
Rational Software Corporation ®

RATIONAL ® CLEARCASE MULTISITE®

ADMINISTRATOR’S GUIDE

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025073-000

UNIX/WINDOWS EDITION

Administrator’s Guide
Document Number 800-025073-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface .. xvii

About This Manual ... xvii

ClearCase Documentation Roadmap.. xviii

Typographical Conventions ..xix

Online Documentation ..xx

Technical Support ..xx

MultiSite Overview

1. Introduction to MultiSite ..1

1.1 VOBs and VOB Replicas ...1

Replica Names, Replica Objects, and Host Assignments.............................2

Differences Among Sites ...2

Element Ownership and Ownership Preservation4

Requirements for Ownership-Preserving Replicas................................5

Synchronizing Replicas in a VOB Family...6

MultiSite, Time, and Time Zones...6

1.2 Enabling Independent VOB Development: Mastership...............................7

Replica Mastership...8

Branch Mastership ...8

Creation of the main Branch of an Element ..10

Synchronizing Development on Different Branches10

Default and Explicit Branch Mastership..13

Type Object Mastership...14

Mastership Restrictions ...17

1.3 Supporting Serial Development in Replicas ..20

1.4 Conflict Resolution...21

Resolving Conflicts Among Type Objects ..21

1.5 VOB Objects and Replica Objects ..23
Contents iii

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

1.6 VOB Operations and the Oplog ...24

Tracking Operations for Each Replica...25

Epoch Numbers ..26

Optimization and the Epoch Number Matrix ..27

Indirect Synchronization ..29

2. Planning a MultiSite Implementation ..33

2.1 MultiSite Installation..34

2.2 MultiSite Licensing...35

2.3 ClearCase Use Model ...35

Branching and Mastership ..36

Use of Metadata ..37

Text Mode for Replicas ..37

Use of Administrative VOBs or UCM ...38

2.4 MultiSite Use Model...38

Type of Administration ...38

Mastership Strategy..40

Replica Permission Strategy..40

Synchronization Method ...41

Synchronization Pattern ..42

Directions of Exchange ...42

One-to-One and Ring Synchronization..43

One-to-Many Synchronization ..44

Many-to-Many Synchronization ...46

Synchronization Schedule ...46

Use of MultiSite for Backups ..47

Scrubbing Parameters for VOB Replicas...47

Oplog Scrubbing..48

export_sync Scrubbing ...49

2.5 Responsibilities of MultiSite Administrators ...49
iv Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

3. MultiSite Command Set ..53

3.1 Location of MultiSite Programs ...53

3.2 multitool Use...54

multitool Subcommands ...55

Commands Copied from ClearCase ..55

Replica Creation, Synchronization, and Management55

Object Mastership ...56

Failure Recovery..57

3.3 View Contexts and VOB Mounts...58

3.4 Specifying VOBs and Replicas in Commands ...58

3.5 Additional MultiSite Commands...59

3.6 ClearCase Commands Related to MultiSite ...60

Using MultiSite

4. Creating Replicas ...65

4.1 Overview of Replica Creation ..65

4.2 Timing of Replica Creation...66

4.3 Notes on Different Transport Methods...66

Store-and-Forward Method..66

Communication Between Replica Hosts ...66

Limiting the Size of a Packet ...67

Transport Options...67

Notes on Using Tape or a File-Based Transfer Method..............................67

4.4 Replica-Creation Scenario...68

Planning the Rules of the Road..68

Prerequisites..70

Export Phase ...71

Transport Phase..73

Import Phase ...73

4.5 Replicating a VOB Between UNIX and Windows.......................................77
Contents v

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

5. ClearCase Feature Levels ..79

5.1 Overview of Feature Levels ..79

5.2 Raising the Replica Feature Level ..80

5.3 Raising the VOB Family Feature Level ...82

VOB Families with Bidirectional Synchronization82

VOB Families with Unidirectional Synchronization82

5.4 Displaying Feature Levels...83

5.5 Feature Levels Error Message...84

6. Synchronizing Replicas ..85

6.1 Synchronization Patterns...86

Designing an Update Strategy..87

6.2 Assumption of Successful Synchronization ...90

6.3 Transferring Packets with Store-and-Forward...90

Packet Storage During the Export and Import Phases................................91

