
Rational Software Corporation
Adapting Rational Rose RealTime
for Target Environments

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026121-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

Legal Notices
©2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026121-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xiii
Audience. xiii

Other Resources . xiv

Rational Rose RealTime Integrations With Other Rational Products xiv

Contacting Rational Customer Support .xv

1 Using the TargetRTS Wizard. .17
Overview of the TargetRTS Wizard . 18

Understanding the TargetRTS . 18

Maintaining TargetRTS Libraries using the TargetRTS Wizard 19
Managing Your TargetRTS Configurations . 21

Duplicating a Configuration . 21

NoRTOS Target Base . 25

Editing a Configuration . 25

Understanding the makefiles . 27

Editing the Target . 28

Editing the Libset . 30

Modifying a Configuration. 31

Building Configurations. 32

Deleting Configurations . 34

Creating Ports between C and C++ . 35

2 Introducing the TargetRTS .41
Overview. 41

Other Resources . 42

3 Before Starting a Port .43
OS Knowledge and Experience . 43

Toolchain Functionality . 44

OS Capabilities. 44

Simple non-Rational Rose RealTime Program on Target. 45
Contents v

TCP/IP Functionality .46

Floating Point Operations. .46

Standard Input/Output Functionality .46

Debugging .47

Training. .47

Support .47

What to do Before Calling Rational Customer Support47

4 Porting the TargetRTS . 49
Overview .49

Phases of a Port .50

Choose a Configuration Name. .50
Target Name .51
Libset Name .52

Building Rational Rose RealTime Applications for Targets without Operating
Systems .52

Benefits of Using a NoRTOS Configuration .52
Using a NoRTOS Configuration .52
Verification. .53

Creating a Setup Script (setup.pl) .54

TargetRTS makefiles .56

Default makefile .59

Target makefile. .64

Libset makefile .65

Config makefile .65

5 Porting the TargetRTS for C . 71
Configuring the TargetRTS. .71

Platform-specific Implementation .75
Method RTTimespec_clock_gettime(timespec) . 76
Constructor RTThread_construct(this,job,priority,stacksize) 76
Class RTMutex . 76
Class RTSyncObject. 77
main() function . 78
Class RTMain . 78
Method RTStdio_putString() . 79
vi Contents

Method RTDebuggerInput_nextChar() . 79
Class RTTcpSocket . 79
Class RTIOMonitor. 80
File main.c . 80

Adding New Files to the TargetRTS .80
The MANIFEST.c File. 80
Regenerating make Dependencies . 81

6 Porting the TargetRTS for C++. 83
Configuring the TargetRTS. .83

Platform-specific Implementation .88
Method RTTimespec::getclock() . 89
Constructor RTThread::RTThread() . 90
Class RTMutex. 90
Class RTSyncObject . 90
main() function . 91
Class RTMain. 92
Method RTDiagStream::write() . 92
Method RTDebuggerInput::nextChar() . 93
Class RTTcpSocket . 93
Class RTIOMonitor. 93
File main.cc . 93

Adding New Files to the TargetRTS .93
The MANIFEST.cpp File. 94
Regenerating make Dependencies . 94

7 Modifying the Error Parser . 95
Overview of the Error Parser .95

How the Error Parser Works .96
The Error Parsing Rules . 96
How "rtcomp.pl" Integrates With the Compiler. 97

Reusing an Existing Error Parser .98

Creating a New Error Parser .98

8 Testing the TargetRTS Port . 101
Overview .101

HelloWorld Model. .101

Other Test Models .102

Other Resources .102
Contents vii

9 Tuning the TargetRTS. 103
Disabling TargetRTS Features for Performance. .103

Target Compiler Optimizations .103

Target Operating System Optimizations. .104

Specific TargetRTS Performance Enhancements .104

10 Common Problems and Pitfalls . 105
Overview .105

Problems and Pitfalls with Target Toolchains .106
Compiler Optimizations . 106
Linker Configuration File. 106
System Include Files . 106

Problems and Pitfalls with TargetRTS/RTOS Interaction107
Return Codes for POSIX Function Calls . 107
Thread Creation . 107
Real-time Clock . 107
Real-time Clock . 107
Signal Handlers . 109
RTOS Supplies main() Function . 109
Default Command Line Arguments. 109
Exiting Application . 110

Problems and Pitfalls with Target TCP/IP Interfaces111
gethostbyname() reentrancy . 111
select() statement . 111

11 TargetRTS Porting Example . 113
Overview .113

Choosing the Configuration Name. .113

Create Setup Script .114

Create makefiles .115
Libset makefile . 115
Target makefile . 117
Configuration makefile . 118

TargetRTS Configuration Definitions .118

Code Changes to TargetRTS Classes .119

Building the New TargetRTS .122
viii Contents

12 Customizing for Target Control and Observability 123
Introduction .123

Model Compilation and Target Control. .124
Intended Audience . 124

Target Control. .125
Target Control Modes. 125

Manual Mode . 125
Basic Mode . 125
Debugger Mode . 126

Target Control Scripts. 126

Menu Commands. .127
Reset . 127
Load . 128
Unload . 129
Execute . 130
Terminate . 131
General Issues . 132

Third-Party Source Code Debugger Integration. .133
Registering Threads on UNIX . 133
Calling Sequence . 133
Debugger DLL API . 135

Get DLL Capabilities . 136
Create Debug Session. 137
Destroy Debug Session . 138
Initialize Debugger . 138
Cleanup Debugger. 139
Start Debugger . 140
Stop Debugger. 140
Set Callback. 141
Event Callback Function . 142
Set Source Search Path . 143
Set Breakpoint in File. 143
Set Breakpoint At Function . 144
Clear Breakpoint . 145
Set DllTrace . 146

Index. 147
Contents ix

x Contents

xi

Table 1 Required Operating System Features for the C and C++ TargetRTS. 44
Table 2 Example Configuration Names . 51
Table 3 Variables in the Setup.pl Script . 55
Table 4 Make Macro Definitions . 66
Table 5 Preprocessor Definitions . 72
Table 6 Required TargetRTS Classes and Functions. 75
Table 7 Preprocessor Definitions . 84
Table 8 Required TargetRTS Classes and Functions. 89
Table 9 Tools Required for Building the TargetRTS for C 115
Table 10 Important Toolchain Command Line Options 116
Table 11 Quick Summary of Common C TargetRTS Source File Changes . . 120
Table 12 Quick Summary of Common C++ TargetRTS Source File Changes 121

List of Tables

xii List of Tables

Preface
This manual describes how you can quickly and easily customize your existing
TargetRTS libraries, and simplify the porting of the TargetRTS to new targets. With the
TargetRTS Wizard, you can quickly create a new TargetRTS configuration, modify or
duplicate an existing configuration, or delete an existing configuration that is no
longer required.

Later chapters describe the properties for porting the TargetRTS to a new target
environment.

This manual also describes how to add support to Rational Rose RealTime for target
control and observability, and how to integrate Rational Rose RealTime with source
code debuggers.

This manual is organized as follows:

■ Using the TargetRTS Wizard on page 17
■ Introducing the TargetRTS on page 41
■ Before Starting a Port on page 43
■ Porting the TargetRTS on page 49
■ Porting the TargetRTS for C on page 71
■ Porting the TargetRTS for C++ on page 83
■ Modifying the Error Parser on page 95
■ Testing the TargetRTS Port on page 101
■ Tuning the TargetRTS on page 103
■ Common Problems and Pitfalls on page 105
■ TargetRTS Porting Example on page 113
■ Customizing for Target Control and Observability on page 123

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.
xiii

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime–
ClearCase

You can archive Rose RT components in
ClearCase.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM and
create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose RealTime

■ Guide to Team Development: Rational
Rose RealTime

Rose RealTime–
Purify

When linking or running a Rose
RealTime model with Purify installed on
the system, developers can invoke the
Purify executable using the Build > Run
with Purify command. While the model
executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

■ Rational Rose RealTime Help

■ Toolset Guide: Rational Rose RealTime

■ Installation Guide: Rational Rose
RealTime
xiv Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Rose RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with Rose
RealTime elements.

■ Addins, Tools, and Wizards Reference:
Rational Rose RealTime

■ Using RequisitePro

■ Installation Guide: Rational Rose
RealTime

Rose RealTime–
SoDa

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational Rose
RealTime

■ Rational SoDA User’s Guide

■ SoDA Help

Integration Description Where it is Documented

Your Location Telephone Facsimile E-mail

North, Central,
and South
America

+1 (800) 433-5444
(toll free)

+1 (408) 863-4000
Cupertino, CA

+1 (781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 20 4546-200
Netherlands

+31 20 4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Customer Support xv

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".
xvi Preface

1Using the TargetRTS
Wizard
Contents

This chapter is organized as follows:

■ Overview of the TargetRTS Wizard on page 18
■ Understanding the TargetRTS on page 18
■ Maintaining TargetRTS Libraries using the TargetRTS Wizard on page 19
■ Duplicating a Configuration on page 21
■ NoRTOS Target Base on page 25
■ Editing a Configuration on page 25
■ Understanding the makefiles on page 27
■ Editing the Target on page 28
■ Editing the Libset on page 30
■ Modifying a Configuration on page 31
■ Building Configurations on page 32
■ Deleting Configurations on page 34
■ Creating Ports between C and C++ on page 35
17

Overview of the TargetRTS Wizard

The TargetRTS Wizard facilitates the management of the TargetRTS source tree,
allows easy customization of existing TargetRTS libraries, and simplifies porting of
the TargetRTS to new targets. With the TargetRTS Wizard, you can create a new
TargetRTS configuration, modify or duplicate an existing configuration, or delete an
existing configuration that is no longer required.

Note: Porting to a new operating system or a libset is not a trivial process, even with
the help of the TargetRTS Wizard. You must be familiar with the operating system,
the toolchain, the TargetRTS, and its layout.

Note: The figures for the TargetRTS Wizard dialogs are for the C++ language.

Understanding the TargetRTS

The TargetRTS is the set of run-time services that provide a framework in which a
Rational Rose RealTime model can run. The TargetRTS Wizard simplifies the
activities of building, configuring, managing, and customizing the TargetRTS libraries
and build environment.

The TargetRTS contains the required parts, such as source code and makefiles, used
to build applications from Rational Rose RealTime models. It contains
application-independent source code which is pre-compiled into target-specific
libraries.

To compile this source code, the tools (such as make, compiler, linker, and archiver
utilities) must be installed and operational in your environment.
18 Chapter 1 - Using the TargetRTS Wizard

Maintaining TargetRTS Libraries using the TargetRTS Wizard

To access the TargetRTS Wizard, click Tools > TargetRTS Wizard. Figure 1 shows the
first pane in the TargetRTS Wizard.

Figure 1 TargetRTS Wizard - First Pane

Use this pane to locate the TargetRTS tree for the TargetRTS Wizard, then click Next.
Maintaining TargetRTS Libraries using the TargetRTS Wizard 19

Figure 2 TargetRTS Wizard - Manage Configurations Panel

The Existing Configurations box contains a list of all your configurations. For some
configurations, you can duplicate, edit, build, or delete them.

Note: Those configurations distributed with Rational Rose RealTime are read-only
and cannot be edited or deleted. To modify a Rational Rose RealTime configuration
that is read-only, select the configuration and click Duplicate.

For additional information on modifying a Rational Rose RealTime configuration, see
Duplicating a Configuration on page 21.
20 Chapter 1 - Using the TargetRTS Wizard

Managing Your TargetRTS Configurations

When managing configurations with the TargetRTS Wizard, you can:

■ Click Duplicate for Duplicating a Configuration on page 21
■ Click Edit for Editing a Configuration on page 25
■ Click Build for Building Configurations on page 32
■ Click Delete for Deleting Configurations on page 34
■ Click a browse option for browing directories

Browsing Directories

You can also browse other directories for configurations to quickly view the files
necessary for each configuration. The TargetRTS Wizard opens the files in the
external editor you specified in the Path box on the Editor tab by clicking
Tools > Options.

Duplicating a Configuration

Duplicating an existing configuration is the first step to creating new configurations
for new ports, or for a custom version of the same configuration.

Note: The configuration name is an important identifier of the TargetRTS. It identifies
the operating system, hardware architecture, and compiler.

To duplicate a configuration:

1 From the Existing Configuration box on the Manage Configuration pane, select a
configuration.

2 In the Manage box, click Duplicate.

3 Click Next.
Duplicating a Configuration 21

Figure 3 TargetRTS Wizard - Duplicate Configuration Panel

A new configuration can be:

❑ A simple optimization of an existing configuration

❑ A port of an existing configuration (to a new processor architecture or to a new
compiler)

❑ A port to an entirely new OS

Since the new configuration must have a new name, you must create a new Target,
a new Libset, or both.

The Target specifies the OS for the configuration and indicates whether it is
single-threaded or multi-threaded. Single-threaded target names end with the
letter 'S' (for example, AIX4S), while multi-threaded target names end with the
letter 'T' (for example, TORNADO2T). The Libset name indicates which processor
architecture the configuration runs on, and the compiler used to compile it (for
22 Chapter 1 - Using the TargetRTS Wizard

example, ppc603-gnu-2.96). Each target depends on one or more target bases that
contain OS-specific source code. The Target bases are in the
$ROSERT_HOME/src/target/ directory.

Note: There is a sample port in $ROSERT_HOME/src/target/sample that you can
use as a skeleton (a template) for a port to a new target.

4 Under the Create new label, if you select Target, you can specify a new name in
the Target name box.

The Target name represents the implementation-specific components of the
TargetRTS. These components are generally specific to a given configuration, of a
given version, of a given operating system. The Target name is also used to name
the configuration of the target, such as single-threaded versus multi-threaded. The
target name is defined as follows:

<target> ::= <OS_name><OS_version><RTS_config>

The components of <target> are defined as follows:

<OS_name> identifies the operating system (for example, SUN)

<OS_version> identifies the major version of that operating system.

Note: Do not use periods in the OS version because this will confuse the make
utility when it attempts to build the TargetRTS.

<RTS_config> is a single letter that identifies the configuration; "S" for a
single-threaded configuration, and "T" for a multi-threaded configuration.

For example:

SUN5T

If you select Target, the Target base area of the panel becomes enabled. The Target
base controls the OS-specific source code used for the new target. If the duplicate
configuration is a port to a different operating system, a new target base will be
necessary. Duplicating a target base copies the target base used for the original
target; you will likely have to modify the new base, as required. A skeleton target
base contains only stubs for functions that are required for any target. These
functions must be fully implemented and you will likely have to add additional
functions.
Duplicating a Configuration 23

You can specify a NoRTOS target base that does not use any OS-specific calls. For
more information on using a NoRTOS target base, see NoRTOS Target Base on
page 25.

Note: To reuse existing targets to create new configurations, you can specify the
name of an existing target in the Target name box. The TargetRTS Wizard creates a
new configuration (using the selected libset and the existing target), and the target
will not be copied.

5 Under the Create new label, if you select Libset, you can specify a new name in
the Libset name box.

Although the actual libset names can be chosen arbitrarily, by convention, those
used by Rational Rose RealTime are defined as follows:

<libset> ::= <processor>-<compiler_name>-<compiler_version>

The components of <libset> are defined as follows:

<processor> identifies the processor architecture name

<compiler_name> identifies the compiler product name, or the vender for the
compiler.

<compiler_version> identifies the compiler version. It is acceptable to use periods in
the compiler version text.

For example:

sparc-gnu-2.8.1

Note: To reuse existing libsets to create new configurations, you can specify the
name of an existing libset in the Libset name box. The TargetRTS Wizard creates a
new configuration (using the selected target and the existing libset), and the libset
will not be copied.

The Resulting Configuration box contains the name of the configuration.

6 Click Next.

The TargetRTS Wizard presents a Summary dialog that identifies all of the actions
it will perform.

7 Click Next.

When appropriate, the TargetRTS Wizard displays a Work Order dialog
containing a list of items that may require user intervention.

8 Click Next.
24 Chapter 1 - Using the TargetRTS Wizard

NoRTOS Target Base

Both the C and C++ TargetRTS have a NoRTOS target base that does not use any
OS-specific calls. This means that a NoRTOS target base will work with any OS, or it
will work without an OS. A single-threaded target (NoRTOSS) uses the NoRTOS
target base.

Often, when porting to a new operating system, it is useful to create the libset, then
use it with the NoRTOSS target to verify that the toolchain works properly. After the
OS-independent version of the port is complete, you can use its libset with a new
target to make the full port.

To create a configuration that uses a NoRTOS target base using the TargetRTS
Wizard:

1 From the Existing Configuration box on the Manage Configuration pane, select a
configuration that uses the NoRTOSS target.

2 In the Manage box, click Duplicate.

3 Under the Create new label, select Libset.

4 In the Libset name box, specify an appropriate name for the libset.

Note: For some situations where the new libset is similar to an already existing
libset, it may be useful to specify the name of that existing libset into the Libset
name box. The TargetRTS Wizard will then reuse that libset in the new
configuration. The resulting configuration can then be duplicated to properly
name the new libset. The TargetRTS Wizard will then use this libset with the new
target to create the new configuration.

Editing a Configuration

After you duplicate a configuration, you can edit the new configuration. You can edit
the target, the libset, or only the configuration itself.

Note: You cannot edit the configurations that are included with Rational Rose
RealTime, nor the targets and libsets that these configurations use. You can only edit
the configurations that you duplicated previously.

Every configuration is comprised of a target and a libset. Editing the target is useful
for OS-specific changes, while editing the libset is appropriate for compiler-specific
changes. To change the TargetRTS settings, you will need to edit the target.

Note: These changes affect all configurations that use the selected target or libset.
NoRTOS Target Base 25

Figure 4 shows the Edit Configuration pane in the TargetRTS Wizard. From this
pane, you can specify whether you want to edit a combination of the target, libset, or
the configuration itself. For more information on editing, see the following:

■ Editing the Target on page 28
■ Editing the Libset on page 30
■ Modifying a Configuration on page 31

Figure 4 TargetRTS Wizard - Edit Configuration Panel
26 Chapter 1 - Using the TargetRTS Wizard

Understanding the makefiles

When you edit a configuration using the TargetRTS Wizard, you are modifying
properties in one or more makefiles. Figure 5 shows the makefiles that you can
update when specifying particular options while using the TargetRTS Wizard.

Figure 5 TargetRTS makefiles

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to
compile both the TargetRTS libraries and the model. The target.mk, libset.mk and
config.mk makefiles override the defaults defined in
$ROSERT_HOME/libset/default.mk. These are the makefiles that you can edit
using the TargetRTS Wizard.

The main.nmk (nmake for Windows) or main.mk (make for UNIX) is the main
definition for compiling the TargetRTS libraries. These makefiles should not be
customized, and will not be discussed further in this document.

The default.mk file contains the default macro definitions that may be overridden
by the platform-specific makefiles.

The target.mk file contains the definition specific to the target operating system.

The libset.mk file contains the definition specific to the compiler.

The config.mk file contains the definition specific to the combination of the compiler,
operating system, and TargetRTS configuration.
Understanding the makefiles 27

Editing the Target

You can edit the target to create a custom TargetRTS library. Figure 6 shows the C++
options used to configure the run-time system.

Note: The Customize Target panel in the TargetRTS Wizard for C is similar to C++;
however, some of the individual options differ. For additional information, click the
question mark opposite each option.

Figure 6 TargetRTS Wizard - Customize Target Panel

Note: Each entry is associated with a macro that controls that particular option in the
TargetRTS source. Click Default to set all the options back to their defaults, and click
Minimal to set the options for a much smaller and faster run-time system.

After you specify your required target options, click Next.
28 Chapter 1 - Using the TargetRTS Wizard

Figure 7 shows the Target Settings panel used to control compiler and linker flags for
the target. The Set options control which variables are defined in the target.mk file for
that particular target.

Figure 7 TargetRTS Wizard - Target Settings Panel

Target Compiler Flags (TARGETCCFLAGS)

Adds target-specific compilation flags in the file target.mk.

Target Linker Flags (TARGETLDFLAGS)

Redefines the target linker flags in the target.mk file.

Note: These flags should be target-specific. They will affect all configurations that use
this target unless you override them on the Configuration Setting panel of the
TargetRTS Wizard.
Editing the Target 29

Editing the Libset

You want to edit a libset to change the it to a different CPU architecture or a different
compiler, or to change how the TargetRTS library is built (for example, changing
compiler flags).

Figure 8 shows the options for configuring the libset. The Set options control which
variables are defined in the libset.mk file for that particular libset. The text boxes to
the right of the Set options contain their current values.

Figure 8 TargetRTS Wizard - Libset Settings Panel
30 Chapter 1 - Using the TargetRTS Wizard

Libset Compiler Flags (LIBSETCCFLAGS)

Adds compiler-specific compilation flags in the file libset.mk.

Extra Compiler Flags (LIBSETCCEXTRA)

Specifies any non-essential compiler flags that control how the compiler should
compile the TargetRTS. These flags are used to compiles the TargetRTS library, but do
not compile the models. Typically, you would specify optimization flags in this box.

Libset Linker Flags (LIBSETLDFLAGS

Adds compiler-specific linker flags in the libset.mk file.

Compiler (CC)

Specifies the name of the C or C++ compiler executable.

Linker (LD)

Specifies when a linker must be different from compiler (most compilers can invoke
the linker), or if a preprocessing script is necessary.

Library Builder (AR_CMD)

Specifies a command to run the library utility.

Modifying a Configuration

Editing a configuration overrides settings from the target.mk and libset.mk files. The
overridden settings apply only to the selected configuration, and they are stored in
that configuration’s config.mk file.

Figure 9 shows the override options for the configuration. These are the same options
that appear on the Libset Settings and the Target Settings panels in the TargetRTS
Wizard.
Modifying a Configuration 31

Figure 9 TargetRTS Wizard - Configuration Settings Panel

Building Configurations

To build an existing configuration of the TargetRTS, you must specify the make
command used by the build. Figure 10 shows the Build Configuration pane which
you can use to compile the TargetRTS libraries.

