
Rational Software Corporation
Tutorials
RATIONAL ROSE® REALTIME

VERSION: 2002.05.20

PART NUMBER: 800-025115-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025115-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . xi
Audience. xi

Other Resources . xi

Contacting Rational Technical Publications . xi

Contacting Rational Technical Support .xii

1 Rational Rose RealTime Tutorials .13
Overview. 13

Navigating the Tutorials . 15

Printing the Tutorial. 15

2 QuickStart Tutorial .17
Getting Started . 17

Rational Rose RealTime User Interface . 18
Online Help. 20
Sample Model. 20

Model Description. 21

Creating a New Model . 22

Creating the Logical View. 24
Creating a Capsule. 24
Adding a State to a Capsule. 25
Drawing an Initial Transition . 28
Adding a Port to a Capsule. 29
Saving a Model. 33
Adding the Detail Code to a State Machine . 34

Creating the Component View . 35
Creating a Component . 36

Building the Component . 42

Creating the Deployment View . 44
Creating a Component Instance. 44
Contents v

Running the Component Instance .46

Tutorial Summary .47
Viewing the Generated Code . 48
What’s Next?. 48

3 Card Game Tutorial. 49
What You Will Learn?. .49

Why a Card Game? . 50
Card Game Requirements . 50

Before You Begin .51
Tutorial Lessons . 51
Adding Detail Code to Operations . 52
Build Information. 52
Several Ways of Doing the Same Thing . 52

Lesson 1: Creating a New Model and Configuring the Toolset 53
Opening a New Model . 53
Configuring Toolset Options . 55

Lesson 2: Creating a Use Case and Initial Capsules.59
Adding the Use Case . 59
Documentation Window . 66
Are Elements Owned by the Class Diagram? . 66

Meaning of the Delete key in Class Diagrams .66

Defining the Classes. 66
Classes Versus Capsules .67

Describing the Behavior of the Classes . 67
Creating Classes and Capsules . 68
RTClasses Package . 73
Changing Element Types . 73
Creating HeadsUpPoker Capsule Structure . 74

Creating the HeadsUpPoker Capsule Structure .74

Lesson 3: Sequence Diagrams, Protocols, Ports, and Connectors79
Creating the Protocol . 92
Creating Ports and Connectors . 98
Documenting the Responsibilities . 103
vi Contents

Lesson 4: Building and Running .103
Prototyping . 103
Building a Model. 104

Creating a Component. 105

Creating the Deployment View. 111
Starting the Build . 112
Where is the Source Code Generated? . 114
Running the Component Instance . 114
Review . 118

Lesson 5: Adding Behavior to the Capsules .119
Opening Capsule State Diagrams . 119
Creating the Dealer’s Behavior . 120
Creating the Player’s Behavior . 130
Creating the State Diagram . 131

Adding Attributes . 137
Creating the Actions . 139

Review . 143

Lesson 6: Navigating and Searching .143
Suggested Reading . 144

Lesson 7: Using Traces and Watches to Debug the Design 144
Rebuilding the Model . 144

Setting Up the Runtime Windows . 145
Problems with the Player Capsule . 152
Unexpected Messages. 152

Warning Message for No Defined Trigger? . 153

Building the Player Capsule . 153
Debugging the Player Capsule. 153
Verifying the Fix . 161
Review . 162

Lesson 8: Class Modeling .162
Importing Classes . 163
Creating a Package . 164
Creating the Initial Class Structure. 166
Creating Relationships Between Classes . 167
Adding Attributes to the Card Class . 172
Adding Details to the CardList Class . 173
Contents vii

Generating Code for the Association Ends. 182
Encoding and Decoding by the Services Library . 183

Encoding and Decoding .183
NumElementsFunctionBody code. .184

Adding Details to the Deck Class . 185
Adding Details to the Hand Class. 188
Adding Details to the PokerHand Class . 192
Review . 194

Lesson 9: Adding Card Classes to the Capsule Behavior195
Completing the Dealer Capsule Behavior. 195
Adding a Destructor to the Dealer Capsule . 200
Completing the Player Capsule Behavior . 200
Using Attributes Versus Aggregations . 201
Adding Dependencies . 202

Dependency Properties .210

Adding Inclusions . 210
Building and Running the Card Game . 211

Trace Summary. .214
Fixing compilation errors .215

Review . 215

Lesson 10: Aggregating in a State Diagram .215
Aggregating the Receiving Behavior . 215
Review . 218

Tutorial Summary .218

4 Rational Rose RealTime Extensibility Interface Tutorials 219
RRTEI Tutorial Overview .219

Previewing the Tutorials . 220

Creating a Summit Basic Script .221
Writing a Script . 221
Running and Testing a Script . 223
Compiling a Script . 223
Creating a Menu File . 223
Adding Entries to the Registry . 224
Running and Testing the Script from the Menu . 225
viii Contents

Creating a Visual Basic Add-in. .225
Creating the Active X DLL . 226
Creating the Add-in Menu File . 229
Adding Entries to the Registry . 230
Testing the New Add-in . 231
Common Problems . 231

Creating an Add-in Which Extends the Context Menus232
How Context Menus Work . 232
Menus Associated with Default or Specific Elements 233
Creating the ActiveX DLL . 234
Adding Entries to the Registry . 238
Testing the New Add-in . 239

5 Concept Tutorials . 241
Overview .241

Messages and Capsule State Machines .242

Capsule Hierarchical State Machines .243

Capsules and Capsule Roles. .243

Ports, Protocols, and Protocol Roles .243

Index. 245
Contents ix

Preface
Contents

This manual provides introduction and concept tutorials to help you become familiar
with Rational Rose RealTime.

This chapter is organized as follows:

� Audience on page xi
� Other Resources on page xi
� Contacting Rational Technical Publications on page xi
� Contacting Rational Technical Support on page xii

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.

Other Resources

� Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rose RealTime Online Documentation from the Start menu.

� For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our Technical Documentation Department at techpubs@rational.com.
xi

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name
� Your computer’s make and model
� Your computer’s operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-202
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Preface

1Rational Rose RealTime
Tutorials
Contents

This chapter is organized as follows:

� Overview on page 13
� Navigating the Tutorials on page 15
� Printing the Tutorial on page 15

Overview

Rational Rose RealTime provides tutorials to help you learn how to use the main
features of the development tool. There are two types of tutorials: hands-on and concept
overviews.

The hands-on tutorials show you how to build models, while demonstrating key
concepts and toolset features required when developing your own Rational Rose
RealTime models. Both the Quickstart and Card Game tutorials provide sample models
that you can use to review the procedures and concepts introduced in each tutorial.
These models are located in the Rational Rose RealTime installation directory
$ROSERT_HOME/Tutorials.

Concept tutorials are meant to provide an introduction to important Rational Rose
RealTime concepts. They expand and summarize the explanations and examples
provided in the Rational Rose RealTime Modeling Language Guide.
13

If you do not know where to begin, the following table may help you find the tutorial
recommended for your individual modeling experience.

QuickStart: Create a simple "Hello World" model. This is the quickest way to get
started without having to read extensively.

Card Game: Learn the most important features of the tool by designing, and
developing a fun application in C++.

Rational Rose RealTime Extensibility Interface: Learn how to write a simple script in
Summit Basic and Visual Basic that will control the Rational Rose RealTime
application. Learn the basics of creating add-ins.

Messages and Capsule State Machines: For users who want an introduction to the basics
of message passing between capsules.

Capsule Hierarchical State Machines: For users who want to review the basic elements of
state machines and understand some of the complexities involved with hierarchical
capsule state machines.

Capsules and Capsule Roles: For users who already understand class modeling, and
want to understand the additional concepts involved when modeling with capsules.

Ports, Protocols, and Protocol Roles: For users who want an introduction to the use of
protocols and protocol roles in a Rational Rose RealTime model.

Tutorial New
Modeling
Tool User

Rose 98
User

ObjecTime
Developer

User

QuickStart Tutorial (hands-on) X X

Contents (hands-on) X X X

Rational Rose RealTime Extensibility
Interface Tutorials (RRTEI Tutorial Overview
-hands-on)

X X X

Messages and Capsule State Machines
Tutorial (concept overview)

X X

Capsule Hierarchical State Machines
Tutorial (concept overview)

X X

Capsules and Capsule Roles Tutorial
(concept overview)

X X X

Ports, Protocols, and Protocol Roles Tutorial
(concept overview)

X X X
14 Tutorials - Rational Rose RealTime

Navigating the Tutorials

Depending on the whether you wish to complete the tutorials sequentially or jump to
specific lessons, you can navigate the tutorials in two ways:

� You can view a tutorial in order without having to scroll through the Table of
Contents using the Next and Previous buttons at the top and bottom of each Help
window.

� You can jump to a particular topic by directly selecting it from the Contents
window in the Help browser.

Printing the Tutorial

If you prefer working from a printed copy of the tutorial, you can find a PDF version
of the tutorial chapters located in the Rational Rose RealTime installation directory
$ROSERT_HOME/Help/rrttutor.pdf.
Tutorials - Rational Rose RealTime 15

2QuickStart Tutorial
Contents

This chapter is organized as follows:

� Getting Started on page 17.
� Model Description on page 21.
� Creating a New Model on page 22.
� Creating the Logical View on page 24.
� Creating the Component View on page 35.
� Building the Component on page 42.
� Creating the Deployment View on page 44.
� Running the Component Instance on page 46.
� Tutorial Summary on page 47.

Getting Started

As a new Rational Rose RealTime user, this QuickStart tutorial gets you
up-and-running in Rose RealTime as quickly as possible. Using a simple example, the
tutorial guides you through the basic steps involved in constructing a model in Rose
RealTime using the C++ language add-in.

Note: Although this tutorial is based on the C++ language, Rose RealTime also
supports the Java and C languages.

In this tutorial, you learn how to:

� Construct elements in the Logical View, including:

❑ capsules

❑ capsule state diagrams

❑ ports

� Build and execute a model in the Rose RealTime execution environment.

Note: Ensure that your environment is properly configured for your compiler. For
additional information about configuring your environment, see Installation Guide
Rational Rose RealTime.
17

The Rational Rose RealTime toolset provides a complete development environment
for using UML to create executable models.

The UML provides a wide range of visual modeling constructs. Not all of these
constructs are directly applicable to creating a working model. Many exist for
purposes of building more complex systems, communicating designs to other team
members, capturing design decisions, and for organizing models, but are not strictly
required to build a simple model.

Rose RealTime provides additional constructs that are based on UML modeling
elements and are specialized for creating executable real-time models. In order to
produce a working model, it is important to understand the model elements that must
be defined, and the sequence of the elements.

Because this tutorial is geared toward the new user, the focus is only on those
elements and tools that are required to create a basic executable model. If you want to
construct a more complicated Rose RealTime model, you should familiarize yourself
with some of the advanced elements that are outside the scope of this tutorial. For
example: use cases and use case diagrams, actors, packages, sequence diagrams,
collaboration diagrams, and so on.

Note: To complete this tutorial, you need to have Rational Rose RealTime and a
compiler (such as, Visual C++ 6.0) installed on your computer.

Rational Rose RealTime User Interface

Before proceeding with the tutorial, you need to become familiar with the main
features of the Rose Realtime user interface.

Note: When you initially open Rational Rose RealTime, a default set of windows
appear (as illustrated below). However, you can customize the user interface to suit
your modeling needs. For example, you can change where the windows are docked,
or set them to free-floating. You can add or remove buttons from the toolbar, and you
can show or hide the browsers.

Figure 1 shows a typical display of the Rational Rose RealTime Graphical User
Interface.
18 Tutorials - Rational Rose RealTime

Figure 1 Rational Rose RealTime Graphical User Interface

The main features of the Rational Rose RealTime user interface are:

� The Standard Toolbar remains the same for all views and diagrams. It contains
standard Windows functions as well as those specific to Rational Rose RealTime.

� The Diagram Toolbox is used for adding elements to the model by drawing them on
a diagram. The toolbox elements change depending on the active diagram. For
example, the Use-Case Diagram has a tool for adding actors, but the Component
Diagram does not have this tool.

� Browsers are hierarchical and can be expanded and contracted. When you start
Rational Rose RealTime, the Model View, the Containment View, and the Inheritance
View browsers are docked on the left side of the interface in a stacked format. They
can be set to visible/invisible, docked, or floating. To activate a specific browser,
select the appropriate tab located at the bottom of the interface.

There are two additional browsers, also referred to as editors, that can be opened
to perform specific tasks: the Structure/State Diagram Browser/Editor, and the Run
Time System (RTS) Browser/Editor. These browsers cannot be moved.

� Rational Rose RealTime offers four main views located on the Model View browser.
Each view is related to a software lifecycle phase, and the diagrams are artifacts of
those phases.
Tutorials - Rational Rose RealTime 19

❑ Use-Case View shows what a system (subsystem, class, or interface) does but
does not specify how the system internally performs its tasks.

❑ Logical View represents the architectural processes as the model moves from
analysis, through design, and into development.

❑ Component View contains concrete representations of the system. Components
realize the active and passive classes, and provide the components for building
an executable model.

❑ Deployment View shows how the system is to be distributed. It defines the
processors, and contains a diagram of the nodes in the system.

Online Help

For more information about the Rational Rose RealTime user interface, or how to
complete a specific task, see the Rational Rose RealTime online Help.

To open the online Help:

� On the Help menu, click Contents.

The Table of Contents for Rational Rose RealTime Online Help appears.

You can select topics from the Table of Contents or search through the index for
keywords. The Help is content-sensitive, and automatically opens a Help window
related to the tool or diagram you use.

Sample Model

In addition to the online Help, Rational Rose RealTime includes a sample model,
QuickstartTutorial.rtmdl. You can use this model to explore the various elements of
Rational Rose RealTime, and to practice the procedures for model building and
execution.

To open the sample model:

1 On the File menu, click Open.

2 In the Open dialog box, locate the Rational Rose RealTime installation directory,
and select Tutorials/gstarted/QuickstartTutorial.rtmdl.
20 Tutorials - Rational Rose RealTime

3 Click Open.

Note: If prompted with "Do you wish to create the default workspace?", click No.
A workspace maintains information about the current model, open windows and
window positions, etc. The workspace information is stored in a separate file (a
.rtwks file).

4 Click File > New to create a new model.

Model Description

In this tutorial, your goal is to create a new model with one capsule that prints "Hello
world!" to the console.

This is a very simple model that could easily be accomplished in a native
development environment by writing the code in the C++ programming language
(see below), and then compiling the code into an executable file.

#include <iostream.h>

main() {

cout << "Hello world!\n";

However, you will generate the equivalent executable from within the Rational Rose
RealTime modeling environment by following a basic workflow consisting of these
simple tasks:

1 Creating a new model.

2 Creating the Logical View.

3 Creating the Component View.

4 Building the component.

5 Creating the Deployment View.

6 Running the component instance.
Tutorials - Rational Rose RealTime 21

Creating a New Model

When you start Rational Rose RealTime, the Create New Model dialog box appears.

Figure 2 Create New Model dialog

Typically, there are four frameworks listed: Empty, RTC, RTC++, and RTJava. However,
you may have additional optional frameworks, such as the Gateway.

To open a model containing all the classes required for development using the C, C++,
or Java language, click the framework for the specified language. The Model View
browser appears with the packages and classes populated in the Logical View and
Component View.

Note: The language and environment used in your model defaults to the same
language that you specified in the framework. You can change the language or
environment settings in the Language/Environment tab (Options dialog box, Tools menu).

Note: The Empty framework is useful for creating use case designs but should not be
used for developing RealTime applications.
22 Tutorials - Rational Rose RealTime

If you want to open Rational Rose RealTime without the Create New Model dialog box
automatically appearing, clear Always show this dialog on startup.

In this tutorial, you will create a model using the C++ framework.

To create a model and specify the default language:

1 Start Rational Rose RealTime.

The Create New Model Dialog appears. If it does not appear, on the File menu, click New.

2 Double-click RTC++.

You are now ready to build and execute a Rational Rose RealTime model.
Tutorials - Rational Rose RealTime 23

Creating the Logical View

Creating the Logical View involves discovering and creating the various classes that
make up the design solution for the problem (that is, how to create a model that prints
"Hello world!").

Usually, you define several classes, capsules, and protocols to create a working model.
You iterate between defining the model elements, compiling and running the model
to see how it works, and then fixing problems and add more functionality to the
model. However, for this basic QuickStart tutorial, you will create only one capsule to
print the "Hello world!" message to the console.

The steps involved in creating the Logical View are:

❑ Creating a capsule.

❑ Adding a state to a capsule.

❑ Drawing an initial transition.

❑ Adding a port to a capsule (not required when using the C language).

❑ Adding the detail code to a state machine.

Creating a Capsule

Capsules are special forms of classes with some supporting mechanisms that enforce a
higher degree of encapsulation and abstraction than classes. Capsules are very useful
for building concurrent, event-driven systems, and are an important element in
Rational Rose RealTime.

The code required to implement this example could easily be defined in an operation
on a regular class, but something needs to initiate the activity. Operations do not run
by themselves. They must be invoked.

In Rational Rose RealTime, you place the code in a capsule that is automatically
invoked by the main() program in the Rational Rose RealTime Services Library. The
main() block in the Services Library creates the capsule in your model, and starts the
state machine. You describe the capsule and define the state machine, and they are
automatically created and executed by the Services Library.

Note: A model must include at least a top-level capsule that initiates behavior in the
system, and results in generated code which forms the executable. In this case, your
model will contain only one top-level capsule that prints "Hello world!" from within
the body of its state machine.

You will create a capsule class in the Logical View of the Model View browser, and name it
HelloWorld. This simple capsule class implements the design model.
24 Tutorials - Rational Rose RealTime

To create a new capsule class:

1 In the Model View browser, right-click Logical View, and select New > Capsule.

Or . . .

In the toolbox for the Class Diagram, select the Capsule button ,and click on the
Class Diagram: Logical View / Main window.

2 Rename the capsule HelloWorld and press ENTER.

On the Model View tab in the browser, the new capsule HelloWorld appears in the
Logical View folder.

Adding a State to a Capsule

For capsule classes, a state diagram results in a complete code implementation
generated for the class. The state diagram defines the majority of a capsule class
implementation. The capsule class may also have operations defined on it, but the
state diagram gives the capsule its asynchronous message processing capability.

In this tutorial, you will open the State Diagram for the HelloWorld capsule, and add
a state to that capsule.
Tutorials - Rational Rose RealTime 25

To add a state to a capsule:

1 In the Model View browser, right-click the HelloWorld capsule, and click Open State
Diagram.

Or . . .

In the Class Diagram, right-click on the HelloWorld capsule and click
Open State Diagram.

The State Diagram appears.

2 In the Diagram toolbox, click State .

3 Move the cross hairs into the rounded rectangle in the State Diagram, and click to
create a new state.
26 Tutorials - Rational Rose RealTime

A state appears with the default name S1.

4 Rename the state SaidHello and press ENTER.

The state diagram contains an initial point, , and an initial state called SaidHello. An
initial point is a special point which explicitly shows the beginning of the state
machine. You connect the initial point to a start state (in this case, SaidHello). Where
Tutorials - Rational Rose RealTime 27

the start state will be the first active state in the objects state machine. The transition
from the initial point to the start state, the initial transition, is the first transition taken
before any other transition. Only one initial state is allowed in each state diagram.

Only one outgoing transition can exist from the initial point.

There can be several incoming transitions to the initial state. In this case the initial
state acts like a junction point which forces the behavior back through the initial
transition. If the initial transition is used to completely initialize an object, then any
incoming transition to the initial state will effectively reset the behavior of an object
without having to destroy then re-create it.

Drawing an Initial Transition

A transition is a relationship between two states, a source state and a destination state.
It specifies that when an object in the source state receives a specified event and
certain conditions are meet, the behavior moves from the source state to the
destination state. You create an Initial Transition that is automatically invoked at
runtime when a capsule instance is created. Any action code associated with the
Initial Transition runs when the capsule instance is created.

To draw a transition:

1 In the toolbox for the State Diagram dialog box, click State Transition .

2 Click and hold the left mouse button on the Initial Point in the state diagram, .

The Initial Point is the black circle that appears in the top-left corner of the State
Diagram.
28 Tutorials - Rational Rose RealTime

3 Drag the Transition line to the top of the SaidHello state.

Note: The Initial Transition has a default name of Initial.

Now that you created an initial transition - a transition from the initial point to the
initial state - you specified that at runtime, the SaidHello state is the first state to
receive a specified event and the behavior moves from the initial point to the
SaidHello state.

Next, you will create a port to communicate with the HelloWorld capsule instance by
sending and receiving messages.

Adding a Port to a Capsule

Ports are objects that communicate with capsule instances by sending and receiving
messages. A port is owned by the capsule instance, and is created/destroyed with the
capsule. Each port has a separate identity that is distinct from the identity and state of
the associated capsule instance.

By default, new ports are public. Public ports appear on a capsule’s boundary in the
Structure Diagram, and are visible both from outside and inside the capsule. In this
model, you will make a protected port. Protected ports cannot be accessed outside the
capsule.

You will add a new port to the "Hello world" capsule using the built-in Log protocol.
Tutorials - Rational Rose RealTime 29

To add a protected port to a capsule:

1 In the browser to the left of the HelloWorld Top State diagram, right-click End Ports.

2 Click Add New Port.

3 From the list of protocol classes available for the model, double-click to select Log.
30 Tutorials - Rational Rose RealTime

A port appears with the default name NewPort1.

4 Rename the port name to log and press ENTER.

5 Click the Structure Diagram tab in the Logical View diagram for the HelloWorld capsule.
Tutorials - Rational Rose RealTime 31

The Structure Diagram appears as the active diagram.

6 In the Structure Diagram, click the log port, .

7 Right-click, and click Protected.

Notice that the graphic for the port changes from and unprotected port, , to a
protected port, .
32 Tutorials - Rational Rose RealTime

To send and receive messages, the capsule must have end ports. The end port's
protocol defines the set of messages that can be sent and received. Protected ports are
not public. This means that these ports are not visible from the outside of a capsule
since they are not part of the capsule's interface.

Saving a Model

Before you continue with the tutorial, we recommend that you save your model.

To save a model:

1 On the File menu, click Save Model As....

2 In the File Name box, type HelloWorld.

3 In the Save In box, select the folder where you want to save the model.

4 Click Save.

5 If prompted to create a default workspace with a HelloWorld.rtwks path name,
click Yes.

Note: When you create a workspace, all components, specifications and windows
in your model are saved as they exist in your model. You can also save a model
without saving these specifications by using the file extension .rtmdl.
Tutorials - Rational Rose RealTime 33

Adding the Detail Code to a State Machine

You have all the required elements in place (that is, initial state, initial transition, and
log port), and you will now add detail code to the Initial Transition. The detail code will
be executed when the Initial Transition is run at model execution time.

You need to add the C++ code to the state machine to implement the desired behavior.
C++ code can be added as actions on transitions, choice points, and state entry or exit
on capsule state diagrams that are executed at runtime. Only code added to a capsule
state diagram is included in the generated code for the model. Detailed actions on
protocol or data class state diagrams are not included in the generated code for those
classes.

