
Rational Software Corporation
Conversion Guide
OBJECTIME DEVELOPER TO RATIONAL ROSE® REALTIME

VERSION: 2002.05.20

PART NUMBER: 800-025120-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025120-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . iii
Audience. iii

Other Resources . iii

Contacting Rational Technical Publications . iii

Contacting Rational Technical Support . iv

1 ObjecTime Developer to Rose RealTime Conversion 1
Overview. 1

Important Features of Rational Rose RealTime . 2

Steps for Converting a Model . 2

Exporting an ObjecTime Developer Model to Linear Form 3
Before you Convert a Model . 3
Exporting a Model . 3
After Exporting a Model . 3
What version of OTD are you using? . 4
What is your patch level? . 4
Is the Model Under Source Control? . 5
Have you configured or customized the C or C++ Services Library? 6

Migrating Changes . 6

Does the Model Compile and Run Correctly? . 6
Exporting a Model from ObjecTime Developer. 6
Converting OTD Requirements . 8
OTD Model Considerations . 9

SimulationRTS and EmulationRTS . 9
Batch Mode . 10
RPL . 10
TestScope. 10

Loading Linear form into Rational Rose RealTime. 10
Before Importing. 11
Loading a Model in Rational Rose RealTime: . 11
After you Import . 11

Have you properly installed Rational Rose RealTime? 11
Are your Services Libraries available? . 11
Is your Source Control tool supported? . 11
Contents i

Do you use the External Layer Service (ELS)? . 12
Can you build sample models in Rose RealTime? . 12
Loading the Linear form into Rational Rose RealTime. 12
Reviewing the Log . 13

Non-Exiting Self Transitions .14
‘X’ Upgraded .14
Classes in Multiple Packages .14
Updating ‘X’ Model Properties .14

Understanding the Conversion Mappings. 15
Package Inheritance .16

Adjusting Graphical Layout . 17
Verifying OTD Requirements . 17

Temporarily Adding the Model to Source Control (optional) 17
Configuring Your Source Control Tool. 17
Splitting a Model into Smaller Units . 18

Building and Running a Model in Rational Rose RealTime19
Configuring Your Environment .19
Building a Model .19

Organizing for Team Development and Source Control.20
New Projects .20
Existing Projects .20

If the Model was Temporarily Added to Source Control 20
Changing the Granularity and Submitting Elements .20
Uncontrol the Model and Save into One .rtmdl File .21

Preserving Source Control History . 22

Configuring the Build Process .22

Changes to Code that Uses Default Arguments .22

Modifying the Comment Block Size .23

Appendix A: Port Message Conversions . 25
Port Message Conversions .25

Appendix B: Code Segments that are Not Converted 29
Code Segments .29

Index . 31
ii Contents

Preface
Contents

This manual describes how to convert an existing model from ObjecTime Developer
(C++ or C) version 5.2 or 5.2.1 to the latest Rational Rose RealTime.

This chapter is organized as follows:

� Audience on page iii
� Other Resources on page iii
� Contacting Rational Technical Publications on page iii
� Contacting Rational Technical Support on page iv

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.

Other Resources

� Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals, click Rose RealTime Online Documentation from the Start menu.

� For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our Technical Documentation Department at techpubs@rational.com.
iii

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name
� Your computer’s make and model
� Your computer’s operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-202
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
iv Preface

1ObjecTime Developer to
Rose RealTime
Conversion
Contents

This chapter is organized as follows:

� Overview on page 1
� Important Features of Rational Rose RealTime on page 2
� Steps for Converting a Model on page 2
� Exporting an ObjecTime Developer Model to Linear Form on page 3
� Loading Linear form into Rational Rose RealTime on page 10
� Temporarily Adding the Model to Source Control (optional) on page 17
� Building and Running a Model in Rational Rose RealTime on page 19
� Organizing for Team Development and Source Control on page 20
� Configuring the Build Process on page 22
� Modifying the Comment Block Size on page 23

Overview

This document describes how to convert an existing model from ObjecTime
Developer (C++ or C) version 5.2 or 5.2.1 to the latest Rational Rose RealTime. You
must have the following documents before proceeding with your model conversion:

� Rational Rose RealTime Toolset Guide
� C++ or C Language Add-in, Getting Started and Language Guides
� Team Development Guide

These documents contain information and the steps required to complete the model
conversion. Models converted from ObjecTime Developer (OTD) into Rational Rose
RealTime format cannot be converted back into OTD. Only one-way conversion is
supported.
1

Important Features of Rational Rose RealTime

Upgrading your model from OTD allows you to access the following new features
available in Rational Rose RealTime:

� Class modeling
� Interaction modeling (collaborations)
� Component and deployment modeling
� Building of libraries
� Increased type safety of message sends
� Increased support for integration of external libraries and 3rd party code
� UML support

This is a brief summary of the features available in Rational Rose RealTime, please
refer to the "What’s New" topic in the Installation Guide - Rational Rose RealTime for a
complete list.

Steps for Converting a Model

To convert from OTD to Rational Rose RealTime:

1 Exporting an ObjecTime Developer Model to Linear Form on page 3

2 Loading Linear form into Rational Rose RealTime on page 10

3 Temporarily Adding the Model to Source Control (optional) on page 17

4 Building and Running a Model in Rational Rose RealTime on page 19

5 Organizing for Team Development and Source Control on page 20

6 Configuring the Build Process on page 22

Each step is explained in detail with easy to follow instructions. The conversion will
be easier if you take your time and learn the basics of Rational Rose RealTime before
starting.
2 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

See the Rational Rose RealTime on-line help for a list of the available learning
material. We recommend that you complete the following:

� Run through the Quickstart and Card Game tutorials. This is an excellent way to
learn Rose RealTime

� Load, compile, and run some of the example models included with Rational Rose
RealTime. You can find these in $ROSERT_HOME/Examples/Models.