Building a selected configuration creates a directory with the following format:

$ROSERT_HOME/build-<target>-<libset>

This directory contains the dependency file and object files for the TargetRTS. When
the build completes successfully, the resulting Rational Rose RealTime libraries save
to a directory that uses the following format:

$ROSERT_HOME/lib/<target>.<libset>
32 Chapter 1 - Using the TargetRTS Wizard

Figure 10 TargetRTS Wizard - Build Configuration Panel

make

Specifies a UNIX implementation of a make utility (make).

gmake

Specifies the GNU implementation of make.

nmake

Specifies a Microsoft implementation of a make utility (nmake).

ClearCase clearmake

Specifies the UNIX implementation of a make utility for building software whose file
are under ClearCase version control.
Building Configurations 33

ClearCase omake

Specifies the Windows implementation of a make utility for building software whose
files are under ClearCase version control.

other

Specify a alternate make utility to build the TargetRTS.

Rebuild (make clean first)

Ensures a clean build. When selected, all intermediate files are deleted first.

Build flat

Copies all source files into a single directory (one file per class) and builds the libraries
from that location. This option is useful for debugging because some debuggers do
not work properly with the TargetRTS source directory structure.

Note: Setting this option also decreases the build time considerably because fewer
source files need to be opened and closed.

Deleting Configurations

For any duplicated configuration that you create, you can also delete those
configurations.

Note: The configurations distributed with Rational Rose RealTime are read-only and
cannot be deleted.

Figure 11 shows the Delete Configuration panel from which you can selectively
delete the target, target base, libset, or the configuration-specific files for the selected
configuration.
34 Chapter 1 - Using the TargetRTS Wizard

Figure 11 TargetRTS Wizard - Delete Configuration Panel

Creating Ports between C and C++

There is no automatic method of creating a C TargetRTS port form an existing C++
port to the same, or similar OS. You can use the existing port to identify how the
OS-specific parts of the TargetRTS were implemented for the particular target.
Because the C TargetRTS and C++ TargetRTS have a similar structure, this can save a
lot of time.
Creating Ports between C and C++ 35

To make a C TargetRTS port based on a C++ port for the same, or similar OS:

Note: The process of creating a C++ port from a C port is similar.

First, you want to create the directory structure for the new port.

1 Click Tools > TargetRTS Wizard.

2 Specify a language for the new port.

3 Verify that the path to the TargetRTS is correct, and click Next.

4 In the Manage Configurations panel, select a NoRTOS configuration from the
Existing Configurations list.

5 Click Duplicate.

6 Click Next.

7 Create a port called:

<new_target>S.<new_libset>

where:

new_target is the name of the OS followed by its version.

Select Target and specify a name in the Target name box.

new_libset consists of the following format:

<CPU_name>-<compiler_name>-<compiler_version>

Select Libset and specify a name in the Libset name box.

Note: The "S" after the target name denotes a single-threaded configuration; the
TargetRTS Wizard does not allow the creation of multi-threaded targets from
single-threaded ones.

8 Under the Target base label, depending on your preferences, select either Provide
skeleton or Duplicate.

9 In the Name box, specify a name for the target base.

Typically, the name is the name of the OS.

After the duplication process completes, you want to configure the new port for the
intended toolchain.

10 In the Manage Configurations panel, select the new configuration.

11 Click Edit.
36 Chapter 1 - Using the TargetRTS Wizard

12 In the Edit Configuration pane, select the options to edit the libset and the
configuration.

13 In the following panels, change the values as appropriate for the new toolchain.

14 You may have to edit the $ROSERT_HOME/libset/<new_libset>/libset.mk file to
finish configuring the toolchain.

Note: You may have to create a file called $ROSERT_HOME/libset/RTLibSet.h to
define compiler-specific macros.

Next, you want to configure the OS-specific parts of the port.

15 Because the TargetRTS Wizard does not permit the creation of a multi-threaded
target from a single-threaded one, if the final port is for a multi-threaded
environment, change the name of the following directory from:

$ROSERT_HOME/target/<new_target>S

to

$ROSERT_HOME/<new_target>T

and change the name of the following directory from:

$ROSERT_HOME/config/<new_target>S.<new_libset>

to

$ROSERT_HOME/config/<new_target>T.<new_libset>

16 To properly configure the $ROSERT_HOME//target directory, use the contents of
the file $ROSERT_HOME/target/<old_target>T in the original port’s TargetRTS to
determine what the $ROSERT_HOME//target/<new_target>T file in the new
port’s TargetRTS should be.

Note: Some configuration macros are not the same in C and C++. However, all of
the options are described in the file
$ROSERT_HOME/include/RTPublic/Config.h. Also, you will want to review the
contents of the file $ROSERT_HOME/target/<new_target>T/target.mk. If the
new target is multi-threaded, the file
$ROSERT_HOME/target/<new_target>T/RTTarget.h will require the
USE_THREADS macro set to 1, and must also define default priorities for the
main, debugger, and timer threads. Typically, you can obtain these values from the
original port.
Creating Ports between C and C++ 37

17 Some ports also require configuration-specific settings. These are defined in the
file $ROSERT_HOME/config/<new_target>T.<new_libset>/config.mk. The file
$ROSERT_HOME/config/<new_target>T.<new_libset>/setup.pl controls the
environment configuration required for building the TargetRTS libraries (and
possibly, the building of models) for the new platform. The setup.pl file from the
old port may provide you with some assistance, but you will have to use your OS
and compiler documentation to properly configure the environment.

18 You must write the OS-specific code for the new port. All such code resides in the
following directory:

$ROSERT_HOME/src/target/<new_target_base>/

where:

new_target_base is the name assigned to the target base during the duplication
process in the TargetRTS Wizard. This name is stored in the setup.pl script as a
value of the $target_base variable. The skeleton implementation contains only
stubs for functions necessary for all ports. This particular port will likely require
you to define additional OS-specific functions. Use the target base from the
original port to see how to implement these OS-specific functions. Almost every C
TargetRTS "class" has a corresponding class in the C++ TargetRTS.

Note: Header files in the C target base must be in the RTPubl or RTPriv directories.
Also, if some files appear only in this target base, they must be declared in the
RTPriv/TGTMFEST.c file in the same manner as other files are declared in the file
src/MANIFEST.c.

Note: It may be necessary to further configure that target, libset, or config settings.

After you finish configuring the target, libset, and config, you are ready to build the
TargetRTS.

19 In the Manage Configurations panel, select the new configuration from the
Existing Configurations list.

20 Click Build.

21 Specify a make utility and click Next.
38 Chapter 1 - Using the TargetRTS Wizard

22 Fix any errors encountered during the build process until the TargetRTS
successfully builds, and the models link and run.

You may want to create Perl scripts for error parsing in the directory:

$RTS_HOME/codegen/compiler/<vendor_name>

<vendor_name> is defined in the $RTS_HOMElibset/<new_libset>/libset.mk file as a
value of VENDOR.
Creating Ports between C and C++ 39

40 Chapter 1 - Using the TargetRTS Wizard

2Introducing the
TargetRTS
Contents

This chapter is organized as follows:

■ Overview on page 41
■ Other Resources on page 42

Overview

The TargetRTS is the set of run-time services that provide a framework in which a
Rational Rose RealTime model can run. It provides the run-time implementation of
the UML-RT constructs used in the model. Figure 12 shows the context of the
TargetRTS in building an executable program.

This guide describes the steps required to port the TargetRTS to a new target
environment. The new target may simply be a new version of an operating system or
compiler on a UNIX host. In more complicated cases it may be a new operating
system, compiler and target hardware. The latter scenario is of more interest to this
guide, although all the information required for the former scenario is provided.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to. It is assumed that the reader has
significant knowledge and experience with the development environment, operating
system, and target hardware.
41

Figure 12 The TargetRTS in Context

Other Resources

Before starting a port, ensure that you have the following documents and material
available:

■ Operating system documentation (for system calls, available services)
■ Compiler documentation
■ Sample programs that come with compiler or operating system (use these to test

your toolchain)
■ Rational Rose RealTime C Reference or C++ Reference
■ Rational Rose RealTime example models (to test the port)
42 Chapter 2 - Introducing the TargetRTS

3Before Starting a Port
Contents

This chapter is organized as follows:

■ OS Knowledge and Experience on page 43
■ Toolchain Functionality on page 44
■ OS Capabilities on page 44
■ Simple non-Rational Rose RealTime Program on Target on page 45
■ TCP/IP Functionality on page 46
■ Floating Point Operations on page 46
■ Standard Input/Output Functionality on page 46
■ Debugging on page 47
■ Training on page 47
■ Support on page 47
■ What to do Before Calling Rational Customer Support on page 47

OS Knowledge and Experience

Knowledge and experience with the target operating system is key to a successful
port. This knowledge should extend to the development environment and target
hardware. The type of knowledge required includes such details as synchronization
mechanisms, thread creation, memory management, timing, device drivers, board
support packages, memory maps, TCP/IP support, priority and scheduling schemes,
and so forth. See OS Capabilities on page 44 for a list of OS capabilities required by the
TargetRTS.

Experience with porting the TargetRTS to other platforms will aid greatly as the ports
tend to follow a pattern. For each development environment and operating system
there are bound to be a few surprises. See Common Problems and Pitfalls on page 105.
43

Toolchain Functionality

A functioning development environment must be in place before porting can begin.
This includes the correct installation of tools such as linkers, compilers, assemblers
and debuggers. To build the TargetRTS, you must have a working version of Perl for
your development host (version 5.002 or greater). Perl is used extensively in the
makefiles for the TargetRTS.

It is also important to initialize environment variables for inclusion of header files and
location of library files. An easy way to test this is to create a simple program, such as
“Hello World”, and compile and run it on the target. This step is described in Simple
non-Rational Rose RealTime Program on Target on page 45.

OS Capabilities

The target operating system must have a set of services that satisfy the requirements
of the TargetRTS. In general, most commercial real-time operating systems (RTOS)
have these services. Before starting a port, check for these basic capabilities in the
target RTOS. Table 1 lists the TargetRTS feature and its corresponding RTOS service

Table 1 Required Operating System Features for the C and C++ TargetRTS.

C TargetRTS Feature C++ TargetRTS Feature Operating System Service

RTTimespec_getclock()

(method required)

RTTimespec::getclock
()

(method required)

A function is required to return the
current time. The more precision the
better. In general, an RTOS will return
time with precision of its internal timer.

RTThread_construct()

(constructor required for
threaded targets)

RTThread::RTThread()

(constructor required for
threaded targets)

Task creation function - must be able to
create task or thread with specified
stack size and priority. Be aware of
priority scheme - some RTOSes use 0 as
highest priority while others may use 0
for lowest priority.

RTMutex

(all 4 methods required for
threaded targets)

RTMutex

(all 4 methods required for
threaded targets)

A mutual exclusion mechanism. Some
RTOSes provide optimized mutex
service along with semaphores.

RTSyncObject

(all 5 methods required for
threaded targets)

RTSyncObject

(all 5 methods required for
threaded targets)

Semaphore, mailbox, signal - service
must provide infinite and timed
blocking.
44 Chapter 3 - Before Starting a Port

Simple non-Rational Rose RealTime Program on Target

An easy way to test the toolchain functionality is to create a simple program that
prints out “Hello World” on the console.

This program should not use any TargetRTS code or libraries. Compile and link the
program outside of Rational Rose RealTime using your toolchain, and download the
executable to the target. If it executes successfully, then your development
environment is ready.

RTStdio_putString()

(output to console)

RTDiagStream::write(
)

(output to console)

Standard output - this may not be
provided out-of-the-box. For
embedded targets, device drivers
added to the board support package
may be required. Output is generally
routed to external serial ports but
TCP/IP or UDP/IP may be used
instead.

RTDebuggerInput_nextCha
r()

(input from console)

RTDebuggerInput::nex
tChar()

(input from console)

Standard input, as above. This can be
removed from the TargetRTS via
configuration options.

Target Observability Target Observability TCP/IP support is required. This
includes device drivers in the board
support package for the ethernet
hardware on the target. If not provided
this is a substantial do-it-yourself
project. Target Observability can be
removed from the TargetRTS via
configuration options.

malloc, free new, delete The RTOS must support some sort of
memory management. In general, this
is hidden from the user by the compiler
as the RTOS resolves the new and
delete symbols.

main() function main() function Some RTOSes have their own main
function defined. If so, then the main
function in the TargetRTS must be
redefined.

Table 1 Required Operating System Features for the C and C++ TargetRTS.

C TargetRTS Feature C++ TargetRTS Feature Operating System Service
Simple non-Rational Rose RealTime Program on Target 45

Further testing is strongly recommended. This would include some basic RTOS
services such as thread creation in your test program. Again, no TargetRTS code or
libraries should be used. Many RTOSes provide example programs to compile and
run. Try these out and verify the functionality of your setup. If you are using a
source-level debugger, verify that you can step through the source code and examine
variables. If the debugger is aware of operating system data structures, check if you
can examine these. The purpose of this testing to ensure that all of the required
operating system features are operational and understood before attempting the port
of the TargetRTS.

C++ Another important test for C++ compilers is to include a static constructor in the test
program. This will ensure that proper initialization is performed.

TCP/IP Functionality

To support Target Observability for the new port, the target operating system must
provide a compatible TCP/IP stack. In general, the TCP/IP layer must support the
BSD sockets interface, that is, the creation and deletion of sockets, functions such as
socket(), connect(), bind(), listen(), select(), and so forth. Typically, RTOSes
try to provide a BSD-compliant TCP/IP stack. TCP/IP functionality can be a common
source of problems with new ports. See Common Problems and Pitfalls on page 105.

If a TCP/IP stack is not provided, then you must implement one, which might require
significant effort. Alternatively, the use of SLIP or PPP over a serial connection may be
an option, but would require customizations. It would also affect the performance of
Target Observability. Alternatively, you can choose not to use target observability.

Floating Point Operations

Some of the TargetRTS classes require the use of floating point operations. Investigate
the support for floating point on your target system.

C++ It is possible to configure the support for RTReal from the TargetRTS via configuration
options.

Standard Input/Output Functionality

The TargetRTS needs standard input and output to a console for log messages, panic
messages, and debugger input/output. This may already be provided by the target
development or operating system. Some embedded RTOS and development tools
46 Chapter 3 - Before Starting a Port

may not provide standard input and output, and instead require the addition of serial
port device drivers to the board support package. The use of TCP/IP or UDP/IP to
provided standard input/output is also an option.

Debugging

The use of a source-level debugger that provides some sort of operating system
awareness is the best development tool for the port. This is the easiest way to examine
source code, memory, variables, registers, stacks, and so forth.

Training

Training is an important component of a successful port. Rational offers training
courses to help users understand, use, and port the TargetRTS. Your RTOS vendor
may also offer training and this is recommended as well.

Support

Rational provides support for the standard ports as identified in the Installation Guide.
All reported issues will be duplicated on one or more of the standard referenced
configurations.

What to do Before Calling Rational Customer Support

The following steps should be followed before calling Rational Technial Support for
help with a custom port of the TargetRTS.

1 Get to know your compiler/linker/debugger toolchain. Be sure it is installed
correctly, and that programs can be compiled, linked, downloaded to the target
hardware and run successfully.

2 Get to know your target operating system. Be sure that an example multi-threaded
program that exercises the various features of the RTOS is compiled, linked and
downloaded to the target hardware and runs successfully. Do not use Rational
Rose RealTime for this example program. This should be produced independently
to verify toolchain and RTOS functionality.

3 Read this guide and the C Reference or C++ Reference that is included with Rational
Rose RealTime, to understand the required capabilities of the RTOS needed to
support the TargetRTS.
Debugging 47

4 Ensure that the TCP/IP stack for your target platform is operational. In particular
the sockets interface must be working, and additional utilities such as
gethostbyname() must be functional.

5 Test the functionality of the standard input and output for your target. This will
probably be verified in earlier steps.

6 Learn how to use the target debugger. This will be a useful tool when doing the
port.

7 Get as much training on Rational Rose RealTime, the RTOS, and your toolchain as
possible.
48 Chapter 3 - Before Starting a Port

4Porting the TargetRTS
Contents

This chapter is organized as follows:

■ Overview on page 49
■ Phases of a Port on page 50
■ Choose a Configuration Name on page 50
■ Building Rational Rose RealTime Applications for Targets without Operating Systems on

page 52
■ Creating a Setup Script (setup.pl) on page 54
■ TargetRTS makefiles on page 56
■ Default makefile on page 59
■ Target makefile on page 64
■ Libset makefile on page 65
■ Config makefile on page 65

Overview

The most common customization to the TargetRTS is porting it to a new platform. A
platform is defined by the TargetRTS as the combination of the operating system,
target hardware and the compiler/linker toolchain. A new operating system requires
the most work since it often requires implementation changes. However, a new
compiler may also require changes, in particular, to the configuration files.

The ports supported by Rational Software and shipped with the TargetRTS source are
a good place to begin considering design alternatives for a new port. The root
directory for the TargetRTS source will be referred to from this point forward using
the environment variable $RTS_HOME.
49

C For C, it is usually defined as $ROSERT_HOME/C/TargetRTS. For Windows, assume
%ROSERT_HOME%\C\TargetRTS.

C++ For C++, it is usually defined as $ROSERT_HOME/C++/TargetRTS. For Windows,
assume %ROSERT_HOME%\C++\TargetRTS.

In the sections that follow, examples are extracted from this source.

Phases of a Port

The major steps for implementing the port are as follows:

■ Performing pre-port steps (see Before Starting a Port on page 43).

■ Naming the platform (see Choose a Configuration Name on page 50).

■ Defining the setup script (see Creating a Setup Script (setup.pl) on page 54).

■ Defining the platform-specific makefiles (see TargetRTS makefiles on page 56).

■ Defining the platform-specific header files (see Porting the TargetRTS for C++ on
page 83).

■ Defining the platform-specific implementation of TargetRTS features (see
Platform-specific Implementation on page 88).

■ Building the new TargetRTS and fixing compile and link problems (see Building the
New TargetRTS on page 122).

■ Testing the new TargetRTS using test model updates (see Testing the TargetRTS Port
on page 101).

■ Tuning the performance of the TargetRTS, if required (see Tuning the TargetRTS on
page 103).

Choose a Configuration Name

The first step in implementing a port is picking the name for the configuration. This
name and parts of it are used by the various loadbuild tools to find the files needed to
build the TargetRTS for that configuration. It is also used during compilation of the
Rational Rose RealTime models. There are two parts to the name: <target> and
<libset>. The resulting names for TargetRTS configurations are defined as the
concatenation of the target and libset names in the following pattern:

<config> ::= <target>.<libset>
50 Chapter 4 - Porting the TargetRTS

Examples are given in Table 2.
.

Target Name

The target name presents the implementation-specific components of the TargetRTS.
These components are generally specific to a given configuration, of a given version,
of a given operating system. The target name is also used to name the configuration of
the target, for example, single versus multi-threaded. The target name is defined as
follows:

<target> ::= <OS name><OS version><RTS config>

For example: SUN5T. The components of <target> are defined as follows:

<OS name> identifies the operating system (for example, SUN)

<OS version> identifies the major version of that operating system (for example, 5
meaning SunOS 5.x, that is, Solaris 2.x). Do not use periods in the OS version, as this
will confuse the make utility when trying to build the TargetRTS.

<RTS config> is a single letter to further identify the configuration. Currently only ‘S’
for single-threaded and T’ for multi-threaded configurations are supported.

Table 2 Example Configuration Names

Config Name Description

SUN4S.sparc-gnu-2.8.1 SunOS 4.x Single-threaded on a Sparc
processor using Free Software Foundation gnu
version 2.8.1

SUN5T.sparc-gnu-2.8.1 Solaris 2.x Multi-threaded on a Sparc processor
using Free Software Foundation gnu version
2.8.1

SUN5S.sparc-SunC++-4.2 Solaris 2.x Single-threaded on a Sparc
processor using Sun Microsystems
SPARCUtils C++ version 4.2

NT40T.x86-VisualC++-6.0 Windows NT 4.0 Multi-threaded on an x86
processor using Microsoft Visual C++ version
6.0

TORNADO2T.ppc-cygnus-2.7.2-960126 Tornado 2 Multi-threaded on a Motorola
PowerPC processor using Cygnus C++ version
2.7.2-960126
Choose a Configuration Name 51

Libset Name

Although the actual libset names can be chosen arbitrarily, by convention those used
by Rational Rose RealTime are defined as follows:

<libset> ::= <processor>-<compiler name>-<compiler version>

For example: sparc-gnu-2.8.1. The components of <libset> are defined as follows:

<processor> identifies the processor architecture name

<compiler name> identifies the compiler product name or the vendor for the
compiler

<compiler version> identifies the compiler version. It is acceptable to use periods in
the compiler version text.

Building Rational Rose RealTime Applications for Targets
without Operating Systems

You can configure the Rational Rose RealTime run-time libraries to build Rational
Rose RealTime applications that run without an operating system. The resulting
application that is generated will be a “main” program; you can build and run a main
program on the target.

If there is no RTOS available on the target, or if the application will exist in a single
thread, you can use a NoRTOS configuration.

Benefits of Using a NoRTOS Configuration

The benefits to using a NoRTOS configuration are:

■ A NoRTOS configuration does not require any RTOS services.

■ A NoRTOS configuration is useful in small footprint and simple device
configurations, or in configurations where threading is not required.

■ You can get started quickly by minimizing the effort required to make the initial
port operational.

Using a NoRTOS Configuration

If you are creating a new target configuration, you can begin by creating a NoRTOS
configuration, and later change it to a threaded configuration.

A NoRTOS does not have any RTOS dependencies; however, this does not prevent
you from using RTOS services in your application.
52 Chapter 4 - Porting the TargetRTS

To configure a NoRTOS configuration using the TargetRTS Wizard:

1 From the Tools menu, click TargetRTS Wizard.

2 Select a language and click Next.

3 In the Manage Configurations pane, select a NoRTOS configuration, such as
NoRTOSS.x86-VisualC++-6.0 NoRTOSS.sparc-gnu-2.8.1.

4 Click Duplicate to modify the NoRTOS configuration for you requirements.

5 In the Duplicate Configuration pane, select Libset.

6 In the Libset name box, specify a new Libset, or if you want to reuse an existing
libset, type the name of that libset. For additional information on creating a Libset
name, see Libset Name on page 52.

7 Click Next.

8 In the Summary pane, review the information, and then click Next.

9 In the Work Order pane, review the information, and then click Next.

The resulting run-time libraries for this port have no dependencies on any operating
services. They do expect console I/O if there is no stdin/stdout for your target that
can easily be compiled. Linking your Rational Rose RealTime model with the
NoRTOS library creates a program with a "main" entry function.