In our model, the detail code will use the Log service to write the "Hello world!"
message to the console.

To add code to the Initial Transition:

1 In the State Diagram dialog for the HelloWorld capsule, click the line for the Initial
Transition.
34 Tutorials - Rational Rose RealTime

Next, you will use the convenience of the Code window to add code to the transition.
The Code window is located in the lower right-hand corner of the Rational Rose
RealTime window. For example, the Code window for the Initial transition is:

Note: If you prefer, you can also double-click on the Initial transition line to open
the Transition Specification dialog.

2 In the Code window, select Action from the drop-down list.

3 Type the following C++ code:

log.log("Hello world!");

Ensure that you include the semi-colon at the end of the line.

Your Code window will look like the following:

4 To save the changes, click Apply.

Creating the Component View

The Component View specifies how to compile various parts of the model. The primary
element of the Component View is a component that you need to create. This component
specifies the capsules and classes to compile, how to compile those elements, and the
inclusions and libraries to incorporate into the build.
Tutorials - Rational Rose RealTime 35

You must create a component for the top-level capsule in order to build and execute
your model. You can draw component diagrams for situations where you have many
related components or packages of components.

Creating a Component

You will create a component by opening a series of dialog boxes so that you can
become familiar with the common features of the Rational Rose RealTime user
interface. Step 1 provides with two ways of creating a component. Choose only one
method.

Note: You can also use the Component Wizard to create a component. The wizard guides
you through creating and configuring a component, and running the component
instance. To access the wizard, click Component Wizard on the Build menu.

To create a component:

1 In the Model View tab in the browser, select Component View, and click
New > Component.

Or . . .

In the Toolbar, select the Browse Component Diagram button . For the Component
View package, select Component Diagram: Component View / Main in the Component
diagrams list, and click OK. From the Toolbox, select the Component tool , then
click in the diagram.

2 Rename the component HelloWorldComponent.

If you used the second method, you will have a visual representation of your
component in the Component Diagram for Main.
36 Tutorials - Rational Rose RealTime

For both methods, the Model View tab in the browser is updated to include the new
component.

3 Double-click HelloWorldComponent to open the Component Specification for
HelloWorldComponent dialog box.

4 Click the General tab if not already selected.

5 In the Environment box, select C++ TargetRTS if not already selected.

Setting the Environment box to C++ TargetRTS specifies that the C++ run-time
system and code generation are used in the build process.

6 In the Type box, select C++ Executable if not already selected.

Setting the Type box specifies that you want to build a C++ executable version of
the model.

7 Click the References tab.
Tutorials - Rational Rose RealTime 37

8 In the Model View browser, drag the HelloWorld capsule onto the References tab.

The HelloWorld capsule appears in the window.

You drag the HelloWorld capsule onto the References tab because the items in the
References tab identify what is compiled with the HelloWorld component.
38 Tutorials - Rational Rose RealTime

9 Click the C++ Executable tab.

10 Click Select....

The Select Top Capsule dialog box appears. In this dialog box, you select the capsule
that will be the top capsule in the model.

11 Click HelloWorld to designate it as the top capsule.
Tutorials - Rational Rose RealTime 39

12 Click OK.

13 Click the C++ Compilation tab.

14 Click Select....
40 Tutorials - Rational Rose RealTime

The Select Target Configuration dialog box appears.

A component is always created with a default configuration for your host
machine. This includes a default compiler, compiler flags, linker, and so forth. In
many cases, these settings are sufficient for building simple sets of classes and
capsules that do not require integration with external source files, or libraries.

In this dialog box, you will specify the operating system, compiler, and processor
that you want to use to build and run the model.

The information is listed in the following format:

<operating system>.<processor and compiler>

For example:

❑ If you are running Windows 4.X on a x86 processor, and you have installed the
Visual C++ 6.0 build tools, select:

NT40T.x86-VisualC++-6.0

❑ If you are running Solaris 5.X on a sparc processor, and you have installed the
gnu 2.8.1 build tools, select:

SUN5T.sparc-gnu-2.8.1

15 Select the configuration for your computer, and click OK.

16 To save the changes, click Apply.

17 To close the Component Specification for HelloWorldComponent dialog box, click OK.
Tutorials - Rational Rose RealTime 41

Building the Component

In order to build an executable of your model, you created a component, called
HelloWorldComponent, that will be used to manage the build configuration parameters.
To build the executable, you need to build (or compile) this HelloWorldComponent
component.

To build a component:

1 In the Model View browser, right-click HelloWorldComponent, and click Set As Active.

Because you will be building and running the same component and component
instances often, you should configure an active component. Setting the
Set As Active option ensures that the toolbar build icons and menu items, for the
common run and build commands, become available for easy access.

The Build Component tool becomes active.

2 Click Build Component.

The Add Missing References dialog box appears.
42 Tutorials - Rational Rose RealTime

The HelloWorldComponent component should contain all referenced classes
before it is compiled. Rational Rose RealTime checks the references, and prompts
you to add any missing references that it detected.

3 Click Add References and Continue.

The Build HelloWorld Component dialog box appears.

4 If not currently selected, click Generate and compile, and click OK.

The Build Log tab of the Output Window shows the results of code generation and
compilation. When the build finishes, the Build Log should indicate "Build successful".

Note: If there are compile errors, double-click on an error message on the Build Errors
tab. Rational Rose RealTime opens the appropriate editor where the source of the
error appears. You can then resolve any errors.
Tutorials - Rational Rose RealTime 43

Creating the Deployment View

The Deployment View describes the computing environment in which your model is
executed, and specifies how it is deployed within the environment. The most
important elements of the Deployment View are processors and component instances.

First, you define a processor on the Deployment Diagram that describes the computing
hardware on which the model will be executed. Next, you map the component onto
the processor to create a component instance. Finally, you run the model.

Creating a Component Instance

In this tutorial, there are two ways to create a component instance: in the Model View
tab in the browser, and using the Toolbar and Toolbox buttons. Step one shows how to
use both methods. Use only one of these methods.

To create a component instance:

1 In the Model View tab in the browser, right-click Deployment View, and click New >
Processor. Rename the processor LocalHost and press ENTER.

Or . . .
44 Tutorials - Rational Rose RealTime

In the Toolbar, select the Browse Deployment Diagram button . For the Deployment
View package, select Deployment Diagram: Deployment View / Main from the
Deployment diagrams list, and click OK. In the toolbox, click the Process tool ,
and click on the diagram. Rename the processor LocalHost and press ENTER.

2 In the Model View tab in the browser, drag the HelloWorldComponent from the
Component View folder onto LocalHost.

Or . . .

If you created a processor on the Deployment Diagram for Main, from the Model View
tab in the Browser, drag the HelloWorldComponent from the Component View folder
onto LocalHost processor in the Deployment Diagram.

After dragging the HelloWorldComponent, the Deployment Diagram: Deployment View /
Main dialog looks like the following:

For both methods, a component instance, HelloWorldComponentInstance appears
under LocalHost.
Tutorials - Rational Rose RealTime 45

Now that you have associated a component with a processor (creating a component
instance), your component instance is complete and you can now run
HelloWorldComponentInstance.

Before you run the component instance, save your model (File > Save Model)

Running the Component Instance

After you created a component instance by associating a component with a processor,
you can run the component instance within Rational Rose RealTime.

To run a component instance:

1 In the Model View tab in the browser, right-click HelloWorldComponentInstance in the
Deployment View folder, and click Run.

2 If you are prompted to build the component, click No.

Note: Since you previously built the component successfully, you do not need to
build it again.

A Runtime View browser and a console window appear. The model output displays
in the console window.

The model is ready to run.

3 Click Start on the Runtime View browser.
46 Tutorials - Rational Rose RealTime

4 Select the console window to make it visible in the Rational Rose RealTime
window.

The "Hello world!" output appears in the console window.

5 To terminate the component instance, click Shutdown on the Runtime View
browser.

Tutorial Summary

In the QuickStart tutorial, you created a capsule and constructed a system that had one
capsule instance. As part of the capsule definition, you defined a log port to access the
Log service for printing messages to the console window. You also defined a state
machine for the capsule with a single state and an initial transition.

After creating the capsule, you defined a component and deployed the component to
enable the generation, compilation, and execution of code for the model.

Finally, you ran the model. At execution time, the Rational Rose RealTime Services
Library created a single instance of the top-level capsule class in the model (in this
case, the only class in the model), and then called a function to execute the initial
transition of the capsule's state machine. The initial transition in turn called a function
on Log port to print "Hello world!" in the console window.

After the initial transition executed, the capsule entered the SaidHello state where it
waited to process any incoming messages. Since there is nothing else in the model,
there was no further activity.
Tutorials - Rational Rose RealTime 47

Viewing the Generated Code

To examine the generated code, select the folder where you saved your model. In this
folder, open the HelloWorldComponent\src folder. The src folder contains the
generated code for your model.

What’s Next?

Try constructing some simple models of your own. Explore the online Help for
information on the various modeling tools. You can also use the
QuickstartTutorial.rtmdl for further practice on building and compiling a model.
48 Tutorials - Rational Rose RealTime

3Card Game Tutorial
Contents

This chapter is organized as follows:

� What You Will Learn? on page 49
� Before You Begin on page 51
� Lesson 1: Creating a New Model and Configuring the Toolset on page 53
� Lesson 2: Creating a Use Case and Initial Capsules on page 59
� Lesson 3: Sequence Diagrams, Protocols, Ports, and Connectors on page 79
� Lesson 4: Building and Running on page 103
� Lesson 5: Adding Behavior to the Capsules on page 119
� Lesson 6: Navigating and Searching on page 143
� Lesson 7: Using Traces and Watches to Debug the Design on page 144
� Lesson 8: Class Modeling on page 162
� Lesson 9: Adding Card Classes to the Capsule Behavior on page 195
� Lesson 10: Aggregating in a State Diagram on page 215
� Tutorial Summary on page 218

What You Will Learn?

The Card Game tutorial introduces the basics of creating Rational Rose RealTime
applications using the C++ Language Add-in, and demonstrates how to use the main
features of Rational Rose RealTime. You will learn the basics of how to:

� Create a new model and configure the toolset.
� Create a use case and initial design elements from the requirements statement:

capsules and classes.
� Create sequence diagrams, protocols, ports, and connectors.
� Build and run a model.
� Add behavior (state diagrams) to capsules.
� Navigate and search the model.
� Use traces and watches to debug an error in a model.
� Model classes.
� Use aggregation in a state diagram.
49

Why a Card Game?

Since most people know how to play cards, you can concentrate on how the tool
works without having to spend time understanding the requirements of the tutorial
model. Using this model, you will explore the main features of Rose RealTime.

You may also want to refer to the C++ Reference to understand the functionality that
the language add-in provides.

Card Game Requirements

Card game, the application you build in this tutorial, will be a simulation of a two
hand (termed heads-up for a play between only two players), five card stud poker
game. There are many variants of poker with many functions having to be
implemented in order to simulate all possible poker variations. However, in this
tutorial you will only implement a set of simple rules.

The simulation scenario is:

1 The player places an ante (minimum ante is $5).

2 The dealer shuffles the cards before each game to reduce the chance of you
counting cards.

3 The dealer deals the two hands (5 cards each).

4 The player shows his hand to the dealer.

5 The dealer compares his hand to the players and decides who wins.

6 The dealer informs the player if he wins (with the winning bet multiplier) or if he
loses.

7 The game restarts.
50 Tutorials - Rational Rose RealTime

To make things simpler, only the following hands will be checked as possible winning
hands:

� 1 pair
� 2 pairs
� 3 of a kind
� full house
� 4 of a kind

In the case of a tie (that is, when the dealer and player have the same hand), the dealer
wins.

Before You Begin

Ensure that your environment is properly configured for your compiler. For
additional information about configuring your environment, see Installation Guide,
Rational Rose RealTime.

Tutorial Lessons

The tutorial develops the Card Game application in ten lessons. You will start with a
simple design, and add features as you complete each lesson.

Each lesson includes a set of procedures and conceptual information that guides you
through the Rose RealTime modeling process.

Card Game Tutorial Lessons

Lesson 1: Creating a New Model and Configuring the Toolset

Lesson 2: Creating a Use Case and Initial Capsules

Lesson 3: Sequence Diagrams, Protocols, Ports, and Connectors

Lesson 4: Building and Running

Lesson 5: Adding Behavior to the Capsules

Lesson 6: Navigating and Searching

Lesson 7: Using Traces and Watches to Debug the Design

Lesson 8: Class Modeling

Lesson 9: Adding Card Classes to the Capsule Behavior

Lesson 10: Aggregating in a State Diagram
Tutorials - Rational Rose RealTime 51

You can also refer to the sample models included with the tutorial to explore the
various elements of Rose RealTime, and to practice what you learn in the lessons. The
sample models are located in the root Rose RealTime installation directory:

$ROSERT_HOME/Tutorials/cardgame

Adding Detail Code to Operations

In this tutorial, you add source code to implement the behavior of the card classes (for
example, to shuffle a deck and calculate the value of a hand). We recommend that you
take the time to enter the detail code yourself. If you want to complete the tutorial
faster, or only partially enter detail code for a few operations, you can import the
completed classes from a sample file.

Note: The advantage of adding the code yourself is that you will gain experience
working with the tool. Also, you will have an opportunity to practice debugging your
model.

Build Information

As you progress though the tutorial, adding code as you read, you should
occasionally build the version of the model that you’ve been developing. After you
complete Lesson 5: Adding Behavior to the Capsules, you can build the model or any
capsules you need to test. You can also browse the generated source files at any point.
For details on where you can find the generated C++ source files, see Where is the
Source Code Generated? on page 114.

If you encounter problems building the model because there are too many errors
reported at build time, you can continue using the finished models that are shipped
with the tutorial.

Several Ways of Doing the Same Thing

In Rational Rose RealTime, there are several ways of accomplishing the same task. For
example, to open the Specification dialog box for an element, you can:

� right-click on the element in a diagram or in the browser, and click Open
Specification from the context menu

Or . . .

� click or double-click on the element in a diagram.
52 Tutorials - Rational Rose RealTime

In Rational Rose RealTime, you can edit models from the Model View tab in the browser
window, from the menu, and from a diagram. In this tutorial, the detailed task
instructions will only show one way of performing a task. Consult the Rational Rose
RealTime Toolset Guide for other options. You may want to try different methods as you
work through this tutorial.

Also, when specifying code, you can open the appropriate dialog box for an element,
or you can use the Code pane to edit or view the code associated with the currently
selected model element.

Lesson 1: Creating a New Model and Configuring the Toolset

In this lesson, you will learn how to create a new empty model, and configure some
basic toolset options.

Suggested Reading

� Opening and Saving Models, (see the Rational Rose RealTime Toolset Guide)

� Model Browser, (see the Rational Rose RealTime Toolset Guide)

Opening a New Model

Rational Rose RealTime allows you to work on only one model per Rational Rose
RealTime session, therefore if you were working on a previous model, save it before
creating the following model for this tutorial.
Tutorials - Rational Rose RealTime 53

1 On the File menu, click New.

If presented with the Create New Model dialog box, select RTC++ and click Open.
54 Tutorials - Rational Rose RealTime

Rational Rose RealTime initializes a new empty model into the toolset. The title bar
shows "Rational Rose RealTime - (untitled)" indicating that this is a new model
that has not been saved to disk.

Configuring Toolset Options

Before you start modeling, there are some user options that you may want to modify.

Suggested Reading

� Options Dialog, (see the Rational Rose RealTime Toolset Guide)
Tutorials - Rational Rose RealTime 55

To access the Options dialog box

1 On the Tools menu, click Options.

The Options dialog box appears.

2 You may want to consider changing the following attributes to suit your
preferences. The options are grouped by the tab on which they can be found:

❑ Font/Color: You may want a fixed width font, or change the default diagram
colors.
56 Tutorials - Rational Rose RealTime

❑ Diagram: Set the default line type (oblique or rectilinear) and grid parameters.
This following diagram shows the Line Attributes dialog
Tutorials - Rational Rose RealTime 57

❑ Compartments: For this tutorial, all screen shots were captured using the
defaults shown in the following diagram.

For the other options, you can use the defaults.
58 Tutorials - Rational Rose RealTime

Lesson 2: Creating a Use Case and Initial Capsules

In this lesson you will add the requirements for the poker simulation and start
designing the application. You will:

� Add the textual requirements to a use case diagram

� Create a HeadsUpPoker use case to document the desired functionality of the
simulation.

� Create three new capsules: HeadsUpPoker, Dealer, and Player.

You will use the requirements to develop your design. This includes the high-level
design, the design elements, and the final implementation.

Modeling is important because it helps the development team visualize, specify,
construct, and document the structure and behavior of a system's architecture.
Different members of the development team can communicate their decisions
unambiguously to one another.

Suggested Reading

� Use Cases, Rational Rose RealTime Modeling Language Guide

� Capsules, Rational Rose RealTime Modeling Language Guide

� Toolboxes, Rational Rose RealTime Toolset Guide

� Specification dialogs, Rational Rose RealTime Toolset Guide

Adding the Use Case

In this topic you will add the textual requirements and a use case. A use case is a
description of a set of sequences of actions, called scenarios, that a system performs to
yield an observable result of value to an actor. A use case describes what a system
(subsystem, class, or interface) does but does not specify how the system internally
performs its tasks. For the purposes of this tutorial, you will create a single use case
that describes the main flow for the Heads Up Poker.
Tutorials - Rational Rose RealTime 59

To enter the textual requirements

1 Expand the Use Case View folder in the model browser and double-click on the
element called Main.

A window with the title Use Case Diagram: Use Case View / Main appears.

2 Ensure that the Use Case Diagram: Use Case View / Main window is the active window,

3 From the toolbox, select the Text tool .

As you move your mouse over the Use Case Diagram, your cursor changes to the
text tool .

4 Left-click in the diagram, and drag (it will show as an outlined rectangle as you
drag).
60 Tutorials - Rational Rose RealTime

5 Release the mouse button after you have a rectangle similar to that in the following
diagram (you can resize the rectangle later).

A cursor appears in the top left-hand corner of the text area.

6 Type the following text into the text box:

HeadsUpPoker simulation textual requirements.

HeadsUpPoker will be a simulation of a two hand (termed heads-up for

a play between only two players), five (5) card stud (in draw poker

games you can draw new cards from the deck after the initial cards

are dealt; in stud poker games, you're stuck with the cards you get)

poker game. There are many variants of poker with many functions

having to be implemented in order to simulate all possible poker

variations. However, this simulation requires that only the

following poker hands be considered:

1 pair, 2 pairs, 3 of a kind, full house, 4 of a kind.

In case of a tie, that is when the dealer and player have the same

hand the dealer wins.

The simulation should run continuously.
Tutorials - Rational Rose RealTime 61

Note: Rational Rose RealTime allows you to also link any kind of file to certain model
elements. This can be useful in cases where the textual requirements or use cases
already exist in other documents. You can attach these files to the model by using the
Files tab that appears in most Specification dialogs.

To create the use case

Ensure the Use Case Diagram window in which you entered the textual requirements
is the active window.

1 Select the Use Case tool from toolbox .

2 Left-click in the diagram.

A use case element appears with a default name.
62 Tutorials - Rational Rose RealTime

3 Rename the use case to HeadsUpPoker:MainFlow.

Add a flow of events to the use case

1 Double-click on the HeadsUpPoker:MainFlow use case.

The Class Specification for HeadsUpPoker:MainFlow dialog box appears.
Tutorials - Rational Rose RealTime 63

2 In the Documentation box, type the following scenario description:

Use case starts: when the application is run

1. The Player places an ante of 5 dollars.

2. The Dealer shuffles the 52 card deck cards before each game to

reduce the chance of players counting cards.

3. The Dealer deals the two hands (5 cards each) distributing cards

alternating between the Player and himself. The first card is dealt

to the Player.

4. The Player shows his hand to the Dealer.

5. The Dealer compares his hand to the Players and decides who wins.

6. The Dealer informs the Player if he wins (with the winning bet

multiplier) or if he loses.

7. The game restarts.

Use case ends: when the application is stopped.

3 Click OK.

This scenario defines what the simulation application must do, but not how to do it.
Determining how to implement this simulation is independent of the requirements. In
fact, there can be an unlimited number of ways to implement an application that
satisfies the above requirements.
64 Tutorials - Rational Rose RealTime

Your case diagram will look like this:
Tutorials - Rational Rose RealTime 65

Documentation Window

Suggested Reading:

� Documentation window, (see the Rational Rose RealTime Toolset Guide)

In the remainder of this tutorial, you will add documentation to almost every model
element you create. It is important to document the responsibilities of all elements
and any additional information that would make the model more understandable.

Click on the new use case to view the flow of events in the documentation window.

Are Elements Owned by the Class Diagram?

When you place elements on a class diagram do they exist only in the context of that
diagram? The answer is yes and no. Most elements you add to a class diagram are
actually added to the model (that is, they appear in the Browser window when
created in a diagram). This means that a single model element can appear in several
class diagrams, even on diagrams in other views. Notes and freeform text are owned
by a specific diagram.

Meaning of the Delete key in Class Diagrams

You can delete elements from the model rather than deleting from the diagram. You
can delete elements owned by the diagram (such as, states, transitions, call messages,
and capsule roles) using the DELETE key or the CTRL+D shortcut because they exist
only in the context of the diagram in which they appear.

To delete items which are not owned by the diagram (such as, any class on a class
diagram), use the CTRL+D shortcut. This will delete the class from the model as well as
the diagram.

To delete elements which are not owned by the diagram (that is, you can see the
elements in the Model View tab in the browser) only from the diagram and not from the
model, use the DELETE key.

Defining the Classes

You will define the classes and capsules that implement the
HeadsUpPoker:MainFlow use case.

Suggested Reading

� Capsules, (see the Rational Rose RealTime Modeling Language Guide)

� Classes, (see the Rational Rose RealTime Modeling Language Guide)
66 Tutorials - Rational Rose RealTime

After the requirements have been defined, you identify a candidate set of classes
capable of performing the behavior described in the use case. There are several
methods that exist for finding classes from a mere statement of system behavior. It is
out of the scope of this tutorial to describe them all. Within Rose RealTime, the basic
transformation from the requirements to a description of how the system will work
requires you to identify the domain classes from the requirements, and classify them
as either classes or capsules.

Classes Versus Capsules

Generally, classes in a Rose RealTime model represent stores of information in the
system. They are typically used to represent the key concepts the system manages.
Classes store and manage information in the system, whereas capsules provide
coordinating behavior in the system. The system can perform some use cases without
capsule objects particularly use cases that involve only the simple manipulation of
stored information. More complex use cases generally require one or more capsules to
coordinate the behavior of other objects in the system. In addition, capsules are units
of concurrency with the model.

Flows of events should be encapsulated in a separate capsule when it is complex and
consists of dynamic behavior (that is, when it describes the behavior of several other
objects interacting in some fashion). For simple flows of events that primarily enter,
retrieve and display, or modify information, a class is usually justified instead of a
capsule.

