
Rational Software Corporation
Add-in, Tool, and Wizard Guide

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026122-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026122-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . ix
Audience. ix

Other Resources . ix

Rational Rose RealTime Integrations With Other Rational Products x

Contacting Rational Customer Support . xi

1 Rational Rose RealTime Add-ins (Not Language-specific)13
Add Class Dependencies Add-in . 13

Features of the Add Class Dependencies Add-In. 14
Considerations . 18
Searching for Missing Dependencies . 19
Adding Missing Dependencies . 19
Specifying Dependencies to Create . 20

Add External Java Tool . 20
Add External Java Dialog . 21

Accessible Model Locations . 21
Import Options . 22

Specifying a JAR Utility in Your Path . 24

Generate Documentation Add-In . 24

Source Code Assists and Make Files Writable Add-in 26
Select Checked Out Units in Browser. 26
Show Unit Versions . 27
Submit All Changes to Source Control . 27
Make Files Writable . 27
Make Files ReadOnly . 28

2 Rational Rose RealTime Tools .29
Aggregation Tool. 29

Relationships . 29
Aggregation Tab . 30
EndA and EndB . 33

Aggregation Tool - EndA and EndB Tabs . 34
Descriptions . 38

Advanced Tab . 40
Contents v

Attribute Tool .42

Attribute Tool: Properties Tab. .42
Descriptions . 43
Properties Tab: Language-Specific Options . 47

Operation Tool .49

Operation Tool: Properties Tab .50
Descriptions . 50
Properties Tab: Language-Specific Options . 54

Dependency Tab for Attribute Tool and Operation Tool56
Descriptions . 57

Options: (C, C++) .57

Dependencies Tab: Language-Specific Options. 59

Trace Tool. .60
Configuring Rational RequisitePro for Traceability . 61
Using the Trace Tool in Rational Rose RealTime . 69
Using the Trace Tool in Rational RequisitePro . 72
Updating Rational RequisitePro Requirements when a Model File Location

Changes . 73

3 Rational Rose RealTime Wizards . 75
Component Wizard .75

TargetRTS Wizard .83
Understanding the TargetRTS . 83
Maintaining TargetRTS Libraries using the TargetRTS Wizard. 83

Managing Your TargetRTS Configurations .86

Duplicating a Configuration . 86
NoRTOS Target Base .90

Editing a Configuration . 90
Understanding the makefiles. .91
Editing the Target .92
Descriptions .94
Editing the Libset .95
Descriptions .96
Editing a Configuration .96

Building Configurations. 97
Descriptions .98
vi Contents

Deleting Configurations . 99
Creating Ports Between C and C++. 100

Index. 105
Contents vii

viii Contents

Preface
This manual describes the Rational Rose RealTime Add-ins (excluding the
language-specific add-ins), tools, and wizards.

This manual is organized as follows:

■ Rational Rose RealTime Add-ins (Not Language-specific) on page 13
■ Rational Rose RealTime Tools on page 29
■ Rational Rose RealTime Wizards on page 75

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.
ix

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help
x Preface

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xi

xii Preface

1Rational Rose RealTime
Add-ins
(Not Language-specific)
Contents

This chapter is organized as follows:

■ Add Class Dependencies Add-in on page 13
■ Add External Java Tool on page 20
■ Generate Documentation Add-In on page 24
■ Source Code Assists and Make Files Writable Add-in on page 26

Note: You can click Add-Ins > Add-In Manager to activate or deactivate these
add-ins.

Add Class Dependencies Add-in

The Add Class Dependencies add-in helps you identify missing dependencies in
your model. With this add-in, you can examine your model to find dependencies that
should exist but currently do not.

Missing dependencies are a common source of compilation errors. As Rational Rose
RealTime compiles a capsule or class, the compiler must find the definition of the
classes it uses. Consequently, you need to identify the capsules and classes that
depend on other classes in your model. Also, if the interface for a class changes, the
build process automatically rebuilds all the capsules and classes that depend on that
class.

Use the Add Class Dependencies add-in to:

■ Search for selected elements
■ Search for a selected component
■ Search all model elements
■ Examine a component

The Add Class Dependencies add-in is available by clicking
Build > Add Class Dependencies.

Note: The source code for this add-in is available in the $ROSERT_HOME/Scripts
directory. You can customize the code in this script, as required.
13

The Add Class Dependencies add-in determines if dependencies are missing;
however, it does not:

■ find dependencies that are no longer required
■ set a dependency to the correct strength (forward inclusion)

Features of the Add Class Dependencies Add-In

The Add Class Dependencies add-in includes the following features:

■ Support for:

❑ RTJava models

❑ Read-only models

❑ Fully qualified names

■ A missing dependency with an ambiguous supplier. For example, if capsule A
depended on class B and there is more than one class B in the model (for example,
in different logical packages), the Add Class Dependencies add-in creates a
dependency from capsule A to the first instance of class B. As a result, the
following warning appears in the log:

Warning: A dependency from A to the ambiguous Classifier B
must be added manually.

Double-click on the log entry to open the Specification dialog box for the provider
of the missing dependency.

■ You can scan the entire model, or only selected model elements for missing
dependencies. For example, you can select one, or more, classes or capsules in the
toolset, and then use the Add Class Dependencies add-in to identify missing
dependencies for the selected model elements.

Figure 1 shows that the Selected classes, capsules and components in the model
option is automatically set when you select objects in the model prior to launching
the Add Class Dependencies add-in.
14 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Figure 1 Add Class Dependencies Add-in - First Panel

■ The Add Class Dependencies add-in supports long model element names. Figure
2 shows the second panel for the Add Class Dependencies add-in. If you select a
dependency from the Dependencies found or New dependencies to be created
list boxes, the upper box displays the name of the provider, and the next box
displays the name of the supplier.
Add Class Dependencies Add-in 15

Figure 2 Add Class Dependencies Add-in - Second Dialog Box

Move the cursor left to right to see any part of the name. The format for the
name is:

<unqualified_name> - <location_in_model>

For example, the model element:

LogicalView::PkgA::PkgB::myClass

displays as

myClass – PkgA::PkgB
16 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

■ You can search by component by selecting the desired component in the model,
and then click Build > Add Class Dependencies. You can select more than one
component to search multiple components at the same time.

Figure 3 Model View Tab in Browser

The Add Class Dependencies add-in examines all of the classes and capsules built
by the component, including those:

❑ Directly referenced by the component by their name

❑ Contained in a package

❑ Referenced by aggregated components

■ When the Add Class Dependencies add-in creates a new dependency in the
model, it updates the Log tab in the Output window. You can double-click on a log
entry to view the Specification dialog for the new dependency. The text of the log
entry is prefixed by "Warning".

■ When searching by component, the Add Class Dependencies add-in searches the
classes and capsules assigned to the selected component for missing dependencies.
Add Class Dependencies Add-in 17

■ The Add Class Dependencies add-in informs you of all of the changes made in the
model after execution is completed:

❑ The Add Class Dependencies add-in generates various log entries (for
example, for missing dependencies with an ambiguous supplier, and for new
dependencies added to the model). Additionally, the Add Class Dependencies
add-in updates the Log tab in the Output window with entries to show:

➑ the start of the operation ("-- Starting Add Class Dependencies
Operation --")

➑ the completion of the operation (for example, "-- Add Class
Dependencies Operation Complete --- Missing Dependencies

Found: 3 (2 ambiguous). Dependencies added: 1.")

These types of messages created by the Add Class Dependencies add-in makes
it easier for you to quickly separate log output generated by other activities.
When the Add Class Dependencies add-in activities are complete, the entry in
the Log tab for the completion phase is a summary report on the number of
missing dependencies found (including those with an ambiguous supplier) and
the number of dependencies added to the model.

❑ At the end of the operation, the Add Class Dependencies add-in informs you
that the operation is completed and refers you to the log for more information.

Considerations

The Add Class Dependencies add-in has the following limitations:

■ The detail code in transitions or operations is not searched for possible missing
dependencies. You must find and add those manually.

■ Source code is not examined.

■ Language properties are not examined (for example, C++::ImplementationType
and C::ImplementationType).

■ Dependencies are created with the default language property settings. In some
cases, you may have to change these settings for individual dependencies.
18 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Searching for Missing Dependencies

When configuring a search, you want to determine which classes and capsules to
examine for missing dependencies. Because missing dependencies are a common
source of compilation errors, consider examining the entire model for completeness.
Alternatively, if you work on a very large model or a portion of a model, you may be
more interested in examining only the classes and capsules you intend to build.

To examine a component:

1 Select a package containing a component to activate.

The names appear indented to reflect the component hierarchy.

2 From the list of components, select a component.

The Add Class Dependencies add-in examines all of the classes and capsules built
by the selected component, including those directly referenced by the component
by their name, or a containing package, as well as those referenced by aggregated
components.

Specifying the Level of Dependency Checking

You can configure the Add Class Dependencies add-in to examine the attributes of
the class and capsules. The search determines if the class or capsule currently has a
dependency on the attribute's type (class). If there is no dependency, you are
prompted to create one; however, it is optional.

You can configure the Add Class Dependencies add-in to examine the operations of
the class and capsules. The search determines if the class or capsule currently has a
dependency on the attribute's return type (class), and parameter types (class). If there
is no dependency, you are prompted to create one; however, it is optional.

Note: The detail code in transitions or operations is not searched for possible missing
dependencies. You must find and add those manually.

Adding Missing Dependencies

After the Add Class Dependencies add-in completes its search for missing
dependencies, you are presented with a list of dependencies to add to the model. The
class or capsule at the arrow base (Figure 2 on page 16) refers to the class pointed to.
For example:

Deck --> Card

The class Deck has a dependency with class Card.
Add Class Dependencies Add-in 19

When looking at the list, you may decide to modify the capsule or class to remove the
dependency. Therefore, it is not necessary to add that particular dependency.

Note: You want to keep the number of dependencies in your model to a minimum.
Large numbers of dependencies increase the amount of time it takes to compile and
build your model.

Specifying Dependencies to Create

Figure 2 on page 16 shows two lists: Dependencies found and New dependencies to
be created. Only those dependencies that appear in the New dependencies to be
created list are added to the model.

All

Moves all the dependencies back and forth between the lists.

Group

Moves all of a particular class or capsule's missing dependencies back and forth
between the lists. Select one of the class or capsule's missing dependencies and click
Group.

Single

Moves a single dependency back and forth between the lists. Select a dependency and
click Single.

After you are satisfied with your choices, click OK to create the dependencies in the
model.