Packet Transport ...92

Configuring the Store-and-Forward Facility..92

Submitting Packets to Store-and-Forward..92

Sending Files That Are Not Packets...93

Setting Up an Indirect Shipping Route ...93

Retries, Expirations, and Returned Data...94

Error Notification in a Mixed Environment ..95

Differentiating Packets with Storage Classes ...95

6.4 Using MultiSite through a Firewall ...96

Using Electronic Mail...96

Using FTP ..97

Using Custom Software...98

Installing Store-and-Forward on a UNIX Firewall Host98

Firewall Issues..100

Installing shipping_server on a Firewall ...100

Controlling Ports Used by albd_server and shipping_server101

Guidelines for Setting Port Values..101

Specifying Port Values..101
vi Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

6.5 Manual Synchronization ...102

Export Phase ...102

Transport Phase..103

Import Phase ...103

6.6 Automated Synchronization...104

Using the ClearCase Scheduler ..104

Export Phase ...105

Transport Phase..106

Import Phase ...107

Defining Receipt Handlers ..108

Scheduling Import Jobs..108

6.7 Listing Synchronization History..109

6.8 Synchronizing More Efficiently ...109

Example of Increased Efficiency ..109

Example of Decreased Efficiency...110

7. Managing Replicas ..111

7.1 Displaying Properties of a Replica ..111

7.2 Listing the Synchronization History of a Replica......................................113

7.3 Changing the Host Name for a Replica ..113

7.4 Changing Ownership Preservation ...114

7.5 Setting the Connectivity Property ...116

7.6 Renaming a Replica ...116

7.7 Moving a Replica..117

7.8 Changing Mastership of a Replica...117

7.9 Deleting a Replica ..119

8. Managing Mastership ...121

8.1 Listing an Object’s Master Replica...122

8.2 Listing Objects Mastered by a Replica ..123

8.3 Listing the History of Mastership Changes for an Object123

8.4 Displaying Mastership Request Settings ..124

8.5 Assigning Branch Mastership During Element Creation.........................124
Contents vii

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

8.6 Changing Mastership...126

Transferring Mastership of a Type Object ..127

Transferring Mastership of a Replica Object ..128

Transferring Mastership of a VOB ...130

Transferring Mastership of an Element...131

Transferring Mastership of a Branch ...132

Transferring Branch Mastership ...132

Removing Explicit Mastership of a Branch ...133

Transferring Mastership of a Stream ...135

Transferring Mastership of All Objects Mastered by a Replica135

Fixing an Accidental Mastership Change ...137

8.7 Working with Type Objects ..137

Creating a Shared Type Object ...137

Listing Whether a Type Object Is Shared or Unshared.............................138

Converting an Unshared Type Object to a Shared Type Object..............138

9. Implementing Requests for Mastership ...141

9.1 Overview of a Request for Mastership..141

9.2 Requirements and Recommendations...144

9.3 Planning Your Implementation..145

To Hide Request for Mastership Features ..145

9.4 Enabling Requests for Mastership ...146

Prerequisites ..146

Adding Developers to the Access Control List ..146

Deny Requests for Specific Objects ..148

Enable Requests at the Replica Level...148

9.5 Customizing Synchronization Updates for Mastership Requests...........149

9.6 Displaying Mastership Request Settings...150

9.7 Troubleshooting..151

Troubleshooting Commands ..151

Status Messages ..152

9.8 Serial Development Scenario ..157

Planning the Implementation ...157

Setting Up Access Controls ...157
viii Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

Writing Config Specs ...159

Boston ...159

San Francisco ...159

Tokyo ..159

Requesting Mastership ..160

Serial Development of a File That Cannot Be Merged160

Serial Development of a File That Can Be Merged161

10. Troubleshooting MultiSite Operations ...163

10.1 Troubleshooting Tips...164

10.2 Replica-Creation Problems ...165

Export Phase ...165

Import Phase ...166

Conflict in VOB Object Registry ...166

Conflict in VOB-Tag Registry..167

10.3 Synchronization Export Problems ...167

Cannot Find Oplog ..168

Sites Have IP Connection...168

Sites Do Not Have IP Connection...169

Oplog Gap Detected During Creation of Update Packet170

Export Failure During Version Construction...170

Packets Accumulate in Outgoing Storage Bay...171

Replica Cannot Update Itself..171

10.4 Transport Problems ...172

Error Messages ...172

Invalid Destination...173

Delivery Fails ..174

Shipping Server Fails to Start or Connection Is Refused..........................174