Note: $ROSERT_HOME is used throughout this document. It represents the directory
in which Rose RealTime is installed.

You can also contact your sales representative if you are interested in attending a
Rational Rose RealTime course.

Exporting an ObjecTime Developer Model to Linear Form

Rational Rose RealTime only imports linear form files from OTD 5.2 and 5.2.1. Other
types of files, such as binary .update or .context files cannot be imported directly into
Rational Rose RealTime.

Before you Convert a Model

Before you convert an ObjecTime Developer model to Rational Rose RealTime, you
must consider the following:

� What version of OTD are you using? on page 4
� What is your patch level? on page 4
� Is the Model Under Source Control? on page 5
� Have you configured or customized the C or C++ Services Library? on page 6
� Does the Model Compile and Run Correctly? on page 6

Exporting a Model
� See Exporting a Model from ObjecTime Developer on page 6

After Exporting a Model

After exporting a model to Rational Rose RealTime, you may want to consider the
following:

� Loading Linear form into Rational Rose RealTime on page 10
� OTD Model Considerations on page 9
Exporting an ObjecTime Developer Model to Linear Form 3

What version of OTD are you using?

If you are using a pre-5.2 version of OTD, you will first need to open your model in
OTD 5.2 or 5.2.1 and save it. For detailed information on the differences between OTD
5.2/5.2.1, and earlier versions of OTD, please see the Model Upgrade/Conversion
section and the Changes in Developer 5.2.1/5.2 section of the OTD 5.2/5.2.1 Getting
Started Guide.

What is your patch level?

Before you can export your model to a Rational Rose RealTime compatible format,
your OTD session file (the .otd file) must have the correct patch level. We recommend
that all generic patches be applied to your 5.2/5.2.1 session, then apply the
RRT04.RRTExport.patch to your OTD 5.2/5.2.1 session to enable exporting a model
for conversion.

Note: The export patch is meant for exporting a model only. It should not be used for
continued development work in OTD. You should apply the export patch without
saving your session, then once the model is exported, abandon your session and
restart.

If you want to reuse OTD requirements, see Converting OTD Requirements on page 8.

The patches can be found on the Rational Customer Support web site at
www.rational.com/support. You will require your account and password to access the
customer-only portion of the site.

To install a patch follow these instructions:

1 From the main OTD menu, click Browsers > Open Workspace Browser if a workspace
browser is not currently open.

2 Determine the directory path of location of the patch files, for example:
%OBJECTIME_HOME%\specials on NT or $OBJECTIME_HOME/specials
on Unix.

3 From the main OTD menu, select Browsers > Open Directory Browser.

4 Type the name of the directory path.

A directory browser displays with each patch file identified with a + next to it.
4 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

Figure 1 Example patch file shown in a directory browser

5 Drag each patch file from the Directory Browser window to your Workspace Browser
window.

To confirm that the patch is installed, do the following:

6 From the main OTD menu, click Help > About ObjecTime.

The Patch Level should display RRT04 and/or rf52 or rf521, and may show other
pre-existing patches as well.

Is the Model Under Source Control?

For a major part of the conversion, you will be working with a model not under
source control. Rational Rose RealTime can only load a linear form file that must
contain the entire OTD model.

Therefore, to start the conversion of an OTD model stored in source control, you will
have to export a non-version controlled baseline of your model as a linear form file.

After the model is loaded, built, run, and tested in Rational Rose RealTime, you can
then proceed to place the new Rational Rose RealTime model under source control. It
is highly recommended that you do not convert a model that is in the middle of a
development cycle. Instead, wait until you have a stable baseline that you can
convert, convert to Rational Rose RealTime, learn Rational Rose RealTime, then
continue development of the converted model.

As a result of many underlying file storage differences between OTD and Rational
Rose RealTime the OTD files that were in source control will differ from those added
to source control for the Rose RealTime model. Thus, file history will be lost.

Note: Some tools, like ClearCase, allow you to create hyperlinks between files. This
enables you to retain traceability between source controlled files for the OTD model
and those in the new converted Rational Rose RealTime model.

For details regarding source control, see Organizing for Team Development and Source
Control on page 20.
Exporting an ObjecTime Developer Model to Linear Form 5

Customized Library Interface Scripts

If you have customized your library interface scripts, consider why the modifications
were made and review the current scripts to determine if additional customization is
required. The library scripts changes are minimal, such that merging changes should
not be too difficult.

Have you configured or customized the C or C++ Services Library?

Any customizations or configurations to the Services Library will have to be migrated
to the current release of the Rose RealTime Services Library.

Migrating Changes

After changes have been identified, migrate them into the Rose RealTime Services
Library. The architecture and file structure of the Services Library is the same as 5.2.1.

For minor problems migrating customizations or configurations, contact Rational
Customer Support. For all other problems migrating your custom changes contact
your sales representative to arrange for consulting services to assist in the migration.

Does the Model Compile and Run Correctly?

Perform a final test of the OTD model by compiling and running the model. Ideally,
you would run full set of regression tests to confirm that everything works before
migrating it to Rational Rose RealTime.