Capsules also give you transparent concurrency, easy thread assignment, state
diagram generation, and message passing.

Describing the Behavior of the Classes

You identify the main classes and capsules from the requirements. Then, you describe
the flow of events between capsules identified in the use case in a capsule structure
and sequence diagrams. These two diagrams:

� help you identify the responsibilities of the capsules and how they interact to
perform the behavior defined in the use case

� allow you to identify the ports and protocols that will be required to allow the
capsules to communicate between each other
Tutorials - Rational Rose RealTime 67

Creating Classes and Capsules

For the HeadsUpForker:MainFlow use case, you will create the following classes and
capsules:

� HeadsUpPoker (capsule) - encapsulates the flow of events described in the
HeadsUpForker:MainFlow use case

� Dealer (capsule) - deals the cards and determines who wins

� Player (capsule) - initiates the simulation by placing an ante

� Card (class) - an individual card

� Hand (class) - set of 5 cards given to each participant

� Deck (class) - set of 52 cards from which cards are distributed to the game players

When finished adding these capsules and classes, your
Class Diagram: Logical View / Main diagram will look like this:

To create capsules and classes

1 If the Logical View folder in the Model View tab in the browser is not expanded, click
on the plus sign [+] to expand it, and double-click on the Main class diagram.

Or . . .
68 Tutorials - Rational Rose RealTime

From the toolbar, select the Browse Class Diagram button , then from the Logical
View package, select Class Diagram: Logical View / Main and click OK.

2 From the Main class diagram toolbox, click the Capsule tool .

3 Move the mouse over the diagram, and left-click in the window.
Tutorials - Rational Rose RealTime 69

A new capsule appears in the diagram.

4 Rename the capsule HeadsUpPoker.

After you type the name, you may have to left-click in the diagram to exit edit
mode, and to save the new name.

5 Repeat the above steps to add the Player and Dealer capsules.

Note: You can change any model element’s property (including the name) with the
Specification dialog box.
70 Tutorials - Rational Rose RealTime

When finished adding all three capsules, your Class Diagram will look like the
following:

6 To add the classes, select the Class tool from the Main class diagram toolbox.

7 Move the mouse over the diagram, and left-click in the window.
Tutorials - Rational Rose RealTime 71

A new class appears in the diagram.

8 Rename the class to Card.

After you type the name, you may have to left-click in the diagram to exit edit
mode, and save the new name.

9 Repeat the above steps to add the Deck and Hand classes.
72 Tutorials - Rational Rose RealTime

When finished, your class diagram will look like this:

RTClasses Package

The RTClasses package exists in each model and contains a set of predefined classes
and protocols implemented by the Services Library. Most models require the use of
one or many of these predefined classes. For example, the package contains a Timing
protocol used to communicate with the timing service.

Changing Element Types

You can change the element type within a model. For example, you initially designed
something as capsule and realize that it should be a class. You can change the element
to another type using the menu command Edit > Change Into. The menu item is
context-sensitive and displays only the valid elements to which you can change the
currently selected item.

Note: When transforming elements, information not part of the destination element is
lost during the transformation. For example, when transforming a capsule to a class,
the capsule roles and state diagram are not part of the converted class element.
Tutorials - Rational Rose RealTime 73

Creating HeadsUpPoker Capsule Structure

In this topic you create a capsule structure diagram of capsules which implement the
behavior described in the use case. Then, you create a sequence diagram to show how
they will interact to implement the behavior described in the flow of events.

Since the HeadsUpPoker capsule encapsulates the flow of events described in the use
case that you are implementing, it also encapsulates all the classes and capsules
necessary to implement the use case.

Suggested Reading

� Capsules, Rational Rose RealTime Modeling Language Guide

� Capsule structure diagrams, Rational Rose RealTime Modeling Language Guide

� Sequence Diagrams, Rational Rose RealTime Modeling Language Guide

� Interactions, Rational Rose RealTime Modeling Language Guide

Creating the HeadsUpPoker Capsule Structure

There are two main ways that you can aggregate capsules with one another:

� Use the Aggregation tool in the class diagram

� Drag the capsule onto the structure diagram of another capsule

Since both methods are equivalent, you will use one method only. When a capsule is
added to the structure of another, you are creating an attribute of the capsule called a
capsule role. The capsule role has a name that describes the capsule's role in relation
to the containing capsule.

To create the HeadsUpPoker capsule structure

1 From the Model View tab in the browser, click the plus sign [+] beside the icon to
expand the HeadsUpPoker capsule.

Two items appear: one representing the state diagram, and the other the structure
diagram:

2 Double-click on the Structure Diagram icon to open the diagram window.
74 Tutorials - Rational Rose RealTime

3 Drag the Player capsule from the Model View tab in the browser into the
HeadsUpPoker structure diagram.
Tutorials - Rational Rose RealTime 75

4 Repeat the above step for the Dealer capsule.

5 Double-click the /playerR1 capsule role and rename it player.
76 Tutorials - Rational Rose RealTime

6 Double-click the /dealerR1 capsule role and rename it dealer.

7 In the Logical View folder, double-click to open the Class Diagram: Logical View / Main
dialog.

You should see the three capsules and three classes that you have previously
created.
Tutorials - Rational Rose RealTime 77

8 From the Query menu click Filter Relationships.

The Relations dialog allows you to control which relationships appear in
diagrams. You can also use it to refresh the current diagram.

9 Ensure that all checkboxes in the Type and Access groups are selected.

10 Click OK.

In the Class Diagram: Logical View / Main diagram, you will see aggregation
relationships between the HeadsUpPoker capsule and the Dealer and Player capsules.
The capsule role names appear at the part-of end of the aggregation relationship.
78 Tutorials - Rational Rose RealTime

If necessary, re-arrange the class diagram so that you can properly see the
relationships between the capsules.

Both representations are essentially the same, with one exception. As you will see
later from the Structure Diagram, you can interconnect capsule roles, something that
is not possible in the class diagram.

Before proceeding with Lesson 3, we recommend that you save your work.

Lesson 3: Sequence Diagrams, Protocols, Ports, and
Connectors

In the following lesson, you create a sequence diagram on the HeadsUpPoker capsule to
show how its contained capsule roles interact to implement the behavior described in
the HeadsUpPoker:MainFlow use case. This sequence diagram should highlight the
important design decisions. You can also add scripts to a sequence diagram to expand
and explain the interaction.
Tutorials - Rational Rose RealTime 79

To create the sequence diagram

1 In the Model View tab in the browser, expand Logical View, expand the HeadsUpPoker
capsule, then double-click Structure Diagram.

Or . . .

From the toolbar, select the Browse Collaboration Diagram button , then select
Structure Diagram: Logical View / HeadsUpPoker from the Logical View package.

2 Using the SHIFT key, select both the outer boxes for the player and dealer capsule
roles.

3 Right-click on an empty area within the border of the Structure Diagram (do not
right-click on capsule roles or the back border), and click Create Sequence Diagram.
80 Tutorials - Rational Rose RealTime

A new sequence diagram appears with both capsule roles already in the sequence.

The diagram appears in the Model View tab in the browser under the Structure
Diagram for the HeadsUpPoker capsule.

4 Rename NewDiagram to HeadsUpPoker:MainFlow.
Tutorials - Rational Rose RealTime 81

To create the interactions in the sequence diagram

You will describe the interactions between these two capsules by referring to the flow
of events described in the HeadsUpPoker:MainFlow use case.

1 Ensure that the sequence diagram window for HeadsUpPoker:MainFlow is active.

2 Select the Asynchronous Send Message tool from the toolbox.

3 Left-click on the player lifeline (dotted line beneath capsule role box), and drag the
mouse to the dealer’s lifeline.
82 Tutorials - Rational Rose RealTime

The vertical placement of messages represents time. The direction of the messages
represents the flow.

4 Double-click on the message line (not the label for the line) to open the Send
Message Specification dialog box.

5 On the General tab, type Ante in the Name box.

6 Click OK.

Next, you will add five messages; one message for each of the five cards that make up
a hand.

7 Select the Asynchronous Send Message tool from the toolbox.
Tutorials - Rational Rose RealTime 83

8 Left-click on the dealer lifeline (dotted line beneath capsule role box), and drag the
mouse to the player’s lifeline.

9 Double-click on the message line (not the label for the line) to open the Send
Message Specification dialog box.
84 Tutorials - Rational Rose RealTime

10 On the General tab, type ACard in the Name box.

11 Click OK.

The Focus of Control (FOC) shows the period of time during which an object is
performing an action, either directly or through an underlying procedure. The FOC is
portrayed through narrow rectangles that adorn lifelines (the dashed vertical
lines descending from each object). The length of an FOC indicates the amount of time
it takes for a message to be performed. When you move a message vertically, each
dependent message moves vertically as well. To enlarge the FOC, select the FOC, click
on a pic handle surrounding the rectangle, then drag the mouse until you change the
rectangle to the desired size.

For example, you can select the FOC as in the following diagram:
Tutorials - Rational Rose RealTime 85

Then enlarge it as in the following diagram:

12 Repeat steps 7 through 11 to add 4 additional ACard messages.
86 Tutorials - Rational Rose RealTime

Next, you will create two additional messages; a message to inform the dealer role of
the value of the player’s hand (HandValue) and another message from the dealer role
that informs the player as to whether or not they won the hand (Win).

13 Select the Asynchronous Send Message tool from the toolbox.

14 Left-click on the player lifeline (dotted line beneath capsule role box), and drag the
mouse to the dealer’s lifeline.

Note: Resize the FOC from the last ACard message to include the sender handle
for HandValue message.

15 Double-click on the message line (not the label for the line) to open the Send
Message Specification dialog box.

16 On the General tab, type HandValue in the Name box.

17 Click OK.

18 Select the Asynchronous Send Message tool from the toolbox.

19 Left-click on the dealer lifeline (dotted line beneath capsule role box), and drag the
mouse to the player’s lifeline.

Note: Resize the FOC from the HandValue message to include the sender handle
for Win message.

20 Double-click on the message line (not the label for the line) to open the Send
Message Specification dialog box.

21 On the General tab, type Win in the Name box.

22 Click OK.
Tutorials - Rational Rose RealTime 87

Your Sequence Diagram should look like the following:

Note: After adding the message exchanged between the Player and Dealer you
will realize that the scenario must be started somehow, either when the simulation
is started (when the player capsule is instantiated) or after some other specified
event occurs. For this tutorial, you will use a timer to start the simulation, this will
make it possible to adjust the delay between each game and make it easier to
observe the running model.

23 Select the Asynchronous Send Message tool from the toolbox.
88 Tutorials - Rational Rose RealTime

24 Left-click on the black border of the sequence diagram to the left of the player role,
and drag the mouse to the player lifeline (dotted line beneath capsule role box).

Note: Resize the FOC on the player lifeline to include the Ante message as in the
following diagram.

Note: By adding this new message, the number labelling for the messages changed
to one level deeper. For example, the message label 1:Ante changed to 1.1:Ante,
and 1.5.1:HandValue changed to 1.1.5.1:HandValue.

25 Double-click on the message line (not the label for the line) to open the Send
Message Specification dialog box.

26 On the General tab, type timeout in the Name box.

27 Click OK.
Tutorials - Rational Rose RealTime 89

Your Sequence Diagram will look like the following.

Now, you may want to include some supporting text.

28 Ensure that the Sequence Diagram: Logical View / HeadsUpPoker window is the active
window.

29 From the toolbox, select the Text tool .

As you move your mouse over the Use Case Diagram, your cursor changes to the
text tool .

30 Left-click in the diagram, and drag (it will show as an outlined rectangle as you
drag).
90 Tutorials - Rational Rose RealTime

31 Release the mouse button after you have a rectangle similar to that in the following
diagram (you can resize the rectangle later).

32 Type the following text:

The scenario starts when the player receives the timeout

signal.

33 Create 3 more text boxes and include the text that appears in the following
diagram.
Tutorials - Rational Rose RealTime 91

Creating the Protocol

Now that you defined the classes and capsules in your design and specified the
interactions, you can define the set of messages to exchange between the Dealer and
Player capsules, and create ports through which they can communicate to each other.

Suggested Reading:

� Ports, Rational Rose RealTime Modeling Language Guide

� Protocols, Rational Rose RealTime Modeling Language Guide
92 Tutorials - Rational Rose RealTime

To create the communication protocol

1 Open the Main class diagram.

2 Select the Protocol tool from the toolbox .
Tutorials - Rational Rose RealTime 93

3 Create the protocol in the diagram in the same way that you created classes and
capsules.

Note: The protocol was added to the Logical View folder in the Model View tab in the
browser.

4 Type CommHeadsUp and press ENTER.

To create the set of signals for this protocol

1 Right-click on the protocol in the diagram, and click Open Specification.

The Protocol Specification for CommHeadsUp dialog box appears.
94 Tutorials - Rational Rose RealTime

2 Click the Signals tab.

3 Right-click in the In Signals pane, and click Insert.

4 Rename the signal Ante.

5 Click in the Data Class column opposite the Ante signal, and press F8.
Tutorials - Rational Rose RealTime 95

A drop down list appears with a list of all the basic types and classes in the model.

6 Select int from the list.
96 Tutorials - Rational Rose RealTime

7 Repeat the steps above to add the following In Signals and Out Signals to the
protocol:

8 Click OK.

The protocol on the Class Diagram: Logical View / Main changes to include these new In
and Out signals.

Note: Later, you will add more details to this protocol as the model evolves. For
example, you have not yet specified which data class to send with the ACard signal.
Tutorials - Rational Rose RealTime 97

Creating Ports and Connectors

You will create the player_comm and dealer_comm ports based on the
CommHeadsUp protocol. You can connect the player and dealer capsule roles to
allow them to communicate the signals defined in the protocol.

Ports are attributes of a capsule, and as such, all capsule roles of the same capsule
have the same ports available. It is a common mistake to think that you should add
ports to specific capsule roles.

Suggested Reading:

� Ports, Rational Rose RealTime Modeling Language Guide

� Connectors, Rational Rose RealTime Modeling Language Guide

To create ports

1 Open the Structure Diagram for the Dealer capsule.

Note: You can double-click on a capsule role to open the capsule structure diagram
of the capsule. This capsule role represents in the structure diagram.

2 From the Model View tab in the browser, drag the CommHeadsUp protocol to the black
border of the Dealer’s structure diagram.
98 Tutorials - Rational Rose RealTime

When the mouse is near the border, a dotted rectangle snaps to the border
automatically. This creates a public port that is visible outside of the capsule.
Release the mouse button when the dotted rectangle appears. The Structure Diagram
will look like the following.

3 Right-click the new port, and click End Port.

The port graphic changes from to indicate that it is an End Port. End ports
provide a connection between the behavior of the capsule containing the end port and
the outside world. To send and receive messages, a capsule must have end ports. The
end port's protocol defines the set of messages that can be sent.

4 Rename the port player_comm.

Now, you will create a port for the Player capsule.

5 Open the Structure Diagram for the Player capsule.
Tutorials - Rational Rose RealTime 99

6 From the Model View tab in the browser, drag the CommHeadsUp protocol to the black
border of the Player’s structure diagram.

7 Right-click the new port, and click End Port.

8 Name the port on the player capsule dealer_comm.

To enable communication between capsules, you must connect together the ports on
their interfaces. You can only connect compatible ports together. For a port to be com-
patible, the out signals on each side must be a subset of the in signals on the other
side.

9 Right-click on the dealer_comm port in the Structure Diagram for the Player capsule,
and click Conjugate.

10 Right-click on the dealer_comm port in the Structure Diagram for the Player capsule,
and click Wired if it not currently selected.
100 Tutorials - Rational Rose RealTime

To connect the dealer and player capsule roles

1 From the Model View tab in the browser, open the Structure Diagram for the
HeadsUpPoker capsule.

The new public ports appear on both capsule roles.

Now, you will connect these ports.

2 From the Structure Diagram toolbox, click the Connector tool .

3 Position the mouse over the port on the Dealer capsule role.

The cursor changes to .

4 Drag the mouse over to the conjugated port on the Player capsule role, and
release the mouse.

A connector appears between both capsule roles.
Tutorials - Rational Rose RealTime 101

To make the graphic easier to view, you can move the ports along the border of the
capsule roles to look like the following.

By creating these ports and connectors, the Class Diagram: Logical View / Main changes to
include the ports on the Dealer and Player capsules and the HeadsUpPoker capsule.
102 Tutorials - Rational Rose RealTime

Documenting the Responsibilities

It is good practice to include a brief responsibility statement for each element in the
design that describes what is included in the data, and the behavior of each
component. Every element in a Rose RealTime model can include documentation.

To add documentation to model elements:

1 In the Model View tab in the browser, either right-click to open the Specification
dialog boxes for the following capsule and class elements, or select the element,
then begin typing in the Documentation box in the Documentation window.

The elements and descriptive text is as follows:

Before proceeding with Lesson 4, we recommend that you save your work.

Lesson 4: Building and Running

In this lesson, you will learn how to build and run a model.

Prototyping

One of the fundamental impacts Rational Rose RealTime is that it encourages a highly
iterative development workflow at the individual software developer level. An
iterative approach:

� helps to resolve major risks before making large investments
� enables early user feedback
� makes testing and integration continuous

Model element Type Documentation text

HeadsUpPoker capsule Encapsulates the flow of events described in the
HeadsUpPoker:MainFlow use case.

Player capsule Interfaces with the dealer.
Places an ante.
Receives cards.
Tells the dealer the value of the player hand.

Dealer capsule Interfaces with a player.
Shuffles the card deck and distributes the cards.
Decides who wins, and informs the player if they win
or lose.

CommHeadsUp protocol Set of signals exchanged between the player and
dealer in a HeadsUp poker game.
Tutorials - Rational Rose RealTime 103

This iterative workflow allows developers to create prototypes, or executable versions
of the system, regularly. Creating executable versions of a system early on has the
following advantages:

� Allows you to validate and test the design.

� Gives you something to play with, more tangible than just boxes and diagrams.

� Helps you discover missing requirements.

� Allows you to build a working demonstration for feedback from the user.

Instead of waiting until the model is complete, you can construct a high-level model
with sufficient details to validate your design approach. You can execute the model,
find and fix problems, and revise the model to add more detail or to implement
additional behavior.

By validating the design early, and often, you reduce the risk of not delivering the
project on time. Errors at the design level are more costly to fix then implementation
errors, so finding and fixing these errors early in your process will save time and
effort.

Note: This highly iterative approach to development is the key to making the most of Rational
Rose RealTime.

Building a Model

You will build and run for the first time an executable version of the card game
simulation. Although you have not yet added any detailed behavior, this is a good
time to build and run a model.

Suggested Reading

� Components, Rational Rose RealTime Modeling Language Guide
� Build basics, Rational Rose RealTime Toolset Guide
� Building and running models, Rational Rose RealTime Toolset Guide

To run your model, you need to build it, and then execute it on a processor. A
component describes how to build a set of capsules and classes. The deployment of a
component describes on what processor to execute the built component.
104 Tutorials - Rational Rose RealTime

Note: A component can have instances. An instance of a component can be a single
executable that can reside on a number of different nodes. To allow for this, specific
component instances can be assigned to processors. Component instances are not
shown in the component diagram, they appear in the deployment diagram.

You will create a component by opening a series of dialog boxes so that you can
become familiar with the common features of the Rose RealTime user interface.

Note: You can also use the Component Wizard to quickly create, modify, and deploy a
component. The wizard guides you through creating and configuring a component,
and running the component instance. To access the wizard, click Component Wizard on
the Build menu.

Creating a Component

The Component View specifies how to compile various parts of the model. The primary
element of the Component View is a component that you need to create. This component
specifies the capsules and classes to compile, how to compile those elements, and the
inclusions and libraries to incorporate into the build.

You must create a component for the top-level capsule in order to build and execute
your model. You can draw component diagrams for situations where you have many
related components or packages of components.

To create a component:

1 In the Model View browser, right-click Component View, and click New > Component.

Or . . .

In the Main diagram for the Component View, from the toolbox, select the Component
tool , then click on the Main diagram.

A component appears with the default name NewComponent1.

2 Rename the component CardGameComponent.
Tutorials - Rational Rose RealTime 105

3 In the Model View tab in the browser, double-click CardGameComponent to open the
Component Specification for CardGameComponent dialog box.

4 Click the General tab if not already selected.

5 In the Environment box, select C++ TargetRTS if not already selected.

Setting the Environment box to C++ TargetRTS specifies that the C++ run-time
system and code generation are used in the build process.
106 Tutorials - Rational Rose RealTime

6 In the Type box, select C++ Executable if not already selected.

Setting the Type box specifies that you want to build a C++ executable version of
the model.

7 Click the References tab.

8 In the Model View tab in the browser, drag the HeadsUpPoker capsule onto the
References tab.
Tutorials - Rational Rose RealTime 107

The HeadsUpPoker capsule appears in the window.

You drag the HeadsUpPoker capsule onto the References tab because the items in the
References tab identify what is compiled with the HeadsUpPoker component.
108 Tutorials - Rational Rose RealTime

9 Click the C++ Executable tab.

10 Click Select....

The Select Top Capsule dialog box appears. In this dialog box, you select the capsule
that will be the top capsule in the model.

11 Click HeadsUpPoker to designate it as the top capsule.
Tutorials - Rational Rose RealTime 109

12 Click OK.

13 Click Apply.

14 Click the C++ Compilation tab.

15 Click Select....

The Select Target Configuration dialog box appears.
110 Tutorials - Rational Rose RealTime

A component is always created with a default configuration for your host
machine. This includes a default compiler, compiler flags, linker, and so forth. In
many cases, these settings are sufficient for building simple sets of classes and
capsules that do not require integration with external source files, or libraries.

In this dialog box, you will specify the operating system, compiler, and processor
that you want to use to build and run the model.

The information is listed in the following format:

<operating system>.<processor and compiler>

For example:

❑ If you are running Windows 4.X on a x86 processor, and you have installed the
Visual C++ 6.0 build tools, select:

NT40T.x86-VisualC++-6.0

❑ If you are running Solaris 5.X on a sparc processor, and you have installed the
gnu 2.8.1 build tools, select:

SUN5T.sparc-gnu-2.8.1

16 Select the configuration for your computer, and click OK.

17 To save the changes, click Apply.

18 To close the Component Specification for CardGameComponent dialog box, click OK.

Creating the Deployment View

The Deployment View describes the computing environment in which your model is
executed, and specifies how it is deployed within the environment. The most
important elements of the Deployment View are processors and component instances.

First, you define a processor on the Deployment Diagram that describes the computing
hardware on which the model will be executed. Next, you map the component onto
the processor to create a component instance. Finally, you run the model.

To create a processor

1 In the Model View tab in the browser, right-click Deployment View, and click New >
Processor.

Or . . .

In the Deployment View, open the Main diagram, from the toolbox, select the Processor
tool , then click on the diagram to add a processor.

A processor appears with the default name NewProcessor.
Tutorials - Rational Rose RealTime 111

2 Rename the processor LocalHost and press ENTER.

3 In the Model View tab in the browser, drag the CardGameComponent from the
Component View folder onto LocalHost.

A component instance, CardGameComponentInstance, is created on the processor,
and appears under LocalHost.

