer data type.

Option Default Integer

Function AddIntegers(a As Integer,b As Integer)

Foo = a + b

End Function

Sub Main

Dim a,b,result

a = InputBox("Enter an integer:")

b = InputBox("Enter an integer:")

result = AddIntegers(a,b)

End Sub

See Also

DefType (statement)

Platform(s)

All.

Option Explicit (statement)

Syntax
Option Explicit

Description

Prevents implicit declaration of variables and externally called procedures.

Comments

By default, BasicScript implicitly declares variables that are used but have not been
explicitly declared with Dim, Public, or Private. To avoid typing errors, you may
want to use Option Explicit to prevent this behavior.
Optional Parameters 1105

The Option Explicit statement also enforces explicit declaration of all externally
called procedures. Once specified, all externally called procedures must be explicitly
declared with the Declare statement.

See Also

Const (statement), Dim (statement), Public (statement), Private (statement), ReDim
(statement), Declare (statement)

Platform(s)

All.

OptionButton (statement)

Syntax
OptionButton x,y,width,height,title$ [,.Identifier]

Description

Defines an option button within a dialog box template.

Comments

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The OptionButton statement accepts the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

title$ String containing text that appears within the option button. This text
may contain an ampersand character to denote an accelerator letter, such
as "&Portrait" for Portrait, which can be selected by pressing the P
accelerator.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).
1106 Chapter 4 - BasicScript Reference

Example

See OptionGroup (statement).

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionGroup (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes: Windows, Win32, OS/2

On Windows, Win32, and OS/2 platforms, accelerators are underlined, and the
accelerator combination Alt+letter is used.

Platform Notes: Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

OptionGroup (statement)

Syntax
OptionGroup .Identifier

Description

Specifies the start of a group of option buttons within a dialog box template.

Comments

The .Identifier parameter specifies the name by which the group of option buttons can
be referenced by statements in a dialog function (such as DlgFocus and DlgEnable).
This parameter also creates an integer variable whose value corresponds to the index
of the selected option button within the group (0 is the first option button, 1 is the
second option button, and so on). This variable can be accessed using the following
syntax: DialogVariable.Identifier.
Optional Parameters 1107

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

When the dialog box is created, the option button specified by .Identifier will be on;
all other option buttons in the group will be off. When the dialog box is dismissed, the
.Identifier will contain the selected option button.

Example
'This example creates a group of option buttons.

Sub Main()

Begin Dialog PrintTemplate 16,31,128,65,"Print"

GroupBox 8,8,64,52,"Orientation",.Junk

OptionGroup .Orientation

OptionButton 16,20,37,8,"Portrait",.Portrait

OptionButton 16,32,51,8,"Landscape",.Landscape

OptionButton 16,44,49,8,"Don't Care",.DontCare

OKButton 80,8,40,14

End Dialog

Dim PrintDialog As PrintTemplate

Dialog PrintDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), Picture
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Picture (statement)

Syntax
Picture x,y,width,height,PictureName$,PictureType [,[.Identifier]
[,style]]
1108 Chapter 4 - BasicScript Reference

Description

Creates a picture control in a dialog box template.

Comments

Picture controls are used for the display of graphics images only. The user cannot
interact with these controls.

The Picture statement accepts the following parameters:

The picture control extracts the actual image from either a disk file or a picture library.
In the case of bitmaps, both 2- and 16-color bitmaps are supported. In the case of
WMFs, BasicScript supports the Placeable Windows Metafile.

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
name specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the
resource of the picture library.

If PictureName$ is empty, then no picture will be associated with the
control. A picture can later be placed into the picture control using the
DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If omitted, then the first two
words of PictureName$ are used.

style Specifies whether the picture is drawn within a 3D frame. It can be either
of the following values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If this parameter is omitted, then the picture control is drawn with a
normal frame.
Optional Parameters 1109

If PictureName$ is a zero-length string, then the picture is removed from the picture
control, freeing any memory associated with that picture.

Examples
'This first example shows how to use a picture from a file.

Sub Main()

Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"

OKButton 240,8,40,14

Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog

Dim LogoDialog As LogoDialogTemplate

Dialog LogoDialog

End Sub

'This second example shows how to use a picture from a picture

'library with a 3D frame.

Sub Main()

Begin Dialog LogoDlg _

16,31,288,76,"Introduction",,"pics.dll"

OKButton 240,8,40,14

Picture 8,8,224,64,"CompanyLogo",10,.Logo,1

End Dialog

Dim LogoDialog As LogoDialogTemplate

Dialog LogoDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), DlgSetPicture (statement), HelpButton
(statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.
1110 Chapter 4 - BasicScript Reference

Platform Notes: Windows, Win32

Picture controls can contain either a bitmap or a WMF (Windows metafile). When
extracting images from a picture library, BasicScript assumes that the resource type for
metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

Platform Notes: OS/2

Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it
appears within the DLL.

Platform Notes: Macintosh

Picture controls on the Macintosh can contain only PICT images. These are contained
in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it
appears within the file.

PictureButton (statement)

Syntax
PictureButton x,y,width,height,PictureName$,PictureType
[,.Identifier]

Description

Creates a picture button control in a dialog box template.

Comments

Picture button controls behave very much like push button controls. Visually, picture
buttons are different from push buttons in that they contain a graphic image imported
either from a file or from a picture library.
Optional Parameters 1111

The PictureButton statement accepts the following parameters:

The picture button control extracts the actual image from either a disk file or a picture
library, depending on the value of PictureType. The supported picture formats vary
from platform to platform.

If PictureName$ is a zero-length string, then the picture is removed from the picture
button control, freeing any memory associated with that picture.

Examples
'This first example shows how to use a picture from a file.

Sub Main()

Begin Dialog LogoDialogTemplate _

16,32,288,76,"Introduction"

OKButton 240,8,40,14

PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo

End Dialog

Dim LogoDialog As LogoDialogTemplate

Dialog LogoDialog

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units)
relative to the upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog
units.

PictureName$ String containing the name of the picture. If PictureType is 0, then this
name specifies the name of the file containing the image. If PictureType is
10, then PictureName$ specifies the name of the image within the
resource of the picture library.

If PictureName$ is empty, then no picture will be associated with the
control. A picture can later be placed into the picture control using the
DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are
supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the
PicName$ parameter on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable).
1112 Chapter 4 - BasicScript Reference

End Sub

'This second example shows how to use a picture from a picture

'library.

Sub Main()

Begin Dialog LogoDlg _

16,31,288,76,"Introduction",,"pics.dll"

OKButton 240,8,40,14

PictureButton 8,4,224,64,"CompanyLogo",10,.Logo

End Dialog

Dim LogoDialog As LogoDlg

Dialog LogoDialog

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), PushButton (statement), Text (statement), TextBox (statement), Begin
Dialog (statement), Picture (statement), DlgSetPicture (statement), HelpButton
(statement)

Platform(s)

Windows, Win32, OS/2, Macintosh, UNIX.

Platform Notes: Windows, Win32

Picture controls can contain either a bitmap or a WMF (Windows metafile). When
extracting images from a picture library, BasicScript assumes that the resource type for
metafiles is 256.

Picture libraries are implemented as DLLs on the Windows and Win32 platforms.

Platform Notes: OS/2

Picture controls can contain either bitmaps or Windows metafiles.

Picture libraries under OS/2 are implemented as resources within DLLs. The
PictureName$ parameter corresponds to the name of one of these resources as it
appears within the DLL.
Optional Parameters 1113

Platform Notes: Macintosh

Picture controls on the Macintosh can contain only PICT images. These are contained
in files of type PICT.

Picture libraries on the Macintosh are files with collections of named PICT resources.
The PictureName$ parameter corresponds to the name of one the resources as it
appears within the file.

Print (statement)

Syntax
Print [[{Spc(n) | Tab(n)}][expressionlist][{; | ,}]]

Description

Prints data to an output device.

Comments

The actual output device depends on the platform on which BasicScript is running.

The following table describes how data of different types is written:

Data Type Description

String Printed in its literal form, with no enclosing quotes.

Any numeric type Printed with an initial space reserved for the sign (space = positive).
Additionally, there is a space following each number.

Boolean Printed as "True" or "False". These keywords are translated as
appropriate according to your system’s locale.

Date Printed using the short date format. If either the date or time
component is missing, only the provided portion is printed (this is
consistent with the "general date" format understood by the
Format/Format$ functions).

Empty Nothing is printed

Null Prints "Null". This keyword is translated as appropriate according to
your system’s locale.

User-defined errors User-defined errors are printed to files as "Error code", where code is
the value of the user-defined error. The word "Error" is not translated.
The "Error" keyword is translated as appropriate according to your
system’s locale.
1114 Chapter 4 - BasicScript Reference

Each expression in expressionlist is separated with either a comma (,) or a semicolon
(;). A comma means that the next expression is output in the next print zone. A
semicolon means that the next expression is output immediately after the current
expression. Print zones are defined every 14 spaces.

If the last expression in the list is not followed by a comma or a semicolon, then a
carriage return is printed to the file. If the last expression ends with a semicolon, no
carriage return is printed the next Print statement will output information
immediately following the expression. If the last expression in the list ends with a
comma, the file pointer is positioned at the start of the next print zone on the current
line.

The Tab and Spc functions provide additional control over the column position. The
Tab function moves the file position to the specified column, whereas the Spc
function outputs the specified number of spaces.

Note: Null characters Chr$(0) within strings are translated to spaces when printing to
the Viewport window. When printing to files, this translation is not performed.

Examples
Sub Main()

i% = 10

s$ = "This is a test."

Print "The value of i=";i%,"the value of s=";s$

'This example prints the value of i% in print zone 1 and s$

'in print zone 3.

Print i%,,s$

'This example prints the value of i% and s$ separated by 10

'spaces.

Print i%;Spc(10);s$

'This example prints the value of i in column 1 and s$ in

'column 30.

Print i%;Tab(30);s$

'This example prints the value of i% and s$.

Print i%;s$,

Object For any object type, BasicScript retrieves the default property of that
object and prints this value using the above rules.

Data Type Description
Optional Parameters 1115

Print 67

End Sub

See Also

Viewport.Open (method)

Platform(s)

All.

This statement writes data to a viewport window.

If no viewport window is open, then the statement is ignored. Printing information to
a viewport window is a convenient way to output debugging information. To open a
viewport window, use the following statement:

Viewport.Open

PrinterSetOrientation (statement)

Syntax
PrinterSetOrientation NewSetting

Description

Sets the orientation of the default printer to NewSetting.

Comments

The possible values for NewSetting are as follows:

This function loads the printer driver for the default printer and therefore may be
slow.

Example

See PrinterGetOrientation (function).

Setting Description

ebLandscape Sets printer orientation to landscape.

ebPortrait Sets printer orientation to portrait.
1116 Chapter 4 - BasicScript Reference

See Also

PrinterGetOrientation (function)

Platform(s)

Windows.

Platform Notes: Windows

The default printer is determined by examining the device= line in the [windows]
section of the win.ini file.

Private (statement)

Syntax
Private name [(subscripts)] [As type] [,name [(subscripts)] [As
type]]...

Description

Declares a list of private variables and their corresponding types and sizes.

Comments

Private variables are global to every Sub and Function within the currently executing
script.

If a type-declaration character is used when specifying name (such as %, @, &, $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Private foo As Integer

Private foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the
following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds
of the array. If lower is not specified, then the lower bound as specified by Option
Base is used (or 1 if no Option Base statement has been encountered). Up to 60 array
dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:
Optional Parameters 1117

Private a()

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or
Private, then it will be implicitly declared local to the routine in which it is used.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Private name As String * length

where length is a literal number specifying the string's length.

Initial Values

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described
above.

Arrays Each element of the array is given a default value, as described above.
1118 Chapter 4 - BasicScript Reference

Example

See Public (statement).

See Also

Dim (statement), ReDim (statement), Public (statement), Option Base (statement)

Platform(s)

All.

Public (statement)

Syntax
Public name [(subscripts)] [As type] [,name [(subscripts)] [As
type]]...

Description

Declares a list of public variables and their corresponding types and sizes.

Comments

Public variables are global to all Subs and Functions in all scripts.

If a type-declaration character is used when specifying name (such as %, @, &, $, or !),
the optional [As type] expression is not allowed. For example, the following are
allowed:

Public foo As integer

Public foo%

The subscripts parameter allows the declaration of arrays. This parameter uses the
following syntax:

[lower To] upper [,[lower To] upper]...

The lower and upper parameters are integers specifying the lower and upper bounds
of the array. If lower is not specified, then the lower bound as specified by Option
Base is used (or 1 if no Option Base statement has been encountered). Up to 60 array
dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K.

Dynamic arrays are declared by not specifying any bounds:

Public a()
Optional Parameters 1119

The type parameter specifies the type of the data item being declared. It can be any of
the following data types: String, Integer, Long, Single, Double, Currency, Object,
data object, built-in data type, or any user-defined data type.

If a variable is seen that has not been explicitly declared with either Dim, Public, or
Private, then it will be implicitly declared local to the routine in which it is used.

For compatibility, the keyword Global is also supported. It has the same meaning as
Public.

Fixed-Length Strings

Fixed-length strings are declared by adding a length to the String type-declaration
character:

Public name As String * length

where length is a literal number specifying the string's length.

All declared variables are given initial values, as described in the following table:

Data Type Initial Value

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described
above.

Arrays Each element of the array is given a default value, as described above.
1120 Chapter 4 - BasicScript Reference

Sharing Variables

When sharing variables, you must ensure that the declarations of the shared variables
are the same in each script that uses those variables. If the public variable being
shared is a user-defined structure, then the structure definitions must be exactly the
same.

Example
'This example uses a subroutine to calculate the area of ten

'circles and displays the result in a dialog box. The variables

'R and Ar are declared as Public variables so that they can be

'used in both Main and Area.

Const crlf = Chr$(13) + Chr$(10)

Public x#, ar#

Sub Area()

ar# = (x# ^ 2) * Pi

End Sub

Sub Main()

message = "The area of the ten circles are:" & crlf

For x# = 1 To 10

Area

message = message & x# & ": " & ar# & Basic.Eoln$

Next x#

MsgBox message

End Sub

See Also

Dim (statement), ReDim (statement), Private (statement), Option Base (statement)

Platform(s)

All.

PushButton (statement)

Syntax
PushButton x,y,width,height,title$ [,.Identifier]
Optional Parameters 1121

Description

Defines a push button within a dialog box template.

Comments

Choosing a push button causes the dialog box to close (unless the dialog function
redefines this behavior).

This statement can only appear within a dialog box template (i.e., between the Begin
Dialog and End Dialog statements).

The PushButton statement accepts the following parameters:

If a push button is the default button, it can be selected by pressing Enter on a
nonbutton control.

A dialog box template must contain at least one OKButton, CancelButton, or
PushButton statement (otherwise, the dialog box cannot be dismissed).

Example
'This example creates a bunch of push buttons and displays which

'button was pushed.

Sub Main()

Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"

OKButton 8,4,40,14,.OK

CancelButton 8,24,40,14,.Cancel

PushButton 8,44,40,14,"1",.Button1

PushButton 8,64,40,14,"2",.Button2

Parameter Description

x, y Integer coordinates specifying the position of the control (in dialog units) relative
to the upper left corner of the dialog box.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the text that appears within the push button. This text may
contain an ampersand character to denote an accelerator letter, such as "&Save"
for Save.

.Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable).
1122 Chapter 4 - BasicScript Reference

PushButton 56,4,40,14,"3",.Button3

PushButton 56,24,40,14,"4",.Button4

PushButton 56,44,40,14,"5",.Button5

PushButton 56,64,40,14,"6",.Button6

End Dialog

Dim ButtonDialog As ButtonTemplate

WhichButton% = Dialog(ButtonDialog)

MsgBox "You pushed button " & WhichButton%

End Sub

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), Picture (statement), Text (statement), TextBox (statement), Begin Dialog
(statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes: Windows, Win32, OS/2

On Windows, Win32, and OS/2 platforms, accelerators are underlined, and the
accelerator combination Alt+letter is used.

Platform Notes: Macintosh

On the Macintosh, accelerators are normal in appearance, and the accelerator
combination Command+letter is used.

Put (statement)

Syntax
Put [#]filenumber, [recordnumber], variable

Description

Writes data from the specified variable to a Random or Binary file.
Optional Parameters 1123

Comments

The Put statement accepts the following parameters:

The variable parameter is the name of any variable of any of the following types:

Parameter Description

filenumber Integer representing the file to be written to. This is the same value as
returned by the Open statement.

recordnumber Long specifying which record is to be written to the file.

For Binary files, this number represents the first byte to be written starting
with the beginning of the file (the first byte is 1). For Random files, this
number represents the record number starting with the beginning of the file
(the first record is 1). This value ranges from 1 to 2147483647.

If the recordnumber parameter is omitted, the next record is written to the file
(if no records have been written yet, then the first record in the file is written).
When recordnumber is omitted, the commas must still appear, as in the
following example:

Put #1,,recvar.

If recordlength is specified, it overrides any previous change in file position
specified with the Seek statement.

VariableType File Storage Description

Integer 2 bytes are written to the file.

Long 4 bytes are written to the file.

String (variable-length) In Binary files, variable-length strings are written by first
determining the specified string variable's length, then writing that
many bytes to a file.

In Random files, variable-length strings are written by first writing
a 2-byte length, then writing that many characters to the file.

String (fixed-length) Fixed-length strings are written to Random and Binary files in the
same way: the number of characters equal to the string's declared
length are written.

Double 8 bytes are written to the file (IEEE format),

Single 4 bytes are written to the file (IEEE format).

Date 8 bytes are written to the file (IEEE double format).

Boolean 2 bytes are written to the file (either –1 for True or 0 for False).
1124 Chapter 4 - BasicScript Reference

With Random files, a runtime error will occur if the length of the data being written
exceeds the record length (specified as the reclen parameter with the Open statement).
If the length of the data being written is less than the record length, the entire record is
written along with padding (whatever data happens to be in the I/O buffer at that
time). With Binary files, the data elements are written contiguously: they are never
separated with padding.

Example
'This example opens a file for random write, then writes ten

'records into the file with the values 10-50. Then the file is

'closed and reopened in random mode for read, and the records

'are read with the Get statement. The result is displayed in a

'dialog box.

Sub Main()

Open "test.dat" For Random Access Write As #1

For x = 1 To 10

r% = x * 10

Variant A 2-byte VarType is written to the file followed by the data as
described above. With variants of type 10 (user-defined errors), the
2-byte VarType is followed by a 4-byte error value (the low word
containing the error valueand the high word containing additional
bytes of information).

The exception is with strings, which are always preceded by a
2-byte string length.

User-defined types Each member of a user-defined data type is written individually.

In Binary files, variable-length strings within user-defined types
are written by first writing a 2-byte length followed by the string's
content. This storage is different than variable-length strings
outside of user-defined types.

When writing user-defined types, the record length must be
greater than or equal to the combined size of each element within
the data type

Arrays Arrays cannot be written to a file using the Put statement.

Objects Object variables cannot be written to a file using the Put statement.

VariableType File Storage Description
Optional Parameters 1125

Put #1,x,r%

Next x

Close

Open "test.dat" For Random Access Read As #1

For x = 1 To 10

Get #1,x,r%

message = message & "Record " & x & " is: " & r% & _

Basic.Eoln$

Next x

MsgBox msg

Close

Kill "test.dat"

End Sub

See Also

Open (statement), Put (statement), Write# (statement), Print# (statement)

Platform(s)

All.

QueEmpty (statement)

Syntax
QueEmpty

Description

Empties the current event queue.

Comments

After this statement, QueFlush will do nothing.

Example
'This code begins a new queue, then drags a selection over a

'range of characters in Notepad.

Sub Main()

AppActivate "Notepad"
1126 Chapter 4 - BasicScript Reference

QueEmpty 'Make sure the queue is empty.

QueMouseDn ebLeftButton,1440,1393

QueMouseUp ebLeftButton,4147,2363

QueFlush True

End Sub

Platform(s)

Windows.

Platform Notes: WIndows

If a system modal dialog is invoked during queue playback, the queue playback is
temporarily disabled. Queue playback will resume once the dialog has been
dismissed. Hardware input is enabled during processing of the system modal dialog
such that the dialog can be dismissed by the user. Otherwise, hardware input is
enabled until playback is finished.

QueFlush (statement)

Syntax
QueFlush isSaveState

Description

Plays back events that are stored in the current event queue.

Comments

After QueFlush is finished, the queue is empty.

If isSaveState is True, then QueFlush saves the state of the Caps Lock, Num Lock,
Scroll Lock, and Insert and restores the state after the QueFlush is complete. If this
parameter is False, these states are not restored.

The function does not return until the entire queue has been played.

Example
'This example pumps some keys into Notepad.

Sub Main()

AppActivate "Notepad"

QueKeys "This is a test{Enter}"
Optional Parameters 1127

QueFlush True 'Play back the
queue.

End Sub

Platform(s)

Windows.

Platform Notes: Windows

The QueFlush statement uses the Windows journaling mechanism to replay the
mouse and keyboard events stored in the queue. As a result, the mouse position may
be changed. Furthermore, events can be played into any Windows application,
including DOS applications running in a window.

QueKeyDn (statement)

Syntax
QueKeyDn KeyString$ [,time]

Description

Appends key-down events for the specified keys to the end of the current event
queue.

Comments

The QueKeyDn statement accepts the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter
contains ten keys, then a key will be output every 1/2 second. If unspecified
(or 0), the keys will play back at full speed.
1128 Chapter 4 - BasicScript Reference

Example
'This example plays back a Ctrl + mouse click.

Sub Main()

QueEmpty

QueKeyDn "^"

QueMouseClick ebLeftButton 1024,792

QueKeyUp "^"

QueFlush True

End Sub

See Also

DoKeys (statement), SendKeys (statement), QueKeys (statement), QueKeyUp
(statement), QueFlush (statement)

Platform(s)

Windows.

QueKeys (statement)

Syntax
QueKeys KeyString$ [,time]

Description

Appends keystroke information to the current event queue.

Comments

The QueKeys statement accepts the following parameters:

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.
Optional Parameters 1129

The QueFlush command is used to play back the events stored in the current event
queue.

Example
Sub Main()

WinActivate "Notepad"

QueEmpty

QueKeys "This is a test.{Enter}This is on a new line.{Enter}"

QueKeys "{Tab 3}This is indented with three tabs."

QueKeys "Some special characters: {~}{^}{%}{+}~"

QueKeys "Invoking the Find dialog.%Sf"
'Alt+S,F

QueFlush True

End Sub

See Also

DoKeys (statement), SendKeys (statement), QueKeyDn (statement), QueKeyUp
(statement), QueFlush (statement)

Platform(s)

Windows.

Platform Notes: Windows

Under Windows, you cannot send keystrokes to MS-DOS applications running in a
window.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter
contains ten keys, then a key will be output every 1/2 second. If unspecified
(or 0), the keys will play back at full speed.

Parameter Description
1130 Chapter 4 - BasicScript Reference

QueKeyUp (statement)

Syntax
QueKeyUp KeyString$ [,time]

Description

Appends key-up events for the specified keys to the end of the current event queue.

Comments

The QueKeyUp statement accepts the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example

See QueKeyDn (statement).

See Also

DoKeys (statement), SendKeys (statement), QueKeys (statement), QueKeyDn
(statement), QueFlush (statement)

Platform(s)

Windows.

Parameter Description

KeyString$ String containing the keys to be sent. The format for KeyString$ is described
under the SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the
entire KeyString$ parameter. It must be within the following range:

0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter
contains ten keys, then a key will be output every 1/2 second. If unspecified
(or 0), the keys will play back at full speed.
Optional Parameters 1131

QueMouseClick (statement)

Syntax
QueMouseClick button,x,y [,time]

Description

Adds a mouse click to the current event queue.

Comments

The QueMouseClick statement takes the following parameters:

A mouse click consists of a mouse button down at position x, y, immediately followed
by a mouse button up.

The QueFlush command is used to play back the events stored in the current event
queue.

Example
'This example activates Notepad and invokes the Find dialog box.

'It then uses the QueMouseClick command to click the Cancel

'button.

Sub Main()

AppActivate "Notepad" 'Activate Notepad.

QueKeys "%Sf" 'Invoke the Find dialog
box.

QueFlush True 'Play this back (allow
dialog box to open).

Parameter Description

button Integer specifying which mouse button to click:

ebLeftButton Click the left mouse button.

EbRightButton Click the right mouse button.

x, y Integer coordinates, in twips, where the mouse click is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
click will play back at full speed.
1132 Chapter 4 - BasicScript Reference

QueSetRelativeWindow 'Set mouse relative to
Find dialog box.

QueMouseClick ebLeftButton,7059,1486
'Click the Cancel button.

QueFlush True
'Play back the queue.

End Sub

See Also

QueMouseDn (statement), QueMouseUp (statement), QueMouseDblClk (statement),
QueMouseDblDn (statement), QueMouseMove (statement), QueMouseMoveBatch
(statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseDblClk (statement)

Syntax
QueMouseDblClk button,x,y [,time]

Description

Adds a mouse double click to the current event queue.

Comments

The QueMouseDblClk statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to double-click:

ebLeftButton Double-click the left mouse button.

EbRightButton Double-click the right mouse button.

x, y Integer coordinates, in twips, where the mouse double click is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
double click will play back at full speed.
Optional Parameters 1133

A mouse double click consists of a mouse down/up/down/up at position x, y. The
events are queued in such a way that a double click is registered during queue
playback.

The QueFlush command is used to play back the events stored in the current event
queue.

Example
'This example double-clicks the left mouse button.

QueMouseDblClk ebLeftButton,344,360

See Also

QueMouseClick (statement), QueMouseDn (statement), QueMouseUp (statement),
QueMouseDblDn (statement), QueMouseMove (statement), QueMouseMoveBatch
(statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseDblDn (statement)

Syntax
QueMouseDblDn button, x, y [,time]

Description

Adds a mouse double down to the end of the current event queue.

Comments

The QueMouseDblDn statement takes the following parameters:

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButton Press the left mouse button.

EbRightButton Press the right mouse button.

x, y Integer coordinates, in twips, where the mouse double down is to be recorded.
1134 Chapter 4 - BasicScript Reference

This statement adds a mouse double down to the current event queue. A double
down consists of a mouse down/up/down at position x, y.

The QueFlush command is used to play back the events stored in the current event
queue.

Example
'This example double-clicks a word, then drags it to a new

'location.

Sub Main()

QueFlush 'Start with empty queue.

QueMouseDblDn ebLeftButton,356,4931 'Double-click,

QueMouseMove 600,4931 'Drag to new spot.

QueMouseUp ebLeftButton 'Now release the mouse.

QueFlush True 'Play back the queue.

End Sub

See Also

QueMouseClick (statement), QueMouseDn (statement), QueMouseUp (statement),
QueMouseDblClk (statement), QueMouseMove (statement), QueMouseMoveBatch
(statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseDn (statement)

Syntax
QueMouseDn button,x,y [,time]

Description

Adds a mouse down to the current event queue.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
double down will play back at full speed.

