Rational Software Corporatione

Rational- PurifyPlus
Rational- Purify-:
Rational- PureCoverage:
Rational- Quantify-:

Installing and Getting Started

VERSION: 2002A.06.00

PART NUMBER: 800-025784-000

UNIX
R a t 1<oNna l support@rational.com
the soffware devalopmeani company http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2001, 2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025784-000
Version Number: 2002A.06.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE

PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, ClearQuest, PureCoverage, Purify, Purify'd,

and Quantify, among others, are either trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

PATENT
U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional

patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499,

GOVERNMENT RIGHTSLEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set

forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying

license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Preface. vii
What'sinthis guide?. e Vi
AUdIEBNCE . . o oo viii
Other FBSOUICES . . . vttt e e e e e e e viii
Contacting Rational technical publications viii
Contacting Rational technical support viii

1 Installingtheproducts. 1
OVBIVIBW . o o e e 1
Step 1: Obtaining a license for your Rational product. 2

Information you need to obtainalicense 3
Obtaining a .upd import file using AccountLink 4
Step 2: Installing your Rational product 4
Information you need forrs_install 4
Installing the products usingrs install 14
Answers to questions aboutrs_install L L 15
Step 3: Post-installation configurationtasks 16
Checking and adjusting your configuration., 20
Maintaining the rational.opt optionsfile. 20
Modifying the listofusernames. i, 21
Removing a previous productrelease 22
Requesting and installing the permanent or TLA licensekey.................. 22
Requesting your permanent or TLA license key. 22
Entering a permanent or TLA license key after initial installation. 23
Supplemental NOteS 23
Creating an installation directory manually. 23
Mountingthe CD-ROM. e e e e e e 24
Ejectingthe CD-ROM. e 25
Using rs_install commands. 26
Using the FLEXIm Software License Manager., 27

2 Using Rational Purify 29
Rational Purify: Whatitdoes. 29
Finding errorsin HelloWorld. e 30

INStrUMEeNting @ Programo vttt ettt e e 31

Compiling and linking in separate stages., 31
Running the instrumented program. i 32
Seeing allyour errorsataglance. 33
Finding and COrrecting €rrors o e e e 34

Understanding the cause of theerror. it 35

Correcting the ABR EITOFot e 36
Finding leaked memory e 37

Correcting the MLK error e 38

Looking atthe heap analysis i 39
Comparing Program FUNSottt e e e e e e e e e e e 40
Suppressing PUrify MeSSages. . ..ottt 40
Saving Purify outputto aviewfile. 41

Saving arun to a view file fromthe Viewer. 42

Openingaviewfile. 42
Using your debugger with Purify 42
Using Purify with PureCoverage. i e e e 43
Purify APLfunCtions. e 43
BUild-time OptioNS e 44
Conversion characters for filenames. 45
RUNtIME OPtiONS e 45
PUrfy MESSagES o oo a7
How Purify finds memory-access errors ii it 48

How Purify checks statically allocated memory 49

3 Using Rational PureCoverageiiiiiiinnn. 51
Rational PureCoverage: Whatitdoes. 51
Finding untested areas of HelloWorld 52
INStrUMENtiNg @ PrOgramottt ettt e e et e e e 53
Running the instrumented program. 54
Displayingcoverage dataot e 55

Expanding the file-level detail. 56

Examining function-level detail 57

Examining the annotated sourcet i 58
Improving Hello World’'s testcoverage 58
USiNg rePOrt SCHPLS . . . o oo o e e 61
Build-time optionso 62

iv Contents

RUNtIME OPtIONS e e e 63

Analysis-time OptioNS 63
Analysis-time mode Options e e 64
4 Using Rational Quantify. 65
Rational Quantify: Whatitdoes i 65
How Quantify Works: C/C++ e e 65
How Quantify WOrksS: Javat e 66
Collecting performance data: C/C++ 67
Interpreting the program summary: C/C++ 68
Collecting performance data: Java.ttt e 68
Interpreting the program summary: Java. 69
Using Quantify’s data analysiswindows., 70
The Function LiStWindow 71
Sorting the function list. e 71
Restricting functions. 72
The Call Graph Window e 72
Using the pop-Up MeNUt e e e e e 73
Expanding and collapsing descendants. 74
The Function Detaill Window 74
Changing the scale and precisionofdata 75
Saving function detail data. 75
The Annotated Source WiNdOW.ot e 76
Changing annotations e 76
Saving performance dataon exit 77
Comparing program runs with gxdiff. 77
BUild-time OptioNSo e 78
gV ruNtime OptioNSot 79
RUNtIME OPtiIONS e e 79
APLfunctions: C/C+H+ o 81
APIMethods: Javaot 82
INdeX .o 85

Contents v

vi Contents

Preface

What'’s in this guide?

This guide is designed to help you get up and running quickly with
Rational® PurifyPlus, Purify®, PureCoverage®, and Quantify®. It
includes information about:

Installing the products.

Note: PurifyPlus is a Rational product that includes Purify,
PureCoverage, and Quantify, and provides a unified procedure for
installing all three applications on your system at the same time.

» Using Purify to pinpoint runtime errors and memory leaks
everywhere in your application code.

= Using PureCoverage to prevent untested application code from
reaching end users.

Using Quantify to improve the performance of your applications by
finding and eliminating bottlenecks.

Purify, PureCoverage, and Quantify—the essential tools for delivering
high-performance UNIX applications—use patented Object Code
Insertion (OCI) technology to instrument your program, inserting
instructions into the program’s object code. This enables you to check
your entire program, including third-party code and shared libraries,
even when you don’t have the source code.

Starting to use Purify, PureCoverage, and Quantify is as easy as adding
the product name (puri fy, pur ecov, or quant i f y) to the front of your
link command line. For example:

% purify cc -g hello_world.c

vii

Audience

Read this guide if you are responsible for installing Rational PurifyPlus,
Purify, PureCoverage, or Quantify, or if you need an introduction to the
use of Purify, PureCoverage, or Quantify.

Other resources

A complete online help system is available for each application.
Select Help > Help topics.

For help with a window, select Help > On window. For help with a
specific menu item or control button in a window, select
Help > On context, then click the menu item or control button.

Note: You can also view the help systems independently of the
products. Open the following in your Netscape browser:

o ‘purify -printhonmedir‘/U/htm/punix. htm
o ‘purecov -printhonedir‘/U/htm/pcu. htm
o ‘quantify -printhomedir'/ U /htm/qunix.htm

For information about Rational Software and Rational Software
products, go to http://www.rational.com.

Contacting Rational technical publications

Please send any feedback about this documentation to the Rational
technical publications department at techpubs@rational.com.

Contacting Rational technical support

You can contact Rational technical support by e-mail at
support@rational.com.

You can also reach Rational technical support over the Web or by
telephone. For contact information, as well as for answers to common
guestions about Purify, PureCoverage, and Quantify, go to
http://www.rational.com/support.

viii Preface

Installing the products

Overview

The Rational® PurifyPlus product family includes Rational PurifyPlus,
Rational Purify®, Rational PureCoverage®, and Rational Quantify®.

A PurifyPlus license allows you to use Purify, PureCoverage, and
Quantify, and provides a unified procedure for installing all three
applications on your system at the same time. Individual product
licenses are also available.

Installing each product includes three steps, though depending on your
situation you may be able to skip one or more of them:

1 Obtaining a license for the product.

2 Installing the product on your system using the rs_i nst al |
program.

3 Performing any necessary post-installation configuration
procedures.

This chapter tells you how to gather the information you need to
perform these steps, as well as basic instructions to get you started with
each one. It also contains information about related tasks (such as
uninstalling) and administering the GLOBEtrotter FLEXIm® Software
License Manager that is included with your Rational Software product.

Step 1: Obtaining alicense for your Rational product

Refer to the following table to determine whether you need to perform
Step 1, based on the type of license you are setting up.

License Type

Description

Instructions

Permanent

Allows the use of the
product without time
limits.

Term License

Allows the use of the

If you do not yet have a valid permanent or TLA
license set up, gather the information specified in
Information you need to obtain a license on page 3 and
then request a license from AccountLink, Rational
Software’s license management web tool. This

product for a limited
time. Note that you will
have to enter a
permanent or TLA key
later to continue using
the product.

Agreement (TLA) pro_duct fo_r a specific applies if you are a first-time purchaser of the Rational
period of time. .
PurifyPlus products.
If you are upgrading from an earlier version of the
product and still have a valid permanent or TLA
license, go right to Step 2: Installing your Rational product
on page 4. When you run the installation script, be sure
to choose the option USE AN EXI STI NGRATI ONAL
LI CENSE; you must then enter the location of your
existing license.
To enter a permanent or TLA license key after you've
been using a startup or evaluation license, see Entering
a permanent or TLA license key after initial installation on
page 23.
Startup Gets you up and running | Go right to Step 2: Installing your Rational product on
as soon as you receive page 4.
your Rational pr_oduct. When you receive your permanent or TLA license, see
Note that you will have | g vering a permanent or TLA license key after initial
toenter a permanent or | jnqtajation on page 23.
TLA key later to
continue using the
product.
Evaluation Allows you to try out the

2 Chapter 1 - Installing the products

Information you need to obtain a license

In addition to contact information, you will need to provide the
following to AccountLink, Rational Software’s license management
web tool, in order to obtain a . upd import file with licensing

information:

Data for AccountLink Notes Your Entry
Your Rational account Source: your Rational license key certificate.
number
License Type Source: your Rational license key certificate

Permanent and TLA licenses for PurifyPlus

can be either Floating licenses or Named User

licenses.

Permanent and TLA licenses for Purify,

PureCoverage, and Quantify are always

Named User licenses.
Rational Product Line Source: your Rational license key certificate |DEVELOPER TOOLS

Product Name

Source: your Rational license key certificate.

PurifyPlus for UNIX,
Purify for UNIX,
PureCoverage for UNIX, or
Quantify for UNIX

Quantity

Source: your Rational license key certificate.

This is the number of Floating licenses or
Named User licenses that you intend to
install. This cannot be greater than the
number of licenses you purchased.

Host Name and hostid

This is the name and hostid of the machine
that you intend to use as your license server
host.

If the license server host is different from the
installation machine, you must have remote

shell access from the installation machine to

the license server host during installation.

In addition, the installation directory must be
accessible from the license server host.

If you do not know the hostid of your license
server host, you can download and run the
tool get _host i nf o. sh after you have
begun your license request on AccountLink;
go to Obtaining a .upd import file using
AccountLink on page 4.

Step 1: Obtaining a license for your Rational product

3

Obtaining a .upd import file using AccountLink

Access AccountLink at http//:www.rational.com/accountlink. The
AccountLink website provides instructions for requesting licenses.

When you supply the required information to AccountLink, you will
receive by return email a file named

i cense_for_<server name>.upd. Save this file as a text file in a
location that is accessible from the installation machine.

Go on to Step 2: Installing your Rational product on page 4.

Step 2: Installing your Rational product

Install your product using the scriptrs_instal | .

Information you need for rs_install

The information you need to supply to thers_i nst al | script depends
on what type of license you have, and on how you are setting it up:

If you are installing a new permanent or TLA license, and you have
a . upd file that you can use to import licensing data, go to page 5.

« If you are installing a new permanent or TLA license, and you
do not have a . upd file that you can use to import licensing data, go
to page 8.

If you already have a permanent or TLA license set up, go to
page 10.

« If you are installing a temporary or evaluation license, go page 12.

4 Chapter 1 - Installing the products

If you are installing a new permanent or TLA license

and are importing a .upd file

Gather the information specified in the following table:

Data for rs_install

Notes

Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rat i onal).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. The directory must be the
same for each machine, so you cannot use a local automount path
like /tnmp_mt/Rational .

If Rat i onal does not already exist, the installation program will
create it when you enter the full pathname.

If you are installing on a read-only file system, or want to create
this directory manually, see Supplemental notes on page 23. This
section also shows the structure of the directory after installation.

Step 2: Installing your Rational product

5

Data for rs_install | Notes Your Entry

Note: If you are installing a Named User license, you must supply user names for each individual who
will be using the product. You must include your user name in order to perform the post-installation
selt-test successfully. User names are recorded in the FLEXIm options file, r at i onal . opt . For
information about the options file, see Maintaining the rational.opt options file on page 20.

You do not need this information if you are installing a Floating license for PurifyPlus.
To input User names, you need the data in A or B below, or the data in A supplemented with the data

in B.

A. Path of the
PureL A directory
containing the file
users. purel a
(available only if
you licensed an
earlier version of
the product using
PureLA License
Advisor).

If you are currently running the product under a PureLA license,
you have the option of importing the user names from the
PureL A database instead of entering them manually. The PureLA
directory is located in the same parent directory as the previous
product installation, which you can find with the command
<product > -printhonedi r, where <pr oduct >is purify,
pur ecov, orquanti fy.

You can modify the list of imported user names, either while
you’rerunning rs_i nst al | or afterwards. If the number of user
names is not the same as the number of licenses you bought,
rs_i nstal |l will help you correct the list.

B. user names (all
names; or some or
none, in
combination with
an option to
generate dummy
names).

You can enter all user names. The number of names you enter
must match the number of licenses you purchased.

You can enter some user names, and then enter - n to populate the
rest of the options file with dummy names as placeholders that
you can replace later.

Or you can just enter - n to enter nothing but dummy names, and
update the options file later.

Name for the
Rational licensefile
(<server nane>
. dat), including
full pathname.

Thers_instal | program, which creates this file when it runs,
will suggest <server nane>. dat as a default.

See The Rational license file on page 27 for information about the
file.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management

system, it is possible for Purify and PureCoverage users to file change requests from within the Purify

and PureCoverage graphical interface. To configure this integration between the products:

= You as the installer can provide r s_i nst al | with site-wide default values. Note that individual

users can override the default values if they have different requirements, following the instructions

in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

= Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

6 Chapter 1 - Installing the products

Data for rs_install

Notes

Your Entry

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:

= Xfor the ClearQuest native X client
= web for the ClearQuest web client
All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

When you have gathered the information you need, go on to Installing

the products using rs_install on page 14.

Step 2: Installing your Rational product

7

If you are installing a new permanent or TLA license

without importing a .upd file

Gather the information specified in the following table:

Data for rs_install

Notes

Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rat i onal).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tnp_mmt/ Rational .

If Rat i onal does not already exist, the installation program wiill
create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 23.
This section also shows you the structure of the directory after
installation.

Host name or IP
address of the host
machine on which
the license server is
to run (the "license
server host").

If the license server host is different from the installation machine,
you should have remote shell access from the installation machine
to the license server host. If you do you have remote shell access,
thers_instal |l program provides instructions for how to
proceed.

In addition, the installation directory must be accessible from the
license server host.

License server port
number.

This is the port at which the license server listens for license
requests. Default is 27000. You can use any port number that is
not already in use. The Zetc/services file on the license host lists
all ports in use by most commonly used services, but other ports
may be in use on your system as well. FLEXIm reserves ports
27000-27009 for its use; these ports are ordinarily available unless
a different FLEXIm server on the license host is using them.

Thers_install program checks to make sure that the license
server port number does not conflict with entries in the
/etc/services file on the license server host, or with NIS services.

License quantity.

Source: your Rational license key certificate.

8 Chapter 1 - Installing the products

Data for rs_install | Notes Your Entry

Note: If you are installing a Named User license, you must supply user names for each individual who
will be using the product. You must include your user name in order to perform the post-installation
selt-test successfully. User names are recorded in the FLEXIm options file, r at i onal . opt . For
information about the options file, see Maintaining the rational.opt options file on page 20.

You do not need this information if you are installing a Floating license for PurifyPlus.
To input User names, you need the data in A or B below, or the data in A supplemented with the data

in B.

A. Path of the
PureL A directory
containing the file
users. purel a
(available only if
you licensed an
earlier version of
the product using
PureLA License
Advisor).

If you are currently running the product under a PureLA license,
you have the option of importing the user names from the
PureL A database instead of entering them manually. The PureLA
directory is located in the same parent directory as the previous
product installation, which you can find with the command
<product > -printhonedi r, where <pr oduct >is purify,
pur ecov, orquanti fy.

You can modify the list of imported user names, either while
you’rerunning rs_i nst al | or afterwards. If the number of user
names is not the same as the number of licenses you bought,
rs_i nstal |l will help you correct the list.