Now that you associated a component with a processor (creating a component
instance), your component instance is complete and you can now run
CardGameComponentInstance.

Before you run the component instance, save your model (File > Save Model)

Starting the Build

Now that you created the component (CardGameComponent), processor
(LocalHost), and component instance, you can build and run the executable version
of the model.

Suggested Reading

� Build menu, Rational Rose RealTime Toolset Guide

� Build settings dialog, Rational Rose RealTime Toolset Guide

� Build log, Rational Rose RealTime Toolset Guide

� Starting a build, Rational Rose RealTime Toolset Guide

� Common build errors, Rational Rose RealTime Toolset Guide

To build the CardGameComponent

1 In the Model View tab in the browser, right-click CardGameComponent, and click
Set As Active.

Because you will be building and running the same component and component
instances often, you should configure an active component. Setting the
Set As Active option ensures that the toolbar build icons and menu items, for the
common run and build commands, become available for easy access.
112 Tutorials - Rational Rose RealTime

The Build Component tool becomes active.

2 Click Build Component.

Note: The CardGameComponent component should contain all referenced classes
before it is compiled. Rose RealTime checks the references, and prompts you to
add any missing references that it detected.

3 Click Add References and Continue.

The Build CardGameComponent dialog box appears.
Tutorials - Rational Rose RealTime 113

4 If not currently selected, click Generate and compile, and click OK.

The Build Log tab of the Output Window shows the results of code generation and
compilation. When the build finishes, the Build Log should indicate "Build successful".

Note: If there are compile errors, double-click on an error message on the Build Errors
tab. Rose RealTime opens the appropriate editor where the source of the error
appears. You can then resolve any errors.

If you do not see "Build Successful", review the topic on Common build errors. The
most common error is not having one of the supported compilers for your platform
installed or accessible in your path. Also, check the Rational Rose RealTime product
web site for any known issues, or updates to tutorials and model examples.

Where is the Source Code Generated?

If you wish to examine the generated code, look in the directory where you saved
your model. In that directory, you should see a subdirectory labelled
CardGameComponent. In this directory, you will see another subdirectory called src.
This directory contains the generated code for your model. You may want to explore
and examine the files in this directory.

Running the Component Instance

Now, you will run the built component.

Suggested Reading

� Building and running models, Rational Rose RealTime Toolset Guide
114 Tutorials - Rational Rose RealTime

To run the component instance:

1 From the Model View tab in the browser, right-click CardGameComponentInstance, and
click Run.

2 When prompted to rebuild the component, click No. You already built the
component in an earlier step.

The Build Log appears while dependencies are recalculated. If the toolset
determines that model elements changed since the last build the component is
rebuilt before the component instance is run.

A console window appears showing output to stderr or stdout.

3 Click on any part of the toolset to make it active.
Tutorials - Rational Rose RealTime 115

A new browser, RTS Browser (Runtime View), appears on your Model browser. It
controls the execution of a running component instance. You can run and control
multiple component instances from within Rose RealTime. There is a separate RTS
Browser (Runtime View) tab for each running instance.

4 Click on the Runtime View tab.

The RTS Browser appears. The top folder shows the name of the capsule,
HeadsUpPoker, which encapsulates the card game simulation.

5 Click the Start button to start the execution of the loaded component
instance.
116 Tutorials - Rational Rose RealTime

The player and dealer capsule instances display in the browser.

6 Right-click on the HeadsUpPoker capsule instance, and click Open Structure Monitor.

The following diagram shows a run-time view of the structure of this capsule
instance.
Tutorials - Rational Rose RealTime 117

In the next lesson, you will add detailed behavior to your card game model.
Because there is no behavior in your existing model, you will stop the component
instance.

7 To stop the component instance from running, click the Shutdown button .

Review

You have now completed the following activities:

1 Described the requirements of the simulation in a use case.

2 Discovered from the requirements the initial design objects needed to implement
the simulation: capsules and classes.

3 Described the communication paths and scenarios between capsules using
sequence and structure diagrams.

4 Created the protocols which describe the sets of signals which are exchanged
between capsules.

5 Build and run the model.

You used Rose RealTime to describe and develop the high-level Design of a card game
simulation in a way that allows others to understand the system you are building.

The key parts of a design consist of:

� The name of the key components in the system (viewable from the Model View tab
in the browser).

� The main responsibility of each component (captured in the Documentation box).

� The communication patterns between the components (captured in Structure and
Sequence diagrams).

The sample model showing the completed procedures covered to this point in the
tutorial is located in the Rational Rose RealTime installation directory:
$ROSERT_HOME/Tutorials/cardgame/cardgame_step1.rtmdl.

Next, you will incrementally add details to the simulation, first adding behavior to the
capsules, and then implementing the required card classes.
118 Tutorials - Rational Rose RealTime

Lesson 5: Adding Behavior to the Capsules

You created the major classes and capsules that make up the card game simulation,
and determined how they are connected and communicate. However, the capsules
and classes do not have any behavior, and do not perform a function. You will add
that behavior in this lesson.

First, you will add behavior to the capsules to run the simulation to test the design.
Then, you will implement the card classes to complete the simulation.

Suggested Reading

� Creating capsule state diagrams, Rational Rose RealTime Toolset Guide

� State diagrams, Rational Rose RealTime Modeling Language Guide

� Signal events, Rational Rose RealTime Modeling Language Guide

Opening Capsule State Diagrams

Capsule behavior is described in a state diagram. You do not have to create a State
Diagram for a capsule, it is automatically created for each capsule.

To open a state diagram:

1 In the Model View tab in the browser, for the Dealer capsule in the Logical View,
double-click on State Diagram to open the state diagram.

In the State Diagram editor, the state diagram is in the right pane and the Navigator in the
left. The Navigator allows you to quickly access and browse capsule behavior.
Tutorials - Rational Rose RealTime 119

Creating the Dealer’s Behavior

In this topic, you will create states, transitions, triggers, and action code to implement
the first pass behavior for the Dealer capsule.

To determine the behavior of a capsule, review the Responsibility description of the
capsule, and the Sequence diagram in which the capsule participates. These two
sources indicate the messages that the capsule receives, and sends.

For example, in the Dealer capsule’s documentation and role in the
HeadsUpPoker:Mainflow sequence diagram, you can see that the behavior has to
handle the receipt of the Ante and HandValue signals, and send out the ACard, Win,
Lose signals.

Suggested Reading

� Creating capsule state diagrams, Rational Rose RealTime Modeling Language Guide

� TopState, Rational Rose RealTime Modeling Language Guide

� Transitions, Rational Rose RealTime Modeling Language Guide

� States, Rational Rose RealTime Modeling Language Guide

To create the Dealer states:

1 If not currently open, open the State Diagram for the Dealer capsule.

2 Click the State tool from the State Diagram toolbox.

3 Move the mouse over the State Diagram and within the state diagram border.

4 Click to create a state.
120 Tutorials - Rational Rose RealTime

The state name is selected.

5 Rename the state to WaitingToStart.

6 Repeat the steps above, and create a state called Playing.

Your diagram should look like the following diagram.
Tutorials - Rational Rose RealTime 121

Next, you want to create transitions. The state diagram contains an initial point, ,
and an initial state called WaitingToStart. An initial point is a special point which
explicitly shows the beginning of the state machine. You connect the initial point to a
start state (in this case, WaitingToStart). Where the start state will be the first active state
in the Dealer objects state machine. The transition from the initial point to the start
state, the initial transition, is the first transition taken before any other transition. Only
one initial state is allowed in each state diagram. Only one outgoing transition can
exist from the initial point.

There can be several incoming transitions to the initial state. In this case the initial
state acts like a junction point which forces the behavior back through the initial
transition. If the initial transition is used to completely initialize an object, then any
incoming transition to the initial state will effectively reset the behavior of an object
without having to destroy then re-create it.

A transition is a relationship between two states, a source state and a destination state.
It specifies that when an object in the source state receives a specified event and
certain conditions are meet, the behavior moves from the source state to the
destination state. You create an Initial Transition that is automatically invoked at
runtime when a capsule instance is created. Any action code associated with the
Initial Transition runs when the capsule instance is created.

To create the transitions

1 From the State Diagram toolbox, click the State Transition tool .

2 Click and hold the left mouse button on the Initial Point in the state diagram, .

The Initial Point is the black circle that appears in the top-left corner of the State
Diagram.

3 Drag the State Transition tool to the top of the WaitingToStart state.
122 Tutorials - Rational Rose RealTime

The Initial Transition has a default name of Initial.

Note: You can resize the black border of the State Diagram by selecting it, then
click and hold your mouse over a pic handle and change the size.

4 Repeat the steps above and create the transitions as shown in the following state
diagram.
Tutorials - Rational Rose RealTime 123

Note: You can change the position of the transition lines and the labels for the
transitions by selecting and moving the object.

You will notice that the transition lines are broken . This broken line means that
these transitions do not have a trigger defined. A trigger defines which events from
which ports cause the transition to be taken. The trigger is associated with the port on
which the triggering event is expected to arrive. Moreover, a transition can have
multiple triggers such that an event that satisfies any one of the triggers causes the
transition to be taken.

To create the triggers:

1 Double click on the Deal_cards transition line.

The Transition Specification dialog box appears.

2 Click the Triggers tab.

3 Right-click in the list area, and click Insert.
124 Tutorials - Rational Rose RealTime

The Event Editor Dialog appears.

Use this dialog to define the ports and signals that trigger this particular transition
to be taken.

4 In the Port list, select the player_comm port.

The incoming signals defined for this port automatically appear in the Signal list.

5 In the Signal list, select the Ante signal.
Tutorials - Rational Rose RealTime 125

6 Click OK.

The trigger you defined now appears on the Triggers tab of the Transition
Specification dialog box.

7 Click OK.

8 Repeat the steps above to create a trigger for the Calc_hands transition using the
following:

Port Signal

player_comm HandValue
126 Tutorials - Rational Rose RealTime

The Transition Specification for the Calc_hands transition looks like the following.

9 Click OK to close the Transition Specification for Calc_hands.

To create the actions

Actions are the things the behavior does when a transition is taken. They represent
executable atomic computations that are written as statements in a detail-level
programming language (that is, in C++) and incorporated into a state machine.
Actions are atomic, in that they cannot be interrupted by the arrival of a higher
priority event. An action runs to completion.

1 Double-click on the Deal_cards transition line.

The Transition Specification dialog box appears.

2 Click the Actions tab.
Tutorials - Rational Rose RealTime 127

3 In the Code box, type the following:

// distribute hands to player and dealer

for(int i = 0; i < 5; i++)

{

player_comm.ACard().send();

// will add code here later to take

// a card for the dealers hand

}

Note: C++ is case-sensitive. Ensure that you type the code exactly as shown to
avoid any errors.

When Deal_Cards transition is taken, the dealer sends the ACard signal out the
player_comm port. A total of five cards are sent. This is the first iteration of the
behavior. After you develop the card classes, you can send actual cards to the
player and take cards for the dealers hand. This level of detail code allows you to
run the simulation, and to observe the interactions between the player and dealer
capsules.
128 Tutorials - Rational Rose RealTime

4 Click OK.

5 Repeat the above steps and type the following code for the Calc_hands transition:

// receive the hand value from the player

int hand_value = *rtdata;

int bet_multi = 2;

// for now, always let the player win twice

// their bet value.

//Will add code here to compare

// the two hands.

player_comm.Win(bet_multi).send();

6 Click OK.

In the Calc_hands transition, the dealer uses the rtdata argument to extract the data sent
with the signal. The rtdata parameter is available to all transition code and is a casted
version of the data in a message. The rtdata parameter is casted to the highest
common superclass of the possible data classes for the given code segment. In this
Tutorials - Rational Rose RealTime 129

case, the CommHeadsUp protocol tells us that the HandValue signal is accompanied by an
integer representing the value of the players hand. For now, you will let the player
win all the games.

Creating the Player’s Behavior

The player’s behavior is more involved than the dealers behavior because the player
starts the simulation at some interval, and counts the value of their cards.

Suggested Reading

� Functionality of the language add-in, Rational Rose RealTime C++ Reference.

To create a timing port:

The player will initiate the flow of events. To control the amount of time elapsed
between games, you will use a timer to have an interval of two seconds between each
game to help you debug and observe the simulation while it runs.

1 Open the Structure Diagram for the Player capsule.

2 From the capsule Structure Diagram toolbox, select the Port tool .
130 Tutorials - Rational Rose RealTime

3 In the Structure Diagram, left-click inside the black border to add the port.

Note: Do not click on the black border. Clicking on the border makes the port
public, clicking inside the border makes the port private.

4 Double-click to select the Timing protocol from the list of available protocol classes.

5 Rename the port to timer.

Creating the State Diagram

You will create the behavior for the Player capsule. As with the Dealer capsule, you will
create the appropriate states and transitions and label them. Your completed State
Diagram for the Player capsule will look like the following diagram.

1 If not currently open, open the State Diagram for the Player capsule.

2 Click the State tool from the State Diagram toolbox.

3 Move the mouse over the State Diagram and within the state diagram border.
Tutorials - Rational Rose RealTime 131

4 Click to create a state.

5 Rename the state to WaitingToStart.

6 Repeat the steps above, and create two additional states called ReceiveCards and
GameResults.

Your diagram should look like the following.
132 Tutorials - Rational Rose RealTime

Next, you will create a choice point.

To create a choice point:

Choice points allow a single transition to be split into two outgoing transition
segments, each of which can terminate on a different state. The decision of which
branch to take is made after the transition is taken.

Each choice point has an associated boolean predicate that is evaluated after the
incoming transition action is executed. Depending on the truth value of this predicate,
either the True or the False branch is taken.

1 From the State Diagram toolbox, click the Choice Point tool .

2 Click in the diagram to add a choice point.

3 Rename the choice point to All_cards.

Note: You can rotate the choice point by grabbing one of its pic handles and
turning. You can change the True and False branches using the popup menu.

Next, you want to create transitions.

1 From the State Diagram toolbox, click the State Transition tool .

2 Click and hold the left mouse button on the Initial Point in the state diagram, .

3 Drag the State Transition tool to the top of the WaitingToStart state.
Tutorials - Rational Rose RealTime 133

The Initial Transition has a default name of Initial.

4 Repeat the steps above and create the transitions as shown in the following State
Diagram.

Note: You can change the position of the transition lines and the labels for the
transitions by selecting and moving the object.
134 Tutorials - Rational Rose RealTime

Now, you will add the transition lines to and from the choice point. A choice point is
rendered as a circle with one incoming point, and two outgoing for the True and False
transitions. The choice point is shown with a 'C' in the middle if the boolean predicate
is defined.

5 Add the transitions for the choice point.

Your State Diagram for the Player capsule looks like the following.

You will notice that some transition lines are broken . This broken line means that
these transitions do not have a trigger defined.

To create the triggers:

1 Double click on the Ante transition line.

The Transition Specification dialog box appears.

2 Click the Triggers tab.
Tutorials - Rational Rose RealTime 135

3 Right-click in the list area, and click Insert.

The Event Editor Dialog appears.

Use this dialog to define the ports and signals that trigger this particular transition
to be taken.

4 In the Port list, select the timer port.

The incoming signals defined for this port automatically appear in the Signal list.

5 In the Signal list, select the timeout signal.

6 Click OK.

7 Click OK.
136 Tutorials - Rational Rose RealTime

8 Repeat steps 1 through 7 to create triggers for the following transitions:

Note: Transitions out of the choice point do not require triggers. They belong to the
same transition chain as the transition incoming to the choice point.

Verify that there are no broken transition lines. If you have a broken transition,
check that you have defined a trigger for a transition.

You State Diagram should look like the following:

Adding Attributes

The Player’s attributes manage the data required to track the bet, the winnings, and
the number of cards received. These attributes can be accessed in the action code of
the capsule state diagram and in its operations (very similar to how classes attributes
are available in its operations).

Transition Port Signal

Received_card dealer_comm ACard

Win dealer_comm Win

Lose dealer_comm Lose
Tutorials - Rational Rose RealTime 137

To add Attributes:

Note: The following steps show you how to add an attribute using the
Specification dialogs; however, you can also use the Attribute wizard. Right-click
on a capsule and click Attribute Tool.

1 Open the Specification dialog box for the Player capsule.

2 Click the Attributes tab.

3 Right-click in the Attributes list, and click Insert.

4 Type _bet and press ENTER.

5 Press TAB twice to advance to the Type column.

6 Press F8 and select int from the list.

7 Press TAB to advance to the Initial column.

8 Press F8, type 5, and press ENTER.

9 Click Apply.

10 Repeat steps 3 through 9 to add the following attributes:

Attribute Description

_bet Stores the amount of money (rounded up to the dollars) that the
player bets for each hand.

_money Stores the money for the player. The player starts with $150.
This value is updated after each hand to reflect either a win or a
loss.

_ncards Stores the number of cards the player receives. This attribute
helps the player know when they have received all five cards.

Name Type Initial

_ncards int 0

_money long 150
138 Tutorials - Rational Rose RealTime

The Capsule Specification dialog box looks like the following:

11 Click OK.

Creating the Actions

The player capsule starts the flow of events by sending an Ante signal to the dealer.
The player must then receive the five cards from the dealer, and reply with the value
of his hand. Depending on the outcome of the game, he will receive a Win or Lose
signal. If he wins, the dealer sends the bet multiplier that is used to calculate how
much was won.
Tutorials - Rational Rose RealTime 139

To add a state entry action:

1 Open the State Diagram for the Player capsule.

2 Right-click on the WaitingToStart state, click Open Specification, then click the Entry
Actions tab.

Or . . .

Click the WaitingToStart state, on the Code tab in the documentation window, select
Entry Action from the drop-down list.

3 Type the following code in the Code box:

_ncards = 0;

timer.informIn(RTTimespec(2, 0));
140 Tutorials - Rational Rose RealTime

If you used the Code tab in the documentation window, your window will look like
the following:

State entry actions are executed every time a transition is taken which terminates
on the state. The _ncards attribute resets for each game. The timer requests that
one time-out message be sent to this capsule in two seconds; this enables the
simulation to run continuously.

4 Click Apply.

To add a transition action for Ante:

1 Click the Ante transition line.

2 On the Code tab, select Action from the drop-down list.

3 Type the following in the Code box:

dealer_comm.Ante(_bet).send();

By adding this code, you specify that the player starts the game by sending an ante
to the dealer.

4 Click Apply.
Tutorials - Rational Rose RealTime 141

To add a transition action for Got_all_cards:

1 Click on the Got_all_cards transition line.

2 On the Code tab, select Action from the drop-down list.

3 Type the following code in the Code box:

// Will have to update to send the real hand value

dealer_comm.HandValue(2).send();

4 Click Apply.

Note: The card classes are not developed, so you will send a dummy hand value to
the dealer. You will have to update this code after you develop the card classes.

To add a transition action for Win:

1 Click on the Win transition line.

2 On the Code tab, select Action from the drop-down list.

3 Type the following in the Code box:

// Update winnings from bet and win multiplier

// sent from dealer.

_money += _bet * (*rtdata);

4 Click Apply.

If the player wins, the dealer sends the bet multiplier to calculate the amount of
money relative to the bet that the player has won.

To add a transition action for Lose:

1 Click on the Lose transition line.

2 On the Code tab, select Action from the drop-down list.

3 Type the following code in the Code box:

// update for loss

_money -= _bet;

4 Click Apply.

By adding this code, you specify that if the player loses, subtract the bet from total
money for the player.
142 Tutorials - Rational Rose RealTime

To add a action for the All_cards choice point:

Each choice point has an associated boolean predicate that is evaluated after the
incoming transition action is executed. Depending on the truth value of this predicate,
one or the other branch is taken. Modify the predicate for the All_cards choice point:

1 Click on the All_cards choice point.

2 On the Code tab, select Condition from the drop-down list.

3 Type the following code:

return(++_ncards < 5);

This code forces the branch to take the False transition until the player receives all
five cards.

4 Click Apply.

Before proceeding with the next lesson, we recommend that you save and build your
model. For details on building the model, see Lesson 4: Building and Running. If you
encounter any errors, review this lesson and fix any errors until you receive the
message "Build successful" in the Log window.

Review

The Player and Dealer capsules are not complete. Later, you will add code to complete
the Transition actions. The capsules are complete enough to allow you to build, run,
and debug the simulation.

Lesson 6: Navigating and Searching

As the size of your model increases, you may need to start navigating and searching.
In this lesson, you will do some reading to become familiar with the navigation and
search tools available within Rational Rose RealTime.

To obtain a working knowledge of a model, you must find key elements, such as,
capsules, attributes, operations, classes, code statements, and so on. You must then
navigate through the code and/or structures to find other occurrences, establish the
hierarchy, and get a general understanding of the flow of the design.
Tutorials - Rational Rose RealTime 143

Suggested Reading
� The Find dialog, Rational Rose RealTime Toolset Guide

� The Code window, Rational Rose RealTime Toolset Guide

� Model Browser, Rational Rose RealTime Toolset Guide

� The Browse menu, Rational Rose RealTime Toolset Guide

Lesson 7: Using Traces and Watches to Debug the Design

In this topic, you will learn how to use the monitors, traces, and watches features. You
can use these tools to help debug Rose RealTime models.

A very powerful feature of Rose RealTime is the ability to observe a running
component instance at the model level. This high-level debugging is not what most
developers are familiar with. Typically, developers converted design models to source
code, and when it was compiled and run, the only way to trace the execution was at
the source code level. The design model representation was not useful.

In Rose RealTime, you can see the triggered transitions, active states in the state
diagram monitors, and watch the dynamic structure animate in the structure monitor.
In addition, you can use probes to trace the messages being passed in the system.

Suggested Reading

� Summary of the observability options, Rational Rose RealTime Toolset Guide

Rebuilding the Model

You can use the same component, component instances, and processor that you had
created previously. Now it is time to rebuild the CardGameComponent. For details
on building the model, see Lesson 4: Building and Running on page 103.

When you rebuild the CardGameComponent, all changes made to the model are
regenerated and recompiled into a new executable.
144 Tutorials - Rational Rose RealTime

Errors may be reported during the build. This is not a problem. Read the error as
shown in the Build Errors pane in the output window, and then double-click on the
error to bring you to the element that caused the error. (C++ syntax errors are a
common type of error.) Correct any errors and then rebuild the model.

Setting Up the Runtime Windows

First, you want to run your model.

1 On the Model View tab in the browser, expand Deployment View, then expand
LocalHost.

2 Right-click CardGameComponentInstance and click Run.

3 If your are prompted to build the component, click Yes.

4 After running the executable (component instance), the RTS Browser appears.

5 Click the Step button to initialize the model.

Clicking the Step button allows the delivery of one message in the component
instance runs allows the current executing transition to finish, the next message is
delivered, then it either pauses or stops.

