
Rational Software Corporation
User Guide
RATIONAL ROSE® REALTIME CONNEXIS

VERSION: 2002.05.20

PART NUMBER: 800-025101-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025101-000

Version Number: 2002.05.20

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2002, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Preface i
Road Map ii

Related Documentation ii

How to Get Help iii
When contacting Rational technical support iii
Rational web site iii

Other Resources iii

Contacting Rational Technical Publications iv

Contacting Rational Technical Support iv

Chapter 1 Rational Connexis Overview 5

Key Benefits of Connexis 5
Connexis Leverages Proven Standards 6
Connexis is Tightly Integrated with Rose RealTime 6
Connexis Provides Access Transparency 7
Connexis Provides Location Transparency 7
Connexis is Very Flexible and Easily Configurable 8
Connexis Provides Support for Testing Distributed Applications 9
Connexis is Designed to be Fault-tolerant and Reliable 9

Connexis Terminology and Definitions 11
User Guide - Rational Rose RealTime Connexis v

Connexis Application Layers 13
UML Application 14
Ports in Rose RealTime 14
Distributed Connection Service 16
Transport 16
Locator Service 17

Using the locator 17

The HelloWorld Model 18
Running the HelloWorld Model 18
Additional HelloWorld Models 19

HelloWorldHotStandby 19
HelloWorldLoadSharing 19
HelloWorldOverflowToBackupService 19
HelloWorldRedundantLocator 20

Using Connexis 20

Chapter 2 Using Connexis Model Examples 21

The BasicTest Model 21

The Quick Start Model 22
Quick Start Iteration 1 Model 22
Quick Start Iteration 2 Model 22

The HelloWorld Model 23
Running the HelloWorld Model 23
Additional HelloWorld Models 24

HelloWorldHotStandby 24
HelloWorldLoadSharing 24
HelloWorldOverflowToBackupService 24
HelloWorldRedundantLocator 25

The DCS Performance Model 25
Running the Performance Model 25

Performance model server output 27
Performance model client output 28
vi User Guide - Rational Rose RealTime Connexis

Chapter 3 Quick Start 31

Quick Start Overview 31

Iteration 1: Creating the Rose RealTime Model 35
Step 1: Create a New Model 35
Step 2: Create Packages for the Model 35
Step 3: Create the Ping, Pong, and ContainerCapsules 38
Step 4: Create the PingPong Protocol Class 40
Step 5: Build the Structure of the Model 43
Step 6: Implement the State Machines for Ping and Pong 48
Step 7: Build and Test the Model 53

Iteration 2: Connexis Enabling our Application 59
Step 1: Remove the Connector Between the pingPong Ports 59
Step 2: Make Changes to Pong’s pingPong Port 60
Step 3: Make Changes to Ping’s pingPong Port 61
Step 4: Adding DCS Layer Notification to the Ping and Pong
Capsules 63
Step 5: Modify Ping’s State Machine to Wait for Connexis 64
Step 6: Modify Pong’s State Machine to Wait for Connexis 65
Step 7: Modify Ping’s State Machine to Wait for Notify 66
Step 8: Add Registration Code to the Ping and Pong Capsules 67
Step 9: Add the Connexis Configuration Capsules to Your Model 69
Step 10: Create and Configure the Ping Component 74
Step 11: Create and Configure the Pong Component 75
Step 12: Add Component Dependencies 77
Step 13: Build and Execute the Models 79

Basic Connexis Development Approach Summary 82

Chapter 4 Adding Connexis Support to Your Model 83

Sharing DCS Interfaces 84
Sharing DCS Interfaces into your Model 84
Removing Shared Packages 85
User Guide - Rational Rose RealTime Connexis vii

Configuring Connexis Capsules 85
Manually Integrating Transports Into a Model 88

Configuring a Component for Connexis 90

Verifying Connexis Enabled Components 91

Initializing Your Connexis Capsule 92
Using the RTDInitStatus Protocol 93
Using Fixed Initialization Order 98

Converting Connexis Version 2000.02.10 Models to Connexis
2001A.04.00 Models 99

Verifying Component Compatibility with Connexis Version
2001A.04.00. 103
RTDErrorType Error Reporting 104

Chapter 5 Establishing Connections 107

General Connection Patterns 108
Client/Server 108
Peer to Peer 109

Unwired Port Registration 110
What is Registration? 111
Port API 112
Automatic vs. Application Registration 113
Registration Parameters 115

Name Resolution 118

Connexis Connection Options 118
Local Connections 119
External Explicit Connections 124

External explicit examples 124
Locator Connections 125

Registration Summary 127
Scenario 1: Publisher Registered with the ILS 127
Scenario 2: Publisher Registered with the DCS 128
Scenario 3: Publisher Registered with the Locator 130
Multiple Publishers 131
viii User Guide - Rational Rose RealTime Connexis

Connection Design Heuristics 131
When to Use Replicated Publisher Ports 131
Use of Invokes 132
Use of Broadcast Sends 132
Use of Notification 133
Use of Defers 133
Sending Data 134
Sending Data Classes by Value 134

Chapter 6 Using the Connexis Locator Service 135

Adding Locator Support to a Model 136

Publication and Subscription 136
Publication 136
Subscription 137
Ranking Published Ports 137
Load-sharing of Publishers 138
Examples 138

Locator Dynamics 140
Fully Subscribed Publishers 141
Subscriber Losing Connection to a Publisher 142
Locator Failure 142
Locator Race Condition 144
Unconnected Subscribers 145

Locator Configuration 145
Locator Parameters 145
Locator Parameter Examples 149

Creating your Own Name Service 150

Chapter 7 Using the Connexis Viewer 151

Viewer Architecture 153

Adding Viewer Support to a Model 153

Adding Metrics Support to a Model 154
User Guide - Rational Rose RealTime Connexis ix

Starting the Connexis Viewer 155

Duplicate CNX Unique Identifiers 156

Viewer Main Window 156

Viewer Menus 158
File Menu 158
View Menu 158
Tools Menu 159
Windows Menu 161
Help Menu 161

Explorer Tree View 162
Processor Icons 163
Component Instance Icons 163
Filter Icons 164
Component Instance Status 164
Named Services Icons 165
Port Icons 165
Virtual Circuit Icons 166
Object Information Column 167

Popup Menus 168
Session Popup Menu 168
Processor Popup Menu 169
Component Instance Popup Menu 170
Port Reference Popup Menu 173
Virtual Circuit Popup Menu 174

Creating Processors and Component Instances 175
Adding a Processor 175
Changing the Properties of a Processor 176
Removing a Processor 177
Adding a Component Instance 177
Changing the Properties of a Component Instance 180
x User Guide - Rational Rose RealTime Connexis

Performing Event Tracing 182
Defining a Trace Filter for a Component Instance 182

Setting trace filters 185
Defining a Port Reference Trace 188
Defining a Virtual Circuit Trace 192

Trace Window 194
Component Instance Trace Window 194
Virtual Circuit Trace Window 195
Trace Window Popup Menu 196

Show trace data 197
Define trace 199
Trace active 199
Select in tree 199
Clear 199
Save trace 199

Trace Header Context Menu 201

Generating Interaction Diagrams from Trace Output Files 202
Reporting of error messages 206

Log Window 206

Displaying the Metrics Collection 207
Starting Metrics Collection 208
Using the Metrics Window 208

Summary metrics collection 210
Detailed metrics collection 214
Messages metrics collection 216
Audits metrics collection 219
Engineering metrics collection 221
DCS errors metrics collection 225
Application errors metrics collection 228
Application incompatibility metrics collection 232

Stopping Metrics Collection 234
Saving Collected Metrics 234
User Guide - Rational Rose RealTime Connexis xi

Viewer Tips and Usage Notes 234
Capturing Pre-Viewer Session Messages 234
Error and Warning Tracing 235

Software errors 235
Software warnings 235

Maximizing Viewer Responsiveness 235

Chapter 8 Using the Connexis Metrics Service 237

Obtaining Metrics Data with a Metrics Service 237
Enabling Metrics in the DCS library 238
Adding a Metrics Port 238
Subscribing to the Metrics Service 238
Collecting and Processing Metrics 239

Using Metrics and the Connexis Viewer 243

Chapter 9 Registration String Grammar 245
Registration String Grammar for DCS Registrations 245

Chapter 10 Connexis Command Line Options 247

Component Instance with Fixed Endpoints (no locator service) 247

Component Instance using CDM Endpoint, Locator using CDM 248

Component Instance using CDM and CRM Endpoints, Primary
Locator using CDM, Backup Locator using CRM 249

Component Instance with CDM and CRM, CRM is Preferred Transport
250

Miscellaneous Command Line Options 250

Chapter 11 Connexis Messages, Errors, and Warnings 255
Initialization Messages 255
Initialization Errors 257

Parameter Errors 257
xii User Guide - Rational Rose RealTime Connexis

Chapter 12 Connexis Customization Reference 261

Engineering Rules Overview 262
Thread Configuration 262

Process view of a Connexis application 263
Default number of threads 264
The application layer 265
DCS and transport Layer 265

Buffer Configuration 266
Overall buffer configuration of a Connexis application 266
Application layer 267
DCS layer 268
Connexis buffer usage 270

Configuring the Number of Virtual Circuits 271
Verifying Connections 272

Handshake audit 272
Connection audit 273
Reset audit 273

Command Line Options Reference 274
Setting Command Line Options 274

System wide 275
DCS options 277
Transporter options 278
Transport specific options 282
CDM 285
Locator 286
Connexis viewer/target agent 287

Chapter 13 Customizing and Porting DCS Libraries 289
Common customizations for the DCS 289
Other resources 290
Operating system capabilities 290
What to do before calling Rational support 290

Porting the DCS to a New Target Configuration 290
Creating a New TargetRTS Library 291
Creating DCS Target Specific Header Files 292
Loading the DCS Model 293
Creating a C++ Library Component 293
Configuring the C++ Library Component Settings 294
User Guide - Rational Rose RealTime Connexis xiii

Configuring the CDR Encode/Decode Functionality 296
Creating a Minimal DCS Library Configuration 296
Building the Library 297
Testing the Port 297

TORNADO 2.0/SimSo/Cygnus 2.7.2-960126 DCS Port 298
Known problems 299
Example of routing tables 299

Chapter 14 Using the Transport Integration Framework 301

Transport Integration Overview 302

DCS Architecture 303

Terminology 304

Connection Lifecycle 305

DCS Threading Model 306

Understanding your Transport 307
Determine the Name of your Transport and Protocols 308
Decide the String Format of the User-specified Address 308
Decide How to Validate the Address 308
Decide the Transformation of the Address 309
Determine the Internal Representation of your Address 310
Decide the Format of the Listening Point Information 311
Decide if your Transport is Blocking or Non-blocking 311
Decide the Recommended Address Resolution Configuration 312
Decide How the Transport will Recover from Transport Failures
313
Decide How to Audit your Transport 313
Decide the Format of your Messages 314
Decide Strategy for Listening for Messages 315

Integrating your Transport 317
Setting up the Model 317
Understand the Integrated Transport 318
Implementing the RTDTransportAddressFactory Subclass 318
Implementing the RTDTransportAddress Subclass 319
xiv User Guide - Rational Rose RealTime Connexis

Implementing the RTDTransportEndpointFactory Subclass 320
Implementing the RTDTransportEndpoint Subclass 321
Implementing the RTDTransport Subclass 322
Building the Transport Integration 323
Packaging the Transport Integration 323
Using the Transport Integration in Another Model 324
Testing the Transport Integration 324

TIF Classes 324
RTDTransportAddress 327

Constructors 329
RTDTransportEndpointFactory 333
RTDTransportEndpoint 334

Constructor 335
RTDTransport 341
RTDTIF 343
RTDTransportProfile 343
RTDConnexisAPI 350

Appendix A Comparison of TCP/IP and UDP/IP 357

Overview 357

Characteristics of Socket Types 357

Difference Between UDP and TCP 358
Index 361
User Guide - Rational Rose RealTime Connexis xv

Preface

This document is organized so that each chapter is as stand-alone as
possible. This section provides a brief overview of the content of each
chapter and several reading paths through the document based on
reader knowledge.

“Rational Connexis Overview” on page 5, provides a brief introduction
to Connexis, the solutions that it provides and its primary features.

“Quick Start” on page 31, provides a simple Connexis tutorial. This
tutorial is also useful for those who are new to Rose RealTime.

“Adding Connexis Support to Your Model” on page 83 describes how to
add Connexis support to your Rose RealTime model.

“Establishing Connections” on page 107, elaborates on the concepts
presented in the Overview chapter. This chapter describes the different
ways of creating connections using Connexis, the syntax for describing
Connexis endpoints and the parameters that can be supplied as part
of registering connection endpoints.

“Using the Connexis Locator Service” on page 135, describes the
Connexis Locator Service and how to configure it to run in a distributed
application.

“Using the Connexis Viewer” on page 151, describes the Connexis
Viewer and how to configure it to view a distributed application.

“Using the Connexis Metrics Service” on page 237 describes how to
collect DCS statistics from within a Rose RealTime executable model.

“Registration String Grammar” on page 245 provides information on
the Backus-Naur Form (BNF) Grammar for the registerSAP and
registerSPP commands.
User Guide - Rational Rose RealTime Connexis i

Preface
“Connexis Command Line Options” on page 247 provides command
line examples for commonly-used Connexis configurations.

“Connexis Messages, Errors, and Warnings” on page 255 provides
information to assist users in developing and debugging their models.

“Connexis Customization Reference” on page 261, describes the
different configuration options that can be used to customize how
Connexis works.

“Customizing and Porting DCS Libraries” on page 289, describes the
Distributed Connection Service and explains how to customize or port
DCS libraries to a new target environment.

“Using the Transport Integration Framework” on page 301, describes
the Connexis Transport Integration Framework and how to integrate
common or customized transport in a distributed application.

“Comparison of TCP/IP and UDP/IP” on page 357, provides
background information about TCP/IP and UDP/IP.

Road Map

People who are new to Rose RealTime should review the Rose RealTime
documentation followed by the Overview and Quick Start chapters of
this document.

People who are new to Connexis, should read the Overview and Quick
Start chapters before any other part of the manual.

If you are already familiar with Rose RealTime and have a good
understanding of the problems that Connexis solves, you may want to
start with Establishing Connections, and refer to the Overview chapter
only when terms or concepts are unfamiliar to you.

Related Documentation

The following is a list of documentation that is related to the Connexis
product.

� Rose RealTime online Help and user documentation. This
documentation is available online with the Rose RealTime product.

� ISO/IEC 10746-1 ODP Reference Model Part 1. This specification
details the challenges and potential solutions to distributed
computing.
ii User Guide - Rational Rose RealTime Connexis

How to Get Help
How to Get Help

This section describes procedures for interacting with Rational
Software Corporation's technical support services.

When contacting Rational technical support

When contacting technical support for Rose RealTime, please be
prepared to supply the following information:

� Name, telephone number, and company name.

� Product version number (found in the viewer’s Help > About dialog).

� Computer make and model.

� Make and version of the operating system.

� Make and version of development tools (configuration management
program, compiler, linker, RTOS, requirements management
program).

� Your log number (if you are calling about a previously reported
problem).

If your site has a designated, on-site support person, please try to
contact that person before contacting Rational technical support.

Rational web site

You can contact technical support and obtain the latest product
information through our web site at:

http://www.rational.com/products/rosert

Other Resources

� Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format.
To access the online manuals, click Rose RealTime Online Documentation
from the Start menu.

� For more information on training opportunities, see the Rational
University Web site: http://www.rational.com/university.
User Guide - Rational Rose RealTime Connexis iii

http://www.rational.com/products/rosert

Preface
Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please
send e-mail to our Technical Documentation Department at
techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this
product, contact Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared
to supply the following information:

� Your name, telephone number, and company name

� Your computer’s make and model

� Your computer’s operating system and version number

� Product release number and serial number

� Your case ID number (if you are following up on a previously-
reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-202
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
iv User Guide - Rational Rose RealTime Connexis

Chapter 1

Rational Connexis Overview

Rational Connexis is a Rational Rose for RealTime add-in product that
provides connectivity for Unified Modeling Language (UML) models.
Connexis is tightly integrated with Rose RealTime and is highly
optimized for event-driven asynchronous systems.

Connexis improves an application’s time to market by eliminating the
need to design, develop, and test a custom Inter-Process
Communications (IPC) mechanism. The use of a Commercial Off The
Shelf (COTS) distribution component, such as Connexis, simplifies and
de-risks the design and deployment of distributed systems.

Key Benefits of Connexis

In addition to the time to market advantage of using Connexis, there
are also several technical advantages to using Connexis. These are
listed below and will be discussed in more detail in the following
sections:

� Connexis Leverages Proven Standards

� Connexis is Tightly Integrated with Rose RealTime

� Connexis Provides Access Transparency

� Connexis Provides Location Transparency

� Connexis is Very Flexible and Easily Configurable

� Connexis Provides Support for Testing Distributed Applications

� Connexis is Designed to be Fault-tolerant and Reliable
User Guide - Rational Rose RealTime Connexis 5

Chapter 1 Rational Connexis Overview
Connexis Leverages Proven Standards

Connexis is built upon current industry-standard technologies.
Connexis supports sending UML-defined data classes between Rose
RealTime models running in different processes and lets you integrate
proven transports using the Connexis Transport Integration
Framework. As shown in Figure 1, Connexis Datagram Messaging
(CDM) is designed on top of UDP and Connexis Reliable Messaging
(CRM) is designed on top of TCP. Connexis also supports custom
messaging transports, allowing your applications to support native
communication protocols to improve service.

Figure 1 Connexis Architecture

Connexis is Tightly Integrated with Rose RealTime

The Connexis product is tightly integrated with Rose RealTime. Adding
Connexis support to a Rose RealTime model simply involves sharing
Connexis packages, adding Connexis capsule roles to the model, and
configuring components for your application. Transports that are
integrated into Connexis are available to the application in the same
manner as standard Connexis transports. Using transports provided
by Connexis and using integrated transports are very similar. Once you
have used one, you can use any other.
6 User Guide - Rational Rose RealTime Connexis

Key Benefits of Connexis
If you know how to use Rose RealTime, learning how to use Connexis
is easy. Connexis ports are unwired ports in your Rose RealTime model
that you register with the Target RSL using a Connexis registration
string. The only concept that is new to a Rose RealTime user is the
format of the Connexis registration string. Once the ports are
registered, sending and receiving messages on them occurs in the
exact same way as it does in a UML model that does not use Connexis.

Connexis Provides Access Transparency

The flexible encoding and decoding strategy that is used by Connexis
allows Connexis to work on different types of hardware environments.
The endian of the target environment is transparent to the executing
application.

Connexis Provides Location Transparency

The Connexis Locator service provides location transparency for a
distributed application. The application uses service names to refer to
the endpoints that are being connected. As a result, the physical
address of these endpoints never has to be revealed to the application.
Locator features are available for services published on integrated
transport addresses. Connexis also supports many different
distribution options which allow the design of the application to be very
flexible.

The following are the most common types of connections supported:

� Local connections

Connexis supports local connections which are optimized to be as
efficient as directly wired ports. The endpoints of the local
connections are registered using service names and Connexis
takes care of binding the endpoints together. Once bound, these
local connections have the same performance characteristics as
two wired ports that have been bound together.

� Explicit endpoint connections

Connexis accepts registrations that use explicit endpoint addresses
in the registration string. This can be used if the application knows
the processor location of the services that it wants to access. In
this way a client can bind to a service using the explicit processor
location and the service name of the desired service.
User Guide - Rational Rose RealTime Connexis 7

Chapter 1 Rational Connexis Overview
� Locator connections

The Connexis Locator service can be used to find a service (given
the service name) anywhere in the distributed application. Once
the Locator has been started, one side of the connection registers
with it as the publisher, and the other side registers as the
subscriber. The Connexis Locator finds the appropriate endpoints,
and feeds them back to the connection service which establishes
the connection.

Connexis is Very Flexible and Easily Configurable

Connexis supports a wide range of configuration options. This enables
the engineering of Connexis to be very flexible and adaptable to
different target environments. Configuration options are available to:

� configure connection audits

� adjust buffer counts and sizes

� adjust thread priorities and stack sizes

� adjust message delivery timing characteristics

The Target Agent, which interfaces to the Connexis Viewer, and the
Connexis Locator Service do not have to be a part of every Connexis
application. If your application does not use the Locator and you do not
need access to the Connexis Viewer, these components can be left out
of the node’s configuration. This helps minimize the size of the
Connexis code that gets linked in your application. For more
information about the Connexis Viewer refer to “Using the Connexis
Viewer” on page 151. For more information on the Connexis Locator
Service refer to “Using the Connexis Locator Service” on page 135.

Connexis allows multiple ports to be registered with the same service
name. This, coupled with the normal Rose RealTime feature of port
multiplicity, enables several simple distribution patterns to be
supported automatically by Connexis. Patterns that are not directly
supported can usually be implemented very easily in Rose RealTime.

Connexis is shipped with full source. The library can be rebuilt if
needed for a custom environment configuration.
8 User Guide - Rational Rose RealTime Connexis

Key Benefits of Connexis
Connexis Provides Support for Testing Distributed Applications

One of the tools that comes with Connexis is the Connexis Viewer. The
Connexis Viewer allows developers to attach to running Connexis
applications and to graphically view connections as they are being
established and taken down. The Viewer provides a minimally-
intrusive tracing mechanism that allows you to trace messages that are
being sent and received by any of the endpoints in a distributed
application. The Viewer also receives messages from integrated
transports and collects metrics information.

The traditional method of testing a distributed Rose RealTime
application is to attach a probe on each end of a virtual circuit to make
sure that the connection has been established. This method of testing
does not scale well. In large systems, it is very difficult to know where
the other end of a virtual circuit is in the model (consider systems with
replicated publishers or multiple publishers with the same name). The
Connexis Viewer simplifies the monitoring of distributed connections.

The Viewer also has the ability to import the deployment diagram from
a Rose RealTime model so that the information about the distributed
application does not have to be entered in two places. The Rose
RealTime target observability feature can also be used to trace message
flow on unwired Connexis ports.

The Connexis installation provides DCS libraries that are compiled
with debugging capabilities for the Connexis Viewer and the Target
Observability feature of Rose RealTime. This library configuration
makes the initial debugging of distributed applications easier. As the
application becomes more mature, consider building a minimal
configuration of the DCS libraries for your target configuration.
Building a minimal configuration is described in “Customizing and
Porting DCS Libraries” on page 289.

Connexis is Designed to be Fault-tolerant and Reliable

Fault tolerance and reliability are paramount to most real-time
systems. Connexis has been designed with these requirements in
mind. The following is a list of the different Connexis features that
enhance the fault tolerance and reliability of Connexis:

� The Locator Service can be run in simplex or duplex mode. A
binary elector is used to determine the health of the primary
locator.
User Guide - Rational Rose RealTime Connexis 9

Chapter 1 Rational Connexis Overview
� Connexis has been designed with true non-blocking behavior. All
potentially blocking system calls are handled by a user-
configurable set of helper threads. Name resolving is an example of
an operation that makes use of helper threads.

� A heart beat style audit is used over the UDP datagram based
connections to detect connection / process / processor failure.
This audit is tunable so that it can be used in a variety of
environments. The audit is highly efficient since it monitors user
messages to collect status information. This allows the explicit “Are
you Alive” messages to be suppressed. When explicit “Are You
Alive” messages are used, the number of such messages sent per
unit of time can be capped to ensure that audits do not overutilize
system resources. When a connection-oriented protocol (such as
TCP) is used, only a very basic, “is the connection alive,” protocol is
used.

� Buffering policies can be configured between the UML
asynchronous messaging controller and the flow-controlled
transport message router. This ensures that your model never
hangs due to a slow or broken transport connection. When the
queue fills up, messages are properly deleted from the system.

� It is easy to build a set of components that meet application
specific requirements for fault-tolerance and reliability. A pair of
generic signals, rtBound and rtUnbound, are supported for all
Rose RealTime and Connexis ports. Notification can be enabled on
a per-port basis and utilized by the application with minimal
additional complexity.

� The underlying “try-forever” algorithm can be overridden by the
application simply by deregistering the unwired port when quality
of service parameters are not met.

� Patterns for distribution can be implemented using Connexis as
the underlying distribution mechanism. For example, a single
publisher can actually hide multiple distributed connections to a
replicated service.

� Resource limits can be placed on publishers of services to limit the
number of subscribers per publisher.

� The allocation of unwired ports to capsules is under the control of
the designer and since the incarnation of capsules onto threads is
also under control of the application, the application can
dynamically control which resources are being used.
10 User Guide - Rational Rose RealTime Connexis

Connexis Terminology and Definitions
� Services can be ranked according to the preferred order of use.
This ranking is done with full, dynamically updated knowledge of
the resource limits. If a given service is full, one of a lower rank will
be used if available.

� Configurable system audits verify that the internal system
connection state matches across the entire system.

Connexis Terminology and Definitions

Table 1 lists and defines Connexis and UML terms and acronyms.

Table 1 Definitions

Term Definition

CDM Connexis Datagram Messaging. A thin layer on top of UDP
that provides additional support for connection auditing
and quality of service parameters.

CRM Connexis Reliable Messaging. A thin layer on top of TCP
that provides additional support for connection auditing
and quality of service parameters.

DCS Distributed Connection Service. This is the key
component used for connecting and managing the
different parties in a connection.

DNS Domain Name System (or Service), an Internet service
that translates domain names into IP addresses. Because
domain names are alphanumeric, they are easier to
remember; however, the Internet is really based on IP
addresses. Every time you use a domain name, a DNS
service must translate the name into the corresponding IP
address. For example, the domain name
www.example.com might translate to 198.105.232.4.

duplex locator
service

Refers to a configuration in which there are two locators.
In normal operation, one locator acts as the active locator
and the other acts as the standby locator. This
configuration is used to prevent a locator from being a
single point of failure.

endpoint An endpoint is an explicit network address used for
finding a peer object. It consists of a protocol followed by a
colon, followed by a protocol-address. For example:
cdm://ipaddress:port.
User Guide - Rational Rose RealTime Connexis 11

Chapter 1 Rational Connexis Overview
ILS Internal Layer Service. This is the connection service that
is built into Rose RealTime. It can only be used for
establishing intra-process connections.

IPC Inter-Process Communication. This is a broad term that
is being used to describe any mechanism that is used to
share information between processes. This could be
something as simple as shared memory or something as
sophisticated as CORBA.

Locator The Connexis Locator Service is a configurable service
that is used to look up the physical location of an object
given a service name for that object.

notification The term used to describe the process of sending a
message to a capsule to inform it when one of its ports
has been connected to, or disconnected from, its peer.

SAP Service Access Point. Term used to describe an unwired
port that is participating in a connection as the
subscriber. The SAP acronym appears in portions of the
Run-time Service Library’s API.

simplex locator
service

Refers to a configuration in which there is only one
locator. This configuration does not provide redundancy.
See also “duplex locator service.”

SPP Service Provisioning Point. Term used to describe an
unwired port that is participating in a connection as the
publisher. The SPP acronym appears in portions of the
Run-time Service Library’s API.

tagged-values Term used to represent the parameters that are being
passed to the Connection Service when registering an
unwired port.

Target RSL Target Run-time System Libraries. These are the libraries
that are compiled into a Rose RealTime model and that
implement the messaging, state walking, and timing
service (among other services) of a Rose RealTime model.

TCP/IP Transmission Control Protocol / Internet Protocol.
Connection-based transport protocol.

Transport The underlying protocol that is being used to pass data
between communicating objects.

Table 1 Definitions

Term Definition
12 User Guide - Rational Rose RealTime Connexis

Connexis Application Layers
Connexis Application Layers

Connexis allows multiple Rose RealTime-generated executables to be
connected in a robust and reliable manner. Executables are networked
by connecting unwired ports across processor boundaries.

The Connexis programming model provides significant value:

� built for real-time - automatic mapping of UML communication
ports onto a high-performance software backplane

� product-ready, but flexible - the software is ready to run as soon as
it has been installed but can be adapted to handle project-specific
requirements

Transport
Integration
Framework (TIF)

A framework that lets 3rd parties (including developers)
add additional transports for use in Connexis Messaging.

UDP User Datagram Protocol. Connectionless transport
protocol.

UML Unified Modeling Language. An industry-standard
modeling language used to model object-oriented software
systems. UML is used by Rose RealTime and Connexis to
model the software that is being built.

unwired port An unwired port is a UML object that can have
connections specified using registration names. These
names can be specified at either design time or run-time.

virtual circuit A virtual circuit is the term used to refer to a connection
that has been established between two endpoints. This
refers to a connection between a single subscriber and a
single publisher.

wired port A wired port is a UML object that can have an explicit
connection (to another wired port) specified at design
time. The connection will be established at system
initialization time or at run-time if the port is contained in
a capsule that is optional or plug-in.

Table 1 Definitions

Term Definition
User Guide - Rational Rose RealTime Connexis 13

Chapter 1 Rational Connexis Overview
� simple-to-use programming model - supports client/server type
name binding and asynchronous messaging

� support for fault tolerance - detects failures and provides a
framework for dealing with faults

A Rose RealTime application that is using Connexis to implement its
inter-process communication has the high-level architecture shown in
Figure 2. The control paths that are shown, indicate the components
that are involved in registering and deregistering endpoints in the UML
application. All data that is sent between endpoints in a Connexis-
enabled application goes through the Transport component.

Figure 2 High level view of a Connexis enabled application

UML Application

This section presents an overview of how Connexis is used from within
Rose RealTime. For more information on Rose RealTime refer to the
“Rational Rose RealTime Toolset Guide.”

Ports in Rose RealTime

In Rose RealTime, ports are used to send messages between the
capsules in your model. Rose RealTime has several different kinds of
ports. The most common type of port is a wired port as shown in
Figure 3. Wired ports are visibly connected to other wired ports in Rose
RealTime models. Wired ports are represented graphically with two
connected squares in the oval part of the port icon.
14 User Guide - Rational Rose RealTime Connexis

Connexis Application Layers
Figure 3 Connecting wired ports

Another type of port that can be used in Rose RealTime is the unwired
port. Unwired ports are the primary method for establishing Connexis
connections. Once you have created an unwired port, you can specify
the connection service, protocol, and endpoint address that it will use
by registering the port with the Target RSL. This registration can either
be done automatically or through application code. The Connection
Service box in Figure 4 corresponds to the Distributed Connection
Service box in Figure 2. The DCS is one implementation of a
Connection Service.

Figure 4 Connecting unwired ports

A more detailed discussion on the registration process is provided in
“Establishing Connections” on page 107.
User Guide - Rational Rose RealTime Connexis 15

Chapter 1 Rational Connexis Overview
Distributed Connection Service

The Distributed Connection Service (DCS) is the connection service
that is provided with Connexis. It is responsible for maintaining
information about the unwired ports that have been registered with it
by a UML model. The DCS is the part of the system that is responsible
for establishing connections between unwired ports. It does this by
parsing the registration strings that are passed in when an unwired
port registers with the Target RSL.

Transport

The Transport is the component that is responsible for sending and
receiving data between processes. It manages any incoming or
outgoing data buffers and encodes and decodes data. A more detailed
break-down of the Transport component is shown in Figure 5.

Figure 5 Inside the Transport component
16 User Guide - Rational Rose RealTime Connexis

Connexis Application Layers
Locator Service

Another key component of a robust distributed system is a fault-
tolerant name service. A name service is used to find the actual
location of a server given a predetermined service name. A well-known
example of a name service is the Domain Naming Service (DNS) that is
widely used on the Internet. The principle function of a name service is
to look up a specific address when it is given a service name. This
isolates the calling application from changes in the physical addressing
of network components. In the Connexis product, the Locator Service
provides the name service functionality.

The Locator Service actually does a bit more than just operate as a
name server. The Locator can be configured to arbitrate between more
than one endpoint that provides the same service and it can also be set
up to run in duplex mode, which allows a backup Locator to
automatically take over when the primary fails.

Using the locator

An endpoint is defined to be the combination of a transport protocol
and the address of a specific port in a distributed application. For
example, cdm://address:port. If an explicit endpoint is provided, then
the client will try to connect to the server at the specified endpoint. If a
complete endpoint is not provided then the Locator is contacted. The
Locator returns an endpoint that is then used by Connexis to choose
the appropriate service provider or peer. The service name by which an
endpoint is referred, is specified as part of the registration of that
endpoint.

The Connexis Locator Service supports both a primary and a backup
locator. In this way, a distributed application can be made more robust
by ensuring that there is no single point of failure in the name server.
User Guide - Rational Rose RealTime Connexis 17

Chapter 1 Rational Connexis Overview
The HelloWorld Model

The HelloWorld model implements a simple distributed model using
Connexis. The model demonstrates the use of the Connexis Locator
Service and how it can be used to easily provide backup service in a
distributed environment.

The model contains two servers, a client, and the Connexis locator
service, each running independently. The servers speak different
languages (either English, or French). Initially, the client is bound to
the server that comes up first. Once bound, the client makes requests
to the server and the server sends back a greeting in the language it
speaks.

If the server to which the client is bound becomes unavailable, the
client is notified of the connection loss, and it rebinds to the backup
server, which starts responding to the client requests in the language
it speaks. For example, if the client is initially bound to the English
server, it will start receiving greetings in English. If you then terminate
the English server (for example, resetting through the RTS panel), the
connection will be lost momentarily, the client will be rebound to the
French server, and the client will start receiving the greetings in
French.

Note: The greetings are output to the DOS window (Windows) and the
RTS Output window (Solaris), which comes up when the client is started.

Running the HelloWorld Model

The model can be run on all supported host platforms. To run the
application, start up the matching (for example, VC++6.0) set of
locator, client, EnglishServer and FrenchServer component instances.

� Keep the DOS (Windows) or RTS Output (Solaris) window for the
client in view. The other DOS or RTS Output windows can be
minimized to reduce screen clutter.

� Run all the component instances from the corresponding RTS
panels.
18 User Guide - Rational Rose RealTime Connexis

The HelloWorld Model
� If you run the EnglishServer first, you should see “Hello World!!!”
appear on the client DOS window repeatedly. At this point, you can
terminate the EnglishServer instance by means of the RTS panel.
The client will receive a connection loss, and will then switch over
to the FrenchServer as soon it is rebound via the locator service.
You should now start to see "Salut le monde!!!" displayed in the
client DOS window.

Additional HelloWorld Models

The following models are extensions of the HelloWorld model. They
provide examples of distributed load-sharing and fault-tolerant
patterns.

HelloWorldHotStandby

A client connects to two servers through a proxy actor, and continually
sends greeting requests. The proxy forwards the message to both
servers, and both of the servers respond back to the proxy, which in
turn relays the message from the active server to the client. If there is
no response from the active server within a specified time period, the
other server becomes active, and starts to handle all the client
requests.

HelloWorldLoadSharing

This model consists of two servers (an English and a French one) that
supply greeting messages for multiple clients. The clients connect to
the servers in a round-robin fashion. For example, if you had four
clients, the first and the third client would connect to one server and
the second and the fourth client would connect to the other server.

HelloWorldOverflowToBackupService

This model contains two servers (an English and a French one). One of
the servers is given a higher rank so that it acts as the primary server.
The clients connect to the primary server until the primary server has
reached its full capacity. Any subsequent clients will connect to the
backup server, which will handle their greeting requests for those
clients.
User Guide - Rational Rose RealTime Connexis 19

Chapter 1 Rational Connexis Overview
HelloWorldRedundantLocator

The model consists of one server, multiple clients, and a primary and
a backup locator. The clients connect to the server using the primary
locator. The server, in turn, provides greeting signals for the clients. If
the primary locator is shut down, all subsequent client-server
connections will be established using the backup locator.

Using Connexis

There are several steps that must be taken to add Connexis support to
a model. These are:

� share the RTDInterface package

� add Connexis component capsule roles to appropriate capsules in
the model

� integrate transport protocols

� configure components for your application

Note: The Connexis configuration dialogs on ports and capsules
allow the user to perform these steps as well.

In addition to these steps, there are also general design rules that must
be followed to ensure that the Connexis components have been
initialized properly before they are used.

Refer to “Adding Connexis Support to Your Model” on page 83 for more
information on Connexis-enabling your application.
20 User Guide - Rational Rose RealTime Connexis

Chapter 2

Using Connexis Model Examples

With Connexis, four model examples are included to accelerate your
learning and proficiency. The list of models are outlined below:

� The BasicTest Model can be used to verify your environment.

� The Quick start Model runs you through an introductory tutorial.

� The HelloWorld Model presents a simple distributed model.

� The Performance Model lets you evaluate the performance of
Connexis-enabled models in your environment.

By default, components in these model examples specify ‘localhost’
(127.0.0.1) as the host machine. If you want to run the model examples
remotely (that is, on a specific processor rather than the one you are
on), you must modify the model examples first.

The BasicTest Model

The BasicTest model implements a very simple client server distributed
system and is intended for use as a simple model to test proper
Connexis installation and operation on any of the Connexis-supported
platforms.

All hosts and target configurations supported with your Connexis
installation are provided.

To run the model on one of the supported configurations listed above,
see “Verifying your installation using BasicTest, in the Release Notes
and Installation Guide for Rational Rose RealTime Professional.
User Guide - Rational Rose RealTime Connexis 21

Chapter 2 Using Connexis Model Examples
The Quick Start Model

The “Rational Connexis User Guide” provides a Quick start tutorial
(chapter 2) to allow you to quickly come up to speed on using Connexis.
The tutorial is composed of three iterations. Iteration 1 takes you
through building a simple ping pong model using Rose RealTime.
Iteration 2 takes you through the steps required to Connexis-enable
the ping pong model and make it distributed.

For your reference, complete, documented models for each iteration
are provided as part of the model examples provided with Connexis.
These examples can be run on all supported host platforms. For
detailed instructions on using the Quick Start model, see “Quick Start”
on page 31.

Quick Start Iteration 1 Model

The PingPong_Iteration1 model is the completed version of the model
developed in Connexis Quick start tutorial (Iteration 1). See “Quick
Start” on page 31 for details.

This model implements a simple ping pong application using Rose
RealTime. This model is used as a starting point for
PingPong_Iteration2 to show the simple steps required to quickly
Connexis-enable an application built using Rose RealTime.

To run the model, compile the PingPongApp component instance
corresponding to your host compiler, and choose run from the item
menu of the component instance under the PingPongProcessor.

Quick Start Iteration 2 Model

The PingPong_Iteration2 model is the completed version of the model
developed in Connexis Quick start tutorial (Iteration 2). See “Quick
Start” on page 31 for details.

This model implements a simple distributed ping pong application
using Rose RealTime and Connexis. It is a Connexis-enabled version of
the model developed in Iteration 1, and demonstrates the simplicity of
distribution using Connexis.
22 User Guide - Rational Rose RealTime Connexis

The HelloWorld Model
To run the model, please compile the Ping and Pong component
instances corresponding to your host compiler, and choose run from
the item menu of the component instances under the
PingPongProcessor.

The HelloWorld Model

The HelloWorld model implements a simple distributed model using
Connexis. The model demonstrates the use of the Connexis Locator
Service and how it can be used to easily provide backup service in a
distributed environment.

The model contains two servers, a client, and the Connexis locator
service, each running independently. The servers speak different
languages (either English, or French). Initially, the client is bound to
the server that comes up first. Once bound, the client makes requests
to the server and the server sends back a greeting in the language it
speaks.

If the server to which the client is bound becomes unavailable, the
client is notified of the connection loss, and it rebinds to the backup
server, which starts responding to the client requests in the language
it speaks. For example, if the client is initially bound to the English
server, it will start receiving greetings in English. If you then terminate
the English server (for example, resetting through the RTS panel), the
connection will be lost momentarily, the client will be rebound to the
French server, and the client will start receiving the greetings in
French.

Note: The greetings are output to the DOS window (Windows) and the
RTS Output window (Solaris), which comes up when the client is started.

Running the HelloWorld Model

The model can be run on all supported host platforms. To run the
application, start up the matching (for example, VC++6.0) set of
locator, client, EnglishServer and FrenchServer component instances.

� Keep the DOS (Windows) or RTS Output (Solaris) window for the
client in view. The other DOS or RTS Output windows can be
minimized to reduce screen clutter.

� Run all the component instances from the corresponding RTS
panels.
User Guide - Rational Rose RealTime Connexis 23

Chapter 2 Using Connexis Model Examples
� If you run the EnglishServer first, you should see “Hello World!!!”
appear on the client DOS window repeatedly. At this point, you can
terminate the EnglishServer instance by means of the RTS panel.
The client will receive a connection loss, and will then switch over
to the FrenchServer as soon it is rebound via the locator service.
You should now start to see "Salut le monde!!!" displayed in the
client DOS window.

Additional HelloWorld Models

The following models are extensions of the HelloWorld model. They
provide examples of distributed load-sharing and fault-tolerant
patterns.

HelloWorldHotStandby

A client connects to two servers through a proxy actor, and continually
sends greeting requests. The proxy forwards the message to both
servers, and both of the servers respond back to the proxy, which in
turn relays the message from the active server to the client. If there is
no response from the active server within a specified time period, the
other server becomes active, and starts to handle all the client
requests.

HelloWorldLoadSharing

This model consists of two servers (an English and a French one) that
supply greeting messages for multiple clients. The clients connect to
the servers in a round-robin fashion. For example, if you had four
clients, the first and the third client would connect to one server and
the second and the fourth client would connect to the other server.

HelloWorldOverflowToBackupService

This model contains two servers (an English and a French one). One of
the servers is given a higher rank so that it acts as the primary server.
The clients connect to the primary server until the primary server has
reached its full capacity. Any subsequent clients will connect to the
backup server, which will handle their greeting requests for those
clients.
24 User Guide - Rational Rose RealTime Connexis

The DCS Performance Model
HelloWorldRedundantLocator

The model consists of one server, multiple clients, and a primary and
a backup locator. The clients connect to the server using the primary
locator. The server, in turn, provides greeting signals for the clients. If
the primary locator is shut down, all subsequent client-server
connections will be established using the backup locator.

The DCS Performance Model

With the DCS Performance Model, you collect performance data for
intra-thread, inter-tread, and inter-processor messaging throughput.
Using this data, you can evaluate message throughput and transport
latency within your environment.

The performance model contains a client capsule and a server capsule
that echo messages between each other. This lets you evaluate the
amount of time required to send messages between capsules.

The model measures performance between capsules in the following
scenarios:

� Client and server on the same thread

� Client and server on different threads

� Client and server in different processes (using the DCS)

The model also provides data that can be used to measure the message
latency using raw socket-based inter-process communication (IPC).

Running the Performance Model

Before compiling the components for the performance model, you must
set the target configuration properties for the components. Once the
components are built, the run-time operations must be configured to
run either the CDM/UDP and CRM/TCP tests.

To run the performance model

1. Set the C++ Compilation Target Services Library properly for the
following components so that they can compile in your
environment:

❑ ThroughputClient

❑ ThroughputServer
User Guide - Rational Rose RealTime Connexis 25

Chapter 2 Using Connexis Model Examples
All intra-thread, inter-thread, and inter-process tests run within
the ThroughputClientInstance. The ThroughputServerInstance is
used for the IPC tests and the benchmark UDP/TCP tests.

2. Edit the properties of the “inclusion paths” to include the
TargetRTS target specific header files.

For example, if you are running on a VxWorks target, the following
inclusion path must be specified:
$RoseRT_Home/C++/TargetRTS/src/target/TORNADO1

Note: These directories are not normally included in user models.
They have been used in this model to facilitate portability to different
target environments.

3. Set the run-time options for the client’s component instance
according to the following chart:

4. Set the run-time options for the server’s component instance
according to the following chart:

Table 2 Run-time options for the client component

Option Description

-s<server address>:<port> specifies the endpoint of the server and is
used in the client's registration string. (ex.:
-s192.139.252.84:9900).
This parameter must correspond to the
server endpoint specified using -CNXep.

-n<num msgs> specifies the number of messages to be
echoed between the client and server for
each test.

-crm | -cdm specifies which transport is to be tested.

-l<local port> specifies the local port to be used for the
raw TCP/UDP benchmarks.

-r<remote port> specifies the remote port to be used for the
raw TCP/UDP benchmarks. The remote
address is obtained from the endpoint
parameter (-s).
26 User Guide - Rational Rose RealTime Connexis

The DCS Performance Model
5. Run CDM/UDP and CRM/TCP.

Performance model server output
Rational Rose RealTime C++ Target Run Time System
Release 6.30.B.01 (+c)
Copyright (c) 1993-2000 Rational Software
rosert: observability listening at tcp port 30503

* Please note: STDIN is turned off. *
* To use the command line, telnet to the above mentioned port. *
* The _output_ of any command will be displayed in _this_ window. *

Rational Software Corp. Connexis(tm) - Distributed Connection Service (dcs)
Release 6.30.B.154
Copyright (c) 1999-2000 Rational Software Corporation

dcs: CDM Transport : enabled
dcs: CDM listening at [cdm://192.139.252.171:9900]
dcs: locator service not available
dcs: metric service available

DCS Performance Test Begins
===========================

Client address for benchmark tests: 192.139.252.171
Benchmark tests listening at port: 9800
Benchmark tests connecting to remote port: 8800

Table 3

Option Description

-crm | -cdm specifies which transport is to be tested.

-l<local port> specifies the local port to be used for the
raw TCP/UDP benchmarks.

-CNXep = port
-CNXep = CRM:port

specifies the endpoint where the server is
listening.

-r<remote port> specifies the remote port to be used for the
raw UDP benchmarks.

-a<remote address> specifies the remote address to be used for
the raw UDP benchmarks.
User Guide - Rational Rose RealTime Connexis 27

Chapter 2 Using Connexis Model Examples
Performance model client output
Rational Rose RealTime C++ Target Run Time System
Release 6.30.B.01 (+c)
Copyright (c) 1993-2000 Rational Software
rosert: observability listening at tcp port 30346

* Please note: STDIN is turned off. *
* To use the command line, telnet to the above mentioned port. *
* The _output_ of any command will be displayed in _this_ window. *

DCS Performance Test Begins
===========================

Number of messages per iteration: 10000
Server address for IPC tests: 192.139.252.171:9900
Benchmark tests listening at port: 8800
Benchmark tests connecting to remote port: 9800
Transport protocol to be tested: cdm

Intra-thread Througput Test

Start time [s:ns]: 984682532:620000000
Finish time [s:ns]: 984682532:700000000
Message size: 16
Messages sent: 10000
Duration [in ms]: 80

Start time [s:ns]: 984682532:700000000
Finish time [s:ns]: 984682532:780000000
Message size: 64
Messages sent: 10000
Duration [in ms]: 80

Start time [s:ns]: 984682532:780000000
Finish time [s:ns]: 984682532:861000000
Message size: 256
Messages sent: 10000
Duration [in ms]: 81

Start time [s:ns]: 984682533:261000000
Finish time [s:ns]: 984682533:351000000
Message size: 1024
Messages sent: 10000
Duration [in ms]: 90

Start time [s:ns]: 984682533:351000000
Finish time [s:ns]: 984682533:501000000
Message size: 4096
Messages sent: 10000
Duration [in ms]: 150

Inter-thread Througput Test

28 User Guide - Rational Rose RealTime Connexis

The DCS Performance Model
Start time [s:ns]: 984682533:501000000
Finish time [s:ns]: 984682533:682000000
Message size: 16
Messages sent: 10000
Duration [in ms]: 181

Start time [s:ns]: 984682533:912000000
Finish time [s:ns]: 984682534:112000000
Message size: 64
Messages sent: 10000
Duration [in ms]: 200

Start time [s:ns]: 984682534:112000000
Finish time [s:ns]: 984682534:303000000
Message size: 256
Messages sent: 10000
Duration [in ms]: 191

Start time [s:ns]: 984682534:513000000
Finish time [s:ns]: 984682534:683000000
Message size: 1024
Messages sent: 10000
Duration [in ms]: 170

Start time [s:ns]: 984682534:693000000
Finish time [s:ns]: 984682534:914000000
Message size: 4096
Messages sent: 10000
Duration [in ms]: 221

Rational Software Corp. Connexis(tm) - Distributed Connection Service (dcs)
Release 6.30.B.154
Copyright (c) 1999-2000 Rational Software Corporation

dcs: CDM Transport : enabled
dcs: CDM listening at [cdm://192.139.252.171:2202]
dcs: locator service not available
dcs: metric service available

Inter-processor Througput Test

Start time [s:ns]: 984682535:134000000
Finish time [s:ns]: 984682536:95000000
Message size: 16
Messages sent: 10000
Duration [in ms]: 961

Start time [s:ns]: 984682536:105000000
Finish time [s:ns]: 984682537:47000000
Message size: 64
Messages sent: 10000
Duration [in ms]: 942
User Guide - Rational Rose RealTime Connexis 29

Chapter 2 Using Connexis Model Examples
Start time [s:ns]: 984682537:57000000
Finish time [s:ns]: 984682538:68000000
Message size: 256
Messages sent: 10000
Duration [in ms]: 1011

Start time [s:ns]: 984682538:78000000
Finish time [s:ns]: 984682539:290000000
Message size: 1024
Messages sent: 10000
Duration [in ms]: 1212

Start time [s:ns]: 984682539:290000000
Finish time [s:ns]: 984682541:152000000
Message size: 4096
Messages sent: 10000
Duration [in ms]: 1862

Inter-process Benchmark Test

Start time [s:ns]: 984682541:173000000
Finish time [s:ns]: 984682541:513000000
Message size: 16
Messages sent: 10000
Duration [in ms]: 340

Start time [s:ns]: 984682541:523000000
Finish time [s:ns]: 984682541:823000000
Message size: 64
Messages sent: 10000
Duration [in ms]: 300

Start time [s:ns]: 984682541:833000000
Finish time [s:ns]: 984682542:144000000
Message size: 256
Messages sent: 10000
Duration [in ms]: 311

Start time [s:ns]: 984682542:144000000
Finish time [s:ns]: 984682542:524000000
Message size: 1024
Messages sent: 10000
Duration [in ms]: 380

Start time [s:ns]: 984682542:534000000
Finish time [s:ns]: 984682543:406000000
Message size: 4096
Messages sent: 10000
Duration [in ms]: 872

TESTS COMPLETE!!!!
30 User Guide - Rational Rose RealTime Connexis

Chapter 3

Quick Start

Connexis is a connection tool that provides robust, transparent
communication between Rational Rose RealTime executable models.
Rational Connexis is integrated with Rational Rose RealTime, which is
a modeling tool that generates executables from UML models.