B. user names (all
names; or some or

You can enter all user names. The number of names you enter
must match the number of licenses you purchased.

noneb,_ln . i | You can enter some user names, and then enter - n to populate the
combInAUON WIth | yest of the options file with dummy names as placeholders that
an option to

generate dummy
names).

you can replace later.

Or you can just enter - n to enter nothing but dummy names, and
update the options file later.

Name for the
Rational licensefile
(<server nane>
. dat), including
full pathname.

Thers_instal |l program, which creates this file when it runs,
will suggest <server nane>. dat as a default.

If you want to use an existing Rational license . dat file, enter its
name, including full pathname, instead of the default. The
rs_install program makes a backup of the existing license file
before it processes the file with the new data. For information, see
The Rational license file on page 27.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:

= You as the installer can provide r s_i nst al | with site-wide default values. Note that individual
users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

= Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

Step 2: Installing your Rational product

9

Data for rs_install

Notes Your Entry

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:

= Xfor the ClearQuest native X client
= web for the ClearQuest web client
All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

When you have gathered the information you need, go on to Installing
the products using rs_install on page 14.

If you already have a permanent or TLA license set up

If you are upgrading from an earlier version of the product and still
have a valid permanent license, most of the information you need is
already available in your system. When you runthers_i nstal |
program, be sure to choose the option USE AN EXI STI NGRATI ONAL
LI CENSE.

Gather the information specified in the following table:

Data for rs_install

Notes Your Entry

Full pathname of
your license file,
<server nane>.
dat .

Alternatively, you can supply the host name or IP address of the
host machine on which the license server is running (the “license
server host”) and the license server port number.

10 Chapter 1 - Installing the products

Data for rs_install

Notes

Your Entry

The full pathname
to the current
installation
location, or to the
new installation
location (referred
to in this chapter as
Rat i onal).

This is the directory for installing all Rational Software products.
You can use your existing installation; but if you use a new
directory, it must meet the following requirements:

= You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must
have 60 megabytes for a complete installation of PurifyPlus.
Note that these are per-platform figures.

= The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tnp_mmt/ Rati onal .

If the directory you specify does not already exist, the installation
program will create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 23.
This section also shows you the structure of the directory after
installation.

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:

= You as the installer can provide r s_i nst al | with site-wide default values. Note that individual
users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

= Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:

= Xfor the ClearQuest native X client
= web for the ClearQuest web client
All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

Step 2: Installing your Rational product

11

Data for rs_install

Notes

Your Entry

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

When you have gathered the information you need, go on to Installing

the products using rs_install on page 14.

If you are installing a temporary or evaluation license

Gather the information specified in the following table:

Data for rs_install

Notes

Your Entry

The full pathname
to the installation
location (referred
to in this chapter as
Rat i onal).

This is the directory for installing all Rational Software products.

You must have 20 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage. You must have
60 megabytes for a complete installation of PurifyPlus. Note that
these are per-platform figures.

The directory must be accessible from every machine on which
you plan to run the Rational products—both the machines on
which users instrument their applications, and the machines on
which users run their applications. It must be the same for each
machine, so you cannot use a local automount path like
/tnp_mmt/ Rational .

If Rat i onal does not already exist, the installation program will
create it when you enter the full pathname.

If you are installing on a read-only file system, or if you want to
create this directory manually, see Supplemental notes on page 23.
This section also shows you the structure of the directory after
installation.

License key type.

Source: your Rational license key certificate or email from
Rational Software.

startup or
evaluation

Expiration date.

Source: your Rational license key certificate or email from
Rational Software.

If you have a startup or evaluation license, enter the date in the
dd-mmme-yyyy format. The field is not case sensitive.

12 Chapter 1 - Installing the products

Data for rs_install

Notes

Your Entry

Note: If you have installed Rational ClearQuest, Rational Software’s change request management
system, it is possible for Purify and PureCoverage users to file change requests from within the Purify
and PureCoverage graphical interface. To configure this integration between the products:

= You as the installer can provide r s_i nst al | with site-wide default values. Note that individual
users can override the default values if they have different requirements, following the instructions
in the Purify and PureCoverage online help systems. (See "ClearQuest" in the online help index.)

= Alternatively, you can choose not to enter default values. In this case, users must enter their own
values in order to use the integration.

The source for the following configuration values is your ClearQuest system administrator.

ClearQuest client
interface.

If you are installing on a Solaris or HP-UX platform, you can
specify the default ClearQuest client for your users:

= Xfor the ClearQuest native X client
= web for the ClearQuest web client
All other platforms support only the web client.

Users must have ClearQuest on their path in order to use the
native X client.

Name of the
default ClearQuest
database.

Enter the name of a site-wide default ClearQuest database for
your users who access ClearQuest through the native X client.

Even if you have chosen web as your default interface, you may
want to enter a value here for users who prefer to use the
ClearQuest native X client.

Source: ClearQuest system administrator.

URL for the
ClearQuest web
client.

Specify the URL if you selected web as your default ClearQuest
client interface.

Even if you have chosen X as your default interface, you may
want to enter a value here for users who prefer to use the web
interface.

Source: ClearQuest system administrator.

When you have gathered the information you need, go on to Installing

the products using rs_install on page 14.

Step 2: Installing your Rational product 13

Installing the products using rs_install

For information about specific product and operating system versions,
see the README file on your CD-ROM or in the directory that results
when you unpack the t ar file from Rational Software.

To install the products:
1 Make the product available for installation.

If you are installing the product from the Rational Software product
CD-ROM and need instructions for mounting a CD-ROM, see
page 24.

If you have obtained the products from a web or FTP download,
unpack the compressed t ar file. The directory that is created is
equivalent to the top level of the CD-ROM.

2 Runthers_install program. Thers_instal | programisa
complete installer that guides you through the following processes:

o Setting up the license server.
o Installing product licenses.
o Installing the selected product and documentation.

Note: Your users can get online help only if you install the html
documentation.

o Performing the post-installation tasks.

Torunthers_instal | program, go to the directory where you
mounted the CD-ROM or unpacked your t ar file. (You should not be
root whenyourunrs_install.) For example:

exit
% cd /cdrom
% ./rs_install

Thers_instal | program prompts you through the installation,
providing detailed instructions along with default settings. The
defaults appear in brackets, for example [2]. To accept the default,
press ENTER.

Note: After you install your license key, thers_i nstal | program
reminds you that you must configure your server to automatically
restart the license server when it reboots. Thers_i nstal | program
gives you instructions for doing this.

14 Chapter 1 - Installing the products

3 When installation is complete, go to Step 3: Post-installation

configuration tasks on page 16 and perform any necessary
post-installation procedures.

Answers to questions about rs_install

Below are the answers to some common questions about the
rs_i nstall program.

Can | rerun parts of the installation? Yes. Thers_i nstal | program
provides commands that enable you to rerun specific sections of the
installation as needed. See Using rs_install commands on page 26.

Do I have to reenter my license server information each time |
install a product? No. You only need to enter this information once.
Thers_instal | program saves the information you enter about
yourself and about the machine to be used as the license server for
your Rational Software product licenses in two text files: an
rs_install.def aul ts file that contains information about you and
your license server, and a file such as

rs_install.PurifyPl us.2002a. 06. 00 that records
product-specific information. The rs_i nst al | program reports the
location of these files when you quit the program. The next time you
runrs_instal |, the program uses the saved configuration
information.

To change your license server, use the | i cense_set up command;
see Using rs_install commands on page 26.

Do I need to install all my licenses on one server? No. You are not
required to use all of your allowed licenses for a single license
server. You might want to install a product at another site and
configure a license server at that site to serve the remaining licenses
in your Rational Software account.

Which type of product license key should I install? If you already
have your permanent or TLA license key, you can install it right
away. You can also request a permanent license key at
www.rational.com/accountlink. Otherwise, select the startup or
evaluation license to get started using the product.

Note: To ensure uninterrupted use of your Rational Software
product, you should install your permanent or TLA license key as
soon as possible.

Step 2: Installing your Rational product 15

» Can | import existing user names from an earlier installation of
the product installed under PureLA License Administrator with
Named User licensing? Yes. Thers_i nstal | script asks you if you
want to import the existing user s. pur el a file, and also permits you
to edit the imported user names. You can also edit the user names
after installation; see Maintaining the rational.opt options file on
page 20.

» The host | want to use as the license server for my new products is
already the license server for other Rational products. How do |
share the server? You must add the new licenses to your current
Rational . dat license file. To do this, specify the current Rational
. dat license file as the license file name instead of using the default.

» How do | get updates for the rs_install program and for the
Rational products? You can get updates from within the
rs_install program, though you must be running the program on
a machine that has internet access. Thers_i nstal | program’s
Licensing Options screen lets you select an item to download the
latest version of rs_i nstal | (inwhichcasers_install replaces
itself and restarts using the new version) or get product updates.

» How do I report problems or make suggestions for the rs_install
program? You can submit comments by running thers_i nstal |
command with the - r epor t option. This option helps you organize
installation and licensing information and e-mail it to Rational
technical support. You can, of course, also call or e-mail Rational
technical support without this option.

Step 3: Post-installation configuration tasks

Configuration tasks include tasks that the rs_i nst al | program
performs (or helps you perform) and tasks that you must complete
manually.

The rs_instal | program performs its configuration tasks by calling
the <pr oduct >. confi gur e command for the product your are
installing; <pr oduct > is puri f y, pur ecov, or quanti f y. You can also
rerun the <pr oduct >. confi gur e command at any time to check or to
adjust your configuration; refer to Checking and adjusting your
configuration on page 20.

The tasks that <pr oduct >. conf i gur e performs include:

16 Chapter 1 - Installing the products

» Configuring the cache directory.
= Setting up the online help system.

» Integrating Rational ClearQuest (for PurifyPlus, Purify, and
PureCoverage).

Running <pr oduct >_t est to validate setup.

The tasks that you must perform manually include:

= Installing on a read-only file system; see page 17.

» Making the manual pages available;see page 18.
Making the products available to all users; see page 18.

Note that <pr oduct hone> is the home directory of Purify, PureCoverage, or
Quantify.

Installing on a read-only file system

Purify, PureCoverage, and Quantify work by creating and monitoring
special instrumented versions of object files and libraries. They must be
able to write these instrumented files to a cache directory, which by
default is Rat i onal / r el eases/ <pr oduct home>/ cache.

For this reason, if you install any of the products on a file system that is
mounted read-only by client machines, you must create symbolic links
to a writable file system. Thers_i nst al | program guides you through
the process of selecting a shared directory that is mounted read/write
on client machines and linking the cache directory to this publicly
writable directory.

If there is no writable shared directory mounted on client machines,
have all users make a cache subdirectory in their home directory and
set the product’s - cache- di r option to this directory. For example:

% nkdi r $HOME/ cache
% echo $PUREOPTI ONS

If the PUREQPTI ONS environment variable is already set, have users
specify the - cache-di r option:

csh % set env PUREOPTI ONS " - cache-di r =$HOVE/ cache \
$PURECPTI ONS"

sh, ksh $ PUREOPTI ONS="- cache-di r =$HOVE/ cache \
$PURECPTI ONS"; export PUREOPTI ONS

If the PURECGPTI ONS environment variable is not set, have users specify:

Step 3: Post-installation configuration tasks 17

csh % set env PUREOPTI ONS " - cache- di r =$HOVE/ cache"

sh, ksh $ PURECPTI ONS="-cache-di r =$HOVE/ cache"; export \
PUREOPTI ONS

Have all users add this same specification to their local or central

.cshrc file, or its equivalent.

Making the manual pages available

Thers_instal | program installs the product manual pages in

Rati onal / r el eases/ <pr oduct home>/ man, where <pr oduct home> is
the home directory for Purify, PureCoverage, or Quantify. To make the
manual pages available, do one of the following:

Set your MANPATH environment variable to include
Rat i onal / r el eases/ <pr oduct honme>/ man.

» Copy the manual pages for the product into your nan directory.
If necessary, log in asr oot to do this.

Making the products available to all users

Note: If you are using Named User licensing, users must be listed in the
rational . opt file in order to use Purify, PureCoverage, and Quantify;
to add users to the options file, see Maintaining the rational.opt options file
on page 20.

To make the products available to all users listed inr at i onal . opt , add
the full Rat i onal / r el eases/ <pr oduct honme> pathname to each user’s
PATH environment variable, or specify the full pathname in makefiles.

As an alternative to modifying your PATH environment variable, you
can create a symbolic link to <pr oduct horme>/ <pr oduct > from a
directory such as / usr/ 1 ocal / bi n. Make sure this is a symbolic link,
not a copy or a hard link. Create symbolic links for each product you
install, as in the following examples:

For Purify:

% rm/usr/local/bin/purify
%I n -s Rational/rel eases/\
<product home>/purify /usr/local/bin

For PureCoverage:

% rm /usr/local/bin/purecov
%I n -s Rational/rel eases/\
<product hone>/ purecov /usr/local/bin

18 Chapter 1 - Installing the products

For PureCoverage, you also need to create symbolic links to the
pc_* script files:
% rm-i /usr/local/bin/pc_*

%In -s Rational/rel eases/\
<pur ecovhome>/ scripts/pc_* /usr/local/bin

For more information on the pc_* scripts, see the PureCoverage
online help system.

For Quantify:

% rm/usr/local/bin/quantify
%I n -s Rational/rel eases/\
<product hone>/ quantify /usr/local/bin

For Quantify, you also need to create symboalic links to the
gv program and to the gx script files:

% rm /usr/local/bin/qv
% rm-i /usr/local/bin/qgx*
%I n -s Rational/rel eases/\
<quanti fyhome>/qv /usr/local/bin
%I n -s Rational/rel eases/\
<quanti f yhorme>/ qx* /usr/local/bin

For more information on the qv program and on the gx scripts, see

the Quantify online help system.

Create symbolic links for debugger scripts on HP-UX:

On HP-UX, Purify, PureCoverage, and Quantify include three
scripts that enable you to start instrumented programs under a
debugger. You need to create symbolic links to these scripts. For
example, for Purify:

% rm /usr/local/bin/purify_dde
% rm /usr/local/bin/purify_xdb
% rm /usr/local/bin/purify_softdebug

%I n -s <purifyhome>/purify_dde /usr/local/bin
%I n -s <purifyhome>/purify_xdb /usr/local/bin
%I n -s <purifyhome>/purify_softdebug /usr/local/bin

For PureCoverage and Quantify, create the same symbolic links,
substituting pur ecov or quanti fy for puri fy.

Step 3: Post-installation configuration tasks

19

The installation is now complete. To add names to the options file, see
Maintaining the rational.opt options file on page 20. To remove previous
versions of the products, see Removing a previous product release on
page 22.

Checking and adjusting your configuration

You can run the script <pr oduct >. conf i gur e (where <pr oduct > is
puri fy, purecov, or quanti fy) at any time to check that your
configuration is correct and to make adjustments.

To use the script, go to the product home directory. For example, for
Purify, type:

% cd ‘purify -printhomedir*

To check your configuration and licensing, type:

% ./purify.configure -check

To run the script in interactive mode, type:

% ./purify.configure

You can also run the script in batch mode, specifying the parameters
you want changed as arguments to options. For a list and description of
batch mode options, type:

% ./purify.configure -help

Maintaining the rational.opt options file

Named User licensing is always used with Purify, PureCoverage, and
Quantify, and is available for use with PurifyPlus. Under Named User
licensing, the user names of all users who are authorized to run Purify,
PureCoverage, and Quantify must be listed in the r at i onal . opt
options file. The number of user names in the file must match the
number of licenses you have installed.

Users who are identified in the file can use all features of the product,
including instrumenting applications, running instrumented
applications, and viewing saved data files in the product’s user
interface. A user can run as many concurrent sessions as desired on a
single host machine; this consumes a single license. The same user can
run the product on additional host machines, but consumes another
license for each additional machine.

20 Chapter 1 - Installing the products

The options file is created when you run the rs_i nstal | program. By
default, this file is Rat i onal / confi g/ rati onal . opt. You can relocate
the file yourself after installation, provided that you edit the license file
DAEMON line to specify the new path:

DAEMON rational /etc/rational /nydir/rational.opt

During installation, rs_i nst al I asks you to supply user names, one for
each license you purchased. You don’t have to enter all user names
during installation; rs_i nst al | will generate dummy names to bring
the total up to the number of licenses you purchased. Your entries—real
names, automatically generated dummy names, or both—are recorded
in the options file.

