Rational Software Corporatione

Rational- PurifyPlus
Rational- Purify-:
Rational- PureCoverage:
Rational- Quantify-:

Getting Started

VERSION: 2002.05.20

PART NUMBER: 800-025734-000

WINDOWS

- -
I E-a t 1 ":-—j na l support@rational.com
the soffware devalopmeani company http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2001, 2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025734-000
Version Number: 2002.05.20

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE

PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, ClearQuest, PureCoverage, Purify, Purify'd,

Quantify, and Rational Visual Test, among others, are either trademarks or registered
trademarks of Rational Software Corporation in the United States and/or in other
countries. All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, Virtual Basic, Visual C++, Visual Studio, and Windows are trademarks or
registered trademarks of Microsoft Corporation in the United States and other
countries.

PATENT
U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional

patents pending.
Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTSLEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set

forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying

license agreement. Rational Software Corporation expressly disclaims all other

warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or

fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Welcome to the Rational PurifyPlus Product Family 1
Rational PurifyPlus: What itis. e 1
Tips for development engineers 2

Tips for test engineers e 3

Other PurifyPIuS reSOUICES e e 4
Contacting Rational technical support 5
Contacting Rational technical publications. 5
Getting Started: Rational Purify 7
Purify for Visual C/C++ developers andtesters 7
Purify for Visual C/C++; Whatitdoes. 7

Purify for Visual C/C++: The basicsteps i 9

Purify for Visual C/C++: Advanced features. 20

Purify for Java developers andtesterst 26
Purify for Java: Whatitdoes. 26

Purify for Java: The basic steps 28

Purify for Java: Advanced features. e 36

Purify for NET managed code developers andtesters 40
Purify for NET managed code: Whatitdoes........................... 40

Purify for NET managed code: The basicsteps 41

Purify for NET managed code: Advanced features. 50
Getting Started: Rational PureCoverage 55
PureCoverage: What it does. e e e 55
PureCoverage: The basiC Stepso e 57
PureCoverage: Advanced features. i e 64
Getting Started: Rational Quantify 73
Quantify: What it does. 73
Quantify: The basiC Stepso 74
Quantify: Advanced features. 85
X .. 93

Vi

Welcome to the
Rational PurifyPlus
Product Family

Rational PurifyPlus: What it is

Rational®PurifyPlus brings together three essential tools that help you
you develop high-quality applications more efficiently:

« Rational Purify® An automatic error detection tool for finding
runtime errors and memory leaks in every component of your
program.

Rational Quantify® A performance analysis tool for resolving
performance bottlenecks so your program can run faster.

» Rational PureCoverage® A code coverage tool for making sure your
code is thoroughly tested before you release it.

These tools are easy to use, yet provide invaluable information to help
your team develop faster and more reliable applications in Visual
C/C++, Visual Basic, Java, or managed code in any language that
Microsoft Visual Studio .NET supports.

If you’re developing code in Visual Studio, start the PurifyPlus tools
from the Visual Studio menus or toolbars. You can use Purify, for
example, along with your Visual Studio debugger and editor to save
time correcting a software defect. You can also use the tools as
standalone applications when you don’t need all the resources of Visual
Studio.

If you're testing software, incorporate the PurifyPlus tools into existing
test scripts and harnesses to automate error detection, memory
profiling, code-coverage monitoring, and performance testing. Use the
tools from the beginning with your nightly tests so that you can easily
spot regressions as soon as they occur.

Do yourself a favor. Don’t waste days looking for problems that
PurifyPlus can pinpoint in seconds. And don’t release a product with
hidden bugs that these tools can detect easily. Consistent use of the
PurifyPlus tools, from the time you start development until you ship,
will provide solid benefits both to you and to your customers.

Tips for development engineers

Here are some tips for using PurifyPlus to develop fast, reliable code.

Find memory errors early Prevent performance

Use Purify as you code to bottlenecks

pinpoint hard-to-find bugs. Whenever you write new code or
Memory errors don’t always show modify existing code, use Quantify
up right away, but they’re the to catch any incremental

ones that will make your program performance losses before they
crash someday. turn into bottlenecks.

Quantify gives you the information
you need to write more efficient
code. It can turn everyone on your
team into a performance engineer.

PureCoverage

Analyze code structure

A common reason for writing new
code is to improve the performance
of a program. But how can you
You haven’t Purify’d® code you effectively improve the

haven’t run. performance of code that might
have been developed over several
years by many different people?

Improve code coverage

Use PureCoverage to make sure
you're exercising all your code

during pre-checkin testing. Use Quantify not only to find
performance bottlenecks, but also
to learn more about how your code
is structured. It will help you to
make effective performance
improvements.

For C/C++ code, you can run
PureCoverage from within
Purify—ijust click Coverage, error,
and leak data in Purify’s Run
Program dialog.

2 Welcome to the Rational PurifyPlus Product Family

Tips for test engineers

Here are some tips for using PurifyPlus to guarantee quality software.

Find the internal errors in
your code

For best results, run all your tests
on a Purify’d version of your
program. This will find the
internal memory problems that
your external functionality tests
can’t uncover.

If performance
improves . ..

An unexpected improvement in
performance can indicate that a
large part of your code is no
longer being exercised. Compare
the most recent PureCoverage
results with a previous run to see
if you're still getting the same
level of coverage.

Test all your code daily

Use PureCoverage every day to
make sure you're testing all your
code. With ongoing coverage
feedback, you can be sure your
tests are keeping pace with your
code development.

PureCoverage

If coverage goes down . ..

If code coverage drops, your
existing tests may not be exercising
new code. Or the new code might
have introduced a defect that’s
causing a large section of code not
to be tested. Use an automated
testing tool like Rational Robot or
Rational Visual Test® to write test
cases that exercise the new code.

If performance drops . ..

A sudden drop in performance is
probably caused by the most recent
code checked in. Let Quantify
show you which parts of your
program became slower compared
to a previous run that had
acceptable performance.

Rational PurifyPlus: What itis 3

Other PurifyPlus resources

Additional information is available for all the PurifyPlus tools:

To learn how to pinpoint hard-to-find bugs in C/C++, Java, and managed code, go
to Getting Started: Rational Purify on page 7

2 o o G e

ﬂ,{p,m 2IJ@ Al]

|
o
e i) 3] o lesl] AL

To learn how you can avoid shipping untested code, go
to Getting Started: Rational PureCoverage on page 55

‘Window Help
=[E| 3R e T e = N
KN 2| |[Displayed Evors: 1721 of 1721 Disp Do\mimvgz
2 hnain
T
DR s e, mmmme
To learn how to highlight performance bottlenecks, | =
go to Getting Started: Rational Quantify on page 73 =N Ml o
»1 [Line: 12901485 [Functon: CreateDebugEvents
e el
2|z —— F— g [Node vemmraoroo =] |

/
/
L il —
~onte ontie 7~
ontrte
oo oo
6. I
oo o0
1020158 (=]
ld Descendants ["‘| [m_ Propagted
Ve 21575 [Higiaed 77 CPomio Conpu A oo o] i
fesy i
L]
i 17 [omndais 0 i 7

The online help systems for Purify, Quantify, and PureCoverage contain
detailed information about using the products and interpreting the data

they collect.

For information about Rational Software and other Rational products,
go to http://www.rational.com.

4 Welcome to the Rational PurifyPlus Product Family

Contacting Rational technical support

You can contact Rational technical support by email at
support@rational.com.

You can also reach Rational technical support over the Internet or by
telephone. For contact information, as well as for answers to common
guestions about Purify, Quantify, and PureCoverage, go to
http://www.rational.com/support.

Contacting Rational technical publications

To order copies of Rational publications, go to the Rational Press at
http://www.rational.com/support/documentation/index.jsp#press.

Please send any feedback about Rational documentation to the Rational
technical publications department at techpubs@rational.com.

Other PurifyPlus resources 5

6 Welcome to the Rational PurifyPlus Product Family

Getting Started.:
Rational Purify

Whether you're working in Visual C/C++ native code, Java, or .NET
managed code, Rational® Purify® can save you time and improve the
quality of your code.

Purify for Visual C/C++ developers and testers

Purify for Visual C/C++: What it does

Run-time memory errors and leaks are among the most difficult errors
to locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause
of the error. The errors often remain undetected until triggered by some
random event, so that a program can seem to work correctly when in
fact it’s only working by accident.

That’s where Purify can help you get ahead. Purify provides:

» Fast, comprehensive run-time error detection for Visual C/C++
programs

» Error checking even when the source is not available
Code-coverage data that shows you code you haven't tested

Purify automatically integrates into Microsoft Visual Studio and
requires no special builds. You can use Purify without changing the
way you work.

Find errors before they occur

Purify detects the following kinds of memory errors—and many
others—before they actually occur, so that you can resolve them before
they do any damage:

Array bounds errors

Accesses through dangling pointers

= Uninitialized memory reads
= Memory allocation errors
= Memory leaks

More information? For a complete list of the errors that Purify detects
in Visual C/C++, select Purify Messages from the Purify Help menu.

Check every component in your program

Software development today is component based. To deliver quality
applications on time, you not only need to make sure your own code is
error free, you also need a way to check the components your software
uses—even when you don’t have the source code. Errors that occur
within a component may be the result of your code supplying the
component with unexpected data; only Purify can detect such errors so
that you can correct your use of the component and improve the
reliability of your application.

Purify can check every component in your program, even in complex
multi-threaded, multi-process applications, including:

= .dII's, including Windows .dIlI’'s and Microsoft Foundation Class
Library .dll’s

Visual C/C++ components embedded within Visual Basic
applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

= Microsoft Excel and Microsoft Word plug-ins
= COM-enabled applications using OLE and ActiveX controls

Purify checks calls to Windows API functions, including GDI, Internet
services, system registry, and COM and OLE interface API functions. It
also validates parameters such as memory handles and pointers.

Look for errors in the right places

In addition to finding the critical errors that occur when you exercise
your program, Purify can also tell you how thoroughly you’ve covered
your program’s code. If you have Rational PureCoverage installed,
Purify can collect coverage data automatically for every run, report
exactly how much of your code you’ve checked, and identify untested
lines and functions. Using this information you can make sure you’re

8 Getting Started: Rational Purify

finding the errors in all your code, and that you won'’t be caught
off-guard by undiscovered problems in lines or functions that you
overlooked.

More information? Look up coverage data in the Purify online Help
index.

Use Purify from the start

For maximum benefit, start using Purify as soon as your code is ready
to run and continue using it regularly throughout your development
cycle, especially for;

» Code check-in. Reduce the risk that bugs in your code might impact
other code modules.

Nightly tests. Incorporate Purify into your test harness to verify that
modules work together and to expose code dependencies and
collisions. Collect coverage data for every run to make sure that
your tests are exercising any code that has been added or modified.

= Acceptance tests. Validate third-party code or code from other
development groups before incorporating it into your application.

By using Purify consistently from the time you start development,
you’ll release clean, reliable products on time.

Purify for Visual C/C++: The basic steps

With Purify, you can deliver more reliable C/C++ code in a few easy
steps:

1 Run your program with Purify to collect:
o Error data
o Code coverage data
2 Analyze the error data and correct your source code.

3 Ifyou've collected coverage data, analyze it to find any parts of your
code that you have not Purify’d®.

4 Rerun your program with Purify.

Purify for Visual C/C++ developers and testers 9

The following pages show you how to use Purify integrated with
Microsoft Visual Studio 6, but you can also use Purify in other ways.
Read the following:

Using Purify standalone on page 22

Testing C/C++ code with the command-line interface on page 23.

Running a C/C++ program with Purify

Open your project in Visual Studio, then engage Purify from the Purify
toolbar.

If you have installed Rational PureCoverage, set Purify to collect
coverage data in addition to checking for errors and memory leaks.

Click to engage Purify

Puify H]
Ll e8] ol =
Click to coIIectg

coverage data

Build and execute your program using commands from the

Visual Studio Build menu. To get the maximum level of detail in Purify
error and coverage data, build your program with debug and relocation
data.

More information? For information about building programs with
debug and relocation data, look up debug data in the Purify online Help
index.

Purify copies the program and each library the program calls, then
instruments the copies using Object Code Insertion (OCI) technology.
The instrumentation process inserts instructions that validate every
read, write, and memory allocation and deallocation. If you're
collecting coverage data, Purify also inserts instructions that increment
counters when you exercise specific lines and functions.

Purify reports its progress as it instruments each module.

10 Getting Started: Rational Purify

The module that Purify is

currently instrumenting ——{m stockveEexe 344150 Frecise Line I .

The instrumentation

|
Purify Instrumenting stockvch.exe .. H= =

RPCLTCI.OLL 13584 Minimal Exclude
RFCLTS31.0LL 8976 Minimal _Exclude
KERMEL32.DLL 372436 Mirimal | Excluds

level for error checking
and coverage monitoring
for each module

Purify Error View tab,
Data Browser window

GDI32DLL 165648 Minimal Exclude
COMDLG32DLL 185104 Minimal Exclude
WINSPOOLDRY 92344 Minimal Exclude
ADVAPIZZDLL 246544 Minimal Excluds

LCancel Instrumentation | Help |

[
[
[
USER32DLL 330512 Minimal Exclude |
[
[
[
[

Purify instruments each module at a default instrumentation level. If
you want to focus on a specific part of your program, you can override
the default and customize the instrumentation level.

More information? For an explanation of instrumentation levels and
how to use them, read Customizing instrumentation on page 20. For more
detail, look up instrumenting in the Purify online Help index.

Purify caches the instrumented copy of each module. When you rerun a
program, Purify saves time and resources by using the cached modules,
re-instrumenting only the ones that have changed since the previous
run.

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an Error View tab in the Purify
Data Browser window.

., stockvch - Microsoft Visual C++ - [Rational Purify Main Window]

B Y PR — T
EEEEEEEE B R
2 | o e | | P N =]

T wirkspan =
E o B suto M | [erorView | oduie View] File Vi | Function List Vi |
E-E# Stac! © Fun @06
=434 5¢ @) Starting Purify'd stockvob.axe at 08/05/99 16:22:52 &

E

@ Starting main
) ABW: Array bounds write in CStockipp::CStockippivoi

M MR: Uninitialized memory read in SetWindowTexth {1:
& # UMR: Uninitialized memory read in stramp {17 occurre
- # UMR: Uninitialized memory read in lstrlend {14 occws
M MR: Uninitialized memory read in MultiBytsToWideCh:
& MR: Uninitialized memory read in MultiBytsToWideCh
) ABW: Array bounds write in sprintf {47 occurrences}
@) ABR: Array bounds read in SetWindowTexth {646 occur:
@) ABR: Array bounds read in lstrlenk {830 occurrences
@) ABR: Array bounds read in SstWindowTexth {184 occur:
) ABW: Array bounds write in sprintf {13 ﬂccurrgncgsilll

[l gl | ¥

w2 Ld | 21| Displaped Encrs. 1721 of 1721 Displaped Wamings. 530l 53 Bytes leaked: 00 7
A[Eurity: Instrunenting D ~LToGTan Files-Rational~Durify-ssfplos-OtockNIWNeleass-stockvot oa)
Hdl|Purify: Instrumentation finished e
H Build / Debug & Find in Files 1 & Find in Files2 j Results % SOL Debugging / DR »
Ready 7

Purify for Visual C/C++ developers and testers 11

Acronyms like ABW
identify message type

For a description of a
message, right-click
the message, then
select Describe

More information? Look up error view in the Purify online Help index.

Note: If you’re debugging client/server and multi-process
applications, you can debug several processes and see the error reports
for each running application simultaneously. To do this, run each
process in a separate instance of Visual Studio with Purify engaged.
Alternatively, you can use the standalone Purify user interface. See
Using Purify standalone on page 22.

Seeing all your errors at a glance

Purify displays error and warning messages about run-time errors and
memory leaks, and informational messages about the progress of your
program’s execution.

Color-coded icons show message severity:

ﬂinformational ,:-'i'-)warning Oerror

¥ Data Browser: Purify'd stockvcE. exe

Errar View | Module View | File iew | Function List View |

I:I--o 2tarting Purify'd stockved.exe at
¥ Starting main

08/05/599 16:22:52 -

: Uninitialized memory read in
: Uninitialized memory read in
: Uninitialized memory read in
: Uninitialized meamory read in Mul
: Uninitialized meamory read in Mul

bounds write in

Copy

Submit Clearuest Defect

i) BEW:
+-) AER:
+-) AER:
+-) AER:
i AEW:

Array
Array
Array
Array
Array

hounds write in sprintf {4
bounds read in SetWindowTe
hounds read in lstrlend {2
bounds read in SetWindowTe
hounds write in sprintf {1

Expand
Expand Branch
[Callapse

o) EXH:

Handled excaption in AfxThrowlse

LuickFilter
Create Filter...

Frn MRl K a B e B B e W e B B R W B 1

o ¥, HAN:

Handle 0x00000001 is inwvalid in
Handle O<EEEEEEEf is inwvalid in

Wievw Source e
Select Saunse e

ancal

- ¥, HAN:
o Summary of all memory leaks...
I:I--o Bummary of all memory in use...

{0 bytas, 0 bhlocks}
{29034 bytas, 64 bhlocks}

| o

|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 | o

When you exit the program, Purify reports memory leaks. In addition
to memory leaks, you can set Purify to report memory in use at exit and
handles in use at exit.

More information? Look up error and leak settings in the Purify online
Help index.

12 Getting Started: Rational Purify

When identical errors repeat

An error often repeats many times in a program, particularly if it occurs
inside a loop. To provide a concise overview of a program’s errors,
Purify by default displays each error message only once, the first time
an error occurs, and then updates a counter whenever the error repeats.

This uninitialized memory
read (UMR) occurred 17 times

¥ Data Browser: Purify'd stockvcE. exe
Ermar Wiew | Module View | File Wiew | Function List Viewl

I:I--o Starting Purify'd stockwveh.exe at 08705799 [16:22:52
¥ Starting main
I:I--o AEW: Array bounds write in C2tocklpp::CStogkipp(void)] {1 occurrencal
[]--& UME: Uninitialized memory read in SetWindowTextA {14 occurrances}

[2: Uninitialized meamory n stramp {17 ococurrencas}
[]--& UME: Uninitialized memory read in lstrlend {14 occurrances}

[]--& UME: Uninitialized memory read in MultiByteToWideChar {3 occourrences
[]--& UME: Uninitialized memory read in MultiByteToWideChar {3 occourrences
I:I--o AEW: Array bounds write in sprintf {47 occurrencas}
£
£
£
£
£
£
£

| v

]--0 AER: Array bounds read in SotWindowTextld {646 occurrencas}
]--0 AER: Array bounds read in lstrlend {230 occurrencas}

]--0 AER: Array bounds read in SotWindowTexti {184 occurrencas}
]--0 AEW: Array bounds write in sprintf {13 occurrencas}

]--o EXH: Handled exception in AfxThrowlUserException(void) {1 occurrencel
]--& HAN: Handle 0x00000001 is invalid in GetObjectW {1 occurrenca}l e
]--& HAN: Handle OxEEfff£fff is invalid in GetObjectW {1 occurrenca}l

o Summary of all memory leaks... {0 bytes, 0 blocks}

I:I--o Bummary of all memory in use... {29034 byte=., 64 blocks} -

[l o
|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 | o

More information? If you want Purify to display each occurrence of a
message individually, instead of reporting counts, you can change the
default setting. Look up error and leak settings in the Purify online Help
index.

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on the
most critical error messages quickly, create filters to hide all other
messages from the display.

Purify for Visual C/C++ developers and testers 13

Right-click a message

and select QuickFilter T ntf {47 nccurrences)
. 0@ 2BR A ndowTexts {646 ocourrances}
to hide the message 1@ amR: |l enh {930 ocenrrences]
immediately B LEE— QuickFiller ndowTexth {134 ocourrences)
“-@) BEW: [icate Filer.. ntf {13 occurrences}
o ExXH _j rowllserExceptioniwvoid) {1 ocourrencea) |
Or select Create F||ter AN = Sotee e id in @etObjectW {1 occurrenca}l

to define a set
of filtering criteria

You can filter messages individually, or you can filter them based on
their type and source. Consider hiding all informational messages, for
example, or all messages originating from a specific file.