Add External Java Tool

The Add External Java Tool allows you to add external .class files and the .class files
within .jar files into your existing model. To add external java .class files to a model,
from the Tools menu, click Add External Java (see Figure 4 to view the Add External
Java dialog).
20 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Add External Java Dialog

Figure 4 shows the Add External Java dialog.

Figure 4 Add External Java Dialog

Accessible Model Locations

LogicalView

LogicalView displays the current structure of the various packages and classes that
make up your model design. Expand the hierarchy to select the desired location to
add classes.

To add a new package, see New (Logical View) on page 22.

ComponentView

ComponentView shows the current list of components in your model. Select a
component to assign the classes.

To add a new component, see New (Component View) on page 22.
Add External Java Tool 21

New (Logical View)

Adds a package to the model in the Logical View. Select an item from the
LogicalView hierarchy to specify a location, then type a valid name in the New box. A
valid name includes only alphanumeric characters and is unique.

New (Component View)

Adds a component to the model in the Component View. Select a package from the
ComponentView hierarchy to specify a location, and then type a valid name in the
New box. A valid name includes only alphanumeric characters and must be unique.

Import Options

Visibility

Specifies the type of visibility for the imported classes, inner classes, attributes, and
operations. Specifying the visibility determines what is added. For example, if a class
is public and you set the visibility to Only Public, only those attributes, operations,
and inner classes within that class that are public are added into the package.

There are four types of visibility:

■ Only Public - Only those classes and their inner classes, operations (method) and
attributes (fields) that are public are added into the package; all others (default,
protected, and private) are excluded.

■ Protected & Higher - Only those classes and their inner classes, operations
(method) and attributes (fields) that are public and protected are added into the
package; all others (default and private) are excluded.

■ Default & Higher - Only those classes and their inner classes, operations (method)
and attributes (fields) that are public, default, and protected are added to the
package. All others (private) are excluded.

■ All - Classes and their inner classes, operations (method) and attributes (fields)
that are public, default, protected, and private are added to the package. There is
no filter and all items are added.

Methods

Specifies the level of detail to use. When selected, this item includes all of the methods
for the classes being added into this model.
22 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Fields

Specifies the level of detail to use. When selected, fields are included when adding
classes.

Inner Classes

Specifies the level of detail to use. When selected, inner classes are included when you
add items. If you use inner classes, the Add External Java Tool ensures that it includes
all required .class files.

Note: The use of inner classes may significantly increase the total number of classes.
Anonymous inner classes are not imported.

Use fully qualified names

Specifies that the fully qualified name for field names, parameters of methods, and
exceptions that a method can throw, are displayed in the LogicalView.

Files and Directories

Shows the list of selected .class files, .jar files, and directories to add to this model.
Click Add Files to add .class files, or click Add Directory to add all the .class files and
the .class files within .jar files, in a directory. Click Delete to remove a .class file, a .jar,
file, or directory from this list.

Add Files

Specifies the external .class files and .jar files to add to this model. Click Add Files to
select all .class files and the class files within a .jar file in a directory.

Add Directory

Specifies a directory to add any .class files it contains.

Delete

Removes the selected file or directory from the Files and Directories list.

Next

Verifies the information on this dialog and displays the Confirm Settings dialog.

Note: If the toolset is unable to read your TEMP environment variable, it will prompt
you to specify a temporary directory to uncompress any .jar files. If you selected a .jar
file and you do not have a JAR Utility specified in your path (such as jar.exe), after
you click Next, the .jar file(s) will not be uncompressed.
Add External Java Tool 23

Cancel

Closes this dialog without saving any changes.

Specifying a JAR Utility in Your Path

If you selected a .jar file to add and your path does not include a JAR utility (such as
the jar.exe utility that comes with JDK1.3), then you need to configure your path.

Generate Documentation Add-In

The Generate Documentation add-in generates a data dictionary from a model using
Microsoft Word OLE Automation objects. To start the Generate Documentation
add-in, click Report > Documentation Report, and the Generate Documentation
dialog appears (Figure 5).

Figure 5 Generate Documentation Dialog
24 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Report File Name

Shows the name of the Word document created by Microsoft Word.

Report Title

Shows the title text that appears on the cover sheet of the report.

Report Type

Specifies the view type to use to create a report:

■ Logical view report - The resulting report lists the packages and each class
contained within that package. Any nested packages use the same format. The
information displayed about a given class depends on the Report Options
settings.

■ Component view report - The resulting report lists the packages and each
component contained within that package. Each component contains information
about the class assigned to the component. The information displayed about a
given class depends on the Report Options settings.

Attributes and Operations Syntax

Select the Use Unified Modeling Language Syntax option to format attributes and
operations using the UML syntax. For example:

myAttribute:AttributeType=initval

myOperation ():ReturnValue

Select the Use C++ Syntax option to format attributes and operations using the C++
syntax. For example:

AttributeType myAttribute = initval

ReturnValue myOperation ()

Report Options

■ Include operations - Adds operations to each class in the report.

■ Include attributes - Adds attributes to each class in the report.

■ Public operations and attributes only - Only reports on public operations and
attributes. This option depends on the settings of the Include operations and
Include attributes options. For example, if Include operations and Public
operations and attributes only options are selected, and the Include attributes
option is not selected, only public operations appear in the report.
Generate Documentation Add-In 25

■ Include documentation - Includes documentation for the associated elements
being reported. For the logical report, this includes the package, class, operation,
and attribute documentation. For the physical report, this includes the package,
component, class, operation, and attribute documentation.

■ Sort - Modifies the order of the operations and attributes so that they appear in
alphabetical order in the report.

Source Code Assists and Make Files Writable Add-in

The Source Code Assists and Make Files Writable add-ins allow you to automate
common source control tasks. The BasicScript source files for the add-ins can be found
in the following directory:

$ROSERT_HOME/Scripts

Before modifying a script, ensure that you make a backup copy of the original. The
source control add-ins add the following menu items to the toolset:

■ Select Checked Out Units in Browser on page 26
■ Show Unit Versions on page 27
■ Submit All Changes to Source Control on page 27
■ Make Files Writable on page 27
■ Make Files ReadOnly on page 28.

Note: All of these options are available from the Tools > Source Control menu. By
default, the Make Files Writable add-in is not enabled. To enable the add-in, select
Add-ins > Add-in Manager... and select Make Files Writable.

Select Checked Out Units in Browser

Script File

$ROSERT_HOME\scripts\srcassists.ebs

Purpose

Selects all the current units checked out of source control. If a user made changes that
involved a number of different units in different packages, this script simplifies the
selection of all units for check-in.
26 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

Show Unit Versions

Script File

$ROSERT_HOME\scripts\srcassists.ebs

Purpose

Displays a dialog showing the source control version of each element in the model. It
is possible for a user to obtain old versions of elements from source control. Some
users may have versions of elements that are not the most recent version. You can use
this option to identify the versions of the elements that they use.

Submit All Changes to Source Control

Script File

$ROSERT_HOME\scripts\srcassists.ebs

Purpose

Automatically checks in all elements currently checked out, and it also checks in any
elements not yet added to source control instead of selecting each model element from
the browser to perform a check-in operation.

Make Files Writable

Script File

$ROSERT_HOME\scripts\makewriteable.ebs

Purpose

Ensures that files for all modified units that are not currently checked out of source
control are writable. It is possible to make changes to files without checking them out
of source control. You may want to make changes to your local copy without checking
out the files. Use this add-in to make these files writable so that you can save them.
Source Code Assists and Make Files Writable Add-in 27

Make Files ReadOnly

Script File

$ROSERT_HOME\Scripts\makewriteable.ebs

Purpose

Changes all writable files that are not currently checked out of source control to
read-only. If you used Make Files writable to perform local changes, you can use this
option to make the files read-only again when you are finished. Later, if you want
these changes in source control, you can perform a check out without obtaining a local
copy, and then check in these changes.
28 Chapter 1 - Rational Rose RealTime Add-ins (Not Language-specific)

2Rational Rose RealTime
Tools
Contents

This chapter is organized as follows:

■ Aggregation Tool on page 29
■ Attribute Tool on page 42
■ Operation Tool on page 49
■ Trace Tool on page 60

Note: To activate or deactivate these tools, click Add-Ins > Add-In Manager .

Aggregation Tool

The Aggregation Tool lets you quickly create aggregate and composite associations.
Aggregations are used to model a containment relationship between model elements.
The generated code contain one or more attributes with the appropriate inclusions.
The attributes created, and their types, depend on the details of the relationship.

You can use the Aggregation Tool to create a new aggregation or to modify an
existing one. To access the Aggregation Tool, do one of the following:

■ Select a class on a class diagram, and then click Tools > Aggregation Tool.
■ Select an association in a class diagram, then right-click and select

1 Aggregation Tool.
■ Right-click on a class and select 1 Language Details > Aggregation Tool.
■ Select two classes from the Model View tab in the browser, then right-click and

select 1 Language Details > Aggregation Tool.

Note: If you use the Aggregation Tool to create or modify an aggregation, the model
diagrams are not automatically updated. To update your model diagrams, you must
use Query > Filter Relationships.

Relationships

Relationships establish a formal linkage between model elements. Associations are
stronger forms of relationships that capture aggregation relations. An aggregation
association is a special form of association that specifies the whole-part relationship
29

between an aggregate (whole) and the component (part). There are many examples of
aggregation relationships, such as within a department there are employees (Figure
6), and a computer is composed of a number of devices.

Figure 6 Aggregation Association

Aggregation Tab

Figure 7 shows the Aggregation tab for C++. The Aggregation tab for C, Java, and an
Empty framework are similar to Figure 7.

Figure 7 Aggregation Tool - Aggregation Tab
30 Chapter 2 - Rational Rose RealTime Tools

Name

Specifies the name of the association. This name should describe the nature of the
relationship between the two classes.

Class Name

Specifies the name of a class included in the association.

Navigability

Specifies the direction that affects the generated code which traverses to that end. It is
the direction that the association is traversed. By default, the navigability is in one
direction .

The navigation options are:

■ Navigation is limited to one direction, from Class A to B.

■ Navigation is bidirectional.

■ Navigation is limited to one direction, from Class B to A.

End Type

Specifies the type for the association end.

The end types are:

■ - Represents an aggregation. Aggregation means that the member is
generated as a pointer to the other end class. It is the physical containment of a
pointer or reference to the part.

■ - Represents a composition. Composition means that the member is
generated as an embedded object. When the containing class is destroyed, the
composite is also destroyed. It is the physical containment of a value to the part.

■ - Represents an association end. This type of physical containment is
not specified. This is typical for the side of the association being contained in the
other class.