Although the resulting services library has no operating system dependencies, it does
depend on the compiler used to build the program for a specific CPU. To complete a
port, you will need to add the supporting compiler interfaces.

Verification

You should verify that you can:

■ build and link against a services library

■ compile and link for your target inside the toolset

■ create an executable for your target.
Building Rational Rose RealTime Applications for Targets without Operating Systems 53

Other things you may want to test are:

■ error parsing (for example, you can add a syntax error, double-click on the
resulting error in the Build Errors tab, then observe the error in the model to see if
it is the correct error)

■ timing services (for example, add a timing port and test the timing services).

■ if you have interfaces to load, unload, reset your target from your host, you may
want to create Perl script wrappers to make those capabilities accessible within
Rational Rose RealTime. See $ROSERT_HOME/bin/tc/win32 for examples of these
scripts.

Creating a Setup Script (setup.pl)

The setup script is a file, setup.pl, containing Perl commands that configure the
environment for the compilation of the TargetRTS for the specified platform. This file
is located in the directory $RTS_HOME/config/<config>.

Note: If the target toolchain environment variables are included in a user’s standard
environment, the variables in the setup.pl file may not be required. These
environment variables defined in the setup.pl file are not available when using the
toolset to build user models.

Commands in the setup.pl file are executed before any of the TargetRTS compilation
tools are invoked. Typically, definitions for locations of files on the host platform are
included in this file (such as setting the shell environment variable PATH to point to
the appropriate tools).
54 Chapter 4 - Porting the TargetRTS

Table 3 describes the variables in the setup.pl file that are specific to Rational Rose
RealTime:

Note: The $preprocessor and $supported variables must be defined for all targets.

The example file located in the directory:

$RTS_HOME/config/TORNADO2T.ppc-cygnus-2.7.2-960126/setup.pl

contains the following:

if($OS_HOME = $ENV{'OS_HOME'})
{

$os = $ENV{'OS'} || 'default';

if($os eq 'Windows_NT')
{

$wind_base = $ENV{'WIND_BASE'};
$wind_host_type = 'x86-win32';
$ENV{'PATH'} =

"$wind_base/host/$wind_host_type/bin;$ENV{'PATH'}";
}
else
{

$rosert_home = $ENV{'ROSERT_HOME'};

Table 3 Variables in the Setup.pl Script

Variables Description

$preprocessor Defines the C++ preprocessor command appropriate for the
compilation environment, and automatically generates source code
dependencies for the TargetRTS.

$supported Defines whether Rational Rose RealTime supports this target. Valid
values for $supported are Yes, No, and Custom. For a custom port, we
recommend Custom. This variable has no impact on how the port is
compiled or used.

 $target_base Indicates that the implementation of the target-specific features of the
TargetRTS are rooted in the same source directory as the $target_base
target. For example, for the TORNADO2 targets, the $target_base is set
to TORNADO1. As a result, TORNADO2 implementations of
TargetRTS classes are in the same source directory as those of the
TORNADO1 target, that is, $RTS_HOME/src/target/TORNADO1.

This variable can contain multiple entries separated by a comma. When
using multiple entries, the target source directories are searched in the
specified order.

$postprocessor An optional variable that runs after $preprocessor.
Creating a Setup Script (setup.pl) 55

chomp($host = `$rosert_home/bin/machineType`);

$wind_base = "$OS_HOME/wrs/tornado-2.0";
if($host eq 'sun5')
{

$wind_host_type = 'sun4-solaris2';
}
$ENV{'PATH'} =

"$wind_base/host/$wind_host_type/bin:$ENV{'PATH'}";
$ENV{'WIND_BASE'} = "$wind_base";

}

$ENV{'GCC_EXEC_PREFIX'}
="$wind_base/host/$wind_host_type/lib/gcc-lib/";

$ENV{'VXWORKS_HOME'} = "$wind_base/target";
$ENV{'VX_BSP_BASE'} = "$wind_base/target";
$ENV{'VX_HSP_BASE'} = "$wind_base/target";
$ENV{'VX_VW_BASE'} = "$wind_base/target";
$ENV{'WIND_HOST_TYPE'} = "$wind_host_type";

}

$preprocessor = "ccppc -DPRAGMA -E -P >MANIFEST.i";
$target_base = 'TORNADO1';
$supported = 'Yes';

Note: The setup file is not used when compiling the generated source, neither from
within the toolset, nor from the command-line. The environment variables defined in
the setup file must instead be defined in the user’s environment before starting the
Rational Rose RealTime toolset. In the given example, the setup file assumes that the
user’s environment has the variable OS_HOME already defined as a partial path to
where the RTOS is installed.

TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS: compilation of
the TargetRTS libraries and compilation of the generated code. The platform-specific
definitions are required by both and are thus placed in separate files. The sequencing
of the makefiles for the two paths are shown in Figure 13.
56 Chapter 4 - Porting the TargetRTS

Figure 13 Sequencing of Makefiles

As shown, there is a makefile for each of the following:

■ $RTS_HOME/src/Makefile is the root makefile for TargetRTS compilation. It
invokes a Perl script called Build.pl. This script checks the dependencies for the
TargetRTS source code and generates a makefile called depend.mk in the
$RTS_HOME/build-<config> directory. It then builds the TargetRTS from this
directory. This makefile and Build.pl should not be customized, and will not be
discussed further in this document.

■ $RTS_HOME/src/main.nmk (main.mk for UNIX) is the main definition for
compiling the TargetRTS libraries. These makefiles should not be customized, and
will not be discussed further in this document.
TargetRTS makefiles 57

■ The generated makefile for the model being compiled. See the C Reference or C++
Reference for more details on how this makefile is generated.

■ $RTS_HOME/codegen/ms_nmake.mk (gnu_make.mk for Gnu, unix_make.mk for
other Unix) is the main definition for compiling a model. These makefiles should
not be customized, and will not be discussed further in this document.

■ $RTS_HOME/libset/default.mk, the default macro definitions that may be
overridden by the platform specific makefiles. See Default makefile on page 59.

■ $RTS_HOME/target/<target>/target.mk is the definition specific to the target
operating system. See Target makefile on page 64.

■ $RTS_HOME/libset/<libset>/libset.mk is the definition specific to the
compiler. See Libset makefile on page 65.

■ $RTS_HOME/config/<config>/config.mk is the definition specific to the
combination of the compiler, operating system and TargetRTS configuration. See
Config makefile on page 65.

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to compile both
the TargetRTS libraries and the model.

Compilation of the model is usually performed by right-clicking on a component in
the toolset and choosing Build > Build... > Generate and compile , or set the
component as default and hit [F7]. It is, however, also possible to just generate the
source and make files needed from within the toolset, and compile from the output
directory by issuing the make command (nmake for Windows).

Compilation of the TargetRTS is performed from the $RTS_HOME/src directory by
issuing the command

make CONFIG=<target>.<libset>

For example in UNIX:

make CONFIG=SUN5T.sparc-gnu-2.8.1

For example in Windows:

nmake CONFIG=NT40T.x86-VisualC++-6.0

Note: Some make utilities also allows the following:

make CONFIG=<target>.<libset>

For example:

make SUN5T.sparc-gnu-2.8.1
58 Chapter 4 - Porting the TargetRTS

Default makefile

The target.mk, libset.mk and config.mk makefiles are expected to override
defaults defined in $RTS_HOME/libset/default.mk. The defaults are as follows for
each language.

For the C language:

C # ======== General Defaults
===

CONFIG = $(TARGET).$(LIBRARY_SET)

Defaults for macros which may be modified by
libset/$(LIBRARY_SET)/libset.mk
target/$(TARGET)/target.mk
or config/$(CONFIG)/config.mk

PERL = rtperl
FEEDBACK = $(PERL) "$(RTS_HOME)/tools/feedback.pl"
MERGE = $(PERL) "$(RTS_HOME)/tools/merge.pl"
NOP = $(PERL) "$(RTS_HOME)/tools/nop.pl"
RM = $(PERL) "$(RTS_HOME)/tools/rm.pl"
RMF = $(RM) -f
TOUCH = $(PERL) "$(RTS_HOME)/tools/touch.pl"

codegen makefiles stuff

RTCOMP = $(PERL) "$(RTS_HOME)/codegen/rtcomp.pl"
RTLINK = $(PERL) "$(RTS_HOME)/codegen/rtlink.pl"
VENDOR = generic

Macros used when make must recurse

MAKEFILE = Makefile

Macros used when creating an object file from a C source file

CC = $(FEEDBACK) -fail \
 CC should be defined by libset.mk or generated
makefile
DEBUG_TAG = -g
DEPEND_TAG = -I
DEFINE_TAG = -D
INCLUDE_TAG = -I
LIBSETCCEXTRA =
LIBSETCCFLAGS =
OBJECT_OPT = -c
OBJOUT_OPT = -o
Default makefile 59

OBJOUT_TAG =
SHLIBCCFLAGS = -PIC
TARGETCCFLAGS =

Macros used when creating an object library from a set of object
files

AR_CMD = $(PERL) "$(RTS_HOME)/tools/ar.pl"
AR = $(AR_CMD)
LIBOUT_OPT =
LIBOUT_TAG =
RANLIB = $(NOP)

Macros used when creating a shared library from a set of object
files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT = -o
SHLIBOUT_TAG =

Macros used when creating an executable from a set of object files,
libraries

LD = $(CC)
DIR_TAG = -L
LIBSETLDFLAGS =
LIB_TAG = -l
OT_LIB_TAG = -l
TARGETLDFLAGS =
TARGETLIBS =
EXEOUT_OPT = -o
EXEOUT_TAG =

Macros used to construct names of various kinds of files

EXEC_EXT =
LIB_PFX = lib
LIB_EXT = .a
C_EXT = .c
OBJ_EXT = .o
SHLIB_PFX = lib
SHLIB_EXT = .so

========= Shared Macros
===

RTCODEBASE can be overridden in the target/$(TARGET)/target.mk file
RTCODEBASE = $(PLATFORM)
60 Chapter 4 - Porting the TargetRTS

RTSYSTEM_INCPATHS = \
 $(INCLUDE_TAG)"$(RTS_HOME)/libset/$(LIBRARY_SET)" \
 $(INCLUDE_TAG)"$(RTS_HOME)/target/$(TARGET)" \
 $(INCLUDE_TAG)"$(RTS_HOME)/include"

RTS_LIBRARY = $(RTS_HOME)/lib/$(CONFIG)

SYSTEM_LIBS = $(DIR_TAG)"$(RTS_LIBRARY)" \
 $(OT_LIB_TAG)ObjecTimeC \
 $(OT_LIB_TAG)ObjecTimeCTransport \
 $(OT_LIB_TAG)ObjecTimeC \
 $(OT_LIB_TAG)ObjecTimeCTransport

========= Linking
==

LD_OUT = $@

LD_HEAD = \
 $(EXEOUT_OPT) $(EXEOUT_TAG)$(LD_OUT) \
 $(LIBSETLDFLAGS) \
 "$(RTS_LIBRARY)/main$(OBJ_EXT)"

ALL_OBJS_LIST = $(ALL_OBJS)

LD_TAIL = \
 $(SYSTEM_LIBS) \
 $(TARGETLDFLAGS) \
 $(TARGETLIBS)

======== Compiling
===

CC_HEAD = \
 $(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG)$@ \
 $(LIBSETCCFLAGS) \
 $(TARGETCCFLAGS) \
 $(RTSYSTEM_INCPATHS)

CC_TAIL =

==
Default makefile 61

For the C++ language:

C++ # ======== General Defaults
===

CONFIG = $(TARGET).$(LIBRARY_SET)

Defaults for macros which may be modified by
libset/$(LIBRARY_SET)/libset.mk
target/$(TARGET)/target.mk
or config/$(CONFIG)/config.mk

PERL = rtperl
FEEDBACK = $(PERL) "$(RTS_HOME)/tools/feedback.pl"
MERGE = $(PERL) "$(RTS_HOME)/tools/merge.pl"
NOP = $(PERL) "$(RTS_HOME)/tools/nop.pl"
RM = $(PERL) "$(RTS_HOME)/tools/rm.pl"
RMF = $(RM) -f
TOUCH = $(PERL) "$(RTS_HOME)/tools/touch.pl"

codegen makefiles stuff

RTGEN = rtcppgen
RTCOMP = $(PERL) "$(RTS_HOME)/codegen/rtcomp.pl"
RTLINK = $(PERL) "$(RTS_HOME)/codegen/rtlink.pl"
VENDOR = generic

Macros used when make must recurse

MAKEFILE = Makefile

Macros used when creating an object file from a C++ source file

CC = $(FEEDBACK) -fail \
 CC should be defined by libset.mk or generated
makefile
DEBUG_TAG = -g
DEPEND_TAG = -I
DEFINE_TAG = -D
INCLUDE_TAG = -I
LIBSETCCEXTRA =
LIBSETCCFLAGS =
OBJECT_OPT = -c
OBJOUT_OPT = -o
OBJOUT_TAG =
SHLIBCCFLAGS = -PIC
TARGETCCFLAGS =
62 Chapter 4 - Porting the TargetRTS

Macros used when creating an object library from a set of object
files

AR_CMD = $(PERL) "$(RTS_HOME)/tools/ar.pl"
AR = $(AR_CMD)
LIBOUT_OPT =
LIBOUT_TAG =
RANLIB = $(NOP)

Macros used when creating a shared library from a set of object
files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT = -o
SHLIBOUT_TAG =

Macros used when creating an executable from a set of object files,
libraries

LD = $(CC)
DIR_TAG = -L
LIBSETLDFLAGS =
LIB_TAG = -l
OT_LIB_TAG = -l
TARGETLDFLAGS =
TARGETLIBS =
EXEOUT_OPT = -o
EXEOUT_TAG =

Macros used to construct names of various kinds of files

EXEC_EXT =
LIB_PFX = lib
LIB_EXT = .a
CPP_EXT = .cc
OBJ_EXT = .o
SHLIB_PFX = lib
SHLIB_EXT = .so

========= Shared Macros
===

RTSYSTEM_INCPATHS = \
$(INCLUDE_TAG)"$(RTS_HOME)/libset/$(LIBRARY_SET)" \
$(INCLUDE_TAG)"$(RTS_HOME)/target/$(TARGET)" \
$(INCLUDE_TAG)"$(RTS_HOME)/include"

RTS_LIBRARY = $(RTS_HOME)/lib/$(CONFIG)
Default makefile 63

SYSTEM_LIBS = $(DIR_TAG)"$(RTS_LIBRARY)" \
$(OT_LIB_TAG)ObjecTime \
$(OT_LIB_TAG)ObjecTimeTypes

========= Linking
==

LD_OUT = $@

LD_HEAD = \
 $(EXEOUT_OPT) $(EXEOUT_TAG)$(LD_OUT) \
 $(LIBSETLDFLAGS) \
 "$(RTS_LIBRARY)/main$(OBJ_EXT)"

ALL_OBJS_LIST = $(ALL_OBJS)

LD_TAIL = \
 $(SYSTEM_LIBS) \
 $(TARGETLDFLAGS) \
 $(TARGETLIBS)

======== Compiling
===

CC_HEAD = \
 $(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG)$@ \
 $(LIBSETCCFLAGS) \
 $(TARGETCCFLAGS) \
 $(RTSYSTEM_INCPATHS)

CC_TAIL =

==

Target makefile

The $RTS_HOME/target/<target>/target.mk makefile provides definitions specific
to the operating system. The definitions in this makefile override the defaults in
$RTS_HOME/libset/default.mk. An example target makefile file,
$RTS_HOME/target/SUN5T/target.mk, contains the following:
TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT
TARGETLDFLAGS = $(LIB_TAG)nsl $(LIB_TAG)socket -R$(RTS_LIBRARY)
TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread
64 Chapter 4 - Porting the TargetRTS

Libset makefile

The $RTS_HOME/libset/<libset>/libset.mk makefile provides definitions specific
to the compiler. The definitions in this makefile override the defaults in
$RTS_HOME/libset/default.mk. An example libset makefile file,
$RTS_HOME/libset/sparc-gnu-2.8.1/libset.mk, contains the following:

For the C language:

C VENDOR = gnu

CC = g++
SHLIB_CMD = $(CC) -shared -z text -o

LIBSETCCFLAGS = -V2.8.1
LIBSETCCEXTRA = -O4 -finline -finline-functions -Wall -Winline \
 -Wwrite-strings
SHLIBS =
LIBSETLDFLAGS = -V2.8.1

For the C++ language:

C++ VENDOR = gnu

CC = g++

LIBSETCCFLAGS = -V2.8.1 -fno-exceptions -fno-rtti
LIBSETCCEXTRA = -O4 -finline -finline-functions -fno-builtin \
 -Wall -Winline -Wwrite-strings
SHLIBS =
LIBSETLDFLAGS = -V2.8.1

Config makefile

The $RTS_HOME/config/<config>/config.mk makefile provides definitions specific
to the combination of the compiler, operating system and TargetRTS configuration.
This makefile is empty for most target/libset combinations. Usually this file will only
be needed to work around issues that may not appear in either the target or libset
alone.

Note: Definitions in this file override the definitions in the target.mk and libset.mk
files.
Libset makefile 65

C An example use of this file for the C language can be found
in$RTS_HOME/config/OSE401T.ppc603-Diab-4.1a/config.mk:

EXEC_EXT = .elf

TARGETCCFLAGS = \

 $(DEFINE_TAG)BIG_ENDIAN \

 $(INCLUDE_TAG)$(OSE_ROOT)/powerpc/include \

 $(INCLUDE_TAG)$(OSE_ROOT)/powerpc/krn-603/include

TARGETLDFLAGS = \

 (DIR_TAG)(OSE_ROOT)/powerpc/lib \

 $(LIB_TAG)inett \

 $(LIB_TAG)inetutil \

 $(LIB_TAG)rtc \

 (DIR_TAG)(OSE_ROOT)/powerpc/krn-603/lib \

 $(LIB_TAG)krn1dpr \

 $(LIB_TAG)krnflib

C++ An example use of this file for the C++ language can be found in
$RTS_HOME/config/VRTX4T.ppc603-Microtec-1.3C/config.mk:

EXEC_EXT = .x

TARGETLIBS = $(USR_MRI)/lib/cppcb.lib

Table defines which make macros can be redefined and where they are set.

Table 4 Make Macro Definitions

Macro Name Defined where Note

TARGET Defined in ms_nmake.mk,
gnu_make.mk and unix_make.mk.

Redefinition not recommended.

CONFIG Defined in default.mk. Redefinition not recommended.

PERL Default defined in default.mk as
"rtperl"

Some compilation hosts may
require an explicit path; if
necessary, redefine in libset.mk
or config.mk.

FEEDBACK Defined in default.mk. Redefinition not recommended.

MERGE Defined in default.mk. Redefinition not recommended.
66 Chapter 4 - Porting the TargetRTS

NOP Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RM Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RMF Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

TOUCH Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RTGEN Defined in default.mk. Redefinition not recommended.

RTCOMP Defined in default.mk. Redefinition not recommended.

RTLINK Defined in default.mk. Redefinition not recommended.

VENDOR Default defined in default.mk as
“generic” and intended to be
overridden in libset.mk.

During porting, this may be left as
“generic”. However, you should
provide an error-parser script
eventually. Since error formats are
typically vendor-specific
(independent of the version of the
compiler or of the compilation
host-type), scripts are identified by
the vendor’s name in libset.mk.

MAKEFILE Defined in default.mk. Redefinition not recommended.

CC Default defined in default.mk to
cause compile-time error; must be
redefined in libset.mk.

Must be redefined in libset.mk
before porting.

DEBUG_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

DEPEND_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

DEFINE_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

INCLUDE_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

LIBSETCCEXTRA Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

Table 4 Make Macro Definitions
Config makefile 67

LIBSETCCFLAGS Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

OBJECT_OPT Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

OBJOUT_OPT Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

OBJOUT_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler.

TARGETCCFLAGS Default defined in default.mk. Add target-specific compilation
flags in target.mk, if necessary.

AR_CMD Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

LIBOUT_OPT Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

LIBOUT_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

RANLIB Default defined in default.mk. Redefine in libset.mk or
target.mk if necessary for a
linker.

LD Default defined in default.mk. Redefine in libset.mk if linker
must be different from compiler
(most compilers can invoke the
linker anyhow), or if a
preprocessing script is necessary.

DIR_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

LIBSETLDFLAGS Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

LIB_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

OT_LIB_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

TARGETLDFLAGS Default defined in default.mk. Redefine in config.mk or
target.mk if necessary for a
linker.

TARGETLIBS Default defined in default.mk. Redefine in config.mk or
target.mk if necessary for a
linker.

Table 4 Make Macro Definitions
68 Chapter 4 - Porting the TargetRTS

EXEOUT_OPT Default defined in default.mk. Redefine in libset.mk or
config.mk if necessary for a
linker.

EXEOUT_TAG Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

EXEC_EXT Default defined in default.mk. Redefine in config.mk,
libset.mk or target.mk if
necessary for a linker.

LIB_PFX Default defined in default.mk. Redefine in config.mk or
libset.mk if necessary for a
linker.

LIB_EXT Default defined in default.mk. Redefine in libset.mk if
necessary for a linker.

OBJ_EXT Default defined in default.mk. Redefine in libset.mk if
necessary for a compiler/linker.

RTSYSTEM_INCPATHS Defined in default.mk. Redefinition not recommended.

RTS_LIBRARY Defined in default.mk. Redefinition not recommended.

SYSTEM_LIBS Defined in default.mk. Redefinition not recommended.

LD_OUT Defined in default.mk. Redefinition not recommended.

LD_HEAD Default defined in default.mk. Redefine in config.mk,
libset.mk or target.mk if
necessary for a linker.

ALL_OBJS_LIST Default defined in default.mk. as
the concatenation of all object files in
the update.

Redefine in libset.mk to
“%$(ALL_OBJS_LISTFILE)” to
pass list of object files to linker (or
linker script), if line length
limitations forbid passing list via
shell.

LD_TAIL Default defined in default.mk. Redefine in config.mk,
libset.mk or target.mk if
necessary for a linker.

