
Rational Software Corporation®
Rational® Test RealTime
Online Tutorial

VERSION: 2003.06.00

WINDOWS AND UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

Tutorial Contents

Preface ... vii
Audience ...vii
Contacting Rational Technical Publications..vii
Other Resources.. viii
Customer Support.. viii

Overview .. 1
Additional Information .. 2
C and C++ Track.. 2

About this Tutorial..2
Example File Locations ...3
Mobile Phone Simulator ..3
UMTS Base Station ...3
Host-based Testing vs Target-based Testing ...4
Goals of the Tutorial ..5

Java Track ... 6
About this Tutorial..6
Example File Locations ...7
Mobile Phone Simulator ..7
JDK Installation..7
Host-based Testing vs Target-based Testing ...9
Goals of the Tutorial ..10

Runtime Analysis .. 13
C and C++ Track.. 13

Runtime Analysis for C, C++ and Ada...13
Runtime Analysis...13
Runtime Analysis Exercises ..15
Conclusion ...36

Java Track ... 37
Runtime Analysis for Java ...37
Runtime Analysis...38
Runtime Analysis Exercises ..40

v

Table Of Contents

Conclusion ...62

Component Testing... 64
C, C++ and Ada Track ... 64

Automated Component Testing...64
Component Testing for C and Ada..64
Component Testing for C++ ..79
System Testing for C ...89

Java Track ... 103
Automated Component Testing...103
Component Testing for Java with Rational Test RealTime103
Component Testing for Java Exercises...104
Conclusion ...113

Conclusion... 115
Regression Testing .. 115
Proactive Debugging.. 115
Questions?... 117

vi

Preface

Welcome to Rational Test RealTime.

This tutorial is designed to introduce software developers to the power and
simplicity of Rational Test RealTime. Of course, the first goal of these lessons is to
teach you how to use these tools in your current development project. However,
there is a second goal as well. Test RealTime is meant to enhance your development
effort, not get in its way. To that end, you will be offered insights into process as well.
Hopefully, you will come away from this tutorial with an understanding of how best
to make Test RealTime a fully integrated member of your development desktop.

Test RealTime is a complete runtime analysis and testing solution for real-time and
embedded systems. It addresses all runtime analysis needs and all test levels
including component and system testing for the C, C++, Ada, and Java programming
languages.

General information about Test RealTime can be found in the Test RealTime User
Guide.

tAdvanced usage of the product is described in the Tes RealTime Reference Manual.

Audience

This guide is intended for Rational software users who are using Test RealTime for
the first time, such as application developers, quality assurance managers, and
quality assurance testers.

You should be familiar with the selected Windows or Linux platform as well as your
Ada, C, C++ or Java development environment.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

vii

Rational Test RealTime - Online Tutorial

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/testrt/index.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

viii

http://www.rational.com/products/testrt/index.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target
compiler, operating system and microprocessor. If necessary, send the Target
Deployment Port .xdp file

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:

Re:[SR#12176528] New data on Test RealTime install issue

Sometimes Rational technical support engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Customer Support" and add your fax number to
the information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

e-mail: support@rational.com

ix

Rational Test RealTime - Online Tutorial

Europe, Middle
East, and Africa

Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200
fax: +31 20 454 6201

e-mail: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

e-mail: support@apac.rational.com

x

Overview

This tutorial is comprised of three primary lessons, or browse sequences. Those
interested in C, C++ and Ada are asked to follow the track labeled with those
languages; those interested in Java are asked to follow the Java track. You are
welcome to complete both tracks, of course, but each has been designed to be
finished in its entirety - that is, perform the entire Java tutorial track before initiating
the track for C, C++ and Ada, and vice versa. Keep in mind that though there are
some feature differences between the support for C, C++, Ada and Java, the majority
of product features are the same.

Note The Evaluation Version of Test RealTime only supports the Windows
platform and the Microsoft Visual C++ Target Deployment Port. If you are
evaluating the product, please disregard the Java track of this tutorial.

Note For those interested specifically in Ada - The C, C++ and Ada track
uses a pure C/C++ example. Ada support consists of component testing and
code coverage analysis; a discussion of C language support for these two
features should be considered equivalent to a discussion of Ada support. In
addition, some of the Example projects shipped specifically with Test
RealTime contain Ada code, giving you the opportunity to hone your skills for
component testing.

Follow the lessons in order; this may take you 4 to 5 hours, depending on your prior
knowledge of the Test RealTime feature-set and on your comfort level with software
development. The three primary lessons are:

• Preparation for the Tutorial

• Runtime Analysis with Rational Test RealTime

• Automated Component Testing with Rational Test RealTime

To maneuver through the browse sequences:

• On Windows: Click the browse sequence pages at the top of the tutorial
window.

• Other platforms: Use the Next Page and Previous Page links on each page.

1

Rational Test RealTime - Online Tutorial

Additional Information

While it is the objective of this tutorial to prepare you for the use of Rational Test
RealTime, occasions will arise when you have questions beyond its scope. Be sure to
take advantage of the online Help, which is designed to address all issues associated
with the testing and runtime analysis of embedded software using Rational Test
RealTime.

To access the Help, click the Help menu, then select User Guide. In the Help viewer,
use the Contents, Index, and Search tabs to navigate to the information you need.

For information related to command-line usage and test script programming, click
the Help menu, then select Reference Manual.

For information related to the Target Deployment Technology and its associated TDP
Editor (both of which are discussed later), run the TDP Editor and select the menu
item Help->Target Deployment Guide. To access the TDP Editor - within Test
RealTime , select Tools->Target Deployment Port Editor->Start.

C and C++ Track

This tutorial can be performed on all Test RealTime supported development
platforms - Windows, Solaris, Linux, HP-UX and AIX.

Note The Evaluation Version of Test RealTime only supports the Windows
platform and the Microsoft Visual C++ Target Deployment Port. If you are
evaluating the product, please disregard any references to other platforms or
development environments.

Since efforts are always being made to update or improve this tutorial - as well as the
products themselves - a customer-only webpage has been created. This page contains
news, patches and documentation updates for current users. Feel free to check this
page for updates before usage of this tutorial.

 To access the Test RealTime Support Web site:

1. From the Help menu, select Rational Test RealTime on the Web and Latest
News and Updates for Users.

About this Tutorial

This tutorial demonstrates how to make the most of Test RealTime through a sample
UMTS mobile phone application, comprised of:

• A mobile phone simulator, running a basic embedded application

• A UMTS base station demonstrating the communication system

2

Overview

UMTS - Universal Mobile Telecommunications System - is a Third Generation (3G)
mobile technology that will enable 2Mbit/s streaming not only of voice and data, but
also of audio and visual content. A UMTS base station is a switching network device
enabling the communication of multiple UMTS-enabled mobile phones.

Example File Locations

Source files for the base station (the mobile phone executable is provided) are located
within the product installation folder, in the folder \examples\BaseStation_C\src.

If you do not have write permission to the installation location of Test RealTime, you
must copy the examples folder and its contents to a new location. Otherwise, you will
be unable to perform any part of the Tutorial that creates or modifies files.

Mobile Phone Simulator

The mobile phone simulator consists of both a Graphical User Interface (GUI) as well
as of internal logic. The GUI is constructed from OS-independent graphical C++
classes; the logic within the simulator is constructed from OS-independent C and
C++ code.

The mobile phone executable is located within the Test RealTime/PurifyPlus
RealTime installation folder, in the folder \examples\BaseStation_C\MobilePhone\.
The name of the executable depends on your operating system:

• Windows: MobilePhone.exe

• Solaris: MobilePhone.SunOS

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

• HP-UX: MobilePhone.HP-UX

• AIX: MobilePhone.AIX

A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.

UMTS Base Station

The UMTS base station is fully operational, constructed from OS-independent C++
code. You are provided with both the source code and an executable for the base
station. The UMTS base station executable is located within the Test RealTime
installation folder, in the folder \examples\BaseStation_C. The name of the
executable depends on your operating system:

• Windows: BaseStation.exe

3

Rational Test RealTime - Online Tutorial

• Solaris: BaseStation.SunOS

• Linux SuSE: BaseStation.Linux

• Linux RedHat: BaseStation.Linux_redhat

• HP-UX: BaseStation.HP-UX

• AIX: BaseStation.AIX

A launcher shell script - BaseStation.sh - is provided for the non-Windows platforms
as well.

Host-based Testing vs Target-based Testing

The testing and runtime analysis that you will perform for this tutorial take place
entirely on your machine. However, one of the greatest capabilities of Rational Test
RealTime is its support for testing and analyzing your software directly on an
embedded target. Does this mean you will need to change how you interact with
your application when switching from host-based to target-based testing? Will your
tests have to be rewritten, for example?

Not at all.

Thanks to Rational's versatile, low-overhead Target Deployment Technology, all tests
are fully target independent. Each cross-development environment - that is, every
combination of compiler, linker, and debugger - has its own Target Deployment Port
(TDP). In addition, any TDP can be modified via the Test RealTime user interface at a
more granular level, letting you customize a particular test or runtime analysis
interaction without affecting neighboring interactions. Such granular tailoring is
supported by the concept of Configurations. Each Configuration can support one or
more TDP and can apply separate customization settings to each interaction assigned
to it.

Over thirty reference TDPs, supporting some of the most commonly used cross-
development environments, are supplied out-of-the-box. After creation of a project
(you will be doing this in a few moments), you can access a list of TDPs installed on
the machine.

 To view a list of currently installed TDPs:

1. From the Project menu, select Configuration.

2. Select New...

3. Use the dropdown list to scroll through the available TDPs

Target Deployment Port Web Site

4

Overview

As new reference TDPs become available, they are first posted on a customer-
accessible Web site. Check this site periodically for news of the latest TDPs to be
made available to the Rational Test RealTime and PurifyPlus RealTime community.

 To access the Test RealTime Web site:

1. From the Help menu, select Rational Test RealTime on the Web and Target
Deployment Ports

Creating and Editing Target Deployment Ports

Does your organization target an environment for which no TDP yet exists? Using
the Target Deployment Port Editor you can create support, just as many of Rational's
customers have done before you.

The reference TDPs supplied with Test RealTime can guide your TDP creation
efforts; Rational also provides professional services should you choose to contract out
their creation.

Note The Target Deployment Port Editor is not included with the evaluation
version of the product.

 To access the Target Deployment Port Editor:

1. From the Tools menu, select Target Deployment Port Editor and Start.

For more information about the Target Deployment Port Editor, please refer to the
Rational Test RealTime Target Deployment Guide.

Every Test RealTime feature is accessible regardless of the environment within which
you will be executing your tests. Rest assured, your intended targets are supported.

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your responsibility, during
the tutorial, will be to uncover:

• a memory leak

• a performance bottleneck

• a logic error in C code

• a logic error in C++ code

In addition, test completeness will be achieved by:

• improving the code coverage of your tests

• improving your understanding of the code via runtime tracing

Finally, you will

5

Rational Test RealTime - Online Tutorial

• simulate virtual actors in order to validate base station network messaging

To accomplish the above, you will first manipulate the UMTS base station through
manual interaction with a mobile phone simulator. Afterwards, automated hands-
free interaction will be used.

Regardless of the programming language you intend to use on your development
project, make sure to perform the runtime analysis tutorial.

For component testing and system testing, however, only certain sections of the
Tutorial may apply:

• for C users - Component Testing for C and Ada, System Testing for C

• for Ada users - Component Testing for C and Ada

• for C++ users - Component Testing for C++

To continue this tutorial, follow the C, C++ and Ada track in the next lesson: Runtime
Analysis with Test RealTime.

Java Track

This tutorial can be performed on all Test RealTime supported development
platforms - Windows, Solaris, Linux, HP-UX and AIX.

Note The Evaluation Version of Test RealTime only supports the Windows
platform with a JDK 1.3.1 or 1.4. If you are evaluating the product, please
disregard the Java track of this tutorial.

Since efforts are always being made to update or improve this tutorial - as well as the
products themselves - a customer-only webpage has been created. This page contains
news, patches and documentation updates for current users. Feel free to check this
page for updates before usage of this tutorial.

 To access the Test RealTime Support Web site:

1. From the Help menu, select Rational Test RealTime on the Web and Latest
News and Updates for Users.

About this Tutorial

This tutorial demonstrates how to make the most of Test RealTime through a sample
UMTS mobile phone application, comprised of:

• A mobile phone simulator, running a basic embedded application

• A UMTS base station demonstrating the communication system

6

Overview

UMTS - Universal Mobile Telecommunications System - is a Third Generation (3G)
mobile technology that will enable 2Mbit/s streaming not only of voice and data, but
also of audio and visual content. A UMTS base station is a switching network device
enabling the communication of multiple UMTS-enabled mobile phones.

Example File Locations

Source files for the base station (the mobile phone executable is provided) are located
within the product installation folder, in the folder \examples\BaseStation_Java\src.

If you do not have write permission to the installation location of Test RealTime, you
must copy the examples folder and its contents to a new location. Otherwise, you will
be unable to perform any part of the Tutorial that creates or modifies files.

Mobile Phone Simulator

The mobile phone simulator consists of both a Graphical User Interface (GUI) as well
as of internal logic. The GUI is constructed from OS-independent graphical C++
classes; the logic within the simulator is constructed from OS-independent Java code.

Note Test RealTime supports both J2ME and J2SE; however, only J2SE is
covered in this Tutorial.

The mobile phone executable is located within the Test RealTime/PurifyPlus
RealTime installation folder, in the folder \examples\BaseStation_C\MobilePhone\
- that is, the executable is not located in the BaseStation_Java folder. The name of the
executable depends on your operating system:

• Windows: MobilePhone.exe

• Solaris: MobilePhone.SunOS

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

• HP-UX: MobilePhone.HP-UX

• AIX: MobilePhone.AIX

A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.

JDK Installation

Performance of the tutorial assumes access to the J2SE 1.3.1 or 1.4.0 SDK.

Note If you are using the evaluation version of Test RealTime, only the
Windows option is available. You must have the full versions of Test RealTime
in order to perform the tutorial on Solaris, Linux, HP-UX and AIX.

7

Rational Test RealTime - Online Tutorial

If neither J2SE distribution is currently installed on your machine, you can freely
download them as described here. The following are the recommended J2SE
distributions. Technically, any SDK that is 100% J2SE 1.3.1 or 1.4.0 compliant can be
used with Test RealTime. However, only the following distributions have been
verified as supported.

 To install J2SE 1.3.1 on Windows:

1. Go to http://java.sun.com/j2se/1.3/download.html

2. Select the SDK download link for "Windows (all languages)"

3. Download and install the SDK onto your machine

 To install J2SE 1.4.0 on Windows

1. Go to http://java.sun.com/j2se/1.4/download.html

2. Select the SDK download link for "Windows (all languages, including English)"

3. Download and install the SDK onto your machine

 To installJ2SE 1.3.1 on Solaris:

1. Go to http://java.sun.com/j2se/1.3/download.html

2. Select either SDK download link for the Solaris SPARC

3. Download and install the SDK onto your machine

 To install J2SE 1.4.0 on Solaris

1. Go to http://java.sun.com/j2se/1.4/download.html

2. Select the SDK download link for the 32-bit or 64-bit Solaris SPARC distribution

3. Download and install the SDK onto your machine

 To install J2SE 1.3.1 on Linux (both RedHat and SuSE):

1. Go to http://java.sun.com/j2se/1.3/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine

 To install J2SE 1.4.0 on Linux (both RedHat and SuSE)

1. Go to http://java.sun.com/j2se/1.4/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine.

8

Overview

 To install the Java SDK HP-UX

1. Go to http://www.hp.com/products1/unix/java/java2/sdkrte1_3/index.html

2. Select the Downloads link

3. Select the link SDK (includes RTE) for Java 2 version 1.3.1.05 (April, 2002)

4. You will have to accept a license agreement and then register with HP; do so,
and then download and install the SDK onto your machine.

 To install the Java SDK on AIX

1. Go to http://www-106.ibm.com/developerworks/java/jdk/aix/index.html

2. Select the Register and Download link

3. Select the Java 1.3.1 download link appropriate for your version of AIX

4. You will have to register with IBM; do so, and then download and install the
SDK onto your machine.

Host-based Testing vs Target-based Testing

The testing and runtime analysis that you will perform for this tutorial take place
entirely on your machine. However, one of the greatest capabilities of Rational Test
RealTime is its support for testing and analyzing your software directly on an
embedded target. Does this mean you will need to change how you interact with
your application when switching from host-based to target-based testing? Will your
tests have to be rewritten, for example?

Not at all.

Thanks to Rational's versatile, low-overhead Target Deployment Technology, all tests
are fully target independent. Each cross-development environment - that is, every
combination of compiler, linker, and debugger - has its own Target Deployment Port
(TDP). In addition, any TDP can be modified via the Test RealTime user interface at a
more granular level, letting you customize a particular test or runtime analysis
interaction without affecting neighboring interactions. Such granular tailoring is
supported by the concept of Configurations. Each Configuration can support one or
more TDP and can apply separate customization settings to each interaction assigned
to it.

Over thirty reference TDPs, supporting some of the most commonly used cross-
development environments, are supplied out-of-the-box. After creation of a project
(you will be doing this in a few moments), you can access a list of TDPs installed on
the machine.

 To view a list of currently installed TDPs:

1. From the Project menu, select Configuration.

9

Rational Test RealTime - Online Tutorial

2. Select New...

3. Use the dropdown list to scroll through the available TDPs

Target Deployment Port Web Site

As new reference TDPs become available, they are first posted on a customer-
accessible Web site. Check this site periodically for news of the latest TDPs to be
made available to the Rational Test RealTime and PurifyPlus RealTime community.

 To access the Test RealTime Web site:

1. From the Help menu, select Rational Test RealTime on the Web and Target
Deployment Ports

Creating and Editing Target Deployment Ports

Does your organization target an environment for which no TDP yet exists? Using
the Target Deployment Port Editor you can create support, just as many of Rational's
customers have done before you.

The reference TDPs supplied with Test RealTime can guide your TDP creation
efforts; Rational also provides professional services should you choose to contract out
their creation.

Note The Target Deployment Port Editor is not included with the evaluation
version of the product.

 To access the Target Deployment Port Editor:

1. From the Tools menu, select Target Deployment Port Editor and Start.

For more information about the Target Deployment Port Editor, please refer to the
Rational Test RealTime Target Deployment Guide.

Every Test RealTime feature is accessible regardless of the environment within which
you will be executing your tests. Rest assured, your intended targets are supported.

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your responsibility, during
the tutorial, will be to uncover:

• poor memory management

• a performance bottleneck

• a logic error in Java code

In addition, test completeness will be achieved by:

10

Overview

• using code coverage to add new tests

• improving your understanding of the code via runtime tracing

To accomplish the above, you will first manipulate the UMTS base station through
manual interaction with a mobile phone simulator. Afterwards, automated hands-
free interaction will be used.

To continue this tutorial, follow the Java track in the next lesson: Runtime Analysis
with Test RealTime and PurifyPlus RealTime.

11

Runtime Analysis

C and C++ Track

Runtime Analysis for C, C++ and Ada

You will start your tour with the runtime analysis features provided by Test
RealTime. The automated component testing features provided by Test RealTime will
be discussed in the chapter entitled Component Testing with Rational Test RealTime.

Runtime analysis refers to Test RealTime's ability to monitor an application as it
executes. There are a variety of advantages to be gained from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis

Memory Profiling

Dynamically working with system memory can be quite a complicated affair. If
you're not careful, your code might either:

• Fail to free memory - referred to as a memory leak

• Mistakenly reference non-allocated memory - referred to as an array bounds
read or array bounds write

A memory leak detection utility monitors an application as it executes, keeping an
eye on memory usage to ensure the above problems don't occur. If they do occur, the
detection utility points out the sequence of events leading up to the poor usage of
memory, helping you deduce the cause of the error and thereby repair your code.

This function is provided in Rational Test RealTime by the memory profiling feature
for the C and C++ languages.

13

Rational Test RealTime - Online Tutorial

Performance Profiling

Optimal performance is, needless to say, crucial for real-time embedded systems.
Measuring performance can be quite difficult, however, particularly when it comes to
determining the specific functional bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch your
application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all real-time constraints
placed upon your system are accommodated.

This function is provided in Rational Test RealTime and Rational PurifyPlus
RealTime by the performance profiling feature for the C and C++ languages.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to determine the
portions of code that have gone untested. For many embedded systems, failure is not
an option, so every part of an application must be thoroughly tested to ensure there is
no unhandled scenario or dead code.

In addition, project managers need a concrete measurement to determine where the
team is in the development cycle - in particular, how much more testing needs to be
done. A decreasing number of defects does not necessarily mean the product is
ready; it might simply mean the portions of code that have been tested appear to be
ready.

Code coverage measurement tools observe your running application, flagging every
line of code as it executes. Advanced tools - such as Test RealTime and PurifyPlus
RealTime - are also able to differentiate different types of execution, such as whether
or not a do-while loop executed 0 times, 1 time, or 2 or more times. These advanced
measurements are critical for software certification in industries such as avionics.

This function is provided in Rational Test RealTime and Rational PurifyPlus
RealTime by the code coverage feature for the C, Ada and C++ languages.

Runtime Tracing

As all embedded developers quickly learn, intentions don't necessarily translate into
reality. There can often be a vast difference between what you want to happen and
what actually happens as your application executes.

14

Runtime Analysis

This problem becomes more severe when the code is inherited. Yes, you could try to
piece things together yourself, but system complexity might just undercut your
efforts at understanding the code.

And what about multi-threaded applications? If you've ever encountered race
conditions or deadlocks, you know how difficult it can be to uncover the source of
the problem.

This is where runtime tracing monitors come in. These utilities graphically display
the sequence of function or method calls in your running application - as well as the
active threads - illustrating through pictures what is actually happening. With this
information, unexpected exceptions can be easily traced back to their source, complex
procedures can be distilled to their essence, threading conflicts can be resolved and
inherited code can jump off the page and display its inherent logic.

This function, using the industry standard Unified Modeling Language for its
graphical display, is provided in Rational Test RealTime by the runtime tracing
feature for the C and C++ languages.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving the four
runtime analysis features of Test RealTime to which you have just been introduced.
Pay close attention not only to the capabilities of these features but also to how they
are used. The better you understand these features, the more quickly you will be able
to adopt them within your own development process.

If you have never run this tutorial before, make sure your machine has a temporary
folder in which you can store the test project you will be creating. For the tutorial, it
is assumed that the test project will be stored in a folder called tmp.

If you have run this tutorial before, do not forget to undo the source file edits you
made the last time you ran through it. The following files are modified during the
tutorial:

• PhoneNumber.cpp

• UmtsCode.c

• UmtsServer.cpp

If you intend to use Microsoft Visual C/C++, but installed it after installing the
product you will need to update the associated TDP. If the product was installed
after Microsoft Visual C/C++ then no changes need to be made.
See this page if you need to update the TDP.