The user names are recorded in the options file in GROUP directives. An
I NCLUDE directive follows each GROUP directive, specifying one product
that the users in the group are authorized to use:

GROUP <group nanme> <user 1> <user2> . . . <usern>

I NCLUDE <product >: KEY=<I| i cense key> GROUP <group nane>

For example, in the following, alice, tom, and harry can use Purify, but
only alice and harry can use Quantify:

GROUP DevTool s1 alice tomharry

I NCLUDE puri fy: KEY=456778982 CGROUP DevTool s1

GROUP DevTool s2 alice harry
I NCLUDE quantify: KEY=12345778654 GROUP DevTool s2

The KEY is the license key from your . dat license file.

Modifying the list of user names

Note: If you modify the options file while the license vendor daemon is
running, you must restart the license server.

You can add, change, or delete user names by running the
opt i ons_set up script. You can also add, change, or delete user names
in the options file using any text editor.

The number of users listed for each product must always match the
number of licenses that you purchased. The license server must be
restarted before the changes can take effect; the opt i ons_set up script
restarts the license server for you.

For additional information about the options file, refer to your FLEXIm
user’s manual.

Maintaining the rational.opt options file 21

Removing a previous product release

Note: Only the installer of the product can uninstall it.

After you install the latest version of Purify, PureCoverage, or Quantify,
and after all users have switched to the new version, you can remove
the old release to reclaim disk space.

To remove a previous release of Purify, PureCoverage, or Quantify, go
to the Rat i onal directory and run the uni nstal | script:

% cd Rati onal
% confi g/ uninstall

Running the uni nst al | script with no command-line arguments
causes it to display the list of products in the r el eases directory. The
script prompts you for the product you want to remove.

Requesting and installing the permanent or TLA license key

When you purchase Purify, PureCoverage, or Quantify, you purchase a
specific number of licenses for each product. Rational Software issues
you a license key for the product that corresponds to the type and
number of licenses you purchased. You need this license key to use the
software.

Purify, PureCoverage, and Quantify come with a startup license that
you can use to get started using the product. You then request a
permanent or TLA license key from Rational Software at
www.rational.com/accountlink and install it to ensure continued use of the
product. The startup license key and other licensing information is
available from the License Key Certificate included in the product
packaging.

Purify, PureCoverage, and Quantify use the FLEXIm Software License
Manager from GLOBEtrotter Software, Inc. to manage product licenses.
For more information on FLEXIm, see Using the FLEXIm Software License
Manager on page 27.

Requesting your permanent or TLA license key

To request a permanent or TLA license key, go to
www.rational.com/accountlink and follow the instructions provided there.

22 Chapter 1 - Installing the products

Entering a permanent or TLA license key after initial installation

To enter your permanent or TLA license key after you have installed
your Rational Software product and exited thers_i nst al | program:

1 GototheRational/rel eases/PurifyPl usFan |y. <version>
directory and run the |l i cense_set up program. For instructions, see
Using rs_install commands on page 26.

2 For the licensing option, select the option for setting up a permanent
license.

Note: The program tells you how to update your license server
machine so that it restarts the license server when it reboots. You need
root permission to perform the update.

Supplemental notes

Creating an installation directory manually

You need a publicly readable directory for the installation of Purify,
PureCoverage, and Quantify. If one does not already exist, you can

create it when you runrs_i nstal | . You can also create it manually
before you startrs_instal I .

1 Log into a UNIX workstation that provides access to the product
files to be installed, and that mounts the file system(s) into which you
want to load the product.

2 Create aRati onal directory. For example:
% nkdir /opt/Rational

The Rati onal directory must be visible on all machines that are to
run this product. The NFS name for Rat i onal must be the same on
all machines. (If you are installing the product for your use only, you
can install it in your home directory.)

Supplemental notes 23

After the installation, the Rat i onal directory is structured like this:

The FLEXIm Software License Manager

— base/ cots/fl exI m 6. Oi

Files for configuring licensee environment
——puri fypl us_setup. {csh/ sh}
/ Rat i onal /—
Rational license files
——config/)
rational . opt
uni nstall script
defaul ts
— purify-<version>-sol ari s2/
L releases/ puri fy-<versi on>- hpux/
— puri fy-<version>irix6/
The <pr oduct hore> directories — | puri fy- <versi on>-tr u64/

— pur ecov- <ver si on>-<pl at f or np»/
— quant i fy- <versi on>- <pl at f or m»/
Contains the READVE file, —— —PurifyPlusFanily. <version>/

thers_i nstal | commands,
and online documentation

Note: Purify, PureCoverage, and Quantify must be able to write
instrumented files to a cache subdirectory of the <pr oduct hone>
directory. If you install on a read-only file system, you must create
symbolic links to a writable file system. See Installing on a read-only file
system on page 17.

Mounting the CD-ROM

The following instructions refer to specific operating systems.
To determine your operating system, type:

% uname -a

Before you begin, make sure you know the device name of your
CD-ROM drive. Ask your system administrator for this information.

On Solaris and IRIX systems with Volume Management, load the
CD-ROM and then go to Step 5. (On these systems, the CD-ROM

automatically mounts on the / cdr omdirectory. To determine whether
you have Volume Management, check to see if the Solaris vol d daemon
or the IRIX nedi ad daemon is running on your system.)

24 Chapter 1 - Installing the products

To mount the CD-ROM:
1 Load the CD-ROM into the drive.
2 Login as root:

% su root

3 If you do not already have one, create a cdr omdirectory to be the
mount point for the CD-ROM drive:

nkdir /cdrom
4 Mount the CD-ROM:
o On Solaris systems without Volume Management:
letc/mount -r -F hsfs <cdrom devi ce-nane> /cdrom

o If your HP-UX system is configured to mount the CD-ROM at
/ cdrom

[etc/nount /cdrom

o If your HP-UX system is not configured to mount the CD-ROM at
/ cdr om use the following command:

/etc/mount -r -F cdfs <cdromdevi ce-nanme> /cdrom

o OnIRIX6.x:

/etc/mount -r -t is09660 <cdrom devi ce- nane> / CDROM

s On Tru64 UNIX:

True4
UNIX

mount -r -t cdfs -o rrip <device_nane> /cdrom

Note: The following error can occur after an attempt to read the
CD-ROM on your Tru64 UNIX Alpha machine:

/dev/rz4c on /cdrom No such device

If this error occurs, verify that / dev/ r z4c is the correct device
name. If the name is correct, have your system administrator
include opti on CDFS in the system configuration file. Then rebuild
the kernel. Refer to man cdf s(4) for additional information.

5 To verify that the CD-ROM is mounted, use the | s command to list
the files:

#1s -R /cdrom

Ejecting the CD-ROM

After you complete the installation, eject the CD-ROM.

Supplemental notes 25

On Solaris with Volume Management, type:

e

UNIX

% ej ect cdrom
On Solaris without Volume Management, type:

% su root

unount /cdrom
ej ect cdrom
exit

On HP-UX and Tru64 UNIX, type:

% su root
unount /cdrom
exit

Press the eject button on the CD-ROM drive.
On IRIX, type:
% ej ect / CDROM

Using rs_install commands

Thers_instal | program includes four commands that you can use to
rerun specific sections of the rs_i nst al | program without actually
reinstalling any products: | i cense_set up, | i cense_check,

post _install,and options_set up.

To use these commands, go to the Puri f yPl usFami | y. <ver si on>

directory. For example:

% cd Rational/rel eases/ PurifyPlusFanm |y. <versi on>

% ./license_setup

» Usethelicense_set up command to rerun the license setup phase
of the installation. Use | i cense_set up to import your permanent or
TLA license keys and whenever you want to change your licensing
information.

Use the | i cense_check command to check your license server and
the . dat license file to make sure your license information is correct.

» Use the post _i nstal | command to rerun the post-installation
phase of the installation. One of the actions this command performs
is to call the <pr oduct >. conf i gur e command; see Step 3:
Post-installation configuration tasks on page 16.

26 Chapter 1 - Installing the products

» Use options_set up to modify the list of users allowed to use the
Rational Software product. For more information, see Modifying the
list of user names on page 21.

Using the FLEXIm Software License Manager

The FLEXIm Software License Manager monitors license access,
simultaneous usage, idle time, and so on. It includes the following
components:

» Avendor daemon named r at i onal that dispenses Purify,
PureCoverage, and Quantify licenses. Therati onal daemon is
used for all licensed Rational Software products. If you have
products from other vendors that also use FLEXIm, they will include
their own vendor daemons.

» Alicense manager daemon named | ngr d that is used by all licensed
products from all vendors that use FLEXIm. The | mgr d daemon
does not process requests on its own, but forwards requests to the
appropriate vendor daemon.

A Rational license file that specifies your license servers, vendor
daemons, and product licenses.

The Rational license file

The Rational . dat license file is a text file that in most cases is created
when you runthers_install orlicense_setup program. The . dat
license file is based on data from the . upd file that you receive from
AccountLink.

The file for startup and evaluation licenses is:
Rat i onal / confi g/ Tenporary. dat
The default file for permanent or TLA licenses is:

Rati onal / confi g/ <server nane>. dat

Note: For best results, use the Rational license file only for Rational
Software product licenses.

Thers_instal | program saves the license path to
<product home>/. 1 m |icense_fil e. This is the path that Purify,
PureCoverage, and Quantify use to locate the license file. You can

Supplemental notes 27

override the locationin. I m | i cense_fi | e by setting the
LM LI CENSE_FI LE environment variable. The full path searched is
equivalent to $LM LI CENSE_FI LE: ‘cat.Imlicense_file"‘.

Verifying that FLEXIm is working

To verify that your FLEXIm License Manager is operational and that the
daemons are running, type the following on your license server:

% /bin/ps -e | egrep "lIngrd|rational"”
The output should include lines similar to the following:
/bin/ps -e | egrep "lIngrd|rational”
351 ? 0:00 rational
345 ? 0:01 Ingrd
Using FLEXIm commands

The FLEXIm License Manager supports the following commands for
system administration:

Use this command: | To:

| mdi ag Diagnose problems when you cannot check out a license

| mdown Shut down the license and vendor daemons

| mhostid Report the license manager host ID of a workstation

| nreread Reread the license file and start new vendor daemons

| st at Report status on daemons and feature usage

exi nst al Report on licenses in the license file you specify on the
command line

Learning more about FLEXIm

For more information about the FLEXIm Software License Manager, see
the FLEXIm End User Manual that is included on your Rational Software
CD-ROM.

The FLEXIm End User Manual, along with answers to frequently asked
guestions about FLEXIm, is also available at
http://www.globetrotter.com/manual.htm.

28 Chapter 1 - Installing the products

Using Rational Purify

Rational Purify: What it does

Rational® Purify® is the most comprehensive runtime error detection
tool available. It checks all the code in your program, including any
application, system, and third-party libraries. Purify works with
complex software applications, including multi-threaded and
multi-process applications.

Purify checks every memory access operation, pinpointing where errors
occur and providing detailed diagnostic information to help you
analyze why the errors occur. Among the many errors that Purify helps
you locate and understand are:

Reading or writing beyond the bounds of an array
Using uninitialized memory
Reading or writing freed memory

» Reading or writing beyond the stack pointer

= Reading or writing through null pointers

» Leaking memory and file descriptors

With Purify, you can develop clean code from the start, rather than
spending valuable time debugging problem code later.

This chapter introduces the basic concepts involved in using Purify. For
complete information, see the Purify online help system.

29

Finding errors in Hello World

This chapter shows you how to use Purify to find memory errors in an
example Hello World program. If you run the example yourself, you
should expect minor platform-related differences in program output
from what is shown here.

Before you begin:

1 Create a new working directory. Go to the new directory and copy
the hel I o_wor| d. ¢ program and related files from the
<puri f yhome>/ exanpl e directory. For example:

% nkdir /usr/hone/chris/pwork
% cd /usr/hone/ chri s/ pwork
% cp <purifyhome>/ exanpl e/ hel | o*

2 Examine the code in hel | o_wor | d. c. The version of
hel I o_wor | d. ¢ provided with Purify is slightly different from the
traditional version.

1 /*
2 * Copyright (c) 1992-1997 Rational Software Corp.

9 ’.*.'.I'his is atest programused in Purifying Hello Wrld
10 */

12 #include <stdio. h>
13 #include <mall oc. h>

14

15 static char *hellowrld = "Hello, Wrld";
16

17 main()

18

19 char *mystr = nmalloc(strlen(helloWrld));
20

21 strncpy(nystr, helloWwrld, 12);

22 printf("%\n", mystr);

23 }

At first glance there are no obvious errors, yet the program actually
contains a memory access error and leaked memory that Purify will
help you to identify.

30 Chapter 2 - Using Rational Purify

Instrumenting a program

output

True4
UNIX

True4
UNIX

1

2

Compile and link the Hello World program, then run the program to
verify that it produces the expected output:

%cc -g hello_world.c

% a. out

Hel l o, Wrld

Instrument the program by adding puri f y to the front of the
compile/link command line. To get the maximum amount of detail
in Purify messages, use the - g option:

% purify cc -g hello_world.c

Note: On Tru64 UNIX and IRIX, you can add puri fy in front of the
compile/link command line, or you can Purify the executable. On
Tru64 UNIX, use the -t aso option with puri fy if you linked with
the - t aso option:

% purify <-taso> a.out
You then run the instrumented program by typing:

% a. out . pure

On Tru64 UNIX and IRIX, Purify caches Dynamic Shared Objects
(DSOs), not object files. References to linkers and link-line options in
this book do not apply to Purify on Tru64 UNIX or IRIX.

Compiling and linking in separate stages

If you compile and link your program in separate stages, specify
puri fy only on the link line. For example:

On the compile line, use:

%cc -c -g hello_world.c

On the link line, use:

% purify cc -g hello_world.o

Instrumenting a program 31

Running the instrumented program

Run the instrumented Hello World program:

) G % a. out

E— On Tru64 UNIX and IRIX, if you use puri fy on the executable instead
UNIX of on the compile/link line, type:
% a. out . pure
This prints “Hello, World” in the current window and displays the
Purify Viewer.
Purify displays the number of access errors Click for a list of Purify
and leaked bytes detected error messages
1 1
=| Purify: a.out o[]
File View Actions Options Help
TE =p |V v)
D OEET RO 7~ (B
| Finizhed a,out ¢ 1 errar, 12 leaked bytes: A
. . M| Purify instrumented a,out fpid 8701 at Wed Jul 16 19:42:26 13973
The Purify Viewer k| ABR: Array bounds read
displays messages B|Current file descriptors in use; 5
P | Memory leaked: 12 bytes (100%): potentially leaked: O bytes (0Z)
. abOI.Jt the program, M| Program exited with status code 1.
including errors such
as this ABR error
For a description of a
message, right click the
message, then select
Explain message from
the pop-up menu
¥
H i=

Notice that the instrumented Hello World program starts, runs, and
exits normally. Purify does not stop the program when it finds an error.

32 Chapter 2 - Using Rational Purify

Seeing all your errors at a glance

The Purify Viewer displays the results of the run of the instrumented
Hello World program. You can expand each message to see additional
details.

Select one or more messages in the Viewer,
then click to expand the messages

| I
~| Purify: a.out a _||
File View | Actions Options Help
The configuration
=9 v o
message shows the 3 Zf @ % % ® ? E'_—L @I Eh&”
eXG'CUtIOH process !D *| Finished a,out ¢ 1error, 12 leaked bytes: 2
(pi d) and the Purify *| Purify instrumented a,out {pid 1043 at Med Jul 17 20:38:49 1996}
options used Purify 4,1 SundS 4,1, Copyright {C>1932-1997 Rational Software Corp, ALl rights res:
For contact information type: "purify -help”
Faor TTY output, uze the option "-windows=no"
Command-line; a,out
Options settings: -purify -purify-home=/usr/pure/purify-4,1-sunosd
i Purify licensed to Purify Evaluation User
Click to expand Purify checking enabled,
a message or item #| RER: Array bounds read
k| Current file descriptors in use; 5
B | Memory leaked: 12 bytes €100%): potentially leaked: O bytes (0X)
P| Program exited with status code 1,
You can use the
program controls to
run a debugging cycle. E
. 7
To display them, select -
View > Program - =
Controls Make... | Run...| Debug...| .. Edit...