Note: When specifying an End Type, only one end of the relationship can be
aggregate.
Aggregation Tool 31

Name

Specifies the name for the association end. The end of each association is called an
association end or an end. You can label ends with an identifier that describes the role
that an associate class plays in the association. This name should describe the nature
of the end for the specific class.

End names are used by the code generator as a potential name for an attribute on a
class.

Note: The code generation does not generate attributes for ends that are not named.

Multiplicity

Specifies the number of instances that can exist for this end of the association at any
given time. You can either select a multiplicity from the list or specify your own by
typing directly into this box.

When you specify a multiplicity at one end of an association (the near end), for each
object of the class at the opposite end (the far end), there may be the same number of
objects at the other end (the near end).

To view an approximation of the output for the specified Visibility, see the
Equivalent Output box in the Aggregation Tool dialog box.

Equivalent Output

Displays a "best" approximation of the expected output for the options selected in the
Aggregation Tool dialog box.

For a new aggregation, the Equivalent Output boxes display the following:

Insufficient Information For Output

This means that there are insufficient options specified for the selected or new
aggregation.

To view all of the Equivalent Output code in a single pane for the selected
aggregation, use the grip (lower right corner of the dialog box) to resize the window.

Note: You can copy code from the Equivalent Output box; however, the code within
this box is only an approximation and may not represent the precise code segment.
Therefore, use caution when copying from the Equivalent Output box.
32 Chapter 2 - Rational Rose RealTime Tools

New

Creates a new aggregation.

Note: To save any changes to the previous aggregation, ensure that you click Save
before you click New.

Save

Saves the current settings for the selected aggregation.

Note: If you use the Aggregation Tool to create an aggregation, the model diagrams
are not automatically updated. To update your model diagrams, you must click
Query > Filter Relationships.

Close

Closes the Aggregation Tool dialog box.

EndA and EndB

An association is a relationship among two or more elements. The ends of each
association are called association ends. You can label the ends with an identifier that
describes the role that an associate element plays in the association. An end has both
generic and language-specific properties that affect the generated code that traverses
to that end.

Note: If you have the default names, EndA and EndB, the names of the EndA and
EndB tabs also change.

To view the dialog box containing the EndA and EndB tabs for the Aggregation Tool,
select one of the following:

■ Aggregation Tool for C++ on page 35
■ Aggregation Tool for C on page 37
■ Aggregation Tool for Java on page 36
■ Aggregation Tool for an Empty Framework on page 38

C++ Class to Class (Data Member) Associations

By default, the code generator generates a data member (attribute) for navigable and
named ends of associations. Several factors affect the code that is actually generated:

■ The AssociationEndKind (Role, C++) property determines whether a member or
global data member is generated.

■ The cardinality affects whether an array of attributes should be created.
■ The containment affects whether the attribute should be a reference (a pointer) or

an object.
Aggregation Tool 33

C Class to Class (Data Member) Associations

By default, the code generator generates a data member (attribute) for navigable and
named ends of associations. Several factors affect the code that is actually generated:

■ The scope property determines whether a member or global data member is
generated.

■ The multiplicity affects whether an array of attributes should be created. If the
multiplicity for an association is specified as x..z, only the upper bound is used.

■ The containment affects whether the attribute should be a reference (pointer) or an
object.

Java Class to Class

By default, the code generator generates a data member (attribute) for navigable and
named ends of associations. The multiplicity affects the code that is actually
generated. The multiplicity is used to specify the size of the array to create.

Aggregation Tool - EndA and EndB Tabs

To view the dialog box containing the EndA and EndB tabs for the Aggregation Tool,
select one of the following:

■ Aggregation Tool for C++ on page 35
■ Aggregation Tool for C on page 37
■ Aggregation Tool for Java on page 36
■ Aggregation Tool for an Empty Framework on page 38
34 Chapter 2 - Rational Rose RealTime Tools

Figure 8 Aggregation Tool for C++
Aggregation Tool 35

Figure 9 Aggregation Tool for Java
36 Chapter 2 - Rational Rose RealTime Tools

Figure 10 Aggregation Tool for C
Aggregation Tool 37

Figure 11 Aggregation Tool for an Empty Framework

Descriptions

Type

Not available in the Aggregation Tool.

Initial Value

Assigns an initial value to your class attribute. Type directly in the Initial Value box.
Rational Rose RealTime displays the initial value opposite the attribute name and
updates the information in the model.

Observe the results in the Equivalent Output box to view an approximation of the
output.
38 Chapter 2 - Rational Rose RealTime Tools

Initialization

Specifies that if an initial value was assigned to this relationship, there may be a
choice regarding the method used to initialize the relationship.

There are two types of initialization: Assignment and Constructor. Selecting
Assignment assigns the value directly. Selecting Constructor means that a call is
made to a constructor to initialize the attribute.

Visibility

Specifies the type of visibility for each end of an aggregation. There are four types of
visibility:

■ Public - The objects at both ends are visible to each other.

■ Protected - The objects at this end are not accessible to any object outside the
association, except for the children of the other end.

■ Private - The objects at this end are not accessible to any object outside the
association.

■ Implementation - The objects at either end are never visible to other classes.

See the Equivalent Output box in the Aggregation Tool dialog box to view an
approximation of the output for the specified Visibility.

Class Scope

Specifies the target scope; that is, whether there is only a single instance of the feature
for all instances of the classifier. When selected, the data member is scoped to the
classifier.

Global (C++)

Specifies that the relationship is global. It is accessible beyond the boundaries of the
current class.

Volatile (Java)

Specifies that the attribute is modified asynchronously by concurrently running
threads.

Transient (Java)

Indicates that the values of its transient fields are not included in the serial
representation while the values of its non-transient fields are included. This means
that the resource is released when it is not being used.
Aggregation Tool 39

Constant (C, C++, Java, Empty)

Not available in the Aggregation Tool.

const (C, C++)

Not available in the Aggregation Tool.

#define (C, C++)

Not available in the Aggregation Tool.

Generate:

get Method (C++, Java, Empty)

Not available in the Aggregation Tool.

set method (C++, Java, Empty)

Not available in the Aggregation Tool.

Initialization Code (Java)

Specifies any code used to initialize this End.

Advanced Tab

An association class specifies the name of a class that defines the relationship between
the two classes. Use the association class to model properties of associations. The
properties are stored in the class and linked to the association relationship. Linked
attributes are degenerate association classes comprised only of attributes.

When an association exists between two classes, that association itself can have
properties; called an association class. An association class is an association that has
class properties. For example, a company has employees, and the employees have
jobs. A specific instance of a job could effectively be linked to the relationship of
company to employee.
40 Chapter 2 - Rational Rose RealTime Tools

Figure 12 Aggregation Tool - Advanced Tab
Aggregation Tool 41

Note: You cannot attach an association class to more than one association; the
association class is the association itself. However, you can define a class, such as
ClassZ, then have each association class that requires those features inherit from
ClassZ, or have them use ClassZ as the type for an attribute.

Attribute Tool

The Attribute Tool enables you to quickly create and set options for an attribute. An
attribute is a named property of a class that defines the values that instances of the
property can hold.

Use the Attribute Tool to create a new attribute, or modify an existing attribute. The
Attribute Tool is available from the C++, C, Java, and Empty frameworks. You can
access the Attribute Tool from the shortcut menu for the following model elements:

■ attribute
■ class
■ capsule
■ classifier role
■ capsule role
■ interaction instance

To access the Attribute Tool, press the Shortcut Menu key (or press ALT + ALT to
access the shortcut menu), and click Attribute Tool. When more than one tool is
available, select 1 Language Details to obtain a submenu listing the available tools:
Attribute Tool, Operation Tool, and Aggregation Tool.

Note: If you use the Attribute Tool to add an attribute, the model diagrams are not
automatically updated. The Model View tab in the browser updates immediately and
displays the new attribute. To update your model diagrams, select the class or capsule
from the diagram, right-click and click Options > Show All Attributes. If Show All
Attributes is currently selected, de-select it, and then re-select it again.

Attribute Tool: Properties Tab

To view the dialog containing the Properties tab for the Attribute Tool, select one of
the following framework types:

■ C, see Figure 15
■ C++, see Figure 16
■ Java, see Figure 17
■ Empty framework, see Figure 18
42 Chapter 2 - Rational Rose RealTime Tools

Descriptions

Name (C, C++, Java, Empty)

The name of an attribute (Attribute Tool) or operation (Operation Tool). Use the
name box to:

■ Specify a name for a new attribute or operation
■ Select an existing attribute or operation from the list
■ Change the name of an existing attribute or operation

For the Operation Tool, this item specifies the name as well as any parameters and
functions for the operation. Each parameter must have a valid type and name;
however, a value is optional. For example, the following declarations are valid:

■ myDec1(int foo)
■ myDec2(int foo = 55, bool barA = False)
■ myDec3(RTTime t)
■ myDec3(RTTime& t)

If you specify a variable type and variable name that is a class in a parameter, you
must click the Dependencies tab and satisfy any required dependencies.

Type (C, C++, Java, Empty)

Attribute types can be classes or language-specific types. When the attribute is a
data value, the type is defined as a language-specific type. You can enter the type
directly in the Type box, or select a type from the list. Use the UP and DOWN arrow
keys to scroll through the list. In the Class diagram, Rational Rose RealTime displays
the type opposite the attribute name and updates the information in the model (see
Figure 13 for an example).

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output for the attribute.

Figure 13 Display of attributes and corresponding types
Attribute Tool: Properties Tab 43

Initial Value (C, C++, Java, Empty)

Assigns an initial value to your class attribute. Type directly in the Initial Value box.
Rational Rose RealTime displays the initial value opposite the attribute name and
updates the information in the model (see Figure 14). If you select Constant, you must
specify a value in the Initial Value box.

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output.

Figure 14 Display of Initial Values for attributes

Initialization (C, C++)

Specifies that if an initial value was assigned to this attribute, there may be a choice
regarding the method used to initialize the attribute.

There are two types of initialization for an attribute: Assignment and Constructor.
Selecting Assignment assigns the value directly to the attribute. Selecting Constructor
means that a call is made to a constructor to initialize the attribute.

Visibility (C++, Java)

Specifies the type of visibility for an attribute. There are four types of visibility:

■ Public - The attribute is visible to other classes.
■ Private - The attribute is not visible to other classes (except designated friend

classes in C++).
■ Protected - The attribute is visible only to subclasses (and friend classes in C++).
■ Implementation - The attribute is never visible to other classes.
44 Chapter 2 - Rational Rose RealTime Tools

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output for the specified Visibility.