15

Rational Test RealTime - Online Tutorial

 To run the tutorial without Microsoft Visual Studio:

1. For Windows: install a recommended GNU C and C++ compiler - click here for
instructions. For Solaris, Linux, HP-UX and AIX: use the native C and C++
compiler already installed on your machine

2. During installation of the product:

• On Windows: A local Microsoft Visual Studio compiler and JDK are
located, based on registry settings. Only the compiler and JDK
located during installation will be accessible within the product.

• On UNIX or Linux: The user is confronted by two interactive
dialogs. These dialogs serve to clarify the location of the local GNU
compiler and (if present) local JDK. Only the GNU compiler and JDK
specified within these dialogs will be accessible within the product.

 To make a different compiler available for the product:

1. From the Tools menu, select Target Deployment Port Editor and Start

2. In the Target Deployment Port Editor, from the File menu, select Open

3. Open the .xdp file corresponding to the new compiler for which you would like
to generate support

4. In the Target Deployment Port Editor, from the File menu, select Save and
Generate

5. Close the Target Deployment Port Editor

Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Creating a Project

Typically, there is a one-to-one relationship between your current development
project and a Test RealTime project. Although your development project may consist
of more than one application, these applications often possess a common theme. Use
the Test RealTime project to enforce that theme.

16

Runtime Analysis

 To create a project in Test RealTime:

1. Start Rational Test RealTime:
Windows: use the Start menu
UNIX: type studio on the command line

2. Select the Get Started link on the left-hand side of the Test RealTime Start Page.
Two links appear on the top of the page: New Project and Open Project.

3. Select the New Project link.
You should now see the New Project Wizard.

4. In the Project Name field, enter BaseStation (no spaces).
In the Location field, select the button, browse to the folder in which you
want the BaseStation project to be stored and then select it. For this Tutorial,
let's assume that the project has been stored in the C:\tmp (Windows) or
\usr\tmp (UNIX) folder.
Click the Next button.

5. Select, from the list of Target Deployment Ports currently installed on your
machine, the one you intend to use to compile, link, and deploy your source
code and the test or runtime analysis harness. Since the UMTS base station
consists of C++ code, you should choose either C++ Visual 6.0 if you have
Microsoft Visual C++ 6.0 installed, or, if you are using a GNU/native compiler,
select the item appropriate for your operating system:

• Windows - C++ Gnu 2.95.3-5 (mingw)

• Solaris - C++ Solaris - SC5.1

• Linux - C++ Linux - Gnu 2.95.2

• HP-UX - C++ HP-UX - aCC compiler

• AIX - C++ AIX - IBM C++ Compiler

Do not be concerned if the version of the GNU compiler you have installed does
not match the version mentioned for the TDP. The differences are not relevant
for this tutorial and thus other versions are supported equally as well

6. Click the Finish button.

That's it. The project has been created - named BaseStation - and a project node by the
same name appears on the Project Browser tab of the Project Explorer window on the
right-hand side of the UI:

Note A project created in Rational PurifyPlus RealTime could also be used in
Rational Test RealTime; a project created in Test RealTime, opened in
PurifyPlus RealTime, will be limited to runtime analysis - that is, no tests can
be executed and no test reports can be viewed.

17

Rational Test RealTime - Online Tutorial

Starting a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

• the type of testing or runtime analysis activity you would like to perform first

 To start a new activity:

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on runtime analysis
functionality, so select the Runtime Analysis link. This will bring up the
Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files for your
current development project. For this tutorial, you will directly select the source
files. Click Add .

3. Browse to folder into which you have installed Test RealTime and then access
the folder \examples\BaseStation_C\src

4. Make sure All C++ and Header Files in the Files of Type dropdown box is
selected, then left-click-hold-and-drag over all of the C and C++ source files.
Now click the Open button.
You should see a set of .c, .cpp and .h files listed in the large listbox of the
Application Files window.
Click Next.

5. At this time, an analysis engine parses each source file - referred to as tagging.
This process is used to extract the various functions, methods, procedures and
classes located within each source file, simplifying code browsing within the UI.

6. In the window entitled Selective Instrumentation you have the ability to select
those functions, procedures, methods or classes that should not be instrumented
for runtime analysis. Such selective instrumentation ensures that the
instrumentation overhead is kept to a minimum. For this Tutorial, you will be
monitoring everything and thus all items should be checked. This should
happen by default; if not, click Select All . Click Next.

7. You have now reached the window entitled Application Node Name. Enter the
name of the application node that will be created at the conclusion of the
Runtime Analysis Wizard; since you will be monitoring execution of the UMTS
base station, type the word BaseStation within the text field labeled Name.

8. The Application Node Name window also gives you the opportunity to modify
build settings associated with the TDP you selected when creating the Test
RealTime project. Some changes may need to be made, depending on your
operating system. (Note that these changes do not affect the actual TDP; you
will be making changes to a Configuration. A Configuration lets you modify a

18

Runtime Analysis

variety of settings on a node-by-node basis within a project. You can even
reference multiple TDPs in the same Configuration.):

• For Windows:

• Select the button on the bottom of the Application Node Name
window entitled Configuration Settings.

• In the window that has just appeared, named Configuration
Settings, expand the Build node in the tree on the left-hand side
and left-click the Compiler node.

• In the Compiler flags edit box on the right-hand side of the
window, add the flag -MLd to the end of the list, separated by a
space from the flag -GR

• In the Preprocessor macro definitions edit box, add the macro
_DEBUG (make sure to include the preceding underscore, and
use only capital letters).

• Select the OK button on the bottom of the window.

• For Solaris only:

• Select the button on the bottom of the Application Node Name
window entitled Configuration Settings.

• In the window that has just appeared, named Configuration
Settings, expand the Build node in the tree on the left-hand side
and left-click the Linker node.

• Add the following two library flags to the Additional objects or
libraries edit box on the right-hand side of the screen.
-lnsl -lsocket

• Select the OK button on the bottom of the window.

9. Click Next.

10. You are now confronted with the Summary window. Everything should be in
order, so click the Finish button.

The BaseStation application node has now been created. The Project Browser tab of
the Project Explorer window should appear as follows:

19

Rational Test RealTime - Online Tutorial

Additional Build Customization

In this example, the UMTS base station consists of a mix of C and C++ source files.
Some C++ compilers can handle both the C and C++ languages; other compilers are
not able to do this.

Recall that you selected the TDP for the C++ compiler on your machine. On
Windows, the Visual C++ 6.0 TDP can process both C and C++ files. For the GNU
compiler on Windows, and for the native compilers on Solaris, Linux, HP-UX and
AIX, you need to specify a C language TDP for the .c source files:

If you're using the GNU compiler on Windows, or the native compilers on Solaris,
Linux, HP-UX and AIX:

 To set a C language TDP for .c files:

1. In the Project Browser, right-click the tcpsck.c child node of the BaseStation
application node and select Settings.

2. Position the Configuration Settings window that has opened so that you can
easily see the Project Browser.

3. Expand the General node in the tree on the left-hand side of the window and
left-click the Host Configuration child node.

4. Click the dropdown list for the Target Deployment Port setting. It's current
value is the TDP selected when you created the project.

5. Expand the dropdown list - either by left-clicking the field one more time or by
selecting the dropdown list arrow to the right - and select the corresponding C
language TDP for your machine. Click Apply once the new TDP is selected.

6. Back in the Project Browser, select the node for the file UmtsCode.c and then
follow steps 4 and 5 above.

20

Runtime Analysis

7. Select the node for the file UmtsMsg.c in the Project Browser and then follow
steps 4 and 5 above.

8. In the Configuration Settings window, click OK.

Note Only the settings for these specific file nodes have been changed; all
other file nodes continue to use the default TDP settings.

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer window, and
within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group, application and
test nodes created for the active project. The project node, named BaseStation,
contains an application node named BaseStation; the application node contains a list
of all of the source files required to build the UMTS base station application. (Though
the project and application nodes have the same name, this is not a requirement.)

The second tab - the Asset Browser tab - lets you browse all of your source and test
files. If the selected Sort Method is By File, you are presented with a file-by-file listing
of test scripts, source code and source code dependents (such as header files). Note
how each header file can be expanded to display every class, function, and method
declaration, while each source file can be expanded to display every defined object
and method or function. Double-clicking any test script/source file/header file node
will open its contents within the Test RealTime editor; double-clicking any class
declaration or method definition node will open the relevant source file/header file
to the very line of code at which the definition/declaration occurs.

There are two other sort methods as well on the Asset Browser. The first, By Object,
lets you filter down to classes and methods, independent of the source files. The
second, By Directory, is primarily applicable to Java packages.

You may have noticed along one of the toolbars at the top of the UI that the TDP you
selected in the New Project Wizard is listed in a dropdown box. In fact, this is not a
reference to the TDP, it is a reference to the Configuration whose base TDP was the
one you selected in the wizard - in the case of this tutorial, it is a TDP supporting
C++. (Recall that the Configuration allowed you to select the TDP designed for use
with C language files. Configurations are initially named after their base TDP, but
this name can be changed.) Should you have multiple configurations for the same
project, use this dropdown box to select the active Configuration for execution.

Finally, to the right of the Configuration dropdown list is the Build button. This
button is used to build your application for application nodes and the test harness for
test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

21

Rational Test RealTime - Online Tutorial

• a test driver

The Build Options button lets the user decide from which point the build process
should initiate and what runtime analysis features should be used. The runtime
analysis features do not have to be used at the same time; this Build Options window
provides a quick and simple method for deselecting undesired runtime analysis
features immediately prior to execution of the build process.

Armed with this knowledge, proceed to Exercise Two.

Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

When performing runtime analysis, your source code must be instrumented.
Instrumentation, by default, is enabled for all four runtime analysis features - that is,
for memory profiling, performance profiling, code coverage analysis and runtime
tracing. All four features are turned on by default.

 To build and execute the application:

1. In order to instrument, compile, link, and execute the UMTS base station
application in preparation for runtime analysis, simply ensure the BaseStation
application node is selected on the Project Browser tab of the Project Explorer
window, and then click the Build button.
Do so now.

Note More information about the source code insertion technology can be
found in the User Guide, in the chapter Product Overview->Source Code
Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the Build tab,
you can watch the preprocessing, instrumentation, compilation, and link phases
of the build process as they occur. A double-click on an error listed within any
of the Output Window tabs opens the relevant source code file to the
appropriate line in the Test RealTime Editor.

3. The build process has completed, and the UMTS base station is running, when
the UML-based sequence diagram generated by the runtime tracing feature
appears. (More about this feature in a moment.)

22

Runtime Analysis

4. Close the Project Explorer window on the right-hand side of the UI by clicking
the Close Window button.

Notice how the graphically displayed data in the Runtime Trace viewer dynamically
grows - this is because the UMTS base station is being actively monitored. The UMTS
base station endlessly searches for mobile phones requesting registration; the
Runtime Trace viewer reflects this endless loop. If you wish, use the Pause button on
the toolbar to stop the dynamic trace for a moment (the trace is still being recorded,
just no longer displayed in real time). In addition, use the Zoom In and Zoom Out

buttons on the toolbar to get a better view of the graphical display (or right-click-
hold within the Runtime Trace viewer and select the Zoom In or Zoom Out options).
Undo the Pause when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary importance
right now is interaction with the UMTS base station. You'll do this by using the
mobile phone simulator mentioned earlier in the Overview section of this tutorial.
Through this manual interaction you will expose memory leaks, performance
bottlenecks, incomplete code coverage, and dynamic runtime sequencing.

Interacting with the Application

 To run the application:

1. Start the mobile phone by running the provided mobile phone executable built
for your operating system. The mobile phone executable is located within the
Test RealTime installation folder in the folder
\examples\BaseStation_C\MobilePhone\. The name of the executable depends
on your operating system:

• Windows: MobilePhone.exe

• Solaris: MobilePhone.SunOS

• Linux: MobilePhone.Linux

• HP-UX: MobilePhone.HP-UX

• AIX: MobilePhone.AIX

(A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.)

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you watched
the Runtime Trace viewer closely, you would have noticed a display of all the
internal method calls of the UMTS base station that occur when a phone
attempts to register). The current system time should appear in the mobile
phone window when connection has been established.

23

Rational Test RealTime - Online Tutorial

4. Once connected, dial the phone number 5550000, then press the button to
send this number to the UMTS base station (again, try to see the Runtime Trace
viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the phone is
busy. Shut off the simulator by closing the mobile phone window via the
button in its upper right corner.

The UMTS base station is designed to shut off when a registered phone goes off
line. Not a great idea for the real world, but it serves the Tutorial's purposes
well. Alternatively, you could have just used the Stop Build button located
next to the Build button on the toolbar.

6. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base station
stopped (i.e. once the instrumented application stopped), all runtime analysis
information was written to user accessible reports that are directly linked to the
UMTS base station source code. In order to look at these reports:

7. Reopen the Project Explorer window by selecting the menu item View->Other
Windows->Project Window

8. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open.
(Alternatively, right-click the BaseStation application node and select View
Report->All.)

9. Close the Project Explorer window and the Output Window (at the bottom of
the UI) to create room for the now-opened reports. You may also want to resize
the left-hand window to gain additional room.

Understanding Runtime Tracing

 To view the UML sequence diagram report:

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all method
calls involved in the execution of the UMTS base station code. Using the toolbar
Zoom Out button, zoom out from the tracing diagram until you can see at
least five vertical bars.

24

Runtime Analysis

3. Make sure you are looking at the top of the runtime tracing diagram using the
slider bar on the right.

What you are looking at is a sequence diagram of all events that occurred
during the execution of your code. This sequence diagram uses a notation taken
from the Unified Modeling Language, thus it can be correctly referred to as a
UML-based sequence diagram.

The vertical lines are referred to as lifelines. Each lifeline represents either a C
source file or a C++ object instance. The very first lifeline, represented by a stick
figure, is considered the "world" - that is, the operating system. In this UMTS
base station tracing diagram, the next lifeline to the right represents an object
instance named Obj1, derived from the UmtsServer class.

Green lines are constructor calls, black lines are method calls, red lines are
method returns, and blue lines are destructor calls. Hover the mouse over any
method call to see the full text. Notice how every call and call return is time
stamped.

Everything in the Runtime Trace viewer is hyperlinked to the monitored source
code. For example, if you click on the Obj1::UmtsServer lifeline, the header file
in which the UmtsServer class declaration appears is opened for you, the
relevant section highlighted. (Close the source file by right-clicking the tab of
the Text Editor and selecting Close.) All function calls can be left-clicked as well
in order to view the source code. Look at the very top of the Obj1::UmtsServer
lifeline. It's "birth" appears to consist of a List() constructor first, then a
UmtsServer() constructor. Why a call to the List() constructor if the object is an
instance of the UmtsServer class? Click on the UmtsServer() lifeline again - see
how the UmtsServer() constructor inherits from the List() class? This is why the
List() constructor is called first. Click the two constructor calls if you wish to
pursue this matter further.

Notice how the window on the left-hand side of the user interface - called the
Report Window - contains a reference to all classes and class instances. Double-
clicking any object referenced in this window will jump you to its birth in the
Runtime Trace viewer. This window can also be used to filter the runtime
tracing diagram.

4. In the left-hand window, close the node labeled NETWORKNODE.H - notice
how all objects derived from the NetworkNode class declared in this header file
are reduced to a single lifeline.

5. Reopen the node labeled NETWORKNODE.H.

You've probably noticed the vertical graph with the green bar to the left of the
Runtime Trace viewer. This is the Coverage Bar. It highlights, in
synchronization with the trace diagram, the percentage of total code coverage
achieved during execution of the monitored application. The Coverage Bar's
caption states the percentage of code coverage achieved by the particular

25

Rational Test RealTime - Online Tutorial

interaction presently displayed in the Runtime Trace viewer. Scroll down the
trace diagram; note how code coverage gradually increases until a steady state
is achieved. This steady state is achieved following the moment at which the
mobile phone has connected to the UMTS base station. Dialing the phone
number increases code coverage a bit; shutting off the phone creates a last burst
of code coverage up until the moment the UMTS base station is shut off. Can
you locate where, on the trace diagram, the mobile phone simulator first
connected to the UMTS base station? (The Coverage Bar can be toggled on and
off using the right-click-hold menu within the Runtime Trace viewer.)

Note If the C++ code in the UMTS base station spawned multiple threads, the
Coverage Bar would be joined by the Thread Bar, a vertical graph highlighting
the active thread at any given moment within the trace diagram. A double-
click on this bar would open a threading window, detailing thread state
changes throughout your application's execution. This thread monitoring
feature is also available for the Java language.

Continue to look around the trace diagram. Can you locate the repetitive loop in
which the UMTS base station looks for attempted mobile phone registration (it
always starts with a call to the C function tcpsck_data_ready)? You can filter out
this loop using a couple of methods. One is to simply hover the mouse over a
method or function call you wish to filter, right-click-hold and select Filter
Message. An alternative method would be to build your own filter. You will do
both.

6. Hover the mouse over any call of the tcpsck_data_ready function, right-click-
hold and select Filter Message - the function call should disappear from the
entire trace.

7. Select the menu item Runtime Trace->Filters (you'll see the filter you just
performed listed here)
Click the Import button, browse to the installation folder and then the folder
\examples\BaseStation_C, and then Open the filter file filters.tft

8. Check that BaseStation Phone Search Filter is selected. Select it if necessary.

9. Click the OK button.

The loop has been removed.

Not only can the runtime tracing feature capture standard function/method
calls, but it can also capture thrown exceptions.

10. View the very bottom of the runtime tracing diagram using the slider bar.

Do you see the icon for the catch statement - (you may have to drag
the slider bar slightly upward; closing the NETWORKNODE.H node in the left-hand
report window will also make things easier to see)? This Catch Exception statement is
preceded by a diagonal Throw Exception. Why diagonal? Because when the

26

Runtime Analysis

exception was thrown, prior to executing the Catch statement, the LostConnection
constructor and UmtsMsg destructor were called. Click various elements to view the
source code involved in the thrown exception and thus decipher the sequence of
events.

This exception occurred by design, but it is clear how the runtime tracing feature,
through the power of UML, would be extremely useful if you have:

• inherited old or foreign code

• unexpected exceptions

• questions about whether what you designed is occurring in practice

And you are guaranteed the identical functionality for application execution on an
embedded target.

Understanding Memory Profiling

The Memory Profile viewer displays a record of improper memory usage within the
application of interest.

 To read the Memory Profiling report:

1. Select the Memory Profile tab.

First, block and byte memory use is summarized for you in a bar chart,
immediately followed by a textual description to the same information. What
you have is a record of:

• total number of blocks/bytes allocated for the entire run

• total number of non-freed blocks/bytes allocated for the entire run

• total number of blocks/bytes in use at any one time

If any memory errors were detected, or if any warnings are warranted, those
comments are listed next. The Report Window on the left hand side of the
screen gives you a quick look at the contents of the report - your manual
interaction with the UMTS base station via the simulated mobile phone has
resulted in the creation of Test #1. If you click an item in the Report Window,
the memory profiling report will scroll to the proper location.

2. On the Report Window, left-click the ABWL error.

Apparently, the memory profiling feature has detected a Late Detect Array Bounds
Write (ABWL) - in other words, the UMTS base station code attempted to add data to
an array element that does not exist. This error report is followed by the call stack,
with the last function in the call stack listed first. Notice how each function is
highlighted; clicking on the functions in the call stack will jump you to the relevant
source code. Each source code file is highlighted at the line in which memory was

27

Rational Test RealTime - Online Tutorial

requested - in this particular case, some part of the UMTS base station code
overwrote an array, thereby causing the ABWL error.

The ABWL is followed by one File In Use (FIU) and four Memory Leak (MLK)
warnings. The File In Use warning references <internal use> - in other words, the file
is being used by the memory profiling feature. As for the memory leaks - well it looks
like you have some work to do here. Although it is conceivable the memory leak
occurs by design (e.g. perhaps some clean-up code has not yet been written),
assuredly the UMTS base station is not meant to have any.

Finally, the exit code is printed - look for the informational/warning note in the
viewer starting with the words Program exit code. The memory profile report lists
the exit code as a warning if it is of any value other than 0.

Notice how easily this information has been acquired; no work was required on your
part. A real advantage is that memory leak detection can now be part of your
regression test suite. Traditionally, if embedded developers looked for memory leaks
at all, it was done while using a debugger - a process that does not lend itself to
automation and thus repeatability. The memory profiling feature lets you automate
memory leak detection.

And again, the identical functionality can be used on either your host platform or on
your embedded target.

Understanding Performance Profiling

The Performance Profile viewer displays the execution time for all functions or
methods executing within the application of interest, thereby allowing the user to
uncover potential bottlenecks. First, the three functions or methods requiring the
most amount of time are displayed graphically in a pie chart (up to six functions will
be displayed if each is individually responsible for more than 5% of total execution
time). This is then followed by a sortable list of every function or method, with
timing measurements displayed.

 To read the Performance Profiling report:

1. Select the Performance Profile tab.

Notice how the function tcpsck_data_ready was responsible for around 45% to
50% of the time spent processing information in the UMTS base station. By
looking at the table, where times are listed in microseconds, we can see that this
function's average execution time was between 1 to 2 seconds (it will vary
somewhat based on your machine) and that it has no descendents - i.e. it never
calls and then awaits the return of other functions or methods (which explains
why the Function time matches the F+D time). Is this to be expected? If you
wished, you could click on the function name in the table to jump to that
function to see if its execution time can be reduced.

Each column can be used to sort the table - simply click on the column heading.

28

Runtime Analysis

2. Click the column heading entitled F+D Time

It is probably no surprise that the main() procedure - combined with its
descendents - takes the longest time to execute overall. Notice, though, that the
main() procedure itself only takes around 300µs (depending on the operating
system) to execute - so there doesn't appear to be any bottleneck here. The
main() procedure spends its life waiting for the UMTS base station to exit.

As with the memory profiling feature, notice how easy it was to gather this
information. Performance profiling can now also be part of your regression test suite.
And again, as with every other runtime analysis feature, performance profiling
functionality is identical whether it is used on your host platform or on your
embedded target.

Understanding Code Coverage

And finally, here you have the code coverage analysis report. The code coverage
feature exposes the code coverage achieved either through manual interaction with
the application of interest or via automated testing.

 To view the Code Coverage report:

1. Select the Code Coverage tab.

On the left hand side of the screen, in the Report Window, you see a reference to
Root and then to all of the source and header files of the UMTS base station.
Root is a global reference - that is, to overall coverage. For each individual
source and header file, a small icon to the left indicates the level of coverage
(green means covered, red means not covered).