Shipping Order Expires...175

10.5 Synchronization Import Problems...175

Packets Accumulate in Incoming Storage Bay...176

Packet is Not Applicable to Any Local VOB Replicas177

Read from Input Stream Fails...178
Contents ix

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

Element Changes During Operation ...178

rmreplica Operation Cannot be Imported ..179

Replica Incarnation is Old ...180

Miscellaneous Problems ..181

Recovering from Lost Packets ..182

Lost Replica-Creation Packet ...182

Lost Update Packet ...182

Inconsistent Changes to Replica...184

Ownership Preservation...185

Object Mastership..186

Automatic Renaming of Type Objects and Replica Objects.....................187

10.6 Running epoch_watchdog ..188

10.7 Restoring and Replacing Replicas..190

Restoring a Replica from Backup ...191

Replacing an Existing Replica...192

Saving Views from the Replaced Replica ..195

10.8 Cleaning Up from Accidental Deletion of a Replica196

Using MultiSite for Backup and Interoperability

11. Backing Up VOBs with MultiSite ..199

11.1 Using a Backup Replica ...199

Handling Objects That Are Not Replicated..200

Designing Synchronization Strategy ...200

11.2 Using Replicas with Incremental Backup ...201

11.3 Restoring a Replica from Backup ...201

12. Using MultiSite for Interoperability ...203

12.1 Advantages and Disadvantages...203

12.2 Restrictions on Multiple Replicas in a LAN ...204

12.3 Setting Up Multiple Replicas at One Site ..205
x Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

MultiSite Reference Pages

13. MultiSite Reference Pages ..209

apropos ... 211

chepoch .. 213

chmaster ... 217

chreplica ... 224

epoch_watchdog .. 227

lsepoch .. 229

lsmaster .. 232

lspacket ... 237

lsreplica ... 240

mkorder ... 244

mkreplica .. 249

MultiSite Control Panel ... 263

multitool .. 268

recoverpacket .. 272

reqmaster .. 276

restorereplica .. 283

rmreplica ... 287

shipping.conf ... 289

shipping_server .. 294

sync_export_list ... 297

sync_receive .. 305

syncreplica ... 310

Index ...321
Contents xi

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

xii Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualTOC.fm — September 11, 2001 4:10 pm

Figures

Figure 1 Branch Mastership ...9

Figure 2 Creating an Instance of a Type ..16

Figure 3 Resolving Conflicts in Names of Type Objects ...22

Figure 4 History of Changes to an Unreplicated VOB...25

Figure 5 State of a VOB Family ...25

Figure 6 State of a Replicated VOB...26

Figure 7 Updates Between Two Replicas...27

Figure 8 Two-Row Epoch Number Matrix at Replica boston_hub..............................28

Figure 9 Epoch Number Matrix at Replica boston_hub ..30

Figure 10 Unidirectional and Bidirectional Updating ...42

Figure 11 One-to-One Synchronization Pattern..43

Figure 12 Ring Synchronization Pattern ..43

Figure 13 Single-Hub Synchronization Pattern ..44

Figure 14 Multiple-Hub Synchronization Pattern..44

Figure 15 Tree Synchronization Pattern...45

Figure 16 Many-to-Many Synchronization Pattern..46

Figure 17 VOB Family Information ..51

Figure 18 VOB Family Feature Levels..80

Figure 19 Replica Synchronization ...86

Figure 20 Peer-to-Peer Synchronization Pattern...87

Figure 21 Hierarchical Synchronization Pattern...87

Figure 22 A Synchronization Export Schedule ...89

Figure 23 The Store-and-Forward Facility...91

Figure 24 Store-and-Forward Configuration ..99

Figure 25 Partial Synchronization Export Pattern and Schedule

for Three Replicas ..110
Figures xiii

/vobs/multisite_doc/manual/ms_manualLOF.fm — September 11, 2001 4:03 pm

xiv Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualLOF.fm — September 11, 2001 4:03 pm