Class Scope (C, C++, Java, Empty)

Specifies the class scope for the attribute. Selecting this option means that there is a
single instance of the attribute for all instances of the class (for example, a static
member in C++). If this option is not selected, then each instance of the class has a
separate attribute instance.

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output when selecting Class Scope.

Global (C++)

Specifies that the attribute is global. This means that the attribute is accessible beyond
the boundaries of the current class.

Constant (C, C++, Java, Empty)

Specifies whether the attribute is a constant. This means that this attribute cannot take
on a new value. If you select Constant, you must specify a value in the Initial Value
box.

See the Equivalent Output box in the Attribute Tool dialog to view an approximation
of the output when selecting Constant.

const (C, C++)

Specify the value cannot be changed. This means that the attribute of a declaration
makes the entity to which it refers read-only.

#define (C, C++)

Provides an efficient way to create symbolic constants.

Volatile (Java)

Specifies that the attribute is modified asynchronously by concurrently running
threads.

Transient (Java)

Indicates that the values of its transient fields are not included in the serial
representation, while the values of its non-transient fields are included. This means
that the resource is released when it is not being used.
Attribute Tool: Properties Tab 45

Generate:

get Method (C++, Java, Empty)

Generates an operation to retrieve the value of this attribute.

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output when selecting get method.

■ const (C++): Sets the return value to const which does not allow the value to be
modified.

■ inline (C++): Modifies an operation definition so that it is expanded into the body
of the calling function. It notifies the compiler that this function should be inlined.

set method (C++, Java, Empty)

Generates an operation to assign a value to this attribute.

Observe the results in the Equivalent Output box in the Attribute Tool dialog to view
an approximation of the output when selecting set method.

■ Inline (C++): Modifies an operation definition so that it is expanded into the body
of the calling function. It notifies the compiler that this function should be inlined.

Initialization Code (Java)

Specifies any code used to initialize the attribute.

Equivalent Output (C, C++, Java, Empty)

Displays a "best" approximation of the expected output for the options selected in the
Attribute Tool dialog.

For a new attribute, the Equivalent Output box displays the following:

Insufficient Information For Output

This means that there is insufficient information specified for the selected or new
attribute.

To view all of the Equivalent Output code in a single pane for the selected attribute,
resize the dialog box.

Note: You can copy code from the Equivalent Output box; however, the code within
this box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.
46 Chapter 2 - Rational Rose RealTime Tools

New

Adds a new attribute (Attribute Tool) or operation (Operation Tool).

Note: To save any changes to the existing attribute or operation, ensure that you click
Save before you click New.

Save

Saves the settings for the selected attribute or operation.

Close

Closes this dialog without saving any changes you made.

Properties Tab: Language-Specific Options

Figure 15 Attribute Tool: Properties Tab for C
Attribute Tool: Properties Tab 47

Figure 16 Attribute Tool: Properties Tab for C++

Figure 17 Attribute Tool: Properties Tab for Java
48 Chapter 2 - Rational Rose RealTime Tools

Figure 18 Attribute Tool: Properties Tab for an Empty Framework

Operation Tool

The Operation Tool lets you quickly create and set options for an operation. An
operation is the implementation of a service requested from any object of the class that
affects its behavior.

Use the Operation Tool to create a new operation, or modify an existing operation.
You can access the Operation Tool from shortcut menu for the following model
elements:

■ operation
■ class
■ capsule
■ classifier role
■ capsule role
■ interaction instance
Operation Tool 49

To access the Operation Tool, press the Shortcut Menu key (or press ALT + ALT to
access the shortcut menu), and click Operation Tool. When more than one tool is
available, select 1 Language Details to obtain a submenu listing the available tools:
Attribute Tool, Operation Tool, and Aggregation Tool.

Note: If you use the Operation Tool to add an operation, the model diagrams are not
automatically updated. The Model View tab in the browser updates immediately and
displays the new operation. To update your model diagrams, select the class or
capsule from the diagram, right-click and click Options > Show All Operations. If
Show All Operations is currently selected, de-select it, and then re-select it again.

Note: The Operation Tool does not handle pointers to functions or templates; only
simple parameters.

Operation Tool: Properties Tab

To view the dialog containing the Properties tab for the Operation Tool, select one of
the following:

■ C, see Figure 19
■ C++, see Figure 20
■ Java, see Figure 21
■ Empty framework, see Figure 22

Descriptions

Name (C, C++, Java, Empty)

The name of an operation (Operation Tool). Use the name box to:

■ Specify a name for a new operation
■ Select an existing operation from the list
■ Change the name of an existing operation

This item specifies the name as well as any parameters and functions for the
operation. Each parameter must have a valid type and name; however, a value is
optional. For example, the following declarations are valid:

■ myDec1(int foo)
■ myDec2(int foo = 55, bool barA = False)
■ myDec3(RTTime t)
■ myDec3(RTTime& t)

If you specify a variable type and variable name that is a class in a parameter, you
must click the Dependencies tab and satisfy any required dependencies.
50 Chapter 2 - Rational Rose RealTime Tools

Return Type (C, C++, Java, Empty)

For operations that are functions, set this field to identify the class or type of the
function's result. You can specify a class name that does not yet exist in your model;
however, Clicking Save and closing the Operation Tool does not automatically create
the class.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output when specifying a Return Type.

Query (C, C++, Java, Empty)

Specifies that the operation is read-only and does not modify the object's state.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output when selecting Query.

Class Scope (C, C++, Java, Empty)

Specifies class scope for the operation. Selecting this option means that the operation
behaves the same way regardless of the state of any individual object in the class.
Otherwise, the operation operates on individual class instances because its
calculations are based on the object state, or because it modifies the object state.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output when selecting Class Scope.

Global (C++)

Specify that the operation is global. This means that the operation is accessible beyond
the boundaries of the current class.

Friend (C++)

Specifies access to all the members of the class for which the attribute belongs. It does
not matter which visibility level the attribute has because when the attribute is a
Friend, the visibility is ignored.

final (Java)

Declares the operation a constant. This means that its initial value cannot be changed.

strictfp (Java)

Lets you have more predictable control over floating-point arithmetic. This item may
be used as a modifier to classes, interfaces and methods.
Operation Tool: Properties Tab 51

native (Java)

Specifies that the operation implementation is in a language other than Java. The
native keyword signals to the Java compiler that the function is a native language
function.

Open specification dialog after close (C, C++, Java, Empty)

Informs the Operation Tool to open the Specification dialog of the current operation
after closing the tool. A Specification dialog opens for each operation that you set this
option. Opening the specification after closing this dialog provides convenient access
to the Code box for adding code to this operation.

Note: When opening the Operation Specification dialog, the tab that you selected for
the last Operation Specification dialog you opened is the tab that displays.

Visibility (C, C++, Java, Empty)

Specifies the type of visibility for an operation. There are four types of visibility for
operations:

■ Public - The operation is visible to other classes.
■ Private - The operation is not visible to other classes (except designated friend

classes in C++).
■ Protected - The operation is visible only to subclasses (and friend classes in C++).
■ Implementation - The operation is never visible to other classes.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output for the specified Visibility.

Abstract (C, C++, Java, Empty)

When selected, it indicates that the operation is an abstract definition that is required
to be overridden by specific implementations in subclasses. Also, no instances of the
current class are allowed.

For Java, if Abstract is selected, the method is declared abstract, and any code in the
code setting is ignored.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output when selecting Abstract.
52 Chapter 2 - Rational Rose RealTime Tools

Polymorphic (C, C++, Java, Empty)

Indicates that the operation could be overridden by specific implementations in
subclasses.

Observe the results in the Equivalent Output box in the Operation Tool dialog to
view an approximation of the output when selecting Polymorphic.

Inline (C++)

Declares the operation inline to allow the compiler to optimize the generation.

Throws (Java)

Specifies an comma separated list of exception classes that the operation may throw.
This list is placed in the throws clause of the method declaration.

Note: You must use a comma to separate the exception classes. You can either enter
the exception classes on a single line, or you can press ENTER after each entry in this
box. For example, these are both valid:

excClassA, excClassB, excClassC

or

excClassA,
excClassB,
excClassC

Equivalent Output

Displays a "best" approximation of the expected output for the options selected in the
Operation Tool dialog.

For a new operation, the Equivalent Output box displays the following:

Insufficient Information For Output

This means that there is insufficient information specified for the selected or new
operation.

To view all of the Equivalent Output code in a single pane for the selected operation,
resize the dialog box. The Equivalent Output box resizes to contain all of the code
from the Equivalent Output box.

Note: You can copy code from the Equivalent Output box; however, the code within
this box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.
Operation Tool: Properties Tab 53

New

Adds a new operation.

Note: To save any changes to the existing operation, ensure that you click Save before
you click New.

Save

Saves the settings for the selected operation.

Close

Closes this dialog without saving any changes you made.

Properties Tab: Language-Specific Options

Figure 19 Operation Tool: Properties tab for C
54 Chapter 2 - Rational Rose RealTime Tools

Figure 20 Operation Tool: Properties Tab for C++

Figure 21 Operation Tool: Properties tab for Java
Operation Tool: Properties Tab 55

Figure 22 Operation Tool: Properties tab for an Empty Framework

Dependency Tab for Attribute Tool and Operation Tool

The Dependencies dialog lets you create any required dependencies for the
following:

■ attributes (using the Attribute Tool)
■ operations (using the Operation Tool)

A dependency is a relationship that indicates that a change to one thing may affect
another thing that uses it.

You can create and remove dependencies for an attribute or operation by selecting the
Dependencies tab from the Attribute Tool dialog or the Operation Tool dialog.

To access the Attribute Tool or the Operation Tool, press the Shortcut Menu key (or
press ALT + ALT to access the shortcut menu), and click the Attribute Tool or the
Operation Tool. When more than one tool is available, select 1 Language Details to
obtain a submenu listing the available tools: Attribute Tool, Operation Tool, and
Aggregation Tool.
56 Chapter 2 - Rational Rose RealTime Tools

To view the dialog containing the Properties tab for the Operation Tool, select one of
the following:

■ C, see Figure 23
■ C++, see Figure 23
■ Java, see Figure 24
■ Empty framework, see Figure 24

Descriptions

Required Dependencies (C, C++, Java, Empty)

Specifies the name of a possible dependency for the selected operation or attribute.
The drop-down list contains the names of the classes for which a dependency can be
created. All satisfied dependencies are prefixed with (satisfied).

Matching Classes (C, C++, Java, Empty)

Provides a list of classes that have the same name as the required dependency. If a
dependency already exists, the name is prefixed with two asterisks (**).

