Rational Software Corporation

Adapting Rational Rose RealTime
for Target Environments

RATIONAL ROSE® REALTIME

VERSION: 2003.06.00

PART NUMBER: 800-026121-000

WINDOWS/UNIX

Rational

support@rational.com
the software development company

http:/ /www.rational.com

L egal Notices
©2003, Rational Software Corporation. All rights reserved.

Part Number: 800-026121-000
Version Number: 2003.06.00

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectX], DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense,] /Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, Map Vision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDeyv,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or registered
trademarks of Microsoft Corporation in the United States and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXIm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents

Preface xiii
AUAIENCE. . . o o Xili
Other RESOUICESt e e Xiv
Rational Rose RealTime Integrations With Other Rational Products.. Xiv
Contacting Rational Customer Support i, XV

1 Usingthe TargetRTS Wizard. 17
Overview of the TargetRTS Wizard, 18
Understanding the TargetRTS 18
Maintaining TargetRTS Libraries using the TargetRTS Wizard 19
Managing Your TargetRTS Configurations 21
Duplicating a Configuration i 21
NORTOS TargetBase. e 25
Editing a Configuration. 25
Understanding the makefiles 27
Editingthe Target 28
Editing the Libset 30
Modifying a Configuration. 31
Building Configurations. 32
Deleting Configurationsttt e 34
Creating Portsbetween Cand C++ i 35

2 Introducing the TargetRTS e 41
OVEBIVIBW. . et e e 41
Other RESOUICESt e e e 42

3 Before StartingaPort........... 43
OS Knowledge and Experience 43
Toolchain Functionality 44

OS Capabilities. 44
Simple non-Rational Rose RealTime Program on Target. 45

Contents v

Vi

TCP/IP Functionality e 46

Floating Point Operations.ot 46
Standard Input/Output Functionality 46
Debugging a7
TrainiNg. . . . a7
SUPPOIT . . 47
What to do Before Calling Rational Customer Support 47
Porting the TargetRTS 49
OVEIVIBW .« s e e e e e e e 49
Phases of aPort 50
Choose a Configuration Name. 50
Target NamMe . . . 51
Libset Name o 52
Building Rational Rose RealTime Applications for Targets without Operating
SY S M . . oo 52
Benefits of Using a NORTOS Configuration 52
Using @ NORTOS Configurationttt e s 52
VErifiCatioN. o 53
Creating a Setup Script (setup.pl) 54
TargetRTS makefiles 56
Default makefile 59
Target makefile. 64
Libset makefile. 65
Configmakefile 65
Porting the TargetRTSfor C 71
Configuring the TargetRTS. e 71
Platform-specific Implementation., 75
Method RTTimespec_clock_gettime(timespec)t 76
Constructor RTThread_construct(this,job,priority,stacksize) 76
Class RTMULEX . . . oot 76
Class RTSYNCODJECE.o e e 77
main() fUNCLioN 78
Class RTMaiNo 78
Method RTStdio_putString(). o oo 79

Contents

Method RTDebuggerinput_nextChar()., 79

Class RTTCPSOCKEL . . . o e 79
Class RTIOMONIOr.ot e e e e 80
File main.C 80
Adding New Filesto the TargetRTS i 80
The MANIFEST.CFile.o e 80
Regenerating make Dependenciest 81
Porting the TargetRTS for C++. 83
Configuring the TargetRTS. e 83
Platform-specific Implementation. 88
Method RTTimespec::getclock() e 89
Constructor RTThread::RTThread().o oo 90
Class RTMULEX. . . ottt e e e e e e e 90
Class RTSyncObject 90
main() fuUNCtion e 91
Class RTMaiN. e e e e 92
Method RTDiagStream::write()t e 92
Method RTDebuggerinput::nextChar().o 93
Class RTTCPSOCKEL . . . o 93
Class RTIOMONITOr.ot e e e e 93
File Main.CC 93
Adding New Filesto the TargetRTS i 93
The MANIFEST.cpp File. 94
Regenerating make Dependencies 94
Modifying the Error Parser. i 95
Overview of the Error Parser 95
How the Error Parser Works i, 96
The Error Parsing RUIES 96

How "rtcomp.pl" Integrates With the Compiler. 97
Reusing an Existing Error Parser. 98
Creating a New Error Parser 98
Testing the TargetRTS Port 101
OVEIVIBW . . ot e e e e e e 101
HelloWorld Model. 101
Other TestModels e e e 102
Other RESOUICES . . . i e e e e e e e e e 102

Contents vii

viii

9

10

11

Tuning the TargetRTS. 103

Disabling TargetRTS Features for Performance. 103
Target Compiler Optimizations. 103
Target Operating System Optimizations. 104
Specific TargetRTS Performance Enhancements 104
Common Problemsand Pitfalls 105
OVEIVIBW . . o e e e e e 105
Problems and Pitfalls with Target Toolchains. 106
Compiler Optimizations 106
Linker Configuration File. 106
SystemiInclude Files 106
Problems and Pitfalls with TargetRTS/RTOS Interaction 107
Return Codes for POSIX FunctionCalls 107
Thread Creation 107
Real-time CIoCK 107
Real-time Clock 107
Signal Handlers 109
RTOS Supplies mai n() Function i 109
Default Command Line Arguments.ttt 109
Exiting Application 110
Problems and Pitfalls with Target TCP/IP Interfaces 111
gethostbyname() reentrancy 111
select() statement. 111
TargetRTS Porting Example, 113
OVEIVIBW . . o e e e e e 113
Choosing the Configuration Name. 113
Create Setup SCIPt oo 114
Create makefiles 115
Libsetmakefile 115
Targetmakefile 117
Configuration makefile 118
TargetRTS Configuration Definitions 118
Code Changesto TargetRTS Classes. 119
Building the New TargetRTS 122

Contents

12 Customizing for Target Control and Observability 123

Introduction 123
Model Compilation and Target Control. 124
Intended AUdIENCE 124
Target CoNtrol. oo 125
Target Control MOdes. 125
Manual Mode 125

Basic Mode 125
Debugger Mode. 126

Target Control SCrPtS.o 126
Menu Commands. 127
RESEL . . 127
0 - T 128
Unloado 129
EXECULE . . . 130
TermMiNate . . . oo 131
General ISSUBSot 132
Third-Party Source Code Debugger Integration. 133
Registering Threads on UNIX 133
Calling SequeNCEe. 133
Debugger DLL AP 135

Get DLL Capabilities 136

Create DEDUQ SESSION.ottt 137

Destroy Debug SESSIONot 138

Initialize DebUQQET oo 138
Cleanup Debugger. 139

Start Debugger 140

Stop Debugger. 140
SetCallback. 141

Event Callback Function 142
SetSource Search Path 143
SetBreakpointin File. e 143

Set Breakpoint AL FUNCLIONt 144

Clear Breakpoint 145
SEtDIITIACE . . o ot 146

INdeX. . . 147

Contents ix

x Contents

List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12

Required Operating System Features for the C and C++ TargetRTS. 44

Example Configuration Names 51
Variables in the Setup.pl Script 55
Make Macro Definitions. 66
Preprocessor Definitions 72
Required TargetRTS Classes and Functions. 75
Preprocessor Definitions 84
Required TargetRTS Classes and Functions. 89
Tools Required for Building the TargetRTS forC............... 115
Important Toolchain Command Line Options 116

Quick Summary of Common C TargetRTS Source File Changes.. 120
Quick Summary of Common C++ TargetRTS Source File Changes 121

Xi

xii List of Tables

Preface

This manual describes how you can quickly and easily customize your existing
TargetRTS libraries, and simplify the porting of the TargetRTS to new targets. With the
TargetRTS Wizard, you can quickly create a new TargetRTS configuration, modify or
duplicate an existing configuration, or delete an existing configuration that is no
longer required.

Later chapters describe the properties for porting the TargetRTS to a new target
environment.

This manual also describes how to add support to Rational Rose RealTime for target
control and observability, and how to integrate Rational Rose RealTime with source
code debuggers.

This manual is organized as follows:

Using the TargetRTS Wizard on page 17
Introducing the TargetRTS on page 41
Before Starting a Port on page 43

Porting the TargetRTS on page 49

Porting the TargetRTS for C on page 71
Porting the TargetRTS for C++ on page 83
Modifying the Error Parser on page 95
Testing the TargetRTS Port on page 101
Tuning the TargetRTS on page 103
Common Problems and Pitfalls on page 105
TargetRTS Porting Example on page 113
Customizing for Target Control and Observability on page 123

Audience

This guide is intended for all readers including managers, project leaders, analysts,
developers, and testers.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to.

xiii

Other Resources

= Online Help is available for Rational Rose RealTime.
Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rational Rose RealTime Documentation from the Start menu.

+ To send feedback about documentation for Rational products, please send e-mail
tot echpubs@ ati onal . com

+ For more information about Rational Software technical publications, see:
http://ww. rational.com docunmentati on.

+ For more information on training opportunities, see the Rational University Web
site: ht t p: //www. r ati onal . com uni versi ty.

* For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations With Other Rational
Products

Integration Description Where it is Documented

Rose RealTime— | You can archive Rose RT components in Toolset Guide: Rational Rose RealTime

ClearCase ClearCase. * Guide to Team Development: Rational
Rose RealTime
Rose RealTime— | Rose RealTime developers can create * Toolset Guide: Rational Rose RealTime
UCM baselines of Rose RT pro]gcts inUCMand | Guide to Team Development: Rational
create Rose RealTime projects from .
. Rose RealTime
baselines.
Rose RealTime— | When linking or running a Rose * Rational Rose RealTime Help
Purify RealTime model with Purify installed on

= Toolset Guide: Rational Rose RealTi
the system, developers can invoke the Oolset Guide: Rational Rose RealTime

Purify executable using the Build > Run |* Installation Guide: Rational Rose
with Purify command. While the model RealTime

executes and when it completes, the
integration displays a report in a Purify
Tab in RoseRealTime.

xiv Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Integration

Description

Where it is Documented

Rose RealTime—
RequisitePro

You can associate RequisitePro .
requirements and documents with Rose
RealTime elements.

Addins, Tools, and Wizards Reference:

Rational Rose Real Time
Using RequisitePro

Installation Guide: Rational Rose
RealTime

Rose RealTime—
SoDa

You can create reports that extract .
information from a Rose RealTime
model.

Installation Guide: Rational Rose
RealTime

Rational SoDA User’s Guide

SoDA Help

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Your Location Telephone Facsimile E-mail
North, Central, +1 (800) 433-5444 +1 (781) 676-2460 support@rational.com
and South (toll free) Lexington, MA
America +1 (408) 863-4000
Cupertino, CA
Europe, Middle +31 20 4546-200 +31 20 4546-201 support@europe.rational.com
East, Africa Netherlands Netherlands

Asia Pacific

+61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com

Contacting Rational Customer Support xv

XVi

Note: When you contact Rational Customer Support, please be prepared to supply the
following information:

Your name, company name, telephone number, and e-mail address

Your operating system, version number, and any service packs or patches you
have applied

Product name and release number

Your Service Request number (SR#) if you are following up on a previously
reported problem

When sending email concerning a previously-reported problem, please include in the
subject field: "[SR#XXXXX]", where XXXXX is the Service Request number of the
issue. For example, "[SR#0176528] - New data on rational rose realtime install issue ".

Preface

Using the TargetRTS
Wizard

Contents
This chapter is organized as follows:

Owerview of the TargetRTS Wizard on page 18
Understanding the TargetRTS on page 18
Maintaining TargetRTS Libraries using the TargetRTS Wizard on page 19
Duplicating a Configuration on page 21
NoRTOS Target Base on page 25

Editing a Configuration on page 25
Understanding the makefiles on page 27
Editing the Target on page 28

Editing the Libset on page 30

Modifying a Configuration on page 31
Building Configurations on page 32

Deleting Configurations on page 34

Creating Ports between C and C++ on page 35

Overview of the TargetRTS Wizard

The TargetRTS Wizard facilitates the management of the TargetRTS source tree,
allows easy customization of existing TargetRTS libraries, and simplifies porting of
the TargetRTS to new targets. With the TargetRTS Wizard, you can create a new
TargetRTS configuration, modify or duplicate an existing configuration, or delete an
existing configuration that is no longer required.

Note: Porting to a new operating system or a libset is not a trivial process, even with
the help of the TargetRTS Wizard. You must be familiar with the operating system,
the toolchain, the TargetRTS, and its layout.

Note: The figures for the TargetRTS Wizard dialogs are for the C++ language.

Understanding the TargetRTS

The TargetRTS is the set of run-time services that provide a framework in which a
Rational Rose RealTime model can run. The TargetRTS Wizard simplifies the
activities of building, configuring, managing, and customizing the TargetRTS libraries
and build environment.

The TargetRTS contains the required parts, such as source code and makefiles, used
to build applications from Rational Rose RealTime models. It contains
application-independent source code which is pre-compiled into target-specific
libraries.

To compile this source code, the tools (such as make, compiler, linker, and archiver
utilities) must be installed and operational in your environment.

18 Chapter 1 - Using the TargetRTS Wizard

Maintaining TargetRTS Libraries using the TargetRTS Wizard

To access the TargetRTS Wizard, click Tools > TargetRTS Wizard. Figure 1 shows the
first pane in the TargetRTS Wizard.

Figurel TargetRTS Wizard - First Pane

TargetRTS Wizard
TargetRTS Wizard
The TargetR TS Wizard allows you to create new TargetR TS configurations. edit and build existing configurations. and
delete any configurations that are no longer required.
Thiz TargetR TS Wizard simplifies the activities of building, configuring, managing and custanizing
the TargetRiTS libraries and build environment. The TargetRTS contains the source code, make
Select a language: fileg, etc. uzed to build applications from Rose RealTime modelz. It containg application
% Ct+ independent source code [for example, a main routine] which i pre-compiled into target-specific
libranies. To compile this source code, tools such as make, compiler, linker, and archiver utilities
e mist be installed and operational in your enviranment. For additional infarmation, click Help ar
Porting Guide.
Specify a path to the TargetRTS:
|E: YPragram FileshR ationalhR oze RealTime\C++4TargetRTS Browse. ..
| Mext > Cancel | Help Forting Guide

Use this pane to locate the TargetRTS tree for the TargetRTS Wizard, then click Next.

Maintaining TargetRTS Libraries using the TargetRTS Wizard 19

Figure 2 TargetRTS Wizard - Manage Configurations Panel

Manage Configurations

The list below contains the existing configurations. Select a configuration to duplicate, edit. rebuild. or delete. Mote: Y'ou
can not edit or delete configurations supported by Rational Boze BealTime.

Euisting Configurations: Wwihat would you like to do with selected configuration?
tanage Browse
_ppc-gr a
AlAT ppe-gnu-2.8.1 I Diuplicate | Target ... |

CHORUS 40T ppcB03-eqos-2.91.66
IR[=E5.r4400-gnu-2.8.1
IR=E6T.r4400-gnu-2.8.1 Edit | Target Base ... |
LvM305. ppe-cygnus-2. 7-97r1
Ly Mx305 286-cygrus-2. 7-3711
L'vYMx30T . ppe-cygnus-2. 7-97r1 Build | Libset ... |
LY M#30T #86-cpanus-2. 7-97r1
LvMx315. ppe-ghupro-2.9-98r2
LYN<31T . ppc-grpro-2. 3-38:2 Delete | Configuiation .. |
MT40CygwinT . =86-cygwin-gnu-2.95.3-5
MHT40T . #8E6-WizualC++-4.2

HT40T. 286 izualC++-5.0

MHT40T . 286-izualC++-E.0

MTA40T 286-izualC++-7.0 —
MUCLEUS11T. ppeBE0-Diab-4. 20

MUCLES11T. 286 jzualC++-E.0

MoRTOSS. sparc-gnu-2.8.1

MeRTOSS »86-isualC++-6.0

O5SE411 T ppek03-Diab-4. 3

OSE411T sparc-gnu-2.95.1

PS0O528T. ppeB03-Diab-4. 2b
PS0525T.ppe860-Diab-4. 2b

QINXA5 RBEWT++-10.6

REDHATE1S #86-egos-2. 591 66

REDHATE1T . #86-egos-2. 91 66

TORMADCOI0 T.i960-cpgrus-2. 7. 2-9601 26 ﬂ

¢ Back | | E xit | Help | Porting Guide |

The Existing Configurations box contains a list of all your configurations. For some
configurations, you can duplicate, edit, build, or delete them.

Note: Those configurations distributed with Rational Rose RealTime are read-only
and cannot be edited or deleted. To modify a Rational Rose RealTime configuration
that is read-only, select the configuration and click Duplicate.

For additional information on modifying a Rational Rose RealTime configuration, see
Duplicating a Configuration on page 21.

20 Chapter 1 - Using the TargetRTS Wizard

Managing Your TargetRTS Configurations
When managing configurations with the TargetRTS Wizard, you can:

Click Duplicate for Duplicating a Configuration on page 21
Click Edit for Editing a Configuration on page 25

Click Build for Building Configurations on page 32

Click Delete for Deleting Configurations on page 34

Click a browse option for browing directories

Browsing Directories

You can also browse other directories for configurations to quickly view the files
necessary for each configuration. The TargetRTS Wizard opens the files in the
external editor you specified in the Path box on the Editor tab by clicking

Tools > Options.

Duplicating a Configuration

Duplicating an existing configuration is the first step to creating new configurations
for new ports, or for a custom version of the same configuration.

Note: The configuration name is an important identifier of the TargetRTS. It identifies
the operating system, hardware architecture, and compiler.
To duplicate a configuration:

1 From the Existing Configuration box on the Manage Configuration pane, select a
configuration.

2 In the Manage box, click Duplicate.
3 Click Next.

Duplicating a Configuration 21

Figure 3 TargetRTS Wizard - Duplicate Configuration Panel

TargetRTS Wizard

Duplicate Configuration

Thiz panel allows you to create a new configuration of the TargetR TS by duplicating an existing configuration.

Duplicate Configuration based on NT40T x86-VisualC++-7.0

Create new
™ Target Target name| |'|'—
[Libset Libzet name |

Resulting configuration |

Target base
{+
o Mame |

" Mame |

A configuration name is comprized of a target and a libeet. The target epecifiez the 05 for the configuration and indicates whether it is
zingle-threaded aor multi-threaded. Single-threaded target names end with the letter 'S* [for example, AI45], while multi-threaded target names
end with the letter 'T* [for example, TORMADOZT]. The libset name indicates which processar architecture the configuration ring an, atd
the compiler uzed to compile it (for example, ppcB03-gnu-2.98). Each target depends on one or more target bages that contain 05 -specific
zource code. The target bazes are in the $RTS_HOME fsrctargets subdirectory. There is a sample port in the

$RTS_HOME fzicftarget/zample zubdirectorny that pou can use as a skeleton [template] for a port to a new target.

4 hew configuration may be a simple optimization of an exizting cotfiguration, a port of an existing configuration (to & new processor

< Back | | Cancel Help | Porting Guide |

A new configuration can be:

° A simple optimization of an existing configuration

= A port of an existing configuration (to a new processor architecture or to a new
compiler)

° A port to an entirely new OS

Since the new configuration must have a new name, you must create a new Target,
a new Libset, or both.

The Target specifies the OS for the configuration and indicates whether it is
single-threaded or multi-threaded. Single-threaded target names end with the
letter 'S' (for example, AIX4S), while multi-threaded target names end with the
letter 'T" (for example, TORNADQO2T). The Libset name indicates which processor
architecture the configuration runs on, and the compiler used to compile it (for

22 Chapter 1 - Using the TargetRTS Wizard

example, ppc603-gnu-2.96). Each target depends on one or more target bases that
contain OS-specific source code. The Target bases are in the
$ROSERT_HOME/src/target/ directory.

Note: There is a sample port in SROSERT_HOME/src/target/sample that you can
use as a skeleton (a template) for a port to a new target.

Under the Create new label, if you select Target, you can specify a new name in
the Target name box.

The Target name represents the implementation-specific components of the
TargetRTS. These components are generally specific to a given configuration, of a
given version, of a given operating system. The Target name is also used to name
the configuration of the target, such as single-threaded versus multi-threaded. The
target name is defined as follows:

<target> := <OS_name><OS_version><RTS_config>

The components of <t ar get > are defined as follows:

<OS_name> identifies the operating system (for example, SUN)
<OS_version> identifies the major version of that operating system.

Note: Do not use periods in the OS version because this will confuse the make
utility when it attempts to build the TargetRTS.

<RTS_config> is a single letter that identifies the configuration; "S" for a
single-threaded configuration, and "T" for a multi-threaded configuration.

For example:
SUNST

If you select Target, the Target base area of the panel becomes enabled. The Target
base controls the OS-specific source code used for the new target. If the duplicate
configuration is a port to a different operating system, a new target base will be
necessary. Duplicating a target base copies the target base used for the original
target; you will likely have to modify the new base, as required. A skeleton target
base contains only stubs for functions that are required for any target. These
functions must be fully implemented and you will likely have to add additional
functions.

Duplicating a Configuration 23

You can specify a NoRTOS target base that does not use any OS-specific calls. For
more information on using a NoRTOS target base, see NoRTOS Target Base on
page 25.

Note: To reuse existing targets to create new configurations, you can specify the
name of an existing target in the Target name box. The TargetRTS Wizard creates a
new configuration (using the selected libset and the existing target), and the target
will not be copied.

5 Under the Create new label, if you select Libset, you can specify a new name in
the Libset name box.

Although the actual libset names can be chosen arbitrarily, by convention, those
used by Rational Rose RealTime are defined as follows:

<libset> ::= <processor>-<compiler_name>-<compiler_version>
The components of <libset> are defined as follows:
<processor> identifies the processor architecture name

<compiler_name> identifies the compiler product name, or the vender for the
compiler.

<compiler_version> identifies the compiler version. It is acceptable to use periods in
the compiler version text.

For example:
sparc-gnu-2.8.1

Note: To reuse existing libsets to create new configurations, you can specify the
name of an existing libset in the Libset name box. The TargetRTS Wizard creates a
new configuration (using the selected target and the existing libset), and the libset
will not be copied.

The Resulting Configuration box contains the name of the configuration.
6 Click Next.

The TargetRTS Wizard presents a Summary dialog that identifies all of the actions
it will perform.

7 Click Next.

When appropriate, the TargetRTS Wizard displays a Work Order dialog
containing a list of items that may require user intervention.

8 Click Next.

24 Chapter 1 - Using the TargetRTS Wizard

NoRTOS Target Base

Both the C and C++ TargetRTS have a NoRTOS target base that does not use any
OS-specific calls. This means that a NoRTOS target base will work with any OS, or it
will work without an OS. A single-threaded target (NoRTOSS) uses the NoRTOS
target base.

Often, when porting to a new operating system, it is useful to create the libset, then
use it with the NoRTOSS target to verify that the toolchain works properly. After the
OS-independent version of the port is complete, you can use its libset with a new
target to make the full port.

To create a configuration that uses a NORTOS target base using the TargetRTS
Wizard:

1 From the Existing Configuration box on the Manage Configuration pane, select a
configuration that uses the NoRTOSS target.

2 In the Manage box, click Duplicate.
3 Under the Create new label, select Libset.
4 In the Libset name box, specify an appropriate name for the libset.

Note: For some situations where the new libset is similar to an already existing
libset, it may be useful to specify the name of that existing libset into the Libset
name box. The TargetRTS Wizard will then reuse that libset in the new
configuration. The resulting configuration can then be duplicated to properly
name the new libset. The TargetRTS Wizard will then use this libset with the new
target to create the new configuration.

Editing a Configuration

After you duplicate a configuration, you can edit the new configuration. You can edit
the target, the libset, or only the configuration itself.

Note: You cannot edit the configurations that are included with Rational Rose
RealTime, nor the targets and libsets that these configurations use. You can only edit
the configurations that you duplicated previously.

Every configuration is comprised of a target and a libset. Editing the target is useful
for OS-specific changes, while editing the libset is appropriate for compiler-specific
changes. To change the TargetRTS settings, you will need to edit the target.

Note: These changes affect all configurations that use the selected target or libset.

NORTOS Target Base 25

Figure 4 shows the Edit Configuration pane in the TargetRTS Wizard. From this
pane, you can specify whether you want to edit a combination of the target, libset, or
the configuration itself. For more information on editing, see the following:

- Editing the Target on page 28

- Editing the Libset on page 30

* Modifying a Configuration on page 31

Figure 4 TargetRTS Wizard - Edit Configuration Panel

I EEEEEE—————..—.—————=.———_—_—_—————————————————.
Edit Configuration

This panel allows you to edit an existing configuration of the TargetRTS.

Maote: The TargetR TS wizard will not edit any directary required by & configuration supported by R ational Foze FealTime.

Editing NT40xT x86-VisualC++-7.0x

Wihat do you want to edit?

[Target NT40xT [will affect all configurations using this target.]
[Libset xB5-4izualC++-7 Ok [l affect all configurations using this beet.]
W Config NT40xT %86 VizualC++7.0x [will overide target and libset settings.]