To minimize potential problems, the compiler and linker referenced in your OTD
Configuration should be the same one you use in Rational Rose RealTime. It will reduce
the number of unknowns when compiling the model in Rational Rose RealTime.

Note: Rational Rose RealTime does not support Simulation mode. Ensure that your
model compiles and runs in the TargetRTS mode.

Exporting a Model from ObjecTime Developer

To export a model to the Rational Rose RealTime compatible linear form format:

1 Select the model in the Workspace browser.

2 Open a Model browser on the model.

3 From the main model menu, select Update > Export.
6 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

4 Select Rose RealTime Linear Form as the File Format.

If the Rose RealTime Linear Form option is not available it is because you have not
applied the correct patch lineup to ObjecTime Developer. See section What is your
patch level? on page 4 for help on applying the correct patch lineup.

5 Accept the default file name, or rename it. The file name must have the .lf file
extension.

6 Select OK.

The RoseRT Export dialog displays.

This dialog contains a list of useful export functions. Select the desired functions
and click OK. A description of each function is listed below.

Figure 2 Exporting

Block RPL

When this option is selected all RPL content will not be exported into the linear
form. For example, RPL actor classes and RPL methods on Data classes will be
blocked. Since RPL does not exist in RoseRT, it does not make sense to export RPL
content into the linear form for the purposes of migrating. If you RPL content is
required after the migration, you must convert it to C or C++ prior to migrating. To
help identify the blocked code, a report is updated in the specified Log file.
Exporting an ObjecTime Developer Model to Linear Form 7

Convert Messages to RoseRT Format

When this option is selected port messages in the model will be converted to
RoseRT format. For example, port.send(sig) is converted to port.sig().send(). This
removes the need to manually convert messages. This will only be seen in the
linear form after an export operation; it does not change the code in the OTD
model.

See Appendix A for a list of port message conversions.

Comment Original Code

This option is only available when the Convert Messages To RoseRT Format option is
selected. When selected, if a port message is converted, the toolset leaves the
original OTD code in the linear form as a comment.

Convert Messages in Commented Code

This option is only available when the Convert Messages To RoseRT Format option is
selected. When selected, port messages inside comments are also converted to
RoseRT format.

Log Unconverted Code

When this option is selected, a report is maintained in the specified log file. It
contains information about code that the toolset identifies as incorrect for RoseRT,
and is unable to automatically convert. You will have to manually correct the code
after the model is imported into RoseRT. The log file does not contain this code.
The log contains a list of items that the toolset cannot automatically convert, as
well as the number of times each code segment appears in the model.

See Appendix B for a list of code segments that cannot be converted automatically.

The linear form file and the conversion log file will be written to the directory
containing your .otd session file.

Converting OTD Requirements

Requirements captured in OTD models can be converted through a
requirements-specific patch for 5.2 and 5.2.1. An HTML file will be generated that will
contain the actual requirements from the OTD models. Links to these requirements
will be converted when the actual model is imported into Rational Rose RealTime.
The HTML requirements file is stored outside of the Rational Rose RealTime toolset.
Place the file in your configuration management library for storage purposes.
8 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

To migrate existing requirements from OTD to Rational Rose RealTime:

1 Apply the rf52.reqFwdToRoseRT.patch or rf521.reqFwdToRoseRT.patch to OTD.

Note: The export requirements patch should not be used for continued
development work in OTD. You should apply the export patch without saving
your session, then after the model is exported, abandon your session and restart.

2 Open a browser on your requirements update.

3 Select Output from the Requirements menu.

4 Select the Export to File radio button.

5 Name the output file the same name as your requirements update, with .html as
the file extension. For example, if your requirements update is called
MyRequirements, then the output file must be named MyRequirements.html.

6 Click OK.

OTD produces an HTML file in the same directory that contains your .otd session
file. This file will contain an HTML-formatted version of all fields of all individual
requirements within that requirements update. All requirements are tagged with
their name, which will enable linking to them from Rational Rose RealTime.

OTD Model Considerations

When converting a model, you must consider the following:

� SimulationRTS and EmulationRTS on page 9
� Batch Mode on page 10
� RPL on page 10
� TestScope on page 10

SimulationRTS and EmulationRTS

If you only run your model using the SimulationRTS or EmulationRTS, create a TargetRTS
configuration in OTD for your intended target, and ensure that your model correctly
compiles and runs in that environment. Rational Rose RealTime only supports the
TargetRTS.

Note: Building SimulationRTS or EmulationRTS models in Rational Rose RealTime is not
supported. Trying to do so will result in build errors reported to the build Output
window.
Exporting an ObjecTime Developer Model to Linear Form 9

Batch Mode

OTD batch mode is not supported in Rational Rose RealTime. You will need to
manually convert the functionality that exists in any OTD batch scripts that you
currently have. The Rational Rose RealTime Extensibility Interface (RRTEI) includes a
powerful scripting capability that can be used to perform batch operations.

To learn how to convert build processes to Rational Rose RealTime see Configuring the
Build Process on page 22.

RPL

RPL is not supported in Rational Rose RealTime. If you use RPL as the programming
language for any of your actors or data classes, you will need to convert these to C++.
For help on converting RPL actors to C++ or C, please see the Converting RPL actor
classes to C++ section in the OTD C++ Guide.