Parameter Description
Optional Parameters 1135

Comments

The QueMouseDn statement takes the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example

See QueEmpty (statement).

See Also

QueMouseClick (statement), QueMouseUp (statement), QueMouseDblClk
(statement), QueMouseDblDn (statement), QueMouseMove (statement),
QueMouseMoveBatch (statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseMove (statement)

Syntax
QueMouseMove x,y [,time]

Description

Adds a mouse move to the current event queue.

Parameter Description

button Integer specifying which mouse button to press:

ebLeftButton Press the left mouse button.

ebRightButton Press the right mouse button.

x, y Integer coordinates, in twips, where the mouse down is to be recorded.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
down will play back at full speed.
1136 Chapter 4 - BasicScript Reference

Comments

The QueMouseMove statement takes the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example

See QueMouseDblDn (statement).

See Also

QueMouseClick (statement), QueMouseDn (statement), QueMouseUp (statement),
QueMouseDblClk (statement), QueMouseDblDn (statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseMoveBatch (statement)

Syntax
QueMouseMoveBatch ManyMoves$

Description

Adds a series of mouse-move events to the current event queue.

Comments

The ManyMoves$ parameter is a string containing positional and timing information
in the following format:

x,y,time [,x,y,time]...

Parameter Description

x, y Integer coordinates, in twips, where the mouse is to be moved.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse
move will play back at full speed.
Optional Parameters 1137

The x and y parameters specify a mouse position in twips. The time parameter
specifies the delay in milliseconds between the current mouse move and the previous
event in the queue. If time is 0, then the mouse move will play back as fast as possible.

The QueMouseMoveBatch command should be used in place of a series of
QueMouseMove statements to reduce the number of lines in your script. A further
advantage is that, since the mouse-move information is contained within a literal
string, the storage for the data is placed in the constant segment instead of the code
segment, reducing the size of the code.

The QueFlush command is used to play back the events stored in the current event
queue.

Example
'This example activates PaintBrush, then paints the word "Hi".

Sub Main()

AppActivate "Paintbrush"

AppMaximize

QueMouseDn ebLeftButton,2175,3412

QueMouseMoveBatch _

"2488,3224,0,2833,2786,0,3114,2347,0,3208,2160,0,3240,2097,0"

QueMouseMoveBatch _

"3255,2034,0,3255,1987,0,3255,1956,0,3255,1940,0,3224,1956,0"

QueMouseMoveBatch _

"3193,1987,0,3114,2019,0,3036,2066,0,3005,2113,0,2973,2175,0"

QueMouseMoveBatch _

"2942,2332,0,2926,2394,0,2926,2582,0,2911,2739,0,2911,2801,0"

QueMouseMoveBatch _

"2911,2958,0,2911,3020,0,2911,3052,0,2911,3083,0,2911,3114,0"

QueMouseMoveBatch _

"2911,3130,0,2895,3161,0,2895,3193,0,2895,3208,0,2895,3193,0"

QueMouseMoveBatch _

"2895,3146,0,2911,3083,0,2926,3020,0,2942,2958,0,2973,2895,0"

QueMouseMoveBatch _

"3005,2848,0,3020,2817,0,3036,2801,0,3052,2770,0,3083,2770,0"

QueMouseMoveBatch _

"3114,2754,0,3130,2754,0,3146,2770,0,3161,2786,0,3161,2848,0"

QueMouseMoveBatch _
1138 Chapter 4 - BasicScript Reference

"3193,3005,0,3193,3193,0,3208,3255,0,3224,3318,0,3240,3349,0"

QueMouseMoveBatch _

"3255,3349,0,3286,3318,0,3380,3271,0,3474,3208,0,3553,3052,0"

QueMouseMoveBatch _

"3584,2895,0,3615,2739,0,3631,2692,0,3631,2645,0,3646,2645,0"

QueMouseMoveBatch _

"3646,2660,0,3646,2723,0,3646,2880,0,3662,2942,0,3693,2989,0"

QueMouseMoveBatch _

"3709,3005,0,3725,3005,0,3756,2989,0,3787,2973,0"

QueMouseUp ebLeftButton,3787,2973

QueMouseDn ebLeftButton,3678,2535

QueMouseMove 3678,2520

QueMouseMove 3678,2535

QueMouseUp ebLeftButton,3678,2535

QueFlush True

End Sub

See Also

QueMouseClick (statement), QueMouseDn (statement), QueMouseUp (statement),
QueMouseDblClk (statement), QueMouseDblDn (statement), QueMouseMove
(statement), QueFlush (statement)

Platform(s)

Windows.

QueMouseUp (statement)

Syntax
QueMouseUp button,x,y [,time]

Description

Adds a mouse up to the current event queue.
Optional Parameters 1139

Comments

The QueMouseUp statement takes the following parameters:

The QueFlush command is used to play back the events stored in the current event
queue.

Example

See QueEmpty (statement).

See Also

QueMouseClick (statement), QueMouseDn (statement), QueMouseDblClk
(statement), QueMouseDblDn (statement), QueMouseMove (statement),
QueMouseMoveBatch (statement), QueFlush (statement)

Platform(s)

Windows.

QueSetRelativeWindow (statement)

Syntax
QueSetRelativeWindow [window_object]

Description

Forces all subsequent QueX commands to adjust the mouse positions relative to the
specified window.

Parameter Description

button Integer specifying the mouse button to be released:

ebLeftButton Release the left mouse button.

ebRightButton Release the right mouse button.

x, y Integer coordinates, in twips, where the mouse button is to be released.

time Integer specifying the delay in milliseconds between this event and the
previous event in the queue. If this parameter is omitted (or 0), the mouse up
will play back at full speed.
1140 Chapter 4 - BasicScript Reference

Comments

The window_object parameter is an object of type HWND. If window_object is
Nothing or omitted, then the window with the focus is used (i.e., the active window).

The QueFlush command is used to play back the events stored in the current event
queue.

Example
Sub Main()

'Adjust mouse coordinates relative to Notepad.

Dim a As HWND

Set a = WinFind("Notepad")

QueSetRelativeWindow a

End Sub

Platform(s)

Windows.

Randomize (statement)

Syntax
Randomize [number]

Description

Initializes the random number generator with a new seed.

Comments

If number is not specified, then the current value of the system clock is used.

Example
'This example sets the randomize seed to a random number between

'100 and 1000, then generates ten random numbers for the lottery.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Randomize 'Start with new random seed.

For x = 1 To 10

y = Random(0,100) 'Generate numbers.
Optional Parameters 1141

message = message + Str(y) + crlf

Next x

MsgBox "Ten numbers for the lottery: " & crlf & message

End Sub

See Also

Random (function), Rnd (function)

Platform(s)

All.

ReadIniSection (statement)

Syntax
ReadIniSection section$,ArrayOfItems()[,filename$]

Description

Fills an array with the item names from a given section of the specified ini file.

Comments

The ReadIniSection statement takes the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"windows". Section names are specified without the enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants.
The array can be either dynamic or fixed.

If ArrayOfItems() is dynamic, then it will be redimensioned to exactly
hold the new number of elements. If there are no elements, then the array
will be redimensioned to contain no dimensions. You can use the
LBound, UBound, and ArrayDims functions to determine the number
and size of the new array's dimensions.

If the array is fixed, each array element is first erased, then the new
elements are placed into the array. If there are fewer elements than will fit
in the array, then the remaining elements are initialized to zero-length
strings (for String arrays) or Empty (for Variant arrays). A runtime error
results if the array is too small to hold the new elements.

filename$ String containing the name of an ini file.
1142 Chapter 4 - BasicScript Reference

On return, the ArrayOfItems() parameter will contain one array element for each
variable in the specified ini section. The maximum combined length of all the entry
names returned by this function is limited to 32K.

Example
Sub Main()

Dim items() As String

ReadIniSection "windows",items$

r% = SelectBox("INI Items",,items$)

End Sub

See Also

ReadIni$ (function), WriteIni (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows and Win32, if the name of the ini file is not specified, then win.ini is
assumed.

If the filename$ parameter does not include a path, then this statement looks for ini
files in the Windows directory.

ReDim (statement)

Syntax
ReDim [Preserve] variablename ([subscriptRange]) [As type],...

Description

Redimensions an array, specifying a new upper and lower bound for each dimension
of the array.

Comments

The variablename parameter specifies the name of an existing array (previously
declared using the Dim statement) or the name of a new array variable. If the array
variable already exists, then it must previously have been declared with the Dim
statement with no dimensions, as shown in the following example:
Optional Parameters 1143

Dim a$() 'Dynamic array of strings (no
dimensions yet)

Dynamic arrays can be redimensioned any number of times.

The subscriptRange parameter specifies the new upper and lower bounds for each
dimension of the array using the following syntax:

[lower To] upper [,[lower To] upper]...

If subscriptRange is not specified, then the array is redimensioned to have no
elements.

If lower is not specified, then 0 is used (or the value set using the Option Base
statement). A runtime error is generated if lower is less than upper. Array dimensions
must be within the following range:

–32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be
declared using any fundamental data type, user-defined data types, and objects.

Redimensioning an array erases all elements of that array unless the Preserve
keyword is specified. When this keyword is specified, existing data in the array is
preserved where possible. If the number of elements in an array dimension is
increased, the new elements are initialized to 0 (or empty string). If the number of
elements in an array dimension is decreased, then the extra elements will be deleted.
If the Preserve keyword is specified, then the number of dimensions of the array
being redimensioned must either be zero or the same as the new number of
dimensions.

Example
'This example uses the FileList statement to redim an array and

'fill it with filename strings. A new array is then redimmed to

'hold the number of elements found by FileList, and the FileList

'array is copied into it and partially displayed.

Sub Main()

Dim fl$()

FileList fl$,"*.*"

count = Ubound(fl$)

Redim nl$(Lbound(fl$) To Ubound(fl$))

For x = 1 to count

nl$(x) = fl(x)

Next x
1144 Chapter 4 - BasicScript Reference

MsgBox "The last element of the new array is: " & nl$(count)

End Sub

See Also

Dim (statement), Public (statement), Private (statement), ArrayDims (function),
LBound (function), UBound (function)

Platform(s)

All.

Rem (statement)

Syntax
Rem text

Description

Causes the compiler to skip all characters on that line.

Example
Sub Main()

Rem This is a line of comments that serves to illustrate the

Rem workings of the code. You can insert comments to make it

Rem more readable and maintainable in the future.

End Sub

See Also

' (keyword), Comments (topic)

Platform(s)

All.

Reset (statement)

Syntax
Reset
Optional Parameters 1145

Description

Closes all open files, writing out all I/O buffers.

Example
'This example opens a file for output, closes it with the Reset

'statement, then deletes it with the Kill statement.

Sub Main()

Open "test.dat" for Output Access Write as # 1

Reset

Kill "test.dat"

If FileExists("test.dat") Then

MsgBox "The file was not deleted."

Else

MsgBox "The file was deleted."

End If

End Sub

See Also

Close (statement), Open (statement)

Platform(s)

All.

Resume (statement)

Syntax
Resume {[0] | Next | label}

Description

Ends an error handler and continues execution.

Comments

The form Resume 0 (or simply Resume by itself) causes execution to continue with
the statement that caused the error.

The form Resume Next causes execution to continue with the statement following the
statement that caused the error.
1146 Chapter 4 - BasicScript Reference

The form Resume label causes execution to continue at the specified label.

The Resume statement resets the error state. This means that, after executing this
statement, new errors can be generated and trapped as normal.

Example
'This example accepts two integers from the user and attempts

'to multiply the numbers together. If either number is larger

'than an integer, the program processes an error routine and

'then continues program execution at a specific section using

'"Resume <label>". Another error trap is then set using "Resume

'Next". The new error trap will clear any previous error

'branching and also "tell" the program to continue execution of

'the program even if an error is encountered.

Sub Main()

Dim a%, b%, x%

Again:

On Error Goto Overflow

a% = InputBox("Enter 1st integer to multiply","Enter Number")

b% = InputBox("Enter 2nd integer to multiply","Enter Number")

On Error Resume Next 'Continue program execution
at next x% = a% * b%
'line if an error occurs.

if err = 0 then

MsgBox x%

else

Msgbox a% & " * " & b% & " cause an overflow!"

end if

Exit Sub

Overflow: 'Error handler.

MsgBox "You've entered a noninteger value. Try again!"

Resume Again

End Sub

See Also

Error Handling (topic), On Error (statement)
Optional Parameters 1147

Platform(s)

All.

Return (statement)

Syntax
Return

Description

Transfers execution control to the statement following the most recent GoSub.

Comments

A runtime error results if a Return statement is encountered without a corresponding
GoSub statement.

Example
'This example calls a subroutine and then returns execution to

'the Main routine by the Return statement.

Sub Main()

GoSub SubTrue

MsgBox "The Main routine continues here."

Exit Sub

SubTrue:

MsgBox "This message is generated in the subroutine."

Return

Exit Sub

End Sub

See Also

GoSub (statement)

Platform(s)

All.
1148 Chapter 4 - BasicScript Reference

RmDir (statement)

Syntax
RmDir path

Description

Removes the directory specified by the String contained in path.

Comments

Removing the Current Directory

On platforms that support drive letters, removing a directory that is the current
directory on that drive causes unpredictable side effects. For example, consider the
following statements:

MkDir "Z:\JUNK"

ChDir "Z:\JUNK"

RmDir "Z:\JUNK"

If this code is run under Windows and drive Z is a network drive, then some
networks will delete the directory and unmap the drive without generating a script
error. If drive Z is a local drive, the directory will not be deleted, nor will the script
receive an error.

Different platforms and file systems exhibit similar strange behavior in these cases.

Example
'This routine creates a directory and then deletes it with RmDir.

Sub Main()

On Error Goto ErrMake

MkDir("test01")

On Error Goto ErrRemove

RmDir("test01")

ErrMake:

MsgBox "The directory could not be created."

Exit Sub

ErrRemove:

MsgBox "The directory could not be removed."

Exit Sub
Optional Parameters 1149

End Sub

See Also

ChDir (statement), ChDrive (statement), CurDir, CurDir$ (functions), Dir, Dir$
(functions), MkDir (statement)

Platform(s)

All.

Platform Notes: Windows

Under Windows, this command behaves the same as the DOS "rd" command.

RSet (statement)

Syntax
RSet destvariable = source

Description

Copies the source string source into the destination string destvariable.

Comments

If source is shorter in length than destvariable, then the string is right-aligned within
destvariable and the remaining characters are padded with spaces. If source is longer
in length than destvariable, then source is truncated, copying only the leftmost
number of characters that will fit in destvariable. A runtime error is generated if
source is Null.

The destvariable parameter specifies a String or Variant variable. If destvariable is a
Variant containing Empty, then no characters are copied. If destvariable is not
convertible to a String, then a runtime error occurs. A runtime error results if
destvariable is Null.

Example
'This example replaces a 40-character string of asterisks (*)

'with an RSet and LSet string and then displays the result.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

Dim msg,tmpstr$
1150 Chapter 4 - BasicScript Reference

tmpstr$ = String$(40, "*")

message = "Here are two strings that have been right-" & crlf

message = message & "and left-justified in" & _

" a 40-character string."

message = message & crlf & crlf

RSet tmpstr$ = "Right->"

message = message & tmpstr$ & crlf

LSet tmpstr$ = "<-Left"

message = message & tmpstr$ & crlf

MsgBox message

End Sub

See Also

LSet (statement)

Platform(s)

All.

SaveSetting (statement)

Syntax
SaveSetting appname, section, key, setting

Description

Saves the value of the specified key in the system registry. The following table
describes the named parameters to the SaveSetting statement:

Named Parameter Description

appname String expression indicating the name of the application whose
setting will be modified.

section String expression indicating the name of the section whose setting
will be modified.

key String expression indicating the name of the setting to be modified.

setting The value assigned to key.
Optional Parameters 1151

Example
'The following example adds two entries to the Windows registry

'if run under Win32 or to NEWAPP.INI on other platforms,

'using the SaveSetting statement. It then uses DeleteSetting

'to remove these entries.

Sub Main()

SaveSetting appname := "NewApp", section := "Startup", _

key := "Height", setting := 200

SaveSetting appname := "NewApp", section := "Startup", _

key := "Width", setting := 320

DeleteSetting "NewApp" 'Remove NewApp
key from registry

End Sub

See Also

GetAllSettings (function), DeleteSetting (statement), GetSetting (function)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Win32

Under Win32, this statement operates on the system registry. All settings are saved to
the following entry in the system registry:

HKEY_CURRENT_USER\Software\BasicScript Program
Settings\appname\section\key

On this platform, the appname parameter is not optional.

Platform Notes: Windows, OS/2

Settings are stored in INI files. The name of the INI file is specified by appname. If
appname is omitted, then this command operates on the WIN.INI file. For example, to
change the Language setting from the intl section of the WIN.INI file, you could use
the following statement:

s$ = SaveSetting(,"intl","sLanguage","eng")
1152 Chapter 4 - BasicScript Reference

Seek (statement)

Syntax
Seek [#] filenumber,position

Description

Sets the position of the file pointer within a given file such that the next read or write
operation will occur at the specified position.

Comments

The Seek statement accepts the following parameters:

A file can be extended by seeking beyond the end of the file and writing data there.

Example
'This example opens a file for random write, then writes ten

'records into the file using the Put statement. The file is then

'reopened for read, and the ninth record is read using the Seek

'and Get functions.

Sub Main()

Open "test.dat" For Random Access Write As #1

For x = 1 To 10

rec$ = "Record#: " & x

Put #1,x,rec$

Next x

Close

Open "test.dat" For Random Access Read As #1

Parameter Description

filenumber Integer used by BasicScript to refer to the open file—the number passed to the
Open statement.

position Long that specifies the location within the file at which to position the file
pointer. The value must be between 1 and 2147483647, where the first byte (or
record number) in the file is 1. For files opened in either Binary, Output, Input,
or Append mode, position is the byte position within the file. For Random
files, position is the record number.
Optional Parameters 1153

Seek #1,9

Get #1,,rec$

MsgBox "The ninth record = " & x

Close

Kill "test.dat"

End Sub

See Also

Seek (function), Loc (function)

Platform(s)

All.

Select...Case (statement)

Syntax
Select Case testexpression

[Case expressionlist

 [statement_block]]

[Case expressionlist

 [statement_block]]

.

.

[Case Else

 [statement_block]]

End Select

Description

Used to execute a block of BasicScript statements depending on the value of a given
expression.

Comments

The Select Case statement has the following parts:

Part Description

testexpression Any numeric or string expression.
1154 Chapter 4 - BasicScript Reference

Multiple expression ranges can be used within a single Case clause. For example:

Case 1 to 10,12,15, Is > 40

Only the statement_block associated with the first matching expression will be
executed. If no matching statement_block is found, then the statements following the
Case Else will be executed.

A Select...End Select expression can also be represented with the If...Then
expression. The use of the Select statement, however, may be more readable.

Example
'This example uses the Select...Case statement to output the

'current operating system.

Sub Main()

OpSystem% = Basic.OS

Select Case OpSystem%

Case 0,2

s = "Microsoft Windows"

Case 3 to 8, 12

s = "UNIX"

Case 10

s = "IBM OS/2"

Case Else

s = "Other"

End Select

MsgBox "This version of BasicScript is running on: " & s

End Sub

statement_block Any group of BasicScript statements. If the testexpression matches any
of the expressions contained in expressionlist, then this statement block
will be executed.

expressionlist A comma-separated list of expressions to be compared against
testexpression using any of the following syntaxes:expression
[,expression]...expression To expressionIs relational_operator
expressionThe resultant type of expression in expressionlist must be
the same as that of testexpression.

Part Description
Optional Parameters 1155

See Also

Choose (function), Switch (function), IIf (function), If...Then...Else (statement)

Platform(s)

All.

SelectButton (statement)

Syntax
SelectButton name$ | id

Description

Simulates a mouse click on the a push button given the push button's name (the
name$ parameter) or ID (the id parameter).

Comments

The SelectButton statement accepts the following parameters:

A runtime error is generated if a push button with the given name or ID cannot be
found in the active window.

Note: The SelectButton statement is used to select a button in another application's
dialog box. This command is not intended for use with built-in or dynamic dialog
boxes.

Example
'This example simulates the selection of several buttons in a

'dialog.

Sub Main()

SelectButton "OK"

SelectButton 2

SelectButton "Close"

Parameter Description

name$ String containing the name of the push button to be selected.

id Integer representing the ID of the push button to be selected.
1156 Chapter 4 - BasicScript Reference

End Sub

See Also

ButtonEnabled (function), ButtonExists (function)

Platform(s)

Windows.

SelectComboBoxItem (statement)

Syntax
SelectComboBoxItem {name$ | id},{ItemName$ | ItemNumber}
[,isDoubleClick]

Description

Selects an item from a combo box given the name or ID of the combo box and the
name or line number of the item.
Optional Parameters 1157

Comments

The SelectComboBoxItem statement accepts the following parameters:

Note: The SelectComboBoxItem statement is used to set the item of a combo box in
another application's dialog box. Use the DlgText statement to change the content of
the text box part of a list box in a dynamic dialog box.

Example
'This example simulates the selection of a couple of combo boxes.

Sub Main()

SelectComboBoxItem "ComboBox1","Item4"

SelectComboBoxItem 1,2,TRUE

End Sub

See Also

ComboBoxEnabled (function), ComboBoxExists (function), GetComboBoxItem$
(function), GetComboBoxItemCount (function)

Platform(s)

Windows.

Parameter Description

name$ String indicating the name of the combo box containing the item to be
selected.The name of a combo box is determined by scanning the window list
looking for a text control with the given name that is immediately followed by
a combo box. A runtime error is generated if a combo box with that name
cannot be found within the active window.

id Integer specifying the ID of the combo box containing the item to be selected.

ItemName$ String specifying which item is to be selected. The string is compared without
regard to case. If ItemName$ is a zero-length string, then all currently selected
items are deselected. A runtime error results if ItemName$ cannot be found in
the combo box.

ItemNumber Integer containing the index of the item to be selected. A runtime error is
generated if ItemNumber is not within the correct range.

isDoubleClick Boolean value indicating whether a double click of that item is to be
simulated.
1158 Chapter 4 - BasicScript Reference

SelectListBoxItem (statement)

Syntax
SelectListBoxItem {name$ | id},{ItemName$ | ItemNumber}
[,isDoubleClick]

Description

Selects an item from a list box given the name or ID of the list box and the name or line
number of the item.

Comments

The SelectListBoxItem statement accepts the following parameters:

The list box must exist within the current window or dialog box; otherwise, a runtime
error will be generated.

For multiselect list boxes, SelectListBoxItem will select additional items (i.e., it will
not remove the selection from the currently selected items).

Note: The SelectListBoxItem statement is used to select an item in a list box of
another application's dialog box. Use the DlgText statement to change the selected
item in a list box within a dynamic dialog box.

Parameter Description

name$ String indicating the name of the list box containing the item to be
selected.The name of a list box is determined by scanning the window list
looking for a text control with the given name that is immediately followed
by a list box. A runtime error is generated if a list box with that name cannot
be found within the active window.

id Integer specifying the ID of the list box containing the item to be selected.

ItemName$ String specifying which item is to be selected. The string is compared without
regard to case. If ItemName$ is a zero-length string, then all currently
selected items are deselected. A runtime error results if ItemName$ cannot be
found in the list box.

ItemNumber Integer containing the index of the item to be selected. A runtime error is
generated if ItemNumber is not within the correct range.

isDoubleClick Boolean value indicating whether a double click of that item is to be
simulated.
Optional Parameters 1159

Example
'This example simulates a double click on the first item in list

'box 1.

Sub Main()

SelectListBoxItem "ListBox1",1,TRUE

End Sub

See Also

GetListBoxItem$ (function), GetListBoxItemCount (function), ListBoxEnabled
(function), ListBoxExists (function)

Platform(s)

Windows.

SendKeys (statement)

Syntax
SendKeys string [, [wait] [,delay]]

Description

Sends the specified keys to the active application, optionally waiting for the keys to be
processed before continuing.

Comments

The SendKeys statement accepts the following named parameters:

Named Parameter Description

string String containing the keys to be sent. The format for string is
described below.

wait Boolean value. If True, then BasicScript waits for the keys to be
completely processed before continuing. The default value is False,
which causes BasicScript to continue script execution while before
SendKeys finishes.
1160 Chapter 4 - BasicScript Reference

The SendKeys statement will wait for a prior SendKeys to complete before
executing.

Specifying Keys

To specify any key on the keyboard, simply use that key, such as “a” for lowercase a,
or “A” for uppercase a.

Sequences of keys are specified by appending them together: “abc” or “dir /w”.

Some keys have special meaning and are therefore specified in a special way—by
enclosing them within braces. For example, to specify the percent sign, use “{%}”. The
following table shows the special keys:

Keys that are not displayed when you press them are also specified within braces,
such as {Enter} or {Up}. A list of these keys follows:

delay Integer specifying the number of milliseconds devoted for the
output of the entire string parameter. It must be within the following
range:0 <= delay <= 32767For example, if delay is 5000 (5
seconds) and the string parameter contains ten keys, then a key will
be output every 1/2 second. If unspecified (or 0), the keys will play
back at full speed.

Key Special Meaning Example

+ Shift "+{F1}" Shift+F1

^ Ctrl "^a" Ctrl+A

~ Shortcut for Enter "~" Enter

% Alt "%F" Alt+F

[] No special meaning "{[}" Open bracket

{} Used to enclose special keys "{Up}" Up arrow

() Used to specify grouping "^(ab)" Ctrl+A, Ctrl+B

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

Named Parameter Description
Optional Parameters 1161

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys "+", "^", and
"%" respectively:

To specify a modifier key combined with a sequence of consecutive keys, group the
key sequence within parentheses, as in the following example:

Use "~" as a shortcut for embedding Enter within a key sequence:

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

{Right} {Tab} {Up} {F1} {Scroll Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

For Key Combination Use

Shift+Enter "+{Enter}"

Ctrl+C "^c"

Alt+F2 "%{F2}"

For Key Combination Use

Shift+A, Shift+B "+(abc)"

Ctrl+F1, Ctrl+F2 "^({F1}{F2})"

For Key Combination Use

a, b, Enter, d, e "ab~de"

Enter, Enter "~~"
1162 Chapter 4 - BasicScript Reference

To embed quotation marks, use two quotation marks in a row:

Key sequences can be repeated using a repeat count within braces:

Example
'This example runs Notepad, writes to Notepad, and saves the new

'file using the SendKeys statement.

Sub Main()

id = Shell("Notepad.exe")

AppActivate "Notepad"

SendKeys "Hello, Notepad.", True 'Write some
text.