Connexis improves an application’s time to market by eliminating the
need to design, develop, and test a custom Inter-Process
Communications (IPC) mechanism. The use of a production quality,
Commercial Off The Shelf (COTS) distribution component, such as
Connexis, simplifies and de-risks the design and deployment of
distributed systems.

The Connexis Quick start presented in this chapter takes you through
the general steps that are required to create and execute a Connexis-
enabled application. To follow the steps laid out in this chapter, you
should have:

� Rational Rose RealTime installed on your workstation

� Rational Connexis installed on your workstation

� a general understanding of Rational Rose RealTime and UML

Quick Start Overview

The application to be created is a simple “ping pong” application. The
clients send a ping message to the server, and the server responds with
a pong message. Registration is accomplished using the Locator
Service. The necessary command line options for starting the
applications are also presented.
User Guide - Rational Rose RealTime Connexis 31

Chapter 3 Quick Start
This application is created in three iterations:

� Iteration 1: Creating the Rose RealTime Model - creates the basic
architecture using wired ports to connect the Ping and Pong
capsules. This also involves a third capsule which acts as the
container for the Ping and Pong capsules.

� Iteration 2: Connexis Enabling our Application- makes
modifications so that Ping and Pong communicate through
unwired ports that make use of Connexis connections.

Iteration 1 focuses on creating a simple Rose RealTime model;
therefore, readers who are familiar with Rose RealTime can start with
the solution for Iteration 1, which is found in the examples directory,
$ROSERT_HOME\CONNEXIS\C++\examples. Iteration 2 focuses on
Connexis-enabling the Rose RealTime model.

Note: The package organization of the example models differs slightly
from this tutorial because the examples support multiple platforms;
however, the model elements are the same.

Many of the steps that are presented in these iterations are examples
of good modeling practices. Explanations and the rationale behind
these good modeling practices are presented where appropriate and
are separated from the rest of the text by the heading “Rationale for
....”
32 User Guide - Rational Rose RealTime Connexis

Quick Start Overview
Figure 6 presents the final architecture of the model that is created in
Iteration 2.

Figure 6 Ping pong application architecture (at the end of Iteration 2)

Even though the ping pong application is very simple it is still
appropriate to present a sequence diagram that documents its
behavior. The sequence diagram, shown in Figure 7, describes the
messages that are sent between the Ping and Pong capsules. The
events illustrated in this sequence diagram are discussed throughout
the remainder of the Quick start.
User Guide - Rational Rose RealTime Connexis 33

Chapter 3 Quick Start
Figure 7 Ping Pong application sequence diagram
34 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
Iteration 1: Creating the Rose RealTime Model

Iteration 1 focuses on creating the Rose RealTime model that is used
throughout the Quick start.

Step 1: Create a New Model

To create a new model in Rose RealTime:

1. Select File > New.

Step 2: Create Packages for the Model

To create the ping pong client package:

1. Open the pop-up menu on the Logical View package in your Rose
RealTime browser. Do this by right-clicking on the Logical View
package as shown in Figure 8.

Figure 8 Creating packages

2. Select New > Package from the pop-up menu.
User Guide - Rational Rose RealTime Connexis 35

Chapter 3 Quick Start
3. While the default package name is selected, type in
“PingPongClient” to set the name of the new package.

To create the ping pong server package:

Follow the same steps as those listed for “To create the ping pong client
package:” except name the new package “PingPongServer.”

To create the ping pong container package:

Follow the same steps as those listed for “To create the ping pong client
package:” except name the new package “Container.”

To create the ping pong utility package:

Follow the same steps as those listed for “To create the ping pong client
package:”- except name the new package “Common.”

You should now have all of the packages that are required, as shown
in Figure 9.
36 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
Figure 9 Created packages

Rationale for creating packages

It is good practice (although not required) to organize all of your Rose
RealTime models into packages. You might think that it is overkill for
a model that is as trivial as this one, but it is good to get in the habit
of doing this, remember small models usually become big models
eventually and it is easier to start off with packages than it is to add
them later.

The main reasons for wanting to organize your models into packages
are:

� ease of understanding and navigation - Packages give you an extra
level of abstraction above what is provided by the classes and
capsules in your model.

� separation of concerns - It is a good way of dividing the work that is
to be done between teams or individuals on teams.
User Guide - Rational Rose RealTime Connexis 37

Chapter 3 Quick Start
� configuration management - Packages are a possible unit of
version control.

� access control - You can define the visibility of classes and
capsules within packages. This makes it possible to control the
access to design elements that are organized into packages.

There are many other reasons for wanting to organize your models into
packages. For more information on this topic, refer to the “Rose
RealTime User’s Guide.”

Step 3: Create the Ping, Pong, and ContainerCapsules

In this application, the Ping capsule fulfills the role of a client. It is
referred to as the client because it only manages a single connection.
The server side of the application is responsible for managing multiple
connections (one for each client it is connected to). The Pong capsule
fulfills the role of the server in this application. The container capsule
contains both the Ping and Pong capsules in Iteration 1 of the
application.

Remember that the application is being built in two iterations; the first
uses wired ports and the second uses Connexis-enabled, non-wired
ports.
38 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
To create the Ping capsule:

1. Select the PingPongClient package as shown in Figure 10.

Figure 10 Creating a new capsule

2. Open the pop-up menu and select New > Capsule.

3. While the default name of the new capsule is still highlighted, type
in “Ping." This renames the new capsule.

To create the Pong capsule:

To create the Pong capsule, follow the same steps as those listed for “To
create the Ping capsule:” except create the Pong capsule in the
PingPongServer package.

To create the Container capsule:

To create the Container capsule, follow the same steps as those listed
for “To create the Ping capsule:” except create the Container capsule in
the Container package.
User Guide - Rational Rose RealTime Connexis 39

Chapter 3 Quick Start
The connection topology that is used in this application is an
oversimplification of a real-world distributed application. In real-world
distributed applications, objects would typically take on the role of
client in some communication scenarios and the role of server in
others. Common connection topologies for distributed applications are
discussed in “Establishing Connections” on page 107.

You should now have all of the capsules that are required as shown in
Figure 11.

Figure 11 Created capsules

Step 4: Create the PingPong Protocol Class

In Rose RealTime, capsules communicate with one another through
ports. Ports are defined by a protocol. A protocol is a definition of a set
of incoming signals, along with their associated data types, and a set
of outgoing signals, along with their associated data types.

To create a protocol class:

1. Open the pop-up menu on the Common package by right-clicking
on the Common Package as shown in Figure 12.

2. Select New > Protocol from the pop-up menu.
40 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
3. While the default name of the new protocol is still highlighted, type
in “PingPong." This renames the new protocol.

Figure 12 Creating protocol classes

The PingPong protocol consists of an In Signal called pong, and an Out
Signal called ping. Neither of these signals have data associated with
them.

To add the signals to the protocol class:

1. Open the pop-up menu on the PingPong protocol class.

2. Select Open Specification from the pop-up menu.

3. Select the Signals tab.

4. Open the pop-up menu on the In Signals panel (by right clicking on
the white space below In Signals as shown in Figure 13) and select
Insert. A new signal is added and its default name is highlighted.
User Guide - Rational Rose RealTime Connexis 41

Chapter 3 Quick Start
Figure 13 Protocol specification window

5. While the default name is highlighted, type in “pong." This names
the In Signal pong.

6. Repeat steps 4 and 5 in the Out Signal panel. Name the Out Signal
“ping."

7. Click the OK button.

Rationale for choice of conjugation and signal names

The In Signal is named pong because the protocol is defined from the
perspective of the client. Remember that the client side of the
application is implemented by the Ping capsule. The Ping capsule
sends ping signals and receives pong signals; therefore, the protocol
that is being used should have a pong In Signal and a ping Out Signal.
42 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
The practice of conjugating the server side of a connection is not
required but it is a good way of keeping the naming of ports and
protocols consistent. Conjugating the server side of a connection has
the added benefit of reducing modeling efforts. Ports by default are not
conjugated and there are usually more client ports that server ports.

Step 5: Build the Structure of the Model

As was outlined in the introduction section of this chapter, the first
iteration uses wired ports to connect the Ping and Pong capsules. This
means that a capsule that acts as the container for the Ping and Pong
capsules must be created. This is the capsule that was called
Container.

To create Ping and Pong capsule roles in the Container capsule:

1. Create a new class diagram called “Architecture." This is done by
right-clicking on the Logical View package and selecting New > Class
Diagram from the pop-up menu.

2. Double-click Architecture to open the class diagram.

3. Drag one of each of the Ping, Pong, and Container capsule, from
the browser onto the diagram.

4. Select the Unidirectional Aggregation tool .

5. Create an aggregation relationship between the Container capsule
and the Ping capsule. Do this by clicking and dragging from the
Container capsule to the Ping capsule as shown in Figure 14.
User Guide - Rational Rose RealTime Connexis 43

Chapter 3 Quick Start
Figure 14 Creating aggregations between capsules

6. Repeat step 5 to create an aggregation relationship between the
Container capsule and the Pong capsule.

7. Select the Container/Ping aggregation and open its specification.
Type in the name “ping."

8. Assign a cardinality of 5 to the Container/Ping aggregation.

In a “real” application, the cardinality would be specified using a
constant as opposed to a literal. A literal was used in this example
only for brevity.

9. Click the OK button.

10. Select the Container/Pong aggregation and open its specification.
Type the name “pong."

11. Click the OK button.
44 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
If you now open the structure diagram of the Container capsule,
you should see a structure similar to what is shown in Figure 15.

Figure 15 Container capsule’s structure diagram

Note: This containment structure could have been created just as easily
from the structure editor of the Container capsule.

To create required ports on Ping and Pong capsules:

1. Drag the PingPong protocol class onto the Architecture class
diagram.

2. Create an aggregation association between the Ping capsule and
the PingPong protocol as shown in Figure 16. Name the association
“pingPong.”
User Guide - Rational Rose RealTime Connexis 45

Chapter 3 Quick Start
Figure 16 Creating ports from a class diagram

3. Create an aggregation association between the Pong capsule and
the PingPong protocol. Name the association “pingPong."

4. Open the specification for the aggregation between the Pong
capsule and the PingPong protocol.

5. Specify a cardinality of 5 and click the Conjugated check box.

6. Click the OK button.

To create a log protocol:

1. Select the Ping capsule.

2. Open its structure diagram.

3. Drag a log protocol onto the structure diagram. Do this by selecting
the log protocol found in the RTClasses package in the Logical View
package.

4. Select the log icon and open its specification.

5. Type in the name “log” and ensure that Protected is enabled.

6. Click the OK button.
46 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
Rationale for visibility of ports

The log protocol is used to access the logging service that is built into
the Rose RealTime libraries. The logging service is used primarily for
printing messages to standard error during the initial debugging of
models.

The PingPong port is shown in the class diagram because it is
architecturally significant. The log port is shown in the structure
diagram because it is an implementation detail; however, the log port
could have been added to the class diagram, if desired, and the
behavior would be exactly the same.

Repeat steps 1 to 6 for the Pong capsule.

To connect the Ping and Pong capsules:

1. Open the structure editor for the Container capsule by right-
clicking and choosing Open Structure Diagram.

2. Select the Connector tool .

3. Connect the pingPong port on the Ping capsule to the pingPong
port on the Pong capsule as shown in Figure 17.

Figure 17 Creating connectors between ports

The structure for Iteration 1 is now complete. Your class diagram
should look the same as the one shown in Figure 18.

Note: To show the port and log icons, select the capsule and choose
Options > Show Visibility.
User Guide - Rational Rose RealTime Connexis 47

Chapter 3 Quick Start
Figure 18 Completed structure for Iteration 1

Step 6: Implement the State Machines for Ping and Pong

To implement the state machines for the Ping and Pong capsules
perform the steps listed below.

To create Ping’s state machine:

1. Select the Ping capsule.

2. Open the state editor by right-clicking and choosing Open State
Diagram.

3. Select the state tool and drop a state on the diagram. Do this
by clicking the state tool and clicking anywhere on the diagram.

4. Name this state “ready."

5. Select the transition tool and draw the initial transition from
the initial state to the ready state.
48 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
6. Double-click the transition, and select the Actions tab in the
specification editor.

7. Type in the following code, and then click the OK button (see
Figure 19).

pingPong.ping().send();

Figure 19 Adding code to a transition

8. Select the self transition tool and draw a self transition on the
ready state, name this transition “pong." Your diagram should look
similar to Figure 20.
User Guide - Rational Rose RealTime Connexis 49

Chapter 3 Quick Start
Figure 20 Creating states

9. Double-click on the pong transition and select the Actions tab.

10. Type in the following code:

log.log("received a pong");
pingPong.ping().send();

Note: In a real world application, you would not immediately send a
Ping request. You would most likely perform additional processing
where another event would trigger the sending of another Ping
request.

11. Click the Apply button.

12. Select the Triggers tab.

13. Right-click in the control area and select Insert from the pop-up
menu as shown in Figure 21.
50 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
Figure 21 Adding triggers to a transition

14. Select the pingPong port and the pong signal from the resulting
Event Editor dialog as shown in Figure 22 and click the OK button.
User Guide - Rational Rose RealTime Connexis 51

Chapter 3 Quick Start
Figure 22 Selecting the port and signal

To create Pong’s state machine:

1. Open the state editor for the Pong capsule.

2. Select the state tool and drop a state on the diagram.

3. Name this state “ready."

4. Select the transition tool and draw the initial transition from the
initial state to the ready state.

5. Select the self transition tool and draw a self transition on the
ready state, name this transition “ping."

6. Double-click on the ping transition, and select the Actions tab in the
specification editor.

7. Type in the following code:
log.log("received a ping");
rtport->pong().reply();

8. Click the Apply button.

9. Select the Triggers tab.
52 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
10. Right-click in the control area and select Insert from the pop-up
menu.

11. Select the pingPong port and the ping signal from the resulting
Event Editor dialog and click the OK button.

Step 7: Build and Test the Model

To build and run a model from Rose RealTime, you must first create a
component. Components are used to model the physical elements that
may reside on a node, such as executables, libraries, source files, and
documents. In other words, the component represents the physical
packaging of the logical elements, such as classes and capsules. For
the purposes of this example, the components that are created are
going to represent executables.

Components have an associated top-level capsule. The top-level
capsule defines what parts of the model are contained in the
executable. In this case, the Container capsule should be made the
top-level capsule of the new component.

To create a component:

1. Choose Build > Component Wizard to run the Build Component Wizard.

2. Click Next.

3. Type “PingPongApp” in the component name field as shown in
Figure 23. Ensure that the package is Component View and click
Next.
User Guide - Rational Rose RealTime Connexis 53

Chapter 3 Quick Start
Figure 23 Setting the component identity - Iteration 1

4. Select C++ and click Next.

5. Click the OK button.

To customize the component:

1. Click Next.

2. Click Set the top-level capsule as shown in Figure 24.
54 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
Figure 24 Setting the top-level capsule - Iteration 1

3. Select the package. In this case, select Container from the drop-
down list.

4. Select the capsule. In this case, select the Container capsule from
the drop-down list

5. Click Next.

6. Click Next.

7. Choose the target configuration as in Figure 25. If your
development configuration is Visual C++ 6.0 in Windows NT, select
NT40T.x86-VisualC++-6.0 and click Next. If your configuration is
different, select the appropriate target.
User Guide - Rational Rose RealTime Connexis 55

Chapter 3 Quick Start
Figure 25 Setting the target service library

8. Click Finish and click the OK button.

There are many options that are associated with components. For the
purposes of this example the default values are sufficient.

To create a processor:

To execute the model from within the toolset, you must assign the
component that was created in the last step to a processor. This tells
Rose RealTime to execute the component on a specific machine on your
network. There are many options that can be set for the processor and
for executing a component instance on the processor. The defaults are
sufficient in this case.

To create a processor:

1. Right-click on the Deployment View folder in the Rose RealTime
browser and select New > Processor from the pop-up menu.

2. Name this processor “PingPongProcessor."

3. Drag and drop the PingPongApp component onto the
PingPongProcessor.
56 User Guide - Rational Rose RealTime Connexis

Iteration 1: Creating the Rose RealTime Model
You now should have a PingPongProcessor that contains a
PingPongApp component instance as shown in Figure 26.

Figure 26 Processor and component instance

To build the model:

1. Save the model as "Tutorial_Iteration1."

2. Select the PingPongApp component.

3. Open the pop-up menu and choose Build > Quick Build.

4. Click Add References and Continue.

5. Click the OK button.

Rationale for using Quick Build

In this rapid prototyping example, we allow the tool to inform us about
missing references and add them. In a large, managed application,
references should be carefully managed and added manually to the
component.

Run the PingPong component instance

To run the PingPong application:

1. Right-click on the PingPongAppInstance and select Run from the
pop-up menu. This creates the run-time environment within Rose
RealTime.

2. Select No to “Build the component?” since it is already built.
User Guide - Rational Rose RealTime Connexis 57

Chapter 3 Quick Start
The top left hand corner of the Rose RealTime application should
now look something like what is illustrated in Figure 27. A console
window also appears. This window is where the standard output
from the model is displayed. Keep this window visible so that you
can see the output that is being displayed.

Figure 27 Rose RealTime run-time environment

3. Press the Start button to execute the model.

While the PingPongApp is running, you should see messages being
printed to the console window. The Pong capsule receives ping signals
from the Ping capsule and prints “received a ping” each time it does.
Likewise, the Ping capsule receives pong messages from the Pong
capsule and prints “received a pong” each time it does.
58 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Because of the way that this model has been designed and the way the
Target RSL message queuing works, this model prints five “received a
ping” messages followed by five “received a pong” messages and
continues doing this until the model is stopped. All messages that are
sent to a capsule are queued in a priority queue. In this model, all five
of the “ping” messages are queued before a “pong” response is
generated. This causes the messages to be output as shown in the
console window.

4. Click the Shutdown button in the Runtime Viewer to stop the
process.

Iteration 2: Connexis Enabling our Application

Connexis manages connections that are established between unwired
ports. Unwired ports are ports whose connections are defined at run-
time. Unlike wired ports, unwired ports cannot have connectors
defined between themselves and other ports. The connections
established between unwired ports can also be removed and
reestablished at run-time.

Since unwired ports are used in Iteration 2, the first thing to do for
Iteration 2 is to remove the wired connections that were created in
Iteration 1 and make the wired pingPong ports unwired.

Step 1: Remove the Connector Between the pingPong Ports

To remove the connector between the pingPong ports:

1. Open the model “Tutorial_Iteration1” that you created in
Iteration 1.

2. Save the model as “Tutorial_Iteration2.”

3. Open the Container capsule’s structure diagram as shown in
Figure 28.

4. Select the connector that is joining the pingPong ports on the Ping
and Pong capsules. Right-click and choose Remove/Exclude to delete
the connector.
User Guide - Rational Rose RealTime Connexis 59

Chapter 3 Quick Start
Figure 28 Removing the connector between ping and pong

Step 2: Make Changes to Pong’s pingPong Port

To make changes to Pong’s pingPong port:

1. Open the Pong capsule’s structure diagram.

2. Select the pingPong port and open its specification.

3. Uncheck the Wired option as shown in Figure 29.

4. Check the Publish option.

This makes the port externally visible.

5. Since the port is being registered in transition code, the Application
radio button must also be checked.
60 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Figure 29 Changing port specifications for Pong

Step 3: Make Changes to Ping’s pingPong Port

To make changes to Ping’t pingPong port:

1. Open the Ping capsule’s structure diagram.

2. Select the pingPong port and open its specification.

3. Uncheck the Wired option as shown in Figure 30.

4. Check the Notification check box.

5. Since the port is being registered in transition code, the Application
radio button must also be checked.
User Guide - Rational Rose RealTime Connexis 61

Chapter 3 Quick Start
Figure 30 Changing port specifications for Ping

The Notification box has been checked so the Ping capsule will be
notified when a connection has been established on the pingPong port.
The Notification box was not checked in the Pong capsule because it
doesn’t really care when connections have been established to its port.
This is because the Pong capsule has published its interface and is just
waiting for others to connect to it. In a more realistic design, the Pong
capsule may be required to keep track of how many clients are
connected at any given time. This would make Pong’s state machine
slightly more complicated.

In the Ping capsule, the notification event will be used. Ping’s state
machine must be changed so that it waits for an rtBound signal to be
received on the pingPong port before sending a Ping message.

Note: The Target RSL sends the rtBound signal as notification that a
connection was established.
62 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Step 4: Adding DCS Layer Notification to the Ping and Pong Capsules

To add DCS layer notigication to Ping and Pong capasules:

1. Open the Class Diagram called Architecture you created in the first
iteration.

2. Drag the RTDInitStatus protocol, located in the RTDInterface
package in the Logical View, onto the diagram.

3. Select the Unidirectional Aggregation tool.

4. Create an aggregation association between the Pong capsule and
the RTDInitStatus protocol. Name the association "dcsStatus."

5. Open the specification for the aggregation between the Pong
capsule and the RTDInitStatus protocol.

6. Specify that it is:

a. protected

b. an end port

c. not wired, and

d. notification enabled

7. Specify that the Registration will be handled automatically, and
specify a registration override of “:RTDInitStatus.”

8. Repeat steps 3 through 7 for the Ping capsule.

Before a model attempts to publish or subscribe to services through
Connexis, it should verify that the DCS layer is active and properly
initialized. If not, publication and subscription attempts will fail. The
Connexis capsule will publish the RTDInitStatus service through the
Internal Layer Service when it has completed its initialization. By
subscribing to the service and enabling notification, the model can wait
until it receives notification from Connexis before registering its SAPs
or SPPs.
User Guide - Rational Rose RealTime Connexis 63

Chapter 3 Quick Start
Figure 31 Port Specification for dcsStatus

Step 5: Modify Ping’s State Machine to Wait for Connexis

To modify Ping’s state machine to wait for Connexis:

1. Open the state diagram for Ping.

2. Add a new state to the diagram and call it “waitingForDCS.”

3. Delete the Initial transition to the “ready” state.

4. Add a new Initial transition to the “waitingForDCS” state.

5. Add a transition from the “waitingForDCS” state to the “ready”
state. Label this transition “dcsReady.”

6. Open the specification for the “dcsReady” transition and click the
Triggers tab.

7. Insert a trigger for the rtBound event on the dcsStatus port. We will
add the action code to subscribe to the service in a later step.
64 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Figure 32 Add a transition for dcsStatus

Step 6: Modify Pong’s State Machine to Wait for Connexis

To modify Pong’s state machine to wait for Connexis:

1. Open the state diagram for Pong.

2. Add a new state to the diagram and call it “waitingForDCS.”

3. Delete the Initial transition to the “ready” state.

4. Add a new Initial transition to the “waitingForDCS” state.

5. Add a transition from the “waitingForDCS” state to the “ready”
state. Label this transition “dcsReady.”

6. Open the specification for the “dcsReady” transition and click the
Triggers tab.

7. Insert a trigger for the rtBound event on the dcsStatus port. We will
add the action code to publish the service in a later step.
User Guide - Rational Rose RealTime Connexis 65

Chapter 3 Quick Start
Step 7: Modify Ping’s State Machine to Wait for Notify

To modify Ping’s state machine to wait for notify:

1. Open the state diagram for Ping.

2. Add a new state to the diagram and call it “connected."

3. Add a transition between the “ready” state and the “connected”
state. Label this transition “bound."

4. Open the specification for the “bound” transition and click on the
Triggers tab.

5. Insert a trigger for the rtBound event on the pingPong port.

Figure 33 Transition Specification for rtBound

6. Click on the Actions tab and add the following code in the code
editor:
pingPong.ping().send();

7. Move the pong transition from the ready state to the connected
state.

To do this, select the transition and drag both ends of the
transition over onto the Connected state one at a time. Your final
state diagram should be similar to the one shown in Figure 34.
66 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Figure 34 Ping’s state diagram

Step 8: Add Registration Code to the Ping and Pong Capsules

Connexis needs to know how to connect the unwired ports in your
model. A client can “lookup” a server in one of three places:

� locally - connect only with current TargetRTS

� explicit address - connect only to the TargetRTS at the specified
address

� locator - connect using the Locator service

In addition to these options, there are also several parameters that can
be passed to Connexis when you register a port. These parameters are
discussed in detail in “Establishing Connections” on page 107.

In this example, the Ping and Pong capsules are going to register with
the Locator service.

The basic syntax for registering a port with the Locator service is:

// for the client side of the connection
registerSAP(“registrationString”);

and

//for the server side of the connection
registerSPP(“registrationString”);
User Guide - Rational Rose RealTime Connexis 67

Chapter 3 Quick Start
The registration string is different depending on which of the three
lookup types you are using (local, explicit address, locator). In this
example, the Locator service is being used, so the form of the
registration string is:

connection_service:/registration_name

The only connection service currently available is the Distributed
Connection Service (DCS) and Connexis Reliable Messaging (CRM).
This leaves us with the following syntax for registering the pingPong
port in the client:

registerSAP(“dcs:/pingpong”);

and the syntax for registering the pingPong port in the server as:

registerSPP(“dcs:/pingpong”);

In this example, the “pingpong” portion of the registration string could
have been any string.

This is the simplest case of registration using the Locator. There are
many parameters that can be supplied to the Locator as part of the
registration string for doing things like setting the transport protocol
that is being used. These parameters are discussed in “Establishing
Connections” on page 107.

To add registration code to the Ping capsule:

1. Open the state diagram for the Ping capsule.

2. Double-click on the dcsReady transition and select the Actions tab
in the resulting dialog.

3. Delete the existing text and enter the following code into the code
window:

if (!pingPong.registerSAP(“dcs:/pingpong”)) {
log.log(“Ping registration failed”);

}

4. Click the OK button.

To add registration code to the Pong capsule:

1. Open the state diagram for the Pong capsule.

2. Double-click on the dcsReady transition and select the Actions tab
in the resulting dialog.
68 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
3. Enter the following code into the code window:
if (!pingPong.registerSPP(“dcs:/pingpong”)) {

log.log(“Pong registration failed”);
}

4. Click the OK button.

Now all of the model changes that are required have been completed.
The next step is to set up the Connexis environment and create two
new components. One of the components represents the Ping
application and the other the Pong application.

Step 9: Add the Connexis Configuration Capsules to Your Model

The Ping Pong Model requires the Ping and the Pong capsule to include
the DCS capsule roles. We will use the Connexis configuration
interface to add an RTDBase_Agent to Ping and an
RTDBase_Locator_Agent to Pong. (This configuration can also be done
manually).
User Guide - Rational Rose RealTime Connexis 69

Chapter 3 Quick Start
To configure the Ping Capsule:

1. Right-click the Ping capsule as in Figure 35.

Figure 35 Configuring the Ping Capsule

2. Select Configure Capsule for Connexis.

The Configure Connexis Dialog appears.
70 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Figure 36 Configure Connexis Capsule dialog

3. Select the following options:

a. Include DCS capsule role into this capsule

b. Target Agent (Viewer Debugging)

4. Click OK.

A dialog, suggesting that “Connexis packages be shared into this
model,” appears.

Figure 37 Sharing Connexis Packages request dialog

5. Click Yes.

You can see that the DCS capsule role has been added by viewing
the Ping capsule structure (see Figure 38, Ping Capsule Structure).
User Guide - Rational Rose RealTime Connexis 71

Chapter 3 Quick Start
Figure 38 Ping Capsule Structure

To configure the Pong Capsule:

1. Right-click the Pong capsule.

2. Select Configure Capsule for Connexis.
72 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
The Configure Connexis dialog appears.

Figure 39 Configure Connexis Capsule

3. Select the following options:

a. Include DCS Capsule Role into this capsule

b. Target Agent (Viewer Debugging)

c. Locator Functionality (Backup/Primary)

4. Click OK.

You can see that the DCS capsule role has been added by viewing the
Pong capsule structure. Since Pong also supports the locator, the class
of the DCS role is RTDBase_Locator_Agent instead of RTDBase_Agent.

Rationale for selecting RTD interfaces

In this configuration, only the Pong (server) capsule can be the locator.
We could use an RTD_Base_Locator_Agent reference in both Ping and
Pong, in which case either capsule could serve as the primary locator.
The locator’s location is determined by the parameters specified in
“Step 13: Build and Execute the Models."
User Guide - Rational Rose RealTime Connexis 73

Chapter 3 Quick Start
For more information about the features provided by the different
RTDInterface capsules, refer to “Adding Connexis Support to Your
Model” on page 83.

Step 10: Create and Configure the Ping Component

Create a component for the Ping application.

To create the Ping component:

1. Select the Component View package.

2. Open the pop-up menu and select New > Package.

3. Name the package “DistributedApp."

4. Choose Build > Component Wizard to run the Build Component Wizard.

5. Click Next.

6. Type “Ping” in the component name field as shown in Figure 40.
Ensure that the package is DistributedApp and click Next.

Figure 40 Setting the component identity - Iteration 2

7. Select C++ and click Next.

8. Click the OK button.
74 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
To customize the component:

1. Click Next.

2. Click Set the top-level capsule as shown in Figure 41.

a. Select PingPongClient package from the drop-down list.

b. Select Ping as the capsule.

Figure 41 Setting the top-level capsule - Iteration 2

3. Click Next.

4. Click Next.

5. Choose the target configuration.

Use the same target configuration as in “To customize the
component:” on page 54, step 7.

Step 11: Create and Configure the Pong Component

Create a component for the Pong application.

To create the Pong component:

1. Choose Build > Component Wizard to run the Build Component Wizard.

2. Click Next.

3. Type “Pong” in the component name field. Ensure that the package
is DistributedApp and click Next.
User Guide - Rational Rose RealTime Connexis 75

Chapter 3 Quick Start
4. Select C++ and click Next.

5. Click the OK button.

To customize the component:

1. Click Next.

2. Set the top level capsule:

a. Select PingPongServer package from the drop-down list.

b. Select Pong as the capsule.

3. Click Next.

4. Click Next.

5. Choose the target configuration.

Use the same target configuration as in “To customize the
component:” on page 54, step 7.
76 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Step 12: Add Component Dependencies

You need to create dependencies between the Ping component and the
Connexis DCS library, and the Pong component and the DCS library.

To add component dependencies:

1. Right-click the Ping Component.

Figure 42 Configuring the Ping Component

2. Select Connexis > Configure Component.

The Component Diagram Selection dialog appears.
User Guide - Rational Rose RealTime Connexis 77

Chapter 3 Quick Start
Figure 43 Component Diagram Selection dialog

3. Select Component View: Main.

4. Click OK.

You have created a dependency between the Ping component and
the DCS library.

5. Repeat steps one to four for the Pong component.

The Main diagram in Component View will appear as in Figure 44.

You should now have Ping and Pong components that are ready to be
compiled.
78 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Figure 44 Main component view diagram

Step 13: Build and Execute the Models

Now that the components have been created and configured, they must
be built. This is done by right-clicking on the component and selecting
Build from the pop-up menu.

To create a Ping processor and component instance:

1. Create a processor for the Ping component and name it
“PingProcessor."

2. Drag the Ping component onto the PingProcessor to create a
component instance.

3. Select the PingInstance and open its specification.

4. Add the following code to the Parameters field in front of the code
“-obslisten=30468”:

-CNXep=cdm://localhost:7777 -CNXlpep=cdm://localhost:8888

Your final code should appear similar to the line below. Note that
the target observability port number, 30468, will vary from this
example.

-CNXep=cdm://localhost:7777 -CNXlpep=cdm://localhost:8888 -
obslisten=30468

Note: See page 253 for information on using “localhost.”
User Guide - Rational Rose RealTime Connexis 79

Chapter 3 Quick Start
5. Click the OK button.

To create a Pong processor and component instance:

1. Create a processor for the Pong component and name it
“PongProcessor."

2. Drag the Pong component onto the PongProcessor to create a
component instance.

3. Select the PongInstance and open its specification.

4. Add the following code to the Parameters field in front of the code
“-obslisten=30477”:

-CNXep=cdm://localhost:8888 -CNXlp

Your final code should appear similar to the line below. Note that
the target observability port number, 30477, will vary from this
example.

-CNXep=cdm://localhost:8888 -CNXlp -obslisten=30477

5. Click the OK button.

Rationale for the Connexis parameters

The -CNXep= parameter identifies the cdm endpoint at which the
component instance listens. The -CNXlp parameter on the
PongInstance specifies that the PongInstance will act as the primary
locator. The -CNXlpep= parameter informs the PingInstance of the
location of the primary locator. Note that the -CNXep of the
PongInstance is the value of the -CNXlpep of the PingInstance. For
more information about Connexis parameters, refer to “Establishing
Connections” on page 107.

Run the Pong component instance

To run the Pong component instance:

1. Right-click on the PongInstance and select Run from the pop-up
menu.

2. Select No to “Build the component?” since it is already built.

A console window appears.

3. Press the Start button to execute the model.
80 User Guide - Rational Rose RealTime Connexis

Iteration 2: Connexis Enabling our Application
Run the Ping component instance

To run the Ping component instance:

1. Right-click on the PingInstance and select Run from the pop-up
menu.

2. Select No to “Build the component?” since it is already built.

A second console window appears for the Ping component instance.

3. Press the Start button to execute the model.

Note: The ping and pong reports appear in separate console windows.
The two processes are communicating through Connexis.

Optional: Distribute the model

When a model has been Connexis-enabled, it may be distributed by
simply changing the executable parameters.

The hostname "localhost" was used in previous component instance
specifications. Since this has a different meaning on each host, it must
be replaced with the actual hostname. For this example the machine
"angus" will be used for Ping and "bruce" for Pong.

1. Start Rose RealTime running on angus and bruce. Build the Ping
component on angus and the Pong component on bruce if you have
not already done so.

2. On angus, open the PingInstance specification and change the -
CNXep and -CNXlpep parameters to be:

-CNXep=cdm://angus:7777 -CNXlpep=cdm://bruce:8888

3. On bruce, open the PongInstance specification and change the -
CNXep parameter to be:

-CNXep=cdm://bruce:8888

4. Run the PingInstance on angus and the PongInstance on bruce.

Observe the same behavior that you saw in a single-processor
environment.

Note: To keep this exercise simple, Rose RealTime was run on each
of the target processors. In a normal development situation you will
run Rose RealTime on a single host from which all targets are
observed and controlled.
User Guide - Rational Rose RealTime Connexis 81

Chapter 3 Quick Start
Optional: Complete the HelloWorld Tutorial

Once you have completed the Quick Start, proceed to the HelloWorld
tutorial, provided in the Rose RealTime online help. It provides
information on using the Locator and shows you how to work with
rtbound and rtunbound notifications.

Basic Connexis Development Approach Summary

This section outlines the basic steps to follow to distribute your model
using Connexis.

1. Design your Rose RealTime application.

Although it is very easy to repartition your model and distribute it in a
different manner using Connexis, it is still a good idea to consider
distribution when you are doing your up-front designs. The reason for
this is performance. Many of the performance issues that you
encounter in a distributed application are a direct result of not
partitioning your model properly. Remember, intra-thread messages
are faster than inter-thread messages, which are faster than inter-
process messages, which are faster than inter-node messages.

2. Specify the registration strings and connection parameters on your
unwired ports.

If the nature of your application is such that you know the names of
the endpoints that you want to communicate with (either through the
use of an algorithmic mapping or by reading a configuration file), then
explicit endpoint names can be used in the registration strings of the
unwired ports in the model. For more information refer to “External
explicit examples” on page 124.

If this is not the case, you may want to make use of the Locator Service.

In either case, each of the unwired ports in your model must be
registered with an appropriate registration string. Once this has been
completed and the connections are being initialized properly, you can
send and receive messages through Connexis-enabled unwired ports
in the same way as with normal Rose RealTime ports.
82 User Guide - Rational Rose RealTime Connexis

Chapter 4

Adding Connexis Support to Your Model

To add Connexis support to a Rose RealTime model complete the
following sections:

� Sharing DCS Interfaces into your Model

� Configuring Connexis Capsules

� Manually Integrating Transports Into a Model

In addition to these steps, there are also general design rules that must
be followed to ensure that the Connexis component in an application
is initialized properly before it is used (see “Initializing Your Connexis
Capsule” on page 92).

From the perspective of a Rose RealTime model, Connexis is
distributed as a set of Rose RealTime capsules and components. To
make use of Connexis in your Rose RealTime model, you need to share
the appropriate Connexis packages, containing the Connexis capsules
and components.

From a build perspective, Rational Connexis is shipped as an external
library, libDCS. The libDCS library provides support for the CDM and
CRM transports.
User Guide - Rational Rose RealTime Connexis 83

Chapter 4 Adding Connexis Support to Your Model
Sharing DCS Interfaces

Connexis functionality is defined in a set of packages that must be
shared into your model. There are logical packages containing the
capsules that provide Connexis functionality for your application.
There are also component packages representing the external
Connexis libraries needed to build your application.

Hint: If you want to use the CDM or CRM transport, you only need to
add the Distributed Connection Service (DCS).

Note: You must be able to modify your model, specifically the Logical
View and Component View packages. If your model is under source
control, you need to check out these packages first.

Sharing DCS Interfaces into your Model

In order for your application to make use of the Distributed
Communication Services (DCS), you must share the DCS model
interfaces packages into your model.

To share the Connexis packages:

1. From the Tools menu, select Connexis > Share Connexis Packages.

The Share Connexis Packages dialog appears.

Figure 45 Share Connexis Packages dialog

2. Select DCS (Distributed Connection Service) model interfaces.

Note: Do not select TIF (Transport Integration Framework) model
interfaces unless you are developing a transport integration (see
“Using the Transport Integration Framework” on page 301).

a. DCS (Distributed Connection Service) model interfaces
84 User Guide - Rational Rose RealTime Connexis

Configuring Connexis Capsules
The DCS model interfaces selection shares the capsules and
components needed to make use of DCS. The RTDInterface
logical package and the RTDComponents component package
are shared into your model.

b. TIF (Transport Integration Framework) model interfaces

Models that make use of DCS do not share this package into the
model. This package is only shared into a model in which a
transport integration is being developed (see “Using the
Transport Integration Framework” on page 301).

3. Click Share.

Removing Shared Packages

Rose RealTime lets you remove Connexis packages from your model.

To remove Connexis packages:

1. From the Tools menu select Connexis > Remove Connexis Packages.

Connexis packages are removed from your model.

Configuring Connexis Capsules

Once the Connexis packages are shared, you must add a capsule role
for one of the Connexis capsules in the RTDInterface package to one
capsule for each component that will use Connexis. It is suggested that
you add one of these capsules as a fixed capsule role in the top-level
capsule in each component. If the capsule or its containing package is
in source control, check the capsule out of source control before
applying the settings.

To add a capsule role in your model:

1. Right-click a capsule in your model or right-click the structure
diagram of a capsule.

2. Select Configure Capsule for Connexis.

The Configure Connexis Capsule dialog appears, containing the
current Connexis settings of the selected capsule, including the
type of Connexis capsule role added to the capsule.
User Guide - Rational Rose RealTime Connexis 85

Chapter 4 Adding Connexis Support to Your Model
Figure 46 Configure Connexis Capsule dialog

3. Check the “include DCS Capsule Role into this capsule” check box
if you want to include the DCS Capsule Role into the selected
capsule. If you do not, proceed to instruction five.
86 User Guide - Rational Rose RealTime Connexis

Configuring Connexis Capsules
4. If you checked the “include the DCS Capsule Role into this
capsule” check box, set the Configuration and Transports options
to your requirements:

5. Select the options that you want to make available to your model.

a. DCS Initialization and Control Port (see “Using the
RTDInitStatus Protocol” on page 93)

b. DCS Metrics Port (see “Using the Connexis Metrics Service” on
page 237)

Once you configure the capsule, the Connexis Component
Configuration tool prompts you to configure the capsules that
reference the Connexis-enabled capsule that you configured.

Depending on the options that you selected in the “Configure Connexis
Capsule” dialog, one of the following capsule roles are included in your
capsule:

Table 4 Configure Connexis Capsule dialog description

Configuration and
Transports Settings

Description

Transport Agent
(Viewer Debugging)

Selecting this option lets you use the Connexis
Viewer to provide debugging support (see“Using
the Connexis Viewer” on page 151). Once you
select this option the CDM transport is enabled. The
Connexis Viewer uses the CDM transport.

Locator Functionality
(Backup Primary)

Selecting this option lets you use the Connexis
Locator that maps endpoint service names to
physical endpoints (see “Locator Connections”
on page 125 and “Using the Connexis Locator
Service” on page 135).

CDM (Connexis
Datagram Messaging)

Selecting this transport lets your component use
the CDM transport.

CRM (Connexis
Reliable Messaging)

Selecting this transport lets your component use
the CRM transport.
User Guide - Rational Rose RealTime Connexis 87

Chapter 4 Adding Connexis Support to Your Model
Manually Integrating Transports Into a Model

This section explains how to integrate transports into your model
without using the Configure Connexis Capsules tool.

For a transport to be available for use in a DCS enabled model, the
transport must first register with DCS, prior to the initialization of
DCS. This constraint also applies to the CDM or CRM transports. The
RTDCdm and RTDCrm classes in the RTDInterface logical package
represent the CDM and CRM transports respectively. The constructors
of each of these classes register their respective transport with DCS. As

Table 5 Configuration Descriptions

Configuration Capsule Description

DCS RTDBase This configuration contains the core
Connexis interfaces. With this
component the Connexis Locator is not
linked in with the executable and the
Connexis Viewer is not used with the
model.

DCS with
Target Agent

RTDBase_Agent This configuration contains the Target
Agent which is the interface between
the executable and the Connexis
Viewer. With this component the Viewer
is used with the model but the Locator
is not linked in with the executable.

DCS with
Locator

RTDBase_Locator This configuration contains the
Connexis Locator. With this
component, the Locator is linked in
with the executable but the Viewer is
not used with the model.

DCS with
Target Agent
and Locator

RTDBase_Locator_
Agent

This configuration contains both the
Locator and the Target Agent. With this
component, the Locator is linked into
the executable and the Connexis
Viewer can be used with the model.
88 User Guide - Rational Rose RealTime Connexis

Configuring Connexis Capsules
a result, an instance of the class must be created prior to the
initialization of the DCS. The easiest way to ensure this is to create an
association (composite aggregation) between the capsule containing
the DCS capsule and the classes that represent the transports to be
integrated.

To register the CDM transport for use in the model, create an
association (composite aggregation) of type RTDCdm on the capsule
containing the RTDBase or RTDBase_Locator capsule. The
RTDBase_Agent and RTDBase_Agent_Locator capsules automatically
register the CDM transport, since the viewer uses the CDM transport.
The constructor for RTDCdm accepts an argument of type bool
indicating whether the CDM transport should listen on the
transporter's thread for incoming messages ("true") or on a separate
thread ("false"). Listening for messages on the transporter's thread can
provide better performance. Only one transport can listen on the
transporter's thread for messages. If the argument supplied to the
constructor is "true" and another transport has already registered with
DCS to listen on the transporter's thread, CDM will listen on a separate
thread.

To register the CRM transport for use in the model, create an
association (or attribute + dependency) of type RTDCrm on the capsule
containing the RTDBase, RTDBase_Locator, RTDBase_Agent and
RTDBase_Agent_Locator capsule. The constructor for RTDCrm
accepts a bool indicating whether the CRM transport should listen on
the transporter's thread for incoming messages ("true") or on a
separate thread ("false"). Listening for messages on the transporter's
thread can provide better performance. Only one transport can listen
on the transporter's thread for messages. If the argument supplied to
the constructor is "true" and another transport has already registered
with DCS to listen on the transporter's thread, the CRM will listen on
a separate thread.

If your model is using additional transports that have been integrated
into DCS, they must also be registered with DCS prior to the
initialization of DCS. The designers that developed the transport
integration will be able to provide information on how to register the
transport.
User Guide - Rational Rose RealTime Connexis 89

Chapter 4 Adding Connexis Support to Your Model
Configuring a Component for Connexis

When you configure a component for Connexis, you create a
component dependency to a DCS library. If a DCS dependency already
exists in the selected component, the Configuration tool notifies you of
the existing dependency.

To configure a Component for Connexis:

1. Right-click a component.

2. Select Connexis > Configure Component.

The “Component Diagram Selection” dialog appears.

Note: A DCS capsule role must be in one of the capsules referenced
by the component before you configure the component (see
“Configuring Connexis Capsules” on page 85).

3. Select how you want the changes to be displayed.
90 User Guide - Rational Rose RealTime Connexis

Verifying Connexis Enabled Components
The dialog lists the display options available for the selected
component.

Note: A component may also be configured from the menu on its view in
a component diagram.

Verifying Connexis Enabled Components

Once you have shared Connexis components in your model, you can
verify the model path and incompatibilities of each component in your
model.

Table 6 Component Diagram Selection options

Options Description

<<none>> creates a component dependency to the DCS
library, without a diagram displaying the changes.

<<new diagram>> creates a new diagram showing the component
dependency to the DCS library.

Existing component
diagram

shows the component dependency to the DCS
library from an existing diagram.
User Guide - Rational Rose RealTime Connexis 91

Chapter 4 Adding Connexis Support to Your Model
To verify a component:

1. Right-click a component.

Note: You can select several components at a time by pressing the
Ctrl key.

2. Select Connexis > Verify.

The “Component Verification Results” dialog appears.

Figure 47 Component Verification Results

3. Select a component from the “Components” area.

The “Model Path” information and “Incompatibilities” information
are displayed.

Initializing Your Connexis Capsule

The Connexis capsule that you are using in your application must be
initialized before any ports can be registered with it.

There are two approaches that can be used to make sure that the
Connexis component is initialized before it is used in the application:

� Use the RTDInitStatus protocol. This is the recommended
approach and will work in all configurations.
92 User Guide - Rational Rose RealTime Connexis

Initializing Your Connexis Capsule
� Use fixed initialization order. This approach will work in the most
basic configuration, which is when the Connexis component is
fixed and on the main application thread. This approach will not
work when the Connexis component is created on a different
thread.

Using the RTDInitStatus Protocol

The recommended approach for ensuring the Connexis component is
initialized before use is to subscribe to the RTDInitStatus publisher on
the Connexis component and query DCS as to its status. If the
Connexis component is initialized on a thread other than the main
thread, this approach is required because there is no other way to
ensure the Connexis component is initialized before use.

All of the Connexis components publish a port called RTDInitStatus.
This port realizes the RTDInitStatus protocol. When the component is
fully initialized, it sends an rtBound event on this port. When rtBound
is received the DCS initialization was successful.

All of the capsules that are planning to register ports with the Connexis
component must create a subscriber port that realizes the
RTDInitStatus protocol. This port must be registered as RTDInitStatus
and notification must be turned on. Once the Connexis component has
been initialized, it will send an rtBound event on the RTDInitStatus
port.

The code used to register the subscriber port (if application registration
is used) is as shown below:

rTDInitStatus.registerSAP(“:RTDInitStatus”);

If automatic registration is used, the port must be protected and the
registration override string must be defined as:

:RTDInitStatus

For an example of using the RTDInitStatus protocol, refer to the
HelloWorld model in the examples directory
($ROSERT_HOME/CONNEXIS)/C++/examples.

The RTDInitStatus protocol also defines an interface that provides the
following:

� access to the status of the Target Agent and Locator if present

� query which port the CDM is listening on
User Guide - Rational Rose RealTime Connexis 93

Chapter 4 Adding Connexis Support to Your Model
� access to the DCS Transport thread, and its Virtual Circuit limit

� ability to set the primary and backup locator endpoints
dynamically at run-time

This interface is asynchronous, and is defined in more detail in Table
7 and Table 8. Table 7 summarizes the output signals that can be sent
by the application. Table 8 summarizes the input signals that can be
received by the application.