Each configurations consists of a target and a libzet. Editing the target iz uzeful for 0S specific changes, while editing the libzet iz
appropriate for compiler specific changes. Mate that these changes will affect all corfigurations that use the selected target or libzet
respectively. Changes unigue to this configuration should be entered by editing the configuration. If you wish to change the TargetRTS
settings, vou will have to edit the target.

< Back | MNewt » Cancel Help Porting Guide

26 Chapter 1 - Using the TargetRTS Wizard

Understanding the makefiles

When you edit a configuration using the TargetRTS Wizard, you are modifying
properties in one or more makefiles. Figure 5 shows the makefiles that you can
update when specifying particular options while using the TargetRTS Wizard.

Figure 5 TargetRTS makefiles

Main TargetRTS makefile:
$RTS_HOME/srcimainnk (UNDE)
$RTS_HOME/src/main.nmk (Windows)

includes defaults makefile:
™ $RTS_HOMENibset/default.mk
libs et makefile:
™ {RTS_HOME/libset/<libset= fibset.mk
target makefile:
= $RTS_HOME target/<target> target.mk
config makefile:
— ™ 4RTS_HOME/config/<config =/config.mk

The default.mk, libset.mk, target.mk, and config.mk makefiles are used to
compile both the TargetRTS libraries and the model. The target.mk, libset.mk and
config.mk makefiles override the defaults defined in
$ROSERT_HOME/libset/default.mk. These are the makefiles that you can edit
using the TargetRTS Wizard.

The main.nmk (nmake for Windows) or main.mk (make for UNIX) is the main
definition for compiling the TargetRTS libraries. These makefiles should not be
customized, and will not be discussed further in this document.

The default.mk file contains the default macro definitions that may be overridden
by the platform-specific makefiles.

The target.mk file contains the definition specific to the target operating system.
The libset.mk file contains the definition specific to the compiler.

The config.mk file contains the definition specific to the combination of the compiler,
operating system, and TargetRTS configuration.

Understanding the makefiles 27

Editing the Target

You can edit the target to create a custom TargetRTS library. Figure 6 shows the C++
options used to configure the run-time system.

Note: The Customize Target panel in the TargetRTS Wizard for C is similar to C++;
however, some of the individual options differ. For additional information, click the
question mark opposite each option.

Figure 6 TargetRTS Wizard - Customize Target Panel

S=———h————b—b—h—h—b——bPBLLLPPP_P__—_—=—HO—HO—b—b=bwnh=—————maLLm—_m;,,—,
TargetRTS Wizard

Customize Targe‘[NTAOxT Select zetting for the new TargetB TS configuration.

Defer queus in ever capsule [DEFER_IN_ACTOR]

IP available [HAYE_IMET]

Meszage logging [LOG_MESSAGE]

Object decoding (OBJECT_DECODE]

Object encoding [OBJECT_ENCODE]

Gather statistics [RTS_COLNT]

Allow inline functions [RTS_IMLINES]

Irline generated chain functions [IMLINE_CHAIMS]
Irline some generated user code IMLIME_METHODS)
Thread-zafe frame service [RTFRAME_THREAD_SAFE]
Floating paint available [RTUzeFloatingPaint]

Include RTReal clazs (RTREAL_INCLUDELD)

Runtime backwards compatibility [RTRUMTIMEBC)
|Jze hit fields in some structs [T seBitFields)

Max, butes reserved for each state id [RTStateld_MaxSize)
" 1 hyte * 2 hytes " 4 hytes ﬂ

Capzule reference check level [RTFRAME_CHECKING]

* RTFRAME_CHECE_STRICT

" RTFRAME_CHECK_LOOSE

" RTFRAME_CHECK_MNOME ﬂ

Sighals with incompatible data [RTTYPECHECK_PROTOCOL)
" RTTYPECHECK_DOMT
+ RTTYPECHECK_ ‘wWaRM
" RTTYPECHECK_FAIL ﬂ

[ata compatibility upon sending (RTTYPECHECK_SEMD]
" RTTYPECHECK_DOMT
&+ RTTYPECHECK_‘WARM

G SR U Y A i ICY B A IRC Y I

N N N N N N S

Enable target observability [JESERVAEBLE] / " RTTYPECHECK_FAIL ﬂ
R i 520 2l Data compatibilty upon receiving [RTTYPECHECK_RECEIVE)
RTMESSAGE_PAYLOAD_SIZE Tl 7 | ¢ e man

UML-AT debugger (0TRTSDEBUG] & RTTYPECHECK_WARN
@ DEBUG_VEREBOSE ¢ DEBUG_TERSE ¢ DEBUG_NONE 2| | ¢ RTTYPECHECK_FAIL 2|

< Back | et » | Caticel Help | F'c-rtingGuide| Default | Mininal |

Note: Each entry is associated with a macro that controls that particular option in the
TargetRTS source. Click Default to set all the options back to their defaults, and click
Minimal to set the options for a much smaller and faster run-time system.

After you specify your required target options, click Next.

28 Chapter 1 - Using the TargetRTS Wizard

Figure 7 shows the Target Settings panel used to control compiler and linker flags for
the target. The Set options control which variables are defined in the target.mk file for
that particular target.

Figure 7 TargetRTS Wizard - Target Settings Panel

TargetRTS Wizard

Target Settings for NT40xT

Thiz dialog affects file: |E:'\F‘mgram FilezhR ational\Rose RealTime\C++4T argetR TS Y argeth M T 40T Starget.mk
Enter compiler and linker flags for the target.

Target Compiler Flags [TARGETCCFLAGS]
[Set |

Target Linker Flags [TARGETLDFLAGS)
[Set |

These flags should be target-specific. They will affect all configurations that use this target unlesz the flags are overiden in the configuration
makefile config.mk.

< Back | Mext > | Cancel | Help | F'DrtingGuide|

Target Compiler Flags (TARGETCCFLAGS)

Adds target-specific compilation flags in the file target.mk.

Target Linker Flags (TARGETLDFLAGS)
Redefines the target linker flags in the target.mk file.

Note: These flags should be target-specific. They will affect all configurations that use
this target unless you override them on the Configuration Setting panel of the
TargetRTS Wizard.

Editing the Target 29

Editing the Libset

You want to edit a libset to change the it to a different CPU architecture or a different
compiler, or to change how the TargetRTS library is built (for example, changing
compiler flags).

Figure 8 shows the options for configuring the libset. The Set options control which
variables are defined in the libset.mk file for that particular libset. The text boxes to
the right of the Set options contain their current values.

Figure 8 TargetRTS Wizard - Libset Settings Panel

———aSS__—_——————————————————————————_—————-—;-=mmS—w—swwmmm_—.—;
TargetRTS Wizard

Libset Settings for x86-VisualC++-7.0x
This dialog affects file: |E:\F‘rogram Files'F ational\Foze RealTime C++\T argetR T ShibsetwBE-isualC++-7. Oxhlibzet. mk

Erter compiler and linker settings for the libzet.

Libzet Compiler Flags (LIBSETCCFLAGS)
b Set |/nologo /G5 /G /GF MD /TP

Ewtra Compiler Flags [LIESETCCE=TFRA)
V| Set |£DWIN32_LE.-’-\N_.&ND_ME.&N Safd /0w SO /00 /0B2

Libzet Linker Flags [LIBSETLDFLAGS]
IV Set |#ricloga

Compiler [CC)

W Set |C|
Linker [LD]
I Get |$[PEHL] "$RTS_HOME) libset$(LIBRARY_SET)Ad pl" link

Library Builder [&F_CkD]
IV Set |$[F'EF|L] "$(RTS5_HOME)/taals/ar.pl" -create=lb,/nologo -output=/out: -add=lib./nalogo -input -suffis=$(0BJ_ExT]

These zetting should be compiler-zpecific. They will affect all configurations that uze this libset, unless the settings are averiden in the
configuration makefile config.mk. Additional compiler flags [for example, LIESETCCERTRA] typically contain non-ezzential compiler flags that
control how the compiler should compile the TargetRTS. These flags are typically for debugging or optimizing purposes.

< Back MNewt » Cancel Help Porting Guide

30

Chapter 1 - Using the TargetRTS Wizard

Libset Compiler Flags (LIBSETCCFLAGS)

Adds compiler-specific compilation flags in the file libset.mk.

Extra Compiler Flags (LIBSETCCEXTRA)

Specifies any non-essential compiler flags that control how the compiler should
compile the TargetRTS. These flags are used to compiles the TargetRTS library, but do
not compile the models. Typically, you would specify optimization flags in this box.

Libset Linker Flags (LIBSETLDFLAGS

Adds compiler-specific linker flags in the libset.mk file.

Compiler (CC)

Specifies the name of the C or C++ compiler executable.

Linker (LD)

Specifies when a linker must be different from compiler (most compilers can invoke
the linker), or if a preprocessing script is necessary.

Library Builder (AR_CMD)

Specifies a command to run the library utility.

Modifying a Configuration

Editing a configuration overrides settings from the target.mk and libset.mk files. The
overridden settings apply only to the selected configuration, and they are stored in
that configuration’s config.mk file.

Figure 9 shows the override options for the configuration. These are the same options
that appear on the Libset Settings and the Target Settings panels in the TargetRTS
Wizard.

Modifying a Configuration 31

Figure 9 TargetRTS Wizard - Configuration Settings Panel

TargetRTS Wizard
Configuration Settings for NT40xT x86-VisualC++-7.0x
This dialog affects file: |l:: “WProgram FileshFational\Roze RealTime\C++4T argetR T S YconfighM T 40T <86 isualC++- 7. Ox\config. mk

Target Compiler Flags [TARGETCCFLAGS)
[Overide |

Target Linker Flags [TARGE TLDFLAGS)
[Overide |

Libzet Compiler Flags [LIBSE TCCFLAGS)
" Overide |

Ewtra Compiler Flags [LIBSETCCEXTRA]
" Overide |

Libzet Linker Flags [LIBSETLDFLAGS)
[Override |

Compiler [CC)
[Override |

Linker [LD]
[Overide |

Library Builder [&R_Ch D)
[Overide |

You can override the target and libset compiler and linker flags for this particular configuration,

These setting override the target [from target.mk) and libzet [from libzet mk] entries. The target and libset entries that are not overniden are
zhown grayed out. To overide the entries, zelect the conezponding 'Dveride’ check box. Settings on thiz pane are written to the

< Back | Mest > | Cancel | Help Parting Guide

Building Configurations

To build an existing configuration of the TargetRTS, you must specify the make
command used by the build. Figure 10 shows the Build Configuration pane which
you can use to compile the TargetRTS libraries.

Building a selected configuration creates a directory with the following format:
$ROSERT_HOME/ bui | d- <t ar get >- <l i bset >

This directory contains the dependency file and object files for the TargetRTS. When
the build completes successfully, the resulting Rational Rose RealTime libraries save
to a directory that uses the following format:

$ROSERT_HOVE/ | i b/ <t arget >. <l i bset >

32 Chapter 1 - Using the TargetRTS Wizard

Figure 10 TargetRTS Wizard - Build Configuration Panel

DRSS

SIS B

-

———SSS—_—_——_————————————————————h———b—bBb———b—h———h———.—.—..
TargetRTS Wizard

Build Configuration

This panel allows you ta build an existing configuration of the TargetRTS.

The configuration is built by issuing a build command from the directory $8T5_HOME fsrc/l.

Building NT40xT x86-VisualC++-7.0x

b4 ake command

make [Build Hat
amake

rimake

ClearCase clearmalke

ClearCase omake

other |

Febuild [make clean first]

Build command |Fmake CONFIG=NT40:T #86-VisualC++-7.0x

< Back | Mext » | Cancel Help Porting Guide

make

Specifies a UNIX implementation of a make utility (make).

gmake

Specifies the GNU implementation of make.

nmake

Specifies a Microsoft implementation of a make utility (nmake).

ClearCase clearmake

Specifies the UNIX implementation of a make utility for building software whose file
are under ClearCase version control.

Building Configurations 33

ClearCase omake

Specifies the Windows implementation of a make utility for building software whose
files are under ClearCase version control.

other

Specify a alternate make utility to build the TargetRTS.

Rebuild (make clean first)

Ensures a clean build. When selected, all intermediate files are deleted first.

Build flat

Copies all source files into a single directory (one file per class) and builds the libraries
from that location. This option is useful for debugging because some debuggers do
not work properly with the TargetRTS source directory structure.

Note: Setting this option also decreases the build time considerably because fewer
source files need to be opened and closed.

Deleting Configurations

For any duplicated configuration that you create, you can also delete those
configurations.

Note: The configurations distributed with Rational Rose RealTime are read-only and
cannot be deleted.

Figure 11 shows the Delete Configuration panel from which you can selectively
delete the target, target base, libset, or the configuration-specific files for the selected
configuration.

34 Chapter 1 - Using the TargetRTS Wizard

Figure 11 TargetRTS Wizard - Delete Configuration Panel

—S—S—S—SS——_——————.—.
TargetRTS Wizard

Delete Configuration

Thiz panel allaws you to delete a configuration of the TargetR TS that iz no langer required.

You may alzo delete target, libzet, and target baze directonies associated with the selected configuration. The TargetRTS wizard will nat
allow pou to delets a directory required by ather corfigurations, or a directory required by a configuration supparted by B ational FRose
FiealTime.

Deleting NT40xT x86-VisualC++-7 0x

What do you want to delete?

<]

Target MT40:T

<1 7

Libzet 286 izualC++-7.0x

<]

Config MT404T . 286-YisualC++-7.0%

¢ Back | Mext > | Cancel | Help | Forting Guide

Creating Ports between C and C++

There is no automatic method of creating a C TargetRTS port form an existing C++
port to the same, or similar OS. You can use the existing port to identify how the
OS-specific parts of the TargetRTS were implemented for the particular target.
Because the C TargetRTS and C++ TargetRTS have a similar structure, this can save a
lot of time.

Creating Ports between C and C++ 35

To make a C TargetRTS port based on a C++ port for the same, or similar OS:
Note: The process of creating a C++ port from a C port is similar.

First, you want to create the directory structure for the new port.

1 Click Tools > TargetRTS Wizard.

2 Specify a language for the new port.

3 Verify that the path to the TargetRTS is correct, and click Next.

4 In the Manage Configurations panel, select a NoRTOS configuration from the
Existing Configurations list.

5 Click Duplicate.
6 Click Next.
7 Create a port called:
<new_target>S. <new_libset>
where:
new_target is the name of the OS followed by its version.
Select Target and specify a name in the Target name box.
new_libset consists of the following format:
<CPU_name>-<compiler_name>-<compiler_version>
Select Libset and specify a name in the Libset name box.

Note: The "S" after the target name denotes a single-threaded configuration; the
TargetRTS Wizard does not allow the creation of multi-threaded targets from
single-threaded ones.

8 Under the Target base label, depending on your preferences, select either Provide
skeleton or Duplicate.

9 In the Name box, specify a name for the target base.
Typically, the name is the name of the OS.

After the duplication process completes, you want to configure the new port for the
intended toolchain.

10 In the Manage Configurations panel, select the new configuration.

11 Click Edit.

36 Chapter 1 - Using the TargetRTS Wizard

12

13

14

In the Edit Configuration pane, select the options to edit the libset and the
configuration.

In the following panels, change the values as appropriate for the new toolchain.

You may have to edit the SROSERT_HOME/libset/<new_libset>/libset.mk file to
finish configuring the toolchain.

Note: You may have to create a file called $SROSERT_HOME/libset/RTLibSet.h to
define compiler-specific macros.

Next, you want to configure the OS-specific parts of the port.

15

16

Because the TargetRTS Wizard does not permit the creation of a multi-threaded
target from a single-threaded one, if the final port is for a multi-threaded
environment, change the name of the following directory from:

$ROSERT_HOME/ target/ <new_target>S
to
$ROSERT_HOME/<new_target>T
and change the name of the following directory from:
$ROSERT_HOME/ config/<new_target>S.<new_libset>
to
$ROSERT_HOME/ config/<new_target>T.<new_libset>

To properly configure the SROSERT_HOME/ /target directory, use the contents of
the file SROSERT_HOME/ target/ <old_target>T in the original port’s TargetRTS to
determine what the SROSERT_HOME/ /target/ <new_target>T file in the new
port’s TargetRTS should be.

Note: Some configuration macros are not the same in C and C++. However, all of
the options are described in the file
$ROSERT_HOME/include/RTPublic/Config.h. Also, you will want to review the
contents of the file SROSERT_HOME /target/<new_target>T/target.mk. If the
new target is multi-threaded, the file

$ROSERT_HOME/ target/ <new_target>T/RTTarget.h will require the
USE_THREADS macro set to 1, and must also define default priorities for the
main, debugger, and timer threads. Typically, you can obtain these values from the
original port.

Creating Ports between C and C++ 37

17 Some ports also require configuration-specific settings. These are defined in the
file SROSERT_HOME/ config /<new_target>T.<new_libset>/config.mk. The file
$ROSERT_HOME/ config/<new_target>T.<new_libset>/setup.pl controls the
environment configuration required for building the TargetRTS libraries (and
possibly, the building of models) for the new platform. The setup.pl file from the
old port may provide you with some assistance, but you will have to use your OS
and compiler documentation to properly configure the environment.

18 You must write the OS-specific code for the new port. All such code resides in the
following directory:

$ROSERT_HOME/src/target/<new_target_base>/
where:

new_target_base is the name assigned to the target base during the duplication
process in the TargetRTS Wizard. This name is stored in the setup.pl script as a
value of the $target_base variable. The skeleton implementation contains only
stubs for functions necessary for all ports. This particular port will likely require
you to define additional OS-specific functions. Use the target base from the
original port to see how to implement these OS-specific functions. Almost every C
TargetRTS "class" has a corresponding class in the C++ TargetRTS.

Note: Header files in the C target base must be in the RTPubl or RTPriv directories.
Also, if some files appear only in this target base, they must be declared in the
RTPriv/TGTMFEST.c file in the same manner as other files are declared in the file
src/MANIFEST.c.

Note: It may be necessary to further configure that target, libset, or config settings.

After you finish configuring the target, libset, and config, you are ready to build the
TargetRTS.

19 In the Manage Configurations panel, select the new configuration from the
Existing Configurations list.

20 Click Build.

21 Specify a make utility and click Next.

38 Chapter 1 - Using the TargetRTS Wizard

22 Fix any errors encountered during the build process until the TargetRTS
successfully builds, and the models link and run.

You may want to create Perl scripts for error parsing in the directory:
$RTS_HOME/ codegen/compiler/<vendor_name>

<vendor_name> is defined in the $RTS_HOMElibset/<new_libset> /libset.mk file as a
value of VENDOR.

Creating Ports between C and C++ 39

40 Chapter 1 - Using the TargetRTS Wizard

Introducing the
TargetRTS

Contents
This chapter is organized as follows:

Overview on page 41
Other Resources on page 42

Overview

The TargetRTS is the set of run-time services that provide a framework in which a
Rational Rose RealTime model can run. It provides the run-time implementation of
the UML-RT constructs used in the model. Figure 12 shows the context of the
TargetRTS in building an executable program.

This guide describes the steps required to port the TargetRTS to a new target
environment. The new target may simply be a new version of an operating system or
compiler on a UNIX host. In more complicated cases it may be a new operating
system, compiler and target hardware. The latter scenario is of more interest to this
guide, although all the information required for the former scenario is provided.

This guide is specifically designed for software development professionals familiar
with the target environment they intend to port to. It is assumed that the reader has
significant knowledge and experience with the development environment, operating
system, and target hardware.

41

Figure 12 The TargetRTS in Context

Rational Roze RealTime

= Moo
Bl Use Cass Yiew
E-E Logical Wiew

5B RTClassse 1. Rational Rose
" RealTime invokes
external Gener-
ateiCompile

3§ P RTComponeris
] Main

El-Z3 Deploymenl View

."ﬂﬁ Depoymen| Disgram:
- (50 Frediik

I =

Mode... |21 Corva...]| B Inhe. |

4. The result is
an executable
program

LIMNEE Top
Wiin32: Top.exe

Executahle

Other Resources

Scope of this Porting Guide

[makefie

make is

cantrolled
by a

mal::efile

3. Compiler com-
piles C++ source
files...

2. make
invokes
compiler

o
C++
source files]

4. _and links
with RTS
Library

Before starting a port, ensure that you have the following documents and material

available:

» Operating system documentation (for system calls, available services)

» Compiler documentation

+ Sample programs that come with compiler or operating system (use these to test

your toolchain)

+ Rational Rose RealTime C Reference or C++ Reference
= Rational Rose RealTime example models (to test the port)

42 Chapter 2 - Introducing the TargetRTS

Before Starting a Port

Contents
This chapter is organized as follows:

OS Knowledge and Experience on page 43

Toolchain Functionality on page 44

OS Capabilities on page 44

Simple non-Rational Rose RealTime Program on Target on page 45
TCP/IP Functionality on page 46

Floating Point Operations on page 46

Standard Input/Output Functionality on page 46

Debugging on page 47

Training on page 47

Support on page 47

What to do Before Calling Rational Customer Support on page 47

OS Knowledge and Experience

Knowledge and experience with the target operating system is key to a successful
port. This knowledge should extend to the development environment and target
hardware. The type of knowledge required includes such details as synchronization
mechanisms, thread creation, memory management, timing, device drivers, board
support packages, memory maps, TCP/IP support, priority and scheduling schemes,
and so forth. See OS Capabilities on page 44 for a list of OS capabilities required by the
TargetRTS.

Experience with porting the TargetRTS to other platforms will aid greatly as the ports
tend to follow a pattern. For each development environment and operating system
there are bound to be a few surprises. See Common Problems and Pitfalls on page 105.

43

Toolchain Functionality

A functioning development environment must be in place before porting can begin.
This includes the correct installation of tools such as linkers, compilers, assemblers
and debuggers. To build the TargetRTS, you must have a working version of Perl for
your development host (version 5.002 or greater). Perl is used extensively in the
makefiles for the TargetRTS.

It is also important to initialize environment variables for inclusion of header files and
location of library files. An easy way to test this is to create a simple program, such as
“Hello World”, and compile and run it on the target. This step is described in Simple
non-Rational Rose RealTime Program on Target on page 45.

OS Capabilities

The target operating system must have a set of services that satisfy the requirements
of the TargetRTS. In general, most commercial real-time operating systems (RTOS)
have these services. Before starting a port, check for these basic capabilities in the
target RTOS. Table 1 lists the TargetRTS feature and its corresponding RTOS service

Table 1

Required Operating System Features for the C and C++ TargetRTS.

C TargetRTS Feature

C++ TargetRTS Feature

Operating System Service

RTTi mespec_get cl ock()
(method required)

RTTi mespec: : getcl ock
0
(method required)

A function is required to return the
current time. The more precision the
better. In general, an RTOS will return
time with precision of its internal timer.

RTThr ead_construct ()

(constructor required for

RTThr ead: : RTThread()

(constructor required for

Task creation function - must be able to
create task or thread with specified
stack size and priority. Be aware of

h h
threaded targets) threaded targets) priority scheme - some RTOSes use 0 as
highest priority while others may use 0
for lowest priority.
RTMut ex RTMut ex A mutual exclusion mechanism. Some
(all 4 methods required for (all 4 methods required for RTO.Ses }l)rowde. %ptumzed mutex
threaded targets) threaded targets) service along with semaphores.

RTSyncObj ect

(all 5 methods required for
threaded targets)

RTSynchj ect

(all 5 methods required for
threaded targets)

Semaphore, mailbox, signal - service
must provide infinite and timed
blocking.

44 Chapter 3 - Before Starting a Port

Table 1 Required Operating System Features for the C and C++ TargetRTS.

C TargetRTS Feature

C++ TargetRTS Feature

Operating System Service

RTSt di o_put String()

(output to console)

RTDi agStream :wite(

(output to console)

Standard output - this may not be
provided out-of-the-box. For
embedded targets, device drivers
added to the board support package
may be required. Output is generally
routed to external serial ports but
TCP/IP or UDP/IP may be used
instead.

RTDebugger | nput _next Cha
r()

(input from console)

RTDebugger | nput : : nex
t Char ()

(input from console)

Standard input, as above. This can be
removed from the TargetRTS via
configuration options.

Target Observability

Target Observability

TCP/IP support is required. This
includes device drivers in the board
support package for the ethernet
hardware on the target. If not provided
this is a substantial do-it-yourself
project. Target Observability can be
removed from the TargetRTS via
configuration options.

mal | oc,free

new del et e

The RTOS must support some sort of
memory management. In general, this
is hidden from the user by the compiler
as the RTOS resolves the new and
delete symbols.

mai n() function

mai n() function

Some RTOSes have their own main
function defined. If so, then the main
function in the TargetRTS must be
redefined.

Simple non-Rational Rose RealTime Program on Target

An easy way to test the toolchain functionality is to create a simple program that
prints out “Hello World” on the console.

This program should not use any TargetRTS code or libraries. Compile and link the
program outside of Rational Rose RealTime using your toolchain, and download the
executable to the target. If it executes successfully, then your development

environment is ready.

Simple non-Rational Rose RealTime Program on Target 45

C++

Further testing is strongly recommended. This would include some basic RTOS
services such as thread creation in your test program. Again, no TargetRTS code or
libraries should be used. Many RTOSes provide example programs to compile and
run. Try these out and verify the functionality of your setup. If you are using a
source-level debugger, verify that you can step through the source code and examine
variables. If the debugger is aware of operating system data structures, check if you
can examine these. The purpose of this testing to ensure that all of the required
operating system features are operational and understood before attempting the port
of the TargetRTS.