SendKeys "%fs", True 'Save file
as "name.txt"

SendKeys "name.txt{ENTER}",True

AppClose "Notepad"

End Sub

See Also

DoKeys (statement), QueKeys (statement), QueKeyDn (statement), QueKeyUp
(statement)

Platform(s)

Windows, Win32.

For Key Combination Use

"Hello" ""Hello""

a"b"c "a""b""c"

For Key Combination Use

Ten "a" keys "{a 10}"

Two Enter keys "{Enter 2}"
Optional Parameters 1163

Set (statement)

Syntax 1
Set object_var = object_expression

Syntax 2
Set object_var = New object_type

Syntax 3
Set object_var = Nothing

Description

Assigns a value to an object variable.

Comments

Syntax 1

The first syntax assigns the result of an expression to an object variable. This
statement does not duplicate the object being assigned but rather copies a reference of
an existing object to an object variable.

The object_expression is any expression that evaluates to an object of the same type as
the object_var.

With data objects, Set performs additional processing. When the Set is performed, the
object is notified that a reference to it is being made and destroyed. For example, the
following statement deletes a reference to object A, then adds a new reference to B.

Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Syntax 2

In the second syntax, the object variable is being assigned to a new instance of an
existing object type. This syntax is valid only for data objects.

When an object created using the New keyword goes out of scope (i.e., the Sub or
Function in which the variable is declared ends), the object is destroyed.
1164 Chapter 4 - BasicScript Reference

Syntax 3

The reserved keyword Nothing is used to make an object variable reference no object.
At a later time, the object variable can be compared to Nothing to test whether the
object variable has been instantiated:

Set a = Nothing

:

If a Is Nothing Then Beep

Example
'This example creates two objects and sets their values.

Sub Main()

Dim document As Object

Dim page As Object

Set document = GetObject("c:\resume.doc")

Set page = Document.ActivePage

MsgBox page.name

End Sub

See Also

= (statement), Let (statement), CreateObject (function), GetObject (function)

Platform(s)

All.

SetAttr (statement)

Syntax
SetAttr pathname, attributes

Description

Changes the attribute pathname to the given attribute. A runtime error results if the
file cannot be found.
Optional Parameters 1165

Comments

The SetAttr statement accepts the following named parameters:

The attributes parameter can contain any combination of the following values:

The attributes can be combined using the + operator or the binary Or operator.

Example
'This example creates a file and sets its attributes to

'Read-Only and System.

Sub Main()

Open "test.dat" For Output Access Write As #1

Close

MsgBox "The current file attribute is: " & GetAttr("test.dat")

SetAttr "test.dat",ebReadOnly Or ebSystem

MsgBox "The file attribute was set to: " & GetAttr("test.dat")

End Sub

Named Parameter Description

pathname String containing the name of the file.

attributes Integer specifying the new attribute of the file.

Constant Value Includes

ebNormal 0 Turns off all attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebArchive 32 Files that have changed since the last backup

ebNone 64 Files with no attributes
1166 Chapter 4 - BasicScript Reference

See Also

GetAttr (function), FileAttr (function)

Platform(s)

All.

Platform Notes: Windows

Under Windows, these attributes are the same as those used by DOS.

Platform Notes: UNIX

On UNIX platforms, the hidden file attribute corresponds to files without the read or
write attributes.

SetCheckBox (statement)

Syntax
SetCheckBox {name$ | id},state

Description

Sets the state of the check box with the given name or ID.

Comments

The SetCheckBox statement accepts the following parameters:

A runtime error is generated if a check box with the specified name cannot be found
in the active window.

Parameter Description

name$ String containing the name of the check box to be set.

id Integer specifying the ID of the check box to be set.

state Integer indicating the new state of the check box. If state is 1, then the
box is checked. If state is 0, then the check is removed. If state is 2, then
the box is dimmed (only applicable for three-state check boxes).
Optional Parameters 1167

This statement has the side effect of setting the focus to the given check box.

Note: The SetCheckBox statement is used to set the state of a check box in another
application's dialog box. Use the DlgValue statement to modify the state of a check
box within a dynamic dialog box.

Example
'This example sets a check box.

Sub Main()

SetCheckBox "CheckBox1",1

End Sub

See Also

CheckBoxExists (function), CheckBoxEnabled (function), GetCheckBox (function),
DlgValue (statement)

Platform(s)

Windows.

SetEditText (statement)

Syntax
SetEditText {name$ | id},content$

Description

Sets the content of an edit control given its name or ID.

Comments

The SetEditText statement accepts the following parameters:

Parameter Description

name$ String containing the name of the text box to be set.The name of a text box
control is determined by scanning the window list looking for a text control
with the given name that is immediately followed by an edit control. A
runtime error is generated if a text box control with that name cannot be
found within the active window.
1168 Chapter 4 - BasicScript Reference

This statement has the side effect of setting the focus to the given text box.

Note: The SetEditText statement is used to set the content of a text box in another
application's dialog box. Use the DlgText statement to set the text of a text box within
a dynamic dialog box.

Example
'This example sets the content of the filename text box of the

'current window to "test.dat".

Sub Main()

SetEditText "Filename:","test.dat"

End Sub

See Also

EditEnabled (function), EditExists (function), GetEditText$ (function)

Platform(s)

Windows.

SetOption (statement)

Syntax
SetOption name$ | id

Description

Selects the specified option button given its name or ID.

id Integer specifying the ID of the text box to be set.For text boxes that do not
have a preceding text control, the id can be used to absolutely reference the
control. The id is determined by examining the dialog box with a resource
editor or using an application such as Spy.

content$ String containing the new content for the text box.

Parameter Description
Optional Parameters 1169

Comments

The SetOption statement accepts the following parameters:

A runtime error is generated if the option button cannot be found within the active
window.

Note: The SetOption statement is used to select an option button in another
application's dialog box. Use the DlgValue statement to select an option button
within a dynamic dialog box.

Example
'This example selects the Continue option button.

Sub Main()

SetOption "Continue"

End Sub

See Also

GetOption (function), OptionEnabled (function), OptionExists (function)

Platform(s)

Windows.

Sleep (statement)

Syntax
Sleep milliseconds

Description

Causes the script to pause for a specified number of milliseconds.

Comments

The milliseconds parameter is a Long in the following range:

Parameter Description

name$ String containing the name of the option button to be selected.

id Integer containing the ID of the option button to be selected.
1170 Chapter 4 - BasicScript Reference

0 <= milliseconds <= 2,147,483,647

Example
'This example displays a message for 2 seconds.

Sub Main()

Msg.Open "Waiting 2 seconds",0,False,False

Sleep(2000)

Msg.Close

End Sub

Platform(s)

All.

Platform Notes: Windows

Under Windows, the accuracy of the system clock is modulo 55 milliseconds. The
value of milliseconds will, in the worst case, be rounded up to the nearest multiple of
55. In other words, if milliseconds is 1, it will be rounded to 55 in the worst case.

Stop (statement)

Syntax
Stop

Description

Suspends execution of the current script, returning control to a debugger if one is
present. If a debugger is not present, this command will have the same effect as End.

Example
'The Stop statement can be used for debugging. In this example,

'it is used to stop execution when Z is randomly set to 0.

Sub Main()

For x = 1 To 10

z = Random(0,10)

If z = 0 Then Stop

y = x / z

Next x

End Sub
Optional Parameters 1171

See Also

Exit For (statement), Exit Do (statement), Exit Function (statement), Exit Sub
(statement), End (statement)

Platform(s)

All.

Sub...End Sub (statement)

Syntax
[Private | Public] [Static] Sub name[(arglist)]

[statements]

End Sub

where arglist is a comma-separated list of the following (up to 30 arguments are
allowed):

[Optional] [ByVal | ByRef] parameter[()] [As type]

Description

Declares a subroutine.

Comments

The Sub statement has the following parts:

Part Description

Private Indicates that the subroutine being defined cannot be called from other
scripts.

Public Indicates that the subroutine being defined can be called from other scripts. If
the Private and Public keywords are both missing, then Public is assumed.

Static Recognized by the compiler but currently has no effect.

name- Name of the subroutine, which must follow BasicScript naming conventions:

- Must start with a letter.

- May contain letters, digits, and the underscore character (_). Punctuation
and type-declaration characters are not allowed. The exclamation point (!) can
appear within the name as long as it is not the last character.

- Must not exceed 80 characters in length.
1172 Chapter 4 - BasicScript Reference

A subroutine terminates when one of the following statements is encountered:

End Sub

Exit Sub

Subroutines can be recursive.

Passing Parameters to Subroutines

Parameters are passed to a subroutine either by value or by reference, depending on
the declaration of that parameter in arglist. If the parameter is declared using the
ByRef keyword, then any modifications to that passed parameter within the
subroutine change the value of that variable in the caller. If the parameter is declared
using the ByVal keyword, then the value of that variable cannot be changed in the
called subroutine. If neither the ByRef nor the ByVal keyword is specified, then the
parameter is passed by reference.

You can override passing a parameter by reference by enclosing that parameter within
parentheses. For instance, the following example passes the variable j by reference,
regardless of how the third parameter is declared in the arglist of UserSub:

UserSub 10,12,(j)

Optional Keyword indicating that the parameter is optional. All optional parameters
must be of type Variant. Furthermore, all parameters that follow the first
optional parameter must also be optional.

If this keyword is omitted, then the parameter is required.

Note: You can use the IsMissing function to determine whether an optional
parameter was actually passed by the caller.

ByVal Keyword indicating that the parameter is passed by value.

ByRef Keyword indicating that the parameter is passed by reference. If neither the
ByVal nor the ByRef keyword is given, then ByRef is assumed.

parameter Name of the parameter, which must follow the same naming conventions as
those used by variables. This name can include a type-declaration character,
appearing in place of As type.

type Type of the parameter (i.e., Integer, String, and so on). Arrays are indicated
with parentheses. For example, an array of integers would be declared as
followsSub Test(a() As Integer)End Sub

Part Description
Optional Parameters 1173

Optional Parameters

BasicScript allows you to skip parameters when calling subroutines, as shown in the
following example:

Sub Test(a%,b%,c%)

End Sub

Sub Main

Test 1,,4 'Parameter 2 was skipped.

End Sub

You can skip any parameter with the following restrictions:

1 The call cannot end with a comma. For instance, using the above example, the
following is not valid:

Test 1,,

2 The call must contain the minimum number of parameters as required by the
called subroutine. For instance, using the above example, the following are invalid:

Test ,1 'Only passes two out of three required
'parameters.

Test 1,2 'Only passes two out of three required

parameters.

When you skip a parameter in this manner, BasicScript creates a temporary variable
and passes this variable instead. The value of this temporary variable depends on the
data type of the corresponding parameter in the argument list of the called
subroutine, as described in the following table:

Within the called subroutine, you will be unable to determine whether a parameter
was skipped unless the parameter was declared as a variant in the argument list of the
subroutine. In this case, you can use the IsMissing function to determine whether the
parameter was skipped:

Value Data Type

0 Integer, Long, Single, Double, Currency

Zero-length string String

Nothing Object (or any data object)

Error Variant

December 30, 1899 Date

False Boolean
1174 Chapter 4 - BasicScript Reference

Sub Test(a,b,c)

If IsMissing(a) Or IsMissing(b) Then Exit Sub

End Sub

Example
'This example uses a subroutine to calculate the area of a

'circle.

Sub Main()

r! = 10

PrintArea r!

End Sub

Sub PrintArea(r as single)

area! = (r! ^ 2) * Pi

MsgBox "The area of a circle with radius " & r! & " = " & area!

End Sub

See Also

Main (statement), Function...End Function (statement)

Platform(s)

All.

Text (statement)

Syntax
Text x,y,width,height,title$ [,[.Identifier] [,[FontName$]
[,[size] [,style]]]]

Description

Defines a text control within a dialog box template. The text control only displays text;
the user cannot set the focus to a text control or otherwise interact with it.

Comments

The text within a text control word-wraps. Text controls can be used to display up to
32K of text.
Optional Parameters 1175

The Text statement accepts the following parameters:

Example
Begin Dialog UserDialog3 81,64,128,60,"Untitled"

CancelButton 80,32,40,14

OKButton 80,8,40,14

Text 4,8,68,44,"This text is displayed in the dialog box."

End Dialog

Parameter Description

x, y Integer positions of the control (in dialog units) relative to the upper left
corner of the dialog box.

width, height Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control. This text may
contain an ampersand character to denote an accelerator letter, such as
"&Save" for Save. Pressing this accelerator letter sets the focus to the control
following the Text statement in the dialog box template.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). If this parameter is omitted, then
the first two words from title$ are used.

FontName$ Name of the font used for display of the text within the text control. If this
parameter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text control. If this
parameter is omitted, then the default size for the default font of the dialog is
used.

style Style of the font used for display of the text within the text control. This can
be any of the following values:
■ ebRegular - Normal font (i.e., neither bold nor italic)

■ ebBold - Bold font

■ ebItalic - Italic font

■ ebBoldItalic - Bold-italic fon. If this parameter is omitted, then ebRegular
is used.
1176 Chapter 4 - BasicScript Reference

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), Picture (statement), PushButton (statement), TextBox (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

Platform Notes: Windows, Win32

Under Windows and Win32, accelerators are underlined, and the Alt+letter
accelerator combination is used.

Platform Notes: OS/2

Under OS/2, accelerators are underlined, and the Alt+letter accelerator combination
is used.

Platform Notes: Macintosh

On the Macintosh, accelerators are normal in appearance, and the Command+letter
accelerator combination is used.

TextBox (statement)

Syntax
TextBox x,y,width,height,.Identifier [,[isMultiline]
[,[FontName$] [,[size] [,style]]]]

Description

Defines a single or multiline text-entry field within a dialog box template.
Optional Parameters 1177

Comments

The TextBox statement requires the following parameters:

If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the
user types into a multiline field, pressing the Enter key creates a new line rather than
selecting the default button.

The isMultiLine parameter also specifies whether the text box is read-only and
whether the text-box should hide input for password entry. To specify these extra
parameters, you can form the isMultiLine parameter by ORing together the following
values:

Parameter Description

x, y Integer position of the control (in dialog units) relative to the upper left corner
of the dialog box.

width, height Integer dimensions of the control in dialog units.

.Identifier Name by which this control can be referenced by statements in a dialog
function (such as DlgFocus and DlgEnable). This parameter also creates a
string variable whose value corresponds to the content of the text box. This
variable can be accessed using the syntax:DialogVariable.Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 =
single-line; 1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If this
parameter is omitted, then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If this
parameter is omitted, then the default size for the default font of the dialog is
used.

style Style of the font used for display of the text within the text box control. This
can be any of the following values:
■ ebRegularNormal font (i.e., neither bold nor italic)

■ ebBoldBold fontebItalicItalic font

■ ebBoldItalicBold-italic font. If this parameter is omitted, then ebRegular is
used.

Value Meaning

0 Text box is single-line.

1 Text box is multi-line.
1178 Chapter 4 - BasicScript Reference

For example, the following statement creates a read-only multiline text box:

TextBox 10,10,80,14,.TextBox1,1 Or &H8000

The TextBox statement can only appear within a dialog box template (i.e., between the
Begin Dialog and End Dialog statements).

When the dialog box is created, the .Identifier variable is used to set the initial content
of the text box. When the dialog box is dismissed, the variable will contain the new
content of the text box.

A single-line text box can contain up to 256 characters. The length of text in a multiline
text box is not limited by BasicScript; the default memory limit specified by the given
platform is used instead.

Example
Begin Dialog UserDialog3 81,64,128,60,"Untitled"

CancelButton 80,32,40,14

OKButton 80,8,40,14

TextBox 4,8,68,44,.TextBox1,1

End Dialog

See Also

CancelButton (statement), CheckBox (statement), ComboBox (statement), Dialog
(function), Dialog (statement), DropListBox (statement), GroupBox (statement),
ListBox (statement), OKButton (statement), OptionButton (statement), OptionGroup
(statement), Picture (statement), PushButton (statement), Text (statement), Begin
Dialog (statement), PictureButton (statement), HelpButton (statement)

Platform(s)

Windows, Win32, Macintosh, OS/2, UNIX.

&H8000 Text box is read-only.

&H4000 Text box is password-entry.

Value Meaning
Optional Parameters 1179

Time, Time$ (statements)

Syntax
Time[$] = newtime

Description

Sets the system time to the time contained in the specified string.

Comments

The Time$ statement requires a string variable in one of the following formats:

HH

HH:MM

HH:MM:SS

where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59.

The Time statement converts any valid expression to a time, including string and
numeric values. Unlike the Time$ statement, Time recognizes many different time
formats, including 12-hour times.

Example
'This example returns the system time and displays it in a

'dialog box.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()

oldtime$ = Time$

msg = "Time was: " & oldtime$ & crlf

Time$ = "10:30:54"

msg = msg & "Time set to: " & Time$ & crlf

Time$ = oldtime$

msg = msg & "Time restored to: " & Time$

MsgBox msg

End Sub

See Also

Time, Time$ (functions), Date, Date$ (functions), Date, Date$ (statements)
1180 Chapter 4 - BasicScript Reference

Platform(s)

All.

Platform Notes: UNIX, Win32, OS/2

On all UNIX platforms, Win32, and OS/2, you may not have permission to change the
time, causing runtime error 70 to be generated.

Type (statement)

Syntax
Type username

variable As type

variable As type

variable As type

:

End Type

Description

The Type statement creates a structure definition that can then be used with the Dim
statement to declare variables of that type. The username field specifies the name of
the structure that is used later with the Dim statement.

Comments

Within a structure definition appear field descriptions in the format:

variable As type

where variable is the name of a field of the structure, and type is the data type for that
variable. Any fundamental data type or previously declared user-defined data type
can be used within the structure definition (structures within structures are allowed).
Only fixed arrays can appear within structure definitions.

The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as
fixed-length. Fixed-length strings are stored within the structure itself rather than in
the string space. For example, the following structure will always require 62 bytes of
storage:

Type Person

FirstName As String * 20
Optional Parameters 1181

LastName As String * 40

Age As Integer

End Type

Note: Fixed-length strings within structures are size-adjusted upward to an even byte
boundary. Thus, a fixed-length string of length 5 will occupy 6 bytes of storage within
the structure.

Example
'This example displays the use of the Type statement to create

'a structure representing the parts of a circle and assign

'values to them.

Type Circ

message As String

rad As Integer

dia As Integer

are As Double

cir As Double

End Type

Sub Main()

Dim circle As Circ

circle.rad = 5

circle.dia = circle.rad * 2

circle.are = (circle.rad ^ 2) * Pi

circle.cir = circle.dia * Pi

circle.message = "The area of the circle is: " & circle.are

MsgBox circle.message

End Sub

See Also

Dim (statement), Public (statement), Private (statement)

Platform(s)

All.

Unlock (statement)

See Lock, Unlock (statements).
1182 Chapter 4 - BasicScript Reference

VLine (statement)

Syntax
VLine [lines]

Description

Scrolls the window with the focus up or down by the specified number of lines.

Comments

The lines parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled down by one line.

Example
'This example prints a series of lines to the viewport, then

'scrolls back up the lines to the top using VLine.

Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,200

For i = 1 to 50

Print "This will be displayed on line#: " & i

Next i

MsgBox "We will now go back 40 lines..."

VLine -40

MsgBox "...and here we are!"

Viewport.Close

End Sub

See Also

VPage (statement), VScroll (statement)

Platform(s)

Windows.

VPage (statement)

Syntax
VPage [pages]
Optional Parameters 1183

Description

Scrolls the window with the focus up or down by the specified number of pages.

Comments

The pages parameter is an Integer specifying the number of lines to scroll. If this
parameter is omitted, then the window is scrolled down by one page.

Example
'This example scrolls the viewport window up five pages.

Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,200

For i = 1 to 500

Print "This will be displayed on line#: " & i

Next i

MsgBox "We will now go back 5 pages..."

VLine -5

MsgBox "...and here we are!"

Viewport.Close

End Sub

See Also

VLine (statement), VScroll (statement)

Platform(s)

Windows, Win32.

VScroll (statement)

Syntax
VScroll percentage

Description

Sets the thumb mark on the vertical scroll bar attached to the current window.
1184 Chapter 4 - BasicScript Reference

Comments

The position is given as a percentage of the total range associated with that scroll bar.
For example, if the percentage parameter is 50, then the thumb mark is positioned in
the middle of the scroll bar.

Example
'This example prints a bunch of lines to the viewport, then

'scrolls back to the top using VScroll.

Sub Main()

Viewport.Open "BasicScript Viewport",100,100,500,200

For i = 1 to 50

Print "This will be displayed on line#: " & i

Next i

Message$="We will now go to the the top..."

MsgBox Message$

VScroll 0

VScroll 0

MsgBox "...and here we are!"

Viewport.Close

End Sub

See Also

VLine (statement), VPage (statement)

Platform(s)

Windows.

While...Wend (statement)

Syntax
While condition

 [statements]

Wend

Description

Repeats a statement or group of statements while a condition is True.
Optional Parameters 1185

Comments

The condition is initially and then checked at the top of each iteration through the
loop.

Example
'This example executes a While loop until the random number

'generator returns a value of 1.

Sub Main()

x% = 0

count% = 0

While x% <> 1 And count% < 500

x% = Rnd(1)

If count% > 1000 Then

Exit Sub

Else

count% = count% + 1

End If

Wend

MsgBox "The loop executed " & count% & " times."

End Sub

See Also

Do...Loop (statement), For...Next (statement)

Platform(s)

All.

Platform Notes: Windows, Win32

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under Windows and Win32, you can break out of infinite loops using
Ctrl+Break.

Platform Notes: UNIX

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under UNIX, you can break out of infinite loops using Ctrl+C.
1186 Chapter 4 - BasicScript Reference

Platform Notes: Macintosh

Due to errors in program logic, you can inadvertently create infinite loops in your
code. On the Macintosh, you can break out of infinite loops using Command+Period.

Platform Notes: OS/2

Due to errors in program logic, you can inadvertently create infinite loops in your
code. Under OS/2, you can break out of infinite loops using Ctrl+C or Ctrl+Break.

WinActivate (statement)

Syntax
WinActivate [window_name$ | window_object] [,timeout]

Description

Activates the window with the given name or object value.

Comments

The WinActivate statement requires the following parameters:

If window_name$ and window_object are omitted, then no action is performed.

Parameter Description

window_name$ String containing the name that appears on the desired application's title
bar. Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:WinActivate "Notepad|Find"In this example, the top-level
windows are searched for a window whose title contains the word
"Notepad". If found, the windows owned by the top level window are
searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used
in place of the window_name$ parameter to indicate a specific window to
activate.

timeout Integer specifying the number of milliseconds for which to attempt
activation of the specified window. If not specified (or 0), then only one
attempt will be made to activate the window. This value is handy when
you are not certain that the window you are attempting to activate has
been created.
Optional Parameters 1187

Example
'This example runs the clock.exe program by activating the Run

'File dialog box from within Program Manager.

Sub Main()

WinActivate "Program Manager"

Menu "File.Run"

WinActivate "Program Manager|Run"

SendKeys "clock.exe{ENTER}"

End Sub

See Also

AppActivate (statement)

Platform(s)

Windows, Win32.

WinClose (statement)

Syntax
WinClose [window_name$ | window_object]

Description

Closes the given window.

Comments

The WinClose statement requires the following parameters:

Parameter Description

window_name$ String containing the name that appears on the desired application's title
bar. Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."A hierarchy of windows can be specified by separating each window
name with a vertical bar (|), as in the following example:WinActivate
"Notepad|Find"In this example, the top-level windows are searched for
a window whose title contains the word "Notepad". If found, the windows
owned by the top level window are searched for one whose title contains
the string "Find".
1188 Chapter 4 - BasicScript Reference

If window_name$ and window_object are omitted, then the window with the focus is
closed.

This command differs from the AppClose command in that this command operates
on the current window rather than the current top-level window (or application).

Example
'This example closes Microsoft Word if its object reference is

'found.

Sub Main()

Dim WordHandle As HWND

Set WordHandle = WinFind("Word")

If (WordHandle Is Not Nothing) Then WinClose WordHandle

End Sub

See Also

WinFind (function)

Platform(s)

Windows, Win32.

Platform Notes: Windows, Win32:

On all Windows, the current window can be an MDI child window, a pop-up window,
or a top-level window.

WinList (statement)

Syntax
WinList ArrayOfWindows()

Description

Fills the passed array with references to all the top-level windows.

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.

Parameter Description
Optional Parameters 1189

Comments

The passed array must be declared as an array of HWND objects.

The ArrayOfWindows parameter must specify either a zero- or one-dimensioned
dynamic array or a single-dimensioned fixed array. If the array is dynamic, then it will
be redimensioned to exactly hold the new number of elements. For fixed arrays, each
array element is first erased, then the new elements are placed into the array. If there
are fewer elements than will fit in the array, then the remaining elements are unused.
A runtime error results if the array is too small to hold the new elements.

After calling this function, use the LBound and UBound functions to determine the
new size of the array.

Example
'This example minimizes all top-level windows.

Sub Main()

Dim a() As HWND

WinList a

For i = 1 To UBound(a)

WinMinimize a(i)

Next i

End Sub

See Also

WinFind (function)

Platform(s)

Windows.

WinMaximize (statement)

Syntax
WinMaximize [window_name$ | window_object]

Description

Maximizes the given window.
1190 Chapter 4 - BasicScript Reference

Comments

The WinMaximize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
maximized.

This command differs from the AppMaximize command in that this command
operates on the current window rather than the current top-level window.

Example
'This example maximizes all top-level windows.

Sub Main()

Dim a() As HWND

WinList a

For i = 1 To UBound(a)

WinMaximize a(i)

Next i

End Sub

See Also

WinMinimize (statement), WinRestore (statement)

Platform(s)

Windows, Win32.

Parameter Description

window_name$ String containing the name that appears on the desired application's title
bar. Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:WinActivate "Notepad|Find"In this example, the top-level
windows are searched for a window whose title contains the word
"Notepad". If found, the windows owned by the top level window are
searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used
in place of the window_name$ parameter to indicate a specific window to
activate.
Optional Parameters 1191

Platform Notes: Windows, Win32

On all Windows platforms, the current window can be an MDI child window, a
pop-up window, or a top-level window.

WinMinimize (statement)

Syntax
WinMinimize [window_name$ | window_object]

Description

Minimizes the given window.

Comments

The WinMinimize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
minimized.

This command differs from the AppMinimize command in that this command
operates on the current window rather than the current top-level window.

Example

See example for WinList (statement).

See Also

WinMaximize (statement), WinRestore (statement)

Parameter Description

window_name$ String containing the name that appears on the desired application's title bar.
Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."A hierarchy of windows can be specified by separating each window
name with a vertical bar (|), as in the following example:WinActivate
"Notepad|Find"In this example, the top-level windows are searched for a
window whose title contains the word "Notepad". If found, the windows
owned by the top level window are searched for one whose title contains the
string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.
1192 Chapter 4 - BasicScript Reference

Platform(s)

Windows, Win32.