Options: (C, C++)

Header (C, C++)

Specifies the directive that is generated in the header file. When the C++ generator
produces code for an element (the client) that uses another element (the supplier), the
C++ generator produces either an include directive referencing the file that contains
the supplier class, or a forward reference to the supplier.

You can configure which directive (include statement or forward reference) is
generated in the header file (.h).

Implementation (C, C++)

Specifies the directive that is generated in the implementation file. When the C++
generator produces code for an element (the client) that uses another element (the
supplier), the C++ generator produces either an include directive referencing the file
that contains the supplier class, or a forward reference to the supplier.

You can configure which directive (include statement, forward reference, or none) is
generated in the implementation file (.cpp).
Dependency Tab for Attribute Tool and Operation Tool 57

Create Dependency (C, C++, Java, Empty)

Generates the dependency selected in the Required Dependencies box. If this option
is not selected, a dependency will not be generated for the selected class. Use this
option to exclude the generation of dependencies. For example, select only those
required dependencies for which you do not want a dependency, click this option for
each required dependency so that it is set, and then click Generate Chosen.

Remove Dependency (C, C++, Java, Empty)

Removes an existing dependency for the selected class.

Equivalent Output (C, C++, Java, Empty)

Displays a "best" approximation of the expected output for the options selected in the
Attribute Tool and Operation Tool dialog.

For a new operation, the Equivalent Output box displays the following:

Insufficient Information For Output

This means that there is insufficient information specified for the selected or new
attribute or operation.

To view all of the Equivalent Output code in a single pane for the selected attribute or
operation, resize the dialog box. The Equivalent Output box resizes to contain all of
the code from the Equivalent Output box.

Note: You can copy code from the Equivalent Output box; however, the code within
this box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.

Save

Saves the settings for the selected attribute or operation.

Close

Closes this dialog without saving any changes you made.
58 Chapter 2 - Rational Rose RealTime Tools

Dependencies Tab: Language-Specific Options

Figure 23 Dependencies Tab for C and C++
Dependency Tab for Attribute Tool and Operation Tool 59

Figure 24 Dependency Tab for Java and an Empty Framework

Trace Tool

The Trace Tool provides you with the ability to establish and maintain traceability
between DESIGN requirements (a special requirement type) in Rational RequisitePro
and Rational Rose RealTime elements, such as classes, operations, and diagrams. The
Trace Tool allows you to select an element and have the specification for the
corresponding element in the other application appear. For example, in Rational Rose
RealTime, you can open a model and select a capsule, then you can request the
display of the corresponding requirement in Rational RequisitePro.

Note: The Trace Tool is only available for Windows configurations. To activate or
deactivate this tool, click Add-Ins > Add-In Manager, and then select Trace Tool.
60 Chapter 2 - Rational Rose RealTime Tools

Configuring Rational RequisitePro for Traceability

To configure Rational RequisitePro and Rational Rose RealTime to use the Trace Tool,
you must perform the following activities:

■ To modify the Rational RequisitePro project to include a requirement type called DESIGN
with the appropriate attributes: on page 61

■ To add customized menu commands to Rational RequisitePro: on page 67

■ To associate a model to a project: on page 68

Note: A Rational RequisitePro project file must currently exist before you can attempt
to configure.

To modify the Rational RequisitePro project to include a requirement type called
DESIGN with the appropriate attributes:

1 Start Rational RequisitePro.

2 Click File > Properties.

Note: If File > Properties is unavailable, you must open an existing project or
create a new one.

3 In the Requirement Types tab, click Add.
Trace Tool 61

4 Enter the appropriate information in the fields in the Requirement Type dialog (as
shown below).

Note: The text in the Requirement Tag Prefix box is case-sensitive.

5 Click OK.

6 Click the Attributes tab.
62 Chapter 2 - Rational Rose RealTime Tools

7 Select the DESIGN requirement type from the list.

8 If there are any default attributes that appear in the Labels for Attributes list in the
Requirement Attributes box, delete them.
Trace Tool 63

9 Click Add.

Next, you want to define the attributes specific to the requirement type you created
earlier. These attributes appear on the Attributes tab on the Requirement Properties
dialog.

10 Add the following attributes:

Label Type Description

RoseRTItemID Text Indicates the unique id associated with the model element.

RoseRTModelPa
th

Text The location of the model file containing this element.

RoseRTType Text Specifies the type of the Rational Rose RealTime element,
such as capsule or class.
64 Chapter 2 - Rational Rose RealTime Tools

Note: This requirement type has no document types associated with it. The
attributes are case-sensitive.

11 Click the Documentation Types tab.

12 Click Add.

13 In the Name box, specify a name for the documentation type.
Trace Tool 65

14 In the File Extension box, specify the file extension to use for the document type.

15 Click OK.

16 Click OK.
66 Chapter 2 - Rational Rose RealTime Tools

Next, you want to reference an external menu file. This file will contain customized
menu commands and add menu options in Rational RequisitePro.

To add customized menu commands to Rational RequisitePro:

1 Click Tools > Add-ins.

2 Click Add.

3 In the Name box, type Trace Tool.

4 Click Browse.

5 Browse to the directory where you installed Rational RequisitePro, then locate the
file called reqtorosertaddin.mnu in RequisitePro\rose.

6 Select the file reqtorosertaddin.mnu, and click Open.
Trace Tool 67

7 Click OK.

8 Click OK.

Next, you want to associate a Rational Rose RealTime model with a Rational
RequisitePro project.

To associate a model to a project:

1 Start Rational Rose RealTime.

2 Click Tools > Rational RequisitePro, and select Associate Model to Project.

3 Click Browse.

4 Browse to the location of a Rational RequisitePro project that has the desired
requirement type.

For example, we created the requirement type called DESIGN in
Rational\RequisitePro\Projects\Project 1\Project 1.rqs.

Note: To associate a model with a project, Rational Rose RealTime requires a Rational
RequisitePro project to have at least one document type defined.
68 Chapter 2 - Rational Rose RealTime Tools

5 Click OK.

Note: The requirement information is stored within the Rational RequisitePro
database. Rational Rose RealTime is not aware of the existence of the corresponding
element in Rational RequisitePro. DESIGN requirements (those associated with
Rational Rose RealTime elements) only exist in the Rational RequisitePro database
provided that the relationship currently exists. If you modify objects in the Rational
Rose RealTime model, you can synchronize the data to update the Rational
RequisitePro database.

For information on synchronizing data, see To synchronize Rational RequisitePro data
with a Rational Rose RealTime model: on page 72.

Using the Trace Tool in Rational Rose RealTime

To demonstrate how to use the Trace Tool in Rational Rose RealTime, we will walk
through an example that adds a model element to a Rational RequisitePro
requirement.

To use the Trace Tool in Rational Rose RealTime, you need:

■ To associate a Rational Rose RealTime model element to a Rational RequisitePro DESIGN
requirement: on page 70

■ To retrieve data from an existing Rational Rose RealTime model element: on page 71

■ To synchronize Rational RequisitePro data with a Rational Rose RealTime model: on
page 72
Trace Tool 69

To associate a Rational Rose RealTime model element to a Rational
RequisitePro DESIGN requirement:

1 Start Rational Rose RealTime.

2 Open a model, and create a new Capsule called NewCapsule1.

3 Right-click on NewCapsule1 from the Model View tab in the browser, or from the
Class diagram.

4 Click Rational RequisitePro Trace Tool > Access Traceability Information.

Note: If you created a new model, you must save the model before you can select
the Rational RequisitePro Trace Tool > Access Traceability Information option.

If you have not logged into Rational RequisitePro, you are prompted to log on.

5 Enter the correct logon information.

6 Click OK to add a new design requirement to Rational RequisitePro.

The Requirement Properties dialog displays the Rational RequisitePro data for
the new DESIGN requirement.
70 Chapter 2 - Rational Rose RealTime Tools

7 Click OK to save the new information.

8 To view the element in the corresponding Rational RequisitePro project, click
View > Refresh.

To retrieve data from an existing Rational Rose RealTime model element:

1 In Rational Rose RealTime, select a model element that currently has a DESIGN
requirement associated with it.

2 Right-click on the model element and select
Rational RequisitePro Trace Tool > Access Traceability Information.

The Requirement Properties dialog displays the Rational RequisitePro data for
the existing DESIGN requirement.

3 Click OK.
Trace Tool 71

To synchronize Rational RequisitePro data with a Rational Rose RealTime
model:

1 Open a Rational Rose RealTime model associated with a Rational RequisitePro
project.

2 Modify Rational Rose RealTime model elements associated with a Rational
RequisitePro requirement, such as deleting or renaming an element in a model.

3 In Rational Rose RealTime, click Tools > Rational RequisitePro, and select Sync
Traceability Information.

The Trace Tool dialog shows information about the data updated in Rational
RequisitePro.

Using the Trace Tool in Rational RequisitePro

The following procedures demonstrate how to use the Trace Tool in Rational
RequisitePro by adding a model element as a Rational RequisitePro requirement.

To use the Trace Tool in Rational RequisitePro:

1 Start Rational Rose RealTime.

2 Start Rational RequisitePro and open a project that is currently associated with a
Rational Rose RealTime model.

3 If a view does not currently exist, click File > New > View.
72 Chapter 2 - Rational Rose RealTime Tools

4 In the Name box, enter a name for the view.

5 Click OK.

6 Open the view by double clicking on it in the Rational RequisitePro explorer.

7 Select one of the items in the view list.

8 From the Requirement menu, click RoseRT Trace Tool > Go To RoseRT Element.

If the selected element was a diagram, that diagram opens in Rational Rose RealTime.
Otherwise, the associated Rational Rose RealTime Specification dialog opens for the
selected element.

Updating Rational RequisitePro Requirements when a Model File
Location Changes

Rational RequisitePro stores the location of a Rational Rose RealTime model in each of
its requirements. If the location of the model file changes, you must update each of the
requirements with the new location. Rational RequisitePro allows you to review all of
the requirements in a project, and update the model file location for specified
requirements.
Trace Tool 73

To update all requirements with the new model file location:

1 Start Rational Rose RealTime.

2 Start Rational RequisitePro, and open a project associated with a Rational Rose
RealTime model.

3 Click Requirement > RoseRT Trace Tool > Change Model File Location.

4 Specify a valid location.

5 Click OK.

6 If the name is correct, click Yes, otherwise click No.

Note: If you click No, the next model name in Rational RequisitePro appears.
These dialogs will continue until there are no model names remaining in the
database, or until you click Yes.
74 Chapter 2 - Rational Rose RealTime Tools

3Rational Rose RealTime
Wizards
Contents

This chapter is organized as follows:

■ Component Wizard on page 75
■ TargetRTS Wizard on page 83

Component Wizard

The Component Wizard helps you to quickly create C++ and C Executable
components. A component describes how to build a set of capsules and classes. To run
a model, you must build it (by selecting a component to build) and then execute it on
a processor.