In the Code Coverage viewer, on the Source tab, a graphical summary of total
coverage is presented in a bar chart - that is, information related to Root. Five
levels of code coverage are accessible when the source code is C++, and those
five levels are represented here. (Four more levels of coverage are accessible
when working with the C language - up to and including Multiple
Conditions/Modified Conditions. These levels are required by stringent
certification standards such as aviation's DO-178B.) Notice how, on the toolbar,

there is a reference to these five possible coverage levels ().

2. Deselect Loops Code Coverage ()

Notice how the bar chart is updated.

3. Reselect Loops Code Coverage ()

4. In the Report Window to the left, select the PhoneNumber.cpp node.

The Source tab now displays the source code located in the file
PhoneNumber.cpp. This code is colored to reflect the level of coverage

29

Rational Test RealTime - Online Tutorial

achieved. Green means the code was covered, red means the code was not
covered.

5. In the Report Window, expand the PhoneNumber.cpp node and then select the
void PhoneNumber::clearNumber() child node

The clearNumber() function should now be visible on the Source tab. Notice
how its for instruction is colored orange and sitting on a dotted underline. This
is because the for statement was only partially covered.

6. Click on the orange for keyword in the clearNumber() function

As you can see, the for loop was only executed multiple times, not once or zero
times. Why should you care? Well some certification agencies require that all
three cases be covered for a for statement to be considered covered. If you don't
care about this level of coverage, just deselect Loops Code Coverage:

7. On the toolbar, deselect Loops Code Coverage ().

Now the for loop is green. If you would like to add a comment to your code
indicating how this loop is not covered by typical use of the mobile phone
simulator, have a look at the code by right-clicking the for statement and
selecting Edit Source.

8. Select the Rates tab in the Code Coverage viewer

The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual functions/methods

Click various nodes in the Report Window in order to browse the Rates tab.
Note how a selection of the Root node gives you a summary of the entire
application.

9. From the File menu, select Save Project.

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your source code
for all four runtime analysis features. Manual interaction (in your case, via a mobile
phone simulator) was monitored, and the subsequent runtime analysis results were
displayed for you graphically. Source code is immediately accessible from these
reports, so nothing prevents the developer from using the results to correct possible
anomalies.

In addition, using the Test by Test option provided with each runtime analysis
feature (introduced in the Further Work section for code coverage), you can easily
discern the effectiveness of a test, ensuring maximal reuse without waste.

30

Runtime Analysis

Your next step is to use the runtime analysis results to remove memory leaks,
improve performance, and increase code coverage.

Exercise Three

In this exercise you will:

• Improve the UMTS base station code by eliminating memory leaks and by
improving performance

• Increase code coverage

• Rerun the manual test to verify that the defects have been fixed

Using Memory Profiling to Remove Memory Leaks

By using the call stacks displayed in the Memory Profile viewer, you will deduce the
corrections that need to be made to eliminate memory errors.

 To locate and fix memory errors:

1. Select the Memory Profile tab.

2. Select the ABWL error node in the Report Window on the left hand side of the
screen.

Have a look at the call stack for the Late Detect Array Bounds Write error. Three
C++ methods are listed.

3. Select the last function first, the one that occurs inside main()

Within the main() procedure a UmtsServer object is instantiated. Nothing looks
out of sorts here, so return to the call stack.

4. Close the source file for the main() procedure, and then click the second
function from the bottom in the call stack referenced by the ABWL error - the
UmtsServer constructor.

The next function in the stack is the UmtsServer constructor. The line in the
constructor that is flagged, the creation of a NetworkNodes object, is a call to
the List constructor. Continue to follow the sequence of events.

5. Close the source file for the UmtsServer constructor, and then click the top
function in the call stack referenced by the ABWL error - the List constructor.

The highlighted line is a call to malloc. A quick look at this function shows that
a return to the UmtsServer constructor is fairly quick, and nothing seems
unusual. You should continue to track the string of events as they happened to
see if the ABWL error shows itself. Return to the UmtsServer constructor.

31

Rational Test RealTime - Online Tutorial

6. Close the source file for the List constructor, and then click the second function
from the bottom in the call stack referenced by the ABWL error - the
UmtsServer constructor.

What happens next? The NetworkNodes object was assigned 3 List objects in an
array. Immediately following the call to the List constructor, 4 elements are
assigned to this array. Not good. The NetworkNodes object should be an array
of 4 List objects, not 3.

7. In the source code, change the line
networkNodes = new List(3);

to
networkNodes = new List(4);

8. From the File menu, select Save. The revised file UmtsServer.cpp is saved.

This should fix the ABWL error. Before redoing you manual test to verify if the
memory error was fixed, move on to the Performance Profile viewer and see if you
can streamline the performance of the UMTS base station code.

As for the other memory warnings - that's for you to figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to determine if you
can improve performance in the UMTS base station code.

 To locate and fix performance bottlenecks:

1. Select the Performance Profile tab.

2. Within the table, left-click the column title Avg F Time (Average Function Time)
in order to sort the table by this column. (You may want to scroll down the
report a bit to view more data elements in the table.)

For this exercise you have sorted by the Average Function Time - that is, you're
looking at functions that take, on average, the longest time to execute. This isn't
the only potential type of bottleneck in an application - for example, perhaps it
is the number of times one function calls its descendants that is the problem -
but for this exercise, you will look here first.

As the developer of this UMTS base station, you would know that the C
function tcpsck_data_ready() does take a fair amount of time to execute - so you
won't look here first (although feel free to have a look if you wish). Instead look
at a different function in the table.

3. Select the link for the C function checkUmtsNetworkConnection()

A quick look at the source code shows you that the developer treated this as a
dummy function, inserting a "time-waster" to make it appear as if the function
were executing. Simply comment out the line.

32

Runtime Analysis

4. Change the code from
 doSomeStuff(1);

to
 // doSomeStuff(1);

5. From the File menu, select Save

This way, the checkUmtsNetworkConnection() method will do nothing at all. The
next time you perform the manual test, this C++ method should have an execution
time of 0.

There is another UmtsServer class method that also needs to be improved. Have a
look, if you wish.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis feature to
modify the manual test in such a way as to improve code coverage.

 To improve coverage of your code:

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.cpp node and then select the processMessages() child node

4. Drag the slider bar down slightly until you see the line:
if (strcmp(msg->phoneNumber,"5550001")==0)

Notice how the if statement was never true - the else block is green, but the if block is
red. In order to improve coverage of this if statement, you need to make the boolean
expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile phone
sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile phone
simulator, and dial this new phone number. When you have finished, you will check
the memory profiling, performance profiling, and code coverage analysis reports to
see if you have improved matters.

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station code will
have to be rebuilt. The integrated build process of Test RealTime is aware of these
changes, so you do not have to specify the particular files that have been modified.

33

Rational Test RealTime - Online Tutorial

 To rebuild your application:

1. Select the menu item View->Other Windows->Project Window.

2. From the Window menu, select Close All.

3. Select the Project Browser tab in the Project Explorer window that has now
appeared on the right-hand side of the UI.

4. Right-click the BaseStation application node and select Rebuild. When you
select Rebuild, all files are rebuilt, whereas Build simply rebuilds those files that
have been changed. If no files had been changed, you could have just selected
Execute BaseStation.

5. Once the UMTS base station is running (indicated by the appearance of the
Runtime Trace viewer), run the mobile phone simulator as before.

6. Click the mobile phone's On button ().

7. Wait for the mobile phone to connect to the UMTS base station (if you watch the
dynamic trace closely, you'll notice a display of all the actions that occur when a
phone registers with the server). The time should appear in the mobile phone
window.

8. Once connected, dial the phone number 5550001, then press the button
again to send this number to the UMTS base station (again, watch the dynamic
trace update).

9. Success! You have connected to the intended party. Stop right here to see the
results of your work. Close the mobile phone window by clicking the button
on the right side of its window caption. As you may recall, this action will shut
down the UMTS base station as well.

10. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

11. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open with
refreshed information. (Alternatively, right-click the BaseStation node and select
View Report->All.)

12. Close the Project Explorer window to the right and the Output Window at the
bottom.

So have you improved your code and increased code coverage?

34

Runtime Analysis

Verifying Success

Was the memory leak eliminated?

 To check that the memory leak was fixed:

1. Select the Memory Profile tab.

2. Maximize the window

3. In the Report Window on the left-hand side of the screen, look inside the node
labeled Test #2 - do you see the ABWL error anymore?

You successfully eliminated the ABWL error. Have you improved performance?

 To check that performance was improved:

1. Select the Performance Profile tab.

2. Select the menu option Performance Profile->Test by Test

3. In the Report Window on the left-hand side of the screen, left-click the node
labeled Test #2

4. Sort the table by Avg F Time - do you see the function
checkUmtsNetworkConnection()?

You successfully improved performance. Was code coverage improved?

 To check that code coverage was improved:

1. Select the Code Coverage tab.

2. In the Report Window on the left-hand side of the screen, open the node for
UmtsConnection.cpp and then left-click the method processMessages()

3. Scroll down until you can see the if statement for which you have attempted to
force an evaluation of true - did you? Has code coverage been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of code
coverage.

4. Select the menu option Code Coverage->Test by Test

5. In the Report Window on the left-hand side of the screen, reselect the method
processMessages()

6. With your mouse anywhere within the Source tab of the Code Coverage viewer,
right-click and select CrossRef

7. Scroll the Code Coverage viewer to expose the line of code that has been newly
covered and then left-click it:
strcpy(response.command,cmd_accepted);

35

Rational Test RealTime - Online Tutorial

Notice that only Test #2 is mentioned. However, what tests are listed for the if
statement itself?

8. Left-click the line
if (strcmp(msg->phoneNumber,"5550001")==0)

Both Test #1 and Test #2 are listed. As further proof, do the following.

9. With your mouse anywhere on the Source tab of the Code Coverage viewer,
right-click and deselect Cross Reference

10. In the Report Window, on the left-hand side of the screen, open the Tests node
and deselect the checkbox next to Test #2.

Since you have deselected Test #2, all you are left with is the code coverage that has
resulted from running Test #1, and Test #1 never forced the if statement to evaluate
to true. Thus the newly covered code has become red again - in other words,
unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the Test RealTime Text
Editor, you simply rebuilt your application and used the mobile phone simulator to
initiate further interaction. A second look at the runtime analysis reports validated
the accuracy of your changes. Consider the speed with which you could perform
these monitoring activities once you are familiar with the user interface...

Conclusion

Conclusion - with a Word about Process

Automated memory profiling, performance profiling, runtime tracing, and code
coverage analysis - no less important in the embedded world than elsewhere in
software. So why is it done less often? Why is it so much harder to find solutions for
the embedded market? It is because embedded software development involves
special restrictions that make these functions more difficult to achieve, particularly
when speaking of target-based execution:

• strong real-time timing constraints

• low memory footprints

• multiple RTOS/chip vendors

• limited host-target connectivity

• complicated test harness creation for target-hosted execution

36

Runtime Analysis

• etc.

Rational Test RealTime and Rational PurifyPlus RealTime have been built expressly
with the embedded developer in mind, so all of the above complications have been
overcome. Nothing stands between you and the use of a full complement of runtime
analysis features in both your native and target environment.

So use them! It should be automatic - part of all your regression testing efforts
(discussed in greater detail in the Tutorial conclusion). As you have seen, these
functions are only a mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my final
product to be an instrumented application. Doesn't it have to be if I'm testing
instrumented code?" No, it does not have to be:

11. Using the code coverage feature, generate a series of tests that cover 100% of
your code

12. Instrument that code for full runtime analysis

13. Uncover and address all reliability errors as you test (e.g. memory leaks, overly
slow functions, improper function flow, untested code)

14. Now uninstrument your code - that is, simply shut off all runtime analysis
features and rebuild your application

15. Run your regression suite of tests once more, this time looking only for
functional errors

16. No errors? Time to ship

Make it part of your development process, just another step before you check in code
for the night. Rational Test RealTime and Rational PurifyPlus RealTime simplify
runtime analysis to such an extent that there is no longer a reason not to do it.

Test RealTime users may now proceed to the next lesson: Automated Component
Testing with Test RealTime

Java Track

Runtime Analysis for Java

You will start your tour with the runtime analysis features shared by Test RealTime.
The automated component testing features provided by Test RealTime will be
discussed in the chapter entitled Component Testing with Rational Test RealTime.

37

Rational Test RealTime - Online Tutorial

Runtime analysis refers to Test RealTime's and PurifyPlus RealTime's ability to
monitor an application as it executes. There are a variety of advantages to be gained
from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis

Memory Profiling

One of the reasons for Java's success is its ability to perform memory management -
that is, Java is designed to ensure memory is properly allocated and freed. Does this
mean you, as a developer, no longer have any responsibility regarding your
software's usage of memory?

No.

There are two primary reasons for a developer to remain vigilant:

• Java applications CAN leak memory. Not in the traditional way, where memory
is no longer referenced by your application and yet not accessible by the system
OS - such a problem can not occur. However, if you allocate memory, use it,
then fail to free (i.e. dereference), then the Java garbage collector will never
reclaim it. Do this enough and your system will still run out of memory.

• Excessive memory usage can result in application slowdown. Do you know
how much memory your application is using at any given time? If you have
access to limited memory, do you know how much your application has
allocated? Are there places in your code that could be optimized to use less
memory, thereby freeing systems resources for other activities?

A memory profiling utility indicates a running tally of allocated memory as well as
those portions of your code that reference memory at a specified moment in time
(such as when the program exits). Such information can be used to ensure all
unnecessary memory has been dereferenced and that memory usage has been
optimized.

This function is provided in Rational Test RealTime by the memory profiling feature
for the Java language.

Performance Profiling

38

Runtime Analysis

Optimal performance is, needless to say, crucial for real-time embedded systems.
Measuring performance can be quite difficult, however, particularly when it comes to
determining the specific functional bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch your
application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all real-time constraints
placed upon your system are accommodated.

This function is provided in Rational Test RealTime by the performance profiling
feature for the Java language.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to determine the
portions of code that have gone untested. For many embedded systems, failure is not
an option, so every part of an application must be thoroughly tested to ensure there is
no unhandled scenario or dead code.

In addition, product managers need a concrete measurement to determine where the
team is in the development cycle - in particular, how much more testing needs to be
done. A decreasing number of defects does not necessarily mean the product is
ready; it might simply mean the portions of code that have been tested appear to be
ready.

Code coverage measurement tools observe your running application, flagging every
line of code as it executes. Advanced tools - such as Test RealTime and PurifyPlus
RealTime - are also able to differentiate different types of execution, such as whether
or not a do-while loop executed 0 times, 1 time, or 2 or more times. These advanced
measurements are critical for software certification in industries such as avionics.

This function is provided in Rational Test RealTime by the code coverage feature for
the Java language.

Runtime Tracing

As all embedded developers quickly learn, intentions don't necessarily translate into
reality. There can often be a vast difference between what you want to happen and
what actually happens as your application executes.

This problem becomes more severe when the code is inherited. Yes, you could try to
piece things together yourself, but system complexity might just undercut your
efforts at understanding the code.

39

Rational Test RealTime - Online Tutorial

And what about multi-threaded applications? If you've ever encountered race
conditions or deadlocks, you know how difficult it can be to uncover the source of
the problem.

This is where runtime tracing monitors come in. These utilities graphically display
the sequence of function or method calls in your running application - as well as the
active threads - illustrating through pictures what is actually happening. With this
information, unexpected exceptions can be easily traced back to their source, complex
procedures can be distilled to their essence, threading conflicts can be resolved and
inherited code can jump off the page and display its inherent logic.

This function, using the industry standard Unified Modeling Language for its
graphical display, is provided in Rational Test RealTime by the runtime tracing
feature for the Java language.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving the four
runtime analysis features of Test RealTime and PurifyPlus RealTime to which you
have just been introduced. Pay close attention not only to the capabilities of these
features but also to how they are used. The better you understand these features, the
more quickly you will be able to adopt them within your own development process.

If you have never run this tutorial before, make sure your machine has a temporary
folder in which you can store the test project you will be creating. For the tutorial, it
is assumed that the test project will be stored in a folder called tmp

Do you have JDK 1.3.1 or 1.4.0 installed? This is necessary for performance of the
tutorial.

During installation of Rational Test RealTime:

• on Windows - A local Microsoft Visual Studio compiler and JDK are located,
based on registry settings. Only the compiler and JDK located during
installation will be accessible within Test RealTime.

• on Unix/Linux - The user is confronted by two interactive dialogs. These
dialogs serve to clarify the location of the local GNU compiler and (if present)
local JDK. Only the GNU compiler and JDK specified within these dialogs will
be accessible within Test RealTime.

If you have run this tutorial before, don't forget to undo the source file edits you
made the last time you ran through it. The following files are modified during the
tutorial:

• LogServer.java

• NetworkLoadMonitor.java

• PhoneNumber.java

40

Runtime Analysis

 To make a different JDK accessible in Test RealTime:

1. Run Test RealTime

2. From the Tools menu, select Target Deployment Port Editor and Start.

3. In the TDP Editor, from the File menu, select Open.

4. Open the .xdp file corresponding to the new JDK for which you would like to
generate support

5. In the TDP Editor, from the File menu, select Save.

6. Close the TDP Editor

Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Creating a Project

Typically, there is a one-to-one relationship between your current development
project and a Test RealTime project. Although your development project may consist
of more than one application, these applications often possess a common theme. Use
the Test RealTime project to enforce that theme.

 To create a project:

1. To start Rational Test RealTime

• Windows - use the Start menu

• Solaris/Linux/HP-UX/AIX - type studio on the command line

2. Select the Get Started link on the left-hand side of the Test RealTime user
interface (UI). Two links will appear on the right-hand side of the UI - one called
New Project and one called Open Project. Select the New Project link. You
should now see the New Project Wizard.

In the Project Name field, enter BaseStation_Java (no spaces).

In the Location field, select the button, browse to the folder in which you
want the BaseStation project to be stored and then select it. This Tutorial will
assume that the project has been stored in the tmp folder.
Click the Next button.

41

Rational Test RealTime - Online Tutorial

3. Select, from the list of Target Deployment Ports currently installed on your
machine, the one you intend to use to compile, link, and deploy your source
code and the Test RealTime testing and/or runtime analysis harness. This is the
same TDP you configured earlier in the tutorial. It is either:

• Java JDK 1.3.1

• Java JDK 1.4.0

Click the Finish button.

That's it. The project has been created - named BaseStation_Java - and a project node
by the same name appears on the Project Browser tab of the Project Explorer window
on the right-hand side of the UI:

Note A project created in PurifyPlus RealTime could also be used in Test
RealTime; a project created in Test RealTime, opened in PurifyPlus RealTime,
will be limited to runtime analysis - that is, no tests can be executed and no
test reports can be viewed.

Starting a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

• the type of testing or runtime analysis activity you would like to perform first

 To start a new activity:

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on the runtime
analysis features, so select the Runtime Analysis link. This will bring up the
Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files for your
current development project. For this tutorial, you will directly select the source
files. Select the Add button.

3. Browse to folder into which you have installed Test RealTime and then access
the folder \examples\BaseStation_Java\src\baseStation

4. Make sure All Java Files in the Files of Type dropdown box is selected, then left-
click-hold-and-drag over all of the eleven Java source files. Now click the Open
button.
You should see these eleven files listed in the large listbox of the Application
Files window.
Click Next.

42

Runtime Analysis

5. At this time, an analysis engine parses each source file - referred to as tagging.
This process is used to extract the various methods and classes located within
each source file, simplifying code browsing within the UI.

6. In the window entitled Selective Instrumentation you have the ability to select
those classes/methods that should not be instrumented for runtime analysis.
Such selective instrumentation ensures that the instrumentation overhead is
kept to a minimum. For this Tutorial, you will be monitoring everything, so
simply click the Next button.

7. In the window entitled Configuration Settings for Java, you need to define your
application's class path as well as the fully qualified name of the main class for
your application.

In the Class path text box, click the button, then the button, and then
browse to and select the folder \examples\BaseStation_Java\src (located in the
Test RealTime installation folder). The package used by the Java-based UMTS
base station is named baseStation, and it's located in the src folder you just
referenced.

Note For Windows users, if a folder in the path has a name containing a
space, change that name following the DOS 8.3 naming convention rules (such
as replacing C:\Program Files with C:\Progra~1).

• In the Java main class text box, select the BaseStation class from the dropdown
list. Your screen should look like this:

Now click the Next button.

8. You have now reached the window entitled Application Node Name. Enter the
name of the application node that will be created at the conclusion of the
Runtime Analysis Wizard; since you will be monitoring execution of the Java-
based UMTS base station, type the word BaseStation within the text field
labeled Name.

9. You also need to make some minor changes to the way you would like the TDP
to be used. These modifications are specifically aimed at the memory profiling
feature and are being used simply to illustrate additional concepts within the
Tutorial.
At the bottom of the Application Node Name window, click the Configuration
Settings button.

10. Expand the Runtime Analysis node on the left-hand side of the Configuration
Settings window, expand the Memory Profiling child node, and then left-click
the JVMPI child node.

43

Rational Test RealTime - Online Tutorial

11. Test RealTime uses the JVMPI interface of supported JVMs to acquire memory
profiling information. The following custom changes should be made to the
Configuration for the purposes of this tutorial:

• On the right-hand side of the window, set the Value of the Take a Snapshot
setting to After Each Garbage Collection. Though it is possible to interactively
take memory snapshots during execution, setting this option ensures you will
have sufficient data to work with in this tutorial.

• Set the Value of Display Only Listed Packages to baseStation (the Value is case-
sensitive, so enter it carefully). This setting ensures you filter out references to
objects derived from classes not explicitly defined within the application-under-
test.

• Set the Value of Collect Referenced Objects to Yes. By collecting referenced
objects, the memory profiling diff functionality will provide greater visibility
into whether or not the application-under-test is properly
allocating/deallocating objects.

12. In the Configuration Settings window, click Ok.

13. In the Application Node Name window, click Next.

14. You are now confronted with the Summary window. Everything should be in
order, so click Finish.

The BaseStation application node has now been created in the Project Explorer
window, on the Project Browser tab, located on the right-hand side of the user
interface. If you expand the BaseStation application node, you should see the
following:

44

Runtime Analysis

Why is the exclude status indicated for all but one .java file? This is because the
build process need only reference the source file containing the main Java class when
calling the Java compiler. This source file is BaseStation.java.

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer window, and
within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group, application and
test nodes created for the active project. The project node, named BaseStation_Java,
contains an application node named BaseStation; the application node contains a list
of all of the source files required to build the UMTS base station application.