To open the State monitor:

1 From the RTS Browser pane on the Runtime View tab in the Model browser, click the
Start button , and expand the HeadsUpPoker (capsule instance) folder.
Tutorials - Rational Rose RealTime 145

2 Right-click on the Dealer capsule instance, and click Open State Monitor.

3 Right-click on the Player capsule instance, and click Open State Monitor.
146 Tutorials - Rational Rose RealTime

These windows show you read-only views of the capsule instance behavior, and
they animate to show you the current state and last transition taken by the capsule
instance while it runs.

Organize the monitor windows, you can use the zoom tool to resize. Try and
organize your desktop so that you can see both State Monitor diagrams at the same
time.

For both capsules, there is a black rectangular outline around the WaitingToStart
states; it is the first state.

To open the Watch window:

1 From the View menu, click Output so that it is selected.

The Watch window appears in the output window. The window has two columns:
Name and Value.

Note: Use the Watch window to specify attributes that you want to watch while
debugging your running component instance. You can also modify the value of a
variable using the Watch window.

You will place watches on three attributes for the Player capsule instance.

2 From the browser in the Player State Monitor, expand the Attributes folder located in
the left hand pane.
Tutorials - Rational Rose RealTime 147

There are three attributes listed: _bet, _ncards, and _money.

3 Drag each attribute individually from the Attributes folder into the Watch window.

The attributes appear in the window. The value is not updated until the
component instance starts.

To open a capsule instance Trace

You can trace messages sent between a set of capsule instances. Typically, when a
message fails to flow through a set of capsules as expected, it is important to see
where the message flow was first in error. To debug these kinds of errors, first use
Capsule instance traces to look at the messages originating and terminating from the
capsules in the message flow.
148 Tutorials - Rational Rose RealTime

For the purposes of this lesson, you want to open a trace on the Player and Dealer
capsule instances.

1 On the Runtime View tab, from the RTS browser, select the Player and Dealer capsule
instances.

Note: You may have to click the Stop button to select both capsules.

2 Right-click, and select Open Trace.
Tutorials - Rational Rose RealTime 149

Initially, the Trace window looks like the following:

3 Resize the Trace window so that it fits your screen.

4 To resize the columns, right-click on the top column (the one with the titles) and
select Adjust Columns from the menu.

The columns resize to fit the current window size.

Note: Messages appear in the Trace window after the component instance starts.
150 Tutorials - Rational Rose RealTime

To start the component instance

1 Press the Start button in the RTS Browser (Runtime View tab in the Model browser)
window to start the component instance.

Messages appear in the Trace window, and the Value fields for the attributes appear
in the Watch window. Since you implemented the simulation so that the player
always wins, the player’s value for money will increase.
Tutorials - Rational Rose RealTime 151

2 Double-click in the Value column for the _bet attribute in the Watch window, and
change the value to 10000.

This modifies the value of that attribute in the running instance, and you can see
that the player wins more money.

3 Click the Shutdown button to terminate the component instance.

Problems with the Player Capsule

An error was purposely introduced in the behavior of the player capsule. In this topic,
you will debug and fix this error.

When you ran the component instance, a console window appeared. You will use
output from this console window, and use probes and traces to find the error.

If you do not have the CardGameComponentInstance running and started, do so
now.

Suggested Reading

� Probes, Rational Rose RealTime Toolset Guide

This topic highlights a very powerful feature of Rational Rose RealTime. You can
build any capsule independently in order to run and debug it. Since the Player and
Dealer capsules do not run individually, they do not encapsulate a flow of events; they
are part of one. When they are built and run, they will not do anything unless you
simulate messages that it expects to trigger behavior. All behavior in a capsule is
triggered by received messages; therefore, when a capsule is run by itself, or out of
context of it’s flow of events, you have to generate these messages to test it’s behavior.

Unexpected Messages

Ensure the component instance is started, then observe the behavior monitors for the
player and dealer instances. Is the behavior what you expected? Now look at the Trace
window. Are all the messages that you expect there?

If you examine the results closely, you will notice that the Player instance is not actually
receiving all five cards. The Player should receive five cards, and then send the hand
value to the dealer. However, the Player only receives one card, and the four others are
being ignored.
152 Tutorials - Rational Rose RealTime

Warning Message for No Defined Trigger?

At runtime, if a capsule does not have a trigger for a message it receives, (that is, when
a capsule receives a message that cannot be processed in the current state), a warning
message is printed to stdout in the console windows, as follows:

The Services Library prints this warning when a capsule instance receives a message
and there is no transition event defined from the current state which can handle the
event.

In this case, messages printed to the console indicate that the Player instance is in the
GameResults state when it received the ACard signal on the dealer_comm port. This
occurred several times.

Building the Player Capsule

In this topic, you create a component and component instance to build and run the
Player capsule. This allows you to run the Player capsule to investigate the
unexpected message.

To create the component and component instance

� Create a component named PlayerComponent with the Player capsule as the top level
capsule. Follow the instructions in the topic To create a component: on page 105.

� Create a component instance of the PlayerComponent. Follow the instructions in the
topic To build the CardGameComponent on page 112.

To build the PlayerComponentInstance

Build the PlayerComponent in the same way that you built the CardGameComponent.
Right-click the component, and click Build.

For additional information on building a component instance, see To build the
CardGameComponent on page 112.

Debugging the Player Capsule

To debug the Player capsule, run it then inject messages into the dealer_comm port to
observe the player capsule instance behavior.
Tutorials - Rational Rose RealTime 153

To trace and inject messages:

1 Build, then run the PlayerComponentInstance. For instructions on building and
running a component instance, see To build the CardGameComponent on page 112
and To run the component instance: on page 115.

2 Open the Structure Monitor diagram for the Player capsule.

3 Select the Probe tool from the Structure Monitor toolbox.

4 Position the cursor over the dealer_comm port in the Structure Monitor diagram,
and left-click.

This creates a port on the dealer_comm port.

5 Select the probe, right-click, and click Open Trace.
154 Tutorials - Rational Rose RealTime

A Trace window shows all messages that pass through (in or out) of a port.

6 From the Runtime View tab, right-click on Player and click Open State Monitor.

7 From the Runtime View tab, click the Start button to start the execution of the
loaded component instance.
Tutorials - Rational Rose RealTime 155

After a two second delay, the state changes from WaitingToStart to ReceiveCards in
the State Monitor diagram for Player.

A message appears in the Trace window with signal Ante.

The Player remains in the ReceiveCards state until receiving cards from the
dealer_comm port. Since a dealer instance is not running, you will inject messages
into the player instance.
156 Tutorials - Rational Rose RealTime

8 In the Structure Monitor dialog for the Player capsule instance, select the probe,
right-click and click Open Inject.

The Probe Specification dialog box appears with the Detail page active.

9 Right-click in the list, and click Insert.

The Edit Inject Message dialog box appears.
Tutorials - Rational Rose RealTime 157

10 From the Signal box, select the ACard signal, and set the Direction to In.

11 Click OK.

You created the specification for an inject message that appears in the inject list of
the Probe Specification dialog box.

12 In the Probe Specification dialog box, select the inject message, right-click, and click
Inject.

The state monitor shows the behavior moving from the ReceiveCards state to the
GameResults. This is incorrect, and is a symptom of the problem with the Player
capsule. The Player capsule should remain in the ReceiveCards state until it receives
five cards. Instead, it only receives one card before it changes state.

This indicates that there is an error with the logic in the choice point. In the next
steps, you will correct the error and test the changes.

Note: Ensure that the PlayerComponentInstance component instance is running. You
can check the status by looking at the Status field at the top of the RTS Browser on
the Runtime View tab: the status should indicate Running.
158 Tutorials - Rational Rose RealTime

To correct the error in the Player capsule:

1 Without stopping or shutting down the Player capsule instance, double-click on the
All_cards choice point in the State Monitor dialog for the Player capsule.

The Choice Point Specification dialog box appears.

2 If not currently selected, click the Condition tab.

3 Replace the code with:

return(++_ncards >= 5);

4 Click OK.

A dialog appears indicating that you have changed the model and the component
instance must be shut down.

5 Click OK.

The RTS Browser closes.
Tutorials - Rational Rose RealTime 159

6 In the Model View tab in the browser, right-click the PlayerComponentInstance in
LocalHost under Deployment View, then click Run.

The changes you made earlier force the re-compilation of the Player capsule.

7 Click Yes when queried to recompile the component.

8 From the Runtime View tab, click the Start button to start the execution of the
loaded component instance.

Now, you will inject five ACard messages into the player instance to ensure that the
capsule behaves as expected.

9 In the Runtime View tab in the browser, right-click Player and select Open Structure
Monitor.

10 On the probe you created earlier, right-click and select Open Inject.

11 On the Detail tab, right-click on the In message.

12 Click Inject.

13 Repeat steps 11 and 12 four more times, for a total of five inject messages.

After you inject five cards, the Player capsule instance changes to the GameResults
state. You will now inject a Win message.

If you look at the State Diagram, the current state is GameResults. Now, you will
create a Win inject message to test the Win transition and complete one hand of the
HeadsUp poker game.

14 In the Structure Diagram for the Player capsule, right-click on the probe you created
earlier, then select Open Inject.

15 On the Detail tab of the Probe Specification dialog box, right-click and select Insert.
160 Tutorials - Rational Rose RealTime

16 In the Signal box, select Win.

17 In the Data box, delete void and type:

int 5

This inject message requires an integer data value that represents the bet
multiplier.

18 Click OK.

19 On the Probe Specification dialog box, select the Win signal, right-click and select
Inject.

You can see the Win transition being taken. If you have a watch on the _money
attribute, you can see that value is updated correctly to reflect the fact that the
player has won.

Verifying the Fix

You have located and fixed the error with the Player capsule. You should now run the
simulation and verify that it works as expected. Ensure that unexpected message
warnings no longer appear in the console window. Try injecting a Lose message to
verify that the _money attribute is updated correctly when the player loses.

Note: When you finish testing your model, in the Runtime View tab of the browser, click
the Shutdown button . Also, close the State Monitor, Structure Monitor, Trace, and Probe
Specification dialog boxes.
Tutorials - Rational Rose RealTime 161

Review

In this lesson, you learned how to:

� Use the observability features of the toolset that enable you to debug and test a
running process built with Rational Rose RealTime at the model level. Instead of
stepping through the generated source code, Rational Rose RealTime shows you a
view of the structure diagrams and state diagrams of the running capsule
instances.

� Build, run, and test individual capsules at any time. This is very useful for unit
testing parts of your design, or trying to isolate a problem.

� Expand the initial analysis and design model and added detailed design
components to your model. That includes state diagrams and source code.

� Test the design before starting to expand the implementation details.

The sample model (showing the completed procedures covered to this point in the
tutorial) is located in the Rose RealTime installation directory:
$ROSERT_HOME/Tutorials/cardgame/cardgame_step2.rtmdl.

Next, you will create and integrate the card classes used by the Player and Dealer
capsules, and used to complete the implementation of the HeadsUp poker simulation.

Before continuing with the next lesson, we recommend that you save your work.

Lesson 8: Class Modeling

In this lesson, you will create the structure and behavior for the classes identified from
the main use case. This is not an UML tutorial. This tutorial assumes that you have a
basic understanding of the UML concepts such as classes, relationships, multiplicity,
and polymorphism.
162 Tutorials - Rational Rose RealTime

In a previous lesson, you created the main classes, Card, Deck, and Hand, but you have
not yet added any details to them. You will be implementing the following class
structure in this lesson:

Importing Classes

To implement the classes, you will add detail code to the classes.

Note: If you are already familiar with class modeling (for example, if you are an
experienced Rose user), you have the option of importing the completed classes into
the model. We recommend that you read the tutorial (without having to create the
classes and enter the detail level code) because there are some added properties that
are specific to Rose RealTime for associations and classes.

To import classes (only for those familiar with class modeling):

1 On the Model View tab in the browser, right-click on the Logical View folder.

2 On the File menu, click Import.

3 Locate the directory that contains the tutorial model, and select the
card_classes.rtptl file.

4 Click OK.

Class Description

Card Represents a playing card with a suit and rank.

Suit values are:
1 - 4 (Heart, Club, Spade, Diamond)

Rank values are:
1 - 13 (Ace-King)

CardList Responsible for providing basic memory and access services for a list
of cards of any size.

Hand A hand refers to the cards a player holds in a card game. A hand is a
general concept and alone does not represent a specific game hand. It
should be specialized for each particular game.

A hand knows how to determine its game value.

Deck A deck refers to the cards the dealer holds and distributes in a card
game. The deck can be shuffled and re-ordered.

PokerHand Is a specialized hand for poker games. It knows how to evaluate the
value of a poker hand. This kind of hand can contain a maximum of
five cards.
Tutorials - Rational Rose RealTime 163

The classes in the file are merged into the model. Since you already have classes in
your model that have the same names as those being imported, the classes you
imported into your model are renamed. If you open the log window, you can see
which classes were renamed by the import operation. Delete the classes that you had
originally created, and rename the imported classes.

Note: The imported classes are contained in their own package, called CardDefinitions.

If you import the classes, see Review on page 194, and then continue with Lesson 9:
Adding Card Classes to the Capsule Behavior on page 195.

Creating a Package

A package is a collection of classes, relationships, use-case realizations, diagrams, and
other packages. A package structures the model by dividing it into smaller parts.
Packages are used primarily for model organization, and serve as a unit of
configuration management. By grouping design model elements into packages, and
showing how those groupings relate to one another, it is easier to understand the
overall structure of the model.

You will create a package to organize the card classes that will be created.

To create the package:

1 In the Model View tab in the browser, right-click on the Logical View package, and
click New > Package

Or. . .

From the toolbox, select the Package button and click on the diagram.

2 Rename the package to CardDefinitions.
164 Tutorials - Rational Rose RealTime

To move the classes to the new package:

1 In the Model View tab in the browser, left-click on the Hand class and drag the class
over top of the CardDefinitions package in the Logical View folder.

The class element moved to the new package.

2 Repeat the previous steps for the Deck and Card classes.

When finished, your Logical View folder will look like the following:

To create a class diagram for the new package:

You may want to have at least one class diagram per package to describe the contents
of the package.

1 Right-click on the CardDefinitions package, and click New > Class Diagram.

A new class diagram is created, with a default name of NewDiagram.

2 Rename the Class Diagram to Main.
Tutorials - Rational Rose RealTime 165

Creating the Initial Class Structure

Each class works together to carry out more behavior than individual classes. From
the class descriptions, you can understand the responsibilities of each class. Now, you
will specify the relationships between the classes and design how the classes will
work together.

Suggested Reading:

� The Class Diagram, Rational Rose RealTime Toolset Guide

� Creating associations, Rational Rose RealTime Toolset Guide

To populate the class diagram:

1 On the Model View tab in the browser, expand the CardDefinitions package, then
double-click Main to open the Class Diagram window.

2 Drag the Hand class from the Model View tab on to the Class Diagram window.

3 Repeat the previous step for the Deck and Card classes.

4 From the Toolbox, select the Class tool and create two new classes called CardList
and PokerHand.

When finished, your Class Diagram for the CardDefinitions package will look like the
following:
166 Tutorials - Rational Rose RealTime

Creating Relationships Between Classes

In this topic you will create associations between the card game classes. An
association is a structural relationship used to connect one element to another.
Associations can be used during analysis to initially identify general relationships
between classes. As your model evolves, you will add additional properties to
associations to make them more specific.

Aggregation relationships are a form of association relationship that indicate one class
(the contained class) is a part-of another class (the container, or aggregate class).

To create an aggregation between Card and CardList:

1 From the Class Diagram toolbox, select the Unidirectional Aggregate Association tool
.

2 Click on the CardList class, and drag the mouse to the Card class.

An aggregation relationship is created between the two classes. The Card class is
the part and the CardList the whole.

3 Right-click on the association end nearest to the CardList class, and clear
Navigable if it is selected.

The arrow appears that near the Card class means that it is not possible to navigate
from the Card class to the CardList class using the association.

4 Right-click on the association end near Card, and click End Name.
Tutorials - Rational Rose RealTime 167

A text box near the association end initialized with a default end name.

5 Rename to _contents.

By default, when an end is named, association, aggregation, and composition
relationships are represented in the code as an attribute in the client class. The code
generation does not generate attributes for ends which are not named.

6 Right-click on the association end near Card, and click Protected.

Protected means that it is visible to this class, any subclasses of this class, and any
designated friend classes.

7 Right-click on the association end near CardList, and ensure that
Aggregation > Aggregate is selected.

Only use aggregation for a composition relationship between classes, where one
class is composed of other classes, where the "parts" are incomplete outside the
context of the whole.

Next, you will create an aggregation relationship between the CardList class and the
Deck class. You want to create this relationship because the cards selected for a
Player’s hand are a subset of the cards from a deck.

To create an aggregation between CardList and Deck

1 Select the Unidirectional Aggregate Association tool .

2 Click on the Deck class, and drag the mouse to the CardList.
168 Tutorials - Rational Rose RealTime

An aggregation relationship is created where Deck is the whole-part and CardList is
the part-of.

3 Right-click on the association end closest to the CardList class, and click End Name.

4 Rename the end name to _cards.

5 Right-click on the association end near CardList, and click Protected so that it is
checked.

6 Right-click on the association end near Deck, and click Aggregation > Composite.

Composition is a form of aggregation with strong ownership and coincident
lifetime of the part with the aggregate. By implication, a composite aggregation
forms a "tree" of parts, with the root being the aggregate, and the "branches" the
parts.

7 Right-click on the association end near Deck, and clear Navigable if it is currently set.
Tutorials - Rational Rose RealTime 169

Your Class Diagram for CardDefinitions will look like the following:

To create an aggregation between CardList and Hand

Now, you will create an association between CardList and Hand.

1 Select the Unidirectional Aggregate Association tool .

2 Click on the Hand class, and drag the mouse to the CardList.

An aggregation relationship is created where Hand is the whole-part and CardList is
the part-of.

3 Right-click on the association end closest to the CardList class, and click End Name.

4 Rename the end name to _fivecards.
170 Tutorials - Rational Rose RealTime

5 Right-click on the association end near CardList, and click Protected so that it is
checked.

6 Right-click on the association end near Hand, and click Aggregation > Composite.

7 Right-click on the association end near Hand, and clear Navigable if it is currently
set.

When finished, your class diagram will look like the following:

To create a generalization between Hand and PokerHand

1 Select the Generalization tool .

2 Click on the PokerHand class, and drag the mouse to the Hand class.
Tutorials - Rational Rose RealTime 171

A generalization relationship is created between the two classes. The Hand class is the
super class and the PokerHand the subclass.

Adding Attributes to the Card Class

The card class represents a playing card, and is identified by a suit (Heart, Diamond,
Spade, Club) and rank (Ace through King).

To create the suit and rank attributes

1 From the Class Diagram for CardDefinitions, double-click the Card class.

The Class Specification for Card dialog box appears.

2 Click the Attributes tab.

3 Right-click in the Attributes list, and click Insert.

A new attribute appears in the list.

4 Rename the attribute to rank.

5 Use the TAB key to move to the Type column, press F8, then select int.

6 Tab to the Initial column, press F8, then type 0.

7 Right-click on the rank attribute, and click Open Specification.

8 Click the General tab.

9 In the Visibility area, select Public.

10 Click OK.

11 Repeat steps 3 through 10 to create a suit attribute of type int. Set the initial
value to 0.
172 Tutorials - Rational Rose RealTime

When finished, the Attributes tab on the Class Specification for Card dialog box will
look like the following:

12 Click OK.

Adding Details to the CardList Class

The responsibility of the CardList class is to manage the memory and access to a list of
cards of any size. The Hand and Deck classes require card lists of different sizes.

The following table describes the attributes and operations that you will create to
implement the behavior of the CardList class.

Note: Previously, you created a relationship between CardList and Card with the
association end name of _contents. When the C++ code generator generates the
source code, it creates an attribute in the CardList class named _contents.
Tutorials - Rational Rose RealTime 173

The following table identifies the attributes and operations that you will create.

Note: The following steps show you how to add attributes and operations using the
Specification dialogs; however, you can also use the Attribute and Operation
wizards. Right-click on an element, such as a class or capsule) and click Attribute Tool
to add or modify and attribute, or click Operation Tool to add or modify an operation.

To create the attribute _size:

1 In the Model View tab of the browser, expand Logical View and double-click CardList.

The CardList Specification dialog box appears.

2 Click the Attributes tab.

3 Right-click in the Attributes list, and click Insert.

A new attribute appears in the list.

4 Rename the attribute to _size.

5 Use the TAB key to move to the Type column, press F8, then select int.

6 Tab to the Initial column, press F8, then set the initial value to 0.

To create the CardList constructors

The CardList class will have two constructors, a default constructor and a copy
constructor. By default, Rose RealTime generates default constructors, destructors,
and assignment operators for classes (configured in the C++ tab). You may have to
write your own version of these operations because they have specialized behavior

Attribute/
Operation

Description

_size This attribute holds the number of cards that the list contains.

CardList The CardList constructors allocate memory and initialize the
list of cards.

~CardList The CardList destructor returns the memory allocated for the
cards.

size() Returns the value of the private _size attribute.

operator[] Allows access to the cards in the list.

operator= Allows assigning a card list to another.
174 Tutorials - Rational Rose RealTime

that cannot be automatically generated by the code generator. When you define these
operations, the code generator determines that you created your own, and does not
generate default versions of these operations.

Since the CardList class will contain a pointer to a list of Card objects, you will create the
copy constructor, destructor, and assignment operator operations, with no memory
leaks.

1 In the Class Diagram for CardDefinitions, double-click the CardList class.

The CardList Specification dialog box appears.

2 Click the Operations tab.

3 Right-click in the Operations list, and click Insert.

A new operation appears in the list.

4 Rename the operation to CardList.

5 Double-click on the CardList operation.

The Operation Specification dialog box appears.

6 Click the Detail tab.

7 Right-click in the parameters list, and click Insert.

A new parameter appears in the list.

8 Rename the parameter to initial_size.

9 Press TAB to advance to the Type column, press F8, then select int.

10 Press TAB to advance to the Default column, press F8, then type 0.

11 In the Code box, type the following C++ code:

if(initial_size < 0)

_size = 0;

else

{

_size = initial_size;

_contents = new Card [(unsigned)_size];

}

Tutorials - Rational Rose RealTime 175

When finished, your Detail tab will look like the following:

12 Click the C++ tab.
176 Tutorials - Rational Rose RealTime

13 Type the following into the ConstructorInitializer box:

: _contents((Card *)0)

Note: ConstructorInitializer provides the initialization parameters for this operation
if it is a constructor. It controls the initialization of parent classes and member
variables. Be sure to add the colon to start the initializer list.

14 Click OK to save the changes, and to return to the Operations tab for CardList.

Next, you will create the copy constructor with one parameter called other of type
const CardList &.

15 On the Operations tab, right-click and click Insert.

A new operation appears in the list.

16 Rename the operation to CardList.

17 Double-click on the CardList operation.

The Operation Specification dialog box appears.

18 Click the Detail tab.

19 Right-click in the parameters list, and click Insert.
Tutorials - Rational Rose RealTime 177

A new parameter appears in the list.