The Component Wizard allows you to configure the following component properties:

■ Language
■ Top level capsule
■ Output directory
■ Executable name
■ Target Configuration

To access the Component Wizard, click Build > Component Wizard.

Note: You cannot create Libraries and External Libraries with the Component
Wizard.
75

To provide the initial information for a component:

1 From the Build menu, click Component Wizard.

2 Click Next to start.

3 Specify a meaningful name for the component.
76 Chapter 3 - Rational Rose RealTime Wizards

4 Specify the location of the package in the Model View tab in the browser. The
default location is the Component View package.

5 Indicate whether this component is the active component.

If you frequently build and run the same component and component instances, set
this component as an active component. When a component is configured as being
active, the Toolbar build icons and menu items become available for easy access to
common build and run commands. In addition, you can configure which
component instances (executables) automatically run when you click Run. You can
set this option later by selecting the component from the Model View tab in the
browser, right-clicking, and then selecting Set As Active.

6 Select the name of the diagram to add the component instance.

Adding the component instance to the diagram provides you with a graphical
representation of the components in your model.

7 Click Next.

8 Select a language for the component.
Component Wizard 77

9 Click Next.

10 Review the summary of specified settings.

11 Click OK to proceed.
78 Chapter 3 - Rational Rose RealTime Wizards

12 Do one of the following:

➑ Click Next to customize the component (recommended).

Or . . .

➑ Click Cancel to create the component without customization and to close
the Component Wizard.

13 You can either set the top level capsule or leave it unspecified.

If you specify a top level capsule to compile for this component, the top capsule
will define the compilation closure for the component. All classes, including
capsule and protocol classes referenced directly or indirectly by the top capsule are
then compiled as part of the component.

14 Specify an Executable name.

You can specify the name, or a name with an absolute path, of the executable that
is created when the component is built. By default, the executable name is set to
the name of the component's top level capsule.

Note: If an absolute path is not used in the Executable name box, the location of
the executable will be in the following component build output directory:

<output_dir>/build

15 Specify any Default arguments.
Component Wizard 79

Some platforms do not permit the passing of command line arguments to an
executable at load time. As a result, the Default arguments box provides a
mechanism for getting execution arguments into the executable. You can use
RTMain::argStrings() to retrieve any passed command line argument within
your model. Type a comma-separated list of quoted arguments into this box,
such as:

"134.434.344.4","barneyht","delay=98"

The Default arguments box is only for targets that cannot accept command line
arguments. Targets that can accept command line arguments ignore anything in
the Default arguments box.

16 Click Next.

17 Specify the location for the build results.

18 Specify the name of the Code gen directory.

19 Provide a description that identifies the purpose of this component.
80 Chapter 3 - Rational Rose RealTime Wizards

20 Click Next.

21 Specify the location of the Services Library directories that contains the
configuration information, make files, libraries and include files.

Specify the path to the root directory for the specific Services Library desired. This
name must be specified as a full path to the root directory of the Services Library.

The Target Services directory contains all the scripts and programs to generate and
compile a component. If this directory is not configured correctly, you will not be
able to successfully generate or compile.

By default this field references the Services Library in your Rose RealTime home
directory $ROSERT_HOME/C++/TargetRTS. You can change this location to any
other directory that contains the C++ Services Library.

22 Select a Configuration.

This property uniquely identifies the configuration of the Services Library used to
compile and link the component. The configuration name is composed of three
parts: os.processor-compiler-version.

For example, the configuration for a Windows NT 4.0 multi-threaded platform
with an x86 processor built with Microsoft Visual C++ version 6.0 is:

NT40T.x86-VisualC++-6.0
Component Wizard 81

To view the valid configuration names, examine the directories located in the \lib
subdirectory of the Services Library root. If you build different configurations of
the Services Library, the new configuration appear in this list.

23 Do one of the following:

➑ Click Finish.

Or . . .

➑ Click Return to modify previous settings.

24 Review the contents of the Summary window.

25 Click OK to create the component.

26 Click OK and verify your component in the Model View tab in the browser.
82 Chapter 3 - Rational Rose RealTime Wizards

TargetRTS Wizard

The TargetRTS Wizard facilitates the management of the TargetRTS source tree,
allows easy customization of existing TargetRTS libraries, and simplifies porting of
the TargetRTS to new targets. With the TargetRTS Wizard, you can create a new
TargetRTS configuration, modify or duplicate an existing configuration, or delete an
existing configuration that is no longer required.

Note: Porting to a new operating system or a libset is not a trivial process, even with
the help of the TargetRTS Wizard. You must be familiar with the operating system,
the toolchain, the TargetRTS, and its layout.

For additional information, see the book Adapting for Target Environments, Rational
Rose RealTime.

Note: All figures that appear in this topic are for the C++ language.

Understanding the TargetRTS

The TargetRTS is the set of run-time services that provide a framework in which a
Rational Rose RealTime model can run. The TargetRTS Wizard simplifies the
activities of building, configuring, managing, and customizing the TargetRTS libraries
and build environment.

The TargetRTS contains the required parts, such as source code and makefiles, used
to build applications from Rational Rose RealTime models. It contains
application-independent source code which is pre-compiled into target-specific
libraries. To compile this source code, tools such as make, compiler, linker, and
archiver utilities must be installed and operational in your environment.

Maintaining TargetRTS Libraries using the TargetRTS Wizard

To access the TargetRTS Wizard, click Tools > TargetRTS Wizard. Figure 25 shows the
first pane in the TargetRTS Wizard.
TargetRTS Wizard 83

Figure 25 TargetRTS Wizard - First Pane

Locate the TargetRTS tree for the TargetRTS Wizard, and then click Next.
84 Chapter 3 - Rational Rose RealTime Wizards

Figure 26 TargetRTS Wizard - Manage Configurations panel

The Existing Configurations box contains a list of all your configurations. For some
configurations, you can Duplicate, Edit, Build, or Delete, as required.

Note: Those configurations distributed with Rational Rose RealTime are read-only
and cannot be edited or deleted. To modify a Rational Rose RealTime configuration
that is read-only, select the configuration and click Duplicate.

For additional information on modifying a Rational Rose RealTime configuration, see
Duplicating a Configuration on page 86.
TargetRTS Wizard 85

Managing Your TargetRTS Configurations

When managing configurations with the TargetRTS Wizard, you can:

■ Click Duplicate for Duplicating a Configuration on page 86
■ Click Edit for Editing a Configuration on page 90
■ Click Build for Building Configurations on page 97
■ Click Delete for Deleting Configurations on page 99
■ Click a browse option for Browsing Directories on page 86

Browsing Directories

You can browse other directories for configurations to quickly view the files necessary
for each configuration. The TargetRTS Wizard opens the files in the external editor
you specified in the Path box on the Editor tab by clicking Tools > Options.

Duplicating a Configuration

Duplicating an existing configuration is the first step to creating new configurations
for new ports, or for a custom version of the same configuration.

Note: The configuration name is an important identifier of the TargetRTS. It identifies
the operating system, hardware architecture, and compiler.

To duplicate a configuration:

1 In the Existing Configuration box on the Manage Configuration pane, select a
configuration.

2 In the Manage box, click Duplicate.

3 Click Next.
86 Chapter 3 - Rational Rose RealTime Wizards

Figure 27 TargetRTS Wizard - Duplicate Configuration panel

A new configuration can be:

❑ a simple optimization of an existing configuration

❑ a port of an existing configuration (to a new processor architecture or to a new
compiler)

❑ a port to an entirely new OS

Since the new configuration must have a new name, you must create a new Target,
a new Libset, or both.

The Target specifies the OS for the configuration and indicates whether it is
single-threaded or multi-threaded. Single-threaded target names end with the
letter 'S' (for example, AIX4S), while multi-threaded target names end with the
letter 'T' (for example, TORNADO2T). The Libset name indicates which processor
architecture the configuration runs on, and the compiler used to compile it (for
TargetRTS Wizard 87

example, ppc603-gnu-2.96). Each target depends on one or more target bases that
contain OS-specific source code. The Target bases are in the
$ROSERT_HOME/src/target/ directory.

Note: There is a sample port in $ROSERT_HOME/src/target/sample that you can
use as a skeleton (a template) for a port to a new target.

4 In the Create new label, select Target to specify a new name in the Target name
box.

The Target name represents the implementation-specific components of the
TargetRTS. These components are generally specific to a given configuration, of a
given version, of a given operating system. The Target name is also used to name
the configuration of the target, such as single-threaded versus multi-threaded. The
target name is defined as follows:

<target> ::= <OS_name><OS_version><RTS_config>

The components of <target> are defined as follows:

<OS_name> identifies the operating system (for example, SUN)

<OS_version> identifies the major version of that operating system.

Note: Do not use periods in the OS version because this will confuse the make
utility when it attempts to build the TargetRTS.

<RTS_config> is a single letter that identifies the configuration; "S" for a
single-threaded configuration, and "T" for a multi-threaded configuration.

For example:

SUN5T

If you select Target, the Target base area of the panel becomes enabled. The Target
base controls the OS-specific source code used for the new target. If the duplicate
configuration is a port to a different operating system, a new target base will be
necessary. Duplicating a target base copies the target base used for the original
target, and you may have to modify the new base. A skeleton target base contains
only stubs for functions that are required for any target. These functions must be
fully implemented and you may need to add additional functions.
88 Chapter 3 - Rational Rose RealTime Wizards

You can specify a NoRTOS target base that does not use any OS-specific calls. For
more information on using a NoRTOS target base, see NoRTOS Target Base on
page 90.

Note: To reuse existing targets to create new configurations, you can specify the
name of an existing target in the Target name box. The TargetRTS Wizard creates a
new configuration (using the selected libset and the existing target), and the target
will not be copied.

5 In the Create new label, select Libset to specify a new name in the Libset name
box.

Although the actual libset names can be chosen arbitrarily, by convention, those
used by Rational Rose RealTime are defined as follows:

<libset> ::= <processor>-<compiler_name>-<compiler_version>

The components of <libset> are defined as follows:

<processor> identifies the processor architecture name

<compiler_name> identifies the compiler product name, or the vender for the
compiler.

<compiler_version> identifies the compiler version. It is acceptable to use periods in
the compiler version text.