Table 7 RTDInitStatus Out Signals

Out Signal Description

rtdAgentActive Request for Target Agent activation status.

rtdBackup
Endpoint

Used to set the endpoint of the backup locator. The data
is the endpoint string, in the same format as the CNXlbep
command line argument.

e.g., cdm://localhost:4000, or
tcp://192.139.251.2:5000, etc.

rtdCDMport Request for the value of the CDM port assigned.

rtdDCSrunning No longer supported.

rtdLocator
Available

Request for Locator availability status. If the Locator has
been loaded into the system and properly configured it
will be flagged as available.

rtdPrimary
Endpoint

Used to set the endpoint of the primary locator. The data
is the endpoint string, in the same format as the CNXlpep
command line argument.

e.g., cdm://localhost:4000, or
tcp://192.139.251.2:5000, etc.

rtdTransport
Controller

Request for the Transport handle. This handle is required
for high-performance DCS applications that will be
collocated on the same thread as the Transport.

rtdVClimit Request for internal limit on the number of Virtual
Circuits (VCs). This limit is defined by the version of the
library.
94 User Guide - Rational Rose RealTime Connexis

Initializing Your Connexis Capsule
Table 8 RTDInitStatus In Signals

In Signal Description

rtdAgentActiveReply No longer supported.

rtdBackupEndpoint
Reply

Reply to rtdBackupEndpoint containing the status
of setting the backup locator endpoint, returned as
an int.

int result = *rtdata;

The result is one of the following:
0 - success
1 - failed because this process is the backup locator
2 - failed due to an invalid endpoint string

rtdCDMportReply Reply to rtdCDMport containing the CDM port
assigned, returned as an int. The CDM port is
derived either from the value for CNXep, or from a
free port number.

int cdm_port = *rtdata;

A non-zero value indicates a software failure.

rtdDCSrunningReply Reply to rtdDCSRunning containing the status of
DCS, returned as an int.

int dcs_status = *rtdata;

A non-zero value indicates that DCS is running.
User Guide - Rational Rose RealTime Connexis 95

Chapter 4 Adding Connexis Support to Your Model
rtdLocatorAvailable
Reply

Reply to rtdLocatorAvailable containing availability
status, returned as an int.

int locator_available = *rtdata;

A zero value implies that the locator is NOT properly
configured and the registration of global names will
fail:
port-name.registerSAP("dcs:/service-name") //
will fail

port-name.registerSPP("dcs:/service-name") //
will pass since SPPs can also be connected to locally
and explicitly.

A non-zero value indicates that the Locator is
properly configured though a connection may not
exist at this time to a remote Locator. Registration
of global names will pass.

Possible return values:
1 == Primary Locator running locally (this process),
Backup Locator not configured
2 == Primary Locator running locally (this process),
Backup Locator is remote (CNXlbep)
3 == Backup Locator running locally (this process),
Primary Locator is remote (CNXlpep)
4 == Primary Locator is remote (CNXlpep), Backup
locator not configured
5 == Primary Locator is remote (CNXlpep), Backup
locator is remote (CNXlbep)

Table 8 RTDInitStatus In Signals

In Signal Description
96 User Guide - Rational Rose RealTime Connexis

Initializing Your Connexis Capsule
rtdPrimaryEndpoint
Reply

Reply to rtdPrimaryEndpoint containing the status
of setting the primary locator endpoint, returned as
an int.

int result = *rtdata;

The result is one of the following:
0 - success
1 - failed because this process is the primary locator
2 - failed due to an invalid endpoint string

rtdTransportController
Reply

Reply to rtdTransportController containing the
Transport handle, returned as a (RTController *).
This handle is needed to initialize capsules on the
dcs: Transport thread.

RTController * t_thread = (RTController *)*rtdata;

A null pointer is returned if DCS is not running.

rtdVClimitReply Reply to rtdVClimit containing the VC (virtual
circuit) limit, returned as an int.

int vc_limit = *rtdata;

Table 8 RTDInitStatus In Signals

In Signal Description
User Guide - Rational Rose RealTime Connexis 97

Chapter 4 Adding Connexis Support to Your Model
Using Fixed Initialization Order

If the Connexis component’s capsule role is fixed and is created on the
main application thread, you can ensure that it is initialized before it
is used by other capsules by placing it in the application’s top capsule
and putting the Connexis component’s capsule role at the top of the
initialization order for that capsule.

Note: If the Connexis component’s capsule role is created on a thread
other than the main thread or is optional and on the main thread, this
approach is not guaranteed to work.

To ensure that the Connexis component’s capsule role is initialized
before any capsule roles that register with Connexis:

1. Make the Connexis component’s capsule role fixed and place it in
the top-level capsule of the application.

2. Open the Capsule Specification dialog for the top-level capsule.

3. Select the Capsule Roles tab.

4. Move the Connexis component’s capsule role so that it is in the list
before any capsule roles that register with Connexis. You can do
this by dragging and dropping the appropriate capsule role to the
top of the list of capsule roles. The resulting dialog is shown in
Figure 48.

Note: If you sort the list of capsule roles by clicking on one of the
column headings, you will not be able to determine the initialization
order until you close and reopen the specification dialog.
98 User Guide - Rational Rose RealTime Connexis

Converting Connexis Version 2000.02.10 Models to Connexis 2001A.04.00 Models
Figure 48 Capsule Role tab of top-level capsule

Converting Connexis Version 2000.02.10 Models to Connexis
2001A.04.00 Models

If you are using the previous version of Connexis (version 2000.02.10),
the Connexis Model Conversion Tool searches your model, identifying
any incompatibilities, and provides a detailed description, explaining
the changes. Table 9, Model Conversion for Connexis 2000.02.10 to
Connexis 2001A.04.00, explains the changes that are made to your
model during the conversion process.
User Guide - Rational Rose RealTime Connexis 99

Chapter 4 Adding Connexis Support to Your Model
Table 9 Model Conversion for Connexis 2000.02.10 to Connexis
2001A.04.00

Condition Change

RTDXBase,
RTDXBase_Agent,
RTDXBase_Locator,
RTDXBase_Agent_Locator
fixed capsule roles are in
the model

Replaces the capsule roles with the
corresponding RTDBase configuration.
Integrates the CDM transport with the capsules
containing the new RTDBase or
RTDBase_Locator capsule roles.
Integrates the CRM transport into the
containing capsule.

RTDBase,
RTDBase_Locator fixed
capsule roles are in the
model but do not have the
CDM transport as an
attribute.

Integrates the CDM transport using a
composite aggregation relationship into the
capsules containing RTDBase or
RTDBase_Locator capsule roles.

RTDXBase optional
capsule role is in the model

Converts to the RTDBase and integrates the
CRM and CDM transports.

RTDXBase_Agent optional
capsule role is in the model

Converts to RTDBase_Agent and integrates the
CRM transport.

RTDXBase_Locator
optional capsule role is in
the model

Converts to RTDBase_Locator and integrates
the CDM and CRM transports

RTDXBase_Locator_Agent
optional capsule role is in
the model

Converts to RTDBase_Locator_Agent and
integrates the CRM transport.

RTDBase or
RTDBase_Locator optional
capsule role is in the model

Users are notified that the CDM transport is
integrated.

RTDBase_Agent or
RTDBase_Locator_Agent
optional capsule role is in
the model

Searches the model identifying any of the
components that reference a dependency. If a
dependency exists, the CRM transport is
integrated.
100 User Guide - Rational Rose RealTime Connexis

Converting Connexis Version 2000.02.10 Models to Connexis 2001A.04.00 Models
To convert your model:

1. Open a model that uses the previous version of Connexis (version
2000.02.10).

2. Select Tools > Connexis > Convert Model.

The “Convert Model” dialog appears.

Figure 49 Convert Model dialog

3. View more information about incompatible capsules and
components by selecting the capsule or the component from the
dialog and clicking More Information.

A component depends on a
XDCS library component

Changes the component dependency to use the
DCS library component.

The TargetConfiguration
property of a component
references a -CNX-M or a -
CNX- target configuration

Removes the -CNX- or -CNX-M from the
TargetConfiguration name.

Table 9 Model Conversion for Connexis 2000.02.10 to Connexis
2001A.04.00

Condition Change
User Guide - Rational Rose RealTime Connexis 101

Chapter 4 Adding Connexis Support to Your Model
The “Element Information” dialog appears.

Figure 50 Element Information dialog

The “Element Information” dialog provides the following
information:

4. Click OK once you have read the information, and repeat step three
for additional capsules and components that appear in the
“Convert Model” dialog.

5. Click Auto-Convert All from the “Convert Model” dialog.

Table 10 Element Information dialog chart

Information Heading Description

Model Path Shows the path of the selected capsule or
component.

Description of
Incompatibility

Explains the reason for the incompatibility
between version 2000.02.10 and 2001A.04.00.

Suggested Course of Action Explains how the Conversion tool will make the
capsule or component compatible with
Connexis version 2001A.04.00.
102 User Guide - Rational Rose RealTime Connexis

Converting Connexis Version 2000.02.10 Models to Connexis 2001A.04.00 Models
The Conversion Tool converts the incompatible capsules and
components in your model. As the conversion takes place, the
Conversion Tool may prompt you to confirm some conversion
changes.

Note: Only run the Conversion Tool once. If you run the tool a second
time, the information displayed in the Convert Model dialog may not
be accurate.

Verifying Component Compatibility with Connexis Version 2001A.04.00.

The Component Verification Tool verifies that a component is
compatible with Rational Connexis version 2001A.04.00.

To verify that a component is compatible with version 2001A.04.00:

1. Right-click a component.

2. Select Connexis > Verify.

The “Component Verification Results” dialog appears.

Figure 51 Component Verification dialog

3. Select the component from the “Components” area.

The model path and the incompatibilities for the selected
component appear.
User Guide - Rational Rose RealTime Connexis 103

Chapter 4 Adding Connexis Support to Your Model
4. Open the component from the browser and fix the
incompatibilities.

Note: You do not have to close the Component Verification Results
dialog while fixing the incompatibilities.

5. Click OK.

RTDErrorType Error Reporting

Connexis reports error types that are defined in the enumerated
RTDErrorType class. To access these errors, define an input signal
named rtdError with data type RTDErrorType, in the protocol class of
the port to be registered with DCS. If any of the following errors occur,
the port receives an rtdError message with the error type as data (see
Table 11).

Table 11 RTDErrorType Error Reporting

Output Description

rtdDCSUninitialized = 1 Registration failed because DCS
was not initialized.

rtdZeroReplication = 2 Registration failed because the
replication factor of the port is
zero.

rtdInvalidSyntax = 3 Registration failed because the
registration string was of invalid
syntax.

rtdInvalidTransport = 4 Registration failed because the
specified transport is not
supported by this component.

rtdCircuitUnavailable = 5 Registration failed because no
virtual circuit is currently
available for the remote binding.

rtdLocatorUnavailable = 6 Global registration failed
because no locator is available.
104 User Guide - Rational Rose RealTime Connexis

Converting Connexis Version 2000.02.10 Models to Connexis 2001A.04.00 Models
Note: The last two errors can occur after a successful registration and
bind. For that reason they are sent at Background priority. All other
errors are sent at General priority.

rtdConnectTimeout = 7 Explicit registration failed
because a connection could not
be established with the remote
endpoint.

rtdEndpointUnavailable = 8 A connection cannot be made at
present with the remote
endpoint because it is currently
unavailable.

rtdEndpointInaccessible = 9 A connection can never be made
with the remote endpoint.

Table 11 RTDErrorType Error Reporting

Output Description
User Guide - Rational Rose RealTime Connexis 105

Chapter 5

Establishing Connections

Establishing Connections provides information to help you decide how
you plan to distribute your application and how you can use Connexis
to set up connections:

� General Connection Patterns - provides information about
client/server and peer to peer connection patterns.

� Unwired Port Registration - provides information about
registration, automatic versus application registration, and
registration parameters.

� Name Resolution - describes how Connexis resolves host names.

� Connexis Connection Options - describes how Connexis handles
publisher/subscriber connection patterns. The three methods of
establishing connections: local, explicit endpoint, and Locator
connections are discussed.

� Registration Summary - provides several examples explaining how
to use registration strings successfully.

� Connection Design Heuristics - provides a summary of connection
design principles and how they are handled by Rose RealTime and
Connexis. Replicated publisher ports, invokes, broadcast sends,
notification, defers and sending data between capsules are
discussed.
User Guide - Rational Rose RealTime Connexis 107

Chapter 5 Establishing Connections
General Connection Patterns

In the broadest sense there are two connection patterns that can be
implemented by an application:

� client/server

� peer to peer

These two patterns are not mutually exclusive. A capsule that is
participating in one connection as a client is not limited to that role. It
could be participating as a client in one connection and a server in
another. The same capsule may also be involved in several peer to peer
connections with different capsules.

Client/Server

The client/server pattern is used to describe a connection topology in
which there is a service provider that is capable of providing services
to two or more capsules.

In Figure 52, the ServerCapsule supports three connections on its
clientServer port. Each of the client capsules only supports one. In this
example, the distinction between the server and the client is that the
server publishes its service, and the client subscribes to it. In Rational
Rose RealTime, unwired public and protected ports can each play the
role of the publisher or subscriber.
108 User Guide - Rational Rose RealTime Connexis

General Connection Patterns
Figure 52 Client / server pattern

In scenarios where Automatic registration is used, this is configured by
selecting the Publish checkbox in the Port Specification dialog box. For
more information, refer to the “Rational Rose RealTime Toolset Guide.”
In scenarios where Application registration is used, publishers use the
registerSPP operation and subscribers use the registerSAP operation.

Peer to Peer

With the peer to peer connection pattern, one capsule is connected to
one other capsule and they pass messages back and forth between
each other. Even though the two capsules are peers in the
communication, one of them must be responsible for publishing its
interface and the other for subscribing to the interface.
User Guide - Rational Rose RealTime Connexis 109

Chapter 5 Establishing Connections
In Figure 53, Peer1 is connected to both Peer2 and Peer3 in different
connections through different unwired ports. In both of the
connections, one of the capsules must play the role of the publisher
and the other the role of the subscriber.

Figure 53 Peer to peer connection pattern

Unwired Port Registration

There are three ways to establish a connection using Connexis:

� locally - within the same process

� external explicit - between processes, using an explicit endpoint
address

� locator - within the same process or between processes using a
name lookup service

The registration string that is used when the port is registered with the
Target RSL determines which of these methods is used.
110 User Guide - Rational Rose RealTime Connexis

Unwired Port Registration
What is Registration?

In Rose RealTime, unwired ports must be registered with the Target
RSL. This registration can be accomplished either automatically, or
dynamically through application code. The choice as to which
registration method is to be used is set in the specification dialog for
the unwired port. This setting is illustrated in Figure 54.

Figure 54 Port specification dialog

In Figure 54, the Wired check box is not selected. This means that the
port must be registered using one of the two methods outlined. If the
Automatic registration check box is checked, the port will be registered
automatically using the name provided in the Registration override
field. If no text has been entered into the Registration override field, the
port will be registered under its own name with the ILS. If the Publish
User Guide - Rational Rose RealTime Connexis 111

Chapter 5 Establishing Connections
checkbox is checked, the capsule will publish this interface. If the
Publish checkbox is not checked, the capsule will request to subscribe
to this interface. If the Application registration check box is checked, it
is assumed that the registration of the port will be handled by the
application code. In this case, the Registration override field is ignored.

Port API

To register ports dynamically, you must use the functions that are
provided on the Rose RealTime port objects. The RTProtocol class
implements the concept of a port role in Rose RealTime. At design time,
when you create a port role on a capsule, it corresponds to an instance
of RTProtocol. The API provided by the Rose RealTime port objects to
manage the registration of the ports is implemented on the RTProtocol
class. For more information, refer to the “Rational Rose RealTime
Toolset Guide.”

The RTProtocol class provides the functions required for registration
and deregistration of unwired ports. Each function along with a brief
description of its responsibilities is presented in the following table.

Table 12 RTProtocol interface

Function Description

registerSAP(serviceName : const
char*) : int

Register a subscriber side port with the
connection service using the supplied
serviceName. The connection service is
either the ILS or DCS. Returns a 1 on
success or a 0 on failure.

deregisterSAP(: void) : int Deregisters a previously registered
subscriber side port. Returns a 1 on
success or a 0 on failure.

registerSPP(serviceName : const
char*) : int

Register a publisher side port with the
connection service, using the supplied
serviceName. The connection service is
either the ILS or DCS. Returns a 1 on
success or a 0 on failure.

deregisterSPP(: void) : int Deregisters a previously registered
publisher side port. Returns a 1 on
success or a 0 on failure.

isRegistered(: void) : int Returns a 1 if the port is registered, or a
0 if the port is not registered.
112 User Guide - Rational Rose RealTime Connexis

Unwired Port Registration
Automatic vs. Application Registration

There are two ways to register a port. The first is to specify that the
registration be completed automatically. This instructs the Target RSL
to register the unwired port with the connection service using the name
that was given to the port or with the specified Registration override.
This approach is illustrated in Figure 55.

getRegisteredName(: void) :
const char*

Returns the service name that was used
to register the current port. If the port is
not registered, a null pointer is returned.

bindingNotification(on_off : int) :
void

Sets the binding notification of the port to
either on (1) or off (0). This is used to
programmatically set the notification
property of a port.

bindingNotificationRequested(:
void) : int

Returns 1 if the port has notification
turned on or returns 0 if the port has
notification turned off.

Table 12 RTProtocol interface

Function Description
User Guide - Rational Rose RealTime Connexis 113

Chapter 5 Establishing Connections
Figure 55 Automatic port registration

In this case, the port is registered using the string that was provided in
the Registration override field (“dcs:cdm://host1:14500/init”). Since
the Publish checkbox is not checked, it is a subscriber. If no override
had been provided, the port would have been registered using the
port’s name (pInitialize).

The second approach is to specify that the registration be completed by
the application, and to then register the port through application code
using the RTProtocol interface described in “Port API” on page 112. The
port specification for implementing this registration method is shown
in Figure 56.
114 User Guide - Rational Rose RealTime Connexis

Unwired Port Registration
Figure 56 Application port registration

When this registration method is used, a registration string similar to
what is shown in the “Registration override:” field in Figure 55 must be
specified as the argument to the registerSAP() or registerSPP()
RTProtocol API function, somewhere in the state machine of the
capsule. For example, code similar to the following could be written in
the initial transition.

pInitialize.registerSAP(“dcs:cdm://host1:14500/init”);

Registration Parameters

There are often cases where extra information may be required when
registering a port with the connection service. Connexis supports
passing parameters as part of the registration string. These parameters
take the form of tagged-value pairs. The specification string is enclosed
in a pair of delimiters. Each tag-value pair is also enclosed in a pair of
delimiters. For example:
User Guide - Rational Rose RealTime Connexis 115

Chapter 5 Establishing Connections
((tag1,value1)(tag2,value2))

The “(“ and “)” characters are used as tag-value pair delimiters, and
also as delimiters to the entire parameter list. The “,” is used to
separate the tag and the value in a tag-value pair.

Supported parameters

For subscribing, Connexis provides registration options to set the
transport for global registrations and to specify the quality of service
parameters for a connection setup. For publishers, Connexis provides
a registrations option to assign a rank to a publisher. The details of
these registration parameters are outlined in Table 13.
116 User Guide - Rational Rose RealTime Connexis

Unwired Port Registration
Table 13 Supported registration parameters

Parameter Name Description

locator_transport This parameter specifies the transport that is to be used
by the subscriber to connect to a publisher.

Type: string
Possible values: cdm, crm and any integrated
transports

locator_rank This parameter specifies the rank of the publisher that
is being registered. This parameter only works for ports
that are publishers. The higher the number, the higher
the rank.

If the rank is not specified, the default rank is zero.

Type: integer
Possible values: any integer >= 0

connect_retries This parameter specifies the maximum number of times
that DCS attempts to send a connect message to a
remote endpoint to establish a connection. The default,
without the option, is infinity.

The maximum connect timeout interval is equal to (1 +
connect_retries) * CNXdcrd.

If connect_retries equals zero, then the maximum
timeout is therefore CNXdcrd.
If connect_retries equals one, then the maximum
timeout is therefore 2 * CNXdcrd, etc.

If no connect acknowledgment is received within this
timeout interval, a rtdError message with enumerated
data rtdConnectTimeout is sent to the application.

If the transport timeout interval is shorter than the
maximum connect retry interval, a rtdError message
with enumerated data rtdEndpointUnavailable may be
sent to the application instead.
User Guide - Rational Rose RealTime Connexis 117

Chapter 5 Establishing Connections
Registration parameter examples

The first example registers a subscriber port with “cdm” as the
preferred protocol.

port1.registerSAP(“dcs:/service1 ((locator_transport, cdm))”);

This example registers a publisher port with the specified rank.

port2.registerSPP(“dcs:/service1 ((locator_rank, 1))”);

Name Resolution

Whenever an endpoint is registered using a host name instead of an IP
address, Connexis will translate the host name into a valid IP address.
On development workstations this will typically be done through a
Domain Name Service (DNS). Since the call to the DNS is blocking,
Connexis performs this operation using a separate thread, called a
helper thread. The following points describe the algorithm that is used
by Connexis to resolve host names:

1. An attempt is made to resolve the host name.

2. If the host name cannot be resolved, the name resolution will be
retried periodically until it is resolved successfully.

Host names that have been resolved are cached for a number of
seconds. This means that if a resolution request is made for a host
name that had just been looked up, the result from the last lookup will
be returned.

Connexis Connection Options

Connexis is able to handle the connection patterns listed in General
Connection Patterns, as well as other connection topologies common
in distributed systems. It does this using the publisher/subscriber
pattern. With this pattern, every virtual circuit in a Connexis model
has a publisher at one end of the communication channel and a
subscriber at the other end. The publisher publishes its interface with
the connection service (or the locator) and the subscriber subscribes to
that interface.

At the highest level, there are three different ways that connections can
be established using Connexis:

� locally - connect to another object within the same executable
118 User Guide - Rational Rose RealTime Connexis

Connexis Connection Options
� external using an explicit endpoint - connect to an object in
another executable using an explicit endpoint

� using the locator service - connect to an object using the Locator
service to resolve the endpoint address

Local Connections

Rose RealTime has a built-in connection service called the Internal
Layer Service (ILS). The ILS is used to connect unwired ports within the
same executable, or to be more precise, within the same instance of the
Rose RealTime Run-time Service Library (Target RSL).

The ILS establishes the connection between two local unwired ports.
Registering ports locally is the simplest of the three registration types
but it is also the least flexible. When a port is registered with the ILS,
it cannot send or receive messages to or from ports in another
executable model.

In addition to establishing local connections using the ILS, you may
also use Connexis to accomplish the same thing. Using Connexis to
establish local connections has the following advantages:

� Connexis supports multiple publishers with the same registration
name (the ILS does not)

� Connexis allows you to establish loopbacks that can be used to
fully trace the message flow between the connected ports. This can
be very useful for debugging an application.

Local connection examples

This section presents two examples:

� local connection with DCS using automatic registration

� local connection with DCS using application registration
User Guide - Rational Rose RealTime Connexis 119

Chapter 5 Establishing Connections
Example 1: Local connection, ILS, automatic registration and
override

This example illustrates how to register an unwired client side port and
a corresponding server side port using automatic registration.

This example implements a simple initialization controller. The
controller is responsible for making sure that the components of an
application are initialized in a predetermined order.

The structure for the initialization controller is shown in Figure 57.

Figure 57 Class diagram of initialization controller
120 User Guide - Rational Rose RealTime Connexis

Connexis Connection Options
In this structure, the initialization controller capsule requires a
connection to each of the capsules in the application. These
connections are required so that it can send initialization messages to
each of the capsules. If this application exists completely in a single
executable, the initialization controller could connect to each
component through a wired port. This implementation may cause the
following problems:

� The structure is unnecessarily complex as a result of having to
show all of the physical connections between the different
capsules.

� The structure is not as flexible. More effort is required to separate
some of the components out into separate applications.

For these reasons, the pattern is better modeled using unwired ports.

To automatically register the ports in this example for each
initialization port:

1. Select the port and open its specification dialog.

2. Uncheck the Wired option.

3. If the port is being published (that is, server in a client/server
distribution pattern), check the Publish checkbox.

4. Select the Automatic registration option.

5. If notification is being used, check the Notification check box.

6. Type in a DCS Registration string in the Registration override field.
User Guide - Rational Rose RealTime Connexis 121

Chapter 5 Establishing Connections
Figure 58 Specifying automatic registration

As mentioned in the Connexis Quick Start, the convention usually
followed is to conjugate the port that is being published (this would
correspond to the server in the client/server distribution pattern). The
reason for this is twofold:

� By following a convention, the naming of protocols and signals will
be consistent throughout the model.

� It requires fewer steps in a client/server pattern because only the
one server port needs be conjugated (instead of all of the clients).

In this case, the registration name is overridden by entering “dcs:init”
in the Registration override field. This means that this port is registered
with the DCS with the name “init”. Since the Publish option is selected,
the port is published. If nothing is entered in the Registration override
field, the port name, pInitialize, is used and is registered with the ILS.
Automatic registration using the DCS requires registration override;
otherwise, it defaults to the ILS
122 User Guide - Rational Rose RealTime Connexis

Connexis Connection Options
If you register your ports with the DCS (instead of the built-in ILS) and
you are making use of the Locator service, you will not have to make
changes to the registration string if one side of the connection is moved
to a different process.

Example 2: Local connection and application registration

This example illustrates registering an unwired client port and a
corresponding server port using application registration. This example
uses the same sample capsules as the previous example. In this case,
the ports are defined as application registration as shown in Figure 59.

Figure 59 Specifying application registration

When a port is registered using application registration, the
Registration override field is ignored and the functions described in the
port API must be used to register the port with the connection service.
User Guide - Rational Rose RealTime Connexis 123

Chapter 5 Establishing Connections
The code required to register the port with the DCS is written as
follows:

pInitialize.registerSPP(“dcs:init”);

The above line of code registers the pInitialize port with the DCS using
the “init” service name.

External Explicit Connections

External explicit connections are connections that:

� are made with capsules that are running in another process, either
on the same processor or a different processor on the network

� the name of the endpoint is known at design time or can be
specified at run-time through a configuration file or command line
argument

Explicit connections are typically used in a fixed network environment
where the network configuration is known and rarely changes.

Using explicit connections is less flexible than making use of a Locator
service, but in cases where the network addresses and endpoint names
are known, it is a smaller (memory wise) and faster approach. The
decision to use either the Locator service or explicit connections
depends mostly on the requirements of the application and the
network configuration that it will be running in.

External explicit examples

With explicit connections, more information must be known by the
applications about the other side of the connection. Each subscriber
must know or be able to find out the explicit endpoint addresses of all
of the other objects that it wants to subscribe to.

Registering the publisher side of the connection is similar to the local
and Locator cases. The connection service and the service name are all
that is required. When starting the publisher component instance, you
usually specify endpoints on which it will be listening.

The subscriber side of the connection is quite a bit different. In this
case, you must know the endpoint address of the publisher and specify
it in the registration string.
124 User Guide - Rational Rose RealTime Connexis

Connexis Connection Options
Queueing of Subscriptions

If a subscriber registers before a transport connection has been
established to the remote endpoint, the DCS repeatedly attempts to
establish a connection to the remote endpoint. If the "conn_retries"
registration option has not been specified in the registration string, the
DCS will try to establish the connection until the port is deregistered.

If a connection to the remote endpoint is established, but the
registration takes place before the service is published at the remote
endpoint, the registration is left pending until a service is published or
the subscribing port is deregistered.

Using the CDM transport protocol

The publisher application would perform the following:

<port_name>.registerSPP(“dcs:myService”);

Assuming that the myService publisher is started on node “host2”, and
is listening on port 45678, the following registration string is used by
the subscriber:

<port_name>.registerSAP(“dcs:cdm://host2:45678/myService”);

This tells Connexis to try to connect to port 45678 on host2 to get to
the desired publisher. The format of the string is defined by the BNF
Registration String Grammar. For more information, see “Registration
String Grammar” on page 245.

For this example to work properly, the application in which the
publisher is running must be started using the following CNXep
command line parameter:

<app_name> -CNXep=45678

Locator Connections

The most flexible way of registering unwired ports is to use the Locator
service. The Locator service maps endpoint service names to physical
endpoints on the network. This enables applications to not be
intimately aware of the network topology, which also means that they
do not have to change when the network topology changes.
User Guide - Rational Rose RealTime Connexis 125

Chapter 5 Establishing Connections
The Connexis Locator is implemented as a Rose RealTime Connexis
component. Unwired ports register (subscribe or publish) themselves
with the Locator instead of the connection service. The Locator is then
responsible for finding the appropriate endpoints and insuring that
they are bound together.

Using the Locator is similar in nature to using local connections, you
register a service name for the port with the Locator and the rest is
handled for you. The key differences between using the Locator and
using local connections are:

� A Locator component (RTDBase_Locator, or
RTDBase_Locator_Agent) must be included in the executables that
are implementing the Locator (either primary or backup).

� The Locator service must be started when the Locator is being
used.

This means that a primary Locator must have been configured
using the -CNXlp configuration option on the Locator process, and
the client processes must be started with the -CNXlpep
configuration option, which specifies the address of the primary
Locator.

� The registration string is slightly different. Instead of using a string
with the syntax, dcs:<service_name> you must use a string with
the syntax, dcs:/<service_name>. This registration string registers
the port with the DCS and with the Locator.

When a subscriber is registered using this registration string
syntax, it first looks for a local publisher to which to connect. If it
finds a local publisher with the service it is looking for, it will
connect to it. If no local publisher is found, it subscribes to the
Locator service.

Locator examples

To register a publisher named QueryState using the Locator, the
following registration string would be used:

port1.registerSPP(“dcs:/QueryState”);

To register a subscriber that subscribes to the same QueryState
service, the following registration string is used:

port2.registerSAP(“dcs:/QueryState”);
126 User Guide - Rational Rose RealTime Connexis

Registration Summary
Note that this example assumes that the applications have been
started using the appropriate command line arguments and the
RTDBase_Locator capsule has been dragged into the application
providing locator services.

Registration Summary

This section presents several registration scenarios and explains what
registrations strings will succeed and fail in each. The important points
to realize about Connexis registration are:

� Ports that are registered with the ILS are registered in a different
namespace than those that are registered with the DCS. This
means that a subscriber port registered as:test1 will not bind with
a publisher registered as dcs:test1.

� Ports that are registered with the Locator are also implicitly
registered with the DCS. This means that they will bind with locally
registered DCS ports and also explicit DCS ports with the same
service name.

� Ports that are registered with the registration string “servicename”
(as opposed to “:servicename” or “dcs:servicename”) share the
same namespace as ports that are registered with the ILS
(“:servicename”). This type of registration is present for backwards
compatibility reasons only, and as a result, is not discussed in this
section.

All of these examples assume that the publisher is replicated, that is,
it can support the number of subscribers that are trying to connect to
it.

Scenario 1: Publisher Registered with the ILS

In this scenario, a publisher (port2) is registered with the ILS and two
subscribers (port1 and port3) attempt to make connections to the
publisher.
User Guide - Rational Rose RealTime Connexis 127

Chapter 5 Establishing Connections
Figure 60 Scenario 1: Registering ports with the ILS

In this scenario, port1 will connect to port2 but port3 will not. This is
because port2 has been registered with the ILS which is only capable
of connecting ports locally. Port2 would also not be capable of receiving
explicit or locator connections from a different process.

Scenario 2: Publisher Registered with the DCS

In this scenario, the publisher is registered with the DCS. Several
subscribers, each registered using different methods, attempt to
establish connections to the subscriber.
128 User Guide - Rational Rose RealTime Connexis

Registration Summary
Figure 61 Publisher registered with DCS

Note: In this scenario the location of the Locator Service is not relevant
to the outcome of the registrations.

In this scenario, port2 registers with the DCS. Also, port1 connects to
port2 by forming a local DCS connection. Port3 and port4 also connect
because, by registering with the DCS, port2 is capable of receiving both
local DCS connections and explicit connections (whether they are
internal or external). In this scenario, the only registration string that
will not result in a successful connection being established is the one
that is used to register port5. This registration string is looking to the
Locator to resolve the endpoint name. Since port2 did not register with
the Locator, no compatible publisher will be found for port5.

Note: A local DCS connection is an intra-process connection that is using
the DCS instead of the ILS. As with ILS connections, local DCS
connections, once bound, have the same run-time performance as
connections that are bound at design time.
User Guide - Rational Rose RealTime Connexis 129

Chapter 5 Establishing Connections
Scenario 3: Publisher Registered with the Locator

In this scenario, the publisher (port1) registers with the Locator
Service. Several subscribers, each using a different registration string,
attempt to establish connections to the publisher.

Figure 62 Publisher registered with the Locator

Note: In this scenario, the location of the Locator Service is not relevant
to the outcome of the registrations.

In this scenario, the publisher (port1) is registered with the Locator
Service. The interesting aspect of this type of registration is that
registering with the Locator Service implicitly registers the port with
the DCS. This means that subscribers can make explicit (either local
or remote) connections to a publisher that was registered with the
Locator Service. Port2 and port3 will both successfully connect to port1
since they use the Locator. port4 will also connect because it is
specifying the endpoint explicitly. Port5 will not be connected, since it
is registering locally with the DCS.
130 User Guide - Rational Rose RealTime Connexis

Connection Design Heuristics
Multiple Publishers

Unlike the ILS, Connexis supports multiple publishers with the same
registration name. The ILS restricts the naming of unwired ports that
are publishing themselves, so that each published unwired port must
be named uniquely. The port can be replicated but two capsules cannot
have published ports with the same name.

This restriction is removed when using Connexis. Multiple capsules
can have published unwired ports that use the same registration
string. This can be very useful for distributing the load in a distributed
system.

For example, if the application being built has a service provider that
offers a database lookup service, Connexis could be used to distribute
this service between two or more capsules running on separate
processors in the network. This can also be modeled locally without
having to change any code when the distributed version is released.
This can be accomplished by using the Locator service or by reading a
configuration file that contains the endpoints of the different
components.

Connection Design Heuristics

When to Use Replicated Publisher Ports

This is a common design pattern. It is very common in real-time and
non-real-time systems, for a single software element to provide services
to multiple others. A very common example of this is a web server.
When you connect to a website, like www.rational.com, you are
connecting to a server process that is running on the host machine.
The server process is listening on a particular TCP/IP port and when a
request comes in, it spawns a task to handle that particular client
interaction. Multiple clients can connect to www.rational.com at the
same time.

One thing to be careful of when using replicated publishers (or multiple
publishers with the same name) is to make sure that the number of
publishers is appropriate for servicing the number of subscribers. If
the number of subscribers is significantly greater than the number of
publishers thrashing could occur.
User Guide - Rational Rose RealTime Connexis 131

Chapter 5 Establishing Connections
Use of Invokes

Invokes in Rose RealTime are the equivalent of synchronous messages.
Remember that the normal method of communication in a Rose
RealTime model is through asynchronous message sends. In contrast,
invokes are very similar to regular function calls on objects in a system.
The issue that can arise with invokes is that they bypass the normal
message queuing structure that is in place in Rose RealTime. The
calling capsule is blocked until the receiving capsule completes the
transition code that has been called and returns. In addition, the
receiving capsule must know to reply to the invoke.

Rose RealTime invokes cannot be used across thread or processor
boundaries. This means that if invokes are used in a particular
situation, you will not be able to separate the two capsules involved in
that connection into separate threads or processes without changes to
the code. Since Connexis is used specifically to send inter-process
messages, invokes cannot be used with Connexis-enabled
connections.

Use of Broadcast Sends

A broadcast send is a send that is performed on a replicated port
without specifying an index. Broadcast sends result in a message being
sent to each of the capsules that are connected on the other side of the
port.

There are many cases where broadcast sends are a useful and
appropriate technique. For example, when initializing capsules in an
application, it may be necessary to send all of the capsules of a
particular class an initialize message. If the order of the initialize
messages is not important, a broadcast send may be used.

The consequences of using a broadcast send are performance-related.
A broadcast send on a port that has a multiplicity of n results in n
individual message sends. This can impose a significant amount of
overhead on your system, especially in cases where n is large and the
messages are sent between processes.
132 User Guide - Rational Rose RealTime Connexis

Connection Design Heuristics
Use of Notification

Notification is used to instruct the run-time libraries to send a message
on a port whenever the port has been connected or disconnected from
its peer on the other side of the connection. The rtBound message is
sent when a connection is established and the rtUnbound message is
sent when a connection is removed. In general the use of notification
simplifies the job of the developer.

There is one rule that must be followed when notification is being used
on a port: when you deregister the port, and plan to register it again
later, you must wait to receive the rtUnbound event before reregistering
the port.

This is required because the priority of the rtBound message is higher
than that of the rtUnbound message. This means that if you deregister
a port and then immediately register it again, the rtBound message
could arrive first followed by an rtUnbound message. This could result
in an unexpected message or it could cause the capsule to go into an
incorrect state.

Use of Defers

Message deferral is a Rose RealTime feature that allows you to defer
messages that are received when a capsule’s state machine is not ready
to process them. Messages that have been deferred can be recalled at
a later time for processing. Although message deferral is a useful, and
in some cases, a necessary design technique, it does complicate the
state machine design of your model. For this reason, defers should be
used judiciously in Rose RealTime models.

In some cases, defers are used to get around the asynchronous
implementation of a part of the design that is logically sequential. For
example, if you are starting a service by asynchronously requesting an
object from an object factory, you may receive messages destined for
the new object before it has been created and returned by the object
factory. There are two solutions to this problem. The first is to defer the
incoming messages. The second is to request the object synchronously
using an invoke.
User Guide - Rational Rose RealTime Connexis 133

Chapter 5 Establishing Connections
Both of these solutions have trade-offs to consider. If you go the defer
route, the state machine of the capsule becomes more complicated.
There is also a greater probability of maintenance problems because
state machine changes may require additional recalls to be placed in
the code. If this is not done properly, errors may be introduced into the
model.

With the invoke solution, an entirely different set of issues results.
There are no longer any message order issues, and the state machine
is typically cleaner, but the connector that the invoke is being called on
is required to remain in the same thread.

Sending Data

There are many performance issues to consider when sending data
between capsules. The first thing to keep in mind is the relative
performance of different kinds of message sends. In general, the types
of message sends can be listed in order of relative performance (from
fastest to slowest) as in the following list:

1. intra-thread

2. inter-thread

3. inter-process (same node)

4. inter-process (over network)

In addition, messages with little or no data associated with them are
typically faster than messages with a large payload. This would lead
you to believe that it is better to send small messages between
capsules, especially when the messages are sent between processes.
This is true in general but the decision is a little more complicated than
that. The other factor that comes into play is the frequency of the
messages that are being sent. If you are sending small pieces of data
between two capsules hundreds of times a second, it would typically be
faster to buffer this data on the sending side and send a few larger
messages. These are some of the decisions that must be made when
designing a distributed application.

Sending Data Classes by Value

In order to send a data class by value across processes, it must be
marshallable. Refer to the “Data Classes that are Marshallable” in the
Rational Rose RealTime C++ Guide.
134 User Guide - Rational Rose RealTime Connexis

Chapter 6

Using the Connexis Locator Service

The Connexis Locator Service fulfills the role of the name server in a
Connexis application. The Locator does not have to be configured or
used in a Connexis application, but depending on the application’s
requirements, it can be very convenient.

The Connexis Locator Service supports both a primary and a backup
locator. In this way, a distributed application can be made more robust
by ensuring that the name server is not a single point of failure.

By using the Locator, the location of endpoints to which an application
is sending messages can remain totally transparent to the application.
The application uses service names to refer to the endpoints that are
being connected. The physical address of these endpoints never has to
be revealed to the application. This makes creating a network topology
that can be dynamically changed without affecting currently executing
software, much easier than if physical endpoints are used. This
strategy also allows load sharing topologies to be created much more
easily than if physical endpoints are used.

This chapter discusses:

� Adding Locator Support to a Model - describes the capsule roles
required to add Locator service.

� Publication and Subscription - describes how the Locator handles
publishers and subscribers. It provides information about ranking
published ports and load-sharing publishers.
User Guide - Rational Rose RealTime Connexis 135

Chapter 6 Using the Connexis Locator Service
� Locator Dynamics - describes how the Locator operates when a
publisher becomes fully subsribed, a subscriber loses its
connection to a publisher, the primary Locator fails, or a
subscriber is unconnected. It also discusses Locator race
conditions.

� Locator Configuration - describes the Locator configuration
parameters and provides examples of how to start your application
using a primary locator and backup locator.

� Creating your Own Name Service - provides guidelines on using a
custom name service in place of the Connexis Locator.

Adding Locator Support to a Model

To add the Locator to your application you must add a capsule role for
either the RTDBase_Locator or the RTDBase_Locator_Agent capsules
to a capsule in your application. Each node that is going to have a
Locator configured to run with it (either backup or primary) must have
one of these capsule roles contained in it (see “Sharing DCS Interfaces”
on page 84).

The RTDBase_Locator capsule only adds support for the Locator
(primary or backup). The RTDBase_Locator_Agent adds support for
both the Locator and for the Target Agent which is needed to run the
Connexis Viewer.

Publication and Subscription

In Connexis, one endpoint in every distributed connection is the
publisher and the other is the subscriber. The publisher posts (or
publishes) its interface, making it available for another endpoint to
connect to it. The subscriber connects to an endpoint that has been
published. This pattern can be used to implement any kind of
distributed connection topology. For example, client/server, peer to
peer, etc.

Publication

A port is published with the locator by providing its service name and
the endpoints where it can be reached. Multiple ports can be published
with the same server name from the same endpoint, or different
endpoints.
136 User Guide - Rational Rose RealTime Connexis

Publication and Subscription
The registerSPP() port function is used to publish a port. Deregistration
of a published port (using the port’s deregisterSPP() function) causes it
to be unpublished from the locator and severs any connections that are
using that port.

Subscription

A port subscribes to the locator by providing its endpoint and the name
of the service to which it wants to connect. If no port has previously
been published with that service name, the subscription remains
pending. Once one or more ports are published with that service name,
the Locator returns the publisher with the highest rank using the
preferred protocol, to the subscriber endpoint. If the subscriber has
specified a protocol (locator_transport), the highest-ranked publisher
which supports that protocol is returned. The DCS then makes an
explicit registration on behalf of the subscriber port with the returned
publisher.

The registerSAP() port function is used to subscribe a port to a service.

Ranking Published Ports

The Locator supports the ranking of publishers. The default ranking of
published ports is dependent on the following factors:

� the rank that the publisher is given

� the protocol that the publisher is using

The rank of a publisher is specified by the designer through the use of
a registration parameter. For example:

<port_name>.registerSPP(“dcs:/service1 ((locator_rank, 1))”);
User Guide - Rational Rose RealTime Connexis 137

Chapter 6 Using the Connexis Locator Service
When the locator searches for an endpoint to return, it follows this
algorithm. If a subscriber has specified a preferred transport, using the
locator-transport parameter when the SAP is registered, the locator
returns an endpoint published on that transport.

If the subscriber has not specified a preferred transport, but the locator
has been started with the -CNXlpt=<transport> command line
argument, it will return an endpoint published on the transport
specified. This is the case if a publisher exists and if the subscriber has
the transport available. If no endpoint has been found, the locator
returns the first endpoint published on any transport the client has
available. There is no default preferred transport version 2001.03.00 of
Connexis.

In all cases, the locator respects the rank, if any, that the publisher
specified using the locator-rank registration parameter. The highest
ranking endpoint will always be returned. The selection of an endpoint
from among many of the highest rank is arbitrary. The default rank is
zero.

Load-sharing of Publishers

Publishers of equal rank are load-shared among subscribers using a
simple round-robin algorithm. As the publishers are load-shared, the
assignment of a publisher to a subscriber is non-deterministic.

Examples

Ports publish themselves using the registerSPP() function call on an
unwired end port and subscribe to a published port using the
registerSAP() function call on an unwired end port. This section
presents several examples of registration strings that could be used
with these functions to publish or subscribe to interfaces using the
Locator service.

Example 1: Basic Locator registration

Publish:

<port_name>.registerSPP(“dcs:/service1”);

Subscribe:

<port_name>.registerSAP(“dcs:/service1”);
138 User Guide - Rational Rose RealTime Connexis

Publication and Subscription
Example 2: Locator registration using custom ranking

Publish:

<port_name>.registerSPP(“dcs:/service1((locator_rank, 1))”);

Subscribe:

This parameter only applies to the publish side of a
connection.

Example 3: Specifying the protocol
<port_name>.registerSAP(“dcs:/service1((locator_transport,
crm))”);

Notice that in the simple cases (where a custom ranking or protocol is
not being used), the registration string for both the publisher and the
subscriber is the same and neither side of the connection has any
knowledge of the value of the other side’s physical endpoint address.

If a subscriber is registered using the Locator
(registerSAP(“dcs:/service1”)) and no Locator is available (meaning the
application was not launched with a -CNXlp or -CNXlpep parameter),
then the registration will fail. If the same scenario exists for a
publisher, the port will still be registered with the DCS and will be able
to accept local and explicit connections.
User Guide - Rational Rose RealTime Connexis 139

Chapter 6 Using the Connexis Locator Service
Locator Dynamics

Figure 63 is a sequence diagram that illustrates the basic publication
and subscription operations of a Locator.

Figure 63 Basic publication and subscription
140 User Guide - Rational Rose RealTime Connexis

Locator Dynamics
From the user application perspective, the publication and
subscription is accomplished through the registerSPP() and
registerSAP() function calls on the port objects. The rest of the
messages shown on the sequence diagram in Figure 63 are internal
messages that occur as the result of a registerSAP() or registerSPP()
function call.

The Locator can be configured to execute on any node in the
distributed application. This configuration is accomplished through
command line parameters that are discussed later in this section.

Fully Subscribed Publishers

When a publisher becomes fully subscribed (meaning that all of the
ports on the publisher have been subscribed to), the publisher
unpublishes itself from the locator. At a later time, if a subscriber
deregisters itself from that publisher, the publisher republishes itself
with the locator. This sequence of events is illustrated in the sequence
diagram shown in Figure 64.

Figure 64 Fully subscribed publishers
User Guide - Rational Rose RealTime Connexis 141

Chapter 6 Using the Connexis Locator Service
Subscriber Losing Connection to a Publisher

If a subscriber that has successfully connected to a published endpoint
later loses that connection (through deregistration of the publisher,
failure of the publisher’s host, etc.), and this is detected by the
underlying transport, then the subscriber port is automatically
resubscribed to the locator. If the underlying transport does not
provide this quality of service, then it is up to the user application to
implement a failure detection mechanism in the protocol to detect
messaging failures and reregister as necessary.

One possible solution to this problem is to set up a timer on the
subscriber that periodically sends a message to the publisher. If the
publisher does not respond to this message within a specified amount
of time, the subscriber resubscribes to the service.

Locator Failure

If the primary Locator has been configured with a backup, and the
primary Locator goes down, the backup Locator automatically takes
over the role of primary Locator. When this primary/backup strategy is
used, the primary and backup Locators should be placed on different
nodes in the network. This ensures that there is not a single point of
failure in your distributed application.

Figure 65 illustrates the basic fail-over scenario of a primary/backup
Locator.

The backup continually polls the primary, and restarts the election
protocol should the primary fail to respond. The backup assumes the
role of the primary when the primary continues to fail to respond to the
election protocol. When the backup takes over, it broadcasts a message
to all endpoints stating that it is now the primary locator. The
endpoints acknowledge this and republish all global publisher ports
and pending subscription ports with the newly elected primary Locator.

Should the original primary locator become available again, it assumes
the role of the backup locator.

During the time that it takes for the transition from primary to backup
locator to take place, new publish or subscribe requests will be delayed
until the backup locator takes over.
142 User Guide - Rational Rose RealTime Connexis

Locator Dynamics
Figure 65 Primary to backup switchover
User Guide - Rational Rose RealTime Connexis 143

Chapter 6 Using the Connexis Locator Service
Locator Race Condition

There may be cases where the publisher becomes unavailable in
between the time that its endpoint is received from the locator and the
time when the explicit registration is attempted. One scenario that
would cause this to happen is illustrated in the sequence diagram in
Figure 66.

Figure 66 Locator race condition

In this case, subscriber2 got the endpoint from the locator and bound
to the last available port on the publisher. Meanwhile, subscriber1 got
the endpoint from the locator (before the publisher had unpublished
with the locator), and attempted to bind to it. This bind fails because
there are no ports left on the publisher. This scenario causes
subscriber1 to resubscribe with the Locator.
144 User Guide - Rational Rose RealTime Connexis

Locator Configuration
Unconnected Subscribers

If no unbound publishers are available, the subscriber remains
pending at the locator forever. Deregistration of a subscriber port that
has a pending subscription causes it to be unsubscribed from the
Locator.

Locator Configuration

The Locator service is an optional service that provides subscribers
with an endpoint that will be used on a first-come, first-served basis
when trying to connect to a publisher. The Locator service can be
initialized with both a primary and a backup server.

The initial Connexis release only supports a single backup server. This
limits the level of fault-tolerance to a single processor failure. This is
not a fundamental restriction of the primary/backup approach and
support for multiple backup servers may be added in future releases.
It is possible to operate with a single Locator for test purposes or if
fault-tolerance is not required in the product.

Locator Parameters

There are several configuration options that can be used to set up the
Locator for specific environments. These are listed in Table 14.

Table 14 Locator command line options

Command Line Option Description

CNXlocator_primary
(CNXlp)

Specifies that this process should be made
the primary locator.

Argument Type: none
Default Value: none

CNXlocator_backup
(CNXlb)

Specifies that this process should be made
the backup locator.

Argument Type: none
Default Value: none
User Guide - Rational Rose RealTime Connexis 145

Chapter 6 Using the Connexis Locator Service
CNXlocator_primary_
endpoint (CNXlpep)

Specifies the endpoint of the primary locator
(if this process is not the primary locator).

Argument Type: string
Default Value: none

CNXlocator_backup_
endpoint (CNXlbep)

Specifies the endpoint of the backup locator
(if this process is not the backup locator).

Argument Type: string
Default Value: none

CNXlocator_retry_delay
(CNXlrd)

Specifies the amount of time, in ms, to wait
before retries. The value must be >50.

Argument Type: integer
Default Value: 2000

CNXlocator_audit_delay
(CNXlad)

Specifies the amount of time, in ms, to wait
between audits of the primary and backup
locators. The value must be >50.

Argument Type: integer
Default Value: 2000

CNXlocator_audits_oos
(CNXlao)

Specifies the number of failed audits required
to take the primary locator out of service.
Using the default of 3, the primary locator
would be taken out of service after the third
consecutive audit had failed.