Another important test for C++ compilers is to include a static constructor in the test
program. This will ensure that proper initialization is performed.

TCP/IP Functionality

To support Target Observability for the new port, the target operating system must
provide a compatible TCP/IP stack. In general, the TCP/IP layer must support the
BSD sockets interface, that is, the creation and deletion of sockets, functions such as
socket (), connect (), bind(),listen(),select(),and so forth. Typically, RTOSes
try to provide a BSD-compliant TCP/IP stack. TCP/IP functionality can be a common
source of problems with new ports. See Common Problems and Pitfalls on page 105.

If a TCP/IP stack is not provided, then you must implement one, which might require
significant effort. Alternatively, the use of SLIP or PPP over a serial connection may be
an option, but would require customizations. It would also affect the performance of
Target Observability. Alternatively, you can choose not to use target observability.

Floating Point Operations

C++

Some of the TargetRTS classes require the use of floating point operations. Investigate
the support for floating point on your target system.

It is possible to configure the support for RTReal from the TargetRTS via configuration
options.

Standard Input/Output Functionality

The TargetRTS needs standard input and output to a console for log messages, panic
messages, and debugger input/output. This may already be provided by the target
development or operating system. Some embedded RTOS and development tools

46 Chapter 3 - Before Starting a Port

may not provide standard input and output, and instead require the addition of serial
port device drivers to the board support package. The use of TCP/IP or UDP/IP to
provided standard input/output is also an option.

Debugging

The use of a source-level debugger that provides some sort of operating system
awareness is the best development tool for the port. This is the easiest way to examine
source code, memory, variables, registers, stacks, and so forth.

Training

Training is an important component of a successful port. Rational offers training
courses to help users understand, use, and port the TargetRTS. Your RTOS vendor
may also offer training and this is recommended as well.

Support

Rational provides support for the standard ports as identified in the Installation Guide.
All reported issues will be duplicated on one or more of the standard referenced
configurations.

What to do Before Calling Rational Customer Support

The following steps should be followed before calling Rational Technial Support for
help with a custom port of the TargetRTS.

1 Get to know your compiler/linker/debugger toolchain. Be sure it is installed
correctly, and that programs can be compiled, linked, downloaded to the target
hardware and run successfully.

2 Get to know your target operating system. Be sure that an example multi-threaded
program that exercises the various features of the RTOS is compiled, linked and
downloaded to the target hardware and runs successfully. Do not use Rational
Rose RealTime for this example program. This should be produced independently
to verify toolchain and RTOS functionality.

3 Read this guide and the C Reference or C++ Reference that is included with Rational
Rose RealTime, to understand the required capabilities of the RTOS needed to
support the TargetRTS.

Debugging 47

4 Ensure that the TCP/IP stack for your target platform is operational. In particular
the sockets interface must be working, and additional utilities such as
get host byname() must be functional.

5 Test the functionality of the standard input and output for your target. This will
probably be verified in earlier steps.

6 Learn how to use the target debugger. This will be a useful tool when doing the
port.

7 Get as much training on Rational Rose RealTime, the RTOS, and your toolchain as
possible.

48 Chapter 3 - Before Starting a Port

Porting the TargetRTS

Contents
This chapter is organized as follows:

Overview on page 49

Phases of a Port on page 50

Choose a Configuration Name on page 50
Building Rational Rose RealTime Applications for Targets without Operating Systems on
page 52

Creating a Setup Script (setup.pl) on page 54
TargetRTS makefiles on page 56

Default makefile on page 59

Target makefile on page 64

Libset makefile on page 65

Config makefile on page 65

Overview

The most common customization to the TargetRTS is porting it to a new platform. A
platform is defined by the TargetRTS as the combination of the operating system,
target hardware and the compiler /linker toolchain. A new operating system requires
the most work since it often requires implementation changes. However, a new
compiler may also require changes, in particular, to the configuration files.

The ports supported by Rational Software and shipped with the TargetRTS source are
a good place to begin considering design alternatives for a new port. The root
directory for the TargetRTS source will be referred to from this point forward using
the environment variable $RTS_HOVE.

49

C++

For C, it is usually defined as $ROSERT_HOME/ C/ Tar get RTS. For Windows, assume
YROSERT_HOME% C\ Tar get RTS.

For C++, it is usually defined as $ROSERT_HOVE/ C++/ Tar get RTS. For Windows,
assume YROSERT_HOVE% C++\ Tar get RTS.

In the sections that follow, examples are extracted from this source.

Phases of a Port

The major steps for implementing the port are as follows:
Performing pre-port steps (see Before Starting a Port on page 43).
Naming the platform (see Choose a Configuration Name on page 50).
Defining the setup script (see Creating a Setup Script (setup.pl) on page 54).
Defining the platform-specific makefiles (see TargetRTS makefiles on page 56).

Defining the platform-specific header files (see Porting the TargetRTS for C++ on
page 83).
Defining the platform-specific implementation of TargetRTS features (see

Platform-specific Implementation on page 88).

Building the new TargetRTS and fixing compile and link problems (see Building the
New TargetRTS on page 122).

Testing the new TargetRTS using test model updates (see Testing the TargetRTS Port
on page 101).

Tuning the performance of the TargetRTS, if required (see Tuning the TargetRTS on
page 103).

Choose a Configuration Name

The first step in implementing a port is picking the name for the configuration. This
name and parts of it are used by the various loadbuild tools to find the files needed to
build the TargetRTS for that configuration. It is also used during compilation of the
Rational Rose RealTime models. There are two parts to the name: <target> and
<libset>. The resulting names for TargetRTS configurations are defined as the
concatenation of the target and libset names in the following pattern:

<config> ::= <target>.<libset>

50 Chapter 4 - Porting the TargetRTS

Examples are given in Table 2.

Table 2 Example Configuration Names

Config Name Description

SUN4S. sparc-gnu-2.8. 1 SunOS 4.x Single-threaded on a Sparc
processor using Free Software Foundation gnu
version 2.8.1

SUNST. sparc-gnu-2.8. 1 Solaris 2.x Multi-threaded on a Sparc processor
using Free Software Foundation gnu version
2.8.1

SUN5S. spar c- SunC++- 4. 2 Solaris 2.x Single-threaded on a Sparc

processor using Sun Microsystems
SPARCUtils C++ version 4.2

NT40T. x86- Vi sual C++-6. 0 Windows NT 4.0 Multi-threaded on an x86
processor using Microsoft Visual C++ version
6.0

TORNADO2T. ppc- cygnus- 2. 7. 2- 960126 | Tornado 2 Multi-threaded on a Motorola
PowerPC processor using Cygnus C++ version
2.7.2-960126

Target Name

The target name presents the implementation-specific components of the TargetRTS.
These components are generally specific to a given configuration, of a given version,
of a given operating system. The target name is also used to name the configuration of
the target, for example, single versus multi-threaded. The target name is defined as
follows:

<target> ::= <OS name><CS version><RTS confi g>
For example: SUN5T. The components of <target> are defined as follows:
<OS name> identifies the operating system (for example, SUN)

<OS version> identifies the major version of that operating system (for example, 5
meaning SunOS 5.x, that is, Solaris 2.x). Do not use periods in the OS version, as this
will confuse the make utility when trying to build the TargetRTS.

<RTS config> is a single letter to further identify the configuration. Currently only ‘S’
for single-threaded and T’ for multi-threaded configurations are supported.

Choose a Configuration Name 51

Libset Name

Although the actual libset names can be chosen arbitrarily, by convention those used
by Rational Rose RealTime are defined as follows:

<libset> ::= <processor>-<conpil er name>-<conpiler version>
For example: spar c- gnu- 2. 8. 1. The components of <libset> are defined as follows:
<processor> identifies the processor architecture name

<compiler name> identifies the compiler product name or the vendor for the
compiler

<compiler version> identifies the compiler version. It is acceptable to use periods in
the compiler version text.

Building Rational Rose RealTime Applications for Targets
without Operating Systems

You can configure the Rational Rose RealTime run-time libraries to build Rational
Rose RealTime applications that run without an operating system. The resulting
application that is generated will be a “main” program; you can build and run a main
program on the target.

If there is no RTOS available on the target, or if the application will exist in a single
thread, you can use a NoRTOS configuration.

Benefits of Using a NORTOS Configuration
The benefits to using a NoRTOS configuration are:
A NoRTOS configuration does not require any RTOS services.

A NoRTOS configuration is useful in small footprint and simple device
configurations, or in configurations where threading is not required.

You can get started quickly by minimizing the effort required to make the initial
port operational.

Using a NORTOS Configuration

If you are creating a new target configuration, you can begin by creating a NoRTOS
configuration, and later change it to a threaded configuration.

A NoRTOS does not have any RTOS dependencies; however, this does not prevent
you from using RTOS services in your application.

52 Chapter 4 - Porting the TargetRTS

To configure a NORTOS configuration using the TargetRTS Wizard:

1
2
3

7
8
9

From the Tools menu, click TargetRTS Wizard.
Select a language and click Next.

In the Manage Configurations pane, select a NoRTOS configuration, such as
NoRTOSS.x86-VisualC++-6.0 NoRTOSS.sparc-gnu-2.8.1.

Click Duplicate to modify the NoRTOS configuration for you requirements.
In the Duplicate Configuration pane, select Libset.

In the Libset name box, specify a new Libset, or if you want to reuse an existing
libset, type the name of that libset. For additional information on creating a Libset
name, see Libset Name on page 52.

Click Next.
In the Summary pane, review the information, and then click Next.

In the Work Order pane, review the information, and then click Next.

The resulting run-time libraries for this port have no dependencies on any operating
services. They do expect console I/O if there is no stdin/stdout for your target that
can easily be compiled. Linking your Rational Rose RealTime model with the
NoRTOS library creates a program with a "main" entry function.

Although the resulting services library has no operating system dependencies, it does
depend on the compiler used to build the program for a specific CPU. To complete a
port, you will need to add the supporting compiler interfaces.

Verification

You should verify that you can:

build and link against a services library
compile and link for your target inside the toolset

create an executable for your target.

Building Rational Rose RealTime Applications for Targets without Operating Systems 53

Other things you may want to test are:

error parsing (for example, you can add a syntax error, double-click on the
resulting error in the Build Errors tab, then observe the error in the model to see if
it is the correct error)

timing services (for example, add a timing port and test the timing services).

if you have interfaces to load, unload, reset your target from your host, you may
want to create Perl script wrappers to make those capabilities accessible within
Rational Rose RealTime. See $ROSERT_HOME /bin/tc/win32 for examples of these
scripts.

Creating a Setup Script (setup.pl)

The setup script is a file, setup.pl, containing Perl commands that configure the
environment for the compilation of the TargetRTS for the specified platform. This file
is located in the directory $RTS_HOME/ config/<config>.

Note: If the target toolchain environment variables are included in a user’s standard
environment, the variables in the setup.pl file may not be required. These
environment variables defined in the setup.pl file are not available when using the
toolset to build user models.

Commands in the setup.pl file are executed before any of the TargetRTS compilation
tools are invoked. Typically, definitions for locations of files on the host platform are
included in this file (such as setting the shell environment variable PATH to point to
the appropriate tools).

54 Chapter 4 - Porting the TargetRTS

Table 3 describes the variables in the setup.pl file that are specific to Rational Rose
RealTime:

Table 3 Variables in the Setup.pl Script

Variables Description

$preprocessor Defines the C++ preprocessor command appropriate for the
compilation environment, and automatically generates source code
dependencies for the TargetRTS.

$supported Defines whether Rational Rose RealTime supports this target. Valid

recommend Custom. This variable has no impact on how the port is
compiled or used.

values for $supported are Yes, No, and Custom. For a custom port, we

$target_base Indicates that the implementation of the target-specific features of the
TargetRTS are rooted in the same source directory as the $target_base

to TORNADOL1. As a result, TORNADO2 implementations of
TargetRTS classes are in the same source directory as those of the
TORNADOTL1 target, that is, SRTS_HOME /src/target/ TORNADOL1.

using multiple entries, the target source directories are searched in the
specified order.

target. For example, for the TORNADO? targets, the $target_base is set

This variable can contain multiple entries separated by a comma. When

$postprocessor An optional variable that runs after $preprocessor.

Note: The $preprocessor and $supported variables must be defined for all targets.
The example file located in the directory:
$RTS_HOME/ config/ TORNADO2T.ppc-cygnus-2.7.2-960126 / setup.pl

contains the following:

if($OS_HOME = $ENV{' OS_HOME'})

{
$os = SENV{' OS'} || 'default';
if($0s eq 'Wndows_NT')
{
$wi nd_base = $ENV{' W ND_BASE' };
$wi nd_host _type = ' x86-w n32';
$ENV{' PATH } =
"$wi nd_base/ host/ $wi nd_host _t ype/ bi n; $ENV{' PATH }";
}
el se
{
$rosert_hone = $ENV{' ROSERT_HOME' };

Creating a Setup Script (setup.pl)

55

chonp($host = " $rosert _hone/ bi n/ machi neType™);

$wi nd_base = "$0S_HOVE/ wr s/ t or nado- 2. 0";
if($host eq 'sun5')
{
$wi nd_host _type = 'sun4-sol aris2';
}
$ENV{' PATH } =

"$wi nd_base/ host/ $wi nd_host _t ype/ bi n: SENV{' PATH }";
$ENV{' W ND_BASE'} = "$wi nd_base";
}

$ENV{' GCC_EXEC PREFI X' }

="$wi nd_base/ host/ $w nd_host _type/lib/gcc-1ib/"
SENV{' VXWORKS_HOVE' } "$wi nd_base/ tar get "
$ENV{' VX_BSP_BASE' } "$wi nd_base/target";
$ENV{' VX_HSP_BASE' } "$wi nd_base/target";
SENV{' VX_VW BASE' } "$wi nd_base/target";
$ENV{' W ND_HOST_TYPE' } "$wi nd_host _type";

}

$prepr ocessor
$t ar get _base
$support ed

"ccppc -DPRAGVA -E -P >MANI FEST. i ";
" TORNADOL' ;
"Yes';

Note: The setup file is not used when compiling the generated source, neither from
within the toolset, nor from the command-line. The environment variables defined in
the setup file must instead be defined in the user’s environment before starting the
Rational Rose RealTime toolset. In the given example, the setup file assumes that the
user’s environment has the variable 05_HOVE already defined as a partial path to
where the RTOS is installed.

TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS: compilation of
the TargetRTS libraries and compilation of the generated code. The platform-specific
definitions are required by both and are thus placed in separate files. The sequencing
of the makefiles for the two paths are shown in Figure 13.

56 Chapter 4 - Porting the TargetRTS

Figure 13 Sequencing of Makefiles

Compile the TargetRTS libraries:

Y2 [DE10] - mnake CONFIG-HTAOT. 4

ualC++-B.0

Wicrosoft (k)] Program Maimtenance L 14
Comyright (C] Microsoft Corp 198E-4998. A11 rights resemed.

it NTADT B6-WisualCr-6.0 **
FIANLFEST. cop

famputing dependencies ..
et NTADT ME6-WisUal CH-Fu0 »*

WUNIFEST. cpp
tcompi 1ing RTArtToptmal ler/ct.cc

Root build makefile:
RTS_HOME/srcMakefile

calls

¥

Foot build script:
RTS_HOME/src/Build.pl

calls

k |

Main TargetRTS makefile:
RTS_HOME/srcimainnimk

Compile a model from toolset:

B g Modsl

B[] Ukse Case View
123 Logicd Yiew

E—]--a Campaoastt Visw
b3 B3 RTComponents
g Main

E}a Dieployrmant Yiew
ﬂ@ Deployment Biagram: Deplowrment VYiew
= (] fredik.

@ Modal\ﬁelel Cor‘tdm‘cnt.h‘LE |nh:rlmcc...|

Generated makefile
from toolset

includes

X

Main model makefile:
$RTS_HOME/codegenins_nmakemk

includes

includes
-

defaiits makefile:
$RTS_HOME/libset/default.mk

libset makefile:

I

$RTS_HOME/ibset/x86-VisualC++-6.0libsetank

target makefile:
$RTS_HOMEXarget NT40Txarget.nk

config makefile:

=

$RTS_HOME/config/ NT40T.x86-VisualC++-6.0/config.mk

A A A A

As shown, there is a makefile for each of the following;:

$RTS_HOVE/ src/ Makef i | e is the root makefile for TargetRTS compilation. It
invokes a Perl script called Bui | d. pl . This script checks the dependencies for the
TargetRTS source code and generates a makefile called depend. nk in the
$RTS_HOVE/ bui | d- <conf i g> directory. It then builds the TargetRTS from this
directory. This makefile and Bui | d. pl should not be customized, and will not be

discussed further in this document.

$RTS_HOVE/ sr ¢/ mai n. nik (mai n. nk for UNIX) is the main definition for
compiling the TargetRTS libraries. These makefiles should not be customized, and

will not be discussed further in this document.

TargetRTS makefiles

57

The generated makefile for the model being compiled. See the C Reference or C++
Reference for more details on how this makefile is generated.

$RTS_HOVE/ codegen/ ns_nmake. nk (gnu_make. nk for Gnu, uni x_make. nk for
other Unix) is the main definition for compiling a model. These makefiles should
not be customized, and will not be discussed further in this document.

$RTS_HOVE/ | i bset / def aul t. nk, the default macro definitions that may be
overridden by the platform specific makefiles. See Default makefile on page 59.

$RTS_HOVE/ t ar get / <t ar get >/ t ar get . mk is the definition specific to the target
operating system. See Target makefile on page 64.

$RTS_HOVE/ | i bset / <l i bset>/1i bset . mk is the definition specific to the
compiler. See Libset makefile on page 65.

$RTS_HOVE/ confi g/ <confi g>/ confi g. mk is the definition specific to the
combination of the compiler, operating system and TargetRTS configuration. See
Config makefile on page 65.

The default.mk, | ibset.mk, target.mk, and config.mk makefiles are used to compile both
the TargetRTS libraries and the model.

Compilation of the model is usually performed by right-clicking on a component in
the toolset and choosing Build > Build... > Generate and compile , or set the
component as default and hit [F7]. It is, however, also possible to just generate the
source and make files needed from within the toolset, and compile from the output
directory by issuing the make command (nmake for Windows).

Compilation of the TargetRTS is performed from the $RTS_HOME/src directory by
issuing the command

make CONFI G=<t ar get >. <l i bset >

For example in UNIX:

make CONFI G=SUN5T. sparc-gnu-2. 8.1
For example in Windows:

nmake CONFI G=NT40T. x86- Vi sual C++-6. 0

Note: Some make utilities also allows the following:
make CONFI G=<t ar get >. <l i bset >
For example:

make SUN5ST. sparc-gnu-2.8.1

58 Chapter 4 - Porting the TargetRTS

Default makefile

The target.nk,|ibset. nk and confi g. nk makefiles are expected to override
defaults defined in $RTS_HQOVE/ | i bset / def aul t . nk. The defaults are as follows for
each language.

For the C language:

CONFI G = $(TARGET) . $(LI BRARY_SET)

Defaults for nmacros which may be nodified by
li bset/$(LI BRARY_SET)/ i bset. nk

target/$(TARGET)/t ar get. nk

or config/ $(CONFI G /config. mk

PERL = rtperl

FEEDBACK = $(PERL) "$(RTS_HOME)/t ool s/ f eedback. pl "
MERGE = $(PERL) "$(RTS_HOME)/t ool s/ nerge. pl"
NOP = $(PERL) "$(RTS_HOWE)/t ool s/ nop. pl "

RM = $(PERL) "$(RTS_HOMVE)/tools/rmpl"

RVF = $(RV -f

TOUCH = $(PERL) "$(RTS_HOVE)/t ool s/touch. pl"

codegen makefiles stuff

RTCOWVP = $(PERL) "$(RTS_HOME)/codegen/rtconp.pl"
RTLI NK = $(PERL) "$(RTS_HOVE)/codegen/rtlink.pl"
VENDOR = generic

Macros used when nake nust recurse
MAKEFI LE = Makefile
Macros used when creating an object file froma C source file

cC

$(FEEDBACK) -fail \

CC shoul d be defined by Ilibset.nk or generated
makefil e
DEBUG_TAG
DEPEND_TAG
DEFI NE_TAG
| NCLUDE_TAG
LI BSETCCEXTRA
LI BSETCCFLAGS
OBJECT_OPT
OBJOUT_OPT

-9
-1
-D
-1

-C
-0

Default makefile 59

OBJOUT_TAG
SHLI BCCFLAGS
TARGETCCFLAGS

-PIC

Macros used when creating an object library froma set of object

files

AR _CMD = $(PERL) "$(RTS_HOVE)/tools/ar.pl"

AR = $(AR_C\VD)

LI BOUT_OPT =

LI BOUT_TAG =

RANLI B = $(NOP)

Macros used when creating a shared library froma set of object
files

SHLI B_CNVD = $(FEEDBACK) -fail Shared l|ibraries not supported.
SHLI BOUT_OPT = -0

SHLI BOUT_TAG

Macros used when creating an executable froma set of object files,
libraries

LD
DI R TAG

LI BSETLDFLAGS
LI B_TAG
OT_LIB_TAG
TARGETLDFLAGS
TARGETLI BS
EXEOUT_OPT
EXEOUT_TAG

$(CO)
-L

1
'
o

Macros used to construct names of various kinds of files

EXEC_EXT =

LI B_PFX =1lib

LI B_EXT =.a

C_EXT =.cC
OBJ_EXT =.0

SHLI B_PFX =1lib

SHLI B_EXT = .so0

========= Shared Macros

RTCODEBASE can be overridden in the target/$(TARGET)/target.nk file
RTCODEBASE = $(PLATFORM

60 Chapter 4 - Porting the TargetRTS

RTSYSTEM | NCPATHS = \
$(1 NCLUDE_TAG) " $(RTS_HOVE) / | i bset / $(LI BRARY_SET) " \
$(1 NCLUDE_TAG) " $(RTS_HOME) / t ar get / $(TARGET) " '\
$(1 NCLUDE_TAG) " $(RTS_HOME) /i ncl ude"

RTS LI BRARY = $(RTS_HOVE)/ i b/ $(CONFI G)
SYSTEM LIBS = $(DI R _TAG) "$(RTS_LI BRARY)" \
$(OT_LI B_TAG) Obj ecTi neC \
$(OT_LI B_TAG) Obj ecTi meCTransport \
$(OT_LI B_TAG) Obj ecTi neC \
$(OT_LI B_TAG) Obj ecTi neCTr ansport
========= Lj nki ng
LD QUT = $@
LD _HEAD = \

$(EXEQUT_OPT) $(EXEOUT_TAG) $(LD OUT) \
$(LI BSETLDFLAGS) \
"$(RTS_LI BRARY) / mai n$(OBJ_EXT) "

ALL_OBJS_LI ST = $(ALL_OBIS)

LD TAIL =\
$(SYSTEM LI BS) \
$(TARGETLDFLAGS) \
$(TARGETLI BS)

CC_HEAD = \
$(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG $@\
$(LI BSETCCFLAGS) \
$(TARGETCCFLAGS) \
$(RTSYSTEM | NCPATHS)

Default makefile 61

For the C++ language:
C++ # ======== (Ceneral Defaults

CONFI G = $(TARGET) . $(LI BRARY_SET)

Defaults for nacros which may be nodified by
li bset/$(LI BRARY_SET)/ i bset. nk

target/$(TARGET)/t ar get . nmk

or config/ $(CONFI G /config. mk

PERL = rtperl

FEEDBACK = $(PERL) "$(RTS_HOME)/t ool s/ f eedback. pl "
MERGE = $(PERL) "$(RTS_HOVE)/t ool s/ nerge. pl "
NOP = $(PERL) "$(RTS_HOWE)/t ool s/ nop. pl "

RM = $(PERL) "$(RTS_HOME)/tools/rmpl"

RVF = $(RV -f

TOUCH = $(PERL) "$(RTS_HOVE)/t ool s/touch. pl"

codegen makefiles stuff

RTCEN = rtcppgen

RTCOWVP = $(PERL) "$(RTS_HOME)/codegen/rtconp.pl"
RTLI NK = $(PERL) "$(RTS_HOVE)/codegen/rtlink.pl"
VENDOR = generic

Macros used when nake nust recurse
MAKEFI LE = Makefile
Macros used when creating an object file froma C++ source file

cC

$(FEEDBACK) -fail \

CC shoul d be defined by Iibset.nk or generated
makefil e
DEBUG_TAG
DEPEND_TAG
DEFI NE_TAG
I NCLUDE_TAG
LI BSETCCEXTRA
LI BSETCCFLAGS
OBJECT_OPT
OBJOUT_OPT
OBJOUT_TAG
SHLI BCCFLAGS
TARGETCCFLAGS

-9
-1
-D
-1

-C
-0

-PIC

62 Chapter 4 - Porting the TargetRTS

Macros used when creating an object library froma set of object
files

AR _CMD = $(PERL) "$(RTS_HOVE)/tools/ar.pl"
AR = $(AR_C\VD)