For example:

sparc-gnu-2.8.1

Note: To reuse existing libsets to create new configurations, you can specify the
name of an existing libset in the Libset name box. The TargetRTS Wizard creates a
new configuration (using the selected target and the existing libset), and the libset
will not be copied.

The Resulting Configuration box contains the name of the configuration.

6 Click Next.

The TargetRTS Wizard presents a Summary dialog that identifies all of the actions
it will perform.

7 Click Next.

When appropriate, the TargetRTS Wizard displays a Work Order dialog
containing a list of items that may require user intervention.

8 Click Next.
TargetRTS Wizard 89

NoRTOS Target Base

Both the C and C++ TargetRTS have a NoRTOS target base that does not use any
OS-specific calls. This means that a NoRTOS target base will work with any OS, or it
will work without an OS. A single-threaded target (NoRTOSS) uses the NoRTOS
target base.

Often when porting to a new operating system, it is useful to create the libset, and
then use it with the NoRTOSS target to verify that the toolchain works properly. After
the OS-independent version of the port is complete, you can use its libset with a new
target to make the full port.

To create a configuration that uses a NoRTOS target base using the TargetRTS
Wizard:

1 In the Existing Configuration box in the Manage Configuration dialog, select a
configuration that uses the NoRTOSS target.

2 In the Manage box, click Duplicate.

3 In the Create new box, select Libset.

4 In the Libset name box, specify an appropriate name for the libset.

Note: For some situations where the new libset is similar to an already existing
libset, it may be useful to specify the name of that existing libset into the Libset
name box. The TargetRTS Wizard will then reuse that libset in the new
configuration. The resulting configuration can then be duplicated to properly
name the new libset. The TargetRTS Wizard will then use this libset with the new
target to create the new configuration.

Editing a Configuration

After you duplicate a configuration, you can edit the new configuration. You can edit
the target, the libset, or only the configuration itself.

Note: You cannot edit the configurations that are included with Rational Rose
RealTime, nor the targets and libsets that these configurations use. You can only edit
the configurations that you duplicated previously.

Every configuration is comprised of a target and a libset. Editing the target is useful
for OS-specific changes, while editing the libset is appropriate for compiler-specific
changes. To change the TargetRTS settings, you will need to edit the target.

Note: These changes affect all configurations that use the selected target or libset.
90 Chapter 3 - Rational Rose RealTime Wizards

Figure 28 shows the Edit Configuration pane in the TargetRTS Wizard. From this
pane, you can specify whether you want to edit a combination of the target, libset, or
the configuration itself. For more information on editing, see the following:

■ Editing the Target on page 92
■ Editing the Libset on page 95
■ Editing a Configuration on page 96

Figure 28 TargetRTS Wizard - Edit Configuration panel

Understanding the makefiles

When you edit a configuration using the TargetRTS Wizard, you are modifying
properties in one or more makefiles. Figure 29 shows the makefiles that you can
update when specifying particular options while using the TargetRTS Wizard.
TargetRTS Wizard 91

Figure 29 TargetRTS makefiles

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to
compile both the TargetRTS libraries and the model. The target.mk, libset.mk and
config.mk makefiles override the defaults defined in
$ROSERT_HOME/libset/default.mk. These are the makefiles that you can edit
using the TargetRTS Wizard.

The main.nmk (nmake for Windows) or main.mk (make for UNIX) is the main
definition for compiling the TargetRTS libraries. These makefiles should not be
customized, and will not be discussed further in this document.

The default.mk file contains the default macro definitions that may be overridden
by the platform-specific makefiles.

The target.mk file contains the definition specific to the target operating system.

The libset.mk file contains the definition specific to the compiler.

The config.mk file contains the definition specific to the combination of the compiler,
operating system, and TargetRTS configuration.

Editing the Target

You can edit the target to create a custom TargetRTS library. Figure 30 shows the C++
options used to configure the run-time system.

Note: The Customize Target panel in the TargetRTS Wizard for C is similar to C++;
however, some of the individual options differ. For additional information, click the
question mark opposite each option.
92 Chapter 3 - Rational Rose RealTime Wizards

Figure 30 TargetRTS Wizard - Customize Target panel

Note: Each entry is associated with a macro that controls that particular option in the
TargetRTS source. Click Default to set all the options back to their defaults. Click
Minimal to set the options for a much smaller and faster run-time system.

After you specify your required target options, click Next.

Figure 31 shows the Target Settings panel used to control compiler and linker flags
for the target. The Set options control which variables are defined in the target.mk file
for that particular target.
TargetRTS Wizard 93

Figure 31 TargetRTS Wizard - Target Settings panel

Descriptions

Target Compiler Flags (TARGETCCFLAGS)

Adds target-specific compilation flags in the file target.mk.

Target Linker Flags (TARGETLDFLAGS)

Redefines the target linker flags in the target.mk file.

Note: These flags should be target-specific. They will affect all configurations that use
this target unless you override them on the Configuration Setting panel of the
TargetRTS Wizard.
94 Chapter 3 - Rational Rose RealTime Wizards

Editing the Libset

You want to edit a libset to change the it to a different CPU architecture or a different
compiler, or to change how the TargetRTS library is built (for example, changing
compiler flags).

Figure 32 shows the options for configuring the libset. The Set options control which
variables are defined in the libset.mk file for that particular libset. The text boxes to
the right of the Set options contain their current values.

Figure 32 TargetRTS Wizard - Libset Settings panel
TargetRTS Wizard 95

Descriptions

Libset Compiler Flags (LIBSETCCFLAGS)

Adds compiler-specific compilation flags in the file libset.mk.

Extra Compiler Flags (LIBSETCCEXTRA)

Specifies any non-essential compiler flags that control how the compiler should
compile the TargetRTS. These flags are used to compiles the TargetRTS library, but do
not compile the models. Typically, you would specify optimization flags in this box.

Libset Linker Flags (LIBSETLDFLAGS

Adds compiler-specific linker flags in the libset.mk file.

Compiler (CC)

Specifies the name of the C or C++ compiler executable.

Linker (LD)

Specifies when a linker must be different from compiler (most compilers can invoke
the linker), or if a preprocessing script is necessary.

Library Builder (AR_CMD)

Specifies a command to run the library utility.

Editing a Configuration

Editing a configuration overrides settings from the target.mk and libset.mk files. The
overridden settings apply only to the selected configuration, and they are stored in
that configuration’s config.mk file.

Figure 33 shows the override options for the configuration. These are the same
options that appear on the Libset Settings and the Target Settings panels in the
TargetRTS Wizard.
96 Chapter 3 - Rational Rose RealTime Wizards

Figure 33 TargetRTS Wizard - Configuration Settings panel

Building Configurations

To build an existing configuration of the TargetRTS, you must specify the make
command used by the build. Figure 34 shows the Build Configuration pane which
you can use to compile the TargetRTS libraries.

Building a selected configuration creates a directory with the following format:

$ROSERT_HOME/build-<target>-<libset>

This directory contains the dependency file and object files for the TargetRTS. When
the build completes successfully, the resulting Rational Rose RealTime libraries save
to a directory that uses the following format:

$ROSERT_HOME/lib/<target>.<libset>
TargetRTS Wizard 97

Figure 34 TargetRTS Wizard - Build Configuration panel

Descriptions

make

Specifies a UNIX implementation of a make utility (make).

gmake

Specifies the GNU implementation of make.

nmake

Specifies a Microsoft implementation of a make utility (nmake).
98 Chapter 3 - Rational Rose RealTime Wizards

ClearCase clearmake

Specifies the UNIX implementation of a make utility for building software whose file
are under ClearCase version control.

ClearCase omake

Specifies the Windows implementation of a make utility for building software whose
files are under ClearCase version control.

other

Specifies a alternate make utility to build the TargetRTS.

Rebuild (make clean first)

Ensures a clean build. When selected, all intermediate files are deleted first.

Build flat

Copies all source files into a single directory (one file per class) and builds the libraries
from that location. This option is useful for debugging because some debuggers do
not work properly with the TargetRTS source directory structure.

Note: Setting this option also decreases the build time considerably because fewer
source files need to be opened and closed.

Deleting Configurations

For any duplicated configuration that you create, you can also delete those
configurations.

Note: The configurations distributed with Rational Rose RealTime are read-only and
cannot be deleted.

Figure 35 shows the Delete Configuration panel from which you can selectively
delete the target, target base, libset, or the configuration-specific files for the selected
configuration.
TargetRTS Wizard 99

Figure 35 TargetRTS Wizard - Delete Configuration panel

Creating Ports Between C and C++

There is no automatic method of creating a C TargetRTS port form an existing C++
port to the same, or similar OS. You can use the existing port to identify how the
OS-specific parts of the TargetRTS were implemented for the particular target.
Because the C TargetRTS and C++ TargetRTS have a similar structure, this can save
you time.

To make a C TargetRTS port based on a C++ port for the same, or similar OS,
you need to:

■ create a directory structure for the new port
■ configure the new port for the intended toolchain
■ configure the OS-specific parts of the port
■ build the toolset
100 Chapter 3 - Rational Rose RealTime Wizards

Note: The process of creating a C++ port from a C port is similar.

To create the directory structure for the new port:

1 Click Tools > TargetRTS Wizard.

2 Specify a language for the new port.

3 Verify that the path to the TargetRTS is correct, and click Next.

4 In the Manage Configurations panel, select a NoRTOS configuration from the
Existing Configurations list.

5 Click Duplicate.

6 Click Next.

7 Create a port called:

<new_target>S.<new_libset>

where:

new_target is the name of the OS followed by its version.

Select Target and specify a name in the Target name box.

new_libset consists of the following format:

<CPU_name>-<compiler_name>-<compiler_version>

Select Libset and specify a name in the Libset name box.

Note: The "S" after the target name denotes a single-threaded configuration; the
TargetRTS Wizard does not allow the creation of multi-threaded targets from
single-threaded ones.

8 In the Target base box, select either Provide skeleton or Duplicate (depending on
your preferences).

9 In the Name box, specify a name for the target base.

Typically, the name is the name of the OS.

After the duplication process completes, you want to configure the new port for the
intended toolchain.

To configure the new port for the toolchain:

1 In the Manage Configurations panel, select the new configuration.

2 Click Edit.
TargetRTS Wizard 101

3 In the Edit Configuration pane, select the options to edit the libset and the
configuration.

4 In the following panels, change the values as appropriate for the new toolchain.

5 You may have to edit the $ROSERT_HOME/libset/<new_libset>/libset.mk file to
finish configuring the toolchain.

Note: You may have to create a file called $ROSERT_HOME/libset/RTLibSet.h to
define compiler-specific macros.