You will know if there are any RPL actors in your model when you compile in OTD
for the TargetRTS and you receive the following compile-time error message:

Error: Attempt to compile an RPL class

If you do import a model containing RPL actors into Rational Rose RealTime, the
capsule will be created, will have a Language property of RPL, and all code will be
retained as the same ASCII text that it originally was. If you try to compile this in
Rational Rose RealTime, you will get a variety of arbitrary error messages back from
the C++/C compiler.

TestScope

Models that have packages which were created using TestScope can be exported and
loaded into Rational Rose RealTime. The test framework packages will be converted.
Rational Rose RealTime has equivalent TestScope functionality called Rational
Quality Architect that can run and generate test frameworks.

Loading Linear form into Rational Rose RealTime

Rational Rose RealTime only imports linear form files (.lf) from OTD 5.2/5.2.1. Other
types of files, such as binary .update or .context files cannot be imported directly into
Rational Rose RealTime.
10 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

Before Importing
� Have you properly installed Rational Rose RealTime? on page 11

� Can you build sample models in Rose RealTime? on page 12

Loading a Model in Rational Rose RealTime:
� Loading the Linear form into Rational Rose RealTime on page 12

� Understanding the Conversion Mappings on page 15

After you Import
� Adjusting Graphical Layout on page 17

� Verifying OTD Requirements on page 17

Have you properly installed Rational Rose RealTime?

Confirm that you correctly installed Rational Rose RealTime. Try running Rational
Rose RealTime to familiarize yourself with the new interface. If you haven’t already,
this would also be a good time to review the Installation Guide - Rational Rose RealTime
for a quick review of Rational Rose RealTime.

Are your Services Libraries available?

Refer to the Installation Guide - Rational Rose RealTime to see if the Services Libraries
you were using with OTD are shipped with Rational Rose RealTime.

If your Services Libraries are not included with Rational Rose RealTime, contact your
sales representative.

Is your Source Control tool supported?

Refer to the Installation Guide - Rational Rose RealTime to see if the Source Control tool
you were using with OTD is supported with Rational Rose RealTime.

If your Source Control tool is not included with Rational Rose RealTime, contact your
sales representative.
Loading Linear form into Rational Rose RealTime 11

Do you use the External Layer Service (ELS)?

The External Layer Service (ELS) is not supported in Rational Rose RealTime. If you
have been using the ELS to communicate between your OTD model and non-OTD
components such as legacy C/C++ applications or Java applets/applications, you
will need to create your own socket interface or use Connexis.

For information on creating your own socket interface, please refer to the Socket
Interface Example shipped with Rose RealTime.

For information on Connexis, please see http://www.rational.com/products/

Can you build sample models in Rose RealTime?

It is very important that you confirm that your environments are properly configured
before building your imported OTD model.

We strongly recommend that you load, run, and test one or more test models in your
intended target environments (host and target boards) before importing your OTD
model. This is to confirm that your compiler, linker, and target boards are correctly
configured with Rational Rose RealTime.

At a minimum, you must do the following before importing your model:

� Do the Quickstart and Card Game tutorials. This is an excellent way of learning
Rose RealTime.

� Load, compile, and run some of the example models included with Rational Rose
RealTime. You can find these in $ROSERT_HOME/Examples/Models.

Loading the Linear form into Rational Rose RealTime

To open the .lf version of your model into Rational Rose RealTime:

1 Set your default language in Rational Rose RealTime by open the Options dialog
and clicking Tools > Options, then click the Language/Environment tab.

2 If your OTD model is in C++, then set Default Language to C++ and Default
Environment to C++ TargetRTS. If your OTD model is in C, then set the Default
Language to C and the Default Environment to C TargetRTS.

3 From the main menu, click File > Open.

4 In the directory browser, change the file type to Linear Form (*.lf), and navigate to the
directory that contains your .lf file.
12 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

5 Select the file to load.

6 Click Open.

The model is converted to Rational Rose RealTime. During the conversion process,
warnings appear in the Output window. The warnings help you identify potential
problems, and may also include important notes about the conversion of model
elements.

Note: Review all warnings because some warnings may require action.

Figure 3 Example log output

Reviewing the Log

After the conversion completes, review the output log and browse the model before
attempting to build your model. Warnings inform you of conversion details that you
should review, such as the toolset making a change that may impact the behavior of
the model.

The following is a list of warnings and messages that may occur:

� Non-Exiting Self Transitions on page 14
� ‘X’ Upgraded on page 14
� Classes in Multiple Packages on page 14
� Updating ‘X’ Model Properties on page 14
Loading Linear form into Rational Rose RealTime 13

Non-Exiting Self Transitions

If you open a .lf file that has OTD non-exiting self transitions, you will get the
following type of warning message which you can view in the log:

16:46:30| Warning: ObjecTime Developer non-exiting transition
"MyTrans" was made internal to state "Ready" in class "Mine"; semantic
changes could be introduced.

In OTD, non-exiting transitions and internal self-transitions have the identical
semantics, however at run-time if both transitions have the same trigger, the internal
self-transition would always be triggered instead of the external non-exiting. Since
both kinds of transitions have the same semantics, in Rose RealTime, non-exiting
transition have been removed and replaced by internal to the state self transitions. If
the transitions are now located at the same state hierarchy level, and if two
self-transitions (internal to a state) have the same trigger, at design time you cannot
determine which transition will be triggered. You should review the transitions that
have been made internal to a state, and ensure that there are no semantic changes to
your model.

Note: Having two transitions originating from the same state with the same triggers
should be avoided since the transition triggering order is not known at design time.