The second tab - the Asset Browser tab - lets you browse all of your source and test
files. If the selected Sort Method is By File, you are presented with a file-by-file listing
of test scripts, source code and source code dependents (this last is applicable to C,
C++ and Ada only). Note how each source file can be expanded to display every class
declaration and method definition within them. Double-clicking any test
script/source file node will open its contents within the Test RealTime editor;
double-clicking any class declaration or method definition node will open the
relevant source file/header file to the very line of code at which the
definition/declaration occurs. (To close a Text Editor window, right-click its
associated tab and select Close.)

There are two other sort methods as well on the Asset Browser. The first, By Object,
lists classes and methods independent of their associated source files. The second, By
Directory, sorts source files based on their associated Java packages.

You may have noticed along one of the toolbars at the top of the UI that the TDP you
selected in the New Project Wizard is listed in a dropdown box. In fact, this is not a
reference to the TDP, it is a reference to the Configuration whose base TDP was the
one you selected in the wizard - in the case of this tutorial, it is a TDP supporting JDK
1.3.1 or 1.4.0. (Configurations are initially named after their base TDP, but this name
can be changed.) Should you have multiple configurations for the same project, use
this dropdown box to select the active Configuration for execution.

Finally, to the right of the Configuration dropdown list is the Build button. This
button is used to build your application for application nodes and the test harness for
test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

• a test driver

The downward-facing arrow associated with the Build button lets the user decide
from which point the build process should initiate and what runtime analysis

45

Rational Test RealTime - Online Tutorial

features should be used. The runtime analysis features do not have to be used at the
same time; this Build options window provides a quick and simple method for
deselecting undesired runtime analysis features immediately prior to execution of the
build process.

Armed with this knowledge, proceed to Exercise Two.

Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

When performing runtime analysis, your source code must be instrumented.
Instrumentation, by default, is enabled for all four runtime analysis features - that is,
for memory profiling, performance profiling, code coverage analysis and runtime
tracing. All four features are turned on by default.

 To build and execute the application:

1. In order to instrument, compile and execute the UMTS base station application
in preparation for runtime analysis, simply ensure the BaseStation application
node is selected on the Project Browser tab of the Project Explorer window, and
then click the Build button.
Do so now.

Note More information about the source code insertion technology can be
found in the User Guide, in the chapter Product Overview->Source Code
Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the Build tab,
you can see the instrumentation and compilation phases of the build process as
they occur. A double-click on an error listed within any of the Output Window
tabs opens the relevant source code file to the appropriate line in the Test
RealTime Text Editor.

3. The build process has completed, and the UMTS base station is running, when
the UML-based sequence diagram generated by the runtime tracing feature
appears. (More about this feature in a moment.)

4. Close the Project Explorer window on the right-hand side of the UI by clicking
the Close Window button; do the same for the Output Window at the bottom
of the UI.

46

Runtime Analysis

Notice how the graphically displayed data in the Runtime Trace viewer dynamically
grows - this is because the UMTS base station is being actively monitored. The UMTS
base station endlessly searches for mobile phones requesting registration; the
Runtime Trace viewer reflects this endless loop. If you wish, use the Pause toolbar
button to stop the dynamic trace for a moment (the trace is still being recorded, just
no longer displayed in real time). In addition, use the Zoom In and Zoom Out

buttons on the toolbar to get a better view of the graphical display (or right-click-
hold within the Runtime Trace viewer and select the Zoom In or Zoom Out options).
Undo the Pause when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary importance
right now is interaction with the UMTS base station. You'll do this by using the
mobile phone simulator mentioned earlier in the Overview section of this tutorial.
Through this manual interaction you will expose careless memory usage,
performance bottlenecks, incomplete code coverage, and dynamic runtime
sequencing.

Interacting with the Application

 To run the application:

1. Start the mobile phone by running the provided mobile phone executable built
for your operating system. The mobile phone executable is located within the
Test RealTime installation folder in the folder
\examples\BaseStation_C\MobilePhone\. The name of the executable depends
on your operating system:

• Windows: MobilePhone.exe

• Solaris: MobilePhone.SunOS

• Linux Suse: MobilePhone.Linux

• Linux Redhat: MobilePhone.Linux_Redhat

• HP-UX: MobilePhone.HP-UX

• AIX: MobilePhone.AIX

A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you watched
the Runtime Trace viewer closely, you would have noticed a display of all the
internal method calls of the UMTS base station that occur when a phone
attempts to register). The current system time should appear in the mobile
phone window when connection has been established.

47

Rational Test RealTime - Online Tutorial

4. Once connected, dial the phone number 5550000, then press the button to
send this number to the UMTS base station (again, try to see the Runtime Trace
viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the phone is
busy. Shut off the simulator by closing the mobile phone window via the
button in its upper right corner.

The UMTS base station is designed to shut off when a registered phone goes off
line. Not a great idea for the real world, but it serves the Tutorial's purposes
well. Alternatively, you could have just used the Stop Build button in the
toolbar.

6. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base station
stopped (i.e. once the instrumented application stopped), all runtime analysis
information was written to user accessible reports that are directly linked to the
UMTS base station source code. In order to look at these reports:

7. Reopen the Project Explorer window by selecting the menu item View->Other
Windows->Project Window

8. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open.
(Alternatively, right-click the BaseStation application node and select View
Report->All.)

9. Close the Project Explorer window to create room for the now-opened reports.
You may also want to resize the left-hand window to gain additional room.

Understanding Runtime Tracing

The sequence diagram produced by the Runtime Tracing feature uses a notation
taken from the Unified Modeling Language, thus it can be correctly referred to as a
UML-based sequence diagram.

 To view the UML sequence diagram report:

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all method
calls involved in the execution of the UMTS base station code. Using the toolbar

48

Runtime Analysis

buttons , zoom out from the tracing diagram until you can see at least
four vertical bars.

3. Make sure you are looking at the top of the runtime tracing diagram using the
slider bar on the right.

4. Right-click within the runtime tracing diagram and select Hide Memory Usage
Bar. Repeat in order to select Hide Coverage Bar and Hide Thread Bar. You will
return to these bars in a moment.

What you are looking at is a sequence diagram of all events that occurred during the
execution of your code.

The vertical lines are referred to as lifelines. Each lifeline represents a Java object
instance. The very first lifeline, represented by a stick figure, is considered the
"world" - that is, the operating system. In this UMTS base station tracing diagram, the
next lifeline to the right represents an object instance named Obj0, derived from the
UmtsServer class.

Green lines are constructor calls, black lines are method calls, red lines are method
returns, and blue lines are destructor calls. Hover the mouse over any method call to
see the full text. Notice how every call and call return is time stamped.

Everything in the Runtime Trace viewer is hyperlinked to the monitored source code.
For example, if you click on the Obj0::UmtsServer lifeline, the source file in which the
UmtsServer class definition appears is opened for you, the relevant section
highlighted. (Close the source file by right-clicking the tab of the Text Editor and
selecting Close.) All function calls can be left-clicked as well in order to view the
source code. Look at the very top of the Obj0::UmtsServer lifeline. It's "birth" consists
of a UmtsServer() constructor. Left-click the constructor if you wish to view the steps
that occur when an object of the UmtsServer class is instantiated.

Notice how the window on the left-hand side of the user interface - called the Report
Window - contains a reference to all classes and class instances. Double-clicking any
object referenced in this window will jump you to its birth in the Runtime Trace
viewer. This window can also be used to filter the runtime tracing diagram; closing a
node associated with a source file or class will collapse all of the associated lifelines
into a single, consolidated lifeline.

Filters

Continue to look around the trace diagram. Can you locate the repetitive loop in
which the UMTS base station looks for attempted mobile phone registration (it
always starts with a call to the method baseStation.LogServer.checkLog())? You can
filter out this loop using a couple of methods. One is to simply hover the mouse over
a method or function call you wish to filter, right-click-hold and select Filter Message.
An alternative method would be to use a predefined filter. You will do both.

49

Rational Test RealTime - Online Tutorial

 To use sequence diagram filters

1. Hover the mouse over any call of the baseStation.LogServer.checkLog() method,
right-click-hold and select Filter Message - the function call should disappear
from the entire trace.

2. Select the menu item Runtime Trace->Filters (you'll see the filter you just
performed listed here)
Click the Import button, browse to the installation folder and then the folder
\examples\BaseStation_Java, and then Open the filter file filters.tft

3. Select BaseStation Phone Search Filter if necessary.

4. Click the OK button.

The loop has been removed.

5. Using the Zoom Level dropdown list on the toolbar, select a level of 50%:

Memory Usage Bar

The Memory Usage Bar is a graphical representation of the amount of memory
allocated by the monitored application at any moment represented within the
runtime tracing diagram.

 To use the Memory Usage bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Memory Usage
Bar.

You can now see, along the left-hand side of the runtime tracing diagram, a red,
vertical bar. The caption of the Memory Usage Bar indicates the maximum
amount of allocated memory that occurred during execution, while the mouse
tool tip can be used to discern the amount of allocated memory at any moment
along the graph. (Depending on your JVM, you may also notice garbage
collection, indicated by areas where there is a sudden drop in the number of
allocated bytes.)

This diagram can be used to expose memory intensive parts of your program
that may in fact be needless churn that slows down overall execution time. You
could trigger garbage collection immediately prior to suspect moments within
your application, using the Runtime Trace viewer to help you decide where the
garbage collection should occur, to study whether or not memory usage has
become excessive. Note that this feature is specific to Java support.

2. Right-click-hold in the Runtime Trace viewer and select Hide Memory Usage
Bar.

50

Runtime Analysis

Coverage Bar

The Coverage Bar highlights, in synchronization with the runtime tracing diagram,
the percentage of total code coverage achieved during execution of the monitored
application. The Coverage Bar's caption states the overall percentage of code
coverage achieved by the particular interaction presently displayed in the Runtime
Trace viewer.

 To use the Coverage bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Coverage Bar.

Scroll down the runtime tracing diagram; note how code coverage gradually
increases until a steady state is achieved. This steady state is achieved following
the moment at which the mobile phone has connected to the UMTS base station.
Dialing the phone number increases code coverage a bit; shutting off the phone
creates a last burst of code coverage up until the moment the UMTS base station
is shut off. Can you locate where, on the runtime tracing diagram, the mobile
phone simulator first connected to the UMTS base station? Note that the
Coverage Bar is available for all supported languages.

2. Right-click-hold in the Runtime Trace viewer and select Hide Coverage Bar.

Thread Bar

The UMTS base station is actually a multi-threaded application; the Thread Bar
graphically indicates the active thread at any given moment within the runtime
tracing diagram.

 To use the Thread bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Thread Bar.

Now you are looking at the Thread Bar. (Hovering your mouse over the Bar
reveals the name of the active thread within a tool tip.) A left-click on the
Thread Bar opens a threading window, detailing thread state changes
throughout your application's execution. Pressing the Filter button in this detail
window specifies the state of each thread within the region of the Thread Bar
that was double-clicked. Note that this thread monitoring feature is also
available for the C++ language.

2. Right-click-hold in the Runtime Trace viewer and select Hide Thread Bar.

Not only can the runtime tracing feature capture standard function/method
calls, but it can also capture thrown exceptions.

3. View the very bottom of the runtime tracing diagram using the slider bar.

Do you see the icons for the catch statement - ? The second Catch
Exception statement is preceded by a diagonal Throw Exception. Why diagonal?

51

Rational Test RealTime - Online Tutorial

Because when the exception was thrown, prior to executing the Catch statement, the
UmtsException constructor was called. Click various elements to view the source
code involved in the thrown exception and thus decipher the sequence of events.

This exception occurred by design, but it is clear how the runtime tracing feature,
through the power of UML, would be extremely useful if you have:

• inherited old or foreign code

• unexpected exceptions

• questions about whether what you designed is occurring in practice

And you are guaranteed the identical functionality for application execution on an
embedded target.

Understanding Memory Profiling

The Memory Profile viewer displays a memory usage report for the application of
interest.

 To view a Memory Profile report:

1. Select the Memory Profile tab.

2. Select the menu item Memory Profile->Hide/Show Data->Hide/Show
Referenced Objects.

The Report Window on the left-hand side of the UI displays a list containing each
memory snapshot and the time at which they occurred; as you may recall, the TDP
Configuration was updated so that a snapshot would occur immediately following
each garbage collection. The Memory Profile tab contains a sortable table (i.e. sortable
via a left-click on a column header) with the following information:

• Method - Each method that, when called, resulted in the instantiation of an
object. A left-click on any method names brings you to the portion of source
code in which this method has been defined.

• Referenced Object Class - If any method in the first column continues to
reference an object at the time of the snapshot, the object is listed in this column.
Of course, many objects are allocated and deallocated before a snapshot - in this
case, the object allocation is recorded but the object reference is not.

• Allocated Objects- Total number of objects created by a method throughout
execution of the monitored application.

• Allocated Bytes - Total number of bytes associated with the objects created by a
method.

52

Runtime Analysis

• L + D Allocated Objects - Total number of objects created by the "local" method
and by any descendant methods - that is, by any method that was called as a
result of the specified method.

• L + D Allocated Bytes - Total number of bytes associated with the objects
created by the "local" method and by any descendant methods.

Note how this table is referred to as a "snapshot" at the very top. A user is able to
predefine moments at which a memory snapshot should take place - this is done via
Configuration Settings. At each snapshot, the JVMPI interface of the targeted JVM is
queried and information about each individual method is acquired. For example, if
you have designed a particular, cyclic portion of your code to deallocate all
unnecessary memory prior to each iteration, set a snapshot to occur each time the
cycle is entered. The Memory Profile report contains diff functionality - you will
explore this capability later - that can tell you if additional memory remains allocated
when the cycle is reentered.

Notice how easily this information has been acquired; no work was required on your
part. A real advantage is that memory profiling can now be part of your regression
test suite. Traditionally, if embedded developers looked for careless memory
allocation/deallocation at all, it was done while using a debugger - a process that
does not lend itself to automation and thus repeatability. The memory profiling
feature lets you automate memory leak detection.

And again, the identical functionality can be used on either your host platform or on
your embedded target.

Understanding Performance Profiling

The Performance Profile viewer displays the execution time for all methods executing
within the application of interest, thereby allowing the user to uncover potential
bottlenecks. First, the one or more methods requiring the most amount of time are
displayed graphically in a pie chart. Up to six functions are displayed if each is
individually responsible for more than 5% of total execution time. This is then
followed by a sortable list of every method, with timing measurements displayed.

 To view the Performance Profile report:

1. Select the Performance Profile tab.

Notice how the function checkLog() was responsible for around 75% to 85% of
the time spent processing information in the UMTS base station. By looking at
the table, where times are listed in milliseconds, we can see that this function's
average execution time was between 6 to 7 seconds (it will vary somewhat
based on your machine) and that it has no descendents - i.e. it never calls and
then awaits the return of other functions or methods, which explains why the
Function time matches the F+D time. Is this to be expected? If you wished, you

53

Rational Test RealTime - Online Tutorial

could click on the function name in the table to jump to that function to see if its
execution time can be reduced.

Each column can be used to sort the table - simply click on the column heading.

2. Click the column heading entitled F+D Time

Interestingly, though checkLog() clearly uses the largest amount of execution
time, it is not the "slowest" method when considering descendants. That
distinction goes to readMsg(); though quick by itself, it's execution time when
including descendants is the slowest of all. However, a quick investigation of
the readMsg() function would reveal that this function calls - and that awaits
the return of - readString(), which explains why the execution time of readMsg()
takes longer than readString().

Of course, since this is a multi-threaded application, it is possible for one function to
reveal itself as the slowest performer while, overall, the monitored application is
typically busy doing other things. This would explain why the runtime tracing
diagram does not indicate monopolization of UMTS base station execution following
a call to the checkLog() method (have a look; search for *checkLog* using the Find

button from the toolbar), and thus why performance profiling is such a valuable
supplement to code optimization.

As with the memory profiling feature, notice how easy it was to gather this
information. Performance profiling can now also be part of your regression test suite.

Understanding Code Coverage

And finally, here you have the code coverage analysis report. The code coverage
feature exposes the code coverage achieved either through manual interaction with
the application of interest or via automated testing.

 To view the code coverage report:

1. Select the Code Coverage tab.

On the left hand side of the screen, in the Report Window, you see a reference to
Root and then to all of the source files of the UMTS base station. Root is a global
reference - that is, to overall coverage. For each individual source file, a small
icon to the left indicates the level of coverage (green means covered, red means
not covered).

In the Code Coverage viewer, on the Source tab, a graphical summary of total
coverage is presented in a bar chart - that is, information related to Root. Five
levels of code coverage are accessible for Java, and those five levels are
represented here. (Four more levels of coverage are accessible when working
with the C language - up to and including Multiple Conditions/Modified
Conditions.) Notice how, on the toolbar, there is a reference to these five
possible coverage levels (F, E, B, I and L toolbar buttons).

54

Runtime Analysis

2. Deselect the L toolbar button to disable Loops Code Coverage.

Notice how the bar chart is updated.

3. Select Loops Code Coverage again by selecting the L button.

4. In the Report Window to the left, select the HardwareMonitor.java node.

The Source tab now displays the source code located in the file
HardwareMonitor.java. This code is colored to reflect the level of coverage
achieved. Green means the code was covered, red means the code was not
covered.

Within the run() method you should see a while statement that is colored
orange and sitting on a dotted underline. This is because the while statement
was only partially covered.

5. Click on the orange while keyword in the run() method.

As you can see, the while loop was only executed multiple times, not once or
zero times. Why should you care? Well some certification agencies require that
all three cases be covered for a while loop to be considered covered. If you don't
care about this level of coverage, just deselect Loops Code Coverage:

6. Deselect the L toolbar button to disable Loops Code Coverage.

Now the while loop is green. If you would like to add a comment to your code
indicating how this loop is not covered by typical use of the mobile phone
simulator, access the code by right-clicking the while statement and selecting
Edit Source.

7. Select the Rates tab in the Code Coverage viewer

The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual methods

Click various nodes in the Report Window in order to browse the Rates tab.
Note how a selection of the Root node gives you a summary of the entire
application.

8. Select the menu item File->Save Project

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your source code
for all four runtime analysis features. Manual interaction (in your case, via a mobile
phone simulator) was monitored, and the subsequent runtime analysis results were
displayed for you graphically. Source code is immediately accessible from these

55

Rational Test RealTime - Online Tutorial

reports, so nothing prevents the developer from using the results to correct possible
anomalies.

In addition, using the Test by Test option provided with each runtime analysis
feature (introduced in the Further Work section for code coverage), you can easily
discern the effectiveness of a test, ensuring maximal reuse without waste.

Your next step is to use the runtime analysis results to remove memory leaks,
improve performance, and increase code coverage.

Exercise Three

In this exercise you will:

• Improve the UMTS base station code by correcting memory usage errors and by
improving performance

• Increase code coverage

• Rerun the manual test to verify that the defects have been fixed

Using Memory Profiling to Remove Memory Leaks

Although, from one perspective, memory leaks are not possible with Java, failure to
dereference objects will still, in the end, monopolize memory and potentially cause
problems with your software. By using the diff functionality of the memory profiling
feature, you will uncover poor object allocation/deallocation practice within the
code.

 To locate and detect memory problems:

1. Select the Memory Profile tab.

2. If you performed the Further Work section for memory profiling, skip this step;
otherwise, select the menu item Memory Profile->Show/Hide Data->Diff with
Previous Snapshot.

Two new columns have appeared - Referenced Objects Diff AUTO and
Referenced Bytes Diff AUTO. These columns contain a diff between each
snapshot and the previous snapshot for every listed method; the word
"referenced" refers to those objects for which a reference exists following a
snapshot. It is also possible for the user to diff any two selected snapshots; this
custom diff would be labeled USER to differentiate it from the AUTO diff you
will be studying. (Note that a blank cell in any diff column means the object did
not exist in the previous snapshot.)

Recall that the snapshots for this Tutorial occurred immediately after each
garbage collection. This means that any object references uncovered by a diff are
suspicious; referenced objects can not be deallocated by the garbage collector.

56

Runtime Analysis

3. Sort by the column Referenced Objects Diff AUTO by clicking on the column
header.

4. Search the various snapshots for a method that recurrently is responsible for
continuously referenced objects.

Have you noticed that the GetChannels() method reappears throughout?
Perhaps you should look at the code to understand why this method is so often
associated with continuously referenced objects.

5. Left-click any reference to the GetChannels() method in the first column of the
table.

6. Scroll the Text Editor until you can view the GetChannels() method.

Inspection of the GetChannels() function reveals that it creates ten new channels
each time it is called - which means ten channels should be removed (i.e.
dereferenced) elsewhere in the code. This dereferencing is the responsibility of
the ReleaseChannels() method, located right below the definition of
GetChannels(), and the for statement of this method has been improperly
written. Currently, the ReleaseChannels() method only dereferences nine
objects. You need to fix the code.

7. Modify the for statement of the ReleaseChannels() method as follows (you are
adding an =):

Change the code from
for (i=0;i<10;i++)

to
for (i=0;i<=10;i++)

8. Select the menu item File->Save.

9. Right-click the tab for the source file you have just modified and select Close.

This should fix the problem. Before redoing you manual test to verify if the memory
error was fixed, move on to the Performance Profile viewer and see if you can
streamline the performance of the UMTS base station code.

As for the other methods that appear to continuously reference objects following
garbage collection - are they also leaking? That's for you to figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to determine if you
can improve performance in the UMTS base station code.

 To locate and improve performance issues:

1. Select the Performance Profile tab.

57

Rational Test RealTime - Online Tutorial

2. Within the table, left-click the column title Function Time in order to sort the
table by this column.

For this exercise you have sorted by the Function Time - that is, you're looking
at functions that take the longest time, overall, to execute. This is isn't the only
potential type of bottleneck in an application - for example, perhaps it is the
number of times one function calls its descendants that is the problem - but for
this exercise, you will look here.

As the developer of this UMTS base station, you would know that the method
read_string() takes a fair amount of time to execute - so you won't look here first
(although feel free to have a look if you wish). Instead look at the second
function in the table.

3. Select the link for the method checkLog().

A quick look at the source code shows you that the developer has added an
inexplicable loop - perhaps a dummy function to act as a "time-waster". Simply
comment out the line.

4. Change the code from
 for (x=1,y=100000;x<=100000;x++) y=y/x;

to
 // for (x=1,y=100000;x<=100000;x++) y=y/x;

5. Select the menu item File->Save.

6. Right-click the tab for the source file you have just modified and select Close.

You have now eliminated a loop that was adding significant execution time to the
checkLog() method.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis feature to
modify the manual test in such a way as to improve code coverage.

 To improve code coverage:

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer.

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.java node, then open the baseStation.UmtsConnection child
node, and then select the run() child node.

4. Drag the slider bar down slightly until you see the line:
case_connected:

58

Runtime Analysis

Notice how the if statement was never true - only the else block is green, but the if
block is red. In order to improve coverage of this if statement, you need to make the
boolean expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile phone
sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile phone
simulator, and dial this new phone number. When you have finished, you will check
the memory profiling, performance profiling, and code coverage analysis reports to
see if you have improved matters.