CC_HEAD Default defined in default.mk. Redefine in config.mk,
libset.mk or target.mk if
necessary for a compiler.

CC_TAIL Default defined in default.mk. Redefine in config.mk,
libset.mk or target.mk if
necessary for a compiler.

Table 4 Make Macro Definitions
Config makefile 69

70 Chapter 4 - Porting the TargetRTS

5Porting the TargetRTS
for C
Contents

This chapter is organized as follows:

■ Configuring the TargetRTS on page 71
■ Platform-specific Implementation on page 75
■ Adding New Files to the TargetRTS on page 80

Configuring the TargetRTS

Much of the configurability of the TargetRTS is done at the source code file level:
target-specific source files override common source files. This is illustrated in the next
section on platform-specific implementations. However, configurability is also
available within a source file using preprocessor definitions. The configuration is set
in two C header files:

■ $RTS_HOME/target/<target>/RTTarget.h for specifying the operating
system specific definitions.

■ $RTS_HOME/libset/<libset>/RTLibSet.h for specifying the compiler
specific definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOME/include/RTPubl/Config.h. The symbols and their default
values are listed in Table .

Note: In Table , in general, defining a symbol with the value 1 enables (= sets) the
feature the symbol represents and defining it with the value 0 disables (= clears) the
feature.
71

Table 5 Preprocessor Definitions

Symbol Default Value Possible Values Description

USE_THREADS none, must be
defined in the
platform headers
(usually
RTTarget.h)

0 or 1 Determines whether the
single-threaded or
multi-threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-threaded. If
USE_THREADS is 1, the
TargetRTS is multi-threaded.

MESSAGE_

DEFERRAL

1 0 or 1 If 1, message deferral
capabilities per controller will be
present in the TargetRTS. If 0, no
message deferral capabilities at
all.

TIMING_SERVICE 1 0 or 1 If 1, timing service will be
available in the TargetRTS.

TO_OVER_TCP 1if OBSERVABLE 0 or 1 Set to 1 if Target Observability
over TCP/IP should be
supported.

LOG_MESSAGE 1if OTRTSDEBUG
!= DEBUG_NONE

0 or 1 Sets whether the debugger can
log the contents of messages.

LOG_SERVICE 1 0 or 1 Sets whether the
RTLog_show_... methods should
be available or not.

RTS_NAMES 1 0 or 1 Sets whether the name strings in
the data structs should be
present or not.

STDIO_ENABLED 1 0 or 1 Sets whether the RTStdio_ and
RTLog_ methods should be
available or not.

OBJECT_DECODE 1 0 or 1 Enables the conversion of strings
to objects. Needed for Target
Observability.

OBJECT_ENCODE 1 0 or 1 Enables the conversion of
objects to strings. Needed for
Target Observability.

SEND_BY_VALUE 1 0 or 1 If 1, send data using type
descriptors. If 0, just send
pointers.
72 Chapter 5 - Porting the TargetRTS for C

OTRTSDEBUG DEBUG_

VERBOSE

DEBUG_

VERBOSE

Enables the TargetRTS debugger.
It will make it possible to log all
important internal events such
as the delivery of messages, the
creation and destruction of
capsules, and so on. This is
necessary for the target debug
feature.

DEBUG_NONE Reduces the size of the resulting
executable while increasing
performance. However, the RTS
debugger will not be available.

RTS_MEMORY_

POLICY

RTS_CAN_

ALLOCATE if
OBSERVABLE or
PURIFY, else
RTS_NEVER_

ALLOCATE

RTS_CAN_

ALLOCATE

Dynamic memory allocation is
always allowed.

RTS_WARN_

ALLOCATE

Dynamic memory allocation is
always allowed, but a warning
is printed on the console.

RTS_NEVER_

ALLOCATE

Dynamic memory allocation is
not allowed at all after system
initialization.

PURIFY 0 0 or 1 If 1, this flag indicates that the
Purify tool is being used. This
tells the TargetRTS to disable all
object caching, which degrades
performance but allows Purify
to monitor RTMessage objects.

RTS_COMPATIBLE 521 521 or 610 If 521, obsolete features from
ObjecTime Developer 5.2.1 of
the TargetRTS will be present.
Set to 610 to disable backwards
compatibility.

RTS_INLINES 0 0 or 1 Controls whether TargetRTS
header files define any inline
functions.

RTMESSAGE_

PAYLOAD_SIZE

36 any scalar value >= 0 Reserve this many bytes in
RTMessage for small objects.
When data must be copied,
objects that are no larger than
this will use that space in the
message itself rather than
allocated on the heap.

Table 5 Preprocessor Definitions

Symbol Default Value Possible Values Description
Configuring the TargetRTS 73

INTERNAL_LAYER_

SERVICE

1 0 or 1 Should internal SAPs and SPPs
be supported?

MAX_NUM_SPPS 10 any scalar value

> 0

Maximum number of SAPs and
SPPs that can be connected at
any given time.

DEBUGGER_STACK_

SIZE

20480 any scalar value

> 0

Stack size in bytes for the
debugger ("main") thread.

MINIMUM_FREE_

MSGQ_SIZE

5 any scalar value

> 0

When freeing a message, keep at
least this many messages in the
Controller’s free list.

DEFAULT_FREE_

MSGQ_SIZE

10 any scalar value >

MINIMUM_

FREE_

MSGQ_SIZE

When freeing a message, keep at
most this many messages in the
Controller’s free list.

RTS_CLEANUP_

MECHANISM

1 0 or 1 If 1, provide destructors and call
them on shutdown, etc. If 0, do
not (this is a space
optimization).

MULTIPLE_

PRIORITIES

1 0 or 1 If 1, there are 6 distinct priorities
and 6 message queues per
controller. If 0, there is only 1
priority and 1 queue per
controller.

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains for
better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule
methods for better performance
at the expense of potentially
larger executable memory size.

OBSERVABLE 1 if debugger,
decoding and
encoding all are
enabled.

0 or 1 The ability to use the Target
Observability facilities.

Table 5 Preprocessor Definitions

Symbol Default Value Possible Values Description
74 Chapter 5 - Porting the TargetRTS for C

Platform-specific Implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/src
directory. In this directory, there is a subdirectory for each class. In general, within
each subdirectory there is one source file for each method in the class. Wherever
possible, the name of the source file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these
methods. Additionally, some of the methods that do not have default behaviors must
be provided. The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is defined by
$target_base variable in the file setup.pl file (see Creating a Setup Script (setup.pl) on
page 54). The target name often appears with the trailing ‘S’ or ‘T’. The name defaults
to the target name without the "S" or "T" if the variable $target_base is not defined in
the setup.pl file. For the remainder of this section, the target directory is referred to as
$TARGET_SRC. For example, the target source directory for <target> SUN5T is
$RTS_HOME/src/target/SUN5. This directory provides an overlay to the
$RTS_HOME/src directory. When the TargetRTS loadbuild tools search for the
source for a method, it searches first in the $TARGET_SRC directory, then in
$RTS_HOME/src.

Note: There is only a single source directory for all configurations of the TargetRTS for
a given platform. C preprocessor macros, such as USE_THREADS, may be used to
differentiate code for specific configurations.

There is a sample port in the $RTS_HOME/target/sample subdirectory to use as a
template for a port to a new target. These implementations can be incorporated into a
target implementation by copying the contents of these subdirectories into the
$TARGET_SRC directory. You may also want to search the other target
subdirectories to verify that the implementation of various TargetRTS classes
resembles your target RTOS. You can copy any required code to the new
$TARGET_SRC directory.

Table 6 shows the functions that must be provided in any port of the TargetRTS. These
are the minimum requirements for a new port, as most ports will include changes to
more classes than those listed.

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTTimespec_clock_gettime()

RTThread_construct()
Platform-specific Implementation 75

The remainder of this section discusses the most common required implementation
code required for a new target.

Method RTTimespec_clock_gettime(timespec)

To implement the Timing service, the TargetRTS uses the time of day clock. The
method RTTimespec_clock_gettime(), found in the file
$TARGET_SRC/Timespec/getclock.c, gets the time of day from the operating
system. There is no default implementation of this method and it must be provided
by the target. The format of this time of day is the POSIX-style struct timespec
which contains two fields: the number of seconds and the number of nanoseconds
from some fixed point of time. This fixed point is usually the Universal Time reference
point of January 1, 1970. This does not need to be the case. However, to support
absolute time-outs, the TargetRTS assumes that the reference time is midnight of some
day.

Constructor RTThread_construct(this,job,priority,stacksize)

To support multi-threading, the TargetRTS provides the class RTThread. The
constructor should create a stack and start a new thread using RTThread_run(this) as
its entry point. There is no default implementation; any multi-threaded target
implementation must provide the constructor for this class in the file
$TARGET_SRC/Thread/ct.c.

Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes
implemented by the class RTMutex. There is no default declaration or
implementation. The description of the RTMutex class should be placed in the file
$TARGET_SRC/RTPriv/Mutex.h.

RTMutex (all 4 methods)

RTSyncObject (all 5 methods)

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions
76 Chapter 5 - Porting the TargetRTS for C

There are four methods to RTMutex:

■ RTMutex_construct(this) - the constructor, in
$TARGET_SRC/Mutex/ct.c, performs any initialization of the mutex.

■ RTMutex_destruct(this) - the destructor, in
$TARGET_SRC/Mutex/dt.c, performs any clean up when the mutex is no
longer required.

■ RTMutex_enter(this) - in $TARGET_SRC/Mutex/enter.c, locks the
mutex if it is available, or blocks the current thread until it is available.

■ RTMutex_leave(this) - in $TARGET_SRC/Mutex/leave.c, frees the
mutex and unblocks the first thread waiting on the RTMutex_enter().

Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by
class RTSyncObject. Many operating systems provide what is known as a ‘binary
semaphore’. A synchronization object is essentially the same thing. Many
implementations of a semaphore, however, do not provide a wait (or ‘pend’) with
time-out. The lack of this time-out feature requires the use of a more heavyweight
implementation using a mutex and a condition variable (POSIX condition variables
have a ‘timedwait’ feature). A description of each method can be found in the
$RTS_HOME/src/target/sample/SyncObj directory. There is no default
declaration or implementation. The description of the RTSyncObject class should
be placed in the file $TARGET_SRC/RTPriv/SyncObj.h. The implementation of
five methods is required:

■ RTSyncObject_construct(this) - the constructor, in
$TARGET_SRC/SyncObj/ct.c, performs any initialization required.

■ RTSyncObject_destruct(this) - the destructor, in
$TARGET_SRC/SyncObj/dt.c, performs any clean up given that the sync
object is no longer required.

■ RTSyncObject_signal(this) - in
$TARGET_SRC/SyncObj/signal.c. Signal this synchronization object. If
the owner is currently waiting, it should be readied. Otherwise the state of this
object should be such that the next call to wait or timedwait made by the owner
will not block. Signalling a second or subsequent time should have no effect.

■ RTSyncObject_timedwait(this, expiryTime) - in
$TARGET_SRC/SyncObj/timewait.c. Wait for this synchronization object
to be signalled. Only the owning thread is permitted to use this function. If the
object is in the 'signalled' state it should be reset to 'unsignalled' and the function
Platform-specific Implementation 77

should return immediately. Otherwise the current thread should block until either
the object is signalled by another thread or the absolute expiry time arrives,
whichever occurs first. The object should always be left in the 'unsignalled' state.

■ RTSyncObject_wait(this) - in $TARGET_SRC/SyncObj/wait.c.
Wait for this synchronization object to be signalled. Only the owning thread is
permitted to use this function. If the object is in the 'signalled' state it should be
reset to 'unsignalled' and the function should return immediately. Otherwise the
current thread should block until the object is signalled by another thread. The
object should always be left in the 'unsignalled' state.

main() function

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMain_entryPoint(int argc, const char * const * argv),
passing in the arguments to the program. This code is placed in the file
$TARGET_SRC/Main/main.c.

On many platforms, this is the code for the main() function, which simply passes
argc and argv directly. However, on other platforms, these parameters must be
constructed. For example, with Tornado, the arguments to the program are placed on
the stack. An array of strings containing the arguments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to an executable,
default arguments for use by RTMain_entryPoint() can be defined in the
toolset. These arguments are made available by the code generator, and can be used
by overriding main() to call RTMain_entryPoint(0, (const char *
const *)0); instead.

Class RTMain

RTMain_entryPoint() indirectly via RTMain_mainLine() calls a number of
methods for target-specific initialization and shutdown. These methods are as
follows:

■ RTMain_startup() - in file $TARGET_SRC/Main/startup.c, it
initializes the target in preparation for execution of the model. This includes things
such as setting the priority of the main thread, calling static constructors, and
initializing devices, for example, timers and consoles. Note that on most platforms
this method is empty.

■ RTMain_shutdown() - in file $TARGET_SRC/Main/shutdown.c, it
generally undoes the initialization that was performed in RTMain_startup(),
for example, calling static destructor and cleaning up operating resources such as
file descriptors.
78 Chapter 5 - Porting the TargetRTS for C

■ RTMain_installHandlers() - in file
$TARGET_SRC/Main/allHand.c. In addition to target start-up and
shutdown, RTMain_mainLine() also calls this method to install Unix style
signal handlers, where available. These signal handlers are used by the single
threaded TargetRTS for timer and I/O interrupts. If the target OS does not
implement signal handlers, this method can be overridden by an empty method.

■ RTMain_installOneHandler() - in file
$TARGET_SRC/Main/oneHand.c. This method is used by
RTMain_installHandlers() to install the Unix style signal handlers. These
signal handlers are used by the single threaded TargetRTS for timer and I/O
interrupts. If the target OS does not implement signal handlers, this method can be
overridden by an empty method.

Method RTStdio_putString()

The RTStdio class handles output of diagnostic messages to the standard error. If
your target does not support the fputs() function, you must supply a replacement
for the RTStdio_putString() method in
$TARGET_SRC/Stdio/string.c. This method outputs a string to the standard
error device.

Method RTDebuggerInput_nextChar()

The RTDebuggerInput class handles the input to the TargetRTS debugger. If your
target system does not support the fgetc() function, then you must supply a
replacement for the RTDebuggerInput_nextChar() method in
$TARGET_SRC/DebugInp/nextChar.c. This method reads individual
characters from the standard input device.

Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets
library of the target operating system. Many operating systems provide the familiar
BSD sockets interface. If this is the case then little modification is necessary. Typically,
small changes to data types are needed to satisfy the sockets interface. If code changes
are required, override the functions in RTinet.

Note: This class is not necessary if you do not use Target Observability (set the
OBSERVABLE macro to 0), and if your application does not require TCP/IP
networking.
Platform-specific Implementation 79

Class RTIOMonitor

The RTIOMonitor class is used to monitor activity on a set of TCP/IP sockets. This
class makes use of file descriptor sets and the select() function. There may be
differences in the way these sets are implemented on your target operating system.

File main.c

The file main.c contains the main function for the TargetRTS and therefore the
entire application. Some operating systems already have a main function defined.
This file must be modified to take this into account. A typical solution is to create a
root thread, which in turn calls the entry point to the TargetRTS,
RTMain_entryPoint().

Adding New Files to the TargetRTS

If you create a new method in a new file for an existing class, or you are adding a new
class to the TargetRTS, then you must add the new file names to a manifest file. This
must be done in order for the dependency calculations to include the new files and
thus include them into the TargetRTS.

The MANIFEST.c File

This file lists all the elements of the run-time system. There is one entry per line, and
each entry has two or more fields separated by white space. The first field is a
directory name. The second field is the base name of a file. By convention the
directory name and file name typically correspond to the class name and member
name, respectively. The third and subsequent fields, if present, give an expression that
evaluates to zero when the element should be excluded. Note that the expression is
evaluated by Perl and so should be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the TargetRTS, you
must add an entry to the $RTS_HOME/src/MANIFEST.c file for this file. By
convention, the entry should be placed next to the other files for the specific class that
you have modified. If you are adding a whole class, then place the entries next to the
super class if it exists, or next to similar classes in the MANIFEST.c file.

Be sure to associate the new entry with the proper GROUP, see MANIFEST.c for
details.

A target base directory can optionally contain the file called RTPriv/TGTRFEST.c that
uses the same format and services to specify file names to that particular target base.
80 Chapter 5 - Porting the TargetRTS for C

Regenerating make Dependencies

If a file has been overridden in $TARGET_SRC directory or a new file has been added
to the MANIFEST.c, you must regenerate the dependencies in order for the
modification to be included in the new TargetRTS. This is done by removing the
depend.mk file in the build directory, $RTS_HOME/build-<config>. This will
cause the dependencies to be recalculated and a new depend.mk file to be created.
Adding New Files to the TargetRTS 81

82 Chapter 5 - Porting the TargetRTS for C

6Porting the TargetRTS
for C++
Contents

This chapter is organized as follows:

■ Configuring the TargetRTS on page 83
■ Platform-specific Implementation on page 88
■ Adding New Files to the TargetRTS on page 93

Configuring the TargetRTS

Much of the configurability of the TargetRTS is done at the source code file level:
target-specific source files override common source files. This is illustrated in the next
section on platform-specific implementations. However, configurability is also
available within a source file using preprocessor definitions. The configuration is set
in two C++ header files:

■ $RTS_HOME/target/<target>/RTTarget.h for specifying the operating
system specific definitions.

■ $RTS_HOME/libset/<libset>/RTLibSet.h for specifying the compiler
specific definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOME/include/RTConfig.h. The symbols and their default values are
listed in Table 7.

Note: In Table 7, in general, defining a symbol with the value 1 enables (= sets) the
feature the symbol represents and defining it with the value 0 disables (= clears) the
feature.
83

Table 7 Preprocessor Definitions

Symbol Default Value Possible Values Description

USE_THREADS none, must be
defined in the
platform headers
(usually
RTTarget.h)

0 or 1 Determines whether the
single-threaded or
multi-threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-threaded.
If USE_THREADS is 1, the
TargetRTS is multi-threaded.

DEFER_IN_ACTOR 0 0 or 1 If 1, there will be one defer
queue in each capsule. If 0,
there will only be one defer
queue per controller. This is a
size/speed trade-off.
Separate queues for each
capsule uses more memory
but results in better
performance.

HAVE_INET 1 0 or 1 Set to 1 if TCP/IP is
supported.

INTEGER_POSTFIX 1 0 or 1 Sets whether the compiler
understands the post
increment operator on
classes. i.e.

Class x; x++;

LOG_MESSAGE 1 0 or 1 Sets whether the debugger
can log the contents of
messages.

OBJECT_DECODE 1 0 or 1 Enables the conversion of
strings to objects, needed for
Target Observability.

OBJECT_ENCODE 1 0 or 1 Enables the conversion of
objects to strings. Needed for
Target Observability.
84 Chapter 6 - Porting the TargetRTS for C++

OTRTSDEBUG DEBUG_VERBOSE DEBUG_VERBOSE Enables the TargetRTS
debugger. It will make it
possible to log all important
internal events such as the
delivery of messages, the
creation and destruction of
capsules, and so on. This is
necessary for the target
observability feature.

DEBUG_TERSE Reduces the size of the
resulting executable at the
expense of limiting the
amount of debug
information.

DEBUG_NONE Further reduces the
executable size, while
increasing performance.
However, the RTS debugger
will not be available.

PURIFY 0 0 or 1 If 1, this flag indicates that
the Purify tool is being used.
This tells the TargetRTS to
disable all object caching,
which degrades performance
but allows Purify to monitor
RTMessage objects.

RTS_COMPATIBLE 520 520, 600 or 620 If 520, obsolete features from
ObjecTime Developer 5.2 of
the TargetRTS will be
present. If 600, obsolete
features from version 6.0 of
the TargetRTS will be
present. Set to 620 to disable
backwards compatibility.

RTS_COUNT 0 0 or 1 If this flag is 1, the TargetRTS
will keep track of the number
of messages sent, the number
of capsules incarnated, and
other statistics. Naturally,
keeping track of statistics
adds overhead.

RTS_INLINES 1 0 or 1 Controls whether TargetRTS
header files define any inline
functions.

Table 7 Preprocessor Definitions

Symbol Default Value Possible Values Description
Configuring the TargetRTS 85

RTFRAME_

THREAD_SAFE

1 0 or 1 Setting this macro to 1
guarantees that the frame
service is thread safe. This is
an option because some
applications may use the
frame service in ways that
don't require this level of
safety.

RTFRAME_

CHECKING

RTFRAME_

CHECK_STRICT

RTFRAME_

CHECK_STRICT

The frame service is intended
to provide operations on
components of the capsules
which have a frame SAP.
Here, references must be in
same capsule.

RTFRAME_

CHECK_LOOSE

References must be in same
thread (but not the same
capsule).

RTFRAME_

CHECK_NONE

No checking is done. This is
compatible with ObjecTime
Developer pre-5.2.

RTMESSAGE_

PAYLOAD_SIZE

100 any scalar value >= 0 Reserve this many bytes in
RTMessage for small objects.
When data must be copied,
objects that are no larger than
this will use that space in the
message itself rather than
allocated on the heap.

RTREAL_INCLUDED 1 0 or 1 Should the class RTReal be
present? Target
environments that don't
support floating point data
types, or can't afford them,
should set it to 0.

Table 7 Preprocessor Definitions

Symbol Default Value Possible Values Description
86 Chapter 6 - Porting the TargetRTS for C++

RTTYPECHECK_

PROTOCOL

RTTYPECHECK_

WARN

RTTYPECHECK_

FAIL

What to do about protocols
which have signals of
incompatible data types? Set
error code, fail operation.

RTTYPECHECK_

WARN

Set error code, but proceed.

RTTYPECHECK_

DONT

No checking.

RTTYPECHECK_

SEND

RTTYPECHECK_

WARN

(see above) What to do about send,
invoke or reply when the
signal or type is incompatible
with the protocol?

RTTYPECHECK_

RECEIVE

RTTYPECHECK_

DONT or RTTYPE-

CHECK_WARN
(depending on the
two above)

(see above) Should signal be checked for
signal and type compatibility
as it is received?

RTQUALIFY_

NESTED

0 0 or 1 Some compilers have trouble
with the class nesting for
protocol backwards
compatibility and require the
class names to be fully
qualified.

RTUseBitFields 0 0 or 1 Some structures can be made
smaller through the use of
bit-fields. This space savings
often comes at the expense of
greater code bulk.