LIBOUT_OPT =

LI BOUT_TAG =

RANLI B = $(NOP)

Macros used when creating a shared library froma set of object
files

SHLI B_CMD
SHLI BOUT_OPT
SHLI BOUT_TAG

$(FEEDBACK) -fail Shared libraries not supported.
-0

Macros used when creating an executable froma set of object files,
libraries

LD

DI R TAG

LI BSETLDFLAGS
LI B_TAG
OT_LIB_TAG
TARGETLDFLAGS
TARGETLI BS
EXEQUT_OPT
EXEOUT_TAG

$(CO
-L

Macros used to construct names of various kinds of files

EXEC_EXT =

LI B_PFX =1lib

LI B_EXT =.a
CPP_EXT = .cc
OBJ_EXT =.0

SHLI B_PFX =1lib

SHLI B_EXT = .so0

========= Shared Macros

RTSYSTEM | NCPATHS = \
$(| NCLUDE_TAG) " $(RTS_HOME) / | i bset/ $(LI BRARY_SET)" \
$(I NCLUDE_TAG) " $(RTS_HOME) / t ar get / $(TARGET) " '\
$(1 NCLUDE_TAG) " $(RTS_HOME) / i ncl ude”

RTS LI BRARY = $(RTS_HOVE)/ i b/ $(CONFI G)

Default makefile 63

SYSTEM LIBS = $(DI R_TAG " $(RTS_LI BRARY) " \
$(OT_LI B_TAG Obj ecTi ne \
$(OT_LI B_TAG Obj ecTi neTypes

========= Lj nki ng
LD OUT = $@
LD_HEAD = \

$(EXEQUT_OPT) $(EXEOUT_TAG) $(LD OUT) \
$(LI BSETLDFLAGS) \
"$(RTS_LI BRARY) / mai n$(OBJ_EXT) "

ALL_OBJS_LI ST = $(ALL_OBJS)

LD TAIL =\
$(SYSTEM LI BS) \
$(TARGETLDFLAGS) \
$(TARGETLI BS)

CC_HEAD = \
$(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG) $@\
$(LI BSETCCFLAGS) \
$(TARGETCCFLAGS) \
$(RTSYSTEM | NCPATHS)

Target makefile

The $RTS_HOME/ t ar get / <t ar get >/ t ar get . nk makefile provides definitions specific
to the operating system. The definitions in this makefile override the defaults in
$RTS_HOVE/ | i bset / def aul t. mk. An example target makefile file,

$RTS_HOVE/ t ar get / SUNST/ t ar get . ik, contains the following:

TARGETCCFLAGS = $(DEFI NE_TAG) REENTRANT

TARGETLDFLAGS = $(LIB_TAG nsl $(LI B_TAG) socket -R$(RTS_LI BRARY)
TARGETLI BS $(LI B_TAG) posi x4 $(LIB_TAQ t hread

64 Chapter 4 - Porting the TargetRTS

Libset makefile

C++

The $RTS_HOME/ | i bset/ <l i bset >/ i bset . nk makefile provides definitions specific
to the compiler. The definitions in this makefile override the defaults in

$RTS_HOVE/ | i bset / def aul t. mk. An example libset makefile file,

$RTS_HOVE/ | i bset / spar c- gnu- 2. 8. 1/ 1 i bset . ik, contains the following:

For the C language:

VENDOR = gnu

cC = g++

SHLI B_CVD = $(CC -shared -z text -0

LI BSETCCFLAGS = -V2.8.1

LI BSETCCEXTRA = -4 -finline -finline-functions -Wall -Wnline \

-Wwite-strings
SHLI BS
LI BSETLDFLAGS

-v2.8.1

For the C++ language:
VENDOR = gnu

cC

g++

LI BSETCCFLAGS
L1 BSETCCEXTRA

-V2.8.1 -fno-exceptions -fno-rtti
-A -finline -finline-functions -fno-builtin\
-Vall -Wnline -Wwite-strings

SHLI BS
LI BSETLDFLAGS

-v2.8.1

Config makefile

The $RTS_HOME/ confi g/ <confi g>/ confi g. mk makefile provides definitions specific
to the combination of the compiler, operating system and TargetRTS configuration.
This makefile is empty for most target/libset combinations. Usually this file will only
be needed to work around issues that may not appear in either the target or libset
alone.

Note: Definitions in this file override the definitions in the target.mk and libset.mk
files.

Libset makefile 65

C An example use of this file for the C language can be found
in$RTS_HOVE/ conf i g/ OSE401T. ppc603- Di ab- 4. 1a/ confi g. nk:

.elf

EXEC_EXT =

TARGETCCFLAGS = \
$(DEFI NE_TAG) Bl G_ENDI AN \
$(| NCLUDE_TAG) $(OSE_RQOT) / power pc/ i ncl ude \
$(| NCLUDE_TAG) $(OSE_RQOT) / power pc/ kr n- 603/ i ncl ude

TARGETLDFLAGS = \

$(DI R_TAG) $(OSE_RQOT) / powerpc/lib \
$(LIB_TAGinett \
$(LIB_TAG)i netutil \
$(LIB_TAQrtc \

$(Dl R_TAG) $(OSE_RQOT) / power pc/ krn-603/1ib \
$(LI B_TAG) krnldpr \
$(LIB TAG krnflib

C++ Anexample use of this file for the C++ language can be found in
$RTS_HOVE/ confi g/ VRTX4T. ppc603- M crotec-1. 3¢ confi g. nk:

EXEC_EXT
TARGETLI BS

. X
$(USR_MRI)/1ib/cppch.lib

Table defines which make macros can be redefined and where they are set.

Table 4 Make Macro Definitions

Macro Name

Defined where

Note

TARGET Defined in ms_nmake. nk, Redefinition not recommended.
gnhu_make. nk and uni x_make. nk.
CONFIG Defined in def aul t. nk. Redefinition not recommended.
PERL Default defined in def aul t. ik as Some compilation hosts may
"rtperl” require an explicit path; if
necessary, redefine in | i bset . rk
orconfig. nk.
FEEDBACK Defined in def aul t. nk. Redefinition not recommended.
MERGE Defined in def aul t. nk. Redefinition not recommended.

66 Chapter 4 - Porting the TargetRTS

Table 4

Make Macro Definitions

NOP Default defined in def aul t . k. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RM Default defined in def aul t . k. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RMF Default defined in def aul t . k. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

TOUCH Default defined in def aul t . k. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RTGEN Defined in def aul t . nk. Redefinition not recommended.

RTCOMP Defined in def aul t . nk. Redefinition not recommended.

RTLINK Defined in def aul t . nk. Redefinition not recommended.

VENDOR Default defined in def aul t. nk as During porting, this may be left as

“generic” and intended to be “generic”. However, you should

overriddenin | i bset . nk. provide an error-parser script
eventually. Since error formats are
typically vendor-specific
(independent of the version of the
compiler or of the compilation
host-type), scripts are identified by
the vendor’snamein | i bset . nk.

MAKEFILE Defined in def aul t . nk. Redefinition not recommended.

CC Default defined in def aul t. nk to Must be redefined in | i bset . nk

cause compile-time error; must be before porting.
redefined inl i bset . nk.

DEBUG_TAG Default defined in def aul t . nk. Redefinein | i bset . nk if
necessary for a compiler.

DEPEND_TAG Default defined in def aul t . nk. Redefinein | i bset . nk if
necessary for a compiler.

DEFINE_TAG Default defined in def aul t . nk. Redefinein | i bset . nk if

necessary for a compiler.

INCLUDE_TAG

Default defined in def aul t . nk.

Redefinein | i bset . nk if
necessary for a compiler.

LIBSETCCEXTRA

Default defined in def aul t . nk.

Add compiler-specific compilation
flagsin | i bset . nk, if necessary.

Config makefile 67

Table 4 Make Macro Definitions

LIBSETCCFLAGS

Default defined in def aul t .

Add compiler-specific compilation
flagsin | i bset . nk, if necessary.

OBJECT_OPT

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a compiler.

OBJOUT_OPT

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a compiler.

OBJOUT_TAG

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a compiler.

TARGETCCFLAGS

Default defined in def aul t .

Add target-specific compilation
flagsin t ar get . nk, if necessary.

AR_CMD

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

LIBOUT_OPT

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

LIBOUT_TAG

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

RANLIB

Default defined in def aul t .

Redefinein | i bset. nk or
t ar get . mk if necessary for a
linker.

LD

Default defined in def aul t .

Redefine in | i bset . nk if linker
must be different from compiler
(most compilers can invoke the
linker anyhow), or if a
preprocessing script is necessary.

DIR_TAG

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

LIBSETLDFLAGS

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

LIB_TAG

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

OT_LIB_TAG

Default defined in def aul t .

Redefinein | i bset . nk if
necessary for a linker.

TARGETLDFLAGS

Default defined in def aul t .

Redefine in confi g. nk or
t ar get . mk if necessary for a
linker.

TARGETLIBS

Default defined in def aul t .

Redefine in confi g. nk or
t ar get . mk if necessary for a
linker.

68 Chapter 4 - Porting the TargetRTS

Table 4

Make Macro Definitions

EXEOUT_OPT

Default defined in def aul t . nk.

Redefinein | i bset . nk or
confi g. nk if necessary for a
linker.

EXEOUT_TAG

Default defined in def aul t . nk.

Redefinein | i bset . nk if
necessary for a linker.

EXEC_EXT

Default defined in def aul t . nk.

Redefine in confi g. nk,
libset. mkortarget. nkif
necessary for a linker.

LIB_PFX

Default defined in def aul t . nk.

Redefine in confi g. nk or
I'i bset. nk if necessary for a
linker.

LIB_EXT

Default defined in def aul t . nk.

Redefinein | i bset . nk if
necessary for a linker.

OBJ_EXT

Default defined in def aul t . nk.

Redefinein | i bset . nk if
necessary for a compiler/linker.

RTSYSTEM_INCPATHS

Defined in def aul t .

Redefinition not recommended.

RTS_LIBRARY

Defined in def aul t .

Redefinition not recommended.

SYSTEM_LIBS

SEE

Defined in def aul t .

Redefinition not recommended.

LD_OUT

Defined in def aul t . nk.

Redefinition not recommended.

LD_HEAD

Default defined in def aul t . nk.

Redefine in confi g. nk,
libset. mkortarget. nkif
necessary for a linker.

ALL_OBJS_LIST

Default defined in def aul t. nk. as
the concatenation of all object files in
the update.

Redefine in | i bset. nk to
“%$(ALL_OBJS_LISTFILE)” to
pass list of object files to linker (or
linker script), if line length
limitations forbid passing list via
shell.

LD_TAIL

Default defined in def aul t . nk.

Redefine in confi g. nk,
I i bset.nkortarget. nkif
necessary for a linker.

CC_HEAD

Default defined in def aul t . nk.

Redefine in confi g. nk,
i bset.nkortarget. nkif
necessary for a compiler.

CC_TAIL

Default defined in def aul t . nk.

Redefine in confi g. nk,
libset.nkortarget. nkif
necessary for a compiler.

Config makefile 69

70 Chapter 4 - Porting the TargetRTS

Porting the TargetRTS
for C

Contents
This chapter is organized as follows:

Configuring the TargetRTS on page 71
Platform-specific Implementation on page 75
Adding New Files to the TargetRTS on page 80

Configuring the TargetRTS

Much of the configurability of the TargetRTS is done at the source code file level:
target-specific source files override common source files. This is illustrated in the next
section on platform-specific implementations. However, configurability is also
available within a source file using preprocessor definitions. The configuration is set
in two C header files:

$RTS_HOVE/ t ar get / <t ar get >/ RTTar get . h for specifying the operating
system specific definitions.

$RTS_HOWE/ | i bset/ <l i bset >/ RTLi bSet . h for specifying the compiler
specific definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOWE/ i ncl ude/ RTPubl / Confi g. h. The symbols and their default
values are listed in Table .

Note: In Table, in general, defining a symbol with the value 1 enables (= sets) the
feature the symbol represents and defining it with the value 0 disables (= clears) the
feature.

71

Table 5

Preprocessor Definitions

Symbol

Default Value

Possible Values

Description

USE_THREADS

none, must be
defined in the
platform headers
(usually

RTTar get . h)

Oor1l

Determines whether the
single-threaded or
multi-threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-threaded. If
USE_THREADS is 1, the
TargetRTS is multi-threaded.

MESSAGE_
DEFERRAL

Oor1l

If 1, message deferral
capabilities per controller will be
present in the TargetRTS. If 0, no
message deferral capabilities at
all.

TIMING_SERVICE

Oor1l

If 1, timing service will be
available in the TargetRTS.

TO_OVER_TCP

1if OBSERVABLE

Oor1l

Set to 1 if Target Observability
over TCP/IP should be
supported.

LOG_MESSAGE

1if OTRTSDEBUG
'= DEBUG_NONE

Oorl

Sets whether the debugger can
log the contents of messages.

LOG_SERVICE

1

Oor1l

Sets whether the
RTLog_show_... methods should
be available or not.

RTS_NAMES

Oorl

Sets whether the name strings in
the data structs should be
present or not.

STDIO_ENABLED

Oor1l

Sets whether the RTStdio_ and
RTLog_ methods should be
available or not.

OBJECT_DECODE

Oor1l

Enables the conversion of strings
to objects. Needed for Target
Observability.

OBJECT_ENCODE

Oorl

Enables the conversion of
objects to strings. Needed for
Target Observability.

SEND_BY_VALUE

Oor1l

If 1, send data using type
descriptors. If 0, just send
pointers.

72 Chapter 5 - Porting the TargetRTS for C

Table 5

Preprocessor Definitions

Symbol

Default Value

Possible Values

Description

OTRTSDEBUG

DEBUG_
VERBOSE

DEBUG_
VERBOSE

Enables the TargetRTS debugger.
It will make it possible to log all
important internal events such
as the delivery of messages, the
creation and destruction of
capsules, and so on. This is
necessary for the target debug
feature.

DEBUG_NONE

Reduces the size of the resulting
executable while increasing
performance. However, the RTS
debugger will not be available.

RTS_MEMORY_
POLICY

RTS_CAN_

ALLOCATE if
OBSERVABLE or
PURIFY, else
RTS_NEVER_

ALLOCATE

RTS_CAN_
ALLOCATE

Dynamic memory allocation is
always allowed.

RTS_WARN_
ALLOCATE

Dynamic memory allocation is
always allowed, but a warning
is printed on the console.

RTS_NEVER_
ALLOCATE

Dynamic memory allocation is
not allowed at all after system
initialization.

PURIFY

Oor1l

If 1, this flag indicates that the
Purify tool is being used. This
tells the TargetRTS to disable all
object caching, which degrades
performance but allows Purify
to monitor RTMessage objects.

RTS_COMPATIBLE

521

521 or 610

If 521, obsolete features from
ObjecTime Developer 5.2.1 of
the TargetRTS will be present.
Set to 610 to disable backwards
compatibility.

RTS_INLINES

Oorl

Controls whether TargetRTS
header files define any inline
functions.

RTMESSAGE_
PAYLOAD_SIZE

36

any scalar value >=0

Reserve this many bytes in
RTMessage for small objects.
When data must be copied,
objects that are no larger than
this will use that space in the
message itself rather than
allocated on the heap.

Configuring the TargetRTS 73

Table 5 Preprocessor Definitions

Symbol Default Value Possible Values Description

INTERNAL_LAYER_ 1 Oor1l Should internal SAPs and SPPs

SERVICE be supported?

MAX_NUM_SPPS 10 any scalar value Maximum number of SAPs and

>0 SPPs that can be connected at
any given time.

DEBUGGER_STACK_ 20480 any scalar value Stack size in bytes for the

SIZE >0 debugger ("main") thread.

MINIMUM_FREE_ 5 any scalar value When freeing a message, keep at
least this many messages in the

MSGQ_SIZE >0 Controller’s free list.

DEFAULT_FREE_ 10 any scalar value > When freeing a message, keep at

INI most this many messages in the

MSGQ_SIZE MINIMUM_ Controller’s free list.

FREE_
MSGQ_SIZE

RTS_CLEANUP_ 1 Oor1l If 1, provide destructors and call

MECHANISM them on §hutd0wn, etc. If 0, do
not (this is a space
optimization).

MULTIPLE_ 1 Oor1l If 1, there are 6 distinct priorities
and 6 message queues per

PRIORITIES controller. If 0, there is only 1
priority and 1 queue per
controller.

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains for
better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule

methods for better performance
at the expense of potentially
larger executable memory size.

OBSERVABLE

1if debugger,
decoding and
encoding all are
enabled.

Oorl

The ability to use the Target
Observability facilities.

74 Chapter 5 - Porting the TargetRTS for C

Platform-specific Implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/ src
directory. In this directory, there is a subdirectory for each class. In general, within
each subdirectory there is one source file for each method in the class. Wherever
possible, the name of the source file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these
methods. Additionally, some of the methods that do not have default behaviors must
be provided. The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is defined by
$target_base variable in the file setup.pl file (see Creating a Setup Script (setup.pl) on
page 54). The target name often appears with the trailing ‘S’ or “T". The name defaults
to the target name without the "S" or "T" if the variable $target_base is not defined in
the setup.pl file. For the remainder of this section, the target directory is referred to as
$TARGET_SRC. For example, the target source directory for <t ar get > SUN5T is
$RTS_HOME/src/target/SUNS. This directory provides an overlay to the
$RTS_HOME //src directory. When the TargetRTS loadbuild tools search for the
source for a method, it searches first in the STARGET_SRC directory, then in
$RTS_HOME/src.

Note: There is only a single source directory for all configurations of the TargetRTS for
a given platform. C preprocessor macros, such as USE_THREADS, may be used to
differentiate code for specific configurations.

There is a sample port in the $RTS_HOME/target/sample subdirectory to use as a
template for a port to a new target. These implementations can be incorporated into a
target implementation by copying the contents of these subdirectories into the
$TARGET_SRC directory. You may also want to search the other target
subdirectories to verify that the implementation of various TargetRTS classes
resembles your target RTOS. You can copy any required code to the new

$TARGET_SRC directory.

Table 6 shows the functions that must be provided in any port of the TargetRTS. These
are the minimum requirements for a new port, as most ports will include changes to
more classes than those listed.

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTTi mespec_cl ock_getti me()

RTThr ead_construct ()

Platform-specific Implementation 75

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTMut ex (all 4 nethods)

RTSyncObj ect (all 5 methods)

The remainder of this section discusses the most common required implementation
code required for a new target.

Method RTTimespec_clock_gettime(timespec)

To implement the Timing service, the TargetRTS uses the time of day clock. The
method RTTi mespec_cl ock_getti me(), found in the file
$TARGET_SRC/Timespec/getclock.c, gets the time of day from the operating
system. There is no default implementation of this method and it must be provided
by the target. The format of this time of day is the POSIX-style St r uct ti mespec
which contains two fields: the number of seconds and the number of nanoseconds
from some fixed point of time. This fixed point is usually the Universal Time reference
point of January 1, 1970. This does not need to be the case. However, to support
absolute time-outs, the TargetRTS assumes that the reference time is midnight of some
day.

Constructor RTThread_construct(this,job,priority,stacksize)

Class

To support multi-threading, the TargetRTS provides the class RTThread. The
constructor should create a stack and start a new thread using RTThread_run(this) as
its entry point. There is no default implementation; any multi-threaded target
implementation must provide the constructor for this class in the file

$TARGET_SRC/Thread/ct.c.

RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes
implemented by the class RTMutex. There is no default declaration or
implementation. The description of the RTMutex class should be placed in the file
$TARGET_SRC/RTPriv/Mutex.h.

76 Chapter 5 - Porting the TargetRTS for C

There are four methods to RTMut ex:

RTMut ex_construct (t hi s) -the constructor, in
$TARGET_SRC/Mutex/ct.c, performs any initialization of the mutex.

RTMut ex_destruct (this) -thedestructor, in
$TARGET_SRC/Mutex/dt.c, performs any clean up when the mutex is no
longer required.

RTMut ex_ent er (t hi s) -in STARGET_SRC /Mutex/enter.c, locks the
mutex if it is available, or blocks the current thread until it is available.

RTMut ex_| eave(t hi s) -in STARGET_SRC/Mutex/leave.c, frees the
mutex and unblocks the first thread waiting on the RTMut ex_enter ().

Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by
class RTSyncObject. Many operating systems provide what is known as a ‘binary
semaphore’. A synchronization object is essentially the same thing. Many
implementations of a semaphore, however, do not provide a wait (or ‘pend’) with
time-out. The lack of this time-out feature requires the use of a more heavyweight
implementation using a mutex and a condition variable (POSIX condition variables
have a ‘timedwait’ feature). A description of each method can be found in the
$RTS_HOME/src/target/sample/SyncObj directory. There is no default
declaration or implementation. The description of the RTSyncObject class should
be placed in the file $TARGET_SRC /RTPriv/SyncObj.h. The implementation of
five methods is required:

RTSyncObj ect _construct (this) - the constructor, in
$TARGET_SRC/ Sync(Obj / ct . ¢, performs any initialization required.

RTSyncObj ect _destruct (t his) -the destructor, in
$TARGET_SRC/ SyncCbj / dt . ¢, performs any clean up given that the sync
object is no longer required.

RTSyncCbj ect _si gnal (this) -in

$TARGET_SRC/ SyncObj / si gnal . c. Signal this synchronization object. If
the owner is currently waiting, it should be readied. Otherwise the state of this
object should be such that the next call to wait or timedwait made by the owner
will not block. Signalling a second or subsequent time should have no effect.

RTSyncCbj ect _tinedwait(this, expiryTinme) -in
$TARGET_SRC/ SyncCbj / ti mewai t . c. Wait for this synchronization object

to be signalled. Only the owning thread is permitted to use this function. If the
object is in the 'signalled' state it should be reset to 'unsignalled' and the function

Platform-specific Implementation 77

should return immediately. Otherwise the current thread should block until either
the object is signalled by another thread or the absolute expiry time arrives,
whichever occurs first. The object should always be left in the 'unsignalled' state.

RTSyncCbj ect _wait (this) -in $TARGET_SRC/ SyncObj /wai t. c.
Wait for this synchronization object to be signalled. Only the owning thread is
permitted to use this function. If the object is in the 'signalled’ state it should be
reset to 'unsignalled’ and the function should return immediately. Otherwise the
current thread should block until the object is signalled by another thread. The
object should always be left in the 'unsignalled' state.

main() function

Class

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMai n_entryPoi nt (int argc, const char * const * argv),
passing in the arguments to the program. This code is placed in the file

$TARGET_SRC/ Mai n/ mai n. c.

On many platforms, this is the code for the mai n() function, which simply passes
ar gc and ar gv directly. However, on other platforms, these parameters must be
constructed. For example, with Tornado, the arguments to the program are placed on
the stack. An array of strings containing the arguments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to an executable,
default arguments for use by RTMai n_ent r yPoi nt () can be defined in the
toolset. These arguments are made available by the code generator, and can be used
by overriding mai n() tocall RTMai n_entryPoint(0, (const char *
const *)0); instead.

RTMain

RTMai n_ent r yPoi nt () indirectly via RTMai n_mai nLi ne() calls a number of
methods for target-specific initialization and shutdown. These methods are as
follows:

RTMai n_startup() -in file STARGET_SRC/ Mai n/ startup. c, it
initializes the target in preparation for execution of the model. This includes things
such as setting the priority of the main thread, calling static constructors, and
initializing devices, for example, timers and consoles. Note that on most platforms
this method is empty.

RTMai n_shut down() -in file $TARGET_SRC/ Mai n/ shut down. c, it
generally undoes the initialization that was performed in RTMai n_st art up(),
for example, calling static destructor and cleaning up operating resources such as
file descriptors.

78 Chapter 5 - Porting the TargetRTS for C

RTMai n_i nst al | Handl er s() -infile

$TARGET_SRC/ Mai n/ al | Hand. c. In addition to target start-up and
shutdown, RTMai n_mai nLi ne() also calls this method to install Unix style
signal handlers, where available. These signal handlers are used by the single
threaded TargetRTS for timer and 1/0O interrupts. If the target OS does not
implement signal handlers, this method can be overridden by an empty method.

RTMai n_i nst al | OneHandl er () -infile

$TARGET_SRC/ Mai n/ oneHand. c. This method is used by

RTMai n_i nst al | Handl er s() to install the Unix style signal handlers. These
signal handlers are used by the single threaded TargetRTS for timer and I/O
interrupts. If the target OS does not implement signal handlers, this method can be
overridden by an empty method.

Method RTStdio_putString()

The RTSt di 0 class handles output of diagnostic messages to the standard error. If
your target does not support the f put s() function, you must supply a replacement
for the RTSt di 0_put St ri ng() method in

$TARGET_SRC/ St di o/ stri ng. c. This method outputs a string to the standard
error device.

Method RTDebuggerinput_nextChar()

Class

The RTDebugger | nput class handles the input to the TargetRTS debugger. If your
target system does not support the f get ¢ () function, then you must supply a
replacement for the RTDebugger | nput _next Char () method in
$TARGET_SRC/ Debugl np/ next Char . c¢. This method reads individual

characters from the standard input device.

RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets
library of the target operating system. Many operating systems provide the familiar
BSD sockets interface. If this is the case then little modification is necessary. Typically,
small changes to data types are needed to satisfy the sockets interface. If code changes
are required, override the functions in RTi net .

Note: This class is not necessary if you do not use Target Observability (set the
OBSERVABLE macro to 0), and if your application does not require TCP/IP
networking.

Platform-specific Implementation 79

Class RTIOMonitor

The RTI OMVbni t or class is used to monitor activity on a set of TCP/IP sockets. This
class makes use of file descriptor sets and the sel ect () function. There may be
differences in the way these sets are implemented on your target operating system.

File main.c

The file mai N. € contains the Mai N function for the TargetRTS and therefore the
entire application. Some operating systems already have a mai n function defined.
This file must be modified to take this into account. A typical solution is to create a
root thread, which in turn calls the entry point to the TargetRTS,

RTMai n_entryPoi nt ().

Adding New Files to the TargetRTS

If you create a new method in a new file for an existing class, or you are adding a new
class to the TargetRTS, then you must add the new file names to a manifest file. This
must be done in order for the dependency calculations to include the new files and
thus include them into the TargetRTS.

The MANIFEST.c File

This file lists all the elements of the run-time system. There is one entry per line, and
each entry has two or more fields separated by white space. The first field is a
directory name. The second field is the base name of a file. By convention the
directory name and file name typically correspond to the class name and member
name, respectively. The third and subsequent fields, if present, give an expression that
evaluates to zero when the element should be excluded. Note that the expression is
evaluated by Perl and so should be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the TargetRTS, you
must add an entry to the SRTS_HOME/ st ¢/ MANI FEST. c file for this file. By
convention, the entry should be placed next to the other files for the specific class that
you have modified. If you are adding a whole class, then place the entries next to the
super class if it exists, or next to similar classes in the MANI FEST. c file.

Be sure to associate the new entry with the proper GROUP, see MANI FEST. ¢ for
details.

A target base directory can optionally contain the file called RTPriv/TGTRFEST.c that
uses the same format and services to specify file names to that particular target base.

80 Chapter 5 - Porting the TargetRTS for C

Regenerating make Dependencies

If a file has been overridden in $TARGET_ SRC directory or a new file has been added
to the MANI FEST. ¢, you must regenerate the dependencies in order for the
modification to be included in the new TargetRTS. This is done by removing the
depend. nK file in the build directory, SRTS_HOVE/ bui | d- <conf i g>. This will
cause the dependencies to be recalculated and a new depend. nK file to be created.

Adding New Files to the TargetRTS 81

82 Chapter 5 - Porting the TargetRTS for C

Porting the TargetRTS
for C++

Contents
This chapter is organized as follows:

Configuring the TargetRTS on page 83
Platform-specific Implementation on page 88
Adding New Files to the TargetRTS on page 93

Configuring the TargetRTS

Much of the configurability of the TargetRTS is done at the source code file level:
target-specific source files override common source files. This is illustrated in the next
section on platform-specific implementations. However, configurability is also
available within a source file using preprocessor definitions. The configuration is set
in two C++ header files:

$RTS_HOVE/ t ar get / <t ar get >/ RTTar get . h for specifying the operating
system specific definitions.

$RTS_HOWE/ | i bset/ <l i bset >/ RTLi bSet . h for specifying the compiler
specific definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOVE/ i ncl ude/ RTConfi g. h. The symbols and their default values are
listed in Table 7.

Note: In Table 7, in general, defining a symbol with the value 1 enables (= sets) the
feature the symbol represents and defining it with the value 0 disables (= clears) the
feature.

83

Table 7 Preprocessor Definitions

Symbol

Default Value

Possible Values

Description

USE_THREADS

none, must be
defined in the
platform headers
(usually

RTTar get . h)

Oorl

Determines whether the
single-threaded or
multi-threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-threaded.
If USE_THREADS is 1, the
TargetRTS is multi-threaded.

DEFER_IN_ACTOR

Oorl

If 1, there will be one defer
queue in each capsule. If 0,
there will only be one defer
queue per controller. This is a
size/speed trade-off.
Separate queues for each
capsule uses more memory
but results in better
performance.

HAVE_INET

Oorl

Setto 1if TCP/IP is
supported.

INTEGER_POSTFIX

Oorl

Sets whether the compiler
understands the post
increment operator on
classes. i.e.

Class x; x++;

LOG_MESSAGE

Oorl

Sets whether the debugger
can log the contents of
messages.

OBJECT_DECODE

Oorl

Enables the conversion of
strings to objects, needed for
Target Observability.

OBJECT_ENCODE

Oorl

Enables the conversion of
objects to strings. Needed for
Target Observability.

84 Chapter 6 - Porting the TargetRTS for C++

Table 7 Preprocessor Definitions

Symbol

Default Value

Possible Values

Description

OTRTSDEBUG

DEBUG_VERBOSE

DEBUG_VERBOSE

Enables the TargetRTS
debugger. It will make it
possible to log all important
internal events such as the
delivery of messages, the
creation and destruction of
capsules, and so on. This is
necessary for the target
observability feature.

DEBUG_TERSE

Reduces the size of the
resulting executable at the
expense of limiting the
amount of debug
information.

DEBUG_NONE

Further reduces the
executable size, while
increasing performance.
However, the RTS debugger
will not be available.

PURIFY

Oorl

If 1, this flag indicates that
the Purify tool is being used.
This tells the TargetRTS to
disable all object caching,
which degrades performance
but allows Purify to monitor
RTMessage objects.

RTS_COMPATIBLE

520

520, 600 or 620

If 520, obsolete features from
ObjecTime Developer 5.2 of
the TargetRTS will be
present. If 600, obsolete
features from version 6.0 of
the TargetRTS will be
present. Set to 620 to disable
backwards compatibility.

RTS_COUNT

Oorl

If this flag is 1, the TargetRTS
will keep track of the number
of messages sent, the number
of capsules incarnated, and
other statistics. Naturally,
keeping track of statistics
adds overhead.

RTS_INLINES

Oorl

Controls whether TargetRTS
header files define any inline
functions.

Configuring the TargetRTS 85

Table 7

Preprocessor Definitions

Symbol

Default Value

Possible Values

Description

RTFRAME _
THREAD_SAFE

1

Oorl

Setting this macro to 1
guarantees that the frame
service is thread safe. This is
an option because some
applications may use the
frame service in ways that
don't require this level of
safety.

RTFRAME_
CHECKING

RTFRAME _
CHECK_STRICT

RTFRAME _
CHECK_STRICT

The frame service is intended
to provide operations on
components of the capsules
which have a frame SAP.
Here, references must be in
same capsule.

RTFRAME_
CHECK_LOOSE

References must be in same
thread (but not the same
capsule).

RTFRAME_
CHECK_NONE

No checking is done. This is
compatible with ObjecTime
Developer pre-5.2.

RTMESSAGE_
PAYLOAD_SIZE

100

any scalar value >=0

Reserve this many bytes in
RTMessage for small objects.
When data must be copied,
objects that are no larger than
this will use that space in the
message itself rather than
allocated on the heap.

RTREAL_INCLUDED

Oorl

Should the class RTReal be
present? Target
environments that don't
support floating point data
types, or can't afford them,
should set it to 0.

86 Chapter 6 - Porting the TargetRTS for C++

Table 7

Preprocessor Definitions

Symbol Default Value Possible Values Description
RTTYPECHECK _ RTTYPECHECK_ | RTTYPECHECK_ What to do about protocols
FAIL which have signals of

PROTOCOL WARN incompatible data types? Set

error code, fail operation.
RTTYPECHECK _ Set error code, but proceed.
WARN
RTTYPECHECK_ No checking.
DONT

RTTYPECHECK _ RTTYPECHECK_ | (see above) What to do about send,

SEND WARN invoke or reply when the
signal or type is incompatible
with the protocol?

RTTYPECHECK _ RTTYPECHECK _ | (see above) Should signal be checked for

RECEIVE DONT or RTTYPE- signal and type compatibility
as it is received?

CHECK_WARN
(depending on the
two above)

RTQUALIFY_ 0 Oor1l Some compilers have trouble
with the class nesting for

NESTED protocol backwards
compatibility and require the
class names to be fully
qualified.

RTUseBitFields 0 Oorl Some structures can be made
smaller through the use of
bit-fields. This space savings
often comes at the expense of
greater code bulk.

SUSPEND 0 0 The ability to 'suspend’

capsules is currently
unsupported. Leave at 0.

RTStateld_MaxSize

2 bytes (< 65536
states)

1 byte (<256 states), 2
bytes, or 4 bytes
(>=65536 states)

Maximum number of bytes
allocated to store each state
id.

RTStateld

This is a typedef calculated from the value of RTStateld_MaxSize.
Do not modify directly, adjust RTStateIld_MaxSize instead.

Configuring the TargetRTS 87

Table 7

Preprocessor Definitions

Symbol Default Value Possible Values Description

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains

for better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule

methods for better
performance at the expense
of potentially larger
executable memory size.

OBSERVABLE 1if debugger, inet, | Oor 1 The ability to use the Target
decoding and Observability facilities.
encoding all are
enabled.

EXTERNAL_LAYER 0 0 The "els" connection service

is not provided. Leave at 0.

Platform-specific Implementation

The implementation of the TargetRTS is contained in the $RTS_HOVE/ sr c
directory. In this directory, there is a subdirectory for each class. In general, within
each subdirectory there is one source file for each method in the class. Wherever
possible, the name of the source file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these
methods. Additionally, some of the methods that do not have default behaviors must
be provided. The target-specific source is placed in a subdirectory of

$RTS_HOVE/ src/target/ <target _base>, where <t ar get _base> is the
target name without the trailing ‘S” or “T”. For the remainder of this section, the target
directory is referred to as $TARGET_SRC. For example, the target source directory
for <t ar get > PSOS2T is $RTS_HOME/ src/ t ar get / PSOS2. This directory
provides an overlay to the SRTS_HOVE/ sr ¢ directory. When the TargetRTS
loadbuild tools search for the source for a method, it searches first in the

$TARGET_SRC directory, then in $RTS_HOVE/ sr C.

Note: There is only a single source directory for all configurations of the TargetRTS for
a given platform. C++ preprocessor macros, such as USE_THREADS, may be used to
differentiate code for specific configurations.

88 Chapter 6 - Porting the TargetRTS for C++

There is a sample port in the $RTS_HOME/ sr ¢/ t ar get / sanpl e subdirectory to
use as a template for a port to a new target. These implementations can be
incorporated into a target implementation by copying the contents of these
subdirectories into the $TARGET _SRC directory. You may also want to search the
other target subdirectories to verify that the implementation of various TargetRTS
classes resembles your target RTOS. You can copy any required code to the new

$TARCET_SRC directory.

Table 8 shows the classes and functions that must be provided in any port of the
TargetRTS. These are the minimum requirements for a new port, as most ports will
include changes to more classes than those listed.

Table 8 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTTi mespec: : get cl ock()

RTThr ead: : RTThread()

RTMut ex (all 4 nethods)

RTSyncObj ect (all 5methods)

The remainder of this section discusses the most common required implementation
code required for a new target.

Method RTTimespec::getclock()

To implement the Timing service, the TargetRTS uses the time of day clock. The
method RTTi mespec: : get cl ock(), found in the file

$TARGET_SRC/ RTTi mespec/ get cl ock. cc, gets the time of day from the
operating system. There is no default implementation of this method and it must be
provided by the target. The format of this time of day is the POSIX-style

RTTi mespec which contains two fields: the number of seconds and the number of
nanoseconds from some fixed point of time. This fixed point is usually the Universal
Time reference point of January 1, 1970. This does not need to be the case. However, to
support absolute time-outs, the TargetRTS assumes that the reference time is midnight
of some day.

Platform-specific Implementation 89

Constructor RTThread::RTThread()

Class

Class

To support multi-threading, the TargetRTS provides the class RTThr ead. The
constructor should create a stack and start a new thread using j ob- >mainLoop() as
its entry point. There is no default implementation, the target implementation must
provide the constructor for this class in the file

$TARGET _SRC/ RTThr ead/ ct . cc.

RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes
implemented by the class RTMut ex. There is no default declaration or
implementation. The description of the RTMUt eX class should be placed in the file
$TARGET_SRC/ RTMut ex. h. There are four methods to RTMut ex:

RTMut ex() - the constructor, in $TARGET_SRC/ RTMut ex/ ct . cc, performs

any initialization of the mutex.

~RTMut ex() - the destructor, in $TARGET_SRC/ RTMut ex/ dt . cc,

performs any clean up when the mutex is no longer required.

enter () -in $TARGET_SRC/ RTMut ex/ ent er . cc, locks the mutex if it is
available, or blocks the current thread until it is available.

| eave() -in $TARGET_SRC/ RTMut ex/ | eave. cc, frees the mutex and
unblocks a thread waiting on the ent er () .

RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by
class RTSync Qbj ect . Many operating systems provide what is known as a ‘binary
semaphore’. A synchronization object is essentially the same thing. Many
implementations of a semaphore, however, do not provide a wait (or ‘pend’) with
time-out. The lack of this time-out feature requires the use of a more heavyweight
implementation using a mutex and a condition variable (POSIX condition variables
have a ‘timedwait’ feature). A description of each method can be found in the
$RTS_HOVE/ src/t ar get/ sanpl e/ RTSyncCbj ect directory. There is no
default declaration or implementation. The description of the RTSyncCbj ect
should be in the file S TARGET_SRC/ RTSyncObj ect . h.

90 Chapter 6 - Porting the TargetRTS for C++

The implementation of five methods is required:

RTSyncObj ect () - the constructor, in
$TARGET_SRC/ RTSyncObj ect/ ct . cc, performs any initialization required.

~RTSyncObj ect () - the destructor, in
$TARGET_SRC/ RTSyncObj ect/ dt . cc, performs any clean up given that

the sync object is no longer required.

si gnal () -in $TARGET_SRC/ RTSyncObj ect/ si gnal . cc. Signal this
synchronization object. If the owner is currently waiting, it should be readied.
Otherwise the state of this object should be such that the next call to wait or
timedwait made by the owner will not block. Signalling a second or subsequent
time should have no effect.

wait () -in$TARCGET_SRC/ RTSyncObj ect/ wai t . cc. Wait for this
synchronization object to be signalled. Only the owning thread is permitted to use
this function. If the object is in the 'signalled' state it should be reset to 'unsignalled'
and the function should return immediately. Otherwise the current thread should
block until the object is signalled by another thread. The object should always be
left in the 'unsignalled’ state.

ti medwait () -in $TARGET_SRC/ RTSyncObj ect/ti medwai t. cc. Wait
for this synchronization object to be signalled. Only the owning thread is
permitted to use this function. If the object is in the 'signalled’ state it should be
reset to 'unsignalled’ and the function should return immediately. Otherwise the
current thread should block until either the object is signalled by another thread or
the absolute expiry time arrives, whichever occurs first. The object should always
be left in the 'unsignalled’ state.

main() function

In order for the execution of the TargetRTS to begin, code must be provided to call
RTMai n: : entryPoint(int argc, const char * const * argv),
passing in the arguments to the program. This code is placed in the file

$TARGET_SRC/ MAI N/ mai n. cc.

On many platforms, this is the code for the mai n() function, which simply passes
ar gc and ar gv directly. However, on other platforms, these parameters must be
constructed. For example, with Tornado, the arguments to the program are placed on
the stack. An array of strings containing the arguments must be explicitly created.

Platform-specific Implementation 91

If the platform does not provide a mechanism for passing arguments to an executable,
default arguments for ent r yPoi nt () can be defined in the toolset. These
arguments are made available by the code generator, and can be used by overriding
mai n() tocall RTMai n: : entryPoint(0, (const char * const *)O
) ; instead.

Class RTMain

RTMai n: : mai nLi ne() indirectly calls a number of methods for target-specific
initialization and shutdown. These methods are as follows:

target Startup() -infile

$TARGET_SRC/ RTMai n/ t ar get St ar t up. cc, it initializes the target in
preparation for execution of the model. This includes things such as initializing
devices, for example, timers and consoles.

t ar get Shut down() -in file

$TARGET_SRC/ RTMai n/ t ar get Shut down. cc, it generally undoes the
initialization that was performed in t ar get St ar t up() , for example, cleaning
up operating resources such as file descriptors.

i nstal | Handl ers() -infile

$TARGET_SRC/ RTMai n/ i nst al | Handl er s. cc. In addition to target
start-up and shutdown, RTMai n: : mai nLi ne() also calls this method to install
Unix style signal handlers, where available. These signal handlers are used by the
single threaded TargetRTS for timer and I/O interrupts. If the target OS does not
implement signal handlers, this method can be overridden by an empty method.

i nst al | OneHandl er () -in file

$TARGET_SRC/ RTMai n/ i nst al | OneHandl er . cc. This method is used by
RTMai n: :install Handl er s() to install the Unix style signal handlers.
These signal handlers are used by the single threaded TargetRTS for timer and I/O
interrupts. If the target OS does not implement signal handlers, this method can be
overridden by an empty method.

Method RTDiagStream::write()

The RTDi agSt r eamclass handles output of diagnostic messages to the standard
error. If your target does not support the f put s() function, you must supply a
replacement for the RTDi agStr eam : wri t e() method in

$TARGET_SRC/ RTDi agSt r eanf wri t e. cc. This method outputs a string to the
standard error device.

92 Chapter 6 - Porting the TargetRTS for C++

Method RTDebuggerinput::nextChar()

The RTDebugger | nput class handles the input to the TargetRTS debugger. If your
target system does not support the f get ¢ () function, then you must supply a
replacement for the RTDebugger | nput : : next Char () method in
$TARGET_SRC/ RTDebugger | nput / next Char . cc. This method reads
individual characters from the standard input device.

Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets
library of the target operating system. Many operating systems provide the familiar
BSD sockets interface. If this is the case then little modification is necessary. Typically,
small changes to data types are needed to satisfy the sockets interface. If code changes
are required, override the functions in RTi net .

Note: This class is not necessary if you do not plan to use Target Observability (Set
the OBSERVABLE macro to 0), and if your application does not require TCP/IP
networking.

Class RTIOMonitor

The RTI OMbni t or class is used to monitor activity on a set of TCP/IP sockets. This
class makes use of file descriptor sets and the sel ect () function. There may be
differences in the way these sets are implemented on your target operating system.
Only RTI OVoni t or : : wai t should need modification.

File main.cc

The file mai N. CC contains the Mai N function for the TargetRTS and therefore the
entire application. Some operating systems already have a mai n function defined.
This file must be modified to take this into account. A typical solution is to create a
root thread, which in turn calls the entry point to the

TargetRTS, RTMai n: : entr yPoi nt ().

Adding New Files to the TargetRTS

If you create a new method in a new file for an existing class, or you are adding a new
class to the TargetRTS, then you must add the new file names to a manifest file. This
must be done in order for the dependency calculations to include the new files and
thus include them into the TargetRTS.

Adding New Files to the TargetRTS 93

The MANIFEST.cpp File

This file lists all the elements of the run-time system. There is one entry per line, and
each entry has two or more fields separated by white space. The first field is a
directory name. The second field is the base name of a file. By convention the
directory name and file name typically correspond to the class name and member
name, respectively. The third and subsequent fields, if present, give an expression that
evaluates to zero when the element should be excluded. Note that the expression is
evaluated by Perl and so should be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the TargetRTS, you
must add an entry to the $RTS_HOME/ sr ¢/ MANI FEST. cpp file for this file. By
convention, the entry should be placed next to the other files for the specific class that
you have modified. If you are adding a whole class, then place the entries next to the
super class if it exists, or next to similar classes in the MANI FEST. cpp file.

If the added file is target specific, add an entry to
$TARGET_SRC/ TARGET- MANI FEST. cpp instead (create this file if it doesn’t
exist already).

In both cases, be sure to associate the new entry with the proper GROUP, see
MANI FEST. cpp for details.

Regenerating make Dependencies

If a file has been overridden in $TARGET_ SRC directory or a new file has been added
to the MANI FEST. cpp, you must regenerate the dependencies in order for the
modification to be included in the new TargetRTS. This is done by removing the
depend. nK file in the build directory, SRTS_HOVE/ bui | d- <conf i g>. This will
cause the dependencies to be recalculated and a new depend. nK file to be created.

94 Chapter 6 - Porting the TargetRTS for C++

Modifying the Error
Parser

Contents
This chapter is organized as follows:

Owerview of the Error Parser on page 95
How the Error Parser Works on page 96
Reusing an Existing Error Parser on page 98
Creating a New Error Parser on page 98

Overview of the Error Parser

The error parser is intended to convert specific compiler (or linker) error messages
into a format that can be browsed by the modeling user from the Build Errors tab
within the toolset. Whenever possible, the format identifies a browseable model
element, as well as including the description and the severity of the compiler
message.

Typically, compilers cite a particular line-number of a source file when producing an
error or warning message. Since the source files are generated by the code-generator,
the line numbers are meaningless to the modeling user. The error parser provides a
mechanism to translate a line-number from an arbitrary source file into a reference to
a particular model element. The intention is that the modeling user can double-click a
compiler message and see where the problem occurred in the model: for example
which transition, or which member definition. The user can then take corrective
action and compile the model again. Unfortunately (as with hand-written source
files), the corrective action is not always necessary where the problem occurred, but it
is usually a good start.

Most linker messages do not cite a particular line-number, since their problems are
typically about undefined symbols, multiply defined symbols or misuses of the
command-line options. In these cases, the errors can be resolved by modifying a
component within the model. It is not possible to always correctly determine which
component property, or even which component produced the message (typically the
executable component is tagged).

95

The error parser is intended as a convenience to the model designer, but it cannot
correctly identify the source model-element for all errors, including compiler
command-line errors, compilation errors caused by external header files or linkage
errors. In these cases, no model-element is given, but an error message should still be
returned to the toolset.

How the Error Parser Works

Before modifying the error parser, it is important to understand how it works.

The Error Parsing Rules

The error parsing rules are considered vendor-specific; they do not vary dramatically
between compilation host platforms or between subsequent compiler-version
releases. Each libset references its associated error parser via the VENDOR make
macro in the SRTS _HOME/ | i bset/ <l i bset >/ | i bset . nk file. For each
vendor name <vendor >, there is a corresponding subdirectory

$RTS_HOVE/ codegen/ conpi | er / <vendor >. In each of these directories there
are two Perl scripts, conp. pl and | i nk. pl . These two files contain a set of regular
expressions (regexps), along with a handler function pointer for each regexp.

Each regexp used is a Perl regular expression. If you are not familiar with Perl or
regular expressions in general, it is suggested that you obtain a Perl book or find an
equivalent reference online. As an example, the two O’Reilly books Programming Perl
and Mastering Regular Expressions are excellent sources of Perl and regexp
information.

When the code that was generated from the Rational Rose RealTime toolset is
compiled, it is done via the main compilation controller script

$RTS_HOVE/ codegen/ rt conp. pl . This script loads the vendor-specific regular
expressions in $RTS_HOVE/ codegen/ conpi | er/ <vendor >/ conp. pl and
applies these regexps to each line printed by the compiler.

The same procedure is done while linking, but it’s done by the main linking controller
script $RTS_HOME/ codegen/ rt | i nk. pl which loads the vendor-specific
regular expressions in

$RTS_HOVE/ codegen/ conpi | er/ <vendor >/ | i nk. pl instead.

96 Chapter 7 - Modifying the Error Parser

C++

How "rtcomp.pl" Integrates With the Compiler

Once issued by the make utility, every compilation command-line is wrapped in a call
to a perl script "rtcomp.pl". For example, if working in C++,

> rtperl "C:\RoseRT6. 2/ C++/ Tar get RTS/ codegen/ rt conmp. pl " \
-vendor Visual C++ -spacify dq \
-1 ../src -conponentname NewConponent1 \
-src NewCapsul el ../src/ NewCapsulel.cpp -- \
cl /¢ /FoNewCapsulel.OBJ /nologo /G /GX /G- /ND /TP \
/1" C:\ RoseRT6. 2/ C++/ Tar get RTS/ | i bset / x86- Vi sual C++- 6. 0" \
/1" C:\ RoseRT6. 2/ C++/ Tar get RTS/ t ar get / NT40T" \
/1" C:\ RoseRT6. 2/ C++/ Target RTS/ i ncl ude" /Zi /I../src \
../ src/ NewCapsul el. cpp

1> Conpi l i ng NewCapsul el

NewCapsul el. cpp

../ src/ NewCapsul el. cpp(25) : error C2065: '"i' : undeclared identifier
GES capsul eC ass ' NewCapsul el' transition ':TOP:Initial:lnitial' line
"1" description 'C2065: ''i'' : undeclared identifier' severity
"error'

The perl script "rtcomp.pl" has the following functions:

It explicitly provides feedback on the current activity ("l > Conpi | i ng
NewCapsul el")

If necessary, it creates GES (Generic Error Stream) errors based on incorrect
command-line usage (typically these are tagged to the component).

It runs the compiler, using the command-line arguments following the --
argument. Compiler output is captured for error parsing and conversion to GES.