Argument Type: integer
Default Value: 3

CNXlocator_preferred_
transport (CNXlpt)

Specifies that the first protocol to be chosen.
This option can only be set at the primary or
backup locators.

Argument Type: string
Default Value: none

Table 14 Locator command line options

Command Line Option Description
146 User Guide - Rational Rose RealTime Connexis

Locator Configuration
A locator is configured as the primary by starting the application with
the -CNXlp command line option. When the locator starts up it
publishes a port with the DCS. The backup locator will later connect to
this port for the purpose of monitoring the primary locator. If the
primary locator fails, future locator requests will be routed directly to
the backup locator. If a backup is present, the CNXlbep option must
also be specified when the primary is started so that collocated clients
can use the locator if the backup takes over.

A locator is configured as the backup by informing the Connexis library
that the application is acting as the backup locator and by specifying
the explicit endpoint of the primary locator. This is done using the
-CNXlb command line option (to specify that this application is the
backup locator) and the -CNXlpep command line option (to inform
Connexis of the address of the primary locator).

The backup locator subscribes to the port that is published by the
primary locator. The backup uses this port to periodically poll the
primary locator. If the primary fails to respond to the polling messages,
the backup bids to takeover as the primary.

Client Connexis applications in this fault-tolerant configuration must
be configured with the endpoints of both the primary and the backup.
Each Connexis client explicitly subscribes to a port on both the
primary and the backup locators. Registrations are only sent to the
locator which has identified itself as the primary.

Figure 15 outlines the common Locator configurations and the
parameter combinations that are required to support them.
User Guide - Rational Rose RealTime Connexis 147

Chapter 6 Using the Connexis Locator Service
Table 15 Common Locator configurations and required parameters

Configuration Required Options Description

When starting a client that is
collocated with the primary
locator and no backup is being
used.

CNXlp The CNXlp option is required to
establish the process as the primary
locator.

When starting a client that is
collocated with the primary
locator and a backup is being
used.

CNXlp, CNXlbep The CNXlp option is required to
establish the process as the primary
locator.
The CNXlbep options is required so
that the primary locator and the client
know about the backup.

When starting a client that is
collocated with the backup.

CNXlb, CNXlpep The CNXlb option is required to
establish the process as the backup
locator.
The CNXlpep option is required to
inform the backup and the client of
the primary locator.

When starting a client that is
using a primary locator with no
backup.

CNXlpep The CNXlpep option is required to
inform the client of the location of the
primary locator.

When starting a client that is
using a primary locator with a
backup.

CNXlpep, CNXlbep The CNXlpep and CNXlbep options are
required to inform the client of the
location of the primary and the
backup locators respectively.
148 User Guide - Rational Rose RealTime Connexis

Locator Configuration
Locator Parameter Examples

This section presents several examples of starting different
components that are part of a distributed application that is using the
Connexis Locator service.

Example 1: Two node application with no backup locator

To start the application that acts as the primary locator:

<app_name> -CNXep=cdm://host1:9999 -CNXlp

The other application is started using the following command line
syntax:

<app_name> -CNXep=cdm://host2:9991 -CNXlpep=cdm://host1:9999

Example 2: Three node application with primary and backup
locator

To start the application that acts as the primary locator:

<app_name> -CNXep=cdm://host2:9999 -CNXlp -
CNXlbep=cdm://host3:9999

To start the application that will be acting as the backup locator:

<app_name> -CNXep=cdm://host3:9999 -CNXlb -
CNXlpep=cdm://host2:9999

To start the other application:

<app_name> -CNXep=cdm://host2:9991 -CNXlpep=cdm://host2:9999 -
CNXlbep=cdm://host3:9999
User Guide - Rational Rose RealTime Connexis 149

Chapter 6 Using the Connexis Locator Service
Creating your Own Name Service

The Locator service that is provided with Connexis is designed in a very
general fashion. It should satisfy most of the requirements for this type
of service, but there may be cases where a different level of
functionality is required by a specific application. In these cases, it may
be desirable to design and use your own name service instead of using
the Connexis Locator.

If you do this, there are several key differences between the Connexis
Locator and a simple name service that you should be aware of. The
Connexis Locator does more than simply translate a supplied service
name into a physical endpoint. The Connexis Locator also provides the
following features:

� allows for arbitration between several identically named publishers

� performs prioritized endpoint lookup on these publishers based on
rank and protocol priority

� allows pending subscriptions which are automatically connected to
publishers that are registered at a later time

� provides automatic re-subscription when publishers fail

� provides a fault-tolerant (no single point of failure) name service

� provides load-sharing of multiple publishers

A simple name service will typically only do a one-to-one mapping
between an endpoint service name and the endpoint physical address.

If your application does not require the additional features provided by
the Connexis Locator, you may want to create a custom name service.
An example, where this may be desirable, is if all of the nodes in your
distributed application can be determined by some kind of algorithmic
mapping of a service name (for example, “tributaryPort03”) to an
explicit endpoint. Another example, where this may be desirable, is in
a static network environment where all of the endpoint mappings could
be read from a configuration file at system start-up time.

In either of these cases, a Connexis connection could be used by all of
the nodes in the distributed application to connect to a known
“nameservice” port. This “nameservice” port returns an explicit
endpoint given a service name that was passed in to it.
150 User Guide - Rational Rose RealTime Connexis

Chapter 7

Using the Connexis Viewer

Debugging the data flow between embedded component instances in a
distributed network can be a very difficult task. For distributed
systems that have been designed and generated using Rational Rose
RealTime and Rational Connexis, the Connexis Viewer can be used to
provide real-time insight and feedback to aid in the debugging process.

The Connexis Viewer consists of a workstation component that is
provided for user interaction. The workstation component is launched
from within a Rose RealTime session and consists of a target agent
which monitors the DCS port registration process and collects trace
events.

The Connexis Viewer provides the following information about an
executing model:

� the status of unwired end ports that are registered with the DCS

� an indication of which DCS unwired end ports are bound to each-
other

� traces of user data sent from or received at a DCS registered port

� traces of DCS Locator and DCS Transport events -

❑ transport connection establishment and failure

❑ DCS locator switchover

❑ synchronization of naming tables between the active and the
standby DCS locators
User Guide - Rational Rose RealTime Connexis 151

Chapter 7 Using the Connexis Viewer
The circuit tracing functionality provided with the Connexis Viewer
offers features that are similar to the Rose RealTime’s Target
Observability with the following exceptions:

� Traces can be enabled and controlled independently of the Rose
RealTime toolset.

� The output of trace information is handled on a separate (low
priority) thread and is minimally intrusive to the running
application.

Note: The Connexis Viewer can be used at the same time as Rose
RealTime’s Target Observability feature. In fact, the easiest way to
start viewing a distributed model is to launch the different
applications directly from Rose RealTime.

The metrics collecting functionality provided with the Connexis Viewer
lets you control and view the metrics collection results of a component
instance. It provides the following features:

� Controls start and stop function for metrics collection

� Displays metrics data for any registered transports

� Displays aggregate data for all registered transports

� Displays controller metrics

� Saves data in a format that allows for further analysis
152 User Guide - Rational Rose RealTime Connexis

Viewer Architecture
Viewer Architecture

The Viewer communicates with the executing model through the Target
Agent as shown in Figure 67. The Target Agent component must be
contained in every Rose RealTime executable to which the Viewer
connects. The Target Agent operates on a low priority thread and relays
information about the executing model back to the Viewer where it can
be seen.

Figure 67 High-level architecture

Adding Viewer Support to a Model

To add Viewer support to your application, you must add a capsule role
from the RTDBase_Agent or the RTDBase_Locator_Agent capsule, to a
capsule in your application. Each node requiring Viewer support, must
have one of these capsule roles contained in it.

The RTDBase_Agent capsule only adds support for the Target Agent,
which is needed to run the Connexis Viewer. The
RTDBase_Locator_Agent adds support for both the Target Agent and
the Locator.

For more information on Connexis-enabling a Rose RealTime
application refer to “Adding Connexis Support to Your Model” on
page 83.
User Guide - Rational Rose RealTime Connexis 153

Chapter 7 Using the Connexis Viewer
Before starting the Viewer, there are two command line options that
you should specify for your Rose RealTime component instances:

� CNXep - Used to specify the Connexis endpoint. The Viewer must
know the Connexis endpoint of the executing model to be able to
connect to the running application. This is a required parameter.

� CNXui - Used to specify a unique identifier for the endpoint. If this
option is not specified, Connexis assigns a default identifier for the
endpoint. The default is a hex code and does not easily identify the
endpoint in the Viewer. For this reason, it is recommended that you
define your own unique, descriptive identifier.

If the CNXep option is not specified on the component instance (in Rose
RealTime), you can specify it using the Viewer. The CNXui option can
only be modified in the Viewer on user-defined component instances.
This means that if the component instance was read in from Rose
RealTime, you cannot modify it in the Viewer.

Adding Metrics Support to a Model

Like tracing, metrics gathering is done on the target itself and is
reported to the Viewer. This capability is enabled by default in the DCS
libraries that ship with Connexis, but it can be enabled or disabled
when the DCS library is recompiled by the user. Like tracing, the model
must contain either the RTDBase_Agent or the
RTDBase_Locator_Agent capsule. When the Viewer connects to the
Target Agent in the component instance, it asks if metrics gathering is
enabled on the target. If it is not, a warning message is displayed in the
log of the viewer and no metrics reporting can be done.
154 User Guide - Rational Rose RealTime Connexis

Starting the Connexis Viewer
Starting the Connexis Viewer

You can start the Connexis Viewer from the Rose RealTime main menu,
from a deployment diagram or from a deployment package.

To start the Connexis Viewer from the main menu:

1. Open the Connexis-enabled Rose RealTime model that you want to
view.

2. Select Tools > Connexis Viewer.

If you have a deployment diagram active when you start the Viewer, it
uses the processor and component instances from that diagram. If no
deployment diagram is active, it uses the processors and component
instances in the model.

To start the Connexis Viewer from a deployment diagram or a
deployment diagram icon:

1. Right-click the deployment diagram or the deployment diagram
icon. A popup menu appears.

2. Select Connexis Viewer from the popup menu. The Connexis Viewer
appears.

The Connexis Viewer uses the processor and component instances
from the deployment diagram icon that you have selected.

To start the Connexis Viewer from a deployment package:

1. Right-click the deployment package. A popup menu appears.

2. Select Connexis Viewer for the popup menu. The Connexis Viewer
appears.

The Connexis Viewer uses the processor and component instances
from the deployment package.
User Guide - Rational Rose RealTime Connexis 155

Chapter 7 Using the Connexis Viewer
Duplicate CNX Unique Identifiers

The Duplicate CNXui dialog box indicates that there are multiple
component instances that use the same CNXui. This may cause
confusing information to be displayed when using Connexis Viewer
features that rely on the CNXui. When this occurs, operations that
involve displaying information about the remote end of a connection
may not function correctly. The recommendation is that CNX unique
identifiers be unique amongst all component instances in the Connexis
Viewer session.

Figure 68 Duplicate CNXuis dialog box

Viewer Main Window

The Viewer main window contains the following:

� Main menu - is used to access application-specific operations

� Tree view - is the main interface to the user and is used to display
and configure information about the executing application as well
as to open trace windows

� Trace pane - is used to manage all of the trace windows that are
currently open
156 User Guide - Rational Rose RealTime Connexis

Viewer Main Window
� Log window - is used to log connection information

� Status bar - is used to display information about the state of the
application

Figure 69 shows the Viewer main window with the HelloWorld model
being viewed.

Figure 69 The Viewer main window
User Guide - Rational Rose RealTime Connexis 157

Chapter 7 Using the Connexis Viewer
Viewer Menus

The main menu, as shown in Figure 70, consists of a File, View, Tools,
Window and Help menu.

Figure 70 Connexis Viewer Main menu

File Menu

Import

Selecting File > Import displays a standard open dialog box that allows
you to import a previously-saved Viewer configuration file.

Use the Import command when you want to view a model in addition to
the one against which you launched the Connexis Viewer. The result of
importing the other model's information is the same as manually
adding each of the model's Processor and component instance
definitions.

Note: Before you import, you must generate the .CVMInfo file for the
model to be imported. This file is generated automatically when you use
the Connexis Viewer with a model.

Exit

Selecting File > Exit exits the application.

View Menu

Status bar

The View menu allows you to toggle the visibility of the Status Bar. A check
mark appears beside the menu item when it is visible.
158 User Guide - Rational Rose RealTime Connexis

Viewer Menus
Tools Menu

Options

Selecting Tools > Options displays a “Preferences” dialog (see Figure 71)
that lets you select Session defaults, Component Instance defaults and
Tracing defaults for the Connexis Viewer (see Table 16, “Preference
dialog settings,” on page 160).

Figure 71 Preferences dialog

.

User Guide - Rational Rose RealTime Connexis 159

Chapter 7 Using the Connexis Viewer
Table 16 Preference dialog settings

Option Description

Check for duplicate
CUIDs

Checking this field lets Connexis identify, on
startup, any duplicate CUIDs in a model. This
occurs if you have the same logical CUID value
(specified using the 'CNXui' parameter) for
components that are being deployed on different
configurations.

Connect to target
agents on load

Checking this box lets all new Component
Instances connect to target agents.

Auto-expand Tree Checking this box lets all new Component
Instances function with the Auto-expand tree
feature.

Connection Timeout Typing the number of seconds in this field sets
the timeout period for all new Component
Instances.

Refresh Mode Refresh Mode lets you select the way component
instances are refreshed (Auto, Manual or Timed).
For the Viewer to refresh component instances
automatically, select “Auto” from the list. Select
“Manual” if you want to refresh the component
instance manually or select “Timed” and set your
desired refresh period in seconds.

Trace Limit Setting the value of this field determines the
initial size of the tracing buffer. This specifies the
number of trace events stored for all trace
windows, including Component Instances, Ports
and Circuit traces.

Circuit Trace Level Selecting the level from this list determines the
initial setting (Disabled, Activity, Signal or Signal
and Data) for Port and Circuit tracing. When you
open a trace window onto a Publisher, Subscriber
or Circuit without performing a 'Define...,' the
default trace level is the one defined in this field.
160 User Guide - Rational Rose RealTime Connexis

Viewer Menus
Windows Menu

Tile

Selecting Window > Tile causes all non-iconified Trace windows to be
arranged in a format in which the trace windows do not overlap.

Cascade

Selecting Window > Cascade causes all non-iconified Trace windows to be
arranged in a 'stack' which allows the captions of each window to be
visible.

Trace Windows List

Selecting one of the entries in the Trace Windows List (the numbered
entries) causes that window to become the active Trace Window. The
window is brought to the top, and if it had been previously iconified, it
is restored to its normal state.

Help Menu

Contents

Selecting Help > Contents... launches the main help for Connexis and the
Viewer.

About Connexis Viewer

Selecting Help > About Connexis Viewer, displays the Viewer’s about dialog.
The about dialog contains information about the version of the
Connexis Viewer that is being used and also contains information
about how to contact Connexis support.
User Guide - Rational Rose RealTime Connexis 161

Chapter 7 Using the Connexis Viewer
Explorer Tree View

The primary way of configuring a Viewer session is through the tree
view. Most of the objects on the tree view have popup menus that allow
you to configure the object and to control the information that is
displayed for the object when the application is executing.

Figure 72 shows the tree view while the HelloWorld model is executing.
Every item in the tree view belongs to the session. The session contains
zero or more processors. Processors contain zero or more component
instances. Component instances contain zero or more named services.
Named services contain zero or more registered end ports and
registered end ports contain zero or more virtual circuit endpoints.

The processor and component instance information can be derived
directly from a Rose RealTime model. The Viewer captures the
information that is contained in the deployment view of the model that
was open when the Viewer was launched. Additionally, you can add
processors and component instances manually inside the Viewer. This
is useful if you also want to monitor Connexis-enabled Rose RealTime
executables that are not contained in the model from which the Viewer
was launched.

Figure 72 The Explorer tree view
162 User Guide - Rational Rose RealTime Connexis

Explorer Tree View
Processor Icons

Processors that have been added automatically by launching the
Viewer are illustrated using the same processor icon as is used in Rose
RealTime (see the ClientProcessor_VC60@127.0.0.1 processor in
Figure 72 and Table 17). Processors that are added manually in the
Viewer are illustrated using the processor icon with a downward
pointing arrow inside (see the Workstation1@127.0.0.1 processor in
Figure 72 and Table 17). Processors that are added manually will be
reloaded the next time the Viewer is opened from the same model.

Component Instance Icons

Component instances, that have been added automatically by
launching the Viewer, are illustrated using the same component
instance icon as is used in Rose RealTime (refer to the
Client_VC60Instance (10010) component instance in Figure 72).
Component instances that are added manually are illustrated using
the component instance icon with a downward pointing arrow inside
(refer to the TestComponentInstance (9999) component instance in
Figure 72). Component instances that are added manually will be
reloaded the next time the Viewer is opened from the same model.

Table 17 Processor icons

Icons Meaning

 automatically-added processor

 manually-added processor

Table 18 Component instance icons

Icons Meaning

 automatically-added component instances

 manually-added component instances
User Guide - Rational Rose RealTime Connexis 163

Chapter 7 Using the Connexis Viewer
Filter Icons

A Filter icon lets you add, select or remove a trace filter specification
from the Explorer tree view. Clicking the plus symbol to the left of the
Filter icon expands the tree and reveals the trace filter specifications
that are available for use. If there are no trace filter specifications
available, right-clicking the Filter icon lets you add a new trace filter
specification. (see“Defining a Trace Filter for a Component Instance” on
page 182).

Figure 73 Filter Icon

Component Instance Status

Component instance status is indicated in the tree view by varying the
gear icon shown in Figure 74.

Figure 74 Gear icon

When a target agent connection is established, the tree refresh mode
(that is, manual, automatic, or timed) is reflected through the gear
spin. Feedback is summarized in Table 19.

When the Viewer has lost contact with the target (red), is manually
disconnected (gray), or is connecting (yellow), there is no feedback for
the refresh mode (since there is no active refresh in these states).

Table 19 Gear spin and status

Icon behavior Meaning

green, continuous spinning Automatic refresh mode

green, intermittent spinning Timed refresh mode

green, with no spin Manual refresh mode
164 User Guide - Rational Rose RealTime Connexis

Explorer Tree View
Named Services Icons

Named services appear in the tree view as folders (see Figure 75) that
are contained in component instances. Named services are identified
using the name that they were registered as with the DCS. Inside each
named service are zero or more registered end ports. The registered end
ports are referred to by the names that they were given in the Rose
RealTime model (this may or may not be the same as the name that
they were registered as), followed by the Rose RealTime model path to
the end port, the number of the end port instance, and the total
number of instances.

Figure 75 Named service icon

Port Icons

Publisher ports appear in the tree view with a red port icon beside them
(refer to the EnglishServer:greeting(1/1) port in Figure 72 and
Table 21). Subscriber ports appear with a yellow port icon if the port is
not bound, or a green port icon if the port is bound.

Table 20 Gear color and status

Icon appearance Meaning

No Gears The Target Agent has not been connected to this
component instance in this Viewer session.

Yellow Gears The user has requested a connection to the Target Agent
but the connection has not yet been established.

Green Gears The Target Agent is connected to the component
instance. If the component instance is in Auto Refresh
mode, the gears will be spinning. (See Table 19)

Red Gears The Viewer has determined that it has lost the
connection with the Target Agent. This is most likely an
indication that the component instance has stopped
running or is hung. The Viewer maintains the last
known state in the tree until the component instance is
Reset.

Gray Gears There is currently no connection established between the
component instance and the Target Agent.
User Guide - Rational Rose RealTime Connexis 165

Chapter 7 Using the Connexis Viewer
Virtual Circuit Icons

The last items that appear on the left hand side of the tree view are the
virtual circuits. Virtual circuits are contained inside of end port objects
in the tree view and appear with a green protocol icon beside them
(refer to (Client, 2) --> (Server1, 2) “EnglishServer:greeting” in Figure 72
and Figure 76).

Figure 76 Virtual circuit icon

Virtual circuits represent the Connexis connections that are currently
established in the running model as of the last time the Viewer was
refreshed. The information that is displayed in the tree view about a
virtual connection contains the following:

� the unique identifier for the local component instance followed by
the virtual circuit ID for that side of the connection

� the unique identifier for the remote component instance followed
by the virtual circuit ID for that side of the connection

� the name and Rose RealTime model path of the end port on the
other side of the connection enclosed in quotation marks

The virtual circuit illustrates why it is important to specify the CNXui
command line option on your component instances. If usable
identifiers had not been used in this model, the Client and Server1
identifiers would have appeared as numbers that were generated by
Connexis.

Table 21 Port icons

Icons Meaning

 Publisher port icon

 Subscriber port icon
166 User Guide - Rational Rose RealTime Connexis

Explorer Tree View
This would have caused the information for the virtual circuit
contained in the EnglishServer:greeting (1/1) end port in Figure 72 to
be something similar to the following:

(76f95d83,2) --> (76f98e45,2) “Client:greeting”

This information is much more difficult to keep track of when you are
viewing an executing model.

Object Information Column

The Object Information column is on the right-hand side of the tree
view and is shown in Figure 77. It is used to display additional
information about each of the objects in the tree view.

Figure 77 The Object Information column

Table 22 explains what information is displayed in the Object
Information column for each object type.
User Guide - Rational Rose RealTime Connexis 167

Chapter 7 Using the Connexis Viewer
Popup Menus

Most operations in the Connexis Viewer are performed by selecting an
element and using the popup menu. Clicking the right mouse button
on an element in the Explorer Tree View enables you to perform
operations such as adding a processor or component instance, defining
trace parameters, opening a trace window, and so on.

Session Popup Menu

The session object in the tree view has a popup menu associated with
it. This menu is shown in Figure 78. The only option available from this
menu is to add a new processor to the session.

Table 22 Object Information description

Object type Information displayed

Processor Operating system and hardware architecture.

Component
Instance

Connexis Unique Identifier. This displays the string that
was specified using the CNXui command line option. If
the user did not specify an identifier, the Connexis-
generated identifier is not displayed until you connect to
that component instance. This field also displays the
locator configuration and status.

Named service Number of publishers and subscribers that are
currently registered, and in the case of publishers, the
sum of the replication factors of the named service for
the component instance.

Registered end
port

The Connexis Registration string that was used to
register the port.

Virtual circuit This field indicates which transport protocol is used to
establish the connection. This field also indicates the
type of connection that has been established by
Connexis.
168 User Guide - Rational Rose RealTime Connexis

Popup Menus
Figure 78 The session popup menu

Add Processor

The Add Processor command allows you to add a processor to the tree
view. See also “Adding a Processor” on page 175.

Processor Popup Menu

All processors in the tree view have a popup menu associated with
them as shown in Figure 79.

Figure 79 The processor popup menu

Open Specification

The Open Specification command allows you to modify a processor’s
properties. See also “Changing the Properties of a Processor” on
page 176.
User Guide - Rational Rose RealTime Connexis 169

Chapter 7 Using the Connexis Viewer
Remove

The Remove command allows you to remove a processor that you have
manually added to the model. This command appears grayed out if the
processor was read in from a Rose RealTime model.

Add Component Instance

The Add Component Instance command allows you to add a new component
instance to the tree view. See also “Adding a Component Instance” on
page 177.

Component Instance Popup Menu

The component instance popup menu is context-sensitive and is
shown in Figure 80. Slightly different options will appear in this menu
depending on the state of the component instance. Figure 80 shows
what is displayed if the menu is opened from a component instance
that was read in from a Rose RealTime model and where the Target
Agent has been started on the component during the active session.

Figure 80 The component instance popup menu
170 User Guide - Rational Rose RealTime Connexis

Popup Menus
Open Specification

The Open Specification command allows you to modify a component
instance’s properties. See also “Changing the Properties of a
Component Instance” on page 180.

Remove

The Remove command allows you to remove a component instance that
you have manually added to the model. This command appears grayed
out if the processor was read in from a Rose RealTime model.

Connect to Target Agent on load

The Connect to Target Agent on load command changes context depending
on the current Target State as summarized in Table 23.

Refresh

The Refresh command allows you to manually refresh the information
that is being displayed about the component instance and all of the
objects under it in the tree view. This option is available even if the
Timed or Auto refresh methods are selected for the component
instance. See also “Changing the Properties of a Component Instance”
on page 180.

Table 23 Connect to Target Agent

Target State Command text Action

Not Connected
(Gray gears)

Connect to Target
Agent

Attempts to connect to this
component instance's Target
Agent

Waiting for
Connection
(Yellow gears)

Cancel Target Agent
Connection

Cancels the attempt to connect

Connected
(Green gears)

Disconnect from
Target Agent

Disconnects from the Target
Agent

Disconnected
(Red gears)

Reset Target Agent
Connection

Clears the tree information and
returns to the “Not Connected”
Target state
User Guide - Rational Rose RealTime Connexis 171

Chapter 7 Using the Connexis Viewer
Apply Filter

The Apply Filter command lets you select a previously-defined trace filter
for a component instance. A popup menu appears, listing all available
filters.

Define Trace

The Define Trace command allows you to define trace settings for a
component instance. See also “Defining a Trace Filter for a Component
Instance” on page 182.

Open Trace Window

The Open Trace Window command lets you open a trace window from
a component instance. Once the trace window appears, you can right-
click on the window to define or apply a trace filter to the component
instance (see “Trace Window Popup Menu” on page 196).

Open Metrics Window

The Open Metrics Window command opens a metrics window on the
component instance. The Viewer does not have to be connected to the
component instance, but the component instance must be running for
the metrics connection to work.

Reset Metrics

The Reset Metrics command restarts the target metrics counter and
resets the collection and reporting of metrics from the selected
component instance. The component instance must be running for this
menu item to be available.
172 User Guide - Rational Rose RealTime Connexis

Popup Menus
Port Reference Popup Menu

The Port reference popup menu is shown in Figure 81.

Figure 81 The Port Reference popup menu

Define Trace

The Define Trace command allows you to define trace settings for a port
reference. See also “Defining a Port Reference Trace” on page 188.

Open Trace Window

The Open Trace Window command opens a trace window on the port
reference. This trace window uses the filters that were defined in the
Define Trace dialog.
User Guide - Rational Rose RealTime Connexis 173

Chapter 7 Using the Connexis Viewer
Virtual Circuit Popup Menu

The Virtual circuit popup menu is shown in Figure 82.

Figure 82 The virtual circuit popup menu

Show other end

The Show other end command allows you to highlight the virtual circuit
endpoint that is at the other end of the connection.

Define Trace

The Define Trace command allows you to define trace levels for a virtual
circuit. See also “Defining a Virtual Circuit Trace” on page 192.

Open Trace Window

The Open Trace Window menu item opens a trace window on the virtual
circuit. This trace window will use the filters that were defined in the
Define Trace dialog.
174 User Guide - Rational Rose RealTime Connexis

Creating Processors and Component Instances
Creating Processors and Component Instances

The Connexis Viewer lets you create processors and component
instances that are not part of the current model. This is useful when
you wish to perform traces on distributed systems that are composed
of several models. Using the Import command to import all information
from another model may be undesirable depending on the size and
complexity of the model. The ability to add processors and component
instances from another model allows you to:

� see information for a single component instance in a complex
model without burdening your session with unnecessary
information

� perform a trace when the model for the other component instances
is not available (for example, the model was developed off-site)

New processor and component instances are stored in.CVEInfo file.
Once defined, they will always appear when you open the model.

Adding a Processor

You can add a processor that is not part of the current model to the
tree view.

To add a processor:

1. Select New Session in the tree view.

2. Right-click and select Add Processor from the popup menu.

The dialog shown in Figure 83 appears.

Figure 83 Add Processor dialog
User Guide - Rational Rose RealTime Connexis 175

Chapter 7 Using the Connexis Viewer
3. Enter a processor name.

Note: Letters, numbers, and underscores are permitted in the name.
Spaces are prohibited.

4. Enter the IP address of the processor.

5. Enter the CPU type.

6. Enter the operating system.

7. Click the OK button.

If you need to modify a processor’s properties after you have created it,
see “Changing the Properties of a Processor” on page 176.

Changing the Properties of a Processor

The Connexis Viewer allows you to edit a processor’s properties after
you have created it.

To change a processor’s properties:

1. Select the processor.

2. Right-click and select Open Specification from the popup menu.

The dialog box shown in Figure 84 appears.

Figure 84 Processor Specification dialog

3. Edit the fields as desired.

4. Click the OK button.
176 User Guide - Rational Rose RealTime Connexis

Creating Processors and Component Instances
Removing a Processor

You can remove a processor that you manually added to the model
from the Connexis Viewer. Processors that have been read in from a
Rose RealTime model cannot be removed, and as a result, appear
grayed out on the menu.

To remove a processor:

1. Select the processor.

2. Right-click and select Remove from the popup menu.

Adding a Component Instance

You can add a component instance that is not part of the current model
to the tree view.

To add a component instance:

1. Select the processor to which you want to add a new component
instance.

2. Right-click and select Add Component Instance from the popup menu.

The dialog box shown in Figure 85 appears.
User Guide - Rational Rose RealTime Connexis 177

Chapter 7 Using the Connexis Viewer
Figure 85 Add Component Instance dialog

3. Enter a name for the component instance.

Note: Letters, numbers, and underscores are permitted in the name.
Spaces are prohibited.

4. Enter the CNX endpoint (CNXep). This must be a valid Connexis
endpoint. Specifying just a port number translates into the
endpoint cdm://<IPAddr>:portnumber where <IPAddr> is obtained
from the processor containing this component instance.

5. Enter the CNXui field if you created the component instance
manually.

Note: You cannot edit this field if the component instance was read
in from a Rose RealTime model.

6. Click to enable Connect to Target Agent on load.

When this option is enabled, the Viewer:
178 User Guide - Rational Rose RealTime Connexis

Creating Processors and Component Instances
❑ attempts to connect to the component instance’s target agent on
startup

❑ automatically attempts to reconnect to a Target Agent when it
becomes 'Disconnected' (that is, unexpectedly loses its
connection). This is useful in situations such as when the target
is reset, rerun, or the communication link between the target
and the Viewer is broken and re-established. All component
instance trace filters established before the reset are
maintained.

If this option is not selected, the Target Agent must be started
manually.

7. Click to enable Auto expand tree.

When this option is enabled, the tree view is automatically
expanded to show new objects underneath the component instance
such as named services, publishers and subscribers, and
connections.

8. Enter a Connection timeout value in seconds.

This is the amount of time that the Viewer will wait for a reply from
the target agent before it assumes the connection has been
terminated. This value is used in two situations:

❑ When the Viewer attempts to attach to a target agent, the value
in the connection timeout field is used to decide how long the
Viewer waits for the target agent to handshake with the Viewer.
If the handshake is not received within the specified interval,
the target agent must be reset and another connection attempt
must be initiated. A value of 0 indicates that the Viewer should
wait forever.

❑ After the connection has been established (during normal
communication), the value in the connection timeout field is
used to determine how long the Viewer should wait for a
response from the target agent. Once a request for information
is sent by the Viewer to the target agent, the target agent is
expected to reply within the time specified in the connection
timeout field. The target agent is given three attempts to
respond within this interval. If it does not, the Viewer sends it a
status query. If no response is received for the status query
within the connection timeout period, the connection is
assumed to have timed out and the target agent must be reset
and reconnected. If the connection timeout is set to 0, the
default connection timeout period of 30 seconds is used.
User Guide - Rational Rose RealTime Connexis 179

Chapter 7 Using the Connexis Viewer
9. Choose a Refresh mode from the drop-down list:

❑ Manual - All refreshes of the data that is displayed in the tree
view must be done by selecting Refresh from the component
instance’s popup menu.

❑ Auto - Refreshes the model in real-time. This causes the Viewer
to refresh the display whenever a modification causes the
information that is displayed in the Viewer to change. This
operation may not be desirable for “highly active” models since a
constantly-changing model will cause the tree display to
fluctuate as it attempts to keep up-to-date.

❑ Timed - If this option is selected, the refresh will occur every n
seconds where n is the value entered in the seconds field.

10. Enter the rate (milliseconds) at which you want metrics data to be
reported to the Viewer, in the Preferred Rate text box.

If the rate you request is more frequent than the rate at which the
component instance audits its circuits, the rate you request will
not be supported by the component instance. In such a case,
metrics uses the auditing rate of the component instance.

For example, if the component instance "Client" uses the default
audit period of 250 ms, and you set the Preferred Rate to 100 ms,
metrics will be reported at an audit period of 250 ms.

Changing the Properties of a Component Instance

The Connexis Viewer lets you edit a component instance’s properties
after you have created it.

To change a component instance’s properties:

1. Select the component instance you wish to modify.

2. Right-click and select Open Specification.

The dialog box shown in Figure 86 appears.
180 User Guide - Rational Rose RealTime Connexis

Creating Processors and Component Instances
Figure 86 Component Instance Properties dialog

3. Edit the fields as desired.

Note: You cannot edit the CNXep field if the component instance was
read in from a Rose RealTime model. You can only edit this field if the
component instance was created manually.

4. Click the OK button.
User Guide - Rational Rose RealTime Connexis 181

Chapter 7 Using the Connexis Viewer
Performing Event Tracing

The Connexis Viewer lets you perform event tracing on component
instances, port references and virtual circuits.

The options available vary depending on the type of element selected
for tracing and are described in detail in the following sections:

� Defining a Trace Filter for a Component Instance

� Defining a Port Reference Trace

� Defining a Virtual Circuit Trace

Defining a Trace Filter for a Component Instance

Trace filters let you trace messages and event types from a distributed
model. You can define a trace filter from a Component Instance icon or
a Filter icon. Right-clicking either icon lets you access a dialog box that
allows you to set the filter levels for different trace groups and trace
types.

The component instance trace levels that are available for the trace
groups and trace types are:

� Disabled - no tracing for the group/type

� Basic - events that are related to the static operation of a group or
type. This includes start-up events, connect events and shutdown
events

� Operational - events that are related to the dynamic behavior of a
group. This is the trace level that is used to trace data transport

� Advanced - enables all tracing for a group. This is typically very
detailed and includes all events from the other trace levels as well
as audit information

Note: When setting the trace levels for the different types and groups,
keep in mind that the more tracing being performed, the more data is
being sent to the Viewer. This can have a negative impact on the
performance of the executing model.

To define a trace filter from a Component Instance icon:

1. Right-click the Component Instance icon that you want to trace.

2. Select Define Trace from the popup menu.

The Set Component Instance Trace Levels dialog appears.
182 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
Figure 87 Set Component Instance Traces Levels dialog

3. Define the trace filter according to your requirements (see
Table 24, Table 25 and Table 26, for an explanation of the trace
filter options).

4. Type the number of events that you want written to the trace buffer
in the Trace buffer size text field.

5. Click Apply to trace the component instance.

6. Click Save As to save your trace options. This is only necessary if
you want to reuse the same trace filter that you have created.
User Guide - Rational Rose RealTime Connexis 183

Chapter 7 Using the Connexis Viewer
To define a trace filter from the Filter icon:

1. Right-click the Filter icon from the Explorer tree view.

2. Select Add Filter.

The Filter Spec Sheet dialog appears.

Figure 88 Filter Spec Sheet dialog

3. Type a descriptive name to identify the filter in the Filter text box.

4. Define the trace filter according to your requirements (see
Table 24, Table 25 and Table 26, for an explanation of the trace
filter options).

5. Click OK to implement your changes and close the dialog.
184 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
Setting trace filters

The “Set Component Instance Trace Levels” dialog and the “Filter Spec
Sheet” dialog contain the trace groups and trace types that let you set
your define your trace filter. Trace groups refer to a functional area
where messages can be traced in the distributed model and trace types
refer to event types that can be traced. The settings for the trace groups
and trace types determine what messages are traced in the executing
model.

When connecting to target agents in the minimal configuration, only
error and warning type events for all trace groups are available. A
description of how to configure the following trace groups is explained
in Table 24, Table 25 and Table 26:

� DCS Trace Options

� Audit Trace Options

� Protocol Messages Trace Options
User Guide - Rational Rose RealTime Connexis 185

Chapter 7 Using the Connexis Viewer
Table 24 DCS Trace Options

DCS Tracing Filters Trace Options

Controller Basic

� Controller initialization status

Basic Errors: Failure to initialize the DCS
components (for example, transporter)

Operational

� Subscriber and publisher registration

� Binding and unbinding of end ports

� Connection establishment progress

� Local binding indication

� Transport failure and recovery indications

Operational Warnings: Registration failures due to
configuration (for example, global registration with
no locator configured)

Operational Errors: Subscriber and publisher
registration errors and failures

Advanced

� End port proxy creation and removal

� Auditing of end port proxies

� Viewer/Target Agent service and connection
information queries

Transporter Basic

� Encoder/decoder mismatch between transport
end points

� Data type lookup error

Basic Warnings:

�Local/remote virtual circuit mismatches

�Unknown control messages

Basic Errors:

�Encode/decode errors

�Unknown control messages
186 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
Operational

� Connection establishment and teardown

Advanced

� An indication that a message was sent over the
wire and the message size in bytes

Locator Basic

� Locator configuration (as primary or basic)

Basic Errors:

�Encode/decode errors

Operational

� Service publish and subscribe events

� Service registration and binding status

Operational Errors:

�Encode/decode errors

Advanced

� Primary and backup locator election process

DCS Configuration Basic

� Used to indicate that user configuration settings
have been overridden

Operational

� Displays the same information as basic

Advanced

� Displays the same information as basic

Datagram Messaging There are currently no trace events defined for
Datagram Messaging.

Table 24 DCS Trace Options

DCS Tracing Filters Trace Options
User Guide - Rational Rose RealTime Connexis 187

Chapter 7 Using the Connexis Viewer
Defining a Port Reference Trace

When performing a trace on a port reference, you can specify where the
messages are traced, set the trace level, and set the buffer size. You can
also refine your trace to use only selected component instances
(identified by the CNXui). This is useful when you want to focus your
trace on a particular component instance that may be experiencing
errors (for example, an encode/decode error).

Table 25 Audit Trace Options

Audit Trace Filters Trace Options

Controller Audit Basic

� None

Operational

� Circuit audit status

� Circuit audit timeouts

� Unbinding of publishers or subscribers as a
result of a circuit audit

Advanced

� Displays same information as Operational

Transporter Audit Basic

� None

Operational

� Transport endpoint failure recovery

Advanced

� Audit messages

Locator Audit There are currently no trace events defined for
Locator Audits.

Target Agent Basic

� None

Operational

� Viewer Operations

Advanced

� Trace filter configuration operations
188 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
To define a port reference trace:

1. Select the port reference you wish to trace.

2. Right-click and select Define Trace from the popup menu.

The dialog box shown in Figure 89 appears.

Table 26 Protocol Messages Trace Options

Protocol Messages
Trace option

Trace Options

User Data In/Out Basic

� Enables component instance wide tracing of all
circuit data that is injected into the model or
sent by the model. User Data In trace events are
collected after the user’s data has been decoded.
User Data Out trace events are collected before
the user's data has been encoded.

Operational

� Displays same information as basic

Advanced

� Displays same information as basic

Network Data In/Out Basic

� Enables component instance wide tracing of all
circuit data that is received from or sent to the
network. Network Data In trace events are
collected before the data from a user is decoded.
Network Data Out trace events are collected
after the data of a user is encoded.

Operational

� Displays same information as basic

Advanced

� Displays same information as basic
User Guide - Rational Rose RealTime Connexis 189

Chapter 7 Using the Connexis Viewer
Figure 89 Define Trace Dialog (Port reference)

3. Configure the trace reference settings according to Table 27.

Table 27 Trace location settings

Option Description

User data in Causes the tracing of incoming messages to occur after
the message data has been decoded.
190 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
Figure 90 shows what reference point is used for each of the four
options. If you encounter problems that you think may have been
caused by encoding or decoding, you can use tracing on user and
network data to ensure their accuracy.

Figure 90 User and Network data designations

Any combination of these checkboxes can be selected. Selecting all four
causes the messages to be traced before and after encoding for
outgoing messages, and before and after decoding for incoming
messages.

4. Configure the Trace Level setting according to Table 28.

5. Enter a number to specify the number of events that can be written
to the trace buffer in the Trace buffer size field.

6. Click the Trace Active box to apply the filter settings when you click
Apply or OK.

7. Click the Open Trace Window to open a trace window for this port
reference.

User data out Causes the tracing of outgoing messages to occur before
the message data has been encoded.

Network data in Causes the tracing of incoming messages to occur
before the message data has been decoded.

Network data out Causes the tracing of outgoing messages to occur after
the message data has been encoded.

Table 27 Trace location settings

Option Description
User Guide - Rational Rose RealTime Connexis 191

Chapter 7 Using the Connexis Viewer
8. Click the Filter Trace by Remote CNXui box if you want to specify the
remote component instances to be included in the trace. In the list
box, click on each component instance you wish to include.

Note: When disabled, trace data is gathered for all remote
component instances.

9. Click the OK button.

Defining a Virtual Circuit Trace

When performing a trace on a virtual circuit, you can specify where the
messages are traced, set the trace level, and the buffer size.

To define a virtual circuit trace:

1. Select the virtual circuit you wish to trace.

2. Right-click and select Define Trace from the popup menu.

The dialog box shown in Figure 91 appears.

Table 28 Trace location settings

Option Description

Disabled No tracing will be performed.

Activity Only traces that messages are being sent. The trace
event indicates both the local virtual circuit identifier
and the remote virtual circuit identifier but the actual
signal and message data are not traced.

Signal Only the message signal will be traced.

Signal and data Both the message signal and the message data will be
traced.
192 User Guide - Rational Rose RealTime Connexis

Performing Event Tracing
Figure 91 Define Trace Dialog (Virtual circuit)

3. Configure the trace reference settings according to Table 29.

For information on these trace reference points, refer to Figure 90.

Any combination of these checkboxes can be selected. Selecting all
four causes the messages to be traced before and after encoding for
outgoing messages, and before and after decoding for incoming
messages.

4. Configure the Trace Level setting according to Table 28.

5. Enter a number to specify the number of events that can be written
to the trace buffer in the Trace buffer size field.

Table 29 Trace location settings

Option Description

User data in Causes the tracing of incoming messages to occur after
the message data has been decoded.

User data out Causes the tracing of outgoing messages to occur before
the message data has been encoded.

Network data in Causes the tracing of incoming messages to occur
before the message data has been decoded.

Network data out Causes the tracing of outgoing messages to occur after
the message data has been encoded.
User Guide - Rational Rose RealTime Connexis 193

Chapter 7 Using the Connexis Viewer
6. Click the Trace Active box apply to the filter settings when you click
Apply or OK.

7. Click the Open Trace Window to open a trace window for this virtual
circuit.

8. Click the OK button.

Trace Window

The Trace window presents trace events formatted into columns. The
Trace Window automatically scrolls to show new trace events as they
arrive unless the scroll bar is not at the bottom. To pause scrolling,
click anywhere in the scroll region but the bottom. To resume scrolling,
drag the scroll bar to the bottom of the scroll region.

There are two types of trace windows available in the Connexis Viewer:

� Component instance trace windows.

� Virtual circuit trace windows.

Both types of trace windows provide the same function. They differ in
the type of information that is displayed in them.

Component Instance Trace Window

The component instance trace window is shown in Figure 92. It
contains four fields of information:

� Time - contains a timestamp of when the message was traced.

� Event - this is the trace type for this trace event.

Table 30 Trace location settings

Option Description

Disabled No tracing will be performed.

Activity Only traces that messages are being sent. The trace
event indicates both the local virtual circuit identifier
and the remote virtual circuit identifier but the actual
signal and message data are not traced.

Signal Only the message signal will be traced.

Signal and data Both the message signal and the message data will be
traced.
194 User Guide - Rational Rose RealTime Connexis

Trace Window
� Level - this is the level of the trace message.

� Data - this field contains the data that is associated with the trace.

Figure 92 The component instance trace window

Virtual Circuit Trace Window

The virtual circuit trace window is shown in Figure 93. It contains
seven fields of information:

� Time - contains a timestamp of when the message was traced

� Local Path - contains the Rose RealTime model path for the local
side of the virtual circuit

� <-> - contains either a --> or a <-- symbol, indicating the direction
in which the message was sent

� Remote Path - contains the Rose RealTime model path for the far
side of the virtual circuit if the Target Agent is running at the far
end; otherwise, the CNXui and the VCID are displayed

� Priority - corresponds to the message priority

� Signal - contains the message signal name if the Signal or Signal and
data trace level is specified

� Data - contains the message data if the Signal and data trace level is
specified
User Guide - Rational Rose RealTime Connexis 195

Chapter 7 Using the Connexis Viewer
Figure 93 The virtual circuit trace window

Trace Window Popup Menu

The Trace window has a popup menu associated with it as shown in
Figure 94.
196 User Guide - Rational Rose RealTime Connexis

Trace Window
Figure 94 Trace window popup menu

Show trace data

This opens a trace data window onto the trace data field of the selected
event. The format of this window depends on whether the trace event
is a network or user-side trace event. Figure 95 shows an example of
the Trace Data window for ASCII data. Figure 96 shows an example of
the Trace Data window for binary (network) data.
User Guide - Rational Rose RealTime Connexis 197

Chapter 7 Using the Connexis Viewer
Figure 95 The Trace Data Window with ASCII data

Figure 96 The Trace Data Window with binary data
198 User Guide - Rational Rose RealTime Connexis

Trace Window
Define trace

Selecting the Define Trace command opens the Define Trace Levels dialog
box. The content of this dialog box varies depending on the object being
traced. Table 31 lists the types of traces that can be performed in
Connexis and references the figures that display the Define Trace
options.

Trace active

The Trace Active command toggles on and off and is used to select
whether the Trace Data window should capture any new trace events.
If an inactive trace is set to active, it will reuse the values that were set
in the Define Trace dialog box.

Select in tree

Selecting the Select in Tree command causes the object being traced to
become active in the Explorer Tree View.

Clear

Selecting the Clear command clears the contents of the trace window.

Save trace

Selecting the Save Trace command brings up a Save As dialog which
allows you to save the current contents of the Trace window to a file.
There are two available 'formats' of trace output available. They are:

� Comma Delimited Trace (.cdTrace) which produces a simple
comma delimited line for each trace event

� Formatted Trace (.fmtTrace) which produces a (tag : value) multi-
line output for each trace event

Table 31 Types of Traces

Trace Type Figure

Component instance Figure 87, “Set Component Instance
Traces Levels dialog,” on page 183

Port reference Figure 89, “Define Trace Dialog (Port
reference),” on page 190

Virtual circuit Figure 91, “Define Trace Dialog (Virtual
circuit),” on page 193
User Guide - Rational Rose RealTime Connexis 199

Chapter 7 Using the Connexis Viewer
Figure 97 shows a sample trace output for a virtual circuit. The top
portion shows the information when Comma Delimited is selected. The
bottom portion shows an example of the output when the Formatted
Trace option is selected.

Comma Delimited (cdTrace)

Captured using Connexis Viewer Version 6.1

Time, Trace Name, Trace Level, Trace Data

945197351.15000000, Transporter, Advanced, "Transporter CdmMsgType0v1_out : CDM Message sent of length 117"
945197351.15000000, Transporter, Advanced, "Transporter CdmMsgType0v1_out : CDM Message sent of length 117"
945197362.812000000, User Data In, Operational, "Virtual circuit ID: 2, Signal name: GreetingMessage"
945197363.812000000, User Data In, Operational, "Virtual circuit ID: 2, Signal name: GreetingMessage"

Formatted Record (fmtTrace)

Captured using Connexis Viewer Version 6.1

Time: 945197350.609000000
Group: Transporter
Level: Advanced
Data:
"Transporter CdmMsgType0v1_out : CDM Message sent of length 117"

Time: 945197362.812000000
Group: User Data In
Level: Operational
Data:
"Virtual circuit ID: 2, Signal name: GreetingMessage"

Figure 97 Sample component trace output - Comma Delimited and
Formatted Record
200 User Guide - Rational Rose RealTime Connexis

Trace Window
Trace Header Context Menu

There are times when it is desirable to define a custom layout for the
Trace Window columns. Connexis Viewer allows you to perform these
operations through a context menu that appears when you right-click
on the header control (see Figure 98) of a Trace Window.

When a new Trace Window is opened, it uses the current system
default information to determine the layout of the columns and the size
of the window. If you change the layout of an open Trace Window, this
information is saved and used the next time that the window is opened.

Figure 98 Trace Header Context menu

Selecting the Restore to default entry causes the Trace Window to revert
to the current default layout.

Selecting the Set as default causes the Trace Window's current layout to
become the new 'default' layout. Note that this will not affect windows
that are already open but will cause all newly-opened trace windows to
use this layout (unless they have been previously opened and modified
by the user).

Selecting the Hide column will cause the column the cursor is on to
become hidden (for example, in the image above, the Remote Path
column would become hidden. Note that you cannot hide the Data
column.

At the end of the menu, any currently hidden columns show up in the
format Show “<column name>” Column. Selecting one of these entries
will cause the (previously hidden) column to become visible again. The
column will re-appear at its previously defined width.
User Guide - Rational Rose RealTime Connexis 201

Chapter 7 Using the Connexis Viewer
Generating Interaction Diagrams from Trace Output Files

With Connexis, you can create interaction diagrams from trace output
files, generated from traces on a port reference or a virtual circuit. The
trace output files can be imported into a Rose RealTime model and
rendered into collaboration and sequence diagrams.

Before you generate interaction diagrams, use the Connexis Viewer to
perform an event trace on a port reference (see “Defining a Port
Reference Trace” on page 188) or a virtual circuit (see “Defining a
Virtual Circuit Trace” on page 192) and save the trace output to a file
(see “Save trace” on page 199).