SUSPEND 0 0 The ability to 'suspend'
capsules is currently
unsupported. Leave at 0.

RTStateId_MaxSize 2 bytes (< 65536
states)

1 byte (<256 states), 2
bytes, or 4 bytes
(>=65536 states)

Maximum number of bytes
allocated to store each state
id.

RTStateId This is a typedef calculated from the value of RTStateId_MaxSize.

Do not modify directly, adjust RTStateId_MaxSize instead.

Table 7 Preprocessor Definitions

Symbol Default Value Possible Values Description
Configuring the TargetRTS 87

Platform-specific Implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/src
directory. In this directory, there is a subdirectory for each class. In general, within
each subdirectory there is one source file for each method in the class. Wherever
possible, the name of the source file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these
methods. Additionally, some of the methods that do not have default behaviors must
be provided. The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is the
target name without the trailing ‘S’ or ‘T’. For the remainder of this section, the target
directory is referred to as $TARGET_SRC. For example, the target source directory
for <target> PSOS2T is $RTS_HOME/src/target/PSOS2. This directory
provides an overlay to the $RTS_HOME/src directory. When the TargetRTS
loadbuild tools search for the source for a method, it searches first in the
$TARGET_SRC directory, then in $RTS_HOME/src.

Note: There is only a single source directory for all configurations of the TargetRTS for
a given platform. C++ preprocessor macros, such as USE_THREADS, may be used to
differentiate code for specific configurations.

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains
for better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule
methods for better
performance at the expense
of potentially larger
executable memory size.

OBSERVABLE 1 if debugger, inet,
decoding and
encoding all are
enabled.

0 or 1 The ability to use the Target
Observability facilities.

EXTERNAL_LAYER 0 0 The "els" connection service
is not provided. Leave at 0.

Table 7 Preprocessor Definitions

Symbol Default Value Possible Values Description
88 Chapter 6 - Porting the TargetRTS for C++

There is a sample port in the $RTS_HOME/src/target/sample subdirectory to
use as a template for a port to a new target. These implementations can be
incorporated into a target implementation by copying the contents of these
subdirectories into the $TARGET_SRC directory. You may also want to search the
other target subdirectories to verify that the implementation of various TargetRTS
classes resembles your target RTOS. You can copy any required code to the new
$TARGET_SRC directory.

Table 8 shows the classes and functions that must be provided in any port of the
TargetRTS. These are the minimum requirements for a new port, as most ports will
include changes to more classes than those listed.

The remainder of this section discusses the most common required implementation
code required for a new target.

Method RTTimespec::getclock()

To implement the Timing service, the TargetRTS uses the time of day clock. The
method RTTimespec::getclock(), found in the file
$TARGET_SRC/RTTimespec/getclock.cc, gets the time of day from the
operating system. There is no default implementation of this method and it must be
provided by the target. The format of this time of day is the POSIX-style
RTTimespec which contains two fields: the number of seconds and the number of
nanoseconds from some fixed point of time. This fixed point is usually the Universal
Time reference point of January 1, 1970. This does not need to be the case. However, to
support absolute time-outs, the TargetRTS assumes that the reference time is midnight
of some day.

Table 8 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTTimespec::getclock()

RTThread::RTThread()

RTMutex (all 4 methods)

RTSyncObject (all 5 methods)
Platform-specific Implementation 89

Constructor RTThread::RTThread()

To support multi-threading, the TargetRTS provides the class RTThread. The
constructor should create a stack and start a new thread using job->mainLoop() as
its entry point. There is no default implementation, the target implementation must
provide the constructor for this class in the file
$TARGET_SRC/RTThread/ct.cc.

Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes
implemented by the class RTMutex. There is no default declaration or
implementation. The description of the RTMutex class should be placed in the file
$TARGET_SRC/RTMutex.h. There are four methods to RTMutex:

■ RTMutex() - the constructor, in $TARGET_SRC/RTMutex/ct.cc, performs
any initialization of the mutex.

■ ~RTMutex() - the destructor, in $TARGET_SRC/RTMutex/dt.cc,
performs any clean up when the mutex is no longer required.

■ enter() - in $TARGET_SRC/RTMutex/enter.cc, locks the mutex if it is
available, or blocks the current thread until it is available.

■ leave() - in $TARGET_SRC/RTMutex/leave.cc, frees the mutex and
unblocks a thread waiting on the enter().

Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by
class RTSyncObject. Many operating systems provide what is known as a ‘binary
semaphore’. A synchronization object is essentially the same thing. Many
implementations of a semaphore, however, do not provide a wait (or ‘pend’) with
time-out. The lack of this time-out feature requires the use of a more heavyweight
implementation using a mutex and a condition variable (POSIX condition variables
have a ‘timedwait’ feature). A description of each method can be found in the
$RTS_HOME/src/target/sample/RTSyncObject directory. There is no
default declaration or implementation. The description of the RTSyncObject
should be in the file $TARGET_SRC/RTSyncObject.h.
90 Chapter 6 - Porting the TargetRTS for C++

The implementation of five methods is required:

■ RTSyncObject() - the constructor, in
$TARGET_SRC/RTSyncObject/ct.cc, performs any initialization required.

■ ~RTSyncObject() - the destructor, in
$TARGET_SRC/RTSyncObject/dt.cc, performs any clean up given that
the sync object is no longer required.

■ signal() - in $TARGET_SRC/RTSyncObject/signal.cc. Signal this
synchronization object. If the owner is currently waiting, it should be readied.
Otherwise the state of this object should be such that the next call to wait or
timedwait made by the owner will not block. Signalling a second or subsequent
time should have no effect.

■ wait() - in $TARGET_SRC/RTSyncObject/wait.cc. Wait for this
synchronization object to be signalled. Only the owning thread is permitted to use
this function. If the object is in the 'signalled' state it should be reset to 'unsignalled'
and the function should return immediately. Otherwise the current thread should
block until the object is signalled by another thread. The object should always be
left in the 'unsignalled' state.

■ timedwait() - in $TARGET_SRC/RTSyncObject/timedwait.cc. Wait
for this synchronization object to be signalled. Only the owning thread is
permitted to use this function. If the object is in the 'signalled' state it should be
reset to 'unsignalled' and the function should return immediately. Otherwise the
current thread should block until either the object is signalled by another thread or
the absolute expiry time arrives, whichever occurs first. The object should always
be left in the 'unsignalled' state.

main() function

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMain::entryPoint(int argc, const char * const * argv),
passing in the arguments to the program. This code is placed in the file
$TARGET_SRC/MAIN/main.cc.

On many platforms, this is the code for the main() function, which simply passes
argc and argv directly. However, on other platforms, these parameters must be
constructed. For example, with Tornado, the arguments to the program are placed on
the stack. An array of strings containing the arguments must be explicitly created.
Platform-specific Implementation 91

If the platform does not provide a mechanism for passing arguments to an executable,
default arguments for entryPoint() can be defined in the toolset. These
arguments are made available by the code generator, and can be used by overriding
main() to call RTMain::entryPoint(0, (const char * const *)0
); instead.

Class RTMain

RTMain::mainLine() indirectly calls a number of methods for target-specific
initialization and shutdown. These methods are as follows:

■ targetStartup() - in file
$TARGET_SRC/RTMain/targetStartup.cc, it initializes the target in
preparation for execution of the model. This includes things such as initializing
devices, for example, timers and consoles.

■ targetShutdown() - in file
$TARGET_SRC/RTMain/targetShutdown.cc, it generally undoes the
initialization that was performed in targetStartup(), for example, cleaning
up operating resources such as file descriptors.

■ installHandlers() - in file
$TARGET_SRC/RTMain/installHandlers.cc. In addition to target
start-up and shutdown, RTMain::mainLine() also calls this method to install
Unix style signal handlers, where available. These signal handlers are used by the
single threaded TargetRTS for timer and I/O interrupts. If the target OS does not
implement signal handlers, this method can be overridden by an empty method.

■ installOneHandler() - in file
$TARGET_SRC/RTMain/installOneHandler.cc. This method is used by
RTMain::installHandlers() to install the Unix style signal handlers.
These signal handlers are used by the single threaded TargetRTS for timer and I/O
interrupts. If the target OS does not implement signal handlers, this method can be
overridden by an empty method.

Method RTDiagStream::write()

The RTDiagStream class handles output of diagnostic messages to the standard
error. If your target does not support the fputs() function, you must supply a
replacement for the RTDiagStream::write() method in
$TARGET_SRC/RTDiagStream/write.cc. This method outputs a string to the
standard error device.
92 Chapter 6 - Porting the TargetRTS for C++

Method RTDebuggerInput::nextChar()

The RTDebuggerInput class handles the input to the TargetRTS debugger. If your
target system does not support the fgetc() function, then you must supply a
replacement for the RTDebuggerInput::nextChar() method in
$TARGET_SRC/RTDebuggerInput/nextChar.cc. This method reads
individual characters from the standard input device.

Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets
library of the target operating system. Many operating systems provide the familiar
BSD sockets interface. If this is the case then little modification is necessary. Typically,
small changes to data types are needed to satisfy the sockets interface. If code changes
are required, override the functions in RTinet.

Note: This class is not necessary if you do not plan to use Target Observability (Set
the OBSERVABLE macro to 0), and if your application does not require TCP/IP
networking.

Class RTIOMonitor

The RTIOMonitor class is used to monitor activity on a set of TCP/IP sockets. This
class makes use of file descriptor sets and the select() function. There may be
differences in the way these sets are implemented on your target operating system.
Only RTIOMonitor::wait should need modification.

File main.cc

The file main.cc contains the main function for the TargetRTS and therefore the
entire application. Some operating systems already have a main function defined.
This file must be modified to take this into account. A typical solution is to create a
root thread, which in turn calls the entry point to the
TargetRTS, RTMain::entryPoint().

Adding New Files to the TargetRTS

If you create a new method in a new file for an existing class, or you are adding a new
class to the TargetRTS, then you must add the new file names to a manifest file. This
must be done in order for the dependency calculations to include the new files and
thus include them into the TargetRTS.
Adding New Files to the TargetRTS 93

The MANIFEST.cpp File

This file lists all the elements of the run-time system. There is one entry per line, and
each entry has two or more fields separated by white space. The first field is a
directory name. The second field is the base name of a file. By convention the
directory name and file name typically correspond to the class name and member
name, respectively. The third and subsequent fields, if present, give an expression that
evaluates to zero when the element should be excluded. Note that the expression is
evaluated by Perl and so should be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the TargetRTS, you
must add an entry to the $RTS_HOME/src/MANIFEST.cpp file for this file. By
convention, the entry should be placed next to the other files for the specific class that
you have modified. If you are adding a whole class, then place the entries next to the
super class if it exists, or next to similar classes in the MANIFEST.cpp file.

If the added file is target specific, add an entry to
$TARGET_SRC/TARGET-MANIFEST.cpp instead (create this file if it doesn’t
exist already).

In both cases, be sure to associate the new entry with the proper GROUP, see
MANIFEST.cpp for details.

Regenerating make Dependencies

If a file has been overridden in $TARGET_SRC directory or a new file has been added
to the MANIFEST.cpp, you must regenerate the dependencies in order for the
modification to be included in the new TargetRTS. This is done by removing the
depend.mk file in the build directory, $RTS_HOME/build-<config>. This will
cause the dependencies to be recalculated and a new depend.mk file to be created.
94 Chapter 6 - Porting the TargetRTS for C++

7Modifying the Error
Parser
Contents

This chapter is organized as follows:

■ Overview of the Error Parser on page 95
■ How the Error Parser Works on page 96
■ Reusing an Existing Error Parser on page 98
■ Creating a New Error Parser on page 98

Overview of the Error Parser

The error parser is intended to convert specific compiler (or linker) error messages
into a format that can be browsed by the modeling user from the Build Errors tab
within the toolset. Whenever possible, the format identifies a browseable model
element, as well as including the description and the severity of the compiler
message.

Typically, compilers cite a particular line-number of a source file when producing an
error or warning message. Since the source files are generated by the code-generator,
the line numbers are meaningless to the modeling user. The error parser provides a
mechanism to translate a line-number from an arbitrary source file into a reference to
a particular model element. The intention is that the modeling user can double-click a
compiler message and see where the problem occurred in the model: for example
which transition, or which member definition. The user can then take corrective
action and compile the model again. Unfortunately (as with hand-written source
files), the corrective action is not always necessary where the problem occurred, but it
is usually a good start.

Most linker messages do not cite a particular line-number, since their problems are
typically about undefined symbols, multiply defined symbols or misuses of the
command-line options. In these cases, the errors can be resolved by modifying a
component within the model. It is not possible to always correctly determine which
component property, or even which component produced the message (typically the
executable component is tagged).
95

The error parser is intended as a convenience to the model designer, but it cannot
correctly identify the source model-element for all errors, including compiler
command-line errors, compilation errors caused by external header files or linkage
errors. In these cases, no model-element is given, but an error message should still be
returned to the toolset.

How the Error Parser Works

Before modifying the error parser, it is important to understand how it works.

The Error Parsing Rules

The error parsing rules are considered vendor-specific; they do not vary dramatically
between compilation host platforms or between subsequent compiler-version
releases. Each libset references its associated error parser via the VENDOR make
macro in the $RTS_HOME/libset/<libset>/libset.mk file. For each
vendor name <vendor>, there is a corresponding subdirectory
$RTS_HOME/codegen/compiler/<vendor>. In each of these directories there
are two Perl scripts, comp.pl and link.pl. These two files contain a set of regular
expressions (regexps), along with a handler function pointer for each regexp.

Each regexp used is a Perl regular expression. If you are not familiar with Perl or
regular expressions in general, it is suggested that you obtain a Perl book or find an
equivalent reference online. As an example, the two O’Reilly books Programming Perl
and Mastering Regular Expressions are excellent sources of Perl and regexp
information.

When the code that was generated from the Rational Rose RealTime toolset is
compiled, it is done via the main compilation controller script
$RTS_HOME/codegen/rtcomp.pl. This script loads the vendor-specific regular
expressions in $RTS_HOME/codegen/compiler/<vendor>/comp.pl and
applies these regexps to each line printed by the compiler.

The same procedure is done while linking, but it’s done by the main linking controller
script $RTS_HOME/codegen/rtlink.pl which loads the vendor-specific
regular expressions in
$RTS_HOME/codegen/compiler/<vendor>/link.pl instead.
96 Chapter 7 - Modifying the Error Parser

How "rtcomp.pl" Integrates With the Compiler

Once issued by the make utility, every compilation command-line is wrapped in a call
to a perl script "rtcomp.pl". For example, if working in C++,

C++ > rtperl "C:\RoseRT6.2/C++/TargetRTS/codegen/rtcomp.pl" \
-vendor VisualC++ -spacify dq \
-I ../src -componentname NewComponent1 \
-src NewCapsule1 ../src/NewCapsule1.cpp -- \
cl /c /FoNewCapsule1.OBJ /nologo /G5 /GX /GF /MD /TP \
/I"C:\RoseRT6.2/C++/TargetRTS/libset/x86-VisualC++-6.0" \
/I"C:\RoseRT6.2/C++/TargetRTS/target/NT40T" \
/I"C:\RoseRT6.2/C++/TargetRTS/include" /Zi /I../src \
../src/NewCapsule1.cpp

!> Compiling NewCapsule1
NewCapsule1.cpp
../src/NewCapsule1.cpp(25) : error C2065: 'i' : undeclared identifier
GES capsuleClass 'NewCapsule1' transition ':TOP:Initial:Initial' line
'1' description 'C2065: ''i'' : undeclared identifier' severity
'error'

The perl script "rtcomp.pl" has the following functions:

■ It explicitly provides feedback on the current activity ("!> Compiling
NewCapsule1")

■ If necessary, it creates GES (Generic Error Stream) errors based on incorrect
command-line usage (typically these are tagged to the component).

■ It runs the compiler, using the command-line arguments following the --
argument. Compiler output is captured for error parsing and conversion to GES.

■ Assuming the compilation was successful, the perl script performs compilation
dependency analysis and stores the results in local .dep files for future
build-avoidance. (This step is skipped when the Compilation Make Type is
"ClearCase_clearmake" or "ClearCase_omake".)

■ It returns an exit code (back to the Makefile) indicating the compilation's success
or failure, depending on the existence of any errors.

While parsing the errors, any reference to a source-file line-number is converted into a
model element reference by scanning through the offending file to see if the offending
line-number is embedded within a pair of RME (Referable Model Element) labels.
These RME labels are provided by the code generator for exactly this purpose.

The resulting message is printed out in GES (Generic Error Stream) format, an internal
format. GES format must start with "GES" and must contain a description and severity
field. Other fields identifying the model element will only be provided if they can be
found.
How the Error Parser Works 97

Reusing an Existing Error Parser

If you are porting to a new libset, but using an existing compiler vendor, just set the
VENDOR make macro in the $RTS_HOME/libset/<libset>/libset.mk file
to reference the existing vendor, and the error parsing port is done.

Creating a New Error Parser

If you are porting to a new vendor, you will first need to pick a vendor name
<vendor>. Then create the directory
$RTS_HOME/codegen/compiler/<vendor> and the two files comp.pl and
link.pl in this directory.

Each of the files should contain the following (reading this requires some knowledge
of Perl):

■ The package identifier: package config; first in the file.

■ An array, @handlers, where each element is a reference to an array with two
elements: the regexp matching string, and a reference to the associated handler
routine.

■ A line saying return 1; (or just 1;) at the end of the file, to indicate to Perl that
this file was loaded and initialized OK.

A typical comp.pl, for the vendor VisualC++ (Microsoft Visual C++), contains the
following:

package config;

@handlers =
(
 ['^(.*)\((\d+)\)\s+:\s+fatal error (.*)',
 sub { rterror::action_print($1, $2, $3, 0); }],
 ['^(.*)\((\d+)\)\s+:\s+error (.*)',
 sub { rterror::action_print($1, $2, $3, 0); }],
 ['^(.*)\((\d+)\)\s+:\s+warning (.*)',
 sub { rterror::action_print($1, $2, $3, 1); }],
 ['(warning.*)', sub { rterror::action_message($1, 1); }],
 ['(fatal error.*)', sub { rterror::action_message($1, 0); }]
);

return 1;
98 Chapter 7 - Modifying the Error Parser

In this example you can see that each of the five elements in the @handlers array is
a reference to another array with two elements (as indicated by the [,] notation).
The first of these two elements is a string containing the regexp we’re trying to match,
and the second element contains a reference to the handler routine. The regexps are
written so that they’ll save (as indicated by the () notation) the file name, the line
number and the descriptive message in the variables $1, $2 and $3 respectively.
These variables are used in the call to the Perl handler routines
rterror::action_print() and rterror::action_message().

When compiling the generated code (or linking, in which case the script link.pl is
used), each line printed by the compiler (linker) is matched against the regular
expressions in the @handlers array, starting with the first (topmost) regexp. If there
is no match, the next regexp below is tried and so on, until there either was a match,
or we’ve come to the end of the @handlers array. The default behavior for an
unmatched compiler message is to ignore the message.

The following three handler methods can be used inside the sub { ... } part:

rterror::action_print($fileName, $lineNr, $msg, $severity);

If fileName exists, it prints the RME tag from the file, along with line number,
message and the severity text (0 for ’error’, 1 for ’warning’). If fileName wasn’t found,
it prints the file name, line number, message and severity text.

rterror::action_message($msg, $severity);

Prints the message and the severity text, optionally prepended by the component
name, if known. This is particularly useful when the error is likely in a component
(such as errors during linking, or problems with compiler flags).

rterror::action_ignore();

Does not take parameters and does nothing.

You will need to figure out what error expressions your compiler and linker generate,
and populate the @handlers array in comp.pl or link.pl with appropriate
regular expressions. There are a couple of ways to efficiently determine what the
errors your compiler generates looks like:

1 Write a model that contains a representative set of compilation errors, compile it,
and observe the output for the errors it generates. Add expressions one at a time
and recompile until you have successfully captured all the errors.

2 Use programs that search the actual compiler or linker executable for strings. Then
manually examine the output and intelligently determine which of the strings look
like error statements.
Creating a New Error Parser 99

100 Chapter 7 - Modifying the Error Parser

8Testing the TargetRTS
Port
Contents

This chapter is organized as follows:

■ Overview on page 101
■ HelloWorld Model on page 101
■ Other Test Models on page 102
■ Other Resources on page 102

Overview

A port to a new platform requires testing the TargetRTS. There are some standard
Rational Rose RealTime models that are part of the installation and can be used to test
the functionality of the TargetRTS. These tests are not comprehensive but provide
some assurance that the port was successful.

HelloWorld Model

C++ This model is available in:

 $ROSERT_HOME/Tutorials/gstarted/QuickstartTutorial.rtmdl

The HelloWorld model is a single capsule model that uses the Log service to output
“Hello World” to the target console. It makes use of the Log service to output the
message. The HelloWorld model, if functional, validates the TargetRTS initialization
and startup, log service and console output and basic capsule functionality.
101

Other Test Models

More test models are available in the online tutorials and examples. Please take a look
at $ROSERT_HOME/Examples/Models/C++ or
$ROSERT_HOME/Examples/Models/C and $ROSERT_HOME/Tutorials
for information on what’s available.

Other Resources

We suggest that you visit the Rational Rose RealTime product support web site for the
latest updates, models and patches. The URL is http://www.rational.com/support/.
102 Chapter 8 - Testing the TargetRTS Port

9Tuning the TargetRTS
Contents

This chapter is organized as follows:

■ Disabling TargetRTS Features for Performance on page 103
■ Target Compiler Optimizations on page 103
■ Target Operating System Optimizations on page 104
■ Specific TargetRTS Performance Enhancements on page 104

Disabling TargetRTS Features for Performance

The TargetRTS can be modified to exclude many of its features to provide a minimum
high performance feature set. The section “Configuring and customizing the Services
Library” in the C Reference or C++ Reference describes how to create such a version of
the TargetRTS. The concepts of a “minimal TargetRTS” disables Target Observability,
logging service and the RTS debugger. The minimal TargetRTS should provide
significant performance gains over the fully featured version.