An unfiltered error view displays all the

messages from the program

¥ Data Browser:Purify'd stockvck.exe

Emar View I MnduleViEwl File iew | Funclion List\u"iewl

#-) Starting Purify'd stockvcé.oxa
- Starting main

A filtered error view displays only
the messages you want to see

at 08/05/99 16:22:52 -

Describe AW Array Bounds Wiite

in SatWindowTexth {14 occurrences}

Lopy

in stramp {17 occurrences}

Submit ClearGuest Defect

in lstrlend {14 occurrancas}
in MultiBytaToWideChar {3 occurrences

in MultiBvtaToWideChar {3 occourreances

e -] - - -
=

Dizplaped Errars: 17

¥ Data Browser: Purify'd stockvcE. exe

Ertor iew | Moduls view | File Visw |

hounds
bounds
bounds
hounds
hounds
hounds

1 Array
: Array
: Array
1 Array
1 Array
=) REW: Array

Function List Yiew I

write in CEtockhpp::CEtockiapp(void) {1 occurrance}
write in sprintf {47 occurrencas}

read in SetWindowTextd {646 occurrences}

read in lstrleni {230 occurrences}

road in SetWindowTextd {124 occurrencas}

write in sprintf {13 occurrences}

| Displayed Enors: 1721 of 1721 Displayed Wamings: 0 of 53 Bytes leaked: 0+0 [S

Once created, error filters apply to the current run and to all future runs
of the program until you disable them. Disabling a filter causes hidden
messages to be redisplayed in the error view.

14 Getting Started: Rational Purify

EQ All Filters anme Type | E nabled I Date | Comment |
The Filter Manager —— & Il stockvohens %HAN Handle i Fiter “es 08/06/33 10:23:08 CuickFilker
creates a filter group for B (3 My Filters % HAM: Handle .. Fiter Yes 08/06/93 10:22:08 CluickFilker
each program you run [[Z My Filkers Group Yes 08406439 10:37:19 Assigned to GB
ﬂ; Starting Purify... Fiter Yes 03/06/33 10:27:12
1%} UMR: Uninitia... Fiter Mo 08/06/99 10:55:02

Drag and drop filters to
move or copy them

Working with error data filters

Purify filters are very flexible. Click the Filter Manager tool to create
individual filters or groups of filters, and to apply them to specific
programs or modules. You can also create global filters that apply to all
programs and modules. And you can share filters, which Purify saves
as .pft files, with other members of your team.

Click to enable or The checked filters apply to the selected
disable filters ~ program until you disable or delete them

Purify Filter Manager: Ermror Data - stockvch exe
Filter Edit “iew Help

(.4 I Cancel | Apply | Help |

More information? Purify provides filters for coverage data as well as
for error data. Look up filtering data in the Purify online Help index.

In addition to filtering, you can also use Purify’s PowerCheck feature to
focus on specific modules and simultaneously minimize
instrumentation time. For information about the PowerCheck feature,
read Customizing instrumentation on page 20.

Analyzing Purify error data

You can expand Purify’s messages to pinpoint where errors occur and to
obtain diagnostic information for understanding why they occur.

Purify for Visual C/C++ developers and testers 15

The location in memory
where the error occurs

Call stack showing
the function calls
leading to the error

Flag indicating the line
where the error occurs

Call stack showing the
function calls leading to
the allocation of the
memory block
associated with the error

Here’s an example of an expanded ABW (array bounds write) error
message:

¥ Data Browser:Purify'd stockvcE. exe

Error View | Module Wiew | File View | Function List Wiew

Do ABW: Array bounds write in CStocklpp::CEtockippivoid) {1 occurrence}]
Writing 1 byte to 0x001540f2 (1 hyte at 0x001540f2 illegal)

Addrass 0x001540£8 is 1 byte past the end of a 20 byte block at 0y
Addrass 0x001540£8 points to a Heapllloc'd block in the default he
Thread ID: 0Oxch

=~ Error location

- CEtockipp: :CStockipp(vold) [Stock.cpp:l56]
CEtockapp: :CEtockapp()

{

m_Ticker = (char *)Heapilloc(GetProcassHeap()l, 0, TICKEE

L m _Ticker [TICKER_SIZE] = 0O:
¥

| BREFREREFEEEEEEEFREEEF RS EEEFEEF IR SRR EFEEEREEFIEGEFiTE .
SEl88 (C++ ctorjsdtor) [Etock.cpp:l62]

-
SEL91 (C++ ctorjfdtor) [stockvce . axal
_unlockexit [stockves . axal

WinMainCRTEStartup [memcpy.obi]

E-—— Allocation location
; Heoapalloc [KERNMEL3Z.4Al11]
[+ CEtockapp: :CStockApp(vold) [Stock.cpp:l55] -
+

<

| Displayed Erors: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 [i

The level of detail provided in call stacks depends on the availability of
debug and relocation data. Even if you build your program in release
mode, you can still get the highest possible level of detail. For more
information, look up debug data (C/C++), release version in the Purify
online Help index.

You can customize the format of Purify’s messages. For example, you
can increase the number of lines of source code that are displayed, or
include instruction pointers and offsets to make locating errors easier.

More information? Look up preferences, source code (C/C++) in the
Purify online Help index.

16 Getting Started: Rational Purify

Double-click
the line where
the error occurs

Purify opens the
source code in the
editor, positioned at
the exact location X[Purify: Instrumenting D:~Program Filss-Rational-Purify~samples~StockHT-Relsass stocka
A|Purify: Instrumentation finished =

Of the error H Build { Debug & Find in Files1 & Find in Files2) Results § SOL Debugging /. [IEAN} LI_‘

Feady Ln 156, Cal 1 |REC [COL [0WF [READ 4|

Correcting errors

Purify makes it easy to correct errors.

Data Browser: Punify'd stockvch. exe

Errar Yiew | Module V\ewl File V\ewl Function List VIEW'

= 0 ABW: Array bounds writa in CStockipp::CEtockipp(woid) {1 ocourrsncal 4|
Writing 1 byte to 0x001540f% (1 byte at Ox001540f8 illegal)

Address 0x001540£8 is= 1 byte past the end of a 20 hbyte block at 0Oy
Addrass 0x001540£8 points to a Heapalloc'd block in the default he
Thread ID: 0Oxch

=5 Error location

CEtockhpp: :CEbockhpp (void) [Stock.cpp:l56]

CEtockipp: :C5tockipp ()

{

m_Ticker = (char *jHeapilloc(GetProcessHeap(). 0, TICKEE_
» m_Ticksr [TICKER_SIZE] = 0;

¥
R R Sy R N RN R NS NS RN SR

$E188 (C++ ctorsdtor) [Stock.cpp:162]
FE121 (C++ chtor/dtor) [stockveh . axa]
_unlockaxit [stockweh . axa]

o WinMainCRTEtartup [memcpy.chi]
-~ Allocation location

T Workspace st

= Stockve

=43 Souret
T

END_MWESSAGE_MAP()

7 CStockipp construction

CStockipp: CStockipp()
{

1loc(GetProcessHeap(), 0.
0

s
sh>
»

AL EEELI IS L LTI IS ELTI IS E LTSS EELT TSI ELT SIS L LTSS ELT SIS ELT IS

KT
= 4 SIS IL TSI TSI TSI LTI T TSI TSI SIS TSI TSI TSI ST I SIS ST
mscler] @] i _»l_I

Hsapilloc [KERNEL3Z.411]
. 2l stackvch - Microsoft Visual C++ - [stack.cpp] i A |
— e Edt Wiew lnseit Project Buld Tools Puify PureCowerage Duantify Window Help _ |8 x|
Displayed Enc - o |
GleEe teel - o REE wmioese 5w [SE e

EEEE PR R G R E@\

x4 7 Standard print setup comman j
ON_COMMAND(ID FILE_PRINT_ SETUP CUinkpp: :OnFilePrintSetup) =

=

TICKER_SIZE).

More information? Look up source code, editing in the Purify online

Help index.

Checking code coverage with Purify

To make sure that you find errors in your code wherever they occur, use
Purify to monitor code coverage each time you run your program. With
Purify’s coverage feature, you can check that you’re exercising all your
code, especially those parts that have recently been added or modified.

Purify for Visual C/C++ developers and testers

17

Purify displays coverage data in views that you can sort to find the
largest gaps in your testing.

The Module View tab The File View tab The Function List View tab lists
groups functions groups functions all functions in the program
based on module based on source file across modules and files

¥ Data Browser: Purify'd stockvcE. exe

Error Wi Module View | File Viewl Function List Wiew
Click any column Functions | Functions | £ Functi Lines |Lines| % Lines ~|
Coverage ltem Calls | Missed Hit Hit Mizzed | Hit Hit
header to sort the
coverage data - @ CDialog:HandlelnitDialogUL.| 1 hit ikl g 4211
- @ CDiglog:HandleSetFortiUik. | 1 hit 0 3 100.00
- @ CDiglog:InitdodalindirectiDl.| 0 mizged 5 0 0o J
- @ CDiglog:Initbodalindirectjve.| 0 mizged 5 0 0o
- @ CDialog:OnCancel(void] a miszed 2 1] 0.0
@ CDialog:0OnCrdMsgUINT .| 12 hit 7 7 50.00
- @ CDialog:OnCommandHelp(L..| 0 miszed 9 1] 0.00
=] OnCHCalar[CDC = .| 26 hit 0 2 100.00
- OnH] mizged 4 0
Double-click a & 1 5 0
wretontodplys |14 Bemvo, | : S|
. 1alog:OnSetFont[CRant 1 3
inan Annqtated - @ CDialog::Postt odalfvoid) 1 hit 1 9 90.00
Source window @ CDislog:PrelnitDislag(void) 1 hit 0 1 10000 =
Kl | LIJ
| Coverage Item: Azcending order | Furmction: Chialag::OninitDialoglveid) i

Purify can also display line-by-line coverage information marked
directly on a copy of your code in an Annotated Source window. The
color of each line of code indicates whether it is tested, untested, or
partially tested, so that you can tell at a glance where you need to
tighten up your testing.

Click to display information

The Annotated Source about color coding
window displays

B D:\Program Files\Microsoft ¥isual 5tudio\YC98\MFC\SRCAdlgcore.cpp in stockvch.exe

coverage information in
a copy of your code —t— Furctions: | CDislog::OnlnitDialag(void) 7| Colas: =]
Source
nInitDialo
N 662 ff exacute dialog ET_DLEINIT resource
This line was 663 BOOL bDlgInit:
exercised once 1 664 if (m_lpDialogInit != NULL)
o 665 WDlgInit = ExecuteDlgInitim_ lpDialogInit);:
This line was not 0 666 alsa
exercised 1 667 WDlgInit = ExecuteDlglInitim_ lpszTamplatelama) ;
668
1 G5 if [!EDlglnit)
670 i —
671 TRACEQD ["Warning: ExecuteDlglInit failed during dials
672 EndDialogi-1);
1 673 raturn FALSE;
674 1 -
1 | »
|Line: BB of 832 |Functi0n: CDialog:: OnlnitDialog(waoid) i

18 Getting Started: Rational Purify

A color-coded icon
indicates the maximum
message severity
displayed in the

error view for the run

Based on the coverage data, refine your approach to exercising your
code to make sure you are testing all the critical lines and functions. If
you are testing manually, try different menu commands, or enter new
values for variables. If you are testing automatically, revise or add test
scripts.

More information? Look up coverage data (C/C++) in the Purify online
Help index.

Comparing program runs

When you are satisfied that you’ve made good progress in eliminating
errors, and that you can exercise the parts of your program that most
need testing, rebuild. Then rerun the program under Purify.

After rerunning your corrected program, you can easily compare runs
to verify your corrections. Purify’s Navigator window, which you can
display from the Purify View menu, helps you keep track of multiple
runs and multiple programs.

The Navigator window groups runs by program

¥ Rational Purify Main Window

stackveh. exe ¥ Data Browser:Purify'd stockve6.... [_ O] x]

g :“tugen'g; Errar View I Madule View | File iew | Functio 4| ¥ ||| Ermor View | Module View | File View | Functio 4 I
o uh
o Fun @& 08/ : Array bhounds writa in : Array bounds write in

: Array bounds write in
: hrray bounds read in |
: Array bounds read in |
@) ABR: Array bounds read in i
- ABW: Array bounds write in

1 Array bounds write in
: Array bounds read in i

R: Array hounds read in

] I— B || —| B

LI_I LI |D\splayed Emors: 1721 of 1721 Displayed \Warnings: 2 |D|spla_l,led Errors: 1701 of 1701 Displayed ‘Wamings:

More information? You can compare coverage data from different runs
using the Compare Runs tool [A]. Look up comparing runs in the Purify
online Help index.

Purify for Visual C/C++ developers and testers 19

Saving Purify data

You can save Purify error data from a run and analyze it later, share it
with other members of your team, or include it in reports. Purify can
save data in the following formats:

Purify data files (.pfy, .pcy). The file extension Purify uses depends
on whether you are saving error data alone, or error and coverage
data. You can save merged coverage data to PureCoverage data files

(.cfy).

ASCII text files (.txt). You can process this data with scripts or use it
in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

Purify for Visual C/C++: Advanced features

Customizing instrumentation

Purify uses one of the following error-checking instrumentation levels
as the default for each module, depending on the module’s size and the
availability of debug and relocation data:

Precise instrumentation, which provides full run-time error
detection to pinpoint problems in any part of your program

Minimal instrumentation, which improves Purify’s performance
while providing a basic level of error detection

For coverage monitoring, Purify uses one of the following levels as the
default:

Line-level instrumentation, which reports line-by-line coverage data

Function-level instrumentation, which improves performance but
reports only function-by-function coverage data

20 Getting Started: Rational Purify

Use the PowerCheck
tab in the settings
dialogs to modify
default levels for

error detection . . .

and for coverage
monitoring

Select one or
more modules
in the list

Then specify the
instrumentation
level for the
selected modules

Purify Settings for D:\Program Files\Rational\Purifphzamples\Stock. ..

Errars and Leaks PowsrCheck | Files I Advanced

K E

— Default emor level

Usze minimal instrumentation when

I The module is larger than [1200

¥ The module doesn't contain debugging information

KB

— Defaul coverage level

' Function

M Exclude all modules in %windows directories

Modules. .. II
Ok I Cancel | Help |

Click to override
the defaults for
individual
modules

You can override the default and specify the level for each module to

meet your own requirements.

Purify Module Instrumentation

Module

o
cwinnt3Bhapstem32intshui.dl
cwwinnt3Bhaystem32hole 32 dI
chwinnt 3B apsten32hnetrap. di
chwwinnt3Bhaystem32inetapi32 i
cwwinnt38haystemn 32hzamlib. dil
cwinnt3Bhaystem32mevert. dl

chvinnt35hapstem32hversion. di

c:hyinnt 35 austem32hz32.dil

— Emror level Coverage level

o Default & Default

" Precise ' Line

' Minimal " Eunction
' Exclude

Llear Cache |

Purify

Sizel Coverage | Debug |A

b (Precise)

[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnall

¥ Show full path names

o]

348246 [Line) ez
13584 ([Exclude] Mo
37648 [Exclude] Mo

T04272 [Exclude] Mo
17168 [Exclude] Mo

224528 ([Exclude] Mo
41744 [Exclude] Mo

254005 [Exclude] “es
36112 [Exclude] Mo
12560 (Excludel Mo

Cancel |

Help

Try using the Precise error level for the most critical modules in your
program and the Minimal level for the others. Later, you can change the
Minimal level to Precise for a thorough check of the other modules.

More information? Look up instrumentation levels (C/C++) and
powercheck settings (C/C++) in the Purify online Help index.

Purify for Visual C/C++ developers and testers

21

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to your
debugger when you need to solve tough problems. Click to enable
Break on Error. Purify now stops your program just before an error
executes so that you can debug it. You can also run a Purify’d program
directly under the debugger.

’ Data Browser:Purify'd stockvcE. exe

Eror View |

=) ABW: Array bounds write in CStocklpp::CStockipp|void] {1 occurrencs}

Wlth JUSt'm't'me — i stockycb3PC_D_Program Files_Rational Purify_samples StockMT_Release.exe - Application E....

debugglng' Purlfy raises 0 The exception Breakpoint

i i A breakpoint has been reached.
a breakPOI_nt exceptlon (0x20000003) occured in the application at location Ox6fcaB2cd.
when it detects an

Click on DK ta terminate the application

error or Warning Click on CAMCEL to debug the application
Canﬂ
ClICk Can Cel to explore |D|splayed Emors: 1 0f 1 Displayed Warnings: 0of 0 Bytes leaked: (+0 4
the error in your
debugger

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify error filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks only for
the unfiltered messages. When you’re ready to debug the remaining
errors, just disable the filters.

More information? Look up break on error tool (C/C++) in the Purify
online Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio 6 resources, you
can use Purify standalone. Purify’s independent user interface provides
the same error-detection and coverage capabilities as when you use
Purify integrated with Visual Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Visual Studio by deselecting
Embed Data Browsers in the Purify Settings menu.

To use Purify as a standalone application, launch Purify from the Start
menu. Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

22 Getting Started: Rational Purify

Use the Browse button
to select the program
that you want to

check . . .

and select whether
you want to collect
Error and leak data,
or Coverage, error,
and leak data

Run Program [x]

PBrograrm narme:

| =l |_| [Em —}+ Then click

Command-line arguments: Run
Cancel
| =l
Settings:
Working directory,
| =[] Ea
—Collect:
" Error and leak data. ™ Run under the debugger
@ Caverage, eror, and leak data. W | BallsE Garenl e aiterexi)
© Memary prafiling cata

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Testing C/C++ code with the command-line interface

Using the Purify command-line interface, you can use Purify with
existing makefiles, batch files, or Perl scripts. For example, if you have a
test script that runs a program, you can easily modify the script to
instrument and run the program. To do this, change the line that runs
Exenane. exe to:

purify Exenane. exe

Alternatively, to run the instrumented version of Exenane. exe
consistently throughout your tests, add this line to the beginning of
your test script:

purify /Repl ace=yes /Run=no Exenane. exe

This line instructs Purify to save the original Exenane. exe to a .bak file,
and to instrument Exenane. exe but not to run it at this time. Now,
whenever your test script runs Exenane. exe, it runs the instrumented
version of the program, providing Purify’s detailed diagnostics.

To collect coverage data as well as error data when you run a program
from the command line, use the / Cover age option:

purify /Coverage=yes Exenane.exe

You can run Purify without the graphical interface by using
the / SaveText Dat a option. This option saves Purify’s diagnostic

Purify for Visual C/C++ developers and testers 23

messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the Purify online Help
index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend its error checking
capabilities and give you greater control over tracking errors.

Using Purify’s API functions, you can set memory state, test memory
state, and search for memory and handle leaks. For example, by default
Purify reports memory leaks only when you exit your program. But
you can use the API function Puri f yNewLeaks to check for leaks more
frequently. Click the NewLeaks tool to call Puri f yNewLeaks while
your program is running, or add calls to Pur i f yNewLeaks at key points
in your code. Purify reports any new memory leaks it has detected
since the last time you called the function. This periodic checking
enables you to track memory leaks more closely.

You can call Purify API functions from the Purify View menu as your
program runs. You can also call them from the QuickWatch dialog in
the Visual Studio 6 debugger, as well as by including them in your
code.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Using Rational Software integrations

Rational Software tools integrate into your working environment to
help you do your job more effectively and efficiently. For example, you
can use Purify with Rational ClearQuest™, Rational’s change request
management tool, and with Rational Robot and Rational Visual Test®,
Rational’s functional testing tools.

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon as
Purify detects an error or warning, or when you find a coverage
problem.

24 Getting Started: Rational Purify

:’ Data Browser-Purify'd stockvch exe = E3

Erran View | Module Wievs | File View I Function List View |
- fresaJacaind e s K AT £ ckipp [(vold) {1 ocourranca}
nght-CIle on an error 0 ZEW: J Diescribe ABW: Array Bounds 'Wite tf {47 Doourrences)
© :2ER: B AowTextld {646 ocourrencas}
LO0RY
mgssage and select © :2ER: nA {830 ocourrences}
Submit CIearQuest Defect — T z dowTextld {184 occurrences}
0 AEW: i B tf {13 occurrences}
Expand Branch
[Eallapze
QuickFilter
Create Filter...
iew Sauree i
Selent Saurce FHle
| | H
|Displayed Emors: 1721 of 1721 Displayed Warnings: 0 of 53 Eytes leaked: 0+0 | o

Purify automatically supplies entries for a number of fields in the
submission form and specifies the category of error. You can easily
attach Purify data files to further document the error.