Assuming the compilation was successful, the perl script performs compilation
dependency analysis and stores the results in local .dep files for future
build-avoidance. (This step is skipped when the Compilation Make Type is
"ClearCase_clearmake" or "ClearCase_omake".)

It returns an exit code (back to the Makefile) indicating the compilation's success
or failure, depending on the existence of any errors.

While parsing the errors, any reference to a source-file line-number is converted into a
model element reference by scanning through the offending file to see if the offending
line-number is embedded within a pair of RME (Referable Model Element) labels.
These RME labels are provided by the code generator for exactly this purpose.

The resulting message is printed out in GES (Generic Error Stream) format, an internal
format. GES format must start with "GES" and must contain a description and severity
field. Other fields identifying the model element will only be provided if they can be
found.

How the Error Parser Works 97

Reusing an Existing Error Parser

If you are porting to a new libset, but using an existing compiler vendor, just set the
VENDOR make macro in the SRTS_HOVE/ | i bset/ <l i bset >/1i bset . nk file
to reference the existing vendor, and the error parsing port is done.

Creating a New Error Parser

If you are porting to a new vendor, you will first need to pick a vendor name
<vendor >. Then create the directory

$RTS_HOVE/ codegen/ conpi | er / <vendor > and the two files conp. pl and
l'i nk. pl in this directory.

Each of the files should contain the following (reading this requires some knowledge
of Perl):

The package identifier: package confi g; firstin the file.

An array, @andl er s, where each element is a reference to an array with two
elements: the regexp matching string, and a reference to the associated handler
routine.

Aline sayingr et urn 1; (orjust 1;) at the end of the file, to indicate to Perl that
this file was loaded and initialized OK.

A typical conp. pl , for the vendor VisualC++ (Microsoft Visual C++), contains the
following:

package confi g;

@andl ers =
(
["~C-*)V((Vd+H)\)\s+:\s+fatal error (.*)',
sub { rterror::action_print($1, $2, $3, 0); }],
[")\ ((\d+¥)\)\s+:\s+error (.*)',
sub { rterror::action_print($1, $2, $3, 0); }],
["~C-*)V((VdH)\)\s+:\s+warning (.*)",
sub { rterror::action_print($1, $2, $3, 1); }],

["(warning.*)", sub { rterror::action_message($1, 1); } 1,
["(fatal error.*)', sub { rterror::action_nessage($1, 0); }]
)
return 1;

98 Chapter 7 - Modifying the Error Parser

In this example you can see that each of the five elements in the @and| er s array is
a reference to another array with two elements (as indicated by the[,] notation).
The first of these two elements is a string containing the regexp we’re trying to match,
and the second element contains a reference to the handler routine. The regexps are
written so that they’ll save (as indicated by the () notation) the file name, the line
number and the descriptive message in the variables $1, $2 and $3 respectively.
These variables are used in the call to the Perl handler routines
rterror::action_print() andrterror::action_nessage().

When compiling the generated code (or linking, in which case the script | i nk. pl is
used), each line printed by the compiler (linker) is matched against the regular
expressions in the @and| er s array, starting with the first (topmost) regexp. If there
is no match, the next regexp below is tried and so on, until there either was a match,
or we’ve come to the end of the @and| er s array. The default behavior for an
unmatched compiler message is to ignore the message.

The following three handler methods can be used inside the sub { ... } part:
rterror::action_print($fileNane, $lineNr, $msg, $severity);

If fileName exists, it prints the RME tag from the file, along with line number,
message and the severity text (0 for ‘error’, 1 for ‘'warning’). If fileName wasn’t found,
it prints the file name, line number, message and severity text.

rterror::acti on_nessage($nmsg, $severity);

Prints the message and the severity text, optionally prepended by the component
name, if known. This is particularly useful when the error is likely in a component
(such as errors during linking, or problems with compiler flags).

rterror::action_ignore();
Does not take parameters and does nothing.

You will need to figure out what error expressions your compiler and linker generate,
and populate the @vandl| er s array in conp. pl orl i nk. pl with appropriate
regular expressions. There are a couple of ways to efficiently determine what the
errors your compiler generates looks like:

1 Write a model that contains a representative set of compilation errors, compile it,
and observe the output for the errors it generates. Add expressions one at a time
and recompile until you have successfully captured all the errors.

2 Use programs that search the actual compiler or linker executable for strings. Then
manually examine the output and intelligently determine which of the strings look
like error statements.

Creating a New Error Parser 99

100 Chapter 7 - Modifying the Error Parser

Testing the TargetRTS
Port

Contents
This chapter is organized as follows:

Overview on page 101
HelloWorld Model on page 101
Other Test Models on page 102
Other Resources on page 102

Overview

A port to a new platform requires testing the TargetRTS. There are some standard
Rational Rose RealTime models that are part of the installation and can be used to test
the functionality of the TargetRTS. These tests are not comprehensive but provide
some assurance that the port was successful.

HelloWorld Model

C++ This model is available in:
$ROSERT_HOME/ Tut ori al s/ gstarted/ QuickstartTutorial.rtndl

The HelloWorld model is a single capsule model that uses the Log service to output
“Hello World” to the target console. It makes use of the Log service to output the
message. The HelloWorld model, if functional, validates the TargetRTS initialization
and startup, log service and console output and basic capsule functionality.

101

Other Test Models

More test models are available in the online tutorials and examples. Please take a look
at $ROSERT_HOVE/ Exanpl es/ Model s/ C++ or
$ROSERT_HOVE/ Exanpl es/ Model s/ C and $ROSERT_HOME/ Tut ori al s

for information on what’s available.

Other Resources

We suggest that you visit the Rational Rose RealTime product support web site for the
latest updates, models and patches. The URL is http://www.rational.com /support/.

102 Chapter 8 - Testing the TargetRTS Port

Tuning the TargetRTS

Contents
This chapter is organized as follows:

Disabling TargetRTS Features for Performance on page 103
Target Compiler Optimizations on page 103

Target Operating System Optimizations on page 104
Specific TargetRTS Performance Enhancements on page 104

Disabling TargetRTS Features for Performance

The TargetRTS can be modified to exclude many of its features to provide a minimum
high performance feature set. The section “Configuring and customizing the Services
Library” in the C Reference or C++ Reference describes how to create such a version of
the TargetRTS. The concepts of a “minimal TargetRTS” disables Target Observability,
logging service and the RTS debugger. The minimal TargetRTS should provide
significant performance gains over the fully featured version.

Target Compiler Optimizations

Most compilers provide optimizations at the object code generation stage that can
produce faster running code. In general, if your compiler supports such
optimizations, they should be used. Be sure to remove all debug options at the same
time since they may cancel out certain or all optimizations. Some optimizations may
come at the cost of code size. If application code size is a factor for your target then the
benefit of optimization versus code size will have to analyzed. Many compilers may
have different levels of optimization, which may produce differing degrees of code
size and performance enhancements. It is hard to predict the outcome of such
optimizations in C or C++. Using a performance testing model which measures the
speed of certain operations may prove useful.

Note: Optimizations can cause errors in the running application that were not present
before optimizations were enabled. Be sure to fully test the TargetRTS after enabling
any optimizations.

103

Target Operating System Optimizations

The Target operating system may provide optimizations. For example, it may be
possible to link in a non-debug version of the OS with the application. These
optimizations are specific to each RTOS. Refer to the documentation for your specific
RTOS.

Specific TargetRTS Performance Enhancements

In C or C++, one key area that can improve performance in the TargetRTS is in
inter-thread message passing. The TargetRTS make use of two synchronization
mechanisms for much of its message passing, namely, the RTMut ex and
RTSyncObj ect classes. Some operating systems provide heavy-weight and
light-weight synchronization mechanisms. The light-weight version has less features
but higher performance; whereas, the heavy-weight version may have more features
but poorer performance. Your choice of implementation for the RTMut ex and
RTSyncObj ect may affect the performance of inter-thread message passing, so be
sure to investigate and determine the lightest-weight mechanism necessary to satisfy
the requirements of these classes.

104 Chapter 9 - Tuning the TargetRTS

Common Problems and
Pitfalls

Contents
This chapter is organized as follows:

Overview on page 105

Problems and Pitfalls with Target Toolchains on page 106

Problems and Pitfalls with TargetRTS/RTOS Interaction on page 107
Problems and Pitfalls with Target TCP/IP Interfaces on page 111

Overview

This chapter contains information on common problems and pitfalls that we have
encountered with previous ports. The TargetRTS is supported on a number of
platforms and has been verified on each of these platforms. In general, the problems
and pitfalls encountered are mainly due to RTOS and toolchain differences from those
verified in the standard platforms - for a complete list, please see the Rational Rose
RealTime Installation Guide. Other problems arise from lack of support for certain
features required by the TargetRTS and thus require a custom workaround to satisfy
the TargetRTS.

The target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where <target_base> is defined by
$target_base variable in the file setup.pl file (see Creating a Setup Script (setup.pl) on
page 54). The target name often appears with the trailing ‘S’ or “T’". The name defaults
to the target name without the "S" or "T" if the variable $target_base is not defined in
the setup.pl file.

105

Problems and Pitfalls with Target Toolchains

This section describes possible problems with the tools used to build the TargetRTS
and the model.

Compiler Optimizations

Compiler optimizations, in general, either help speed up the application, or make the
footprint of the executable smaller. Some optimizations can unfortunately cause
errors in the application. One such problem occurs when the compiler optimizes
references to a memory location that is not modified by the application. It assumes
that because the application does not modify the contents of the address, it is never
modified. In a multi-threaded environment, some compiler optimizations might not
yield the desired result, so be cautious.

Optimizations vary from compiler to compiler, so refer to the documentation for your
specific toolchain. Review the optimizations that are available and be aware that some
may cause errors in the application. Running a set of test models is a good way to
ensure the optimizations have not broken the TargetRTS.

Make sure the test models you use exercise each of the target OS primitives used by
the TargetRTS.

Linker Configuration File

When linking an application to a embedded target, there is usually some sort of linker
configuration file that defines where in memory each section of the application will
go. Many default linker configuration files are included without the user’s knowledge
and may cause strange linking errors as applications grow larger. Be sure to define
your own linker configuration file appropriate for your target.

System Include Files

The structure and content of include files can be a challenge when moving to a new
toolchain. In the TargetRTS an attempt is made to isolate the nuances of include files
for each RTOS into a few specific include files that can be used by all the
target-specific code. In general, all RTOS-specific definitions should be combined into
a file called <os_nane>. h in the $TARGET_SRC/ RTPr i v directory in the C TargetRTS,
RT<os_name>. h in the $TARGET_SRC directory in the C++ TargetRTS. This way all
include files needed to access OS functions can be found in this one file. In the C
TargetRTS, for TCP/IP specific include files, a file called Tcp. h, in the C++
TargetRTS, RTt cp. h ,should be created in the $TARGET_SRC/ RTPri v directory (C), or
$TARGET_SRC directory (C++). This file should contain all the necessary include files
required for TCP/IP functions. Other, more specific, header files may be required to

106 Chapter 10 - Common Problems and Pitfalls

isolate unique interfaces for your RTOS. These may be added to the
$TARGET_SRC/ RTPri v or $TARGET_SRC directory as needed, and are typically prefixed
by “RT” in the C++ version.

Problems and Pitfalls with TargetRTS/RTOS Interaction

This section describes the possible problems between the operating system and the
system calls that are part of the TargetRTS.

Return Codes for POSIX Function Calls

Even though POSIX is a standard, there are still some discrepancies in the
implementation of the interface. Some implementations of the POSIX function calls
return an error code, while others return -1 and store the result in global variable
er rno. Check your specific RTOS to see how error conditions are reported.

Thread Creation

Thread creation has caused problems in the past. One specific problem is the lack of
free space on the heap to allocate the stack for the new thread. This causes a system
crash with no error message or exception raised. Other potential pitfalls arise with
thread priorities. Do not alter the relative priorities of the C TargetRTS or C++
TargetRTS threads (main thread), timer thread and debugger thread). Incorrect
priorities may effect the functioning of timers, the debugger or even the Rational Rose
RealTime application.

Real-time Clock

C

Most RTOSes provide a function to retrieve the current system time. Typically it may
return clock ticks, milliseconds or even nanoseconds. In the C TargetRTS, a conversion
from the RTOS time to RTTi nespec is typically required in order to satisfy the
requirements of the RTTi mespec_cl ock_get ti me() function. Some RTOSes may
provide a macro or function to resolve the number of ticks per second and thus make
conversion to RTTi mespec straightforward. Others may require hard-coded
conversion based on the known tick rate for the RTOS. If this rate is later changed
then the conversion will fail. This results in incorrect behavior for all timers in the
Rational Rose RealTime model.

Real-time Clock

C++

Most RTOSes provide a function to retrieve the current system time. Typically it may
return clock ticks, milliseconds or even nanoseconds. In the C++ TargetRTS, a
conversion from the RTOS time to RTTi mespec is required in order to satisfy the
requirements of the RTTi mespec: : get cl ock() function. Some RTOSes may provide a

Problems and Pitfalls with TargetRTS/RTOS Interaction 107

macro or function to resolve the number of ticks per second and thus make
conversion to RTTi mespec straightforward. Others may require hard-coded
conversion based on the known tick rate for the RTOS. If this rate is later changed
then the conversion will fail. This results in incorrect behavior for all timers in the
Rational Rose RealTime model.

In the C++ TargetRTS, when changing the system clock, note that if the time returned
by the RTTi mespec: : get cl ock() function is affected by changes in the system clock,
the function call that adjusts the time must be located between calls to the

Ti mi ng: : Base methods adj ust Ti meBegi n() and adj ust Ti meEnd() . If, however,
system clock changes do not affect the RTTi mespec: : get cl ock() function, do not use
the Ti mi ng: : Base methods adj ust Ti meBegi n() and adj ust Ti meEnd() . Timers will
fail in this case and cause unwanted behavior in your Rational Rose RealTime
application.

For example:
voi d Adj ust Ti meActor: :setclock(constRTTi nespec & new_ tine)

{
RTTi mespec ol d_ti ne;

RTTi mespec delt a;

ti mer.adjustTinmeBegin(); // stop Rose Real Tine tiner service

sys_getclock(old_tine); // an OS-specific function

sys_setclock(new tine); // an OS-specific function

delta = new_tine;

delta -= ol d_timer;

timer.adjustTimeEnd(delta); // resume Rose Real Tinme tiner
service

}

108 Chapter 10 - Common Problems and Pitfalls

Signal Handlers

C++

Many RTOSs do not use signals that are typical of UNIX operating systems. If your
RTOS does not provide signals, be sure to override the C TargetRTS code in

RTMai n_i nst al | Handl er s() and RTMai n_i nst al | OneHandl er ().
C++ TargetRTS code in
RTMai n: :instal | Handl ers() and RTMai n: :install OneHandl er ().

RTOS Supplies main() Function

The TargetRTS assumes that it defines the nai n() function for an application. Some
RTOSs may provide their own mai n() function, which causes a duplicate reference
error at link time. If this is the case for your RTOS, you have to modify the code in
$TARGET_SRC/ MAI N mai n. ¢ or $TARGET_SRC/ MAI N i n. cc. Typically, you have to
start a thread that contains the mai n() function for the Rational Rose RealTime
application. The documentation for the RTOS will describe how to start your
application in this manner.

Default Command Line Arguments

Embedded targets do not usually have access to command line arguments, so RTOSs
rarely provide a way to pass command line arguments to a running application. If
your RTOS does not support command line arguments, you can use the default
argument mechanism in the toolset. This feature lets you enter a set of default
arguments for each component, and these arguments will appear in the generated
code.

These arguments can be specified in the toolset via Component Specification > C
Executable > Default Arguments or Component Specification > C++ Executable >
DefaultArquments.

Note: These arguments will appear in the generated code verbatim, so use quotes
around, and commas between, your arguments to avoid compilation errors.

You will also have to create a slightly modified mai n() function and put it into
$TARGET_SRC/ MAI N mai n. ¢ or $TARGET_SRC/ MAI N/ mai n. cc. The modification
needed is that instead of calling RTMai n_ent r yPoi nt () or RTMai n: : ent ryPoi nt ()
with the arguments argc and argy,

Problems and Pitfalls with TargetRTS/RTOS Interaction 109

C like in this default $RTS_HOVE/ sr ¢/ Mai n/ mai n. c:
int main(int argc, const char * const * argv) /* Standard main */
{
return RTMain_entryPoint(argc, argv);
}
...you should call RTMai n_ent ryPoi nt () with two null arguments, like this:
int min() /* This main takes no argunments */

{

return RTMai n_entryPoint(0, (const char * const *)0);

C++ or, like in this default $RTS_HOVE/ sr ¢/ MAI N/ nai n. cc:
int min(int argc, const char * const * argv) // Standard main
{
return RTMain::entryPoint(argc, argv);
}
...you should call RTMai n: : ent r yPoi nt () like this:
int main() // This main takes no argunents

{

return RTMain::entryPoint(O, (const char * const *)0);

}

This will cause the TargetRTS to use the default arguments instead. Please note that
default arguments behave just like "real" command line arguments; the first
argument, RTMai n_ar gv() [0] or RTMai n: : argStrings()[0] is the name of the
program. Your arguments are available in position [1] and onwards.

Exiting Application

In the C or C++ TargetRTS, the RTSt di o_pani c() or RTD ag: : pani ¢() function
requires a way to terminate the application. This is generally achieved by exiting the
application. If your RTOS does not support the exi t () function, you have to override
the code in $STARGET_SRC/ Mai n/ exit.c or $TARGET_SRC/ RTDi ag/ panic.cc to use
the exit function specific to your RTOS.

110 Chapter 10 - Common Problems and Pitfalls

Problems and Pitfalls with Target TCP/IP Interfaces

This section describes the possible problems with OS specific TCP/IP interfaces. Your
model can still run without TCP/IP support in the TargetRTS, however Target
Observability (for example, observing a running model from the toolset) will be
disabled.

gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to use the

get host bynane() function in a multi-threaded application. The call was replaced
with a call to the get host byname_r () function, which is re-entrant and thread safe. If
this is the case for your target OS, change the code for RTi net _| ookup() in
$TARGET_SRC/ I net/ | ookup.c or $TARGET_SRC/ RTi net /| ookup. cc in the C or
C++ TargetRTS.

select() statement

C

Some implementations of the sel ect () statement do not correctly use the value set in
the width parameter. Consequently the function thinks the file descriptor sets are
larger than they really are. This can cause memory corruption and, consequently,
serious failures in the running application. To overcome this problem in the C
TargetRTS, some targets (OSE) override the RTI Ovoni t or _ni n_si ze() function in
$TARGET_SRC/ | Ovbni t / mi n_si ze. c. In these cases, the minimum size is assumed to
be the maximum file descriptor set size.

Problems and Pitfalls with Target TCP/IP Interfaces 111

112 Chapter 10 - Common Problems and Pitfalls

TargetRTS Porting
Example

Contents

Overview on page 113

Choosing the Configuration Name on page 113
Create Setup Script on page 114

Create makefiles on page 115

TargetRTS Configuration Definitions on page 118
Code Changes to TargetRTS Classes on page 119
Building the New TargetRTS on page 122

Overview

This chapter provides an example of porting the TargetRTS for C or C++ to a new
platform. This is an example port rather than customization of an existing port. See
the C Reference or the C++ Reference for a customization example. This porting
example should help implement the information presented in previous sections. The
target platform for this example is the Tornado 2 real-time operating system using the
Cygnus C or C++ Compiler version 2.7.2-960126 for Motorola PowerPC
microprocessors. This is a currently supported platform.

Choosing the Configuration Name

The configuration name is an important identifier of the TargetRTS. It identifies the
operating system, hardware architecture and (cross) compiler. In this example, the
operating system is Tornado 2. The hardware architecture is Motorola PowerPC (ppc).
The compiler is the Cygnus C or C++ Compiler version 2.7.2-960126. For this example
we will only consider the multi-threaded version of the TargetRTS since this provides
the most interesting porting challenges. The resulting configuration name is as
follows:

<target> = TORNADO2T
<l ibset> = ppc-cygnus-2.7.2->960126
<config> = <target>. <libset>= TORNADO2T. ppc-cygnus-2. 7. 2- 960126

113

Create Setup Script

The setup script is in the file

$RTS_HOVE/ confi g/ TORNADO2T. ppc- cygnus- 2. 7. 2- 960126/ set up. pl

. This file is a

Perl script that defines environment variables for the compilation of the TargetRTS:

if($OS_HOME =

{
$os = SENV{' OS' } ||

if($os eq ' Wndows_NT'
{
$wi nd_base
$wi nd_host _type
$ENV{' PATH } =

)
$

$ENV{' OS_HOWE' })

"default';

ENV{' W ND_BASE' };

' x86-wi n32';

"$wi nd_base/ host/ $wi nd_host _t ype/ bi n; SENV{' PATH }";

}

el se

{

$rosert _hone
chonmp($host

$wi nd_base

$

“$rosert

ENV{' ROSERT_HOME' } ;

"$0OS_HOVE/ wr s/ t or nado- 2. 0";

if($host eq 'sun5')

{ $wi nd_host _type = 'sun4-solaris2';
}élsif($host eq ' hpux10')

{ $wi nd_host _type = 'parisc- hpux10';
;EN\/{' PATH } =

"$wi nd_base/ host/ $wi nd_host _t ype/ bi n: SENV{' PATH }";

$ENV{' W ND_BASE' }
}

$ENV{' GOC_EXEC_PREFI X' }

= "$w nd_base";

="$wi nd_base/ host/ $w nd_host _type/lib/gcc-1ib/"

$ENV{' VXWORKS_HOVE' }

$ENV{' VX_BSP_BASE' }

$ENV{' VX_HSP_BASE' }

$ENV{' VX_VW BASE' }

$ENV{' W ND_HOST_TYPE' }
}

$pr epr ocessor
$t ar get _base
$support ed

" TORNADOL' ;
"Yes',;

114 Chapter 11 - TargetRTS Porting Example

"$wi nd_base/t ar get "
"$wi nd_base/t arget"”;
"$wi nd_base/target";
"$wi nd_base/target";
"$wi nd_host _type";

"ccppc -DPRAGVA -E -P >MANI FEST. i ";

_hon®e/ bi n/ machi neType®

)

The setup script must contain the mandatory definitions for the $pr epr ocessor and
$support ed flags. The toolchain environment variables are usually required for cross
compiler tools, since it is not typically part of a user’s command path, and the
environment variable definitions are probably not already defined in most users’
environments.

Note: The $t ar get _base variable is set to TORNADOL. This means that the
TORNADQ2T target uses the same code base for the TargetRTS classes as the TORNADOL
target.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build
the TargetRTS for the platform and to build Rational Rose RealTime models on this
new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The
command line interface for C and C++ compilers can differ significantly, particularly
for cross-compilers such as the Cygnus C or C++ compiler. It is in this file that we
make definitions for command line options for the compiler and linker and override
other definitions made in $RTS_HOVE/ | i bset/ def aul t. nk. See Default makefile on
page 59 for details. In any port of the TargetRTS, there are certain commands required
in the toolchain in order to support the building of the TargetRTS. Table 9 illustrates
these required commands.

Table 9 Tools Required for Building the TargetRTS for C

Command GNU CC on Solaris Cygnus cross-compiler for VxWorks
library archive $RTS_HOME/tools/ar.pl | $RTS_HOME/tools/
ar.pl -create=arppc,rc
C Compiler g++ or gcc ccppce
Linker g++ or gcc $RTS_HOME/target/ TORNADO2T/link.p
1 ARCH=ppc
VENDOR gnu cygnus

Create makefiles 115

The library archive command (ar) for the Cygnus toolchain requires the use of a script
to work the way the TargetRTS build requires. The libset makefile must define the
VENDORmacro that instructs the error parser which type of compiler is being used. The
error parser uses this information to decode error messages returned by the compiler
to a format compatible with the Rational Rose RealTime toolset.

Another important role of the libset makefile is the definition of command line
options. Table illustrates the typical subset of command line options.