Platform Notes: Windows, Win32.

On all Windows platforms, the current window can be an MDI child window, a
pop-up window, or a top-level window.

WinMove (statement)

Syntax
WinMove x,y [window_name$ | window_object]

Description

Moves the given window to the given x,y position.

Comments

The WinMove statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
moved.

Parameter Description

x,y Integer coordinates given in twips that specify the new location for the
window.

window_name$ String containing the name that appears on the desired application's title
bar. Optionally, a partial name can be used, such as "Word" for "Microsoft
Word."A hierarchy of windows can be specified by separating each
window name with a vertical bar (|), as in the following
example:WinActivate "Notepad|Find"In this example, the top-level
windows are searched for a window whose title contains the word
"Notepad". If found, the windows owned by the top level window are
searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in
place of the window_name$ parameter to indicate a specific window to
activate.
Optional Parameters 1193

This command differs from the AppMove command in that this command operates
on the current window rather than the current top-level window. When moving child
windows, remember that the x and y coordinates are relative to the client area of the
parent window.

Example
'This example moves Program Manager to upper left corner of the

'screen.

WinMove 0,0,"Program Manager"

See Also

WinSize (statement)

Platform(s)

Windows, Win32.

Platform Notes: Windows, Win32

On all Windows platforms, the current window can be an MDI child window, a
pop-up window, or a top-level window.

WinRestore (statement)

Syntax
WinRestore [window_name$ | window_object]

Description

Restores the specified window to its restore state.

Comments

Restoring a minimized window restores that window to it screen position before it
was minimized. Restoring a maximized window resizes the window to its size
previous to maximizing.
1194 Chapter 4 - BasicScript Reference

The WinRestore statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
restored.

This command differs from the AppRestore command in that this command operates
on the current window rather than the current top-level window.

Example
'This example minimizes all top-level windows except for Program

'Manager.

Sub Main()

Dim a() As HWND

WinList a

For i = 0 To UBound(a)

 WinMinimize a(i)

Next I

WinRestore "Program Manager"

End Sub

See Also

WinMaximize (statement), WinMinimize (statement)

Platform(s)

Windows, Win32.

Parameter Description

window_name$ String containing the name that appears on the desired
application's title bar. Optionally, a partial name can be used, such
as "Word" for "Microsoft Word."A hierarchy of windows can be
specified by separating each window name with a vertical bar (|),
as in the following example:WinActivate "Notepad|Find"In
this example, the top-level windows are searched for a window
whose title contains the word "Notepad". If found, the windows
owned by the top level window are searched for one whose title
contains the string "Find"

window_object HWND object specifying the exact window to activate. This can be
used in place of the window_name$ parameter to indicate a
specific window to activate.
Optional Parameters 1195

Platform Notes: Windows, Win32

On all Windows platforms, the current window can be an MDI child window, a
pop-up window, or a top-level window.

WinSize (statement)

Syntax
WinSize width,height [,window_name$ | window_object]

Description

Resizes the given window to the specified width and height.

Comments

The WinSize statement requires the following parameters:

If window_name$ and window_object are omitted, then the window with the focus is
resized.

This command differs from the AppSize command in that this command operates on
the current window rather than the current top-level window.

Example
'This example runs and resizes Notepad.

Sub Main()

Parameter Description

width,height Integer coordinates given in twips that specify the new size of the
window.

window_name$ String containing the name that appears on the desired application's
title bar. Optionally, a partial name can be used, such as "Word" for
"Microsoft Word."A hierarchy of windows can be specified by
separating each window name with a vertical bar (|), as in the
following example:WinActivate "Notepad|Find"In this example,
the top-level windows are searched for a window whose title contains
the word "Notepad". If found, the windows owned by the top level
window are searched for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be
used in place of the window_name$ parameter to indicate a specific
window to activate.
1196 Chapter 4 - BasicScript Reference

Dim NotepadApp As HWND

id = Shell("Notepad.exe")

set NotepadApp = WinFind("Notepad")

WinSize 4400,8500,NotepadApp

End Sub

See Also

WinMove (statement)

Platform(s)

Windows, Win32.

Platform Notes: Windows, Win32

On all Windows platforms, the current window can be an MDI child window, a
pop-up window, or a top-level window.

WriteIni (statement)

Syntax
WriteIni section$,ItemName$,value$[,filename$]

Description

Writes a new value into an ini file.

Comments

The WriteIni statement requires the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as
"Windows." Section names are specified without the enclosing
brackets.

ItemName$ String specifying which item from within the given section you want to
change. If ItemName$ is a zero-length string (""), then the entire section
specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a
zero-length string (""), then the item specified by ItemName$ is deleted
from the ini file.
Optional Parameters 1197

Example
'This example sets the txt extension to be associated with

'Notepad.

Sub Main()

WriteIni "Extensions","txt", _

"c:\windows\notepad.exe ^.txt","win.ini"

End Sub

See Also

ReadIni$ (function), ReadIniSection (statement)

Platform(s)

Windows, Win32, OS/2.

Platform Notes: Windows, Win32

Under Windows and Win32, if filename$ is not specified, the win.ini file is used.

If the filename$ parameter does not include a path, then this statement looks for ini
files in the Windows directory.

Arrays (topic)

Declaring Array Variables

Arrays in BasicScript are declared using any of the following statements:

Dim

Public

Private

For example:

Dim a(10) As Integer

Public LastNames(1 to 5,-2 to 7) As Variant

Private

filename$ String specifying the name of the ini file.

Parameter Description
1198 Chapter 4 - BasicScript Reference

Arrays of any data type can be created, including Integer, Long, Single, Double,
Boolean, Date, Variant, Object, user-defined structures, and data objects.

The lower and upper bounds of each array dimension must be within the following
range:

-32768 <= bound <= 32767

Arrays can have up to 60 dimensions.

Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays

The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a
fixed array will always require the same amount of storage. Fixed arrays can be
declared with the Dim, Private, or Public statement by supplying explicit
dimensions. The following example declares a fixed array of eleven strings (assuming
the option base is 0):

Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following
example shows a structure containing fixed-length arrays:

Type Foo

rect(4) As Integer

colors(10) As Integer

End Type

Only fixed arrays can appear within structures.

Dynamic Arrays

Dynamic arrays are declared without explicit dimensions, as shown below:

Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:

Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any
number of times. When redimensioning an array, the old array is first erased unless
you use the Preserve keyword, as shown below:

Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.
Arrays (topic) 1199

Passing Arrays

Arrays are always passed by reference. When you pass an array, you can specify the
array name by itself, or with parentheses as shown below:

Dim a(10) As String

FileList a 'Both of these
are OK

FileList a()

Querying Arrays

The following table describes the functions used to retrieve information about arrays.

Operations on Arrays

The following table describes the function that operate on arrays:

Use this function To

LBound Retrieve the lower bound of an array. A runtime is generated if the
array has no dimensions.

UBound Retrieve the upper bond of an array. A runtime error is generated
if the array has no dimensions.

ArrayDims Retrieve the number of dimensions of an array. This function
returns 0 if the array has no dimensions.

Use the command To

ArraySort Sort an array of integers, longs, singles, doubles, currency,
Booleans, dates, or variants.

FileList Fill an array with a list of files in a given directory.

DiskDrives Fill an array with a list of valid drive letters.

AppList Fill an array with a list of running applications.

WinList Fill an array with a list of top-level windows.

SelectBox Display the contents of an array in a list box.

PopupMenu Display the contents of an array in a popup menu.

ReadInSection Fill an array with the item names from a section in an INI file.

FileDirs Fill an array with a list of subdirectories.
1200 Chapter 4 - BasicScript Reference

Comments (topic)

Comments can be added to BasicScript code in the following manner:

All text between a single quotation mark and the end of the line is ignored:

MsgBox "Hello" 'Displays a message box.

The REM statement causes the compiler to ignore the entire line:

REM This is a comment.

BasicScript supports C-style multiline comment blocks /*...*/, as shown in the
following example:

MsgBox "Before comment"

/* This stuff is all commented out.

This line, too, will be ignored.

This is the last line of the comment. */

MsgBox "After comment"

Note: C-style comments can be nested.

Comparison Operators (topic)

Syntax
expression1 [< | > | <= | >= | <> | =] expression2

Description

Comparison operators return True or False depending on the operator.

Erase Erase all the elements of an array.

ReDim Establish the bounds and dimensions of an array.

Dim Declare an array.

Use the command To
Comments (topic) 1201

Comments

The comparison operators are listed in the following table:

This operator behaves differently depending on the types of the expressions, as
shown in the following table:

String Comparisons

If the two expressions are strings, then the operator performs a text comparison
between the two string expressions, returning True if expression1 is less than
expression2. The text comparison is case-sensitive if Option Compare is Binary;
otherwise, the comparison is case-insensitive.

Operator Returns True If

> expression1 is greater than expression2

< expression1 is less than expression2

<= expression1 is less than or equal to expression2

>= expression1 is greater than or equal to expression2

<> expression1 is not equal to expression2

= expression1 is equal to expression2

If one expression is
And the other
expression is

Then

Numeric Numeric A numeric comparison is performed (see
below).

String String A string comparison is performed (see below).

Numeric String A compile error is generated.

Variant String A string comparison is performed (see below).

Variant Numeric A variant comparison is performed (see
below).

Null variant Any data type Returns Null.

Variant Variant A variant comparison is performed (see
below).
1202 Chapter 4 - BasicScript Reference

When comparing letters with regard to case, lowercase characters in a string sort
greater than uppercase characters, so a comparison of “a” and “A” would indicate
that “a” is greater than “A”.

Numeric Comparisons

When comparing two numeric expressions, the less precise expression is converted to
be the same type as the more precise expression.

Dates are compared as doubles. This may produce unexpected results as it is possible
to have two dates that, when viewed as text, display as the same date when, in fact,
they are different. This can be seen in the following example:

Sub Main()

Dim date1 As Date

Dim date2 As Date

date1 = Now

date2 = date1 + 0.000001 'Adds a
fraction of a second.

MsgBox date2 = date1 'Prints False
(the dates are different).

MsgBox date1 & "," & date2 'Prints
two dates that are the same.

End Sub

Variant Comparisons

When comparing variants, the actual operation performed is determined at execution
time according to the following table:

If one variant is And the other variant is Then

Numeric Numeric Compares the variants as numbers.

String String Compares the variants as text.

Numeric String The number is less than the string.

Null Any other data type Null.

Numeric Empty Compares the number with 0.

String Empty Compares the string with a zero-length
string.
Comments (topic) 1203

Examples
Sub Main()

'Tests two literals and displays the result.

If 5 < 2 Then

MsgBox "5 is less than 2."

Else

MsgBox "5 is not less than 2."

End If

'Tests two strings and displays the result.

If "This" < "That" Then

MsgBox "'This' is less than 'That'."

Else

MsgBox "'That' is less than 'This'."

End If

End Sub

See Also

Operator Precedence (topic), Is (operator), Like (operator), Option Compare
(statement)

Platform(s)

All.
1204 Chapter 4 - BasicScript Reference

Constants (topic)

Constants are variables that cannot change value during script execution. The
following constants are predefined by BasicScript.

Constant Value Description

ebMinimized 1 The application is minimized.

ebMaximized 2 The application is maximized.

ebRestored 3 The application is restored.

Constant Value Description

True -1 Boolean value True.

False 0 Boolean value False.

Empty Empty Variant of type 0, indicating that the variant is uninitialized.

Nothing 0 Value indicating that an object variable no longer references a
valid object.

Null Null Variant of type 1, indicating that the variant contains no data.

Constant Value Description

ebBack Chr$(8) String containing a backspace.

ebCr Chr$(13) String containing a carriage return.

ebCrLf Chr$(13) & Chr$(10) String containing a carriage-return linefeed pair.

ebFormFeed Chr$(11) String containing a form feed.

ebLf Chr$(10) String containing a line feed.

ebNullChar Chr$(0) String containing a single null character.

ebNullString 0 Special string value used to pass null pointers to
external routines.

ebTab Chr$(9) String containing a tab.

ebVerticalTab Chr$(12) String containing a vertical tab.
Constants (topic) 1205

Constant Value
Description

ebCFText 1 Text.

ebCFBitmap 2 Bitmap.

ebCFMetafile 3 Metafile.

ebCFDIB 8 Device-independent bitmap.

ebCFPalette 9 Palette.

ebCFUnicode 13 Unicode text.
1206 Chapter 4 - BasicScript Reference

Constant Value

AIX True if development environment is AIX.

HPUX True if development environment is HPUX.

Irix True if development environment is Irix.

LINUX True if development environment is LINUX.

Macintosh True if development environment is Macintosh (68K or PowerPC).

MacPPC True if development environment is PowerMac.

Mac68K True if development environment is 68K Macintosh.

Netware True if development environment is NetWare.

OS2 True if development environment is OS/2.

OSF1 True if development environment is OSF/1.

SCO True if development environment is SCO.

Solaris True if development environment is Solaris.

SunOS True if development environment is SunOS.

Ultrix True if development environment is Ultrix.

UNIX True if development environment is any UNIX platform.

UnixWare True if development environment is UnixWare.

VMS True if development environment is VMS.

Win16 True if development environment is 16-bit Windows.

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True
Constants (topic) 1207

Constant Value
Description

ebUseSunday 0 Use the date setting as specified by the current locale.

ebSunday 1 Sunday.

ebMonday 2 Monday.

ebTuesday 3 Tuesday.

ebWednesday 4 Wednesday.

ebThursday 5 Thursday.

ebFriday 6 Friday.

ebSaturday 7 Saturday.

ebFirstJan1 1 Start with week in which January 1 occurs.

ebFirstFourDays 2 Start with first week with at least four days in the new
year.

ebFirstFullWeek 3 Start with first full week of the year.

Constant Value
Description

ebNormal 0 Read-only, archive, subdir, and none.

ebReadOnly 1 Read-only files.

ebHidden 2 Hidden files.

ebSystem 4 System files.

ebVolume 8 Volume labels.

ebDirectory 16 Subdirectory.

ebArchive 32 Files that have changed since the last backup.

ebNone 64 Files with no attributes.

Constant Value
Description

ebDOS 1 A DOS executable file.
1208 Chapter 4 - BasicScript Reference

ebWindows 2 A Windows executable file.

Constant Value
Description

ebRegular 1 Normal font (i.e., neither bold nor
italic).

ebItalic 2 Italic font.

ebBold 4 Bold font.

ebBoldItalic 6 Bold-italic font.

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 IME disabled.

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

Constant Value
Description
Constants (topic) 1209

Constant Value Description

PI 3.1415... Value of PI.

Constant Value Description

ebOKOnly 0 Displays only the OK button.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Cancel and Retry buttons.

ebCritical 16 Displays the stop icon.

ebQuestion 32 Displays the question icon.

ebExclamation 48 Displays the exclamation icon.

ebInformation 64 Displays the information icon.

ebApplicationModal 0 The current application is suspended until the
dialog box is closed.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebSystemModal 4096 All applications are suspended until the dialog
box is closed.

ebOK 1 Returned from MsgBox indicating that OK was
pressed.

ebCancel 2 Returned from MsgBox indicating that Cancel
was pressed.

ebAbort 3 Returned from MsgBox indicating that Abort
was pressed.

ebRetry 4 Returned from MsgBox indicating that Retry
was pressed.
1210 Chapter 4 - BasicScript Reference

ebIgnore 5 Returned from MsgBox indicating that Ignore
was pressed.

ebYes 6 Returned from MsgBox indicating that Yes was
pressed.

ebNo 7 Returned from MsgBox indicating that No was
pressed.

Constant Value Description

ebWin16 0 Microsoft Windows (16-bit).

ebWin32 2 Microsoft Windows 95Microsoft Windows NT
WorkstationMicrosoft Windows NT ServerMicrosoft
Win32s running under Windows 3.1

ebSolaris 3 Sun Solaris 2.x

ebSunOS 4 SunOS

ebHPUX 5 HP-UX

ebUltrix 6 DEC Ultrix

ebIrix 7 Silicon Graphics IRIX

ebAIX 8 IBM AIX

ebNetware 9 Novell Netware

ebMacintosh 10 Apple Macintosh

ebOS2 11 IBM OS/2

ebSCO 13 SCO UNIX

ebUnixWare 14 Novell UnixWare

ebOSF1 15 OSF/1

ebVMS 16 VMS

ebLINUX 17 LINUX

Constant Value Description
Constants (topic) 1211

Constant Value
Description

ebLandscape 1 Landscape paper orientation.

ebPortrait 2 Portrait paper orientation.

Constant Value Description

ebLeftButton 1 Left mouse button.

ebRightButton 2 Right mouse button.

Constant Value Description

ebHide 0 Application is initially hidden.

ebNormalFocus 1 Application is displayed at the default position and
has the focus.

ebMinimizedFocus 2 Application is initially minimized and has the focus.

ebMaximizedFocus 3 Application is maximized and has the focus.

ebNormalNoFocus 4 Application is displayed at the default position and
does not have the focus.

ebMinimizedNoFocus 5 Application is minimized and does not have the
focus.

Constant Value
Description

ebUpperCase 1 Converts string to uppercase.

ebLowerCase 2 Converts string to lowercase.

ebProperCase 3 Capitalizes the first letter of each word.

ebWide 4 Converts narrow characters to wide characters.

ebNarrow 8 Converts wide characters to narrow characters.
1212 Chapter 4 - BasicScript Reference

You can define your own constants using the Const statement.

Preprocessor constants are defined using #Const.

ebKatakana 16 Converts Hiragana characters to Katakana characters.

ebHiragana 32 Converts Katakana characters to Hiragana characters.

ebUnicode 64 Converts string from MBCS to UNICODE.

ebFromUnicode 128 Converts string from UNICODE to MBCS.

Constant Value
Description

ebEmpty 0 Variant has not been initialized.

ebNull 1 Variant contains no valid data.

ebInteger 2 Variant contains an Integer.

ebLong 3 Variant contains a Long.

ebSingle 4 Variant contains a Single.

ebDouble 5 Variant contains a Double.

ebCurrency 6 Variant contains a Currency.

ebDate 7 Variant contains a Date.

ebString 8 Variant contains a String.

ebObject 9 Variant contains an Object.

ebError 10 Variant contains an Error.

ebBoolean 11 Variant contains a Boolean.

ebVariant 12 Variant contains an array of Variants.

ebDataObject 13 Variant contains a data object.

ebArray 8192 Added to any of the other types to indicate an array of that
type.

Constant Value
Description
Constants (topic) 1213

Cross-Platform Scripting (topic)

This section discusses different techniques that can be used to ensure that a given
script runs on all platforms that support BasicScript.

Querying the Platform

A script can query the platform in order to take appropriate actions for that platform.
This is done using the Basic.OS property. The following example uses this method to
display a message to the user:

Sub Main()

If Basic.OS = ebWindows Then

MsgBox "This is a message."

Else

Print "This is a message."

End If

End Sub

Querying the Capabilities of a Platform

Some capabilities of the current platform can be determined using the
Basic.Capability method. This method takes a number indicating which capability is
being queried and returns either True or False depending on whether that capability
is or is not supported on the current platform. The following example uses this
technique to read hidden files:

Sub Main()

If Basic.Capability(3) Then

f$ = Dir$("*",ebHidden) 'Hidden files supported.

Else

f$ = Dir$("*") 'Hidden files not supported.

End If

'Print all the files.

While f$ <> ""

x = x + 1

MsgBox "Matching file " & x & " is: " & f$

f$ = Dir$

Wend

End Sub
1214 Chapter 4 - BasicScript Reference

Byte Ordering with Files

One of the main differences between platforms is byte ordering. On some platforms,
the processor requires that the bytes that make up a given data item be reversed from
their expected ordering.

Byte ordering becomes problematic if binary data is transferred from one platform to
another. This can only occur when writing data to files. For this reason, it is strongly
recommended that files that are to be transported to a different platform with
different byte ordering be sequential (i.e., do not use Binary and Random files).

If a Binary or Random file needs to be transported to another platform, you will have
to take into consideration the following:

■ You must either decide on a byte ordering for your file or write information to the
file indicating its byte ordering so that it can be queried by the script that is to read
the file.

■ When reading a file on a platform in which the byte ordering matches, nothing
further needs to be done. If the byte ordering is different, then the bytes of each
data item read from a file need to be reversed. This is a difficult proposition.

Byte Ordering with Structures

Due to byte ordering differences between platforms, structure copying using the LSet
statement produces different results. Consider the following example:

Type TwoInts

first As Integer

second As Integer

End Type

Type OneLong

first As Long

End Type

Sub Main()

Dim l As OneLong

Dim i As TwoInts

l.First = 4

LSet i = l

MsgBox "First integer: " & i.first

MsgBox "Second integer: " & i.second

End Sub
Cross-Platform Scripting (topic) 1215

On Intel-based platforms, bytes are stored in memory with the most significant byte
first (known as little-endian format). Thus, the above example displays two dialog
boxes, the first one displaying the number 4 and the second displaying the number 0.

On UNIX and Macintosh platforms, bytes are stored in memory with the least
significant byte first (known as big-endian format). Thus, the above example displays
two dialog boxes, the first one displaying the number 0 and the second displaying the
number 4.

Scripts that rely on binary images of data must take the byte ordering of the current
platform into account.

Reading and Writing to Text Files

Different platforms use different characters to represent end-of-line in a file. For
example, under Windows, a carriage-return/linefeed pair is used. Under UNIX, a line
feed by itself is used. On the Macintosh, a carriage return is used.

BasicScript takes this into account when reading text files. The following
combinations are recognized and interpreted as end-of-line:

When writing to text files, BasicScript uses the end-of-line appropriate to that
platform. You can retrieve the same end-of-line used by BasicScript using the
Basic.Eoln$ property:

crlf = Basic.Eoln$

Print #1,"Line 1." & crlf & "Line 2."

Alignment

A major difference between platforms supported by BasicScript is the forced
alignment of data. BasicScript handles most alignment issues itself.

Portability of Compiled Code

Scripts compiled under BasicScript can be executed without recompilation on any
platform supported by BasicScript.

Carriage return Chr(13)

Carriage return/line feed Chr(13)+

Chr(10)

Line feed Chr(10)
1216 Chapter 4 - BasicScript Reference

Unsupported Language Elements

A compiled BasicScript script is portable to any platform on which BasicScript runs.
Because of this, it is possible to execute a script that was compiled on another
platform and contains calls to language elements not supported by the current
platform.

BasicScript generates a runtime error when unsupported language elements are
encountered during execution. For example, the following script will execute without
errors under Windows but generate a runtime error when run under UNIX:

Sub Main()

MsgBox "Hello, world."

End Sub

If you trap a call to an unsupported function, the function will return one of the
following values:

Path Separators

Different file systems use different characters to separate parts of a pathname. For
example, under Windows, Win32, and OS/2, the backslash character is used:

s$ = "c:\sheets\bob.xls"

Under UNIX, the forward slash is used:

s$ = "/sheets/bob.xls"

When creating scripts that operate on any of these platforms, BasicScript recognizes
the forward slash universally as a valid path separator. Thus, the following file
specification is valid on all these platforms:

Data Type Skipped Function Returns

Integer 0

Double 0.0

Single 0.0

Long 0

Date December 31, 1899

Boolean False

Variant Empty

Object Nothing
Cross-Platform Scripting (topic) 1217

s$ = "/sheets/bob.xls"

On the Macintosh, the slashes are valid filename characters. Instead, BasicScript
recognizes the colon as the valid file separator character:

s$ = "sheets:bob.xls"

You can find out the path separator character for your platform using the
Basic.PathSeparator$ property:

s$ = "sheets" & Basic.PathSeparator$ & "bob.xls"

Relative Paths

Specifying relative paths is different across platforms. Under UNIX, Windows, Win32,
and OS/2, a period (.) is used to specify the current directory, and two periods (..) are
used to indicate the parent directory, as shown below:

s$ = ".\bob.xls" 'File in the
current directory

s$ = "..\bob.xls" 'File in the parent
directory

On the Macintosh, double colons are used to specify the parent folder:

s$ = "::bob.xls" 'File in the parent
folder

Drive Letters

Not all platforms support drive letters. For example, considering the following file
specification:

c:\test.txt

Under UNIX, this specifies a single file called c:\test.txt. Under Windows, this
specifies a file called test.txt in the root directory of drive c. On the Macintosh, this
specifies a file called \test.txt in a folder called c. You can use the Basic.Capability
method to determine whether your platform supports drive letters:

Sub Main()

If Basic.Capability(1) Then s$ = "c:/" Else s$ =
""

s$ = s$ & "test.xls"

MsgBox "The platform-specific filename is: " & s$

End Sub
1218 Chapter 4 - BasicScript Reference

UNC Pathnames

Many platforms support UNC pathnames, including Windows and Win32. If you
choose to use these, make sure that UNC pathnames are supported on the platforms
on which your script will run.

Dialogs (topic)

Dialogs are supported on the following platforms: Windows, Win32, OS/2, UNIX,
and Macintosh. The following table describes the default font use by BasicScript to
display all runtime dialogs:

When Help is enabled within a dialog, the help key is enabled as described in the
following table:

Platform Default Font

Windows For non-MBCS systems, BasicScript uses the 8-point MS Sans Serif font.
For MBCS systems, BasicScript uses the default system font.

Win32 For non-MBCS systems, BasicScript uses the 8-point MS Sans Serif font.
For MBCS systems, BasicScript uses the default system font.

Macintosh 10-point Geneva.

UNIX The default font is determined by X resource files (e.g.,
$HOME/.xdefaults).

Platform Help Key

Windows F1

Win32 F1

OS/2 F1

Macintosh Command+?

UNIX The default help key is F1, unless if has been redefined in your X resource
files.
Dialogs (topic) 1219

Error Handling (topic)

Error Handlers

BasicScript supports nested error handlers. When an error occurs within a subroutine,
BasicScript checks for an On Error handler within the currently executing subroutine
or function. An error handler is defined as follows:

Sub foo()

On Error Goto catch

'Do something here.

Exit Sub

catch:

'Handle error here.

End Sub

Error handlers have a life local to the procedure in which they are defined. The error is
reset when any of the following conditions occurs:

■ An On Error or Resume statement is encountered.

■ When Err.Number is set to -1.

■ When the Err.Clear method is called.

■ When an Exit Sub, Exit Function, End Function, End Sub is encountered.

Cascading Errors

If a runtime error occurs and no On Error handler is defined within the currently
executing procedure, then BasicScript returns to the calling procedure and executes
the error handler there. This process repeats until a procedure is found that contains
an error handler or until there are no more procedures. If an error is not trapped or if
an error occurs within the error handler, then BasicScript displays an error message,
halting execution of the script.

Once an error handler has control, it should address the condition that caused the
error and resume execution with the Resume statement. This statement resets the
error handler, transferring execution to an appropriate place within the current
procedure. The error is reset if the procedure exits without first executing Resume.