To generate interaction diagrams:

1. Perform an event trace on a port reference or on a virtual circuit.
Ensure that the trace level is set to Signal or Signal and data.

2. Save the event trace information to file. The trace file can be
formatted or comma-delimited.

3. From the tree browser of the Rose RealTime application, right-click
the folder in which you want to save the collaboration and
sequence diagrams that will be generated.
202 User Guide - Rational Rose RealTime Connexis

Generating Interaction Diagrams from Trace Output Files
Figure 99 Tree browser in Rose RealTime

4. Click Import Connexis Viewer Trace.

The Import Interaction Diagram dialog appears.
User Guide - Rational Rose RealTime Connexis 203

Chapter 7 Using the Connexis Viewer
Figure 100 Import Interaction Diagrams dialog

5. Complete the Import Interaction Diagrams dialog according to the
following table:

Table 32 Description of Import Interaction Diagrams dialog

Option Description

Trace file name Browse for the trace file that you stored.
This is the file that you will use to
generate your collaboration and
sequence diagrams.

Collaboration diagram
name

Type or select the name of the
collaboration diagram that you want to
generate.

Generate sequence
diagram

If you want to generate a sequence
diagram, ensure that this check box is
checked.

Sequence diagram name Type the name of the sequence diagram
that you want to create.
204 User Guide - Rational Rose RealTime Connexis

Generating Interaction Diagrams from Trace Output Files
6. Click the Import button.

The collaboration diagram and the sequence diagram (if enabled)
are generated. Once the generation process is complete, the
diagrams appear in the display area of Rose RealTime.

Note: If an error message occurs, see Reporting of error messages for
a detailed description of the message.

Maximum number of
trace events to

Type the maximum number of trace
events that you want represented in your
sequence diagrams. A maximum number
of 256 can be selected.

Include location tagged
values as notes

If you want to include location tagged
values as notes on the collaboration
diagram, ensure that this check box is
selected.

Include service name as
association role stereotype

If you want to include the service name
that was used to establish the binding as
the association role’s stereotype, ensure
that this check box is checked.

Table 32 Description of Import Interaction Diagrams dialog

Option Description
User Guide - Rational Rose RealTime Connexis 205

Chapter 7 Using the Connexis Viewer
Reporting of error messages

While generating interaction diagrams, you may receive an error
message that provides feedback about the process. The following chart
lists and explains the error messages:

Log Window

The log window displays the status of the connections in the executing
model.

Each message is preceded by a timestamp in square brackets. This
timestamp indicates the time that the message was received by the
Viewer. Icons indicate the type of message as summarized in Table 33.

A sample log window output is shown in Figure 101.

Error Message Description

Unknown file format The file specified in the Trace file name
text field is not an acceptable file format.
Acceptable file formats are .cdTrace
(comma delimited) or .fmtTrace
(formatted). The file formats with the
.cdTrace and the .fmtTrace extensions,
identify the type of trace file to be
processed.

Unable to process trace
file because it is
incompatible with the
current version of the
toolset add-in

The imported trace file has been
generated by an earlier version of the
Rational Connexis Viewer. The file format
is incompatible with the format accepted
by the toolset add-in. Import trace files
must be generated by Rational Connexis
version 2001A.04.00 or newer.

Invalid file format The user has modified the file or an error
occurred while the Connexis Viewer was
attempting to write the file.

Cannot process more than
256 trace events

An attempt has been made to configure
the tool to import more trace events than
the feature can support.
206 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Figure 101 The log window

Displaying the Metrics Collection

Metrics is a Connexis Viewer function that lets you start, display and
save statistics collected on a component instance. Once metrics
gathering is enabled on a Connexis library, statistics are collected on
internal run-time operations and registered transports, active in the
model.

A Connexis library that is enabled to gather metrics, collects statistics
on its internal run-time operations and on any registered transport
that are active in the model.

Internal run-time operations include:

� Creating and auditing circuits

� Encoding and decoding messages

� Publishing and subscribing to services

Transport statistics include:

� Totals on the number and the size of message sent and received

� Minimum and maximum sizes of the message payloads

� Number of messages sent with and without data

� Breakdown of application-level versus control message sent

Table 33 Log window icons

Icons Meaning

 normal messages

 warning messages

error messages
User Guide - Rational Rose RealTime Connexis 207

Chapter 7 Using the Connexis Viewer
Note: All transports supplied with Connexis reports these statistics.
Transports built using the Transport Integration Framework must use
the API supplied by Connexis to gather transport-specific statistics at
run-time. For a complete discussion of this topic, see “Using the
Transport Integration Framework” on page 301.

Starting Metrics Collection

Metrics gathering is designed to have the smallest possible impact on
performance. The Viewer connects to the component instance and
request statistics on a running model that has metrics enabled in the
DCS library, and the CDM transport registered.

When the Viewer connects to the component instance, it sends a
request to start gathering metrics and requests a reporting rate (see
“Adding a Component Instance” on page 177). The component instance
tells the Viewer what reporting rate it supports, describes the
registered transports, and reports statistics at the appropriate interval.

To collect metrics on a component instance:

1. Right-click the component instance on which you want to collect
statistics. A popup window appears.

2. Select Open Metrics Window from the list. The Metrics window
appears with the name of the component instance in the title bar.

3. Select the tab containing the information that you require (see
“Using the Metrics Window” on page 208).

Using the Metrics Window

The Metrics window displays statistics collected on the internal run-
time operations and registered transports of a component instance.
You can access metrics information from the following window tabs.

Table 34 Metrics Window tabs

Metrics window tabs Description

Summary “Summary metrics collection” on
page 210

Detailed “Detailed metrics collection” on page 214

Messages “Messages metrics collection” on
page 216
208 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Audits “Stopping Metrics Collection” on page 234

Engineering “DCS errors metrics collection” on
page 225

DCS Errors “DCS errors metrics collection” on
page 225

App Errors “Application errors metrics collection” on
page 228

App Incompatibility “Application incompatibility metrics
collection” on page 232

Table 34 Metrics Window tabs

Metrics window tabs Description
User Guide - Rational Rose RealTime Connexis 209

Chapter 7 Using the Connexis Viewer
Summary metrics collection

Figure 102 Metrics Window: Summary Information

Table 35 Subscriptions/Publications
210 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Defining Messages/Sec and Bytes/Sec

From the Summary page of the Metrics dialog, you can set the way
strip chart information is displayed in the Messages/Sec and the
Bytes/Sec area. The Messages/Sec area displays the number of
messages sent from the component instance per second. The
Bytes/Sec area displays the number of bytes sent from the component
instance per second.

Message Type Description

Number of Subscriptions The total number of subscriptions that
have been registered locally, registered
explicitly, registered globally through the
locator, and the number of remote
subscriptions that have been registered to
publications in the Component Instance.

Number of Publications The total number of local and global
publications registrations.

Number of Remote
Subscriptions

The number of registrations from remote
subscriptions.

Table 36 Messages

Message Type Description

Messages Sent Successfully sent user application
messages with signal and data, including
message data. These messages require a
buffer to be send.

Messages Received User application messages with signal
and data received. These messages may
or may not be passed to the application
successfully and the application was
unable to decode the message.

Bytes Sent Total number of bytes sent on the
transport. Includes audit, control and
user messages.

Bytes Received Total number of bytes received on the
transport. Includes audit, control and
user messages.
User Guide - Rational Rose RealTime Connexis 211

Chapter 7 Using the Connexis Viewer
To change the way chart settings are presented:

1. Click the Define button in the Messages/Sec or the Bytes/Sec area.

The “Strip Chart Settings” dialog appears.

Figure 103 Strip Chart Settings dialog
212 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 37 Strip Chart Settings

Settings Description

Compute Scale Clicking Compute Scale analyses the
strip chart and determines the
minimum and the maximum values.

Note: To manually set the Compute Scale
values without have them overridden, set
Auto-scale every to zero.

Min ‘Auto-scale’ Transport Lets you set the transport that you want
the strip chart to use for the minimum
auto-scale value. Before setting the
minimum auto-scale value, select the
transport from the Transports selection
area.

Max ‘Auto-scale’
Transport

Lets you set the transport that you want
the strip chart to use for the maximum
auto-scale value. Before setting the
maximum auto-scale value, select the
transport from the Transports selection
area.

Auto-scale every This sets the number of samples
received from the transport before the
script chart calculates the result and
presents the information.

Using the previous values This sets the number of previous values
that the strip chart uses to calculate the
result.

Transports This area displays the transports
available for use.
User Guide - Rational Rose RealTime Connexis 213

Chapter 7 Using the Connexis Viewer
Detailed metrics collection

Figure 104 Metrics Window: Detailed Information
214 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 38 Publications/Subscriptions

Message Type Description

Number of Publications Total number of Publications.

Number of Global
Publications

Total number of global SPP registrations.

Number of Local
Publications

Total number of local SPP registrations.

Number of Subscriptions Total number of Subscriptions.

Number of Explicit
Subscriptions

Total number of explicit SAP
registrations.

Number of Global
Subscriptions

Total number of global SAP registrations.

Number of Local
Subscriptions

Total number of local SAP registrations.

Table 39 Connections/Bindings

Message Type Description

DCS Controller Bindings Total number of SAP/SPP bindings.

DCS Transport reported
Bindings

Number of ports successfully bound. This
includes both SAP and SPP ports. This
count may include duplicate binds if the
underlying transport is lost and control
messages have to be resent.

Table 40 Transporter

Message Type Description

Successful Endpoint
Bindings

Number of successful transport binds.

Failed Endpoint Bindings Number of transport bind failures.

Successful Endpoint
Resolves

Number of addresses resolved
successfully.

Failed Endpoint Resolves Number of address resolve failures.
User Guide - Rational Rose RealTime Connexis 215

Chapter 7 Using the Connexis Viewer
Messages metrics collection

Figure 105 Metrics Window: Messages
216 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 41 Messages

Message Type Description

Messages Sent Connect, register registered, etc.

Messages Received Connect, register registered, etc.

Application Messages
Sent

The total number of message sent by the
application. This count includes those
messages sent with data and with signal
only.

Application Messages
Received

The total number of message received by
the application. This count includes those
messages received with data and with
signal only.

Audit Messages Sent Are You Alive, I Am Alive and You Are Not
Responsive messages sent.

Audit Messages Received Are You Alive, I Am Alive and You Are Not
Responsive messages received.

Control Messages Sent Connect, register registered, etc.

Control Messages
Received

Connect, register registered, etc.

Signal Only Messages
Sent

User application messages consisting
only of a successfully sent signal.

Signal Only Messages
Received

User application messages consisting
only of a signal that was received. These
messages may or may not be passed to
the application successfully (for example,
incompatible with protocol).

Messages with Data Sent Successfully sent user application
messages with signal and data, including
message data. These messages require a
buffer to be send.

Messages with Data
Received

User application messages with signal
and data received. These messages may
or may not be passed to the application
successfully and the application was
unable to decode the message.
User Guide - Rational Rose RealTime Connexis 217

Chapter 7 Using the Connexis Viewer
Maximum Data Size Sent Size of the largest encoded data object
successfully sent. This information in
conjunction with EncodeExceedsMaxSize
helps you engineer the size of the larger
buffers in the buffer pool.

Maximum Data Size
Received

Size of the largest encoded data object
received.

Minimum Data Size Sent Size of the smallest encoded data object
successfully sent. This helps you engineer
what is the size of the smaller buffers
needed in the buffer pool. It also helps
you decide setting of CNXtfms.

Minimum Data Size
Received

Size of the smallest encoded data object
successfully received.

Table 41 Messages

Message Type Description
218 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Audits metrics collection

Figure 106 Metrics Window: Audits Information
User Guide - Rational Rose RealTime Connexis 219

Chapter 7 Using the Connexis Viewer
Table 42 Circuits

Message Type Description

Virtual Circuit Audits
Sent

Total number of virtual circuit audits
sent.

Virtual Circuit Audits
Received

Total number of virtual circuit audits
received.

Virtual Circuit Audit
Failures

Total number of virtual circuits removed
due to unacknowledged audits.

Circuit Errors Detected by
Audit

Total number of invalid virtual circuits
removed due to audits.

Table 43 Messages

Message Type Description

Out of Service (Audit
Failure)

Number of times an endpoint went out of
service (CDM did not get IAA responses).

In Service (Audit Failure) Number of times an endpoint went back
into service after an Audit unresponsive
failure.

Audit Resets Detected Number of times an endpoint went out of
service and then back into service after
detecting that the other side has gone
away and come back. Applies to CDM
only.
220 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Engineering metrics collection

Figure 107 Metrics Window: Engineering Information
User Guide - Rational Rose RealTime Connexis 221

Chapter 7 Using the Connexis Viewer
Table 44 Subscription/Publications

Message Type Description

No Ports Published for
Service

Number of times SAPs could not bind to
an SPP because no SPP was registered for
that service.

Publications over
Subscribed

Number of times SAPs could not bind to
an SPP because the SPPs were all fully
bound.

Table 45 Retransmissions

Message Type Description

Connection Attempt
Timeout

Total number of virtual circuit
establishment retries.

Global Subscription
Attempt Timeout

Total number of global SAP locator
registration retries.

Global Publication
Attempt Timeout

Total number of global SPP locator
registration retries.

Rejected Connection
Requests

The number of times retrying a connect
request resulted in more than one virtual
circuit being setup. The ConnectSuccess
received is rejected, allowing the other
side to terminate the additional circuit.

Table 46 Circuit Binding Failures

Message Type Description

Insufficient Virtual
Circuits (Local)

Total number of times a SAP failed to
register because a free virtual circuit was
not available on the client-side of a
connection.

Insufficient Virtual
Circuits (Remote)

Total number of times a SAP failed to
register because a free virtual circuit was
not available on the server-side of a
connection.
222 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 47 Parameters Exceeded

Message Type Description

Encoding Exceeds Buffer
Size

Number of times encoding an outgoing
message failed. This occurs because a
large enough buffer is not available. If any
overridden encode function on one of the
classes that describes the type being sent
(i.e. attribute classes) returns 0, this
results in a failure as well. Message is not
sent.

Encode Buffer
Unavailable

Number of times a buffer, of a suitable
size to encode the message, was
unavailable. All messages are encoded to
a buffer before sending. This error may
occur if the message is very large and
there is no buffer available that can
accept the payload. Blocking transports
such as CRM also use this pool to buffer
message sends while the transport is
busy. If the transport becomes
overloaded, message sends are buffered
until there are no further buffers in the
pool. Consider increasing the number of
buffers in the transport pool using the -
CNXtbp parameter. Message is not sent.
User Guide - Rational Rose RealTime Connexis 223

Chapter 7 Using the Connexis Viewer
CNXtoql Exceeded The number of times the output queue
limit is exceeded. Examine the CNXtoql
parameter setting. The setting needed
dependent on CNXtepql and the number
of endpoints in use and number of host
names being resolved (for CDM). If this
only occurs during connection
establishment and you also see the
Connections rejected later, increase the
retry delay. It could be due to retrying
connects before the hostname can be
resolved. If you have a highly replicated
non-published unwired port doing
automatic registration (i.e. a large
number of SAP registrations going on at
once), consider staggering the startup
load on the system. Message is not sent.

CNXtepql Exceeded The number of times the endpoint queue
limit is exceeded. Examine the CNXtepql
parameter setting. The setting needed is
dependent on the maximum number of
messages to be queued for an end point.
If you increase this, examine the CNXtoql
parameter setting as well. If this occurs
during connection establishment, see the
CNXtoqlExceeded description as well.
Message is not sent.

CNXtiql Exceeded The number of times the input queue
limit is exceeded. Examine the CNXtiql
parameter. It can be used to prevent
Connexis from being swamped. Message
is not received.

Table 47 Parameters Exceeded

Message Type Description
224 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
DCS errors metrics collection

Figure 108 Metrics Window: DCS Errors Information
User Guide - Rational Rose RealTime Connexis 225

Chapter 7 Using the Connexis Viewer
Table 48 Transport Errors

Message Type Description

Failed Write Attempts Number of times the send of a message
failed on the write (CDM failed on the
write). Message not sent.

Failed Endpoints Resolves Number of host name resolve failures.

Failed Endpoints Bindings Number of transport bind failures.

Transport Recoveries Number of times a transport is brought
back into service after an audit has failed.

Messages Dropped
(Transport OOS)

Number of queued messages sent to an
endpoint after the audit has determined
that it has gone out of service.

Transport Error Messages Number of times the controller sent the
transport error message.

Table 49 Connections/Bindings

Message Type Description

Unavailable Transports The number of times an attempt to use an
unavailable transport was made. Message
is not sent/received.
226 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
VC Mismatches Number of times the virtual circuit
information contained in a request does
not match the current virtual circuit
setup. Typically occurs during transport
failures or after user applications have
failed and restarted. The SAP or SPP that
was previously being communicated
which is no longer available (may be
participating in another connection or is
released). The Circuit Audit cleans up
these situations. Message not
sent/received.

Connect Failures Sent Number of ConnectFailure responses sent
in response to connect messages received.
No virtual circuit is established. The
reason for failing such a request is due to
no further virtual circuits being available.

Connect Failures Received Number of ConnectFailures received in
response to connect messages sent. A
virtual circuit could not be setup on the
other endpoint.

Table 50 Ports

Message Type Description

Bound Ports Number of ports successfully bound. This
includes both SPP and SAP ports and
may include duplicate binds. For
example, a bind may occur twice for the
same port if dealing with a lost transport
(control messages are re-sent), or if user
data messages over-take control
messages.

Port Binding Failures Number of times binding a port failed.
User messages are not be able to be
exchanged through the port.

Table 49 Connections/Bindings

Message Type Description
User Guide - Rational Rose RealTime Connexis 227

Chapter 7 Using the Connexis Viewer
Application errors metrics collection

Figure 109 Metrics Window: Application Errors Information
228 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 51 Subscriber/Publisher Registrations

Message Type Description

Subscriber Registration
Syntax Errors

Number of times a SAP failed to register
because its registration string had invalid
syntax.

Publisher Registration
Syntax Errors

.Number of times a SPP failed to register
because its registration string had invalid
syntax.

Subscriber Replication
Errors

Number of times a SAP failed to register
because its replication factor was zero.

Publisher Replication
Errors

Number of times a SAP failed to register
because its replication factor was zero.

Table 52 Subscription/Publications

Message Type Description

Subscription Errors (DCS
config)

Number of times a SAP failed to register
because DCS was not configured
correctly.

PublicationErrors (DCS
config)

Number of times a SPP failed to register
because DCS was not configured
correctly.

Subscription Errors
(Locator config)

Number of times a SAP failed to register
globally because the locator was not
configured.

Publication Errors
(Locator config)

Number of times a SPP failed to register
globally because the locator was not
configured.

Explicit Subscription
Errors (Transport spec)

Number of times an SAP failed to register
explicitly (for example,
registerSAP(“dcs:<transport>//<host>:<p
ort>/<service>”)) using a transport
protocol because the transport was not
properly configured.

Global Subscription
Errors (Transport spec)

Number of times a SAP failed to register
globally (for example,
registerSAP(“dcs:/<service>”)) using a
transport protocol because the transport
was not properly configured.
User Guide - Rational Rose RealTime Connexis 229

Chapter 7 Using the Connexis Viewer
Table 53 General

Message Type Description

Transport Registration
Failures

The number of times an attempt to use an
unavailable transport was made. Message
is not sent or received.

Encode Failures Number of times the encoding of an
outgoing message failed. This can occur
when there was no buffer large enough to
encode the payload, or the overridden
encode function returned 0. Message is
not sent.

Decode Failures Number of times the decoding of an
incoming message failed.

Type Descriptor Version
Mismatch

Number of times the version of the
sender’s class does not match the version
expected in the receiver. You can specify
the version of a class in its C++
TargetRTS property tab. Only the version
of the class being sent is considered. The
version(s) of its attributes are not.
Message is not received.

Unknown Types Received Number of times the sender’s class is not
known in the receiver’s application. This
can occur if the sender and receiver are in
two different models (different .rtmdl
files). If so, then the protocol and class
being sent must be shared between the
models. This failure can also occur if the
class is not referenced anywhere in the
receiver’s model, and so is not compiled.
Message not received.

Class Instantiation
Failures

The number of times the receiver failed to
create the class to be received. There may
be a problem with the default or
overridden allocation method for the type
descriptor of the class. Message not
received
230 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Decodes Past Buffer End Number of times Connexis read past the
end of the encoded data while decoding
an incoming message. Check that the
encode and decode methods in the type
descriptors match exactly on the sender
and receiver side. Message not received

Unrecognized Signals Number of times the signal received is not
recognized as valid on the receiver’s
protocol. Verify that the protocols used in
the sender and receiver are compatible,
and properly conjugated. Message not
received.

Incompatible Classes The number of times the data type
received with a signal is not a compatible
subclass of the type that has been defined
by the protocol. Verify that the protocols
used in the sender and receiver are
compatible and properly conjugated.
Message not received.

Table 53 General

Message Type Description
User Guide - Rational Rose RealTime Connexis 231

Chapter 7 Using the Connexis Viewer
Application incompatibility metrics collection

Figure 110 Metrics Window: Application Incompatibility Information
232 User Guide - Rational Rose RealTime Connexis

Displaying the Metrics Collection
Table 54 Incompatibilities

Message Type Description

Unknown Decoding
Formats

Number of times the data received was
encoded in an unknown format.

Internal Errors Number of times Connexis internal
processes cannot process the message
(can be user message or control message).
Message is not sent.

Incompatible Requests Number of times unknown control
messages were received.
This will not happen if all applications are
running with Connexis release 6.1.1.
Future Connexis releases may support
additional control requests not supported
by Connexis 6.1.1. Connexis informs the
message sender so that a common
request interface can be used. See your
user guide for that Connexis release.
Connexis 6.1.1 can not inter-operate with
applications using an earlier Connexis
release. Message is not received.

Incompatible Encoding This will not happen if all applications are
running with Connexis release 6.1.1.
Future Connexis releases may support
enhanced existing encoding formats that
are not supported by Connexis 6.1.1.
Connexis informs the message sender so
that a common version of encoding can be
used. See your user guide for that
Connexis release. Connexis 6.1.1 can not
inter-operate with applications using an
earlier Connexis release. Message is not
received.

Unknown Incoming
Message Types

The number of times the incoming
message was of an unknown type.
User Guide - Rational Rose RealTime Connexis 233

Chapter 7 Using the Connexis Viewer
Stopping Metrics Collection

Closing the metrics collection window stops metrics reporting on the
selected component instance.

To stop collecting Metrics:

1. Click the Close button on the top right corner of the window.

Saving Collected Metrics

Once you start collecting metrics on a component instance, you could
save the statistics for further analysis. Metrics statistics are saved in a
tab-separated format that can be imported directly into popular
spreadsheet programs.

To save collected metrics:

1. Click the Save Metrics button.

2. Type the name of the file you want to save in the “Save Metrics As”
dialog box. The file is saved as a ComponentInstanceMetrics
(CIMetrics) file. You can open this file a spreadsheet application
like Microsoft Excel or in any text application.

Viewer Tips and Usage Notes

This section provides some tips and usage notes to make it easier to
use the Connexis Viewer:

� Capturing Pre-Viewer Session Messages

� Error and Warning Tracing

� Maximizing Viewer Responsiveness

Capturing Pre-Viewer Session Messages

It is possible to capture traces before a target session is established.
The CNXaas parameter will enable the following trace events:

� controller

� locator

� transporter

� component-wide tracing for all data sent to, and received from, all
unwired DCS ports
234 User Guide - Rational Rose RealTime Connexis

Viewer Tips and Usage Notes
� any errors or warnings

Note: In this mode, only the signal, data, and virtual circuit are
indicated.

Error and Warning Tracing

Connexis Viewer provides capabilities for tracing and filtering software
errors and warnings.

Software errors

Software errors are used to indicate anomalous conditions that prevent
user data from being transported. Software errors are filtered on a
component instance basis, that is, across all functional groups.

There are many causes of software errors. These include:

� Resource depletion, for example, running out of virtual circuits

� Application registration errors, for example, syntax errors in
registration string

� Internal Connexis errors, for example, unexpected message type
processed by a DCS Capsule, initialization errors

� messages being discarded due to type mismatches (on input)

Software warnings

Software warnings are used to indicate conditions that will prevent
Connexis from operating as configured or that can potentially lead to
user data being lost. For example, an unexpected message or an
unknown message type may cause a software warning.

Maximizing Viewer Responsiveness

Under heavy load, you may sometimes notice that the Viewer becomes
unresponsive, that is, right-clicking does not immediately bring up the
context menu. This occurs especially if there are many components
running 'locally', on the same CPU as the Viewer.

To remedy this situation, use the Task Manager to set the Priority of the
Viewer to High as follows:

1. Right click on the Taskbar and select Task Manager.
User Guide - Rational Rose RealTime Connexis 235

Chapter 7 Using the Connexis Viewer
2. In the Processes tab of the Task Manager, right click on the
ConnexisViewer entry.

3. Use the Set Priority menu item to set the Viewer's priority to High.

Note: If the Viewer is still unresponsive, you can try to reduce the
Viewer load by closing trace windows that you do not need to have
open.
236 User Guide - Rational Rose RealTime Connexis

Chapter 8

Using the Connexis Metrics Service

Rational Connexis provides capabilities to collect real-time DCS
metrics information within an executing Rose RealTime model. You can
collect and report metrics on each running component instance. The
DCS performance information that is collected by the DCS metrics
service can be used to tune the DCS command line options.

Metrics services are only available within DCS library components that
have been compiled with metrics collection capabilities enabled. At
run-time, metrics data can be obtained from within a Connexis
enabled model by subscribing to the metrics service. Although you can
subscribe to the metrics service at anytime, you will not be connected
to the metrics service until the service is published within the DCS
layer.

Obtaining Metrics Data with a Metrics Service

The following sections explain how to collect metrics from a Connexis
component instance at runtime.

� Enabling Metrics in the DCS library

� Adding a Metrics Port

� Subscribing to the Metrics Service

� Collecting and Processing Metrics
User Guide - Rational Rose RealTime Connexis 237

Chapter 8 Using the Connexis Metrics Service
Enabling Metrics in the DCS library

The DCS libraries installed with Connexis are metrics-enabled by
default. If you re-build your DCS library, make sure that the metrics
service is enabled. For more information on how to configure your
libraries, see “Customizing and Porting DCS Libraries” on page 289.

Adding a Metrics Port

Before you can interact with the Connexis metrics service, you must
add a metrics port to the capsule in your model. You can add a metrics
port manually or a the Connexis Capsule Configuration Tool.

To add a metrics port manually:

1. Open your model and ensure that the DCS model interface
packages are shared (see “Sharing DCS Interfaces” on page 84).

2. Open the package Logical View::RTDInterface.

3. Drag a port from the RTDMetrics protocol into your model capsule
and make the port non-wired with notification enabled.

To add a metrics port with the Connexis Capsule Configuration Tool:

1. Use the Connexis Capsule Configuration Tool to configure the
newly created port (see “Configuring Connexis Capsules” on
page 85).

The newly created and configured port is used to subscribe to the
metrics service.

Subscribing to the Metrics Service

All of the capsules that are subscribing to the Connexis metrics service
must create a registration port that realizes the RTDMetrics protocol.

The following list defines the syntax used to register the subscriber port
under various circumstances.

� rTDMetrics.registerSAP("dcs:RTDMetrics");

This form is used in detailed code to register the subscriber port to
the metrics service of the local component instance.

Note: There is no "/" in the registration string after the colon.
238 User Guide - Rational Rose RealTime Connexis

Obtaining Metrics Data with a Metrics Service
� rTDMetrics.registerSAP("dcs://<host>:<port>/RTDMetrics");

This form is used in detailed code to register the subscriber port to
the metrics service of another component instance.

� dcs:RTDMetrics

This form is used in the “Registeration Override field of the port
Specification Sheet. It is used to protect the port when automatic
registration is used.

Once the port is bound, you can send the appropriate signals to obtain
metrics data as described in the following section, Collecting and
Processing Metrics.

Collecting and Processing Metrics

To obtain metrics from inside your application, you must subscribe to
the metrics service. This service is accessible through the RTDMetrics
protocol. The interface defined by the the RTDMetrics protocol provides
the following functions:

� Turns on/off gathering of raw metrics data

� Obtains metrics data constantly or periodically

� Clears collected metrics data

This interface is asynchronous, and is defined in more detail in
Table 55 and Table 56. Table 55 summarizes the output signals sent
by the application. Table 56 summarizes the input signals received by
the application.

Table 55 RTDMetrics Out Signals

Signals Description

rtdMetricsCollectOn Sent by the user application to turn
metrics collection on for this session.

rtdMetricsCollectOff Sent by the user application to turn
metrics collection off for this session.
User Guide - Rational Rose RealTime Connexis 239

Chapter 8 Using the Connexis Metrics Service
By default, the DCS does not collect metrics. If you want to collect
metrics during your application (for example, collect metrics on
activities taking place prior to binding to the metrics service and
turning collection on), use command line parameter -CNXm=1. This
will turn on metrics collection when the DCS starts up. This should be
set on the component instance with metrics that you want to collect.

rtdMetricsClear Sent by the user application to clear the
metrics counter values for all metrics
sessions.

rtdMetricsInterval Sent by the user application to set the
time interval at which collected metrics
are sent to this session.

rtdMetricsGet Sent by the user application to request
the collection of metrics to this point.

Table 56 RTDMetrics In Signals

Signals Description

rtdMetricsCollectOnConfirm
rtdMetricsCollectOnFail

Response sent by DCS to the user
application to confirm/deny turning
metrics collection on for this session.

rtdMetricsCollectOffConfirm
rtdMetricsCollectOffFail

Response sent by DCS to the user
application to confirm/deny turning
metrics collection off for this session

rtdMetricsClearConfirm
rtdMetricsClearFail

Response sent by DCS to the user
application to confirm/deny clearing the
metrics storage for all metrics sessions.

rtdMetricsIntervalConfirm
rtdMetricsIntervalFail

Response sent by DCS to the user
application to confirm/deny setting a
time interval at which collected metrics
will be sent to this session.

rtdMetricsGetConfirm
rtdMetricsGetFail

Response sent by DCS to the user
application to confirm/deny request for
the collected metrics data.

Table 55 RTDMetrics Out Signals

Signals Description
240 User Guide - Rational Rose RealTime Connexis

Obtaining Metrics Data with a Metrics Service
The RTDStats and RTDTransportStats classes (see package Logical
View::RTDInterface in your Connexis model) are used to define the
metrics data provided by the metrics service. The following diagrams,
Class diagram of the metrics classes and Class diagram of the metrics
classes illustrate the relationship between the RTDStats and
RTDTransportStats class and displays the corresponding methods and
attributes.
User Guide - Rational Rose RealTime Connexis 241

Chapter 8 Using the Connexis Metrics Service
Figure 111 Class diagram of the metrics classes
242 User Guide - Rational Rose RealTime Connexis

Using Metrics and the Connexis Viewer
The class diagram Figure 111 continues on Figure 112, showing the
attributes of the RTDTransportStats class.

Figure 112 Class diagram of the metrics classes

Note: An example of the usage of metrics can be seen in the model
metricsCollector in the $RoseRT_Home/CONNEXIS/C++/examples
directory.

Using Metrics and the Connexis Viewer

Another way of obtaining metrics information on a component instance
is by using the Connexis Viewer. Metrics collection is turned on when
the metrics window opens. If you want information on metrics collected
prior to the opening of the metrics window, specify the -CNXm=1
command line argument on the component instance being monitored.
This turns metrics collection on as soon as DCS starts.
User Guide - Rational Rose RealTime Connexis 243

Chapter 8 Using the Connexis Metrics Service
The Viewer can be used at the same time as the metrics service that
you registered. You can obtain metrics data from the metrics service
and from the Viewer.

Note: All the metrics sessions are updated when the metrics counters
are reset from the Viewer or via the port interfaces.
244 User Guide - Rational Rose RealTime Connexis

Chapter 9

Registration String Grammar

Registration String Grammar provides information on the Backus-
Naur Form (BNF) Grammar for the registerSAP and registerSPP
commands.

You can use the grammar below to validate your registration strings.

Registration String Grammar for DCS Registrations
<dcs registration string> ::= dcs:[[<endpoint>]/]<service
name>[(<option list>)]

<option list> ::= <option> [<option list>]

<option> ::= (locator_rank, integer)
| (locator_transport, transport)
| (connect_retries, integer)

<endpoint> ::= <cdm endpoint> | <custom endpoint>

<cdm endpoint> ::= cdm://<host>:<port>

<crm endpoint> ::= crm://<host>:<port>

<host> ::= host name | ip address

<custom endpoint> ::= <protocol name>://<address>

<service name> ::= <name>

<protocol name> ::= <name>

<address> ::= <restricted string>
User Guide - Rational Rose RealTime Connexis 245

Chapter 9 Registration String Grammar
<port> ::= integer between 0 and 65535

<name> ::= alphanumeric string with optional underscores ("_")

<restricted string> ::= string without
- comma ","
- parenthesis "(" or ")"
- white space
246 User Guide - Rational Rose RealTime Connexis

Chapter 10

Connexis Command Line Options

Command Line Options provides information about commonly-used
combinations for specifying endpoints and locator options. Those
combinations are:

� Component Instance with Fixed Endpoints (no locator service)

� Component Instance using CDM Endpoint, Locator using CDM

� Component Instance using CDM and CRM Endpoints, Primary
Locator using CDM, Backup Locator using CRM

� Component Instance with CDM and CRM, CRM is Preferred
Transport

� Miscellaneous Command Line Options

Component Instance with Fixed Endpoints (no locator service)

How do I configure my Connexis-enabled component instance so
that it is using a single transport for a given component instance?

CDM:
-CNXep=cdm://<host>:<port> (recommended)

For example: -CNXep=cdm://alpha:3000

-OR-

-CNXep=cdm:<port>

For example: -CNXep=cdm:3000
User Guide - Rational Rose RealTime Connexis 247

Chapter 10 Connexis Command Line Options
CRM:
-CNXep=crm://<host>:<port>

For example: -CNXep=crm://alpha:4000

-OR-

-CNXep=CRM://100.200.250.50:4000

Note: You need to specify the corresponding registration string in the
registerSAP and registerSPP in your application.

How do I configure my Connexis-enabled component instance so
that it is using multiple transports for a given component
instance, for example, CDM + CRM and so on?

Note: CDM and CRM can only listen on one port each.

CDM & CRM:
-CNXep=cdm://<host>:<port> -CNXep=crm://<host>:<port>

For example: -CNXep=cdm://beta:10020 -CNXep=crm://beta:12200

Component Instance using CDM Endpoint, Locator using CDM

How do I configure my Connexis-enabled application so that it is
using CDM or CRM for a given component instance and a single
locator using the same transport?

Component instance with the locator:
-CNXep=cdm://<host>:<port> -CNXlp

For example: -CNXep=cdm://gamma:11000 -CNXlp

Component instance using the locator:

In the example below, it is not mandatory to specify the -CNXep
parameter when using CDM (for example, -CNXep=cdm); however, it is
an example of good practice. You must specify this option when using
explicit connections or if you wish to use the Connexis Viewer for
tracing events and debugging.

-CNXep=cdm://<host>:<port1> -CNXlpep=cdm://<locator_host>:<port2>

For example: -CNXep=cdm://theta:12000 -CNXlpep=cdm://gamma:11000
248 User Guide - Rational Rose RealTime Connexis

Component Instance using CDM and CRM Endpoints, Primary Locator using CDM,
Note: For CRM, replace CNXep=cdm with CNXep=crm, and -
CNXlpep=cdm with -CNXlpep=crm in the examples above.

Component Instance using CDM and CRM Endpoints, Primary
Locator using CDM, Backup Locator using CRM

How do I configure my Connexis enabled application so that it is
using multiple transports and primary and backup locators?

Component instance with the primary locator:
-CNXep=cdm://<host>:<port1> -CNXep=crm://<host>:<port2> -CNXlp
-CNXlbep=crm://<backup_loc_host>:<port3>

For example:

-CNXep=cdm://alpha:8000 -CNXep=crm://alpha:8500 -CNXlp

-CNXlbep=crm://beta:9500

Component instance with the backup locator:
-CNXep=cdm://<host>:<port4> -CNXep=crm://<host>:<port3> -CNXlb
-CNXlpep=cdm://<primary_loc_host>:<port1>

For example:

-CNXep=cdm://beta:9000 -CNXep=crm://beta:9500 -CNXlb
-CNXlpep=cdm://alpha:8000

Component instance using the primary and backup locator:

In the example below, it is not mandatory to specify the -CNXep
parameter when using CDM (for example, -CNXep=cdm); however, it is
an example of good practice. You must specify this option when using
explicit connections or if you wish to use the Connexis Viewer for
tracing events and debugging.

-CNXep=cdm://<host>:<port5> -CNXep=crm://<host>:<port6>
-CNXlpep=cdm://<primary_locator_host>:<port1> -CNXlbep
=crm://<backup_loc_host>:<port3>

For example:

-CNXep=cdm://gamma:10000 -CNXep=crm://gamma:10500
-CNXlpep=cdm://alpha:8000 -CNXlbep=crm://beta:9500
User Guide - Rational Rose RealTime Connexis 249

Chapter 10 Connexis Command Line Options
Component Instance with CDM and CRM, CRM is Preferred
Transport

How do I configure my Connexis enabled application so that CRM
is the preferred transport?

To make crm-based connections when other transports are also
available, you can specify CNXlpt=crm at the primary and backup
locators. The default is CNXlpt=cdm.

Component instance with the primary locator:
-CNXep=cdm://<host>:<port1> -CNXep=crm://<host>:<port2>
-CNXlpt=crm -CNXlp -CNXlbep=crm://<backup_loc_host>:<port3>

For example:

-CNXep=cdm://alpha:8000 -CNXep=crm://alpha:8500 -CNXlpt=crm
-CNXlp -CNXlbep=crm://beta:9500

Component instance with the backup locator:
-CNXep=cdm://<host>:<port4> -CNXep=crm://<host>:<port3>
-CNXlpt=crm -CNXlb -CNXlpep=cdm://<primary_loc_host>:<port1>

For example:

-CNXep=cdm://beta:9000 -CNXep=crm://beta:9500 -CNXlpt=crm
-CNXlb -CNXlpep=cdm://alpha:8000

Note: If you wanted an crm-based connection (for example: crm) for a
specific port, you can specify (locator_transport, crm) as part of the
registration string in the RegisterSAP call.

Miscellaneous Command Line Options

Can I specify different encoding, for example, CDR or ASCII, for
different transports?

No. Encoding applies to a component instance, and not per transport
or per end point. As such, it is possible for component instance A to
specify CDR encoding, and component instance B to specify ASCII
encoding. In essence, the two component instances can talk to each
other using two different encoding schemes. Each component instance
can receive either format but send only the configured one.
250 User Guide - Rational Rose RealTime Connexis

Miscellaneous Command Line Options
Each encoding scheme has its advantages and disadvantages. For
example, CDR is faster than ASCII. On the other hand, ASCII is easier
to debug.

To indicate encoding preference, use the following:

CDR:
-CNXtde=2 (this is the default)

ASCII:
-CNXtde=1

For example:

-CNXep=10020 -CNXep=crm://localhost:13000
-CNXlpep=cdm://alpha:10000 -CNXlbep=crm://beta:11000 -CNXtde=1
User Guide - Rational Rose RealTime Connexis 251

Chapter 10 Connexis Command Line Options
When do I need to supply a CNXep?

You need to supply a CNXep when you want to listen at a pre-
determined CDM port, for example:

� when you want to provide a service using the CDM transport, and
clients of your service are not using the locator to resolve your
location. In this case, when you start your component instance
that provides the service, you need to supply the endpoint. That is,
it will be listening at a pre-determined CDM port, for example, -
CNXep=9000. You can then have the clients register for it
specifying the pre-determined location of the service. For example,
consider Application A, which provides service foo, it is started with
a -CNXep=9000 and does registerSPP(dcs:foo). Now another
application B wants to use this service. When B does the
registerSAP, it uses dcs:cdm://<host>:<port>/foo. By having
Application A listen at a pre-determined port (9000), it is easier to
provide that information to Application B, such as via a command
line argument, in a config file, and so on

� when a component instance provides locator services for other
component instances (-CNXlp) which use the CDM protocol. You
want to have it listen at a specific CDM port so that when you start
those other component instances, you will know the port number
to supply in the -CNXlpep and -CNXlbep parameters. You can also
specify "-CNXep”, “-CNXep=0”, “-CNXep=1”. All of these result in a
free port being selected. As well, if the port number you have
provided is non-numeric, or outside the range of 0..65535, it is
ignored and a free port is selected

� when you want to use the Viewer against that component instance
252 User Guide - Rational Rose RealTime Connexis

Miscellaneous Command Line Options
Can I use localhost or 127.0.0.1 for specifying endpoints? Are
there any side effects?

On Windows NT, localhost (defined in
C:\WINNT\system32\drivers\etc\Hosts) is set by default to 127.0.0.1,
and refers to the machine on which the application is executing.
localhost provides a convenient shorthand for referring to the host
machine, while maintaining portability across Windows NT. You can
use localhost in Connexis registration strings locally, that is,
between subscribers and publishers residing on the same Windows NT
machine. You cannot use localhost or 127.0.0.1 for registration
across node boundaries, for example, for registering a subscriber on
VxWorks against a publisher on a Windows NT target.

Explicit SAP registration for CDM with address localhost or 127.0.0.1
(for example, "dcs:cdm://127.0.0.1:12345/foo") always results in a
local loopback connection, regardless of whether or not the CNXtluc
flag is set. It will never result in a direct local bind to the SPP.
User Guide - Rational Rose RealTime Connexis 253

Chapter 11

Connexis Messages, Errors, and
Warnings

Where possible, Connexis provides detailed informational messages,
errors, and warnings to make your development and debugging tasks
easier. Three groups of messages are:

� Initialization Messages

� Initialization Errors

� Parameter Errors

Initialization Messages

The following provides a description of some of the more common
informational messages displayed by Connexis on startup.

Table 57 Connexis informational messages

Output Description

dcs: transport listening at [endpoint]

Note: The transport could be cdm, crm
or your own customized transport.

This is output once the transport
starts up and begins listening at the
endpoint. If it does not appear, your
transport was probably not included.

dcs:CNXcmrs set to [size] CDM maximum receive size specified
was larger than the largest buffer
available. Check your use of CNXtbp.

dcs:CNXtfms set to [size] Transmit first message size was
larger than the largest buffer
available or the max message size.
Check your use of CNXtmts and
CNXtbp.
User Guide - Rational Rose RealTime Connexis 255

Chapter 11 Connexis Messages, Errors, and Warnings
dcs:***** CNX endpoint port not
specified - free port will be selected

Connexis will choose an unused port
on which the CDM transport will
listen.

dcs: target agent enabled Indicates that the target agent is
running. The target agent must be
running if you want to use the
Connexis Viewer.

dcs: locator running as primary Confirmation that the locator was
linked into the executable and is
configured as primary.

dcs: locator running as backup Confirmation that the locator was
linked into the executable and
configured as backup.

dcs: local locator not running (CNXlp
or CNXlb required)

You are using one of
RTDBase_Locator or
RTDBase_Locator_Agent in your
model. The locator was linked into
the executable but has not been
configured.

dcs: locator service not available The locator is not available based on
configuration parameters.

dcs: metric service enabled This indicates that the metrics
service is enabled.

dcs: connecting to primary locator at
[endpoint]
dcs: connecting to backup locator at
[endpoint]

These two lines are output as a pair
and indicate that the primary locator
is remote (CNXlpep) and the backup
locator is remote as well (CNXlbep).

dcs: ***** Parameter [<old parameter
name>] not supported. Please use
[<parameter name>=<value>] *****

Indicates that a parameter that is not
supported with the current release
has been used. When the DCS
encounters a command line
argument that is no longer
supported, the DCS internally
converts the parameter to the new
format and indicates the new usage
to the user.

Table 57 Connexis informational messages

Output Description
256 User Guide - Rational Rose RealTime Connexis

Parameter Errors
Initialization Errors
� The following banner is output in case of initialization failure:

dcs: ***

dcs: ***** initialization failure - dcs not available *****

dcs: ***

dcs: ***** banner provided for diagnosis purposes ****

dcs: ***** use CNXd to display configuration *****

dcs: ***

dcs: !!!!! system failure when initializing the : <step> (<error>) !!!!!

where <step> is one of

❑ configuration: problem in parsing parameters

❑ target agent: refers to target agent for Viewer

❑ transport-capsule: refers to transport router

❑ transport-callback: refers to the transport callback thread
(input)

❑ transport-helpers: refers to the transport helper thread (output)

❑ controller: refers to registration control

❑ locator: refers to the Connexis locator service

❑ system: any other general error

� CDM failed during initialization - check port number

The error is caused by an inaccurate specification of the CNXep=<port>
command line parameter. Check your CNXep specification.

Technically descriptive error messages have been added at points at
which the initialization of the DCS could fail. These would most likely
only be encountered if the system resources were not sufficient to
handle the demands of the DCS system. Another use would be to
quickly narrow down and pinpoint a startup error while performing a
port of the DCS libraries to another platform.

Parameter Errors

The following errors may be reported in case of a misconfiguration of
the command line parameters.
User Guide - Rational Rose RealTime Connexis 257

Chapter 11 Connexis Messages, Errors, and Warnings
Table 58 Command line parameters misconfiguration errors

Output Description

dcs: ***** multiply defined parameter
[<name>=<value>] ignored *****

The following error is reported if you
try to use a command line parameter
multiple times with a component
instance.

dcs: ***** unknown parameter
[<name>=<value>] ignored *****

The parameter you have specified is
not a valid parameter. This check is
performed for all parameters starting
with CNX. For more information, see
“Command Line Options Reference”
on page 274. You can also output the
list at runtime by specifying CNXhelp
as a command line option.

dcs: ***** CNXendpoint invalid port
[<value>] *****

The port number specified for CNXep
is invalid (non-numeric).

***** CNXendpoint (CNXep) invalid
port [port #] - freeport will be selected

The end port specification contains a
syntax error. Connexis will choose
the port on which to listen.

dcs: ***** # of mblks less than # of
buffers in buffer pool *****

The Connexis Transport buffer pool
is not setup properly. Check your use
of CNXtbp.

dcs: ***** Not enough buffers in
buffer pool specified *****

The Connexis Transport buffer pool
is not setup properly. Check your use
of CNXtbp.

dcs: ***** invalid buffer pool specified

The Connexis Transport buffer pool
is not setup properly. Check your use
of CNXtbp.

dcs: ***** CNXcurs = UDP system
receive buffer size must be > max
receive msg size - using target default

UDP buffers are not properly
engineered.

dcs: ***** CNXcuts - UDP system Tx
buffer size smaller than max buffer
size defined in buffer pool - using
system default *****

UDP buffers are not properly
engineered.
258 User Guide - Rational Rose RealTime Connexis

Parameter Errors
dcs: ***** CNXlpep ignored (CNXlp
takes precedence over CNXlpep) *****

You are trying to specify a component
instance as a primary locator, and at
the same time, trying to tell it where
to find the primary locator.

dcs: ***** CNXlb ignored (CNXlp
takes precedence over CNXlb) *****

A component instance can either be a
primary locator or a backup locator
but not both.

dcs: ***** CNXlbep ignored (CNXlb
takes precedence over CNXlbep) *****

You are trying to designate the
component instance as the backup
locator, and at the same time trying
to point it to where the backup
locator is located.

dcs: ***** CNXlp ignored (locator not
present) *****

You are not using RTDBase_Locator
or RTDBase_Locator_Agent in your
model. One of these must be used to
avail the locator capabilities.

dcs: ***** CNXlb ignored (locator not
present) *****

You are not using RTDBase_Locator
or RTDBase_Locator_Agent in your
model. One of these must be used to
avail the locator capabilities.

dcs: ***** CNXlpep missing (CNXlpep
mandatory at backup locator) *****

You must specify a primary locator
for the component instance with the
backup locator.

dcs: ***** CNXlpep missing (CNXlpep
mandatory when using backup
locator) *****

You must specify a primary locator
when using the backup locator
capabilities.

Table 58 Command line parameters misconfiguration errors

Output Description
User Guide - Rational Rose RealTime Connexis 259

Chapter 12

Connexis Customization Reference

Connexis is a general purpose communication tool that can be
customized to suit your needs. To make Connexis as adaptable as
possible, multiple configuration parameters are provided and are
described herein:

� Engineering Rules Overview - outlines the high-level configuration
of the Connexis tool and describes the different components that
can be configured. References are made to the detailed options that
are presented in later sections.

� Command Line Options Reference - details the command line
options that are available for configuring Connexis.

A summary of the parameters, outlining what behavioral aspects are
affected by which parameters, is presented in the Engineering Rules
Overview topic. For example, to find out what parameters can be used
to reduce the memory used by the application, refer to the Engineering
Rules Overview topic.
User Guide - Rational Rose RealTime Connexis 261

Chapter 12 Connexis Customization Reference
Engineering Rules Overview

This section presents the high-level design of the Connexis tool and
outlines aspects of the tool that can be configured using the options
that are presented later in this chapter. Figure 113, illustrates the
high-level architecture of a Connexis application. The following
sections detail the aspects of the Connexis design that can be
configured.

Figure 113 DCS high-level design

Thread Configuration

The thread design of your application can have a significant impact on
performance and on the resources that are required by your
application. The following sections describe the thread usage in each
of the layers:
262 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
� Process view of a Connexis application

� The application layer

Process view of a Connexis application

This section describes the overall process view of a Connexis
application.