‘X’ Upgraded

This is an information message only, and is expected when loading a previous version
model into the toolset. The message indicates that a certain model element has been
upgraded with the new C++ or C language model properties.

Classes in Multiple Packages

In OTD a model entity can belong to more than one package, whereas in Rational
Rose RealTime, it cannot. When Rational Rose RealTime imports such a model, it will
drop all but one of the package references from a capsule and log a message for each.

You should decide which is the primary package for each element which used to
belong to multiple packages. Used the log to review each and move if necessary.

Updating ‘X’ Model Properties

This is a typical Log message. It indicates that add-in property sets are being loaded.
You should see C++ and possibly C property sets being updated.
14 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

Understanding the Conversion Mappings

The Rose RealTime user interface and modeling language differs from the one you are
used to in OTD. When browsing your model, you will notice that objects have moved
and that there are new modeling elements, for example Capsules, Components,
Collaborations, Sequence Diagrams, Classes, Processors, Class Utilities, and so on.

Table 1 lists the conversion mappings which you can use to understand where the
main objects from the OTD model are in the converted Rational Rose RealTime model.
The list is not exhaustive, compliment by also reviewing the converted model to
understand how the model is organized.

Table 1 Conversion mappings

ObjecTime
Developer

Rose RealTime

Configurations Each configuration becomes a component. Only the currently
active language, compiler, and target will be converted. All of
the component build settings are stored in properties.
If your OTD model contains multiple valid languages,
compilers, and targets, you will have to create separate
configurations in OTD before converting the model.

Logical threads In C++ logical threads are added to each component. In C the
logical threads are assigned to the top level capsule.

Physical threads in
update

Physical thread definitions are added to each component.

Overrides File Added to the component <language> Target RTS property
called “CompilationMakeInsert”.

SequenceOf Becomes a class subclassed from SequenceOf. The class
contains new operations that implement the SequenceOf
behavior which in OTD was generated by the code generator.
The default size becomes a parameter of the constructor.

Sequence Becomes a class subclassed from Sequence. All fields become
attributes and methods become operations.

Constants A class utility is created for each constant. The class utility is
a place holder and does not actually get generated as a class.
The class utility contains an attribute of the same name
which is defined as a constant.
Loading Linear form into Rational Rose RealTime 15

Package Inheritance

Rose RealTime supports the same package inheritance as ObjecTime Developer. OTD
and Rational Rose RealTime have the same basic capabilities for package inheritance
and package containment, however the UI capabilities are different. The following
describes how the Linear Form Import handles those.

� Logical View:

ObjecTime Developer's package inheritance hierarchy remains the same when
imported into Rose RealTime.

� Component View:

The above also applies to Compilation Unit Packages. In addition, for each
Compilation Unit Package that has at least one configuration attached to it, a
component of type "C/C++ Library" will be created. The name of that component
will be the name of the package concatenated to the name of the top level
configuration (of type "C/C++ Executable"). This is necessary as a Compilation
Unit Package could have multiple configurations attached to different top level
configurations. A final step is required to create the missing dependencies between
the resulting components. These are created by means of an algorithm that
analyses the class usage of each components.

External Data
Classes

Each external data class is converted to a class. The
GenerateClass property is unchecked which means that a
class is not actually generated, instead the definition will
only be a placeholder within the model for something
externally defined. The compiler will still expect to see the
definition at compile time in a header file that you include
and at link time in a library or object file.

Last compiled actor Becomes the top level capsule of each component.

Compilation
environments

A component is created for each compilation environment
configuration.

Debugging tools
settings

Not converted - now available on processors and is
independent of the build settings.

Daemons and
probes

These are ignored during the conversion process, and are
therefore not converted. You should make a note of them in
your OTD model and recreate in your Rational Rose RealTime
model once it is built and running.

ObjecTime
Developer

Rose RealTime
16 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

Adjusting Graphical Layout

Examine each diagram in your model. In a few cases you may need to adjust the size
of capsule roles, states and other graphic entities. Some of the general options
available for an Rational Rose RealTime model will have an impact on the graphical
layout, for example font, font size, whether or not capsules display the capsule class
name as well as the capsule role name, and whether or not the protocol name is
shown on ports.

Use Tools > Options > Diagram > UML options to toggle the display of classifier names on
roles, and the display of protocol names on ports.

Verifying OTD Requirements

If your OTD model contained any references to requirements that were located in a
requirements update, verify that you can link to them from your Rational Rose
RealTime model. If you followed the steps to output your requirements update from
OTD, there should be an HTML file containing these. Any capsule, protocol or class
that contained a reference to a requirement in OTD, should have a URL link to the
HTML file. You can verify this either in the Rational Rose RealTime browser, or by
looking at the Files tab for each such capsule, protocol and class. If you double-click
on this link, you should see the corresponding requirement loaded into your default
web browser.

There should be a $REQUIREMENTS symbol in each such link.

Temporarily Adding the Model to Source Control (optional)

For large models it may take some time before your model is actually built, run, and
tested. For this reason your project leader may decide to temporarily place the model
under source control until the Rose RealTime conversion is completed.

Configuring Your Source Control Tool

Read the section in the Guide to Team Development - Rational Rose RealTime which
details step by step how to setup a supported source control system to work with
Rose RealTime. Because this will be temporary, you probably only have to setup for
single stream development.
Temporarily Adding the Model to Source Control (optional) 17

You should test that your source control tool is properly configured by following the
steps in the Guide to Team Development - Rational Rose RealTime to add a sample model
to source control. This will confirm that the tools are configured properly.