Target Compiler Optimizations

Most compilers provide optimizations at the object code generation stage that can
produce faster running code. In general, if your compiler supports such
optimizations, they should be used. Be sure to remove all debug options at the same
time since they may cancel out certain or all optimizations. Some optimizations may
come at the cost of code size. If application code size is a factor for your target then the
benefit of optimization versus code size will have to analyzed. Many compilers may
have different levels of optimization, which may produce differing degrees of code
size and performance enhancements. It is hard to predict the outcome of such
optimizations in C or C++. Using a performance testing model which measures the
speed of certain operations may prove useful.

Note: Optimizations can cause errors in the running application that were not present
before optimizations were enabled. Be sure to fully test the TargetRTS after enabling
any optimizations.
103

Target Operating System Optimizations

The Target operating system may provide optimizations. For example, it may be
possible to link in a non-debug version of the OS with the application. These
optimizations are specific to each RTOS. Refer to the documentation for your specific
RTOS.

Specific TargetRTS Performance Enhancements

In C or C++, one key area that can improve performance in the TargetRTS is in
inter-thread message passing. The TargetRTS make use of two synchronization
mechanisms for much of its message passing, namely, the RTMutex and
RTSyncObject classes. Some operating systems provide heavy-weight and
light-weight synchronization mechanisms. The light-weight version has less features
but higher performance; whereas, the heavy-weight version may have more features
but poorer performance. Your choice of implementation for the RTMutex and
RTSyncObject may affect the performance of inter-thread message passing, so be
sure to investigate and determine the lightest-weight mechanism necessary to satisfy
the requirements of these classes.
104 Chapter 9 - Tuning the TargetRTS

10Common Problems and
Pitfalls
Contents

This chapter is organized as follows:

■ Overview on page 105
■ Problems and Pitfalls with Target Toolchains on page 106
■ Problems and Pitfalls with TargetRTS/RTOS Interaction on page 107
■ Problems and Pitfalls with Target TCP/IP Interfaces on page 111

Overview

This chapter contains information on common problems and pitfalls that we have
encountered with previous ports. The TargetRTS is supported on a number of
platforms and has been verified on each of these platforms. In general, the problems
and pitfalls encountered are mainly due to RTOS and toolchain differences from those
verified in the standard platforms - for a complete list, please see the Rational Rose
RealTime Installation Guide. Other problems arise from lack of support for certain
features required by the TargetRTS and thus require a custom workaround to satisfy
the TargetRTS.

The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is defined by
$target_base variable in the file setup.pl file (see Creating a Setup Script (setup.pl) on
page 54). The target name often appears with the trailing ‘S’ or ‘T’. The name defaults
to the target name without the "S" or "T" if the variable $target_base is not defined in
the setup.pl file.
105

Problems and Pitfalls with Target Toolchains

This section describes possible problems with the tools used to build the TargetRTS
and the model.

Compiler Optimizations

Compiler optimizations, in general, either help speed up the application, or make the
footprint of the executable smaller. Some optimizations can unfortunately cause
errors in the application. One such problem occurs when the compiler optimizes
references to a memory location that is not modified by the application. It assumes
that because the application does not modify the contents of the address, it is never
modified. In a multi-threaded environment, some compiler optimizations might not
yield the desired result, so be cautious.

Optimizations vary from compiler to compiler, so refer to the documentation for your
specific toolchain. Review the optimizations that are available and be aware that some
may cause errors in the application. Running a set of test models is a good way to
ensure the optimizations have not broken the TargetRTS.

Make sure the test models you use exercise each of the target OS primitives used by
the TargetRTS.

Linker Configuration File

When linking an application to a embedded target, there is usually some sort of linker
configuration file that defines where in memory each section of the application will
go. Many default linker configuration files are included without the user’s knowledge
and may cause strange linking errors as applications grow larger. Be sure to define
your own linker configuration file appropriate for your target.

System Include Files

The structure and content of include files can be a challenge when moving to a new
toolchain. In the TargetRTS an attempt is made to isolate the nuances of include files
for each RTOS into a few specific include files that can be used by all the
target-specific code. In general, all RTOS-specific definitions should be combined into
a file called <os_name>.h in the $TARGET_SRC/RTPriv directory in the C TargetRTS,
RT<os_name>.h in the $TARGET_SRC directory in the C++ TargetRTS. This way all
include files needed to access OS functions can be found in this one file. In the C
TargetRTS, for TCP/IP specific include files, a file called Tcp.h, in the C++
TargetRTS, RTtcp.h ,should be created in the $TARGET_SRC/RTPriv directory (C), or
$TARGET_SRC directory (C++). This file should contain all the necessary include files
required for TCP/IP functions. Other, more specific, header files may be required to
106 Chapter 10 - Common Problems and Pitfalls

isolate unique interfaces for your RTOS. These may be added to the
$TARGET_SRC/RTPriv or $TARGET_SRC directory as needed, and are typically prefixed
by “RT” in the C++ version.

Problems and Pitfalls with TargetRTS/RTOS Interaction

This section describes the possible problems between the operating system and the
system calls that are part of the TargetRTS.

Return Codes for POSIX Function Calls

Even though POSIX is a standard, there are still some discrepancies in the
implementation of the interface. Some implementations of the POSIX function calls
return an error code, while others return -1 and store the result in global variable
errno. Check your specific RTOS to see how error conditions are reported.

Thread Creation

Thread creation has caused problems in the past. One specific problem is the lack of
free space on the heap to allocate the stack for the new thread. This causes a system
crash with no error message or exception raised. Other potential pitfalls arise with
thread priorities. Do not alter the relative priorities of the C TargetRTS or C++
TargetRTS threads (main thread), timer thread and debugger thread). Incorrect
priorities may effect the functioning of timers, the debugger or even the Rational Rose
RealTime application.

Real-time Clock
C Most RTOSes provide a function to retrieve the current system time. Typically it may

return clock ticks, milliseconds or even nanoseconds. In the C TargetRTS, a conversion
from the RTOS time to RTTimespec is typically required in order to satisfy the
requirements of the RTTimespec_clock_gettime() function. Some RTOSes may
provide a macro or function to resolve the number of ticks per second and thus make
conversion to RTTimespec straightforward. Others may require hard-coded
conversion based on the known tick rate for the RTOS. If this rate is later changed
then the conversion will fail. This results in incorrect behavior for all timers in the
Rational Rose RealTime model.

Real-time Clock
C++ Most RTOSes provide a function to retrieve the current system time. Typically it may

return clock ticks, milliseconds or even nanoseconds. In the C++ TargetRTS, a
conversion from the RTOS time to RTTimespec is required in order to satisfy the
requirements of the RTTimespec::getclock() function. Some RTOSes may provide a
Problems and Pitfalls with TargetRTS/RTOS Interaction 107

macro or function to resolve the number of ticks per second and thus make
conversion to RTTimespec straightforward. Others may require hard-coded
conversion based on the known tick rate for the RTOS. If this rate is later changed
then the conversion will fail. This results in incorrect behavior for all timers in the
Rational Rose RealTime model.

In the C++ TargetRTS, when changing the system clock, note that if the time returned
by the RTTimespec::getclock() function is affected by changes in the system clock,
the function call that adjusts the time must be located between calls to the
Timing::Base methods adjustTimeBegin() and adjustTimeEnd(). If, however,
system clock changes do not affect the RTTimespec::getclock() function, do not use
the Timing::Base methods adjustTimeBegin() and adjustTimeEnd(). Timers will
fail in this case and cause unwanted behavior in your Rational Rose RealTime
application.

For example:

void AdjustTimeActor::setclock(constRTTimespec & new_time)

{

 RTTimespec old_time;

 RTTimespec delta;

 timer.adjustTimeBegin(); // stop Rose RealTime timer service

 sys_getclock(old_time); // an OS-specific function

 sys_setclock(new_time); // an OS-specific function

 delta = new_time;

 delta -= old_timer;

 timer.adjustTimeEnd(delta); // resume Rose RealTime timer

service

}

108 Chapter 10 - Common Problems and Pitfalls

Signal Handlers

Many RTOSs do not use signals that are typical of UNIX operating systems. If your
RTOS does not provide signals, be sure to override the C TargetRTS code in

C RTMain_installHandlers() and RTMain_installOneHandler().

C++ TargetRTS code in

C++ RTMain::installHandlers() and RTMain::installOneHandler().

RTOS Supplies main() Function

The TargetRTS assumes that it defines the main() function for an application. Some
RTOSs may provide their own main() function, which causes a duplicate reference
error at link time. If this is the case for your RTOS, you have to modify the code in
$TARGET_SRC/MAIN/main.c or $TARGET_SRC/MAIN/main.cc. Typically, you have to
start a thread that contains the main() function for the Rational Rose RealTime
application. The documentation for the RTOS will describe how to start your
application in this manner.

Default Command Line Arguments

Embedded targets do not usually have access to command line arguments, so RTOSs
rarely provide a way to pass command line arguments to a running application. If
your RTOS does not support command line arguments, you can use the default
argument mechanism in the toolset. This feature lets you enter a set of default
arguments for each component, and these arguments will appear in the generated
code.

These arguments can be specified in the toolset via Component Specification > C
Executable > DefaultArguments or Component Specification > C++ Executable >
DefaultArguments.

Note: These arguments will appear in the generated code verbatim, so use quotes
around, and commas between, your arguments to avoid compilation errors.

You will also have to create a slightly modified main() function and put it into
$TARGET_SRC/MAIN/main.c or $TARGET_SRC/MAIN/main.cc. The modification
needed is that instead of calling RTMain_entryPoint() or RTMain::entryPoint()
with the arguments argc and argv,
Problems and Pitfalls with TargetRTS/RTOS Interaction 109

C like in this default $RTS_HOME/src/Main/main.c:

int main(int argc, const char * const * argv) /* Standard main */

{

 return RTMain_entryPoint(argc, argv);

}

...you should call RTMain_entryPoint() with two null arguments, like this:

int main() /* This main takes no arguments */

{

 return RTMain_entryPoint(0, (const char * const *)0);

}

C++ or, like in this default $RTS_HOME/src/MAIN/main.cc:

int main(int argc, const char * const * argv) // Standard main

{

 return RTMain::entryPoint(argc, argv);

}

...you should call RTMain::entryPoint() like this:

int main() // This main takes no arguments

{

 return RTMain::entryPoint(0, (const char * const *)0);

}

This will cause the TargetRTS to use the default arguments instead. Please note that
default arguments behave just like "real" command line arguments; the first
argument, RTMain_argv()[0] or RTMain::argStrings()[0] is the name of the
program. Your arguments are available in position [1] and onwards.

Exiting Application

In the C or C++ TargetRTS, the RTStdio_panic() or RTDiag::panic() function
requires a way to terminate the application. This is generally achieved by exiting the
application. If your RTOS does not support the exit() function, you have to override
the code in $TARGET_SRC/Main/exit.c or $TARGET_SRC/RTDiag/panic.cc to use
the exit function specific to your RTOS.
110 Chapter 10 - Common Problems and Pitfalls

Problems and Pitfalls with Target TCP/IP Interfaces

This section describes the possible problems with OS specific TCP/IP interfaces. Your
model can still run without TCP/IP support in the TargetRTS, however Target
Observability (for example, observing a running model from the toolset) will be
disabled.

gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to use the
gethostbyname() function in a multi-threaded application. The call was replaced
with a call to the gethostbyname_r() function, which is re-entrant and thread safe. If
this is the case for your target OS, change the code for RTinet_lookup() in
$TARGET_SRC/Inet/lookup.c or $TARGET_SRC/RTinet/lookup.cc in the C or
C++ TargetRTS.

select() statement
C Some implementations of the select() statement do not correctly use the value set in

the width parameter. Consequently the function thinks the file descriptor sets are
larger than they really are. This can cause memory corruption and, consequently,
serious failures in the running application. To overcome this problem in the C
TargetRTS, some targets (OSE) override the RTIOMonitor_min_size() function in
$TARGET_SRC/IOMonit/min_size.c. In these cases, the minimum size is assumed to
be the maximum file descriptor set size.
Problems and Pitfalls with Target TCP/IP Interfaces 111

112 Chapter 10 - Common Problems and Pitfalls

11TargetRTS Porting
Example
Contents

■ Overview on page 113
■ Choosing the Configuration Name on page 113
■ Create Setup Script on page 114
■ Create makefiles on page 115
■ TargetRTS Configuration Definitions on page 118
■ Code Changes to TargetRTS Classes on page 119
■ Building the New TargetRTS on page 122

Overview

This chapter provides an example of porting the TargetRTS for C or C++ to a new
platform. This is an example port rather than customization of an existing port. See
the C Reference or the C++ Reference for a customization example. This porting
example should help implement the information presented in previous sections. The
target platform for this example is the Tornado 2 real-time operating system using the
Cygnus C or C++ Compiler version 2.7.2-960126 for Motorola PowerPC
microprocessors. This is a currently supported platform.

Choosing the Configuration Name

The configuration name is an important identifier of the TargetRTS. It identifies the
operating system, hardware architecture and (cross) compiler. In this example, the
operating system is Tornado 2. The hardware architecture is Motorola PowerPC (ppc).
The compiler is the Cygnus C or C++ Compiler version 2.7.2-960126. For this example
we will only consider the multi-threaded version of the TargetRTS since this provides
the most interesting porting challenges. The resulting configuration name is as
follows:

<target> = TORNADO2T

<libset> = ppc-cygnus-2.7.2->960126

<config> = <target>.<libset>= TORNADO2T.ppc-cygnus-2.7.2-960126
113

Create Setup Script

The setup script is in the file
$RTS_HOME/config/TORNADO2T.ppc-cygnus-2.7.2-960126/setup.pl. This file is a
Perl script that defines environment variables for the compilation of the TargetRTS:
if($OS_HOME = $ENV{'OS_HOME'})
{
 $os = $ENV{'OS'} || 'default';

 if($os eq 'Windows_NT')
 {
 $wind_base = $ENV{'WIND_BASE'};
 $wind_host_type = 'x86-win32';
 $ENV{'PATH'} =
"$wind_base/host/$wind_host_type/bin;$ENV{'PATH'}";
 }
 else
 {
 $rosert_home = $ENV{'ROSERT_HOME'};
 chomp($host = `$rosert_home/bin/machineType`);

 $wind_base = "$OS_HOME/wrs/tornado-2.0";
 if($host eq 'sun5')
 {
 $wind_host_type = 'sun4-solaris2';
 }
 elsif($host eq 'hpux10')
 {
 $wind_host_type = 'parisc-hpux10';
 }
 $ENV{'PATH'} =
"$wind_base/host/$wind_host_type/bin:$ENV{'PATH'}";
 $ENV{'WIND_BASE'} = "$wind_base";
 }

 $ENV{'GCC_EXEC_PREFIX'}
="$wind_base/host/$wind_host_type/lib/gcc-lib/";
 $ENV{'VXWORKS_HOME'} = "$wind_base/target";
 $ENV{'VX_BSP_BASE'} = "$wind_base/target";
 $ENV{'VX_HSP_BASE'} = "$wind_base/target";
 $ENV{'VX_VW_BASE'} = "$wind_base/target";
 $ENV{'WIND_HOST_TYPE'} = "$wind_host_type";
}

$preprocessor = "ccppc -DPRAGMA -E -P >MANIFEST.i";
$target_base = 'TORNADO1';
$supported = 'Yes';
114 Chapter 11 - TargetRTS Porting Example

The setup script must contain the mandatory definitions for the $preprocessor and
$supported flags. The toolchain environment variables are usually required for cross
compiler tools, since it is not typically part of a user’s command path, and the
environment variable definitions are probably not already defined in most users’
environments.

Note: The $target_base variable is set to TORNADO1. This means that the
TORNADO2T target uses the same code base for the TargetRTS classes as the TORNADO1
target.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build
the TargetRTS for the platform and to build Rational Rose RealTime models on this
new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The
command line interface for C and C++ compilers can differ significantly, particularly
for cross-compilers such as the Cygnus C or C++ compiler. It is in this file that we
make definitions for command line options for the compiler and linker and override
other definitions made in $RTS_HOME/libset/default.mk. See Default makefile on
page 59 for details. In any port of the TargetRTS, there are certain commands required
in the toolchain in order to support the building of the TargetRTS. Table 9 illustrates
these required commands.
.

Table 9 Tools Required for Building the TargetRTS for C

Command GNU CC on Solaris Cygnus cross-compiler for VxWorks

library archive $RTS_HOME/tools/ar.pl $RTS_HOME/tools/

ar.pl -create=arppc,rc

C Compiler g++ or gcc ccppc

Linker g++ or gcc $RTS_HOME/target/TORNADO2T/link.p
l ARCH=ppc

VENDOR gnu cygnus
Create makefiles 115

The library archive command (ar) for the Cygnus toolchain requires the use of a script
to work the way the TargetRTS build requires. The libset makefile must define the
VENDOR macro that instructs the error parser which type of compiler is being used. The
error parser uses this information to decode error messages returned by the compiler
to a format compatible with the Rational Rose RealTime toolset.

Another important role of the libset makefile is the definition of command line
options. Table illustrates the typical subset of command line options.

The compiler options may vary greatly from one platform to another, but must
support some basic features. Read the compiler documentation carefully and review
some of the libset.mk files for other TargetRTS platforms for guidance. A list of
required features follows:

■ to compile source files into object files only (that is, not to proceed to the link
phase), typically the ‘-c’ option

■ to place the object file in a desired directory and file name, typically the ‘-o’ option

■ to link and place the executable in a desired directory and file name, typically the
‘-o’ option for the link phase

■ to turn on debugging information in the compiled code, typically the ‘-g’ option

■ to specify the pathname of include files, typically the ‘-I’ option

■ to specify the pathname of libraries, typically the ‘-L’ option

■ to specify the libraries to link, typically the ‘-l’ (ell) option

■ to turn on code optimization, typically ‘-O’ option and sub-options

Table 10 Important Toolchain Command Line Options

Option
GNUcc on
Solaris

Cygnus

LIBSETCCFLAGS -DPRAGMA -ansi -nostdinc -DCPU=PPC603

LIBSETCCEXTRA -O4 -finline -finline-functions -Wall
116 Chapter 11 - TargetRTS Porting Example

C The contents of the C version of the libset makefile,
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/libset.mk , is as follows:
AR_CMD = $(PERL) $(RTS_HOME)/tools/ar.pl -create=arppc,rc
CC = ccppc
LD = ldppc
RANLIB = ranlibppc

VENDOR = cygnus

LIBSETCCFLAGS = -DPRAGMA -nostdinc -DCPU=PPC603
SHLIBS =

C++ The contents of the C++ version of the libset makefile,
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/libset.mk is as follows:
VENDOR = cygnus

AR_CMD = $(PERL) $(RTS_HOME)/tools/ar.pl -create=arppc,rc -
ranlib = ranlibppc
CC = ccppc
LD = $(PERL) "$(RTS_HOME)/target/$(TARGET)/link.pl"
ARCH=ppc
RANLIB = ranlibppc

LIBSETCCFLAGS = -DPRAGMA -ansi -nostdinc -DCPU=PPC603
LIBSETCCEXTRA = -O4 -finline -finline-functions -Wall
SHLIBS =

ALL_OBJS_LIST = %$(ALL_OBJS_LISTFILE)

Target makefile

The target makefile is used to make definitions specific to the target operating system
and the TargetRTS configuration. These are usually specific command line options for
the compiler and linker to define such things as include directories for the target OS
and libraries and their pathnames. These definitions must be common to all
TORNADO2T targets, regardless of libsets.

C The contents of the target C makefile, $RTS_HOME/target/TORNADO2T/target.mk, is
as follows:
TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT \

$(INCLUDE_TAG)$(VXWORKS_HOME)/h -fno-builtin
TARGETLDFLAGS = -r
RTCODEBASE = TORNADO101
Create makefiles 117

C++ The contents of the target C++ makefile, $RTS_HOME/target/TORNADO2T/target.mk,
is as follows:
TARGETCCFLAGS = $(INCLUDE_TAG)$(VXWORKS_HOME)/h

Configuration makefile

The configuration makefile is used to make definitions required by the operating
system and compilation environment together. In this particular case, the
configuration makefile,
$RTS_HOME/config/TORNADO2T.ppc-cygnus-2.7.2-960126/config.mk, is empty because
there is no need for any definitions specific to the compiler and operating system
combination.

TargetRTS Configuration Definitions

The default configuration definitions for the TargetRTS are found in the include file
$RTS_HOME/include/RTConfig.h. The definitions in this file can be overridden by
$RTS_HOME/target/TORNADO2T/RTTarget.h and possibly
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTLibSet.h.

These definitions are used to enable and disable various features in the TargetRTS. By
default almost all of the TargetRTS features are enabled (for example, Target
Observability). The porting effort may be made easier if some of these features are
disabled. See section “TargetRTS Customization Example” in the C++ Reference for
instructions on how to build a minimal TargetRTS.

C The content of the C version of the file $RTS_HOME/target/TORNADO2T/RTTarget.h
is as follows:
#ifndef __RTTarget_h__
#define __RTTarget_h__ included

#define USE_THREADS 1

#define DEFAULT_DEBUG_PRIORITY 60
#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_TIMER_PRIORITY 70

#endif /* __RTTarget_h__ */

C++ The content of the C++ version of the file $RTS_HOME/target/VRTX4T/RTTarget.h is
as follows:
#ifndef __RTTarget_h__
#define __RTTarget_h__ included

#define TARGET_TORNADO 1
118 Chapter 11 - TargetRTS Porting Example

#define USE_THREADS 1
#define PERFORM_CTOR_DTOR 0

#define DEFAULT_DEBUG_PRIORITY 60
#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_TIMER_PRIORITY 70

#endif // __RTTarget_h__

There is no need for the file $RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTLibSet.h
since no compiler-specific compile-time features need to be modified.

RTnew.h may be necessary in libset/- if <new> is not available.

$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTRTnew.h is as follows:
#include <new.h>

Code Changes to TargetRTS Classes

Most ports to new targets require some minor changes to the TargetRTS code. These
changes typically apply to operating system features for thread (task) creation and
destruction, mutual exclusion and synchronization and time services. Table 6 on
page 75 and Table 8 on page 89give a description of TargetRTS classes that might
require changes.

The required changes to the TargetRTS source for TORNADO2 and the Cygnus
compiler are, for C++, located in the $RTS_HOME/src/target/TORNADO1 directory. See
the discussion for the setup script above for an explanation of why the directory is
called TORNADO101 for C, rather than TORNADO2. For the remainder of this section, this
directory is referred to as $TARGET_SRC.