Visual Basic Compatibility

Where possible, BasicScript has the same error numbers and error messages as Visual
Basic. This is useful for porting scripts between environments.
1220 Chapter 4 - BasicScript Reference

Handling errors in BasicScript involves querying the error number or error text using
the Error$ function or Err.Description property. Since this is the only way to handle
errors in BasicScript, compatibility with Visual Basic's error numbers and messages is
essential.

BasicScript errors fall into three categories:

1 Visual Basic-compatible errors: These errors, numbered between 0 and 799, are
numbered and named according to the errors supported by Visual Basic.

2 BasicScript errors: These errors, numbered from 800 to 999, are unique to
BasicScript.

3 User-defined errors: These errors, equal to or greater than 1,000, are available for
use by extensions or by the script itself.

You can intercept trappable errors using BasicScript's On Error construct. Almost all
errors in BasicScript are trappable except for various system errors.

Expression Evaluation (topic)

BasicScript allows expressions to involve data of different types. When this occurs, the
two arguments are converted to be of the same type by promoting the less precise
operand to the same type as the more precise operand. For example, BasicScript will
promote the value of i% to a Double in the following expression:

result# = i% * d#

In some cases, the data type to which each operand is promoted is different than that
of the most precise operand. This is dependent on the operator and the data types of
the two operands and is noted in the description of each operator.

If an operation is performed between a numeric expression and a String expression,
then the String expression is usually converted to be of the same type as the numeric
expression. For example, the following expression converts the String expression to
an Integer before performing the multiplication:

result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule, as noted in the description of the individual
operators.

Type Coercion

BasicScript performs numeric type conversion automatically. Automatic conversions
sometimes result in overflow errors, as shown in the following example:

d# = 45354
Expression Evaluation (topic) 1221

i% = d#

In this example, an overflow error is generated because the value contained in d# is
larger than the maximum size of an Integer.

Rounding

When floating-point values (Single or Double) are converted to integer values
(Integer or Long), the fractional part of the floating-point number is lost, rounding to
the nearest integer value. BasicScript uses Baker's rounding:

■ If the fractional part is larger than .5, the number is rounded up.

■ If the fractional part is smaller than .5, the number is rounded down.

■ If the fractional part is equal to .5, then the number is rounded up if it is odd and
down if it is even.

The following table shows sample values before and after rounding:

Default Properties

When an OLE object variable or an Object variant is used with numerical operators
such as addition or subtraction, then the default property of that object is
automatically retrieved. For example, consider the following:

Dim Excel As Object

Set Excel = GetObject(,"Excel.Application")

MsgBox "This application is " & Excel

The above example displays “This application is Microsoft Excel” in a dialog box.
When the variable Excel is used within the expression, the default property is
automatically retrieved, which, in this case, is the string “Microsoft Excel.”
Considering that the default property of the Excel object is .Value, then the following
two statements are equivalent:

MsgBox "This application is " & Excel

MsgBox "This application is " & Excel.Value

Before Rounding After Rounding to Whole Number

2.1 2

4.6 5

2.5 2

3.5 4
1222 Chapter 4 - BasicScript Reference

Keywords (topic)

A keyword is any word or symbol recognized by BasicScript as part of the language.
All of the following are keywords:

Operator Description Precedence Order

() Parentheses Highest

^ Exponentiation

- Unary minus

/, * Division and multiplication

\ Integer division

Access Alias And Any

Append As Base Begin

Binary Boolean ByRef ByVal

Call CancelButton Case CDecl

CheckBox Chr ChrB ChrW

Close ComboBox Compare Const

CStrings Currency Date Declare

Default DefBool DefCur DefDate

DefDbl DefInt DefLng DefObj

DefSng DefStr DefVar Dialog

Dim Do Double DropListBox

Else ElseIf End Eqv

Error Exit Explicit For

Function Get Global GoSub

Goto GroupBox HelpButton If

Imp Inline Input Input

InputB Integer Is Len
Keywords (topic) 1223

Restrictions

All keywords listed above are reserved by BasicScript, in that you cannot create a
variable, function, constant, or subroutine with the same name as a keyword.
However, you are free to use all keywords as the names of structure members.

For all other keywords in BasicScript (such as MsgBox, Str, and so on), the following
restrictions apply:

■ You can create a subroutine or function with the same name as a keyword.

■ You can create a variable with the same name as a keyword as long as the variable
is first explicitly declared with a Dim, Private, or Public statement.

Let Lib Like Line

ListBox Lock Long Loop

LSet Mid MidB Mod

Name New Next Not

Nothing Object Off OKButton

On Open Option Optional

OptionButton OptionGroup Or Output

ParamArray Pascal Picture PictureButton

Preserve Print Private Public

PushButton Put Random Read

ReDim Re Resume Return

RSet Seek Select Set

Shared Single Spc Static

StdCall Step Stop String

Sub System Tab Text

TextBox Then Time To

Type Unlock Until Variant

WEnd While Width Write

Xor
1224 Chapter 4 - BasicScript Reference

Platform(s)

All.

Line Numbers (topic)

Line numbers are not supported by BasicScript.

As an alternative to line numbers, you can use meaningful labels as targets for
absolute jumps, as shown below:

Sub Main()

Dim i As Integer

On Error Goto MyErrorTrap

i = 0

LoopTop:

i = i + 1

If i < 10 Then Goto LoopTop

MyErrorTrap:

MsgBox "An error occurred."

End Sub

Literals (topic)

Literals are values of a specific type. The following table shows the different types of
literals supported by BasicScript:

Literal Description

10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly set using any
of the following type-declaration characters:

% Integer

& Long

Double

! Single
Line Numbers (topic) 1225

Constant Folding

BasicScript supports constant folding where constant expressions are calculated by
the compiler at compile time. For example, the expression

i% = 10 + 12

is the same as:

i% = 22

Similarly, with strings, the expression

s$ = "Hello," + " there" + Chr(46)

is the same as:

s$ = "Hello, there."

5.5 Double whose value is 5.5. Any number with decimal point is considered a
double.

5.4E100 Double expressed in scientific notation.

&HFF Integer expressed in hexadecimal.

&O47 Integer expressed in octal.

&HFF# Double expressed in hexadecimal.

"hello" String of five characters: hello.

"""hello""" String of seven characters: "hello". Quotation marks can be embedded
within strings by using two consecutive quotation marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can
appear with #'s. Date literals are interpreted at execution time using the
locale settings of the host environment. To ensure that date literals are
correctly interpreted for all locales, use the international date
format:YYYY-MM-DD HH:MM:SS#

Literal Description
1226 Chapter 4 - BasicScript Reference

Named Parameters (topic)

Many language elements in BasicScript support named parameters. Named
parameters allow you to specify parameters to a function or subroutine by name
rather than in adherence to a predetermined order. The following table contains
examples showing various calls to MsgBox both using parameter by both name and
position.

Using named parameter makes your code easier to read, while at the same time
removes you from knowing the order of parameter. With function that require many
parameters, most of which are optional (such as MsgBox), code becomes significantly
easier to write and maintain.

When supported, the names of the named parameter appear in the description of that
language element.

When using named parameter, you must observe the following rules:

■ Named parameter must use the parameter name as specified in the description of
that language element. Unrecognized parameter names cause compiler errors.

■ All parameters, whether named or positional, are separated by commas.

■ The parameter name and its associated value are separated with :=

■ If one parameter is named, then all subsequent parameter must also be named as
shown below:

MsgBox "Hello, world", Title:="Title"
'OK

MsgBox Prompt:="Hello, world.",,"Title"
'WRONG!!!

By Name MsgBox Prompt:= "Hello, world."

By Position MsgBox "Hello, world."

By Name MsgBox Title:="Title", Prompt:="Hello, world."

By Position MsgBox "Hello, world",,"Title"

By Name MsgBox HelpFile:="BASIC.HLP", _

 Prompt:="Hello, world.", Context:=10

By Position MsgBox "Hello, world.",,,"BASIC.HLP",10
Named Parameters (topic) 1227

Objects (topic)

BasicScript defines two types of objects: data objects and OLE Automation objects.

Syntactically, these are referenced in the same way.

What Is an Object

An object in BasicScript is an encapsulation of data and routines into a single unit. The
use of objects in BasicScript has the effect of grouping together a set of functions and
data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a sheet
object may expose an integer called NumColumns. Usually, properties can be both
retrieved (get) and modified (set).

Objects also expose internal routines for programmability called methods. In
BasicScript, an object method can take the form of a function or a subroutine. For
example, a OLE Automation object called MyApp may contain a method subroutine
called Open that takes a single argument (a filename), as shown below:

MyApp.Open "c:\files\sample.txt"

Declaring Object Variables

In order to gain access to an object, you must first declare an object variable using
either Dim, Public, or Private:

Dim o As Object 'OLE Automation object

Initially, objects are given the value 0 (or Nothing). Before an object can be accessed, it
must be associated with a physical object.

Assigning a Value to an Object Variable

An object variable must reference a real physical object before accessing any
properties or methods of that object. To instantiate an object, use the Set statement.

Dim MyApp As Object

Set MyApp = CreateObject("Server.Application")

Accessing Object Properties

Once an object variable has been declared and associated with a physical object, it can
be modified using BasicScript code. Properties are syntactically accessible using the
dot operator, which separates an object name from the property being accessed:

MyApp.BackgroundColor = 10
1228 Chapter 4 - BasicScript Reference

i% = MyApp.DocumentCount

Properties are set using BasicScript's normal assignment statement:

MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:

i% = MyApp.DocumentCount + 10

MsgBox "Number of documents = " & MyApp.DocumentCount

Accessing Object Methods

Like properties, methods are accessed via the dot operator. Object methods that do
not return values behave like subroutines in BasicScript (i.e., the arguments are not
enclosed within parentheses):

MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls in BasicScript. Any
arguments must be enclosed in parentheses:

If MyApp.DocumentCount = 0 Then MsgBox "No open documents."

NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a
property value, as shown below:

variable = object.property(arg1,arg2)

variable = object.method(arg1,arg2)

Comparing Object Variables

The values used to represent objects are meaningless to the script in which they are
used, with the following exceptions:

■ Objects can be compared to each other to determine whether they refer to the same
object.

■ Objects can be compared with Nothing to determine whether the object variable
refers to a valid object.

Object comparisons are accomplished using the Is operator:

If a Is b Then MsgBox "a and b are the same object."

If a Is Nothing Then MsgBox "a is not initialized."

If b Is Not Nothing Then MsgBox "b is in use."
Objects (topic) 1229

Collections

A collection is a set of related object variables. Each element in the set is called a
member and is accessed via an index, either numeric or text, as shown below:

MyApp.Toolbar.Buttons(0)

MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:

Dim MyToolbarButton As Object

Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")

MyAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the
collection and methods that allow navigation within that collection:

Dim MyToolbarButton As Object

NumButtons% = MyApp.Toolbar.Buttons.Count

MyApp.Toolbar.Buttons.MoveNext

MyApp.Toolbar.Buttons.FindNext "Save"

For i = 1 To MyApp.Toolbar.Buttons.Count

Set MyToolbarButton = MyApp.Toolbar.Buttons(i)

MyToolbarButton.Caption = "Copy"

Next i

Predefined Objects

BasicScript predefines a few objects for use in all scripts. These are:

Note: Some of these objects are not available on all platforms.

Clipboard System Desktop HWND

Net Basic Screen
1230 Chapter 4 - BasicScript Reference

Operator Precedence (topic)

The following table shows the precedence of the operators supported by BasicScript.
Operations involving operators of higher precedence occur before operations
involving operators of lower precedence. When operators of equal precedence occur
together, they are evaluated from left to right.

The precedence order can be controlled using parentheses, as shown below:

a = 4 + 3 * 2 'a becomes 10.

a = (4 + 3) * 2 'a becomes 14.

Operator Description Precedence Order

() Parentheses Highest

^ Exponentiation

- Unary minus

/, * Division and multiplication

\ Integer division

Mod Modulo

+, - Addition and subtraction

& String concatenation

=, <>, >, <, <=, >= Relational

Like, Is String and object comparison

Not Logical negation

And Logical or binary conjunction

Or Logical or binary disjunction

Xor, Eqv, Imp Logical or binary operators Lowest
Operator Precedence (topic) 1231

Operator Precision (topic)

When numeric, binary, logical or comparison operators are used, the data type of the
result is generally the same as the data type of the more precise operand. For example,
adding an Integer and a Long first converts the Integer operand to a Long, then
preforms a long addition, overflowing only if the result cannot be contained with a
Long. The order of precision is shown in the following list:

There are exceptions noted in the descriptions of each operator.

The rules for operand conversion are further complicated when an operator is used
with variant data. In many cases, an overflow causes automatic promotion of the
result to the next highest precise data type. For example, adding two Integer variants
results in an Integer variant unless it overflows, in which case the result is
automatically promoted to a Long variant.

User-Defined Types (topic)

User-defined types (UDTs) are structure definitions created using the Type statement.
UDTs are equivalent to C language structures.

Declaring Structures

The Type statement is used to create a structure definition. Type declarations must
appear outside the body of all subroutines and functions within a script and are
therefore global to an entire script.

Once defined, a UDT can be used to declare variables of that type using the Dim,
Public, or Private statement. The following example defines a rectangle structure:

Empty Least precise

Boolean

Integer

Long

Single

Date

Double

Currency Most precise
1232 Chapter 4 - BasicScript Reference

Type Rect

left As Integer

top As Integer

right As Integer

bottom As Integer

End Type

:

Sub Main()

Dim r As Rect

:

r.left = 10

End Sub

Any fundamental data type can be used as a structure member, including other
user-defined types. Only fixed arrays can be used within structures.

Copying Structures

UDTs of the same type can be assigned to each other, copying the contents. No other
standard operators can be applied to UDTs.

Dim r1 As Rect

Dim r2 As Rect

:

r1 = r2

When copying structures of the same type, all strings in the source UDT are
duplicated and references are placed into the target UDT.

The LSet statement can be used to copy a UDT variable of one type to another:

LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the
two structures determines how many bytes get copied.

Passing Structures

UDTs can be passed both to user-defined routines and to external routines, and they
can be assigned. UDTs are always passed by reference.

Since structures are always passed by reference, the ByVal keyword cannot be used
when defining structure arguments passed to external routines (using Declare). The
ByVal keyword can only be used with fundamental data types such as Integer and
String.
User-Defined Types (topic) 1233

Passing structures to external routines actually passes a far pointer to the data
structure.

Size of Structures

The Len function can be used to determine the number of bytes occupied by a UDT:

Len(udt_variable_name)

Since strings are stored in BasicScript's data space, only a reference (currently, 2 bytes)
is stored within a structure. Thus, the Len function may seem to return incorrect
information for structures containing strings.
1234 Chapter 4 - BasicScript Reference

Index

. (keyword) 547, 852
 (operator) 555, 892
- (operator) 537, 892
/ (operator) 548, 890

Symbols
554, 555, 892

(operator) 550, 889
#Const (directive) 539, 573
#If...Then...#Else (directive) 540, 574
& (operator) 543, 888
' (keyword) 536, 853
() (keyword) 544
* (operator) 546, 894
+ (operator) 553, 895
= (operator) 556
= (statement) 555
> (operator) 556, 892
>= (operator) 556
^ (operator) 550, 891
_ (keyword) 551, 851

A
A Polling Add-In (automation) 15
About Collection Attributes and Operations 4
About Default Properties and Property Sets

(Extensibility) 4
Abs (function) 578
Accessing Object Methods 1229
Accessing Object Properties 1228
Action 396
Action Classes 393
ActionMode 398
ActivateControl (statement) 949
AddIn 86
adding

Watch Variables (Extensibility Interface) 44

Adding a Comment at the End of a Line of
Code 39

Adding a Full-Line Comment 38
Adding a Property to a Set 23
Adding Comments to a Script 38
Adding Controls 57
Adding Entries to a Rational Rose RealTime

Menu File 8
Adding Pictures to a Dialog 59
Adding Scripts to a Rational Rose RealTime

Menu 13
AddInManager 93
Add-only 338
Alignment 1216
And (operator) 897
AnswerBox (function) 579
Any (data type) 556
AppActivate (statement) 951
AppClose (statement) 953
AppFileName$ (function) 582
AppFind, AppFind$ (functions) 583
AppGetActive$ (function) 584
AppGetPosition (statement) 954
AppGetState (function) 585
AppHide (statement) 956
Application 93
Application Classes 81
AppList (statement) 957
AppMaximize (statement) 958
AppMinimize (statement) 960
AppMove (statement) 961
AppRestore (statement) 963
AppSetState (statement) 964
AppShow (statement) 966
AppSize (statement) 967
AppType (function) 587
ArrayDims (function) 589
Arrays (topic) 1198
ArraySort (statement) 969
Asc, AscB, AscW (functions) 590
Index 1235

AskBox, AskBox$ (functions) 591
AskPassword, AskPassword$ (functions) 593
Assigning a Value to an Object Variable 1228
Association 290
Association Classes 288
AssociationEnd 294
AssociationEndContainment 298
AssociationEndRole 350
AssociationEndVisibilityKind 299
AssociationRole 351
Atn (function) 595
Attribute 338
attribute 338

AttributeContainment 338
changeable 338
GetChangeable 338
OwnerScope 339

attribute (RRTEI) 338
AttributeContainment 340
AttributeVisibilityKind 339, 340
Automation 3
automation

Extensibility Interface 3

B
Basic.Architecture$ (property) 913
Basic.Capability (method) 857
Basic.CodePage (property) 914
Basic.Eoln$ (property) 915
Basic.FreeMemory (property) 916
Basic.HomeDir$ (property) 917
Basic.Locale$ (property) 918
Basic.OperatingSystem$ (property) 920
Basic.OperatingSystemVendor$ (property) 921
Basic.OperatingSystemVersion$ (property) 923
Basic.OS (property) 924
Basic.PathSeparator$ (property) 926
Basic.Processor$ (property) 926
Basic.ProcessorCount (property) 928
BasicScript Reference 535
Basic.Version$ (property) 928
Beep (statement) 970
Begin Dialog (statement) 971

BranchPointView 519
breakpoints

setting 43
ButtonEnabled (function) 595
ButtonExists (function) 597
ByRef (keyword) 854
Byte Ordering with Files 1215
Byte Ordering with Structures 1215
ByVal (keyword) 855

C
Call (statement) 974
CallAction 399
Calling Conventions with External Routines 999
Calling External Routines in Multi-Threaded

Environments 1004
CancelButton (statement) 975
Capsule 303
CapsuleRole 352
CapsuleRoleView 494
CapsuleStructure 353
CapsuleView 477
Capturing Standard Windows dialogs 51
Cascading Errors 1220
CBool (function) 598
CCur (function) 599
CDate, CVDate (functions) 600
CDbl (function) 602
Changeable 338
Changing Titles and Labels 51
ChDir (statement) 977
ChDrive (statement) 978
CheckBox (statement) 979
CheckBoxEnabled (function) 603
CheckBoxExists (function) 604
ChoicePoint 418
ChoicePointView 519
Choose (function) 605
Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$

(functions) 606
CInt (function) 608
Class 304
Class Diagram Classes 475
1236 Index

ClassConcurrency 310
ClassDependency 433
ClassDiagram 477
Classifier 310
Classifier Classes 299
ClassifierRole 356
ClassifierRoleView 514
ClassifierView 490
ClassifierVisibilityKind 327
ClassKind 310
ClassRelation 434
ClassView 490
Clipboard$ (function) 610
Clipboard$ (statement) 981
Clipboard.Clear (method) 859
Clipboard.GetFormat (method) 859
Clipboard.GetText (method) 861
Clipboard.SetText (method) 862
CLng (function) 611
Close (statement) 982
Collaboration 358
Collaboration Classes 347
Collaboration Diagram Classes 493
CollaborationDiagram 496
Collection 131
Collections 1230
ComboBox (statement) 983
ComboBoxEnabled (function) 612
ComboBoxExists (function) 614
Command, Command$ (functions) 615
Comments (topic) 1201
Common Logical View Enumerations 372
Comparing Object Variables 1229
Comparison Operators (topic) 1201
Compiling Your Script 47
Component 149
component

setting topc capsule using RRTEI 69
Component Diagram Classes 501
Component View Classes 145
ComponentDependency 435
ComponentDiagram 502
ComponentInstance 249
ComponentPackage 170
ComponentPackageView 508

ComponentView 509
CompositeState 419
CompositeStateView 521
Connector 364
Const (statement) 985
Constant Folding 1226
Constants (topic) 1205
contacting Rational customer support xvii
ContextMenuItem 122
Continuing Debugging at a Line Outside the Cur-

rent Subroutine 43
ControllableElement 184
Copying a Selection 38
Copying Structures 1233
Core Model Classes 178
Coregion 399
CoregionView 522
Cos (function) 616
CreateAction 401
CreateMessageView 514
CreateObject (function) 617
Creating a New Property 20
Creating a New Property Set 20
Creating a New Rational Rose RealTime Menu

File 9
Creating a New Script from an Existing Script 13
Creating New Objects 1016
Creating New Rational Rose RealTime Scripts 13
Cross-Platform Scripting (topic) 1214
CSng (function) 619
CStr (function) 620
CurDir, CurDir$ (functions) 621
Currency (data type) 559
customizing

Rational Rose RealTime Menus 7
Customizing Rational Rose RealTime Menus 7
Cutting a Selection 38
CVar (function) 622
CVErr (function) 624

D
Data Types 556
Date (data type) 560
Index 1237

Date, Date$ (functions) 625
Date, Date$ (statements) 987
DateAdd (function) 626
DateDiff (function) 628
DatePart (function) 631
DateSerial (function) 634
DateValue (function) 635
Day (function) 636
DDB (function) 637
DDEExecute (statement) 989
DDEInitiate (function) 638
DDERequest, DDERequest$ (functions) 640
DDESend (statement) 990
DDETerminate (statement) 991
DDETerminateAll (statement) 993
DDETimeout (statement) 994
Debugging Selected Portions of Your Script 43
Declare (statement) 995
Declaring Array Variables 1198
Declaring Explicit OLE Automation

Objects 1016
Declaring Object Variables 1228
Declaring Structures 1232
Default Properties 1222
DefaultModelProperties 194
DefType (statement) 1009
DeleteSetting (statement) 1012
Deleting a Model Property 22
Deleting Model Properties 20
Deleting Text 38
Deleting Watch Variables 46
Deleting, Cutting, Copying, and Pasting Text 38
Deployment Diagram Classes 509
Deployment View Classes 246
DeploymentDiagram 510
DeploymentPackage 252
Description 86
Desktop.ArrangeIcons (method) 863
Desktop.Cascade (method) 864
Desktop.SetColors (method) 865
Desktop.SetWallpaper (method) 866
Desktop.Snapshot 867
Desktop.Tile (method) 869
DestroyAction 401

Device 258
Diagram 454
Dialog (function) 641
Dialog (statement) 1013
Dialogs (topic) 1219
Dim (statement) 1014
Dir, Dir$ (functions) 644
Directives 573
DiskDrives (statement) 1018
DiskFree (function) 647
Displaying and Adjusting the Grid 49
Displaying the Calls dialog 42
Displaying the Information Dialogs 60
DlgCaption (function) 648
DlgCaption (statement) 1019
DlgControlId (function) 648
DlgEnable (function) 650
DlgEnable (statement) 1020
DlgFocus (function) 651, 652
DlgFocus (statement) 1021
DlgListBoxArray (function) 654
DlgListBoxArray (statement) 1022
DlgProc (function) 655
DlgSetPicture (statement) 1024
DlgText (statement) 1026
DlgText$ (function) 659
DlgValue (function) 661
DlgValue (statement) 1027
DlgVisible (function) 662
DlgVisible (statement) 1029
DoEvents (function) 664
DoEvents (statement) 1034
DoKeys (statement) 1036
Do...Loop (statement) 1032
Double (data type) 561
Drive Letters 1218
DropListBox (statement) 1037
Duplicating Controls 58
Dynamic Arrays 1199

E
EditEnabled (function) 664
EditExists (function) 666
1238 Index

editing
Virtual Path for Scripts 15

Editing an Existing dialog 49
Element 204
End (statement) 1039
Environ, Environ$ (functions) 667
Environment 376
EOF (function) 668
Eqv (operator) 899
Erase (statement) 1040
Erl (function) 669
Err.Clear (method) 869
Err.Description (property) 929
Err.HelpContext (property) 930
Err.HelpFile (property) 932
Err.LastDLLError (property) 934
Err.Number (property) 936
Error (statement) 1041
Error Handlers 1220
Error Handling (topic) 1220
Error, Error$ (functions) 670
Err.Raise (method) 871
Err.Source (property) 937
Event 409
Event Classes 407
EventGuard 409
Example 20, 21, 22, 23, 24, 26, 28, 30, 31,

803
Exit Do (statement) 1043
Exit For (statement) 1044
Exit Function (statement) 1045
Exit Sub (statement) 1046
Exp (function) 671
Expression Evaluation (topic) 1221
Extensibility Classes 130
Extensibility Interface 2

Accessing Collection Elements By Count 30
Accessing Collection Elements By Name 30
Accessing Collection Elements By Unique

ID 31
Adding a Property to a Set 23
Adding Entries to a Rational Rose RealTime

Menu File 8
Adding or Editing the Virtual Path for

Scripts 15

Adding Scripts to a Rational Rose RealTime
Menu 13

automation 3
Cloning a Property Set 25
Collection Attributes 4
Collection Property 5
compiling script 47
Creating a New Property 20
Creating a New Property Set 20
Creating a New Rational Rose RealTime

Menu File 9
Creating a New Script from an Existing

Script 13, 34
Creating a New Script from Scratch 34
Creating a New Tool 29
Creating a User-Defined Property Type 24
Creating New Rational Rose RealTime

Scripts 13, 34
Default Properties 4
Deleting a Model Property 22
Deleting Model Properties 20
Displaying the Calls dialog 42
Getting an Element from a Collection

(Overview) 30
Getting and Setting the Current Property

Set 21
Getting Model Properties 22
Managing Default Properties 18
Menu Extensibility 6
Methods for All Collections 5
Methods for User-defined Collections 6
Model Properties 17
Opening a Script 34
Operations 4
Placing Classes in LogicalPackages 32
Property Sets 4
Running, Pausing, and Stopping Your

Script 41
Scripting 3
Setting and Removing Breakpoints 43
Setting Model Properties 27
Setting Model Properties Using

InheritProperty 27
Setting Model Properties Using

OverrideProperty 28
Index 1239

Tracing Script Execution 41
type libraries 3
Using Rational Rose RealTime

Automation 14, 32
Using Rational Rose RealTime Script 14, 32
Watch Variables 44
Working with Classes 32
Working with Collections 29
Working with Rose RealTime Automation 32