Using Purify with Rational testing tools

If you have Robot installed, you can set a playback option in Robot to
collect Purify error and leak data when you run a Robot test script.
Purify detects memory errors as the code is executed. Robot also
includes a playback option that allows you to collect code coverage
information as well as error and leak data.

If you have Visual Test installed, you can run Purify on the program
that Visual Test is exercising within Visual Studio. If you are using a test
harness to run Visual Test scripts, you can easily modify it to run Purify
automatically as it exercises the program.

More information? Look up clearquest, robot, and visual test in the
Purify online Help index, and refer to the ClearQuest, Robot, and
Visual Test documentation.

Now you’re ready to put Purify to work on your
C/C++ code. Remember that Purify’s online Help

N— contains detailed information to assist you.

Purify for Visual C/C++ developers and testers 25

Purify for Java developers and testers

Purify for Java: What it does

Java memory leaks?
Yes, there are Java memory leaks, and they can be serious.

The Java virtual machine (JVM) garbage collector automatically
removes from memory objects that your program no longer needs, and
so avoids most of the memory leaks that occur in other programming
contexts. But Java applications can still consume more and more
memory over time. The causes for this can be extremely difficult to
track down. Purify makes it much easier to find and fix them.

There are two major categories of leaks in Java: object references that
are no longer needed, and system resources that are not freed.

Object references that are no longer needed

Very often, Java code retains references to memory that it no longer
needs, and this prevents the memory from being garbage collected.
Java objects typically include references to other objects, so a single
object can hold an entire tree of objects in memory. Problems can occur,
for example, when you do any of the following:

= Add objects to arrays and forget about them.

= Retain references to an object until the next time you use the object.
A menu command, for example, can create an object and not release
references to the object until the next time the command is called,
which may never happen.

= Change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

Allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

26 Getting Started: Rational Purify

System resources that are not freed

Java methods can also allocate heap memory that exists outside of Java
instances, such as resources for windows and bitmaps. Java often
allocates these resources by calling C or C++ routines using Java Native
Interface (JNI) calls.

How Purify can help

Purify helps you find these Java memory leaks by reporting the
methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you’ve located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code. To free
system resources, check your Java toolkit for help. For example, the

di spose() method in Sun Microsystem’s Abstract Windowing Toolkit
(AWT) frees the system resources used by the Frame, Dialog, and
Graphics classes.

You can gather memory profiling data any time your program runs. If
you want to test a new feature before you check in your code, run the
code from Purify’s graphical user interface; see Purify for Java: The basic
steps on page 28. To gather data automatically from your test harness,
use Purify’s command-line interface in your test scripts and insert
Purify API function calls in your code to control the data collection; see
Integrating Purify into your Java test environment on page 38.

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, PureCoverage and Quantify. PureCoverage can
show you the areas in your code that your tests are not reaching, and
Quantify can help you find the bottlenecks that slow down your code.
For more information, read Getting Started: Rational PureCoverage on
page 55 and Getting Started: Rational Quantify on page 73.

Purify for Java developers and testers 27

Purify for Java: The basic steps

Java applications can consume a lot of memory over time if a forgotten
reference to an object unintentionally prevents it from being garbage
collected. With Rational Purify, you can determine how much memory
your Java program is using, and detect exactly which objects are
responsible for these “memory leaks.” You can also identify places
where forcing a garbage collection would improve your code’s
performance.

To use Purify to profile Java memory usage:

1 Run your Java program with Purify.

2 Take a shapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.
4

Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.

Running your Java program with Purify

To Purify your Java program, start Purify and click Run in the Welcome
Screen to display the Run Program dialog.

Run Prograim [2 1]
Use the Browse =
button to select a i |
- . B
Java program, IC 0 -
applet, class, or JAR I’Dmmm ISR . Gancel
file that you want to =
profile “Warking directary ﬂl
T | | Help j——Then click
Run
 Collect:
€ Eror and leak data. = Bumunclerifie deluggen
 Coverage, emor, and leak data. V¥ Pause console after exit
and select the button - & Hemony profiing doic:
for collecting Memory

profiling data

More information? Look up specifying a JVM (Java) and running
programs in the Purify online Help index.

28 Getting Started: Rational Purify

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the JVM. Based on these messages, Purify keeps

track of how much memory your program has allocated to each
method and object at any given time.

Taking snapshots of memory use

To zero in on memory leaks in your Java program, wait until your
application’s memory usage has stabilized (typically after it completes
its initialization procedures), then click to take a snapshot of the
current memory usage status. This snapshot is your baseline for
investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect is leaking memory.
As your program runs, the Purify Data Browser’s Memory tab displays
a graph that indicates the amount of memory your program is using.

Data Browser:Purily'd jview.exe

M= E

Memory | Call Graph | Function Lit View |

W main LTI

w thrsad_b0 snmmEEEmEm

m thiead_10a. EEEEEEEE

Thread-0

= ot EveriDueue

m AT windows

m TaskManager noti

m Global Task Mana

Take your first snapshot | [z Gea 7 e

3 Global Task M.

when your program’s | |z i et Ham =

basellne memory usage Running ® Waiting 170 = Blocked Purify m Exited

has stabilized —2emnse = =
2400KB !

1800KB H
Watch for increasing

memory usage, then 1200K8
take a second snapshot

E00KE

10:07:25 AM

10:08:54 AM

——) [Cunentmemusage: 01530 Mem diff since snapshat - -182,834
Shaw less time Show entire un | Peak mem usage: 2,372560 Garbage Collect #: 25

Status: Exited Elapsed Time: 00:01:29

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots and garbage collection in
the Purify online Help index.

Purify for Java developers and testers 29

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click | A] to compare
the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

[Data Browser:jview.exe [Diff]]

<% File Edt View Settings Window Help 18] x|
=[E| S| =il & e=E] 2] @ ke =] B 2 Bl s sz
The thickest lines — 5 enee Call i | Fntn s Viw |
. . (& 09/27/20001
indicate the paths m\
. B8 Snapshot @ 09/27/2 o Thread-0| =i :l,
where the difference B o e ; Ek
in memory between

the two snapshots B\

hi |
is greatest .\ _/

| i
The call graph overview =
helps you orient yourself
within the call graph 2@ | Zoom | Highigh [Alocalion Changes ~ |
Kl — I Visible: 26/1498 [Highlighted: 267111 [iavalang Thread runf) [java lang Thread]
Ready | el

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding
references to unneeded objects and preventing the garbage collector
from doing its job.

30 Getting Started: Rational Purify

Memory usage data is
available directly from
the call graph

Click a column header

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

A Rational Purify - [Data Browser:jview.exe (Diff]]
<% File Edt View Seltings Window Help =18]
=8| sR| n| R\ B E[£(8] #|0 wlEl] = 35 5 0l Sl6] Al
= iewsne Cal Gtaph | Function List View|
‘B Run @ 09/27/2000 1
&8 Snapshot @ 03/27/2
8 Snapshot @ 09/27/2 el v
A Diff @ 09/27/2000 1 —
TewtComponent.setTex...| =
Wethod: TeakSample§Process un|
[Global Task Mg 5 curce File one]
Dlass Fle: LeakS amplegPracess
Calls (D) 0
Cunert method bytes slocated (Dilf; 4857344
M+Dbytes [Dilf) 5143220
Total method bytes slocated: 1887344 et run|
JE0 E— |
1 Zoom == |- Highighi. [localion Changes ~ |
4 »
KT — 2 e [Fighlighte: 267111 fiavanlang Thiead (] fiava lang Thread]
Ready 7

This allows you to zero in on the method that is consuming memory, as

well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots, call graph, and source
code, viewing in the Purify online Help index.

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming

methods in your entire program.

#¥ Rational Purity - [Data Browser:iview.exe [Diff)]
<% File Edi View Sefngs Window Help

=181 x|

2w sl Bl ¥ E -

p— Call Gray

s5 2| @z

nction List View |

to sort the memory
profiling data

| ol [afe]] (s] AL

Region createBufter 588 204

Graphics.intersec...| 1770 544
Object.clone 240 96
UlRoot timeTrigger... 64 16
StringB uffer <irit> 152 46
Color. brighter 245 58
FrFormattedT et < 230 47

anas can

I nf.,.\ A CitAD

=2 H“”@Dsfmmm i Calls | Calls | Current method Class il
g S“aps:ﬂtﬁéagfzm tha [Mew) | [Base) | bytes allocated (Diff) File
napshol
® Dit @os/z7/20007¢ || LekSampleSFroc.. 1 1 4867344 LeakS ampletFrocess
M Heap 27 H 274620 | WM intemnals
WComponentPeer..| 528 174 1248 com.ms.awt W CompanentPeer

268 | com ms b Region

144 comms. awt, Graphics!
144 jawa lang Object

120 comms.ui.JIRoot

116 |jawa.lang StingBuffer

56 java.awt Calor

96| com.ms b FeFormattedT ext

4| om0 1D il

KN H

Visible: 1436/1438 [

Flaady

R
[javalang Thread un() [javalang Thread]

|

More information? Look up function list view tab in the Purify online

Help index.

Purify for Java developers and testers 31

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

¥ Rational Purily - [Function Detail: jview.exe (Diff)]
‘@ File Edt View Settings ‘window Help =le] x|
S| s e vl|e eld]al 2] el Dl =l !I@I_I!I_I_IEIAILI
e Method: LeakGampledFrocess.1un
Run @ 09/27/2000 1 E“’::‘r [z'"lr 10
Shapshat @ 09/27/2 EBII* {;"‘l]' b
alls (Base):
Sf;fgf; ggs;’f Current method bytes allocate... 4367344
Total method bytes allocated: 4367344
M bytes (New): 6221664 b
M bytes (Base): 1354320
M-Dbytes (Diff): 5143220
M-D bytes (New): 6712454 =
- Current method =
. bytes allocated (Diff) =
Double-click a method This=d E143220
in the Caller or _
Descendant column to =
Current method =
see the memory data Descendant |, 1cs allocated [Diff) =
for that method 1M Heap 74620
TestComponent 1100
Stiing.valuelt 156
Thigad slesp i e
Fiuntime.tolalM...]
Funtime. heshe i =
KN — 2 e [Descendants. 9 |LeakS ample$Froess.runi)
Ready 4

More information? Look up function detail window in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even Kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

32 Getting Started: Rational Purify

The objects that the
method currently has
allocated. Double-click
an object to display the
Object Detail window
with comprehensive
memory data for

the object

Note that Function
Detail windows for
snapshots include pie
charts showing
memory allocation

Looking for unneeded objects

Obijects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: To examine object data, use a snapshot or an aggregate data set.
Comparison data sets, which are generated by clicking |A| do not
contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

"Hational Purify - [Function Detail: java.exe [Snapshot]]
“g File Edit “iew Settings ‘Window Help

~18] x|
JE =TI e e i = N
L2 o e e B 2 e et 8 4 S Y =]

Method: LeakSample.. [«
Calls: 3

Current method bytes allocated: 3,896 (3.74% ..
Total method bytes allocated: 10,524

Number of Objects: B4

hdalh bardon- B2 oOE re 749 ;I

X of Focus

Object Class - Obj~
Name Name soe SH
jerealangfrefFinali.. |javalangirefF.. 20

sunfawtiwindows/ . | sunfawtiwindo. 204 =

Callers Current meth |
Gl Gallls bytes allocat

LeakSample$Action.action... | 2 3
AWT-EventQueus-0 fl 1 kR

=
1 | 3

Current meths |
bytes allocat
LeakSamplegAction.action... | 2 EX:

Ivhd Giarhane Collector 1 —
[JvM Garbage Collector 50.51 z‘“lick
e

2 =
|<I | _'l_l

|Descendants: 3 |LeakSample$fiction. actionPerformedfjava.ay 2

Descendants
Descendant Calls

'Eallers:2
Ready] | v

Purify for Java developers and testers 33

Examining object details

When you double-click an object in the Function Detail window, the
Obiject Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

The object reference
graph shows the objects
that reference, and are
referenced by, the
current object

Pause the mouse over an
object for detailed memory
information

Choose a criterion for
highlighting objects in the
reference graph

B Object Detail: java.exe [Snapshot]

2|

Highlight: | Ohject: Maximum Path to Raoot j

javaldiProperties 2111F A0S

— javaioBuf
javalofrtstream 211 3BB1 02—
[Rt = — : 111DBFOlE hg

! javaioBuf
Object 1D: javadio/PrintStream 21138810 -~
Clazzs Mame: javalio/PrintSheam
Method Mame: LeakS ample. <init> fjzva.lang. String]

g o]/ bvte [2052_|
0+R Size: 33004 =

References: 2 hd
Referses: 2 r

Details about the
object currently
selected in the

1]

reference graph, Ohject Mame: jawalang/Class 2111DEFD &) . Name : Yalue |
including size and Class Name: jawadlang/Class Object Dump Mot available
creation time ——. tethod Mame: Jwh Garbage Collectar
Size: 140
0+R Size: 51,712
5Cs Survived: i}
Creation Time: 11:405T4M
Line Mumber: i}
Feferences: 4
Feferees: 0 =
Foot Type: Swstemn Class ;l
|Fieferances: 4 |Fieferees: 0 javarlang/Class 2111DEFO v

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Obiject List View tab.

34 Getting Started: Rational Purify

Memory data for all
the currently allocated
top-level objects in

the program —1—byie [4156] 211806...

The status bar shows
the selected line
number and the total

number of objects—Ohject: 2/5354

Click any column head to
sort the list

"Halional Purify - [Data Browser:java_exe [Snapshot]]

Q File Edit “iew Settings ‘Window Help
=d1=] @I&I R EEE SRS
HEEE = EEEE=]
Memoryl CaIIGraphI Function List iew Dbject LISWIEWI
Namo | Name | 'Name Size | OeRSize | guliiny| =
char [3184] 21130.. |char[] Ju'hd Garbage Caolle... 16,388]
81941 21137, |char pledinit>(...] 0
byte [LeakSample$Froce... 8,198 8,198 4
bte [B196] 2117E.. |bwte] LeakSample$Froce.. 81496 51496 4
byte [B196] 2113B.. |bwte] LeakSample <init»{... 8,196 8,196 0
byte [B196] 21135, |byte] LeakSample.<init>(j... 8,196 8,196 0
short [4034] 21131... |short[] LeakSample.<init>(j... 8,068 8,068 0
char [4034] 2112F0... |char LeakSample <initx(j... 8.068 5,068]
<Unknown Classy ... |<Unknown...|LeakSample.<init>(]... 3692 33.564 0
char[1434] 21120... |char[] LeakSample.<init(j... 2,868 2,868]
char [1338] 2112E... |char[] LeakSample <initx(j... 2676 2676 a
int[633] 21133068 |int] LeakSample <init»{... 2,532 2,532 0
char [1266] 21130F... | char [LeakSample.<init>(j... 2,532 2,532 0
char[1178] 21134... |char] LeakSample.<init(j... 2,356 2,356 0 -
« | N
|char [3134] 21137400 |LeakS ample. <init> fjava.lang String)
Ready [r

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail window, object detail window
and object list view tab in the Purify online Help index.

Purify for Java developers and testers 35

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save Java
data in the following formats:

= Purify memory profiling files (.pmy). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

= ASCII text files (.txt). You can process this data with scripts or use it
in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

Purify for Java: Advanced features

36

Select Maximum Path to~| & snwshe @ 0272

Root, for example,

to highlight all
methods between

the selected method
and .Root on the path
where the most
memory is allocated

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

Click to display the Highlight list

e Edi View Selfngs Windaw Help 8] x|

ﬁ = -
=la sp zla) k| B 2)Ee] 20 wBle =l Rml R Sl =) sl

e Cal Graph | Function Lit iew |
EILT_“E Run @ 03/27/20001

58 Snapshot @ 09/27/2 Jvht Heap

TextComponent setTex. .. =

[thread-of cakSar
€ Diff @ 09/27/2000 1 -
Global Task Manager B\
Threadrun

0 — |
Node: Maxmun Path o Hoat,
@D zom ——— F— Highighi [Noce: basinum Pt 1z oot 16 ‘
‘ v
_E_I _I Wisible; 26/1438 |Highlight=d: 3/3 [LeakSamplesProsess un() [LeakS ample$Process]
Ready 7

26 of the 1498 functions in

the current dataset are
displayed in the call graph

All 3 of the 3 functions on the
maximum path to .Root are
displayed in the call graph

More information? Look up highlighting in the Purify online Help
index.

Getting Started: Rational Purify

You can hide or
delete individual
methods, all
methods in a
class, or entire
subtrees.

Hide methods or
subtrees to sum up
their memory and
attribute it to their
callers; delete them
to discard their
memory completely

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific
method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these

operations.

— I
Subtree 3
Expand/Collapse 3
Line Scale Factors 3
Colors 3

Method Mame. ..

Hide Method LeakSample. <init=
Hide Class LeakSample

Delete Method LeakSample. <init=
Delete Class Leaksample

Und Last Bilter Gperatian

Filter Manager ...

Source File
v Data Browser... Ctri+E

LThe Filter Manager offers additional
filtering options

Focus on Subtiee. —f— Select Focus on Subtree
Hide Subtres to delete all methods
Delete Sublres except those in the subtree

Undo Hide Subtree

Reset to .Foot.

Expand/Collapse 3
Line Scale Factors 3
LColars 3
Method MName. ..
Saurce Fle

v Data Browser ... Chrl+EB

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

Purify for Java developers and testers 37

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

Filter Manager : Memory Profiling Data EHE
You can filter data —— ClassFiles | Methods |
based on class file
or on method Filker | Enabled Memor‘!
com.mz.applet. BrowserdppletFrame Yes Yes
O com. mz. awt AW T Permission Mo Yes
O com.mz. awt. FocusE vent Mo Yes
O com.mz. awt. Fonthd etrics Mo Yes
Click to enable or Iv] com.mz. awt Fonk Mo Yes
disable filters O com.mz. awt Graphicss Mo Yes - |
= . . . - —_ . e e
q i il
Shaw full path IS
I Show full path names £ Retain
" Delete
Cancel | Help |

More information? Look up filtering data and subtrees in the Purify
online Help index.

Integrating Purify into your Java test environment

The Purify command-line interface makes it possible for you to collect
memory profiling data in your automated testing environment. Modify
existing makefiles, batch files, or Perl scripts to run your program
under Purify. For example, if you have a test script that runs a Java class
file and are using Sun Microsystem’s Java viewer, change the line that
runs the class file to:

Purify /SaveData Java Java. exe O assnane. cl ass

This command runs your class file and collects memory profiling data,
then saves the data to a .pmy file that you can open and analyze in the
Purify interface or share with other members of your team.

Use the / SaveText Dat a option instead of the / SaveDat a option to save
your data in a .txt file. You can develop scripts to process this data and
generate reports about your program’s use of memory. For example,
you might want to compare the dataset from the current nightly test
with that from the previous nightly test to detect memory-related
regressions as soon as they occur.

38 Getting Started: Rational Purify

To control your automated data collection and ensure that you generate
comparable datasets from every test, use the Purify API. Read
Controlling Java memory profiling with the Purify API, immediately
following.

More information? Look up command line in the Purify online Help
index.

Controlling Java memory profiling with the Purify API

Purify includes a set of API functions that give you greater control over
its memory profiling capabilities.

The API is especially useful if you are doing automated testing. You can
programmatically determine the parts of your code that are profiled,
excluding your program’s initialization activities and focusing on
specific modules or routines. You can also clear your data after
initialization, then continue collecting data as your program runs, and
save it just before the program terminates; this is equivalent to
comparing two snapshots in the Purify user interface.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Now you’re ready to put Purify to work on your
Java code. Remember that Purify’s online Help
contains detailed information to assist you.

Purify for Java developers and testers 39

Purify for .NET managed code developers and testers

Purify for .NET managed code: What it does

Purify finds and reports memory leaks in .NET managed code
(assemblies, .exe’s, .dllI’s, OLE/ActiveX controls, and COM objects) just
as it does in Java. If you’ve used Purify for Java, you’ll find the
information in the following sections familiar.

