
Rational Software Corporation®
Rational® PurifyPlus for
Linux
Online Tutorial

VERSION: 2003.06.00

UNIX
support@rational.com
http://www.rational.com

ii Rational Test RealTime and PurifyPlus RealTime Installation Guide

Legal Notices

©2001-2003, Rational Software Corporation. All rights reserved.

Any reproduction or distribution of this work is expressly prohibited without the
prior written consent of Rational.

Version Number: 2003.06.00

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, , ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, , Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck,SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising
from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements

Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.
Chapter - iii

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash,
Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual
InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact,
WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, are either
trademarks or registered trademarks of Microsoft Corporation in the United States
and/or in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.
iv Rational Test RealTime and PurifyPlus RealTime Installation Guide

Tutorial Contents

Preface ... vii
Audience ...vii
Contacting Rational Technical Publications..vii
Other Resources.. viii
Customer Support.. viii

Getting Started .. 1
Additional Information .. 1
C and C++ Track.. 2

About this Tutorial..2
Example File Locations ...2
Mobile Phone Simulator ..2
UMTS Base Station ...3
Goals of the Tutorial ..3

Java Track ... 4
About this Tutorial..4
Example File Locations ...4
Mobile Phone Simulator ..4
JDK Installation..5
Host-based Testing vs Target-based Testing ...5

Target Deployment Port Web Site ...6
Creating and Editing Target Deployment Ports ...6

Goals of the Tutorial ..7

Runtime Analysis .. 9
C and C++ Track.. 9

Runtime Analysis for C and C++ ...9
Runtime Analysis...9

Memory Profiling ..9
Performance Profiling ..9
Code Coverage Analysis ...10
Runtime Tracing...10

Runtime Analysis Exercises ..11

v

Table Of Contents

Exercise One ...12
Exercise Two ...17
Exercise Three...26

Conclusion ...31
Conclusion - with a Word about Process...31

Java Track ... 32
Runtime Analysis for Java ...32
Runtime Analysis...33

Memory Profiling ..33
Performance Profiling ..33
Code Coverage Analysis ...34
Runtime Tracing...34

Runtime Analysis Exercises ..35
Exercise One ...36
Exercise Two ...41
Exercise Three...51

Conclusion ...57
Conclusion - with a Word about Process...57

Conclusion... 59
Regression Testing .. 59
Proactive Debugging.. 59
Questions?... 61

vi

Preface

Welcome to Rational PurifyPlus for Linux.

This tutorial is designed to introduce software developers to the power and
simplicity of Rational PurifyPlus for Linux. Of course, the first goal of these lessons is
to teach you how to use these tools in your current development project. However,
there is a second goal as well. PurifyPlus for Linux is meant to enhance your
development effort, not get in its way. To that end, you will be offered insights into
process as well. Hopefully, you will come away from this tutorial with an
understanding of how best to make PurifyPlus for Linux a fully integrated member
of your development desktop.

PurifyPlus for Linux is a complete solution for runtime analysis on Linux platforms:
it delivers memory leak detection, memory and performance profiling as well as code
coverage and runtime tracing.

General information about PurifyPlus for Linux can be found in the PurifyP us for
Linux User Guide.

l

iAdvanced usage of the product is described in the PurifyPlus for L nux Reference
Manual.

Audience

This guide is intended for Rational software users who are using PurifyPlus for
Linux for the first time, such as application developers, quality assurance managers,
and quality assurance testers.

You should be familiar with the selected Linux platform as well as your C, C++ or
Java development environment.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

vii

Purify Plus RealTime - Online Tutorial

Keep in mind that this e-mail address is only for documentation feedback. For
technical questions, please contact Customer Support.

Other Resources

All manuals are available online, either in HTML or PDF format. The online manuals
are on the CD and are installed with the product.

For the most recent updates to the product, including documentation, please visit the
Product Support section of the Web site at:

http://www.rational.com/products/pqc/pplus_lx.jsp

Documentation updates and printable PDF versions of Rational documentation can
also be downloaded from:

http://www.rational.com/support/documentation/index.jsp

For more information about Rational Software technical publications, see:

http://www.rational.com/documentation.

For more information on training opportunities, see the Rational University Web site:

http://www.rational.com/university.

Customer Support

Before contacting Rational Customer Support, make sure you have a look at the tips,
advice and answers to frequently asked questions in Rational's Solution database:

http://solutions.rational.com/solutions

Choose the product from the list and enter a keyword that most represents your
problem. For example, to obtain all the documents that talk about stubs taking
parameters of type “char”, enter "stub char". This database is updated with more
than 20 documents each month.

When contacting Rational Customer Support, please be prepared to supply the
following information:

• About you:
Name, title, e-mail address, telephone number

• About your company:
Company name and company address

viii

http://www.rational.com/products/pqc/pplus_lx.jsp
http://www.rational.com/documentation
http://www.rational.com/university

Preface

• About the product:
Product name and version number (from the Help menu, select About).
What components of the product you are using

• About your development environment:
Operating system and version number (for example, Linux RedHat 8.0), target
compiler, operating system and microprocessor.

• About your problem:
Your service request number (if you are calling about a previously reported
problem)
A summary description of the problem, related errors, and how it was made to
occur
Please state how critical your problem is
Any files that can be helpful for the technical support to reproduce the problem
(project, workspace, test scripts, source files). Formats accepted are .zip and
compressed tar (.tar.Z or .tar.gz)

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Customer Support.

You can obtain technical assistance by sending e-mail to just one of the e-mail
addresses cited below. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail, place the
product name in the subject line, and include a description of your problem in the
body of your message.

Note When sending e-mail concerning a previously-reported problem, please
include in the subject field: "[SR#<number>]", where <number> is the service
request number of the issue. For example:
Re:[SR#12176528] New data on PurifyPlus for Linux install issue

Sometimes Rational technical support engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Customer Support" and add your fax number to
the information requested above.

Location Contact

North America

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014

voice: (800) 433-5444
fax: (408) 863-4001

e-mail: support@rational.com

Europe, Middle East, Rational Software,

ix

Purify Plus RealTime - Online Tutorial

and Africa Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands

voice: +31 20 454 6200
fax: +31 20 454 6201

e-mail: support@europe.rational.com

Asia Pacific Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia

voice: +61 2-9419-0111
fax: +61 2-9419-0123

e-mail: support@apac.rational.com

x

Getting Started

This tutorial is comprised of two primary lessons, or browse sequences. Those
interested in C and C++ are asked to follow the track labeled with those languages;
those interested in Java are asked to follow the Java track. You are welcome to
complete both tracks, of course, but each has been designed to be finished in its
entirety - that is, perform the entire Java tutorial track before initiating the track for C
and C++, and vice versa. Keep in mind that though there are some feature differences
between the support for C, C++ and Java, the majority of product features are the
same.

Follow the lessons in order; this may take you 4 to 5 hours, depending on your prior
knowledge of the PurifyPlus RealTime feature-set and on your comfort level with
software development. The two primary lessons are:

• Preparation for the Online Tutorial

• Runtime Analysis with PurifyPlus for Linux

Occasionally, further practice will be suggested - additional use of the tools to be
performed outside of this Tutorial. You can follow the Further Practice links on the
corresponding pages.

To maneuver through the browse sequences:

• On Windows: Click the browse sequence pages at the top of the tutorial
window.

• Other platforms: Use the Next Page and Previous Page links on each page.

Additional Information

While it is the objective of this tutorial to prepare you for the use of PurifyPlus for
Linux, occasions will arise when you have questions beyond its scope. Be sure to take
advantage of the online Help, which is designed to address all issues associated with
the runtime analysis of embedded software using Rational PurifyPlus for Linux.

To access the Help, click the Help menu and select User Guide. In the Help viewer,
use the Contents, Index, and Search tabs to navigate to the information you need.

1

Purify Plus RealTime - Online Tutorial

For information related to command-line usage, click the Help menu and select
Reference Manual.

C and C++ Track

This tutorial can be performed on all PurifyPlus for Linux supported development
platforms.

Since efforts are always being made to update or improve this tutorial - as well as the
products themselves - a customer-only webpage has been created. This page contains
news, patches and documentation updates for current users. Feel free to check this
page for updates before usage of this tutorial.

 To access the PurifyPlus for Linux Support Web site:

1. From the Help menu, select Rational PurifyPlus for Linux on the Web and
Latest News and Updates for Users.

About this Tutorial

This tutorial demonstrates how to make the most of PurifyPlus for Linux through a
sample UMTS mobile phone application, comprised of:

• A mobile phone simulator, running a basic embedded application

• A UMTS base station demonstrating the communication system

UMTS - Universal Mobile Telecommunications System - is a Third Generation (3G)
mobile technology that will enable 2Mbit/s streaming not only of voice and data, but
also of audio and visual content. A UMTS base station is a switching network device
enabling the communication of multiple UMTS-enabled mobile phones.

Example File Locations

Source files for the base station (the mobile phone executable is provided) are located
within the product installation folder, in the folder \examples\BaseStation_C\src.

If you do not have write permission to the installation location of PurifyPlus for
Linux, you must copy the examples folder and its contents to a new location.
Otherwise, you will be unable to perform any part of the Tutorial that creates or
modifies files.

Mobile Phone Simulator

The mobile phone simulator consists of both a Graphical User Interface (GUI) as well
as of internal logic. The GUI is constructed from OS-independent graphical C++

2

Getting Started

classes; the logic within the simulator is constructed from OS-independent C and
C++ code.

The mobile phone executable is located within the PurifyPlus for Linux/PurifyPlus
RealTime installation folder, in the folder \examples\BaseStation_C\MobilePhone\.
The name of the executable depends on your Linux distibution:

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

A launcher shell script - MobilePhone.sh - is provided as well.

UMTS Base Station

The UMTS base station is fully operational, constructed from OS-independent C++
code. You are provided with both the source code and an executable for the base
station. The UMTS base station executable is located within the PurifyPlus for Linux
installation folder, in the folder \examples\BaseStation_C. The name of the
executable depends on your Linux distibution:

• Linux SuSE: BaseStation.Linux

• Linux RedHat: BaseStation.Linux_redhat

A launcher shell script - BaseStation.sh - is provided as well.

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your responsibility, during
the tutorial, will be to uncover:

• a memory leak

• a performance bottleneck

• a logic error in C code

• a logic error in C++ code

In addition, test completeness will be achieved by:

• analyze the code coverage achieved via UMTS base station interaction

• improving your understanding of the code via runtime tracing

To accomplish the above, you will manipulate the UMTS base station through
manual interaction with a mobile phone simulator.

To continue this tutorial, follow the C, C++ and Ada track in the next lesson: Runtime
Analysis with PurifyPlus for Linux.

3

Purify Plus RealTime - Online Tutorial

Java Track

This tutorial can be performed on all PurifyPlus for Linux supported development
platforms.

Since efforts are always being made to update or improve this tutorial - as well as the
products themselves - a customer-only webpage has been created. This page contains
news, patches and documentation updates for current users. Feel free to check this
page for updates before usage of this tutorial.

 To access the PurifyPlus for Linux Support Web site:

1. From the Help menu, select Rational PurifyPlus for Linux on the Web and
Latest News and Updates for Users.

About this Tutorial

This tutorial demonstrates how to make the most of PurifyPlus for Linux through a
sample UMTS mobile phone application, comprised of:

• A mobile phone simulator, running a basic embedded application

• A UMTS base station demonstrating the communication system

UMTS - Universal Mobile Telecommunications System - is a Third Generation (3G)
mobile technology that will enable 2Mbit/s streaming not only of voice and data, but
also of audio and visual content. A UMTS base station is a switching network device
enabling the communication of multiple UMTS-enabled mobile phones.

Example File Locations

Source files for the base station (the mobile phone executable is provided) are located
within the product installation folder, in the folder \examples\BaseStation_Java\src.

If you do not have write permission to the installation location of PurifyPlus for
Linux, you must copy the examples folder and its contents to a new location.
Otherwise, you will be unable to perform any part of the Tutorial that creates or
modifies files.

Mobile Phone Simulator

The mobile phone simulator consists of both a Graphical User Interface (GUI) as well
as of internal logic. The GUI is constructed from OS-independent graphical C++
classes; the logic within the simulator is constructed from OS-independent Java code.