Splitting a Model into Smaller Units

Before adding a model to source control, split the model into smaller controlled units.
For large models, we recommend that you control units down to the class level. This
will greatly improve the time required to save and generate the model.

To control the top level packages into separate units:

1 Select Model in the browser, right-click (this will show the context menu) and select
File>Control Child Units. Click Yes for the "control child units recursively" question.

2 Save the model.

You are now prompted for the filenames of the controlled units.

3 Select Yes to All.

Note: A model or controlled unit must always be saved before it can be submitted
to source control.

Next, you will submit the files to source control.

4 Add the model to source control using Tools > Source Control > Submit all Changes.

Once you can build and run the converted model we highly recommend that you
uncontrol units and save the model in another file. You can keep the converted model
in source control, but use only as a history of the conversion itself. Any model
architecture changes and organization should be made while the model is in one file.
This is explained more in the Guide to Team Development - Rational Rose RealTime and in
Organizing for Team Development and Source Control

If you have any problems at this point refer to the for Guide to Team Development -
Rational Rose RealTime troubleshooting information.
18 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

Building and Running a Model in Rational Rose RealTime

Once the model has been loaded into Rational Rose RealTime and you are familiar
with the location of all the parts of your model, it is time to build your model.

Configuring Your Environment

Ensure that your compilation and target environments are setup correctly. You could
build and run test models or some of the example models to verify the steps. In
addition, all supporting libraries, include files, and so on that were available to your
OTD model must be available and visible to the components in the Rose RealTime
model. In some cases you may have to change paths, or environment variables to
ensure that the components will find the supporting files.

The dependencies list for attributes in ObjecTime Developer are not converted.
Dependencies must be recreated using the Build > Add Class Dependencies... command.
This runs a script that checks the model elements for dependencies and adds them. It
does not, however, find references that exist only in detailed code.

Building a Model

On account of several substantial enhancements to the language add-ins (these
provide support for language support with Rose RealTime) you will have to make
some changes to your model in order to build.

Note: For large models it is recommended that before building you should control
units to the class level. This will greatly improve save and generation times. The Guide
to Team Development - Rational Rose RealTime explains how to control units.

See the Installation Guide - Rational Rose RealTime for information on how to update
your model to use with the current release of the language add-in.

For C++ models:

Follow the steps detailed in the Installation Guide - Rational Rose RealTime to get your
converted model built and running.

For C models:

Follow the steps detailed in the Installation Guide - Rational Rose RealTime to get your
converted model built and running.

It is highly recommended that you run the same tests that you did in OTD prior to the
conversion. This will ensure that the conversion to OTD is complete and correct.
Building and Running a Model in Rational Rose RealTime 19

Organizing for Team Development and Source Control

When the model builds and runs in Rose RealTime and the project leader determines
that the model is ready for main-stream development to begin or continue, then you
should start concerning yourself with organizing the model for team development
and adding the model to source control.

To complete this step of the conversion we have provided the The Guide to Team
Development - Rational Rose RealTime which provides detailed discussion regarding
organization of models and all the detailed steps required to configure and use
Rational Rose RealTime with the supported source control systems.

New Projects

For newer projects, your architecture may not be fixed in stone yet. In this case you
should think about how best to organize your model for team development. For
example, in Rose RealTime you can split models into subsystems and have different
teams work on different models.

Existing Projects

For existing projects where the architecture is stable, you may want to add the model,
as is, to source control.

If the Model was Temporarily Added to Source Control

When the model builds and runs, the conversion is successful and the project leader
determines that the model is ready for main-stream development then you have two
options:

Changing the Granularity and Submitting Elements

If you want to keep developing the model in the current source control area and with
the current model organization you can simply adjust the granularity of the controlled
units and submit to source control. See the Guide to Team Development - Rational Rose
RealTime for more details on selecting the correct granularity level.
20 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

To control the model to the finest granularity (class level), then submit to source
control:

1 For each package that was initially controlled in Temporarily Adding the Model to
Source Control (optional) on page 17, open the specification dialog and on the Unit
Information tab and set Control new child units.

2 Click OK to accept the change.

3 In the Model View tab in the browser, multi-select all Logical View and Component
packages.

4 From the context menu, click File > Control Child Units. Apply recursively.

5 Submit all new units to source control using Tools > Source Control > Submit All
Changes to Source Control.

Uncontrol the Model and Save into One .rtmdl File

You may not want to immediately submit the temporary model to source control. For
example, if you want to place the project-ready model into another source control
database or directory location. At this point, you can save the result of your
conversion into a single .rtmdl file.

If you perform the following steps, you will not lose what was already in source
control; however, it will allow you to save the model into one .rtmdl file that you can
then move or work on before preparing for mainstream development.

1 Open the converted model that was temporarily added to source control.

2 Select the model element in the browser.

3 Right-click and select File > Uncontrol Child Units.

4 Answer Yes when prompted.

5 Select File > Same Model As... and chose a new name for the model.

Note: Note that you want to keep the .rtmdl file that represents the model that was
placed in source control.

You will now have a second .rtmdl file which contains the converted model. If you
want to access the model that you originally stored into source control, open the
workspace for the original model.
Organizing for Team Development and Source Control 21

Preserving Source Control History

If ClearCase is being used and an audit trail to ObjecTime Developer files is required,
you may want to create hyperlinks from the new Rose RealTime files back to the old
OTD files in source control. Hyperlinks should be created when the model is in a
stable state where creation of the links is relevant. See your ClearCase documentation
for the syntax for creating hyperlinks.