The process view shown in Figure 114 illustrates the thread
configuration for every Connexis component in a distributed
application. If a distributed application had five Connexis components,
each individual node would have a process view similar to that shown
in Figure 114. The Controller_Locator capsule runs on the thread on
which the Connexis capsules that you are using (for example,
RTDBase, RTDBase_Agent, RTDBase_Locator, or
RTDBase_Locator_Agent) are incarnated.
User Guide - Rational Rose RealTime Connexis 263

Chapter 12 Connexis Customization Reference
Figure 114 Connexis process view

Default number of threads

The number of user threads that exist in a particular Connexis
component is determined by the requirements and design of the
component. The number of helper threads associated with the
Transport component is configurable but defaults to five. When the
CDM or CRM transports are enabled, but are not configured to run on
the tread of the transporter, additional threads are incarnated for each
transport.
264 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
The application layer

The Application layer consists of the threads that are used by the Rose
RealTime Target RSL and the threads that are part of the design of the
application. This configuration is illustrated in the following class
diagram.

Figure 115 Thread configuration of Application layer

By default, there are only three threads created in a Rose RealTime
model: the TimingService thread, the TargetRSLDebug thread, and the
Main thread. The Main thread is where all application code is executed
by default. The user model may contain any number of user threads.
This is dependent on the design that has been created.

DCS and transport Layer

The thread priorities for the threads in the DCS and Transport layers
can be specified by using the following configuration options:

� Transporter - The priority of the main Transport thread is
configured using the CNXtran_thread_priority (CNXttp) option.

� TargetAgent - The priority of the TargetAgent thread is configured
using the CNXagent_thread_priority (CNXatp) option.

� helper thread priority - The priority of the helper threads is
configured using the CNXtran_helper_thread_priority (CNXthtp)
option. This defaults to a priority that is higher than the transport
thread.
User Guide - Rational Rose RealTime Connexis 265

Chapter 12 Connexis Customization Reference
Note: The “Callback” thread does not run and has no thread priority
associated with it. It is provided so that the transport integration
“callback” operations can send messages to the transporter capsule.

The thread priorities of the built-in transports (ex.: CDM and CRM) can
be configured using the CNXtran_priority (CNXtp) option. When
applicable, user integrated transports are also be configured using the
CNXtran_priority option. If this option is not specified, the default
value is the thread priority of the transporter
(CNXtran_thread_priority).

The DCS Controller and Locator components are on the same thread
and run on the thread that the DCS top-level capsule is incarnated.

The Transport Capsule contains a number of threads that are referred
to as “helper” threads. The helper threads are used to handle any
transport operations that are potentially blocking. The CDM and CRM
transports use the helper threads to resolve host names supplied in
explicit registrations. The CRM transport uses the helper threads when
writing data to an endpoint.

The number of helper threads is configured using the
“CNXtran_helper_threads” command line option. The default value for
this option is 5. The maximum number of helper threads that can be
configured is 100. Setting CNXtht to a number greater than 100 results
in only 100 helper threads being created.

Buffer Configuration

In addition to the threads that are being used by Connexis, there are
areas of the design where buffers are being used. These buffers are
typically being used to buffer data that is either being sent or received
from different processes in the distributed application. The size and
number of many of these buffers is configurable. This section
illustrates Connexis’ buffer usage and details where optimizations can
be made by using configuration options.

Overall buffer configuration of a Connexis application

This section describes the overall buffer usage of a Connexis-enabled
application. Specific options that can be used to configure these
buffers are presented in the following sections. A class diagram
showing the overall buffer usage is presented in Figure 116.
266 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
Figure 116 Buffer usage in Connexis application

Application layer

All of the message buffering that occurs in the Application layer is
using the built-in Rose RealTime queuing mechanism. In this queuing
scheme each thread in a Rose RealTime model has a priority queue.
This queue maintains all of the messages that are destined for the
capsules that are running on the thread and that have not been
delivered yet. Connexis does not add any extra buffers in these cases.
User Guide - Rational Rose RealTime Connexis 267

Chapter 12 Connexis Customization Reference
DCS layer

Most of the messaging that occurs in the DCS layer uses the built-in
Rose RealTime message queues. The Transport capsule also maintains
a transport buffer pool, and an Operation Queue. The transport buffer
queue and the Operation Queue are used to buffer data and control
messages that are being transmitted or received over a transport.

The buffers used for encoding and decoding are obtained from the
buffer pool. The default buffer sizes that are allocated from the buffer
pool for encoding and decoding are configured using the
CNXtran_first_msg_size (CNXtfms) and the
CNXtran_max_transmit_size (CNXtmts) of the transport. In the case of
CDM, a decode buffer is reserved from the buffer pool and its size is
configured using the CNXcdm_message_receive_size (CNXcmrs)
option.

The design of the Operation Queue is illustrated in Figure 117.

Figure 117 Operation Queue design

The Operation Queue is used to buffer transport operations that are
received while an endpoint is binding or being resolved. The size of the
Operation Queue is specified using the CNXtran_out_queue_limit
(CNXtoql).
268 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
The transport commands that are queued are bind commands, which
do not require a buffer and write commands. Some of the write
commands require message buffers to hold the message payload.
Specifically, if the message has data that is not sent using send scalar,
a message buffer is required. The message buffer is retrieved from the
transport buffer pool. The design of the transport buffer pool is shown
in Figure 118.

Figure 118 Transport Buffer Pool design

The Transport Buffer Pool maintains a set of buffers of varying sizes.
When an transport integration write requires a buffer, the Transport
Integration encodes the data into a buffer that it obtains from the
Transport Buffer Pool. The encode is done in a buffer that most closely
matches the size of the encoded data. This means that the encode is
using a best fit algorithm to find the appropriate buffer.

The size and number of the different buffers in the buffer pool is
configurable using the CNXtran_buffer_pool (CNXtpb) configuration
option. The default value of this option is
64:1,600:10,4200:10,17000:2,32860:2,33000:2. This means that, by
default, the buffer pool creates:

� 1, 64 byte buffer

� 10, 600 byte buffers

� 10, 4200 byte buffers
User Guide - Rational Rose RealTime Connexis 269

Chapter 12 Connexis Customization Reference
� 2, 17000 byte buffer

� 2, 32860 byte buffer

� 2, 33000 byte buffers

If the buffer size is not double word aligned, Connexis rounds up to the
next double word boundary. In addition, each buffer has an overhead
of 24 bytes associated with it due to its buffer control block. This
means that the total amount of memory that is consumed by this
configuration is:

� (64 + 24) x 1 = 88

� (600 + 24) x 10 = 6240

� (4200 + 24) x 10 = 42240

� (17000 + 24) x 2 = 34048

� (32864 + 24) x 2 = 65776

� (33000 + 24) x 2 = 66048

For a total of 214440 bytes.

Connexis buffer usage

This section describes the strategies that are used by CDM Transport
Integration to select buffers from the transport buffer pool for the
different types of messages that can be sent. Table 59presents the
different types of messages that Connexis sends and their
corresponding starting buffer sizes and maximum buffer sizes. Table
59also indicates if the Operation Queue is used for a particular
message type. The general algorithm that is used for all message types
is that Connexis starts by trying to get a buffer that satisfies the criteria
listed in the Starting buffer size column. If a free buffer of that size is
not available, the next largest buffer available is used as long as its size
is not greater than the value listed in the Maximum buffer size column.

If a buffer of that size cannot be found, Connexis looks for a larger
buffer. This continues until the size of the buffer being requested is
greater than the value listed in the Maximum buffer size column.

If your application is only using CDM, configure Connexis according to
the following information:

� There is one decode buffer large enough to hold the biggest
message that your application will receive. Use the CNXcmrs
command line option to configure the receive buffer.
270 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
� There is one encode buffer large enough to hold the biggest
message that your application will send. Use the CNXtmts
command line option to configure the transmit buffer.

� There are a number of buffers that are approximately 400 bytes in
size that can be used to hold queued connection requests. This is
only required if host names are being used. If your application uses
IP addresses these buffers are not required.

Configuring the Number of Virtual Circuits

The pre-built Connexis library has a fixed number of virtual circuits
which a Connexis-enabled model can use at run-time. The fixed
number (200) is suitable for most applications and reduces the
memory footprint of the run-time application.

If your application uses more than 200 connections, you must increase
the number of connections, re-build your Connexis library and re-link
your application.

To increase the number of virtual circuits:

1. Open the DCS model
($ROSERT_HOME/CONNEXIS/Model/DCS.rtmdl).

2. Open the specification for the Logical
View::DCSComponents::DCSSysConfig::RTDConstants class.

3. Open the specification for the attribute rtdMaxCircuits.

Table 59 Buffer sizes used by different message types

Message Type Queue
Used?

Starting buffer size Maximum buffer size

CDM Audit No 40 bytes not applicable

CDM data No CNXcmtsa,c CNXcmts

CDM Control No CNXcmtsa CNXcmts
aIf a free buffer that is >= CNXtmts is not available and CNXtfms is < CNXtmts, Connexis
re-attempts to obtain a buffer using the CNXtfms as the starting buffer size.

cConnexis encoding starts with a buffer that is >= the size specified in the Starting buffer
size column. If the encoded data exceeds the buffer size, a buffer twice as large is
obtained (subject to the maximum buffer limit dictated) and the smaller buffer is
released. Encoding continues with this process until a buffer cannot be obtained, or the
encoded size exceeds the maximum encoded data size, or all of the data is encoded.
User Guide - Rational Rose RealTime Connexis 271

Chapter 12 Connexis Customization Reference
4. Change the constant's default value from 200 to a number
appropriate for your requirements.

5. Rebuild the Connexis library from the changed DCS model and link
your application with the newly built library.

Verifying Connections

The Audit functionality verifies that the connection is up and that the
connection is in a state that allows it to go back into service. There are
three types of periodic audits (handshake, connection, and none) and
a reset audit available. The transport can also report when it has failed
and when it has recovered.

With periodic audits the length of the audit period of a connection
depends upon the current state of the connection. It is a function of the
auditISGranularity, the auditOOSGranularity audit configuration
options and the length of the CNXtap. The length of the CNXtap is the
multiple of CNXtap >= the granularity depending on the state.

Handshake audit

This audit determines when a transport has gone out of service. The
handshake audit is usually used when the transport can not notify you
that it has gone out of service through send return code or
asynchronous notification of a failure.

Once a transport goes out of service, messages are sent until it goes
back into service. The audit can be configured so that a re-resolve is
triggered when out of service. If the address was originally unresolved
then it will be reresolved and rebound.

Are You Alive (AYA) messages are sent and I Am Alive (IAA) response
messages are expected in return. A handshake exchanges between two
end points. If piggyBackEnabled is on, messages that are received
count as IAA responses as well. The response must be received before
the next audit period of the connection is over. If it is not received, the
audit period is considered failed. The auditsFailedForOOS identifies
the number of consecutive failed audit periods that may occur before
the connection is considered failed. When a connection has failed
auditsPassedForIS identifies the number of consecutive success audit
periods needed for the connection to resume service. A successful
audit period is one in which an IAA response is received for an AYA
message.
272 User Guide - Rational Rose RealTime Connexis

Engineering Rules Overview
AYA messages are sent only when messages have not been received
from the other side during the last audit period. If messages have been
received, during the period, but no messages were sent, IAA message
are sent. This is an optimization to prevent the other side from having
to send an AYA message in order to trigger this side to send a message.

YANTxEnabled identifies whether You Are Not Responsive (YAN)
messages should be sent when a transport is going out of service.
YANRxForceOOS indicates whether a received YAN message should
trigger the current connection to go out of service. These are useful for
keeping both ends of a connection in sync. It allows one side to notify
the other that it considers the connection to be down, allowing the
other side to release its resources.

Connection audit

Connection audit generates messages during quiet periods, to monitor
the status (up or down) of the transport.

During an audit period, if the connection is in service and no messages
are sent or received, then an IAAnoise audit message is sent. If the
transport is experiencing a failure, the message sends fails and the
connection transitions to out of service. The recovery configuration
defines how to put the transport back into service. When the transport
has failed, the connection audit does not run.

Reset audit

The Reset audit is used primarily in situations where the endpoint goes
up and down faster than the audit can detect. When an application
starts up it assigns itself a unique ID based on the clock and its IP
address. This value is sent in all messages and to all destinations. If
the reset audit is enabled and a message arrives from the sender with
a different ID, it is decided that the sender has failed and has been
restarted. All SPPs are released and all SAPs will rebind to an SPP. To
use the Reset Audit with a connection-oriented transport, the
transport needs to have the ability to release and then re-establish a
connection to the same endpoint. If your network does store and
forward messages, you may not want to use the reset audit either. In a
store and forward network, it is possible old messages turn up with the
old id and result in a working connection being taken down and
restarted unnecessarily.
User Guide - Rational Rose RealTime Connexis 273

Chapter 12 Connexis Customization Reference
A reset audit check takes place when connection establishment
messages are exchanged and when audit messages are exchanged. It
is recommended that you use reset audit with handshake audits.

If your network does store and forward messages, you may not want to
use the reset audit either. In a store and forward network, it is possible
old messages turn up with the old id and result in a working
connection being taken down and restarted unnecessarily.

Command Line Options Reference

There are several areas where the performance and behavior of
Connexis can be modified. The key areas are:

� System wide - options that do not apply to a specific component

� DCS - options that apply to the DCS

� Transporter options that apply to the transporter sub-system and
affect all registered transports.

� Transport specific parameters -options that apply to a particular
transport

� Target RSL - options that apply to the Rose RealTime Target RSL

� Locator - options that apply to the Connexis Locator

� Connexis Viewer / Target Agent - options that apply to the
Connexis Viewer application and its target component

Options applying to each of these components are discussed in the
following tables. Background information that is necessary for making
the design trade-off decisions is also presented. Each set of
configuration parameters is presented in a table format that outlines
the name of the option, the argument type, a description of what the
option does, and a default value.

Setting Command Line Options

The general approach for using all of the mentioned command line
options is to specify them on the command line. If this is not possible
on your target platform, you must set the values of argv and argc using
a supported method.

All of the global command line options that have arguments are set
using the following syntax:
274 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
<appname> -<command_line_option>=<value>

The transport specific command line options that have arguments are
set using the following syntax:

<appname> -<command_line_option>=<transport name>:<value>

The command line options that do not have arguments are set using
the following syntax:

<appname> -<command_line_option>

Note: The command line options are case sensitive (even on Windows
NT).

System wide

Table 60 lists the options that apply to Connexis as a whole, not to a
specific component.

Table 60 System wide command line options

Command Line
Option

Description

CNXunique_id
| CNXui

This option is used to set a unique identifier for a
Connexis endpoint. If this option is not specified by the
user, Connexis generates a random pattern to use as
the unique identifier.

It is good practice to assign a logical name to the unique
identifier because it makes recognizing the endpoints in
the Viewer easier. For example, -CNXui=service1.

Argument Type: string
Default Value: a random pattern

CNXhelp | CNXh This option causes a brief output of help and default
values for user parameters to be printed to the console.

Argument Type: none
Default Value: none

CNXdump | CNXd This option outputs the final configuration of both the
global and transport specific configuration options once
DCS has been initialized.

Argument Type: none
Default Value: none
User Guide - Rational Rose RealTime Connexis 275

Chapter 12 Connexis Customization Reference
CNXnobanner
| CNXnb

If this option is specified, the Connexis banner is not
displayed on start up.

Argument Type: none
Default Value: none

CNXmetrics |
CNXm

This option allows you to start metrics collection as
soon as DCS starts. This lets you collect metrics on
activities which take place prior to turning metrics on in
the Viewer or programmatically.

Argument Type: bool
Default Value: 0 (false)

CNXpsos_node |
CNXpn

This option only applies to the pSOS operating system.
The pSOS software architecture allows for an
application to be distributed across multiple nodes,
each with a unique ID. This option is used by the DCS
to identify the node ID on which a component instance
is running. The default value assumes that the DCS is
running in a single node configuration.

Argument Type: integer
Default Value: 0

Table 60 System wide command line options

Command Line
Option

Description
276 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
DCS options

The options contained in Table 61 are related to the DCS controller.

Table 61 DCS command line options

Command Line
Option

Description

CNXdcs_audit_delay
| CNXdad

The minimum time between audits for a given
virtual circuit in milliseconds.

Argument Type: integer
Default Value: 1000

CNXdcs_audit_interval
| CNXdai

Minimum interval between auditing virtual circuits
in seconds.

Argument Type: integer
Default Value: 100

CNXdcs_audit_enabled
| CNXdae

Enables or disables the DCS audit feature. If set to
non-zero the DCS audit is enabled.

Argument Type: BOOL
Default Value: 1

CNXdcs_conn_retry_
delay | CNXdcrd

The retry timeout for transport connect messages.
The transport name is qualified since this option is
transport specific (ex.: -CNXdcrd=cdm:2000).

Time is specified in milliseconds.

Argument Type: integer
Default Value: 5000
User Guide - Rational Rose RealTime Connexis 277

Chapter 12 Connexis Customization Reference
Transporter options

Table 62 describes the command line options that are available for
modifying the global DCS Transporter configuration settings.

CNXdcs_retry_delay |
CNXdrd

The retry timeout for transport control messages.
The transport name must be qualified since this
option is transport specific (ex.: -
CNXdrd=cdm:2000).

Time is specified in milliseconds.

Argument Type: integer
Default Value: 5000

CNXdcs_locator_retry_
delay | CNXdlrd

Specifies the retry delay for locator control
messages. This value is expressed in milliseconds.

Argument Type: integer
Default Value: 5000

Table 62 Transporter global command line options

Command Line Option Description

CNXtran_num_mbks |
CNXtnm

Specifies the number of memory control blocks
that are pre-allocated for the buffer pool of the
transporter. The default value is the number of
memory blocks in the buffer pool, configured
using CNXtran_buffer_pool.

Argument Type: integer
Default Value: sum (CNXtbp)

CNXtran_log_bad_msgs
| CNXtlbm

If set to true, messages with bad types are logged.

Argument Type: BOOL
Default Value: 1 (true)

Table 61 DCS command line options

Command Line
Option

Description
278 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
CNXtran_default_local_u
se_transport (CNXtdlut)

Configures the default transport used when a
non-explicit subscription resolves locally. This
causes two virtual circuits to be used per local
DCS registration.

Note: Use the Viewer to view local messages. They
are valuable for debugging. Local messages are
not traceable through any other method.

Argument Type: string (transport name)
Default Value: None

CNXtran_local_loopback
_enable (CNXtlle)

Configures the loopback of local connections that
result from an explicit subscription. This causes
two virtual circuits to be used for each local DCS
registration. The syntax is:
-CNXtlle=<transport>:[0 | 1]

An example such as “-CNXtlle=cdm:1,” indicates
that any registration that resolves locally will be
connected through the cdm transport.

Note: Use the Viewer to view local messages. They
are valuable for debugging. Local messages are
not traceable through any other method.

Argument Type: string (transport name)
Default Value: None

CNXtran_thread_priority
| CNXttp

Specifies the priority of the transporter thread.

Argument Type: integer
Default Value: DEFAULT_MAIN_PRIORITY + 1

CNXtran_stack_size
(CNXtss)

Specifies the stack size of the transporter thread.

Argument Type: integer
Default Value: CNXTTP_STACK

Table 62 Transporter global command line options

Command Line Option Description
User Guide - Rational Rose RealTime Connexis 279

Chapter 12 Connexis Customization Reference
CNXtran_default_
encoding | CNXtde

Specifies the default encoding method.
1=ASCII, 2=CDR

Argument Type: integer
Default Value: 2

CNXtran_helper_thread_
priority | CNXthtp

Specifies the helper thread priority.

Argument Type: integer
Default Value: DEFAULT_MAIN_PRIORITY + 2

CNXtran_helper_thread_
stack_size | CNXthtss

Specifies the helper thread stack size.

Argument Type: integer
Default Value: CNXTHTP_STACK

CNXtran_helper_threads
| CNXtht

Specifies the number of helper threads that are
used to buffer data from Connexis. This
corresponds to the maximum number of blocking
calls that can occur against the transport at any
given time plus the number of CDM host name
resolution requests at any given time.

Argument Type: integer
Default Value: 5

CNXtran_out_queue_
limit | CNXtoql

The maximum number of messages allowed in the
Operation queue.

Argument Type: integer
Default Value: 250

CNXtran_endpoint_
queue_limit | CNXtepql

The maximum number of messages that can be
queued per endpoint.

Argument Type: integer
Default Value: 100

Table 62 Transporter global command line options

Command Line Option Description
280 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
CNXtran_buffer_pool |
CNXtbp

This parameter establishes the number and size
of the buffers that are being managed by the
transport buffer pool. The default specifies that 1,
64 byte buffer, 10, 600 byte buffers, 10, 4200
byte buffers, 2, 17000 byte buffers, 2, 32860 byte
buffers and 2, 33000 bytes buffers be created.

Argument Type: string
Default Value:
64:1,600:10,4200:10,17000:2,32860:2,33000:2

CNXtran_audit_period |
CNXtap

Specifies how often to schedule the audit process.
A value of 0 means that auditing is disabled. This
value is specified in milliseconds

Argument Type: integer
Default Value: 250

CNXtran_audit_
throttle_handshake |
CNXtath

Specifies the maximum number of handshake
audit messages per audit period. This provides
flow control when many connections are being
audited.

Argument Type: integer
Default Value: 10

CNXtran_audit_throttle_
conn | CNXtatc

Specifies the maximum number of connection
audit messages per audit period. This provides
flow control when many connections are being
audited.

Argument Type: integer
Default Value: 10

Table 62 Transporter global command line options

Command Line Option Description
User Guide - Rational Rose RealTime Connexis 281

Chapter 12 Connexis Customization Reference
Transport specific options

Table 62 describes the command line options that are available for
modifying transport specific options.

Table 63 Transport component command line options

Command Line Option Description

CNXendpoint
| CNXep

This option is used to specify the Connexis
endpoint used by the application. A Connexis
endpoint has the syntax: [transport
protocol://][hostname:]port. For example,
cdm://host1:9999.

The CNXep option can be specified once for each
registered transport.

In the case of CDM, if this option is not specified
or is set to 0, Connexis allocates a free port on the
local machine for the CDM transport.

Argument Type: string
Default Value: transport specific

CNXtran_first_msg_size
| CNXtfms

Specifies the first message size to use when
encoding. The default is the smaller of 600 or
CNXtmms.

Argument Type: integer
Default Value: 600 or CNXtmms

CNXtran_max_transmit_
size | CNXtmts

Specifies the maximum transmit message size to
use when encoding. For transports other than
CDM, defaults to the largest buffer in CNXtbp,
after excluding 1 buffer of size CNXtmts and 1
buffer of size CNXcmrs.
The maximum transmit size for the CDM and
CRM transports is limited to 65535 bytes.

Argument Type: string
Default Value: max(CNXtbp)
282 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
CNXtran_reset_audit_
enabled | CNXtrae

This option (when set) configures the DCS to
detect if a connection has gone down and
recovered before the transport audit could detect
the failure. If this option is true and a reset is
detected, the DCS resets the local circuits so that
their connections can be re-established.
The detection is in part triggered by transport
audits so transport audits must be enabled for
this audit to function.
If you disable CNXtrae you should make sure that
CNXdae is enabled so that failures are detected
by the circuit audit.

Argument Type: BOOL
Default Value: 1 (true)

CNXtran_handshake_co
nn_
audits_is | CNXthcai

Specifies the number of audits that must pass
before the transport can go in-service.

Argument Type: integer
Default Value: 2

CNXtran_handshake_co
nn_
audits_oos | CNXthcao

Specifies the number of handshake audits that
must fail before a transport connection is marked
out-of-service.
(CNXthcao + 1) x CNXtcapo is the amount of time
that the other application would have to be
unresponsive before the connection is marked
out-of-service.

Argument Type: integer
Default Value: 4

Table 63 Transport component command line options

Command Line Option Description
User Guide - Rational Rose RealTime Connexis 283

Chapter 12 Connexis Customization Reference
CNXtran_conn_
audit_period_is |
CNXtcapi

Specifies the audit period to use when the
connection is in-service. This value is represented
in milliseconds. No audit messages are sent when
data is exchanged over the connection in both
directions.

If this option is not a multiple of CNXtap, the
audit period is rounded up to a period that is
divisible by CNXtap.

Argument Type: integer
Default Value: 500

CNXtran_conn_audit_per
iod_oos | CNXtcapo

Specifies the connection audit period to use when
the connection is out-of-service. This value is
represented in milliseconds.

Argument Type: integer
Default Value: 500

CNXtran_resolve_expiry
| CNXtre

Configures the amount of time for which a
resolved endpoint address is valid. Any new
connections established before the expiration
time will use the cached resolved address and will
not reresolved unless there is a transport failure.
This value is represented in seconds.

Argument Type: integer
Default Value: 30

CNXtran_resolve_retry_d
elay | CNXtrre

Configures the retry period for a failed address
resolve operation. The period is specified in
milliseconds.

Argument Type: integer
Default Value: 5000

CNXtran_resolveon_han
dshake_audit_fail |
CNXtrhaf

Configures the DCS to reresolve an endpoint after
this number of failed periods from CNXtcapo, a
handshake audit failure. A value of 1 enables this
functionality.

Argument Type: integer
Default Value: 0 (disabled)

Table 63 Transport component command line options

Command Line Option Description
284 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
CDM

Table 64 describes the parameters that apply to the CDM transport.

CNXtran_resolve_after_fa
ilure | CNXtraf

Configures the DCS to reresolve a transport
endpoint after a transport failure. A value of 1
enables this functionality.

Argument Type: BOOL
Default Value: 0

CNXtran_bind_retry_dela
y | CNXtbrd

Configures the retry timeout for the endpoint
binding operation of a transport. The timeout
period is specified in milliseconds.

Argument Type: integer
Default Value: 500

CNXtran_priority |
CNXtp

Specifies the transport thread priority.

Argument Type: integer
Default Value: DEFAULT_CNXTTP_PRIORITY + 1

Table 64 CDM command line options

Command Line
Option

Description

CNXcdm_max_rx_size
| CNXcmrs

Maximum CDM receive size. Default to largest
buffer defined in transport buffer pool. This decode
buffer is used exclusively for incoming CDM
messages.

Argument Type: integer
Default Value: max(CNXtbp)

Table 63 Transport component command line options

Command Line Option Description
User Guide - Rational Rose RealTime Connexis 285

Chapter 12 Connexis Customization Reference
Locator

Table 65 describes the options that are available for customizing the
DCS Locator service.

CNXcdm_udp_rx_size
| CNXcurs

The UDP protocol receive buffer size. The default
value is what is defined by the target environment.

Argument Type: integer
Default Value: system

CNXcdm_udp_tx_size
| CNXcuts

The UDP protocol transmit buffer size. The default
value is what is defined by the target environment.

Argument Type: integer
Default Value: system

Table 65 Locator command line options

Command Line Option Description

CNXlocator_primary
| CNXlp

Specifies that this process should be made the
primary locator.

Argument Type: none
Default Value: none

CNXlocator_backup
| CNXlb

Specifies that this process should be made the
backup locator.

Argument Type: none
Default Value: none

CNXlocator_primary_
endpoint | CNXlpep

Specifies the endpoint of the primary locator (if
this process is not the primary locator).

Argument Type: string
Default Value: none

CNXlocator_backup_
endpoint |
CNXlocator_backup_
endpoint

Specifies the endpoint of the backup locator (if
this process is not the backup locator).

Argument Type: string
Default Value: none

Table 64 CDM command line options

Command Line
Option

Description
286 User Guide - Rational Rose RealTime Connexis

Command Line Options Reference
Connexis viewer/target agent

The options listed below apply to the DCS Target Agent component of
the Connexis Viewer. These options are specified in the same way as
other options, namely as command line options to your Connexis-
enabled executable.

These options are used to configure the target agent for optimal use
with the Connexis Viewer.

CNXlocator_retry_delay
| CNXlrd

Specifies the amount of time, in milliseconds, to
wait before retries. The value must be >50.

Argument Type: integer
Default Value: 1000

CNXlocator_audit_delay
| CNXlad

Specifies the amount of time, in milliseconds, to
wait between audits of the Primary locator. This
value must be >50.

Argument Type: integer
Default Value: 2000

CNXlocator_audits_oos
| CNXlao

Specifies the number of failed audits required to
take the primary locator out of service. Using the
default of 3, the primary locator would be taken
out of service after the third consecutive audit
had failed.

Argument Type: integer
Default Value: 3

CNXlocator_preferred_
transport | CNXlpt

Configures the preferred transport to be used for
a binding when the transport is available to both
the publisher and the subscriber. This option can
only be set at the Primary or Backup locators.

Argument Type: string
Default Value: cdm

Table 65 Locator command line options

Command Line Option Description
User Guide - Rational Rose RealTime Connexis 287

Chapter 12 Connexis Customization Reference
Table 66 Connexis Viewer command line options

Command Line Option Description

CNXagent_thread_priority
| CNXatp

Specifies the target agent thread priority.

Argument Type: integer
Default Value: DEFAULT_MAIN_PRIORITY

CNXagent_trace_buffer
_size | CNXatbs

Specifies the target agent trace buffer size in
terms of the number of events that are stored.
Trace events have a fixed size of 32 bytes.

Argument Type: integer
Default Value: 1000

CNXagent_data_block_size
| CNXadbs

Specifies the target agent data block size in
bytes.

Argument Type: integer
Default Value: 32

CNXagent_num_data_
blocks | CNXandb

Specifies the number of data blocks that are
allocated for the target agent.

Argument Type: integer
Default Value: 1000

CNXagent_truncate_user_
data | CNXatud

Specifies the number of bytes to keep before
truncating user data. A value of -1 means that
no truncation is performed.

Argument Type: integer
Default Value: 256

CNXagent_auto_start
| CNXaas

Tells Connexis to automatically start capturing
events. The level can be set between 1 and 5
where 1 corresponds to Basic traces, 3
corresponds to Operational traces and 5
corresponds to Advanced traces. The preferred
level is 3.
For more information, refer to “Defining a Trace
Filter for a Component Instance” on page 182.

Argument Type: integer
Default Value: 0 (disabled)
288 User Guide - Rational Rose RealTime Connexis

Chapter 13

Customizing and Porting DCS Libraries

The Distributed Connection Service (DCS) libraries let you create a
distributed Rose RealTime application. The DCS libraries work with
the TargetRTS, allowing Rose RealTime unwired ports to be bound
across process boundaries.

This chapter describes how to customize or port DCS libraries to a new
target environment. The new target could be a new target
configuration, or an OS or compiler upgrade of a supported DCS target
configuration.

The information in this chapter is specifically designed for software
developers familiar with the target environment to which they are
porting. It assumes that you have significant knowledge and
experience with the development environment, operating system, and
target hardware. It is also assumed that you are familiar with
the”Rational Rose RealTime C++ Porting Guide” and have completed
and tested the TargetRTS port to the new target configuration.

This section also provides guidelines on how to build DCS libraries for
a minimal configuration.

Common customizations for the DCS

The DCS has been designed and implemented using Rose RealTime
and is available in the form of a model. The most common
customizations required are:

� Changing the compilation flags used to build the DCS library

� Updating the compiler version for the target configuration

� Building a minimal configuration of the TargetRTS and DCS
libraries
User Guide - Rational Rose RealTime Connexis 289

Chapter 13 Customizing and Porting DCS Libraries
Other resources

Before customizing a target configuration or starting a port, ensure
that you have the following documents and materials available:

� Rational Rose RealTime C++ Porting Guide

� Compiler documentation

� Simple Rose RealTime example models to verify the TargetRTS port

� Connexis "BasicTest" example model to verify the DCS port

Operating system capabilities

UDP/IP and TCP/IP support are required to support CDM and CRM
transports. While it is possible to complete a port without IP support,
UDP/IP support is required if you need to observe your target using the
Connexis Viewer. IP support is also required for UML-level debugging
using Target Observability feature of Rose RealTime.

What to do before calling Rational support

If you encounter any problems, follow the steps below before calling
Rational support for help regarding a DCS port.

1. Follow the steps outlined in the section "What to do before calling
Rational Support" in the”Rose RealTime C++ Porting Guide.”

2. Verify that the TargetRTS port for the new target configuration is
functional using the Rose RealTime example models.

Porting the DCS to a New Target Configuration

To port the DCS to a new target configuration:

1. Create a TargetRTS library for the new target configuration.

2. Create DCS target specific header files for the new target
configuration.

3. Load the DCS model.

4. Create a new C++ library component for the new target
configuration.

5. Configure and customize the C++ library component settings.

6. Configure the DCS CDR encoding/decoding for the new target
configuration.
290 User Guide - Rational Rose RealTime Connexis

Porting the DCS to a New Target Configuration
7. Build the DCS library for the new target configuration.

8. Test the new target configuration.

Creating a New TargetRTS Library

Follow the steps and instructions described in the “Rational Rose
RealTime C++ Porting Guide” to configure or create a TargetRTS library.

The DCS library for a target platform depends on the TargetRTS for its
target configuration and library settings. The TargetRTS provides
several settings that the user can configure. The TargetRTS
parameters and settings table lists the parameters and the settings
that must be set for the DCS. The “Rational Rose RealTime C++ Porting
Guide” provides a complete description of all the target settings.

Compiler option settings that are common to the TargetRTS libraries,
the DCS libraries, and the user's application should be configured
using the LIBSETCCFLAGS macro in
$RTS_HOME/libset/<libset>/libset.mk.

Compiler option settings that only apply to the TargetRTS libraries
should be set in the LIBSETCCEXTRA macro in
$RTS_HOME/libset/<libset>/libset.mk.

Table 67 TargetRTS parameters and settings

Target Settings Value Descriptions

USE_THREADS 1 The DCS is only available for multi-
threaded applications.

HAVE_INET 1 The DCS requires IP support for the
Connexis Datagram Messaging (CDM) and
the Connexis Reliable Messaging (CRM)
transports.

OBJECT_ENCODE 1 The DCS requires IP support for the
Connexis Datagram Messaging (CDM) and
the Connexis Reliable Messaging (CRM)
transports.

OBJECT_DECODE 1 Required so that a message received over
the wire can be decoded into objects.

RTS_COMPATIBLE 600 Connexis is not available for ObjecTime
Developer and there are no compatibility
issues with v5.2
User Guide - Rational Rose RealTime Connexis 291

Chapter 13 Customizing and Porting DCS Libraries
Compiler option settings that only apply to the DCS libraries should be
configured in the DCS model. Customization of a DCS C++ library
component is described in the section "Configuring the C++ Library
Component Settings."

Creating DCS Target Specific Header Files

Although most of the configuration of the DCS libraries is done within
the DCS model, the DCS thread configurations are configured in the
file $RTS_HOME/target/<target>/RTDcsTarget.h. The file
RTDcsTarget.h contains specific operating system priority definitions
and configuration of the stack size for DCS threads. The
RTDcsTarget.h file also contains the definitions of the maximum and
minimum values of the thread priorities for an operating system. Run-
time argument processing uses these values to validate the run-time
settings or the thread priorities for the DCS threads. The table below
provides a list of constants that must be defined in RTDcsTarget.h.

Table 68 Constant definitions

Constant Description

CNX_PRIORITY_MIN Defines the minimum allowable value for a thread
priority

CNX_PRIORITY_MAX Defines the maximum allowable value for a thread
priority.

CNX_PRIORITY_RAISE The default configuration for the DCS is for the
priority of the helper threads to be higher than the
priority of the transporter thread. The
CNX_PRIORITY_RAISE constant is used to
increment a thread priority. For OS targets in which
the higher priority threads have lower numeric
values, the value of CNX_PRIORITY_RAISE must be
negative.

DEFAULT_CNXTTP_PR
IORITY

Sets the default thread priority for the transporter
thread.

DEFAULT_CNXHTP_P
RIORITY

Sets the default thread priority for the helper
threads. For optimal system performance, the
helper threads should run at a higher priority than
the transporter thread.
292 User Guide - Rational Rose RealTime Connexis

Porting the DCS to a New Target Configuration
Loading the DCS Model

Before you load the DCS model, create new target configuration or
customizations to an existing target configuration within the DCS
model. Load the DCS model into a Rose RealTime session, found in the
$ROSERT_HOME/CONNEXIS/Model directory.

The Component View of the DCS model has packages containing the
C++ library components for the supported DCS configurations. These
packages are named after the target configurations they represent. For
example, the package VXW54-ppc-cygnus-272-960126 represents the
TORNADO2T.ppc-cygnus-2.7.2-960126 target configuration.

Before making any modifications to the target configurations, make a
copy of the DCS model provided with the Connexis installation.

Creating a C++ Library Component

Once the DCS model is loaded, you can modify an existing C++ library
component or create a new one.

If you are modifying an existing target configuration, clone the
TargetRTS with a new name and duplicate the DCS library component.

To clone the TargetRTS:

1. Select the component in the browser.

2. Duplicate the option from its context menu.

DEFAULT_CNXATP_PR
IORITY

Sets the default thread priority for the target agent.
The target agent is designed to be minimally
intrusive to the application and should be running
at a lower priority than the threads of the
application.

CNXTTP_STACK Sets the stack size for the transporter thread.

CNXHTP_STACK Sets the stack size for the helper threads

CNXATP_STACK Sets the stack size for the target agent thread.

Table 68 Constant definitions

Constant Description
User Guide - Rational Rose RealTime Connexis 293

Chapter 13 Customizing and Porting DCS Libraries
If you are creating a new target configuration, duplicate the DCS
library component template provided in the Component
View::Component Generator package. This generic template
component is configured with the following information:

� references to all the DCS Logical View components required to
provide the DCS functionality

� property settings for the library name (the default is
$(LIB_PFX)DCS$(LIB_EXT))

� compilation inclusion paths

� property settings for any component level inclusions

� component dependencies

Configuring the C++ Library Component Settings

The following table describes the component properties that must be
customized.

Table 69 Customizing component properties

Component Property Description

C++ Compilation >
TargetConfiguration

The <target> and <libset> settings of the TargetRTS
configuration that we are building against.

C++ Generation >
CodeGenMakeType

Specify the format of the makefiles to be generated
by the toolset for the code generation phase of the
build. For example, if you are using the GNU make
utility in your environment, this property should be
set to Gnu_make.

C++ Generation >
CodeGenMakeComma
nd

Specifies the name of the make utility to be used by
the toolset for the code generation phase. For
example, gmake.

C++ Compilation >
CompilationMakeType

Specify the format of the makefiles to be generated
by the toolset for compilation phase of the build.
For example, if you are using the GNU make utility
in your environment, this property should be set to
Gnu_make.

C++ Compilation >
CompilationMakeCom
mand

Specifies the name of the make utility to be used by
the toolset for the code compilation phase. For
example, gmake.
294 User Guide - Rational Rose RealTime Connexis

Porting the DCS to a New Target Configuration
C++ Compilation >
CompilationMakeArgu
ments

You must specify RT_SRC_TGT=<target_base>. The
DCS depends on TargetRTS files in the
$RTS_HOME/src/target directory. For example,
RTtcp.h. The RT_SRC_TGT make variable is used to
specify the target base.

C++ Compilation >
CompileArguments

If your component is not compiling, it may be a
result of the RTD_CONNEXIS_BUILD constant not
being set properly. The definition of this constant
can be found in the C++ Compilation" > "Compile
Arguments" field of the component and should be
changed from $(CNX_BUILD_NUM) to a user-
defined integer value. This property is used to
configure the C++ preprocessor macros that
configure certain DCS capabilities.

Viewer tracing is configured on the target using the
RTD_TRACE macro. $(DEFINE_TAG)RTD_TRACE=1
enables tracing. $(DEFINE_TAG)RTD_TRACE=0
disables most traces (except errors and warnings),
$(DEFINE_TAG)RTD_TRACE=2 disables all traces.

The metrics collection and reporting capabilities are
configured using the RTD_STATISTICS macro.
$(DEFINE_TAG)RTD_STATISTICS=1 enables
metrics collection and reporting.
$(DEFINE_TAG)RTD_STATISTICS=0 disables the
metrics collection and reporting.

Additonal macros might be required to configure
the CDR encode/decode capabilities for the target
platform. These capabilties are described in
“Configuring the CDR Encode/Decode
Functionality” on page 296

Note: If your component is not compiling, it could be
a result of the RTD_CONNEXIS_BUILD constant not
being set properly. This constant’s definition can be
found in the component’s “C++ Compilation” >
“Compile Arguments” field and should be changed
from $(CNX_BUILD_NUM) to a user-defined integer.

This property is also used to configure any compiler
option settings that are only required for completion
of the DCS libraries.

Table 69 Customizing component properties

Component Property Description
User Guide - Rational Rose RealTime Connexis 295

Chapter 13 Customizing and Porting DCS Libraries
Configuring the CDR Encode/Decode Functionality

The CDR Encode/Decode functionality could require platform specific
customizations depending on the capabilities of the platform. These
customizations are accomplished by defining C++ preprocessor macros
in the "C++ Compilation > CompileArguments" property of the DCS
library component's specification sheet. The following customizations
are available:

� Overriding the type for use when encoding 64-bit values. The
default behaviour when the RTD_LONGLONG_TYPE macro is not
defined is to encode/decode 64-bit values using the primitive "long
long" type. This customization is required when the compiler does
not provide support for "long long" types. Setting
$(DEFINE_TAG)RTD_LONGLONG_TYPE=0 will use "__int64" type
to encode/decoding 64-bit values. Setting
$(DEFINE_TAG)RTD_LONGLONG_TYPE=1 will cause 64-bit values
to be encoded/decoded using the primitive "double" type.

� Enabling the inclusion of <sys/types.h>. Some platforms require
this inclusion to provide definitions of all the system types. Setting
$(DEFINE_TAG)RTD_INCLUDE_TYPES_IN_RTDPLATFORMCONFI
G enables this capability.

Creating a Minimal DCS Library Configuration

The DCS libraries provided with the Connexis installation are
configured with extensive debugging information and capabilities. As
the application becomes more mature, it may be necessary to
recompile a minimal configuration of both the TargetRTS and DCS
libraries in order to obtain better performance and a smaller memory
footprint for deployment. The Rose for RealTime "C++ Language
Guide" provides a description of how to create a minimal Target RTS
library configuration.

The TargetRTS precompiler settings defined in Table 67,“TargetRTS
parameters and settings” on page 291, must be set to support the DCS
functionality.
296 User Guide - Rational Rose RealTime Connexis

Porting the DCS to a New Target Configuration
Once a minimal Target RTS is configured, built, and tested. The DCS
library corresponding to the TargetRTS library configuration can be
built. For the DCS libraries, it is recommended that the following
preprocessor settings be set for a minimal configuration:

� $(DEFINE_TAG)RTD_TRACE=0

� $(DEFINE_TAG)RTD_STATISTICS=0

These setting are described in Table 69, Customizing component
properties.

Building the Library

Once you build the C++ library component and the Logical
View::DCSComponents::DCSTransport::DCSEncodeDecode::RTDPlatfo
rmConfig class is configured for the target platform, you can build the
library.

To build the library:

1. Select the component in the browser

2. Select the Build > Build option from the context menu.

The library is built into the folder specified in the properties area of the
component (C++ Generation > OutputDirectory).

Once the library has been built, copy it into the
$ROSERT_HOME/CONNEXIS/C++/lib/<target>.<libset> directory.

Note: If your component is not compiling, it could be a result of the
RTD_CONNEXIS_BUILD constant not being set properly. This constant’s
definition can be found in the component’s “C++ Compilation” > “Compile
Arguments” field and should be changed from $(CNX_BUILD_NUM) to a
user-defined integer.

Testing the Port

Test the DCS library port with the BasicTest model provided as part of
the Connexis installation. This model is available in
$ROSERT_HOME/CONNEXIS/C++/Examples/BasicTest.rtmdl. A
description of the BasicTest model is provided in the “Rational
Connexis Release Notes and Installation Guide.”
User Guide - Rational Rose RealTime Connexis 297

Chapter 13 Customizing and Porting DCS Libraries
TORNADO 2.0/SimSo/Cygnus 2.7.2-960126 DCS Port

This topic describes the board-support package (BSP) and VxWorks
kernel settings applied when testing the Tornado 2.0/SimSo/Cygnus
2.7.2-960126 port.

The Tornado installations provide a standard VxWorks simulator with
no networking capabilities. If you are using Connexis under the
VxWorks simulator, install the full VxWorks simulator.

To configure the full Solaris simulator with networking:

1. Use the Create Project facility to create a bootable VxWorks image.
On the VxWorks tab in the Project Workspace window, select the
folder called network components. Right-click and select “Include
network components” from the context menu. Uncheck BSD
interface support and check PPP and PPP boot or ULIP and ULIP
boot. Click OK.

2. If you are only using PPP, go to the obsolete components folder and
include 5.2 serial drivers. Right-click the element to open the
Properties window, click the Params tab, and confirm that
NUM_TTY is set to 2.

3. On the VxWorks tab in the Project Workspace window, select the
folder called ‘select WDB connection’ and check “WDB network
connection.” Then select the folder called 'select WDB mode' and
uncheck 'WDB system debugging.'

4. Remove the BSD attach interface and BSD interface support
components (INCLUDE_BSD_BOOT and INCLUDE_BSD) from the
network devices subfolder. If you are using PPP, also remove ULIP
and ULIP boot (INLUDE_ULIP and INCLUDE_ULIP_BOOT). See
“Known problems” on page 299 for more information.

5. Ensure that #undef INCLUDE_NETWORK and #undef
INCLUDE_NET_INIT are removed from config.h or that the
“undef” parts are changed to “define.”

6. If you want to use multiple simulators simultaneously, using ULIP
on Solaris, add the following to the config.h of your BSP:

#undef WDB_COMM_TYPE

#define WDB_COMM_TYPE WDB_COMM_NETWORK
298 User Guide - Rational Rose RealTime Connexis

TORNADO 2.0/SimSo/Cygnus 2.7.2-960126 DCS Port
7. If you are using PPP, define the following in config.h:

#ifdef BSD43_COMPATIBLE
#undef BSD43_COMPATIBLE
#endif

8. Rebuild and download VxWorks.

Note: While downloading VxWorks, change your target server
configuration from wdbpipe to wdbrpc.

Known problems
� At the time of this release, end-points specifying the IP address

have been specified for Connexis binaries to establish connection,
while running on top of the simulator.

� When downloading the VxWorks image, change the default value in
the Memory size(bytes) field from 3000000 to 8000000 to ensure
you have sufficient memory for your application.

� When connecting between two Solaris machines, configure the
Solaris machines for IP forwarding.

Note: If either of the two machines does not have IP forwarding
turned on, the vxSim processes will not be able to talk to each other.

� Ensure that the routing tables are configured correctly for vxSim
processes (if connecting two vxSim processes) and the Solaris
machines (see “Example of routing tables” on page 299).

Example of routing tables

The following example illustrates how to configure routing tables.
Assume that you have the following hosts:

147.11.50.5limpopo
127.0.1.1vxsim1 (running on limpopo)
147.11.50.3kaveri
127.0.1.9vxsim9 (running on kaveri)

You would then need to have the following routes:

(obtained by use of "netstat -rn"):

on limpopo:
 limpopo->vxsim1 127.0.1.1 127.0.1.254 UH 3 0 ipd0
 limpopo->vxsim9 127.0.1.9 147.11.50.3 UGH 0 3
User Guide - Rational Rose RealTime Connexis 299

Chapter 13 Customizing and Porting DCS Libraries
on kaveri:
 kaveri->vxsim9 127.0.1.9 127.0.1.254 UH 3 0 ipd0
 limpopo->vxsim1 127.0.1.1 147.11.50.5 UGH 0 3

(obtained by use of "routeShow"):

on vxsim1:
vxsim1->kaveri (network route)

 147.11.0.0 127.0.1.254 3 1 5 ppp0

vxsim1->vxsim9 (host route)
 127.0.1.9 147.11.50.3 7 0 5 ppp0

on vxsim9:
vxsim9->limpopo (network route)

 147.11.0.0 127.0.1.254 3 1 5 ppp0

vxsim9->vxsim1 (host route)
 127.0.1.1 147.11.50.5 7 0 5 ppp0

Demonstrating the example

To demonstrate the routing table example, send a ping from vxsim1 to
limpopo on the localhost address, from limpopo on 147.11.50.5 to
kaveri, and from to vxsim9:

-> ping "127.0.0.1",1
127.0.0.1 is alive
value = 0 = 0x0
-> ping "147.11.50.5",1
147.11.50.5 is alive
value = 0 = 0x0
-> ping "147.11.50.3",1
147.11.50.3 is alive
value = 0 = 0x0
-> ping "127.0.1.9",1
127.0.1.9 is alive
value = 0 = 0x0

Note: If you experience problems using VXsim on a host, communicating
with another host, contact WindRiver technical support.
300 User Guide - Rational Rose RealTime Connexis

Chapter 14

Using the Transport Integration
Framework

The Rational Connexis Transport Integration Framework (TIF) lets you
add your own proprietary transports or other common transports for
use in Connexis messaging. The TIF is designed to be flexible, allowing
a variety of transports to be integrated. Transports may include
Industry standard transports (UDP/IP, TCP/IP), operating system
specific transports, or your own proprietary transport.

You might want to add your own transports for the following reasons:

� The application requires more real-time predictability than TCP/IP
can provide.

� The application requires more reliability than CDM can provide.

� The application uses an embedded or proprietary protocol.

� TCP/IP is not available on the target system.