Note PurifyPlus for Linux supports both J2ME and J2SE; however, only J2SE
is covered in this Tutorial.

4

Getting Started

The mobile phone executable is located within the PurifyPlus for Linux/PurifyPlus
RealTime installation folder, in the folder \examples\BaseStation_C\MobilePhone\
- that is, the executable is not located in the BaseStation_Java folder. The name of the
executable depends on your Linux distibution:

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

A launcher shell script - MobilePhone.sh - is provided as well.

JDK Installation

Performance of the tutorial assumes access to the J2SE 1.3.1 or 1.4.0 SDK.

If neither J2SE distribution is currently installed on your machine, you can freely
download them as described here. The following are the recommended J2SE
distributions. Technically, any SDK that is 100% J2SE 1.3.1 or 1.4.0 compliant can be
used with PurifyPlus for Linux. However, only the following distributions have been
verified as supported.

 To install J2SE 1.3.1 on Linux (both RedHat and SuSE):

1. Go to http://java.sun.com/j2se/1.3/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine

 To install J2SE 1.4.0 on Linux (both RedHat and SuSE)

1. Go to http://java.sun.com/j2se/1.4/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine.

Host-based Testing vs Target-based Testing

The runtime analysis that you will perform for this tutorial take place entirely on
your machine. However, one of the greatest capabilities of Rational PurifyPlus for
Linux is its support for analyzing your software directly on an embedded target.
Does this mean you will need to change how you interact with your application
when switching from host-based to target-based testing? Will your tests have to be
rewritten, for example?

Not at all.

Thanks to Rational's versatile, low-overhead Target Deployment Technology, all tests
are fully target independent. Each cross-development environment - that is, every
combination of compiler, linker, and debugger - has its own Target Deployment Port

5

Purify Plus RealTime - Online Tutorial

(TDP). In addition, any TDP can be modified via the PurifyPlus for Linux user
interface at a more granular level, letting you customize a particular runtime analysis
interaction without affecting neighboring interactions. Such granular tailoring is
supported by the concept of Configurations. Each Configuration can support one or
more TDP and can apply separate customization settings to each interaction assigned
to it.

Over thirty reference TDPs, supporting some of the most commonly used cross-
development environments, are supplied out-of-the-box. After creation of a project
(you will be doing this in a few moments), you can access a list of TDPs installed on
the machine.

 To view a list of currently installed TDPs:

1. From the Project menu, select Configuration.

2. Select New...

3. Use the dropdown list to scroll through the available TDPs

Target Deployment Port Web Site

As new reference TDPs become available, they are first posted on a customer-
accessible Web site. Check this site periodically for news of the latest TDPs to be
made available to the Rational Test RealTime and PurifyPlus RealTime community.

 To access the PurifyPlus for Linux Web site:

1. From the Help menu, select Rational PurifyPlus for Linux on the Web and
Target Deployment Ports

Creating and Editing Target Deployment Ports

Does your organization target an environment for which no TDP yet exists? Using
the Target Deployment Port Editor you can create support, just as many of Rational's
customers have done before you.

The reference TDPs supplied with PurifyPlus for Linux can guide your TDP creation
efforts; Rational also provides professional services should you choose to contract out
their creation.

Note The Target Deployment Port Editor is not included with the evaluation
version of the product.

 To access the Target Deployment Port Editor:

1. From the Tools menu, select Target Deployment Port Editor and Start.

For more information about the Target Deployment Port Editor, please refer to the
Rational PurifyPlus for Linux Target Deployment Guide.

6

Getting Started

Every PurifyPlus for Linux feature is accessible regardless of the environment within
which you will be executing your tests. Rest assured, your intended targets are
supported.

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your responsibility, during
the tutorial, will be to uncover:

• poor memory management

• a performance bottleneck

• a logic error in Java code

In addition, test completeness will be achieved by:

• using code coverage to add new tests

• improving your understanding of the code via runtime tracing

To accomplish the above, you will first manipulate the UMTS base station through
manual interaction with a mobile phone simulator. Afterwards, automated hands-
free interaction will be used.

To continue this tutorial, follow the Java track in the next lesson: Runtime Analysis
with Test RealTime and PurifyPlus RealTime.

7

Runtime Analysis

C and C++ Track

Runtime Analysis for C and C++

You will start your tour with the runtime analysis features provided by PurifyPlus
for Linux.

Runtime analysis refers to PurifyPlus for Linux's ability to monitor an application as
it executes. There are a variety of advantages to be gained from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis

Memory Profiling

Dynamically working with system memory can be quite a complicated affair. If
you're not careful, your code might either:

• Fail to free memory - referred to as a memory leak

• Mistakenly reference non-allocated memory - referred to as an array bounds
read or array bounds write

A memory leak detection utility monitors an application as it executes, keeping an
eye on memory usage to ensure the above problems don't occur. If they do occur, the
detection utility points out the sequence of events leading up to the poor usage of
memory, helping you deduce the cause of the error and thereby repair your code.

This function is provided in Rational PurifyPlus for Linux by the memory profiling
feature for the C and C++ languages.

Performance Profiling

9

Purify Plus RealTime - Online Tutorial

Optimal performance is, needless to say, crucial for real-time embedded systems.
Measuring performance can be quite difficult, however, particularly when it comes to
determining the specific functional bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch your
application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all real-time constraints
placed upon your system are accommodated.

This function is provided in Rational PurifyPlus for Linux and Rational PurifyPlus
RealTime by the performance profiling feature for the C and C++ languages.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to determine the
portions of code that have gone untested. For many embedded systems, failure is not
an option, so every part of an application must be thoroughly tested to ensure there is
no unhandled scenario or dead code.

In addition, project managers need a concrete measurement to determine where the
team is in the development cycle - in particular, how much more testing needs to be
done. A decreasing number of defects does not necessarily mean the product is
ready; it might simply mean the portions of code that have been tested appear to be
ready.

Code coverage measurement tools observe your running application, flagging every
line of code as it executes. Advanced tools - such as Test RealTime and PurifyPlus
RealTime - are also able to differentiate different types of execution, such as whether
or not a do-while loop executed 0 times, 1 time, or 2 or more times. These advanced
measurements are critical for software certification in industries such as avionics.

This function is provided in Rational PurifyPlus for Linux and Rational PurifyPlus
RealTime by the code coverage feature for the C and C++ languages.

Runtime Tracing

As all embedded developers quickly learn, intentions don't necessarily translate into
reality. There can often be a vast difference between what you want to happen and
what actually happens as your application executes.

This problem becomes more severe when the code is inherited. Yes, you could try to
piece things together yourself, but system complexity might just undercut your
efforts at understanding the code.

10

Runtime Analysis

And what about multi-threaded applications? If you've ever encountered race
conditions or deadlocks, you know how difficult it can be to uncover the source of
the problem.

This is where runtime tracing monitors come in. These utilities graphically display
the sequence of function or method calls in your running application - as well as the
active threads - illustrating through pictures what is actually happening. With this
information, unexpected exceptions can be easily traced back to their source, complex
procedures can be distilled to their essence, threading conflicts can be resolved and
inherited code can jump off the page and display its inherent logic.

This function, using the industry standard Unified Modeling Language for its
graphical display, is provided in Rational PurifyPlus for Linux by the runtime tracing
feature for the C and C++ languages.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving the four
runtime analysis features of PurifyPlus for Linux to which you have just been
introduced. Pay close attention not only to the capabilities of these features but also
to how they are used. The better you understand these features, the more quickly you
will be able to adopt them within your own development process.

Reminders before you begin:

Temporary Folder

If you have never run this tutorial before, make sure your machine has a temporary
folder in which you can store the test project you will be creating. For the tutorial, it
is assumed that the test project will be stored in a folder called tmp

GNU Compiler and JDK

During installation of the product, the user is confronted by two interactive dialogs.
These dialogs serve to clarify the location of the local GNU compiler and (if present)
local JDK. Only the GNU compiler and JDK specified within these dialogs will be
accessible within the product. Is the GNU compiler located during installation of
PurifyPlus for Linux the only GNU compiler installed on your machine? If so, skip
the rest of this section. If not - or if you are not sure - then you should ensure the
proper compiler will be accessible by performing the following:

 To make a compiler available to the product:

1. From a command prompt, execute the shell script:
<install_dir>/PurifyPlusForLinux.2003.06.00/bin/intel/linux_redhat/Configur
eGcc.sh or,

11

Purify Plus RealTime - Online Tutorial

<install_dir>/PurifyPlusForLinux.2003.06.00/bin/intel/linux_suse/Configure
Gcc.sh

2. Follow the prompts until the proper GNU compiler is located

This shell script depends on a properly configured environment.

 To configure your environment

1. Set your current directory to the applicable shell script folder mentioned above

2. Execute the environment configuration shell script:
<install_dir>/PurifyPlusForLinux.2003.06.00/bin/intel/linux_redhat/ppluslin
uxinit.sh or,
<install_dir>/PurifyPlusForLinux.2003.06.00/bin/intel/linux_suse/ppluslinuxi
nit.sh

Running the Tutorial Several Times

If you have run this tutorial before, do not forget to undo the source file edits you
made the last time you ran through it. The following files are modified during the
tutorial:

• PhoneNumber.cpp

• UmtsCode.c

• UmtsServer.cpp

Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Creating a Project

Typically, there is a one-to-one relationship between your current development
project and a PurifyPlus for Linux project. Although your development project may
consist of more than one application, these applications often possess a common
theme. Use the PurifyPlus for Linux project to enforce that theme.

 To create a project in PurifyPlus for Linux:

1. Start Rational PurifyPlus for Linux:
Type studio on the command line

12

Runtime Analysis

2. Select the Get Started link on the left-hand side of the PurifyPlus for Linux Start
Page.
Two links appear on the top of the page: New Project and Open Project.

3. Select the New Project link.
You should now see the New Project Wizard.

4. In the Project Name field, enter BaseStation (no spaces).
In the Location field, select the button, browse to the folder in which you
want the BaseStation project to be stored and then select it. For this Tutorial,
let's assume that the project has been stored in the \usr\tmp folder.
Click the Next button.

5. Select, from the list of supported C++ GNU distributions, the one you intend to
use.
Note that GNU compilers support both C and C++. For this example, you must
select a C++ distribution..

6. Click the Finish button.

That's it. The project has been created - named BaseStation - and a project node by the
same name appears on the Project Browser tab of the Project Explorer window on the
right-hand side of the UI:

Note A project created in Rational PurifyPlus RealTime could also be used in
Rational Test RealTime; a project created in Test RealTime, opened in
PurifyPlus RealTime, will be limited to runtime analysis - that is, no tests can
be executed and no test reports can be viewed.

Starting a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

• the type of testing or runtime analysis activity you would like to perform first

 To start a new activity:

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on runtime analysis
functionality, so select the Runtime Analysis link. This will bring up the
Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files for your
current development project. For this tutorial, you will directly select the source
files. Click Add .

13

Purify Plus RealTime - Online Tutorial

3. Browse to folder into which you have installed PurifyPlus for Linux and then
access the folder \examples\BaseStation_C\src

4. Make sure All C++ and Header Files in the Files of Type dropdown box is
selected, then left-click-hold-and-drag over all of the C and C++ source files.
Now click the Open button.
You should see a set of .c, .cpp and .h files listed in the large listbox of the
Application Files window.
Click Next.

5. At this time, an analysis engine parses each source file - referred to as tagging.
This process is used to extract the various functions, methods, procedures and
classes located within each source file, simplifying code browsing within the UI.

6. In the window entitled Selective Instrumentation you have the ability to select
those functions, procedures, methods or classes that should not be instrumented
for runtime analysis. Such selective instrumentation ensures that the
instrumentation overhead is kept to a minimum. For this Tutorial, you will be
monitoring everything and thus all items should be checked. This should
happen by default; if not, click Select All . Click Next.

7. You have now reached the window entitled Application Node Name. Enter the
name of the application node that will be created at the conclusion of the
Runtime Analysis Wizard; since you will be monitoring execution of the UMTS
base station, type the word BaseStation within the text field labeled Name.

8. The Application Node Name window also gives you the opportunity to modify
build settings associated with the TDP you selected when creating the
PurifyPlus for Linux project. Some changes may need to be made, depending on
your operating system. (Note that these changes do not affect the actual TDP;
you will be making changes to a Configuration. A Configuration lets you
modify a variety of settings on a node-by-node basis within a project.