To configure the OS-specific parts of the port:

1 Because the TargetRTS Wizard does not permit the creation of a multi-threaded
target from a single-threaded one, if the final port is for a multi-threaded
environment, change the name of the following directory from:

$ROSERT_HOME/target/<new_target>S

to

$ROSERT_HOME/<new_target>T

and change the name of the following directory from:

$ROSERT_HOME/config/<new_target>S.<new_libset>

to

$ROSERT_HOME/config/<new_target>T.<new_libset>

2 To properly configure the $ROSERT_HOME//target directory, use the contents of
the file $ROSERT_HOME/target/<old_target>T in the original port’s TargetRTS to
determine what the $ROSERT_HOME//target/<new_target>T file in the new
port’s TargetRTS should be.

Note: Some configuration macros are not the same in C and C++. However, all of
the options are described in the file
$ROSERT_HOME/include/RTPublic/Config.h. Also, you will want to review the
contents of the file $ROSERT_HOME/target/<new_target>T/target.mk. If the
new target is multi-threaded, the file
$ROSERT_HOME/target/<new_target>T/RTTarget.h will require the
USE_THREADS macro set to 1, and must also define default priorities for the
main, debugger, and timer threads. Typically, you can obtain these values from the
original port.
102 Chapter 3 - Rational Rose RealTime Wizards

3 Some ports also require configuration-specific settings. These are defined in the
file $ROSERT_HOME/config/<new_target>T.<new_libset>/config.mk. The file
$ROSERT_HOME/config/<new_target>T.<new_libset>/setup.pl controls the
environment configuration required for building the TargetRTS libraries (and
possibly, the building of models) for the new platform. The setup.pl file from the
old port may provide you with some assistance, but you will have to use your OS
and compiler documentation to properly configure the environment.

4 You must write the OS-specific code for the new port. All such code resides in the
following directory:

$ROSERT_HOME/src/target/<new_target_base>/

where:

new_target_base is the name assigned to the target base during the duplication
process in the TargetRTS Wizard. This name is stored in the setup.pl script as a
value of the $target_base variable. The skeleton implementation contains only
stubs for functions necessary for all ports. This particular port will likely require
you to define additional OS-specific functions. Use the target base from the
original port to see how to implement these OS-specific functions. Almost every C
TargetRTS "class" has a corresponding class in the C++ TargetRTS.

Note: Header files in the C target base must be in the RTPubl or RTPriv directories.
Also, if some files appear only in this target base, they must be declared in the
RTPriv/TGTMFEST.c file in the same manner as other files are declared in the file
src/MANIFEST.c.

Note: It may be necessary to further configure that target, libset, or config settings.

After you finish configuring the target, libset, and config, you are ready to build the
TargetRTS.

To build the TargetRTS:

1 In the Manage Configurations panel, select the new configuration in the Existing
Configurations list.

2 Click Build.

3 Specify a make utility and click Next.

4 Fix any errors encountered during the build process until the TargetRTS
successfully builds, and the models link and run.
TargetRTS Wizard 103

You may want to create Perl scripts for error parsing in the directory:

$RTS_HOME/codegen/compiler/<vendor_name>

<vendor_name> is defined in the $RTS_HOMElibset/<new_libset>/libset.mk file as a
value of VENDOR.
104 Chapter 3 - Rational Rose RealTime Wizards

Index
Symbols
#define 40, 45

A
Add Class Dependencies Add-In 13, 14

considerations 18
enhancements 14

Add External Java Tool 20
add-in

Add Class Dependencies 13, 14
automating common source control tasks 26
generate documentation 24

adding
class files 20
dependencies 19
external classes 20
missing dependencies 19

aggregation
association class 40
end types 31
multiplicity 32
scope 39
tool for creating 29
visibility 39

Aggregation Tool 29, 34
AR_CMD 96
AssociationEndKind 33
attribute

#define 40, 45
class scope 45
const 40, 45
constant 40, 45
Generate Documentation Add-in 25
get method 40, 46
global 45
implementation 44
initial value 44
initialization code 40, 46

name 43
private 44
protected 44
public 44
set method 40, 46
tool for creating 42
transient 39, 45
type 43
visibility 44

Attribute Tool 42
dependencies 56
Properties Tab 42

B
build

configurations 97
Build flat 99

C
class scope

operation 51
class scope (attribute) 45
classes

Add Class Dependencies Add-In 14
ClearCase

clearmake 99
omake 99

clearmake 99
Compiler (CC flag) 96
component

tool for creating 75
Component Wizard 75
configuration

building 97
deleting 99
duplicating 86
editing 90, 96
Index 105

managing 86
types 87

configuring
RequisitePro for Traceability 61

const 40, 45
constant

attribute 40, 45
contacting Rational customer support xi
creating

ports between C and C++ 100
customized menu commands 67

D
Default arguments 79
deleting

configurations 99
dependencies

adding missing dependencies 19
Attribute Tool 56
configuring search for missing

dependencies 19
creating 58
header file 57
implementation 57
matching Classes 57
Operation Tool 56
removing 58
required 57
specifying creation of 20

duplicating
configurations 86

E
editing

configuration 96
configurations 90
libset 95
target 92

EndA 33
EndB 33
Extra Compiler Flags 96

F
files

make Read only 28
make writable 27

G
get method

attribute 40, 46
gmake 98

I
Implementation 39
implementation

attribute 44
Initial Value 38
initial value (attribute) 44
Initialization 39
initialization code 40, 46
Inner Classes 23

J
JAR Utility 24

L
libraries

maintaining TargetRTS 83
Library Builder 96
libset

Compiler Flags 96
defined 87
editing 95
Linker Flags 96
name 89

LIBSETCCEXTRA 96
LIBSETCCFLAGS 96
LIBSETLDFLAGS 96
Linker (LD) 96
106 Index

M
make 92, 98
makefiles 91
multiplicity

aggregation association 32
multi-threaded configuration 88

N
nmake 92, 98
NoRTOS 89
NoRTOS target base 90

O
omake 99
operation

abstract 52
class scope 51
final 51
friend 51
global 51
implementation 52
name 50
native 52
polymorphic 53
private 52
protected 52
public 52
query 51
return type 51
strictfp 51
visibility 52

Operation Tool 49
dependencies 56
Properties Tab 50

operations
Generate Documentation Add-in 25

P
polymorphic

operation 53
ports

creating between C and C++ 100
private

attribute 44
operation 52
visibility 39

protected
attribute 44
operation 52
visibility 39

public
attribute 44
operation 52
visibility 39

Q
query

operation 51

R
Rational customer support

contacting xi
Rebuild (make clean first) 99
removing

dependencies 58
report

options (Generate Documentation
Add-in) 25

type (Generate Documentation Add-in) 25
required dependencies 57
RequisitePro

configuring for Traceability 61
RoseRTItemID 64
RoseRTModelPath 64
RoseRTType 64
RTS_config 88
Index 107

S
scripts

automating source control tasks 26
set method

attribute 40, 46
single-threaded configuration 88
source control

automating common tasks 26

T
Target 87
Target bases 88
Target Compiler Flags 94
Target Linker Flags 94
Target name

definition 88
Target Settings 93
TARGETCCFLAGS 94
TARGETLDFLAGS 94
TargetRTS

building configurations 97
configuration types 87
creating ports between C and C++ 100
deleting configurations 99
description 83
duplicating a configuration 86
editing a configuration 90, 96
editing the libset 95
editing the target 92
existing configurations 85
libset 87
libset name 89
maintaining libraries 83
makefiles 91
managing configurations 86
NoRTOS Target Base 90
Summary 89
target 87
Target bases 88
target name 88
Work Order 89

TEMP 23
Tools

Add External Java 20
Trace Tool 60

associating a model to a project 68
configuring RequisitePro for traceability 61
customized menu commands 67
RequisitePro

adding customized menu commands 67
DESIGN requirement 70
requirement type 61
RoseRTItemID 64
RoseRTModelPath 64
RoseRTType 64
updating RequisitePro requirements 73

retrieving data from an existing model
element 71

synchronizeing RequisitePro data with a Rose
RealTime model 72

transient (Java) 39, 45
troubleshooting

configuring search for missing
dependencies 19

U
USE_THREADS 102

V
visibility 22

aggregation 39
operations 52

visibility (types) 44, 52

W
wizard

component 75
wizards

Aggregation Tool 29
Attribute Tool 42
Component 75
Operation Tool 49
108 Index

	Add-in, Tool, and Wizard Guide
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Rational Rose RealTime Add-ins (Not�Language-specific)
	Add Class Dependencies Add-in
	Features of the Add Class Dependencies Add-In
	Considerations
	Searching for Missing Dependencies
	Adding Missing Dependencies
	Specifying Dependencies to Create

	Add External Java Tool
	Add External Java Dialog
	Accessible Model Locations
	Import Options

	Specifying a JAR Utility in Your Path

	Generate Documentation Add-In
	Source Code Assists and�Make Files Writable�Add-in
	Select Checked Out Units in Browser
	Show Unit Versions
	Submit All Changes to Source Control
	Make Files Writable
	Make Files ReadOnly

	Rational Rose RealTime Tools
	Aggregation Tool
	Relationships
	Aggregation Tab
	EndA and EndB
	Aggregation Tool - EndA and EndB Tabs
	Descriptions

	Advanced Tab

	Attribute Tool
	Attribute Tool: Properties Tab
	Descriptions
	Properties Tab: Language-Specific Options

	Operation Tool
	Operation Tool: Properties Tab
	Descriptions
	Properties Tab: Language-Specific Options

	Dependency Tab for Attribute Tool and Operation Tool
	Descriptions
	Options: (C, C++)

	Dependencies Tab: Language-Specific Options

	Trace Tool
	Configuring Rational RequisitePro for Traceability
	Using the Trace Tool in Rational Rose RealTime
	Using the Trace Tool in Rational RequisitePro
	Updating Rational RequisitePro Requirements when a Model File Location Changes

	Rational Rose RealTime Wizards
	Component Wizard
	TargetRTS Wizard
	Understanding the TargetRTS
	Maintaining TargetRTS Libraries using the TargetRTS Wizard
	Managing Your TargetRTS Configurations

	Duplicating a Configuration
	NoRTOS Target Base

	Editing a Configuration
	Understanding the makefiles
	Editing the Target
	Descriptions
	Editing the Libset
	Descriptions
	Editing a Configuration

	Building Configurations
	Descriptions

	Deleting Configurations
	Creating Ports Between C and C++

	Index