Note: The Viewer displays messages for a single executable only. It is
specific to the name of the executable, the directory containing the
executable, and the user ID.

Seeing all your errors at a glance 33

Finding and correcting errors

Click to expand the
ABR message

Purify reports an array bounds read (ABR) memory access error in the
Hello World program. You can expand the ABR message to see the
exact location of the error.

—-| Purify: a.out

]
File View Actions Options Helpl

V| OEF RGBS ¢ |- (D

| Finizhed a,out 1 error, 12 leaked bytes)
¥| Purify instrumented a,out (pld 8934 at Med Jul 16 19:42:26 19970

o

L

The function call chain

*| ABR: Array bounds read
Thiz iz occurting while ing
_doprt [libc,s0,1,9]1

indicates an error
occurring in _dopr nt
called by printf,

in turn called

on line 22 of mai n

The exact location

printf [libc,20,1,91
| main [hello_world,c322]
2 dinclude <stdio,h>
#include <malloc.h>

static char *helloWorld = "Hello, World":
maind
char #myztr = malloc{strlenihellolorldil:

strncpyimystr, hellolorld, 123z

of the error

The details of the

i printf{"Zsin", mystri:
¥

start [crti,ol

access error

The allocation call chain

Reading 1 byte from (xd4423c in the heap.
Address 0x4423c iz 1 byte past end of a malloc’d block at 0x44230 of 12 bytes
Thiz block waz allocated from:

malloc [rtlib,ol

shows that the memory
block is allocated

in the function mai n
on line 19

True4
UNIX

| main [hello_world,c:191
start [crtd,ol

B | Current file descriptors in uset § |

F| Memory lesked: 12 bytes (100 potentially leaked: O bytes (O0X)

¥| Program exited with status code 1. 7

- =

Note: To make debugging easier, Purify reports line numbers, source
filenames, and local variable names whenever possible if you use the - g
compiler option when you instrument the program. If you do not use
the - g option, Purify reports only function names and object filenames.

On Tru64 UNIX and IRIX, system libraries retain their source file and
line number information; therefore, the » can appear next to a system
library function whose source file is not available. When you click the

» for such a line, Purify prompts you for the location of the source
file. Enter the location of the file if you know it, and then click OK to
expand the line.

34 Chapter 2 - Using Rational Purify

Understanding the cause of the error

To understand the cause of the ABR error, look at the code in
hel | o_wor | d. c again.

15 static char *helloWwrld = "Hello, Wrld";

17 main()
18
19 char *nystr = malloc(strlen(helloWrld));
20
Purify reports that the 21 strncpy(nystr, helloWwrld, 12);
ABR error occurs here——22 printf("9%\n", nystr);
23 }

On line 22, the program requests pri nt f to display nyst r, which is
initialized by st r ncpy on line 21 for the 12 characters in

“Hello, World.” However, _dopr nt is accessing one byte more than it
should. It is looking for a NULL byte to terminate the string. The extra
byte for the string’s NULL terminating character has not been allocated
and initialized.

Start of the memory block Location accessed
(0x44230) (0x4‘423c)
[I
Hiell |l |o], Wio|r |l jd] _1| Accessing 1 byte past
the end of the block
’—Allocated block size (12) 7| causes an ABR error

For more information, see How Purify finds memory-access errors on
page 48.

Finding and correcting errors

35

Correcting the ABR error
To correct this ABR error:

1 Click the Edit tool [to open an editor.

Or click here to edit
the source code

Click to edit the source code

Purify: a.out a [0

Actions | Options Help |
JJJJJJJ@

*|Finizhed a.out 1 error, 12 leaked bytes? 2

¥ Purify instrumented a,out (pld 012 at Wed Jul 16 19:42:26 1997
*| AER: Array bounds read
Thiz iz occurring while ing

_doprnt. [libc,50,1,9]
printf [libc,=0,1,9]
| main [hello_world,c:??]

2 #include <stdio.h>
#include <malloc,h>

static char *hellolorld = "Hello, World":
maing}
i

char #mystr = malloc{strlen{hellolorld)}:

strncpylinystr, helloborld, 123
=] printf{"Z=tn", mystri:
>

start [crtd,ol
Reading 1 byte from 0x4423c in the heap,
fddress (x4423c is 1 byte past end of a malloc’d block at (x44220 of 12 by | F

~ I -

Note: By default, Purify displays seven lines of the source code file
in the Viewer. You can change the number of lines of source code
displayed by setting an X resource.

Change lines 19 and 21 as follows:

19 char *nystr = malloc(strlen(hell oWrld)+1);
20
21 strncpy(nystr, hellowrld, 13);

36 Chapter 2 - Using Rational Purify

Finding leaked memory

The memory-leaked
summary reports

12 bytes of leaked
memory

The call chain shows
how the leaked
memory was allocated

Memory analysis by
category

When a program exits, Purify searches for memory leaks and reports all
memory blocks that were allocated but for which no pointers exist.

Note: When you run longer-running instrumented programs, you can
click the New Leaks tool to generate a new leaks summary while the
program is running.

1 Expand the memory-leaked summary for Hello World.

The memory-leaked summary shows the number of leaked bytes as
a percentage of the total heap size. If there is more than one memory
leak, Purify sorts them by the number of leaked bytes, displaying
the largest leaks first.

2 Expand the MLK message.
When you run your programs, click the New Leaks tool to

generate a new leaks summary while the program is running

=| Purify: a.out

o

]
Help |

File WView Actions

gt

Options

"'\@’\‘&’%\‘%M@

*| Finished a,out 1 error, 12 leaked bytes: A
b Purify instrumented a,out (p1d 9015 at Med Jul 16 19:42:26 1997
k| ABR: Array bounds read
M| Current. file descriptors in use: B
| Hemory leaked: 12 bytes (100): potentially leaked: O bytes (OF2
| HLE: 12 bytes leaked at (xd4d4230
Thiz memory was allocated from:
malloc [rtlib,ol
ﬂ main [hello_world,c:19]
start [ert0,ol
| Purify Heap Analysis (combining suppressed and umsuppressed blocks)
Blocks Bytes
Leaked 1 12
Potentially Leaked i} 0
In-Use 0 0
Total Allocated 1 12
| Program exited with status code 1,
7
I*J =

Finding leaked memory 37

Correcting the MLK error

Line 19 of
hell o_world.c
in mai n allocates

12 bytes of
leaked memory.
The start of this
memory block is

0x44230, the same
block with the array
bounds read error
in _doprnt

It is not immediately obvious why this memory was leaked. If you look
closer, however, you can see that this program does not have an exi t
statement at the end. Because of this omission, the mai n function
returns rather than calls exi t , thereby making nyst r — the only
reference to the allocated memory—go out of scope.

1]
=| Purify: a.out =]
File WView Actions Options Help |
T =0 V[V o
OOEE R L SX0 ? = BE
*|Finished a,out 1 error, 12 leaked bytes) 2
b Purify instrumented a,out (p1d 9015 at Med Jul 16 19:42:26 1937
k| ABR: Array bounds read
M| Current file descriptors in use: B
| Memory leaked: 12 bytes {100%): potentially leaked: O bytes (0X)
| HLE: 12 bytes leaked at (x4d4230
Thiz memory was allocated from:
mal loc [rtlib,al
ﬂ main [hello_world,c:19]
start [crt0,o]
| Purify Hesp Analyziz {combining suppreszed and unsuppressed blocks)
Blocks Bytes
Leaked 1 12
Potentially Leaked 0 i}
In-Use 0 0
Total Allocated 1 12
| Program exited with status code 1,
4
I*J [=

If mai n called exi t at the end, nyst r would remain in scope at program
termination, retaining a valid pointer to the start of the allocated
memory block. Purify would then have reported it as memory in use
rather than memory leaked. Alternatively, mai n could f r ee nystr
before returning, deallocating the memory so it is no longer in use or
leaked.

To correct this MLK error:
1 Click the Edit tool @ to open an editor.
2 Addacalltoexit(0) atthe end of the Hello World program.

38 Chapter 2 - Using Rational Purify

Looking at the heap analysis

Purify distinguishes between three memory states, reporting both the
number of blocks in each state and the sum of their sizes:

Leaked memory
Potentially leaked memory

Memory in use

A true memory leak
(MLK) is memory to
which your program

has no pointer

A potential memory
leak (PLK) is memory
that does not have a
pointer to its beginning,
but does have one

to its interior

Memory in use
(MIU) is memory to
which your program
has pointers

(these are not leaks)

| 1
=| Purify: a.out a |
File View Actions Options Help |
COEFRYSXE ? ~BE
*| Finished a.out { 1error, 12 leaked bytes) A
M| Purify instrumented a,out ¢pid 9015 at Wed Jul 16 19:42:26 1997
k| ABR: Array bounds read
M| Current file descriptors in uze: b
| Memory leaked: 12 bytes {(100%}: potentially leaked: O bytes (03
| HLK: 12 bytes leaked at (x44230
Thiz memory was allocated from:
mal loc [rtlib,ol
| main [hello_world,c:19]
start [crt0,o]
ap Analyszis {combining suppressed and unsuppressed blocks?
Blocks Bytes
Leaked 1 12
Potentially Leaked il u]
In-Use 0 0
Total Allocated 1 12
| Program exited with status code 1,
4
I*J [=

The exit status message provides information about:

Basic memory usage containing statistics not easily available from a
single shell command. It includes program code and data size, as
well as maximum heap and stack memory usage in bytes.

Shared-library memory usage indicating which libraries were
dynamically linked and their sizes.

Finding leaked memory 39

Comparing program runs

To verify that you have corrected the ABR and MLK errors, recompile
the program with puri fy, and run it again.

Purify displays the results of the new run in the same Viewer as the
previous run so it’s easy to compare them. In this simple Hello World

program, you can quickly see that the new run no longer contains the
ABR and MLK errors.

=| Purify: a.out E iJ|
File View Actions Options Help |
BLL%O 1 ~RE
In the previous run, —=| Finished a,out ¢ 1 error, 12 leaked bytes) -
Purify reported one error : E;EiFgriggtggﬂﬁggese:aout ipid 1173 at Wed Jul 16 19:42:26 19973
and twelve leaked bytes k| Current file descriptorz in use: 5

¥| Hemory leaked: 12 bytes (100E): potentially leaked: 0 bytes (0
k| Program exited with status code 1,

In the new run, Purify —fr ¥ Finished a.out {0 errors, 0 leaked bytes:
M| Purify instrumented a,out {pid 1204 at Med Jul 16 21:18:28 19973
reports no errors k| Current file descriptorz in use: 5
and no memory leaks b | Memory lesked: O bytes (0X): potentially leaked: © butes (0%}

k| Program exited with status code 0,

-

Congratulations! You have successfully Purify’d the Hello World
program.

Suppressing Purify messages

A large program can generate hundreds of error messages. To quickly
focus on the most critical ones, you can suppress the less critical
messages based on their type and source. For example, you might want
to hide all informational messages, or hide all messages that originate
in a specific file.

40 Chapter 2 - Using Rational Purify

You can suppress messages in the Viewer either during or after a run of
your program. To suppress a message in the Viewer:

1 Select the message you want to suppress.

2 Select Options > Suppressions.

Purify displays the Suppressions dialog, containing information about
the selected message.

Purify: Suppressions

Message to suppress: | MLK: Memory leak _}—— Select a message to suppress
Where 1o suppress: Everywhere _n'| Select where to suppress
Ll nhmn aallon

[— Control the depth of

the message
.
the call-chain match

The suppression Punfy_ ?avils suppressions in
directive —H [Suppress wlk * -purttyies
Click to make a——1 |Make permanent | in file |7, purify Select File... - 1—— YOU can save the suppression
suppression ppply | Dismiss | Help directive to another . puri fy file
permanent

You can also specify suppressions directly ina . puri fy file.
Suppressions created in the Viewer take precedence over suppressions
in . puri fy files; however, they apply only to the current Purify session.
Unless you click Make permanent, they do not remain when you restart
the Viewer.

Saving Purify output to a view file

A view file is a binary representation of all messages generated in a
Purify run that you can browse with the Viewer or use to generate
reports independent of a Purify run. You can save a run to a view file to
compare the results of one run with the results of subsequent runs, or to
share the file with other developers.

Saving Purify output to a view file 41

Saving arun to a view file from the Viewer
To save a program run to a view file from the Viewer:

1 Wait until the program finishes running, then click the run to
select it.

2 Select File > Save As.

3 Type afilename, using the . pv extension to identify the run as a
Purify view file.

Opening a view file
To open a view file from the Viewer:
1 Select File > Open.
2 Select the view file you want to open.

Purify displays the run from the view file in the Viewer. You can work
with the run just as you would if you had run the program from the
Viewer.

You can also use the - vi ewoption to open a view file. For example:
% purify -view <fil enane>. pv

This opens the <fi | ename>. pv view file in a new Viewer.

Using your debugger with Purify

You can run an instrumented program directly under your debugger so
that when Purify finds an error, you can investigate it immediately.

Alternatively, you can enable Purify’s just-in-time (JIT) debugging
feature to have Purify start your debugger only when it encounters an
error—and you can specify which types of errors trigger the debugger.
JIT debugging is useful for errors that appear only once in a while.
When you enable JIT debugging, Purify suspends execution of your
program just before the error occurs, making it easier to analyze the
error.

42 Chapter 2 - Using Rational Purify

Using Purify with PureCoverage

True4
UNIX

Purify is designed to work closely with PureCoverage, Rational
Software’s runtime test coverage tool. PureCoverage identifies the parts
of your program that have not yet been tested so you can tell whether
you’re exercising your program sufficiently for Purify to find all the
memory errors in your code.

To use Purify with PureCoverage, add both product names to the front
of your link line. Include all * with the program to which they refer. For
example:

% purify <purifyoptions> purecov <purecovoptions> \
cc -g hello_world.c -0 hello_world

To start PureCoverage from the Purify Viewer, click the PureCoverage
icon (g in the toolbar.

For more information, see Using Rational PureCoverage on page 51.

Purify API functions

You can call Purify’s API functions from your source code or from your
debugger to gain more control over Purify’s error checking. By calling
these functions from your debugger, you get additional control without
modifying your source code. You can use Purify’s API functions to
check memory state and to search for memory and file-descriptor leaks.

For example, by default Purify reports memory leaks only when you
exit your program. However, if you call the API function
purify_new | eaks at key points throughout your program, Purify
reports the memory leaks that have occurred since the last time the
function was called. This periodic checking enables you to locate and
track memory leaks more effectively.

To use Purify API functions, include <puri f yhormre>/ puri fy. h in your
code and link with <puri f yhome>/ puri fy_st ubs. a.

Commonly used functions Description

int purify_describe (char *addr) Prints specific details about memory

int purify_is_running (void) Returns " TRUE" if the program is
instrumented

Using Purify with PureCoverage 43

Commonly used functions

Description

int purify_new_inuse (void)

Prints a message on all memory newly
in use

int purify_new_|eaks (void)

Prints a message on all new leaks

int purify_new fds_inuse (void)

Lists the new open file descriptors

int purify_ printf (char *format, ...)

Prints formatted text to the Viewer or
log-file

int purify watch (char *addr)

Watches for memory wri t e, nal | oc,
free

int purify watch_n (char *addr, int size,
char *type)

Watches memory: t ype ="r", "W', "rw'

int purify_watch_info (void)

Lists active watchpoints

int purify_ watch_renove (int watchno)

Removes a specified watchpoint

int purify_what_colors (char *addr, int
si ze)

Prints the color coding of memory

Build-time options

Specify build-time options on the link line when you instrument a

program with Purify. For example:

% purify -cache-di r=$HOVE/ cache - al ways-use-cache-dir cc ...

Commonly used build-time options

Default

-al ways-use-cache-dir

no

Forces all instrumented object files to be written to the global cache

directory

-cache-dir

<puri f yhome>/ cache

Specifies the global directory where Purify caches instrumented object

files

-col l ector

none

Specifies the collect program to handle static constructors (for use with

gcc, g++)

-ignore-runtine-environnment

no

Prevents the runtime Purify environment from overriding the option

values used in building the program

44 Chapter 2 - Using Rational Purify

Commonly used build-time options Default

-li nker system-dependent

Sets the alternative linker to build the executables instead of the system
default

-print-hone-dir
Prints the name of the directory where Purify is installed, then exits

Conversion characters for filenames

Use these conversion characters when specifying filenames for options
suchas-log-fileand-viewfile.