9. Click Next.

10. You are now confronted with the Summary window. Everything should be in
order, so click the Finish button.

The BaseStation application node has now been created. The Project Browser tab of
the Project Explorer window should appear as follows:

14

Runtime Analysis

Additional Build Customization

In this example, the UMTS base station consists of a mix of C and C++ source files.
Some C++ compilers can handle both the C and C++ languages; other compilers are
not able to do this.

Recall that you selected the TDP for the C++ compiler on your machine. On
Windows, the Visual C++ 6.0 TDP can process both C and C++ files. For the GNU
compiler on Windows, and for the native compilers on Solaris, Linux, HP-UX and
AIX, you need to specify a C language TDP for the .c source files:

If you're using the GNU compiler on Windows, or the native compilers on Solaris,
Linux, HP-UX and AIX:

 To set a C language TDP for .c files:

1. In the Project Browser, right-click the tcpsck.c child node of the BaseStation
application node and select Settings.

2. Position the Configuration Settings window that has opened so that you can
easily see the Project Browser.

3. Expand the General node in the tree on the left-hand side of the window and
left-click the Host Configuration child node.

4. Click the dropdown list for the Target Deployment Port setting. It's current
value is the TDP selected when you created the project.

5. Expand the dropdown list - either by left-clicking the field one more time or by
selecting the dropdown list arrow to the right - and select the corresponding C
language TDP for your machine. Click Apply once the new TDP is selected.

6. Back in the Project Browser, select the node for the file UmtsCode.c and then
follow steps 4 and 5 above.

15

Purify Plus RealTime - Online Tutorial

7. Select the node for the file UmtsMsg.c in the Project Browser and then follow
steps 4 and 5 above.

8. In the Configuration Settings window, click OK.

Note Only the settings for these specific file nodes have been changed; all
other file nodes continue to use the default TDP settings.

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer window, and
within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group, application and
test nodes created for the active project. The project node, named BaseStation,
contains an application node named BaseStation; the application node contains a list
of all of the source files required to build the UMTS base station application. (Though
the project and application nodes have the same name, this is not a requirement.)

The second tab - the Asset Browser tab - lets you browse all of your source and test
files. If the selected Sort Method is By File, you are presented with a file-by-file listing
of test scripts, source code and source code dependents (such as header files). Note
how each header file can be expanded to display every class, function, and method
declaration, while each source file can be expanded to display every defined object
and method or function. Double-clicking any test script/source file/header file node
will open its contents within the PurifyPlus for Linux editor; double-clicking any
class declaration or method definition node will open the relevant source file/header
file to the very line of code at which the definition/declaration occurs.

There are two other sort methods as well on the Asset Browser. The first, By Object,
lets you filter down to classes and methods, independent of the source files. The
second, By Directory, is primarily applicable to Java packages.

You may have noticed along one of the toolbars at the top of the UI that the TDP you
selected in the New Project Wizard is listed in a dropdown box. In fact, this is not a
reference to the TDP, it is a reference to the Configuration whose base TDP was the
one you selected in the wizard - in the case of this tutorial, it is a TDP supporting
C++. (Recall that the Configuration allowed you to select the TDP designed for use
with C language files. Configurations are initially named after their base TDP, but
this name can be changed.) Should you have multiple configurations for the same
project, use this dropdown box to select the active Configuration for execution.

Finally, to the right of the Configuration dropdown list is the Build button. This
button is used to build your application for application nodes and the test harness for
test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

16

Runtime Analysis

• a test driver

The Build Options button lets the user decide from which point the build process
should initiate and what runtime analysis features should be used. The runtime
analysis features do not have to be used at the same time; this Build Options window
provides a quick and simple method for deselecting undesired runtime analysis
features immediately prior to execution of the build process.

Armed with this knowledge, proceed to Exercise Two.

Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

When performing runtime analysis, your source code must be instrumented.
Instrumentation, by default, is enabled for all four runtime analysis features - that is,
for memory profiling, performance profiling, code coverage analysis and runtime
tracing. All four features are turned on by default.

 To build and execute the application:

1. In order to instrument, compile, link, and execute the UMTS base station
application in preparation for runtime analysis, simply ensure the BaseStation
application node is selected on the Project Browser tab of the Project Explorer
window, and then click the Build button.
Do so now.

Note More information about the source code insertion technology can be
found in the User Guide, in the chapter Product Overview->Source Code
Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the Build tab,
you can watch the preprocessing, instrumentation, compilation, and link phases
of the build process as they occur. A double-click on an error listed within any
of the Output Window tabs opens the relevant source code file to the
appropriate line in the PurifyPlus for Linux Editor.

3. The build process has completed, and the UMTS base station is running, when
the UML-based sequence diagram generated by the runtime tracing feature
appears. (More about this feature in a moment.)

17

Purify Plus RealTime - Online Tutorial

4. Close the Project Explorer window on the right-hand side of the UI by clicking
the Close Window button.

Notice how the graphically displayed data in the Runtime Trace viewer dynamically
grows - this is because the UMTS base station is being actively monitored. The UMTS
base station endlessly searches for mobile phones requesting registration; the
Runtime Trace viewer reflects this endless loop. If you wish, use the Pause button on
the toolbar to stop the dynamic trace for a moment (the trace is still being recorded,
just no longer displayed in real time). In addition, use the Zoom In and Zoom Out

buttons on the toolbar to get a better view of the graphical display (or right-click-
hold within the Runtime Trace viewer and select the Zoom In or Zoom Out options).
Undo the Pause when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary importance
right now is interaction with the UMTS base station. You'll do this by using the
mobile phone simulator mentioned earlier in the Overview section of this tutorial.
Through this manual interaction you will expose memory leaks, performance
bottlenecks, incomplete code coverage, and dynamic runtime sequencing.

Interacting with the Application

 To run the application:

1. Start the mobile phone by running the provided mobile phone executable built
for your operating system. The mobile phone executable is located within the
PurifyPlus for Linux installation folder in the folder
\examples\BaseStation_C\MobilePhone\. The name of the executable depends
on your operating system:

• Windows: MobilePhone.exe

• Solaris: MobilePhone.SunOS

• Linux: MobilePhone.Linux

• HP-UX: MobilePhone.HP-UX

• AIX: MobilePhone.AIX

(A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.)

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you watched
the Runtime Trace viewer closely, you would have noticed a display of all the
internal method calls of the UMTS base station that occur when a phone
attempts to register). The current system time should appear in the mobile
phone window when connection has been established.

18

Runtime Analysis

4. Once connected, dial the phone number 5550000, then press the button to
send this number to the UMTS base station (again, try to see the Runtime Trace
viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the phone is
busy. Shut off the simulator by closing the mobile phone window via the
button in its upper right corner.

The UMTS base station is designed to shut off when a registered phone goes off
line. Not a great idea for the real world, but it serves the Tutorial's purposes
well. Alternatively, you could have just used the Stop Build button located
next to the Build button on the toolbar.

6. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base station
stopped (i.e. once the instrumented application stopped), all runtime analysis
information was written to user accessible reports that are directly linked to the
UMTS base station source code. In order to look at these reports:

7. Reopen the Project Explorer window by selecting the menu item View->Other
Windows->Project Window

8. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open.
(Alternatively, right-click the BaseStation application node and select View
Report->All.)

9. Close the Project Explorer window and the Output Window (at the bottom of
the UI) to create room for the now-opened reports. You may also want to resize
the left-hand window to gain additional room.

Understanding Runtime Tracing

 To view the UML sequence diagram report:

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all method
calls involved in the execution of the UMTS base station code. Using the toolbar
Zoom Out button, zoom out from the tracing diagram until you can see at
least five vertical bars.

19

Purify Plus RealTime - Online Tutorial

3. Make sure you are looking at the top of the runtime tracing diagram using the
slider bar on the right.

What you are looking at is a sequence diagram of all events that occurred
during the execution of your code. This sequence diagram uses a notation taken
from the Unified Modeling Language, thus it can be correctly referred to as a
UML-based sequence diagram.

The vertical lines are referred to as lifelines. Each lifeline represents either a C
source file or a C++ object instance. The very first lifeline, represented by a stick
figure, is considered the "world" - that is, the operating system. In this UMTS
base station tracing diagram, the next lifeline to the right represents an object
instance named Obj1, derived from the UmtsServer class.

Green lines are constructor calls, black lines are method calls, red lines are
method returns, and blue lines are destructor calls. Hover the mouse over any
method call to see the full text. Notice how every call and call return is time
stamped.

Everything in the Runtime Trace viewer is hyperlinked to the monitored source
code. For example, if you click on the Obj1::UmtsServer lifeline, the header file
in which the UmtsServer class declaration appears is opened for you, the
relevant section highlighted. (Close the source file by right-clicking the tab of
the Text Editor and selecting Close.) All function calls can be left-clicked as well
in order to view the source code. Look at the very top of the Obj1::UmtsServer
lifeline. It's "birth" appears to consist of a List() constructor first, then a
UmtsServer() constructor. Why a call to the List() constructor if the object is an
instance of the UmtsServer class? Click on the UmtsServer() lifeline again - see
how the UmtsServer() constructor inherits from the List() class? This is why the
List() constructor is called first. Click the two constructor calls if you wish to
pursue this matter further.

Notice how the window on the left-hand side of the user interface - called the
Report Window - contains a reference to all classes and class instances. Double-
clicking any object referenced in this window will jump you to its birth in the
Runtime Trace viewer. This window can also be used to filter the runtime
tracing diagram.

4. In the left-hand window, close the node labeled NETWORKNODE.H - notice
how all objects derived from the NetworkNode class declared in this header file
are reduced to a single lifeline.

5. Reopen the node labeled NETWORKNODE.H.

You've probably noticed the vertical graph with the green bar to the left of the
Runtime Trace viewer. This is the Coverage Bar. It highlights, in
synchronization with the trace diagram, the percentage of total code coverage
achieved during execution of the monitored application. The Coverage Bar's
caption states the percentage of code coverage achieved by the particular

20

Runtime Analysis

interaction presently displayed in the Runtime Trace viewer. Scroll down the
trace diagram; note how code coverage gradually increases until a steady state
is achieved. This steady state is achieved following the moment at which the
mobile phone has connected to the UMTS base station. Dialing the phone
number increases code coverage a bit; shutting off the phone creates a last burst
of code coverage up until the moment the UMTS base station is shut off. Can
you locate where, on the trace diagram, the mobile phone simulator first
connected to the UMTS base station? (The Coverage Bar can be toggled on and
off using the right-click-hold menu within the Runtime Trace viewer.)

Note If the C++ code in the UMTS base station spawned multiple threads, the
Coverage Bar would be joined by the Thread Bar, a vertical graph highlighting
the active thread at any given moment within the trace diagram. A double-
click on this bar would open a threading window, detailing thread state
changes throughout your application's execution. This thread monitoring
feature is also available for the Java language.

Continue to look around the trace diagram. Can you locate the repetitive loop in
which the UMTS base station looks for attempted mobile phone registration (it
always starts with a call to the C function tcpsck_data_ready)? You can filter out
this loop using a couple of methods. One is to simply hover the mouse over a
method or function call you wish to filter, right-click-hold and select Filter
Message. An alternative method would be to build your own filter. You will do
both.

6. Hover the mouse over any call of the tcpsck_data_ready function, right-click-
hold and select Filter Message - the function call should disappear from the
entire trace.

7. Select the menu item Runtime Trace->Filters (you'll see the filter you just
performed listed here)
Click the Import button, browse to the installation folder and then the folder
\examples\BaseStation_C, and then Open the filter file filters.tft

8. Check that BaseStation Phone Search Filter is selected. Select it if necessary.

9. Click the OK button.

The loop has been removed.

Not only can the runtime tracing feature capture standard function/method
calls, but it can also capture thrown exceptions.

10. View the very bottom of the runtime tracing diagram using the slider bar.

Do you see the icon for the catch statement - (you may have to drag
the slider bar slightly upward; closing the NETWORKNODE.H node in the left-hand
report window will also make things easier to see)? This Catch Exception statement is
preceded by a diagonal Throw Exception. Why diagonal? Because when the

21

Purify Plus RealTime - Online Tutorial

exception was thrown, prior to executing the Catch statement, the LostConnection
constructor and UmtsMsg destructor were called. Click various elements to view the
source code involved in the thrown exception and thus decipher the sequence of
events.