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station code will
have to be rebuilt. The integrated build process of Test RealTime is aware of these
changes, so you do not have to specify the particular files that have been modified.

 To rebuild the application:

1. Select the menu item View->Other Windows->Project Window.

2. From the Window menu, select Close All.

3. Select the Project Browser tab in the Project Explorer window that has now
appeared on the right-hand side of the UI.

4. Right-click the BaseStation application node and select Build
(If you select Rebuild, all files will be rebuilt. Build simply rebuilds those files
that have been changed. If no files had been changed, you could have just
selected Execute BaseStation.)

5. Once the UMTS base station is running (indicated by the appearance of the
Runtime Trace viewer), run the mobile phone simulator as before. (Note how
the runtime trace appears to stop - this is because the filter is still applied and
thus the recurrent loop is not visible.)

6. Click the mobile phone's On button ().

7. Wait for the mobile phone to connect to the UMTS base station (if you watch the
dynamic trace closely, you'll notice a display of all the actions that occur when a
phone registers with the server). The time should appear in the mobile phone
window.

8. Once connected, dial the phone number 5550001, then press the button
again to send this number to the UMTS base station (again, watch the dynamic
trace update).

59

Rational Test RealTime - Online Tutorial

9. Success! You have connected to the intended party. Stop right here to see the
results of your work. Close the mobile phone window by clicking the button
on the right side of its window caption. As you may recall, this action will shut
down the UMTS base station as well.

10. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

11. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open with
refreshed information. (Alternatively, right-click the BaseStation node and select
View Report->All.)

12. Close the Project Explorer window to the right and the Output Window at the
bottom.

So have you improved your code and increased code coverage?

Verifying Success

Was the memory leak eliminated?

 To check that the memory leak was fixed:

1. Select the Memory Profile tab.

2. In the Report Window on the left-hand side of the UI, left-click the first
snapshot for Test #2.

3. Select the column header for Reference Bytes Diff AUTO, then select the column
header for Reference Objects Diff AUTO.

4. Scroll down and study each of the snapshots for Test #2 - is the GetChannels()
method still responsible for referenced objects?

You successfully eliminated the memory leak. Have you improved performance?

 To check that performance was improved:

1. Select the Performance Profile tab.

2. Select the menu option Performance Profile->Test by Test

3. In the Report Window on the left-hand side of the screen, left-click the node
labeled Test #1 in order to deselect it.

4. Sort the table by Function Time if it is not sorted by this value already.

5. Do you see the function checkLog()?

60

Runtime Analysis

You successfully improved performance. Was code coverage improved?

 To check that code coverage was improved:

1. Select the Code Coverage tab.

2. In the Report Window on the left-hand side of the screen, open the node for
UmtsConnection.java, open the baseStation.UmtsConnection child node, then
left-click the run() node.

3. Select the menu option Code Coverage->Test by Test.

4. Scroll down until you can see the if statement for which you have attempted to
force an evaluation of true - did you? Has code coverage been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of code
coverage.

5. With your mouse anywhere within the Source tab of the Code Coverage viewer,
right-click and select CrossRef

6. Scroll the Code Coverage viewer to expose the line of code that has been newly
covered and then left-click it:
message.setCommand(UmtsMsg.ACCEPTED);

Notice that only Test #2 is mentioned. However, what tests are listed for the if
statement itself?

7. Left-click the line
if (message.getPhoneNumber().equals("5550001"))

Both Test #1 and Test #2 are listed. As further proof, do the following.

8. With your mouse anywhere on the Source tab of the Code Coverage viewer,
right-click and deselect Cross Reference

9. In the Report Window, on the left-hand side of the screen, open the Tests node
and deselect the checkbox next to Test #2.

Since you have deselected Test #2, all you are left with is the code coverage that has
resulted from running Test #1, and Test #1 never forced the if statement to evaluate
to true. Thus the newly covered code has become red again - in other words,
unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the Test RealTime Text
Editor, you simply rebuilt your application and used the mobile phone simulator to
initiate further interaction. A second look at the runtime analysis reports validated

61

Rational Test RealTime - Online Tutorial

the accuracy of your changes. Consider the speed with which you could perform
these monitoring activities once you are familiar with the user interface...

Conclusion

Conclusion - with a Word about Process

Automated memory profiling, performance profiling, runtime tracing, and code
coverage analysis - no less important in the embedded world than elsewhere in
software. So why is it done less often? Why is it so much harder to find solutions for
the embedded market? It is because embedded software development involves
special restrictions that make these functions more difficult to achieve, particularly
when speaking of target-based execution:

• strong real-time timing constraints

• low memory footprints

• multiple RTOS/chip vendors

• limited host-target connectivity

• complicated test harness creation for target-hosted execution

• etc.

Rational Test RealTime and Rational PurifyPlus RealTime have been built expressly
with the embedded developer in mind, so all of the above complications have been
overcome. Nothing stands between you and the use of a full complement of runtime
analysis features in both your native and target environment.

So use them! It should be automatic - part of all your regression testing efforts
(discussed in greater detail in the Tutorial conclusion). As you have seen, these
functions are only a mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my final
product to be an instrumented application. Doesn't it have to be if I'm testing
instrumented code?" No, it does not have to be:

• Using the code coverage feature, generate a series of tests that cover 100% of
your code

• Instrument that code for full runtime analysis

• Uncover and address all reliability errors as you test (e.g. poor memory
management, overly slow functions, improper function flow, untested code)

• Now uninstrument your code - that is, simply shut off all runtime analysis
features and rebuild your application

62

Runtime Analysis

• Run your regression suite of tests once more, this time looking only for
functional errors

• No errors? Time to ship

Make it part of your development process, just another step before you check in code
for the night. Rational Test RealTime and Rational PurifyPlus RealTime simplify
runtime analysis to such an extent that there is no longer a reason not to do it.

Test RealTime users may now proceed to the next lesson: Automated Component
Testing with Test RealTime

63

Component Testing

C, C++ and Ada Track

Automated Component Testing

You have just completed a variety of what are, in essence, reliability tests on the
UMTS base station. In other words, you have verified the absence of memory leaks,
the optimization of performance, the sensibility of process flow, and the
completeness of your testing.

But does the base station code do what it is designed to do? And wouldn't it be useful
to create automated tests rather than rely solely on manual interaction?

Runtime analysis completes the picture, but functional testing of your code gets to
the heart of the matter - that is, will your application generate the results it was
designed to achieve. Rational Test RealTime provides you with three automated
testing features to address your testing needs.

• Component Testing for C: For use with C functions and Ada functions and
procedures.

• Component Testing for C++: For use with C++ classes.

• System Testing for C: For use with C threads, tasks, processes, and nodes.

You'll start with a look at the component testing feature for C and Ada.

Component Testing for C and Ada

Component Testing for C and Ada

Component Testing for C and Ada

When speaking of C and Ada programs, the term "component testing" - also
sometimes referred to as "unit testing" - applies to the testing of C functions and/or
Ada functions and procedures. A function/procedure is passed a possible set of
inputs, and the output for each set is validated to ensure accuracy. This can be done
with either a single function/procedure, a group of unrelated functions/procedures,

64

Index

or with a sequential group of functions - i.e. one function calling another, verifying
the overall or integrated, result.

Sounds simple but, unfortunately, in the embedded world its practice can be quite
difficult. Why?

• What if the function you wish to test relies on the existence of other functions
that have not yet been coded?

• How will you call the function-under-test in the first place?

• How will you create and maintain a variety of potential inputs and associated
outputs - that is, how will you make data-driven testing manageable?

• What kind of effort and knowledge is required to run the test on your target
architecture - that is, in the intended, native environment?

The component testing feature of Rational Test RealTime for the C and Ada
languages provides a means for automating and verifying the above concerns.
Through source code analysis:

• Yet-to-be coded functions and procedures are "stubbed"; in other words, these
functions are created for you

• A test driver is generated to facilitate communication between your running
code and the test

• A test harness, independent of your test, is constructed to ensure adoption of
your target architecture and thus enabling in-situ test execution

Plus, thanks to a powerful test script API:

• Define stub responses to varied input generated by the function(s) under test

• Enable highly detailed data definitions for data-driven testing

With the assistance of the Target Deployment technology, the end result is an
extensible, flexible, automated testing tool for component and integration testing.

Testing Exercises

Exercise One

In this exercise you will:

• uncover a part of the UMTS base station C code that requires further testing

• create a new activity in which you build a unit test

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

65

Rational Test RealTime - Online Tutorial

Using Code Coverage to Find Untested Code

During the code coverage review, you surely noticed a fair amount of untested code.
For this tutorial, you will focus on one particular section.

 To select a particular section of code:

1. First, select the menu item File->Save Project

2. If necessary, select the Code Coverage tab.

3. In the Report Window on the left-hand side of the screen, open the UmtsCode.c
node and then left-click the code_int() function

This function contains two partially covered while statements - focus on the second
while statement (you may need to scroll down a bit):
 while (x!=0)

A left-click on the while statement shows you that of the three possible types of
coverage, only one type was achieved - 2 or more loops. You should really create one
or more tests to appropriately cover this while statement - but first, perhaps you
should spend a little more time understanding what the code_int function does.

Code Review

It doesn't make much sense to test a function without understanding it first.

 To locate the source code:

1. Right-click-hold the mouse over the while statement you have just inspected
and select Edit Source

The objective of the code_int function is to place a given integer at the end of a buffer
with the following format:
I[length of number][lowest order digit]....[highest order digit]

Thus the number 1234 would be stored at the end of the buffer as I44321.

That's about it. Have a look at the code you're about to test if you wish. Once ready,
proceed to the next step in which you will build your test.

Adding a New Configuration to Your Test RealTime Project

Since you will be testing a C function, you should use a Target Deployment Port for
the C language. Rather than modifying the existing Configuration, you will now
create a new one whose base TDP is a TDP for the C language.

 To add a new configuration to a project:

1. Select the menu item Project->Configuration

66

Index

Note, in the Configurations window that has just appeared, the existence of the
Configuration you have been working with up to now.

2. Click the New... button

3. In the dropdown list of the New Configuration window, choose either C Visual
6.0 if you have Microsoft Visual C++ 6.0 installed, or, if you are using
GNU/native compilers, select the item appropriate for your operating system:

• Windows - C Gnu 2.95.3-5 (mingw)

• Solaris - C Solaris - SC5.1

• Linux - C Linux - Gnu 2.95.2

• HP-UX - C HP-UX compiler

• AIX - C AIX - IBM C Compilers

Do not be concerned if the version of the GNU compiler you have installed does
not match the version mentioned for the TDP. The differences are not relevant
for this tutorial and thus other versions are supported equally as well.

4. Click the OK button to close the New Configurations window.

5. Click the Close button to close the Configurations window.

6. In the toolbar dropdown list that mentions the current Configuration - named
after the C++ TDP you selected at the beginning of the tutorial - select the new
Configuration, based on the C TDP you just added to the project. The following
is what the box should look like if you're using the Microsoft Visual C/C++
TDPs:

Now the C language TDP will be used by any new node generated via the Activity
Wizard.

Creating a C and Ada Component Test

Using the Component Testing Wizard, you will now create a test for all functions in
the file UmtsCode.c - including the code_int function that contains the while
statement for which you wish to improve coverage.

 To create a component test:

1. If the Project Explorer window is not visible, from the View menu, select Other
Windows and Project Window.

2. From the Window menu, select Close All.

3. Click the toolbar Start button to relaunch the Start Page.

67

Rational Test RealTime - Online Tutorial

4. Select the Activities link on the left-hand side of the Start Page.

5. Select the Component Testing link that has now appeared.

6. In the Application Files window, notice how all the C source files of your
development project are already visible.

Select the Compute static metrics option. This allows the measurement of code
complexity from which you can prioritize your test campaign.

Click the Next button.

7. In the Components Under Test window, you are asked to specify which
functions you would like to test. There are a variety of ways for making this
decision. One method is to use the static metrics that have just been
automatically calculated. Certain measurements of code complexity are listed
for you:

• V(g) - Also called the Cyclomatic Number, it is a measure of the complexity of a
function that is correlated with difficulty in testing. The standard value is
between 1 and 10. A value of 1 means the code has no branching. A function's
cyclomatic complexity should not exceed 10

• Statements - Total number of statements in a function.

• Nested Level - Statement nesting level.

Sorting by any of these metrics columns - by left-clicking a column header - lets
you prioritize your test selection, choosing the more complicated functions first.

Additional metric information can be viewed by selecting the Metrics Diagram
button on the lower right-hand side of the screen. Selection of this button opens
a graph enabling visualization of two, selected static metrics graphed against
one another. Select a data point in this graph to indicate your desire to test the
associated functions.

For this Tutorial, your test selection is based on the desire to increase code
coverage, so the static metrics do not affect your decision. You need to test the
code_int function. However, to help you get a better understanding of how the
component testing feature of Test RealTime works, you should select all
functions in the file UmtsCode.c.

8. Left-click the box to the left of every function in the source file UmtsCode.c
(there are five functions in total).

9. Click the Next button.

In the Test Script Generation Settings window, you are asked to make two
decisions

68

Index

• If you've selected more than one function to test, do you want all
functions to be part of the same test script (Single Mode) or do you
want each function to be assigned to its own test script (Multiple
Mode). A single test script would be easier to manage, but multiple
test scripts let you provide custom Configuration settings to each
test.

• Do you want Test RealTime to make some basic assumptions about
test harness and test stub generation? If so, use Typical Mode; if not,
use Expert Mode.

10. Type UmtsCode in the Test Name field - that is, name the test node after the
source file whose functions you will be testing. Leave the default selections. You
will be creating a single test script that automatically stubs all referenced but
undefined functions. Click the Next button.

11. You should now be viewing the Summary window. Click the Next button.

The Component Testing Wizard now analyzes the source code in UmtsCode.c
and creates a test for every function within it.

12. When test script generation has completed, click the Finish button.

In the Project Browser tab of the Project Explorer window on the right-hand side of
the screen, you should now see a component test node named UmtsCode.

Conclusion of Exercise One

The advantages of automated testing is that it enables regression testing - that is, it
ensures nothing regresses. Just because code appeared to be functional in Build X,
doesn't mean that code will continue to be functional in Build X+1.

Few would dispute the usefulness of component testing, but many would claim there
is not enough time to do it. Every effort has been made to simplify this process in
Rational Test RealTime so that you can simply focus on making good tests, getting
readable results, and making quality code.

Exercise Two

In this exercise you will:

• review the autogenerated component test

• improve the autogenerated component test

• execute the component test

The Autogenerated Component Test for C and Ada

The Component Testing Wizard analyzed the file UmtsCode.c and produced a test
script called UmtsCode.ptu. What does this test do?

69

Rational Test RealTime - Online Tutorial

 To edit the generated .ptu script:

1. In the Project Browser tab on the right-hand side of the screen, open the file
UmtsCode.ptu by double-clicking it.

2. Maximize the test script window that has just opened, closing the lower Output
Window to free up some additional space.

3. Click the Asset Browser tab on the right-hand side of the screen and select the
By File sort method.

On the Asset Browser tab you now see each of the five UmtsCode.c functions
listed as a child of the test script UmtsCode.ptu. Each requires its own test; all
test scripts are stored in the .ptu file. Back on the Project Browser tab, you'll
notice that the .ptu file is associated with the source file upon which it was
based. The idea is that when you build the UmtsCode component testing node,
you are actually building a test harness comprised of the .ptu file, the original
source file, the referenced header file and any stubs required for the simulation
of as yet undeveloped code. The build process and test execution, as you recall,
is managed by the information stored in a Configuration which, in turn, is
based on the information stored in a Target Deployment Port.

Component testing scripts for C and Ada are written with a compiler-
independent test script API. For detailed information about the script layout,
take advantage of the Test RealTime Reference Guide accessible via the Help
menu. For the tutorial, only critical script elements will be pointed out.

4. In the Asset Brower tab, double-click the node code_int (child node of
UmtsCode.ptu).

Of particular note are the Service blocks in a test script. Each function in the file
under test is assigned its own Service block. Each Service block can consist of
one or more Test blocks. Each Test block consists of data-driven calls to the
function under test.

Here you see the Service block for the UmtsCode.c function code_int. This is
then followed by native C language calls (indicated by the # symbol) used to
declare the variables x and buffer[200] that are passed to the function code_int,
the function containing the while statement for which we intend to improve
code coverage. As a reminder, here is the declaration for code_int:

void code_int(int x,char *buffer)

The variable declarations are followed by an Environment block. The
Environment block is used to define input (called init - i.e. initial) and output
(called ev - i.e. expected value) values for the variables passed to the function
under test. In the Environment block for the code_int Service block, x is
initialized to 0 and has an expected value of init - that is, a value of 0, the initial
value. buffer is initialized to nothing - which means each of its 200 array
elements are set to 0 - and it has an expected value of init as well.

70

Index

The Test block for code_int consists of a call to this function. Have you noticed
that there is no mention of a return value? Since code_int returns void, nothing
is returned - there is no return value to check.

5. In the Asset Browser tab on the right-hand side of the screen, open the
decode_int node and then double-click on the icon for test 1.

Look at the Test block for the function decode_int - in this case, a return value is
expected - referred to as #ret_decode_int. Notice how the Environment block for the
decode_int function includes an expected value for #ret_decode_int.

You now understand the essence of Rational Test RealTime component testing test
script for C and Ada.

For the purposes of performing useful work, the test script needs to be more detailed
than it is immediately following generation. You need to create good tests that
supply relevant input values and then verify appropriate output values. Rather than
writing it yourself, a revised test has been created for you.

A Customized Component Test

A customized component test script has been created for you. This test will be used
to test the functions within UmtsCode.c - in particular, the function code_int, which
contains the while statement of interest.

 To customize the test:

1. Select the menu item Window->Close All

2. Select the Project Browser tab on the right-hand side of the screen, select the
UmtsCode.ptu node (child of the UmtsCode component testing node), and then
select the menu item Edit->Delete.

3. Right-click the UmtsCode component testing node and select Add Child-
>Files...

4. In the Files of Type dropdown box, select the C and Ada Test Scripts option,
then browse to the Test RealTime installation folder and Open the file
\examples\BaseStation_C\tests\UmtsCode2.ptu

5. After this new test script is analyzed by Test RealTime, your screen should
appear as follows:

71

Rational Test RealTime - Online Tutorial

6. Double-click the node UmtsCode2.ptu

7. Maximize the test script window.

8. Bring the code_int test blocks for UmtsCode2.ptu into view using the Asset
Browser tab. (The Asset Browser tab continues to reference the original test
script - UmtsCode.ptu - because it still exists on your machine - it is simply no
longer referenced by any tests.)

9. As you can see, two Test blocks are now part of the code_int Service block. In
the first Test block the initial value of x has been set to 3 and the expected value
for buffer has been set to I13. In the second Test block, the initial value of x has
been set to 34 and the expected value for buffer has been set to I243. These
expected values should make sense based on the function review you
performed back in Exercise One.

Running a Component Test for C and Ada

Running a component test is as simple as it was to build and execute the UMTS base
station used in the runtime analysis exercises.

 To execute the test:

1. From the File menu, select Save Project.

2. From the Window menu, select Close All

3. On the Project Browser tab, select the UmtsCode component testing node (the
parent node of the UmtsCode2.ptu and UmtsCode.c nodes) and then press the
Build toolbar button.

4. The test is executed as part of the build process - you will know the test has
finished executing when the green execution light on the lower-right of the UI
stops flashing.

You may have forgotten that the runtime analysis tools are still selected in the
Build options; the file under test - UmtsCode.c - was instrumented for the
memory profiling, performance profiling, code coverage analysis and runtime
tracing features of Test RealTime, which explains why the Runtime Trace
viewer appears during the run. Notice how this feature tracked all of the calls
made to functions in UmtsCode.c. Each call is a test in the component testing
test script that just executed.

5. In the Project Browser tab on the right-hand side of the screen, double-click the
UmtsCode component testing node in order to open the test report and all of
the runtime analysis reports.

What is the result of your tests? Did you improve coverage on the while statement?
That is the subject of the next exercise.

72

Index

Conclusion of Exercise Two

The component testing test scripting language for C and Ada gives you enormous
data-driven testing power with minimal effort. This compiler-independent language
lets you build tests that can be used with any embedded target, so you'll never have
to change your tests when the architecture you're writing for changes.

As for test script execution, this is accomplished through the Test RealTime interface
regardless of the target. The Target Deployment Port takes care of everything; there is
no distraction from the task at hand - making quality tests and then fixing problems
as they are exposed.

Exercise Three

In this exercise you will:

• analyze the results of the improved component test

• continue to increase code coverage

• repair the uncovered defect

• rerun your test to verify that the defect has been fixed

The C and Ada Component Test Report

The component testing report summarizes all of the test results. It is hyperlinked to
the test script (the .ptu file) and can be browsed using the Report Browser on the left-
hand side of the screen..

6. Close the Project Explorer window on the right-hand side of the screen as well
as the Output Window at the bottom of the screen to free up space.

7. Select the Test Report tab to ensure the component testing report is active, and
then maximize this window

At the top of the report is an overall summary of test execution. Notice the
Passed and Failed items - all eight tests in UmtsCode2.ptu passed. Good news.

8. In the Report Window on the left-hand side of the screen, double-click the node
Test 1 (a child node of the node CODE_INT:

Looking at the component testing report, you can see:

73

Rational Test RealTime - Online Tutorial

• General test information

• Initial, expected, and obtained values for all variables involved in a test

• Code coverage information

Have a look around if you wish. Your next concern should be whether code coverage
on the while statement in the code_int function has been improved.

Checking the Code Coverage Report

Has code coverage been improved by running the unit test?

 To analyze code coverage:

1. Select the Code Coverage tab.

2. In the Report Window on the left-hand side of the screen, open the UmtsCode.c
node and then select the code_int node.

3. If necessary, scroll through the Code Coverage viewer Source window until the
second while statement is visible.

4. Left-click this second while statement. You should see:

Code coverage has been improved somewhat, but the while statement has yet to
be executed 0 times. To do this, you will have to create a new test. It would be
preferable to do as little work as possible to create this new test. What other
tests have forced the while statement to execute?

5. Select the menu item Coverage->Test by Test

6. With the mouse anywhere within the Source window of the Code Coverage
viewer, right-click-hold and select CrossRef

7. Click any part of the line
 while (x!=0)

Perhaps not surprisingly, the two code_int tests covered this while statement. All you
need to do is copy one of the two tests but make sure x equals 0 (i.e. when x is equal
to 0, you will be achieving the highest level of coverage on this while statement).

Updating and Running the Component Test

74

Index

Through reuse of existing test assets, your testing effort can be significantly reduced.