ExternalDocument 215

F
Feature Classes 336
File Attributes 1051
FileAttr (function) 672
FileCopy (statement) 1047
FileDateTime (function) 674
FileDirs (statement) 1048
FileExists (function) 675
FileLen (function) 676
FileList (statement) 1050
FileParse$ (function) 677
FileType (function) 679
FinalState 424
FinalStateView 522
Finding and Replacing Text 39
Finding Specified Text 39
Fix (function) 680
Fixed Arrays 1199
Fixed-Length Strings 1015
For Each...Next (statement) 1053
Format, Format$ (functions) 681
For...Next (statement) 1055
FreeFile (function) 690
Frozen 338
Function...End Function (statement) 1058
Functions 578
Fv (function) 691

G
Generalization 436
GeneralizationVisibilityKind 438

Genericity 367
Get (statement) 1063
GetAllSettings (function) 692
GetAttr (function) 694
GetChangeable 338

changeable 338
frozen 338

GetCheckBox (function) 696
GetComboBoxItem$ (function) 698
GetComboBoxItemCount (function) 699
GetEditText$ (function) 701
GetListBoxItem$ (function) 702
GetListBoxItemCount (function) 704
GetObject (function) 705
GetOption (function) 706
GetSetting (function) 708
Getting and Setting the Current Property Set 21
Getting Model Properties 22
Getting the Rational Rose RealTime Application

Object 14
GetToolNames 202
Global (statement) 1066
GoSub (statement) 1066
Goto (statement) 1068
GroupBox (statement) 1069
Guidelines for Using a Script to Call Another

Script 48

H
HelpButton (statement) 1071
Hex, Hex$ (functions) 709
HLine (statement) 1072
Hour (function) 710
How To 20, 21, 22, 25, 27, 28, 30, 31
HPage (statement) 1073
HScroll (statement) 1074
HWND.Value (property) 939

I
If...Then...Else (statement) 1075
IIf (function) 711
IMEStatus (function) 712
1240 Index

Imp (operator) 901
Implicit Variable Declaration 1015
Incorporating dialogs or Controls into Your

Script 53
InitialPoint 425
InitialPointView 523
Inline (statement) 1077
Input, Input$, InputB, InputB$ (functions) 715
InputBox, InputBox$ (functions) 716
Inserting a dialog into Your Script 48
InstantiateRelation 438
InStr, InStrB (functions) 718
Int (function) 721
Integer (data type) 563
Interaction 376
Interaction Classes 374
InteractionInstance 382
InteractionInstanceView 515
IPmt (function) 721
IRR (function) 723
Is (operator) 903
IsDate (function) 725
IsEmpty (function) 726
IsError (function) 727
IsMissing (function) 729
IsNull (function) 730
IsNumeric (function) 731
IsObject (function) 732
Item$ (function) 733
ItemCount (function) 735

J
JunctionAdornmentView 523
JunctionContinuationMode 425
JunctionPoint 425
JunctionPointView 524

K
Keywords 851
Keywords (topic) 1223
Kill (statement) 1078

L
LBound (function) 736
LCase, LCase$ (functions) 737
Left, Left$, LeftB, LeftB$ (functions) 738
Len, LenB (functions) 739
Let (statement) 1080
LifeLineView 515
Like (operator) 905
Line Numbers (topic) 1225
Line$ (function) 742
LineCount (function) 743
LineVertex 529
ListBox (statement) 1081
ListBoxEnabled (function) 744
ListBoxExists (function) 746
Literals (topic) 1225
Loc (function) 747
LocalState 402
LocalStateOrActionView 525
Lock, Unlock (statements) 1083
Lof (function) 748
Log (function) 749
Logical Package Structure 80
Logical View Classes 267
LogicalPackage 269
LogicalPackageDependency 439
LSet (statement) 1086
LTrim, LTrim$ (functions) 750

M
MacID (function) 750
MacScript (statement) 1087
Main (statement) 1088
Managing Default Properties (Extensibility) 18
Mci (function) 751
menu

actions 12
adding scripts 13

Menu Actions 12
menu extensibility

Extensibility Interface 6
Menu File

adding entries (Extensibility Interface) 8
Index 1241

menu file
creating new (Extensibility Interface) 9
keywords 11
sample 9

Menu File Keywords 11
menu files

syntax rules 10
MenuItemChecked (function) 754
MenuItemEnabled (function) 755
MenuItemExists (function) 756
menus

customizing (Extensibility Interface) 7
MenuState 123
Message 385
MessageEnd 386
MessageView 516
Methods 857
Mid, Mid$, MidB, MidB$ (functions) 757
Mid, Mid$, MidB, MidB$ (statements) 1089
Minute (function) 758
MIRR (function) 759
MkDir (statement) 1090
Mod (operator) 907
Model 218
model

opeing using RRTEI 66
Model Classes 145
ModelElement 236
Modifiers 11
modifying

property value using RRTEI 67
Month (function) 761
Moving the Insertion Point in a Script 34
Moving the Insertion Point to a Specified Line in

Your Script 35
Moving the Insertion Point with the Mouse 35
MsgBox (function) 762
MsgBox (statement) 1091
Msg.Close (method) 873
Msg.Open (method) 874
Msg.Thermometer (property) 940

N
Name (statement) 1092
Named Parameters (topic) 1227
Net.CancelCon (method) 875
Net.Dialog (method) 877
Net.GetCaps (method) 877
Net.GetCon$ (method) 883
Net.User$ (method) 884
New (keyword) 856
Not (operator) 908
NoteView 464
Now (function) 766
NPer (function) 767
Npv (function) 768

O
Object (data type) 564
Objects (topic) 1228
Oct, Oct$ (functions) 770
OKButton (statement) 1093
On Error (statement) 1095
Open (statement) 1097
OpenFileName$ (function) 771
opening

maodel using extensibility interface 66
model using RRTEI 66

Operation 340
OperationConcurrency 345
Operations on Arrays 1200
OperationVisibilityKind 345
Operator Precedence (topic) 1231
Operator Precision (topic) 1232
Operators 888
Option Base (statement) 1100
Option Compare (statement) 1101
Option CStrings (statement) 1103
Option Default (statement) 1104
Option Explicit (statement) 1105
Optional Parameters 1061
OptionButton (statement) 1106
OptionEnabled (function) 773
OptionExists (function) 774
OptionGroup (statement) 1107
1242 Index

Or (operator) 909
OverrideProperty 67
OwnerScope 339, 346

P
Package 239
Parameter 328
ParentClassifier 339
Passing Arrays 1200
Passing Data to External Routines 1001
Passing Null Pointers 1001
Passing Parameters 998
Passing Parameters to Functions 1060
Passing Structures 1233
Pasting Items into Dialog Editor 60
Pasting the Contents of the Clipboard into Your

Script 38
Path Separators 1217
PathMap 124
pausing

Executing Script 41
Pausing an Executing Script 41
Picture (statement) 1108
Picture Caching 1030
PictureButton (statement) 1111
Platform(s) 1225
Pmt (function) 775
PopupMenu (function) 777
Port 367
Portability of Compiled Code 1216
PortEvent 411
PortRole 369
PortRoleView 499
PortView 500
PortVisibilityKind 370
PPmt (function) 778
Predefined Objects 1230
Print (statement) 1114
PrinterGetOrientation (function) 780
PrinterSetOrientation (statement) 1116
PrintFile (function) 781
Private (statement) 1117
Processor 262

Properties 913
Property 243
property value

modifying using RRTEI 67
Protocol 329
ProtocolRoleEvent 415
ProtocolView 492
Public (statement) 1119
Public Attributes 86, 387
Public Operations 88
PushButton (statement) 1121
Put (statement) 1123
Pv (function) 782

Q
QueEmpty (statement) 1126
QueFlush (statement) 1127
QueKeyDn (statement) 1128
QueKeys (statement) 1129
QueKeyUp (statement) 1131
QueMouseClick (statement) 1132
QueMouseDblClk (statement) 1133
QueMouseDblDn (statement) 1134
QueMouseDn (statement) 1135
QueMouseMove (statement) 1136
QueMouseMoveBatch (statement) 1137
QueMouseUp (statement) 1139
Querying Arrays 1200
Querying the Capabilities of a Platform 1214
Querying the Platform 1214
QueSetRelativeWindow (statement) 1140

R
Random (function) 783
Randomize (statement) 1141
Rate (function) 784
Rational customer support

contacting xvii
Rational Rose RealTime Menu Extensibility 6
Reading and Writing to Text Files 1216
ReadIni$ (function) 786
ReadIniSection (statement) 1142
Index 1243

RealizeRelation 440
ReDim (statement) 1143
RegistrationMode 370
Relation 442
Relation Classes 431
Relative Paths 1218
Rem (statement) 1145
Removing a Single Breakpoint Manually 44
Removing All Breakpoints Manually 44
Replacing Specified Text 40
ReplyAction 402
Repositioning Items 55
RequestAction 402
Reset (statement) 1145
Resizing Items 56
ResponseAction 403
Restrictions 1224
Resume (statement) 1146
Return (statement) 1148
ReturnAction 404
Returning Values from External Routines 1003
Returning Values from Functions 1060
RichType 142
RichTypes 141
RichTypeValuesCollection 144
Right, Right$, RightB, RightB$ (functions) 787
RmDir (statement) 1149
Rnd (function) 788
RoseBase 139
RoseRTApp.CurrentModel Example

(Automation) 15
RoseRTApp.CurrentModel Example

(Scripting) 14
Rosescript 12
Rounding 1222
RREEI

attribute 338
RRTEI

modifying a property value 67
opening a model 66
setting the top capsule

capsule
setting a TOP Capsule using

RRTEI 69
RRTEI - see Extensibility Interface 1

RRTEI Model 2
RRTEIObject 140
RsActionKind 387
RsActionMode 404
RsClassKind 332
RsConcurrency 334
RsContainment 372
RSet (statement) 1150
RsExternalDocumentType 244
RsGenericity 370
RsJunctionContinuationMode 427
RsMenuState 127
RsNoteViewType 466
RsOwnerScope 346
RsRegistrationMode 371
RsSendActionPriority 405
RsSourceRegionType 388
RsStateKind 427
RsStereotypeDisplay 466
RsVisibilityKind 373
RTrim, RTrim$ (functions) 789
running

Script 41
Running Your Script 41
Running, Pausing, and Stopping Your Script 41

S
Sample Rational RoseRT Menu File 9
SaveFileName$ (function) 789
SaveSetting (statement) 1151
scaript

deleting watch variables 46
Screen.DlgBaseUnitsX (property) 941
Screen.DlgBaseUnitsY (property) 942
Screen.Height (property) 943
Screen.TwipsPerPixelX (property) 943
Screen.TwipsPerPixelY (property) 944
Screen.Width (property) 945
Script

Stepping Through Your Script 41
script

Assigning Accelerator Keys 51
Attributes You Can Adjust 63
1244 Index

compiling 47
Debugging Interscript Calls 48
incorporating dialogs and controls 53
Interscript Calls 48
Modifying the Value of Variables on the

Watch Variable List 46
pausing 41
running 41
setting breakpoints 43
stopping 41
watch variables 44, 46

Scripting 3
scripting

Extensibility Interface 3
RRTEI 3

scripts
adding to a menu 13

Second (function) 792
See Also 793
Seek (function) 793
Seek (statement) 1153
SelectBox (function) 794
SelectButton (statement) 1156
Select...Case (statement) 1154
SelectComboBoxItem (statement) 1157
Selecting an Entire Line 37
Selecting Controls 54
Selecting dialogs 54
Selecting Text 36
Selecting Text with the Keyboard 37
Selecting Text with the Mouse 36
Selecting Variables on the Watch List 46
SelectListBoxItem (statement) 1159
SendAction 406
SendActionPriority 407
SendKeys (statement) 1160
Sequence Diagram Classes 513
SequenceDiagram 516
Set (statement) 1164
SetAttr (statement) 1165
SetCheckBox (statement) 1167
SetEditText (statement) 1168
SetOption (statement) 1169
Setting Model Properties 27
Sgn (function) 796

Shell (function) 797
Signal 335
Sin (function) 800
Single (data type) 565
Size of Structures 1234
Sleep (statement) 1170
Sln (function) 801
SourceRegionType 389
Spc (function) 802
Special Characters 535
Specifying a Virtual Path for Scripts 15
SQLBind (function) 803
SQLClose (function) 805
SQLError (function) 806
SQLExecQuery (function) 808
SQLGetSchema (function) 809
SQLOpen (function) 812
SQLRequest (function) 814
SQLRetrieve (function) 817
SQLRetrieveToFile (function) 819
Sqr (function) 821
Starting Debugging Partway through a Script 43
State Classes 416
State Diagram Classes 517
State Machine Classes 387
StateDiagram 525
StateKind 428
StateMachine 389
Statements 949
StatePerimeterView 527
StateVertex 429
StereotypeDisplay 467
Stop (statement) 1171
stopping

Executing Script 41
Stopping an Executing Script 41
Str, Str$ (functions) 822
StrComp (function) 823
StrConv (function) 825
String (data type) 567
String, String$ (functions) 827
StructuredProperty 244
StructurePerimeterView 500
Sub...End Sub (statement) 1172
Switch (function) 828
Index 1245

SYD (function) 829
Syntax Rules for Rational Rose RealTime Menu

File Entries 10
System.FreeMemory (property) 945
System.FreeResources (property) 946
System.TotalMemory (property) 947
System.WindowsDirectory$ (property) 948
System.WindowsVersion$ (property) 948

T
Tab (function) 831
Tan (function) 832
TerminateAction 407
Testing Your dialogs 52
Text (statement) 1175
TextBox (statement) 1177
The RRTEI Model and Rational Rose RealTime

Extensibility 2
The Script Editor Window 33
Time, Time$ (functions) 833
Time, Time$ (statements) 1180
Timer (function) 834
TimeSerial (function) 834
TimeValue (function) 835
top capsule

setting using RRTEI 69
setting using the extensibility interface 69

Tracing Script Execution 41
Transition 390
Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$

(functions) 836
Type (statement) 1181
Type Coercion 1221
Type Libraries 3

Extensibility Interface 3
TypeName (function) 838
TypeOf (function) 840
TypeSafeSignals 67

U
UBound (function) 840
UCase, UCase$ (functions) 842

UNC Pathnames 1219
UninterpretedAction 407
Unlock (statement) 1182
Unsupported Language Elements 1217
Use Case View Classes 444
UseCase 445
User-Defined Types (topic) 1232
UsesRelationVisibilityKind 444
Using Interscript Calls 48

V
Val (function) 843
Variable Types 1064
Variant (data type) 569
VarType (function) 844
View Classes 450
View Property Classes 528
View_FillColor 530
View_Font 531
View_LineColor 532
ViewElement 467
Viewport.Clear (method) 884
Viewport.Close (method) 885
Viewport.Open (method) 886
Virtual Path for Scripts 15
Virtual Path Map 16
Visual Basic Compatibility 1220
VLine (statement) 1183
VPage (statement) 1183
VScroll (statement) 1184

W
Watch Expressions 45
Watch List

selecting variables 46
Watch Variables

deleting 46
Weekday (function) 845
What Is an Object 1228
While...Wend (statement) 1185
Wildcards 1051
WinActivate (statement) 1187
1246 Index

WinClose (statement) 1188
WinFind (function) 847
WinList (statement) 1189
WinMaximize (statement) 1190
WinMinimize (statement) 1192
WinMove (statement) 1193
WinRestore (statement) 1194
WinSize (statement) 1196
Word$ (function) 848
WordCount (function) 849
Working with Collections 29
Working with Model Properties 17
Working with Rational Rose RealTime

Diagrams 17
Working with the Dialog Editor 48
Working with the Rose RealTime Script

Editor 33
Working with Watch Variables 44
Workspace 128
WriteIni (statement) 1197

X
Xor (operator) 911

Y
Year (function) 850
Index 1247

1248 Index

	Extensibility Interface Reference
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Concepts
	Overview
	The RRTEI Model and Rational Rose RealTime Extensibility
	Scripting
	Automation
	Type Libraries
	About Default Properties and Property Sets (Extensibility)
	About Collection Attributes and Operations
	Rational Rose RealTime Menu Extensibility

	How To...
	Customizing Rational Rose RealTime Menus
	Adding Entries to a Rational Rose RealTime Menu File
	Creating a New Rational Rose RealTime Menu File
	Sample Rational RoseRT Menu File
	Syntax Rules for Rational Rose RealTime Menu File Entries
	Menu File Keywords
	Modifiers
	Menu Actions
	Adding Scripts to a Rational Rose RealTime Menu

	Creating New Rational Rose RealTime Scripts
	Creating a New Script from an Existing Script

	Getting the Rational Rose RealTime Application Object
	RoseRTApp.CurrentModel Example (Scripting)
	RoseRTApp.CurrentModel Example (Automation)
	A Polling Add-In (automation)

	Specifying a Virtual Path for Scripts
	Working with Rational Rose RealTime Diagrams
	Working with Model Properties
	Managing Default Properties (Extensibility)
	Creating a New Property
	Deleting Model Properties
	Creating a New Property Set
	Getting and Setting the Current Property Set
	Getting Model Properties
	Deleting a Model Property
	Adding a Property to a Set
	Creating a User-Defined Property Type
	Cloning a Property Set
	Setting Model Properties
	Setting Model Properties Using InheritProperty
	Setting Model Properties Using OverrideProperty
	Creating a New Tool

	Working with Collections
	Getting an Element from a Collection (Overview)
	Accessing Collection Elements By Count
	Accessing Collection Elements By Name
	Accessing Collection Elements By Unique ID

	Working with Classes
	Working with Rose RealTime Automation
	Working with the Rational Rose RealTime Script Editor
	The Script Editor Window
	Opening a Script
	Creating New Rational Rose RealTime Scripts
	Moving the Insertion Point in a Script
	Selecting Text
	Deleting, Cutting, Copying, and Pasting Text
	Adding Comments to a Script
	Finding and Replacing Text
	Running, Pausing, and Stopping Your Script
	Tracing Script Execution
	Setting and Removing Breakpoints
	Working with Watch Variables
	Compiling Your Script
	Using Interscript Calls
	Working with the Dialog Editor

	Opening a Model
	Modifying a Property Value
	Setting the Top Capsule of a Component

	Rational Rose RealTime Extensibility Interface Reference
	Logical Package Structure
	Application Classes
	AddIn
	CompanyName : String
	Copyright : String
	EventHandler : Object
	FundamentalTypes : StringCollection
	HelpFilePath : String
	InstallDirectory : String
	MenuFilePath : String
	Name : String
	PropertyFilePath : String
	RootRegistryPath : String
	ServerName : String
	ToolNames : StringCollection
	Version : String
	Activate () :
	AddContextMenuItemForClass (itemType : String, fullCaption : String, internalName : String) : Con...
	Deactivate () :
	ExecuteScript (FileName : String) :
	GetContextMenuItemsForClass (itemType : String) : ContextMenuItemCollection
	IsActive () : Boolean
	IsLanguageAddIn () : Boolean
	IsRTAddIn () : Boolean
	ReadSetting (Section : String, Entry : String, Default : String) : String
	WriteSetting (Section : String, Entry : String, Value : String) : Boolean

	AddInManager
	AddIns : AddInCollection

	Application
	AddInManager : AddInManager
	ApplicationPath : String
	BrowserVisible : Boolean
	CommandLine : String
	CurrentModel : Model
	CurrentWorkspace : Workspace
	Height : Integer
	Left : Integer
	PathMap : PathMap
	ProductName : String
	Top : Integer
	Version : String
	Visible : Boolean
	Width : Integer
	Add (pElements : ControllableElementCollection, addDirsToo : Boolean, comment : String) : Boolean
	AddDir (pElements : ControllableElementCollection, comment : String) : Boolean
	Browse (pElement : Element, pContext : ModelElement, nLineNumber : Integer)
	CheckIn (pElements : ControllableElementCollection, comment : String) : Boolean
	CheckInDir (pElements : ControllableElementCollection, comment : String) : Boolean
	CheckOut (pElements : ControllableElementCollection) : Boolean
	CompileScriptFile (FileName : String, BinaryName : String, bDebug : Boolean) :
	CreateCollection () : Collection
	ExecuteScript (pFileName : String) :
	Exit () :
	FreeScript (Parameter1 : String) :
	Get (pElements : ControllableElementCollection) : Boolean
	GetLicensedApplication (theKey : String) : Application
	GetObject () : Object
	GetProfileString (Section : String, Entry : String, Default : String) : String
	IsSourceControlEnabled () : Boolean
	LoadScript (Parameter1 : String) :
	NewModel () : Model
	NewScript () :
	OpenExternalDocument (FileName : String) : Boolean
	OpenModel (theModel : String) : Model
	OpenModelAsTemplate (szFileName : String) : Model
	OpenScript (FileName : String) :
	OpenURL (theURL : String) : Boolean
	OpenWorkspace (FileName : String) : Workspace
	RefreshStatus (pElements : ControllableElementCollection) : Boolean
	ReportCodeSync (ocModelElements : Collection, ocContextElements : Collection, ocReplaceStrings : ...
	Save (bSaveUnits : Boolean) :
	SaveAs (theFile : String, bSaveUnits : Boolean) :
	SaveGenerationResultsAs (filename : String) : Boolean
	SaveLogAs
	SaveWorkspace () :
	SaveWorkspaceAs (FileName : String) :
	SelectObjectsInBrowsers (theObjects : Collection) :
	SetBuildSettings (ShowWarnings : Boolean, VerifyConnectorCardinality : Boolean, VerifyBranchTrans...
	UnCheckOut (pElements : ControllableElementCollection) : Boolean
	WriteBuildError (strError : String, pElement : Element, nLineNumber : Integer, bIsWarning : Boole...
	WriteBuildOutput (strMessage : String) :
	WriteErrorLog (theMsg : String) :
	WriteErrorLogEx (pszMessage : String, pModelElement : ModelElement, bIsWarning : Boolean) :
	WriteProfileString (Section : String, Entry : String, Value : String) : Boolean

	ContextMenuItem
	Caption : String
	InternalName : String
	MenuID : Integer
	MenuState : MenuState

	MenuState
	PathMap
	AddEntry (Symbol : String, Path : String, Comment : String) : Boolean
	DeleteEntry (Symbol : String) : Boolean
	Get Actual Path (VirtualPath : String) : String
	GetObject () : Object
	GetVirtualPath (ActualPath : String) : String
	HasEntry (Symbol : String) : Boolean

	RsMenuState
	rsDisabled : Integer = 0
	rsDisabledAndChecked : Integer = 2
	rsDisabledAndUnchecked : Integer = 3
	rsDisabledRadioChecked : Integer = 100
	rsDisabledRadioUnchecked : Integer = 102
	rsEnabled : Integer = 1
	rsEnabledAndChecked : Integer = 4
	rsEnabledAndUnchecked : Integer = 5
	rsEnabledRadioChecked : Integer = 101
	rsEnabledRadioUnchecked : Integer = 103

	Workspace
	GetAddInProfileString (theAddIn : AddIn, Entry : String, Default : String) : String
	WriteAddInProfileString (theAddIn : AddIn, Entry : String, Value : String) : Boolean

	Extensibility Classes
	Collection
	Count : Integer
	Add (theObject : RoseBase) :
	AddCollection (theCollection : Collection) :
	Exists (pObject : RoseBase) : Boolean
	FindFirst (Name : String) : Integer
	FindNext (iCurID : Integer, Name : String) : Integer
	GetAt (Index : Integer) : RoseBase
	GetFirst (Name : String) : RoseBase
	GetObject () : Object
	GetWithUniqueID (UniqueID : String) : Object
	IndexOf (theObject : RoseBase) : Integer
	Remove (theObject : RoseBase) :
	RemoveAll () :

	RoseBase
	GetObject () : Object

	RRTEIObject
	IdentifyClass () : String
	IsClass (theClassName : String) : Boolean

	RichTypes
	RichType
	Name : String
	Types : RichTypeValuesCollection
	Value : Integer
	GetObject () : Object

	RichTypeValuesCollection
	Count : Integer
	GetAt (id : Integer) : String
	GetObject () : Object

	Model Classes
	Component View Classes
	Component
	AssignedClasses : ClassifierCollection
	AssignedLogicalPackages : LogicalPackageCollection
	CodeGenMakeDescription : String
	CodeGenMakeFlags : String
	CodeGenMakeName : String
	CodeGenMakeOverridesFile : String
	CodeGenMakeType : String
	CompilationMakeDescription : String
	CompilationMakeFlags : String
	CompilationMakeName : String
	CompilationMakeOverridesFile : String
	CompilationMakeType : String
	CompilerDescription : String
	CompilerFlags : String
	CompilerLibrary : String
	CompilerName : String
	DefaultArgs : String
	Environment : String
	ExecutableFileName : String
	InclusionPaths : StringCollection
	Inclusions : StringCollection
	LinkerFlags : String
	LinkerName : String
	MultiThreaded : Boolean
	OutputPath : String
	ParentComponentPackage : ComponentPackage
	Platform : String
	RTSDescription : String
	RTSType : String
	TargetDescription : String
	TargetLibrary : String
	TopCapsule : Capsule
	Type : String
	UserLibraries : StringCollection
	UserLibraryPaths : StringCollection
	AddComponentDependency (theDep : Component) : ComponentDependency
	AddInclusion (inclusion : String) : Boolean
	AddInclusionPath (pathName : String, ComputeDependencies : Boolean) : Boolean
	AddRealizeRelation (theRelName : String, theInterfaceName : String) : RealizeRelation
	AddUserLibrary (libraryName : String) : Boolean
	AddUserLibraryPath (pathName : String) : Boolean
	AssignClass (theClass : Classifier) : Boolean
	AssignPackage (thePackage : LogicalPackage) : Boolean
	Build (bUpdateAssignedClassList : Boolean) : Boolean
	DeleteComponentDependency (theDep : ComponentDependency) : Boolean
	DeleteInclusion (inclusion : String) : Boolean
	DeleteInclusionPath (pathName : String) : Boolean
	DeleteRealizeRelation (theRel : RealizeRelation) : Boolean
	DeleteUserLibrary (libraryName : String) : Boolean
	DeleteUserLibraryPath (pathName : String) : Boolean
	Generate (bUpdateAssignedClassList : Boolean) : Boolean
	GetAllClasses () : ClassifierCollection
	GetComponentDependencies () : ComponentDependencyCollection
	GetInclusionPathFlag (pathName : String) : Boolean
	GetRealizeRelations () : RealizeRelationCollection
	RebuildAll (bUpdateAssignedClassList : Boolean) : Boolean
	RegenerateAll (bUpdateAssignedClassList : Boolean) : Boolean
	ReverifyAll (bUpdateAssignedClassList : Boolean) : Boolean
	UnassignClass (theClass : Classifier) : Boolean
	UnassignPackage (thePackage : LogicalPackage) : Boolean
	UpdateAssignedClassList () : Boolean
	Verify (bUpdateAssignedClassList : Boolean) : Boolean