Character Converts to

9w/ Full pathname of program with “/” replaced by “ "
v Program name

%0 Process id (pid)

qualified filenames (. / %v. pv) Absolute or relative to current working directory
unqualified filenames (no ‘/’) Directory containing the program

Runtime options

Specify runtime options on the link line or by using the PURI FYOPTI ONS
environment variable. For example:

% set env PURI FYOPTIONS "-10g-file=nylog. %. % °‘printenv PUR FYOPTI ONS' "

Commonly used runtime options Default

-aut o- nount - prefi x [t mp_mmt
Removes the prefix used by file system auto-mounters

-chain-1length 6
Sets the maximum number of stack frames to print in a report

-fds-in-use-at-exit yes
Specifies that the file descriptor in use message be displayed at program exit

Conversion characters for filenames 45

Commonly used runtime options Default

-foll ow chil d-processes no
Controls whether Purify monitors child processes in an instrumented program

-jit-debug none
Enables just-in-time debugging

-l eaks-at-exit yes
Reports all leaked memory at program exit

-log-file stderr
Writes Purify output to a log file instead of the Viewer window

- messages first

Controls display of repeated messages: "first","all",orina"bat ch" at
program exit

-program-name argv[0]

Specifies the full pathname of the instrumented program if ar gv[0] contains
an undesirable or incorrect value

-showdirectory no

Shows the directory path for each file in the call chain, if the information is
available

- show pc no
Shows the full pc value in each frame of the call chain

- show pc- of f set no
Appends a pc-offset to each function hame in the call chain

-viewfile none
Saves Purify output to a view file (. pv) instead of the Viewer.

-user-path none
Specifies a list of directories in which to search for programs and source code

- W ndows none
Redirects Purify output to st der r instead of the Viewer if - wi ndows=no

t Can use the conversion characters listed on page 45.

46 Chapter 2 - Using Rational Purify

Purify messages

Purify reports the following messages. For detailed, platform-specific
information, see the Purify online help system.

Message Description Severity* Message Description Severity*
ABR Array Bounds Read W NPR Null Pointer Read F
ABW Array Bounds Write C NPW Null Pointer Write F
BRK Misuse of Brk or Sbrk C PAR Bad Parameter W
BSR Beyond Stack Read W PLK Potential Leak W
BSW Beyond Stack Write W PMR Partial UMR W
COR Core Dump Imminent F SBR Stack Array Bounds Read W
FlU File Descriptors In Use | SBW Stack Array Bounds Write C
FMM Freeing Mismatched C SI G Signal |
Memory
FMR Free Memory Read W SOF Stack Overflow W
FMV Free Memory Write C umMc Uninitialized Memory W
Copy
FNH Freeing Non Heap C UWVR Uninitialized Memory W
Memory Read
FUM Freeing Unallocated C WPF Watchpoint Free |
Memory
I PR Invalid Pointer Read F WPM Watchpoint Malloc |
| PW Invalid Pointer Write F WPN Watchpoint Entry |
MAF Malloc Failure | WPR Watchpoint Read |
M U Memory In-Use | WPW Watchpoint Write |
MK Memory Leak W WPX Watchpoint Exit |
VRE Malloc Reentrancy Error C ZPR Zero Page Read F
MSE Memory Segment Error W ZPW Zero Page Write F

* Message severity: F=Fatal, C=Corrupting, W=Warning, I=Informational

Purify messages 47

How Purify finds memory-access errors

Purify monitors every memory operation in your program,
determining whether it is legal. It keeps track of memory that is not
allocated to your program, memory that is allocated but uninitialized,
memory that is both allocated and initialized, and memory that has
been freed after use but is still initialized.

Purify maintains a table to track the status of each byte of memory used
by your program. The table contains two bits that represent each byte of
memory. The first bit records whether the corresponding byte has been
allocated. The second bit records whether the memory has been

initialized. Purify uses these two bits to describe four states of memory:

red, yellow, green, and blue.

lllegal to read, write, or free
red and blue memory

Yellow Green

Legal to write
or free, but memaory memaory
illegal to read allocated but allocated and
uninitialized initialized

Legal to read and write
(or free if allocated
by mal | oc)

Purify checks each memory operation against the color state of the
memory block to determine whether the operation is valid. If the
program accesses memory illegally, Purify reports an error.

48 Chapter 2 - Using Rational Purify

» Red: Purify labels heap memory and stack memory red initially. This
memory is unallocated and uninitialized. Either it has never been
allocated, or it has been allocated and subsequently freed.

In addition, Purify inserts guard zones around each allocated block
and each statically allocated data item, in order to detect array
bounds errors. Purify colors these guard zones red and refers to
them as red zones. It is illegal to read, write, or free red memory
because it is not owned by the program.

Yellow: Memory returned by nal | oc or newis yellow. This memory
has been allocated, so the program owns it, but it is uninitialized.
You can write yellow memory, or free it if it is allocated by mal | oc,
but it is illegal to read it because it is uninitialized. Purify sets stack
frames to yellow on function entry.

= Green: When you write to yellow memory, Purify labels it green.
This means that the memory is allocated and initialized. It is legal to
read or write green memory, or free it if it was allocated by mal | oc
or new Purify initializes the data and bss sections of memory to
green.

» Blue: When you free memory after it is initialized and used, Purify
labels it blue. This means that the memory is initialized, but is no
longer valid for access. It is illegal to read, write, or free blue
memory.

Since Purify keeps track of memory at the byte level, it catches all
memory-access errors. For example, it reports an uninitialized memory
read (UMR) ifani nt orl ong (4 bytes) is read from a location previously
initialized by storing ashort (2 bytes).

How Purify checks statically allocated memory

In addition to detecting access errors in dynamic memory, Purify
detects references beyond the boundaries of data in global variables
and static variables; that is, data allocated statically at link time as
opposed to dynamically at run time.

Here is an example of data that is handled by the static checking
feature:

int array[10];
mai n() {
array[11] = 1;

How Purify finds memory-access errors 49

In this example, Purify reports an array bounds write (ABW) error at
the assignment to ar r ay[11] because it is 4 bytes beyond the end of the
array.

Purify inserts red zones around each variable in your program’s
static-data area. If the program attempts to read from or write to one of
these red zones, Purify reports an array bounds error (ABR or ABW).

Purify inserts red zones into the data section only if all data references
are to known data variables. If Purify finds a data reference that is
relative to the start of the data section as opposed to a known data
variable, Purify is unable to determine which variable the reference
involves. In this case, Purify inserts red zones at the beginning and end
of the data section only, not between data variables.

Purify provides several command-line options and directives to aid in
maximizing the benefits of static checking.

50 Chapter 2 - Using Rational Purify

Using
Rational PureCoverage

Rational PureCoverage: What it does

During the development process, software changes daily, sometimes
hourly. Unfortunately, test suites do not always keep pace. Rational®
PureCoverage® is a simple, easily deployed tool that identifies the
portions of your code that have not been exercised by testing.

Using PureCoverage, you can:

Identify the portions of your application that your tests have
not exercised

= Accumulate coverage data over multiple runs and multiple builds
» Merge data from different programs sharing common source code

Work closely with Purify to make sure that Purify finds errors
throughout your entire application

Automatically generate a wide variety of useful reports
» Access the coverage data so you can write your own reports

PureCoverage provides the information you need to identify gaps in
testing quickly, saving precious time and effort.

This chapter introduces the basic concepts involved in using
PureCoverage. For complete information, see the PureCoverage online
help system.

51

Finding untested areas of Hello World

This chapter shows you how to use PureCoverage to find the untested
parts of the hel | o_wor | d. ¢ program.

Before you begin:

1 Create a new working directory. Go to the new directory, and copy
the hel I o_wor | d. ¢ program and related files from the
<pur ecovhone>/ exanpl e directory:

% nkdir /usr/home/ pat/exanpl e
% cd /usr/hone/ pat/exanpl e
% cp <pur ecovhone>/ exanpl e/ hel | o* .

2 Examine the code in hel | o_worl d. c.

The version of hel | o_wor | d. ¢ provided with PureCoverage is
slightly more complicated than the usual textbook version.

#i ncl ude <stdi o. h>
voi d di splay_hello_world();
voi d di spl ay_nessage();

mai n(argc, argv)

int argc;
char** argv;
{
if (argc == 1)
di splay_hell o_worl d();
el se
di spl ay_nessage(argv[1]);
exit(0);
}
voi d
di splay_hel l o_worl d()
{
printf("Hello, World\n");
}
voi d
di spl ay_nessage(s)
char *s;
{
printf("%, Wrld\n", s);
}

52 Chapter 3 - Using Rational PureCoverage

Instrumenting a program

output

True4
UNIX

True4
UNIX

1 Compile and link the Hello World program, then run the program to
verify that it produces the expected output:
%cc -g hello_world.c
% a. out
Hell o, World

2 Instrument the program by adding pur ecov to the front of the
compile/link command line. To have PureCoverage report the
maximum amount of detail, use the - g option:

% purecov cc -g hello world.c

Note: If you compile your code without the - g option, PureCoverage
provides only function-level data. It does not show line-level data.

On Tru64 UNIX, you can add pur ecov in front of the compile/link
command line, or you can instrument the executable. Use the -t aso
option with pur ecov if you linked with the - t aso option:

% pur ecov <-taso> a.out

On Tru64 UNIX, PureCoverage caches Dynamic Shared Objects
(DSOs), not object files. References to linkers and link-line options in
this chapter do not apply to PureCoverage on Tru64 UNIX.

A message appears, indicating the version of PureCoverage that is
instrumenting the program:

Pur eCover age 4. 4 Sol ari s 2, Copyright 1994- 1999 Rat i onal

Sof t war e Cor p.

Al rights reserved.

Instrumenting: hello_world.o Linking

Note: When you compile and link in separate stages, add pur ecov only
to the link line.

Instrumenting a program 53

Running the instrumented program

Run the instrumented Hello World program:

% a. out
Tued On Tru64 UNIX, if you use pur ecov on the executable instead of on the
compile/link line, type:
% a. out . pure
PureCoverage displays the following:
Name of the instrumented executable You can use this command to display
technical support contact information
Start-up banner——**** PureCoverage i nstrunmented a.out (pid 3466 at Wed Feb 3 10: 32: 40 1999)
* PureCoverage 4.4 Solaris 2, Copyright 1994-1999 Rational Software Corp.
* Al rights reserved.
* For contact information type: "purecov -help"
* Conmand-|ine: a.out
* Options—settings: -purecov \
- pur ecov- home=/ usr/ pur e/ purecov-4. 4-sol ari s2
* PureCoverage |licensed to Rational Software Corp.
Normal * Coverage counting enabl ed.
program output ——Hel I o, World

PureCoverage saves

coverage data to

a. pcv file

****% PyreCoverage instrumented a.out (pid 3466) ****
* Saving coverage data to /usr/hone/ pat/exanpl e/ a.out. pcv.
* To view results type: purecov -view /usr/hone/ pat/exanple/a.out.pcv

The a. out program produces its normal output, just as if it were not
instrumented. When the program completes execution, PureCoverage
writes coverage information for the session to the file a. out . pcv. Each
time the program runs, PureCoverage updates this file with additional
coverage data.

54 Chapter 3 - Using Rational PureCoverage

Displaying coverage data

To display the coverage data for the program, use the command:
% purecov -view a.out.pcv &
This displays the PureCoverage Viewer.

These columns show This column shows the
statistics for function usage number of adjusted lines

These columns show
statistics for line usage

I I
=] PureCoverdoe [=10]
Fie YVYiew Acltions Adjusimenis Help |
. . Sorting order: FUMCTIONS ADJUSTED LIMES ADTS
Summary information Adjusted unused lines Runs Calls unused used used? unused used used? total
for the entire program—rt | Total Covsrags | | 1 2 BB 3 BB o |2
Information for the —+ | | fusr/homedpatdexanpled 1 2 BBY 3 B EBBY 0

source directory

{,,, =l

In this example, there is only one source directory, so the information
displayed for the directory is identical to the Tot al Cover age
information.

Note: The default header for line statistics is ADJUSTED LI NES, not just
LI NES. This is because PureCoverage has an adjustment feature that lets
you adjust coverage statistics by excluding specific lines. Under certain
circumstances, the adjusted statistics give you a more practical
reflection of coverage status than the actual coverage statistics. The
ADJS column in this example contains zeroes, indicating that it does not
include adjustments.

Displaying coverage data 55

Expanding the file-level detail

File-level information — 34— — | hello_uorld.c

includes the number
of runs for which
PureCoverage
collected data

Click » nextto.../exanpl e/ to expand the file-level information for
the directory.

|
A| PureCoverage | a | J|
Fie YVYiew Acltions Adjusimenis Help |
N (e
G @
Sorting order: FUMCTIONS ADJUSTED L IMES ADTS
Adjusted unuzed lines Runs Calls unuzed uzed uzed? unuzed uzed uzed? total
*| Total Coverage 1 2 BBY 3 B EBBY 0 A
| fusr/home/patdexanpled 1 2 BBY 3 B EBBY 0
1 1 2 BB 3 E EBEX 0

]
4’4 1= |

You used only one file in the exanpl e directory to build a. out .
Therefore the FUNCTI ONS and ADJUSTED LI NES information for the file is
the same as for the directory. The number 1 in the Runs column
indicates that you ran the instrumented a. out only once.

Note: When you are examining data collected for multiple executables,
or for executables that have been rebuilt with some changed files, the
number of runs can be different for each file.

56 Chapter 3 - Using Rational PureCoverage

Examining function-level detail

Function-level —

information includes the
number of times

the program called
each function

Expand the hel | o_wor | d. c line to show function-level information.

The Viewer shows coverage information for the functions
di spl ay_nessage, mai n, and di spl ay_hel | o_wor | d.

The Calls column shows how many times
the program called each function

The FUNCTI ONS columns tell
at a glance whether each

function was used or unused
| |
=| PureCoverage [=[]
Fie YVYiew Acltions Adjusimenis Help |
Sorting order: FUMCTIONS ADJUSTED L IMES ADTS
Adjusted unuzed lines Runs Calls unuzed uzed uzed? unuzed uzed uzed? total
*| Total Coverage 1 2 BBY 3 B EBBY 0 A
| fusr/home/patdexanpled 1 2 BBY 3 B EBBY 0
= hello_world,c 1 1 2 BB 3 E BB 0
=| display_mezzage 0 unuzed 2 0 0% 0
main uged 1 4 80 0
dizplay_hello_world 1 uzed 0 21008 0
4
4’ - 1= |

PureCoverage does not list the pri nt f function or any functions that it
calls. The pri nt f function is a part of the system library, | i bc. By
default, PureCoverage excludes collection of data from system libraries.

Displaying coverage data 57

Examining the annotated source

To see the source code for mai n annotated with coverage information,
click the Annotated Source tool =/ next to mai n in the Viewer.
PureCoverage displays the Annotated Source window.

Number of times each line was executed

Adjustments Source code
) ;
=] PureCoverage: Annotated Source -- hello_warld.c (Adjusted cowerage} [Read onlyl [=]0]
Fie View Help
Line |1 1 T [Hiks | Annotated Source
Source code —— 15 uoid display_nessage(): 3
X 17
line numbers 18 nain{arge, argw}
19 int arget
20 charkk argu:
21 <
1 if {args == 13
23 1 display_hello_world(}s
24 else
Unused code 5] dis
26 1 exit{0):
27 1
28
29 waid
30 display_hello_world(}
3 i
32 1 printf("Hella, MWorldsn")s
33 e
34
35 waid
36 display_messagels)
E char *s:
38
Unused code l
40 i 7
X P
Nextunused | Prev unused | Go o line #: Find:
[l Ilusr/home/pat/example/belio_worid.c 1

PureCoverage highlights code that was not used when you ran the
program. In this file only two pieces of code were not used:

« Thedispl ay_nessage(argv[1]);statementin mai n
= The entire di spl ay_nmessage function

A quick analysis of the code reveals the reason: the program was
invoked without arguments.

Improving Hello World’s test coverage

To improve the test coverage for Hello World:

1 Without exiting PureCoverage, run the program again, this time
with an argument. For example:

% a. out Goodbye

58 Chapter 3 - Using Rational PureCoverage

PureCoverage displays the following:

**** PureCoverageinstrumenteda. out (pid17331 at Wd Feb
3 10: 38: 07 1999) PureCoverage 4.4 Sol ari s 2, Copyright (C
1994- 1999 Rati onal Software Corp.