20 Rename the parameter to other.

21 Press TAB to advance to the Type column, press F8, then type const CardList &.

22 In the Code box, type the following C++ code to the copy constructor:

if(other._size < 0)

_size = 0;

else

{

_size = other._size;

_contents = new Card [(unsigned)_size];

for(int i = 0; i < _size; i++)

_contents[i] = other._contents[i];

}

The Detail tab will look like the following:
178 Tutorials - Rational Rose RealTime

23 Click the C++ tab.

24 Type the following into the ConstructorInitializer box for this copy constructor:

: _contents((Card *)0)

25 Click OK to save the changes, and to return to the Operations tab for CardList.

To create the destructor:

Because memory is allocated when a CardList is created, it is important to free that
memory in the destructor.

1 On the Operations tab, right-click and click Insert.

A new operation appears in the list.

2 Rename the operation to ~CardList.

3 Double-click on the ~CardList operation.

The Operation Specification dialog box appears.

4 Click the Detail tab.

The destructor takes no arguments and does not return a value.

5 In the Code box, type the following C++ code to the copy destructor:

delete [] _contents;

6 Click OK to save the changes, and to return to the Operations tab for CardList.

To create the remaining CardList operations:

1 On the Operations tab, right-click and click Insert.

A new operation appears in the list.

2 Rename the operation to size.

3 Double-click on the size operation.

The Operation Specification dialog box appears.

4 Click the General tab.

5 Click Query to make this operation const.

Selecting Query indicates that the operation is read-only and does not modify the
object's state.

6 Click the Detail tab.

7 In the Return Type box, select int.
Tutorials - Rational Rose RealTime 179

8 In the Code box, type the following C++ code:

return _size;

9 Click OK to save the changes, and return to the Operations tab for CardList.

10 On the Operations tab, right-click and click Insert.

A new operation appears in the list.

11 Rename the operation to operator[].

12 Double-click on the operator[] operation.

The Operation Specification dialog box appears.

13 Click the Detail tab.

14 In the Return Type box, type Card &.

15 Right-click in the parameters list, and click Insert.

A new parameter appears in the list.

16 Rename the parameter to index.

17 Press TAB to advance to the Type column, press F8, then type const int.

18 In the Code box, type the following C++ code:

return _contents[index];

19 Click OK to save the changes, and to return to the Operations tab for CardList.

20 On the Operations tab, right-click and click Insert.

A new operation appears in the list.

21 Rename the operation to operator=.

22 Double-click on the operator= operation.

The Operation Specification dialog box appears.

23 Click the Detail tab.

24 In the Return Type box, type CardList &.

25 Right-click in the parameters list, and click Insert.

A new parameter appears in the list.

26 Rename the parameter to rhs.

27 Press TAB to advance to the Type column, press F8, then type const CardList &.
180 Tutorials - Rational Rose RealTime

28 In the Code box, type the following C++ code:

if(this != &rhs)

{

delete [] _contents;

_size = rhs._size;

_contents = new Card [(unsigned)_size];

for(int i = 0; i < _size; ++i)

_contents[i] = rhs._contents[i];

}

return *this;

When finished, your Class Specification for CardList will look like the following:

29 Click OK.
Tutorials - Rational Rose RealTime 181

The Class Diagram for CardDefinitions looks like the following:

Note: At this point in the lesson, we recommend that you save, then build your
model. If there are compile errors, double-click on an error message on the Build Errors
tab. Rose RealTime opens the appropriate editor where the source of the error
appears. You can then resolve any errors.

Generating Code for the Association Ends

An association is a relationship among two or more classes. Code can be produced to
efficiently traverse the relationship in neither, one, or both directions.

The end of each association is called an association end or an end. You can label ends
with an identifier that describes the role that an associate class plays in the
association. An end has both model and language properties that affect the generated
code which traverses to that end. For example, marking an end navigable means that
traversal from the opposite role's class to this end's class is to be implemented.
Relative to a given direction of traversal, the ends may be designated as the client end
and the supplier end, respectively. Of course, these designations are exchanged when
considering traversal in the opposite direction.

By default, an association relationship is represented in code as an attribute. In the
simplest case, when each client class is associated with exactly one supplier class, the
default code that is generated consists of an implementation attribute with a type that
is the supplier class and the name is based on the value of the association end name
property.
182 Tutorials - Rational Rose RealTime

A number of factors affect the actual code generated for an association relationship.
The type of the data member is affected by:

� The cardinality and containment adornments of the association relationship.

� Visibility adornments.

� The containment of the association in the target class can be by value
(composition) or by reference (aggregation).

Encoding and Decoding by the Services Library

The CardList class implements the correct behavior, and is well-formed (that is, no
memory leaks). However, there is one thing missing.

When running a model, it is often useful to observe the value of attributes, and
modify them at runtime. To allow this, the Services Library must know how to encode
and decode the object. It does this by using the classes type descriptor that describes
the contents of the class to the Services Library.

Suggested Reading

� Watch window, Rational Rose RealTime Toolset Guide

� Type descriptors, Rational Rose RealTime C++ Reference

Encoding and Decoding

The Services Library can encode and decode objects that do not contain attributes that
are pointers. However, when attributes are pointers, the Services Library can not
determine how many objects are pointed to by the pointer. For classes with pointers to
encode and decode, you must include a special operation to inform the Services
Library at runtime how many objects are referenced by the pointer.

Since the CardList class contains an attribute _contents that is a pointer to a Card object
(modeled via the aggregation which was set by reference), you must define this
special operation.
Tutorials - Rational Rose RealTime 183

To create the special operation on the _contents association end:

1 Double-click the association line between the Card and CardList class to open the
Association Specification dialog for the association.

2 Click the C++ TargetRTS B tab.

Effect on generated code: The end name is generated as a member of the class at
the other end of the association. That is, if the class at End A is Class A and the class
at End B is Class B, and the name of End A is foo, then Class B will have a member
named foo of type Class A.

3 In the NumElementsFunctionBody box, type the following code:

return(source->size());

NumElementsFunctionBody provides the body of the function which calculates the
number of objects the pointer points to. If the body is empty, the pointer is assumed to
point to only one object. This function is required to make attributes which are
pointers to arrays observable in the execution monitors.

4 Click OK.

NumElementsFunctionBody code

The code entered into this property is added to an operation created by the code
generator:

int _rtg_nefb_CardList__contents(const RTTypeModifier * modifier,
const CardList * source)

{

return(source->size());

}

184 Tutorials - Rational Rose RealTime

The name of the operation is different for each attribute or association end that has the
NumElementsFunctionBody defined. However, the signature is always defined the
same way. The operation must return an int that represents the number of objects
referenced by the pointer, and has a parameter called source that points to the object
of the class that contains the attribute.

For the CardList class, you used the size() operation to return to the number of card
objects the _contents pointer references.

Adding Details to the Deck Class

The following table describes the attributes and operations that you will create to
implement the behavior of the Deck class.

To create the Deck attribute and operations

1 In the Model View tab in the browser, under Logical View, expand CardDefinitions and
double-click on Main to open the Class Diagram.

Or. . .

From the Toolbar, select the Browse Class Diagram button , then select
CardDefinitions from the list.

2 Double-click the Deck class.

3 Click the Attributes tab.

4 Right-click and click Insert.

5 Rename the attribute to _top.

6 Press TAB to advance to the Type column, press F8, then select int.

Attribute/
Operation

Description

_top Tracks the index of the next card taken from the deck.

Deck The Deck constructor creates a deck with a specified number of
cards.

shuffle Shuffles the cards in the deck (for any size of deck).

init Orders all cards in the deck by suit, then by rank.

get If the deck is not empty, it removes a card from the top of the
deck.

size Returns the initial size of the deck.
Tutorials - Rational Rose RealTime 185

7 Press TAB to advance to the Initial column, press F8, then type 0.

8 Click the Operations tab.

9 Right-click and click Insert.

10 Rename the operation to Deck.

11 Double-click the Deck operation.

12 Click the Detail tab.

13 In the Parameters box, right-click and click Insert.

14 Rename the parameter to initial_size.

15 Press TAB to advance to the Type column, press F8, then select int.

16 Click the C++ tab for Operations.

17 In the ConstructorInitializer box, type the following code:

: _cards(initial_size), _top(0)

18 Click OK.

19 Follow steps 8 through 18 and add these operations:

Operation
name

Return
Type

Parameters Parameter
type

Code

size int return _cards.size();

get int card Card & if(_top == size())
return 0;

card = _cards[_top++];

return 1;

init void int suit = 1;

for(int start = 0 ; start < size() ; start++)
{
_cards[start].rank = (start % 13) + 1;
_cards[start].suit = suit;

if(_cards[start].rank == 13)
suit++;
}

_top = 0;
186 Tutorials - Rational Rose RealTime

shuffle void // shuffle any size of card deck
int swap = 150;
int index1, index2;
Card temp;
int split = size() / 2;

init();

srand((unsigned)time(NULL));

for(int i = 0 ; i < swap ; i++)
{
// pick two random cards
index1 = rand() % split;
index2 = rand() % (split * 2);

// swap cards
temp = _cards[index1];
_cards[index1] = _cards[index2];
_cards[index2] = temp;
}

Operation
name

Return
Type

Parameters Parameter
type

Code
Tutorials - Rational Rose RealTime 187

When finished, your Class Specification for Deck dialog box will look like the following:

20 Click OK.

Adding Details to the Hand Class

The following table describes the attributes and operations that you will create to
implement the behavior of the Hand class.

Attribute/
Operation

Description

add Adds a card to the Hand at a specified offset within the hand.

get Returns the specified card (at an offset within the hand).

Hand The hand constructor creates a card hand with a specified
number of cards.

size Returns the number of cards in the hand.

value It is meant to be overridden by subclasses to return the value
of a given hand, which depends on the card game being played.
188 Tutorials - Rational Rose RealTime

To create the Hand operations

1 In the Class Diagram for CardDefinitions, double-click the Hand class.

2 Click the Operations tab.

3 Right-click and click Insert.

4 Rename the operation to add.

5 Double-click the add operation.

6 Click the Detail tab.

7 In the Return Type box, select int.

8 In the Parameters box, right-click and click Insert.

9 Rename the parameter to card.

10 Press TAB to advance to the Type column, press F8, then type const Card &.

11 In the Parameters box, right-click and click Insert.

12 Rename the parameter to index.

13 Press TAB to advance to the Type column, press F8, then select int.

14 In the Code box, type the following code:

if(index >= _fivecards.size())

return 0;

else

_fivecards[index] = card;

return 1;

15 Click the General tab.

16 In the Visibility area, select Public.

17 Click OK.

18 Follow the steps above to add the following operations to the Hand class:
Tutorials - Rational Rose RealTime 189

Note: Setting the size operation to Query makes the operation const. Setting the value
operation to Polymorphic makes the operation virtual.

19 Double-click the Hand operation and click the C++ tab.

20 Set the ConstructorInitializer property to:

: _fivecards(initial_size)

Name Return
Type

Parameter
name

Parameter
type

Code General tab
settings

get Card & index int return _fivecards[index]; Public

Hand initial_size int

size int return _fivecards.size(); Public
Query

value int return 0; Public
Polymorphic
190 Tutorials - Rational Rose RealTime

When completed the Class Specification for Hand dialog box will look like the following:

The Class Diagram for CardList looks like the following:
Tutorials - Rational Rose RealTime 191

Adding Details to the PokerHand Class

The following table describes the attributes and operations that you will create to
implement the behavior of the PokerHand class.

To create the PokerHand operations

1 In the Class Diagram for CardDefinitions, double-click the PokerHand class.

2 Click the Operations tab.

3 Right-click and click Insert.

4 Rename the operation to PokerHand.

5 Double-click the PokerHand operation.

6 Click the C++ tab.

7 Set the ConstructorInitializer property to:

: Hand(5)

8 Click OK.

9 On the Operations tab, right-click and click Insert.

10 Rename the operation to value.

Note: The Operations tab already contains an operation called value. The existing
value operation is for the Hand class. The value operation that you are adding is for
the PokerHand class.

11 Double-click the value operation.

12 Click the Detail tab.

13 In the Return Type box, select int.

Attribute/
Operation

Description

PokerHand The PokerHand constructor creates a hand that contains five
cards.

value Overrides the virtual Hand operation to calculate the value of
a five card poker hand with no wild cards.
192 Tutorials - Rational Rose RealTime

14 In the Code box, type the following code:

// Evaluates a hand and returns the following results:

// 1 - one pair

// 2 - two pairs

// 3 - three of a kind

// 4 - full house

// 6 - four of a kind

int result = 0;

for(int i = 0 ; i < size() ; i++)

{

for(int j = i + 1; j < size() ; j++)

{

if(_fivecards[i].rank == _fivecards[j].rank)

result++;

}

}

return result;

15 Click the General tab.

16 In the Options area, select Polymorphic to make this operation virtual.

17 Click OK.
Tutorials - Rational Rose RealTime 193

The Class Diagram for CardList looks like the following:

Note: We recommend that you save, then build your model. If there are compile
errors, double-click on an error message on the Build Errors tab. Rose RealTime opens
the appropriate editor where the source of the error appears. You can then resolve any
errors.

Review

The goal of Lesson 8 was to create the classes used by the Dealer and Player capsules to
implement the card simulation. The classes represent the information used in the
system, namely the data that describes the cards used in a card game.

Rose RealTime allowed you to add all implementation details to the classes from
within the toolset.

The key points to remember when class modeling are:

� Classes must be well-formed. The developer is responsible for ensuring that their
classes do not leak memory. Rose RealTime can generate default copy constructors,
assignment operators, and destructors for classes. However, these default
operations only work with simple classes, that is, classes without pointers
(dynamic memory). Most often, you will have to implement the copy constructor,
assignment operator, and destructor.
194 Tutorials - Rational Rose RealTime

� NumFunctionElementsBody must be defined for all pointer (by reference)
attributes/association ends observed at runtime. This allows the Services Library
to decode the objects references by the pointer.

� ConstructorInitializer allows you to add attributes to the initializer list of any
constructor.

� Association ends that are named are generated as attributes of the target class. If a
navigable association end is not named, the code generator does not generate an
attribute.

The sample model showing the completed procedures covered to this point in the
tutorial is located in the Rose RealTime installation directory:
$ROSERT_HOME/Tutorials/cardgame/cardgame_step3.rtmdl.

Next, you will use these classes to finish the card game simulation.

Lesson 9: Adding Card Classes to the Capsule Behavior

In the first iteration of the card game simulation, you did not use any cards. The
Dealer and Player simply exchanged signals with no data. You will extend the capsule
behavior to use the newly developed card classes. The ACard signal was originally
sent without data, but now the Player and Dealer capsules will send cards to one
another.

To add the Card class to the ACard signal:

1 Open the CommHeadsUp protocol (Logical View), and click the Signals tab.

2 In the Data Class column for the ACard out signal, press F8 and change the data
class from void to Card.

3 Click OK.

Completing the Dealer Capsule Behavior

In the scenario description of the use case defined for the card game simulation, the
Dealer posses the deck from where the cards are dealt, as well as the Dealer hand.
Tutorials - Rational Rose RealTime 195

To add the deck and hand attributes to the Dealer:

1 Open the Capsule Specification for Dealer dialog box.

2 Click the Attributes tab.

3 Insert an attribute called _hand of type Hand * that has an initial value of
(Hand *)0.

4 Insert an attribute called _deck of type Deck that has an initial value of 52.
196 Tutorials - Rational Rose RealTime

Adding the initial value to a capsule attribute initializes the attributes when the
capsule is created.

5 Click OK.

To modify the state diagram (behavior)

Previously, only empty signals were sent from the Dealer to the Player. You will
modify the Dealer’s State Diagram to use the Deck and Hand classes to send cards from
the deck, and to also maintain the Dealer hand. At the end of each game the Player
sends the value of his hand to the Dealer. The Dealer then decides who wins based on
the value of both hands.
Tutorials - Rational Rose RealTime 197

1 Open the State Diagram for the Dealer capsule.

2 Double-click the Initial transition line, and click the Actions tab.

3 In the Code window at the bottom right, type the following code to initialize a new
PokerHand and shuffle the deck:
_hand = new PokerHand;

_deck.shuffle();

4 Click OK.

Now, you will use the Code window in the lower right-hand corner to perform the
same task of adding code to transitions rather than using the Specification dialogs.

5 Select the Deal_cards transition line.

6 In the Code window, select Action from the drop-down list if it is not currently
selected.

7 In the Code window, replace the existing code with the following code that
determines who deals the cards:
// distribute hands to player and take one for myself

Card card;

for(int i = 0; i < _hand->size(); i++)

{

_deck.get(card);

 player_comm.ACard(card).send();
198 Tutorials - Rational Rose RealTime

_deck.get(card);

 _hand->add(card, i);

}

Your Code window will look like the following:

8 Click Apply.

Note: You can either use the Code window or the Specification dialogs to type code
for the remaining transitions. The tutorial lesson will continue using the
Specification dialogs.

9 Double-click the Calc_hands transition line, and click the Actions tab.

10 In the Code box, replace the existing code with the following code that determines
who won the game:

// compare the players hand to ours. If the Player has a better

// hand then the Player wins; otherwise, the Dealer wins.

if(*rtdata > _hand->value())

player_comm.Win(2).send();

else

player_comm.Lose().send();

// shuffle deck for next game

_deck.shuffle();

11 Click OK.
Tutorials - Rational Rose RealTime 199

Adding a Destructor to the Dealer Capsule

Because the Dealer capsule allocates memory from the heap using the new operation,
you must return the memory. You will add a destructor operation to the Dealer
capsule. The destructor on the capsule is called when a capsule instance is destroyed.

To add a destructor operation

1 Open the Capsule Specification for Dealer dialog, and click the Operations tab.

2 Right-click, select Insert, and rename the operation to ~Dealer. Do not specify a
return type.

3 Double-click the ~Dealer operation.

4 In the Code box on the Detail tab, type the following code:

delete _hand;

5 Click OK.

6 Click OK.

Completing the Player Capsule Behavior

The player receives cards from the Dealer that become the Player’s hand. You will
modify the Player capsule to have a hand, and to give cards to the hand as they are
received from the Dealer.

To add the Hand attribute to the player:

1 Open the Capsule Specification for Player dialog, and click the Attributes tab.

2 Insert an attribute called _hand of type Hand * that has an initial value of (Hand *)0.

Adding the initial value to a capsule attribute initializes the attributes when the
capsule is created.

3 Click OK.

To modify the state diagram (behavior)

Only empty signals were sent from the Dealer to the Player. Now, you will modify the
Player’s State Diagram to use the Hand classes to hold the cards sent from the Dealer.
At the end of each game, the Player sends the value of his hand to the Dealer.

1 Open the State diagram for the Player capsule.

2 Double-click the Initial transition line, and click the Actions tab.
200 Tutorials - Rational Rose RealTime

3 In the Code box, type the following code to initialize a new PokerHand:

_hand = new PokerHand;

4 Click OK.

5 Double-click the Received_card transition line, and click the Actions tab.

6 In the Code box, replace the existing code with the following code that receives a
card, and add the value to the hand:

_hand->add(*rtdata, _ncards++);

7 Click OK.

8 Double-click the All_cards Choice Point, and click the Condition tab.

9 In the Code box, replace the existing code with the following code that determines
whether the player received all cards from the Dealer:

return(_ncards >= _hand->size());

10 Click OK.

11 Double-click the Got_all_cards transition line, and click the Actions tab.

12 In the Code box, replace the existing code with the following code that sends the
value of the Player’s hand to the Dealer:

// Send the value of the hand to the Dealer

dealer_comm.HandValue(_hand->value()).send();

13 Click OK.

Using Attributes Versus Aggregations

You could have used aggregation between the capsules and the card classes instead of
creating attributes. The decision of using associations versus attributes depends on
your project guidelines.
Tutorials - Rational Rose RealTime 201

Adding Dependencies

Before you can compile the model, you have to explicitly add dependencies between
the capsules and classes. A dependency specifies that a class or capsule uses a target
class. Dependency relationships are converted to C++ as either forward references or
inclusions in header and implementation files.

The Add Dependencies add-in can search a set of classes and capsules looking at
attribute types, operation return values, and parameters and can automatically create
dependencies. There are some dependencies that the add-in cannot find (such as, code
dependencies).

If you compiled the model now, the compiler would report that certain types are not
defined. When you are programming, if an inclusion or forward reference is missing,
the compiler cannot resolve certain symbols defined in other files.

To add the dependencies:

1 On the Build menu, click Add Class Dependencies to create the dependencies.

2 In the Add Class Dependencies dialog box, select All classes and capsules in the model.

3 In the Which elements should be examined? box, click Attributes and Operations only.
202 Tutorials - Rational Rose RealTime

4 Click OK.

A second Add Class Dependencies dialog box appears.
Tutorials - Rational Rose RealTime 203

5 Click ALL >> to select all dependencies.

6 Click OK.

Note: The dependencies are added to the model by the Add Class Dependencies
add-in. However they are not automatically added to class diagrams. When
working with a model in source control or on a large model, you do not necessarily
want to check out or modify diagrams because you add dependencies. In this
tutorial, you will add dependencies to the diagrams to show that they have been
created.
204 Tutorials - Rational Rose RealTime

Tutorials - Rational Rose RealTime 205

7 Open the Main class diagram in the CardDefinitions package.

8 On the Query menu, click Filter Relationships.

The Relations dialog appears.

9 In the Type box, ensure that Dependency is selected.

10 Click OK.
206 Tutorials - Rational Rose RealTime

There were two dependencies created: Deck to Card, and Hand to Card.

Note: There is a dependency that was not created by the Add Class Dependency
add-in. This dependency is between the PokerHand and Card class.

11 In the Toolbox, click the Dependency tool .

12 Click the PokerHand class and drag the mouse to the Card class to create a
dependency between the PokerHand and Card class.

Your Class Diagram will look like this:
Tutorials - Rational Rose RealTime 207

13 Open the Main class diagram directly contained in the Logical View package.

14 From the Toolbox, select the Class tool , and add a PokerHand class to the
diagram.

15 From the Toolbox, select the Dependency tool , and create a dependency between
ALL of the following:

❑ the Dealer capsule and the Card class

❑ the Dealer capsule and the PokerHand class

❑ the Player capsule and the PokerHand class

Now, you can use Filter Relationships to crete the other dependencies.

16 On the Query menu, select Filter Relationships.

17 Click OK.
208 Tutorials - Rational Rose RealTime

The Add Class Dependencies add-in created the dependency between the Dealer and
the Deck using the default C++ properties. Since the _deck attribute is declared by
value in the Dealer capsule, you must specify the dependency between Dealer and
Deck as Inclusion in the header, and None in the implementation.

Ensure that your diagram contains all of the dependencies contained in the
following diagram.

Note: The objects in the following diagram were rearranged to make the diagram
easier to read.

Note: The C++ compiler needs to know the size of the Deck class within the Dealer
capsule during compilation. Forward references can only be used when attributes
are declared as pointers.

18 Double-click on the dependency between the Dealer capsule and the Deck class.

The Dependency Specification dialog box appears.