Memory leaks in managed code

Managed code can leak memory, which can cause problems for your
program.

The .NET garbage collector automatically removes from memory
objects that your program no longer needs, and so avoids most of the
memory leaks that occur in other programming contexts. But managed
code applications can still consume more and more memory over time.
The causes for this can be extremely difficult to track down. Purify
makes it much easier to find and fix them.

There are two major categories of leaks in managed code: object
references that are no longer needed, and system resources that are not
freed.

Object references that are no longer needed

Very often, managed code retains references to memory that it no
longer needs, and this prevents the memory from being garbage
collected. Managed code objects typically include references to other
objects, so a single object can hold an entire tree of objects in memory.
Problems can occur, for example, when you do any of the following:

= Add objects to arrays and forget about them.

= Retain references to an object until the next time you use the object.
A menu command, for example, can create an object and not release
references to the object until the next time the command is called,
which may never happen.

40 Getting Started: Rational Purify

» Change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

Allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

System resources that are not freed

Managed code methods can also allocate heap memory that exists
outside of managed data instances, such as resources for windows and
bitmaps. Managed code allocates these resources by calling C or C++
routines.

How Purify can help

Purify helps you find these managed code memory leaks by reporting
the methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you’ve located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code.

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, PureCoverage and Quantify. PureCoverage can
show you the areas in your code that your tests are not reaching, and
Quantify can help you find the bottlenecks that slow down your code.
For more information, read Getting Started: Rational PureCoverage on
page 55, and Getting Started: Rational Quantify on page 73.

Purify for .NET managed code: The basic steps

Managed code applications can consume a lot of memory over time if a
forgotten reference to an object unintentionally prevents it from being
garbage collected. With Rational® Purify®, you can determine how
much memory your managed code program is using, and detect

Purify for .NET managed code developers and testers 41

exactly which objects are responsible for these “memory leaks.” You
can also identify places where forcing a garbage collection would
improve your code’s performance.

To use Purify to profile managed code memory usage:

1 Run your managed code program with Purify.

2 Take a shapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.
4

Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.

The following pages show you how to use Purify integrated with
Microsoft Visual Studio .NET, but you can also use Purify in other
ways. Read the following:

Using Purify standalone on page 52

Integrating Purify into your managed code test environment on page 53.

Running your managed code program with Purify

The first time you use Purify in Visual Studio .NET, display the Purify
toolbar by selecting Toolbars > Purify from the Visual Studio View menu.
The instructions in this section refer to the Purify toolbar, but if you
prefer you can use the corresponding commands from the Purify menu
instead.

To Purify your managed code program in Visual Studio .NET, open
your project in Visual Studio, then engage Purify using the Purify
toolbar.

i =
Click to engage Purify— El @ @ ﬂ: E;;. = @ &

Build and execute your program as usual, using commands from the
Visual Studio menu. To get the maximum level of detail in Purify
memory profiling data, build your program with debug data.

42 Getting Started: Rational Purify

% Solution "Accessible’ (1 project) - Microsoft Development Environment [design] - Untitled2.pmy Data Browser: Pu... [B[=] E3
File Edit Wiew Project Build Debug Tools Purify Quantify PureCoverage ‘Window Help
e = - AR R SR = - § R - | o -
] PurifyPlus Mavigator q X
n = = = Bl Fud Purify
% Memary |Ca|\ Graphl Funiction List Vlewl Object List \f\ewl Ig Accessible. exe
o |l =m0, -~ B Run @ 04/04/2002 13:53:20
4 m thread_1. 1 - B8 Snapshot @ 0404/2002 13:5
3 w thread_z. © 1 - S8 Snapshot @ 0404/2002 13:5
= W thread 3. mem
| = thread_4, e
* W thread 5. .
Running W Walting [j0 ® Blocked - Purfy W Exited
- IMemin use
Take your first p— e L 4 | v
snapshot when your : | s purifylus avigator [EZEI RN
. 150 KB
program’s baseline [Solution Explorer 7 x|
100 KB =
memory usage has
Stab”ized SOKE Q Solution ‘Accessible’ (1 project)
: - Accessible
24 PM 1:55:04 PM (3] References
Acressible.cs
. . / ——— || Current mem usage: 69,152 Mem diff since st
Watch for Increasing Show less time Show entire un || Peak mem usage: 143,906 Garbage Collect
memory usage, then
|Status: Exited [Elapsed Time: 00:01:45
take a second
Qutput 1 x
snapshot PLZACEAIE 1 Okt | Proprtes # %]
| Ready I I | 2

More information? Look up running programs in the Purify online Help
index.

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the .NET runtime environment. Based on these
messages, Purify keeps track of how much memory your program has
allocated to each method and object at any given time.

Taking snapshots of memory use

To zero in on memory leaks in your managed code program, wait until
your application’s memory usage has stabilized (typically after it
completes initialization), then click in the Purify toolbar to take a
snapshot of the current memory usage status. This snapshot is your
baseline for investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect may be leaking
memory. As your program runs, the Purify Data Browser’s Memory tab
displays a graph that indicates the amount of memory your program is
using.

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Purify for .NET managed code developers and testers 43

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots and garbage collection in
the Purify online Help index.

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click in the Purify
toolbar to compare the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

The thickest lines [cargrapn |Funct|0n List view |
indicate the paths
where the difference
in memory between
the two snapshots
is greatest

at\fisiblecu..: " ontral.get_Har : Farm.CreateHandle | 7] ee— Control. CreateHandle | 2

NativeWindow.Callbac \
ControlNativeindow.... | - == | g ol Mative

The call graph overview
helps you orient yourself

within the call graph
grap W Zoom Highlight IAI\UEatinn Changes j
[visible: 4141371 [Highlighted: 417325 [System. Windows.For s, BUtton, WindProc() [System.!

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding
references to unneeded objects and preventing the garbage collector
from doing its job.

44 Getting Started: Rational Purify

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

Call Graph |Funct|0n List view |

Memory usage data is —
available directly from
the call graph

at\fisiblecu..: | Contral.get_Har : Farm.CreateHandle | 7] ee— Control. CreateHandle | 2
MNativewindow. Callbac
Method: MativeWWindow. Calback j
Source File: (Hone) = ControiNative
Class: System.Windows.Forms.Mativewindow
Calls (Ciff): 5,680
Current method bytes allocated (Diff)y: O —————
M+Dbytes (Diff): 47825 - - -
Total method bytes alocated: o]

[visible: 4171371

Click a column header

Highlight IAHm:atitm Changes

El

[Highiighted: 417325

[System. Windows.For ms.BUtton, WindProc() [System.!

This allows you to zero in on the method that is consuming memory, as
well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots, call graph, and source
code, viewing in the Purify online Help index.

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming
methods in your entire program.

to sort the memory
profiling data

Cal Graph Function List View |
Current method -
Method (CN‘::S (BC:::) hy‘es(?jlilf‘:)[:ﬂ|9d Class S‘::Iillr:EZI
ColorDptions. Calculate 132 1 18,720 | ColorOptions (Mane)
ButtonBase.CommonLa. 132 1 9,424 | System Windows Forms B |(Mone)
ButtonBase.CommonRe.. 132 1 5,808 | System.Windaws. Forms B... | (Mone)
Caontrol PaintBackground 167 2 3,348 | Systern Windows Forms C_ |(Mone)
DibGraphicsBuffertana... 264 2 2,480 | DibGraphicsBufferManager | (Mone)
Graphics BeginContainer 132 1 2,096 | Systern Drawing Graphics |(Mone)
Graphics FromHdcintem... 173 8 2080 | System.Drawing.Graphics | (Mone)
Graphics Save 167 2 2,032 | Systern Drawing Graphics |(Mone)
ButtonBase.DrawText 132 1 1.488 | System Windaws. Forms B... | (Mone)
ValueCollection GetEnu 987 12 288 |ValueCollection (Mane)
LayoutOptions Layout 132 1 148 |LayoutOptions (Mone)
Message. GetlParam 29 2 96 | System Windows Forms M... | (None)
LayoutOptions. CalcText.. 132 1 B4 | LayoutOptions (Mone)
MessageBox ShowCore 32 0 56 | System Windows Forms M... | (None) =
b mIDmiid C AT n3 n £ 00 b 8 i Eminen & My
{l | _>l_I
visble: 13711371 |System . Windows.Forms.Contr|

Purify for .NET managed code developers and testers 45

More information? Look up function list view tab in the Purify online
Help index.

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

Method: ColorDptions.Calculate
Calls (Diff): 131
Calls (New): 132
Calls (Base): 1
Current method bytes allocated (Diff): 18,720
Total method bytes allocated: 20,436
Number of Objects: 120
M bytes (New): 18.720
M bytes (Base): o
M+Dbytes (Diff): 18,656
M+D bytes (New): 18,826
M+D bytes (Base): 170
Class: ColorOptions
Source File: (Mane)
Hidden methods: res
H Current method -
Double-click a method —1—— caller bytes allocated (Di ﬂ
in the Caller or ButtonBase. Paint#/orker 1E,ESE| =
Descendant column to Descendant Current method =
bytes allocated (Diffy
see the memory data Colorge G i
for that method Graphics.GethearestCalor o
Color.op_Equality 0 =l
Callers: 1 |Descendants: 11 |Coloroptions. Caleulate)

More information? Look up function detail window in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even Kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

46 Getting Started: Rational Purify

Looking for unneeded objects

Obijects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: Use a snapshot data set to examine object data. Comparison data
sets, which are generated by clicking [4], do not contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

e Method: ColorOptions.Calculate |
Calls: 132
Current method bytes allocated: | 16,720 (21.07% of Focus)
H Total method bytes allocated: 20592
The ODJECIS that the Number of Objects: 120
method currently has M+D bytes: 118,626 (21.19% of Focus)
_cli Avg M bytes: 156
aIIocgted. Do_uble click Min M baioa: 1o
an object to display the Max M bytes: 156
B . . Class: ColorOptions
Object Detail window ST None)
with comprehensive Hidden methods: 0 bytes (0.00% of M+D bytes) =
Object Class A 0O+R GCs -
memory data for Name Name i Size Survived ﬂ
the object tem String Z0BENAZD | Bystem Siring 3 3 0l
< | _IJ
= Current method -
Note that Function —— . . g“"e; | C‘:";; bytes sllacated 4
. . uttonBase Paint. | X N
Detail windows for =
. R Current method =
snapshots include pie O Descendant | Calls | 106 allocated 4
Charts Showing Colar.Fromargh 264 106
) SystemColors.get 132 0 =l
memory allocation Callers: 1 |Descendants: 11 |Coloraptions.Calculatery

Examining object details

When you double-click an object in the Function Detail window, the
Object Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

Purify for .NET managed code developers and testers 47

The object reference __
graph shows the objects
that reference, and are
referenced by, the
current object

Details about the —
object currently
selected in the
reference graph,
including size and
creation time

e Zoom Highlight | Object: Meximum Path to Root j
=l
\ System.String 20508440
System.String 2050860 —l
System Sting 2058788
System.String 2058749
=
Object Marme: System String 205E0A20 Name | Value
Tlass Name: System.String Object Dump | Mot available
Method Mame: ColorOptions.Calculate
Size: 156
0+R Size 156
GCs Survived 2
Creation Time: 4:04:03 PM
Line Mumber 0
References 0
Referees 1
Root Type:
References: 0 [Referees: 1 [System.String 205E0420

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Obiject List View tab.

Click any column head to

sort the list

\

Memory data for all
the currently allocated
top-level objects in

the program

The status bar shows
the selected line

Memory | Call Graph | Function List View Object List Yiew
Tams | S\ 05| oy | nomeer]
Ohject215C00T4 Runtime00 2064 10622 0
em String 20E0A20 | ColorOptic
System.String 206C3EF0 Unknown 120 120 0
System.String 206DE45C Unknown 11 11 1
System.String 209C60ES Unkrigwr 108 108 0
System. Sting 208DFC2C Unknown 108 108 1
System.String 20508048 Unkrigwr 102 102 0
System.String 206C4BE0 Unknown 100 100 0
System.String 209DF5FC Unkrigwr 94 94 1
System.String 206C4D4AC Unknown a0 a0 0
S;ifslem.Smng 206C91C8 Unknauien 90 90 0 | _'Ll
4 *
[object: 27163 [Systerm String 20580420 [coloraptions. CalcUlata()

number and the total

number of objects ———

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

48 Getting Started: Ration

al Purify

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail window, object detail window,
and object list view tab in the Purify online Help index.

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save
managed code data in the following formats:

Purify memory profiling files (. pny). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

= ASCII text files (. t xt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

Purify for .NET managed code developers and testers 49

Purify for .NET managed code: Advanced features

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

Click to display the Highlight list

Memory Call Graph |Function List View | Gbject List (Nuing)

Top 10: Calls

B Top 10: Current method bytes allocated
Top 10: Total method bytes allocated
Top 10: Number of Objects

ButtonBase PairtLayol Top 10: M+ byles

Top 10: Avg M nytes LttonBase.
Top 10: Min M bytes

Top 10: Mex M bytes

MNode: All Descendants

MNode: Immediate Descendants
MNode: All Callers

MNode: Immediate Callars

Select Maximum Path to
Root, for example,
to highlight all
methods between
the selected method
and .Root on the path
where the most

. MNode: Maximum Path to Root

memory is allocated | 4 Nt it i

Methods with Hidden Methods
@gl Zoom:

Pt

ButtonBase PaintRen:

sQHase PaintFiel

Highlight. |Mode: Maximum Path to Root j

|wisible: 3571484 Highlighted: 21/21 [ColorCptions Calculater) [Colorptions]

35 of the 1484 methods in

the current dataset are All 21 of the 21 functions on

displayed in the call graph the maximum path to .Root are
displayed in the call graph

More information? Look up highlighting in the Purify online Help
index.

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific

50 Getting Started: Rational Purify

You can hide or
delete individual
methods, all
methods in a
class, or entire
subtrees.

Hide methods or
subtrees to sum up
their memory and
attribute it to their
callers; delete them
to discard their
memory completely

method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these

operations.
— I
Subtree 3

Expand/Collapse
Line Scale Factors
Colors

Method Mame. ..

-

Hide Method LeakSample. <init=
Hide Class LeakSample

Delete Method LeakSample. <init =
Delete Class Leak3ample

ndE Last Blter Gperatian

Filter Manager...

Source File
v Daka Browser...

Ctrl+E

Expand/Collapse
Line Scale Factors

LColars
Method MName. ..

LThe Filter Manager offers additional
filtering options

—1+— Select Focus on Subtree
to delete all methods
except those in the subtree

Focus on Subtree
Hide Subtree
Delete Subtree
Undo Hide Subtree

Reset to .Foot.

Saurce Fle
v Data Browser ...

Ctri+6

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

Purify for .NET managed code developers and testers 51

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

Filter Manager: Memory Profiling Data

You can filter data —— Classes]Methods]
based on class file

or on method Filter Enabled Memor}i‘
v] ArrayListEnumeratorSimple Yes Yes
v %] ArraySubsetEnumerator Yes Yes
] ColorOptions Mo Yes
Click to enable or ¥ [#] CommonHandles Yes Yes
disable filters] Componenttanager Mo Yes
] ControlCollection Mo Yes
] ControlMativeWindow Mo Yes
#] Decoder Mo Yes -
| | E
Mermory
™ Show full path
Show full path names ¢ Retain
" Delete

(0] | Cancel Help |

More information? Look up filtering data and subtrees in the Purify
online Help index.

Using Purify standalone

When you don’t need all of the Microsoft Visual Studio .NET resources,
you can use Purify standalone. Purify’s independent user interface
provides the same memory profiling capabilities as when you use
Purify integrated with Visual Studio.

To use Purify as a standalone application, launch Purify from the Start
menu. Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

52 Getting Started: Rational Purify

Use the Browse
button to select the
managed code
program that you
want to profile . . .

and select the button
for collecting Memory
profiling data

Run Program [2]x]

Program name:

| = _‘| [_&n]+ Then click Run

Command-line arguments:
Cancel
| =
) Settings...

Working directany:
| =
i Collect

" Eror and leak data = Bununderthe debunger

" Coverage, enor, and leak data v Bause consale after exit

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Integrating Purify into your managed code test
environment

The Purify command-line interface makes it possible for you to collect
memory profiling data in your automated testing environment. Modify
existing makefiles, batch files, or Perl scripts to run your program
under Purify. For example, if you have a test script that runs a managed
code program, change the line that runs it to:

Purify /SaveData / Net Exenane. exe

This command runs your managed code program and collects memory
profiling data, then saves the data to a .pmy file that you can open and
analyze in the Purify interface or share with other members of your
team.

Use the / SaveText Dat a option instead of the / SaveDat a option to save
your data in a .txt file. You can develop scripts to process this data and
generate reports about your program’s use of memory. For example,
you might want to compare the dataset from the current nightly test
with that from the previous nightly test to detect memory-related
regressions as soon as they occur.

To control your automated data collection and ensure that you generate
comparable datasets from every test, use the Purify API. Read
Controlling managed code memory profiling with the Purify API,
immediately following.

Purify for .NET managed code developers and testers 53

More information? Look up command line in the Purify online Help
index.

Controlling managed code memory profiling with the
Purify API

Purify includes a set of API functions that give you greater control over
its memory profiling capabilities.

The API is especially useful if you are doing automated testing. You can
programmatically determine the parts of your code that are profiled,
excluding your program’s initialization activities and focusing on
specific modules or routines. You can also clear your data after
initialization, then continue collecting data as your program runs, and
save it just before the program terminates; this is equivalent to
comparing two snapshots in the Purify user interface.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Now you’re ready to put Purify to work on your
managed code. Remember that Purify’s online
N— Help contains detailed information to assist you.

54 Getting Started: Rational Purify

Getting Started.:
Rational PureCoverage

PureCoverage: What it does

Before you ship your products, you need the assurance that the code
you’re responsible for has been exercised thoroughly—every line, every
function, procedure, or method.

That’s where Rational® PureCoverage® can help you get ahead.
PureCoverage automatically evaluates the completeness of your testing
and pinpoints the parts of your code you’re failing to reach. As a Visual
C++, Visual Basic, Java, or .NET managed code programmer, you can
easily monitor testing coverage as you run your program. As a quality
engineer, you can include PureCoverage in your test harness to
generate comprehensive coverage reports automatically for every test
you run.

Using PureCoverage you can:

See immediately what percentage of your code has and has not been
exercised

Identify untested, or insufficiently tested, functions, procedures, or
methods

» Locate individual untested lines in your source code

= Customize data collection for maximum efficiency
Customize displays to focus on the details you need
Merge coverage data from multiple runs of a program

Save coverage data to share with other team members or to generate
reports

» Monitor code coverage from within your development environment
by using the PureCoverage integration with Microsoft Visual Studio
and Microsoft Visual Basic

PureCoverage: What it does 55

Check every component in your program
PureCoverage analyzes coverage for every component in:

Visual C/C++ code in .exe’s, .dll’'s, OLE/ActiveX controls, and
COM obijects

Visual Basic projects and p-code .exe’s, native-code .exe’s, .dll’s,
OLE/ActiveX controls, and COM obijects

= Java applets, class files, j ar files, and code launched by container
programs

.NET managed code .exe’s generated in Microsoft Visual
Studio .NET.

» Components launched from container programs such as Microsoft
Internet Explorer, the Microsoft Transaction Server, jexegen’d
executables, Jview.exe, Tstcon32.exe, Netscape Navigator, or any
Microsoft Office application

Microsoft Excel and Microsoft Word plug-ins

Note that any discussion that applies to functions and modules also
applies to Java methods and class files, and to Visual Basic procedures
and object libraries.

Use PureCoverage throughout the engineering cycle

Start using PureCoverage early in the development and testing cycles
to find and eliminate gaps in both your formal and informal tests.
You’ll know that you’re exercising all your code right from the
beginning and finding errors while there’s time to correct them.
Continue using PureCoverage whenever you exercise new or modified
code, up to the time of final product release.

Tips for development engineers

Let’s say you’ve just put together a new routine. You can use
PureCoverage to collect coverage data and easily focus on the
information for your new code. You’ll see immediately whether you’ve
tested everything before check-in. PureCoverage provides coverage
data with minimal effort on your part.