The files in the $TARGET_SRC directory each override their counterpart in
$RTS_HOME/src. To override a definition from the source directory, a new
subdirectory should be created in $TARGET_SRC.
Code Changes to TargetRTS Classes 119

C For example, for C, the new definition for RTTimespec_clock_gettime() requires a
subdirectory $TARGET_SRC/Timespec. The new file containing
RTTimespec_clock_gettime() would be $TARGET_SRC/Timespec/getclock.c.

The required changes to the TargetRTS are too large to include in this document. Table
11 and Table 12 contain a summary of the required changes to each file.

Table 11 Quick Summary of Common C TargetRTS Source File Changes

Class File Change

RTInet (dir Inet) async.c Modified version since FIOASYNC was not
defined.

RTInet (dir Inet) lookup.c gethostbyname not available, use
hostGetByName instead

main (dir Main) main.c main already defined by RTOS, use rtsMain
with nonstandard argument handling instead.

RTMutex (dir Mutex)

(required)

ct.c

dt.c

enter.c

leave.c

Required implementation using Tornado
specific calls to semMCreate, semDelete,
semTake and semGive.

RTSyncObject (dir
SyncObj)

(required)

ct.c

dt.c

signal.c

wait.c

timewait.c

Required implementation using Tornado
specific calls to semBCreate, semDelete,
semGive and semTake.

RTThread (dir Thread)
(required)

ct.c Required implementation using Tornado
specific calls to taskSpawn and taskDelete.

RTTimespec (dir
Timespec) (required)

getclock.c Required implementation using Tornado
specific call to clock_gettime.
120 Chapter 11 - TargetRTS Porting Example

C++ For example, for C++, the new definition for RTTimespec::getclock() requires a
subdirectory $TARGET_SRC/RTTimespec. The new file containing
RTTimespec::getclock() would be $TARGET_SRC/RTTimespec/getclock.cc.

The required changes to the TargetRTS are too large to include in this document. Table
12 contains a summary of the required changes to each file.

Table 12 Quick Summary of Common C++ TargetRTS Source File Changes

Class File Change

MAIN main.cc main already defined by RTOS, use
rtsMain with nonstandard argument
handling instead.

RTDiag panic.cc Modified version since there is no exit()
method

RTMain targetStartup.cc Modify main thread priority to that
specified in the toolset

RTMutex

(required)

ct.cc

dt.cc

enter.cc

leave.cc

Required implementation using Tornado
specific calls to semMCreate, semDelete,
semTake and semGive.

RTSyncObject (required) ct.cc

dt.cc

signal.cc

timedwait.cc

wait.cc

Required implementation using Tornado
specific calls to semBCreate, semDelete,
semGive and semTake.

RTThread (required) ct.cc Required implementation using Tornado
specific calls to taskSpawn and
taskSuspend, etc.

RTTimespec (required) getclock.cc Required implementation using Tornado
specific call to clock_gettime.

RTinet lookup.cc Modified version, uses hostGetByName
instead of gethostbyname.
Code Changes to TargetRTS Classes 121

Building the New TargetRTS

After the setup script, makefiles, and source are complete, the TargetRTS is ready to be
built. To build the TargetRTS for the Tornado 2 Cygnus target, type the following in
the $RTS_HOME/src directory:

make TORNADO2T.ppc-cygnus-2.7.2-960126

This will create the directory $RTS_HOME/build-TORNADO2T.ppc-cygnus-2.7.2-960126
which will contain the dependency file and object files for the TargetRTS. If the build
completes successfully the resulting Rational Rose RealTime libraries will be placed in
the $RTS_HOME/lib/TORNADO2T.ppc-cygnus-2.7.2-960126 directory.
122 Chapter 11 - TargetRTS Porting Example

12Customizing for Target
Control and Observability
Contents

This chapter isorganized as follows:

■ Introduction on page 123
■ Model Compilation and Target Control on page 124
■ Target Control on page 125
■ Menu Commands on page 127
■ Third-Party Source Code Debugger Integration on page 133

Introduction

Rational Rose RealTime is a comprehensive visual modeling environment that
delivers a powerful combination of notation, processes, and tools optimized to meet
the challenges of real-time software development. The Rational Rose RealTime UML
model compiler converts models directly into executable applications. Those
executables can be controlled and debugged at run-time under the control of the
toolset. Rational Rose RealTime integrates with source debuggers providing the
developer with the choice of debugging at the UML and source code level. A
combination of UML editors, a model compiler, and run-time debugging tools
address the complete life-cycle of a project from early use case analysis through
design, implementation, and testing.

This document describes how to add support to Rational Rose RealTime 6.0 and later
for target control and observability, and how to integrate Rational Rose RealTime with
source code debuggers.
123

Model Compilation and Target Control

Rational Rose RealTime models are compiled seamlessly into applications ready for
execution on the host or target operating systems. Figure 14 provides a high level
overview of model compilation.

Figure 14 UML Model Compilation

Rational Rose RealTime also has the ability to control the executing application at
run-time (for example, during debugging). Target Observability provides the ability
to observe and debug the executing application at the UML level. Figure 15 shows a
simplified high-level overview of Target Control and Observability.

Figure 15 Target Control and Observability

Rational Rose RealTime also supports inter-working with traditional source code
debuggers. This enables developers to control, observe, and debug the application at
the UML level and detailed source code level simultaneously.

Intended Audience

This guide is specifically designed for technical staff responsible for enabling these
capabilities for a specific target execution environment. It is assumed that the reader
has significant knowledge and experience with the development environment,
operating system, and target hardware.
124 Chapter 12 - Customizing for Target Control and Observability

Target Control

Target Control refers to the Rational Rose RealTime toolset features that load, unload,
execute, and terminate a Rational Rose RealTime-generated application, as well as the
ability to reset a remote target platform.

Target Control is not the same feature as Target Observability. Target Observability
allows the observation of the application executing on a target from the UML level
(such as state change, state machine breakpoints, event tracing, and so on) on the
host-based toolset. Target Control interacts with the APIs of the target execution
environment to load, run, and terminate the application, whereas Target
Observability communicates directly with the running application.

Target Control Modes

Rational Rose RealTime supports three different Target Control modes:

■ Manual Mode
■ Basic Mode
■ Debugger Mode

Manual Mode

In Manual mode, Rational Rose RealTime does not provide any Target Control
functionality. The user is responsible for performing Target Control operations (such
as loading and executing). After the target application starts, the user can direct the
Rational Rose RealTime toolset to connect to the executing target application for
Target Observability.

Basic Mode

In Basic mode, Rational Rose RealTime uses the target environment’s APIs to control
the execution of the target application. Rational Rose RealTime supports automatic
target control for a number of host and target platform combinations. Users deploy on
a number of other target environments as well.

Rational Rose RealTime uses Perl scripts to perform the Target Control operations.
These scripts can call the target APIs directly or can call some intermediary helper
application to control the execution on the target.
Target Control 125

There are five Target Control scripts:

■ reset.pl
■ load.pl
■ unload.pl
■ execute.pl
■ terminate.pl

Debugger Mode

Debugger mode provides the same capabilities as Basic mode and, in addition,
provides the ability to inter-work with a C or C++ source debugger (for example,
Visual C++) to set source code level breakpoints from within the UML model. When
these source breakpoints are hit at run-time, control of the executable is passed to the
source debugger. When the application is continued, control of the executable is
passed back to the Rational Rose RealTime toolset. Debugger mode provides an
integrated debug environment that permits a simultaneous use of source code and
UML debugging styles.

Target Control Scripts

When you open the Specification dialog for a Processor in the Deployment View, the
Load Scripts text box specifies the path to the Target Control scripts (for example,
$TARGET_PATH/win32/, $TARGET_PATH/tornado2/). This directory contains a
maximum of five Target Control scripts, each of which has a different function:

■ reset.pl - Resets the target processor. See Reset.
■ load.pl - Loads a Component onto a target. See Load.
■ unload.pl - Unloads a Component from a target. See Unload.
■ execute.pl - Executes a Component. See Execute.
■ terminate.pl - Terminates the execution of a Component. See Terminate

The Target Control Scripts determine the Target Control capabilities for the Processor.
If a script exists in the Target Control Scripts directory, then the toolset assumes that
the corresponding capability exists. Whenever a Component Instance is created on a
Processor (that is, a Component in the Component View is assigned to a Processor in
the Deployment View), the toolset checks to see which scripts are available and
enables those capabilities in the toolset menus that are accessible by right-clicking on
a Component Instance. These menu options are now available to the user.

The presence of the scripts is not their only purpose. Each existing Target Control
script must also provide the associated capability. For example, the load script must
load the corresponding component onto the target specified by the Processor, and so
on. The scripts use information from the Processor and Component Instances
126 Chapter 12 - Customizing for Target Control and Observability

specifications, but note that the scripts do not need to use all the parameters that are
passed to them. Any script needs to process only those arguments that allow it to
perform its intended operation.

These scripts are written in Perl, but they may spawn other executables needed to
provide the desired capability. Every script also indicates whether it was successful.

Menu Commands

If the path to the Target Control scripts contains the following scripts, that
corresponding menu command will become active on the Processor menu:

■ reset.pl - Resets the target processor and activates the Reset command.
■ load.pl - Loads a Component onto a target and activates the Load command.
■ unload.pl - Unloads a Component from a target and activates the Unload

command.
■ execute.pl - Executes a Component and activates the Run menu option (Execute).
■ terminate.pl - Terminates the execution of a Component and activates the

Shutdown menu option (Terminate).

Reset

Description

The reset.pl script resets a target processor. If this script exists, the Reset command
will be active on the corresponding Processor menu.

Command Line

Rtperl reset.pl –ip target –server targetServer –os targetOS –cpu targetCPU

Arguments

-ip target Target name or address

-server targetServer Target server name or address

-os OS OS executing on target

-cpu CPU CPU on the target
Menu Commands 127

Returns

Note: The data for the script arguments are retrieved from the Processor
Specification dialog.

Load

Description

The load.pl script loads a component onto the corresponding target processor. If this
script exists, the Load command is available on the corresponding Component
Instance menu when the Component Instance is in a "loadable" state.

Command Line

Rtperl load.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port Toport

Arguments

::Ok:: String indicating success

Error String Error string to be displayed in error message box in the
toolset

-ip target Target name or address

-server targetServer Target server name or address

-os OS OS executing on target

-cpu CPU CPU on the target

-exe executable 6.1 and later: Fully qualified executable name

-prio priority Priority to run the component instance

-port Toport Target Observability port
128 Chapter 12 - Customizing for Target Control and Observability

Returns

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

Unload

Description

The unload.pl script removes a component from the corresponding target processor. If
this script exists, the Unload command is available on the corresponding Component
Instance menu when the Component Instance is in an "unloadable" state.

Command Line

Rtperl unload.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port TOport paramsFromLoad

Arguments

::Ok:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String indicating success. Now two option
parameters may follow the ::Ok:: string: -warning and
-passback. See General Issues.

Error String Error string to be displayed in error message box in the toolset

-ip target Target name or address

-server targetServer Target server name or address

-os OS OS executing on target

-cpu CPU CPU on the target

-exe executable 6.1 and later: Fully qualified executable name

-prio priority Priority to run the component instance

-port Toport Target Observability port

ParamsFromLoad Any parameters that were returned from a successful Load
operation.
Menu Commands 129

Returns

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

Execute

Description

The execute.pl script starts execution of a component instance on the corresponding
target processor. If this script exists, the Run command is available on the Component
Instance menu when the Component Instance is in a "runable" state.

Command Line

Rtperl execute.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port Toport

 -args commandLineArgs

Arguments

::Ok:: [-warning ‘xxx’] 6.1 and later: String indicating success. Now, one option
parameter may follow ::Ok:: string: -warning. See General
Issues

Error String Error string to be displayed in error message box in the toolset

-ip target Target name or address

-server targetServer Target server name or address

-os OS OS executing on target

-cpu CPU CPU on the target

-exe componentDir 6.0.x: Path to Component directory. It is used to locate the
component

-exe executable 6.1 and later: Fully qualified executable name
130 Chapter 12 - Customizing for Target Control and Observability

Returns
:

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

An example of paramsFromExecute is a handle that identifies the process that was
created. For example, on Windows we return –pid nnnnnn. This allows us to pass back
the PID (Process ID) to the Terminate script.

Terminate

Description

The terminate.pl script is used to kill a component instance on the corresponding
target processor. If this script exists, the Shutdown command is available on the
corresponding Component Instance menu when the Component Instance is in a
"killable" state.

Command Line

Rtperl terminate.pl –ip target –server targetServer –os targetOS –cpu targetCPU

 -exe componentDir –prio priority –port TOport
paramsFromExecute

-prio priority Priority to run the component instance

-port Toport Target Observability port

-args
commandLineArgs

Command Line arguments that are to be used when starting the
target application. Parameters that follow the -args tag are all
passed to the target application

:Ok:: paramsFromExecute String indicating success. Any strings passed back after the
::Ok:: will be based to the terminate.pl script when the user
invokes the Shutdown command

::Ok:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String that represents the operation was
successful. Now two option parameters may follow the ::Ok::
string: -warning and -passback. See General Issues

Error String Error string to be displayed in error message box in the toolset
Menu Commands 131

Arguments

Returns

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

General Issues
■ In releases 6.0.x, the –exe option is followed by the Component Directory. The

Load and Execute scripts call a Perl script (findexe.pl) to find the corresponding
executable.

■ In releases 6.1 and later, the –exe option is followed by the fully qualified
executable name.

■ Release 6.1 formalized what comes after the ::Ok:: string. The Load, Unload,
Execute, and Terminate can succeed (in other words, return ::Ok::) but may return
a warning. The warning is identified by the parameter –warning followed by a
string enclosed in single quotes (’). The toolset will display a dialog box specifying
that a warning occurred. The string returned in quotes is appended to the toolset
logs. Anything appearing after the -passback parameter will be returned to the
originating call.

-ip target Target name or address

-server targetServer Target server name or address

-os OS OS executing on target

-cpu CPU CPU on the target

-exe executable 6.1 and later: Fully qualified executable name

-prio priority Priority to run the component instance

-port Toport Target Observability port

ParamsFromExecute Any parameters that were returned from a successful Run
operation

::Ok:: [-warning ‘xxx’] 6.1 and later: String indicating success. Now optional parameter
may follow the ::Ok:: string: -warning. See General Issues

Error String Error string to be displayed in error message box in the toolset
132 Chapter 12 - Customizing for Target Control and Observability

Third-Party Source Code Debugger Integration

The format for the Debugger Mode is Debugger-X where X is the name of the
debugger DLL. This DLL must exist in the $ROSERT_HOME/bin/$ROSERT_HOST
directory and is called libX.dll.

Registering Threads on UNIX

When building a debugger integration DLL without MainWin and using callback
functions, additional steps are required to ensure that Rational Rose RealTime knows
about the callback thread. The following steps are necessary for a thread-safe
interface:

■ Call tcThreadInit() from the callback thread before doing any callbacks.

■ The callback thread must call tcThreadCleanup() before terminating.

There is a header file for this service in $ROSERT_HOME/bin/tc/tcsetup.h and a
supporting dynamic library (for Solaris) in
$ROSERT_HOME/bin/tc/sun5/libtcsetup.so.

You may call tcThreadInit (init) and tcThreadCleanup (cleanup) any number of
times, as long as the tcThreadInit is always followed by a tcThreadCleanup before
the next init occurs. This is useful if you wanted to do a similar function to the
following: tcThreadInit, callback, tcThreadCleanup, for each callback instead of
tcThreadInit at thread startup, and tcThreadCleanup at thread termination.
However, we recommend that the tcThreadInit and tcThreadCleanup fuctions be
called only once (tcThreadInit at startup and cleanup at termination) since this
approach is less error prone.

Calling Sequence

Source code debuggers come with a variety of capabilities. For the toolset to use the
debugger DLL in the best possible way, the DLL must provide a list of its capabilities.
The following are capabilities of the debugger DLL that are available to Rational Rose
RealTime:

Capability Description

Function Breakpoints The DLL uses the function name to set a breakpoint.

Line Breakpoints The DLL uses a file name and line number to set a breakpoint.

Detects Breakpoint Hits The DLL calls the callback function when a breakpoint is hit.
Third-Party Source Code Debugger Integration 133

The values of these flags determine how and which debugger DLL functions are
called. The rules of operation are:

■ The debugger DLL is loaded after the user applies the change to the Operation
Mode in the Component Instance specification for the Component Instance. The
debugger DLL is loaded only once per toolset session.

■ If the DLL is loaded successfully, the toolset obtains the debugger DLLs
capabilities and saves them.

■ The toolset calls the tcCreateDebugSession function to create a new session.

Note: A new session is created for each Component Instance that uses the
debugger DLL.

■ The Target Control capabilities (Load, Unload, Run, Shutdown) are determined
using the debugger DLL capabilities as well as the Target Control scripts. The
debugger DLL capabilities take precedence over the Target Control scripts.

■ If a target must be loaded, it can be loaded in one of two ways: using the debugger
or the Basic mode Target Control script. If the "Debugger Loads Target" flag is set,
the debugger DLL is expected to load the target in the tcInitializeDebugger
function. Otherwise, the Target Control load script is used to load the target, and
then the tcInitializeDebugger function is called.

■ If the target is not loadable, then the tcInitializeDebugger function is called when
the user invokes the Run command.

User Termination Detected The DLL calls the callback function when it detects that the user
terminated the debugger manually.

Debugger Loads Target The DLL must be called to load the target. If not, the toolset uses
the Basic mode mechanism, if one exists.

Debugger Unloads Target The DLL must be called to unload the target. If not, the toolset
uses the Basic mode mechanism, if one exists.

Debugger Executes
Component

The DLL must be called to start the Component Instance. If not,
the toolset uses the Basic mode mechanism, if one exists.

Debugger Terminates
Component Instance

The DLL must be called to terminate a component instance. If
not, the toolset will use the Basic mode mechanism, if one exists.

Supports Search Paths The DLL can use a given search path to search for source code.

Reload Before Restarting The target must be reloaded before it is restarted.

Capability Description
134 Chapter 12 - Customizing for Target Control and Observability

■ If the "Debugger Executes Component" flag is set, then the tcStartDebugger
function is called. If not set, the Target Control execute script is called and then
followed by a call to the tcStartDebugger function.

Note: Note: The breakpoint functions may be called before the tcStartDebugger
function if breakpoints were set in the previous debug session.

■ When the user invokes the Shutdown command, all breakpoints are removed, and
the tcStopDebugger function is called. If the "Debugger Terminates Component
Instance" is set, the tcStopDebugger must terminate the Component Instance. If
not set, then the Target Control terminate script is called. If the target does not
need to be unloaded, then the tcCleanupDebugger function is also called.

■ When the user invokes the Unload command and the "Debugger Unloads
Component" flag is set, the tcCleanupDebugger function is called. This function
must unload the component from the target. If not set, the Target Control unload
script is called.

■ When the Debugger DLL is unloaded from the toolset (that is, when the
Component Instance Operation mode is changed or when the toolset is shut
down) tcDestroyDebugSession is called. This function is responsible for releasing
any resources associated with this debugger DLL session.

Debugger DLL API

This section describes the API that must be implemented by a debugger DLL. The file,
tcdllinterface.h, contains all the required type declarations and function prototypes.
The functions are:

■ Get DLL Capabilities
■ Create Debug Session
■ Destroy Debug Session
■ Initialize Debugger
■ Cleanup Debugger
■ Start Debugger
■ Stop Debugger
■ Set Callback
■ Event Callback Function
■ Set Source Search Path
■ Set Breakpoint in File
■ Set Breakpoint At Function
■ Clear Breakpoint
■ Set DllTrace
Third-Party Source Code Debugger Integration 135

Note: Several functions have parameters of type TC_TCHAR. This type corresponds to
TCHAR type familiar to Windows developers. It is either a regular character (char) or
a wide character (wchar_t). By default, TC_TCHAR is type defined to char in the file
tcdllinterface.h.

Get DLL Capabilities
TCRET

tcGetDllCapabilities(

TCDLLCAPS * pCaps/* Pointer to struct to get the
capabilites */

) ;

Description

This function populates in the given capability structure with the capabilities of the
corresponding DLL. This is the first function that is called in the debugger DLL.

Arguments

Returns

TCDLLCAPS * pCaps Structure to receive the DLL capabilities

TC_OK Operation was successful

TC_FAILED Operation failed. Missing capability structure.
136 Chapter 12 - Customizing for Target Control and Observability

Create Debug Session
TCHANDLE

tcCreateDebugSession(

const TC_TCHAR * szServerName, /* Name of Target
Server */

const TC_TCHAR * szTargetName, /* Name of Target*/

 const TC_TCHAR * szArchitecture,/* Processor
Architecture */

 const TC_TCHAR * szOS, /* Operating System
*/

TCDEBUGFLAG eFlag /*
Enables/disables Tracing*/

) ;

Description

This function is called to create a debug session. It is called after the debugger DLL is
loaded. It returns a DLL-specific handle that represents the newly created session.
This handle is passed back to all other calls except the tcGetDllCapabilities.
Typically, the handle is a pointer to a DLL-specific structure that maintains
session-specific information.

Arguments

const TC_TCHAR *
szServerName

Name or address of a Target Server

const TC_TCHAR *
szTargetName

Name or address of the target

const TC_TCHAR *
szArchitecture

Type of CPU on the target

const TC_TCHAR * szOS OS running on the target

TCDEBUGFLAG eFlag Enables/Disables Debug output from the DLL. See Note
below.
Third-Party Source Code Debugger Integration 137

Returns

Note: Currently, the toolset does not provide any means to set or clear the debug flag.

Destroy Debug Session
TCRET

tcDestroyDebugSession(

 TCHANDLE hSession /* Session to terminate */

) ;

Description

This function is called before the Debugger DLL is unloaded. It must release all
session-specific resources that were allocated during the session.

Arguments

Returns

Initialize Debugger
TCRET

tcInitializeDebugger(

TCHANDLE hSession, /* Debugger Session */

const TC_TCHAR * szComponent/* Location/name of the
component */

) ;

TCHANDLE DLL-specific handle identifying the newly created session.