19 Click the C++ tab.
Tutorials - Rational Rose RealTime 209

20 In the KindInHeader box, select inclusion.

21 In the KindInImplementation box, select none.

22 Click OK.

Dependency Properties

A dependency is converted by the code generator as an #include or forward reference
directive in either the header or implementation files generated for the class or
capsule. By default, a dependency generates a forward reference in the header file and
an inclusion in the implementation. This kind of dependency is the most conservative
in terms of keeping compilation dependencies to a minimum.

You can change how a dependency is generated (either as an include directive or a
forward reference) from the dependency relationship properties in the C++ tab.

Adding Inclusions

For the implementation of the Deck, you used services included in the system header
files time.h and stdlib.h. You need to include those in the Component Specification so
that when the component compiles, the header files are included.
210 Tutorials - Rational Rose RealTime

Adding inclusions at the component level adds system-wide dependencies to your
model. This may not be desirable because of the compile dependencies that it causes.
An alternative to adding include directives to the component is to add them to
capsules or classes.

Note: Add include directives to the C++ tab on both capsules and classes. Enter the
#include directives in the HeaderPreface property.

To add capsule or class scoped inclusions:

1 Open the Class Specification for Deck dialog box, and click the C++ tab.

2 In the HeaderPreface box, type the following #include statements.

#include <stdlib.h>

#include <time.h>

Your Class Specification for Deck dialog box will look like the following.

3 Click OK.

We recommend that you save your model at this time.

Building and Running the Card Game

Following the steps detailed in Lesson 4: Building and Running on page 103 and in
Lesson 7: Using Traces and Watches to Debug the Design on page 144, build the
CardGameComponent, and run the component instance.
Tutorials - Rational Rose RealTime 211

Create watches on the _hand attributes to verify that cards are being dealt to both the
Player and Dealer, and trace the messages exchanged between the two capsule
instances.

Note: You can make changes to model elements while a component instance is
running, however, Rational Rose RealTime will shutdown after you make the change.

Now, try creating a trace on component instances to show messages being exchanged
between the capsule instances.

To observe messages exchanged between capsule instances:

1 On the Runtime View tab in the browser, select the Player and Dealer instances,
right-click, then click Open Trace.
212 Tutorials - Rational Rose RealTime

The Trace window displays.

A capsule trace window is a type of message trace that shows capsule instances
with messages listed in separate columns for recording event flow between
instances. The left column displays the time at which the message occurred, the
subsequent columns display the source and destination ports, the signal name,
optional data, and the capsule instances.

2 Either click the Start button, , or the Step button, , to begin.

3 In the Trace window, select a signal.

Note: If you clicked the Start button, you can click the Stop button to pause the
execution of the component instance.

4 Right-click and click Open Specification.
Tutorials - Rational Rose RealTime 213

The Sequence Event Message dialog box for the selected signal appears.

You can view any Sender and Receiver information for your selected signal.

Also, take note of the value of _money in the Watch window. Depending on whether the
Player wins or loses, the value increases or decreases for each hand.

Trace Summary

Typically when a message fails to flow through a set of capsules as expected, it is
important to see where the message flow was first in error. To debug these kinds of
errors, we can first use capsule instance traces to look at the messages originating and
terminating from the capsules in the message flow. If the messages are incorrect and
the fault origination cannot be identified, you can then place probes on specific ports
214 Tutorials - Rational Rose RealTime

in a composite capsule. Based on whether the messages are still faulty, you can
narrow down the cause of the error by further subdivision. Once the faulty capsule
has been identified, it is valuable to place traces and message breakpoints on the state
machine.

Fixing compilation errors

When building a component instance, a common error is missing dependencies.
Ensure that you create all the proper dependencies, and then check for any syntax
errors.

Review

The sample model showing the completed procedures covered to this point in the
tutorial is located in the Rational Rose RealTime installation directory:
$ROSERT_HOME/Tutorials/cardgame/cardgame_step4.rtmdl.

Lesson 10: Aggregating in a State Diagram

State diagrams are hierarchical which allows modeling of complex state machines by
abstracting detailed behavior into multiple levels. A state that does not contain a
substate is a simple state. A state that has substates is a composite state. States may be
nested to any level.

You can create capsule State Diagrams by defining simple behavior that is expanded a
little at a time. If you want to hide some of the details of the behavior, Rose RealTime
allows you to aggregate elements from the state diagram into composite states.

In this lesson, you will simplify the Player’s state diagram by hiding the receiving
cards logic into a composite state. This will make the top level state diagram easier to
understand by hiding details about the behavior of actually receiving cards. Both state
diagrams will remain identical in function. If a state diagram shows too many details
(states and choices points) at the same level, it can become difficult to understand.

Aggregating the Receiving Behavior

Your goal is to abstract the choice point into one top level state named ReceivingCards.
The Player’s top level behavior is composed of only three states.
Tutorials - Rational Rose RealTime 215

To create the composite state

1 Open the State Diagram for the Player capsule.

2 Multi-select the elements to aggregate by pressing the CTRL key and, at the same
time, select the ReceiveCards state and the All_cards choice point.

3 On the Parts menu, click Aggregate.

A composite state appears (the selected elements are removed from this state
diagram) called S1.
216 Tutorials - Rational Rose RealTime

4 Rename the state to ReceivingCards.

Note: A composite state icon appears in the bottom right-hand corner of the state
indicating that the state contains sub-states.
Tutorials - Rational Rose RealTime 217

5 Double-click on the new ReceivingCards state to view the state diagram.

Note: The elements that you chose to aggregate are part of the ReceivingCards state.
Both state diagrams remain functionally equivalent.

Review

The sample model showing the completed procedures covered in this tutorial is
located in the Rose RealTime installation directory:
$ROSERT_HOME/Tutorials/cardgame/cardgame_step2.rtmdl.

Tutorial Summary

In this tutorial, you learned how to use the main features of Rose RealTime to build a
model.

You may want to explore Rose RealTime further by:

� Expanding the card game model, and adding more players so that you can play
multiple games at the same time. You may want to add dynamic structure and
replication. The possibilities are endless.

� Customizing Rational Rose RealTime. For details, see the tutorials for the Rational
Rose RealTime Extensibility Interface in RRTEI Tutorial Overview.

� Looking at the Examples. They show common design patterns used in beginner
and intermediate level models.
218 Tutorials - Rational Rose RealTime

4Rational Rose RealTime
Extensibility Interface
Tutorials
Contents

This chapter is organized as follows:

� RRTEI Tutorial Overview on page 219
� Creating a Summit Basic Script on page 221
� Creating a Visual Basic Add-in on page 225
� Creating an Add-in Which Extends the Context Menus on page 232

RRTEI Tutorial Overview

This small set of tutorials describe the complete set of steps to follow to use the
Rational Rose RealTime Extensibility Interface (RRTEI) to extend and customize the
capabilities of the toolset. There are two ways of extending Rational Rose RealTime:

� writing Basic Scripts
� using the Automation object to access the RRTEI from within another application.

Both methods are explained in the following tutorials:

� Scripting language: Creating a Summit Basic Script on page 221.

� Automation: Creating a Visual Basic Add-in on page 225.

� Automation: Creating an Add-in Which Extends the Context Menus on page 232.

Note: The automation interface provided with Rational Rose RealTime is
implemented using Microsoft Windows technology and can only be used on
Windows platforms. The scripting language can be used on both UNIX and Windows.

These tutorials show Rational Rose RealTime users how to extend the toolset for their
individual needs.

The following tutorials assume that you have some knowledge of the RRTEI. The
RRTEI is a public interface to the Rational Rose RealTime meta model, or internal
representation of a model, which is from where you can extract and manipulate
information in a model.
219

Basic Scripts

The Rational Rose RealTime scripting language is an extension of the Summit
BasicScript. The extensions allow you to automate specific functions of Rational Rose
RealTime using the RRTEI interface. The script editor runs within the Rational Rose
RealTime user interface.

Automation

Rational Rose RealTime automation works in two ways:

� Using Rational Rose RealTime as an automation controller that allows you to call
an OLE automation object from within a Basic Script. For example, to execute
functions in an application such as Microsoft Word or Microsoft Excel.

� Using Rational Rose RealTime as an automation server that allows other
applications to call functions in the RRTEI to control Rational Rose RealTime. This
can be done from any OLE-compliant development tool, such as, Visual Basic,
Visual C++, and so on.

Note: The tutorials use Rational Rose RealTime as an automation server.

Previewing the Tutorials

The directory $ROSERT_HOME/Tutorials/rrtei contains one subdirectory for each of
the RRTEI tutorials. In each folder, you will find examples of what will be developed
in the tutorials.

To preview each add-in, do the following:

1 In each subdirectory there is a file of type .reg. Double-click on this file to update
the registry with the settings for the add-in.

Note: The .reg files included with the tutorials assume that Rational Rose
RealTime is installed in the default location, C:\Program Files\Rational\Rose
RealTime\. If you installed the tool in another location, open the .reg file with a
text editor and replace all path occurrences with the correct installation directory.

2 For the Automation examples to work, open and compile the Visual Basic project
(.vbp). This will create and register a DLL file. The automation tutorials are located
in the vbaddin and contextmenu directories.

For the BasicScript example, in the summit directory, you must first compile the
script to .ebx format. See the tutorial for instructions on how to do this.

3 Re-start Rational Rose RealTime.

4 Read each tutorial to find out what each add-in does.
220 Tutorials - Rational Rose RealTime

Creating a Summit Basic Script

The script you will create automates several steps required to create a capsule in
Rational Rose RealTime. The script allows users to create capsules which already
contain one state and an initial transition.

To create a Summit Basic script:

1 Use the Basic Script editor to write the script (you can also optionally use the
dialog editor to create dialogs).

2 Run and test the script from within the Basic Script environment.

3 Compile the script to an .ebx file.

4 Create a menu file for the script.

5 Add entries to the registry to inform Rational Rose RealTime to add the menu
items to its main menu.

Writing a Script

The script you will write will prompt the user for a capsule name and then use the
RRTEI to create a new capsule and add an initial transition and a state to the state
diagram of this newly created capsule.

1 Start Rational Rose RealTime.

2 Click Tools > New Script.

3 Type in the following lines of Basic code, or cut and paste from this document:

' This script creates one or more capsules within the

' root Logical View package. It will only create a capsule

' if there is no existing capsule with that name. To use

' this script, run it, and repeatedly enter capsule

' names into the pop up dialog. When you are finished press

' the Cancel button. Each capsule created will have one

' state called "Ready", with an Initial transition.
Tutorials - Rational Rose RealTime 221

' Create capsule details

Sub CreateCapsuleDetails(theCapsule As RoseRT.Capsule)

Dim theFsm As RoseRT.StateMachine

Dim theTopState As RoseRT.CompositeState

Dim theState As RoseRT.CompositeState

Dim theTransition As RoseRT.Transition

Set theFsm = theCapsule.StateMachine

Set theTopState = theFsm.Top

Set theState = theTopState.AddState(rsNormalState)

theState.Name = "Ready"

Set theTransition = theTopState.AddTransition("Initial",
rsTrueSourceRegion, "Ready")

End Sub

' Create a capsule within a given package

Sub CreateACapsule (thePackage As RoseRT.LogicalPackage, capsuleName
As String)

If thePackage.Capsules.FindFirst(capsuleName) = 0 Then

Dim theCapsule As RoseRT.Capsule

Set theCapsule = thePackage.AddCapsule(capsuleName)

CreateCapsuleDetails theCapsule

End If

End Sub

' Create one or more capsules within the root

' LogicalView package

Sub CreateCapsules (theModel As RoseRT.Model)

Dim thePackage As RoseRT.LogicalPackage

Set thePackage = theModel.RootLogicalPackage

capsuleName$ = askBox$("Capsule")

While capsuleName$ <> ""

CreateACapsule thePackage, capsuleName$

capsuleName$ = askBox$("Capsule")

Wend

End Sub
222 Tutorials - Rational Rose RealTime

' Main

Sub Main

CreateCapsules RoseRTApp.CurrentModel

End Sub

4 Select File > Save Script As to save the new script. Name it CreateCapsules.ebs.

Running and Testing a Script

1 Click the Start button at the top of the Basic Script edit window.

2 Enter one or more capsule names.

3 Click Cancel.

Verify that each capsule state diagram contains one state with an initial transition.

Compiling a Script

Select File > Edit Path Map. Note which directory is mapped to the $SCRIPT_PATH
symbol, and which is mapped to $ROSERT_HOME.

With the script edit window selected, select Debugger > Compile to compile the
script file. Name the compiled script CreateCapsules.ebx, and save it to the Rational
Rose RealTime $SCRIPT_PATH directory.

Creating a Menu File

You should add a menu item to the Rational Rose RealTime main menu that will
invoke your compiled script. To create a menu entry first you have to create a menu
file. This is a simple text file containing the following:

Menu Tools
{

Separator
option "Create C&apsules"
{

 RoseScript $SCRIPT_PATH/CreateCapsules.ebx
}

}

The RoseScript keyword tells Rational Rose RealTime that this item represents a
compiled Basic Script. You can add the menu item to any of the Rational Rose
RealTime main menus. The Menu <name> tag in the menu file indicates under which
main menu this new menu item should be added.

Save this file with the name CreateCapsules with the extension .mnu.
Tutorials - Rational Rose RealTime 223

Adding Entries to the Registry

Next you have to update the Rational Rose RealTime registry to inform the toolset
about the script. You can use regedit to directly edit the registry or create a .reg file, and
double-click it to add the entries to the registry. Below is a sample .reg file that you
can use as a reference:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose

RealTime\6.4\AddIns\CreateCapsules]

"Active"="Yes"

"HelpFileName"="CreateCapsules.htm"

"RoseRTAddIn"="Yes"

"Version"="1.0"

"InstallDir"="C:/Program Files/Rational/Rose

RealTime/6.4/Tutorials/rrtei/summit"

"MenuFile"="CreateCapsules.mnu"

Key Description

Active A Yes indicates that this add-in should be enabled in the Tool
menu. (It also indicates that the add-in should receive special
event notifications when Rational Rose RealTime starts and
stops).

HelpFileName The name of the HTML help file that corresponds to a specific
help topic, if necessary.

RoseRTAddIn A Yes indicates that add-in was created using the RRTEI.
Omitting this entry or an entry with a No value indicates that this
is a Rose REI add-in. To run Rose add-ins, Rational Rose
RealTime has to be started in emulation mode.

Version The version to display in the Add-Ins manager dialog.

InstallDir The directory where Rational Rose RealTime can find the menu
file.

MenuFile The name of the file with the menu commands. This file specifies
the menu entry name for the Tools menu, and the method to
invoke in the automation server.
224 Tutorials - Rational Rose RealTime

Note: When specifying a path in a registry entry, use the UNIX path separator "/", or
use double DOS path separator "\\". Not doing so will prevent the registry entry
from being created.

Running and Testing the Script from the Menu

Update the registry then restart Rational Rose RealTime. Ensure that the menu item
was correctly added to the main menu.

Ensure that your script is run when the menu item is selected.

Troubleshooting

If Rational Rose RealTime has problems loading the add-in it will display any errors
in the log. The most common errors are typos in the registry entries and menu file.
This usually causes the .ebx and .mnu files not to be found. Remember that you have
to restart Rational Rose RealTime every time you change the registry settings.

Creating a Visual Basic Add-in

By following a few well defined steps you can easily create a complete Visual Basic
add-in. These add-ins are compiled as Active X DLLs and when registered with
Rational Rose RealTime are loaded and invoked by the toolset.

To create a Rational Rose RealTime add-in with Visual Basic:

� Create an ActiveX DLL with a public interface and sub that accepts a
RoseRTApplication object reference as a parameter.

� Add a few entries in the Registry to let Rational Rose RealTime know about the
new add-in.

� Create a menu file that calls the add-in from a new menu item you can add to the
main menu.
Tutorials - Rational Rose RealTime 225

The add-in you create in this tutorial will query the model and find which classes and
capsules are selected in a diagram. The add-in will then add the names of the selected
items to list boxes that will be displayed in a dialog box.

Note: This is not a tutorial on using Microsoft Visual Basic. It is assumed that you
have some basic knowledge of the environment and language.

Creating the Active X DLL

Load Microsoft Visual Basic (version 5 or 6) and from the New Project dialog chose to
create an Active X DLL project. This will create a new project named Project1 with a
class module called Class1.

1 Rename the Project1 to rrtei_intro_tutorial.

2 Rename the Class1 to clsMain.

These names are important because they will determine the DLL name and the
class name that you will register with the add-in manager.

3 Make sure that the Instancing property on the clsMain class module is set to MultiUse.

This value specifies whether you can create instances of a public class outside a
project, and if so, how it will behave.

4 Select Project > References.

A dialog box appears listing all the references (type libraries) that are registered on
your machine.
226 Tutorials - Rational Rose RealTime

5 Select RoseRT.

This will allow you to get drop-down hints when editing code and also to easily
browse the RoseRT type library. The type library contains all the classes,
properties, and methods that you can access from the RRTEI. To browse the
contents of the RoseRT type library (this is very useful) press F2 or chose View >
Object Browser then select the RoseRT library from the drop-down list in the top
left corner of the dialog box.

Note: Rational Rose RealTime must be installed on your machine to access the
type library.

6 Create a public sub called RunRRTEITutorial on the clsMain class.

Public Sub RunRRTEITutorial(theRTApp As RoseRT.Application)

...

End Sub

This Sub takes one parameter of type RoseRT.Application. This is the operation that
will be invoked when your add-in is called from Rational Rose RealTime.

7 Then create a new form called frmSelections that has two list boxes named lstClasses
and lstCapsules. You can create something similar to:
Tutorials - Rational Rose RealTime 227

8 Add code to unload the form when the Close button is pressed:

Private Sub CloseCommand2_Click()

 Unload Me

End Sub

9 Add the code to the RunRRTEITutorial sub that will populate the list boxes in the
frmSelections form.

Public Sub RunRRTEITutorial(theRTApp As RoseRT.Application)

' create a form object

Dim mainForm As New frmSelections

' initialize local vars

Dim theModel As Model

Dim SelectedClasses As ClassCollection

Dim SelectedCapsules As CapsuleCollection

Dim aClass As Class

Dim aCapsule As Capsule

' get the list of selected capsules and classes

Set theModel = theRTApp.CurrentModel

Set SelectedClasses = theModel.GetSelectedClasses

Set SelectedCapsules = theModel.GetSelectedCapsules

' populate the lists on the frmSelections form

mainForm.lstClasses.Clear

For i = 1 To SelectedClasses.Count

Set aClass = SelectedClasses.GetAt(i)

mainForm.lstClasses.AddItem aClass.Name

Next i

mainForm.lstCapsules.Clear

For i = 1 To SelectedCapsules.Count

Set aCapsule = SelectedCapsules.GetAt(i)

mainForm.lstCapsules.AddItem aCapsule.Name

Next i
228 Tutorials - Rational Rose RealTime

' display the form

mainForm.Show vbModal

End Sub

You create an instance of the frmSelections form. Then you get a reference to the
model instance from the Application object passed to the sub by Rational Rose
RealTime when the add-in was called. By calling the GetSelectedClasses and
GetSelectedCapsules operations on the model reference, you can get the collection of
classes and capsules which are selected. Then the list boxes are populated and the
form is displayed.

10 Build the add-in DLL file by selecting File > Make rrtei_intro_tutorial.dll.

This will compile the DLL and register it in the Windows registry.

Creating the Add-in Menu File

You now want to create the menu file. You can extend the menu system with custom
items that invoke compiled Basic Scripts or add-ins. To create a menu entry first, you
have to create a menu file. This is a simple text file containing the following:

Menu Tools
{

Separator
option "Run RRTEI &Tutorial Add-in"
{

InterfaceEvent rrtei_intro_tutorial RunRRTEITutorial
}

}

The InterfaceEvent keyword tells Rational Rose RealTime that this item represents an
add-in which is specified in the registry under the AddIns key. The second parameter
indicates the name of the subkey under AddIns where the name of the automation
server (OLEServer) for the add-in can be found. The third parameter is the name of
the operation to call on the OLEServer described in the registry. You can therefore
have several entry points implemented in the same add-in DLL.

The menu file should be placed in the directory specified by the InstallDIR registry
entry, and must have the name specified by the MenuFile entry.
Tutorials - Rational Rose RealTime 229

Adding Entries to the Registry

Next you have to update the Rational Rose RealTime registry to let the toolset know
about the add-in. You can use regedit to directly edit the registry or create a .reg file,
and double-click it to add the entries to the registry. Below is a sample .reg file that
you can use as a reference:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose

RealTime\6.4\AddIns\rrtei_intro_tutorial]

"Active"="Yes"

"HelpFileName"="tutorial.htm"

"RoseRTAddIn"="Yes"

"Version"="1.0"

"InstallDir"="C:/Program Files/Rational/Rose

RealTime/6.4/Tutorials/rrtei/vbaddin"

"MenuFile"="rrtei_intro_tutorial.mnu"

"OLEServer"="rrtei_intro_tutorial.clsMain"

Key Description

Active A Yes indicates that this add-in should be enabled in the Tool
menu. (It also indicates that the add-in should receive special
event notifications when Rational Rose RealTime starts and
stops).

HelpFileName The name of the HTML help file that corresponds to a specific
help topic, if necessary.

RoseRTAddIn A Yes indicates that add-in was created using the RRTEI.
Omitting this entry or an entry with a No value indicates that this
is a Rose REI add-in. To run Rose add-ins, Rational Rose
RealTime has to be started in emulation mode.

Version The version to display in the Add-Ins manager dialog.
230 Tutorials - Rational Rose RealTime

Testing the New Add-in

After you have completed all the previous steps, run Rational Rose RealTime and then
select Add-Ins > Add-In Manager.... You should see your add-in listed with the version
number you entered into the registry.

Create a couple of classes and capsules and place them on a class diagram. Then
multi-select the elements (using the CTRL key while selecting the elements), and select
Tools > Run RRTEI Tutorial (or whatever name you gave the menu entry). A dialog box
appears with the classes and capsules list updated with the names of the selected
elements in the current diagram.

Note: You can test the add-in from within Visual Basic by setting "Start Program" VB
project’s property on the debugging tab to "RoseRT". Then press the start button in
Visual Basic and Rational Rose RealTime will be started automatically.

Common Problems

The most common problem is that your registry entries (InstallDir, OLEServer) are
incorrect. If any of these entries are wrong either the Add-In won’t register when
Rational Rose RealTime loads or the Add-In will not run when you select the menu
item. Ensure that you have the following names correct:

� Registry key name entry under the Addin subfolder: used in the .mnu file.

� DLL name (usually the same as your VB project name): used as the first
parameter in the OLEServer registry key.

� Class name in which your add-in entry sub is declared: used as the second
parameter in the OLEServer registry key.

� Procedure name which should be invoked by Rational Rose RealTime to run the
add-in: used in the .mnu file.

InstallDir The directory where Rational Rose RealTime can find the menu
file.

MenuFile The name of the file with the menu commands. This file specifies
the menu entry name for the Tools menu, and the method to
invoke in the automation server.