56 Getting Started: Rational PureCoverage

If you're exercising your code manually, use PureCoverage to monitor
and guide your testing as you work. PureCoverage shows you
interactively the percentage of your code’s functions, procedures, or
methods that you’ve exercised.

PureCoverage automatically integrates with Microsoft Visual Studio
and Microsoft Visual Basic, so you can use it without changing the way
you work if you’re developing code in these environments.

Tips for test engineers

As a test engineer, use PureCoverage to gauge how well your test suite
is keeping pace with the evolution of the program you’re testing. You
can add one or two lines of code to your test scripts to run
PureCoverage automatically in batch mode whenever you test. With
immediate and continuous feedback about the effectiveness of your test
suite, you can guarantee that you are exercising every modification in
the program you’re testing.

More information? PureCoverage’s online Help provides detailed
reference information and step-by-step instructions for using
PureCoverage. For a start, look up purecoverage, introduction in the
online Help index.

PureCoverage: The basic steps

With Rational® PureCoverage®, you can ensure that all of your code is
exercised in a few easy steps:

1 Run aprogram with PureCoverage.

2 Get the big picture with the Coverage Browser and Function List
windows. Use PureCoverage filters to focus on the areas that
concern you most.

3 ldentify unexercised lines in the Annotated Source window.

4 Modify your test run to cover missed lines, conditions, functions,
procedures, or methods.

5 Rerun the program to verify that you’ve improved coverage. Save
coverage data to share information with other team members.

PureCoverage: The basic steps 57

58

Click the browse
button to select the
program you want
totest. ..

and select the
type of code

This chapter describes how to use PureCoverage as a standalone
desktop application. The same principles apply when you use
PureCoverage integrated with Microsoft Visual Studio or Microsoft
Visual Basic, or when you incorporate it into your test harness. For
more information, read Integrating PureCoverage with your development
desktop on page 65 and Integrating PureCoverage in your test environment
on page 70.

Note: PureCoverage monitors coverage of functions and, if debug line
information is available, of individual lines as well. If you want
line-level data for programs built in release mode, you must supply
debug line information. For specific instructions, look up debug data in
the PureCoverage online Help index.

Running a program

To monitor code coverage for an application, launch PureCoverage
from the Start menu. Then click Run in the PureCoverage Welcome
Screen to display the Run Program dialog.

Run Program [7]x]
Erocramname | Tthen click
R —Run to run the
Command-line arguments: Cancel program
| e 5
Working directany: ﬂl
| TR | _I ﬁl

[~ Callect Data Fram:

| Bauze cohstlE efteh exit
— & Unmanaged Code

' Java Code
 Managed Code

You can click Settings to specify data-collection
instructions for special situations, such as
selective instrumentation of specific modules

Your program begins to execute. As it runs, PureCoverage collects
comprehensive information about what lines and functions have been
exercised.

Getting Started: Rational PureCoverage

As the program runs, the
Run Summary window
shows the number of
functions, procedures,
or methods that have
and have not been
exercised

PureCoverage displays a Run Summary window as the program runs,
showing the current status of program coverage.

Run Summary: pwalk.exe

Coverage | Dela\\sl Log | Messagesl PowerCovl Files |

Module
PEFILE.DLL 12 15 3
PROBE.DLL 14 4 5
pwalk. exe 9 L2 k]

18 166703
3 WD

| Calls| Missed| Hit| Total| %Hit| CallsDistibution \

PLICINR b] I—

A color-coded indicator
shows how calls are
distributed among the
functions, procedures,
or methods

| Function cal counts 0 calls <10calls m < 100cals

<1000 calls = 1000+ calls

| Status: Funring |Elapsed Time: 00:01:12

Getting the big picture

The Coverage Browser and Function List windows show you the
overall coverage status of your program at a glance:

= Every function that has not been called is reported as missed. Those
that have been called at least once are reported as hit.

» The number of lines of code missed and hit is also reported, if debug
line information was available to PureCoverage.

With this information, you can easily identify testing hot spots—major
areas that your tests have not covered.

PureCoverage: The basic steps

59

The Module View tab groups
data by file within modules

The Coverage Browser

window shows
hierarchical coverage

information for functions,

60

procedures, or
methods . . .

and for lines

Click any column
heading for
full-program sorting

The Coverage Browser window provides coverage data organized
hierarchically according to source file.

ﬁ‘ Rational PureCoverage - [Coverage Biowser: pwalk.exe]

S Fle Edt View Seftings

The File View tab groups data by file
across all modules in your program

T

o) I E N Y e

Ready

Lines | % Lines | =
Hit Hit g

el ﬁ D \PWALRhpd Module View I File Viawl
- Auta Merge
+ B Run @ 044 Coverage Item
: 913 45 40.00
D FILE.DLL 25 "
D:APwALESPROBE.DLY 8 1
DeAPwalKspwalk exe | 1836 3
=9 D\PwALK TE8E 33
2Bl pdebugs 2 14
-~ ApcessPron 0 migsed
% AddDIMNode 9
- @ AddThiead:. 1
N | 2

Coverage Item: Azcending arder

The Function List window provides a textual, non-hierarchical view of
the same data. You can do full-program sorts in the Function List
window to find the least tested components in your entire program.

ﬁ‘ Rational PureCoverage - [Function List: pwalk.exe]
le Edit ‘iew Seltings Window Help

2| S| ¥

EE= EE T

=] Ei DoAPAALE e

B Bt Merge
-8 Run @ 0441

Ready

e N T = ol

LI_I ;I Function, .75#?5

a Lines | Lines | Lines | % Lines Source -
Function Calls | 1o | Missed| Hit Hit Module File
AccessProcesshiemory o 10 10 a 000 |DoPAL K pwvealk Do P Kot .o
A ctivateViseA\indow: 1] 6 6 a 000 DRl sl D P L Oprviewr .
2 ddDlMade 9 20 1 19 9300 |DOPALK pavalk DAL pclehug.c
AddThreadhode 1 19 2 7 5947 |DOPWALKpvalk DAL Kpcdebiuig o
AddrDlgProc 0 32 32 o 000 |DoPWwALKwealk.... | DOPWAL K pview .o
AnalyzeProcess 0 Kl Kl 1] 0.0 Do P L pwvalk D P LK pckedaLc .
CloseChidProcess o 12 12 a 000 |DoPAL K pwvealk Do P Kot .o
‘CommittecdhMemoryRa 1] 6 6 a 000 DRl sl D P L poddebug.c
CreateDebugEvents 2 45 28 17 3778 | DoPWALK pwvalk D P LK pckedaLc .
DebugEvertThread 1 131 kil =] 4580 |DOPWAL K pwvalk Do P Kot .o
DisplayBytes 1] a7 a7 a 000 |DoPALKpwvalk D PAL e .
Dllhtzir 5 7 a 7 10000 (DOPWALKIPROSE DAL Kprobe o
Dllbdain 5 3 o 3 10000 |DAPWALKIPEFIL DoPWALH pefile.c LI
| Function: winhain
__ %

More information? To learn how to customize the data display, look
up coverage browser window and function list window in the PureCoverage
online Help index.

Getting Started: Rational PureCoverage

Focusing coverage data with filters

PureCoverage collects coverage information for every module in your
program, but, by default, does not display all the data it collects. In
order to highlight the coverage information that you are most likely to
find interesting, PureCoverage applies a default filter set to hide the
data for certain system and third-party components of your program.

To see the data that PureCoverage has filtered out, or to change the
filtering to display other information that concerns you, click the Filter
Manager tool to open the Filter Manager dialog.

Use the Use the Files tab to

Modules tab to filter out data by source file
filter out data
by module

Use the Functions/Procedures/Methods tab to
filter out data by function, procedure, or method

Filter Manager

Modules | Files I Functions

oK |
Filter | Status | Case Sensitive | C |
Click to turn the ————E1 D:APwALK A palk. exe Mo _l"‘”ce
filter on and off MFC=dl Fitered Mo ol |
MSVCR™.di Fitered Mo
[[%] D:\PwALKAPEFILE.DLL Mo
Hel |
[3] D PWALKAPROBE DLL No ==F

Type other patterns

to use as filters ————Battem = | | EEEE

[T Case sensitive

Save Settings Fevert to Saved Fieset to Default

" Default filter set

More information? Look up filters in the PureCoverage online Help
index.

PureCoverage: The basic steps 61

Identifying unexercised lines

PureCoverage displays line-by-line coverage data as annotations in a
copy of your source file. Double-click a function, procedure, or method
in the Coverage Browser or Function List window to display the code
in the Annotated Source window.

Click to display or change the color coding for coverage annotations

& Rational PureCaverage - [D:\PWALK\pdebug.c in pwalk_exe]
[Z) Fle Edt Wiew Setings Window Help
=\ S L4 WME A (A R TS (== ¥
The Annotated Source 18I S| || Eul#| =) wiw(=| Alz|E 8 gll | 212
window displays a co = B DAPWALK pu Funclions: [CreateDebugE vents 7| Colars: =
p y_ Py B Auto Merge _ _
of your source with notes = T] e e s
i 126 |/* local function creates debug event chjscts for thread synchd
abOUt Ilne Coverage 1z7 EOOL WINAPI CreateDelugBEvents | ? =
128 LEHANDLE 1pDhgEvents)
130 char =zEvent [MAX_DATH]:
131
13z
This line was z 133 LoadString (@etModuleHandle (NULL), IDS_DBGEVNTACTIVE, szE
. i 134 if (! (lpDkgEvents [[EEUGACTIVE] = CreakeEvent [(LDSECURITY_
exercised twice 133 TEUE,
136 TRUE,
. . 2 137 =zEvent)))
This line was 0 igg return FALSE:
not exercised | | _»l_I
| | » | [Line: 129 of 1465 [Function: CreatsDebugE vents
Ready I 7

By default, PureCoverage displays untested lines in red, tested lines in
blue, and dead lines (typically in functions, procedures, or methods for
which no active call is present in the code) in black. PureCoverage
displays partially tested multi-block lines in pink. These lines often
occur in conditional expressions for which you haven’t tested the entire
range of possible values.

You can ensure that multi-block lines are fully tested by using the
QuickWatch dialog in Visual Studio or by using an Immediate window
in Visual Basic. With the program running, type in the name of the
partially tested function or procedure and supply the parameter values
you still need to test.

More information? Look up annotated source window and colors, using in
the PureCoverage online Help index. For help with the QuickWatch
dialog or the Immediate window, see your Visual Studio or Visual Basic
documentation.

62 Getting Started: Rational PureCoverage

Modifying your test run

Now you know what sections of code you missed when you exercised
the program. If you’re running the program informally, consider how
you can exercise the code that you missed previously. If you’re working
with a test suite, you can add or adjust test scripts to improve coverage.

In either case, with the information PureCoverage provides, you're
working with your eyes open. You know what parts of your code need
to be covered—no guesswork.

Rerunning your program

Now test again, and check your results. Check not only the coverage
data for the new run, but also the Auto Merge data. The Auto Merge
data is a composite of the coverage data from the new run and any
available previous runs of the program.

ﬁ‘ Rational PureCoverage - [Coverage Browser: pwalk.exe [Auto Merge]]

F}?\E\Ie Edit Wiew Seftings ‘window Help == x|
s8] Si3) | 2] 5l s AR E Sl EL)] sl
)) m Module View | File V\gwl
The Navigator window ————— @ Ao Meig=
identifies merged =R pel Coverage ltem

data sets RS Luto Merge 7:56. | 2315
%] D:APWALKAPEFILE.DLI

3] DAPWALK\PROBE.DLL
BEF DAPWALK \pwalk.exe

4 3
J_I J Coverage Item: Ascending order

Ready | | |

You can also merge data for specific runs manually.

More information? Look up merging runs in the PureCoverage online
Help index. For information about merging data from a series of tests
automatically, read “Integrating PureCoverage in your test
environment” on page 70.

Saving coverage data

PureCoverage saves you time during testing by making it easy to share
information with other team members. To save data, and share
information, click the Save Copy As tool |[d]

PureCoverage: The basic steps 63

PureCoverage supports two data formats:

» PureCoverage data files (.cfy), which you can open later in
PureCoverage to analyze or to compare to future program runs. Or
you can share .cfy files for use by other team members who are
using PureCoverage.

ASCII text files (.txt), for use in spreadsheet and word-processing
programs. You can also communicate testing status effectively by
including .txt files in email messages or bug reports.

You can also save data from the command line, which is essential if
you’re running PureCoverage without the interface for your nightly
tests.

More information? Look up saving data in the PureCoverage online
Help index.

PureCoverage: Advanced features

PureCoverage provides powerful features that can help you make
maximum use of the coverage data you’ve collected . For example, you
can:

Integrate PureCoverage with your development desktop
Fine tune data collection

Use selective instrumentation to collect data for a subset of your
program

= Zero in on key program areas
» Integrate PureCoverage in your test environment

This section gets you started using these features to monitor your code
more efficiently, and to focus on untested sections of code quickly and
easily.

64 Getting Started: Rational PureCoverage

Integrating PureCoverage with your development
desktop

PureCoverage’s integrations put powerful coverage data within easy
reach while you develop and test your code using your favorite tools.
You can integrate PureCoverage with Microsoft Visual Studio 6,

Microsoft Visual Studio .NET, Microsoft Visual Basic, Rational Visual

Test®, Rational Robot, and Rational ClearQuest™.

During installation, a PureCoverage menu and toolbar are
automatically added to Visual Studio 6 and Visual Basic so you can
monitor your code at any time during development, without leaving
your development environment. In Visual Studio .NET, select
Toolbars > PureCoverage from the View menu to display the toolbar.

&4

Click the Engage PureCoverage Integration tool in the

PureCoverage toolbar, then run your program

+. pwalk - Microsoft Visual C++ - [Rational PureCoverage Main Window]

@Eila Edt View Inset Project Buld Test Tools Puily Quantfy PureCoverage ‘Window Help M=
@‘ﬁﬂﬂ“@ E|Qv§:v‘Eﬁl@f‘ﬁﬂtlﬁcket_size j|l‘:ﬁ|”@m L NER]
D R SR
———il odule Yiew | FileVigwl
(2] pwalk_exe
Functi Functi 4 i Lines |Lines | % Lines ﬂ
Coverage ltem Calls [Missed Hit Hit Missed | Hit Hit
View and work with OS] Run@OBAT/B 187837 croe | 1638 | 43 R R T TR Y
coverage data directly DA\PWALKAPEFILE DLL kL 11 3 243 128 | 5 | 2m
ithi i i %] DAPWALKAPROBE.DLL 10 1 4 60.00 8 24 75.00
Wlth.m Visual S.IUdIO 6 DoAPWALK sl exe 1534 3 P 44.64 1158 | 611 3378
or Visual Studio .NET 59 DAPWALK | @ 5 454 nee | et | ;7
#Z pdebuge 21 14 & ik IE | 190 | M7
#[E patate 259 3 4 a7.14 222 b 2831
[HZ] pview o 1 3 1 10.00 259 10 372
EI- pusalk, ¢ 1308 L] 8 61.54 n4 275 4663
% Solution "Accessible’ (1 project) - Microsoft Development Environment [design] - Untitled1.cfy Coverage Bro... E S 301 DEDZ v|
File Edit Wiew Project Build Debug Tools Purify Quantify PureCoverage ‘Window Help
B E@ LR o o BB) b)
= T T .3 37 =
BB G & BB & B e A F RERFET Lrl
CE| | Untitled | PurifyPlus Mavigator L
- [PureCoverage [Cn3.ColT__[ReC [COL [0V [FEAD 4|

Module Yiew | File: Yiew |

Coverage Item

18Ut JaAlag L‘

%] _ FileStieamHandlsProt

=] Ct\Prageam FilesiMicrosoft isual
9 Auto Merge @ 04042002 1
o B Run @ 04/04/2002 14:55:31

'}Z‘ - ‘WndProc _I_I' _I>
' ‘windowClass 8333 I & PurifyPlus Mavigator EM_
WHDCLASS | 50.00
&2 wHDCLASS D 100.00 Salution Explorer 7 x|
(%] WHDCLASS 100.00
WINIZ FIND_DATA om @ Solution 'Accessible' (1 project)

&2 valueCallection 14.29 1 Aecessibl
_ Uil oo - = [=f Accessible
4 I . >|—| [l [References
Accessible.cs
|Cuverags Item: Descending order |
Output 1 x
™ E] Output Properties ? x
| Ready I I |7

PureCoverage: Advanced features

65

If you have Visual Test or Robot installed, you can run a test script for a
program and monitor the program at the same time, without leaving
Visual Test or Robot. With ClearQuest, you can submit a coverage
defect, and attach a PureCoverage data file (.cfy), as soon as you find
untested code, without leaving PureCoverage.

More information? Look up integrating in the PureCoverage online
Help index.

Fine-tuning data collection

Using the PureCoverage PowerCov™" options, you can fine-tune the
level of code coverage reported for any module in your program at any
stage of development and testing. You can set default settings that
apply to all programs. You can also assign settings that apply only to
the current program.

Settings for C:'Program Files'Rational',Coverage',Samples'hello.exe EHE

PowerCoy | Files |

— Default Coverage

Select Line or Function as
the default coverage level

" Function

To customize I
coverage levels for — Modules to Instrument |

specific modules, & Al Modules Canfigure. . |

click COﬂfig ure ¥ Exclude all madules in Windows directories
Module Coverage EHE
| Coverage | Debug |A
Then select one or [Line] Ves Cancel | Help |
. chwinntapstem32maidle. dil [Exclude] Mo
more modules in the chwinntispstem32hcomdlg32.dil [Exclude] Mo
Module Coverage cwminnthapstem32ishell 32 di [Exclude] Mo
dial cwinnthspstem32hcomet 32, I [Exclude] Mo
lalog . .. o hwinnthaystem32hshlwapi. dil [Exclude] Mo e
d:pwalkhpefile.dil [Line] Yes
d:pwalkhprobe. dil [Line] Yes
chwinnthapstemn32huzer32.di [Exclude] Mo
chwinnthaestem32hodidz di [Excludel Mo LI
[Coverage ¥ Show full path names
& Default
and set a coverage ' Line
level for them — " Eunction
' Exclude
Llear Cache | QK I Cancel Help

66 Getting Started: Rational PureCoverage

To concentrate on specific modules in your code, use PowerCov options
to select Line as the coverage level for only those modules. You can
improve instrumentation and run-time performance by selecting
Function as the coverage level for the other modules. Or you can
exclude some modules from coverage.

More information? Look up settings, overview and coverage levels,
overview in the PureCoverage online Help index.

Using Selective instrumentation

If you are working in Visual C/C++ or Visual Basic native-compiled
code, PureCoverage offers you the option of selecting for
instrumentation one or more modules or .dll’s, rather than
instrumenting all modules. This has the advantage of automatically
focusing your coverage data on the code you’re most concerned with,
and it also saves time when you run your code under PureCoverage.

For example, assume you are working on a plug-in application that is to
be loaded by Microsoft Internet Information Server (11S). You don’t
need to instrument and profile all of IIS. All you need to do is
instrument your plug-in, and then run it as usual under IIS.
PureCoverage collects performance data as your plug-in runs, and
presents this data to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in
PureCoverage to display the Settings dialog, and then in the dialog
select Modules to Instrument: Selected Modules. Click on Configure to
open the Module Instrumentation dialog for specifying the name of
your plug-in.

PureCoverage: Advanced features 67

Module Coverage [Selective] HE

i I
Click to add a modu_le Wodies ﬁlxll
to the list
Module | Eoveragel Debugl |nstrumentation Statel
[Line] Yes Tranzient

Selected modules must
have debug data
avaliable; an .exe
module also requires
relocation data

With transient

~Coverage——— Instrumentation State — ¥ Show full path names instrumentation, the
 Default & Transient instrumented version
' Line " Peimanent of the module is kept
" Eunction " None only for the duration of
" Exclude one program run, and

is then replaced by the
uninstrumented

Bestare Al Modules | ak. I Cancel | Help | original

Run your plug-in as usual. PureCoverage collects and displays
profiling data.

More information? Look up selective instrumentation in the
PureCoverage online Help index.