* All rights reserved.

* For contact information type: "purecov -help"

* Command-|ine: a.out Goodbye

* Options settings: -purecov \

- pur ecov- home=/ usr/ pur e/ purecov-4. 4-sol ari s2

* PureCoverage |icensed to Rational Software Corp.

* Coverage counting enabl ed.

Goodbye, World

**** PureCoverage instrumented a.out (pid 17331) ****
* Saving coverage data to

/usr/ hore/ pat / exanpl e/ a. out . pcv.

* To view results type: purecov -Vview

/usr/ hore/ pat / exanpl e/ a. out . pcv

2 PureCoverage displays a dialog confirming that coverage data has
changed for this run. Select Reload changed .pcv files and click OK.
Some Pur‘eEouer‘aﬁe data chanﬁed
Files which have changed since being loaded {and whe n):
07410 10:38 - a.0ut.pov A
]
M =
Please choose one of these options:
Reload the changed — - 4 Reload changed pev files
a. out . pcv file «~ Reload now; automatically reload in the future
-~ Don't relead, but inform me of future changes
-~ Don't relaad and don’t inform me of future changes
OK |

Note: This dialog appears only if the PureCoverage Viewer is open
when you run the program.

Improving Hello World's test coverage 59

PureCoverage updates the coverage information in the Viewer and the

Annotated Source window.

Function and line coverage is now 100%

| |
A| PureCoverage a J|
File View Actions Adjusiments Help
Sorting order: FUNCTIONS ADJUSTED L IMES ADTS
Adjusted unused lines Runs Calls unused used usedd unused used uzed? total
*| Total Coverage A
dizplay_hello_world 0
dizplay_mezzage 0
main 0
4
_’ - 1= |
I I
y Y
=] FureCaverage: Annotated Source - hello_world.c (Adjusted coverage} [Read anlyl [=10]
File View Help
Line | D I T |Hits [Annotated Source
16 woid display_message(}s H
17
18 main{argc, argu}
19 int argc:
20 har#k +
The statement 5 e
. | 2] 2 if {arge == 1}
di spl ay_nessage 23 1 display_hello_uorld()s
24 else
(argv[1]);... H 1 display_nessage(argul1l):
26 2 exit{0}:
27 2
28
29 uoid
El) display_hello_uorld(}
: il {
and the function E] 1 printf("Hello, Horldin"y:
.] 1]y
di spl ay_nessage are Ef
5 uoid
now shown as used display message(s)
7 char ¥s:
L {
9 1 printf("Es, Uorldwn", ¥z i
X P
Nextunused | Prev unused | Gotlo line #:
[1 lusr/home/pat'example/helio_world.c 1

Note: If you still have untested lines, it is possible that your
compiler is generating unreachable code.

3 Select File > Exit.

60 Chapter 3 - Using Rational PureCoverage

Using report scripts

You can use PureCoverage report scripts to format and process
PureCoverage data. The report scripts are located in the
<pur ecovhone>/ scri pt s directory.

Select File > Run script to open the script dialog.

Select a script from the selection list Type arguments

| |

| |
purecov -export | po_annotate I
oK Gancel

You can also run report scripts from the command line.

Report scripts

pc_annot ate Produces an annotated source text file

% pc_annotate [-force-mnerge][-apply-adjustnents=no]\
[-fil e=<basenane>...][-type=<type>][<prog>.pcv...]

pc_bel ow Reports low coverage

% pc_bel ow [-force-nerge] [-appl y-adj ust nent s=no] [- per cent =<pct >]\
[<prog>. pcv...]

pc_buil d_di ff Compares PureCoverage data from two builds of an application

% pc_build_diff [-apply-adjustments=no][-prefix=xXXXX....] old.pcv \
new. pcv

pc_covdi ff Annotates the output of diff for modified source code
Note: Cannot run from Viewer
% yourdi ff <name> | pc_covdi ff [-context=<lines>] \
[-format ={diff]|side-by-side|l newonly}][-Iines=<bool ean>] \
[-tabs=<stops>][-w dt h=<wi dt h>] [-f orce-nerge] [- appl y- adj ust ment s=no] \
-fil e=<nane> <prog>. pcv.. .

pc_diff Lists files for which coverage has changed
% pc_di ff [-appl y-adjustnents=no] ol d.pcv new. pcv

pc_enmi | Mails areport to the last person who modified insufficiently covered files

% pc_emai | [-force-merge][-apply-adjustnents=no][-percent=<pct>] \
[<prog>. pcv...]

pc_sel ect Identifies the subset of tests required to exercise modified source code

% <l'ist of changed files> | pc_select \
[-diff=<rul es>][-canonicalize=<rule>]testl. pcv test2.pcv...

Using report scripts 61

Report scripts

pc_ssheet Produces a summary in spreadsheet format
% pc_ssheet [-force-nerge][-apply-adjustmments=no][<prog>.pcv...]

pc_summary Produces an overall summary in table format

% pc_sunmmary [-file=<nane>...] [-force-nerge] [-apply-adjustnents=no]
[<prog>. pcv...]

Build-time options

You can specify build-time options on the link line when you
instrument programs with PureCoverage. For example:

% purecov -cache-di r=3HOVE/ cache - al ways-use-cache-dir \

cc ...
Commonly used build-time options Default
-al ways- use-cache-dir no

Forces all PureCoverage instrumented object files to be written to the
global cache directory

-aut o- nount - prefi x /tmp_mmt
Removes the prefix used by file system auto-mounters

-cache-dir <pur ecovhone>/ cache

Specifies the global directory where PureCoverage caches instrumented
object files

-col lector none

Specifies the collect program to handle static constructors (for use with
gcc, g++)

-ignore-runtine-environnment no

Prevents the runtime PureCoverage environment from overriding the
option values used in building the program

-li nker system-dependent

Specifies a linker other than the system default for building the
executables

62 Chapter 3 - Using Rational PureCoverage

Runtime options

You can specify runtime options on the link line or by using the
PURECOVOPTI ONS environment variable. For example:

% set env. PURECOVOPTI ONS \
"-counts-file=./testl. pcv ‘printenv PURECOVOPTI ONS' "

Commonly used runtime options Default

t -counts-file % . pcv
Specifies an alternate file for writing coverage count data in binary format

-foll ow chil d-processes no
Controls whether PureCoverage is enabled in forked child processes

t -log-file stderr
Specifies a log file for PureCoverage runtime messages

- progr am name ar gv[0]
Specifies the full pathname of the PureCoverage instrumented program

t -user-path none
Specifies a list of directories to search for source code

t Can use the conversion characters listed on page 45.

Analysis-time options

Use analysis-time options with analysis-time mode options. For
example:

% purecov -nmerge=result.pcv -force-merge filea.pcv fileb.pcv

Commonly used analysis-time options Default

-appl y-adj ust nent s yes

Applies all adjustments in the $HOVE/ . pur ecov. adj ust file to
exported coverage data

-force-nmerge no

Forces the merging of coverage data files (. pcv) obtained from
different versions of the same object file

Runtime options 63

Analysis-time mode options

Command-line syntax:

% pur ecov -<npde option> [anal ysis-tinme options] \
<filel.pcv file2.pcv ...>

Analysis-time mode options Compatible options

-export -appl y-adj ust nent s

Merges and writes coverage counts from multiple coverage data
files (. pcv) in export format to a specified file
(- export =<fil enanme>) or to st dout

-extract none

Extracts adjustment data from source code files and writes it to
$HOVE/ . pur ecov. adj ust

-nmer ge=<fil enane. pcv> -force-nerge

Merges and writes coverage counts from multiple coverage data
files (. pcv) in binary format

- Vi ew -force-nmerge,

Opens the PureCoverage Viewer for analysis of one or more -user-path

coverage data files (. pcv)

64 Chapter 3 - Using Rational PureCoverage

Using Rational Quantify

Rational Quantify: What it does

Your application’s runtime performance—its speed—is one of its most
visible and critical characteristics. Developing high-performance
software that meets the expectations of customers is not an easy task.
Complex interactions between your code, third-party libraries, the
operating system, hardware, networks, and other processes make
identifying the causes of slow performance difficult.

Rational® Quantify® is a powerful tool that identifies the portions of
your C/C++ or Java application that dominate its execution time.
Quantify gives you the insight to quickly eliminate performance
problems so that your software runs faster. With Quantify, you can:

Get accurate and reliable performance data

Control how data is collected, collecting data for a small portion of
your application’s execution or the entire run

= Compare before and after runs to see the impact of your changes on
performance

Easily locate and fix only the problems with the highest potential for
improving performance

This chapter introduces the basic concepts involved in using Quantify.
For complete information, see the Quantify online help system.

How Quantify works: C/C++

Unlike sampling-based profilers, Quantify reports performance data
for your program without any profiler overhead. The numbers you see
represent the time your program would take without Quantify.
Quantify instruments and reports performance data for all the code in
your program, including system and third-party libraries, shared
libraries, and statically linked modules.

65

Quantify counts machine cycles: For C/C++ code, Quantify uses
Object Code Insertion (OCI) technology to count the instructions your
program executes and to compute how many cycles they require to
execute. Counting cycles means that the time Quantify records in your
code is independent of accidental local conditions and, assuming that
the input does not change, identical from run to run. The fact that
performance data is repeatable enables you to see precisely the effects
of algorithm and data-structure changes.

Since Quantify counts cycles, it gives you accurate data at any scale.
You do not need to create long runs or make numerous short runs to get
meaningful data as you must with sampling-based profilers—one short
run and you have the data. As soon as you can run a test program, you
can collect meaningful performance data and establish a baseline for
future comparison.

Quantify times system calls: Quantify measures the elapsed (wall
clock) time of each system call made by your program and reports how
long your program waited for those calls to complete. You can
immediately see the effects of improved file access or reduced network
delay on your program. You can optionally choose to measure system
calls by the amount of time the kernel records for the process, which is
the same as the time the UNIX/ bi n/ t i ne utility records.

Quantify distributes time accurately: Quantify distributes each
function’s time to its callers so you can tell at a glance which function
calls were responsible for the majority of your program’s time. Unlike
gpr of , Quantify does not make assumptions about the average cost per
function. Quantify measures it directly.

How Quantify works: Java

Quantify times performance: Quantify times each method as it
executes, and collects accurate data about the actual execution of your
Java code. You can choose either to record elapsed wall-clock time or to
measure the amount of time the kernel records for the process, like the
UNIX/ bi n/ ti me utility. Because data for Java code is based on timing
and not counting cycles, as it is for C and C++, performance data for
Java code, while reliable for a given run, is not repeatable.

Quantify distributes time accurately: Quantify distributes each
method’s time to its callers. This helps you detect the methods that are
ultimately responsible for bottlenecks in your code.

66 Chapter 4 - Using Rational Quantify

Collecting performance data: C/C++

True4
UNIX

To collect performance data for a C/C++ program:

1 Add quanti fy to the front of the link command line. For example:

% quantify cc -g hello_ world.c -o hello_world

Run the instrumented program as you usually do:

% hel l o_worl d

Note: On Tru64 UNIX, you can add quant i fy in front of the
compile/link command line, or you can instrument the executable.
Use the - t aso option with quant i fy if you linked with the - t aso
option:

% quantify <-taso> a.out
You then run the instrumented program by typing:
% a. out . pure

Note also that on Tru64 UNIX, Quantify caches Dynamic Shared
Objects (DSOs), not object files. References to linkers and link-line
options in this chapter do not apply to Quantify on Tru64 UNIX.

When the program starts, Quantify prints license and support
information, followed by the expected output from your program.

***% Quantify instrunented hello_world (pid 20352 at Sat 5
08:41: 27 1999)

Quantify 4.4 Solaris 2, Copyright 1993-1999 Rati onal
Sof t ware Cor p.

* For contact information type: “quantify -help”
* Quantify licensed to Quantify Eval uation User
* Quantify instruction counting enabl ed.

Program output—Hel | o, Wor | d.

Data transmission—Quant i fy: Sendi ng data for 37 of 1324 functions

fromhello_world (pid 20352)......... done.

When the program finishes execution, Quantify transmits the
performance data it collected to qv, Quantify’s data-analysis program.

Collecting performance data: C/C++ 67

Interpreting the program summary: C/C++

After each dataset is transmitted, Quantify prints a program summary
showing at a glance how the original, non-instrumented, program is
expected to perform.

Time Quantify expects the original program to take

Time spent executing
program functions
(compute-bound)

Quantifly: Resource Statistics for hello_world (pid 20352)
* cycles secs

* Total counted tine: 16148821 0.323 (100.0%
z Time in your code: 2721 0.000 (0.0%
Time spent waiting for * Time in systemcalls: 843950 0.017 (5.29%
System calls to comp|ete * Dynam c library | oading: 15302150 0.306 (94.8%
*
*

Time spent Ioadingi‘
dynamic libraries . Note: Data collected assuming a sparcstation_|Ix with clock rate of 750 MHz.

Note: These times exclude Quantify overhead and possible nenory effects.
*

Time taken to collect——=* El apsed data col | ection tine: 0.336 secs

data includes Quantify’'s ~ *
counting overhead and * Note: This nmeasurenent includes Quantify overhead.

any memory effects

Collecting performance data: Java

To collect Java performance data, run Quantify with the - j ava option,
as follows:

= Foranapplet:

% quantify [<Quantify options>] -java <applet viewer>
[<appl et viewer options>] <htm file>

= Foraclass file:

% quantify [<Quantify options>] -java <Java execut abl e>
[<Java options>] <class>

= ForalJAR file:

% quantify [<Quantify options>] -java <Java execut abl e>
[<Java options>] -jar <JAR file>

68 Chapter 4 - Using Rational Quantify

» For a container program such as Netscape Navigator:

% quantify [<Quantify options>] -java <exenane>
[<argunents to exenane>]

Note: Quantify can collect line-by-line performance data or
method-level data. By default, Quantify uses the line level when debug
data, which is stored in class files, is available.

When Quantify starts, it prints license and support information,
followed by the expected output from your program.

When the program finishes execution, Quantify transmits the
performance data it collected to qv, Quantify’s data-analysis program.

Interpreting the program summary: Java

After each dataset is transmitted, Quantify prints a program summary
showing at a glance how the original, non-instrumented, program is
expected to perform.

Actual time taken by your process
from when Java was started to the end

Quanti|fy: Resource Statistics for /peoplel/jol4javalbin/appletviewer (pid 24565)

Time spent in your Java « cycl es secs
code, including some * Total counted tine: 101071710000 134. 762 (100. 0%
Quantify overhead —= Time in your code: 54225003750 72.300 (53.7%

*

*Time Quantify excluded fromthe dataset:

* Tinme spent blocked/ waiting: 36447111000 48. 596

*

* Note: Data collected assuming a UtraSparc with clock rate of 750 MHz.
*

*

* Note: These neasurements performed on a machine with 2 processors.
For threaded prograns on multiprocessors, Quantify will tinme
operations that are executed in parallel as if they were perforned
on a single processor.

*
*
*
*

Collecting performance data: Java 69

Using Quantify’s data analysis

windows

After transmitting the last dataset, Quantify displays the Control Panel.
From here, you can display Quantify’s data analysis windows and

begin analyzing your p

CONTROL PANEL

rogram’s performance.