OLEServer The name of the registered automation server (ActiveX DLL) and
the name of the interface to associate with this add-in. This is
also called the ProgID.

Key Description
Tutorials - Rational Rose RealTime 231

The next common problem is that run-time errors occur while your add-in is
executing. Rational Rose RealTime will report the error. Try and trap and report errors
from within your add-in.

Creating an Add-in Which Extends the Context Menus

When you right-click in Rational Rose RealTime, the system displays a shortcut menu.
The commands displayed on the shortcut menu are determined by where you click
the mouse and what items are selected in the diagram or browser. You can take
advantage of this feature so that your add-in user sees your shortcut menu items
when they right-click.

Benefits

� Provides shortcut access to an add-in.

� Ability to create one shortcut menu item that works for items selected in the
browser as well as in a diagram (you do not have to create one menu item for items
selected in the browser and another menu item for items selected in the diagram).

� Can add submenus.

� Can control the state in which the context menu appears (disabled, checked ...).

Limitations

The position on the shortcut menu where your menu item displays is controlled by
Rational Rose RealTime. If you have more than one item on the shortcut menu,
however, you can control the order in which those items display by adding the items
(using the AddContextMenuItem method) in the order in which you want the menu
items displayed.

How Context Menus Work

Using context menus is fairly simple once you understand the events generated by
Rational Rose RealTime and the objects and operations available in the RRTEI that
support adding and removing context menus.
232 Tutorials - Rational Rose RealTime

The main flow of events that occurs when an add-in uses context menus in Rational
Rose RealTime are:

1 Add-in designer first decides to which model elements shortcuts should be added.
Then, it decides on unique names called the internal name for each of the menu
items. The internal name is what Rational Rose RealTime will pass to your add-in
when a menu item is selected.

2 When Rational Rose RealTime is started, it issues the OnActivate event to your
add-in. Your add-in would create all the context menus it requires using the
Addin::AddContextMenuItemForClass operation at this time.

3 When the user right-clicks on an element for which your add-in has added a
context menu, Rational Rose RealTime issues the OnEnableContextMenuItemsForClass
before the context menu is shown. In this operation, your add-in has the option of
changing the state of any of the menu items before they are shown.

4 When the user selects an add-in menu item from the context menu, Rational Rose
RealTime issues the OnSelectedContextMenuItem event to your add-in. The internal
name is passed with the OnSelectedContextMenuItem event as is used to determine
which menu item has been selected.

Menus Associated with Default or Specific Elements

The default context menu is the shortcut menu that is displayed when there are
multiple selections of different types of items. You either create a context menu for a
specific type of element or for the default.

When creating a context menu, you assign it to a model element by referring to the
element name. For example, to create a context menu for a capsule, you would pass
the "Capsule" string to the AddContextMenuForClass function.
Tutorials - Rational Rose RealTime 233

Creating the ActiveX DLL

In this tutorial, you will create a simple add-in which adds a submenu called RRTEI
Tutorial and three menu items to the Capsule context menu. The first menu item will
only be enabled if more than one capsule is selected in the model when the context
menu appears.

Note: The steps for setting-up and configuring a Visual Basic project for an add-in
were covered in the previous tutorial. For information, see Creating a Visual Basic
Add-in.

Creating a New Visual Basic Project

Open Visual Basic and create a new ActiveX DLL project. Then rename the project to
rrtei_contextmenu_tutorial and the class module to clsMain.

Add a reference to the RoseRT type library.
234 Tutorials - Rational Rose RealTime

Adding Module Variables

Open the clsMain module and add the following variables and constants to the
module file:

' global vars

Dim MyAddin_ As RoseRT.AddIn

Dim MyMenuItems_(3) As RoseRT.ContextMenuItem

' context menu internal names used to identify individual menu items

Const CMID_COMMAND1 As String = "command1"

Const CMID_COMMAND2 As String = "command2"

Const CMID_COMMAND3 As String = "command3"

The first variable MyAddin_ is used to keep a reference to this add-in for quick access
in other functions. The MyMenuItems_(3) array holds references to all the new menu
items that will be added. This again allows quick access to the menu items.

The constants represent the declaration of the internal names that will be used for the
menu items. These internal names will be used when a menu item is created and
when an item is selected. The internal name will be passed to the
OnSelectedContextMenuItem function to identify which menu item has been
pressed.

Adding the OnActivate Function

This function is called when the add-in is initialized. This is the time to create the new
context menu items. Add the OnActivate function to the clsMain module:

Sub OnActivate(pRoseApp As RoseRT.Application)

Dim aContextMenu As RoseRT.ContextMenuItem

Dim AddIns As RoseRT.AddInCollection

Set AddIns = pRoseApp.AddInManager.AddIns

' find the add-in

Set MyAddin_ = AddIns.GetFirst("rrtei_contextmenu_tutorial")

If MyAddin_ Is Nothing Then

MsgBox ("Error cannot add context menus")

Exit Sub

End If
Tutorials - Rational Rose RealTime 235

' Build the context menu

Set aContextMenu = MyAddin_.AddContextMenuItemForClass("Capsule",
"Submenu RRTEI Tutorial", "")

Set MyMenuItems_(1) =
MyAddin_.AddContextMenuItemForClass("Capsule", "Run Command 1",
CMID_COMMAND1)

Set MyMenuItems_(2) =
MyAddin_.AddContextMenuItemForClass("Capsule", "Run Command 2",
CMID_COMMAND2)

Set MyMenuItems_(3) =
MyAddin_.AddContextMenuItemForClass("Capsule", "Run Command 3",
CMID_COMMAND3)

Set aContextMenu = MyAddin_.AddContextMenuItemForClass("Capsule",
"EndSubmenu", "")

End Sub

The first part of the function simply tries to obtain a reference to the add-in object that
represents this add-in within the Rational Rose RealTime application object. The
add-in is searched by name.

Next the add-in reference is used to call the AddContextMenuForClass operation to
add the menu items. The menu item references are saved on the MyMenuItems_(3)
array for use later on. See the RRTEI reference for a description of the parameters that
are passed to the AddContextMenuForClass function.

Adding the OnEnableContextMenuItemsForClass Function

This function will be called prior to the context menu for the class is displayed. This is
the time to change the status of any of the menu items that have been added. For
example, depending on the elements that have been selected at the time the right-click
occurs. For this tutorial you will only enable the first menu item if more than one
element was selected at the time the context menu is selected.
236 Tutorials - Rational Rose RealTime

Add the following code:

Function OnEnableContextMenuItemsForClass(pRoseApp As
RoseRT.Application, items As RoseRT.ControllableElementCollection) As
Boolean

Dim cmItem As RoseRT.ContextMenuItem

Dim cmCollection As RoseRT.ContextMenuItemCollection

' activate this menu item only if two or more model elements are
selected

If items.Count > 1 Then

MyMenuItems_(1).MenuState = RoseRT.rsEnabled

OnEnableContextMenuItemsForObjects = True

Else

MyMenuItems_(1).MenuState = RoseRT.rsDisabled

OnEnableContextMenuItemsForObjects = False

End If

End Function

The OnEnableContextMenuItemsForClass function’s second parameter is a
collection of elements that are selected when the user requested the context menu.
This collection determines if the first menu item is enabled or disabled. Since we had
already saved references to the added menu items, we can change the MenuState
property of the menu item object.

Adding the OnSelectedContextMenuItem Function

This function will be called when one of the add-in menu items is selected. The
function is passed an internal name as a parameter which is used to determine which
menu item has been selected. In this tutorial you will simply display a message box
with the internal name followed by the names of the model elements that are selected
when the menu item is selected.
Tutorials - Rational Rose RealTime 237

Function OnSelectedContextMenuItemForObjects(pRoseApp As
RoseRT.Application, InternalName As String, items As
RoseRT.ControllableElementCollection) As Boolean

Dim msg As String

msg = InternalName + ": "

Dim i As Integer

Dim myElement As RoseRT.ControllableElement

For i = 1 To items.Count Step 1

Set myElement = items.GetAt(i)

msg = msg + myElement.Name + " "

Next

MsgBox (msg)

OnSelectedContextMenuItemForObjects = True

End Function

The list of selected elements is passed to the function as a ControllableElementCollection.
You would typically use this and the internal name to decide what action to take.

Building the Add-in

The last step is to build the add-in DLL file by selecting
File > Make rrtei_contextmenu_tutorial.dll. This will compile the DLL and register it in the
Windows registry.

Adding Entries to the Registry

Next you have to update the Rational Rose RealTime registry to let the toolset know
about the add-in. You can use regedit to directly edit the registry or create a .reg file,
and double-click to add the entries to the registry. Below is a sample .reg file that you
can use as a reference:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose
RealTime\6.4\AddIns\rrtei_contextmenu_tutorial]

"Active"="Yes"

"Version"="1.0"

"LanguageAddIn"="No"

"OLEServer"="rrtei_contextmenu_tutorial.clsMain"

"RoseRTAddin"="Yes"
238 Tutorials - Rational Rose RealTime

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose
RealTime\6.4\Addins\rrtei_contextmenu_tutorial\Events]

"OnActivate"="Interface"

The events subkey is used to tell Rational Rose RealTime that we want to receive the
OnActivate event when the add-in is registered in Rational Rose RealTime.

Testing the New Add-in

You don’t have to create a menu file, but you could, since the menu items for this
tutorial are all dynamically created. You could optionally add the same commands to
the main menu to allow users several ways of invoking your add-in.

Once you have completed all the previous steps, run Rational Rose RealTime and then
select Add-Ins > Add-In Manager.... You should see your add-in listed with the
version number you entered into the registry.

Next, create a couple of capsules. Multi-select the elements (using the CTRL key while
selecting the elements) in the model browser or in the diagram and right-click. You
should see the RRTEI Tutorial submenu on the context menu. Select one of the
commands that you have added. Also, test that when the context menu is selected and
only one capsule is selected, the first command is disabled. And that it is enabled
when more than one is selected.
Tutorials - Rational Rose RealTime 239

5Concept Tutorials
Contents

This chapter is organized as follows:

� Overview on page 241
� Messages and Capsule State Machines on page 242
� Capsule Hierarchical State Machines on page 243
� Capsules and Capsule Roles on page 243
� Ports, Protocols, and Protocol Roles on page 243

Overview

The Concept tutorials provide an introduction to the important Rational Rose
RealTime concepts. They expand and summarize the explanations and examples
given in the Rational Rose RealTime Modeling Language Guide.

Note: The Concept tutorials are presented as Shockwave animations that you
activate from the online help. To view the tutorials, you must install the Shockwave
plug-in. The tutorials are displayed in the Help browser with text shown on the left
side of the window, with graphics and animations on the right. You control the
tutorial by using the navigation buttons at the bottom of the left-hand frame.
241

Figure 3 Tutorial Window

Note: These tutorials cannot be viewed with the UNIX Help viewer. You can install
the UNIX Netscape plug-in from Shockwave, and load the tutorials using a Netscape
4.Xbrowser. For more information, see $ROSERT_HOME/Tutorials/unix/index.htm.

Messages and Capsule State Machines

Note: This tutorial introduces you to the basics of message passing between capsules.
If you do not see the tutorial window, install the Shockwave plug-in.These tutorials
cannot be viewed with the Unix help viewer. You can download the Unix Netscape
plug-in from Shockwave and load the tutorials using a Netscape 4.X browser. See
$ROSERT_HOME/Tutorials/unix/index.htm for more information.
242 Tutorials - Rational Rose RealTime

Capsule Hierarchical State Machines

This tutorial reviews the basic elements of state machines and explains some of the
complexities involved with hierarchical capsule state machines.

Note: If you do not see the tutorial window, install the Shockwave plug-in.These
tutorials cannot be viewed with the Unix help viewer. You can download the Unix
Netscape plug-in from Shockwave and load the tutorials using a Netscape 4.X
browser. See $ROSERT_HOME/Tutorials/unix/index.htm for more information.

Capsules and Capsule Roles

This tutorial is intended for those users who are familiar with class modeling and who
want to understand the additional concepts involved when modeling with capsules.
The tutorial outlines the differences and similarities between class and structure
diagrams.

Note: If you do not see the tutorial window, install the Shockwave plug-in.These tutorials
cannot be viewed with the Unix help viewer. You can download the Unix Netscape
plug-in from Shockwave and load the tutorials using a Netscape 4.X browser. See
$ROSERT_HOME/Tutorials/unix/index.htm for more information.

Ports, Protocols, and Protocol Roles

Note: This tutorial is intended for those users who want an introduction to protocols
and protocol roles in a Rational Rose RealTime model. If you do not see the tutorial
window, install the Shockwave plug-in.These tutorials cannot be viewed with the
Unix help viewer. You can download the Unix Netscape plug-in from Shockwave and
load the tutorials using a Netscape 4.X browser. See
$ROSERT_HOME/Tutorials/unix/index.htm for more information.
Tutorials - Rational Rose RealTime 243

Index
A
actions 127

creating
creating

actions 139
Active X DLL 226, 234
AddContextMenuForClass 236
adding

attributes 137
capsule behavior 119
code to state machine 34
destructor 200
detail code to operations 52
entries to the registry 230, 238
inclusions 210
port to a capsule 29
registry entries 224
state to a capsule 25
use case 59

add-ins
building 238
creating menu file 229
creating Visual Basic add-in 225
extending the context menus 232
testing 231, 239

aggregating state diagrams 215
aggregations 201
association ends 182
Attributes 201
attributes 137
automation

RRTEI tutorials 220

B
build

errors 43, 114, 182, 194
log 43, 114

results 43, 114
starting 112

build information 52
building

component 42
model 104
specifying platform requirements 41, 111

C
capsule 67

adding a port 29
adding a state 25
adding behavior 119
creating 24, 68
structure 74
top-level 36, 105

capsule instance trace 148
capsules

initial 59
card game

simulation scenario 50
card game requirements 50
card game tutorial

tutorials
card game 50

changing
element types 73

choice point
creating 133

class 67
behavior 67
creating 68
importing 163

Class Diagrams
delete key 66

class modeling 162
classes

defining 66
Index 245

communication protocol 93
compiling

Summit Basic script 223
component 111

building 42
component instance 44, 111

running 46
terminating 47
trace 212

component view 20
creating 35, 105

component wizard 36, 105
concept tutorials

capsule hierarchical state machines 243
capsules and capsule roles 243
messages and capsule state machines 242
overview 241
ports, protocols, and protocol roles 243

configuring
runtime windows 145
toolset 53
toolset options 55

connector 98
ConstructorInitializer 177, 195
contacting Rational technical publications xi
contacting Rational technical support xii
Context Menus

how they work 232
context menus

overview 232
ControllableElementCollection 238
crating

destructor 179
creating

a new model 22
actions 127
Active X DLL 226, 234
add-in menu file 229
capsules 24, 68
choice point 133
classes 68
component 36, 105
component instance 44, 111
component view 35, 105
components using Component wizard 36

connectors 98
deployment view 44, 111
initial capsules 59
logical view 24
menu file 223
model 53
new model 53
packages 164
ports 98
processor 111
protocol signals 94
protocols 92
relationships between classes 167
sequence diagram 80
sequence diagram interactions 82
signals for a protocol 94
somponents using Component wizard 105
state diagram 131
states 120
summit Basic script 221
timing port 130
transitions 122
triggers 124
use case

use case
creating 62

use cases 59
Visual Basic Add-in 225

D
debugging

inject messages 154
injecting 154
trace 154
using traces 144
using watches 144

decoding
Services Library 183

defining
classes 66

deleting
elements from diagram only 66
elements from model 66
246 Index

dependency
properties 210

deployment view 20
creating 44, 111

destructor 179
documentation feedback xi

E
element types 73
encoding

Services Library 183
end ports 33
errors

troubleshooting Summit Basic scripts 225
extending the context menus using add-ins 232

F
filter relationships 78
FOC 85
focus of control 85

G
generated code 48
getting started

QuickStart tutorial 17

H
HeaderPreface 211

I
importing

classes 163
Inclusions 210
initial capsules 59
initial point 27, 122
initial state 27, 122
initial transition 28, 122

inject
messages 154

injecting 154

L
logical view 20

creating 24

M
menus

context 232
messages

inject 154
injecting 154
tracing 154

models
description of QuickStart 21
sample 20

MyAddin_ 235
MyMenuItems_ 235

N
NumElementsFunctionBody 184
NumFunctionElementsBody 195

O
OnActivate 235
OnEnableContextMenuItemsForClass 236
online help 20
OnSelectedContextMenuItem 237
opening

new model 53

P
package

creating 164
RTClasses 73
Index 247

port 98
adding to capsule 29
creating 98
timing 130

ports
end port 33
protected 30, 32
unprotected 32

protected port 30
protocol

creating 92
signals 94

prototyping 103

R
Rational technical publications

contacting xi
Rational technical support

contacting xii
rebuilding a model 144
referenced classes 43, 113
registry

adding entries 224, 230, 238
relationships 78
roles

connecting 101
RRTEI tutorials

Active X DLL 226, 234
add-in menu file, creating 229
adding entries to the registry 224, 230, 238
adding module variables 235
automation 220
building add-ins 238
common add-in problems 231
compiling a Summit Basic Script 223
context menu overview 232
creating a menu file 223
creating a Summit Basic script 221
extending the context menus using

add-ins 232
overview 219
previewing 220
running a script 223

testing a script 223
testing add-ins 239
testing new add-ins 231
Visual Basic add-in 225
writing a script 221

RTClasses package 73
rtdata 129
running

component instance 46
Summit Basic script 223

runtime windows 145

S
sample model 20
saving a model 33
sequence diagram

creating 80
sequence diagrams

interactions 82
Sequence Event Message dialog 214
state diagram

aggregating 215
creating 131
drawing an initial transition 28, 122
initial point 27, 122
initial state 27, 122
initial transition 28, 122

state machine
adding detail code 34

stdlib.h 210
Summit Basic

compiling a script 223
creating a script 221
running a script 223
testing a script 223

T
testing

Summit Basic script 223
time.h 210
timing port 130
top-level capsule 36, 105
248 Index

trace
capsule instance 148
component instance 212

traces 144
tracing 154
transitions 122

drawing 28, 122
initial 28, 122

triggers 124
troubleshooting

common new add-in problems 231
Summit Basic scripts 225

tutorials
environment configuration 17, 51
navigating 15
printing 15
QuickStart 17

U
use case

adding 59
documentation 64
flow of events 63

use cases
creating 59

use-case view 20
user interface

main features 19
Rational Rose RealTime 18
views 19

V
viewing

generated code 48
views

component 20
deployment 20
logical 20
use-case 20

W
watch window 147
watches 144
writing a Summit Basic script 221
Index 249

	Tutorials
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Rational Rose RealTime Tutorials
	Overview
	Navigating the Tutorials
	Printing the Tutorial

	QuickStart Tutorial
	Getting Started
	Rational Rose RealTime User Interface
	Online Help
	Sample Model

	Model Description
	Creating a New Model
	Creating the Logical View
	Creating a Capsule
	Adding a State to a Capsule
	Drawing an Initial Transition
	Adding a Port to a Capsule
	Saving a Model
	Adding the Detail Code to a State Machine

	Creating the Component View
	Creating a Component

	Building the Component
	Creating the Deployment View
	Creating a Component Instance

	Running the Component Instance
	Tutorial Summary
	Viewing the Generated Code
	What’s Next?

	Card Game Tutorial
	What You Will Learn?
	Why a Card Game?
	Card Game Requirements

	Before You Begin
	Tutorial Lessons
	Adding Detail Code to Operations
	Build Information
	Several Ways of Doing the Same Thing

	Lesson 1: Creating a New Model and Configuring the Toolset
	Opening a New Model
	Configuring Toolset Options

	Lesson 2: Creating a Use Case and Initial Capsules
	Adding the Use Case
	Documentation Window
	Are Elements Owned by the Class Diagram?
	Meaning of the Delete key in Class Diagrams

	Defining the Classes
	Classes Versus Capsules

	Describing the Behavior of the Classes
	Creating Classes and Capsules
	RTClasses Package
	Changing Element Types
	Creating HeadsUpPoker Capsule Structure
	Creating the HeadsUpPoker Capsule Structure

	Lesson 3: Sequence Diagrams, Protocols, Ports, and Connectors
	Creating the Protocol
	Creating Ports and Connectors
	Documenting the Responsibilities

	Lesson 4: Building and Running
	Prototyping
	Building a Model
	Creating a Component

	Creating the Deployment View
	Starting the Build
	Where is the Source Code Generated?
	Running the Component Instance
	Review

	Lesson 5: Adding Behavior to the Capsules
	Opening Capsule State Diagrams
	Creating the Dealer’s Behavior
	Creating the Player’s Behavior
	Creating the State Diagram
	Adding Attributes
	Creating the Actions

	Review

	Lesson 6: Navigating and Searching
	Suggested Reading

	Lesson 7: Using Traces and Watches to Debug the Design
	Rebuilding the Model
	Setting Up the Runtime Windows
	Problems with the Player Capsule
	Unexpected Messages
	Warning Message for No Defined Trigger?

	Building the Player Capsule
	Debugging the Player Capsule
	Verifying the Fix
	Review

	Lesson 8: Class Modeling
	Importing Classes
	Creating a Package
	Creating the Initial Class Structure
	Creating Relationships Between Classes
	Adding Attributes to the Card Class
	Adding Details to the CardList Class
	Generating Code for the Association Ends
	Encoding and Decoding by the Services Library
	Encoding and Decoding
	NumElementsFunctionBody code

	Adding Details to the Deck Class
	Adding Details to the Hand Class
	Adding Details to the PokerHand Class
	Review

	Lesson 9: Adding Card Classes to the Capsule Behavior
	Completing the Dealer Capsule Behavior
	Adding a Destructor to the Dealer Capsule
	Completing the Player Capsule Behavior
	Using Attributes Versus Aggregations
	Adding Dependencies
	Dependency Properties

	Adding Inclusions
	Building and Running the Card Game
	Trace Summary
	Fixing compilation errors

	Review

	Lesson 10: Aggregating in a State Diagram
	Aggregating the Receiving Behavior
	Review

	Tutorial Summary

	Rational Rose RealTime Extensibility Interface Tutorials
	RRTEI Tutorial Overview
	Previewing the Tutorials

	Creating a Summit Basic Script
	Writing a Script
	Running and Testing a Script
	Compiling a Script
	Creating a Menu File
	Adding Entries to the Registry
	Running and Testing the Script from the Menu

	Creating a Visual Basic Add-in
	Creating the Active X DLL
	Creating the Add-in Menu File
	Adding Entries to the Registry
	Testing the New Add-in
	Common Problems

	Creating an Add-in Which Extends the Context Menus
	How Context Menus Work
	Menus Associated with Default or Specific Elements
	Creating the ActiveX DLL
	Adding Entries to the Registry
	Testing the New Add-in

	Concept Tutorials
	Overview
	Messages and Capsule State Machines
	Capsule Hierarchical State Machines
	Capsules and Capsule Roles
	Ports, Protocols, and Protocol Roles

	Index