TIF lets transport specialists seamlessly integrate transports into
Connexis. TIF is provided as a package of classes that are subclassed
and implemented. The subclasses are packaged into a library and
made available to Connexis-enabled applications. The viewer, locator,
and other Connexis features are fully supported for any transport
integrated into Connexis.
User Guide - Rational Rose RealTime Connexis 301

Chapter 14 Using the Transport Integration Framework
Transport Integration Overview

The following overview identifies the steps in building a Transport
Integration (TI) using the Transport Integration Framework (TIF). The
steps to building a Transport Integration are as follows:

1. Verify that your transport works.

It is import to ensure that your transport works before integrating
it into the DCS using the TIF. It is difficult to test the transport and
integration at the same time.

2. Understand the Transport Integration Framework.

“DCS Architecture” on page 303 describes in detail how the DCS
and the Transport Integration works together to establish
connections and transfer messages between subscribers (SAPs)
and publishers (SPPs).

3. Understand your transport.

This includes the transports properties and how to send and
receive messages over it (see “Understanding your Transport” on
page 307).

4. Implement the transport integration.

Create subclasses and implement the abstract functions of the
following classes:

❑ RTDTransport

❑ RTDTransportAddress

❑ RTDTransportAddressFactory

❑ RTDTransportEndpoint

❑ RTDTransportEndpointFactory

Create a class (or classes) that provides functionality of the
transport.

5. Package the transport integration.

Create a class (or subclasses) that provide the listening
functionality of the transport.

6. Test the use of the integration of the transport under Connexis.
302 User Guide - Rational Rose RealTime Connexis

DCS Architecture
DCS Architecture

The Connexis Transport Integration Framework (TIF) forms the basis
of integration. A Transport Integration (TI) is the actual implementation
of an instance of the TIF. The transports which come with Connexis
(CDM based upon UDP and CRM based upon TCP/IP) have been
integrated using the TIF. Figure 119, “Connexis High-Level Design,” on
page 303, shows how the DCS fits into a DCS-enabled application. The
Locator and Agent, included as part of the DCS, are special
applications that access internal information about connections and
uses of the DCS like a user application. User applications make use of
the DCS when registering and deregistering SAPs and SPPs and when
sending messages between SAPs and SPPs.

The Controller processes the registerSAP, registerSPP, deregisterSAP
and deregisterSPP calls and establishes the virtual circuit between a
SAP and SPP. If necessary a locator is contacted for global
subscriptions and publications.

The transporter is responsible for setting up, auditing, and recovering
connections. It is responsible for routing work requests like binds,
resolves and sends to the appropriate Transport Integration.

The Transport Integration interfaces with the actual transport to
resolve addresses, bind and reset connections, and send or receive
messages.

Figure 119 Connexis High-Level Design
User Guide - Rational Rose RealTime Connexis 303

Chapter 14 Using the Transport Integration Framework
The Table 70, Connexis High-Level Design Chart, identifies what
components of Figure 119 are DCS, Customer or Third-party
components.

Terminology

Throughout this chapter the following terms, defined in Table 71, are
used.

Table 70 Connexis High-Level Design Chart

Connexis
Components

Customer
Components

Third-party
components

locator, TA User Capsules UDP

DCS - Controller TI Custom Integrations TCP/IP

Transporter Custom transports

TI - CDM

TI - CRM

Table 71 Chapter Definitions

Term Definition

Address The location of the component instance.

Endpoint In the context of the Transport Integration
Framework, an endpoint represents a connection
over a transport from one component instance to
another component instance.

Virtual Circuit Represents a logical connection between a
subscriber and a publisher.

Audit Background activity to help monitor the availability
of a transport during periods of inactivity.

Messages Information to exchange between two component
instances.

Audit Messages Messages exchanged between two component
instances in an effort to monitor the endpoint.

Control Messages Messages exchanged between a DCS in different
component instances, regarding a virtual circuit.
304 User Guide - Rational Rose RealTime Connexis

Connection Lifecycle
Connection Lifecycle

When Connexis receives a RegisterSAP request, it resolves the address
and a single endpoint is established from the resolved address. Once
the endpoint is established, it is bound and messages are exchanged
to obtain access to a service (a virtual circuit). Data messages are then
exchanged between the SAP and SPP over the virtual circuit.

Note: Multiple virtual circuits can use the same endpoint and messages
consist of fixed-size control information and data.

Messages sent over the virtual circuit could be Connexis control
messages, Connexis audit messages or SAP/SPP messages. All
messages need to be encoded before they are sent and decoded. The
endpoint is monitored as long as there are established virtual circuits
associated with it. If there is no activity over any of the virtual circuits
the audit activity is triggered. The user is notified of the failure
(rtunbound) of the transport and the recovery (rtbound) of the re-
established connection with the virtual circuit.

Resource cleanup takes place periodically when there are no virtual
circuits making use of an endpoint. In that case the endpoint is
released.

Application Messages Messages exchanged over a virtual circuit (between
a publisher and a subscriber).

Transport Intergration The actual implementation of TIF classes that allow
a transport to be used transparently by a DCS
enabled model.

TIF The set of model interface elements and
documentation that allows transports to be
integrated with the DCS.

Table 71 Chapter Definitions

Term Definition
User Guide - Rational Rose RealTime Connexis 305

Chapter 14 Using the Transport Integration Framework
DCS Threading Model

The diagram below illustrates the DCS threading model (see
Figure 120, Connexis Process View). The significant threads from the
Transport Integration point of view are the Transporter thread and the
pool of Helper threads.

Figure 120 Connexis Process View

If an address received in a registerSAP called is unresolved, a request
to resolve it is queued for a helper thread. For blocking transports that
are integrated into the DCS, the bind, send and reset requests take
place on the helper thread. Only one helper thread at a time invokes
these functions for a connection. If the transport is configured as non-
306 User Guide - Rational Rose RealTime Connexis

Understanding your Transport
blocking, these requests are performed on the thread of the DCS
transporter. The Transport Integration, in turn, may create additional
threads for other processing, such as listening for messages.
Alternatively, the wait and wakeup functions of the DCS transporter
can be overridden to perform the "listening" operation for the
transport. In this case, the work is performed on the thread of the
transporter. User capsules can also be incarnated to be run on the
thread of the transporter. The thread of the transporter can be obtained
using the RTDInitStatus protocol. Take care to ensure none of these
user capsules block. For more information on the DCS threading
model, see “Connexis Customization Reference” on page 261.

Understanding your Transport

When you implement the Transport Integration, you must decide how
the transport is to be configured into DCS. You must have the following
information about your transport before you use the TIF:

� “Determine the Name of your Transport and Protocols” on
page 308.

� “Decide the String Format of the User-specified Address” on
page 308.

� “Decide How to Validate the Address” on page 308.

� “Decide the Transformation of the Address” on page 309

� “Determine the Internal Representation of your Address” on
page 310

� “Decide the Format of the Listening Point Information” on
page 311.

� “Decide if your Transport is Blocking or Non-blocking” on
page 311.

� “Decide the Recommended Address Resolution Configuration” on
page 312.

� “Decide How the Transport will Recover from Transport Failures”
on page 313.

� “Decide How to Audit your Transport” on page 313.

� “Decide the Format of your Messages” on page 314.

� “Decide Strategy for Listening for Messages” on page 315.
User Guide - Rational Rose RealTime Connexis 307

Chapter 14 Using the Transport Integration Framework
Determine the Name of your Transport and Protocols

Typically a transport supports only one protocol and has the same
name as the transport. There is the flexibility to register more than one
protocol with a transport.

Note: Transport names and protocols are case insensitive and should
not have embedded blanks or special characters (":" "/" "," ")" "(") in them.

Example:

The CRM transport supports the crm protocol. The CDM transport
supports the cdm protocol.

Decide the String Format of the User-specified Address

When you register an SAP explicitly, you need to supply the address
where the service can be found. The format of the registerSAP
argument for our discussion purposes looks like the following example:

<port reference>.registerSAP("<protocol>://<address>/<service>");

You should have decided on the supported <protocol> before this point
as described in “Determine the Name of your Transport and Protocols”
on page 308. You now need to decide the format for <address>. It could
be a queue name for an OS messaging service, an object name for a
CORBA object, an IP address or the name of a board.

Example:

For the CRM transport, the address takes the form of the following:

<hostname>:<port> or <ip address>:<port>

For example "crm://alpha:9090" or
"crm://192.033.111.222.44:8980"

Decide How to Validate the Address

When you perform a registerSAP call, the registration string supplied
is validated. If the registration string is invalid, the registerSAP call
fails, allowing you to take the necessary action immediately. In order
to assist in the validation of the registration string, a function to
validate the syntax of the string form of the transport address must be
provided. The better the validation, the better the feedback to the user
at registration time.
308 User Guide - Rational Rose RealTime Connexis

Understanding your Transport
Example:

The CRM validation of an address includes verifying:

� A single address is supplied.

� A host name or IP address is supplied.

� A numeric port number is supplied.

� The port is non-zero.

Decide the Transformation of the Address

The address supplied is in a textual string format. It may require that
all or a portion of the string be transformed into an internal transport-
dependent form. A queue name may need to be transformed into an
internal queue ID. An object name may be transformed into an object
reference after looking it up in a naming service. A host name may be
transformed into an IP address. An IP address and port may be
transformed into a socket.

The address can be transformed into an internal form:

� When an instance of the RTDTransportAddress subclass is created

� At resolve time

� At bind time

The results of the transformation during resolve time should be stored
in the RTDTransportAddress subclass. The results of the
transformation done at bind time should be stored in the
RDTTransportEndpoint subclass.

The address should be transformed at resolve time if any of the
following situations apply:

1. If only part of the address needs to be "looked up" or transformed
(for example resolving a host name), it should be performed at
resolve time. The results of the lookup are cached and can be used
by different addresses. For example: crm://alpha:9090 and
crm://alpha:10002 are 2 different addresses. The host name
"alpha" can be looked up once at resolve time and cached for use
by both addresses.
User Guide - Rational Rose RealTime Connexis 309

Chapter 14 Using the Transport Integration Framework
2. If the transport is non-blocking and transformation is blocking, the
look up should take place during resolve time. The resolve takes
place on a separate thread. If the transport is marked as non-
blocking, the bind takes place on the transporter thread being used
to send or receive other messages.

3. If the different unresolved portions of an address can result in the
same resolved value, consider performing the lookup in the resolve
step. For example, if host names "alpha" and "CnxTest" both
resolve to the same result, it is better to perform the lookup during
resolve time, so that "crm://alpha:9000" and
"crm://CnxTest:9000" would result in the same endpoint being
used.

If the transformation is non-blocking and you never need to re-
transform the address after a transport failure, or an audit failure, the
transformation can take place when the RTDTransportAddress
subclass is created.

If none of the above situations apply, the lookup should be done at bind
time. For example a CORBA object name may be looked up only at bind
time.

Example:

For the CRM transport, if a host name is supplied as opposed to an IP
address, the address is considered unresolved. Only the host name
portion of the address needs to be resolved. Because multiple
representations of an address may turn out to be the same address,
the host name lookup will be done as part of the resolve step as
opposed to the bind step. For example: crm://alpha:9000
crm://mymachine:9000 and crm://192.222.222.22:9000 could
resolve the to the same destination. Therefore the resolve is the best
place to look up the host name so that only one endpoint is available
for the same destination. The IP address will be transformed later to a
socket during bind time.

Determine the Internal Representation of your Address

The address supplied by an application is always in a textual string
format. The transport that is integrated requires an address to be
represented in a completely different form.
310 User Guide - Rational Rose RealTime Connexis

Understanding your Transport
Example:

The internal representation of a CRM address uses the RTinet_address
and RTinet_port classes/typedefs. The class also has a host attribute
type of RTString that is used to hold the unresolved host name. The
socket that is created by the connect is part of the internal
representation of the endpoint.

Decide the Format of the Listening Point Information

Review the -CNXep parameter and decide the format of the listening
point information. -CNXep has the form:

-CNXep=<protocol>:<listeningaddress>

Note: It is the transport protocol that is supplied and not the transport
name. If you chose the same value for both, the distinction is irrelevant.

The transport integration is responsible for validating the listening
point information supplied by a user. The endpoint supplied could be
a complete address, or a portion of an address (such as a port number),
or could be completely optional.

Example:

The CRM transport supports the following endpoint format:

-CNXep=[crm[://host]:port]

where host is a host name or IP address of the component instance's
processor.

CRM supports a full address in the same format as used in the
registration string. It also supports just the specification of a port
number. The IP address is determined at startup to be the primary IP
address of the board. If no address was supplied, the primary IP
address and any free port is used as the listening address.

Decide if your Transport is Blocking or Non-blocking

A transport can be considered a blocking transport if it blocks one of
the following operations: bind, send a message or reset.
User Guide - Rational Rose RealTime Connexis 311

Chapter 14 Using the Transport Integration Framework
If the transport is non-blocking, the message send performed is on the
same thread as the transporter, preventing a context switch. If the
transport is blocking, the message is first encoded by the TI on the
transport thread. The message is then queued for the endpoint by the
transporter. The message is later sent by the TI on the helper thread.

If the transport you are integrating is blocking, you must decide the
stack size and priority of the threads (-CNXthts, -CNXthtp). The users
of the transport decide the number of helper threads (-CNXtht), the size
of the buffer pool (-CNXtbp) which holds the encoded messages until
they are sent, the maximum queued messages (-CNXtoql) and the
maximum queued messages per endpoint (-CNXtepql).

Example:

The CRM transport is blocking.

The CDM transport is non-blocking

Decide the Recommended Address Resolution Configuration

When configuring the transport, information on address resolution is
collected. During the configuration process, you need to validate and
set the address expiry and the retry delay periods. See the description
of RTDProfile for more information on the periods. Also, see the
description of the -CNXtre and -CNXtrre parameters (see “Connexis
Customization Reference” on page 261).

Ask yourself how frequently the result of the address resolution
changes during the life of the process. When the resolve fails, is it
possible, if retried later, to be resolved. If so, what is a reasonable time
period to delay?

Example:

For CRM, the resolve step is a host name lookup. It is possible that
during the life of the process that the network topology can change.
This creates the possibility that a host name may resolve to one
location at one point in time, but resolve later to a new location. The
address expiry period can be non-zero. The CRM protocol may be used
in situations where the network topology is known to never (or very
infrequently) change and the user may want to override the settings on
the command line.
312 User Guide - Rational Rose RealTime Connexis

Understanding your Transport
Decide How the Transport will Recover from Transport Failures

During the configuration of the transport, you need to describe how to
recover from transport failures. An endpoint is considered to have had
a transport failure if:

� A bind is unsuccessful (bind function reports RTDFailure).

� A write is unsuccessful (write function reports
RTDTransportFailure).

� The transport notifies the DCS asynchronously that the transport
has failed.

Once an endpoint has suffered a transport failure, the DCS can
attempt to put the endpoint back into service, or it can wait until the
endpoint is accessible again. You can specify how long to delay after a
bind failure. You may also indicate if a transport failure should trigger
the re-resolution of the destination address of the endpoint (if it was
originally unresolved).

Example:

For the CRM transport, the DCS attempts to put the endpoint back into
service. Addresses should be re-resolved since the network topology
can change.

For the CDM transport, transport failures do not happen. The CDM
transport depends upon the handshake audit to determine when an
endpoint is inaccessible.

Decide How to Audit your Transport

The DCS supports two types of periodic audits, Handshake,
Connection or None. See “Configuring the Number of Virtual Circuits”
on page 271, for details on the nature of the audits.

If the transport being integrated already has the ability to detect
failures when the transport is idle, use this functionality instead of the
DCS audit facilities. When the transport detects a failure for an
endpoint, notify the DCS of the failure through the transportFailure or
transportFailureRecovery functions in the DCS API. The API is
provided to the Transport Integration during startup. In the case of this
transport the periodic audit type would be noAudit.
User Guide - Rational Rose RealTime Connexis 313

Chapter 14 Using the Transport Integration Framework
If the transport being integrated can detect failures when messages are
sent, use the Connection audit. The Connection audit results in
messages being sent to endpoint destinations when the application is
not sending or receiving messages on that endpoint.

If the transport being integrated is unreliable and does not detect
failures when writing or receiving messages, use the Handshake audit.
The Handshake audit sends a message that triggers a response from
the other end. If the response is not received, it indicates that the
transport may have failed. When using the Handshake audit, consider
enabling the Reset Audit as well. Do not use the Handshake audit if the
reply to an audit message is received on a different endpoint than the
originating message.

Example:

The CRM transport uses the Connection audit.

The CDM transport uses the Handshake audit and the Reset audit
unless requested it not be used.

Decide the Format of your Messages

There are two major message classes sent by DCS, Audit messages and
Data messages.

An audit message consists of a header of audit-specific information,
and optional data object and information about the data. Data objects
are sent only in rare circumstances.

The Data messages category includes the DCS control messages and
application data messages. A data message consists of a header
structure of data message-specific information, a signal name, a data
object and information about the data. Some of the data messages sent
require that the address of the sender is known on the receiving side.

Depending on the transport and the deployment processor
architecture, messages sent may need to be encoded/decoded. You
may also have additional information that you want to be exchanged
between component instances. You may also want to encrypt or
compress the messages being sent over the transport.
314 User Guide - Rational Rose RealTime Connexis

Understanding your Transport
Example:

For the CRM transport, a common preface header is shared between
the two message categories. This header contains the size of the
message, version information (for future use), message type and
message priority. The message type identifies what follows these 8
bytes (full word alignment).

If the message is an audit message, a second header follows,
containing the audit header information and an offset in the message
to the encoded data object.

If the message is a data message a second header follows, containing
the data header information and an offset in the message to the
encoded data object. A null terminated string containing the signal
name follows the second header.

The attributes of the header are aligned on the appropriate boundaries.
Prior to sending a message, the short and long attributes in the header
are placed in network byte order. The origin of the message never needs
to be sent since it can be determined from the socket on the receiver's
side.

Decide Strategy for Listening for Messages

In the transport integration you need to implement listening
functionality for your transport. The DCS provides a set of functions to
call when a message has been received by the transport. Listening
functionality can be implemented to run on a thread created by the
Transport Integration or in some cases on the DCS Transporter thread.

Does your transport use a callback type mechanism to notify you of
messages received?

For example you register functions to be called. It calls known object
methods (CORBA object). Your listening routine(s) dissect the message
received and call the appropriate DCS API function with the decoded
information. You would not make use of the custom controller.

Does your transport require that you do a blocking wait until a
message arrives?

For example, do you receive on a socket, do a select on a set of sockets,
wait for a message queue signal, etc.? If so, you require a thread that
can wait on the object. The listening routine dissects the message and
calls the appropriate DCS API function with the decoded information.
User Guide - Rational Rose RealTime Connexis 315

Chapter 14 Using the Transport Integration Framework
You can perform the listen operation on the thread of the transport, if
the cases below apply. Otherwise create your own thread on which to
listen. Ideally you want to listen on the thread of the transport to
reduce the number of context switches.

� Does your transport support listening to multiple endpoints at
once?

For example, receive from a UDP socket, or select on a set of
sockets or wait on a queue of incoming messages.

� Are you are able to wake yourself up to do other processing? For
example, you can send yourself a message from another thread or
signal yourself from another thread.

If you want your transport to listen on the DCS transporter thread, set
useCustomController to true and register a wait routine and a wakeup
routine during configuration.

Note: Note only one transport can be configured to listen on the
transporter's thread since there is only one transporter.

You will need to decide which transport listens on the transporter
thread. This should be based on load and performance requirements.

Does your transport require a separate thread to listen on each
individual endpoint from which messages can arrive. For example,
select type functionality is not available. It is recommended that the
RTDEndpoint subclass manages the creation and shutdown of the
listening threads.

Does your transport require you to poll it to see when a message has
arrived?

If so, you can create a thread that periodically polls to see if a message
has arrived. If the CNXtap period is frequent enough for polling, you
must consider placing the polling activity on the DCS transporter
thread by setting useCustomController to true and register implement
a processing routine that checks for new messages.

Refer to the Rational Rose RealTime documentation on the custom
controller to understand how the functionality runs on the DCS
Transporter thread.
316 User Guide - Rational Rose RealTime Connexis

Integrating your Transport
Example:

The CRM transport uses select to listen on a collection of sockets. Only
one thread is needed to listen for messages. Sending the listener a
short control message wakes it up. The CRM transport offers the
flexibility to listen on the DCS Transporter thread or a separate thread,
allowing a different integrated transport to listen on the Transporter
thread. The endpoint notifies the listener when it starts listening on a
particular socket and when to no longer listen on a particular socket.

Integrating your Transport

This section explains how to integrate a transport into the DCS.

Setting up the Model

Preparation:

� Decide the name of your transport.

� Make sure the transport works.

Steps:

1. Create a new model or use an existing model that has your
transport implementation.

2. Share in the RTDTransportIntegrationClasses logical package and
the RTDTIFComponents component package.

These packages contain the classes and library for the Transport
Integration Framework. To share in these packages see “Adding
Connexis Support to Your Model” on page 83.

3. Create a new package to contain your transport integration.

4. Create the new package in a class diagram and subclasses of the
following Integration classes:

❑ RTDTransportAddressFactory

❑ RTDTransportAddress

❑ RTDTransportEndpointFactory

❑ RTDTransportEndpoint

❑ RTDTransport
User Guide - Rational Rose RealTime Connexis 317

Chapter 14 Using the Transport Integration Framework
Example:

The classes created for the CRM transport are:

� RTDCrmAddressFactory

� RTDCrmAddress

� RTDCrmEndpointFactory

� RTDCrmEndpoint

� RTDCrmTransport

Note: The prefix "RT" for class/capsule names is reserved for Rational
RoseRT. Name your classes appropriately so there are no symbol
conflicts.

Understand the Integrated Transport

Read the section "Understanding Your Transport" and make decisions
on how you want to represent your transport to the DCS.

Implementing the RTDTransportAddressFactory Subclass

To implement the RTDTransport AddressFactory subclass:

1. Review the description of the RTDTransportAddressFactory class.

2. Determine the name of your transport and protocols.

3. Decide the format of the listening point information the user will
supply.

4. Define the implementations of the abstract functions.

a. newTransportAddress(RTDTransportId, const char * const)

b. newTransportAddress(const RTDTransportAddress &)

c. newLocalAddress(const RTDTransportId)

d. releaseTransportAddress(RTDTransportAddress &)

The newTransportAddress and releaseTransportAddress functions
create and release instances of the RTTransportAddress subclass.

The newLocalAddress function creates a RTDTransportAddress
subclass object representing the endpoint on which this process is
listening. The string format of the address (for example, result of the
endpoint() function) is used by the application when publishing SPPs.
It is a good idea to ensure the address supplied is distinct.
318 User Guide - Rational Rose RealTime Connexis

Integrating your Transport
Example:

Typically, the local listening information is supplied by the user in the
-CNXep=<transport protocol>:<listening point information> command
line parameter. This information in turn is supplied to the transport in
the configureTransport call.

In the CRM case, the RTDCrmTransport::startTransport function
processes the -CNXep information supplied by the user and starts the
transport. Once the transport is started, the actual listening point is
known (-CNXep is optional for CRM). The RTDCrmTransport class
makes the listening information available in a public static attribute
(instance of the RTDCrmAddress).
RTDCrmAddressFactory::newLocalAddress returns a copy of this
attribute. This is just one of many possible ways of obtaining access to
the listening point. Choose which works the best for your design.

Implementing the RTDTransportAddress Subclass

To Implement the RTDTransportAddress subclass:

1. Review the description of the RTDTransportAddress class.

2. Decide the string format of the user-specified address.

3. Decide how to validate the address.

4. Decide what is the internal representation of the address of the
transport, if any.

5. Decide the address transformation.

6. Create the necessary attributes/associations needed to contain the
internal representation. You may also want to provide methods for
accessing this information.

7. Define the constructors for the subclass.

The subclass requires 2 constructors, one accepts the transport ID
and a string representation of the address and the other is a copy
constructor.

8. Define the implementations for the abstract functions:

a. unresolvedName

b. resolve

c. setResolved

d. sameResolved
User Guide - Rational Rose RealTime Connexis 319

Chapter 14 Using the Transport Integration Framework
9. Define a function that validates a string representation of the
address.

The definition of the function is as follows:

typedef RTDResult (*RTDAddressValidatorFcn) (const char *
);

It should return RTDSuccess if the address is valid and
RTDFailure if invalid. In cases of failure, it is possible to generate a
trace event explaining the error found if so desired. The validation
should not be blocking since it can be called from the transporter
thread and the thread on which the RTDBase (or subclass) capsule
was incarnated.

Example:

The CRM transport defines the validation function as a static
function on the RTDCrmAddress class.

10. Define the class destructor as required.

Example:

The RTDCrmAddress class does not allocate any memory. The
default destructor generated by Rational Rose RealTime is
sufficient.

11. Assure that the class is sendable.

The C++ TargetRTS generateDescriptor property should be set to
"True." The attributes added to the subclass need to be of types that
can be sent (for example, your internal classes that have the
generateDescriptor property set to true, Rose RealTime classes such as
RTString or primitive data types such as int). You can also write your
own encode/decode functions.

Implementing the RTDTransportEndpointFactory Subclass

To implement the RTDTransportEndpointFactory subclass:

1. Review the description of the RTDTransportEndpointFactory class.

2. Define the implementation of the following abstract operations:

a. newTransportEndpoint

b. releaseTransportEndpoint
320 User Guide - Rational Rose RealTime Connexis

Integrating your Transport
Implementing the RTDTransportEndpoint Subclass

To implement the RTDTransportEndpoint subclass:

1. Review the description of the RTDTransportEndpoint class.

2. Review the description of the RTDConnexisApi class.

3. Decide if your transport is blocking or non-blocking.

4. Decide the format of your messages.

5. Define the constructors for the subclass.

The subclass requires a constructor that accepts the destination
address (RTDTransportAddress subclass), a unique identifier
(RTDConnectionId) and a pointer to the Connexis API.

6. Define the implementations for the following abstract operations:

a. bind

b. reset

c. sendData

d. queueData

e. sendQueueData

f. sendAudit

g. queueAudit

h. sendQueueAudit

i. reset

The bind and reset methods are called by the DCS. The remaining
functions that are called depend upon whether or not the transport
blocks when binding to an endpoint or sending a message.

If the transport can block when binding or sending messages,
provide full implementation for queueData, sendQueueData,
queueAudit, sendQueueAudit and stubs, sendData and sendAudit.

If the transport does not block when binding or sending messages,
provide full implementations for sendData, sendAudit and stubs,
queueData, sendQueueData, queueAudit, and sendQueueAudit.

Example:

For CRM, full implementation has been provided for all the
RTDCrmEndpoint abstract functions. Since the transport is
configured as blocking, only the queueData, sendQueueData,
queueAudit, and sendQueueAudit functions are called when a
message is sent.
User Guide - Rational Rose RealTime Connexis 321

Chapter 14 Using the Transport Integration Framework
For CDM, full implementation has been provided for all the
RTDCdmEndpoint abstract functions. Since the transport is
configured as non-blocking, only the sendData and sendAudit
functions are called when a message is sent.

7. Define the class destructor as required.

The class destructor should not be blocking. The reset function is
called prior to the release of an endpoint. If the cleanup of an
endpoint is blocking, it takes place in the reset function.

Implementing the RTDTransport Subclass

To implement the RTDTransport subclass:

1. Review the description of the RTDTransport class.

2. Review the description of the RTDTIF class.

3. Review the description of the RTDProfile class.

4. Review the description of the RTDConnexisApi class.

5. Decide the format of the listening point information the user
supplies.

6. Decide the format of your messages.

7. Decide the strategy that you will implement to listen on transport
endpoints.

8. Define the constructor RTDTransport subclass.

The constructor of your transport class registers itself with the
DCS. You may want to accept some additional configuration
information in the parameters of the constructor.

Example:

The constructor of the RTDCrmTransport receives a flag indicating
whether or not it should listen on the thread of the transporter or
create its own thread for listening.

9. Create a wrapper class for the RTDTransport subclass.

User models reference this class. This allows them to transparently
register the transport. It should have a single attribute that is a
pointer to the RTDTransport subclass. The dependency should be
a forward reference in the header and an inclusion in the
implementation. The constructor of the class should create a new
instance of the RTDTransport subclass.

10. Define the implementations for the following abstract operations:
322 User Guide - Rational Rose RealTime Connexis

Integrating your Transport
a. configureTransport

b. startTransport

c. cnxDump

d. cnxHelp

e. shutdownTransport

11. Define the listener functionality required by your transport.

Building the Transport Integration

To build the transport integration:

1. Create a C++ Library Component.

The Reference tab contains the package(s) containing the
Transport Integration classes just implemented. It should not
contain any of the classes in the RTDTransportIntegrationClasses
logical package.

Set any other build information specific to your transport (for
example, the inclusion path for your header files of the transport,
libraries the integration depends on, etc.)

See “Connexis Customization Reference” on page 261 for
information on the compiler flags required to enable metrics
collection and tracing.

2. Create a dependency from your C++ Library Component on the
TransportIntegrationFramework component in the
RTDTIFComponents component package.

3. Build your C++ library component.

The header file generated for the wrapper class and the library built
should be placed in a location available to the models using the
transport.

Packaging the Transport Integration

Now that the Transport Integration library has been built you will want
to try using the transport in a the DCS model. You will need to create
some interfaces in order to make use of the library in another RoseRT
application (refer to the "Generating and Sharing Library Interfaces”
chapter in the Rational Rose RealTime, C++ Reference).
User Guide - Rational Rose RealTime Connexis 323

Chapter 14 Using the Transport Integration Framework
Using the Transport Integration in Another Model

To use the transport integration in another model:

1. Share into the other model the logical and component packages
just created (refer to the "Generating and Sharing Library
Interfaces” chapter in the Rational Rose RealTime, C++ Reference).

2. In the capsule that contains the RTDBase capsule (or a subclass
contained in that capsule), create an association with the type of
your RTDTransport wrapper class.

3. On a component diagram, create a dependency from the executable
component on the Transport Integration external library
component.

4. Prepare documentation that describes the addressing format and
any recommended parameter settings.

Testing the Transport Integration

To test the transport integration:

1. Test your transport integration with a simple model.

Example:

Modify an example model that is known to work (BasicTest) with
CDM or CRM to make use of your transport.

2. Test your Transport Integration as much as possible before
including in a complex application. This might include testing in
the following areas:

a. using the locator with your transport as the preferred transport
(modify HelloConnexis)

b. transport failures and subsequent recovery

c. errors in command line arguments, and registration strings

d. heavy load situations

TIF Classes

The following section describes the Transport Integration Framework
classes that are to be subclassed.
324 User Guide - Rational Rose RealTime Connexis

TIF Classes
RTDTransportAddressFactoryThe purpose of the address factory is to
create and release instances of the RTDTransportAddress subclass.
The functions should be re-entrant since addresses may be created
and released by multiple threads. You can use new and delete to create
the addresses, or you might want to use your own memory
management routines to efficiently create and release addresses. The
four operations that must be implemented in the subclass are:

Function

RTDTransportAddress * newTransportAddress(const RTDTransportId &
addrType, const char * const addr)

Description
This function is responsible for constructing an instance of the
RTDTransportAddress subclass from a string representation of an address.
The type supplied is the one that was assigned to the transport at
configuration time. In the event you have more than one registered
transport sharing the same address factory, you will be able to determine
which transport address subclass to create. The address string supplied
will have been validated previously by the address validation function
supplied for the transport. The string representation supplied will include
the protocol.

Example:
The crm address factory RTDCrmAddressFactory uses new to create
instances of RTDCrmTransportAddress. It receives a string of the form
"crm://<host>:<port>" (ie. "crm:myhost:9000" or
"crm:123.111.11.22:9000"). It will supply the ID and addr values to the
RTDCrmAddress constructor. The cdm address factory performs similar
processing.
User Guide - Rational Rose RealTime Connexis 325

Chapter 14 Using the Transport Integration Framework
Function

RTDTransportAddress * newTransportAddress(const
RTDTransportAddress & address)

Description
This function is responsible for constructing a copy of the transport address
instance supplied. The instance supplied will be the transport specific
subclass of RTDTransportAddress. In the event that you have registered
your factory with more than one transport, the class RTDTransportAddress
has a method transportId() which will return the ID of the transport the
address represents.

Example:
The crm address factory RTDCrmAddressFactory uses the operator new
and the RTDCrmAddress copy constructor to construct a copy of the
address supplied. Because the copy constructor of RTDCrmAddress is
used, the cast address must be of type "const RTDCrmAddress &" prior to
invoking it.
The cdm address factory performs similar processing.
326 User Guide - Rational Rose RealTime Connexis

TIF Classes
RTDTransportAddress

The purpose of RTDTransportAddress is to provide a common string
representation of an address for use in the DCS as well as a transport
dependent representation of the address for use by the transport
integration.

Function

RTDTransportAddress * newLocalAddress(const RTDTransportId & type)

Description
This function is responsible for constructing the RTDTransportAddress
subclass that represents the local endpoint address (for example, the
address at which this component instance can be reached at). Essentially
this is the resolved result of the information supplied via the CNXep
parameter.
This address returned is used to determine whether explicit addresses are
local. The string representation of the address returned is used when
publishing services to the locator. The string format of the address (for
example, the result of the endpoint() function) will be used by the
application when publishing SPPs. It is a good idea to ensure the address
supplied is distinct. The address returned is also used when performing
loopback processing.

Example:
The RTDCrmTransport class creates during startup an instance of
RTDCrmAddress that represents the local listening address. The
newLocalAddress function calls newTransportAddress with the local
listening address to obtain a copy. The cdm address factory performs
equivalent processing.

Function

void releaseAddress(RTDTransportAddress * & address)

Description
The DCS transporter will call this function to release the addresses
provided through the new functions above. This allows you to reclaim
storage allocated for the address.

Example:
The RTDCrmTransport class uses delete to release the RTDCrmAddress
instance. It also sets the address pointer to zero for safety. The cdm address
factory performs equivalent processing.
User Guide - Rational Rose RealTime Connexis 327

Chapter 14 Using the Transport Integration Framework
The class is designed to be sendable and the subclass must also be
designed to be sendable. The class will only be sent within the process
in which it was created, not to other processes therefore the context
information for local, resolved does not need to be re-determined after
a send. It is sent in messages only when conveying the results of the
resolve.

The base class address attributes are:

Attribute

RTDTransportId _transportId

Description
This is the ID assigned to the transport when it was registered. It is typically
used internally to lookup the properties of the transport and for reporting
metrics. This should not need to be updated by the subclass.

Attribute

RTString _endpoint

Description
The string representation of the address supplied. The string is what was
supplied during an explicit sap registration with the "dcs:" prefix removed
and the service name (and preceding "/" removed). This should not need to
be updated by the subclass

Attribute

bool _local

Description
Identifies if this address is equivalent to the listening address of the
component instance. If the address matches the address that the transport
is currently listening on, you should set this flag to true. Often the decision
of whether or not an address is local or not can only be made after the
address is resolved.
328 User Guide - Rational Rose RealTime Connexis

TIF Classes
Constructors

The subclass requires two constructors. One accepts the transport ID
and a string representation of the address and the other is a copy
constructor.

When constructing from a string representation, you can assume the
string has been previously validated. The constructor is expected to
construct the RTDTransportAddress base class with the transport ID
and string.

The constructor should then determine if the address is resolved. If the
address is not resolved, _isResolved and _originalAddressWasResolved
flags should be set to false. The DCS transporter will call the resolve
function from a helper thread or call setResolved later. If the address is
already resolved, the _isResolved and _originalAddressWasResolved
flags should be set to true.

Attribute

bool _valid

Description
Identifies if the address is valid or not.

Attribute

bool _isResolved

Description
Identifies if the address requires resolution or not.

Attribute

bool _originalAddressWasResolved

Description
Identifies if the string address from which the object was constructed was
resolved or not. An address may originally be unresolved and then later
become resolved (_isResolved becomes true). Addresses that were originally
unresolved may be re-resolved during transport recovery (depending on the
transports configuration).
User Guide - Rational Rose RealTime Connexis 329

Chapter 14 Using the Transport Integration Framework
If an address is resolved, it can be determined if the resolved address
is local. A local address is an address that is equivalent to the address
at which the current process is listening.

Example:

In the CRM case, the constructor parses the string supplied and
extracts the IP address if present and the port number. If the address
is resolved, it compares this address against the address that
represents the local address (a public static attribute of
RTDCrmTransport) to determine if it matches the listening address of
the process. The _local flag is set accordingly. For example, if the
application was listening at crm://192.123.012.22:9080 and the
address supplied was "crm://192.123.012.22:9000" the address
resolves to the same machine, but not the same port (not the same
process), so _local would be false.

The copy constructor is expected to construct the base class with a
RTDTransportAddress object reference. It should also copy across any
of the subclass's information. In the CRM case, the IP address and port
information are copied across along with the unresolved host name.

Abstract functions requiring an implementation:

Function

const char * unresolvedName()

Description
If an address may be unresolved, this function must return the unresolved
portion of the address. This value is used during comparisons when
searching the cache for a resolved address, and for finding endpoints
waiting for the result of the resolution. If the unresolved name is a
substring of the _endpoint string, you will find it easiest to store the value
in a separate RTString.

Note: RTString is used so that the class can easily be sent.

Example:
For CRM, if _endpoint was "crm://ahost:9000," "ahost" would be the result.
330 User Guide - Rational Rose RealTime Connexis

TIF Classes
Function

RTDResult resolve()

Description
This function should resolve the unresolved portion of the address and
update the internal representation of the address, determine if the resolved
address is local (for example, the listening point of the component instance)
and set the _isResolved flag. The return value indicates success or failure.

This function will be called on a helper thread and its functionality can be
blocking. The resolve can involves looking up a name in a naming service,
looking up an IP address for a host name, etc. The resolve is expected to
only be concerned with the unresolvedName() portion of the address
supplied during construction.

If the unresolved portion of the address can be successfully resolved, the
resolved address should be further examined to see if it is the same address
that the transport is currently listening on and set the _local flag
accordingly. The _isResolved flag should be set to true and RTDSuccess
returned.
If it can not be resolved, the _isResolved and _local flags should be set to
false and RTDFailure returned. In the failure case, it is strongly
recommended that you generate an informative trace event so the users of
your transport can determine that the address was not resolved.

Re-resolution of the address will be performed after a delay depending on
the interest in the address and your configuration (for example, the
function can be called multiple times in both success and failure
situations). Multiple threads will not call the same function on an instance
of the class.

Example:
For CRM, the host name is looked up to determine the IP address. The
sameAddress function is called with the listening point of the transport (a
static attribute of the RTDCrmTransport class) to determine if it is local or
not. It will return RTDSuccess if it can determine the IP address and
RTDFailure if it fails. The IP address is stored in the RTDCrmAddress class.
When resolving the address, it only looks at the host name and ignores the
port.
User Guide - Rational Rose RealTime Connexis 331

Chapter 14 Using the Transport Integration Framework
Function

void setResolved(const RTDTransportAddress& resolvedAddress)

Description
This function is supplied the results of a resolved address. It should update
the internal representation with the results of the resolution. It must set
the _isResolved flag to true. At this time you should also determine if the
address is local, that is it is the address the transport is listening at, and
set the _local flag accordingly.

Example:
For CRM, the results of resolving a host name is the IP address. In this
function the IP address is only copied. The port number is not copied since
it is not part of the information being resolved. The _isResolved flag is also
set to true. It is determined if the address is local or not by calling the
sameResolved function with the listening point. The listening point is a
static attribute of the RTDCrmTransport class.

Function

RTDResult sameResolved(const RTDTransportAddress& rhs)

Description
This function should compare the internal transport specific representation
of the rhs against this objects internal representation, to see if they are the
same. RTDSuccess is to be returned if the address is the same. RTDFailure
is to be returned if the address is different.
If the transport does not have an internal representation of the address and
only uses the endpoint string with which it was created, the function
should return whether or not the two endpoint strings are equivalent (for
example, the result of sameUnresolved(rhs)). The DCS only calls this
function if the rhs is the same transport type as the object.

Example:
In the CRM case the IP address and port numbers are compared to see if
they are the same.
332 User Guide - Rational Rose RealTime Connexis

TIF Classes
RTDTransportEndpointFactory

The purpose of the endpoint factory is to create and release instances
of the RTDTransportEndpoint subclass. The functions should be re-
entrant since midpoints may created and released by multiple threads.
You can use new and delete to create the addresses, or you might want
to use your own memory management routines to efficiently create and
release addresses.

The abstract operations that must be implemented in the subclass are:

Function

RTDTransportEndpoint* newTransportEndpoint(const
RTDTransportAddress &, const RTDConnectionId &, const
RTDConnexisAPI *)

Description
This function is responsible for constructing an instance of the
RTDTransportEndpoint subclass. The transport Address and ConnectionId
are required by the underlying RTDTransportEndpoint subclass.

Example:
For CDM, this function will construct a new instance of RTDCdmEndpoint
off of the heap with the information supplied.
For CRM, the function will construct a new instance of RTDCrmEndpoint
off of the heap with the information supplied. Due to the nature of the CRM
transport, a list of endpoints is maintained. Since multiple threads can
create and release a CRM endpoint, the update of the list is protected by a
mutex.
User Guide - Rational Rose RealTime Connexis 333

Chapter 14 Using the Transport Integration Framework
RTDTransportEndpoint

This class is responsible for the binding and resetting the endpoint. It
is also responsible for sending messages.

If the transport profile indicates that the transport is blocking, the
functions will be run on one of the helper threads. Any of the helper
threads may be calling the functions, but only one helper thread at a
time will call the bind and send functions. If it is a non-blocking
transport, the functions will be run on the thread of the transporter.

There are a number of abstract operations that need to be implemented
for this class. When implementing these operations, you should update
the metrics regarding the messages sent and received. Metrics
regarding failed messages are collected by the DCS. You will also want
to use trace macros to log the encoded data sent. Errors and other
events should also be reported using the trace macros to provide
detailed information to the users of the transport. Information logged
with the trace macros is available in the viewer. See “Connexis
Customization Reference” on page 261, for the compiler options
required for collecting metrics and doing tracing.

Function

void releaseEndpoint(RTDTransportEndpoint *&)

Description
This function is responsible for releasing the storage allocated for the
endpoint.

Example:
For CDM, the endpoint was allocated from the heap and will be deleted. The
pointer supplied is set to 0 for safety sake afterward.
In the CRM case, while the DCS is no longer referencing the endpoint, the
CRM listener may still be referencing it. The listener is notified that the
endpoint is no longer of interest and the deletion request is in a sense
deferred until after the listener is no longer referencing the endpoint. The
pointer supplied is still set to 0 for safety sake.
334 User Guide - Rational Rose RealTime Connexis

TIF Classes
The base class address attributes are:

Constructor

The subclass requires a constructor that accepts the destination
address (RTDTransportAddress subclass), a unique identifier
(RTDConnectionId) and a pointer to the Connexis API. The base class
constructor does not require as an argument the API pointer. You may
want to keep the pointer for ease of access to the API. The transport
address may or may not be resolved at construction time. The DCS will
update the address later if unresolved. It will be resolved before bind
and send functions are called. The DCS will also bind the endpoint
prior to sending the initial message. The connection ID is a unique ID
that is supplied to the endpoint for identification purposes. If there is
a need to asynchronously notify the DCS of failures, this connection ID
must be supplied.

Base Class Attribute

RTDConnectionId cid

Description
Unique identifier for the endpoint. The DCS will supply the unique value to
the endpoint factory.

Base Class Attribute

RTDTransportAddress * destination

Description
The address of the component instance the endpoint is to communicate
with.

Base Class Attribute

bool bound

Description
Indication of whether the endpoint is bound or not. The endpoint subclass
is responsible for maintaining this value.
User Guide - Rational Rose RealTime Connexis 335

Chapter 14 Using the Transport Integration Framework
Abstract functions requiring an implementation are as follows:

Function

RTDResult bind()

Description
This function returns the result of the bind. The bind function will be called
before any messages are to be sent by the endpoint. The bind function is
called just once (independent of the number of virtual circuits using the
endpoint). After a transport failure, it will be called after the reset to put the
endpoint back into service. The bound attribute must be updated to reflect
the results of the bind.

Example:
For the CRM transport it will perform a connect to obtain a connection to
the destination identified by the transport address subclass.

For the CDM transport, the bound flag is set to true. There is no bind work
required for the underlying UDP/IP transport.

Function

void reset()

Description
This function will be called to allow the endpoint to reset itself (unbind).
After a reset, the destination address may be updated with a re-resolved
address, the endpoint may be rebound, or the endpoint may be released.
This function can be blocking if the transport has been configured as
blocking. The releaser (destructor) of the subclass should not be blocking.
336 User Guide - Rational Rose RealTime Connexis

TIF Classes
Function

RTDWriteResult sendData(RTDDataHdr &, const char * signal, void * data,
const RTObject_class * type)

Description
This function will be called if the transport is non-blocking to send a
message. The header information is expected to arrive intact at the
destination. The header will indicate the type of data message (whether the
originating address is required), the preferred encoding for the data and
information about the virtual circuit.

Typical processing for this function involves creating a message and
sending it. You can use the RTDMblk and RTDMemPool classes to make
use of buffers setup through the -CNXtbp parameter. Since the transport is
non-blocking you may want to obtain a single buffer during startup and use
it exclusively. Creating the message will involve placing the information to
be sent in your message layout. To encode the data object to be sent, use
the encode API function. You will want to encode the other information in
the message if you are not operating in a homogenous environment. You
can also encrypt or compress the message at this time.

Just prior to sending the message, you should use the trace macros to log
the data being sent. After the message is successfully sent, you should
update the metrics with the information about the message sent. The write
result returned by the function indicates success, transport failure, or
transport failure/recovery.

When transport failure is returned the subscribers (SAPs) registered for the
destination will become unbound. Once the DCS is able to put the endpoint
back into service (for example, a reset, a successful bind), the DCS will re-
establish the virtual circuit for the subscribers. All publishers (SPPs) that
were bound to the destination will become unbound and available for use
by other subscribers.

Transport failure/recovery means that the send of the message failed, but
the transport has been recovered (for example, fail over). For example, if
your transport address syntax supported alternate destinations, when one
address is determined to have failed, the endpoint could fail over to the next
address. The subscribers and publishers will become unbound as in a
Transport failure situation. The DCS will immediately re-establish the
virtual circuits for the subscribers.
User Guide - Rational Rose RealTime Connexis 337

Chapter 14 Using the Transport Integration Framework
Function

RTDResult queueData(RTDDataHdr &, const char * signal, void * data,
const RTObject_class * type, mblk_t *& queueData, unsigned long &
queueDataSize)

Description
This function will be called if the transport is blocking. It is expected to
prepare information to be queued in preparation to be sent later. This
function is expected to encode at a very minimum the data object into a
mblk. The header, signal, and the queue data are maintained in a queue
until it is time to send the data. The function is called from the transporter
thread so it should not block.
The function should return a pointer to the mblk containing the encoded
data and the size of the information in the mblk. If the message is to be
queued to be sent later (for example, a data object successfully encoded),
then RTDSuccess should be returned. Otherwise RTDFailure should be
returned and the message will be dropped.

Example:
The CRM transport calculates the offset in the message at which to place
the encoded data. It then calls the encode API function to encode the data
object. If there is no data (for example, the application is sending just a
signal, or scalar data) to be sent after the encoding, it returns RTDSuccess.
It will obtain an mblk for the header information when it is time to send the
data (CRM optimizes its use of the buffers). If there is data, then the header
information is placed at the start of the mblk.
338 User Guide - Rational Rose RealTime Connexis

TIF Classes
Function

RTDWriteResult sendQueueData(RTDDataHdr &, const char * signal,
mblk_t * queueData, const unsigned long& queueDataSize)

Description
This function will be called if the transport is blocking to send the queued
data. The function is called from one of the helper threads and may block.
The header information, signal and mblk previously created in the queue
data step are supplied. The result indicates success, transport failure,
transport failure/recovery. The caller of the function will free the mblk
passed as an argument.

You will want to encode the other information in the message if you are not
operating in a homogenous environment. You can also encrypt or compress
the message at this time.

Just prior to sending the message, you should use the trace macros to log
the data being sent. After the message is successfully sent, you should
update the metrics with the information about the message sent. The write
result returned by the function indicates success, transport failure, or
transport failure/recovery.

When transport failure is returned the subscribers (SAPs) registered for the
destination will become unbound. After the DCS is able to put the endpoint
back into service (a reset, a successful bind), the DCS will re-establish the
virtual circuit for the subscribers. All publishers (SPPs) that were bound to
the destination will become unbound and available for use by other
subscribers.

Transport failure/recovery means that the send of the message failed, but
the transport has been recovered (fail over). For example, if your transport
address syntax supported alternate destinations, when one address is
determined to have failed, the endpoint could fail over to the next address.
The subscribers and publishers will become unbound as in a Transport
failure situation. The DCS will immediately re-establish the virtual circuits
for the subscribers.

Example:
The CRM Transport creates the message if an mblk containing the message
is not supplied. If an mblk is supplied the message was prepared in the
queueData function. The message is encoded and then sent. The message is
logged using the trace facilities and the metrics are updated.
User Guide - Rational Rose RealTime Connexis 339

Chapter 14 Using the Transport Integration Framework
Function

RTDWriteResult sendAudit(RTDAuditHdr &, void * data, const
RTObject_class * type)

Description
Similar to the sendData function except it is audit information being sent.
The resolved originating address must be available at the destination.

Function

RTDResult queueAudit(RTDAuditHdr &, void * data, const RTObject_class
* type, mblk_t *& queueData, unsigned long & queueDataSize)

Description
Similar the queueData function except it is audit data that is being
prepared to be queued. In most cases (100% if both ends have the same
release of Connexis) no data is ever sent in an audit message.