	ComponentPackage
	ComponentDiagrams : ComponentDiagramCollection
	ComponentPackages : ComponentPackageCollection
	Components : ComponentCollection
	ParentComponentPackage : ComponentPackage
	AddComponent (theName : String) : Component
	AddComponentDiagram (name : String) : ComponentDiagram
	AddComponentPackage (theName : String) : ComponentPackage
	DeleteComponent (pIDispatch : Component) : Boolean
	DeleteComponentPackage (pIDispatch : ComponentPackage) : Boolean
	GetAllComponentPackages () : ComponentPackageCollection
	GetAllComponents () : ComponentCollection
	GetComponentDependencies () : ComponentDependencyCollection
	GetComponentPackageDependencies (theComponentPackage : ComponentPackage) : ComponentDependencyCol...
	GetVisibleComponentPackages () : ComponentPackageCollection
	RelocateComponent (theComponent : Component) :
	RelocateComponentDiagram (theModDiagram : ComponentDiagram) :
	RelocateComponentPackage (theComponentPackage : ComponentPackage) :
	TopLevel () : Boolean

	Core Model Classes
	ControllableElement
	ControlNewUnits : Boolean
	Control () : Boolean
	ControlChildElements (Recursive : Boolean) : Boolean
	ControlTo (Path : String) : Boolean
	GetChildDirName () : String
	GetContainingControlledElement () : ControllableElement
	GetControlledChildElements (bRecursive : Boolean) : ControllableElementCollection
	GetFileName () : String
	GetVersion () : String
	IsCheckedOut () : Boolean
	IsChildDirCheckedOut () : Boolean
	IsChildDirUnderSourceControl () : Boolean
	IsControllableElementContainer () : Boolean
	IsControlled () : Boolean
	IsLoaded () : Boolean
	IsModifiable () : Boolean
	IsModified () : Boolean
	IsOwned () : Boolean
	IsUnderSourceControl () : Boolean
	Save () : Boolean
	Uncontrol () : Boolean
	UncontrolChildElements (Recursive : Boolean) : Boolean

	DefaultModelProperties
	AddDefaultProperty (ClassName : String, ToolName : String, SetName : String, PropName : String, P...
	CloneDefaultPropertySet (ClassName : String, ToolName : String, ExistingSetName : String, NewSetN...
	CreateDefaultPropertySet (ClassName : String, ToolName : String, NewSetName : String) : Boolean
	DeleteDefaultProperty (ClassName : String, ToolName : String, SetName : String, PropName : String...
	DeleteDefaultPropertySet (ClassName : String, ToolName : String, SetName : String) : Boolean
	FindDefaultProperty (ClassName : String, ToolName : String, SetName : String, PropName : String) ...
	GetDefaultPropertySet (ClassName : String, ToolName : String, SetName : String) : PropertyCollection
	GetDefaultSetNames (ClassName : String, ToolName : String) : StringCollection
	GetToolNames (Parameter1 : String) : StringCollection
	IsToolVisible (theToolName : String) : Boolean
	SetToolVisibility (theToolName : String, Visibility : Boolean) :

	Element
	Application : Application
	Model : Model
	Name : String
	CreateProperty (theToolName : String, thePropName : String, theValue : String, theType : String) ...
	FindDefaultProperty (theToolName : String, thePropName : String) : Property
	FindProperty (theToolName : String, thePropName : String) : Property
	GetAllProperties () : PropertyCollection
	GetCurrentPropertySetName (ToolName : String) : String
	GetDefaultPropertyValue (theToolName : String, thePropName : String) : String
	GetDefaultSetNames (ToolName : String) : StringCollection
	GetPropertyClassName () : String
	GetPropertyValue (theToolName : String, thePropName : String) : String
	GetQualifiedName () : String
	GetToolNames () : StringCollection
	GetToolProperties (theToolName : String) : PropertyCollection
	GetUniqueID () : String
	InheritProperty (theToolName : String, thePropName : String) : Boolean
	IsDefaultProperty (theToolName : String, thePropName : String) : Boolean
	IsOverriddenProperty (theToolName : String, thePropName : String) : Boolean
	OverrideProperty (theToolName : String, thePropName : String, theValue : String) : Boolean
	SetCurrentPropertySetName (ToolName : String, SetName : String) : Boolean

	ExternalDocument
	ParentLogicalPackage : LogicalPackage
	Path : String
	URL : String
	IsURL () : Boolean
	Open (szAppPath : String) : Boolean

	Model
	ActiveComponent : Component
	DefaultProperties : DefaultModelProperties
	DeploymentDiagram : DeploymentDiagram
	RootComponentPackage : ComponentPackage
	RootDeploymentPackage : DeploymentPackage
	RootLogicalPackage : LogicalPackage
	RootUseCaseLogicalPackage : LogicalPackage
	UseCases : UseCaseCollection
	AddActiveComponentInstance (ComponentInstanceToAdd : ComponentInstance) : Boolean
	AddDevice (pName : String) : Device
	AddProcessor (pName : String) : Processor
	ControlAllUnits (bControlAllUnits : Boolean) : Boolean
	DeleteDevice (pDevice : Device) : Boolean
	DeleteProcessor (pProcessor : Processor) : Boolean
	FindCapsuleWithID (UniqueID : String) : Capsule
	FindCapsules (CapsuleName : String) : CapsuleCollection
	FindClassWithID (UniqueID : String) : Class
	FindClasses (ClassName : String) : ClassCollection
	FindLogicalPackageWithID (UniqueID : String) : LogicalPackage
	FindLogicalPackages (LogicalPackageName : String) : LogicalPackageCollection
	FindModelElementWithID (UniqueID : String) : ModelElement
	FindModelElements (ModelElementName : String) : ModelElementCollection
	FindProtocolWithID (UniqueID : String) : Protocol
	FindProtocols (ProtocolName : String) : ProtocolCollection
	GetActiveComponentInstances () : ComponentInstanceCollection
	GetActiveDiagram () : Diagram
	GetAllAssociations () : AssociationCollection
	GetAllCapsules () : CapsuleCollection
	GetAllClasses () : ClassCollection
	GetAllComponentPackages () : ComponentPackageCollection
	GetAllComponents () : ComponentCollection
	GetAllDevices () : DeviceCollection
	GetAllLogicalPackages () : LogicalPackageCollection
	GetAllProcessors () : ProcessorCollection
	GetAllProtocols () : ProtocolCollection
	GetAllUseCases () : UseCaseCollection
	GetSelectedCapsules () : CapsuleCollection
	GetSelectedClasses () : ClassCollection
	GetSelectedComponentPackages () : ComponentPackageCollection
	GetSelectedComponents () : ComponentCollection
	GetSelectedLogicalPackages () : LogicalPackageCollection
	GetSelectedModelElements () : ModelElementCollection
	GetSelectedProtocols () : ProtocolCollection
	GetSelectedUseCases () : UseCaseCollection
	RemoveActiveComponentInstance (ComponentInstanceToRemove : ComponentInstance) : Boolean

	ModelElement
	Documentation : String
	ExternalDocuments : ExternalDocumentCollection
	LocalizedStereotype : String
	Stereotype : String
	AddExternalDocument (szName : String, iType : RsExternalDocumentType) : ExternalDocument
	DeleteExternalDocument (pIDispatch : ExternalDocument) : Boolean
	GetModelElement () : ModelElement
	OpenSpecification () : Boolean

	Package
	AddSharedUnit (FileName : String) : Boolean
	AddUnit (FileName : String) : Boolean
	ImportFile (FileName : String) : Boolean
	ImportFileEx (FileName : String) : ControllableElementCollection
	IsRootPackage () : Boolean
	TopLevel () : Boolean

	Property
	Name : String
	ToolName : String
	Type : String
	Value : String

	RsExternalDocumentType
	rsFile : Integer = 1
	rsURL : Integer = 2

	StructuredProperty
	GetFieldValue
	SetFieldValue

	Deployment View Classes
	ComponentInstance
	AttachTo : Boolean
	Component : Component
	ConnectionDelay : Integer
	ConsolePort : Integer
	LoadDelay : Integer
	LoadOrder : Integer
	LogsPort : Integer
	MyProcessor : Processor
	OperationMode : String
	Priority : String
	TargetTimeout : Integer
	TOPort : Integer
	UserParameters : String
	GetDefaultOperationModes () : StringCollection

	DeploymentPackage
	DeploymentDiagrams : DeploymentDiagramCollection
	DeploymentPackages : DeploymentPackageCollection
	ParentDeploymentPackage : DeploymentPackage
	AddDeploymentDiagram (name : String) : DeploymentDiagram
	AddDeploymentPackage (theName : String) : DeploymentPackage
	AddDevice (pName : String) : Device
	AddProcessor (pName : String) : Processor
	DeleteDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) : Boolean
	DeleteDeploymentPackage (theDeploymentPackageToDelete : DeploymentPackage) : Boolean
	DeleteDevice (pDevice : Device) : Boolean
	DeleteProcessor (pProcessor : Processor) : Boolean
	GetAllDevices () : DeviceCollection
	GetAllProcessors () : ProcessorCollection
	RelocateDeploymentDiagram (theDeploymentDiagram : DeploymentDiagram) : Boolean
	RelocateDeploymentPackage (theDeploymentPackage : DeploymentPackage) : Boolean
	RelocateDevice (theDevice : Device) : Boolean
	RelocateProcessor (theProcessor : Processor) : Boolean

	Device
	Characteristics : String
	ParentDeploymentPackage : DeploymentPackage
	AddDeviceConnection (theDevice : Device) : Boolean
	AddProcessorConnection (theProcessor : Processor) : Boolean
	GetConnectedDevices () : DeviceCollection
	GetConnectedProcessors () : ProcessorCollection
	RemoveDeviceConnection (theDevice : Device) : Boolean
	RemoveProcessorConnection (theProcessor : Processor) : Boolean

	Processor
	Address : String
	CPU : String
	ComponentInstances : ComponentInstanceCollection
	OS : String
	ParentDeploymentPackage : DeploymentPackage
	ServerAddress : String
	UserScriptDirectory : String
	AddComponentInstance (Name : String) : ComponentInstance
	AddDeviceConnection (theDevice : Device) : Boolean
	AddProcessorConnection (Processor : Processor) : Boolean
	DeleteComponentInstance (theComponentInstance : ComponentInstance) : Boolean
	GetConnectedDevices () : DeviceCollection
	GetConnectedProcessors () : ProcessorCollection
	RemoveDeviceConnection (theDevice : Device) : Boolean
	RemoveProcessorConnection (theProcessor : Processor) : Boolean

	Logical View Classes
	LogicalPackage
	Associations : AssociationCollection
	Capsules : CapsuleCollection
	ClassDiagrams : ClassDiagramCollection
	Classes : ClassCollection
	Collaborations : CollaborationCollection
	Global : Boolean
	LogicalPackages : LogicalPackageCollection
	ParentLogicalPackage : LogicalPackage
	Protocols : ProtocolCollection
	UseCases : UseCaseCollection
	AddCapsule (name : String) : Capsule
	AddClass (theName : String) : Class
	AddClassDiagram (name : String) : ClassDiagram
	AddCollaboration (name : String) : Collaboration
	AddGeneralization (theRelationName : String, theParentLogicalPackageName : String) : Generalization
	AddLogicalPackage (theName : String) : LogicalPackage
	AddLogicalPackageDependency (theName : String, theSupplierLogicalPackageName : String) : LogicalP...
	AddProtocol (name : String) : Protocol
	AddUseCase (szName : String) : UseCase
	DeleteCapsule (theCapsule : Capsule) : Boolean
	DeleteClass (theClass : Class) : Boolean
	DeleteClassDiagram (theClassDiagram : ClassDiagram) : Boolean
	DeleteCollaboration (theCollaboration : Collaboration) : Boolean
	DeleteGeneralization (theGeneralization : Generalization) : Boolean
	DeleteLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean
	DeleteLogicalPackageDependency (theDependency : LogicalPackageDependency) : Boolean
	DeleteProtocol (theProtocol : Protocol) : Boolean
	DeleteUseCase (theUseCase : UseCase) : Boolean
	GetAllCapsules () : CapsuleCollection
	GetAllClasses () : ClassCollection
	GetAllLogicalPackages () : LogicalPackageCollection
	GetAllProtocols () : ProtocolCollection
	GetAllUseCases () : UseCaseCollection
	GetAssignedComponentPackage () : ComponentPackage
	GetGeneralizations () : GeneralizationCollection
	GetLogicalPackageDependencies () : LogicalPackageDependencyCollection
	GetSubLogicalPackages () : LogicalPackageCollection
	GetSuperLogicalPackages () : LogicalPackageCollection
	HasAssignedComponentPackage () : Boolean
	RelocateCapsule (theCapsule : Capsule) : Boolean
	RelocateClass (theClass : Class) :
	RelocateClassDiagram (theClsDiagram : ClassDiagram) :
	RelocateCollaboration (theCollaboration : Collaboration) : Boolean
	RelocateLogicalPackage (theLogicalPackage : LogicalPackage) :
	RelocateProtocol (theProtocol : Protocol) : Boolean
	SetAssignedComponentPackage (newValue : ComponentPackage) :

	Association Classes
	Association
	AssociationClass : Class
	Derived : Boolean
	End1 : AssociationEnd
	End2 : AssociationEnd
	Ends : AssociationEndCollection
	ClearAssociationEndForNameDirection () :
	GetAssociationEndForNameDirection () : AssociationEnd
	GetCorrespondingAssociationEnd (Classifier : Classifier) : AssociationEnd
	GetOtherAssociationEnd (Classifier : Classifier) : AssociationEnd
	NameIsDirectional () : Boolean
	SetAssociationEndForNameDirection (theAssociationEnd : AssociationEnd) :
	SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean

	AssociationEnd
	Aggregate : Boolean
	AssociateModelElement : ModelElement
	Association : Association
	Classifier : Classifier
	Constraints : String
	Containment : AssociationEndContainment
	Friend : Boolean
	Keys : AttributeCollection
	Multiplicity : String
	Navigable : Boolean
	Static : Boolean
	UseCase : UseCase
	Visibility : AssociationEndVisibilityKind
	AddKey (theName : String, theType : String) : Attribute
	DeleteKey (theAttr : Attribute) : Boolean
	GetClassName () : String
	IsAssociateClass () : Boolean

	AssociationEndContainment
	AssociationEndVisibilityKind
	Classifier Classes
	Capsule
	Structure : CapsuleStructure

	Class
	ClassKind : ClassKind
	Concurrency : ClassConcurrency
	FundamentalType : Boolean
	Multiplicity : String
	Parameters : ParameterCollection
	ParentClass : Class
	Persistence : Boolean
	Space : String
	AddInstantiateRel (theRelationName : String, theParentClassName : String) : InstantiateRelation
	AddNestedClass (theName : String) : Class
	AddParameter (theName : String, theType : String, theDef : String, position : Integer) : Parameter
	DeleteInstantiateRel (theInstantiateRel : InstantiateRelation) : Boolean
	DeleteNestedClass (theClass : Class) : Boolean
	GetInstantiateRelations () : InstantiateRelationCollection
	GetNestedClasses () : ClassCollection
	IsNestedClass () : Boolean

	ClassConcurrency
	ClassKind
	Classifier
	Abstract : Boolean
	AssignedLanguage : String
	Attributes : AttributeCollection
	Collaborations : CollaborationCollection
	Operations : OperationCollection
	ParentLogicalPackage : LogicalPackage
	StateMachine : StateMachine
	SystemClass : Boolean
	Visibility : ClassifierVisibilityKind
	AddAssociation (theSupplierRoleName : String, theSupplierRoleType : String) : Association
	AddAttribute (theName : String, theType : String, initVal : String) : Attribute
	AddClassDependency (thSupplierName : String, theSupplierType : String) : ClassDependency
	AddCollaboration (theCollabName : String) : Collaboration
	AddGeneralization (theRelationName : String, theParentClassName : String) : Generalization
	AddGeneralizationEx (theRelationName : String, theParentClassName : String, ExcludeSuperclassProp...
	AddOperation (theName : String, retType : String) : Operation
	AddRealizeRel (theRelationName : String, theSupplierName : String) : RealizeRelation
	CreateStateMachine () :
	DeleteAssociation (thAss : Association) : Boolean
	DeleteAttribute (theAttr : Attribute) : Boolean
	DeleteClassDependency (theDependency : ClassDependency) : Boolean
	DeleteCollaboration (theCollab : Collaboration) : Boolean
	DeleteGeneralization (theGeneralization : Generalization) : Boolean
	DeleteGeneralizationEx (theGeneralization : Generalization, AbsorbSuperClassProps : Boolean) : Bo...
	DeleteOperation (theOper : Operation) : Boolean
	DeleteRealizeRel (theRel : RealizeRelation) : Boolean
	DeleteStateMachine () :
	GetAssociateAssociationEnds () : AssociationEndCollection
	GetAssociationEnds () : AssociationEndCollection
	GetAssociations () : AssociationCollection
	GetClassDependencies () : ClassDependencyCollection
	GetClassifier () : Classifier
	GetGeneralizations () : GeneralizationCollection
	GetRealizeRelations () : RealizeRelationCollection
	GetSubClasses () : ClassifierCollection
	GetSuperClasses () : ClassifierCollection

	ClassifierVisibilityKind
	Parameter
	Const : Boolean
	InitValue : String
	Type : String

	Protocol
	InSignals : SignalCollection
	Interactions : InteractionCollection
	OutSignals : SignalCollection
	AddInSignal () : Signal
	AddInteraction (name : String) : Interaction
	AddOutSignal () : Signal
	DeleteInSignal (theSignal : Signal) : Boolean
	DeleteInteraction (theInteraction : Interaction) : Boolean
	DeleteOutSignal (theSignal : Signal) : Boolean

	RsClassKind
	rsInstantiatedClass : Integer = 2
	rsInstantiatedUtility : Integer = 5
	rsMeta : Integer = 6
	rsNormalClass : Integer = 0
	rsParametrizedClass : Integer = 1
	rsParametrizedUtility : Integer = 4
	rsUtilityClass : Integer = 3

	RsConcurrency
	rsActiveConcurrency : Integer = 2
	rsGuardedConcurrency : Integer = 1
	rsSequentialConcurrency : Integer = 0
	rsSynchronousConcurrency : Integer = 3

	RsChangeable
	Public Attributes

	Signal
	Class : Class
	ClassName : String
	In : Boolean
	ParentProtocol : Protocol

	Feature Classes
	Attribute
	Containment : AttributeContainment
	Derived : Boolean
	Changeability : Changeability
	InitValue : String
	OwnerScope : OwnerScope
	ParentClassifier : Classifier
	Type : String
	Visibility : AttributeVisibilityKind

	AttributeContainment
	AttributeVisibilityKind
	Operation
	Abstract : Boolean
	Code : String
	Concurrency : OperationConcurrency
	Exceptions : String
	OwnerScope : OwnerScope
	Parameters : ParameterCollection
	ParentClassifier : Classifier
	Postconditions : String
	Preconditions : String
	Protocol : String
	Qualification : String
	Query : Boolean
	ReturnType : String
	Semantics : String
	Size : String
	Time : String
	Virtual : Boolean
	Visibility : OperationVisibilityKind
	AddParameter (theName : String, theType : String, theDef : String, position : Integer) : Parameter
	DeleteParameter (theParameter : Parameter) : Boolean
	RemoveAllParameters () :

	OperationConcurrency
	OperationVisibilityKind
	OwnerScope
	RsOwnerScope
	rsClassifierScopeKind : Integer = 1
	rsInstanceScopeKind : Integer = 0

	Collaboration Classes
	AssociationEndRole
	AssociationRole : AssociationRole
	Base : AssociationEnd

	AssociationRole
	Base : Association
	BaseName : String
	Multiplicity : String
	ParentCollaboration : Collaboration

	CapsuleRole
	Capsule : Capsule
	Cardinality : String
	Genericity : Genericity
	PortRoles : PortRoleCollection
	Substitutable : Boolean

	CapsuleStructure
	Ports : PortCollection
	AddCapsuleRole (capsuleName : String) : CapsuleRole
	AddPort (name : String, protocolName : String) : Port
	CopyToCollaboration (toContext : ModelElement, fromContext : ModelElement) : Collaboration
	DeleteCapsuleRole (role : CapsuleRole) : Boolean
	DeletePort (port : Port) : Boolean

	ClassifierRole
	Classifier : Classifier
	ClassifierName : String
	Multiplicity : String
	ParentCollaboration : Collaboration
	ClassifierRole () : ClassifierRole

	Collaboration
	AssociationRoles : AssociationRoleCollection
	ClassifierRoles : ClassifierRoleCollection
	Connectors : ConnectorCollection
	Diagram : CollaborationDiagram
	Interactions : InteractionCollection
	ParentClassifier : Classifier
	ParentLogicalPackage : LogicalPackage
	AddAssociationRole () : AssociationRole
	AddCapsuleRole (capsuleName : String) : CapsuleRole (New 09Jun00)
	AddClassifierRole () : ClassifierRole
	AddConnector () : Connector
	AddInteraction (name : String) : Interaction
	DeleteAssociationRole (role : AssociationRole) : Boolean
	DeleteCapsuleRole (role : CapsuleRole) : Boolean (New 09Jun00)
	DeleteClassifierRole (role : ClassifierRole) : Boolean
	DeleteConnector (connector : Connector) : Boolean
	DeleteInteraction (interaction : Interaction) : Boolean
	GetLocalInteractions (classifierContext : Classifier) : InteractionCollection

	Connector
	Cardinality : String
	Delay : String
	Port1 : Port
	Port2 : Port
	PortRole1 : PortRole
	PortRole2 : PortRole
	SetEnds (End1 : ModelElement, End2 : ModelElement) : Boolean
	SetEndsByNames (End1Name : String, End2Name : String) : Boolean

	Genericity
	Port
	Cardinality : String
	Conjugated : Boolean
	Notification : Boolean
	Protocol : Protocol
	Published : Boolean
	RegistrationMode : RegistrationMode
	RegistrationString : String
	Relay : Boolean
	Visibility : PortVisibilityKind
	Wired : Boolean

	PortRole
	ParentCapsuleRole : CapsuleRole
	Port : Port

	PortVisibilityKind
	RegistrationMode
	RsGenericity
	rsFixed : Integer = 1
	rsOptional : Integer = 2
	rsPlugIn : Integer = 3

	RsRegistrationMode
	rsApplication : Integer = 2
	rsAutomatic : Integer = 1
	rsNoMode : Integer = 0

	Common Logical View Enumerations
	RsContainment
	rsByVal : Integer = 1
	rsRef : Integer = 2
	rsUnspecified : Integer = 0

	RsVisibilityKind
	rsImplementation : Integer = 3
	rsPrivate : Integer = 2
	rsProtected : Integer = 1
	rsPublic : Integer = 0

	Interaction Classes
	Environment
	Interaction
	Instances : InteractionInstanceCollection
	Messages : MessageCollection
	ParentCollaboration : Collaboration
	ParentProtocol : Protocol
	SequenceDiagram : SequenceDiagram
	AddInteractionInstance (name : String) : InteractionInstance
	AddMessage (name : String, sender : InteractionInstance, receiver : InteractionInstance) : Message
	AddMessageWithAction (name : String, sender : InteractionInstance, receiver : InteractionInstance...
	DeleteInteractionInstance (theInstance : InteractionInstance) : Boolean
	DeleteMessage (theMessage : Message) : Boolean
	GetOwnerClassifierContext () : Classifier
	ReorderInteractionInstance (theInstance : InteractionInstance, pBefore : InteractionInstance) : B...
	ReorderMessage (theMessage : Message, pInsertBefore : Message) : Boolean

	InteractionInstance
	ClassifierRoles : ClassifierRoleCollection
	Events : MessageEndCollection
	ParentInteraction : Interaction
	RootClassifier : Classifier
	AddClassifierRole (theRole : ClassifierRole) : Boolean
	RemoveClassifierRole (theRole : ClassifierRole) : Boolean
	ReorderMessageEnd (theEnd : MessageEnd, pBefore : MessageEnd) : Boolean

	Message
	Action : Action
	Activator : Message
	ParentInteraction : Interaction
	ReceiverEnd : MessageEnd
	SenderEnd : MessageEnd

	MessageEnd
	Instance : InteractionInstance
	ParentMessage : Message

	RsActionKind
	rsCallAction : Integer = 1
	rsCoregion : Integer = 5
	rsCreateAction : Integer = 4
	rsDestroyAction : Integer = 3
	rsLocalState : Integer = 2
	rsSendAction : Integer = 8
	rsTerminateAction : Integer = 7
	rsUninterpretedAction : Integer = 6

	State Machine Classes
	RsSourceRegionType
	rsFalseSourceRegion : Integer = 0
	rsTrueSourceRegion : Integer = 1

	SourceRegionType
	StateMachine
	Diagram : StateDiagram
	ParentClassifier : Classifier
	Top : CompositeState
	GetAllStates () : StateVertexCollection

	Transition
	Action : Action
	EventGuards : EventGuardCollection
	Internal : Boolean
	ParentState : CompositeState
	ParentStateMachine : StateMachine
	Source : StateVertex
	SourceRegion : SourceRegionType
	Target : StateVertex
	AddEventGuard () : EventGuard
	DeleteEventGuard (theEventGuard : EventGuard) : Boolean
	SetUninterpretedAction (action : String) : UninterpretedAction

	Action Classes
	Action
	Arguments : StringCollection
	ParentMessage : Message
	ParentState : CompositeState
	ParentTransition : Transition
	Time : String
	Action () : Action
	AddArgument (szArg : String, nPosition : Integer) : Boolean
	DeleteArgument (nPosition : Integer) : Boolean

	ActionMode
	CallAction
	Operation : String

	Coregion
	Events : MessageEndCollection
	AddEvent (event : MessageEnd) : Boolean
	RemoveEvent (event : MessageEnd) : Boolean
	ReorderEvent (event : MessageEnd, pBefore : MessageEnd) : Boolean

	CreateAction
	Operation : String

	DestroyAction
	LocalState
	ReplyAction
	Signal : String

	RequestAction
	Mode : ActionMode
	Return : ResponseAction
	RequestAction () : RequestAction

	ResponseAction
	Request : RequestAction

	ReturnAction
	RsActionMode
	rsAsynchronousMode : Integer = 1
	rsSynchronousMode : Integer = 0

	RsSendActionPriority
	rsBackground : Integer = 5
	rsGeneral : Integer = 3
	rsHigh : Integer = 2
	rsLow : Integer = 4
	rsPanic : Integer = 1
	rsSystem : Integer = 0

	SendAction
	DeliveryTime : String
	Priority : SendActionPriority
	ReceiverPort : String
	SenderPort : String
	Signal : String

	SendActionPriority
	TerminateAction
	UninterpretedAction
	Body : String

	Event Classes
	Event
	ParentEventGuard : EventGuard

	EventGuard
	Event : Event
	Guard : String
	ParentTransition : Transition
	CreateEvent (name : String) : Event
	CreatePortEvent () : PortEvent
	CreateProtocolRoleEvent () : ProtocolRoleEvent