This exception occurred by design, but it is clear how the runtime tracing feature,
through the power of UML, would be extremely useful if you have:

• inherited old or foreign code

• unexpected exceptions

• questions about whether what you designed is occurring in practice

And you are guaranteed the identical functionality for application execution on an
embedded target.

Understanding Memory Profiling

The Memory Profile viewer displays a record of improper memory usage within the
application of interest.

 To read the Memory Profiling report:

1. Select the Memory Profile tab.

First, block and byte memory use is summarized for you in a bar chart,
immediately followed by a textual description to the same information. What
you have is a record of:

• total number of blocks/bytes allocated for the entire run

• total number of non-freed blocks/bytes allocated for the entire run

• total number of blocks/bytes in use at any one time

If any memory errors were detected, or if any warnings are warranted, those
comments are listed next. The Report Window on the left hand side of the
screen gives you a quick look at the contents of the report - your manual
interaction with the UMTS base station via the simulated mobile phone has
resulted in the creation of Test #1. If you click an item in the Report Window,
the memory profiling report will scroll to the proper location.

2. On the Report Window, left-click the ABWL error.

Apparently, the memory profiling feature has detected a Late Detect Array Bounds
Write (ABWL) - in other words, the UMTS base station code attempted to add data to
an array element that does not exist. This error report is followed by the call stack,
with the last function in the call stack listed first. Notice how each function is
highlighted; clicking on the functions in the call stack will jump you to the relevant
source code. Each source code file is highlighted at the line in which memory was

22

Runtime Analysis

requested - in this particular case, some part of the UMTS base station code
overwrote an array, thereby causing the ABWL error.

The ABWL is followed by one File In Use (FIU) and four Memory Leak (MLK)
warnings. The File In Use warning references <internal use> - in other words, the file
is being used by the memory profiling feature. As for the memory leaks - well it looks
like you have some work to do here. Although it is conceivable the memory leak
occurs by design (e.g. perhaps some clean-up code has not yet been written),
assuredly the UMTS base station is not meant to have any.

Finally, the exit code is printed - look for the informational/warning note in the
viewer starting with the words Program exit code. The memory profile report lists
the exit code as a warning if it is of any value other than 0.

Notice how easily this information has been acquired; no work was required on your
part. A real advantage is that memory leak detection can now be part of your
regression test suite. Traditionally, if embedded developers looked for memory leaks
at all, it was done while using a debugger - a process that does not lend itself to
automation and thus repeatability. The memory profiling feature lets you automate
memory leak detection.

And again, the identical functionality can be used on either your host platform or on
your embedded target.

Understanding Performance Profiling

The Performance Profile viewer displays the execution time for all functions or
methods executing within the application of interest, thereby allowing the user to
uncover potential bottlenecks. First, the three functions or methods requiring the
most amount of time are displayed graphically in a pie chart (up to six functions will
be displayed if each is individually responsible for more than 5% of total execution
time). This is then followed by a sortable list of every function or method, with
timing measurements displayed.

 To read the Performance Profiling report:

1. Select the Performance Profile tab.

Notice how the function tcpsck_data_ready was responsible for around 45% to
50% of the time spent processing information in the UMTS base station. By
looking at the table, where times are listed in microseconds, we can see that this
function's average execution time was between 1 to 2 seconds (it will vary
somewhat based on your machine) and that it has no descendents - i.e. it never
calls and then awaits the return of other functions or methods (which explains
why the Function time matches the F+D time). Is this to be expected? If you
wished, you could click on the function name in the table to jump to that
function to see if its execution time can be reduced.

Each column can be used to sort the table - simply click on the column heading.

23

Purify Plus RealTime - Online Tutorial

2. Click the column heading entitled F+D Time

It is probably no surprise that the main() procedure - combined with its
descendents - takes the longest time to execute overall. Notice, though, that the
main() procedure itself only takes around 300µs (depending on the operating
system) to execute - so there doesn't appear to be any bottleneck here. The
main() procedure spends its life waiting for the UMTS base station to exit.

As with the memory profiling feature, notice how easy it was to gather this
information. Performance profiling can now also be part of your regression test suite.
And again, as with every other runtime analysis feature, performance profiling
functionality is identical whether it is used on your host platform or on your
embedded target.

Understanding Code Coverage

And finally, here you have the code coverage analysis report. The code coverage
feature exposes the code coverage achieved either through manual interaction with
the application of interest or via automated testing.

 To view the Code Coverage report:

1. Select the Code Coverage tab.

On the left hand side of the screen, in the Report Window, you see a reference to
Root and then to all of the source and header files of the UMTS base station.
Root is a global reference - that is, to overall coverage. For each individual
source and header file, a small icon to the left indicates the level of coverage
(green means covered, red means not covered).

In the Code Coverage viewer, on the Source tab, a graphical summary of total
coverage is presented in a bar chart - that is, information related to Root. Five
levels of code coverage are accessible when the source code is C++, and those
five levels are represented here. (Four more levels of coverage are accessible
when working with the C language - up to and including Multiple
Conditions/Modified Conditions. These levels are required by stringent
certification standards such as aviation's DO-178B.) Notice how, on the toolbar,

there is a reference to these five possible coverage levels ().

2. Deselect Loops Code Coverage ()

Notice how the bar chart is updated.

3. Reselect Loops Code Coverage ()

4. In the Report Window to the left, select the PhoneNumber.cpp node.

The Source tab now displays the source code located in the file
PhoneNumber.cpp. This code is colored to reflect the level of coverage

24

Runtime Analysis

achieved. Green means the code was covered, red means the code was not
covered.

5. In the Report Window, expand the PhoneNumber.cpp node and then select the
void PhoneNumber::clearNumber() child node

The clearNumber() function should now be visible on the Source tab. Notice
how its for instruction is colored orange and sitting on a dotted underline. This
is because the for statement was only partially covered.

6. Click on the orange for keyword in the clearNumber() function

As you can see, the for loop was only executed multiple times, not once or zero
times. Why should you care? Well some certification agencies require that all
three cases be covered for a for statement to be considered covered. If you don't
care about this level of coverage, just deselect Loops Code Coverage:

7. On the toolbar, deselect Loops Code Coverage ().

Now the for loop is green. If you would like to add a comment to your code
indicating how this loop is not covered by typical use of the mobile phone
simulator, have a look at the code by right-clicking the for statement and
selecting Edit Source.

8. Select the Rates tab in the Code Coverage viewer

The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual functions/methods

Click various nodes in the Report Window in order to browse the Rates tab.
Note how a selection of the Root node gives you a summary of the entire
application.

9. From the File menu, select Save Project.

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your source code
for all four runtime analysis features. Manual interaction (in your case, via a mobile
phone simulator) was monitored, and the subsequent runtime analysis results were
displayed for you graphically. Source code is immediately accessible from these
reports, so nothing prevents the developer from using the results to correct possible
anomalies.

In addition, using the Test by Test option provided with each runtime analysis
feature (introduced in the Further Work section for code coverage), you can easily
discern the effectiveness of a test, ensuring maximal reuse without waste.

25

Purify Plus RealTime - Online Tutorial

Your next step is to use the runtime analysis results to remove memory leaks,
improve performance, and increase code coverage.

Exercise Three

In this exercise you will:

• Improve the UMTS base station code by eliminating memory leaks and by
improving performance

• Increase code coverage

• Rerun the manual test to verify that the defects have been fixed

Using Memory Profiling to Remove Memory Leaks

By using the call stacks displayed in the Memory Profile viewer, you will deduce the
corrections that need to be made to eliminate memory errors.

 To locate and fix memory errors:

1. Select the Memory Profile tab.

2. Select the ABWL error node in the Report Window on the left hand side of the
screen.

Have a look at the call stack for the Late Detect Array Bounds Write error. Three
C++ methods are listed.

3. Select the last function first, the one that occurs inside main()

Within the main() procedure a UmtsServer object is instantiated. Nothing looks
out of sorts here, so return to the call stack.

4. Close the source file for the main() procedure, and then click the second
function from the bottom in the call stack referenced by the ABWL error - the
UmtsServer constructor.

The next function in the stack is the UmtsServer constructor. The line in the
constructor that is flagged, the creation of a NetworkNodes object, is a call to
the List constructor. Continue to follow the sequence of events.

5. Close the source file for the UmtsServer constructor, and then click the top
function in the call stack referenced by the ABWL error - the List constructor.

The highlighted line is a call to malloc. A quick look at this function shows that
a return to the UmtsServer constructor is fairly quick, and nothing seems
unusual. You should continue to track the string of events as they happened to
see if the ABWL error shows itself. Return to the UmtsServer constructor.

26

Runtime Analysis

6. Close the source file for the List constructor, and then click the second function
from the bottom in the call stack referenced by the ABWL error - the
UmtsServer constructor.

What happens next? The NetworkNodes object was assigned 3 List objects in an
array. Immediately following the call to the List constructor, 4 elements are
assigned to this array. Not good. The NetworkNodes object should be an array
of 4 List objects, not 3.

7. In the source code, change the line
networkNodes = new List(3);

to
networkNodes = new List(4);

8. From the File menu, select Save. The revised file UmtsServer.cpp is saved.

This should fix the ABWL error. Before redoing you manual test to verify if the
memory error was fixed, move on to the Performance Profile viewer and see if you
can streamline the performance of the UMTS base station code.

As for the other memory warnings - that's for you to figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to determine if you
can improve performance in the UMTS base station code.

 To locate and fix performance bottlenecks:

1. Select the Performance Profile tab.

2. Within the table, left-click the column title Avg F Time (Average Function Time)
in order to sort the table by this column. (You may want to scroll down the
report a bit to view more data elements in the table.)

For this exercise you have sorted by the Average Function Time - that is, you're
looking at functions that take, on average, the longest time to execute. This isn't
the only potential type of bottleneck in an application - for example, perhaps it
is the number of times one function calls its descendants that is the problem -
but for this exercise, you will look here first.

As the developer of this UMTS base station, you would know that the C
function tcpsck_data_ready() does take a fair amount of time to execute - so you
won't look here first (although feel free to have a look if you wish). Instead look
at a different function in the table.

3. Select the link for the C function checkUmtsNetworkConnection()

A quick look at the source code shows you that the developer treated this as a
dummy function, inserting a "time-waster" to make it appear as if the function
were executing. Simply comment out the line.

27

Purify Plus RealTime - Online Tutorial

4. Change the code from
 doSomeStuff(1);

to
 // doSomeStuff(1);

5. From the File menu, select Save

This way, the checkUmtsNetworkConnection() method will do nothing at all. The
next time you perform the manual test, this C++ method should have an execution
time of 0.

There is another UmtsServer class method that also needs to be improved. Have a
look, if you wish.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis feature to
modify the manual test in such a way as to improve code coverage.

 To improve coverage of your code:

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.cpp node and then select the processMessages() child node

4. Drag the slider bar down slightly until you see the line:
if (strcmp(msg->phoneNumber,"5550001")==0)

Notice how the if statement was never true - the else block is green, but the if block is
red. In order to improve coverage of this if statement, you need to make the boolean
expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile phone
sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile phone
simulator, and dial this new phone number. When you have finished, you will check
the memory profiling, performance profiling, and code coverage analysis reports to
see if you have improved matters.

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station code will
have to be rebuilt. The integrated build process of PurifyPlus for Linux is aware of
these changes, so you do not have to specify the particular files that have been
modified.

28

Runtime Analysis

 To rebuild your application:

1. Select the menu item View->Other Windows->Project Window.

2. From the Window menu, select Close All.

3. Select the Project Browser tab in the Project Explorer window that has now
appeared on the right-hand side of the UI.

4. Right-click the BaseStation application node and select Rebuild. When you
select Rebuild, all files are rebuilt, whereas Build simply rebuilds those files that
have been changed. If no files had been changed, you could have just selected
Execute BaseStation.

5. Once the UMTS base station is running (indicated by the appearance of the
Runtime Trace viewer), run the mobile phone simulator as before.

6. Click the mobile phone's On button ().

7. Wait for the mobile phone to connect to the UMTS base station (if you watch the
dynamic trace closely, you'll notice a display of all the actions that occur when a
phone registers with the server). The time should appear in the mobile phone
window.