ANNOTATED SOURCE

. ,
= Quantify: hello_warkd Quanlify: Annotaled Source {/u25/G2icode/hello_workdhello_workl.c!
File Vi Wind Hel
call Graph || Help || Exit o Windows Help
T hello_warid (pid 20352) 1 JuzsrQzrcodemello_wordmello_word.c {Read only)
int World() =
.
* Function World
+ galled 1 tine
+ Function time 11 cycles (0.0001% of .root.)
+ Functionsdescendsnts tine 664252 cycles (4.1133% of .root.)
" * Distribution to Callers:
—| Quantify: Function List * 1 time main
File View Windows 99,9955 |
printf ("World. \n");
All 37 functions match **. 0.0005%] 3
Function time (usecs) int meinly
0.52 start N
0.44 localecony * Function: main
Uz ety Called 1 time
040 st + Function time 12 cycles (0.0001% of .root.)
4 T les [4.5030% of £
Guantily: Function Detail] e ¢ of -reat.)
View _ yindows [A
Hello —
start_float [
ot Function nane nalloc
Pilenane Juse/Lib/libe. so.1.9
= called: 1 tine /
Functaon tins 9 cycles (0.00% of .zoot.) -
Find in function list: _4| I Function+descendants tine 30668 cycles (0.10% of root.)
Minimm function time: 96 cyoles § 1
Show Annotated Source || Show Fur | | Mewimm function tine: 96 cycles hello_waorld (pid 20352)
" = T
FU NCTION L IST Distribution to callers: Contributions from descendants:
S [1 tine _findbur 1 tine (99.50%) morecore 2
J 1tine (0.10%8) denote
] a
=] = =] T
Find:] = GQuantity: CallGraph =]
Shew Anoieed Sow | File View Windows Help
FUNCTION DETAIL T
rid rite
2omaint it - M (joji -_wrtch
- findbuf
emchr

70 Chapter 4 - Using Rational Quantify

—T— T T e

Hello

Focus on Subtree || Previous Focus || Show Annotated Source || Show Function Detail |

Find: |

1 function distributes time outside this subtree

CALL GRAPH

hello_world (pid 20352) |

The Function List window

The Function List window shows the functions that your program
executed. By default, it displays all the functions in your program,
sorted by their function time. This is the amount of time a function spent

performing computations (compute-bound) or waiting for system calls
to complete.

_ Quantify: Function List [
Fle View Windows Help
Function list description —F— Al 37 functions match ™.
Function time {usecs)
.52 start =

0

0.44 localeconv
0.42 disatby
0.40 exit

i L uml

[

Click a function

main

to select it . World
. Hello
start_float
.root .
= —
Find a function by Name —+— Find in function list: _|| gI

or filter by expression
Show Annotated Source | Show Function Detail | Locate in Graph I

hello_word (pid 20352)
>

Sorting the function list

To sort the function list based on the various data Quantify collects,
select View > Display data.

View
For C/C++ code | Display data > |4 Function time
Restrict functions & <> Function+descendants time
Function names... <> Descendants time
Scale factors & <> System call time
Precision . <> Register window trap time

Go back o <> Number of function calls
Number of callers
<> Mumber of descendants

Show Annotated Source

Show Function Detail <> Number of system calls
Locate in Graph <> Number of register window traps
View
Display data = | @ Function time
Restrict functions & | Function+descendants time
For Java code Function names... { Descendants time
Scale factors = | Mumber of function calls
Precision t [<> Mumber of callers
Go back & {< Mumber of descendants
Show Annotated Source

Show Function Detail
Locate in Graph

The Function List window 71

Restricting functions

To focus attention on specific types of functions, or to speed up the
preparation of the function list report in large programs, you can
restrict the functions shown in the report. Select View > Restrict

functions.

View

For C/C++ code Display data P

Restrict functions | @ All functions

Function names... &> Top 20 functions

Scale factors & <> Top 100 functions

Precision 5 {<» Contributing functions only

Go back B <> Annotated functions only

<> Compute—bound functions only

Show Annotated Source
Show Function Detail

Locate in Graph View
Display data =3
Restrict functions - | @ All functions
For Java code | Function names... < Top 20 functions

< Top 100 functions
Precision > Contributing functions only
Go back . > Annotated functions only

Scale factors

v v

Show Annotated Source
Show Function Detail
Locate in Graph

You can restrict the list to the top 20 or top 100 functions in the list, to
the functions that have annotated source, to functions that are
compute-bound (make no system calls), or to functions that contribute
non-zero time for a recorded data type.

The Call Graph window

The Call Graph window presents a graph of the functions called during
the run. It uses lines of varying thickness to graphically depict where
your program spends its time. Thicker lines correspond directly to
larger amounts of time spent along a path.

The call graph helps you understand the calling structure of your
program and the major call paths that contributed to the total time of

the run. Using the call graph, you can quickly discover the sources of
bottlenecks.

72 Chapter 4 - Using Rational Quantify

= Quantify: Call Graph e

File View Windows Help
Thicker lines mean more _xﬂsnutb\w
expensive paths pr. rid rite
Spmain rintfi-EE dopm -~ wrtchi
. kp_ﬁndhuf
Click and drag emchr

anywhere in the
call graph to move to
a new location

Or click and drag the
Viewport to move Lo

to a new location

The selected function Hello
Focus on Subtree | Previous Focus | Show Annotated Source | Show Function Detail I

Find:

1 function distributes time ouiside this subiree hello_world (pid 20352) 1
))

By default, Quantify expands the call paths to the top 20 functions
contributing to the overall time of the program.

Using the pop-up menu
To display the pop-up menu, right-click any function in the call graph.

Expand descendants E

Locate callers =

Locate descendants &
T

Change focus
Show Annotated Source
Show Function Detail

You can use the pop-up menu to:

= Expand and collapse the function’s subtree

= Locate individual caller and descendant functions

» Change the focus of the call graph to the selected function

- Display the annotated source code or the function detail for the
selected function

The Call Graph window 73

Expanding and collapsing descendants

Select to expand —i Expand descendants

or collapse
descendant subtrees

Use the pop-up menu to expand or collapse the subtrees of descendants
for individual functions.

P | Collapse descendants

¥ . Add immediate descendants
Locate descendants % | Expand top 20 descendants
Change focus i

Locate callers

Expand top 100 descendants
Show Annotated Source | Expand all descendants
Show Function Detail

After expanding or collapsing subtrees, you can select
View > Redo layout to remove any gaps that your changes create in the
call graph.

The Function Detail window

All the data collected
for mal | oc

The Function Detail window presents detailed performance data for a
single function, showing its contribution to the overall execution of the
program.

For each function, Quantify reports both the time spent in the function’s
own code (its function time) and the time spent in all the functions that
it called (its descendants time). Quantify distributes this accumulated
function+descendants time to the function’s immediate caller.

The immediate descendants of mal | oc, and how they contributed
to mal | oc’s function+descendants time

]
= Quantify: Function Defail N I

The minimum and

maximum time
spentin mal | oc
on any one call

The functions that called

mal | oc

File View Windows Help |
— =
| fLEmE ©
Ausc/lib/libe. s0. 1.9
1 time
Function time: 96 ecycles { 0. 00% of .root.)
Function+descendants time: 30668 cycles { 0.19% of .root.)
Mininum function time: 96 cycles
Maxinum function time: 96 cycles
7
[~ I~
Distribution to callers: Contributi from desc
B 1 time _findbuf 1 time ({99 59%) morecore A
J 1 time 0. 10%) demote
7 7
=~ I= [N I~

Fing: |

Show fumeiata! Source | Show PismHen Detst - Locate in Graph I

hello_woHd (pid 20352)
>

74 Chapter 4 - Using Rational Quantify

Double-click a caller or descendant function to display the detail for
that function.

The function time and the function+descendants time are shown as a
percentage of the total accumulated time for the entire run. These
percentages help you understand how this function’s computation
contributed to the overall time of the run. These times correspond to the
thickness of the lines in the call graph.

Changing the scale and precision of data

Quantify can display the recorded data in cycles (the number of
machine cycles) and in microseconds, milliseconds, or seconds.
To change the scale of data, select View > Scale factors.

View |

Function names...

Scale factors P | @ Cycles

Precision & 1> Microseconds

Go back & <> Milliseconds
> Seconds

Show Annotated Source
Show Function Detail
Locate in Graph

To change the precision of data, select View > Precision.

View |
Display data 5
Restrict functions B

Function names...

Scale factors B

Precision = 1< dd.dd

Go back = 1 dd.ddd
@ dd.dddd

Show Annotated Source & dd.ddddd

Show Function Detail
Locate in Graph

Saving function detail data

To save the current function detail display to a file, select
File > Save current function detail as.

To append additional function detail displays to the same file, select
File > Append to current detail file.

The Function Detail window 75

The Annotated Source window

Source file

Function summary

Annotations show how
function+descendants
time was distributed
over its source lines

Find text in—

the source code

Quantify’s Annotated Source window presents line-by-line
performance data using the function’s source code.

Note: The Annotated Source window is available only for files that you
compile using the - g debugging option.

= Quantify: Annotated Source (/u25/G2/code/helio_warkdhe lio_world.c)

.
=15

File View

Windows

Help

u25/Q2icodeello_wordmello_woHd.c (Read only)

+
+
+
+
+
+
+
+
|

09, 9005

0. 0005%|

+
+
+
+
+
+
+
+
|

8. 6521%

91.3475%|

int World()

=

Function:
Galled:
Function time:

Function+descendants time:

Distribution to Gallers:
1 time main

World
1
11
664252

time
cycles
cycles

Pl

L0001z of
.1133% of

.roaot.)
.root.)

printf ("World. Yo"} ;

int main)

Function:
Called:
Function time:

Function+descendants time:

Distribution to Callers:
1 time start

main

-

12
787174

time
cycles
cycles

o=

L0001z of
LE030% of

.root.)
.roaot.)

Hello(};
World();

[~

-Find in source: {]

hello_world (pid 20352) |

The numeric annotations in the margin reflect the time recorded for that
line or basic block over all calls to the function. By default, Quantify

shows the function time for each line, scaled as a percentage of the total
function time accumulated by the function.

Changing annotations

To change annotations, use the View menu. You can select both function
and function+descendants data, either in cycles or seconds and as a
percentage of the function+descendants time.

View

Annotations

7

<> Function time

Function summaries
Multi-block lines
Function names...
Scale factors
Precision

Go to function

<> Function time (% of function)

= <> Function+descendant time

Function+descendant time (% of f+d)

A

76 Chapter 4 - Using Rational Quantify

Saving performance data on exit

To exit Quantify, select File > Exit Quantify. If you analyze a dataset
interactively, Quantify does not automatically save the last dataset it
receives. When you exit, you can save the dataset for future analysis.

Confirm exit \

?

Exiting Quantify: Please confirm

Save & Exit... Exit Cancel

By default, Quantify names dataset files to reflect the program name
and its runtime process identifier. You can analyze a saved dataset at a
later time by running qv, Quantify’s data analysis program.

You can also save Quantify data in export format. This is a clear-text
version of the data suitable for processing by scripts.

Comparing program runs with gxdiff

The gxdi f f script compares two export data files and reports any
changes in performance. For C or C++ programs, the results show
exactly how much your program’s performance has improved. For Java
code, the results indicate general performance trends. This is because C
and C++ performance data, based on counting cycles, is repeatable,
while Java data, based on the timing of methods, is not repeatable.

To use the gxdi f f script:

1 Save baseline performance data to an export file. Select
File > Export Data As in any data analysis window.

2 Change the program and run Quantify on it again.

3 Select File > Export Data As to export the performance data for the
new run.

4 Use the gxdi ff script to compare the two export data files. For
example:

% gxdi ff -i testHash. pure.20790. 0. gx
i mproved_t est Hash. pure. 20854. 0. gx

You can use the -i option to ignore functions that make calls to
system calls.

Saving performance data on exit 77

Below is the output from this example.

Di f ferences between:
program t est Hash. pure (pid 20790) and
program i nproved_t est Hash. pure (pid 20854)

gxdi f f lists the Function name Calls Cycles % change
functions that have strenp -40822 -1198640 93.77%faster
changed ... put Hash 0 -32912 6.61%faster
! get Hash 0 -28376 7.86% faster
! renmHash 0 -7856 5.91% faster
! hashl ndex 0 10000 1. 49% sl ower

and summarizes the—5 differences; -1257784 cycles (-0.025 secs at 50 Miz)

differences forthe 25 019% faster overall (ignoring systemcalls).
entire run

Build-time options

Specify build-time options on the link line when you instrument a
program with Quantify. For example:

% quanti fy -cache-dir=$HOVE cache -al ways-use-cache-dir \

cc
Commonly used build-time options Default
-al ways-use-cache-dir no
Specifies whether instrumented files are written to the global cache
directory
-cache-dir <quanti f yhome>/ cache

Specifies the global cache directory

-collection-granularity I'ine
Specifies the level of collection granularity

-col l ector none
Specifies the collect program to handle static constructors in C++
code

-ignore-runtine-environment no

Prevents the runtime Quantify environment from overriding option
values used in building the program

78 Chapter 4 - Using Rational Quantify

Commonly used build-time options Default

-li nker system-dependent

Specifies an alternative linker to use instead of the system linker

- use- nachi ne system-dependent

Specifies the build-time analysis of instruction times according to a
particular machine

t Does not apply to Java.

gv runtime options

To run qv, specify the option and the saved . qv file. For example:

%qv -write-summary-file a.out.23.qv

qv options Default

-add-annot ati on none
Specifies a string to add to the binary file

-print-annotations no
Writes the annotations to st dout

- W ndows yes
Controls whether Quantify runs with the graphical interface

-wite-export-file none
Writes the recorded data in the dataset to a file in export format

-write-sunmmary-file none
Writes the program summary for the dataset to a file

Runtime options

Specify runtime options on the link line or by using the
QUANTI FYCPTI ONS environment variable. For example:

% set env QUANTI FYOPTI ONS " -wi ndows=no"; a.out

qv runtime options

79

Commonly used runtime options

Default

-avoi d-recordi ng-systemcal | s
Avoids recording specified system calls

system-dependent

-measure-tined-calls
Specifies measurement for timing system calls

el apsed-tine

-record-chil d- process-data no
Records data for child processes created by f or k and vf or k

-record-systemcalls yes
Records system calls

-report-excl uded-tine 0.5
Reports time that was excluded from the dataset

-run-at-exit none
Specifies a shell script to run when the program exits

-run-at-save none
Specifies a shell script to run each time the program saves counts

-save-dat a-on-signal s yes
Saves data on fatal signals

-save-t hread- dat a conposite
Saves composite or per-stack thread data

-write-export-file none
Writes the dataset to an export file as ASCII text

-wite-sunmary-file /dev/tty
Writes the program summary for the dataset to a file

- W ndows yes

Specifies whether Quantify runs with the graphical interface

t Does not apply to Java.

80 Chapter 4 - Using Rational Quantify

API functions: C/C++

To use Quantify API functions with C/C++ code, include
<quanti f yhonme>/ quant i fy. h in your code and link with
<quanti f yhome>/quanti fy_stubs. a

Commonly used C/C++ functions Description

quantify_help (void) Prints description of Quantify API
functions

quantify_is_running (void) Returnst r ue if the executable is
instrumented

quantify_print_recordi ng_state (void) Prints the recording state of the
process

quanti fy_save_data (void) Saves data from the start of the

program or since last call to
quantify_clear_data

quantify_save_data_to file (char * filenane) Savesdatato afileyou specify

quanti fy_add_annotation (char * annotati on) Adds the specified string to the next

saved dataset

quantify_clear_data (void) Clears the performance data recorded
to this point
quanti fy_<action>_recording_data (void) Starts and stops recording of all data

quanti fy_<action>_recording_dynam c_library_ Startsand stops recording dynamic

data (void)

library data

quanti fy_<action>_recording_register_w ndow_ Starts and stops recording

traps (void)

register-window-trap data

quanti fy_<action>_recordi ng_system call Starts and stops recording specific
(char *systemcall _string) system-call data

quanti fy_<action>_recording_systemcalls Starts and stops recording of all
(voi d) system-call data

t <acti on> is one of: start, stop, is. For example:
guantify_stop_recordi ng_system call

API functions: C/C++ 81

APl methods: Java

You can call an APl method from your Java code or from a debugger.
Use the following syntax:

Rat i onal . Pur eAPI . | sRunni ng()

or

i mport Rational . PureAPl;
Pur eAPI . | sRunni ng()

Pur eAPI is a Java class that includes all the Quantify API methods that
can be used with Java code. The Pur eAPI class is part of a Java package
called Rat i onal . j ar, which is located in <quant i f yhome>.

You can run class files that include calls to Pur eAPI methods with or
without Quantify:

When you run these class files with Quantify, Quantify
automatically sets CLASSPATHand LD_LI BRARY_PATH to access
Rational .jar and i bQProfJ. so.

* When you run the class files without Quantify, you must add
<quanti f yhome>/1i b32 to your LD_LI BRARY_PATH. In addition, if
you do not have a Rat i onal . j ar file in your
<j avahone>/jre/li b/ ext directory, you must add
<quanti f yhonme> to your CLASSPATH.