	PortEvent
	Ports : PortCollection
	Signals : SignalCollection
	AddPort (port : Port) : Boolean
	AddPortByName (pszPortName : String) : Boolean
	AddSignal (signal : Signal) : Boolean
	AddSignalByName (pszSignalName : String) : Boolean
	RemovePort (port : Port) : Boolean
	RemoveSignal (signal : Signal) : Boolean

	ProtocolRoleEvent
	Signals : SignalCollection
	AddSignal (signal : Signal) : Boolean
	RemoveSignal (signal : Signal) : Boolean

	State Classes
	ChoicePoint
	Condition : String
	FALSETransition : Transition
	InTransition : Transition
	TRUETransition : Transition

	CompositeState
	EntryAction : Action
	ExitAction : Action
	States : StateVertexCollection
	Transitions : TransitionCollection
	AddState (type : RsStateKind) : StateVertex
	AddTransition (source : String, sourceRegion : RsSourceRegionType, target : String) : Transition
	AddTransitionUsingStates (source : StateVertex, sourceRegion : RsSourceRegionType, target : State...
	DeleteState (theState : StateVertex) : Boolean
	DeleteTransition (theTransition : Transition) : Boolean
	SetUninterpretedEntryAction (action : String) : UninterpretedAction
	SetUninterpretedExitAction (action : String) : UninterpretedAction

	FinalState
	InitialPoint
	JunctionContinuationMode
	JunctionPoint
	Continuation : JunctionContinuationMode
	ExternallyVisible : Boolean
	IsEntry () : Boolean
	IsExit () : Boolean

	RsJunctionContinuationMode
	rsDeepHistory : Integer = 2
	rsDefault : Integer = 0
	rsShallowHistory : Integer = 1
	rsTransition : Integer = 3

	RsStateKind
	rsChoicePoint : Integer = 4
	rsFinalState : Integer = 2
	rsInitialPoint : Integer = 1
	rsJunctionPoint : Integer = 3
	rsNormalState : Integer = 0

	StateKind
	StateVertex
	ParentCompositeState : CompositeState
	ParentStateMachine : StateMachine
	GetIncomingTransitions () : TransitionCollection
	GetOutgoingTransitions () : TransitionCollection
	GetStateVertex () : StateVertex

	Relation Classes
	ClassDependency
	ClientCardinality : String
	InvolvesFriendship : Boolean
	SupplierCardinality : String
	Visibility : UsesRelationVisibilityKind

	ClassRelation
	GetContextClassifier () : Classifier
	GetSupplierClassifier () : Classifier

	ComponentDependency
	ContextClass : Class
	ContextComponent : Component
	ContextComponentPackage : ComponentPackage
	SupplierClass : Class
	SupplierComponent : Component
	SupplierComponentPackage : ComponentPackage

	Generalization
	FriendshipRequired : Boolean
	Virtual : Boolean
	Visibility : GeneralizationVisibilityKind
	GetContextPackage () : LogicalPackage
	GetSupplierPackage () : LogicalPackage

	GeneralizationVisibilityKind
	InstantiateRelation
	ContextClass : Class
	SupplierClass : Class

	LogicalPackageDependency
	GetContextLogicalPackage () : LogicalPackage
	GetSupplierLogicalPackage () : LogicalPackage

	RealizeRelation
	GetContextCapsule () : Capsule
	GetContextClass () : Class
	GetContextComponent () : Component
	GetContextProtocol () : Protocol
	GetSupplierClass () : Class
	GetSupplierUseCase () : UseCase

	Relation
	SupplierName : String
	GetClient () : ModelElement
	GetSupplier () : ModelElement
	HasClient () : Boolean
	HasSupplier () : Boolean

	UsesRelationVisibilityKind
	Use Case View Classes
	UseCase
	ClassDiagrams : ClassDiagramCollection
	Rank : String
	AddAssociation (szSupplierAssociationEndName : String, szSupplierAssociationEndType : String) : A...
	AddClassDiagram (szName : String) : ClassDiagram
	AddGeneralization (szName : String, szParentName : String) : Generalization
	DeleteAssociation (pDispatchAssociation : Association) : Boolean
	DeleteClassDiagram (pIDispatch : ClassDiagram) : Boolean
	DeleteGeneralization (theGeneralization : Generalization) : Boolean
	GetAssociationEnds () : AssociationEndCollection
	GetAssociations () : AssociationCollection
	GetGeneralizations () : GeneralizationCollection
	GetSuperUseCases () : UseCaseCollection

	View Classes
	AnchorNoteView
	Text : String

	Diagram
	Documentation : String
	ExternalDocuments : ExternalDocumentCollection
	ModelElements : ModelElementCollection
	ParentModelElement : ModelElement
	ViewElements : ViewElementCollection
	Visible : Boolean
	ZoomFactor : Integer
	Activate () :
	AddAnchorNoteView (FromView : ViewElement, ToView : ViewElement) : AnchorNoteView
	AddExternalDocument (szName : String, iType : RsExternalDocumentType) : ExternalDocument
	AddNoteView (szNoteText : String, nType : RsNoteViewType) : NoteView
	DeleteExternalDocument (theExtDoc : ExternalDocument) : Boolean
	Exists (theModelElement : ModelElement) : Boolean
	GetNoteViews () : NoteViewCollection
	GetSelectedModelElements () : ModelElementCollection
	GetViewFrom (theModelElement : ModelElement) : ViewElement
	Invalidate () :
	IsActive () : Boolean
	Layout () :
	RemoveAnchorNoteView (anchorNoteView : AnchorNoteView) : Boolean
	RemoveNoteView (pIDispNoteView : NoteView) : Boolean
	Render (FileName : String) :
	RenderEnhanced (FileName : String) :
	RenderEnhancedToClipboard () :
	RenderToClipboard () :
	Update () :

	NoteView
	Text : String
	GetNoteViewType () : RsNoteViewType
	LinkToDiagram (diagramToLink : Diagram) : Boolean

	RsNoteViewType
	rsConstraint : Integer = 3
	rsFloatingTextLabel : Integer = 1
	rsNoteWithBox : Integer = 2

	RsStereotypeDisplay
	rsDecorationAndLabel : Integer = 2
	rsDecorationOnly : Integer = 3
	rsIcon : Integer = 4
	rsLabel : Integer = 1
	rsNone : Integer = 0

	StereotypeDisplay
	ViewElement
	FillColor : View_FillColor
	Font : View_Font
	Height : Integer
	LineColor : View_LineColor
	LineVertices : LineVertexCollection
	ModelElement : ModelElement
	ParentDiagram : Diagram
	ParentView : ViewElement
	StereotypeDisplay : StereotypeDisplay
	SubViews : ViewElementCollection
	Width : Integer
	XPosition : Integer
	YPosition : Integer
	GetDefaultHeight () : Integer
	GetDefaultWidth () : Integer
	GetMinHeight () : Integer
	GetMinWidth () : Integer
	HasModelElement () : Boolean
	HasParentView () : Boolean
	Invalidate () :
	IsSelected () : Boolean
	PointInView (x : Integer, y : Integer) : Boolean
	SetSelected (bSelect : Boolean) :
	SupportsFillColor () : Boolean
	SupportsLineColor () : Boolean

	Class Diagram Classes
	CapsuleView
	ShowAllPorts : Boolean
	SuppressPorts : Boolean

	ClassDiagram
	ParentLogicalPackage : LogicalPackage
	AddAssociation (theAssociation : Association) : Boolean
	AddCapsule (theCapsule : Capsule) : Boolean
	AddClass (theClass : Class) : Boolean
	AddLogicalPackage (theCat : LogicalPackage) : Boolean
	AddProtocol (theProtocol : Protocol) : Boolean
	AddUseCase (theUseCase : UseCase) : Boolean
	GetAssociations () : AssociationCollection
	GetCapsuleView (theCapsule : Capsule) : CapsuleView
	GetCapsules () : CapsuleCollection
	GetClassView (theClass : Class) : ClassView
	GetClasses () : ClassCollection
	GetLogicalPackages () : LogicalPackageCollection
	GetProtocolView (theProtocol : Protocol) : ProtocolView
	GetProtocols () : ProtocolCollection
	GetSelectedCapsules () : CapsuleCollection
	GetSelectedClasses () : ClassCollection
	GetSelectedLogicalPackages () : LogicalPackageCollection
	GetSelectedProtocols () : ProtocolCollection
	GetUseCases () : UseCaseCollection
	IsUseCaseDiagram () : Boolean
	RemoveAssociation (theAssociation : Association) : Boolean
	RemoveCapsule (theCapsule : Capsule) : Boolean
	RemoveClass (theClass : Class) : Boolean
	RemoveLogicalPackage (theLogicalPackage : LogicalPackage) : Boolean
	RemoveProtocol (theProtocol : Protocol) : Boolean
	RemoveUseCase (theUseCase : UseCase) : Boolean

	ClassView
	ClassifierView
	AutomaticResize : Boolean
	ShowAllAttributes : Boolean
	ShowAllOperations : Boolean
	ShowCompartmentStereotypes : Boolean
	ShowOperationSignature : Boolean
	ShowVisibility : Boolean
	SuppressAttributes : Boolean
	SuppressOperations : Boolean

	ProtocolView
	ShowAllInSignals : Boolean
	ShowAllOutSignals : Boolean
	SuppressInSignals : Boolean
	SuppressOutSignals : Boolean

	Collaboration Diagram Classes
	CapsuleRoleView
	EditingInside : Boolean
	PositionBySuperClass : Boolean
	AutoAdjustConnectors () :
	GoInside () :

	CollaborationDiagram
	AddAssociationRoleView (pAssocRole : AssociationRole) : ViewElement
	AddCapsuleRoleView (pCapsulerRole : CapsuleRole) : CapsuleRoleView
	AddClassifierRoleView (pClassifierRole : ClassifierRole) : ClassifierRoleView
	AddConnectorView (pConnector : Connector) : ViewElement
	AddPortView (pPort : Port) : PortView

	PortRoleView
	AutoAdjustOn : Boolean
	CapsuleRoleView : ViewElement
	PositionBySuperClass : Boolean
	AutoAdjust () :

	PortView
	PositionBySuperClass : Boolean
	StructurePerimeterView : ViewElement

	StructurePerimeterView
	PositionBySuperClass : Boolean

	Component Diagram Classes
	ComponentDiagram
	ComponentPackageViews : ComponentPackageViewCollection
	ComponentViews : ComponentViewCollection
	ParentComponentPackage : ComponentPackage
	AddComponent (theMod : Component) : Boolean
	AddComponentPackage (theComponentPackage : ComponentPackage) : Boolean
	AddComponentPackageView (aComponentPackage : ComponentPackage) : ComponentPackageView
	AddComponentView (aComponent : Component) : ComponentView
	GetComponentPackages () : ComponentPackageCollection
	GetComponents () : ComponentCollection
	GetSelectedComponentPackages () : ComponentPackageCollection
	GetSelectedComponents () : ComponentCollection
	RemoveComponentPackageView (aComponentPackageView : ComponentPackageView) : Boolean
	RemoveComponentView (aComponentView : ComponentView) : Boolean

	ComponentPackageView
	GetComponentPackage () : ComponentPackage

	ComponentView
	GetComponent () : Component

	Deployment Diagram Classes
	DeploymentDiagram
	AddDevice (theDevice : Device, x : Integer, y : Integer) : ViewElement
	AddProcessor (theProcessor : Processor, x : Integer, y : Integer) : ViewElement
	GetDevices () : DeviceCollection
	GetProcessors () : ProcessorCollection
	RemoveDevice (theDevice : Device) : Boolean
	RemoveProcessor (theProcessor : Processor) : Boolean

	Sequence Diagram Classes
	ClassifierRoleView
	CreateMessageView
	InteractionInstanceView
	CreateMessageView : MessageView
	DestroyMessageView : MessageView

	LifeLineView
	InteractionInstanceView : InteractionInstanceView

	MessageView
	FromInstanceView : InteractionInstanceView
	ToInstanceView : InteractionInstanceView

	SequenceDiagram
	State Diagram Classes
	BranchPointView
	BranchView : ChoicePointView

	ChoicePointView
	Angle : Double
	BranchPointViewFalse : BranchPointView
	BranchPointViewIn : BranchPointView
	BranchPointViewTrue : BranchPointView
	Flipped : Boolean
	PositionBySuperClass : Boolean
	AutoAdjustTransitions () :

	CompositeStateView
	EditingInside : Boolean
	PositionBySuperClass : Boolean
	SubDiagram : StateDiagram
	AutoAdjustTransitions () :
	GoInside () :

	CoregionView
	FinalStateView
	PositionBySuperClass : Boolean

	InitialPointView
	PositionBySuperClass : Boolean

	JunctionAdornmentView
	JunctionView : JunctionPointView

	JunctionPointView
	AutoAdjustOn : Boolean
	CompositeStateView : CompositeStateView
	JunctionAdornmentView : JunctionAdornmentView
	PositionBySuperClass : Boolean
	AutoAdjust () :

	LocalStateOrActionView
	StateDiagram
	AddChoicePointView (pChoicePoint : ChoicePoint) : ChoicePointView
	AddFinalStateView (pFinal : FinalState) : FinalStateView
	AddStateView (pState : CompositeState) : CompositeStateView

	StatePerimeterView
	PositionBySuperClass : Boolean

	View Property Classes
	LineVertex
	GetXPosition () : Integer
	GetYPosition () : Integer

	View_FillColor
	Blue : Integer
	Green : Integer
	Red : Integer
	Transparent : Boolean

	View_Font
	Blue : Integer
	Bold : Boolean
	FaceName : String
	Green : Integer
	Italic : Boolean
	Red : Integer
	Size : Integer
	StrikeThrough : Boolean
	Underline : Boolean

	View_LineColor
	Blue : Integer
	Green : Integer
	Red : Integer

	BasicScript Reference
	Special Characters
	' (keyword)
	- (operator)
	#Const (directive)
	#If...Then...#Else (directive)
	& (operator)
	() (keyword)
	* (operator)
	. (keyword)
	/ (operator)
	\ (operator)
	^ (operator)
	_ (keyword)
	+ (operator)
	< (operator)
	<= (operator)
	<> (operator)
	= (statement)
	= (operator)
	> (operator)
	>= (operator)
	Data Types
	Any (data type)
	Boolean (data type)
	Currency (data type)
	Date (data type)
	Double (data type)
	Integer (data type)
	Object (data type)
	Single (data type)
	String (data type)
	Variant (data type)

	Directives
	#Const (directive)
	#If...Then...#Else (directive)

	Functions
	Abs (function)
	AnswerBox (function)
	AppFileName$ (function)
	AppFind, AppFind$ (functions)
	AppGetActive$ (function)
	AppGetState (function)
	AppType (function)
	ArrayDims (function)
	Asc, AscB, AscW (functions)
	AskBox, AskBox$ (functions)
	AskPassword, AskPassword$ (functions)
	Atn (function)
	ButtonEnabled (function)
	ButtonExists (function)
	CBool (function)
	CCur (function)
	CDate, CVDate (functions)
	CDbl (function)
	CheckBoxEnabled (function)
	CheckBoxExists (function)
	Choose (function)
	Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)
	CInt (function)
	Clipboard$ (function)
	CLng (function)
	ComboBoxEnabled (function)
	ComboBoxExists (function)
	Command, Command$ (functions)
	Cos (function)
	CreateObject (function)
	CSng (function)
	CStr (function)
	CurDir, CurDir$ (functions)
	CVar (function)
	CVErr (function)
	Date, Date$ (functions)
	DateAdd (function)
	DateDiff (function)
	DatePart (function)
	DateSerial (function)
	DateValue (function)
	Day (function)
	DDB (function)
	DDEInitiate (function)
	DDERequest, DDERequest$ (functions)
	Dialog (function)
	Dir, Dir$ (functions)
	DiskFree (function)
	DlgCaption (function)
	DlgControlId (function)
	DlgEnable (function)
	DlgFocus (function)
	DlgFocus (function)
	DlgListBoxArray (function)
	DlgProc (function)
	DlgText$ (function)
	DlgValue (function)
	DlgVisible (function)
	DoEvents (function)
	EditEnabled (function)
	EditExists (function)
	Environ, Environ$ (functions)
	EOF (function)
	Erl (function)
	Error, Error$ (functions)
	Exp (function)
	FileAttr (function)
	FileDateTime (function)
	FileExists (function)
	FileLen (function)
	FileParse$ (function)
	FileType (function)
	Fix (function)
	Format, Format$ (functions)
	FreeFile (function)
	Fv (function)
	GetAllSettings (function)
	GetAttr (function)
	GetCheckBox (function)
	GetComboBoxItem$ (function)
	GetComboBoxItemCount (function)
	GetEditText$ (function)
	GetListBoxItem$ (function)
	GetListBoxItemCount (function)
	GetObject (function)
	GetOption (function)
	GetSetting (function)
	Hex, Hex$ (functions)
	Hour (function)
	IIf (function)
	IMEStatus (function)
	Input, Input$, InputB, InputB$ (functions)
	InputBox, InputBox$ (functions)
	InStr, InStrB (functions)
	Int (function)
	IPmt (function)
	IRR (function)
	IsDate (function)
	IsEmpty (function)
	IsError (function)
	IsMissing (function)
	IsNull (function)
	IsNumeric (function)
	IsObject (function)
	Item$ (function)
	ItemCount (function)
	LBound (function)
	LCase, LCase$ (functions)
	Left, Left$, LeftB, LeftB$ (functions)
	Len, LenB (functions)
	Line$ (function)
	LineCount (function)
	ListBoxEnabled (function)
	ListBoxExists (function)
	Loc (function)
	Lof (function)
	Log (function)
	LTrim, LTrim$ (functions)
	MacID (function)
	Mci (function)
	MenuItemChecked (function)
	MenuItemEnabled (function)
	MenuItemExists (function)
	Mid, Mid$, MidB, MidB$ (functions)
	Minute (function)
	MIRR (function)
	Month (function)
	MsgBox (function)
	Now (function)
	NPer (function)
	Npv (function)
	Oct, Oct$ (functions)
	OpenFileName$ (function)
	OptionEnabled (function)
	OptionExists (function)
	Pmt (function)
	PopupMenu (function)
	PPmt (function)
	PrinterGetOrientation (function)
	PrintFile (function)
	Pv (function)
	Random (function)
	Rate (function)
	ReadIni$ (function)
	Right, Right$, RightB, RightB$ (functions)
	Rnd (function)
	RTrim, RTrim$ (functions)
	SaveFileName$ (function)
	Second (function)
	Seek (function)
	SelectBox (function)
	Sgn (function)
	Shell (function)
	Sin (function)
	Sln (function)
	Spc (function)
	SQLBind (function)
	SQLClose (function)
	SQLError (function)
	SQLExecQuery (function)
	SQLGetSchema (function)
	SQLOpen (function)
	SQLRequest (function)
	SQLRetrieve (function)
	SQLRetrieveToFile (function)
	Sqr (function)
	Str, Str$ (functions)
	StrComp (function)
	StrConv (function)
	String, String$ (functions)
	Switch (function)
	SYD (function)
	Tab (function)
	Tan (function)
	Time, Time$ (functions)
	Timer (function)
	TimeSerial (function)
	TimeValue (function)
	Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)
	TypeName (function)
	TypeOf (function)
	UBound (function)
	UCase, UCase$ (functions)
	Val (function)
	VarType (function)
	Weekday (function)
	WinFind (function)
	Word$ (function)
	WordCount (function)
	Year (function)

	Keywords
	_ (keyword)
	. (keyword)
	' (keyword)
	ByRef (keyword)
	ByVal (keyword)
	New (keyword)

	Methods
	Basic.Capability (method)
	Clipboard.Clear (method)
	Clipboard.GetFormat (method)
	Clipboard.GetText (method)
	Clipboard.SetText (method)
	Desktop.ArrangeIcons (method)
	Desktop.Cascade (method)
	Desktop.SetColors (method)
	Desktop.SetWallpaper (method)
	Desktop.Snapshot (method)
	Desktop.Tile (method)
	Err.Clear (method)
	Err.Raise (method)
	Msg.Close (method)
	Msg.Open (method)
	Net.CancelCon (method)
	Net.Dialog (method)
	Net.GetCaps (method)
	Net.GetCon$ (method)
	Net.User$ (method)
	Viewport.Clear (method)
	Viewport.Close (method)
	Viewport.Open (method)

	Operators
	& (operator)
	\ (operator)
	/ (operator)
	^ (operator)
	> (operator)
	< (operator)
	<> (operator)
	- (operator)
	* (operator)
	+ (operator)
	And (operator)
	Eqv (operator)
	Imp (operator)
	Is (operator)
	Like (operator)
	Mod (operator)
	Not (operator)
	Or (operator)
	Xor (operator)

	Properties
	Basic.Architecture$ (property)
	Basic.CodePage (property)
	Basic.Eoln$ (property)
	Basic.FreeMemory (property)
	Basic.HomeDir$ (property)
	Basic.Locale$ (property)
	Basic.OperatingSystem$ (property)
	Basic.OperatingSystemVendor$ (property)
	Basic.OperatingSystemVersion$ (property)
	Basic.OS (property)
	Basic.PathSeparator$ (property)
	Basic.Processor$ (property)
	Basic.ProcessorCount (property)
	Basic.Version$ (property)
	Err.Description (property)
	Err.HelpContext (property)
	Err.HelpFile (property)
	Err.LastDLLError (property)
	Err.Number (property)
	Err.Source (property)
	HWND.Value (property)
	Msg.Thermometer (property)
	Screen.DlgBaseUnitsX (property)
	Screen.DlgBaseUnitsY (property)
	Screen.Height (property)
	Screen.TwipsPerPixelX (property)
	Screen.TwipsPerPixelY (property)
	Screen.Width (property)
	System.FreeMemory (property)
	System.FreeResources (property)
	System.TotalMemory (property)
	System.WindowsDirectory$ (property)
	System.WindowsVersion$ (property)

	Statements
	ActivateControl (statement)
	AppActivate (statement)
	AppClose (statement)
	AppGetPosition (statement)
	AppHide (statement)
	AppList (statement)
	AppMaximize (statement)
	AppMinimize (statement)
	AppMove (statement)
	AppRestore (statement)
	AppSetState (statement)
	AppShow (statement)
	AppSize (statement)
	ArraySort (statement)
	Beep (statement)
	Begin Dialog (statement)
	Call (statement)
	CancelButton (statement)
	ChDir (statement)
	ChDrive (statement)
	CheckBox (statement)
	Clipboard$ (statement)
	Close (statement)
	ComboBox (statement)
	Const (statement)
	Date, Date$ (statements)
	DDEExecute (statement)
	DDESend (statement)
	DDETerminate (statement)
	DDETerminateAll (statement)
	DDETimeout (statement)
	Declare (statement)
	Passing Parameters
	Calling Conventions with External Routines
	Passing Null Pointers
	Passing Data to External Routines
	Returning Values from External Routines
	Calling External Routines in Multi-Threaded Environments
	DefType (statement)
	DeleteSetting (statement)
	Dialog (statement)
	Dim (statement)
	Fixed-Length Strings
	Implicit Variable Declaration
	Declaring Explicit OLE Automation Objects
	Creating New Objects
	DiskDrives (statement)
	DlgCaption (statement)
	DlgEnable (statement)
	DlgFocus (statement)
	DlgListBoxArray (statement)
	DlgSetPicture (statement)
	DlgText (statement)
	DlgValue (statement)
	DlgVisible (statement)

	Picture Caching
	Do...Loop (statement)
	DoEvents (statement)
	DoKeys (statement)
	DropListBox (statement)
	End (statement)
	Erase (statement)
	Error (statement)
	Exit Do (statement)
	Exit For (statement)
	Exit Function (statement)
	Exit Sub (statement)
	FileCopy (statement)
	FileDirs (statement)
	FileList (statement)
	Wildcards
	File Attributes
	For Each...Next (statement)
	For...Next (statement)
	Function...End Function (statement)
	Returning Values from Functions
	Passing Parameters to Functions

	Optional Parameters
	Get (statement)
	Variable Types
	Global (statement)
	GoSub (statement)
	Goto (statement)
	GroupBox (statement)
	HelpButton (statement)
	HLine (statement)
	HPage (statement)
	HScroll (statement)
	If...Then...Else (statement)
	Inline (statement)
	Kill (statement)
	Let (statement)
	ListBox (statement)
	Lock, Unlock (statements)
	LSet (statement)
	MacScript (statement)
	Main (statement)
	Mid, Mid$, MidB, MidB$ (statements)
	MkDir (statement)
	MsgBox (statement)
	Name (statement)
	OKButton (statement)
	On Error (statement)
	Open (statement)
	Option Base (statement)
	Option Compare (statement)
	Option CStrings (statement)
	Option Default (statement)
	Option Explicit (statement)
	OptionButton (statement)
	OptionGroup (statement)
	Picture (statement)
	PictureButton (statement)
	Print (statement)
	PrinterSetOrientation (statement)
	Private (statement)
	Public (statement)
	PushButton (statement)
	Put (statement)
	QueEmpty (statement)
	QueFlush (statement)
	QueKeyDn (statement)
	QueKeys (statement)
	QueKeyUp (statement)
	QueMouseClick (statement)
	QueMouseDblClk (statement)
	QueMouseDblDn (statement)
	QueMouseDn (statement)
	QueMouseMove (statement)
	QueMouseMoveBatch (statement)
	QueMouseUp (statement)
	QueSetRelativeWindow (statement)
	Randomize (statement)
	ReadIniSection (statement)
	ReDim (statement)
	Rem (statement)
	Reset (statement)
	Resume (statement)
	Return (statement)
	RmDir (statement)
	RSet (statement)
	SaveSetting (statement)
	Seek (statement)
	Select...Case (statement)
	SelectButton (statement)
	SelectComboBoxItem (statement)
	SelectListBoxItem (statement)
	SendKeys (statement)
	Set (statement)
	SetAttr (statement)
	SetCheckBox (statement)
	SetEditText (statement)
	SetOption (statement)
	Sleep (statement)
	Stop (statement)
	Sub...End Sub (statement)
	Text (statement)
	TextBox (statement)
	Time, Time$ (statements)
	Type (statement)
	Unlock (statement)
	VLine (statement)
	VPage (statement)
	VScroll (statement)
	While...Wend (statement)
	WinActivate (statement)
	WinClose (statement)
	WinList (statement)
	WinMaximize (statement)
	WinMinimize (statement)
	WinMove (statement)
	WinRestore (statement)
	WinSize (statement)
	WriteIni (statement)

	Arrays (topic)
	Comments (topic)
	Comparison Operators (topic)

	Constants (topic)
	Cross-Platform Scripting (topic)
	Dialogs (topic)
	Error Handling (topic)
	Expression Evaluation (topic)
	Keywords (topic)
	Line Numbers (topic)
	Literals (topic)
	Named Parameters (topic)
	Objects (topic)
	Operator Precedence (topic)
	Operator Precision (topic)
	User-Defined Types (topic)

	Index