Function

RTDWriteResult sendQueueAudit(RTDDataHdr &, mblk_t * queueData,
const unsigned long& queueDataSize)

Description
Similar to the sendQueueData except it is for audit messages. Again the
resolve local address is to be known on the other side.
340 User Guide - Rational Rose RealTime Connexis

TIF Classes
RTDTransport

The primary responsibility of this class is to configure, start and
shutdown the transport. When a transport is registered with the DCS,
a pointer to an instance of this class must be supplied.

Function

RTDResult configureProfile(RTDTransportProfile &)

Description
During the DCS setup, this function will be called prior to starting the
transport to obtain additional configuration information. The information
supplied will be pre-populated with information supplied during
registration and from parameter parsing. You can override the information
provided by parameter parsing and can perform any necessary transport
specific validation of the parameter values. If the function returns a
RTDSuccess, the transport will be started.

Example:
The CRM transport saves the parameter information for later use. It then
fills in the profile received with information about the transport. This
includes creating the factory classes.

Function

 RTDResult startTransport(const RTDConnexisAPI *)

Description
The purpose of this function is to allow the transport to initialize itself. API
supplied describes the interfaces to use to communicate with the DCS. This
function is called from the transporter thread during startup.
The function should return RTDSuccess or RTDFailure. If the RTDSuccess
is returned, the transport becomes available to the application. If it returns
RTDFailure, the transport will not be considered as started and can not be
used by the application. If the DCS was not able to start the transport, it
will not shut it down.

Example:
For CRM, the listening endpoint information is validated and a socket is
created to listen for incoming connections. Depending on how CRM was
configured a separate thread for the listener will be created or it will run on
thetransporter’s thread.
User Guide - Rational Rose RealTime Connexis 341

Chapter 14 Using the Transport Integration Framework
Function

 RTDResult shutdownTransport()

Description
The DCS transporter will call this function during shutdown. The address
and endpoint subclasses will been released prior to calling this function.
You can not call any of the DCS functions at this point. You are expected to
shutdown your transport cleanly and reclaim its resources. This includes
deleting the RTDTransportAddressFactory and
RTDTransportEndpointFactory objects supplied during configuration.

Function

 void cnxDump()

Description
This function will be called during startup if the end user of the application
has used the -CNXdump command line parameter. This allows you to dump
to the log any of the transport specific parameter setting that will be of use
to the end user. It will be called during the DCS startup after configuration
of the transport has taken place. Use the RTDTransport::log function to put
the messages safely to the log.

Function

 void cnxHelp()

Description
This function will be called during startup if the end user of the application
has used the -CNXhelp command line parameter. This allows you to put to
the long any information specific to using your transport. For example, this
would include information on command line parameters that your
transport supports, format of the CNXep parameter if applicable, etc. Use
the RTDTransport::log function to put the messages safely to the log.
342 User Guide - Rational Rose RealTime Connexis

TIF Classes
RTDTIF

Use this class utility to register the transport.

RTDTransportProfile

This class describes the transport to the DCS. It is initialized with
default values and any of the settings that can be overridden by
command line arguments. An instance of this class is provided during
the configuration of the transport. The attributes include:

Function

 RTDResult registerTransport(const char * transportName, int
totalProtocols, char ** protocolList, RTDTransport * transport)

Description
Transports must be registered prior to starting the DCS. That is, prior to
the incarnation of RTDBase or related subclass (RTDBase_Locator,
RTDBase_Agent, RTDBase_Locator_Agent). See the RTDTransportProfile
class description for more information on transportName, totalProtocols
and protocolList. The transport parameter is an instance of the
RTDTransport subclass. During startup, the configure and startup
functions on the transport instance will be called.

Example:
During construction of the RTDCrm class, an instance of the
RTDCrmTransport class is created. The register method on this class is
called to have it register with the DCS. The static method
RTDTIF::registerTransport is called. The user must only create an instance
of the RTDCrm class prior to incarnating RTDBase or a related subclass.

Attribute

char * transportName

Description
The name of the transport supplied during registration

Attribute

int totalProtocols

Description
The number of protocols supported by the transport. This information was
supplied during registration.
User Guide - Rational Rose RealTime Connexis 343

Chapter 14 Using the Transport Integration Framework
Attribute

char * transportProtocols[totalProtocols]

Description
Array of the protocols supported by the transport This information was
supplied during registration.

Attribute

RTDTransportID *transportID

Description

The ID assigned by the DCS to this transport, during the registration
process.

Attribute

RTDTransportEndpointFactory * endpointFactory

Description

An instance of the endpoint factory subclass to be used by the DCS to
create endpoints.

Attribute

RTDTransportAddressFactory * addressFactory

Description
An instance of the address factory subclass to be used by the DCS to create
addresses.

Attribute

int (*RTDAddressValidatorFcn) (const char *) addressValidator

Description
Pointer to an address validation function. This will be called to validate the
address supplied in the registerSAP call.
344 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

RTObject_class * addressTypeDescriptor

Description
Pointer to the type descriptor of the RTDTransportAddress subclass. This is
required so that the address can be sent in messages. You should turn the
Generate Descriptor flag on for the RTDTransportAddress subclass,
Rational Rose RealTime creates a type descriptor with the name in the
format:

RTType_<name of your subclass>

Attribute

RTDResolveConfig addressResolutionConfig

Description
Contains information that governs how addresses should be resolved. It will
be initialized with values supplied by the user on the command line. The
fields contained are:

� addressExpiry (-CNXtre) period in seconds. Basically the length of time
the address can be used in subsequent connect requests before
requiring that it be re-resolved. If zero, the address does not expire. It
will be re-resolved though if the transport recovery configuration
dictates it.

� retryDelay (-CNXtrre) period in msecs. Basically the time (rounded up by
a factor of CNXtap) before the address should be re-resolved in the case
where the address resolution failed. If zero, a request to re-resolve the
address will be queued immediately.
User Guide - Rational Rose RealTime Connexis 345

Chapter 14 Using the Transport Integration Framework
Attribute

RTDTransportRecoveryConfig transportRecoveryConfig

Description
Contains information that describes how to recover from transport failures.
It will be initialize with values supplied by the user on the command line.
The fields contained are:

� bindFailureRetryDelay (-CNXtbrd) in msec. Indicates after a bind fails,
how long to delay before re-attempting to put the connection back in
service (by re-resolving or rebinding).

� resolveAfterTransportFailure (-CNXtraf) indicates after a transport
failure whether the address should be re-resolved. This is applicable if
the address was originally unresolved. If the address is re-resolved, it
will also be rebound irrespective of the rebindAfterTransportFailure
setting.

Attribute

transportNotifiesRecovery

Description
After a transport failure, indicates if the transport will notify of a recovery
(after a re-resolve and re-bind as applicable are performed). This allows
them to implement their own transport auditing if ours is not appropriate. If
true the endpoint remains out of service until transport recovery
notification is received. No messages including audit messages will be sent
on the endpoint. If false then the connection goes back into service after a
successful bind. If false and rebindAfterTransportFailure is also false and
the address does not require re-resolving (originally resolved or
resolveAfterTransportFailure is false) then the connection will go
immediately back into service.

Attribute

RTDTransportAuditType periodicAuditType

Description
The type of audit to be performed on a periodic basis. The types of audits
available are handshakeAudit, connectionAudit, or noAudit (requests no
auditting be done). See the Verifying Connections section in the Engineering
chapter for more information on periodic audits.
346 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

RTDHandshakeAuditConfig handshakeAuditConfig

Description
Configuration for the handshake audit. It is ignored if the periodic audit
type is not handshakeAudit. The configuration includes:

� auditISGranularity (-CNXtcapi) Used to determine how many CNXtap
periods constitute an audit period when an endpoint is in service.

� auditOOSGranularity (-CNXtcapo) Used to calculate how many CNXtap
periods constitute an audit period when an endpoint is out of service.

� auditsPassedForIS (-CNXthcai) Number of successful handshakes
needed for an out of service endpoint to go back into service.

� auditsPassedForOOS (-CNXthcao) Number of consecutive failed
handshakes (periods in which an I Am Alive response was not received)
which will trigger an endpoint to transition out of service.

� auditsFailedForReresolve (-CNXtrhaf) Number of consecutive failed
handshakes after which the destination address of the endpoint should
be re-resolved. If the destination address of the endpoint was originally
resolved, this has no effect.

� YANRxForceOOS Indicates if a YAN (You Are Not responsive) audit
message should transition the endpoint out of service. This is typically
set to true.

� YANTxEnabled Indicates if a YAN (You Are Not responsive) audit
message should be sent when an endpoint transitions out of service.
This is typically set to true.

� piggyBackEnabled - Indicates if user messages should be counted as
activity during an audit period. For efficiency purposes this is typically
on.
User Guide - Rational Rose RealTime Connexis 347

Chapter 14 Using the Transport Integration Framework
Attribute

RTDConnectionAuditConfig connectionAuditConfig

Description
Configuration for the connection audit. It is ignored if the periodic audit
type is not connectionAudit.
The configuration includes:

� auditISGranularity (-CNXtcapi) - Determines how many CNXtap periods
constitute an audit period when an endpoint is in service.

� piggyBackEnabled - Indicates if user messages should be counted as
activity during an audit period. For efficiency purposes this is typically
on.

Attribute

bool useCustomController

Description
Identifies whether the transport integration would like to use a custom
controller. If true, the transport can specify wait and wakeup functions for
the DCS Transporter's peer controller. Using a custom controller allows the
transport integration to perform listening operations on the same thread as
the DCS Transporter thus avoiding a context switch on incoming messages.
Since there is one Transporter capsule (and thread), only one set custom
controller functions can be specified (over all the transports). By default,
useCustomController is true if no other configured transport has indicated
it is using a custom controller. Transports are configured sequentially in
the same order as they are registered. See the Rational Rose RealTime
documentation for further information on Peer Controllers and Custom
Controllers.
348 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

RTDResetAuditConfig resetAuditConfig

Description
Configuration of the reset audit. See the Verifying Connections section in
the Engineering chapter for more information on the reset audit. The
configuration includes:

� enableResetAudit (-CNXtrae) identifies if the reset audit is to be
performed. resolveAfterResetDetected indicates if the address should be
resolved again before placing the connection back in service after a
reset. The address will only be re-resolved if it was originally unresolved
when specified in the registration string. If the address is re-resolved, it
will be rebound afterwards.

� rebindAfterResetDetected identifies if a bind should take place before
putting the connection back into service.

Attribute

bool blockingTransport

Description
Identifies if transport blocks on binds or sending messages. This
determines if the bind/send calls should be performed from the
transporter's thread or by the pool of helper threads.

Attribute

void (*RTDCustomControllerFcn) () customControllerWaitFunction

Description
Wait function to used if using a customController.

Attribute

void (*RTDCustomControllerFcn) () customControllerWakeupFunction

Description
Wakeup function to be used if using a customController.
User Guide - Rational Rose RealTime Connexis 349

Chapter 14 Using the Transport Integration Framework
RTDConnexisAPI

An instance of this class is filled in by the DCS as part of the transport
registration process. A pointer to the instance is supplied to the
transport at initialization time and each time an instance of the
RTDTransportEndpoint subclass is created. It contains the DCS
interfaces available for use by the transport.

Attribute

void (*RTDCustomControllerFcn) () customControllerProcessFunction

Description
Process function to be used if using a customController.

Attribute

RTDTransport * transport

Description
Subclass of the RTDTransport class that will be called to configure, start,
shutdown the transport. This has been set based on the information
supplied during registration.

Attribute

RTDTransportParameters parameters

Description
Contains current parameter settings for configuration information that may
be of interest to the transport. The parameters settings supplied are:

� RTString endpoint - (-CNXep)

� long maxMsgSize - (-CNXtmts)

� short firstMsgSize - (-CNXtfms)

� int threadPriority - (-CNXtp)

Attribute

RTDTransportId transportId

Description
ID assigned to the transport. To be used when reporting metrics.
350 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

RTDResult (*RTDRegisterEndpointFcn) (RTDTransportEndpoint *)
registerEndpoint

Description
Allows the transport integration to register a endpoint created with the DCS
Transporter. When there is no further interest in the endpoint, it will be
released by the transporter through the transport endpoint factory for the
transport.

Example:
The CRM transport may receive connect requests from other processes.
When the connection is accepted, a socket is created. The socket
information is placed in an endpoint representing the other destination and
registered with the DCS transporter.
The CDM transport does not make use of this function. Initial messages
from other component instances are passed like any other message to the
DCS transporter. The first time the transporter sends a message to the
originating destination, an endpoint will be created for the destination
address via the address factory for the transport.

Attribute

RTDResult (* RTDDataMsgReceiveFcn) (const RTDMessageStatus status,
const RTDDataHdr &, const char * signal, void ** data, const
RTObject_class * type) dataMsgReceive

Description
When a RTDDataMsg message is received, the Transport Integration should
call this function supplying the data message. It will need to extract the
information from the message and decode the data object sent. If the
decode failed (unknown encoding, etc. It can be conveyed in status). The
other information is equivalent to what was passed on the sendData or
queueData call. The caller of this function is responsible for releasing the
storage for status, header and signal only (not the data and not the type).
User Guide - Rational Rose RealTime Connexis 351

Chapter 14 Using the Transport Integration Framework
Attribute

RTDResult (* RTDDataWithSenderMsgReceiveFcn) (const
RTDMessageStatus status, const RTDDataHdr &, const char * signal, void
** data, const RTObject_class * type, RTDTransportAddress *)
dataWithSenderMsgReceive

Description
When a RTDDataWithSenderMsg message is received, the Transport
Integration should call this function or the dataWithSenderCidMsgReceive
function supplying the data message along with the resolved address of the
sender. The Transport Integration will need to extract the information from
the message and decode the data object sent. If the decode failed (unknown
encoding, etc. it can be conveyed in status). The other information is
equivalent to what was passed on the sendData or queueData call. The
caller of this function is responsible for releasing the storage for status,
header, signal and transport address (not the data and not the type).

Attribute

RTDResult (* RTDDataWithSenderCidMsgReceiveFcn) (const
RTDMessageStatus status, const RTDDataHdr &, const char * signal, void
** data, const RTObject_class * type, RTDTransportAddress *, const
RTDConnectionId &) dataWithSenderCidMsgReceive

Description
When a RTDDataWithSenderMsg message is received, the Transport
Integration should call this function or the dataWithSenderMsgReceive
function supplying the data message along with the resolved address of the
sender and the connection ID of the endpoint the message was received on.
The Transport Integration will need to extract the information from the
message and decode the data object sent. If the decode failed (unknown
encoding, etc. it can be conveyed in status). The other information is
equivalent to what was passed on the sendData or queueData call. The
caller of this function is responsible for releasing the storage for status,
header, signal, transport address and connection ID (not the data and not
the type).
352 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

RTDResult (* auditMsgReceiveFcn) (const RTDMessageStatus, const
RTDAuditHdr &, void **, const RTObject_class *, RTDTransportAddress *)
auditMsgReceive

Description
When an audit message is received, the transport should call this function
(or the auditWithCidMsgReceive function) supplying the audit message and
the resolved address of the sender. The Transport Integration will need to
extract the information from the message and decode the data object sent.
If the decode failed (unknown encoding, etc. it can be conveyed in status).
The other information is equivalent to what was passed on the sendAudit or
queueAudit call. The caller of this function is responsible for releasing the
storage for status, header and transport address not the data and not the
type).

Attribute

RTDResult (* auditWithCidMsgReceiveFcn) (const RTDMessageStatus,
const RTDAuditHdr &, void **, const RTObject_class *,
RTDTransportAddress *, const RTDConnectionId &)
auditWithCidMsgReceive

Description
When an audit message is received, the transport should call this function
(or the auditMsgReceive function) supplying the audit message, the resolved
address of the sender and the connection ID of the endpoint on which the
message was received. The Transport Integration will need to extract the
information from the message and decode the data object sent. If the
decode failed (unknown encoding, etc. it can be conveyed in status). The
other information is equivalent to what was passed on the sendAudit or
queueAudit call. The caller of this function is responsible for releasing the
storage for status, header and transport address and connection ID (not the
data and not the type).
User Guide - Rational Rose RealTime Connexis 353

Chapter 14 Using the Transport Integration Framework
Attribute

RTDResult (* encodeFcn) (void * unencodedData, const RTObject_class *
dataType, const unsigned char preferredEncoding, unsigned char &
encodingUsed, mblk_t *& mblockOfEncodedData, const unsigned long
offset, unsigned long & encodedDataSize, unsigned long & dataVersion,
const unsigned long firstMsgSize, const unsigned long maxEncodedSize)
encode

Description
This function will encode the "unencodedData" data object of type
"dataType" using the "preferredEncoding". It will return the actual encoding
used in "encodingUsed". This "encodingUsed" information should be
provided in the message sent (we suggest you store the value back in the
header). It will also supply the "dataVersion" (sometimes used to store other
information). This information should be provided in the message sent (we
suggest you store the value back in the header). You may supply a mblk to
encode the data into, or have the encode routine find an appropriately sized
mblk. The encoding will return "mblockOfEncodedData" the mblk in which
the data was encoded along with "encodedDataSize" the size of the encoded
data. "offset" dictates where in the buffer the data should be encoded. This
allows you to reserve room in the mblk for your message header
information. The firstMsgSize and maxEncodedSize identify the initial
buffer size to obtain and the maximum encoded size allowed.
If you use the encode function to encode the data, you must use the decode
function to later decode it (even if the encodedDataSize is zero).

Attribute

RTDMessageStatus (* decodeFcn) (const unsigned char dataFormat,
unsigned char * encodedData, const unsigned long encodedDataSize, const
unsigned long dataVersion, void** decodedData, const RTObject_class **
decodedDataType) decode

Description
This function will decode the "encodedData" data that has been encoded
using "dataFormat" encoding. "dataFormat" corresponds to the
"encodingUsed" value returned by the encode function. "encodedDataSize"
identifies the size of the data. Decode returns "decodedData" (pointer to
data object) and "decodedDataType" (type of object). The return value
indicates the success of decoding the message. It should be passed to the
DCS when supplying the message received.
354 User Guide - Rational Rose RealTime Connexis

TIF Classes
Attribute

void (* RTDTransportNotifyFcn) (const RTDConnectionId &)
transportFailure

Description
This function should be used by the Transport Integration to report
asynchronously a transport failure.

Note: The failures that occur during sends should not use this function. The
return code of the send function reports the failure. The connection ID
supplied identifies the endpoint which failed.

Attribute

void (* RTDTransportNotifyFcn) (const RTDConnectionId &)
transportFailureRecovery

Description
This function should be used by the Transport Integration to report
asynchronously a transport failure and subsequent recovery. Note that
failures and recoveries that occur during sends should not use this
function. The send function's return code reports the failure and recovery.
The purpose is to report the transport failed, but it has been re-established
however there is no guarantee that it is with the same process. The
subscribers (SAPs) and publishers (SPPs) will be unbound. The DCS will re-
establish the virtual circuits for the subscribers.

Attribute

void (* RTDTransportNotifyFcn) (const RTDConnectionId &)
transportRecovery

Description
This function should be used by the Transport Integration to report
asynchronously transport recovery. This function should only be used if the
Transport Integration has been configured with "transportNotifiesRecovery"
as true. The DCS will mark the endpoint as back in service and will re-
establish the virtual circuits for the subscribers.
User Guide - Rational Rose RealTime Connexis 355

Chapter 14 Using the Transport Integration Framework
Attribute

void (* RTDNotifyIncompatibleFcn) (const RTDTransportAddress *)
notifyIncompatibleRequest

Description
This function should be used by Transport Integration to send notification
to the sender that it did not understand the message received (incompatible
Transport Integration message formats). The caller of the function is
responsible for releasing the address. The virtual circuit will be taken out of
service.
356 User Guide - Rational Rose RealTime Connexis

Appendix A

Comparison of TCP/IP and UDP/IP

Overview

TCP/IP and UDP/IP are socket based IPC protocols. CRM is based on
TCP/IP and CDM is based on UDP/IP. CRM and CDM reflect the
properties of the underlying transports. Conceptually speaking, socket
based IPC provides an interface similar to that of file I/O. Initially, a
system call is used to create a socket. Internally, each process
maintains a descriptor table, and whenever a socket is created,
internal data structures are created and associated with the
descriptor. The descriptor can then be used to manipulate the
associated socket, just as one would use the file descriptor for
performing file I/O. This hides the complexity of the inter-process
communication by providing a very simple and familiar interface.

Characteristics of Socket Types

Both TCP and UDP have their advantages and disadvantages, and one
or the other may be more suitable to a specific application. The main
characteristics of the socket types are discussed below:

� Transmission Control Protocol (TCP):

TCP uses IP, which provides the packet delivery services. TCP has
the following characteristics:

❑ Connection-oriented

❑ Reliable

❑ Flow-controlled
User Guide - Rational Rose RealTime Connexis 357

Appendix A Comparison of TCP/IP and UDP/IP
� User Datagram Protocol (UDP):

UDP is also implemented on top of IP, and exhibits the following
characteristics:

❑ Connectionless

❑ Unreliable (i.e. no guarantees regarding delivery)

Difference Between UDP and TCP

The main difference between UDP and TCP from an application
perspective is that TCP/IP is connection-oriented and reliable while
UDP is connectionless and unreliable. The fact that TCP/IP is
connection-oriented makes it impractical when you are dealing with a
large number of connections.

For example assume that you were designing an IPC mechanism that
was being used to provide communication between 100 nodes on a
network. Further assume that each of these nodes needed to talk with
every other node. This would result in a grand total of 4950
connections, each with a socket at both ends of the connection, for a
total of 9900 sockets. Each socket requires an input and output buffer.
Typical sizes for send and receive buffers for TCP/IP implementations
range between 2K and 16K. These buffer sizes are configurable, but
this would result in a memory usage across the entire system of:

� 2K x 2 buffers x 99 sockets per node x 100 = 40M (for the 2K
buffer)

� 16K x 2 buffers x 99 sockets per node x 100 = 317M (for the 16K
buffer)

This would result in per node memory usage of approximately 400K to
3M per node. This may be unacceptable for some embedded
applications.

If UDP were used in this case these memory issues would not exist.
With UDP, there is no acknowledgment of received packets. This
usually means that you have to build the error handling and reliability
specific code into the application.
358 User Guide - Rational Rose RealTime Connexis

Difference Between UDP and TCP
There are also many cases where the error rate of the UDP connection
is so low that the unreliable nature of UDP is not an issue. For
example, if the network was operating over a backplane, it is quite
common for the bus error rate to be less than the software error rate.
Other examples of situations where UDP may be required (or
preferable) to TCP/IP are:

� UDP must be used if the application uses broadcasting or
multicasting of data packets.

� There are also some implementations of TCP that are very slow in
comparison to UDP.
User Guide - Rational Rose RealTime Connexis 359

 Index
A
-a 27
adding

DCS Layer Notification 63
Address

definition 304
internal representation 310
transformation 309
user-specified 308
validation 308

Application layer 267
application layer (Connexis) 265
application layers

Connexis 13
Application Messages

definition 305
Audit

definition 304
Audit Messages

definition 304

B
Backus-Naur Form Grammar 245
binding failures 222
bindingNotification 113
User Guide - Rational Rose RealTime Connexis

bindingNotificationRequested 113
Bound Ports 227
broadcast

sends 132
buffer

configuration 266
count sizes 8

buffer configuration 266

C
C++ library

building library 297
C++ Library Component

configuring settings 294
creating 293

capsule
configuring for Connexis 85
initializing for Connexis 92

CDM 11, 87
CDM options 285
CDR

configuring encode/decode function-
ality 296

Circuit Binding Failures 222
361

Index
CNXep
when to supply 252

CNXtepql Exceeded 224
CNXtiql Exceeded 224
CNXtoql Exceeded 224
command line options

about 247
CNXagent_auto_start 288
CNXagent_data_block_size 288
CNXagent_num_data_blocks 288
CNXagent_thread_priority 265, 288
CNXagent_trace_buffer_size 288
CNXagent_truncate_user_data 288
CNXcdm_max_rx_size 270, 282,

285
CNXcdm_max_tx_size 271, 282
CNXcdm_udp_rx_size 286
CNXcdm_udp_tx_size 286
CNXdcs_audit_delay 277
CNXdcs_audit_enabled 277, 283
CNXdcs_audit_interval 277
CNXdcs_cdm_retry_delay 277
CNXdcs_locator_retry_delay 278
CNXdump 275
CNXendpoint 125, 154, 282
CNXhelp 275
CNXlocator_audit_delay 146, 287
CNXlocator_audits_oos 146, 287
CNXlocator_backup 145, 147, 286
CNXlocator_backup_endpoint 146,

148, 149, 286
CNXlocator_preferred_transport

146, 287
CNXlocator_primary 139, 145, 147,

148, 286
362

CNXlocator_primary_endpoint 126,
139, 146, 147, 286

CNXlocator_retry_delay 146, 287
CNXnobanner 276
CNXtran_audit_period 281, 284
CNXtran_buffer_pool 269, 281, 282
CNXtran_cdm_audit_throttle 281
CNXtran_cdm_conn_audit_period

283, 284
CNXtran_cdm_conn_audits_is 283
CNXtran_cdm_conn_audits_oos 283
CNXtran_default_encoding 280
CNXtran_endpoint_queue_limit 280
CNXtran_first_msg_size 271, 282
CNXtran_helper_thread_priority

265, 280
CNXtran_helper_threads 266, 280
CNXtran_log_bad_msgs 278
CNXtran_max_msg_size 282
CNXtran_orb_conn_audit_period

284
CNXtran_out_queue_limit 268, 280
CNXtran_reset_audit_enabled 283
CNXtran_thread_priority 265, 279,

285
CNXunique_id 154, 166, 168, 178,

275
command line options (Connexis) 250
compiler version

updating 289
component

configuring for Connexis 90
component instance 56, 57

adding 177
changing properties 180
User Guide - Rational Rose RealTime Connexis

Index
using CDM and CRM Endpoints 249
using CDM Endpoint 248
with CDM and CRM 250
with fixed endpoints 247

Component Instance defaults 159
Configuration and Transports Settings 87
configuring

component for Connexis 90
full Solaris simulator with network-

ing 298
conjugation names 42
Connect Failures Received 227
Connect Failures Sent 227
connect_retries 117
connecting

wired ports 15
Connection audit 273
Connection Lifecycle 305
connection patterns (Connexis) 108
connections

explicit endpoint 124
explicit endpoint (Connexis) 7
local 119, 126
local (Connexis) 7
Locator 125
Locator (Connexis) 8

Connexis
about 5
adding support for 59, 83
application layers 13
automatic versus Application regis-

tration 113
BasicTest Model 21
buffer usage 267, 268, 270
User Guide - Rational Rose RealTime Connexis

Client/Server pattern 108
command line options 261, 274
components 83, 85, 93
configuring a component 90
configuring capsules 85
connection options 118
connection patterns 108
converting models 99
create packages for a model 35
customization reference 261
datagram messaging 271

definition 11
DCS performance model 25
definitions 11
Development Approach 82
Enabled Components 91
engineering rules 261, 262
errors 255
fault-tolerance 9
initialization rules 93, 98
initializing capsule for 92
key benefits 5, 6, 7, 8
local connections 119
location transparency 7
locator service 17
messages 255
name resolution 118
overview 14
peer to peer pattern 109
ports 14
process view 263, 264, 274
reliability 9
support for distributed applications 9
TCP/IP 357
363

Index
terminology 11
tutorial 31
UPD/IP 357
using 20
warnings 255

Connexis Datagram Messaging 11, 87
Connexis High-Level Design 303
Connexis Locator Service 12
Connexis Reliable Messaging 11, 87
Connexis Viewer 9
constructors (Connexis) 329
contacting Rational technical publica-

tions iv
contacting Rational technical support iv
Control Messages

definition 304
Controller 186
Controller Audit 188
creating

New TargetRTS Library 291
CRM 11, 87
-crm 26
CUID 160
Cygnus 2.7.2-960126 DCS Port 298

D
Datagram Messaging 187
DCS 11, 15, 16, 68, 88, 112, 123, 127,

274
Agent 303
building the library 297
common customizations 289
creating target specific header files

292
definition 11
364

loadiing DCS model 293
Locator 303
Porting to a New Target Configura-

tion 289
porting to a new target configuration

290
testing the port 297
Threading Model 306
Transporter configuration settings

278
DCS and transport Layer 265
DCS Architecture 303
DCS command line options 277
DCS Configuration 187
DCS Interfaces

sharing 84
sharing into model 84

DCS layer 268
DCS libraries 289

building minimal configuration 289
customizing 289
porting 289

DCS library 289
changing compilation flags 289
enabling metrics 238

DCS Library Configuration 296
DCS library port

testing 297
DCS options 277
DCS Performance Model 25
DCS registration 245
DCS Registrations

string grammar 245
DCS threading model 306
DCS Tracing Filters 186
DCS with Locator 88
User Guide - Rational Rose RealTime Connexis

Index
DCS with Target Agent 88
DCS with Target Agent and Locator 88
defer

use of 133
Defers 133
deregisterSPP 112
Distributed Connection Service 11

see DCS 16
distributed Rose RealTime application

289
create 289

DNS 11
documentation feedback iv
Domain Name System 11
duplex locator service 11

E
Encode Buffer Unavailable 223
Encoding Exceeds Buffer Size 223
Endpoint

definition 304
endpoint 11, 82, 110, 118, 124

command line options 247
defined for transport integration 304
definition 11

error reporting RTDErrorType 104
errors

command line paramters 257
initialization errors 257
parameter errors 257
User Guide - Rational Rose RealTime Connexis

F
Fixed Initialization Order 98

G
getRegisteredName 113

H
Handshake audit 272

I
ILS 12, 112, 119, 123, 127

definition 12
Interaction Diagrams 202

generating 202
Internal Layer Service 12

see ILS
Inter-Process Communication 12
invoke 134

use of 132
Invokes

use of 132
IPC 5, 357

definition 12
isRegistered 112

L
-l 26
Load-sharing of Publishers 138
Locator 12, 187
Locator Audit 188
Locator Dynamics 140
365

Index
Locator Failure 142
Locator Functionality 87
Locator options 286
Locator Service 8, 9, 31, 68, 82, 88, 110,

118, 123, 124, 126, 127, 135, 136,
138, 140, 141, 142, 144, 145, 147,
149, 150

about 7, 17
adding support for 136
back-up locator 17, 135
command line options 247
configuration 145, 147, 274, 286
definition 12
failure 142
parameter examples 149
primary locator 9, 126
rank 11, 118, 137
usage scenarios 140, 144, 145

locator service 17
using 17

locator_rank 117
locator_transport 117

M
message

decoding 7, 191, 193
encoding 7, 191, 193, 280

Messages
definition 304

messages
format 314
initialization messages 255
listening strategy 315

Metrics
Connexis Viewer 243
366

metrics
processing 239
subscribitng to service 238

Metrics Collection
displaying 207
saving 234
starting 208
stopping 234

Metrics Data
obtaining 237

Metrics port
adding 238

metrics port 238
Metrics Service 237
Metrics Support 154
Metrics Window

Application Errors Information 228
Application Incompatibility Informa-

tion 232
Audits Information 219
DCS Errors Information 225
Detailed Information 214
Engineering Information 221
Messages 216
Summary Metrics Collection 210
using 208

minimal DCS Library Configuration
creating 296

Models
HelloWorld 18
Quick start 31

models
converting connexis models 99

multiple publishers 131
User Guide - Rational Rose RealTime Connexis

Index
N
-n 26
Name Resolution 118
Name Service

creating 150
notification 10, 12, 62, 93, 113, 121

definition 12
rtBound 10, 62, 66, 93, 133
rtUnbound 10, 133
turning on 61, 62
use of 133

O
Object Information column 167
Operation Queue 268, 280

P
package

rationale for creating 37
sharing external 83

packages
removing shared 85

patterns
Client/Server (Connexis) 108
Peer to Peer 109

port
adding a metrics port 238
API 112, 115

bindingNotification() 113
bindingNotificationRequested()

113
deregisterSAP() 112
deregisterSPP() 112, 137
getRegisteredName() 113
isRegistered() 112
User Guide - Rational Rose RealTime Connexis

registerSAP() 68, 93, 112, 115,
118, 125, 126, 137, 138,
139, 141

registerSPP() 68, 69, 112, 115,
118, 124, 137, 138, 139,
141

Binding Failures 227
publisher 10, 118, 124, 125, 126, 127,

137, 139, 141
Reference Trace 188
subscriber 93, 110, 112, 118, 124,

126, 127, 136, 137, 139, 141
unwired end port

definition 13
wired end port 14

definition 13
ports 298

ranking published 137
replicated publisher ports 131

Preferences 159
select Session defaults 159

processor 7, 10, 13, 124
adding 175
changing properties 176
creating 56
removing 177

Protocol Messages Trace option 189
Publication 136
published ports

ranking 137
publishers

fully subscribed 141
load sharing 138
multiple 131
367

Index
Q
Quick build 57

R
-r 26
race condition

locator 144
Ranking Published Ports 137
Rational technical publications

contacting iv
Rational technical support

contacting iv
reference tract 188
registerSAP 112
registerSPP 112
registration 15, 17, 31, 67, 68

application 93, 113, 114, 115, 123
automatic 93, 109, 113
parameters 115, 116, 137

example 118
locator_rank 117, 118, 137
locator_transport 117, 118, 139

Publisher Registered with the DCS
128

Publisher Registered with the ILS
127

Publisher Registered with the Locator
130

string 7, 16, 68, 82, 110, 123, 124,
126, 127, 138

string grammar 245
summary 127
unwired port 110, 111

removing
Shared Packages 85
368

Replicated Publisher Ports 131
Reset audit 273
routing tables 299
rtdAgentActive (out signal) 94
rtdAgentActiveReply (in signal) 95
rtdBackup Endpoinp (out signal) 94
RTDBase 263
RTDBase_Agent 88, 263

Viewer requirements 153
RTDBase_Locator 69, 88, 126, 127, 136,

263
RTDBase_Locator_Agent 126, 136, 263

Viewer requirements 153
rtdCDMport (out signal) 94
rtdCDMportReply (in signal) 95
RTDConnexisAPI 350
rtdDCSrunning (out signal) 94
rtdDCSrunningReply (in signal) 95
RTDErrorType Error Reporting 104
RTDInitStatus protocol (Connexis) 93
RTDInterface 20
rtdLocator Available (out signal) 94
rtdLocatorAvailable Reply (in signal) 96
RTDMetrics In Signals 240
RTDMetrics Out Signals 239
rtdPrimary Endpoint (out signal) 94
rtdPrimaryEndpoint Reply (in signal) 97
RTDTIF 343
RTDTransport 341
rtdTransport Controller (out signal) 94
RTDTransport subclass

implementing 322
RTDTransportAddress 327
RTDTransportAddress subclass

implementing 319
User Guide - Rational Rose RealTime Connexis

Index
RTDTransportAddressFactory subclass
implementing 318

rtdTransportControllerReply (in signal)
97

RTDTransportEndpoint 334
RTDTransportEndpoint subclass

implementing 321
RTDTransportEndpointFactory 333
RTDTransportEndpointFactory subclass

implementing 320
RTDTransportProfile 343
rtdVClimit (out signal) 94
rtdVClimitReply (in signal) 97
RTProtocol interface 112

S
-s 26
SAP 12
send

broadcast sends 132
data (Connexis) 134
data classes by value 134

sending
data 134
Data Classes by Value 134

Service Access Point 12
Service Provisioning Point 12
Session defaults 159
signal names 42
simplex locator service 12
SimSo 298
Solaris simulator 298
SPP 12
Subscriber and Publisher Registrations

229
User Guide - Rational Rose RealTime Connexis

Subscriber Losing Connection to a Pub-
lisher 142

Subscription 137
Subscriptions

queueing 125

T
tagged-values 12
Target Agent 8, 88, 136, 188

Viewer requirements 153
Target Observability 9, 152
Target RSL 12
Target Run-time Service Libraries

see Target RSL
Target Run-time System Libraries 12
TCP 12, 357
TCP/IP 12, 357
thread

configuration (Connexis) 262
threads

configuration 262
DCSAndLocator 263
default number of (Connexis) 264
helper 118

priority 265
main 98, 265
TargetAgent

priority 265
TargetRSLDebug 265
timer 265
transport 265

priority 265
TIF 13, 301

definition 305
369

Index
TIF Classes 324
RTDConnexisAPI 350
RTDTIF 343
RTDTransport 341
RTDTransportAddress 327
RTDTransportAddressFactory 325
RTDTransportEndpoint 334
RTDTransportEndpointFactory 333

Tools Menu 159
TORNADO 2.0 298
trace

define a 199
generating interaction diagrams from

output files 202
location settings 190
port reference 188
show data 197
virtual circuit 192

trace filters 185
trace group

Network Data in 191, 193
Network Data out 191, 193
User Data in 190, 193
User Data out 191, 193

trace levels
component instance

advanced 182
basic 182
disabled 182
operational 182

port reference
activity 192
disabled 192
signal 192
signal and data 192
370

virtual circuit
activity 194
disabled 194
signal 194
signal and data 194

trace limit (Connexis) 160
trace options 186
traces

component instance 182
defining 182
port reference 188
virtual circuit 192

Tracing defaults 159
Transmission Control Protocol 12
Transport 12

auditing 313
blocking/non-blocking 311
integrating 317
understanding 307

transport 10
buffer pool 268, 269, 270
component 14, 16, 274
definition 12

Transport Agent 87
transport and protocols

naming 308
transport buffer pool 269
Transport Errors 226
Transport failures

recovery 313
Transport Integration

building 323
overview 302
packaging 323
User Guide - Rational Rose RealTime Connexis

Index
significant threads 306
testing 324
using in another model 324

Transport Integration Framework 301
overview 302

Transport Integration Framework (TIF)
13

Transport Intergration
definition 305

transport settings 87
Transport specific options 282
Transporter 186
Transporter Audit 188
Transporter options 278
transports

manually integrating into model
model

manually integrating trans-
ports (Connexis) 88

type descriptor
Version Mismatch 230

U
UDP 13, 357
UDP/IP 357
UML 5, 6, 7, 10, 11, 13, 14, 16, 31
Unified Modeling Language 13

see UML
unwired port 13

registration 110
User Datagram Protocol 13

see UDP

V
VC Mismatches 227
371

Viewer 88, 136
adding a component instance 177
adding a processor 175
adding support for 153
architecture 153
changing a component instance’s

properties 180
changing a processor’s properties 176
command line options required 154
component instance 168
configuration 274, 287
creating component instances 175
creating processors 175
defining component instance trace

182
defining port reference trace 188
defining virtual circuit trace 192
duplicate CNX unique identifiers 156
log window 157
main menu 156
main window 156
named service 168
Object Information column 167
processor 168
registered end port 168
removing a processor 177
setting trace buffer size 191, 193
software errors 235
software warnings 235
starting 155
starting from deployment diagram

155
status bar 157
Target Agent

connecting to 171
User Guide - Rational Rose RealTime Connexis

Index
trace pane 156
tree view 156
Viewer 8
virtual circuit 168

Viewer icons
component instance 163
Named services 165
port icons 165
processor 163
virtual circuit 166

Viewer menus
File 158
Help 161
View 158
Windows 161

Viewer popup menus
component instance 170
port reference 173
processor 169
session 168
virtual circuit 174

Viewer trace window
component instance 194
virtual circuit 195

Virtual Circuit
definition 304

virtual circuit 9, 13, 118
definition 13

Virtual Circuits 271
VxWorks 298

inclusion path 26
User Guide - Rational Rose RealTime Connexis

W
wired port 13
wired ports

connecting (Connexis) 15
372

	Preface
	Road Map
	Related Documentation
	How to Get Help
	When contacting Rational technical support
	Rational web site

	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Rational Connexis Overview
	Key Benefits of Connexis
	Connexis Leverages Proven Standards
	Connexis is Tightly Integrated with Rose RealTime
	Connexis Provides Access Transparency
	Connexis Provides Location Transparency
	Connexis is Very Flexible and Easily Configurable
	Connexis Provides Support for Testing Distributed Applications
	Connexis is Designed to be Fault-tolerant and Reliable

	Connexis Terminology and Definitions
	Connexis Application Layers
	UML Application
	Ports in Rose RealTime
	Distributed Connection Service
	Transport
	Locator Service
	Using the locator

	The HelloWorld Model
	Running the HelloWorld Model
	Additional HelloWorld Models
	HelloWorldHotStandby
	HelloWorldLoadSharing
	HelloWorldOverflowToBackupService
	HelloWorldRedundantLocator

	Using Connexis

	Using Connexis Model Examples
	The BasicTest Model
	The Quick Start Model
	Quick Start Iteration 1 Model
	Quick Start Iteration 2 Model

	The HelloWorld Model
	Running the HelloWorld Model
	Additional HelloWorld Models
	HelloWorldHotStandby
	HelloWorldLoadSharing
	HelloWorldOverflowToBackupService
	HelloWorldRedundantLocator

	The DCS Performance Model
	Running the Performance Model
	Performance model server output
	Performance model client output

	Quick Start
	Quick Start Overview
	Iteration 1: Creating the Rose RealTime Model
	Step 1: Create a New Model
	Step 2: Create Packages for the Model
	Step 3: Create the Ping, Pong, and ContainerCapsules
	Step 4: Create the PingPong Protocol Class
	Step 5: Build the Structure of the Model
	Step 6: Implement the State Machines for Ping and Pong
	Step 7: Build and Test the Model

	Iteration 2: Connexis Enabling our Application
	Step 1: Remove the Connector Between the pingPong Ports
	Step 2: Make Changes to Pong’s pingPong Port
	Step 3: Make Changes to Ping’s pingPong Port
	Step 4: Adding DCS Layer Notification to the Ping and Pong Capsules
	Step 5: Modify Ping’s State Machine to Wait for Connexis
	Step 6: Modify Pong’s State Machine to Wait for Connexis
	Step 7: Modify Ping’s State Machine to Wait for Notify
	Step 8: Add Registration Code to the Ping and Pong Capsules
	Step 9: Add the Connexis Configuration Capsules to Your Model
	Step 10: Create and Configure the Ping Component
	Step 11: Create and Configure the Pong Component
	Step 12: Add Component Dependencies
	Step 13: Build and Execute the Models

	Basic Connexis Development Approach Summary

	Adding Connexis Support to Your Model
	Sharing DCS Interfaces
	Sharing DCS Interfaces into your Model
	Removing Shared Packages

	Configuring Connexis Capsules
	Manually Integrating Transports Into a Model

	Configuring a Component for Connexis
	Verifying Connexis Enabled Components
	Initializing Your Connexis Capsule
	Using the RTDInitStatus Protocol
	Using Fixed Initialization Order

	Converting Connexis Version 2000.02.10 Models to Connexis 2001A.04.00 Models
	Verifying Component Compatibility with Connexis Version 2001A.04.00.
	RTDErrorType Error Reporting

	Establishing Connections
	General Connection Patterns
	Client/Server
	Peer to Peer

	Unwired Port Registration
	What is Registration?
	Port API
	Automatic vs. Application Registration
	Registration Parameters

	Name Resolution
	Connexis Connection Options
	Local Connections
	External Explicit Connections
	External explicit examples

	Locator Connections

	Registration Summary
	Scenario 1: Publisher Registered with the ILS
	Scenario 2: Publisher Registered with the DCS
	Scenario 3: Publisher Registered with the Locator
	Multiple Publishers

	Connection Design Heuristics
	When to Use Replicated Publisher Ports
	Use of Invokes
	Use of Broadcast Sends
	Use of Notification
	Use of Defers
	Sending Data
	Sending Data Classes by Value

	Using the Connexis Locator Service
	Adding Locator Support to a Model
	Publication and Subscription
	Publication
	Subscription
	Ranking Published Ports
	Load-sharing of Publishers
	Examples

	Locator Dynamics
	Fully Subscribed Publishers
	Subscriber Losing Connection to a Publisher
	Locator Failure
	Locator Race Condition
	Unconnected Subscribers

	Locator Configuration
	Locator Parameters
	Locator Parameter Examples

	Creating your Own Name Service

	Using the Connexis Viewer
	Viewer Architecture
	Adding Viewer Support to a Model
	Adding Metrics Support to a Model
	Starting the Connexis Viewer
	Duplicate CNX Unique Identifiers
	Viewer Main Window
	Viewer Menus
	File Menu
	View Menu
	Tools Menu
	Windows Menu
	Help Menu

	Explorer Tree View
	Processor Icons
	Component Instance Icons
	Filter Icons
	Component Instance Status
	Named Services Icons
	Port Icons
	Virtual Circuit Icons
	Object Information Column

	Popup Menus
	Session Popup Menu
	Processor Popup Menu
	Component Instance Popup Menu
	Port Reference Popup Menu
	Virtual Circuit Popup Menu

	Creating Processors and Component Instances
	Adding a Processor
	Changing the Properties of a Processor
	Removing a Processor
	Adding a Component Instance
	Changing the Properties of a Component Instance

	Performing Event Tracing
	Defining a Trace Filter for a Component Instance
	Setting trace filters

	Defining a Port Reference Trace
	Defining a Virtual Circuit Trace

	Trace Window
	Component Instance Trace Window
	Virtual Circuit Trace Window
	Trace Window Popup Menu
	Show trace data
	Define trace
	Trace active
	Select in tree
	Clear
	Save trace

	Trace Header Context Menu

	Generating Interaction Diagrams from Trace Output Files
	Reporting of error messages

	Log Window
	Displaying the Metrics Collection
	Starting Metrics Collection
	Using the Metrics Window
	Summary metrics collection
	Detailed metrics collection
	Messages metrics collection
	Audits metrics collection
	Engineering metrics collection
	DCS errors metrics collection
	Application errors metrics collection
	Application incompatibility metrics collection

	Stopping Metrics Collection
	Saving Collected Metrics

	Viewer Tips and Usage Notes
	Capturing Pre-Viewer Session Messages
	Error and Warning Tracing
	Software errors
	Software warnings

	Maximizing Viewer Responsiveness

	Using the Connexis Metrics Service
	Obtaining Metrics Data with a Metrics Service
	Enabling Metrics in the DCS library
	Adding a Metrics Port
	Subscribing to the Metrics Service
	Collecting and Processing Metrics

	Using Metrics and the Connexis Viewer

	Registration String Grammar
	Registration String Grammar for DCS Registrations

	Connexis Command Line Options
	Component Instance with Fixed Endpoints (no locator service)
	Component Instance using CDM Endpoint, Locator using CDM
	Component Instance using CDM and CRM Endpoints, Primary Locator using CDM, Backup Locator using CRM
	Component Instance with CDM and CRM, CRM is Preferred Transport
	Miscellaneous Command Line Options

	Connexis Messages, Errors, and Warnings
	Initialization Messages
	Initialization Errors
	Parameter Errors

	Connexis Customization Reference
	Engineering Rules Overview
	Thread Configuration
	Process view of a Connexis application
	Default number of threads
	The application layer
	DCS and transport Layer

	Buffer Configuration
	Overall buffer configuration of a Connexis application
	Application layer
	DCS layer
	Connexis buffer usage

	Configuring the Number of Virtual Circuits
	Verifying Connections
	Handshake audit
	Connection audit
	Reset audit

	Command Line Options Reference
	Setting Command Line Options
	System wide
	DCS options
	Transporter options
	Transport specific options
	CDM
	Locator
	Connexis viewer/target agent

	Customizing and Porting DCS Libraries
	Common customizations for the DCS
	Other resources
	Operating system capabilities
	What to do before calling Rational support
	Porting the DCS to a New Target Configuration
	Creating a New TargetRTS Library
	Creating DCS Target Specific Header Files
	Loading the DCS Model
	Creating a C++ Library Component
	Configuring the C++ Library Component Settings
	Configuring the CDR Encode/Decode Functionality
	Creating a Minimal DCS Library Configuration
	Building the Library
	Testing the Port

	TORNADO 2.0/SimSo/Cygnus 2.7.2-960126 DCS Port
	Known problems
	Example of routing tables

	Using the Transport Integration Framework
	Transport Integration Overview
	DCS Architecture
	Terminology
	Connection Lifecycle
	DCS Threading Model
	Understanding your Transport
	Determine the Name of your Transport and Protocols
	Decide the String Format of the User-specified Address
	Decide How to Validate the Address
	Decide the Transformation of the Address
	Determine the Internal Representation of your Address
	Decide the Format of the Listening Point Information
	Decide if your Transport is Blocking or Non-blocking
	Decide the Recommended Address Resolution Configuration
	Decide How the Transport will Recover from Transport Failures
	Decide How to Audit your Transport
	Decide the Format of your Messages
	Decide Strategy for Listening for Messages

	Integrating your Transport
	Setting up the Model
	Understand the Integrated Transport
	Implementing the RTDTransportAddressFactory Subclass
	Implementing the RTDTransportAddress Subclass
	Implementing the RTDTransportEndpointFactory Subclass
	Implementing the RTDTransportEndpoint Subclass
	Implementing the RTDTransport Subclass
	Building the Transport Integration
	Packaging the Transport Integration
	Using the Transport Integration in Another Model
	Testing the Transport Integration

	TIF Classes
	RTDTransportAddress
	Constructors

	RTDTransportEndpointFactory
	RTDTransportEndpoint
	Constructor

	RTDTransport
	RTDTIF
	RTDTransportProfile
	RTDConnexisAPI

	Comparison of TCP/IP and UDP/IP
	Overview
	Characteristics of Socket Types
	Difference Between UDP and TCP

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