Configuring the Build Process

In OTD, you can use batch mode to automate builds. In Rose RealTime, batch mode
does not exist, however similar functionality can be implemented.

Note: If you require help converting your build scripts, contact your sales
representative.

The Guide to Team Development - Rational Rose RealTime details how to configure
automated builds with Rose RealTime.

Changes to Code that Uses Default Arguments

ObjecTime Developer models which used the RTTimespec constructor with only one
parameter, as in the following code:

timer.informIn(RTTimespec(2));

will result in a compile error after conversion of the model to Rational Rose RealTime.
The compile error will appear something like:

..\rtg\Driver.cpp(67) : error C2440: 'type cast' : cannot convert from
'const int' to 'struct RTTimespec'

No constructor could take the source type, or constructor overload
resolution was ambiguous.
22 Chapter 1 - ObjecTime Developer to Rose RealTime Conversion

The reason is that in ObjecTime Developer, the RTTimespec constructor included
default arguments, that is, RTTimespec (long=0, long=0). The default constructor
values are not supported with RTTimespec in Rational Rose RealTime. Any code that
made use of the default arguments needs to be changed to supply both constructor
arguments. For example:

OTD = RTTimespec (2);

must be changed to:

RRT = RTTimespec (2, 0);

Modifying the Comment Block Size

Clarification: The size of the action blocks is not changed; the sized used in OTD is
preserved. If the fonts used to create labels are different (as in this case), the line of text
might not fix the box. You can now scale the width of the action box to the desired
amount. This amount depends on the font used in the OTD model; RoseRT; and
user's perception.

To scaled the width, at the end of RoseRT.ini file, add the following two lines:

[OTDImport]

ActionBlockScale=130

RoseRT will use the value specified after ActionBlockScale in the following way:

<RoseRT's width of action block> = <OTD's width of action block> *
ActionBlockScale / 100

The width of action blocks will be increased 1.3 times.

Continue to modify this number to obtain the desired scaling.
Modifying the Comment Block Size 23

Appendix A: Port
Message Conversions

Port Message Conversions

The following table specifies the list of port messages conversion for Rational Rose
RealTime.

Old syntax: New syntax:

send port.send(sig) port.sig().send()

port.send(sig, data) port.sig(data).send()

port.send(sig, data, prio) port.sig(data).send(prio)

port[index]->send(sig) port.sig().sendAt(index)

port[index]->send(sig, data) port.sig(data).sendAt(index)

port[index]->send(sig, data, prio) port.sig(data).sendAt(index, prio)

invoke port.invoke(buf, sig) port.sig().invoke(buf)

port.invoke(buf, sig, data) port.sig(data).invoke(buf)

port[index]->invoke(buf, sig) port.sig().invokeAt(index, buf)

port[index]->invoke(buf, sig, data) port.sig(data).invokeAt(index, buf)

purge port.purge() port.purge()

port.purge(sig) port.sig().purge()

port[index]->purge() port.purgeAt(index)

port[index]->purge(sig) port.sig().purgeAt(index)

recall port.recall() port.recall()

port.recall(0) port.recall()

port.recall(0, 0) port.recall()

port.recall(0, 1) port.recallFront()
Port Message Conversions 25

port.recall(sig) port.sig().recall()

port.recall(sig, front) port.sig().recall(front)

port[index]->recall() port.recallAt(index)

port[index]->recall(0) port.recallAt(index)

port[index]->recall(0, front) port.recallAt(index, front)

port[index]->recall(sig) port.sig().recallAt(index)

port[index]->recall(sig, front) port.sig().recallAt(index, front)

Note: The script understands that
the sig EmptySignal == 0)

recallAll port.recallAll() port.recallAll()

port.recallAll(0) port.recallAll()

port.recallAll(0, 0) port.recallAll()

port.recallAll(0, 1) port.recallAllFront()

port.recallAll(sig) port.sig().recallAll()

port.recallAll(sig, front) port.sig().recallAll(front)

port[index]->recallAll() port.recallAllAt(index)

port[index]->recallAll(0) port.recallAllAt(index)

port[index]->recallAll(0, front) port.recallAllAt(index, front)

port[index]->recallAll(sig) port.sig().recallAllAt(index)

port[index]->recallAll(sig, front) port.sig().recallAllAt(index, front)

Note: The script understands that
the sig EmptySignal == 0

msg
operations

msg->reply(sig) rtport->sig().reply()

msg->reply(sig, data) rtport->sig(data).reply()
26 Chapter - Appendix A: Port Message Conversions

msg->sap()->getIndex() msg->sapIndex0()

msg->sap()->index() msg->sapIndex()

other timer.informIn(...).isValid() timer.informIn(...)
Port Message Conversions 27

Appendix B: Code
Segments that are Not
Converted

Code Segments

The following list specifies entities that are recognized and flagged, but can not be
converted to Rational Rose RealTime:

RTDataWrapper

RTDataWrapper_char

RTDataWrapper_double

RTDataWrapper_float

RTDataWrapper_int

RTDataWrapper_long

RTDataWrapper_short (These classes are no longer needed.)

RTEndPort (This concept does not exist in Rational Rose RealTime.)