8. Once connected, dial the phone number 5550001, then press the button
again to send this number to the UMTS base station (again, watch the dynamic
trace update).

9. Success! You have connected to the intended party. Stop right here to see the
results of your work. Close the mobile phone window by clicking the button
on the right side of its window caption. As you may recall, this action will shut
down the UMTS base station as well.

10. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

11. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open with
refreshed information. (Alternatively, right-click the BaseStation node and select
View Report->All.)

12. Close the Project Explorer window to the right and the Output Window at the
bottom.

So have you improved your code and increased code coverage?

29

Purify Plus RealTime - Online Tutorial

Verifying Success

Was the memory leak eliminated?

 To check that the memory leak was fixed:

1. Select the Memory Profile tab.

2. Maximize the window

3. In the Report Window on the left-hand side of the screen, look inside the node
labeled Test #2 - do you see the ABWL error anymore?

You successfully eliminated the ABWL error. Have you improved performance?

 To check that performance was improved:

1. Select the Performance Profile tab.

2. Select the menu option Performance Profile->Test by Test

3. In the Report Window on the left-hand side of the screen, left-click the node
labeled Test #2

4. Sort the table by Avg F Time - do you see the function
checkUmtsNetworkConnection()?

You successfully improved performance. Was code coverage improved?

 To check that code coverage was improved:

1. Select the Code Coverage tab.

2. In the Report Window on the left-hand side of the screen, open the node for
UmtsConnection.cpp and then left-click the method processMessages()

3. Scroll down until you can see the if statement for which you have attempted to
force an evaluation of true - did you? Has code coverage been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of code
coverage.

4. Select the menu option Code Coverage->Test by Test

5. In the Report Window on the left-hand side of the screen, reselect the method
processMessages()

6. With your mouse anywhere within the Source tab of the Code Coverage viewer,
right-click and select CrossRef

7. Scroll the Code Coverage viewer to expose the line of code that has been newly
covered and then left-click it:

strcpy(response.command,cmd_accepted);

30

Runtime Analysis

Notice that only Test #2 is mentioned. However, what tests are listed for the if
statement itself?

8. Left-click the line
if (strcmp(msg->phoneNumber,"5550001")==0)

Both Test #1 and Test #2 are listed. As further proof, do the following.

9. With your mouse anywhere on the Source tab of the Code Coverage viewer,
right-click and deselect Cross Reference

10. In the Report Window, on the left-hand side of the screen, open the Tests node
and deselect the checkbox next to Test #2.

Since you have deselected Test #2, all you are left with is the code coverage that has
resulted from running Test #1, and Test #1 never forced the if statement to evaluate
to true. Thus the newly covered code has become red again - in other words,
unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the PurifyPlus for Linux Text
Editor, you simply rebuilt your application and used the mobile phone simulator to
initiate further interaction. A second look at the runtime analysis reports validated
the accuracy of your changes. Consider the speed with which you could perform
these monitoring activities once you are familiar with the user interface...

Conclusion

Conclusion - with a Word about Process

Automated memory profiling, performance profiling, runtime tracing, and code
coverage analysis - no less important in the embedded world than elsewhere in
software. So why is it done less often? Why is it so much harder to find solutions for
the embedded market? It is because embedded software development involves
special restrictions that make these functions more difficult to achieve, particularly
when speaking of target-based execution:

• strong real-time timing constraints

• low memory footprints

• multiple RTOS/chip vendors

• limited host-target connectivity

• complicated test harness creation for target-hosted execution

31

Purify Plus RealTime - Online Tutorial

• etc.

Rational PurifyPlus for Linux and Rational PurifyPlus RealTime have been built
expressly with the embedded developer in mind, so all of the above complications
have been overcome. Nothing stands between you and the use of a full complement
of runtime analysis features in both your native and target environment.

So use them! It should be automatic - part of all your regression testing efforts
(discussed in greater detail in the Tutorial conclusion). As you have seen, these
functions are only a mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my final
product to be an instrumented application. Doesn't it have to be if I'm testing
instrumented code?" No, it does not have to be:

11. Using the code coverage feature, generate a series of tests that cover 100% of
your code

12. Instrument that code for full runtime analysis

13. Uncover and address all reliability errors as you test (e.g. memory leaks, overly
slow functions, improper function flow, untested code)

14. Now uninstrument your code - that is, simply shut off all runtime analysis
features and rebuild your application

15. Run your regression suite of tests once more, this time looking only for
functional errors

16. No errors? Time to ship

Make it part of your development process, just another step before you check in code
for the night. Rational PurifyPlus for Linux and Rational PurifyPlus RealTime
simplify runtime analysis to such an extent that there is no longer a reason not to do
it.

PurifyPlus for Linux users may now proceed to the next lesson: Automated
Component Testing with PurifyPlus for Linux

Java Track

Runtime Analysis for Java

You will start your tour with the runtime analysis features shared by PurifyPlus for
Linux. The automated component testing features provided by PurifyPlus for Linux
will be discussed in the chapter entitled Component Testing with Rational PurifyPlus
for Linux.

32

Runtime Analysis

Runtime analysis refers to PurifyPlus for Linux's and PurifyPlus RealTime's ability to
monitor an application as it executes. There are a variety of advantages to be gained
from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis

Memory Profiling

One of the reasons for Java's success is its ability to perform memory management -
that is, Java is designed to ensure memory is properly allocated and freed. Does this
mean you, as a developer, no longer have any responsibility regarding your
software's usage of memory?

No.

There are two primary reasons for a developer to remain vigilant:

• Java applications CAN leak memory. Not in the traditional way, where memory
is no longer referenced by your application and yet not accessible by the system
OS - such a problem can not occur. However, if you allocate memory, use it,
then fail to free (i.e. dereference), then the Java garbage collector will never
reclaim it. Do this enough and your system will still run out of memory.

• Excessive memory usage can result in application slowdown. Do you know
how much memory your application is using at any given time? If you have
access to limited memory, do you know how much your application has
allocated? Are there places in your code that could be optimized to use less
memory, thereby freeing systems resources for other activities?

A memory profiling utility indicates a running tally of allocated memory as well as
those portions of your code that reference memory at a specified moment in time
(such as when the program exits). Such information can be used to ensure all
unnecessary memory has been dereferenced and that memory usage has been
optimized.

This function is provided in Rational PurifyPlus for Linux by the memory profiling
feature for the Java language.

Performance Profiling

33

Purify Plus RealTime - Online Tutorial

Optimal performance is, needless to say, crucial for real-time embedded systems.
Measuring performance can be quite difficult, however, particularly when it comes to
determining the specific functional bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch your
application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all real-time constraints
placed upon your system are accommodated.

This function is provided in Rational PurifyPlus for Linux by the performance
profiling feature for the Java language.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to determine the
portions of code that have gone untested. For many embedded systems, failure is not
an option, so every part of an application must be thoroughly tested to ensure there is
no unhandled scenario or dead code.

In addition, product managers need a concrete measurement to determine where the
team is in the development cycle - in particular, how much more testing needs to be
done. A decreasing number of defects does not necessarily mean the product is
ready; it might simply mean the portions of code that have been tested appear to be
ready.

Code coverage measurement tools observe your running application, flagging every
line of code as it executes. Advanced tools - such as Test RealTime and PurifyPlus
RealTime - are also able to differentiate different types of execution, such as whether
or not a do-while loop executed 0 times, 1 time, or 2 or more times. These advanced
measurements are critical for software certification in industries such as avionics.

This function is provided in Rational PurifyPlus for Linux by the code coverage
feature for the Java language.

Runtime Tracing

As all embedded developers quickly learn, intentions don't necessarily translate into
reality. There can often be a vast difference between what you want to happen and
what actually happens as your application executes.

This problem becomes more severe when the code is inherited. Yes, you could try to
piece things together yourself, but system complexity might just undercut your
efforts at understanding the code.

34

Runtime Analysis

And what about multi-threaded applications? If you've ever encountered race
conditions or deadlocks, you know how difficult it can be to uncover the source of
the problem.

This is where runtime tracing monitors come in. These utilities graphically display
the sequence of function or method calls in your running application - as well as the
active threads - illustrating through pictures what is actually happening. With this
information, unexpected exceptions can be easily traced back to their source, complex
procedures can be distilled to their essence, threading conflicts can be resolved and
inherited code can jump off the page and display its inherent logic.

This function, using the industry standard Unified Modeling Language for its
graphical display, is provided in Rational PurifyPlus for Linux by the runtime tracing
feature for the Java language.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving the four
runtime analysis features of PurifyPlus for Linux and PurifyPlus RealTime to which
you have just been introduced. Pay close attention not only to the capabilities of these
features but also to how they are used. The better you understand these features, the
more quickly you will be able to adopt them within your own development process.

Reminders before you begin:

• If you have never run this tutorial before, make sure your machine has a
temporary folder in which you can store the test project you will be creating.
For the tutorial, it is assumed that the test project will be stored in a folder called
tmp

• Do you have JDK 1.3.1 or 1.4.0 installed? This is necessary for performance of
the tutorial.

• During installation of Rational PurifyPlus for Linux:

• on Windows - A local Microsoft Visual Studio compiler and JDK are located,
based on registry settings. Only the compiler and JDK located during
installation will be accessible within PurifyPlus for Linux.

• on Unix/Linux - The user is confronted by two interactive dialogs. These
dialogs serve to clarify the location of the local GNU compiler and (if
present) local JDK. Only the GNU compiler and JDK specified within these
dialogs will be accessible within PurifyPlus for Linux.

• If you have run this tutorial before, don't forget to undo the source file edits you
made the last time you ran through it. The following files are modified during
the tutorial:

• LogServer.java

35

Purify Plus RealTime - Online Tutorial

• NetworkLoadMonitor.java

• PhoneNumber.java

 To make a different JDK accessible in PurifyPlus for Linux:

1. Run PurifyPlus for Linux

2. From the Tools menu, select Target Deployment Port Editor and Start.

3. In the TDP Editor, from the File menu, select Open.

4. Open the .xdp file corresponding to the new JDK for which you would like to
generate support

5. In the TDP Editor, from the File menu, select Save.

6. Close the TDP Editor

Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this tutorial,
look here; otherwise, please proceed.

Creating a Project

Typically, there is a one-to-one relationship between your current development
project and a PurifyPlus for Linux project. Although your development project may
consist of more than one application, these applications often possess a common
theme. Use the PurifyPlus for Linux project to enforce that theme.

 To create a project:

1. To start Rational PurifyPlus for Linux type studio on the command line

2. Select the Get Started link on the left-hand side of the PurifyPlus for Linux user
interface (UI). Two links will appear on the right-hand side of the UI - one called
New Project and one called Open Project. Select the New Project link. You
should now see the New Project Wizard.

In the Project Name field, enter BaseStation_Java (no spaces).

In the Location field, select the button, browse to the folder in which you
want the BaseStation project to be stored and then select it. This Tutorial will
assume that the project has been stored in the tmp folder.
Click the Next button.

36

Runtime Analysis

3. Select, from the list of Target Deployment Ports currently installed on your
machine, the one you intend to use to compile, link, and deploy your source
code and the PurifyPlus for Linux testing and/or runtime analysis harness. This
is the same TDP you configured earlier in the tutorial. It is either:

• Java JDK 1.3.1

• Java JDK 1.4.0

Click the Finish button.

That's it. The project has been created - named BaseStation_Java - and a project node
by the same name appears on the Project Browser tab of the Project Explorer window
on the right-hand side of the UI:

Note A project created in PurifyPlus RealTime could also be used in
PurifyPlus for Linux; a project created in PurifyPlus for Linux, opened in
PurifyPlus RealTime, will be limited to runtime analysis - that is, no tests can
be executed and no test reports can be viewed.

Starting a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

• the type of testing or runtime analysis activity you would like to perform first

 To start a new activity

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on the runtime
analysis features, so select the Runtime Analysis link. This will bring up the
Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files for your
current development project. For this tutorial, you will directly select the source
files. Select the Add button.

3. Browse to folder into which you have installed PurifyPlus for Linux and then
access the folder \examples\BaseStation_Java\src\baseStation

4. Make sure All Java Files in the Files of Type dropdown box is selected, then left-
click-hold-and-drag over all of the eleven Java source files. Now click the Open
button.
You should see these eleven files listed in the large listbox of the Application
Files window.
Click Next.