Tables

Table 1 Data Propagated Among Replicas ..3

Table 2 Mastership Restrictions for VOB Objects ...17

Table 3 Disk Space Needed for Storage Bay..34

Table 4 Choosing a Packet Transfer Method...41

Table 5 multitool Subcommands Copied from ClearCase ..55

Table 6 Replica Creation, Synchronization, and Management Commands56

Table 7 Object Mastership Commands...56

Table 8 Failure-Recovery Commands ..57

Table 9 Additional MultiSite Commands ..59

Table 10 ClearCase Commands Related to MultiSite...60

Table 11 Import Methods ...107

Table 12 Error Messages from Mastership Request Management Operations153

Table 13 Error Messages from Mastership Requests..155

Table 14 Shipping Error Messages..172
Tables xv

/vobs/multisite_doc/manual/ms_manualLOT.fm — September 11, 2001 4:01 pm

xvi Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualLOT.fm — September 11, 2001 4:01 pm

Preface

Rational ClearCase MultiSite (abbreviated to “MultiSite” in this manual) is a layered product

option to Rational ClearCase. It supports parallel software development and software reuse

across project teams distributed geographically and provides automated, error-free replication

of versioned object bases (VOBs) and transparent access to all software elements. You can also

use MultiSite as an interoperation solution in a mixed UNIX and Windows network, or as a

backup mechanism.

About This Manual

This manual is for all MultiSite administrators. It assumes you have experience with ClearCase.

The manual provides an overview of MultiSite, describes how to set up and use it, and gives

troubleshooting suggestions.

The recommended sequence for reading this manual:

➤ Read Chapter 1 and Chapter 3 of this book for an overview of the product.

➤ Read Chapter 2 to understand MultiSite planning issues.

➤ Read the chapters in the Using MultiSite part of the book.

➤ Read Chapter 11 if you plan to use MultiSite as a backup strategy.

➤ Read Chapter 12 if you plan to use MultiSite for UNIX and Windows interoperation.
Preface xvii

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software
xviii Administrator’s Guide: Rational ClearCase MultiSite

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xix

Online Documentation

MultiSite provides a help system that includes an online version of this manual and

context-sensitive help for the MultiSite Control Panel and the MultiSite graphical interfaces on

Windows.

MultiSite provides access to reference pages (detailed descriptions of MultiSite commands,

utilities, and data structures) with the multitool man command.

The multitool help command displays individual subcommand syntax:

multitool help lspacket
Usage: lspacket [-long | -short] [pname ...]

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xx Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Overview

11 Introduction to MultiSite

Rational ClearCase MultiSite adds a powerful capability to Rational ClearCase. With MultiSite,

developers at different locations can use the same versioned object base (VOB). Each location (site)

has a copy (replica) of the VOB. At any time, a site can propagate the changes made in its

particular replica to other sites, by sending update packets. The update process can be automatic

or can be started manually with a command.

An organization can use MultiSite to distribute independent, but related development efforts

across multiple cities, nations, or continents. For example, a company in the United States has

development and testing sites in India, Argentina, Japan, and Australia. Because it is impractical

for all engineers to access the ClearCase VOBs in the United States, the company uses MultiSite

to distribute the development.

MultiSite can also be used at a single geographical location to allow independent groups to work

with the same development data, to enable interoperation in a mixed environment, or to be a

backup mechanism. For example, a company that is moving some development to Windows

from UNIX can create replicas on Windows instead of accessing UNIX VOBs from Windows.

1.1 VOBs and VOB Replicas

In ClearCase, a VOB provides permanent storage for an entire directory tree: directories, files,

and links. The historical versions of the files in the VOB are stored in data container files in storage
pool directories. The VOB database records the evolution of the version-controlled file-system

objects, and stores the associated metadata, including version labels, hyperlinks, configuration

records, and so on. For more details on VOB data structures, see the ClearCase documentation

set.
1 - Introduction to MultiSite 1

If MultiSite is not used, each VOB has a single set of data containers and a single database. With

MultiSite, some or all VOBs are replicated. A replicated VOB is located at multiple sites; at each

site is a copy of the VOB, called a VOB replica. Collectively, the set of replicas of a VOB is called

a VOB family. Each replica includes a full set of data containers and a complete copy of the VOB

database. At its site, a replica appears to be a regular VOB; developers can check out, edit, and

check in; build software; attach metadata annotations to objects; and so on. Regular ClearCase

use models apply to use of replicas, but there are some site coordination issues that

administrators must consider. (For more information, see Chapter 2, Planning a MultiSite
Implementation.) Also, MultiSite features support simultaneous development at different replicas

without conflicts. Enabling Independent VOB Development: Mastership on page 7 describes how

conflict avoidance works.