RTEndPortRef (Replaced by RTProtocol)

RTCommSAP

RTAsyncCommSAP

msg->signal

msg->getSignal

RTSignal::name

RTSignal::lookup

The pattern Using *RTDATA (problem with a Null Data Class in a Protocol) is also
recognized and flagged, but can not be converted to Rational Rose RealTime.
Code Segments 29

Index
A
action block size 23

B
batch mode (OTD model conversion) 10
Block RPL 7
Block Size 23
building

converted OTD model 19

C
changes to Code that Uses Default

Arguments 22
Code Segments that are Not Converted (from

OTD) 29
Code that Uses Default Arguments 22
Command Line Model Debugger 1
Command line model debugger 1
Comment Block Size 23
Comment Original Code 8
configuring

build process for OTD model conversion 22
considerations

converting OTD models 9
contacting Rational technical publications iii
contacting Rational technical support iv
conversion mappings

compilation environments 16
configurations 15
constants 15
daemons and probes 16
debugging tools settings 16
external data classes 16
last compiled actor 16
logical threads 15
overrides file 15

physical threads 15
Sequence 15
SequenceOf 15

conversion mappings (OTD model
conversion) 15

Convert Messages in Commented Code 8
Convert Messages to RoseRT Format 8
converting

ObjecTime Developer model to Rose
RealTime 2

OTD models 2
converting a model (from OTD) 2
converting OTD requirements 8
customizing

library interface scripts 6

D
Default Arguments 22
documentation feedback iii

E
ELS 12
EmulationRTS 9
export options

Block RPL 7
Comment Original Code 8
Convert Messages in Commented Code 8
Convert Messages to RoseRT Format 8
Log Unconverted Code 8

exporting
model from OTD 6
OTD model to linear form 3
patch level 4
version of OTD 4

External Layer Service 12
Index 31

G
granularity

changing 20

I
installing

patches for OTD 4

L
library interface scripts 6
loading

liner form into Rational Rose RealTime 10
Log Unconverted Code 8

M
messages from OTD conversion 13
migrating

OTD changes 6
models

building a converted OTD model 19
converting from ObjecTime Developer 2
exporting from OTD 6
splitting 18

N
Non-Exiting Self Transitions (OTD model

conversion) 14

O
ObjecTime Developer

converting a model to Rose RealTime 2
ObjecTime Developer conversion

after exporting 3
after importing 11
batch mode 10
before converting 3
before importing 11

building a model 19
classes in multiple packages 14
configuring the build process 22
configuring your environment 19
considerations 9
conversion mappings 15
converting a model 2
ELS 12
EmulationRTS 9
exporting a model 3
exporting model from OTD 6
exporting model to linear form 3
library interface scripts 6
loading 12
loading linear form in Rose RealTime 10
migrating changes 6
model considerations 9
Non-Exiting Self Transitions 14
overview 1
package inheritance 16
patch level 4
requirements 8, 17
reviewing the log 13
RPL 10
SimulationRTS 9
source control 5, 17
splitting a model 18
temporarily adding model to source

control 17
TestScope 10
uncontrolling a model 21
version 4

P
patch level for OTD conversion 4
patches for OTD 4
Port Message Conversions 25

R
Rational technical publications

contacting iii
32 Index

Rational technical support
contacting iv

RPL (OTD model conversion) 10

S
scaling 23
SimulationRTS 9
source control

model conversion 5
splitting a model into smaller units 18

T
team development

existing projects 20
new projects 20
Index 33

	Conversion Guide
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	ObjecTime Developer to Rose RealTime Conversion
	Overview
	Important Features of Rational Rose RealTime
	Steps for Converting a Model
	Exporting an ObjecTime Developer Model to Linear Form
	Before you Convert a Model
	Exporting a Model
	After Exporting a Model
	What version of OTD are you using?
	What is your patch level?
	Is the Model Under Source Control?
	Have you configured or customized the C or C++ Services Library?
	Migrating Changes

	Does the Model Compile and Run Correctly?
	Exporting a Model from ObjecTime Developer
	Converting OTD Requirements
	OTD Model Considerations
	SimulationRTS and EmulationRTS
	Batch Mode
	RPL
	TestScope

	Loading Linear form into Rational Rose RealTime
	Before Importing
	Loading a Model in Rational Rose RealTime:
	After you Import
	Have you properly installed Rational Rose RealTime?
	Are your Services Libraries available?
	Is your Source Control tool supported?
	Do you use the External Layer Service (ELS)?
	Can you build sample models in Rose RealTime?
	Loading the Linear form into Rational Rose RealTime
	Reviewing the Log
	Non-Exiting Self Transitions
	‘X’ Upgraded
	Classes in Multiple Packages
	Updating ‘X’ Model Properties

	Understanding the Conversion Mappings
	Package Inheritance

	Adjusting Graphical Layout
	Verifying OTD Requirements

	Temporarily Adding the Model to Source Control (optional)
	Configuring Your Source Control Tool
	Splitting a Model into Smaller Units

	Building and Running a Model in Rational Rose RealTime
	Configuring Your Environment
	Building a Model

	Organizing for Team Development and Source Control
	New Projects
	Existing Projects
	If the Model was Temporarily Added to Source Control
	Changing the Granularity and Submitting Elements
	Uncontrol the Model and Save into One .rtmdl File

	Preserving Source Control History

	Configuring the Build Process
	Changes to Code that Uses Default Arguments
	Modifying the Comment Block Size

	Appendix A: Port Message Conversions
	Port Message Conversions

	Appendix B: Code Segments that are Not Converted
	Code Segments

	Index