37

Purify Plus RealTime - Online Tutorial

5. At this time, an analysis engine parses each source file - referred to as tagging.
This process is used to extract the various methods and classes located within
each source file, simplifying code browsing within the UI.

6. In the window entitled Selective Instrumentation you have the ability to select
those classes/methods that should not be instrumented for runtime analysis.
Such selective instrumentation ensures that the instrumentation overhead is
kept to a minimum. For this Tutorial, you will be monitoring everything, so
simply click the Next button.

7. In the window entitled Configuration Settings for Java, you need to define your
application's class path as well as the fully qualified name of the main class for
your application.

In the Class path text box, click the button, then the button, and then
browse to and select the folder \examples\BaseStation_Java\src (located in the
PurifyPlus for Linux installation folder). The package used by the Java-based
UMTS base station is named baseStation, and it's located in the src folder you
just referenced.

Note For Windows users, if a folder in the path has a name containing a
space, change that name following the DOS 8.3 naming convention rules (such
as replacing C:\Program Files with C:\Progra~1).

• In the Java main class text box, select the BaseStation class from the dropdown
list. Your screen should look like this:

Now click the Next button.

8. You have now reached the window entitled Application Node Name. Enter the
name of the application node that will be created at the conclusion of the
Runtime Analysis Wizard; since you will be monitoring execution of the Java-
based UMTS base station, type the word BaseStation within the text field
labeled Name.

9. You also need to make some minor changes to the way you would like the TDP
to be used. These modifications are specifically aimed at the memory profiling
feature and are being used simply to illustrate additional concepts within the
Tutorial.
At the bottom of the Application Node Name window, click the Configuration
Settings button.

10. Expand the Runtime Analysis node on the left-hand side of the Configuration
Settings window, expand the Memory Profiling child node, and then left-click
the JVMPI child node.

38

Runtime Analysis

11. PurifyPlus for Linux uses the JVMPI interface of supported JVMs to acquire
memory profiling information. The following custom changes should be made
to the Configuration for the purposes of this tutorial:

• On the right-hand side of the window, set the Value of the Take a Snapshot
setting to After Each Garbage Collection. Though it is possible to
interactively take memory snapshots during execution, setting this option
ensures you will have sufficient data to work with in this tutorial.

• Set the Value of Display Only Listed Packages to baseStation (the Value is
case-sensitive, so enter it carefully). This setting ensures you filter out
references to objects derived from classes not explicitly defined within the
application-under-test.

• Set the Value of Collect Referenced Objects to Yes. By collecting referenced
objects, the memory profiling diff functionality will provide greater visibility
into whether or not the application-under-test is properly
allocating/deallocating objects.

12. In the Configuration Settings window, click Ok.

13. In the Application Node Name window, click Next.

14. You are now confronted with the Summary window. Everything should be in
order, so click Finish.

The BaseStation application node has now been created in the Project Explorer
window, on the Project Browser tab, located on the right-hand side of the user
interface. If you expand the BaseStation application node, you should see the
following:

39

Purify Plus RealTime - Online Tutorial

Why is the exclude status indicated for all but one .java file? This is because the
build process need only reference the source file containing the main Java class when
calling the Java compiler. This source file is BaseStation.java.

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer window, and
within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group, application and
test nodes created for the active project. The project node, named BaseStation_Java,
contains an application node named BaseStation; the application node contains a list
of all of the source files required to build the UMTS base station application.

The second tab - the Asset Browser tab - lets you browse all of your source and test
files. If the selected Sort Method is By File, you are presented with a file-by-file listing
of test scripts, source code and source code dependents (this last is applicable to C,
C++ and Ada only). Note how each source file can be expanded to display every class
declaration and method definition within them. Double-clicking any test
script/source file node will open its contents within the PurifyPlus for Linux editor;
double-clicking any class declaration or method definition node will open the
relevant source file/header file to the very line of code at which the
definition/declaration occurs. (To close a Text Editor window, right-click its
associated tab and select Close.)

There are two other sort methods as well on the Asset Browser. The first, By Object,
lists classes and methods independent of their associated source files. The second, By
Directory, sorts source files based on their associated Java packages.

You may have noticed along one of the toolbars at the top of the UI that the TDP you
selected in the New Project Wizard is listed in a dropdown box. In fact, this is not a
reference to the TDP, it is a reference to the Configuration whose base TDP was the
one you selected in the wizard - in the case of this tutorial, it is a TDP supporting JDK
1.3.1 or 1.4.0. (Configurations are initially named after their base TDP, but this name
can be changed.) Should you have multiple configurations for the same project, use
this dropdown box to select the active Configuration for execution.

Finally, to the right of the Configuration dropdown list is the Build button. This
button is used to build your application for application nodes and the test harness for
test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

• a test driver

The downward-facing arrow associated with the Build button lets the user decide
from which point the build process should initiate and what runtime analysis

40

Runtime Analysis

features should be used. The runtime analysis features do not have to be used at the
same time; this Build options window provides a quick and simple method for
deselecting undesired runtime analysis features immediately prior to execution of the
build process.

Armed with this knowledge, proceed to Exercise Two.

Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

When performing runtime analysis, your source code must be instrumented.
Instrumentation, by default, is enabled for all four runtime analysis features - that is,
for memory profiling, performance profiling, code coverage analysis and runtime
tracing. All four features are turned on by default.

 To build and execute the application:

1. In order to instrument, compile and execute the UMTS base station application
in preparation for runtime analysis, simply ensure the BaseStation application
node is selected on the Project Browser tab of the Project Explorer window, and
then click the Build button.
Do so now.

Note More information about the source code insertion technology can be
found in the User Guide, in the chapter Product Overview->Source Code
Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the Build tab,
you can see the instrumentation and compilation phases of the build process as
they occur. A double-click on an error listed within any of the Output Window
tabs opens the relevant source code file to the appropriate line in the PurifyPlus
for Linux Text Editor.

3. The build process has completed, and the UMTS base station is running, when
the UML-based sequence diagram generated by the runtime tracing feature
appears. (More about this feature in a moment.)

41

Purify Plus RealTime - Online Tutorial

4. Close the Project Explorer window on the right-hand side of the UI by clicking
the Close Window button; do the same for the Output Window at the bottom
of the UI.

Notice how the graphically displayed data in the Runtime Trace viewer dynamically
grows - this is because the UMTS base station is being actively monitored. The UMTS
base station endlessly searches for mobile phones requesting registration; the
Runtime Trace viewer reflects this endless loop. If you wish, use the Pause toolbar
button to stop the dynamic trace for a moment (the trace is still being recorded, just
no longer displayed in real time). In addition, use the Zoom In and Zoom Out

buttons on the toolbar to get a better view of the graphical display (or right-click-
hold within the Runtime Trace viewer and select the Zoom In or Zoom Out options).
Undo the Pause when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary importance
right now is interaction with the UMTS base station. You'll do this by using the
mobile phone simulator mentioned earlier in the Overview section of this tutorial.
Through this manual interaction you will expose careless memory usage,
performance bottlenecks, incomplete code coverage, and dynamic runtime
sequencing.

Interacting with the Application

 To run the application

1. Start the mobile phone by running the provided mobile phone executable built
for your operating system. The mobile phone executable is located within the
PurifyPlus for Linux installation folder in the folder
\examples\BaseStation_C\MobilePhone\. The name of the executable depends
on your operating system:

• Linux Suse: MobilePhone.Linux

• Linux Redhat: MobilePhone.Linux_Redhat

A launcher shell script - MobilePhone.sh - is provided for the non-Windows
platforms as well.

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you watched
the Runtime Trace viewer closely, you would have noticed a display of all the
internal method calls of the UMTS base station that occur when a phone
attempts to register). The current system time should appear in the mobile
phone window when connection has been established.

42

Runtime Analysis

4. Once connected, dial the phone number 5550000, then press the button to
send this number to the UMTS base station (again, try to see the Runtime Trace
viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the phone is
busy. Shut off the simulator by closing the mobile phone window via the
button in its upper right corner.

The UMTS base station is designed to shut off when a registered phone goes off
line. Not a great idea for the real world, but it serves the Tutorial's purposes
well. Alternatively, you could have just used the Stop Build button in the
toolbar.

6. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base station
stopped (i.e. once the instrumented application stopped), all runtime analysis
information was written to user accessible reports that are directly linked to the
UMTS base station source code. In order to look at these reports:

7. Reopen the Project Explorer window by selecting the menu item View->Other
Windows->Project Window

8. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open.
(Alternatively, right-click the BaseStation application node and select View
Report->All.)

9. Close the Project Explorer window to create room for the now-opened reports.
You may also want to resize the left-hand window to gain additional room.

Understanding Runtime Tracing

The sequence diagram produced by the Runtime Tracing feature uses a notation
taken from the Unified Modeling Language, thus it can be correctly referred to as a
UML-based sequence diagram.

 To view the UML sequence diagram report:

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all method
calls involved in the execution of the UMTS base station code. Using the toolbar

43

Purify Plus RealTime - Online Tutorial

buttons , zoom out from the tracing diagram until you can see at least
four vertical bars.

3. Make sure you are looking at the top of the runtime tracing diagram using the
slider bar on the right.

4. Right-click within the runtime tracing diagram and select Hide Memory Usage
Bar. Repeat in order to select Hide Coverage Bar and Hide Thread Bar. You will
return to these bars in a moment.

What you are looking at is a sequence diagram of all events that occurred during the
execution of your code.

The vertical lines are referred to as lifelines. Each lifeline represents a Java object
instance. The very first lifeline, represented by a stick figure, is considered the
"world" - that is, the operating system. In this UMTS base station tracing diagram, the
next lifeline to the right represents an object instance named Obj0, derived from the
UmtsServer class.

Green lines are constructor calls, black lines are method calls, red lines are method
returns, and blue lines are destructor calls. Hover the mouse over any method call to
see the full text. Notice how every call and call return is time stamped.

Everything in the Runtime Trace viewer is hyperlinked to the monitored source code.
For example, if you click on the Obj0::UmtsServer lifeline, the source file in which the
UmtsServer class definition appears is opened for you, the relevant section
highlighted. (Close the source file by right-clicking the tab of the Text Editor and
selecting Close.) All function calls can be left-clicked as well in order to view the
source code. Look at the very top of the Obj0::UmtsServer lifeline. It's "birth" consists
of a UmtsServer() constructor. Left-click the constructor if you wish to view the steps
that occur when an object of the UmtsServer class is instantiated.

Notice how the window on the left-hand side of the user interface - called the Report
Window - contains a reference to all classes and class instances. Double-clicking any
object referenced in this window will jump you to its birth in the Runtime Trace
viewer. This window can also be used to filter the runtime tracing diagram; closing a
node associated with a source file or class will collapse all of the associated lifelines
into a single, consolidated lifeline.

Filters

Continue to look around the trace diagram. Can you locate the repetitive loop in
which the UMTS base station looks for attempted mobile phone registration (it
always starts with a call to the method baseStation.LogServer.checkLog())? You can
filter out this loop using a couple of methods. One is to simply hover the mouse over
a method or function call you wish to filter, right-click-hold and select Filter Message.
An alternative method would be to use a predefined filter. You will do both.

44

Runtime Analysis

 To use sequence diagram filters

1. Hover the mouse over any call of the baseStation.LogServer.checkLog() method,
right-click-hold and select Filter Message - the function call should disappear
from the entire trace.

2. Select the menu item Runtime Trace->Filters (you'll see the filter you just
performed listed here)
Click the Import button, browse to the installation folder and then the folder
\examples\BaseStation_Java, and then Open the filter file filters.tft

3. Select BaseStation Phone Search Filter if necessary.

4. Click the OK button.

The loop has been removed.

5. Using the Zoom Level dropdown list on the toolbar, select a level of 50%:

Memory Usage Bar

The Memory Usage Bar is a graphical representation of the amount of memory
allocated by the monitored application at any moment represented within the
runtime tracing diagram.

 To use the Memory Usage bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Memory Usage
Bar.

You can now see, along the left-hand side of the runtime tracing diagram, a red,
vertical bar. The caption of the Memory Usage Bar indicates the maximum
amount of allocated memory that occurred during execution, while the mouse
tool tip can be used to discern the amount of allocated memory at any moment
along the graph. (Depending on your JVM, you may also notice garbage
collection, indicated by areas where there is a sudden drop in the number of
allocated bytes.)