Zeroing in on key program areas

With PureCoverage, you can capture coverage data for your entire
program or for any section of it. You can capture coverage information
for specific sections using:

» Interactive snapshots

» PureCoverage API functions

68 Getting Started: Rational PureCoverage

Taking interactive snapshots

Using PureCoverage, you can take snapshots of coverage data for
individual routines as you exercise your program.

Start and stop Clear Take a data
recording data snapshot

& Rational PureCoverage - [Run Summary. pwalk.oxe]
B Fle Edt View Setngs Window Help -[8]x]|
b
6] S{E) | B Bl nw(a) 0] L] Elmefm | el
5 B DPwalkipw || Coverage | Detals| Log | Messages| PaweiCov | Fies |
B Auto Merge e)
1.3 Flon® 087 Module | Calle| Missed| Hit| Total| 2 Hit Calls Distribution |
B Run@osr || PEFLEDLL 43 125 18 2r7edd
i FROBE.DLL 18 4 5 3 G5560
FOIIOW program -8 Rwm@ns pualk exe 1380 M43 60 203 e
coverage in the Run 8 Snspshot @
Summary window
[Function cal courts: Ocals = <10cals ® <100cals = <1000calk = 1000+ cals
4 13
_I_I _I Status: Running |Elapsed Time: 00:01:03
Ready 4

More information? Look up snapshots and run summary window in the
PureCoverage online Help index.

Using PureCoverage API functions

PureCoverage includes a set of Application Programming Interface
(API) functions that give you additional control over the collection of
coverage data. You can use them to start and stop data collection or to
save data at any time during a run, collecting only the coverage data
you need to focus on a specific area of your program.

You can call PureCoverage API functions from your program, from the
QuickWatch dialog in Visual Studio, or from whatever debugger you’re
using.

More information? Look up api functions, using in the PureCoverage
online Help index.

PureCoverage: Advanced features 69

Integrating PureCoverage in your test environment

Integrating PureCoverage with your test environment gives you a
powerful tool for continuous coverage monitoring. For example, you
can easily run PureCoverage from an existing makefile, batch file, or
Perl script by adding the command:

Coverage / SaveText Dat a Exenane. exe

to run your program under PureCoverage. The / SaveText Dat a option
generates coverage data in text-file format, without the graphical
interface. You can incorporate the information from this file into your
test results report.

PureCoverage can also merge coverage data from multiple runs. Say
you’re running a series of automated tests on a program, each time
using a different set of data. You can modify the script to merge the
coverage data into a single file. Add the following line to the beginning
of your test script:

del Exenane_Aut oMerge. cfy
to delete any existing Auto Merge files.

Then, each time you run your program, substitute the following for the
run command:

Coverage / SaveMergeDat a / SaveMer geText Dat a Exenane. exe

This command merges the coverage data from all runs of the program
and saves it to a PureCoverage data file, Exenanme_Aut oMer ge. cfy, and
to an ASCII text file, Exename_Aut oMer ge. t xt .

Java, .NET managed code, and Visual Basic programmers: For Java
code, the command line must include the /Java switch. For .NET
managed code and and Visual Basic p-code programs, the command
line must include the /Net switch. For example, if you have a test script
that runs a Java class file, change the line that runs it to:

Coverage / SaveData /Java Java. exe C assnane. cl ass
For managed code and p-code programs, the command is:
Coverage / SaveData / Net Exenane. exe

More information? For details, and additional command-line options,
look up command line and scripts in the PureCoverage online Help
index.

70 Getting Started: Rational PureCoverage

If you have Rational Visual Test or Rational Robot installed, you can
run a test script for a program and monitor the program at the same
time, without leaving Visual Test or Robot.

More information? Look up visual test and robot in the PureCoverage
online Help index.

Now you’re ready to put PureCoverage to work.
Remember that the online Help contains detailed
information to assist you.

PureCoverage: Advanced features 71

72 Getting Started: Rational PureCoverage

Getting Started.:
Rational Quantify

Quantify: What it does

Your customers want the fastest possible software. They want your
program to work instantaneously and make the most of their
computing resources. Inferior performance reduces their satisfaction
with the features you worked so hard to include.

So what can you do about it?

The practical solution is to identify bottlenecks, and then to reduce or
eliminate them, through systematic performance engineering. Begin
monitoring performance just as soon as you have a program that runs,
when it’s easiest and most economical to make structural changes.
Continue working on performance until you’re ready to ship. Weigh
the cost of implementing each improvement against the benefits you
expect from it.

How can you get the data you need for performance engineering?

Rational® Quantify® puts successful performance engineering within
your grasp. It collects complete, accurate performance data and
displays it in easy-to-understand graphs and tables, so that you can see
exactly where your code is least efficient. Using Quantify, you can make
virtually any program run faster, and you can measure the results.

Quantify profiles performance for code written in all commonly used
programming languages:

Visual C/C++ code in .exe’s, .dll’'s, OLE/ActiveX controls, and
COM obijects

Visual Basic projects and p-code .exe’s, native-code .exe’s, .dll’s,
OLE/ActiveX controls, and COM objects

= Java applets, class files, .jar files, and code launched by container
programs

.NET managed code assemblies, .exe’s, .dll’s, OLE/ActiveX
controls, and COM objects .

73

» Components launched from container programs such as Microsoft
Internet Explorer, the Microsoft Transaction Server, j exegen’d
executables, Jview.exe, Tstcon32.exe, Netscape Navigator, or any
Microsoft Office application

Microsoft Excel and Microsoft Word plug-ins

Quantify can profile all components of your code, whether you have
source code or not. For native-code applications written in Visual
C/C++ and Visual Basic, Quantify also allows you to select exactly
which modules you want to profile.

Quantify automatically integrates with Microsoft Visual Studio 6,
Microsoft Visual Studio .NET, and Microsoft Visual Basic, so you can
use Quantify without changing the way you work if you’re developing
code in these environments.

This chapter shows you how to use Quantify to find performance
bottlenecks, and introduces the features that make Quantify a
powerful, flexible performance engineering tool. As you read this
chapter, keep in mind that any discussion that applies to functions and
modules also applies to Java methods and class files, and to Visual
Basic procedures and object libraries.

Quantify: The basic steps

Quantify provides a complete, accurate set of performance data for
your program and its components, and shows you exactly where your
program spends most of its time.

To improve a program's performance:
1 Run the program with Quantify to collect performance data.

2 Use the Quantify data windows to analyze the performance data
and find bottlenecks.

3 Modify your code to reduce or eliminate bottlenecks.

4 Rerun the program and use the Compare Runs tool to verify
performance improvements

This chapter describes how to use Quantify as a standalone desktop
application. The same principles apply when you use Quantify
integrated with Microsoft Visual Studio or Microsoft Visual Basic, or

74 Getting Started: Rational Quantify

Click the browse
button to select the
program you want
to profile . . .

and select the
type of code

when you incorporate Quantify into your test harness. For more
information, read Integrating Quantify with your development desktop on
page 85 and Integrating Quantify in your test environment on page 92.

Running a program

To collect performance data for a program, launch Quantify from the
Windows Start menu and click Run in the Quantify welcome screen to
open the Run program dialog.

Run Program

and then click
T—Runto run the
program

Program name:

L
=

dili

Command-ine arguments

Working directary,

Cancel

Ll

Sefiings..

| RS Help

L
1l

~ Collect Data From

| Bellse Sonsle ter exi
— & Unmanaged Code

€ JavaCode
 Managed Code

You can click Settings to specify data-collection
instructions for special situations, such as
selective instrumentation of specific modules

Quantify profiles performance for functions and, if debug line
information is available, for individual lines as well. If you want
line-level data for programs built in release mode, you must supply
debug line information. For specific instructions, look up debug data in
the Quantify online Help index.

Quantify: The basic steps 75

Quantify displays a Run Summary window as the program runs,
showing the current status of all program threads.

Click to pause and resume profiling in
order to focus on specific routines

& Rational Quantify - hello.exe
Fle Edit Wiew Setings Window | Help
o |
=] Sl x| m | el Alr|[E L] B0 €]
IM\E!’DEEEDﬂdS j ID i} j
=18 ciProgram F [y
H R @07 | Run Summary: hello.exe
Threads |Detai|s| Log | Messages | PowerTume' Flles |
B .man_354 I(EEEEEEEEEEE
Running ®m Waiting I/0 m Blocked Quantify m Exited
- @l [status: Running [Blapsed Time: 00:00:11 4
Ready v

Quantify saves all instrumented components. When you rerun a
program, Quantify saves time by using these instrumented
components, reinstrumenting only the ones that have changed since the
previous run.

When you exit your program, Quantify has an accurate profile of its
performance.

More information? Look up profiling, selective instrumentation, run
summary and recording data in the Quantify online Help index.

Analyze the performance data

The second step in improving your program’s performance is to
analyze the performance data that Quantify has collected.
Using the Quantify Call Graph window

When you exit your program, Quantify displays the Call Graph
window. The window’s initial display focuses on the heavy-duty
components of your code, the areas where any performance
improvement would have the greatest impact.

76 Getting Started: Rational Quantify

a Rational Quantify - [Call Graph: homer.exe] [_ (o]l x]
The Quantify Ca” (.‘E File Edit “iew Seftings window Help 1= %]
Graph initially | Z[H] (& || =b#] B ok=] AlE] B8] B e |=E8] ‘ [Microseconds =] foon =] ‘ <=
diSplayS the 20 5| 8| zoom: J— Highlight: INude. Masimum Path 1o Root |7 |
most expensive
functions in a Computenteter]
program ———— Reagisteral = analyze_prosody
MdrCligrtCall2
ElE!— Initinstance LoadFrame CoRegisterCinaaotiec
Onlille Onldle:
OnCreste [Fh
: LoadLibrarya,
A root node, LosdBitmaps
representing the
total time for the CnCreste
run, brings the Create
number of visible |5 bl
nodes to 21 — |visible: 21/576 |Highlighted: 77 | CPoemview:: CompuleMeter(int) [C:Shomer_proghhomer. exe]
Ready] SCRL 2

The call graph initially highlights the most expensive path. You can
choose instead to highlight functions based on various criteria,
including performance, calling relationships, and possible causes for
bottlenecks. You can also show additional functions, hide functions,
and grab and move functions to see calling relationships more clearly.

Use the call graph to find
functions that are taking
more time than you think
they should. For example, the
programmer who wrote this
code knows that the Conput eMet er function should be so fast that it
wouldn’t show up in the initial call graph display at all.

Computehleter

analyze_prosody

Having located a suspicious function, you can isolate it to examine
where it spends its time

Quantify: The basic steps 77

The Subtree
commands
adjust the
focus of

the dataset

The Expand and
Collapse
commands

help you explore
a program’s
structure

a Rational Quantify - [Call Graph: homer.exe]

(?E File Edit View Seftings ‘window Help

=18 %]

S| Sl W

B[y N M [= A|E|| B2 Ef< lllg“M\cmseconds =] [ooo

| ==

] ‘ Zoom:

J_ Highlight: INDdE t aximum Fath to Root j ‘

gin] E———————— [& Baninitain] ——ﬂnnlnstance

OnhdeterParse

- el CliertCall2
Erxpand/Collapse o &
Line Soale: Fark N Delete Subtres
A Undo Hide Subtree
Lolars 3
Function Mame... FReset to Raoot.

ComputeMeter]
Filter v

Hide Subtree E

Onidle

Submit Elearuest Defesh

Switch to

o

Onireste [
LoadLibrary

LoadBitmapa,

OnCreste

Creste
1] [v]
|V|s|bls 21/576 |H|gh\|ghled. T |CFuemV|ew Computeteter(int] [C: shomer_proghhomer. exe]
Reduce cunent dataset to selected subtree SCRL

Quantify adjusts the dataset so it contains only Conput eMet er and its
descendants. You can now can expand the Conput eMet er subtree to see

what’s going on downstream.

a Rational Quantify - [Call Graph: homer_exe]

<:E File Edit Wiew Seftngs ‘Window Help

IS [=1 E3
=181 x|

(6| Sl W

|EB| @I "Il«lﬁl A|Z” f%|£l>| I'(:"', Ellg“Mlcrusscunds =l IU.UU

| €=

J— Highlight: INnda Masimumn Path to Root

‘ Zoom:

=]

m— analyze_prosody

Eilter 3
Subtiee

Expand Immediate D escendants

Line Scale Factors 3
Colors ¥ Euxpand All Descendants
LCollapse Al Descendants
Show All Modes

Whde Cast Erpand/ ol spse peratian

Function Mame.

Submmt Elearuest Wefect

% Besetta Top 20

[Visible: 2/90

|Highlighted: 141
Expand top 20 descendants

|CF‘oem\f’iew::CompuleMelel[int] [C:\homer_praghhomer. exe]

[[[scAC 4

78 Getting Started: Rational Quantify

You can judge
the relative
expense of paths
by the thickness
of the lines

The most expensive paths in the Conput eMet er subtree lead to the
Set W ndowText A function.

a Rational Quantify - [Call Graph: homer.exe] [_ (o]l x]
(?E File Edit View Seftings ‘window Help 1= %]
=(d| Sl x| =] = ofel=] AlZ] S BlE 28] Moo = oo <] | &[]
@l Zoom; J_ Highlight; INDdE Maximum Path to Foot j |
-
/ -
mark_vowels
mark_position [
mark_synizesis =}
convert_iota_subscri... 5} o
mark_consonarts =
mark_Achilleus =
[Compuiteheter] /ety ze_prosody| T + strlen
A i =l
[Visible: 19/34 |Highlighted: 4.4 | SetwindowT extd [C:AWINNT \System32MISERSZDLL]
Ready SCRL 2

The programmer who wrote this code intended this function to provide
feedback when he was developing his algorithm, and not to be part of
the released application. Removing the function will significantly

improve performance.

Using the Function List window to analyze numerical data

Click the Function List

Quantify starts by orienting you in your
program with the call graph, and then tool to display
numerical data

provides additional ways to zero in on
problems. You can use the Function List
window to display and sort numerical
performance data.

Quantify: The basic steps

79

This is one of —
the most
expensive
functions in
terms of
F+D time

In this example, the Function List window shows exactly how much
time the obsolete calls to Set W ndowText A are costing. The data
displayed is all the data for the Set W ndowText A subtree.

E& Function List: homer.exe

F+D time includes the time the program spends
in the function and in all its descendants

Enetion Calle Fupcﬁon If+|] F time F+D time A_ug F -
time time (% of Focus) | (% of Focus) time

Computetleter 1 0.94 BO7 924 64 0.00 100.00 0.94
analyze_prosod | |

strlen 288 857 04 288 857 .84 4752 4752 T2
make_work_copy 1 220, 173,530 44 0.04 28 56 2200
mark_vonweels 1 127.89 165474 .34 0.0z 2722 127.89
mark_position 1 T35.56 95 641.80 012 15.73 73556
mark_synizesis 1 7284 12 085 67 0.0 1.99 7284
convert_jots_subscripts 1 263 .46 1074526 004 1.77 263.46
mark_consonants 1 23033 10,399.87 004 1.7 23033
mark_Achilleus 1 5778 10,259.37 0.0 1.69 5778
mark_accusstive_plurals 1 71.91 10,243.30 0.0 1.68 71.91
mark_finalvoweels 1 14118 10,209 .56 0.0z 1.68 14118
mark_s_e 1 .07 10,192.27 0.0 1.68 T.ar
find_dipthonas 1 §6.30 10,162.29 0. 1.67 56.30 =
4| | »
[\isible: 94/94 | SetwindaT extd, i

Consider the percentages: Set W ndowText A takes up almost 50% of the
subtree’s total time. Since this function serves no purpose in the current

version of the program, this is a clear example of unnecessary
processing, one of the most common causes of performance

bottlenecks.

Doing interactive ‘what-ifs’

In addition to analyzing your program’s current performance, you can
use Quantify to project performance improvements.

In this example, you could right-click Set W ndowText A in the Call
Graph and then delete the Set W ndowText A subtree. Quantify discards
the subtree’s time from the displayed dataset and recomputes the
remaining data so that you can see exactly how the program will
perform without the subtree.

80 Getting Started: Rational Quantify

The time for the
Conput eMet er
subtree, which
took over
600,000
microseconds
before the
change, is now
just over 311,000
microseconds

EE Function List: homer_exe

analyze_p g2, 03,945
strlen 40,534 255,597 .04 256,597 G4
mark_position 1 735.56 95,641.80
make _work_copy 1 22001 27 74585
mark_vowvels 1 12759 16,443.10
mark_synizesis 1 7254 12,088 67
convert_iota_subscripts 1 26346 10,745.26
mark_consonarts 1 230.33 10,399 .57
mark_Achilleus 1 av.rg 10,259 .57
mark_accusative_plurals 1 1.9 10,243.30
mark_finalvowels 1 14118 10,209 .56
mark_a_e 1 71.07 10,192 27
find_dipthongs 1 86.30 10,162.29
mark_dubiousvowels 1 63.20 10,106 .56
a |

9275 T2

3071 7356
591 Z20m
328 12788
s 7254
345 2633 46
354 23033
328 arre
328 Fa =1l
328 14118
32 o7
326 6 .50
325

|Visible: 93/93 |EF'oemView::EomputeMeter[int]

Using the Function Detail window

The Function Detail window lets you
display performance data from the point
of view of an individual function

The st rl en function in this example has
shown up both in the function list and

2]

Click the Function Detail
tool for data about a
specific function

the call graph. The function list shows this run of the program called it
over 40,000 times. Referring to the call graph, you can see that all the
expensive functions in this part of the program call st r | en.

e poston]=

make_wvork_copy

mark_wowels
mark_synizesis E\
convert_iota_subscri...
mark_consonants =1

mark_Achilleus =

ComputeMeter|—|anaIyZEJarosody

Quantify: The basic steps

81

This part of the code manipulates lines of text as strings. These
functions apply a collection of complex rules in sequence to each line in
order to identify patterns. But calling st r | en so many times suggests
that there is a performance issue.

B Function List: homer_exe

strlienis
the most — BTy
expensive tolower

single function
in the subtree

mark_position

ExtTextCuta,

Click a to sort the list

Functi Ccall Function F+D F time F+D time
Lnchon alks time time (% of Focus) | (% of Focus)
857 34 4 9275 9275

116133
95541 &0
56246

By itself, st r | en uses around 92% of the total subtree time, now that
Set W ndowText A has been discarded from the dataset.

Opening the Function Detail window gives you a different angle on the
data for st r | en: specific information, in numerical and graphical
format, about calls to it from other functions.

Detailed data for
a function —

j24 Function Detail: homer.exe

Double-click a slice

in the Callers or —
Descendants pie chart
to display data for

that function

% of Focus | |Function: strlen
Calls: 40,554
Function time: 288 857 84 usec (92.75% of Focus)
F+D time: I 258 557 84 uszec (92.75% of Focus)
Avg F time: 712 usec
Min F time: 5.51 usec
Max F time: 1,699.19 uzec
Module: CHAMNT Sy stem 32 WSy CRTD.DLL
Source File: (Mane)
Measurement: Timed
Hidden functions: (Mone)
Callers Caller Percent | Calls Prop_uaga‘ted ;I
time
make _wwork_copy 79| 2925 20,763.99 —I
mark_synizesis [| 46| 1,464 12,015.83
mark_vowels 1 372 1,464 10,739.85
convert_jots_sub.. i 363 1,464 10,481.80
mark Achillzus 3431 1.464 10.201.59 LI
Descendants Descendant Percent | Calls Prop_uaga‘ted j
time
=
Callers: 17 | Descendants: 0 | strlen 4

|— Data about the calls
made to a function
(by callers). . .

|—and by a function
(to descendants)

As you examine this data, you might observe that most of the functions
make about the same number of calls to st r| en. To see exactly what is
going on, you can look at your source code,

82 Getting Started: Rational Quantify

Line time shows
the time spent
in each line

L+D time shows
the time spent in
the line and the
functions it calls
(its descendants)

This line spends
most of its time
in descendant
functions

Using the Annotated Source window

The Annotated Source window Click the Annotated Source
shows your code, annotated with tool to relate performance

. . data to the source code
line-by-line performance data. Here

is the code for mar k_consonant s,
one of the functions that call st r | en.