 To reuse test elements:

1. Select the Report Viewer tab.

2. In the Report Window on the left-hand side of the screen, double-click the node
Test 2, which is a child node of the node CODE_INT:

3. On the Test Report tab, left-click the green section header , located
at the top of the screen.

You are now looking at the code for the second of the two code_int tests. Since
the objective is to execute the while statement where x has a value of 0, reuse
this second test block but assign x an initial value of 0 and buffer an expected
value of - what? A value of I10.

4. In the Text Editor, copy all of the lines between Test 2 and End Test -- Test 2,
including these two lines:

TEST 2
FAMILY nominal
 ELEMENT
 VAR x, init = 34 ev = init
 VAR buffer, init = "", ev = "I243"
 #code_int(x,buffer);
 END ELEMENT
END TEST -- TEST 2

5. Paste these lines immediately below the last line copied, and then rename the
Test block to Test 3. It should look like the following:

END TEST -- TEST 2

TEST 3
FAMILY nominal
 ELEMENT
 VAR x, init = 34 ev = init
 VAR buffer, init = "", ev = "I243"
 #code_int(x,buffer);
 END ELEMENT
END TEST -- TEST 3

75

Rational Test RealTime - Online Tutorial

6. Change the initial value of x to 0 and change the expected value of buffer to I10.
TEST 3
FAMILY nominal
 ELEMENT
 VAR x, init = 0 ev = init
 VAR buffer, init = "", ev = "I10"
 #code_int(x,buffer);
 END ELEMENT
END TEST -- TEST 3

7. From the File menu, select Save to save your changes to the Unit Testing test
script.

8. From the View window, select Other Windows and Project Window.

9. From the Window menu, select Close All.

10. In the Project Browser tab on the right-hand side of the screen, left-click the
UmtsCode component testing node and then click the Build toolbar button.

11. The test has finished executing when the green execution light on the lower
right of the UI stops flashing.

You should have now achieved proper code coverage. But were you looking at the
Output Window? Why was there a warning?

Repairing a Defect

Unfortunately (or fortunately, depending upon how you look at it), increased code
coverage can expose defects.

 To fix a defect:

1. In the Project Browser tab on the right-hand side of the screen, right-click the
UmtsCode component testing node and then select View Report->Code
Coverage.

2. Maximize the Code Coverage report. Close the Output Window on the bottom
of the UI

3. View the code_int code in the Source window of the Code Coverage viewer
(using the Report tab, and then look at the while statement for which you have
been trying to improve code coverage.

The while statement is green, which means it is now fully covered (left-click it if
you wish to be sure). Should you check the component testing report? Is it safe
to assume that no defect has been uncovered by your effort to increase
coverage?

4. In the Project Browser tab on the right-hand side of the screen, right-click the
UmtsCode component testing node and then select View Report->Test

76

Index

A failure is reported in the component testing report, so the effort to improve
coverage has resulted in the discovery of a new defect. The Report Window on
the left-hand side of the screen flags this error nicely.

5. In the Report Window, select the Element1 node that has a Failed symbol to
its left.

Given x equal to 0, the code_int function is supposed to assign buffer a value of
I10. However, this did not happen. buffer has a value of I0 - a defect.

6. Select the Code Coverage tab.

7. Hover the mouse over the while statement for which you have been trying to
improve coverage, then right-click and select Edit Source.

If you continue to read this section, you will be told what is wrong and how to
fix the problem. Feeling adventurous? Don't read on and see if you can solve the
problem yourself.

When you're ready, just go to the next section in Exercise Three entitled
Verifying the Success of Your Repairs.

The problem is that because the while statement never handles x with a value of
0:

• the len variable - which contains the length of the number
represented by x - is never increased beyond its initial value of 0

• the value of x is never written to the buffer

So a buffer value of I0 reflects a length of 0 and an absence of the value of x. You
need to take care of the special case in which x equals 0.

8. Immediately before the while statement for which you have been attempting to
improve coverage, add the following line:
if (x==0) {*ptr='0';len++;ptr++;}

9. From the File menu, select Save.

This should fix the problem.

Verifying the Success of Your Repairs

As you have now learned, tests always need to be rerun and reports should always
be checked.

 To validate the repair:

1. From the Window menu, select Close All.

2. In the Project Browser tab on the right-hand side of the screen, left-click the
UmtsCode component testing node and then click the Build toolbar button.

77

Rational Test RealTime - Online Tutorial

3. The test has finished executing when the green execution light on the lower-
right of the UI stops flashing.

4. Double-click the UmtsCode component testing node to view all of the reports.

5. Select the Report Viewer tab.

When looking at the Report Window to the left, you will find that the defect has
been repaired. It's a good thing you tested all three possible coverage levels for
the while loop!

6. Select the menu item File->Save Project.

Conclusion of Exercise Three

One can never be too vigilant in the embedded industry. Quality just isn't an option,
so every care must be taken to ensure defects don't slip through the cracks. The last
thing your team needs are frantic, last-minute code bashing sessions or - even worse -
shipping what you know to be defective code. And of course, that's not even possible
in industries with stringent certification standards.

You need to check everything. But how is this possible when shipping dates don't
slip and you're under enormous pressure to produce? Rational Test RealTime is the
answer. All the tedious tasks are automated, and great care has been taken to ensure
you get your job done without losing precious development time.

Is it possible to develop a defect-free product? It's certainly not possible if you don't
test. But if you do test, and test well, who knows...

Conclusion

Component testing is probably the type of testing that comes to one's mind when
considering the minimal amount of effort one must make to ensure a defect-free
product. As these exercises have shown, component testing is a non-trivial activity.

Imagine a world in which no tool exists that can automate stub, driver, and harness
creation, in which no tool can automate data-driven tests. No wonder that testing is
typically viewed negatively by developers. Again, it's not that anyone feels testing is
unimportant. But how repetitive and work-intensive!

To make matters worse, without code coverage the best tests in the world are run in a
vacuum. How do you know when you are finished? How do you know what test
cases have been overlooked?

Use Rational Test RealTime to simplify your component testing of C functions and
Ada functions and procedures. All the tedious tasks are automated so you can focus
on good tests. Test boundary conditions. Try inputs that would "never" happen. And
let the test scripting API generate an overabundance of inputs; why not, considering
no additional effort is required on your part.

78

Index

Perhaps now you can see how Rational Test RealTime, combined with the runtime
analysis tools reviewed in the last group of exercises, provides you with full
regression testing capabilities without having to sacrifice time better spent creating
quality code.

Component Testing for C++

When speaking of C++ applications, the term "component testing" applies to the
testing of C++ classes. As when working with C functions and Ada functions and
procedures, embedded object testing requires the construction of a test harness
(consisting of stubs and test drivers), the generation of suitable input data, and the
subsequent passing of that data into the methods under test in order to verify the
accuracy of the output data.

In addition to the overhead effort that was automated by the component testing
feature for C and Ada - such as stub, test driver, and data generation - the component
testing feature for C++ adds additional capabilities:

• Support for complex data types

• Support for private and protected class methods and variables

• Support for contract assertion checking - that is, the ability to verify properly
obeyed preconditions, postconditions, and data invariants.

Such features are crucial for efficient, proactive debugging. Without them, you
wouldn't have enough power at your disposal to catch all the defects in your C++
code.

The following exercise will highlight these additional capabilities.

Component Testing for C++ Exercises

Exercise One

In this exercise you will:

• uncover a part of the UMTS base station C++ code that requires further testing

• create a new activity in which you build a component test

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Using Code Coverage to Find Untested Code

Creating and executing a component test for C++ in Rational Test RealTime is much
like the process for C and Ada component testing. Most steps are shared in common -
the main difference is the content of the C++ component tests themselves, which you
will see later.

79

Rational Test RealTime - Online Tutorial

As with the C and Ada testing exercises, the first step in these exercises is to use the
code coverage feature of Test RealTime to determine which parts of your code
require greater coverage.

 To locate uncovered code:

1. From the Window menu, select Close All.

2. In the Project Browser tab on the right-hand side of the screen, right-click the
BaseStation application node and select View Report->Code Coverage - that is,
open the coverage information pertaining to your manual interaction with the
UMTS base station.

3. Maximize the Code Coverage viewer

4. In the Report Window on the left-hand side of the screen, open the
PhoneNumber.cpp node and then select the node for PhoneNumber(unsigned
int)

Looking at the coverage for this constructor of the PhoneNumber class, you can see
that the for loop has only been covered in one of three possible ways - you still need
to cover 0 loop and 1 loop through the for statement.

To achieve this coverage, you would be wise to create an automated component test.
Of particular interest would be to see what happens when a phone number of zero
length is sent to the UMTS base station. The objective of this tutorial is to increase
code coverage by ensuring this PhoneNumber constructor is called with a value of 0.

Creating an C++ Component Test

Since you will be testing C++ code, the first order of business is to reselect the C++
TDP- based Configuration. Once done, you will follow virtually the same steps as
you took for creation of a component testing test script for C and Ada. The
difference? Accommodating the Test RealTime ability to implement assertion tests.

 To create a C++ Component Testing test node

1. Select the menu item Window->Close All (and close the Output Window at the
bottom of the UI if you wish to free up additional space).

2. In the toolbar dropdown list for Configurations, select the C++ TDP
configuration you used in the Runtime Analysis exercises, thereby replacing the
currently selected C TDP-based Configuration.

3. On the toolbar, click the Start Page button.

4. Select the Activities link on the left side of the Start Page.

5. Select the Component Testing link in the center of the Start Page.

80

Index

6. In the window Application Files - Notice how all source and header files of your
project are already visible (by selecting the C++ TDP-based Configuration, both
C and C++ source files are accessible). No changes need to be made, so simply
click the Next button.

7. In the window Components Under Test, select the checkbox next to the
reference to the PhoneNumber class. (Since a single C++ class can be defined in
multiple files, classes are listed by the Wizard rather than any implementation
reference. This also explains why the file in which a class is declared is listed in
the File Name column - there is only one declaration, while definitions can
occur across multiple files.) Click the Next button.

8. In the Test Name field, enter the name PhoneNumber. Leave the default values
and click the Next button.

9. You should now be viewing the Summary window. Click the Next button.

The component testing wizard now analyzes the source code in
PhoneNumber.cpp and PhoneNumber.h and creates a test for every class
defined in the .cpp file.

10. Click the Finish button.

11. Select the menu item File->Save Project.

Notice now, in the Project Browser tab on the right-hand side of the screen, a C++
component testing node named PhoneNumber has been added to your project.

Conclusion of Exercise One

Use of the C++ component testing feature should have been a lot easier for you,
considering your experience with test creation for C and Ada. Not much is different -
and that's by design. All you need to do now is specify the exact test and assertion
checks you would like to perform, and then execute the test. You will do that next.

Exercise Two

In this exercise you will:

• review the autogenerated C++ component testing script

• modify the test script in order to improve code coverage of the for loop

• execute the test

The Autogenerated C++ Component Test

Once you become familiar with the layout of the autogenerated test and contract
check, the modifications you need to make to increase code coverage will become
obvious.

81

Rational Test RealTime - Online Tutorial

 To complete the test script:

1. In the Project Browser tab on the right-hand side of the screen, double-click the
node PhoneNumber.otd.

2. Maximize the test script editor.

This is the test driver script. In it you will perform those steps necessary to drive
and test classes in the file under test.

Along with the .otc contract-checking test - discussed in the next section - full
C++ class testing is possible. The idea is that the files PhoneNumber.cpp,
PhoneNumber.otd, and PhoneNumber.otc will be compiled and executed
together (with execution taking place on the target specified by the currently
selected Target Deployment Port Configuration).

C++ component testing test scripts are written with a compiler-independent test
script API. For detailed information about the script layout, take advantage of
the Test RealTime Reference Guide. For the Tutorial, only critical script
elements will be discussed.

Each class used in the file under test is assigned its own TEST CLASS block -
PhoneNumber.cpp only handles the PhoneNumber class, so there is only one
Test Class block. Each TEST CLASS block is divided into a single PROLOGUE ,
one or more TEST CASE blocks, and then a single EPILOGUE.

The PROLOGUE statement defines native code that is to be executed whenever
the surrounding TEST CLASS execution begins. You typically use the
PROLOGUE statement to declare and sometimes initialize the object instances
of a class under test. In this exercise, the generated PROLOGUE creates an
instance of the class PhoneNumber. The EPILOGUE structure defines native
code that is to be executed whenever the execution of the surrounding TEST
CLASS ends.

The TEST CASE block generates a public method test of the class under test. The
test case name is made up of the identifier of the method under test with the
prefix test. This ensures correct overload handling.

A typical test starts with the display of a trace (with the PRINT statement) and
continues with the C++ native code that calls the method under test. This call is
performed on the instance declared in the PROLOGUE block. Any parameter
values are null. If the method under test returns a value, the test case continues
with a CHECK statement. The test case ends with another trace display.

For this tutorial, we would like to call the PhoneNumber constructor with an
integer value of 0. Since your goal is to simply increase code coverage, don't
bother testing anything - just call the PhoneNumber constructor with a value of
0.

82

Index

3. In the PROLOGUE block, add (0) after the obj0 identifier, so that it appears as
follows:
PROLOGUE
{

// Declarations of variables needed by this test class.
// Actions to be performed before executing this test
// class.
#PhoneNumber obj0 (0) ;

}

The # symbol indicates that the line contains native C++ code.

4. From the File menu, select Save.

Technically, you are finished. When this test script is executed, the PhoneNumber
constructor will be called with an integer value of 0. However, to give you some idea
of how an assertion test would be useful, the next topic will take a look at the contract
checking script.

The Autogenerated Contract Check

Use the contract checking test to ensure assertions are not violated. Assertions are
parameter limits or restrictions that should be obeyed, but which are very often not
explicitly enforced by the code. For example, it surely makes sense that a phone
number never has zero digits. If that is the case then calling the PhoneNumber
constructor with a value of 0 should violate this assertion. You will create this
assertion.

 To complete the test script:

1. In the Project Browser tab, double-click the node PhoneNumber.otc

2. Maximize the test script editor

This is the C++ component testing contract checking script. In it you will
perform those steps necessary to verify that assertions are not violated.

Contract checking scripts are written with a compiler-independent test script
API. For detailed information about the script layout, take advantage of the Test
RealTime Reference Guide. For this Tutorial, only critical script elements will be
discussed.

For each class a CLASS block is created and this CLASS block can test for
violations of:

• invariants

• pre-conditions/post-conditions

• states

• transitions

83

Rational Test RealTime - Online Tutorial

Since you wish to verify that the length of the phone number always exceeds 0,
then one possible contract check would be to ensure the stringLength variable
of the PhoneNumber constructor is always greater than 0 (have a look at the
source code if you wish to verify this approach yourself).

3. Scroll down the contract checking test script until you see the line:
WRAP PhoneNumber(unsigned int length)
REQUIRE ("Require PhoneNumber")
ENSURE ("Ensure PhoneNumber")

4. Modify the code as follows:
WRAP PhoneNumber(unsigned int length)
//REQUIRE ("Require PhoneNumber")
ENSURE (stringLength > 0)

5. From the File menu, select Save.

The WRAP keyword lets you check for pre- and post-conditions of a class
method. The REQUIRE keyword checks pre-conditions; the ENSURE keyword
checks post-conditions.

Another example of a contract check would be to verify that class invariants are
never violated. For example, it certainly makes sense that the phone number can
never be full and empty at the same time. This can never be, it is an invariant.
The PhoneNumber class actually has these methods - isFull() and isEmpty() - so
use them to verify this assertion.

6. Scroll up the contract checking test script until you see the line
// INVARIANT (/* expression */);

7. Modify this line as follows:
INVARIANT (!(isFull() && isEmpty()));

8. Select the menu item File->Save

Done. You are ready to compile and run the test and contract check.

Running a C++ Component Test

You have set up your tests to increase coverage of the for loop in one of the
PhoneNumber constructors by calling it with a value of 0. You have also set up two
contract checks - one verifies that the phone number object is never full and empty at
the same time, the other verifies that the phone number length is never set to 0. Time
to run the test.

 To execute the test node:

1. Select the menu item Window->Close All

2. Left-click the PhoneNumber test node (the parent node of the
PhoneNumber.otd, PhoneNumber.otc and PhoneNumber.cpp nodes) and then

press the Build toolbar button ()

84

Index

3. The test is executed as part of the build process - you will know the test has
finished executing when the green execution light on the lower-right of the UI
stops flashing.

4. Select the menu item File->Save Project.

As with your C and Ada component test, the runtime analysis features are still
selected in the Build options; the file under test - PhoneNumber.cpp - was
instrumented for the memory profiling, performance profiling, code coverage and
runtime analysis features, which explains why the Runtime Trace viewer appears
during the run. Notice how the runtime tracing feature tracked all of the method calls
made throughout the execution of the test.

So have you improved code coverage? Were any of your assertions violated? That is
the subject of the next exercise.

Conclusion of Exercise Two

The C++ component testing test scripting language gives you enormous object-
oriented testing power with minimal effort. This compiler-independent language lets
you build tests that can be used with any embedded target, so you'll never have to
change your tests when the architecture you're supporting changes.

As for test script execution, this is accomplished through the Test RealTime interface
regardless of the target. The Target Deployment Port takes care of everything; there is
no distraction from the task at hand, which is to make quality tests and then fix
problems as they are uncovered.

Assertion checking - often overlooked as too time consuming to pursue - is now
easily achieved via the contract checking script. This ability gives you even greater
confidence in the stability of your code.

Exercise Three

In this exercise you will:

• analyze the test results

• repair the defect discovered by the C++ component test

• rerun your test to verify that the defect has been fixed

The C++ Component Test Report

The C++ component test report summarizes all of the test results. It is hyperlinked to
the test script (the .otd and .otc file) and can be browsed using the Report Window.

85

Rational Test RealTime - Online Tutorial

 To analyze the test report:

1. In the Project Browser tab on the right-hand side of the screen, right-click the
PhoneNumber component testing node and select View Report->Code
Coverage.

2. Maximize the Code Coverage viewer

3. Using the Report tab on the left hand side of the screen, view the source code
for the PhoneNumber constructor you called with a value of 0 in your test
script.

Have you covered the 0 loop case of the for loop? Yes, indeed. (Notice the
absence of coverage for 2 loops or more - remember, in your component test,
only the 0 case was tested. Your manual interaction with the UMTS base station
via the mobile phone simulator was responsible for the 2 loops or more
coverage - and that coverage won't be listed here.)

How about your contract checks?

4. In the Project Browser tab on the right-hand side of the screen, right-click the
PhoneNumber test node and select View Report->Test.

5. Close the Project Explorer window to the right, and the Output Window at the
bottom of the UI to give you more room to explore the report.

Look at the Report Window on the lower-left side of the UI. Your method
contract check failed - that is, the stringLength variable was not greater than 0. It
should come as not surprise that this assertion failed since you went out of your
way to supply a length of 0. Sensibly, you should continue to test this assertion
in all your regression testing of the UMTS server to ensure that "normal" phone
number inputs never have a length of 0.

Does anything else need to be done? Is everything else working properly?

Notice how the test cases corresponding to the methods appear to have failed as
well. Why should this be? As you recall, no test was actually performed in the
Test Case block - you simply called the PhoneNumber() constructor. In fact, this
failure implies the test was not able to finish properly. You should take a closer
look at the runtime trace to ensure nothing unusual happened.

6. Select the Runtime Trace tab.

Look closely. There are lifelines for:

• the operating system

• the test class block

• the test case that calls the PhoneNumber constructor

• a PhoneNumber object

86

Index

Your assertion checks are flagged by notes - a green note means the assertion has
been observed, a red note means the assertion has been violated. (Thus the note for
the stringLength test is red.)

What about the unexpected exception? That can't be good. In fact, close inspection of
the PhoneNumber lifeline shows that the destructor method was never called.
Intuition probably tells you that this unhandled exception is directly related to your
input of a phone number of 0 length.

The code needs to be fixed.

Repairing a Defect

The runtime tracing feature has uncovered what looks to be an unhandled case - that
is, handling a phone number of 0 length. The code must be fixed.

 To fix the defect:

1. In the Runtime Trace viewer, left-click the green PhoneNumber constructor call
made by the Test Case

Take a look at this PhoneNumber constructor (you may need to scroll down a
bit in order to fully expose the function). In essence, a numberString object is
being prepared to hold the phone number. What happens if the length of the
phone number - the input to this constructor - is 0? The numberString object is
never created.

The problem is the last line of this constructor. The numberString object is
assigned a final value. How can this be if the numberString object is never
created when the length of the phone number is 0? You need to add an extra
line of code to ensure that the last line of the constructor is only executed if the
length of the phone number is greater than 0.

2. Modify the source code of this PhoneNumber constructor as follows:
 if(length > 0)

 numberString[length] = '\0';

In other words, add the if statement.

3. Select the menu item File->Save

This should fix the problem. In the next topic, you will rerun your test to make sure
the unexpected exception goes away.

Verifying the Success of Your Repairs

As you have now learned, tests always need to be rerun and reports should always
be rechecked.

87

Rational Test RealTime - Online Tutorial

 To check that defects have been resolved:

1. From the View menu, select Other Windows and Project Window.

2. From the Window menu, select Close All.

3. In the Project Browser tab on the right-hand side of the screen, left-click the
PhoneNumber test node and then select the Build toolbar button.

4. The test has finished executing when the green execution light on the lower-
right of the UI stops flashing.

5. From the File menu, select Save Project.

6. Expand the Runtime Trace viewer that appeared during the test run.

By looking at the Runtime Trace Viewer, you will find that the unexpected exception
has disappeared and is now replaced with a call to the PhoneNumber destructor.
One more defect has been eliminated. That was one defect you would not have
caught without the assistance of the runtime tracing feature of Test RealTime.

Conclusion of Exercise Three

Rational Test RealTime, more than anything else, exposes two vital issues:

• True, error free code is guaranteed only through extremely vigilant testing and
runtime analysis. Skip any part and defects might fall through - defects you
either repair now, when you have time, or later, when code freeze looms and
your reputation is on the line.

• With Test RealTime, this vigilance is easily accomplished. You achieve full
testing and runtime analysis with minimal distraction and minimal focus on
tedious, time-consuming tasks.

Again - is it possible to develop a defect-free product? It's certainly not possible if
you don't test. But if you do test, and test well, who knows...

Conclusion

Now you have seen how to perform host- and target-based unit testing for C, C++,
and Ada.

For all of these languages, notice how Test RealTime has allowed you to focus solely
on your code. Notice how easily it has been to expose untested code and to generate
new tests that not only test that code, but test it well. The time you spend testing can
now be devoted to good tests - which increases the usefulness of your attention to
testing in the first place.