Table 10 Important Toolchain Command Line Options

. GNUcc on
Option Solaris Cygnus
LIBSETCCFLAGS -DPRAGMA -ansi -nostdinc -DCPU=PPC603
LIBSETCCEXTRA -04 -finline -finline-functions -Wall

The compiler options may vary greatly from one platform to another, but must
support some basic features. Read the compiler documentation carefully and review
some of the | i bset . nk files for other TargetRTS platforms for guidance. A list of
required features follows:

to compile source files into object files only (that is, not to proceed to the link
phase), typically the ‘-¢” option

to place the object file in a desired directory and file name, typically the -0’ option

to link and place the executable in a desired directory and file name, typically the
‘-0” option for the link phase

to turn on debugging information in the compiled code, typically the ‘-g’ option
to specify the pathname of include files, typically the ‘-I’ option

to specify the pathname of libraries, typically the -L” option

to specify the libraries to link, typically the *-1" (ell) option

to turn on code optimization, typically ‘-O’ option and sub-options

116 Chapter 11 - TargetRTS Porting Example

C++

The contents of the C version of the libset makefile,
$RTS_HOVE/ | i bset/ ppc-cygnus-2. 7. 2- 960126/ | i bset . nk , is as follows:

AR_CMD = $(PERL) $(RTS_HOVE)/tool s/ar.pl -create=arppc,rc
cC = ccppc

LD = | dppc

RANLI B = ranli bppc

VENDCOR = cygnus

LI BSETCCFLAGS
SHLI BS

- DPRAGMA - nost di nc - DCPU=PPC603

The contents of the C++ version of the libset makefile,
$RTS_HOVE/ | i bset/ ppc-cygnus-2. 7. 2- 960126/ | i bset . mk is as follows:
VENDCOR = cygnus

AR_CMD = $(PERL) $(RTS_HOVE)/tool s/ar.pl -create=arppc,rc -
ranlib = ranlibppc

cC = ccppc

LD = $(PERL) "$(RTS_HOME)/target/$(TARGET)/Ilink.pl"
ARCH=ppc

RANLI B = ranli bppc

LI BSETCCFLAGS
LI BSETCCEXTRA
SHLI BS

- DPRAGMA -ansi -nostdi nc - DCPU=PPC603
-A -finline -finline-functions -Wall

ALL_OBJS_LI ST = 9%(ALL_OBJS_LI STFI LE)

Target makefile

The target makefile is used to make definitions specific to the target operating system
and the TargetRTS configuration. These are usually specific command line options for
the compiler and linker to define such things as include directories for the target OS
and libraries and their pathnames. These definitions must be common to all
TORNADQOZ2T targets, regardless of libsets.

The contents of the target C makefile, $RTS_HOME/ t ar get / TORNADOR2T/ t ar get . ik, is
as follows:

TARGETCCFLAGS = $(DEFI NE_TAG) REENTRANT \

$(1 NCLUDE_TAG) $(VXWORKS_HOVE) / h -fno-builtin
TARGETLDFLAGS = -r
RTCODEBASE = TORNADOL01

Create makefiles 117

C++ The contents of the target C++ makefile, $RTS_HOME/ t ar get / TORNADO2T/ t ar get . ik,
is as follows:
TARGETCCFLAGS = $(| NCLUDE_TAG) $(VXWORKS_HOVE) / h

Configuration makefile

The configuration makefile is used to make definitions required by the operating
system and compilation environment together. In this particular case, the
configuration makefile,

$RTS_HOME/ config/ TORNADO2T.ppc-cygnus-2.7.2-960126 / config.mk, is empty because
there is no need for any definitions specific to the compiler and operating system
combination.

TargetRTS Configuration Definitions

The default configuration definitions for the TargetRTS are found in the include file
$RTS_HOME/include/RTConfig.h. The definitions in this file can be overridden by
$RTS_HOME/target/ TORNADO2T /RTTarget.h and possibly
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126 /RTLibSet.h.

These definitions are used to enable and disable various features in the TargetRTS. By
default almost all of the TargetRTS features are enabled (for example, Target
Observability). The porting effort may be made easier if some of these features are
disabled. See section “TargetRTS Customization Example” in the C++ Reference for
instructions on how to build a minimal TargetRTS.

C The content of the C version of the file $RTS_HOVE/ t ar get / TORNADO2 T/ RTTar get . h
is as follows:

#i fndef _ RTTarget_h__
#define _ RTTarget_h__ included

#def i ne USE_THREADS 1

#def i ne DEFAULT_DEBUG PRI ORI TY 60
#define DEFAULT_MAIN PRIOCRITY 75
#define DEFAULT_TI MER PRIORITY 70

#endif /* __RTTarget_h__ */
C++ The content of the C++ version of the file $RTS_HOVE/ t ar get / VRTX4T/ RTTar get . h is
as follows:

#i fndef _ RTTarget_h__
#define _ RTTarget_h__ included

#def i ne TARGET_TORNADO 1

118 Chapter 11 - TargetRTS Porting Example

#def i ne USE_THREADS 1
#def i ne PERFORM CTOR DTOR O

#def i ne DEFAULT_DEBUG PRI ORI TY 60
#def i ne DEFAULT_MAI N PRI ORI TY 75
#define DEFAULT_TIMER PRIORITY 70

#endif // __RTTarget_h__

There is no need for the file $RTS_HOME/libset/ppc-cygnus-2.7.2-960126 /RTLibSet.h
since no compiler-specific compile-time features need to be modified.

RTnew. h may be necessary in | i bset/- if <new> isnot available.

$RTS_HOME/ libset/ppc-cygnus-2.7.2-960126 / RTRTnew.h is as follows:
#i ncl ude <new. h>

Code Changes to TargetRTS Classes

Most ports to new targets require some minor changes to the TargetRTS code. These
changes typically apply to operating system features for thread (task) creation and
destruction, mutual exclusion and synchronization and time services. Table 6 on
page 75 and Table 8 on page 89give a description of TargetRTS classes that might
require changes.

The required changes to the TargetRTS source for TORNADO?2 and the Cygnus
compiler are, for C++, located in the $RTS_HOME/src/target/ TORNADO1 directory. See
the discussion for the setup script above for an explanation of why the directory is
called TORNADOLO1 for C, rather than TORNADOR. For the remainder of this section, this
directory is referred to as $TARGET_SRC.

The files in the $TARGET_SRC directory each override their counterpart in
$RTS_HOVE/ st c. To override a definition from the source directory, a new
subdirectory should be created in $TARGET_SRC.

Code Changes to TargetRTS Classes 119

C For example, for C, the new definition for RTTi mespec_cl ock_getti me() requires a
subdirectory $TARGET_SRC/Timespec. The new file containing
RTTi mespec_cl ock_gettime() would be $TARGET_SRC/Timespec/getclock.c.

The required changes to the TargetRTS are too large to include in this document. Table
11 and Table 12 contain a summary of the required changes to each file.

Table 11 Quick Summary of Common C TargetRTS Source File Changes
Class File Change
RTInet (dir Inet) async.c Modified version since FIOASYNC was not
defined.
RTInet (dir Inet) lookup.c get host bynane not available, use
host Get By Namne instead
main (dir Main) main.c mai n already defined by RTOS, usert sMai n

with nonstandard argument handling instead.

RTMutex (dir Mutex) ct.c

Required implementation using Tornado
specific calls to semMCr eat e, serDel et e,

(required) dte semlake and senG ve.
enter.c
leave.c
RTSyncObject (dir ct.c Required implementation using Tornado
SyncObj) dt.c specific calls to senBCr eat e, serDel et e,
: ' i senilrake.
(required) signal.c senG ve and
wait.c
timewait.c

RTThread (dir Thread) ct.c
(required)

Required implementation using Tornado
specific calls to t askSpawn and t askDel et e.

RTTimespec (dir
Timespec) (required)

getclock.c

Required implementation using Tornado
specific call to cl ock_getti me.

120 Chapter 11 - TargetRTS Porting Example

C++

For example, for C++, the new definition for RTTi mespec: : get cl ock() requires a
subdirectory $TARGET_SRC/RTTimespec. The new file containing
RTTi mespec: : get cl ock() would be $TARGET_SRC/RTTimespec/ getclock.cc.

The required changes to the TargetRTS are too large to include in this document. Table
12 contains a summary of the required changes to each file.

Table 12 Quick Summary of Common C++ TargetRTS Source File Changes
Class File Change
MAIN main.cc mai n already defined by RTOS, use
rt sMai n with nonstandard argument
handling instead.
RTDiag panic.cc Modified version since there is no eXxi t ()
method
RTMain targetStartup.cc Modify main thread priority to that
specified in the toolset
RTMutex ct.cc Required implementation using Tornado
. specific calls to senMCr eat e, serDel et e,
(required) dtcc semlake and senG ve.
enter.cc
leave.cc
RTSyncObject (required) ct.cc Required implementation using Tornado
dt.cc specific calls to senBCr eat e, serDel et e,
' senG ve and senirake.
signal.cc

timedwait.cc

wait.cc

RTThread (required)

ct.cc

Required implementation using Tornado
specific calls to t ask Spawn and
t askSuspend, etc.

RTTimespec (required)

getclock.cc

Required implementation using Tornado
specific call tocl ock_getti me.

RTinet

lookup.cc

Modified version, uses host Get By Nane
instead of get host bynane.

Code Changes to TargetRTS Classes 121

Building the New TargetRTS

After the setup script, makefiles, and source are complete, the TargetRTS is ready to be
built. To build the TargetRTS for the Tornado 2 Cygnus target, type the following in
the $RTS_HOVE/ sr ¢ directory:

make TORNADQO2T. ppc-cygnus-2. 7. 2-960126

This will create the directory $RTS_HOME /build-TORNADO2T.ppc-cygnus-2.7.2-960126
which will contain the dependency file and object files for the TargetRTS. If the build
completes successfully the resulting Rational Rose RealTime libraries will be placed in
the $RTS_ HOME /lib/ TORNADO2T.ppc-cygnus-2.7.2-960126 directory.

122 Chapter 11 - TargetRTS Porting Example

Customizing for Target
Control and Observability

Contents
This chapter isorganized as follows:

Introduction on page 123

Model Compilation and Target Control on page 124

Target Control on page 125

Menu Commands on page 127

Third-Party Source Code Debugger Integration on page 133

Introduction

Rational Rose RealTime is a comprehensive visual modeling environment that
delivers a powerful combination of notation, processes, and tools optimized to meet
the challenges of real-time software development. The Rational Rose RealTime UML
model compiler converts models directly into executable applications. Those
executables can be controlled and debugged at run-time under the control of the
toolset. Rational Rose RealTime integrates with source debuggers providing the
developer with the choice of debugging at the UML and source code level. A
combination of UML editors, a model compiler, and run-time debugging tools
address the complete life-cycle of a project from early use case analysis through
design, implementation, and testing.

This document describes how to add support to Rational Rose RealTime 6.0 and later
for target control and observability, and how to integrate Rational Rose RealTime with
source code debuggers.

123

Model Compilation and Target Control

Rational Rose RealTime models are compiled seamlessly into applications ready for
execution on the host or target operating systems. Figure 14 provides a high level
overview of model compilation.

Figure 14 UML Model Compilation

RoseRT

C++
Compiler

[Compiler

\._____—_____/
Used by Executable
Generates L
—p IMvokes

Rational Rose RealTime also has the ability to control the executing application at
run-time (for example, during debugging). Target Observability provides the ability
to observe and debug the executing application at the UML level. Figure 15 shows a
simplified high-level overview of Target Control and Observability.

Figure 15 Target Control and Observability

Target Control Ohservahility

- — Run {“:} Trace

—_—»
RoseRT ExecLtable Load State
— Reset \Watch/Set
lUnload Diag Msgs
Terminate Ereakpoint

Rational Rose RealTime also supports inter-working with traditional source code
debuggers. This enables developers to control, observe, and debug the application at
the UML level and detailed source code level simultaneously.

Intended Audience

This guide is specifically designed for technical staff responsible for enabling these
capabilities for a specific target execution environment. It is assumed that the reader
has significant knowledge and experience with the development environment,
operating system, and target hardware.

124 Chapter 12 - Customizing for Target Control and Observability

Target Control

Target Control refers to the Rational Rose RealTime toolset features that load, unload,
execute, and terminate a Rational Rose RealTime-generated application, as well as the
ability to reset a remote target platform.

Target Control is not the same feature as Target Observability. Target Observability
allows the observation of the application executing on a target from the UML level
(such as state change, state machine breakpoints, event tracing, and so on) on the
host-based toolset. Target Control interacts with the APIs of the target execution
environment to load, run, and terminate the application, whereas Target
Observability communicates directly with the running application.

Target Control Modes
Rational Rose RealTime supports three different Target Control modes:

Manual Mode
Basic Mode
Debugger Mode

Manual Mode

In Manual mode, Rational Rose RealTime does not provide any Target Control
functionality. The user is responsible for performing Target Control operations (such
as loading and executing). After the target application starts, the user can direct the
Rational Rose RealTime toolset to connect to the executing target application for
Target Observability.

Basic Mode

In Basic mode, Rational Rose RealTime uses the target environment’s APIs to control
the execution of the target application. Rational Rose RealTime supports automatic
target control for a number of host and target platform combinations. Users deploy on
a number of other target environments as well.

Rational Rose RealTime uses Perl scripts to perform the Target Control operations.
These scripts can call the target APIs directly or can call some intermediary helper
application to control the execution on the target.

Target Control 125

There are five Target Control scripts:

reset.pl
load.pl
unload.pl
execute.pl
terminate.pl

Debugger Mode

Debugger mode provides the same capabilities as Basic mode and, in addition,
provides the ability to inter-work with a C or C++ source debugger (for example,
Visual C++) to set source code level breakpoints from within the UML model. When
these source breakpoints are hit at run-time, control of the executable is passed to the
source debugger. When the application is continued, control of the executable is
passed back to the Rational Rose RealTime toolset. Debugger mode provides an
integrated debug environment that permits a simultaneous use of source code and
UML debugging styles.

Target Control Scripts

When you open the Specification dialog for a Processor in the Deployment View, the
Load Scripts text box specifies the path to the Target Control scripts (for example,
$TARGET_PATH /win32/, $TARGET_PATH/tornado2/). This directory contains a
maximum of five Target Control scripts, each of which has a different function:

reset.pl - Resets the target processor. See Reset.

load.pl - Loads a Component onto a target. See Load.

unload.pl - Unloads a Component from a target. See Unload.
execute.pl - Executes a Component. See Execute.

terminate.pl - Terminates the execution of a Component. See Terminate

The Target Control Scripts determine the Target Control capabilities for the Processor.
If a script exists in the Target Control Scripts directory, then the toolset assumes that
the corresponding capability exists. Whenever a Component Instance is created on a
Processor (that is, a Component in the Component View is assigned to a Processor in
the Deployment View), the toolset checks to see which scripts are available and
enables those capabilities in the toolset menus that are accessible by right-clicking on
a Component Instance. These menu options are now available to the user.

The presence of the scripts is not their only purpose. Each existing Target Control
script must also provide the associated capability. For example, the load script must
load the corresponding component onto the target specified by the Processor, and so
on. The scripts use information from the Processor and Component Instances

126 Chapter 12 - Customizing for Target Control and Observability

specifications, but note that the scripts do not need to use all the parameters that are
passed to them. Any script needs to process only those arguments that allow it to
perform its intended operation.

These scripts are written in Perl, but they may spawn other executables needed to
provide the desired capability. Every script also indicates whether it was successful.

Menu Commands

If the path to the Target Control scripts contains the following scripts, that
corresponding menu command will become active on the Processor menu:

+ reset.pl - Resets the target processor and activates the Reset command.

+ load.pl - Loads a Component onto a target and activates the Load command.

» unload.pl - Unloads a Component from a target and activates the Unload
command.

= execute.pl - Executes a Component and activates the Run menu option (Execute).

+ terminate.pl - Terminates the execution of a Component and activates the
Shutdown menu option (Terminate).

Reset

Description

The reset.pl script resets a target processor. If this script exists, the Reset command
will be active on the corresponding Processor menu.

Command Line

Rtperl reset.pl —ip target —server targetServer —os targetOS —cpu targetCPU

Arguments
-ip target Target name or address
-server targetServer Target server name or address
-0s OS OS executing on target
-cpu CPU CPU on the target

Menu Commands 127

Returns

2=0k::

String indicating success

Error String

Error string to be displayed in error message box in the
toolset

Note: The data for the script arguments are retrieved from the Processor

Specification dialog.

Load

Description

The load.pl script loads a component onto the corresponding target processor. If this
script exists, the Load command is available on the corresponding Component
Instance menu when the Component Instance is in a "loadable" state.

Command Line

Rtperl load.pl —ip target —server targetServer —os targetOS —cpu targetCPU

-exe componentDir —prio priority —port Toport

Arguments

-ip target

Target name or address

-server targetServer

Target server name or address

-0s OS

OS executing on target

-cpu CPU

CPU on the target

-exe executable

6.1 and later: Fully qualified executable name

-prio priority

Priority to run the component instance

-port Toport

Target Observability port

128 Chapter 12 - Customizing for Target Control and Observability

Returns

1:0k:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String indicating success. Now two option
parameters may follow the ::Ok:: string: -warning and
-passback. See General Issues.

Error String

Error string to be displayed in error message box in the toolset

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

Unload

Description

The unload.pl script removes a component from the corresponding target processor. If
this script exists, the Unload command is available on the corresponding Component
Instance menu when the Component Instance is in an "unloadable" state.

Command Line

Rtperl unload.pl —ip target —server targetServer —os targetOS —cpu targetCPU

-exe componentDir —prio priority —port TOport paramsFromLoad

Arguments

-ip target

Target name or address

-server targetServer

Target server name or address

-0s OS

OS executing on target

-cpu CPU

CPU on the target

-exe executable

6.1 and later: Fully qualified executable name

-prio priority Priority to run the component instance
-port Toport Target Observability port
ParamsFromLoad Any parameters that were returned from a successful Load

operation.

Menu Commands 129

Returns

::0k:: [-warning “xxx’] 6.1 and later: String indicating success. Now, one option
parameter may follow ::Ok:: string: -warning. See General
Issues

Error String Error string to be displayed in error message box in the toolset

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

Execute

Description
The execute.pl script starts execution of a component instance on the corresponding
target processor. If this script exists, the Run command is available on the Component
Instance menu when the Component Instance is in a "runable” state.
Command Line
Rtperl execute.pl —ip target —server targetServer —os targetOS —cpu targetCPU

-exe componentDir —prio priority —port Toport

-args commandLineArgs

Arguments
-ip target Target name or address
-server targetServer Target server name or address
-0s OS OS executing on target
-cpu CPU CPU on the target
-exe componentDir 6.0.x: Path to Component directory. It is used to locate the
component
-exe executable 6.1 and later: Fully qualified executable name

130 Chapter 12 - Customizing for Target Control and Observability

-prio priority Priority to run the component instance

-port Toport Target Observability port
-args Command Line arguments that are to be used when starting the
commandLineArgs target application. Parameters that follow the -args tag are all

passed to the target application

Returns

:0k:: paramsFromExecute

String indicating success. Any strings passed back after the
::0k:: will be based to the terminate.pl script when the user
invokes the Shutdown command

1:0k:: [-warning ‘xxx’]
[-passback xxx]

6.1 and later: String that represents the operation was
successful. Now two option parameters may follow the ::Ok::
string: -warning and -passback. See General Issues

Error String

Error string to be displayed in error message box in the toolset

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

An example of paramsFromExecute is a handle that identifies the process that was
created. For example, on Windows we return -pid nnnnnn. This allows us to pass back
the PID (Process ID) to the Terminate script.

Terminate

Description

The terminate.pl script is used to kill a component instance on the corresponding
target processor. If this script exists, the Shutdown command is available on the
corresponding Component Instance menu when the Component Instance is in a

"killable" state.

Command Line

Rtperl terminate.pl —ip target —server targetServer —os targetOS —cpu targetCPU

-exe componentDir —prio priority —port TOport

paramsFromExecute

Menu Commands 131

Arguments

-ip target

Target name or address

-server targetServer

Target server name or address

-0s OS

OS executing on target

-cpu CPU

CPU on the target

-exe executable

6.1 and later: Fully qualified executable name

-prio priority Priority to run the component instance

-port Toport Target Observability port

ParamsFromExecute Any parameters that were returned from a successful Run
operation

Returns

1:0k:: [-warning ‘xxx’]

6.1 and later: String indicating success. Now optional parameter
may follow the ::Ok:: string: -warning. See General Issues

Error String

Error string to be displayed in error message box in the toolset

Note: The data for the options are retrieved from the Processor and Component
Instance Specification dialog.

General Issues

In releases 6.0.x, the —exe option is followed by the Component Directory. The
Load and Execute scripts call a Perl script (findexe.pl) to find the corresponding

executable.

In releases 6.1 and later, the —exe option is followed by the fully qualified

executable name.

Release 6.1 formalized what comes after the ::Ok:: string. The Load, Unload,
Execute, and Terminate can succeed (in other words, return ::Ok::) but may return
a warning. The warning is identified by the parameter -warning followed by a
string enclosed in single quotes (’). The toolset will display a dialog box specifying
that a warning occurred. The string returned in quotes is appended to the toolset
logs. Anything appearing after the -passback parameter will be returned to the

originating call.

132 Chapter 12 - Customizing for Target Control and Observability

Third-Party Source Code Debugger Integration

The format for the Debugger Mode is Debugger-X where X is the name of the
debugger DLL. This DLL must exist in the $ROSERT_HOME/bin/$ROSERT_HOST
directory and is called libX.dll.

Registering Threads on UNIX

When building a debugger integration DLL without MainWin and using callback
functions, additional steps are required to ensure that Rational Rose RealTime knows
about the callback thread. The following steps are necessary for a thread-safe
interface:

Call tcThreadInit() from the callback thread before doing any callbacks.
The callback thread must call tcThreadCleanup() before terminating.

There is a header file for this service in $ROSERT_HOME/bin/tc/tcsetup.h and a
supporting dynamic library (for Solaris) in
$ROSERT_HOME/bin/tc/sun5/libtcsetup.so.

You may call tcThreadInit (init) and tcThreadCleanup (cleanup) any number of
times, as long as the tcThreadlInit is always followed by a tcThreadCleanup before
the next init occurs. This is useful if you wanted to do a similar function to the
following: tcThreadlnit, callback, tcThreadCleanup, for each callback instead of
tcThreadlInit at thread startup, and tcThreadCleanup at thread termination.
However, we recommend that the tcThreadInit and tcThreadCleanup fuctions be
called only once (tcThreadInit at startup and cleanup at termination) since this
approach is less error prone.

Calling Sequence

Source code debuggers come with a variety of capabilities. For the toolset to use the
debugger DLL in the best possible way, the DLL must provide a list of its capabilities.
The following are capabilities of the debugger DLL that are available to Rational Rose

RealTime:
Capability Description
Function Breakpoints The DLL uses the function name to set a breakpoint.
Line Breakpoints The DLL uses a file name and line number to set a breakpoint.
Detects Breakpoint Hits The DLL calls the callback function when a breakpoint is hit.

Third-Party Source Code Debugger Integration 133

Capability Description

User Termination Detected | The DLL calls the callback function when it detects that the user

terminated the debugger manually.

Debugger Loads Target The DLL must be called to load the target. If not, the toolset uses

the Basic mode mechanism, if one exists.

Debugger Unloads Target | The DLL must be called to unload the target. If not, the toolset

uses the Basic mode mechanism, if one exists.

Debugger Executes The DLL must be called to start the Component Instance. If not,
Component the toolset uses the Basic mode mechanism, if one exists.
Debugger Terminates The DLL must be called to terminate a component instance. If
Component Instance not, the toolset will use the Basic mode mechanism, if one exists.
Supports Search Paths The DLL can use a given search path to search for source code.
Reload Before Restarting The target must be reloaded before it is restarted.

The values of these flags determine how and which debugger DLL functions are
called. The rules of operation are:

The debugger DLL is loaded after the user applies the change to the Operation
Mode in the Component Instance specification for the Component Instance. The
debugger DLL is loaded only once per toolset session.

If the DLL is loaded successfully, the toolset obtains the debugger DLLs
capabilities and saves them.

The toolset calls the tcCreateDebugSession function to create a new session.

Note: A new session is created for each Component Instance that uses the
debugger DLL.

The Target Control capabilities (Load, Unload, Run, Shutdown) are determined
using the debugger DLL capabilities as well as the Target Control scripts. The
debugger DLL capabilities take precedence over the Target Control scripts.

If a target must be loaded, it can be loaded in one of two ways: using the debugger
or the Basic mode Target Control script. If the "Debugger Loads Target" flag is set,
the debugger DLL is expected to load the target in the tcInitializeDebugger
function. Otherwise, the Target Control load script is used to load the target, and
then the tcInitializeDebugger function is called.

If the target is not loadable, then the tcInitializeDebugger function is called when
the user invokes the Run command.

134 Chapter 12 - Customizing for Target Control and Observability

If the "Debugger Executes Component" flag is set, then the tcStartDebugger
function is called. If not set, the Target Control execute script is called and then
followed by a call to the tcStartDebugger function.

Note: Note: The breakpoint functions may be called before the tcStartDebugger
function if breakpoints were set in the previous debug session.

When the user invokes the Shutdown command, all breakpoints are removed, and
the tcStopDebugger function is called. If the "Debugger Terminates Component
Instance" is set, the tcStopDebugger must terminate the Component Instance. If
not set, then the Target Control terminate script is called. If the target does not
need to be unloaded, then the tcCleanupDebugger function is also called.

When the user invokes the Unload command and the "Debugger Unloads
Component" flag is set, the tcCleanupDebugger function is called. This function
must unload the component from the target. If not set, the Target Control unload
script is called.

When the Debugger DLL is unloaded from the toolset (that is, when the
Component Instance Operation mode is changed or when the toolset is shut
down) tcDestroyDebugSession is called. This function is responsible for releasing
any resources associated with this debugger DLL session.