[E C:\homer_prog\prosody.cpp M=l
Functions: Imark_consonants[void] ﬂ
Line L+D Percentof | Percentof | Line 2]
time time Functiontime| F+Dtime | number ST
Function: mark_::mscman_l
Called:
Function time: 230,33 usec
F+D time: 10,399 .87 use
Distribution to Callers:
Called 1 times analyze prosody(char *)
0.01 0.01 0.01 o.oo 20004
201 int i
0,207.40 98.15 202 for (i=0 i _
203 if (specimen. work_copy[i]
204 specinen . work_copy[i]
2058 specinen. work _copy[i]
206 specimnen . work_copy[i]
207 specinen. work_copy[1] -
2| | 3
|Line: 202 of 1045 |Micraseconds | Function 4

Look at the data for the f or statement. Its line + descendants time is
much greater than its line time alone, which means the line calls other
functions heavily. The only part of the line that could possibly represent
a function call is i <SPECI MEN_LENGTH(speci nen), and

SPECI MEN_LENGTHi s in fact defined in this program asacall tostrl en.
In effect, the program is calling st r | en every time it traverses one of
these loops. And it’s the same for all the other parallel functions.

This wastes computing time, since all the program needs to do is call
st rl en once for each string, then cache the value. This is a case of
unnecessary recomputation, another common cause of a performance
bottleneck.

Compare the modified program’s performance

The final step in improving your program’s performance is to eliminate
the bottlenecks you’ve found with Quantify and to compare
performance data from two runs, to verify that your modifications have
helped.

Quantify: The basic steps 83

The Diff call
graph highlights
in green paths
and functions
whose
performance

is improved

The total time for
Conput eMet er is
now around 12,000
microseconds, an
improvement of more
than 595,000
microseconds

Assume now that you’ve eliminated all
the st rl en calls, and run the program
again. Compare the first run to the new
run, to see how the performance has

N

Click the Compare Runs
tool to see
improvements

improved.
a Rational Quantify - homer2. exe [_ O] x]
File Edit “iew Settings indow Help
iwlﬂl éllﬁl E” |EBI @I il ||«|@I AlZI ‘ l@&l I“QE B g”lMicroseconds ﬂ IU.UU j | ==
m & Call Graph: homer2.exe [Diff) !Iﬂ

- Run@07/27/9 —l
% Mo hamerhe @ Zoom; J— Highlight: IPerfUrmancs Changes j |
+~B Run @ 07/26/%
) Diff @ 07/268/98
- egstaral
/

El| [v]
K [| |Wisible: 22/545 |Highlighted: 22/534 | strlen [CAWINNTASystem32\MSYCRTD.DLL] 7
Ready SCRL

The Diff call graph highlights Conput eMet er, str 1l en, and
Set W ndowText A in green, meaning their performance is improved.

Open the Diff function list to get the numerical comparison.

The Diff function list shows
performance improvements as
negative values

B Function List: homer2.exe [Diff)

Function F+D !ime F+D time F+D time I_’unl:ﬁn_n
(Diff) {Hew) (Base) time (Diff)

analyze_prosody ! -5896 93923 301242 599 951 65 1214 u]
CniieterParse 5 oo 1]

2
Setvincow Textd -306 96579 32641 30729220 -7 457 42 748199 457 2927
=trlen -283,350.26 755 283,557.84 | -258,350.26 | 258,857 .54 758 | -40,553
make_work_copy -172,845.47 Ta4.497 17363044 -42.95 22001 177.06 i}
mark _vowels -165,339.74 13458 16547434 -30.81 12789 a7 .03 i}
Onlcdle -105 621 61 EO01,279.77 706,901 38 26138| 79,2223 | TE48370| 25586
Onlcdle -86,932.31 E16,172.30 713,104 51 209513 25852 235465 | 25586
mark_position -85 01694 62436 95 E41.80 -110.70 73556 624 .86 [u]
Initinstance -41 18637 72210835 TE3,29475 n.oo n7o n7o i}
UpcisteRedistry -34,700.23 84,866 05 119,566.34 -16.44 50056 55441 i}
Extracticons, -28,315.56 301465 323352 333 10233 103 .66 [u]
PrivateExracticonsiy -28,72805 3065572 59,33377 g24.09 564613 TAT0ZZ2 i}
Azsertyslid -2527232 126,539.00 151,811.32 4747 26525 22108 1,218 LI
«| | »

|Wisible: 545/545

| CPoemyiew:: Computehd eter(int]

84 Getting Started: Rational Quantify

You can save datasets as a Quantify data file (.gfy) to use for further
analysis or to share with other Quantify users. You can save data to a
tab-delimited ASCII text file (.txt) to use outside of Quantify, for
example, in test scripts or in Microsoft Excel. You can also copy data
directly from the Function List window to use in Excel.

Quantify: Advanced features

Quantify provides powerful features that help you make maximum use
of the performance data. For example, you can:

Integrate Quantify with your development desktop
» Select specific modules for instrumentation and profiling
= Control data recording interactively
= Highlight functions that share key attributes
Focus on critical data
Fine tune data collection
» Integrate Quantify in your test environment

This section gets you started using these features to profile the
important parts of your code more efficiently, and to zero in on
bottlenecks.

Integrating Quantify with your development desktop

Quantify’s integration—for example, with Microsoft Visual Studio,
Microsoft Visual Basic, Rational Visual Test®, Rational Robot, and
Rational ClearQuest " —puts powerful performance profiling within
easy reach while you develop your code using your favorite tools.

During installation, a Quantify menu and toolbar are automatically
added to Visual Studio 6 and Visual Basic so you can profile your code
at any time during development, without leaving your development
environment. The first time you use Quantify in Visual Studio .NET,
display the Quantify toolbar by selecting Toolbars > Quantify from the
Visual Studio View menu.

Quantify: Advanced features 85

+.. cube -

4 Ele Edt Yiew Inset Project Buld Test Tools Purify O

Click the Engage Quantify Integration tool in the
Quantify toolbar, then run your program

Miciosoft Visual C++ - [Rational Quantify Main Window]

uantify PureCoverage 'window Help (=184

frs

|Buﬁ\as al*ﬁ

=l

2w

| Gy [cTL3D32

56 6 B e|[=F e |

_I_I

2]

Zoom

J— Highlighl

b | Nods: Mairnum Path to Root |

rl'if‘ ‘Warkspace 'cube’ 1 pro
B -- cube files
{23 Source Files

T

DiMainCRTStartup,

exit

e gChooserixzelF ormat) HY e

weglCreateContext Freelibrary

wlhakeCurrent GetPixelFormat

View and work s 70 modud
with performance @ Header Files oadStinga, glFinish DescribePixelFormat
X o [Fiesnurce Files
data directly within (10 Etemal Depend
. . GdDiintialize wolswapButfers GethlearestPaletteind. .
Visual Studio 6 '\
and Visual Studio .NET CRTDLL_INIT Dlinitislize Biteh
4 »
T TS——) | i
"a0. |gER [Z51A] fviibe 2ime | Highlighted: 5/5 [LoadLibraryé [C:WINNT\System32\KERNEL32.DLL]
%% Solution "A-cessible’ (1 project) - Microsoft Development Environment [design] - UntitledL.qfy Call Graph: Ac... =
File Edt View Project Buld Debug Tools Pudfy Quanbify PureCowerage Window Help =
A-0-s"d@ 1 R0 - O-0] oo - | » ;
M &EEaF Bakiad &t Yy
= Untitled1.qfy C... Accessible.ese |\ 00 PUriFyPIus Navigator 2
w B 2% Quantify
£ | @] zom ——— | Highiaht [Node: MasimumPathioRioot | 5" I8 Ciprogam Flesthicrasoft il
= B Run @ 04/04/2002 14:44:01
g— main_0. = Rurtime00 = B Snapshot @ 04/04/2002 14:4
] S osssible Wi ./ &8 Snapshot @ 04/04/2002 14:4
— (hread i_1
4 »
E AppDnmaln SetupDomai [Him—
I |2 PurifyPlus Navigator m@l
cotor | Solution Explorer 1|
E’i
0 [Solution *Accessible’ (1 project)
2 (2 Accessible
(s3] References
1 Arcessible.cs
[Visitle: 3171718 |Highlighted: 313 [Runtime02 [Rational]
Output o ox
] =] Output Properties a x
Ready A

If you have Rational Visual Test or Rational Robot installed, you can
run a test script for a program and profile the program at the same time,

without leaving Visu

al Test or Robot. With Rational ClearQuest, you

can submit a performance defect, and attach a Quantify data file (.qfy),
as soon as you find slow code, without leaving Quantify.

More information? Look up integrating in the Quantify online Help

index.

86 Getting Started: Rational Quantify

Click to add a module
to the list

Selected modules must
have debug data
avaliable; an .exe
module also requires
relocation data

Using selective instrumentation

If you are working in Visual C/C++ or Visual Basic native-compiled
code, Quantify offers you the option of selecting for instrumentation
one or more modules or .dll’s, rather than instrumenting all modules.
This has the advantage of automatically focusing your profiling data on
the code you’re most concerned with, and it also saves time when you
run your code under Quantify.

For example, assume you are working on a plug-in application that is to
be loaded by Microsoft Internet Information Server (I1S). You don’t
need to instrument and profile all of IIS. All you need to do is
instrument your plug-in, and then run it as usual under I1S. Quantify
collects performance data as your plug-in runs, and presents this data
to you when the plug-in exits.

To instrument your plug-in, select Settings > Default settings in
Quantify to display the Settings dialog, and then in the dialog select
Modules to Instrument: Selected Modules. Click on Configure to open the
Module Instrumentation dialog for specifying the name of your

plug-in.

Module Instrumentation [Selective] Lid=]
Modules: %l Pal ||
Module | Measurementl Debugl Instruwl
[Line] Yes Tranzient
With transient
— Measurement Instrumentation State — ¥ Show full path names instrumentation, the
* Defaul & Transient instrumented version
" Line " Peimanent of the module is kept
" Eunction ' Mone only for the duration of
C Time one program run, and
is then replaced by the
uninstrumented
Bestare Al Modules | ak. I Cancel | Help | original

Run your plug-in as usual. Quantify collects and displays profiling
data.

More information? Look up selective instrumentation in the Quantify
online Help index.

Quantify: Advanced features 87

a Rational Quantify - [Run Summary: homer_exe]

Controlling data recording interactively

As your program runs, you can monitor the performance of threads
and fibers and view general information about the run using the Run
Summary window.

Startand stop Clear Take a data
recording data snapshot

gfi\e Edit Wiew Settings “Window Help _|5| 5[
D"lﬂl @l@l EI |EB| @I ||||«|ﬂ| QIE” Elﬂl |‘EIE|I§ ||M\croseconds j ID.UU j | - *l
Threads IDeta\IsI Log I Messagesl F‘DwelTunEI Files I
Current thread m man_11d. | (ew um mm NN NN NN NN EEEEEEE RN
Jl thread_f3. mmm ENEEEEEEE NN EENENEEEEEEE NN NN ENEEEEEEEEE
status ——

Thread status
summary for
the run

Real-time

monitoring for
all the threads in

Running ™ Waiting /0 m Blocked Cuantify m Exited

your program | lelis Ruming [Elapsed Time: 00,0044

Ready

[™ [seRL| 4

You can use the data recording tools to collect data for the entire
program or for just a section of it, so you get exactly the performance
data you want. For example, at any time you can stop recording, clear
the data collected to that point, and then resume recording. You can
also take a snapshot of the current data, enabling you to examine
performance in stages.

You can also start and stop recording, clear data, and take snapshots
automatically from within your program by incorporating Quantify’s
data recording API functions in your code.

More information? Look up threads, recording data, and API functions in
the Quantify online Help index.

88 Getting Started: Rational Quantify

Highlighting functions that share key attributes

You can highlight functions in the call graph to display specific

performance characteristics or to show calling relationships.

Click to display the Highlight list

a Rational Quantify - [Call Graph: homer.exe]
(E File Edit “iew Sefings ‘Window Help

=181 x|

EEIE]

IEB' gl "ll«lﬁl AIZ|| "%I%l §||g|lMlchsecunds =1 IU.UU = | «l*

|2 |Znnm' Highlight: [(None) ~ |
[ERE] 7
Top 10: Call: I—

SHGetFilsInfoA F=—=

Top 10: Function time

Select Functions with
Source, for ~||A0inMain

Node: All Descendants

e)(ample, to OnMeterParse co Node: Immediate Descendants po_prosady
A . Nods: &Il Callers
highlight functions Node: Immediate Calers
onldle OnlNods: Ma Path to Fioot
that have Functi

Functions with Hidden Functions
Functions that ‘it or Block ud

annotated source

Top 10: F+D time = NdrClientGall2 F——— NiReguesi
Tap 10: Avg F time
Initinstance ———— Re/Top 10: MinF time gisterClassOhjac
Top 10: Max F time S
Top 10: First Use oadlib - Setindoy

make_wark_copy ¥

sirlen

Kl | |
‘VIS\HE. 214484 |H|gh|\ghled. 0/0 \LUadleraryW [C:AWINMT \Spstem32WKERMELIZ.DLL]
Ready SCRL 7

FUnCtiOnS W|th a Rational Quantify - [Call Graph: homer.exe]
source COde (E File Edit “iew Sefings ‘Window Help

=181 x|

available are ﬁlul é||ﬁ| EI IEH @I "ll«lﬁl AIZ|| "%I%l I‘E §||g|lMlchsecunds j IU.UU j | «l*
enclosed in e | Zoom: - |— Highight [Functions with Source =l |
rectangles

FHGetFilelinfod F—— WWhetGetConnection\y

Initinstance |t

[oneterParse|—— [Computemeter

21 of the 484
functions in the [dfVinhdain
current dataset

are displayed in

Registerall 4= CoRegisterClassObjec...

anahze_prosody

= MNdrClientCall2 MNiRequest

LoadLibrand.

make_work_copy|EF

Getwindow

strlen

the Call Graph onldle
8 of the 86
functions with |4 | .
source code Wisible: 21744 |Highlighted: /56 [wintainCR T tartup [C-\homer_progthomer, sre]
[SCAL

are displayed in Lf=®
the Call Graph

More information? Look up highlighting in the Quantify online Help

index.

Quantify: Advanced features 89

Focusing your data

Use Quantify’s filter commands to remove a selected function, or all
functions in a module, from the current dataset. Alternatively, use
subtree commands to focus on or remove a specific function and all its
descendants from the current dataset. Simply right-click a function in
the Call Graph, Function List, or Function Detail window.

_ Hide: Methiod LeakSample, <init=
Subtree 3 Hide Class LeakSample
g ol 5 Delete Method LeakSample. <init=
Expand/Collapse
You can hide or Line Scale Fackars Delete Class. LeakSamplfa
delete individual Colors 5 e Last Filer Eperatian
functions, all Method Mame. .. Filker Manager. ..
functions in a source Flle L
module, or entire —| | v Data Browser... Ctrl+E The Filter Manager offers additional
subtrees. Hide filtering options
functions or subtrees
to roll up their time to
their callers; delete Filter ¥
them to discard their Sildpse EocusonSublties L Select Focus on Subtree
time completely Expand/Collapse E'C:etsgbtfte to delete all functions
= elete Subtree
Line Scale Fact L .
E:lnle cale Factors ’ Undo Hide Sublree except the subtree
Colors
Method Mame. .. HReset to Roat.
Source Fle
v Daka Browser... Chrl+E

Quantify has undo capabilities for all filter and subtree commands, to
easily return to any previous dataset configuration.

The Call Graph window also provides a series of expand and collapse
commands that work with subtrees. Unlike the filter and subtree
commands, however, these commands affect only the Call Graph
display; they do not change the current dataset.

More information? Look up filtering data and subtrees in the Quantify
online Help index.

Fine-tuning data collection

Using the Quantify PowerTune options, you can specify how you want
Quantify to measure your program’s performance. Quantify’s default
measurement levels are based on what is appropriate in most
situations, but with PowerTune you can control how specific modules
are measured.

90 Getting Started: Rational Quantify

Select a default
measurement level

Select one or more modules. . .

then set their measurement level

Why is this useful? It allows you to significantly speed up the run-time
performance during profiling. You can, for example, select Time as your
default measurement level, and then select Line for the specific
modules that you’re currently investigating.

Settings for C:\homer_progthomer exe HE
PawerTune | Files | Fun Time |
— Default Measurement Click Configure t0
display the Module
 Functian Instrumentation dialog
 Time and specify
measurement levels
~ Modules ta Instrument for specific modules
& Al Modules Configure... |
| e ety Module Instrumentation EHE
" Selected Modules
Module | |nstrument | Debug |A
chwinntaystem 32 pertd. i [System] Mo
chwinntapstem32hadvapi32. dil [System] Mo
o hwinntapstem32sntdL dil [System] Mo
chwinnthapstem32imicod 2d.dll [Time] Yes
chwwinnthapstem32hgdid2 dil [System] Mo =
chwinntaystem32user32 di [System] Mo
chwwinnthapstem32hkemel32.dIl [System] Mo
chwinntaystem 32 mavertd. dl [Time] Yes
[Time] Yes
= inel Yes =l
- Measurement ¥ Show full path names
& Default
—— " Line
" Eunction
C Time
Llear Cache | QK I Cancel | Help

Quantify measures performance at several levels of detail:

Line. At this level, Quantify counts the number of times each line
executes during a run, then computes performance data based on
the number of cycles needed for one execution. Line level, which

requires debug line information, results in the most accurate and

detailed data possible, but does take the most time to collect.

Function. This level provides the same level of accuracy as line-level
measurement, but less detail. Function level is useful when you
don’t need to know how individual lines perform, but still want
precise, repeatable data for functions.

Quantify: Advanced features 91

« Time. Quantify collects data for timed functions by starting and
stopping a timer when each function begins and ends. The data is
accurate for the current run, but is influenced by microprocessor
state and memory effects. The overhead for collecting timed data,
however, is very low.

More information? Look up measurement types in the Quantify online
Help index.

Integrating Quantify in your test environment

By integrating Quantify into your test environment, you have a tool
that detects changes in performance in your nightly tests, giving you an
immediate heads-up as soon as things start to go wrong.

You can easily run Quantify from an existing makefile, batch file, or
Perl script by adding the command:
Quantify /SaveDat a Exenane. exe

to run your program under Quantify. The / SaveDat a option generates
performance data in a format for viewing and comparing with previous
runs of the program in the Quantify graphical interface.

Note that the / Sel ect Mbdul eLi st option is also available to help
focus your testing. Refer to Using selective instrumentation on page 87.

Java, .NET managed code, and Visual Basic programmers: For Java
code, the command line must include the /Java switch. For managed
code and Visual Basic p-code programs, the command line must
include the /Net switch. For example, if you have a test script that runs
a Java class file, change the line that runs it to:

Quantify /SaveData /Java Java. exe C assnane. cl ass
For managed code and p-code programs, the command is:
Quantify /SaveData / Net Exenane. exe

More information? For details, and additional command-line options,
look up command line and scripts in the Quantify online Help index.

Now try out Quantify on your own code.
Remember that Quantify’s online Help contains
detailed information to assist you.