Contract checking adds an extra layer of protection, so give some thought to using it
when testing your C++ code. It's optional - you don't have to add assertion checking
to your regression suite. Nevertheless, particularly if your code is called by someone

88

Index

else's code, assertion checking is a simple and clean method for verifying that your
code is properly used.

So are you finished? You've seen how to detect and repair:

• memory leaks

• performance bottlenecks

• functional defects

You've learned how to clarify:

• your code's call sequences

• the completeness of your testing

What's left?

System-level testing - the integration testing of distributed components. Up to now
you have tested and monitored the code. Next you must see how to test the
interaction of various threads, tasks, processes, and subsystems.

System Testing for C

What does embedded software testing at the system level focus on? It focuses on the
interaction between two or more threads, tasks, processes, and subsystems. In this
case, the communication mechanism is provided by a C language messaging API,
and the system-under-test is stimulated by stubbed virtual actors.

As a tester, you have three primary interests at this point:

• does the system-under-test respond to the input signal as designed

• does the system-under-test respond to the input signal quickly enough

• can the system-under-test handle various loads that accurately reflect a working
environment

The system testing feature for C-based messaging APIs enables system level testing.
This is achievable because of Test RealTime's ability to define virtual actor behavior -
or, using Test RealTime terminology - virtual tester (VT) behavior. There are two
ways to define VT behavior:

• use the system testing test script API to define virtual tester actions

• use a probing technology to monitor system execution, recording the actions of
system actors so that they can be played back one or more times simultaneously

The output virtual tester scripts not only define the message content sent to the
system-under-test, but also define tests for the messages subsequently received - tests
in which success or failure is based on message content, time-of-response, or both.

89

Rational Test RealTime - Online Tutorial

Once the virtual tester scripts are created, the system test deployment scheduler is
used to configure the launch of one or multiple VT instances, including the machines
upon which the deployment should occur (virtual testers can be executed on multiple
machines, remotely, during a single test run). The resulting report consolidates all
interactions, highlighting errors, while a runtime tracing diagram graphically
displays system interactions. (Note how the ability to launch multiple, concurrent
virtual testers lets you generate a load on the system under test, thereby enabling
load and stress testing of the target system.)

This tutorial will focus on the first method suggested for generating a system test -
that is, through the use of the System Testing test script API. For information about
the probing technology, refer to the Rational Test RealTime User Guide.

System Testing for C Exercises

Exercise One

The goal of this system testing exercise is to ensure the signals sent from the UMTS
base station to a registered mobile phone are accurate and timely. The signals consist
of TCP/IP-based messages. (Note, however, that any protocol can be simulated by
Test RealTime as long as a C-based messaging API is used.)

To accomplish this, rather than manually interacting with a mobile phone simulator,
you are going to create a virtual phone that dials a number all by itself.

In this exercise you will:

• review what you have done so far, and discuss how one could adapt previous
efforts to system testing

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Requirements for C-based System Testing with Test RealTime

Having performed the runtime analysis exercises, you have seen how a mobile phone
simulator can be used to interact with the UMTS base station. The implication then is
that signals were being traded between the two.

If this is the case - if, in fact, signals are passed between the mobile phone simulator
and the UMTS base station - would it not be useful to "fake" the simulator with a test
that can send signals to the base station and then analyze the content and timing of
the signals that are returned?

You will be doing just that. You will be simulating the simulator, creating a test that
can interact with the base station in a well-defined way and then test the returned
signals. Put another way, you will be automating the manual interaction you
performed in the Runtime Analysis portion of this tutorial.

90

Index

This test is coded with a system testing test script API.

In order to build this system testing test script - that is, in order to create virtual
testers - the test script code must have access to the C language messaging API used
by the system under test. Without a messaging API, it would not be possible to
define the signals sent from the virtual tester to the system under test, nor would it be
possible to analyze the returned signals. The messaging API might be accessible in a
preexisting library, accessible in source code used to build the system under test, or
inaccessible (thereby necessitating manual creation of a referenceable messaging API
file). In this tutorial, you will be reusing some of the UMTS base station source files;
these files define the messaging API used to communicate with mobile phones.

In addition to having access to the messaging API, you must also define an
adaptation layer. The adaptation layer describes how the API is to be used; in other
words, how are messages sent and received.

Finally, your test script will need to describe the action of a virtual tester - indicated
in a system testing test script with the reserved keyword INSTANCE. This is the part
of the test script that specifies what signals are sent to the target, what signals are
expected, and any timing requirements.

To summarize: When building a System Testing test, you are responsible for:

• creating or providing access to the C language messaging API

• coding the adaptation layer

• coding the INSTANCE blocks describing the simulated behavior and tests

You will not be responsible for creating any of these above items in the Tutorial - the
files are provided for you - but their content will be reviewed.

For Solaris, Linux, HP-UX and AIX Users

You need to install the System Testing agent software, a daemon that must be
running on the host to act as an interface between virtual testers and the machine
running Test RealTime. The instructions for the installation process are located in the
Rational Test User Guide, in the System Testing Overview chapter.

For Windows users, this daemon has already been installed.

Creating a System Test

As with the C, C++ and Ada component testing features of Rational Test RealTime,
your first responsibility is to create a node in your project for the system test.

 To create a System Testing node:

1. From the View menu, select Other Windows and Project Window, if necessary.

2. From the Window menu select Close All, if necessary.

91

Rational Test RealTime - Online Tutorial

3. Using the TDP Configuration selector on the toolbar, ensure the C TDP-based
Configuration is selected. This is necessary to support the C language
messaging API.

4. Activate the Start Page by selecting the toolbar button.

5. Select the Activities link on the left-hand side of the Start Page.

6. Select the System Testing for C link on the Start Page.

7. In the window Create System Testing Node, enter the name MobilePhoneVT
and then click the OK button.

8. In the Test Script Selection window, do not opt to create a new test script.
Rather, select the browse '...' button and select the file named
MobilePhoneVT.pts, located within the Rational Test RealTime installation
folder, in the folder \examples\BaseStation_C\tests.

9. On the same window, in the Interface Files List listbox, click the Add button
and then browse to the UMTS base station source files located within the
Rational Test RealTime installation folder, in the folder
\examples\BaseStation_C\src.
Open two of the C language header files:

• tcpsck.h

• UmtsMsg.h

These two files define the messaging API used by the UMTS base station to
communicate with mobile phones. They will be reused in order to define the
messaging API employed by the virtual testers.

10. Now click the Next button on the Test Script Selection window.

11. The Include Directories List window contains a listing of directories that contain
files referenced by the test script or the source files used for the test. This
window currently references the proper directory, so simply click the Next
button.

12. If you had decided to create a new test script, the System Testing Wizard would
be finished at this point; it would now be time to code the adaptation layer and
INSTANCE actions. However, since you are using a preexisting test script
(MobilePhone.pts), the Wizard continues to the next automated phase, which is
creating and configuring the virtual tester drivers.

The system testing node has already been created (you can see it on the Project
Browser). The next step is to configure the test script that will reference the
messaging API, define the adaptation layer, and describe virtual tester actions.

Configuring Virtual Tester Drivers

92

Index

The System Testing Wizard has analyzed the preexisting test script -
MobilePhoneVT.pts - noting the INSTANCE blocks defined within. Recall that the
INSTANCE blocks describe the exact actions a virtual tester should take, including:

• what signals to send

• what signals are expected in response

• what tests should be performed

A test script can contain more than one INSTANCE definition. (The System Testing
test script will be reviewed in Exercise Two.)

Your next responsibility is to create virtual tester drivers. A virtual tester driver is
used to create one or more virtual testers - or, more specifically, one or more virtual
testers for one or more of the INSTANCE blocks defined in the test script. A virtual
tester driver can be configured to support only one INSTANCE block, or it can be
configured to support multiple. The advantage of only supporting only one type of
INSTANCE block is that the driver size is minimized.

 To set up a Virtual Tester:

1. In the Virtual Test Driver Creation, next to the Virtual Tester Driver List, click
New.

2. In the Create Virtual Tester Driver window, name this new binary Driver1 and
click OK.

Now you must specify which INSTANCE blocks this driver supports and, if
applicable, which SCENARIO and FAMILY blocks within the INSTANCE
blocks are supported. (Again, the system testing test script language is
discussed in Exercise Two.)

Notice how the General tab on the Virtual Tester Driver Creation window lets
you select which INSTANCE block is supported by the selected VT driver. In
addition, the TDP configuration for this binary can be changed and modified as
well. The Scenario and Family tabs let you deselect SCENARIO and FAMILY
blocks you don't want the selected driver to support.

3. For this tutorial, you will only be using the Driver1 driver, and you want this
driver to support all INSTANCE blocks, so the Implemented INSTANCE
dropdown list on the General tab should remain the same - that is, all
INSTANCE blocks will be supported by this one driver.

4. In the Target dropdown list on the General tab, select the C-language TDP for
your machine. (Since multiple drivers could be distributed across multiple
execution environments, it is conceivable that each test driver would be
assigned its own TDP.)

5. Click the Next button.

93

Rational Test RealTime - Online Tutorial

One step to go. You must now describe the deployment configuration - that is, you
must create individual virtual testers, the VT driver from which each will be
generated, and - if applicable - the INSTANCE block that will be executed. This
window can also be used to create multiple, concurrent VTs of the same type.

Configuring the Deployment Configuration

Each virtual tester driver can be used to create one or more virtual testers. In
addition, if the driver supports more than one INSTANCE block, then each specific
INSTANCE block needs to be assigned a virtual tester. For this tutorial, you will just
be running a test that consists of a single virtual tester.

 To set up the Deployment Configuration:

1. In the Deployment Configuration window, click the Add button to create a
virtual tester.

2. Select phone1 in the Instance column

The Virtual Tester Driver column is used to select the driver, the INSTANCE
column is used to select the INSTANCE, and the Network Node column is used
to specify the machine upon which the virtual tester(s) will be deployed. Since
only one virtual tester is required for the tutorial, the column Number of
Occurrences can remain equal to 1.

3. Click the Next button.

4. Review the settings on the Test Generation Summary window if you wish, then
click the Finish button.

You're screen should appear as follows:

Note that if, at any point, you feel the need to modify the deployment
configuration, you can right-click the test script node (in this tutorial that would
be the MobilePhoneVT.pts node) and select the Virtual Tester Driver
Configuration option.

One step remains. Recall that you will be using UMTS base station files to
implement the messaging API. During the System Testing Wizard you selected
the two header files that contain the API specification. What you must do now
is reference the source files that implement the messaging API. This could not
be done in the wizard because there was no messaging-API library to import.
The source files for the messaging API need to be compiled along with the test
script and thus must be added directly.

94

Index

5. Right-click the virtual tester driver node driver1 on the Tests tab and select Add
Child->Source Files

6. Browse to the UMTS base station source files located within the Rational Test
RealTime installation folder, in the folder \examples\BaseStation_C\src, and
open all of the C language files:

• tcpsck.c

• UmtsCode.c

• UmtsMsg.c

7. From the File menu, select Save Project.

There is no need to instrument the three C language files used to implement the
messaging API, but rather than altering the entire TDP configuration using the Build
dropdown menu, you are simply ensuring these three particular files won't be
instrumented.

You are now ready to simulate the mobile phone and thus drive the UMTS base
station, ensuring the base station responds to signals in a proper and timely fashion.

Conclusion of Exercise One

Distributed embedded environments can be highly variable. As you have seen, the
System Testing Wizard and test script API accommodates this variability, enabling a
highly adaptable test environment for your networked components.

The next section focuses on the test script itself, and then its execution.

Exercise Two

In this exercise, you will:

• review the system testing test script

• execute the test

The System Testing Test Script

A brief tour of the C-based system testing test script should clear up any further
mystery about how the virtual testers are implemented.

 To modify the test script:

1. Double click the MobilePhoneVT.pts node on the Project Browser tab.

2. Maximize the test script

Highlights, from top to bottom (use the Rational Test RealTime Reference Guide for
detailed information regarding the system testing test script API):

95

Rational Test RealTime - Online Tutorial

• DECLARE_INSTANCE - Note how only one INSTANCE block exists in this test
script.

• MESSAGE - These variables will contain the message sent from the UMTS base
station to the mobile phone.

• PROC ... END PROC - Used to define a function that will be called multiple
times.

• PROCSEND ... END PROCSEND - Part of the adaptation layer; describes the
steps necessary for a virtual tester to send a message.

• CALLBACK ... END CALLBACK - Part of the adaptation layer; describes the
steps necessary for a virtual tester to receive a message.

• INITIALIZATION ... END INITIALIZATION - Indicates those steps that must
occur before any SCENARIO block executes. Only applies to those SCENARIO
blocks at the same level as the INITIALIZATION block. In this case, the virtual
tester opens a TCP/IP socket to the base station and then connects to it. (Note
that the phone has not yet been registered to the base station; the
INITIALIZATION block only opens a connection to the phone; with this
connection, the mobile phone can then try to register.)

• TERMINATION ... END TERMINATION - Indicates those steps that must occur
after every SCENARIO block finishes executing. Only applies to those
SCENARIO blocks at the same level as the INITIALIZATION block.

• SCENARIO ... END SCENARIO - Highest level blocking of specific virtual tester
actions. A SCENARIO block can consist of more than one child SCENARIO
block. The INSTANCE blocks are typically defined in SCENARIO blocks.

• INSTANCE ... END INSTANCE - Contains code specific for a virtual tester
instance.

• SEND - Sends a message.

• WAITTIL - Waits for a message, and tests the message for both content and
promptness. Reports a failure if the received message does not match expected,
was never received, or was received late.

Take a look around. Notice how the call_busy scenario uses the phone number
5550000, and how the call_success scenario uses the phone number 5550001. As you
may recall, these were the phone numbers used in the runtime analysis portion of
this tutorial.

Once you are comfortable with the test script, you can proceed to execute the test.

Running the Base Station in the Background

The objective of your system test is to test the UMTS base station. However, how will
you run the base station application at the same time as the test? Normally, the tested

96

Index

thread, task, process, or subsystem will be run somewhere on your network, but for
the purposes of the Tutorial, you will have to manually run it yourself.

 To execute the system under test:

1. From the command line (or via Windows Explorer on Windows) browse to the
UMTS base station executable provided with the Tutorial. This file is located
within the Rational Test RealTime installation folder, in the folder
\examples\BaseStation_C, and is called:

• on Windows - BaseStation.exe

• on Solaris, Linux, HP-UX and AIX - BaseStation.sh

(For Solaris, Linux, HP-UX and AIX you also have the option of selecting the
base station executable itself, located in the same directory. The shell script
referenced above simplifies matters.)

2. Run the base station executable. Windows users should minimize the command
window that appears.

Executing the System Test

It might seem like a lot of work to get to this point, but consider what you have
accomplished and what can be accomplished. You have:

• Modeled dynamic, distributed component interaction

• Created virtual testers that could, simply by specifying various IP addresses,
execute on multiple machines

• Enabled load testing

• Provided a means for implementing scenario-based testing

Each step you performed, in reality, has hidden an enormous amount of complexity.

In this section, you will run the test.

 To execute the test:

1. Run the System Testing agent software - that is, run the software that supports
virtual tester execution. The agent executable is called atsagtd and it can be
executed in one of two ways:

• On Windows - In the Start menu, select Programs > Rational
Software > Rational Test RealTime > Tools->Rational Test RealTime
System Testing Agent (which is simply a link to the file atsagtd.exe,
executable from the command line with a single argument - the port
number to be used, 10000 in this case). Minimize the command
window that appears.

97

Rational Test RealTime - Online Tutorial

• On Solaris, Linux, HP-UX and AIX - This agent is already launched if
you have followed the System Testing Agent installation instructions
in the Rational Test RealTime User Guide, in the System Testing
Overview chapter.

When test execution has completed, a post-execution trace of events will be
created; this trace is used later in the tutorial. However, if you wish to monitor
execution via an on-the-fly trace as well, follow the next five steps. Otherwise,
skip to Step 7.

2. Right-click the MobilePhoneVT system testing node on the Project Browser tab
and select Settings

3. Expand the System Testing node on the left-hand side of the Configuration
Settings window, select the Report Generator node and then select Yes in the
dropdown list associated with the property Display using on-the-fly mode.

4. Now select the Target Deployment Port for System Testing node (child of the
System Testing node) on the left of the Configuration Settings window and then
select Yes in the dropdown list associated with the property Enable On-the-fly
Runtime Tracing.

5. Click OK.

6. From the Window menu, select Close All.

Now run the test.

7. Left-click the MobilePhoneVT system testing node and press the Build button.
(If you are asked to rebuild the nodes, click the Yes button.) The test harness is
now built, deployed, and executed.

8. If you opted to create an on-the-fly trace: The Runtime Trace viewer will appear.
The test has finished executing when the right-hand phone1_0 lifeline in the
viewer is stamped at its base by a black X:

If you opted to not create an on-the-fly trace: Execution has completed when the
green execution light in the lower-right of the Test RealTime GUI stops flashing

()

9. From the File menu, select Save Project.

10. On Windows only - close the System Testing Agent.

98

Index

The on-the-fly runtime tracing diagram shows interactions, as they happened,
between the software-under-test (SUT) - that is, the UMTS base station - and the
single virtual tester you had created for the system test. This virtual tester is named
phone1_0. Such an on-the-fly diagram is useful for monitoring test execution;
however, this diagram is not crucial to the extent that the information within it has
also been captured for post-execution analysis in a separate runtime tracing diagram.

In the next exercise, you will look at this runtime tracing diagram and then study the
system test report.

Conclusion of Exercise Two

The system test scripting language has been designed to accommodate the intricacies
of distributed, scenario-based testing. In this type of testing, virtual actors send and
receive signals derived from a C language messaging API. Supported communication
links include:

• TCP/IP

• CAN Bus

• RS232/422

• ARINC Bus

• etc.

Execution can be distributed over multiple virtual testers performing multiple actions
on multiple clients. The test can be monitored by the runtime tracing feature of Test
RealTime to expose the test actions as they occur, letting you validate the accuracy of
your test and ensuring all is operating on-the-wire as designed. Timing of each signal
is also performed, enabling load testing of the component under test.

Exercise Three

In this exercise, you will:

• analyze the runtime trace viewer generated during test execution

• analyze the system test report

Analyzing the Execution-based Runtime Trace Viewer

A complete runtime tracing diagram of test execution was created at the conclusion
of the test run.

 To open the UML sequence diagram:

1. To gain additional space, close the Output Window at the bottom of the UI.

99

Rational Test RealTime - Online Tutorial

2. On the Project Browser tab, right-click the MobilePhoneVT System Testing node
and select Runtime Trace.

3. Right-click-hold within the Runtime Trace viewer and select the option Hide
Coverage Bar.

4. Make sure you are viewing the top of the runtime tracing diagram, using the
right hand slider bar if necessary.

The UMTS base station is represented by the lifeline labeled SUT BaseStation;
the virtual tester lifeline is labeled VT phone1_0 (that is, virtual tester 0 for the
phone1 INSTANCE block you chose in the Deployment Configuration window
- see the topic Configuring the Deployment Algorithm in the previous exercise
to refresh your memory).

The virtual tester first performs its initialization functions - represented by the
INITIALIZATION note. Then it performs each of the three SCENARIO blocks
located in the test script - named connect, call_busy, and call_success. Each is
visually traced, consecutively, as they occur.

The main block consists of the three SCENARIO blocks, performed one at a
time. Each scenario consists of a single test - a WAITTIL. Recall that a WAITTIL
command both checks the content of a received message as well as ensures the
message is received within a specified amount of time.

5. Click on the INITIALIZATION node at the top of the runtime tracing diagram.

The system test report is opened. You will look at that report next.

Analyzing the System Test Report

The Runtime Trace viewer shows you what happened, but it doesn't make any
reference to the success or failure of each WAITTIL. All success or failure values for
any system test are recorded in the system test report.

 To open the test report:

1. Close the Project Explorer Window on the right-hand side of the screen to gain
additional room for the runtime tracing diagram.

2. In the Report Window on the left-hand side of the UI, close the
INITIALIZATION, SCENARIO main, and TERMINATION nodes. The window
should appear as follows:

100

Index

Look at the Report Window; notice the existence of a node named INSTANCE
phone1_0 - this is a reference to Virtual Tester 0 for the phone1 INSTANCE
block. For every virtual tester executing the phone1 INSTANCE block, a
separate node would exist in this browse tree. Since your test consisted of only
one virtual tester, only one node exists in the tree.

By clicking the INITIALIZATION note in the Runtime Trace viewer, you were
jumped to the INITIALIZATION section of the system test report. This section
of the report could also be accessed by double-clicking the INITIALIZATION
node in the Report Window.

3. Expand the INITIALIZATION node in the Report Window.

Here, in the report, you see all of the CALLs made in the INITIALIZATION
block of your system test. If any of these calls failed, that information would be
found here.

4. Expand the SCENARIO main node in the Report Window.

Now you're looking at all of the functions that occur within each SCENARIO
block. (Expanding the SCENARIO main block in the Report Window will let
you maneuver through the three SCENARIOs.) Again, every action is listed.
Successes are color-code pink.

5. In the Report Window, expand the SCENARIO main node if you haven't done
so already, and then double-click the WAITTIL node located within the
SCENARIO connect node:

Look at the report. Notice how the WAITTIL section is broken down into a
WAITED EVENTS/RECEIVED EVENTS section - specifically, into the expected
message (called MATCHING) and the obtained message (called mResponse).
The expected message defines what must be in the obtained message; in this
case, the obtained message must contain a field named command with a string
value of CNX OK. As you can see, the obtained message can contain more data

101

Rational Test RealTime - Online Tutorial

than was tested for; for example, the obtained message contains the additional
fields phoneNumber, simCardId and baseStationId.

(The WAITTIL contains the clause WTIME>1000. This means that if it takes
more than 10 seconds for the awaited message to arrive, a timeout would occur
and the timeout error would be reported. The unit of measurement for this
parameter can be modified via a TDP setting.)

6. To view the test summary, scroll to the top of the report in the Report Browser
window.

Notice that 4 tests passed and 0 tests failed. This is a reference to the four SCENARIO
blocks - the parent SCENARIO block named main and the three child SCENARIO
blocks named connect, call_busy, and call_success.

Familiarize yourself with this report, noting that you can left-click all green-colored
script functions performed by the virtual tester to view the test script itself.

Conclusion of Exercise Three

With the assistance of both the on-the-fly runtime tracing diagram as well as the post-
execution runtime tracing diagram, test activity can be monitored, messaging
sequences can be understood, and scenario-based system testing use cases can be
visualized.

Once the test has been performed, the system test report succinctly summarizes the
results, letting you focus directly on uncovered problems without the distraction of
what might have been a large amount of collected data.