This diagram can be used to expose memory intensive parts of your program
that may in fact be needless churn that slows down overall execution time. You
could trigger garbage collection immediately prior to suspect moments within
your application, using the Runtime Trace viewer to help you decide where the
garbage collection should occur, to study whether or not memory usage has
become excessive. Note that this feature is specific to Java support.

2. Right-click-hold in the Runtime Trace viewer and select Hide Memory Usage
Bar.

45

Purify Plus RealTime - Online Tutorial

Coverage Bar

The Coverage Bar highlights, in synchronization with the runtime tracing diagram,
the percentage of total code coverage achieved during execution of the monitored
application. The Coverage Bar's caption states the overall percentage of code
coverage achieved by the particular interaction presently displayed in the Runtime
Trace viewer.

 To use the Coverage bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Coverage Bar.

Scroll down the runtime tracing diagram; note how code coverage gradually
increases until a steady state is achieved. This steady state is achieved following
the moment at which the mobile phone has connected to the UMTS base station.
Dialing the phone number increases code coverage a bit; shutting off the phone
creates a last burst of code coverage up until the moment the UMTS base station
is shut off. Can you locate where, on the runtime tracing diagram, the mobile
phone simulator first connected to the UMTS base station? Note that the
Coverage Bar is available for all supported languages.

2. Right-click-hold in the Runtime Trace viewer and select Hide Coverage Bar.

Thread Bar

The UMTS base station is actually a multi-threaded application; the Thread Bar
graphically indicates the active thread at any given moment within the runtime
tracing diagram.

 To use the Thread bar:

1. Right-click-hold in the Runtime Trace viewer and select Show Thread Bar.

Now you are looking at the Thread Bar. (Hovering your mouse over the Bar
reveals the name of the active thread within a tool tip.) A left-click on the
Thread Bar opens a threading window, detailing thread state changes
throughout your application's execution. Pressing the Filter button in this detail
window specifies the state of each thread within the region of the Thread Bar
that was double-clicked. Note that this thread monitoring feature is also
available for the C++ language.

2. Right-click-hold in the Runtime Trace viewer and select Hide Thread Bar.

Not only can the runtime tracing feature capture standard function/method
calls, but it can also capture thrown exceptions.

3. View the very bottom of the runtime tracing diagram using the slider bar.

Do you see the icons for the catch statement - ? The second Catch
Exception statement is preceded by a diagonal Throw Exception. Why diagonal?

46

Runtime Analysis

Because when the exception was thrown, prior to executing the Catch statement, the
UmtsException constructor was called. Click various elements to view the source
code involved in the thrown exception and thus decipher the sequence of events.

This exception occurred by design, but it is clear how the runtime tracing feature,
through the power of UML, would be extremely useful if you have:

• inherited old or foreign code

• unexpected exceptions

• questions about whether what you designed is occurring in practice

And you are guaranteed the identical functionality for application execution on an
embedded target.

Understanding Memory Profiling

The Memory Profile viewer displays a memory usage report for the application of
interest.

 To view a Memory Profile report:

1. Select the Memory Profile tab.

2. Select the menu item Memory Profile->Hide/Show Data->Hide/Show
Referenced Objects.

The Report Window on the left-hand side of the UI displays a list containing each
memory snapshot and the time at which they occurred; as you may recall, the TDP
Configuration was updated so that a snapshot would occur immediately following
each garbage collection. The Memory Profile tab contains a sortable table (i.e. sortable
via a left-click on a column header) with the following information:

• Method - Each method that, when called, resulted in the instantiation of an
object. A left-click on any method names brings you to the portion of source
code in which this method has been defined.

• Referenced Object Class - If any method in the first column continues to
reference an object at the time of the snapshot, the object is listed in this column.
Of course, many objects are allocated and deallocated before a snapshot - in this
case, the object allocation is recorded but the object reference is not.

• Allocated Objects- Total number of objects created by a method throughout
execution of the monitored application.

• Allocated Bytes - Total number of bytes associated with the objects created by a
method.

47

Purify Plus RealTime - Online Tutorial

• L + D Allocated Objects - Total number of objects created by the "local" method
and by any descendant methods - that is, by any method that was called as a
result of the specified method.

• L + D Allocated Bytes - Total number of bytes associated with the objects
created by the "local" method and by any descendant methods.

Note how this table is referred to as a "snapshot" at the very top. A user is able to
predefine moments at which a memory snapshot should take place - this is done via
Configuration Settings. At each snapshot, the JVMPI interface of the targeted JVM is
queried and information about each individual method is acquired. For example, if
you have designed a particular, cyclic portion of your code to deallocate all
unnecessary memory prior to each iteration, set a snapshot to occur each time the
cycle is entered. The Memory Profile report contains diff functionality - you will
explore this capability later - that can tell you if additional memory remains allocated
when the cycle is reentered.

Notice how easily this information has been acquired; no work was required on your
part. A real advantage is that memory profiling can now be part of your regression
test suite. Traditionally, if embedded developers looked for careless memory
allocation/deallocation at all, it was done while using a debugger - a process that
does not lend itself to automation and thus repeatability. The memory profiling
feature lets you automate memory leak detection.

And again, the identical functionality can be used on either your host platform or on
your embedded target.

Understanding Performance Profiling

The Performance Profile viewer displays the execution time for all methods executing
within the application of interest, thereby allowing the user to uncover potential
bottlenecks. First, the one or more methods requiring the most amount of time are
displayed graphically in a pie chart. Up to six functions are displayed if each is
individually responsible for more than 5% of total execution time. This is then
followed by a sortable list of every method, with timing measurements displayed.

 To view the Performance Profile report:

1. Select the Performance Profile tab.

Notice how the function checkLog() was responsible for around 75% to 85% of
the time spent processing information in the UMTS base station. By looking at
the table, where times are listed in milliseconds, we can see that this function's
average execution time was between 6 to 7 seconds (it will vary somewhat
based on your machine) and that it has no descendents - i.e. it never calls and
then awaits the return of other functions or methods, which explains why the
Function time matches the F+D time. Is this to be expected? If you wished, you

48

Runtime Analysis

could click on the function name in the table to jump to that function to see if its
execution time can be reduced.

Each column can be used to sort the table - simply click on the column heading.

2. Click the column heading entitled F+D Time

Interestingly, though checkLog() clearly uses the largest amount of execution
time, it is not the "slowest" method when considering descendants. That
distinction goes to readMsg(); though quick by itself, it's execution time when
including descendants is the slowest of all. However, a quick investigation of
the readMsg() function would reveal that this function calls - and that awaits
the return of - readString(), which explains why the execution time of readMsg()
takes longer than readString().

Of course, since this is a multi-threaded application, it is possible for one function to
reveal itself as the slowest performer while, overall, the monitored application is
typically busy doing other things. This would explain why the runtime tracing
diagram does not indicate monopolization of UMTS base station execution following
a call to the checkLog() method (have a look; search for *checkLog* using the Find

button from the toolbar), and thus why performance profiling is such a valuable
supplement to code optimization.

As with the memory profiling feature, notice how easy it was to gather this
information. Performance profiling can now also be part of your regression test suite.

Understanding Code Coverage

And finally, here you have the code coverage analysis report. The code coverage
feature exposes the code coverage achieved either through manual interaction with
the application of interest or via automated testing.

 To view the code coverage report:

1. Select the Code Coverage tab.

On the left hand side of the screen, in the Report Window, you see a reference to
Root and then to all of the source files of the UMTS base station. Root is a global
reference - that is, to overall coverage. For each individual source file, a small
icon to the left indicates the level of coverage (green means covered, red means
not covered).

In the Code Coverage viewer, on the Source tab, a graphical summary of total
coverage is presented in a bar chart - that is, information related to Root. Five
levels of code coverage are accessible for Java, and those five levels are
represented here. (Four more levels of coverage are accessible when working
with the C language - up to and including Multiple Conditions/Modified
Conditions.) Notice how, on the toolbar, there is a reference to these five
possible coverage levels (F, E, B, I and L toolbar buttons).

49

Purify Plus RealTime - Online Tutorial

2. Deselect the L toolbar button to disable Loops Code Coverage.

Notice how the bar chart is updated.

3. Select Loops Code Coverage again by selecting the L button.

4. In the Report Window to the left, select the HardwareMonitor.java node.

The Source tab now displays the source code located in the file
HardwareMonitor.java. This code is colored to reflect the level of coverage
achieved. Green means the code was covered, red means the code was not
covered.

Within the run() method you should see a while statement that is colored
orange and sitting on a dotted underline. This is because the while statement
was only partially covered.

5. Click on the orange while keyword in the run() method.

As you can see, the while loop was only executed multiple times, not once or
zero times. Why should you care? Well some certification agencies require that
all three cases be covered for a while loop to be considered covered. If you don't
care about this level of coverage, just deselect Loops Code Coverage:

6. Deselect the L toolbar button to disable Loops Code Coverage.

Now the while loop is green. If you would like to add a comment to your code
indicating how this loop is not covered by typical use of the mobile phone
simulator, access the code by right-clicking the while statement and selecting
Edit Source.

7. Select the Rates tab in the Code Coverage viewer

The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual methods

Click various nodes in the Report Window in order to browse the Rates tab.
Note how a selection of the Root node gives you a summary of the entire
application.

8. Select the menu item File->Save Project

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your source code
for all four runtime analysis features. Manual interaction (in your case, via a mobile
phone simulator) was monitored, and the subsequent runtime analysis results were
displayed for you graphically. Source code is immediately accessible from these

50

Runtime Analysis

reports, so nothing prevents the developer from using the results to correct possible
anomalies.

In addition, using the Test by Test option provided with each runtime analysis
feature (introduced in the Further Work section for code coverage), you can easily
discern the effectiveness of a test, ensuring maximal reuse without waste.

Your next step is to use the runtime analysis results to remove memory leaks,
improve performance, and increase code coverage.

Exercise Three

In this exercise you will:

• Improve the UMTS base station code by correcting memory usage errors and by
improving performance

• Increase code coverage

• Rerun the manual test to verify that the defects have been fixed

Using Memory Profiling to Remove Memory Leaks

Although, from one perspective, memory leaks are not possible with Java, failure to
dereference objects will still, in the end, monopolize memory and potentially cause
problems with your software. By using the diff functionality of the memory profiling
feature, you will uncover poor object allocation/deallocation practice within the
code.

 To locate and detect memory problems:

1. Select the Memory Profile tab.

2. If you performed the Further Work section for memory profiling, skip this step;
otherwise, select the menu item Memory Profile->Show/Hide Data->Diff with
Previous Snapshot.

Two new columns have appeared - Referenced Objects Diff AUTO and
Referenced Bytes Diff AUTO. These columns contain a diff between each
snapshot and the previous snapshot for every listed method; the word
"referenced" refers to those objects for which a reference exists following a
snapshot. It is also possible for the user to diff any two selected snapshots; this
custom diff would be labeled USER to differentiate it from the AUTO diff you
will be studying. (Note that a blank cell in any diff column means the object did
not exist in the previous snapshot.)

Recall that the snapshots for this Tutorial occurred immediately after each
garbage collection. This means that any object references uncovered by a diff are
suspicious; referenced objects can not be deallocated by the garbage collector.

51

Purify Plus RealTime - Online Tutorial

3. Sort by the column Referenced Objects Diff AUTO by clicking on the column
header.

4. Search the various snapshots for a method that recurrently is responsible for
continuously referenced objects.

Have you noticed that the GetChannels() method reappears throughout?
Perhaps you should look at the code to understand why this method is so often
associated with continuously referenced objects.

5. Left-click any reference to the GetChannels() method in the first column of the
table.

6. Scroll the Text Editor until you can view the GetChannels() method.

Inspection of the GetChannels() function reveals that it creates ten new channels
each time it is called - which means ten channels should be removed (i.e.
dereferenced) elsewhere in the code. This dereferencing is the responsibility of
the ReleaseChannels() method, located right below the definition of
GetChannels(), and the for statement of this method has been improperly
written. Currently, the ReleaseChannels() method only dereferences nine
objects. You need to fix the code.