92 Getting Started: Rational Quantify

Index

A

ABW error (Purify, C/C++) 15
Annotated Source window
PureCoverage 62
Purify (coverage data) 18
Quantify 83
API functions
PureCoverage 69
Purify, C/C++ 24
Purify, Java 39
Purify, managed code 54
Quantify 88
array bounds write error (Purify, C/C++) 15
ASCII text files (.txt)
PureCoverage 64, 70
Purify, C/C++ 20
Purify, Java 38
Purify, managed code 53
Quantify 85
Auto Merge (PureCoverage) 63

B

basic steps
improving code coverage 57
improving program performance 74
Purify’ing C/C++ code 9
Purify’ing Java code 28
Purify’ing managed code 42

batch files for automated testing
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

Break on Error tool (Purify, C/C++) 22

C

cache files
Purify, C/C++ 11
call graph (Purify, Java)
filter commands 37
highlighting related methods 36
overview 30
subtree commands 37
call graph (Purify, managed code)
filter commands 50
highlighting related methods 50
overview 44
subtree commands 50, 51
call graph (Quantify)
filter commands 90
for comparing runs 84
highlighting related functions 89
initial display 76
line width 79
subtree commands 77, 90
call stack (Purify, C/C++) 15, 16
callers of a function, listed (Quantify) 82
calling paths, call graph (Quantify) 79
C/C++ code
monitoring coverage 58
profiling performance 73, 75
Purify’ing 9
.cfy files
PureCoverage 64
Purify, coverage data 20
ClearQuest integration
PureCoverage 66
Purify, C/C++ 24
Quantify 86
code
editing (Purify, C/C++) 17
editing (Purify, Java) 31
editing (Purify, managed code) 45

93

collapsing call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 90
colors
in annotated source (PureCoverage) 62
in annotated source (Purify, coverage
data) 18
in call graph (Quantify) 84
command-line interface
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
commands (Purify, C/C++)
Embed Data Browsers 22
commands (Purify, Java)
Expand/Collapse 37
filter commands 37
subtree commands 37
undoing 37
commands (Purify, managed code)
Expand/Collapse 51
filter commands 50
subtree commands 51
undoing 51
commands (Quantify)
Expand/Collapse 78, 90
filter commands 90
subtree commands 78, 90
undoing 90
comparing
program runs (Purify, C/C++) 19
program runs (Purify, Java) 30
program runs (Purify, managed code) 44
program runs (Quantify) 84
snapshots (Purify, Java) 30
snapshots (Purify, managed code) 44
Coverage Browser window (PureCoverage) 59
coverage data (PureCoverage)
controlling with API functions 69
filtering 61
limiting collection 68
merged for multiple runs 63
saving from the command line 70

94 Index

saving from the user interface 63
sharing 64
coverage data (Purify, C/C++)
collecting 10, 23
saving 20
coverage data files (.cfy)
PureCoverage 64
Purify 20
coverage levels
customizing (PureCoverage) 66
setting default levels (PureCoverage) 66
coverage monitoring (Purify, C/C++)
/Coverage option 23
description 8
saving coverage data 20
turningon 10
using coverage data 17— 19
Create Filter command (Purify, C/C++) 14
customizing
coverage levels (PureCoverage) 66
data collection level (Quantify) 90
data display (PureCoverage) 60

D

data, see coverage data, error data, memory profil-
ing data, and performance data
Data Browser window (Purify)
coverage data (C/C++) 18
error data (C/C++) 11—-19
memory profiling data (Java) 29— 31
memory profiling data (managed
code) 43—46
object list (Java) 34
object list (managed code) 48
data recording
changing default level (Quantify) 90
controlling (Quantify) 88
controlling programatically (Purify, Java) 39
controlling programatically (Purify, managed
code) 54
debug data
and instrumentation (Purify, C/C++) 10,
20, 42

and line-level coverage (PureCoverage) 58
and line-level profiling (Quantify) 75
debugging, just-in-time (Purify, C/C++) 22
default instrumentation levels, setting
PureCoverage 66
Purify, C/C++ 20
Quantify 90
deleting call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 80, 90
descendants of a function, listed (Quantify) 82
diff call graph (Quantify) 84
diff function list (Quantify) 84
diff’ing snapshots
equivalent results with API (Purify, Java) 39
equivalent results with API (Purify, managed
code) 54
Purify, Java 30
Purify, managed code 44
displaying filtered messages (Purify, C/C++) 15
dispose() method (Purify, Java) 27

E

editing source code
Purify, C/C++ 17
Purify, Java 31
Purify, managed code 45
Embed Data Browsers command (Purify,
C/C++) 22
Error View tab, Data Browser window (Purify,
C/C++) 11
errors (Purify, C/C++)
analyzing 15
breaking on errors 22
correcting 17
saving error data 20
See also messages (Purify, C/C++)
excluding modules (PureCoverage) 67
exit messages (Purify, C/C++) 12

expanding call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 78, 90

F

F+D (Function + Descendants) time
(Quantify) 80
File View tab (Purify, coverage data) 18
files
caching after instrumentation (Purify,
C/C++) 11
.cfy (PureCoverage) 64
.cfy (Purify, C/C++) 20
.pcy (Purify, C/C++) 20
.pft (Purify, C/C++) 15
.pfy (Purify, C/C++) 20
.pmy (Purify, Java) 36
.pmy (Purify, managed code) 49
.txt (PureCoverage) 64
xt (Purify, C/C++) 20
.txt (Purify, Java) 36
.txt (Purify, managed code) 49
filters
filter groups (Purify, C/C++) 15
Filter Manager (PureCoverage} 61
Filter Manager (Purify, C/C++) 15
Filter Manager (Purify, Java) 38
Filter Manager (Purify, managed code) 52
Filter Manager (Quantify) 90
overview (Purify, C/C++) 36
overview (Purify, Java) 50
overview (Purify, managed code) 13
saved in .pft files (Purify, C/C++) 15
sharing (Purify, C/C++) 15
undoing filter commands (Purify, Java) 37
undoing filter commands (Purify, managed
code) 51
undoing filter commands (Quantify) 90
focusing on subtrees
Purify, Java 51
Purify, managed code 90

Index 95

Function Detail window

Purify, Java 32

Purify, managed code 46

Quantify 82
Function level profiling (Quantify) 91
function list view

Purify, coverage data 18

Purify, Java 31

Purify, managed code 45
Function List window

for a single run (Quantify) 80

for comparing runs (Quantify) 84

sorting data (Quantify) 80

using (PureCoverage) 60
function time (Quantify) 80
function-level coverage

described (PureCoverage) 59

setting (PureCoverage) 66
function-level instrumentation (Purify) 20
functions

PureCoverage APl 69

Purify API (C/C++) 24

Purify API (Java) 39

Purify APl (managed code) 54

Quantify APl 88

G

garbage collector
Purify, Java 26, 29
Purify, managed code 40, 43

graphs
call graph (Purify, Java) 30
call graph (Purify, managed code) 44
call graph (Quantify) 76, 84, 89
memory usage graph (Purify, Java) 29
memory usage graph (Purify, managed

code) 43

object reference (Purify, Java) 34

object reference (Purify, managed code) 47
green highlighting in call graph (Quantify) 84

groups, filter (Purify, C/C++) 15

96 Index

H

handles in use at exit (Purify, C/C++) 12
hiding call graph subtrees
Purify, Java 37
Purify, managed code 51
Quantify 90
hiding Purify C/C++ error messages
See filters
highlighting
green in call graphs (Quantify) 84

performance improvements (Quantify) 84

related functions (Quantify) 89
related methods (Purify, Java) 36

related methods (Purify, managed code) 50

instrumentation
customizing (PureCoverage) 66
customizing (Purify, C/C++) 21
default levels (Purify, C/C++) 20
described (PureCoverage) 58
described (Purify, C/C++) 10
selective (PureCoverage) 67
selective (Quantify) 87
integration
Microsoft Visual Basic (PureCoverage) 65
Microsoft Visual Basic (Quantify) 85

Microsoft Visual Studio 6 (PureCoverage) 65

Microsoft Visual Studio 6 (Purify,
C/C++) 9-20

Microsoft Visual Studio 6 (Quantify) 85

Microsoft Visual Studio .NET
(PureCoverage) 65

Microsoft Visual Studio .NET (Purify) 42

Microsoft Visual Studio .NET (Quantify) 85

Rational ClearQuest (PureCoverage) 65
Rational ClearQuest (Purify, C/C++) 24
Rational ClearQuest (Quantify) 85
Rational Robot (PureCoverage) 65
Rational Robot (Purify, C/C++) 24—25
Rational Robot (Quantify) 85

Rational Visual Test (PureCoverage) 65

Rational Visual Test (Purify, C/C++) 24—25 Line time (Quantify) 83
Rational Visual Test (Quantify) 85 line width, in call graph (Quantify) 79
interactive snapshots (PureCoverage) 69 line-level coverage (PureCoverage)
annotated source 62
described 59
J setting 66

Java (PureCoverage) line-level instrumentation (Purify, C/C++) 20

running from the command line 70

supported languages 55 M

Java (Purify)
examining objects 33—35 makefiles for automated testing
filtering memory profiling data 37 PureCoverage 70
memory leaks 26, 28 Purify, C/C++ 23
memory usage graph 29 Purify, Java 38
Purify’ing Java code 28 Purify, managed code 53
saving memory profiling data 36 Quantify 92

Java (Quantify) managed code (PureCoverage)
running from the command line 92 running from the command line 70
supported languages 73 supported languages 55

/Java option managed code (Purify)
PureCoverage 70 examining objects 47—49
Purify 38 filtering memory profiling data 50
Quantify 92 memory leaks 40, 42

just-in-time debugging (Purify, C/C++) 22 memory usage graph 43

Purify’ing managed code 42
saving memory profiling data 49
L managed code (Quantify)
supported languages 73
measurement levels (Quantify) 91
memory leaks (Purify)
C/C++ leaks reported at exit 12
Java memory leaks 26, 28

L+D (Line + Descendants) time (Quantify) 83
languages and applications supported
PureCoverage 56
Purify, C/C++ 8

Ieak?l;sg::z) & managed code memory leaks 40, 42
java 26 PurifyNewLeaks API function (C/C++) 24

memory profiling data (Purify)

filtering (Java) 37

filtering (managed code) 50, 52

saving (Java) 36

saving (managed code) 49
memory usage graph

Purify, Java 29

Purify, managed code 43
menu, shortcut (Purify, C/C++) 12

managed code 40
See also memory leaks (Purify)
levels of measurement (Quantify) 91
limiting coverage data collection
(PureCoverage) 68
line colors
in annotated source (PureCoverage) 62
in annotated source (Purify coverage
data) 18
Line level measurement (Quantify) 91

Index 97

merging data from multiple runs
(PureCoverage) 63
messages (Purify, C/C++)
analyzing 15
expanding 15
filtering 13
redisplaying filtered 15
See also errors (Purify, C/C++)
method-level coverage (PureCoverage), see func-
tion-level coverage (PureCoverage)
methods, highlighting by category
Purify, Java 36
Purify, managed code 50
Microsoft Visual Studio 6 integration
PureCoverage 65
Purify 9
Quantify 85
Microsoft Visual Studio .NET integration
PureCoverage 65
Purify 42
Quantify 85
minimal instrumentation (Purify, C/C++) 20
Module View tab (Purify coverage data) 18
modules
controlling coverage levels
(PureCoverage) 66
controlling instrumentation (Purify,
C/C++) 21
controlling instrumentation level
(Quantify) 90
excluding from coverage (PureCoverage) 67
filtering by module (Purify, Java) 37
filtering by module (Purify, managed
code) 50
filtering by module (Quantify) 90
monitoring program performance (Quantify) 88
monitoring program runs (Quantify) 88

N

Navigator
PureCoverage 63
Purify, C/C++ 19
Purify, Java 30

98 Index

Purify, managed code 44
negative values in function list (Quantify) 84
.NET managed code, see managed code
/Net option

PureCoverage 70

Purify 53

Quantify 92

O

Obiject Detail window

Purify, Java 34

Purify, managed code 47
Object List View tab

Purify, Java 34

Purify, managed code 48
object reference graph

Purify, Java 47

Purify, managed code 34
object references

and Java memory leaks 26

and managed code memory leaks 40
objects, examining

Purify, Java 33—35

Purify, managed code 47—49

P

.pcy files (Purify, C/C++) 20
performance data (Quantify)
comparing runs 84
controlling recording 88
filtering 90
for all dataset functions 80
for individual lines 83
for single functions 82
improvements highlighted 84
saving from the command line 92
Perl scripts for automated testing
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

.pft files (Purify, C/C++) 15
.pfy files (Purify, C/C++) 20
pie charts, Function Detail window

Purify, Java 33

Purify, managed code 47
.pmy files

Purify, Java 36

Purify, managed code 49
PowerCheck tab (Purify, C/C++) 20
PowerCov options (PureCoverage) 66
PowerTune (Quantify) 90
precise instrumentation (Purify, C/C++) 20
problems

Java code 26

managed code 40
procedure-level coverage (PureCoverage), see

function-level coverage (PureCover-
age)

profiling program performance (Quantify) 88
programming languages and components sup-

ported
PureCoverage 56
Purify 7
Purify, C/C++ 8
Quantify 73

programs

instrumenting (PureCoverage) 58

profiling performance (Quantify) 88

rerunning (Purify) 19

running from Microsoft Visual Studio 6
(PureCoverage) 65

running from Microsoft Visual Studio 6
(Purify, C/C++) 10

running from Microsoft Visual Studio 6
(Quantify) 85

running from Microsoft Visual Studio .NET
(PureCoverage) 65

running from Microsoft Visual Studio .NET
(Purify, managed code) 42

running from Microsoft Visual Studio .NET

(Quantify) 85

running Java programs (Purify) 28

PureCoverage
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 57
Purify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using (C/C++) 9
using (Java) 28
using (managed code) 42
Purify data files
C/C++ 20
Java 36
managed code 49
Purify’ing
C+C++code 9
Java code 28
managed code 42
PurifyPlus, described 1

Q

Quantify
in PurifyPlus 1

tips for developers 2
tips for testers 3
using 74
QuickFilter command (Purify, C/C++) 14

R

Rational ClearQuest integration
PureCoverage 66
Purify 24
Quantify 86
Rational PureCoverage
in PurifyPlus 1
tips for developers 2
tips for testers 3

running managed code programs (Purify) 42
running under debugger (Purify, C/C++) 22

using 57

Index 99

Rational Purify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using (C/C++) 9
using (Java) 28
using (managed code) 42
Rational PurifyPlus, described 1
Rational Quantify
in PurifyPlus 1
tips for developers 2
tips for testers 3
using 74
Rational Robot integration
PureCoverage 66, 71
Purify, C/C++ 24—25
Quantify 86
Rational Software technical publications,
contacting 5
Rational Software technical support,
contacting 5
Rational Visual Test integration
PureCoverage 66, 71
Purify, C/C++ 24—25
Quantify 86
recording data, controlling
PureCoverage 68
Quantify 88
relocation data, and instrumentation
Purify, C/C++ 10, 20, 42
Robot integration
PureCoverage 66, 71
Purify, C/C++ 24—25
Quantify 86
Run Control toolbar (Quantify) 88
Run Summary window
PureCoverage 59
Quantify 88
running programs
from the command line (Purify) 53

from the command line (Purify, C/C++) 23

from the command line (Purify, Java) 38
from Visual Studio 6 (PureCoverage) 65
from Visual Studio 6 (Purify, C/C++) 10
from Visual Studio 6(Quantify) 85

100 Index

from Visual Studio .NET (PureCoverage) 65

from Visual Studio .NET (Purify, managed
code) 42

from Visual Studio .NET (Quantify) 85

in the Purify standalone interface (Purify) 52

in the Purify standalone interface (Purify,
C/C++) 22

PureCoverage 58

Purify, Java 28

Purify, managed code 42

Quantify 75

rerunning (Purify, C/C++) 19

runs, comparing

Purify, C/C++ 19

Purify, Java 30

Purify, managed code 44

Quantify 84

S

/Save* options
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92
saving data
from the command line (PureCoverage) 70,
92
from the command line (Quantify) 92
from the command line(Purify, C/C++) 23,
38, 53
from the user interface (PureCoverage) 63
from the user interface (Purify, C/C++) 20
from the user interface(Purify, Java) 36
from the user interface(Purify, managed
code) 49
scaling of line widths, in Quantify call graph 79
scripts for automated testing
PureCoverage 70
Purify, C/C++ 23
Purify, Java 38
Purify, managed code 53
Quantify 92

selective instrumentation
PureCoverage 67
Quantify 87
settings for data collection
PureCoverage 58
Quantify 75
sharing
data files (PureCoverage) 64
filters (Purify, C/C++) 15
shortcut menu
Purify, C/C++ 37
Purify, Java 12
Purify, managed code 51
snapshots
coverage dava (PureCoverage) 69
memory use (Purify, Java) 29
memory use (Purify, managed code) 43
sorting data
PureCoverage 60
Quantify 80
source code
displaying (PureCoverage) 62
displaying (Quantify) 83
editing (Purify, C/C++) 17
editing (Purify, Java) 31
editing (Purify, managed code) 45
stack, call (Purify, C/C++) 16
standalone Purify interface (C/C++) 22
standalone Purify interface (managed code) 52
starting
PureCoverage 58
Purify, C/C++ 10, 22, 52
Purify, Java 28
Purify, managed code 42
Quantify 75
status line, Quantify windows 89
strategies for using Rational PureCoverage 56
subtrees (Purify, Java)
deleting 37
expanding and collapsing 37
focusing on 37
undoing subtree commands 37
subtrees (Purify, managed code)
deleting 51
expanding and collapsing 51

focusing on 51
undoing subtree commands 51
subtrees (Quantify call graph)
deleting 80, 90
expanding and collapsing 90
focusing on 90
undoing subtree commands 90
supported languages and components
PureCoverage 56
Purify, C/C++ 8
Quantify 73
system resources and memory leaks
Purify, Java 27
Purify, managed code 41

T

technical publications, contacting 5
technical support, contacting 5
tests
using PureCoverage in automated tests 70
using PureCoverage in unit tests 3
using Purify in automated tests 23, 25
using Purify in automated tests (Java) 38
using Purify in unit tests 3
using Quantify in automated tests 92
using Quantify in unit tests 3
text files (.txt)
PureCoverage 64, 70
Purify, C/C++ 20
Purify, Java 36
Purify, managed code 49
Quantify 85
thread status, monitoring (Quantify) 88
Time measurement (Quantify) 92
tool tips, call graph
Purify, Java 31
Purify, managed code 45
.txt files
PureCoverage 64, 70
Purify. Java 36
Purify, C/C++ 20
Purify, managed code 49
Quantify 85

Index 101

U

undoing filter and subtree commands
Purify, Java 37
Purify, managed code 51
Quantify 90

unembedding Purify (C/C++) 22

Vv

Visual Basic
integration (PureCoverage) 65
integration (Quantify) 85
Visual C/C++, running programs
PureCoverage 58
Purify 9
Quantify 75
Visual Studio 6 integration
PureCoverage 65
Purify, C/C++ 9
Quantify 85
Visual Studio .NET integration
PureCoverage 65
Purify 42
Quantify 85
Visual Test integration
PureCoverage 66, 71
Purify, C/C++ 24—25
Quantify 86

w

what-ifs, in Quantify call graph 80
windows and tabs
Annotated Source (PureCoverage) 62

102 Index

Annotated Source (Quantify) 83
Call Graph (Purify, Java) 30, 36
Call Graph (Purify, managed code) 44, 50
Call Graph (Quantify) 76, 84, 89
Coverage Browser (PureCoverage) 59
Data Browser (Purify, C/C++) 11— 14,
15—18
Data Browser (Purify, Java) 29—31, 34
Data Browser (Purify, managed
code) 43—46, 48
Diff Call Graph (Quantify) 84
Diff Function List (Quantify) 84
File View (Purify, coverage data) 18
Function Detail (Purify, Java) 32, 33
Function Detail (Purify, managed code) 46,
47
Function Detail (Quantify) 82
Function List (PureCoverage) 60
Function List (Quantify) 80, 84
Function List View (Purify Coverage
data) 18
Function List View (Purify, Java) 31
Function List View (Purify, managed
code) 45
Module View (Purify, coverage data) 18
Navigator (Purify, C/C++) 19
Navigator (Purify, Java) 30
Navigator (Purify, managed code) 44
Object Detail (Purify, Java) 34
Obiject Detail (Purify, managed code) 47
Object List View (Purify, Java) 34
Object List View (Purify, managed code) 48
Run Summary (PureCoverage) 59
Run Summary (Quantify) 88

	Title page
	Notice
	Welcome
	Rational PurifyPlus: What it is
	Tips for development engineers
	Tips for test engineers

	Other PurifyPlus resources
	Contacting Rational technical support
	Contacting Rational technical publications

	Rational Purify
	Purify for Visual C/C++ developers and testers
	Purify for Visual C/C++: What it does
	Purify for Visual C/C++: The basic steps
	Purify for Visual C/C++: Advanced features

	Purify for Java developers and testers
	Purify for Java: What it does
	Purify for Java: The basic steps
	Purify for Java: Advanced features

	Purify for .NET managed code developers and testers
	Purify for .NET managed code: What it does
	Purify for .NET managed code: The basic steps
	Purify for .NET managed code: Advanced features

	Rational PureCoverage
	PureCoverage: What it does
	PureCoverage: The basic steps
	PureCoverage: Advanced features

	Rational Quantify
	Quantify: What it does
	Quantify: The basic steps
	Quantify: Advanced features

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