Conclusion

C and Ada component testing exposed problems at the function level in the UMTS
base station C code. C++ component testing exposed problems at the class level in the
UMTS base station C++ code. Finally, with system testing, problems that might exist
at the signal passing level were exposed. The base station has been tested at all levels
of complexity.

Message-passing defects can be very difficult to catch. Ideally, to uncover problems
in this area:

• system actors should be simulated to ensure well-defined scenario use cases

• these system actors should be distributed to closely mirror the true target
environment

• test data should be summarized and stored in a single, exportable file

The system testing feature of Test RealTime does all of these, with the additional
benefits of:

• interactive source-code editing

102

Index

• runtime observation capabilities

• target independence

The key to successful system testing is an understanding of realistic scenario use
cases. You need to ask yourself what is really going to happen in your system, in
what order it will happen, and what environmental constraints will exist at that time.
Once determined, you should next consider the likelihood of environmental stress
factors that could cause system degradation. If so, then load and stress testing should
become a part of your testing regimen.

Assuming true component architectures have been used in your system, if defects are
found at the system level - either improper or missing signals or signal delays - then
the Test RealTime runtime analysis features should be used in conjunction with the
testing features to narrow your focus and thereby find the root cause.

All of these tests should become part of a regression testing suite. This is the topic of
the Tutorial Conclusion - combining all tests into a single regression testing suite.

Further System Testing Exercises

As the MobilePhoneVT.pts file is currently constructed, there are no failures. Can you
make changes to the test script that will guarantee the UMTS base station fails to act
appropriately?

Java Track

Automated Component Testing

You have just completed a variety of what are, in essence, reliability tests on the
UMTS base station. In other words, you have verified the absence of memory leaks,
the optimization of performance, the sensibility of process flow, and the
completeness of your testing.

But does the base station code do what it is designed to do? And wouldn't it be useful
to create automated tests rather than rely solely on manual interaction?

Runtime analysis completes the picture, but functional testing of your code gets to
the heart of the matter - that is, will your application generate the results it was
designed to achieve. Rational Test RealTime provides you with a component testing
feature designed explicitly for the Java language.

Component Testing for Java with Rational Test RealTime

When speaking of Java applications, the term "component testing" - also sometimes
referred to as "unit testing" - applies to the testing of Java classes. A method is passed

103

Rational Test RealTime - Online Tutorial

a possible set of inputs, and the output for each set is validated to ensure accuracy.
This can be done with either a single method, a group of unrelated methods, or with
a sequential group of methods - i.e. one method calling another, verifying the overall
or integrated, result.

Sounds simple but, unfortunately, in the embedded world its practice can be quite
difficult. Why?

• What if the function you wish to test relies on the existence of other functions
that have not yet been coded?

• How will you call the function-under-test in the first place?

• How will you create and maintain a variety of potential inputs and associated
outputs - that is, how will you make data-driven testing manageable?

• What kind of effort and knowledge is required to run the test on your target
architecture - that is, in the intended, native environment?

The component testing feature of Rational Test RealTime for the Java language
provides a means for automating and verifying the above concerns. Through source
code analysis:

• Yet-to-be coded functions and procedures are "stubbed"; in other words, these
functions are created for you

• A test driver is generated to facilitate communication between your running
code and the test

• A test harness, independent of your test, is constructed to ensure adoption of
your target architecture and thus enabling in-situ test execution

Plus, to ensure that software developers are not constrained by Test RealTime in their
ability to create robust, highly flexible, data-driven tests:

• All tests are derived from the JUnit framework (www.junit.org), thereby
maintaining the ease of use and simplicity of the industry's most popular test
harness for the Java language. In fact, preexisting JUnit tests can be imported for
use within Test RealTime - absolutely no modification is necessary.

• All tests use the Java scripting language - that is, write your tests using the same
language leveraged to create the source code being tested.

With the assistance of the Target Deployment technology, the end result is an
extensible, flexible, automated testing tool for component and integration testing.

Component Testing for Java Exercises

Exercise One

In this exercise you will:

104

Index

• uncover a part of the UMTS base station code that requires further testing

• create a new activity in which you build a component test

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Using Code Coverage to Find Untested Code

During the code coverage review, you surely noticed a fair amount of untested code.
For this tutorial, you will focus on one particular section.

 To locate uncovered code:

1. First, select the menu item File->Save Project

2. If necessary, select the Code Coverage tab.

3. In the Report Window on the left-hand side of the screen, open the
PhoneNumber.java node, then open the baseStation.PhoneNumber node, and
then left-click the remove_digit() method.

This function has not been covered at all. You will achieve this coverage via
component testing.

Creating a Java Component Test

Using the Component Testing Wizard, you will now create a test for all functions in
the file PhoneNumber.java - including the removeDigit() method that contains has
not yet been covered.

 To create a Java test node:

1. From the Window menu, select Close All(and close the Output Window at the
bottom of the UI if you wish to free up additional space.

2. On the toolbar, click the Start Page button.

3. Select the Activities link on the left side of the Start Page.

4. Select the Component Testing link in the center of the Start Page.

5. In the window Application Files - Notice how all source files of your project are
already visible. No changes need to be made, so simply click the Next button.
Static metrics are recalculated.

In the Components Under Test window that has now appeared, you are asked
to specify which classes you would like to test. There are a variety of ways for
making this decision. One method is to use the static metrics that have been
automatically calculated. Certain measurements of code complexity are listed
for you:

105

Rational Test RealTime - Online Tutorial

• V(g) - Also called the Cyclomatic Number, it is a measure of the
complexity of a function that is correlated with difficulty in testing.
The standard value is between 1 and 10. A value of 1 means the code
has no branching. A function's cyclomatic complexity should not
exceed 10

• Statements - Total number of statements in a function.

• Nested Level - Statement nesting level.

• Call to Components - Number of calls to methods defined outside
the class.

• Utilization of Variables - Number of uses of attributes defined
outside the class.

Sorting by any of these metrics columns - by left-clicking a column header - lets
you prioritize your test selection, choosing the more complicated functions first.

Additional metric information can be viewed by selecting the Metrics Diagram
button on the lower right-hand side of the screen. Selection of this button opens
a graph enabling visualization of two, selected static metrics graphed against
one another. Select a data point in this graph to indicate your desire to test the
associated functions.

For this Tutorial, your test selection is based on the desire to increase code
coverage, so the static metrics do not affect your decision. You need to test the
removeDigit() method, which is a part of the PhoneNumber class.

6. In the window Components Under Test, select the checkbox next to the
reference to the PhoneNumber class. Click the Next button.

In the Test Mode window that has now appeared you are asked to make two
decisions:

• If you've selected more than one class to test, do you want all classes
to be part of the same test script (Single Mode) or do you want each
class to be assigned to its own test script (Multiple Mode). A single
test script would be easier to manage, but multiple test scripts let
you provide custom Configuration settings to each test.

• Do you want Test RealTime to make some basic assumptions about
test harness and test stub generation? If so, use Typical Mode; if not,
use Expert Mode.

7. In the Test Script Generation Settings window, enter the name PhoneNumber
into the Test Name edit box then click the Next button.

8. You should now be viewing the Summary window. Click Next.

9. Click Finish.

106

Index

10. From the File menu, select Save Project.

Notice how, in the Project Browser tab on the right-hand side of the screen, a Java
component testing node named PhoneNumber has been added to your project.

Conclusion of Exercise One

The advantages of automated testing is that it enables regression testing - that is, it
ensures nothing regresses. Just because code appeared to be functional in Build X,
doesn't mean that code will continue to be functional in Build X+1.

Few would dispute the usefulness of component testing, but many would claim there
is not enough time to do it. Every effort has been made to simplify this process in
Rational Test RealTime so that you can simply focus on making good tests, getting
readable results, and making quality code.

Exercise Two

In this exercise you will:

• review the autogenerated component test

• improve the autogenerated component test to increase code coverage as well as
to verify proper functionality

• execute the component test

The Autogenerated Java Component Test

Once you become familiar with the layout of the autogenerated test and test driver,
the modifications you need to make to increase code coverage will become obvious.

 To modify the test script:

1. In the Project Browser tab on the right-hand side of the screen, double-click the
node TestPhoneNumber.java.

2. Maximize the test script editor.

This is the test driver script. In it you will perform those steps necessary to drive and
test methods in the class under test.

107

Rational Test RealTime - Online Tutorial

Combined with the test driver script - discussed in the next section - full Java class
testing is possible. The idea is that the files TestDriver.java (the test harness),
TestPhoneNumber.java (the test), and PhoneNumber.java (the relevant source file)
will be compiled and executed together (with execution taking place on the target
specified by the currently selected Target Deployment Port Configuration).

Java component testing test scripts are written using the Java language. For detailed
information about the script layout, take advantage of the Reference Manual. For the
Tutorial, only critical script elements will be discussed.

Each Java class under test is assigned a test class whose name, by default, is the name
of the class under test preceded by the word Test - thus the test class for the
PhoneNumber class is named TestPhoneNumber. Each test class inherits from the
TestCase class, which is a part of the JUnit framework. Certain duties, such as
constructors and set-up/tear-down functions - as defined within JUnit - are
automatically generated for you by the Component Testing Wizard.

Your responsibility is to simply define the actual tests - just as you would do with
JUnit alone. To ensure that Test RealTime is able to check the success and failure of
your tests, each test should be a method of the test class assigned a name beginning
with the word test. For example, to test the removeDigit() method, the
TestPhoneNumber class should be supplied with a method named testRemoveDigit()
(or testFoo, or testBar - anything that begins with test).

You now understand the essence of Rational Test RealTime component testing test
script for Java. Rather than having you define tests yourself, a test script has been
configured for you.

A Customized Java Component Test

A customized component test script has been created for you. This test will be used
to test the methods of the PhoneNumber class - in particular, the method
removeDigit().

 To customize the test script:

1. From the Window menu, select Close All.

2. Select the Project Browser tab on the right-hand side of the screen, select the
TestPhoneNumber.java node (child of the PhoneNumber Java component
testing node), and then select the menu item Edit->Delete.

3. Right-click the PhoneNumber Java component testing node and select Add
Child->Files...

4. Browse to the Test RealTime installation folder and Open the file
\examples\BaseStation_Java\test\TestPhoneNumber.java.

5. Select the PhoneNumber test node and click the Settings button.

108

Index

6. In the Configuration Settings dialog box, select Build and Compiler.

7. Select the Class Path setting, and click the "..." button.

8. Click the Add Directories button and add both
\examples\BaseStation_Java\test and \examples\BaseStation_Java\src to the
Class Path.

9. Now, select the \examples\BaseStation_Java\test\PhoneNumber Class Path
entry, and click the Delete button to remove it from the Class Path.

10. Click OK and close the Configuration Settings box.

11. Double-click the node TestPhoneNumber.java.

12. Maximize the test script window.

13. Scroll down the text editor until you can see the test methods for addDigit(),
removeDigit() and cleanNumber().

The tests should be very straightforward. The isEmpty() method is frequently used as
an assertion check while the verifyEquals() method - inherited from JUnit - is used to
ensure values are properly stored. Inherently, by calling the removeDigit() method
via the testRemoveDigit() test method, code coverage on this method will be
increased.

You are now ready to test - but first, take a quick look at the test driver.

The Autogenerated Java Test Driver

As defined by JUnit, each test class must be called by a test driver class - and that
class is represented here, in the TestDriver.java file.

 To view the Test Driver:

1. In the Project Window on the right-hand side of the screen, on the Project
Browser tab, double-click the TestDriver.java node (child of the PhoneNumber
Java component testing node).

Note how the TestDriver class contains main(), and note how the TestDriver()
constructor contains a call to the test class TestPhoneNumber. If other test classes
were generated by the Component Testing Wizard - that is, if you had selected
multiple classes for testing and opted to have all classes tested as part of the same test
driver - you would see them listed here.

Running a Java Component Test

Running a component test is as simple as it was to build and execute the UMTS base
station used in the runtime analysis exercises.

109

Rational Test RealTime - Online Tutorial

 To execute the test:

1. Select the menu item File->Save Project.

2. Select the menu item Window->Close All

3. On the Project Browser tab, right-click the PhoneNumber Java component
testing node and then select the Build option OR left-click the PhoneNumber

Java component testing node and then select the Build toolbar button ().

4. The test is executed as part of the build process - you will know the test has
finished executing when the green execution light on the lower-right of the UI
stops flashing. Wait for this to happen to ensure all test reports are created.

You may have forgotten that the runtime analysis tools are still selected in the
Build options; the class under test - PhoneNumber - was instrumented (within
the source file PhoneNumber.java) for the memory profiling, performance
profiling, code coverage analysis and runtime tracing features of Test RealTime,
which explains why the Runtime Trace viewer appears during the run. You'll
look at the runtime tracing diagram in a moment - but just to be sure, check the
Code Coverage viewer to verify that you have achieved greater coverage.

5. In the Project Window, right-click the PhoneNumber Java component testing
node and select View Report->Code Coverage.

6. In the Report Window on the left-hand side of the UI, expand the
PhoneNumber.java node, then expand the baseStation.PhoneNumber node,
then left-click the removeDigit() method node.

As you can see, the majority of the removeDigit() method has been covered.
Now to the runtime tracing diagram.

7. Select the Runtime Trace tab.

8. Close the Project Window to the right and the Output Window at the bottom of
the UI, hide the Coverage Bar, Thread Bar and Memory Usage Bar in the
runtime tracing diagram, and set a zoom level of around 75% for the Runtime
Trace viewer.

Notice how runtime tracing tracked all of the calls made by each test method.
Of particular note is the Test Case lifeline, the fourth lifeline of the runtime
tracing diagram. This lifeline represents each test class - that is, you should see a
reference to testAddDigit, testRemoveDigit and testClearNumber as you move
down the diagram.

Along this test class lifeline you should notice three things:

• at the very beginning, a note containing the name of the test class

• method calls directed at an instance of the tested class - in this case,
obj0/obj1/obj2 of the PhoneNumber class

110

Index

• tiny glyphs representing the actual tests performed in each test class

- a pass is represented by while a failure is represented by .
The mouse tool tip, when the mouse is hovered over each glyph,
indicates the corresponding test.

A lot of information is contained in this runtime tracing diagram, which is why
an additional test report is generated to simplify analysis of your test results.

9. Select the menu item View->Other Windows->Project Window.

10. On the Project Browser tab in Project Window, right-click the PhoneNumber
Java component testing node and select View Report->Test.

11. Close the Project Window on the right-hand side of the UI.

What is the result of your tests? Did you improve coverage on the while statement?
That is the subject of the next exercise.

Conclusion of Exercise Two

The ability to use Java in your component tests gives you enormous object-oriented
testing power with minimal effort. And despite using the JUnit framework, your tests
exist independent of any particular embedded target, so you'll never have to change
your tests when the architecture you're supporting changes.

Every effort has been made to ensure there is no distraction from the task at hand,
which is to make quality tests and then fix problems as they are uncovered.

Exercise Three

In this exercise you will:

• analyze the test results

• repair the defect discovered by the Java component test

• rerun your test to verify that the defect has been fixed

The Java Component Test Report

A component test report summarizes all test results. It is hyperlinked to the test script
(in this case, the file TestPhoneNumber.java) and can be browsed using the Report
Browser on the left-hand side of the screen..

At the top of the report is an overall summary of test execution. Notice the Passed
and Failed items - of twelve tests, only ten passed. Not good news. If this was a long
test report, you could use double-clicks on failed nodes in the Report Window to the
left, or use the , or buttons on the toolbar to navigate through the report and
better understand where the failures occurred. However, this is a short report, so you
can easily see the following:

111

Rational Test RealTime - Online Tutorial

Apparently, the RemoveDigit() method is not working properly when the phone
number is reduced from 3 to 2 digits and from 2 to 1 digit - it's a good thing you
didn't simply rely on simulation usage to increase code coverage! You need to check
the code and verify if a repair is required.

Repairing a Defect

 To fix a defect:

1. From the View menu, select Other Windows and Project Window.

2. Select the Asset Browser in the Project Window.

3. Select the Sort Method named by File, expand the PhoneNumber.java node, the
baseStation child package and the PhoneNumber child node. Now, double-click
the removeDigit() method node.

Take a look at the removeDigit() method. What should happen is that whenever
the removeDigit() method is called, the last digit of the phone number - actually
stored as a string - should be removed. However, look at the line that actually
removes the digit:
_numbers.removeElementAt(0);

In fact, the first digit of the phone number is being removed - this is a defect.
The value passed to the removeElementAt() method should be the location of
the last element in the string containing the phone number. You have to modify
the code.

4. Change the following code from:
_numbers.removeElementAt(0);

to
_numbers.removeElementAt(_numbers.size()-1);

5. Select the menu item File->Save

This should fix the problem. In the next topic, you will rerun your test to make sure
the unexpected exception goes away.

112

Index

Verifying the Success of Your Repairs

As you have now learned, tests always need to be rerun and reports should always
be rechecked.

To validate the repair:

6. From the Window menu, select Close All

7. In the Project Browser tab on the right-hand side of the screen, left-click the
PhoneNumber test node and then select the Build button.

8. The test has finished executing when the green execution light on the lower-
right of the UI stops flashing. Make sure to wait until it has stopped flashing to
ensure all test reports are updated.

9. From the File menu, select Save Project.

10. In the Project Browser to the right, right-click the PhoneNumber Java
component testing node and select View Report->Test.

One more defect has been eliminated.

Conclusion of Exercise Three

Rational Test RealTime, more than anything else, exposes two vital issues:

• True, error free code is guaranteed only through extremely vigilant testing and
runtime analysis. Skip any part and defects might fall through - defects you
either repair now, when you have time, or later, when code freeze looms and
your reputation is on the line.

• With Test RealTime, this vigilance is easily accomplished. You achieve full
testing and runtime analysis with minimal distraction and minimal focus on
tedious, time-consuming tasks.

Is it possible to develop a defect-free product? It's certainly not possible if you don't
test. But if you do test, and test well, who knows... A defect is only a defect if you
didn't know it was there when you have checked in your code.

Conclusion

Java Component Testing Conclusion - with a Word about
Process

Component testing is probably the type of testing that comes to one's mind when
considering the minimal amount of effort one must make to ensure a defect-free
product. As these exercises have shown, component testing is a non-trivial activity.

113

Rational Test RealTime - Online Tutorial

Imagine a world in which no tool exists that can automate stub, driver, and harness
creation, in which no tool can automate data-driven tests. No wonder that testing is
typically viewed negatively by developers. Again, it's not that anyone feels testing is
unimportant. But how repetitive and work-intensive!

To make matters worse, without code coverage the best tests in the world are run in a
vacuum. How do you know when you are finished? How do you know what test
cases have been overlooked?

Use Rational Test RealTime to simplify your component testing of Java classes. All
the tedious tasks are automated so you can focus on good tests. Test boundary
conditions. Try inputs that would "never" happen. And let the test scripting API
generate an overabundance of inputs; why not, considering no additional effort is
required on your part.

Perhaps now you can see how Rational Test RealTime, combined with the runtime
analysis tools reviewed in the last group of exercises, provides you with full
regression testing capabilities without having to sacrifice time better spent creating
quality code.

114

Index

Conclusion

Regression Testing

Regression testing involves the reuse of all tests to ensure your software experiences
no regression - in other words, to ensure that the repair of one defect doesn't break
some other feature that worked in the past. Frankly, software testing would be much
simpler if nothing ever broke once it worked properly. Even manual testing efforts
would be acceptable for some since the effort would only be focused on "new" code -
a lot of testing at the beginning, but decreased testing as the development cycle
matures and no new features are added into the project.

But things do break and manual testing is far from an achievable goal. Software is
just too complicated and too interdependent to succeed without automated
assistance.

With Rational Test RealTime you can create full regression tests that are comprised of
all the testing and runtime analysis nodes created throughout your testing effort. It's
as simple as creating a Group node and then copying and pasting your test and
analysis nodes within it. Run the Group node as you would any other; every test and
analysis node would (optionally) build and execute. When the Group execution has
finished, a double-click on the Group node opens consolidated reports that let you
easily determine where errors have been detected.

With regression testing you close the loop. Code might break, but it will never find
its way into the finished product.

Proactive Debugging

As software complexity increases, developers must become more responsible for
their contribution to the overall development project. It is becoming harder and
harder for the developer to consider robust, end-to-end testing of their code an
unachievable luxury.

In fact, developers need to proactively debug - that is, treat testing as an integral part
of the development process, rather than waiting for defects to force their hand.

115

Rational Test RealTime - Online Tutorial

And why should this not be achievable? The advantage of proactive debugging is
that it is manageable - testing is only performed on the code known intimately well
by the developer (barring the case of inherited code, where the runtime tracing
feature plays such a crucial role). There is little chance for confusion, so the time
spent developing and deploying tests are optimized. Defects are eliminated early,
ensuring that any system level defects that have slipped through the nets won't find
their origin deep in the code. And test independence - due to the Target Deployment
Port technology - ensures test reuse despite changes in target architecture.

Matters improve further when one considers the built-in integration that Test
RealTime possess with other products in Rational's software development arsenal.
Test RealTime is integrated with:

• Rose RealTime - Access all runtime analysis functionality from within Rose
RealTime, the embedded industry's most robust UML-based code generation
tool for the embedded space. Whether using RQA-RT to test your model or
whether you simply wish to execute Rose RealTime generated code, get runtime
analysis data traceable to the implemented use case. You can even visualize
model coverage via color-coded state machines. Click here for access to the
Rational Rose RealTime website.

• ClearCase - Out-of-the-box integration with ClearCase, the industry's clear
market leader for version control software. Click here for access to the Rational
ClearCase website.

• ClearQuest - Out-of-the-box integration to ClearQuest, the premier change
management utility for diversified software teams. Submit context-sensitive
defect reports directly from the Test RealTime interface. Click here for access to
the Rational ClearQuest website.

• TestManager - Establish full traceability between a product requirement (stored
in tools such as Rational RequisitePro), the test case for that requirement and the
Test RealTime test implementing the test case. Ensure that when a test fails, you
know which product feature has yet to be properly implemented; know which
tests must be updated when features inevitably change.

• Rational Unified Process - Tool mentors help you implement various features of
Test RealTime, conceived in the RUP framework - a mature, field-tested guide
to the software development process. Click here for access to the Rational
Unified Process website.

116

Index

117

Questions?

Questions or comments? Want to share tips? Feel free to send us an e-mail at testrt-
info@rational.com. Useful information will be shared on the Latest News and
Updates page, accessible to Test RealTime customers from the Help menu in Test
RealTime.

	Rational® Test RealTime
	Online Tutorial
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Overview
	Additional Information
	C and C++ Track
	Java Track

	Runtime Analysis
	C and C++ Track
	Java Track

	Component Testing
	C, C++ and Ada Track
	Java Track

	Conclusion
	Regression Testing
	Proactive Debugging
	Questions?