7. Modify the for statement of the ReleaseChannels() method as follows (you are
adding an =):

Change the code from
for (i=0;i<10;i++)

to
for (i=0;i<=10;i++)

8. Select the menu item File->Save.

9. Right-click the tab for the source file you have just modified and select Close.

This should fix the problem. Before redoing you manual test to verify if the memory
error was fixed, move on to the Performance Profile viewer and see if you can
streamline the performance of the UMTS base station code.

As for the other methods that appear to continuously reference objects following
garbage collection - are they also leaking? That's for you to figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to determine if you
can improve performance in the UMTS base station code.

 To locate and improve performance issues:

1. Select the Performance Profile tab.

52

Runtime Analysis

2. Within the table, left-click the column title Function Time in order to sort the
table by this column.

For this exercise you have sorted by the Function Time - that is, you're looking
at functions that take the longest time, overall, to execute. This is isn't the only
potential type of bottleneck in an application - for example, perhaps it is the
number of times one function calls its descendants that is the problem - but for
this exercise, you will look here.

As the developer of this UMTS base station, you would know that the method
read_string() takes a fair amount of time to execute - so you won't look here first
(although feel free to have a look if you wish). Instead look at the second
function in the table.

3. Select the link for the method checkLog().

A quick look at the source code shows you that the developer has added an
inexplicable loop - perhaps a dummy function to act as a "time-waster". Simply
comment out the line.

4. Change the code from
 for (x=1,y=100000;x<=100000;x++) y=y/x;

to
 // for (x=1,y=100000;x<=100000;x++) y=y/x;

5. Select the menu item File->Save.

6. Right-click the tab for the source file you have just modified and select Close.

You have now eliminated a loop that was adding significant execution time to the
checkLog() method.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis feature to
modify the manual test in such a way as to improve code coverage.

 To improve code coverage:

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer.

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.java node, then open the baseStation.UmtsConnection child
node, and then select the run() child node.

4. Drag the slider bar down slightly until you see the line:
case_connected:

53

Purify Plus RealTime - Online Tutorial

Notice how the if statement was never true - only the else block is green, but the if
block is red. In order to improve coverage of this if statement, you need to make the
boolean expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile phone
sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile phone
simulator, and dial this new phone number. When you have finished, you will check
the memory profiling, performance profiling, and code coverage analysis reports to
see if you have improved matters.

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station code will
have to be rebuilt. The integrated build process of PurifyPlus for Linux is aware of
these changes, so you do not have to specify the particular files that have been
modified.

 To rebuild the application:

1. Select the menu item View->Other Windows->Project Window.

2. From the Window menu, select Close All.

3. Select the Project Browser tab in the Project Explorer window that has now
appeared on the right-hand side of the UI.

4. Right-click the BaseStation application node and select Build
(If you select Rebuild, all files will be rebuilt. Build simply rebuilds those files
that have been changed. If no files had been changed, you could have just
selected Execute BaseStation.)

5. Once the UMTS base station is running (indicated by the appearance of the
Runtime Trace viewer), run the mobile phone simulator as before. (Note how
the runtime trace appears to stop - this is because the filter is still applied and
thus the recurrent loop is not visible.)

6. Click the mobile phone's On button ().

7. Wait for the mobile phone to connect to the UMTS base station (if you watch the
dynamic trace closely, you'll notice a display of all the actions that occur when a
phone registers with the server). The time should appear in the mobile phone
window.

8. Once connected, dial the phone number 5550001, then press the button
again to send this number to the UMTS base station (again, watch the dynamic
trace update).

54

Runtime Analysis

9. Success! You have connected to the intended party. Stop right here to see the
results of your work. Close the mobile phone window by clicking the button
on the right side of its window caption. As you may recall, this action will shut
down the UMTS base station as well.

10. The UMTS base station has stopped running when the green execution light
next to the execution timer - located beneath the Project Explorer window on the

lower right-hand side of the UI - stops flashing (). Wait for it
to stop flashing.

11. In the Project Explorer window, on the Project Browser tab, double-click the
BaseStation application node. All four runtime analysis reports will open with
refreshed information. (Alternatively, right-click the BaseStation node and select
View Report->All.)

12. Close the Project Explorer window to the right and the Output Window at the
bottom.

So have you improved your code and increased code coverage?

Verifying Success

Was the memory leak eliminated?

 To check that the memory leak was fixed:

1. Select the Memory Profile tab.

2. In the Report Window on the left-hand side of the UI, left-click the first
snapshot for Test #2.

3. Select the column header for Reference Bytes Diff AUTO, then select the column
header for Reference Objects Diff AUTO.

4. Scroll down and study each of the snapshots for Test #2 - is the GetChannels()
method still responsible for referenced objects?

You successfully eliminated the memory leak. Have you improved performance?

 To check that performance was improved:

1. Select the Performance Profile tab.

2. Select the menu option Performance Profile->Test by Test

3. In the Report Window on the left-hand side of the screen, left-click the node
labeled Test #1 in order to deselect it.

4. Sort the table by Function Time if it is not sorted by this value already.

5. Do you see the function checkLog()?

55

Purify Plus RealTime - Online Tutorial

You successfully improved performance. Was code coverage improved?

 To check that code coverage was improved:

1. Select the Code Coverage tab.

2. In the Report Window on the left-hand side of the screen, open the node for
UmtsConnection.java, open the baseStation.UmtsConnection child node, then
left-click the run() node.

3. Select the menu option Code Coverage->Test by Test.

4. Scroll down until you can see the if statement for which you have attempted to
force an evaluation of true - did you? Has code coverage been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of code
coverage.

5. With your mouse anywhere within the Source tab of the Code Coverage viewer,
right-click and select CrossRef

6. Scroll the Code Coverage viewer to expose the line of code that has been newly
covered and then left-click it:
message.setCommand(UmtsMsg.ACCEPTED);

Notice that only Test #2 is mentioned. However, what tests are listed for the if
statement itself?

7. Left-click the line
if (message.getPhoneNumber().equals("5550001"))

Both Test #1 and Test #2 are listed. As further proof, do the following.

8. With your mouse anywhere on the Source tab of the Code Coverage viewer,
right-click and deselect Cross Reference

9. In the Report Window, on the left-hand side of the screen, open the Tests node
and deselect the checkbox next to Test #2.

Since you have deselected Test #2, all you are left with is the code coverage that has
resulted from running Test #1, and Test #1 never forced the if statement to evaluate
to true. Thus the newly covered code has become red again - in other words,
unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the PurifyPlus for Linux Text
Editor, you simply rebuilt your application and used the mobile phone simulator to
initiate further interaction. A second look at the runtime analysis reports validated

56

Runtime Analysis

the accuracy of your changes. Consider the speed with which you could perform
these monitoring activities once you are familiar with the user interface...

Conclusion

Conclusion - with a Word about Process

Automated memory profiling, performance profiling, runtime tracing, and code
coverage analysis - no less important in the embedded world than elsewhere in
software. So why is it done less often? Why is it so much harder to find solutions for
the embedded market? It is because embedded software development involves
special restrictions that make these functions more difficult to achieve, particularly
when speaking of target-based execution:

• strong real-time timing constraints

• low memory footprints

• multiple RTOS/chip vendors

• limited host-target connectivity

• complicated test harness creation for target-hosted execution

• etc.

Rational PurifyPlus for Linux and Rational PurifyPlus RealTime have been built
expressly with the embedded developer in mind, so all of the above complications
have been overcome. Nothing stands between you and the use of a full complement
of runtime analysis features in both your native and target environment.

So use them! It should be automatic - part of all your regression testing efforts
(discussed in greater detail in the Tutorial conclusion). As you have seen, these
functions are only a mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my final
product to be an instrumented application. Doesn't it have to be if I'm testing
instrumented code?" No, it does not have to be:

• Using the code coverage feature, generate a series of tests that cover 100% of
your code

• Instrument that code for full runtime analysis

• Uncover and address all reliability errors as you test (e.g. poor memory
management, overly slow functions, improper function flow, untested code)

• Now uninstrument your code - that is, simply shut off all runtime analysis
features and rebuild your application

57

Purify Plus RealTime - Online Tutorial

• Run your regression suite of tests once more, this time looking only for
functional errors

• No errors? Time to ship

Make it part of your development process, just another step before you check in code
for the night. Rational PurifyPlus for Linux and Rational PurifyPlus RealTime
simplify runtime analysis to such an extent that there is no longer a reason not to do
it.

PurifyPlus for Linux users may now proceed to the next lesson: Automated
Component Testing with PurifyPlus for Linux

58

Conclusion

Regression Testing

Regression testing involves the reuse of all tests to ensure your software experiences
no regression - in other words, to ensure that the repair of one defect doesn't break
some other feature that worked in the past. Frankly, software testing would be much
simpler if nothing ever broke once it worked properly. Even manual testing efforts
would be acceptable for some since the effort would only be focused on "new" code -
a lot of testing at the beginning, but decreased testing as the development cycle
matures and no new features are added into the project.

But things do break and manual testing is far from an achievable goal. Software is
just too complicated and too interdependent to succeed without automated
assistance.

With Rational PurifyPlus for Linux you can create full regression tests that are
comprised of all the testing and runtime analysis nodes created throughout your
testing effort. It's as simple as creating a Group node and then copying and pasting
your test and analysis nodes within it. Run the Group node as you would any other;
every test and analysis node would (optionally) build and execute. When the Group
execution has finished, a double-click on the Group node opens consolidated reports
that let you easily determine where errors have been detected.

With regression testing you close the loop. Code might break, but it will never find
its way into the finished product.

Proactive Debugging

As software complexity increases, developers must become more responsible for
their contribution to the overall development project. It is becoming harder and
harder for the developer to consider robust, end-to-end testing of their code an
unachievable luxury.

In fact, developers need to proactively debug - that is, treat testing as an integral part
of the development process, rather than waiting for defects to force their hand.

59

Purify Plus RealTime - Online Tutorial

And why should this not be achievable? The advantage of proactive debugging is
that it is manageable - testing is only performed on the code known intimately well
by the developer (barring the case of inherited code, where the runtime tracing
feature plays such a crucial role). There is little chance for confusion, so the time
spent developing and deploying tests are optimized. Defects are eliminated early,
ensuring that any system level defects that have slipped through the nets won't find
their origin deep in the code. And test independence - due to the Target Deployment
Port technology - ensures test reuse despite changes in target architecture.

Matters improve further when one considers the built-in integration that PurifyPlus
for Linux possess with other products in Rational's software development arsenal.
PurifyPlus for Linux is integrated with:

• Rose RealTime - Access all runtime analysis functionality from within Rose
RealTime, the embedded industry's most robust UML-based code generation
tool for the embedded space. Whether using RQA-RT to test your model or
whether you simply wish to execute Rose RealTime generated code, get runtime
analysis data traceable to the implemented use case. You can even visualize
model coverage via color-coded state machines. Click here for access to the
Rational Rose RealTime website.

• ClearCase - Out-of-the-box integration with ClearCase, the industry's clear
market leader for version control software. Click here for access to the Rational
ClearCase website.

• ClearQuest - Out-of-the-box integration to ClearQuest, the premier change
management utility for diversified software teams. Submit context-sensitive
defect reports directly from the PurifyPlus for Linux interface. Click here for
access to the Rational ClearQuest website.

• TestManager - Establish full traceability between a product requirement (stored
in tools such as Rational RequisitePro), the test case for that requirement and the
PurifyPlus for Linux test implementing the test case. Ensure that when a test
fails, you know which product feature has yet to be properly implemented;
know which tests must be updated when features inevitably change.

• Rational Unified Process - Tool mentors help you implement various features of
PurifyPlus for Linux, conceived in the RUP framework - a mature, field-tested
guide to the software development process. Click here for access to the Rational
Unified Process website.

60

Conclusion

Questions?

Questions or comments? Want to share tips? Feel free to send us an e-mail at testrt-
info@rational.com. Useful information will be shared on the Latest News and
Updates page, accessible to PurifyPlus for Linux customers from the Help menu in
PurifyPlus for Linux.

We hope you found this tutorial informative.

61

62

	Rational® PurifyPlus for Linux
	Online Tutorial
	Preface
	Audience
	Contacting Rational Technical Publications
	Other Resources
	Customer Support

	Getting Started
	Additional Information
	C and C++ Track
	Java Track

	Runtime Analysis
	C and C++ Track
	Java Track

	Conclusion
	Regression Testing
	Proactive Debugging
	Questions?