Debugger DLL API

This section describes the API that must be implemented by a debugger DLL. The file,
tedllinterface.h, contains all the required type declarations and function prototypes.
The functions are:

Get DLL Capabilities
Create Debug Session
Destroy Debug Session
Initialize Debugger
Cleanup Debugger

Start Debugger

Stop Debugger

Set Callback

Event Callback Function
Set Source Search Path
Set Breakpoint in File
Set Breakpoint At Function
Clear Breakpoint

Set DllTrace

Third-Party Source Code Debugger Integration 135

Note: Several functions have parameters of type TC_TCHAR. This type corresponds to
TCHAR type familiar to Windows developers. It is either a regular character (char) or
a wide character (wchar_t). By default, TC_TCHAR is type defined to char in the file
tedllinterface.h.

Get DLL Capabilities
TCRET
tcGet Dl | Capabilities(

TCDLLCAPS * pCaps/* Pointer to struct to get the
capabilites */

)
Description

This function populates in the given capability structure with the capabilities of the
corresponding DLL. This is the first function that is called in the debugger DLL.

Arguments

TCDLLCAPS * pCaps Structure to receive the DLL capabilities

Returns
TC_OK Operation was successful
TC_FAILED Operation failed. Missing capability structure.

136 Chapter 12 - Customizing for Target Control and Observability

Create Debug Session

TCHANDLE
t cCr eat eDebugSessi on(

const TC TCHAR * szServer Name, /* Name of Target
Server */

const TC TCHAR * szTarget Nanme, /* Name of Target*/

const TC TCHAR * szArchitecture,/* Processor
Architecture */

const TC TCHAR * sz(S5, /* Operating System
*/

TCDEBUGFLAG eFl ag /*
Enabl es/ di sabl es Traci ng*/

)
Description

This function is called to create a debug session. It is called after the debugger DLL is
loaded. It returns a DLL-specific handle that represents the newly created session.
This handle is passed back to all other calls except the tcGetDIllCapabilities.
Typically, the handle is a pointer to a DLL-specific structure that maintains
session-specific information.

Arguments
const TC_TCHAR * Name or address of a Target Server
szServerName
const TC_TCHAR * Name or address of the target
szTargetName
const TC_TCHAR * Type of CPU on the target
szArchitecture
const TC_TCHAR * szOS OS running on the target
TCDEBUGFLAG eFlag Enables/Disables Debug output from the DLL. See Note
below.

Third-Party Source Code Debugger Integration 137

Returns

TCHANDLE DLL-specific handle identifying the newly created session.

(TCHANDLE)O Unable to create a session.

Note: Currently, the toolset does not provide any means to set or clear the debug flag.

Destroy Debug Session

TCRET
t cDest royDebugSessi on(
TCHANDLE hSession /* Session to termnate */

)
Description

This function is called before the Debugger DLL is unloaded. It must release all
session-specific resources that were allocated during the session.

Arguments

TCHANDLE hSession |A handle identifying a particular debug session

Returns
TC_OK Operation was successful
TC_FAILED Operation failed

Initialize Debugger
TCRET
tclnitializeDebugger (
TCHANDLE hSessi on, /* Debugger Session */

const TC _TCHAR * szConponent/* Location/nanme of the
conponent */

)

138 Chapter 12 - Customizing for Target Control and Observability

Description

This function is called to identify the component that the debugger is to work with. In
some environments, this function will load the component onto the target.

Arguments

TCHANDLE hSession

A handle identifying a particular debug session

const TC_TCHAR *

The fully qualified name of the component

szComponent

Returns

TC_OK Operation was successful
TC_FAILED Operation failed

Cleanup Debugger

TCRET
t cd eanupDebugger (
TCHANDLE

)

Description

hSessi on /* Debugger Session */

This function is called to undo the activities of the tcInitializeDebugger function. In
some environments, this function will unload the component from the target.

Arguments

TCHANDLE hSession

A handle identifying a particular debug session

Returns
TC_OK Operation was successful
TC_FAILED Operation failed

Third-Party Source Code Debugger Integration

139

Start Debugger

TCRET
t cSt ar t Debugger (
TCHANDLE hSessi on, /* Debugger Session */
const TC TCHAR * pszArgs,/* Command |ine argunments for
conp */
int nPriority /* start up priority */
)
Description

This function is called to start the Component Instance. If the debugger does not start
the Component instance, this is the point where the debugger should attach to it.

Arguments
TCHANDLE hSession A handle identifying a particular debug session
const TC_TCHAR * pszArgs, |Command-line arguments for the Component Instance
int nPriority Priority to run the application
Returns
TC_OK Operation was successful
TC_FAILED Operation failed

Stop Debugger

TCRET
t ¢St opDebugger (
TCHANDLE hSessi on/ * Loader . Debugger Session */
)
Description

This function is called to terminate the Component Instance. If the debugger does not
terminate the Component instance, this is the point where the debugger should
detach from it.

140 Chapter 12 - Customizing for Target Control and Observability

Arguments

TCHANDLE hSession

A handle identifying a particular debug session

Returns

TC_OK Operation was successful

TC_FAILED Operation failed

Set Callback

TCRET

t cSet Cal | back(
TCHANDLE hSessi on, /* Debugger Session */
CALLBACKFNC pfncCal | back,/* function to call on event */
USERDEFI NED | User Def i nedl, /* tool set defined data */
USERDEFI NED | User Def i ned2 /* tool set defined data */

)

Description

This function is called during the Target Observability session if the debugger DLL
can detect breakpoint hits or user termination. It is used to set or clear a Toolset

defined function.

Arguments

TCHANDLE hSession

A handle identifying a particular debug session

CALLBACKFNC Pointer to function the debugger DLL is to call when a
pfncCallback, breakpoint hit or user termination is detected
USERDEFINED Toolset information that must be passed back in the
1UserDefined1 callback function

USERDEFINED Toolset information that must be passed back in the
1UserDefined?2 callback function

Third-Party Source Code Debugger Integration 141

Returns

TC_OK Operation was successful

TC_FAILED Operation failed

Event Callback Function
voi d
fncCal | back(

TCDLLEVENT* pEvent, /* identifies what event
occurred */

USERDEFI NED datal, /* data from Set Cal | back */
USERDEFI NED data2 /* data from SetCal |l back */

)
Description

This is the prototype of the callback function that is to be called by the debugger DLL
when a breakpoint hit or user termination is detected.

Arguments
TCDLLEVENT * pEvent |Identifies the type of event the Debugger DLL is notifying the
toolset of.

USERDEFINED Toolset information from the last tcSetCallback.
1UserDefined1
USERDEFINED Toolset information from the last tcSetCallback.
1UserDefined2

Returns
void Nothing

142 Chapter 12 - Customizing for Target Control and Observability

Set Source Search Path

TCRET
t cSet Sear chPat h(
TCHANDLE hSessi on, /* Debugger Session */
int nEntries, /* nunber of paths */
const TC TCHAR ** ppszSearchPaths/* |ist of search paths */
)
Description

This function is called by the toolset to specify the directories that contain the
generated source code.

Arguments
TCHANDLE hSession |A handle identifying a particular debug session
int nEntries |The number of paths specified in the next parameter
const TC_TCHAR ** A list of search paths
ppszSearchPaths
Returns
TC_OK Operation was successful
TC_FAILED Operation failed

Set Breakpoint in File

unsi gned | ong
t cSet Breakpoi nt I nFi | e(
TCHANDLE hSessi on, /* Debugger Session */

const TC TCHAR * szFileNane,/* File to set breakpoint in
*/
int nLineNo /* line nunber in file */

Third-Party Source Code Debugger Integration 143

Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using file name and line number. This function may be called before the

tcStartDebugger.
Arguments
TCHANDLE hSession A handle identifying a particular debug session
const TC_TCHAR * Name of file where you want to set the breakpoint
szFileName
int nLine The line number in the file where the breakpoint is to be
set
Returns
unsigned long A number uniquely identifying the corresponding
breakpoint
0 Unable to set the breakpoint

Set Breakpoint At Function
unsi gned | ong
t cSet Br eakpoi nt At Fnc(
TCHANDLE hSessi on, /* Debugger Session */

const TC_TCHAR * szFunctionNanme/* fully qualified nane
*
/

)
Description

This function is called when a breakpoint is required and the Debugger DLL supports
breakpoints using function names. This function may be called before the
tcStartDebugger.

144 Chapter 12 - Customizing for Target Control and Observability

Arguments

TCHANDLE hSession A handle identifying a particular debug session

const TC_TCHAR * The fully qualified name of the function

szFunctionName

Returns

unsigned long A number uniquely identifying the corresponding
breakpoint

0 Unable to set the breakpoint

Clear Breakpoint

TCRET
t cd ear Br eakpoi nt (
TCHANDLE hSessi on, /* Debugger Session */
unsi gned | ong nBreakpointld /* breakpoint to renove
*/
)
Description

This function removes the specified breakpoint for the given session.

Arguments

TCHANDLE hSession A handle identifying a particular debug session

unsigned long Identifier of the breakpoint to remove. Returned by a set
nBreakpointld breakpoint function

Returns

TC_OK Operation was successful

TC_FAILED Unable to remove the breakpoint

Third-Party Source Code Debugger Integration 145

Set DIlITrace

voi d
tcSetDl | Trace(
TCHANDLE hSessi on, /* Debugger Session */
TCDEBUGFLAG eFlag /* enabl es/di sabl es trace output
*/
)
Description

This function enables or disables the Debugger DLL output for the given session.

Arguments

TCHANDLE hSession A handle identifying a particular debug session

TCDEBUGFLAG eFlag Specifies whether to enable or disable output

Returns
TC_OK Operation was successful
TC_FAILED Operation failed.

Note: This function is not currently used by the toolset, but it must exist. If this
function is omitted from the debugger DLL, the toolset will not load the DLL
successfully.

146 Chapter 12 - Customizing for Target Control and Observability

Index

A

adapting for target environments 41
adding

new files to TargetRTS 80, 93
AR_CMD 31
arguments 78, 92
audience for target control 124

B

basic mode 125
build 52
configurations 32
Build flat 34
building
applications withno OS 52
debugger integration DLL without
MainWin 133
the new TargetRTS 122

C

callback
functions 133
thread 133
calling sequence 133
Class RTMain 92
Class RTMutex 90
Class RTTcpSocket 93
Classes
RTCondVar
extending the Mutex 77, 90
RTDiagStream 78, 91
RTIOMonitor 80, 93
RTMain 78, 92
target-specific methods 78, 92
RTMutex 76, 90

protecting shared resources 76, 90

RTSyncObject 77, 90

RTTcpSocket 79, 93
Cleanup Debugger 139
Clear Breakpoint 145
ClearCase clearmake 33
ClearCase omake 34
clearmake 33
code changes to TargetRTS classes 119
command line arguments 109
commands

Execute 130

Load 128

Reset 127

Terminate 131

Unload 129

common overrides required for a new target 76,

89

Compiler (CC flag) 31
compiler optimizations 106
Config makefile 65
Configuration 118
configuration

building 32

deleting 34

duplicating 21

editing 25, 31

managing 21

types 22
configuration makefile 118
configuration name, choosinga 113
configuring

NoRTOS configuration 53
Constructor RTThread

RTThread() 90

contacting Rational customer support xv

COUNT 85
Create Debug Session 137
creating

ports between C and C++ 35

Index

147

D error parsing rules 96
Event Callback Function 142

Debugger 73, 85 Execute command 130

debugger DLL API 135

execute.pl 127
Cleanup Debugger 139

exiting application 110

Clear Breakpoint 145 EXTERNAL_LAYER 88

Create Debug Session 137 Extra Compiler Flags 31

Destroy Debug Session 138
Event Callback Function 142

Get DLL Capabilities 136 F

Initialize Debugger 138 . .

Set Breakpoint At Function 144 File main.cc 93

Set Breakpoint in File 143 file main.cc 80

Set Callback 141 floating point operations 46

Set DllTrace 146 functions

Set Source Search Path 143 entryPoint 92

Start Debugger 140 gethostbyname() reentrancy 111
Stop Debugger 140 Main 91

main() 78, 91
RTMain_mainline() 79
RTMain_targetShutdown() 78
RTMain_targetStartup() 78

debugger integration DLL 133
debugger mode 126
debugger statistics 85
debugging 47

default makefile 59 RTOS supplies main() 109
DEFER_IN_ACTOR 84 targetShutdown 92
deleting targetStartup 92

configurations 34
Destroy Debug Session 138

G

generated code

disabling TargetRTS features for
performance 103

DLL functions 134 compilation supported by makefiles 56
duplicating get DLL Capabilities 136

configurations 21 gethostbyname() reentrancy 111

gmake 33
E
editing H
configuration 31 HelloWorld model 101
configurations 25
libset 30
target 28 |
entryPoint function 92 . .
error parser 96 implementation

platform-specific 84
Initialize Debugger 138
INTEGER_POSTFIX 84

creating new 98
modifying 95
reusing 98

148 Index

L

libraries

maintaining TargetRTS 19
Library Builder 31
Libset 22, 115
libset

editing 30

makefiles 65

name, components of 52

platform name, part of 50
Libset Compiler Flags 31
Libset Linker Flags 31
libset makefile 65, 115
Libset name 24, 52
libset name 52
LIBSETCCEXTRA 31
LIBSETCCFLAGS 31
LIBSETLDFLAGS 31
Linker (LD) 31
linker configuration file 106
linking problems 106
Load command 128
load.pl 127
LOG_MESSAGE 72, 84

M

main 78
Main function 91
main function 91
main() function 78, 109
main.c 80
main.cc 93
Make
macro definitions 66
make 27, 33
make dependencies
regenerating 81, 94
makefiles 27, 56
Config 65
config, template 65
creating 115

default 59
libset 65
libset,template 65
sequencing of 57
target 64
TargetRTS 56
typical target, template 64
makefiles, creating 115
MANIFEST.c file 80
MANIFEST.cpp 94
MANIFEST.cpp file 94
manual mode 125
menu commands 127
Method RTDebuggerInput
nextChar() 93
Method RTDiagStream
write() 92
Method RTTimespec
getclock() 89

Method RTTimespec::getclock() 89

model compilation 124
modes
basic 125
debugger 126
manual 125
target control 125

multi-threaded configuration 23

multi-threaded mode
support for 76, 90
Mutex

methods to protect shared resources 77, 90

N

new error parser, creatinga 98

new files, adding to the TargetRTS 93

nmake 27, 33

no RTOS 52

NoRTOS 24, 52
NoRTOS Configuration 52
NoRTOS Target Base 25
NoRTOS target base 24

Index 149

O

OBJECT_DECODE 72, 84
OBJECT_ENCODE 72, 84
observability

adding support for xiii, 123
omake 34
OS capabilities 44
OS knowledge and experience 43
OTRTSDEBUG 73, 85

P

PATH variable 54
phases of a port 50
platform

two-part name

target and libset 45, 50

platform name, choosing a 50
platform-specific

implementation 75, 84

port, major steps for implementing the 50

porting

adding new files to TargetRTS 80, 93

before starting 43

building new TargetRTS 122
Class RTIOMonitor 80
Class RTMain 78

Class RTMutex 76

Class RTSyncObject 77
Class RTTcpSocket 79
Config makefiles 65
configuration name 50
configuring TargetRTS 103
Constructor

RTThread_construct(this,job,priority,s

tacksize) 76
creating new error parser 98

libset makefiles 65

Libset name 52

linker configuration 106

linker configuration files 106

main() function 78, 91

MANIFEST.c file 80

Method RTDebuggerInput_nextChar() 79

Method RTStdio_putString() 79

Method RTTimespec_clocl_gettime() 76

modifying error parser 95

Platform-specific implementation 75

platform-specific implementation 88

preprocessor definitions 72, 84

problems 105

Regenerating make dependencies 81

regenerating make dependencies 94

Required operating system features for the C
and C++ TargetRTS 44

Required TargetRTS Classes and
Functions 75

script for porting 54

system include files 106

target makefiles 64

target name 51

target TCP/IP interfaces 111

target toolchains 106

TargetRTS 49

TargetRTS classes 119

TargetRTS configuration definitions 118

TargetRTS example 113

TargetRTS for C 71

TargetRTS for C++ 83

TargetRTS makefiles 56

TargetRTS performance enhancements 104

TargetRTS/RTOS interaction 107

TCP/IP functionality 46

test models 102

testing TargetRTS 101

default command line arguments 109

default makefiles 59

disabling TargetRTS features for
performance 103

File main.c 80

floating point operations 46

Index

Tool chain functionality (C and C++) 44
porting phases 50
ports
creating between C and C++ 35
POSIX function calls 107
Problems 105

problems and pitfalls
target toolchains 106
TargetRTS/RTOS interaction 107
TCP/IP interfaces 111
problems and pitfalls with target TCP/IP
interfaces 111
problems and pitfalls with target toolchains 106
problems and pitfalls with TargetRTS/RTOS
interaction 107

R

Rational customer support

contacting xv
Rational Technical Support

what to do before calling 47
Real-time clock 107
Rebuild (make clean first) 34
reentrancy 111
regenerating make dependencies 81, 94
Registering Threads on Unix 133
Reset command 127
reset.pl 127
reusing an existing error parser 98
rtcomp.pl 97
RTDebuggerInput 93
RTDebuggerInput_nextChar 79
RTDiagStream 92
RTIOMonitor 80, 93
RTMain 78, 92
RTMain_mainline() 79
RTMain_targetShutdown() function 78
RTMain_targetStartup() function 78
RTMutex 76, 90
RTOS

building with none 52

supplies main() function 109
RTOS supplies main() function 109
RTREAL_INCLUDED 86
RTS_config 23
RTStdio_putString 79
RTSyncObject 77, 90

RTTcpSocket 79, 93
RTThread 90
RTTimespec 89
rules of operation 134

S

script
create setup script for porting 54
TargetRTS porting example 114
scripts 126
target control 126
Select() statement 111
Set Breakpoint At Function 144
Set Breakpoint in File 143
Set Callback 141
Set DllTrace 146
Set Source Search Path 143
setup script 54
creatinga 54, 114
TargetRTS compilation to the platform 54
setup.pl 54
signal handlers 109
simple non-ObjecTime program on target 45
simple non-Rose RealTime program on target 45
single-threaded configuration 23
source code debugger integration 133
standard input/output functionality 46
Start Debugger 140
Stop Debugger 140

T

Target 22, 64, 117
target

building with no OS 52

name, components of 51

no RTOS 52

platform name, part of 50
Target bases 23
Target Compiler Flags 29
Target compiler optimizations 103
target compiler optimizations 103

Index 151

target control
adding support for xiii, 123
audience 124
basic mode 125
calling sequence 133
debugger mode 126
defined 125
Execute command 130
general issues 132
Load command 128
manual mode 125
menu commands 127
model compilation 124
modes 125
overview 124
Reset command 127
rules of operation 134
scripts 126
Terminate command 131
third-party source code debugger
integration 133
Unload command 129
target control scripts 126
defined 126
Target Linker Flags 29
target makefile 64, 117
Target name
definition 23
target observability
defined 125
overview 124
target operating system optimizations 104
Target Settings 29
target TCP/IP interfaces 111
TARGETCCFLAGS 29
TARGETLDFLAGS 29
TargetRTS
adding new files 80, 93
building configurations 32
building new 122
configuration definitions 118
configuration types 22
configuring 103
creating ports between C and C++ 35
deleting configurations 34

152 Index

description 18

disabling features for performance 103
duplicating a configuration 21

editing a configuration 25, 31

editing the libset 30

editing the target 28

existing configurations 20

libraries

compilation supported by makefiles 56

libset 22
libset name 24
maintaining libraries 19
makefiles 27
managing configurations 21
NoRTOS Target Base 25
overview regarding porting 42
performance enhancements 104
porting example 113
porting for C 71
porting for C++ 83
required operating system features 44
specific performance enhancements 104
Summary 24
target 22
Target bases 23
target name 23
testing 101
Work Order 24
TargetRTS classes, code changes to 119
TargetRTS configuration definitions 118
TargetRTS features, disabling for
performance 103
TargetRTS makefiles 56
targetShutdown function 92
targetStartup function 92
TCP/IP functionality 46
porting 46
tcThreadCleanup 133
tcThreadInit 133
Terminate command 131
terminate.pl 127
The 80
threads
registering on UNIX 133
thread-safe interface 133

Training 47
troubleshooting
Compiler optimizations 106
Default command line arguments 109
linker configuration file (C++) 106
linker configuration files 106
porting 105
problems with porting 105
Real-time clock 107
Return codes for POSIX function calls 107
return codes for POSIX function calls 107
signal handlers 109
system include files 106
target TCP/IP interfaces 111
target toolchains 106
TargetRTS/RTOS interaction 107
thread creation 107

U

UNIX

Registering threads 133
Unload command 129
unload.pl 127
USE_THREADS 37, 72, 84

Index 153

154 Index

	Adapting Rational Rose RealTime for Target Environments
	Preface
	Audience
	Other Resources
	Rational Rose RealTime Integrations With Other Rational Products
	Contacting Rational Customer Support

	Using the TargetRTS Wizard
	Overview of the TargetRTS Wizard
	Understanding the TargetRTS
	Maintaining TargetRTS Libraries using the TargetRTS Wizard
	Managing Your TargetRTS Configurations

	Duplicating a Configuration
	NoRTOS Target Base
	Editing a Configuration
	Understanding the makefiles
	Editing the Target
	Editing the Libset
	Modifying a Configuration
	Building Configurations
	Deleting Configurations
	Creating Ports between C and C++

	Introducing the TargetRTS
	Overview
	Other Resources

	Before Starting a Port
	OS Knowledge and Experience
	Toolchain Functionality
	OS Capabilities
	Simple non-Rational Rose RealTime Program on Target
	TCP/IP Functionality
	Floating Point Operations
	Standard Input/Output Functionality
	Debugging
	Training
	Support
	What to do Before Calling Rational Customer Support

	Porting the TargetRTS
	Overview
	Phases of a Port
	Choose a Configuration Name
	Target Name
	Libset Name

	Building Rational Rose RealTime Applications for Targets without Operating Systems
	Benefits of Using a NoRTOS Configuration
	Using a NoRTOS Configuration
	Verification

	Creating a Setup Script (setup.pl)
	TargetRTS makefiles
	Default makefile
	Target makefile
	Libset makefile
	Config makefile

	Porting the TargetRTS for�C
	Configuring the TargetRTS
	Platform-specific Implementation
	Method RTTimespec_clock_gettime(timespec)
	Constructor RTThread_construct(this,job,priority,stacksize)
	Class RTMutex
	Class RTSyncObject
	main() function
	Class RTMain
	Method RTStdio_putString()
	Method RTDebuggerInput_nextChar()
	Class RTTcpSocket
	Class RTIOMonitor
	File main.c

	Adding New Files to the TargetRTS
	The MANIFEST.c File
	Regenerating make Dependencies

	Porting the TargetRTS for�C++
	Configuring the TargetRTS
	Platform-specific Implementation
	Method RTTimespec::getclock()
	Constructor RTThread::RTThread()
	Class RTMutex
	Class RTSyncObject
	main() function
	Class RTMain
	Method RTDiagStream::write()
	Method RTDebuggerInput::nextChar()
	Class RTTcpSocket
	Class RTIOMonitor
	File main.cc

	Adding New Files to the TargetRTS
	The MANIFEST.cpp File
	Regenerating make Dependencies

	Modifying the Error Parser
	Overview of the Error Parser
	How the Error Parser Works
	The Error Parsing Rules
	How "rtcomp.pl" Integrates With the Compiler

	Reusing an Existing Error Parser
	Creating a New Error Parser

	Testing the TargetRTS Port
	Overview
	HelloWorld Model
	Other Test Models
	Other Resources

	Tuning the TargetRTS
	Disabling TargetRTS Features for Performance
	Target Compiler Optimizations
	Target Operating System Optimizations
	Specific TargetRTS Performance Enhancements

	Common Problems and Pitfalls
	Overview
	Problems and Pitfalls with Target Toolchains
	Compiler Optimizations
	Linker Configuration File
	System Include Files

	Problems and Pitfalls with TargetRTS/RTOS Interaction
	Return Codes for POSIX Function Calls
	Thread Creation
	Real-time Clock
	Real-time Clock
	Signal Handlers
	RTOS Supplies main() Function
	Default Command Line Arguments
	Exiting Application

	Problems and Pitfalls with Target TCP/IP Interfaces
	gethostbyname() reentrancy
	select() statement

	TargetRTS Porting Example
	Overview
	Choosing the Configuration Name
	Create Setup Script
	Create makefiles
	Libset makefile
	Target makefile
	Configuration makefile

	TargetRTS Configuration Definitions
	Code Changes to TargetRTS Classes
	Building the New TargetRTS

	Customizing for Target Control and Observability
	Introduction
	Model Compilation and Target Control
	Intended Audience

	Target Control
	Target Control Modes
	Manual Mode
	Basic Mode
	Debugger Mode

	Target Control Scripts

	Menu Commands
	Reset
	Load
	Unload
	Execute
	Terminate
	General Issues

	Third-Party Source Code Debugger Integration
	Registering Threads on UNIX
	Calling Sequence
	Debugger DLL API
	Get DLL Capabilities
	Create Debug Session
	Destroy Debug Session
	Initialize Debugger
	Cleanup Debugger
	Start Debugger
	Stop Debugger
	Set Callback
	Event Callback Function
	Set Source Search Path
	Set Breakpoint in File
	Set Breakpoint At Function
	Clear Breakpoint
	Set DllTrace

	Index