(TCHANDLE)0 Unable to create a session.

TCHANDLE hSession A handle identifying a particular debug session

TC_OK Operation was successful

TC_FAILED Operation failed
138 Chapter 12 - Customizing for Target Control and Observability

Description

This function is called to identify the component that the debugger is to work with. In
some environments, this function will load the component onto the target.

Arguments

Returns

Cleanup Debugger
TCRET

tcCleanupDebugger(

 TCHANDLE hSession /* Debugger Session */

) ;

Description

This function is called to undo the activities of the tcInitializeDebugger function. In
some environments, this function will unload the component from the target.

Arguments

Returns

TCHANDLE hSession A handle identifying a particular debug session

const TC_TCHAR *
szComponent

The fully qualified name of the component

TC_OK Operation was successful

TC_FAILED Operation failed

TCHANDLE hSession A handle identifying a particular debug session

TC_OK Operation was successful

TC_FAILED Operation failed
Third-Party Source Code Debugger Integration 139

Start Debugger
TCRET

tcStartDebugger(

 TCHANDLE hSession,/* Debugger Session */

 const TC_TCHAR * pszArgs,/* Command line arguments for
comp */

 int nPriority /* start up priority */

) ;

Description

This function is called to start the Component Instance. If the debugger does not start
the Component instance, this is the point where the debugger should attach to it.

Arguments

Returns

Stop Debugger
TCRET

tcStopDebugger(

 TCHANDLE hSession/* Loader.Debugger Session */

) ;

Description

This function is called to terminate the Component Instance. If the debugger does not
terminate the Component instance, this is the point where the debugger should
detach from it.

TCHANDLE hSession A handle identifying a particular debug session

const TC_TCHAR * pszArgs, Command-line arguments for the Component Instance

int nPriority Priority to run the application

TC_OK Operation was successful

TC_FAILED Operation failed
140 Chapter 12 - Customizing for Target Control and Observability

Arguments

Returns

Set Callback
TCRET

tcSetCallback(

 TCHANDLE hSession, /* Debugger Session */

 CALLBACKFNC pfncCallback,/* function to call on event */

 USERDEFINED lUserDefined1,/* toolset defined data */

 USERDEFINED lUserDefined2 /* toolset defined data */

) ;

Description

This function is called during the Target Observability session if the debugger DLL
can detect breakpoint hits or user termination. It is used to set or clear a Toolset
defined function.

Arguments

TCHANDLE hSession A handle identifying a particular debug session

TC_OK Operation was successful

TC_FAILED Operation failed

TCHANDLE hSession A handle identifying a particular debug session

CALLBACKFNC
pfncCallback,

Pointer to function the debugger DLL is to call when a
breakpoint hit or user termination is detected

USERDEFINED
lUserDefined1

Toolset information that must be passed back in the
callback function

USERDEFINED
lUserDefined2

Toolset information that must be passed back in the
callback function
Third-Party Source Code Debugger Integration 141

Returns

Event Callback Function
void

fncCallback(

TCDLLEVENT* pEvent, /* identifies what event
occurred */

USERDEFINED data1, /* data from SetCallback */

USERDEFINED data2 /* data from SetCallback */

) ;

Description

This is the prototype of the callback function that is to be called by the debugger DLL
when a breakpoint hit or user termination is detected.

Arguments

Returns

TC_OK Operation was successful

TC_FAILED Operation failed

TCDLLEVENT * pEvent Identifies the type of event the Debugger DLL is notifying the
toolset of.

USERDEFINED
lUserDefined1

Toolset information from the last tcSetCallback.

USERDEFINED
lUserDefined2

Toolset information from the last tcSetCallback.

void Nothing
142 Chapter 12 - Customizing for Target Control and Observability

Set Source Search Path
TCRET

tcSetSearchPath(

 TCHANDLE hSession, /* Debugger Session */

 int nEntries, /* number of paths */

 const TC_TCHAR ** ppszSearchPaths/* list of search paths */

) ;

Description

This function is called by the toolset to specify the directories that contain the
generated source code.

Arguments

Returns

Set Breakpoint in File
unsigned long

tcSetBreakpointInFile(

 TCHANDLE hSession, /* Debugger Session */

 const TC_TCHAR * szFileName,/* File to set breakpoint in
*/

 int nLineNo /* line number in file */

) ;

TCHANDLE hSession A handle identifying a particular debug session

int nEntries The number of paths specified in the next parameter

const TC_TCHAR **
ppszSearchPaths

A list of search paths

TC_OK Operation was successful

TC_FAILED Operation failed
Third-Party Source Code Debugger Integration 143

Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using file name and line number. This function may be called before the
tcStartDebugger.

Arguments

Returns

Set Breakpoint At Function
unsigned long

tcSetBreakpointAtFnc(

 TCHANDLE hSession, /* Debugger Session */

 const TC_TCHAR * szFunctionName/* fully qualified name
*/

) ;

Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using function names. This function may be called before the
tcStartDebugger.

TCHANDLE hSession A handle identifying a particular debug session

const TC_TCHAR *
szFileName

Name of file where you want to set the breakpoint

int nLine The line number in the file where the breakpoint is to be
set

unsigned long A number uniquely identifying the corresponding
breakpoint

0 Unable to set the breakpoint
144 Chapter 12 - Customizing for Target Control and Observability

Arguments

Returns

Clear Breakpoint
TCRET

tcClearBreakpoint(

 TCHANDLE hSession, /* Debugger Session */

 unsigned long nBreakpointId /* breakpoint to remove
*/

) ;

Description

This function removes the specified breakpoint for the given session.

Arguments

Returns

TCHANDLE hSession A handle identifying a particular debug session

const TC_TCHAR *
szFunctionName

The fully qualified name of the function

unsigned long A number uniquely identifying the corresponding
breakpoint

0 Unable to set the breakpoint

TCHANDLE hSession A handle identifying a particular debug session

unsigned long
nBreakpointId

Identifier of the breakpoint to remove. Returned by a set
breakpoint function

TC_OK Operation was successful

TC_FAILED Unable to remove the breakpoint
Third-Party Source Code Debugger Integration 145

Set DllTrace
void

tcSetDllTrace(

 TCHANDLE hSession,/* Debugger Session */

 TCDEBUGFLAG eFlag /* enables/disables trace output
*/

) ;

Description

This function enables or disables the Debugger DLL output for the given session.

Arguments

Returns

Note: This function is not currently used by the toolset, but it must exist. If this
function is omitted from the debugger DLL, the toolset will not load the DLL
successfully.

TCHANDLE hSession A handle identifying a particular debug session

TCDEBUGFLAG eFlag Specifies whether to enable or disable output

TC_OK Operation was successful

TC_FAILED Operation failed.
146 Chapter 12 - Customizing for Target Control and Observability

Index
A
adapting for target environments 41
adding

new files to TargetRTS 80, 93
AR_CMD 31
arguments 78, 92
audience for target control 124

B
basic mode 125
build 52

configurations 32
Build flat 34
building

applications with no OS 52
debugger integration DLL without

MainWin 133
the new TargetRTS 122

C
callback

functions 133
thread 133

calling sequence 133
Class RTMain 92
Class RTMutex 90
Class RTTcpSocket 93
Classes

RTCondVar
extending the Mutex 77, 90

RTDiagStream 78, 91
RTIOMonitor 80, 93
RTMain 78, 92

target-specific methods 78, 92
RTMutex 76, 90

protecting shared resources 76, 90

RTSyncObject 77, 90
RTTcpSocket 79, 93

Cleanup Debugger 139
Clear Breakpoint 145
ClearCase clearmake 33
ClearCase omake 34
clearmake 33
code changes to TargetRTS classes 119
command line arguments 109
commands

Execute 130
Load 128
Reset 127
Terminate 131
Unload 129

common overrides required for a new target 76,
89

Compiler (CC flag) 31
compiler optimizations 106
Config makefile 65
Configuration 118
configuration

building 32
deleting 34
duplicating 21
editing 25, 31
managing 21
types 22

configuration makefile 118
configuration name, choosing a 113
configuring

NoRTOS configuration 53
Constructor RTThread

RTThread() 90
contacting Rational customer support xv
COUNT 85
Create Debug Session 137
creating

ports between C and C++ 35
Index 147

D
Debugger 73, 85
debugger DLL API 135

Cleanup Debugger 139
Clear Breakpoint 145
Create Debug Session 137
Destroy Debug Session 138
Event Callback Function 142
Get DLL Capabilities 136
Initialize Debugger 138
Set Breakpoint At Function 144
Set Breakpoint in File 143
Set Callback 141
Set DllTrace 146
Set Source Search Path 143
Start Debugger 140
Stop Debugger 140

debugger integration DLL 133
debugger mode 126
debugger statistics 85
debugging 47
default makefile 59
DEFER_IN_ACTOR 84
deleting

configurations 34
Destroy Debug Session 138
disabling TargetRTS features for

performance 103
DLL functions 134
duplicating

configurations 21

E
editing

configuration 31
configurations 25
libset 30
target 28

entryPoint function 92
error parser 96

creating new 98
modifying 95
reusing 98

error parsing rules 96
Event Callback Function 142
Execute command 130
execute.pl 127
exiting application 110
EXTERNAL_LAYER 88
Extra Compiler Flags 31

F
File main.cc 93
file main.cc 80
floating point operations 46
functions

entryPoint 92
gethostbyname() reentrancy 111
Main 91
main() 78, 91
RTMain_mainline() 79
RTMain_targetShutdown() 78
RTMain_targetStartup() 78
RTOS supplies main() 109
targetShutdown 92
targetStartup 92

G
generated code

compilation supported by makefiles 56
get DLL Capabilities 136
gethostbyname() reentrancy 111
gmake 33

H
HelloWorld model 101

I
implementation

platform-specific 84
Initialize Debugger 138
INTEGER_POSTFIX 84
148 Index

L
libraries

maintaining TargetRTS 19
Library Builder 31
Libset 22, 115
libset

editing 30
makefiles 65
name, components of 52
platform name, part of 50

Libset Compiler Flags 31
Libset Linker Flags 31
libset makefile 65, 115
Libset name 24, 52
libset name 52
LIBSETCCEXTRA 31
LIBSETCCFLAGS 31
LIBSETLDFLAGS 31
Linker (LD) 31
linker configuration file 106
linking problems 106
Load command 128
load.pl 127
LOG_MESSAGE 72, 84

M
main 78
Main function 91
main function 91
main() function 78, 109
main.c 80
main.cc 93
Make

macro definitions 66
make 27, 33
make dependencies

regenerating 81, 94
makefiles 27, 56

Config 65
config, template 65
creating 115

default 59
libset 65
libset,template 65
sequencing of 57
target 64
TargetRTS 56
typical target, template 64

makefiles, creating 115
MANIFEST.c file 80
MANIFEST.cpp 94
MANIFEST.cpp file 94
manual mode 125
menu commands 127
Method RTDebuggerInput

nextChar() 93
Method RTDiagStream

write() 92
Method RTTimespec

getclock() 89
Method RTTimespec::getclock() 89
model compilation 124
modes

basic 125
debugger 126
manual 125
target control 125

multi-threaded configuration 23
multi-threaded mode

support for 76, 90
Mutex

methods to protect shared resources 77, 90

N
new error parser, creating a 98
new files, adding to the TargetRTS 93
nmake 27, 33
no RTOS 52
NoRTOS 24, 52
NoRTOS Configuration 52
NoRTOS Target Base 25
NoRTOS target base 24
Index 149

O
OBJECT_DECODE 72, 84
OBJECT_ENCODE 72, 84
observability

adding support for xiii, 123
omake 34
OS capabilities 44
OS knowledge and experience 43
OTRTSDEBUG 73, 85

P
PATH variable 54
phases of a port 50
platform

two-part name
target and libset 45, 50

platform name, choosing a 50
platform-specific

implementation 75, 84
port, major steps for implementing the 50
porting

adding new files to TargetRTS 80, 93
before starting 43
building new TargetRTS 122
Class RTIOMonitor 80
Class RTMain 78
Class RTMutex 76
Class RTSyncObject 77
Class RTTcpSocket 79
Config makefiles 65
configuration name 50
configuring TargetRTS 103
Constructor

RTThread_construct(this,job,priority,s
tacksize) 76

creating new error parser 98
default command line arguments 109
default makefiles 59
disabling TargetRTS features for

performance 103
File main.c 80
floating point operations 46

libset makefiles 65
Libset name 52
linker configuration 106
linker configuration files 106
main() function 78, 91
MANIFEST.c file 80
Method RTDebuggerInput_nextChar() 79
Method RTStdio_putString() 79
Method RTTimespec_clocl_gettime() 76
modifying error parser 95
Platform-specific implementation 75
platform-specific implementation 88
preprocessor definitions 72, 84
problems 105
Regenerating make dependencies 81
regenerating make dependencies 94
Required operating system features for the C

and C++ TargetRTS 44
Required TargetRTS Classes and

Functions 75
script for porting 54
system include files 106
target makefiles 64
target name 51
target TCP/IP interfaces 111
target toolchains 106
TargetRTS 49
TargetRTS classes 119
TargetRTS configuration definitions 118
TargetRTS example 113
TargetRTS for C 71
TargetRTS for C++ 83
TargetRTS makefiles 56
TargetRTS performance enhancements 104
TargetRTS/RTOS interaction 107
TCP/IP functionality 46
test models 102
testing TargetRTS 101
Tool chain functionality (C and C++) 44

porting phases 50
ports

creating between C and C++ 35
POSIX function calls 107
Problems 105
150 Index

problems and pitfalls
target toolchains 106
TargetRTS/RTOS interaction 107
TCP/IP interfaces 111

problems and pitfalls with target TCP/IP
interfaces 111

problems and pitfalls with target toolchains 106
problems and pitfalls with TargetRTS/RTOS

interaction 107

R
Rational customer support

contacting xv
Rational Technical Support

what to do before calling 47
Real-time clock 107
Rebuild (make clean first) 34
reentrancy 111
regenerating make dependencies 81, 94
Registering Threads on Unix 133
Reset command 127
reset.pl 127
reusing an existing error parser 98
rtcomp.pl 97
RTDebuggerInput 93
RTDebuggerInput_nextChar 79
RTDiagStream 92
RTIOMonitor 80, 93
RTMain 78, 92
RTMain_mainline() 79
RTMain_targetShutdown() function 78
RTMain_targetStartup() function 78
RTMutex 76, 90
RTOS

building with none 52
supplies main() function 109

RTOS supplies main() function 109
RTREAL_INCLUDED 86
RTS_config 23
RTStdio_putString 79
RTSyncObject 77, 90

RTTcpSocket 79, 93
RTThread 90
RTTimespec 89
rules of operation 134

S
script

create setup script for porting 54
TargetRTS porting example 114

scripts 126
target control 126

Select() statement 111
Set Breakpoint At Function 144
Set Breakpoint in File 143
Set Callback 141
Set DllTrace 146
Set Source Search Path 143
setup script 54

creating a 54, 114
TargetRTS compilation to the platform 54

setup.pl 54
signal handlers 109
simple non-ObjecTime program on target 45
simple non-Rose RealTime program on target 45
single-threaded configuration 23
source code debugger integration 133
standard input/output functionality 46
Start Debugger 140
Stop Debugger 140

T
Target 22, 64, 117
target

building with no OS 52
name, components of 51
no RTOS 52
platform name, part of 50

Target bases 23
Target Compiler Flags 29
Target compiler optimizations 103
target compiler optimizations 103
Index 151

target control
adding support for xiii, 123
audience 124
basic mode 125
calling sequence 133
debugger mode 126
defined 125
Execute command 130
general issues 132
Load command 128
manual mode 125
menu commands 127
model compilation 124
modes 125
overview 124
Reset command 127
rules of operation 134
scripts 126
Terminate command 131
third-party source code debugger

integration 133
Unload command 129

target control scripts 126
defined 126

Target Linker Flags 29
target makefile 64, 117
Target name

definition 23
target observability

defined 125
overview 124

target operating system optimizations 104
Target Settings 29
target TCP/IP interfaces 111
TARGETCCFLAGS 29
TARGETLDFLAGS 29
TargetRTS

adding new files 80, 93
building configurations 32
building new 122
configuration definitions 118
configuration types 22
configuring 103
creating ports between C and C++ 35
deleting configurations 34

description 18
disabling features for performance 103
duplicating a configuration 21
editing a configuration 25, 31
editing the libset 30
editing the target 28
existing configurations 20
libraries

compilation supported by makefiles 56
libset 22
libset name 24
maintaining libraries 19
makefiles 27
managing configurations 21
NoRTOS Target Base 25
overview regarding porting 42
performance enhancements 104
porting example 113
porting for C 71
porting for C++ 83
required operating system features 44
specific performance enhancements 104
Summary 24
target 22
Target bases 23
target name 23
testing 101
Work Order 24

TargetRTS classes, code changes to 119
TargetRTS configuration definitions 118
TargetRTS features, disabling for

performance 103
TargetRTS makefiles 56
targetShutdown function 92
targetStartup function 92
TCP/IP functionality 46

porting 46
tcThreadCleanup 133
tcThreadInit 133
Terminate command 131
terminate.pl 127
The 80
threads

registering on UNIX 133
thread-safe interface 133
152 Index

Training 47
troubleshooting

Compiler optimizations 106
Default command line arguments 109
linker configuration file (C++) 106
linker configuration files 106
porting 105
problems with porting 105
Real-time clock 107
Return codes for POSIX function calls 107
return codes for POSIX function calls 107
signal handlers 109
system include files 106
target TCP/IP interfaces 111
target toolchains 106
TargetRTS/RTOS interaction 107
thread creation 107

U
UNIX

Registering threads 133
Unload command 129
unload.pl 127
USE_THREADS 37, 72, 84
Index 153

154 Index

	Adapting Rational Rose RealTime for Target Environments
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Using the TargetRTS Wizard
	Overview of the TargetRTS Wizard
	Understanding the TargetRTS
	Maintaining TargetRTS Libraries using the TargetRTS Wizard
	Managing Your TargetRTS Configurations

	Duplicating a Configuration
	NoRTOS Target Base
	Editing a Configuration
	Understanding the makefiles
	Editing the Target
	Editing the Libset
	Modifying a Configuration
	Building Configurations
	Deleting Configurations
	Creating Ports between C and C++

	Introducing the TargetRTS
	Overview
	Other Resources

	Before Starting a Port
	OS Knowledge and Experience
	Toolchain Functionality
	OS Capabilities
	Simple non-Rational Rose RealTime Program on Target
	TCP/IP Functionality
	Floating Point Operations
	Standard Input/Output Functionality
	Debugging
	Training
	Support
	What to do Before Calling Rational Customer Support

	Porting the TargetRTS
	Overview
	Phases of a Port
	Choose a Configuration Name
	Target Name
	Libset Name

	Building Rational Rose RealTime Applications for Targets without Operating Systems
	Benefits of Using a NoRTOS Configuration
	Using a NoRTOS Configuration
	Verification

	Creating a Setup Script (setup.pl)
	TargetRTS makefiles
	Default makefile
	Target makefile
	Libset makefile
	Config makefile

	Porting the TargetRTS for�C
	Configuring the TargetRTS
	Platform-specific Implementation
	Method RTTimespec_clock_gettime(timespec)
	Constructor RTThread_construct(this,job,priority,stacksize)
	Class RTMutex
	Class RTSyncObject
	main() function
	Class RTMain
	Method RTStdio_putString()
	Method RTDebuggerInput_nextChar()
	Class RTTcpSocket
	Class RTIOMonitor
	File main.c

	Adding New Files to the TargetRTS
	The MANIFEST.c File
	Regenerating make Dependencies

	Porting the TargetRTS for�C++
	Configuring the TargetRTS
	Platform-specific Implementation
	Method RTTimespec::getclock()
	Constructor RTThread::RTThread()
	Class RTMutex
	Class RTSyncObject
	main() function
	Class RTMain
	Method RTDiagStream::write()
	Method RTDebuggerInput::nextChar()
	Class RTTcpSocket
	Class RTIOMonitor
	File main.cc

	Adding New Files to the TargetRTS
	The MANIFEST.cpp File
	Regenerating make Dependencies

	Modifying the Error Parser
	Overview of the Error Parser
	How the Error Parser Works
	The Error Parsing Rules
	How "rtcomp.pl" Integrates With the Compiler

	Reusing an Existing Error Parser
	Creating a New Error Parser

	Testing the TargetRTS Port
	Overview
	HelloWorld Model
	Other Test Models
	Other Resources

	Tuning the TargetRTS
	Disabling TargetRTS Features for Performance
	Target Compiler Optimizations
	Target Operating System Optimizations
	Specific TargetRTS Performance Enhancements

	Common Problems and Pitfalls
	Overview
	Problems and Pitfalls with Target Toolchains
	Compiler Optimizations
	Linker Configuration File
	System Include Files

	Problems and Pitfalls with TargetRTS/RTOS Interaction
	Return Codes for POSIX Function Calls
	Thread Creation
	Real-time Clock
	Real-time Clock
	Signal Handlers
	RTOS Supplies main() Function
	Default Command Line Arguments
	Exiting Application

	Problems and Pitfalls with Target TCP/IP Interfaces
	gethostbyname() reentrancy
	select() statement

	TargetRTS Porting Example
	Overview
	Choosing the Configuration Name
	Create Setup Script
	Create makefiles
	Libset makefile
	Target makefile
	Configuration makefile

	TargetRTS Configuration Definitions
	Code Changes to TargetRTS Classes
	Building the New TargetRTS

	Customizing for Target Control and Observability
	Introduction
	Model Compilation and Target Control
	Intended Audience

	Target Control
	Target Control Modes
	Manual Mode
	Basic Mode
	Debugger Mode

	Target Control Scripts

	Menu Commands
	Reset
	Load
	Unload
	Execute
	Terminate
	General Issues

	Third-Party Source Code Debugger Integration
	Registering Threads on UNIX
	Calling Sequence
	Debugger DLL API
	Get DLL Capabilities
	Create Debug Session
	Destroy Debug Session
	Initialize Debugger
	Cleanup Debugger
	Start Debugger
	Stop Debugger
	Set Callback
	Event Callback Function
	Set Source Search Path
	Set Breakpoint in File
	Set Breakpoint At Function
	Clear Breakpoint
	Set DllTrace

	Index