The Java APl methods are as follows:

Java APl methods: class PureAPI Description
public static int IsRunning(); Returns t r ue if the executable is
instrumented

public static int Disabl eRecordingData(); Disablescollection of all data by Quantify

public static int StartRecordi ngData(); Tells Quantify to start recording all program
performance data

public static int StopRecordingData(); Tells Quantify to stop recording all program
performance data

public static int IsRecordingData(); Checks if Quantify is currently recording all
program performance data

82 Chapter 4 - Using Rational Quantify

Java APl methods: class PureAPI

Description

public static int ClearData();

Tells Quantify to clear all the data it has
recorded about your program’s performance
to this point

public static int SaveData();

Saves all the data recorded since program
start (or the lastcall tocl earDat a())intoa
dataset (a. qv file)

public static int AddAnnotation(String
annot ation);

Tells Quantify to save the argument string in
the next output datafile written by
saveDat a()

API Methods: Java 83

84 Chapter 4 - Using Rational Quantify

Index

Symbols

%V, %v, %p 45

A

ABR, array bounds read error
correcting 36
in Hello World 34
access errors, how Purify finds 48
account number, Rational Software 3
AccountLink user input 3
-add-annotation 79
adjusted lines 55
-always-use-cache-dir 44, 62, 78
analysis-time options 63
Annotated Source window
PureCoverage 58
Quantify 76
a.out.pcv 54
API functions
Purify 43
Quantify (C/C++) 81
Quantify (Java) 82
appending function detail 75
applets, collecting performance data 68
-apply-adjustments 63
-auto-mount-prefix 45, 62
-avoid-recording-system-calls 80

B

blue memory color 49

build-time options
PureCoverage 62
Purify 44
Quantify 78

C

cache directory
configuring 17
location of 24
-cache-dir 17, 44, 62, 78
caching dynamic shared objects
IRIX 31
Tru64 UNIX 31, 53
caching dynamic shared objects on Tru64
UNIX 67
caching options
PureCoverage 62
Purify 44
Quantify 78
Call Graph window, Quantify 74
windows
Quantify call graph 72
Calls column, PureCoverage 57
CD-ROMs
ejecting 25
mounting 24
-chain-length 45
changing annotations, Quantify 76
characters, conversion 45

class files, collecting performance data 68

ClearQuest, integrating 17
code, see source code
collapsing subtrees 74
-collection-granularity 78
-collector 44, 62, 78
color, see memory color
comparing program runs

with PureCoverage 58

with Purify 40

with Quantify gxdiff script 77
compiling and linking 31
compute-bound

functions 71, 72

time 68
configuration message 33

85

configure command 26 environment variables

configuring the cache directory 17 LM_LICENSE_FILE 28
container programs, collecting Java performance MANPATH 18
data 69 PATH 18
controls, Purify program 33 PURECOVOPTIONS 63
conversion characters for filenames 45 PUREOPTIONS 17
-counts-file 63 PURIFYOPTIONS 45
coverage data QUANTIFYOPTIONS 79
file level 56 executables, instrumenting
function level 57 PureCoverage on Tru64 UNIX 53
in PureCoverage Viewer 55 Purify on IRIX and Tru64 UNIX 31
cycles Quantify on Tru64 UNIX 67
counted by Quantify 66 expanding subtrees 74
scale factor 75 expiration date, licenses 12
-export 64
exporting Quantify data 77
D -extract 64
daemons, and licensing 27
.dat license file 6, 9, 27 F
data
comparing export files 77 -fds-in-use-at-exit 45
saving Quantify data 77 file(s)
debugger(s) a.out.pcv 54
JIT debugging 42 installing product 24
scripts on HP-UX 19 license_for_*.upd 4
using with Purify 42 Purify view 41
debugging option, see -g debugging option gv and gx script 19
defaults file 15 Rational license (.dat) 6, 9, 27
deleting product releases 22 rational.opt 20
directories rs_install.defaults 15
cache 17 Temporary.dat 27
installation 5, 8, 11, 12, 23 users.purela 6, 9
PureLA 6, 9 filename conversion characters 45
Rational 23—24 filesystems, installing on read-only 17
disk space requirements 4 FLEXIm
dynamic library, timing 68 commands 28
dynamic shared object (DSO) caching 31, 53, 67 End User Manual 28

GLOBEtrotter web site 28
License Manager 27
E floating license 3
-follow-child-processes 46, 63

diti de 36, 38
editing source code) force-merge 63

ejecting CD-ROMs 25

86 Index

Function Detail window 74 installation

saving data 75 basic steps 1
scale and precision of data 75 directory 5, 8, 11, 12, 23
Function List window evaluation license 2
finding top contributors 71 on read-only filesystems 17
restricting functions 72 permanent license 23
function+descendants time 74 requirements 4
functions rs_install commands 26
compute-bound 72 startup license 15
coverage detail 57 user input (AccountLink) 3
restricting display in Quantify 72 instrumenting a program
sorting in Quantify 71 description of vii
See also API functions with PureCoverage 53
Functions columns, PureCoverage 57 with Purify 31

with Quantify 67
integration, Purify and PureCoverage 43
G IRIX
compile/link command 31
DSO caching 31
running a Purify instrumented program 32

-g debugging option
and PureCoverage 53

and Purify 34
and Quantify 67, 76
get_hostinfo.sh 3 J
GLOBEtrotter web site 28
graph, see Call Graph window JAR files, collecting performance data 68
green memory color 49 -java 68
Java and Quantify 66, 68
-jit-debug 46
H just-in-time debugging 42
heap analysis, Purify 39
Hello World example K
PureCoverage 52
Purify 30 keys, product license 15

help system, setting up 17
help, technical support viii
hiding L
functions in Quantify 72
messages in Purify 41
hostid for license server host 3
HP-UX debugger scripts 19

leaks, see memory leaks
-leaks-at-exit 46
library
system and PureCoverage 57
time loading dynamic 68
| license daemon, Imgrd 27

-ignore-runtime-environment 44, 62, 78

Index 87

license file memory access errors

dat 6, 9, 21, 27 example 34
.upd 4 how Purify finds 48
license key types 15 memory color 48
License Manager, FLEXIm 27 memory in use message 39
license server memory leaks
port number 8 definition 39
requirements 3 heap analysis 39
using multiple servers 15 message 37
license(s) new leaks button 37
checking 26 potential 39
expiration date 12 purify_new_leaks 43
floating 3 menu, Quantify pop-up 73
license key types 15 -merge 64
named user 6, 9, 16, 18 -messages 46
permanent 22, 23 messages
quantity 3 Purify 47
Rational license file (.dat) 27 suppressing Purify 41
settingup 26 MLK, memory leak 38
startup 15, 22 example 37
upd license file 4 mounting CD-ROMs 24

user names 6, 9, 20—21
license_check command 26

license_for_*.upd file 4 N
I!cense_setup command 26 Named User license 6, 9, 16, 18, 20
line numbers new memory leaks, Purify 37

-g option 31, 34 '

on IRIX 34

on Tru64 UNIX 34 9)
-linker 45, 62, 79
links, symbolic 18 Object Code Insertion (OCI) 66
LM_LICENSE_FILE environment variable 28 online help system, settingup 17
Imgrd license daemon 27 operating system, identifying 24
local variable names, displaying 31 options
-log-file 46, 63 PureCoverage analysis-time 63

PureCoverage build-time 62
PureCoverage runtime 63
M Purify build-time 44
Purify runtime 45
Quantify build-time 78
Quantify runtime 79
gv runtime 79
options (by name)
-add-annotation 79
-always-use-cache-dir 44, 62, 78

machine cycles 66

MANPATH environment variable 18
manual pages 18
-measure-timed-calls 80

88 Index

options (by name), continued -write-summary-file 79, 80

-apply-adjustments 63 options file 20
-auto-mount-prefix 45, 62 options_setup command 27
-avoid-recording-system-calls 80 overhead, Quantify 68

-cache-dir 44, 62, 78
-chain-length 45
-collection-granularity 78 P
-collector 44, 62, 78

-counts-file 63

-export 64

-extract 64

-fds-in-use-at-exit 45
-follow-child-processes 46, 63
-force-merge 63
-ignore-run-time-environment 62
-ignore-runtime-environment 44, 78
-java 68

-jit-debug 46

-leaks-at-exit 46

-linker 45, 62, 79

PATH environment variable 18
performance data 67, 69
saving 77
permanent licenses
installing manually 23
requesting 22
pop-up menu, Quantify 73
port number, license server 8
post_install command 26
post-installation configuration tasks 16
potential memory leak 39
-print-annotations 79
-print-home-dir 45

-log-file 46, 63 .
9 ! product license keys 15
-measure-timed-calls 80 .
producthome directory 23
-merge 64

products, removing 22
program controls, Purify 33
program runs, comparing
Quantify gxdiff script 77
with PureCoverage 58
with Purify 40
program summary, Quantify 68, 69
-program-name 46, 63
programs, running instrumented
PureCoverage 54

-messages 46
-print-annotations 79
-print-home-dir 45
-program-name 46, 63
-record-child-process-data 80
-record-system-calls 80
-report-excluded-time 80
-run-at-exit 80

-run-at-save 80
-save-data-on-signals 80

Purify 32
-save-thread-data 80 fy_

. Quantify 67
-show-directory 46 .

purecov.configure command 26

-show-pc 46
show-pc-offset 46 PureCoverage

P benefits 51

-taso 31, 53, 67
-use-machine 79
-user-path 46, 63
-view 55, 64

-view-file 46
-windows 46, 79, 80
-write-export-file 79, 80

symbolic links for 19

using with Purify 43

Viewer 55
PURECOVOPTIONS environment variable 63
PureLA directory 6, 9
PUREOPTIONS environment variable 17

Index 89

Purify

API functions 43

instrumenting a program 31

messages 47

Viewer 32
purify.configure command 26
PURIFYOPTIONS environment variable 45
PurifyPlus vii, 1

Q

Quantify
API functions (C/C++) 81
API functions (Java) 82
build-time options 78
Call Graph window 72, 74
overhead 68
repeatability of timing 66
runtime options 79
symbolic links for 19
with Java 66, 68
quantify.configure command 26
QUANTIFYOPTIONS environment variable 79
qv 67, 69
gv script files 19
gx script files 19
gxdiff script 77

R

Rational ClearQuest, integrating 17
rational daemon 27
Rational license file

*dat 27

license_for_*.upd 4
Rational PurifyPlus vii, 1
Rational Software account number 3
Rational Software website

AccountLink 4

home page viii

technical support viii
rational.opt options file 20
README file location 14
read-only filesystems 17

90 Index

-record-child-process-data 80
-record-system-calls 80
red memory color 49
Redo layout, Quantify 74
removing previous releases 22
report(s)
program summary 68, 69
PureCoverage scripts 61
-report-excluded-time 80
restricting functions in Quantify 72
rs_install
commands 26
defaults file 15
program 14
-run-at-exit 80
-run-at-save 80
running an instrumented program
PureCoverage 54
Purify 32
Quantify 67
runs
column, PureCoverage 56
comparing with PureCoverage 58
comparing with Purify 40
comparing with Quantify 77
runtime options
PureCoverage 63
Purify 45
Quantify 79
qv 79

S

-save-data-on-signals 80
-save-thread-data 80
saving
function detail data 75
Purify run 41
Quantify data 77
scale factors 75
scripts
enabling PureCoverage scripts 19
HP-UX debugger 19
PureCoverage report scripts 61

Quantify 19
gxdiff 77
server-name.dat file 27
servers, license 14
requirements 3
using multiple 15
-show-directory 46
-show-pc 46
-show-pc-offset 46
sorting function list 71
source code
annotated in PureCoverage 58
annotated in Quantify 76
displaying filenames 34
editing from Viewer 36, 38
line numbers, Purify 34
number of lines displayed 36
startup license 15, 22
statically allocated memory 49
subtrees, Quantify 74
summary, Quantify program 68, 69
support, technical viii
suppressing Purify messages 41
symbolic links 18
for HP-UX debugger scripts 19
for PureCoverage 19
for Purify 18
for Quantify 19
system call timing 66
system libraries and PureCoverage 57

T

-taso option
PureCoverage 53
Purify 31
Quantify 67
technical support viii
Temporary .dat file 27
time
compute-bound 68
function+descendants 74

incode 68
loading dynamic libraries 68
to collect the data 68
Total Coverage row, PureCoverage 55
Tru64 UNIX
compile/link command 31, 53, 67
DSO caching 53, 67
running an instrumented program
(PureCoverage) 54
running an instrumented program
(Purify) 31

U

uname command 24

uninstall command 22

.upd license file 4

-use-machine 79

user names, for licensing 6, 9, 20—21
-user-path 46, 63

\Y

validating setup 17
variable, see environment variable
-view 55, 64
view file, Purify 41, 42
Viewer
PureCoverage 55
Purify 32
-view-file 46
viewport, call graph 73

w

websites
for obtaining Rational licenses 4
GLOBEtrotter 28
Rational software viii
Rational technical support viii
-windows 46, 79, 80

Index 91

windows

92

PureCoverage annotated source 58
PureCoverage viewer 55

Purify viewer 32

Quantify annotated source 76
Quantify call graph 74

Quantify data analysis 70

Index

Quantify function detail 74

Quantify function list 71
-write-export-file 79, 80
-write-summary-file 79, 80

Y

yellow memory color 49

	Title page
	Notice
	Preface
	What’s in this guide?
	Audience
	Other resources
	Contacting Rational technical publications
	Contacting Rational technical support

	Installing the products
	Overview
	Step 1: Obtaining a license for your Rational product
	Information you need to obtain a license
	Obtaining a .upd import file using AccountLink

	Step 2: Installing your Rational product
	Information you need for rs_install
	If you are installing a new permanent or TLA license and are importing a .upd file
	If you are installing a new permanent or TLA license without importing a .upd file
	If you already have a permanent or TLA license set up
	If you are installing a temporary or evaluation license

	Installing the products using rs_install
	Answers to questions about rs_install

	Step 3: Post-installation configuration tasks
	Installing on a read-only file system
	Making the manual pages available
	Making the products available to all users

	Checking and adjusting your configuration
	Maintaining the rational.opt options file
	Modifying the list of user names

	Removing a previous product release
	Requesting and installing the permanent or TLA license key
	Requesting your permanent or TLA license key
	Entering a permanent or TLA license key after initial installation

	Supplemental notes
	Creating an installation directory�manually
	Mounting the CD-ROM
	Ejecting the CD-ROM
	Using rs_install commands
	Using the FLEXlm Software License Manager
	The Rational license file
	Verifying that FLEXlm is working
	Using FLEXlm commands
	Learning more about FLEXlm

	Using Rational Purify
	Rational Purify: What it does
	Finding errors in Hello World
	Instrumenting a program
	Compiling and linking in separate stages

	Running the instrumented program
	Seeing all your errors at a glance
	Finding and correcting errors
	Understanding the cause of the error
	Correcting the ABR error

	Finding leaked memory
	Correcting the MLK error
	Looking at the heap analysis

	Comparing program runs
	Suppressing Purify messages
	Saving Purify output to a view file
	Saving a run to a view file from the Viewer
	Opening a view file

	Using your debugger with Purify
	Using Purify with PureCoverage
	Purify API functions
	Build-time options
	Conversion characters for filenames
	Runtime options
	Purify messages
	How Purify finds memory-access errors
	How Purify checks statically allocated memory

	Using Rational�PureCoverage
	Rational PureCoverage: What it does
	Finding untested areas of Hello World
	Instrumenting a program
	Running the instrumented program
	Displaying coverage data
	Expanding the file-level detail
	Examining function-level detail
	Examining the annotated source

	Improving Hello World’s test coverage
	Using report scripts
	Build-time options
	Runtime options
	Analysis-time options
	Analysis-time mode options

	Using Rational Quantify
	Rational Quantify: What it does
	How Quantify works: C/C++
	How Quantify works: Java
	Collecting performance data: C/C++
	Interpreting the program summary: C/C++

	Collecting performance data: Java
	Interpreting the program summary: Java

	Using Quantify’s data analysis windows
	The Function List window
	Sorting the function list
	Restricting functions

	The Call Graph window
	Using the pop-up menu
	Expanding and collapsing descendants

	The Function Detail window
	Changing the scale and precision of data
	Saving function detail data

	The Annotated Source window
	Changing annotations

	Saving performance data on exit
	Comparing program runs with qxdiff
	Build-time options
	qv runtime options
	Runtime options
	API functions: C/C++
	API methods: Java

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