For more details on VOBs and VOB replicas, see VOB Objects and Replica Objects on page 23 and

ClearCase Commands Related to MultiSite on page 60.

Replica Names, Replica Objects, and Host Assignments

Each replica has a replica name in addition to a VOB-tag. You specify both the replica name and

the VOB-tag when you create the replica. For each replica, the VOB database contains a replica

object that records the name of the replica. The VOB database also tracks the location of each

replica by host name. This tracking enables MultiSite administrators to specify replicas at other

sites with short, mnemonic identifiers, without needing to know their exact locations.

Differences Among Sites

Each replica is a copy of the VOB, including both file-system data (data containers) and metadata

(VOB database). A developer at any site can see all VOB elements, and all versions of each

element.

The replicas are not necessarily exact copies of each other. MultiSite features accommodate

typical differences among sites:

➤ Different sites may have different user spaces defined by the local password and group

databases. You can configure particular replicas to ignore permissions differences, or to

propagate changes in permissions from site to site (if the sites support the same user/group

database). For more information, see Element Ownership and Ownership Preservation on

page 4.
2 Administrator’s Guide: Rational ClearCase MultiSite

➤ Disk configurations and capacities may vary. Accordingly, you can manage VOB storage

pools independently at each site.

➤ Different sites may have different development policies and can use site-specific scripts to

enforce these policies. For this reason, ClearCase triggers are not propagated among sites.

Most, but not all, of the information stored in a VOB is replicated. All changes that create new

data, remove old data, and move or rename existing data are propagated among the replicas in

the VOB family.

Information stored in views is not propagated. For example, a replica update includes the fact

that an element has been checked out, because the checkout is recorded in the VOB; but the

update does not include the contents of the checked-out version.

Table 1 shows the information that is and is not propagated among replicas.

Table 1 Data Propagated Among Replicas (Part 1 of 2)

Data propagated Data not propagated

Elements, branches, versions (including DO

versions).

Derived objects that have not been checked in

as versions.

DOs tend to be large and short-lived;

transmitting them among multiple sites is

likely to be less efficient than rebuilding them

at each site.

Most kinds of type objects. Trigger type objects.

Metadata annotations: version labels,

attributes, hyperlinks (including merge

arrows and hyperlinks to administrative

VOBs).

Individual “attached” triggers.

ClearCase UCM objects: activities, baselines,

components, folders, projects, streams

Permanent locks (those created with the

–obsolete option).

Temporary locks (those created without the

–obsolete option).

Checkout records of elements and changes in

checked-out directories.

NOTE: The lscheckout –areplicas command

lists checkouts in other replicas.

Contents of checked-out versions.
1 - Introduction to MultiSite 3

The biggest difference among sites reflects the basic capability of MultiSite: enabling

development work to proceed independently at different locations. For more information, see

Enabling Independent VOB Development: Mastership on page 7.

Element Ownership and Ownership Preservation

You can designate some or all replicas in a VOB family to be ownership-preserving. These replicas

maintain the same user and group ownerships and permissions on elements, and changes to

ownership or permissions are synchronized among them. The ownership of the original VOB is

not preserved; the user who enters the mkreplica –import command becomes the owner of the

new VOB.

Each replica that is not ownership-preserving maintains its own ownership and permissions

information for elements. For non-ownership-preserving replicas:

➤ The user who enters the mkreplica –import command becomes the owner of the new VOB

and of all elements in it.

➤ This user’s primary group is the group for all elements.

➤ The initial permissions of the elements are the same as their values in the replica at which

the mkreplica –export command is entered.

Event records.

Mastership information. (See Enabling
Independent VOB Development: Mastership on

page 7.)

Mastership request settings. (See Chapter 9,

Implementing Requests for Mastership.)

Custom type managers.

Changes to text mode property. (When you

create a new replica, it has the same text

mode property as its parent replica, but

subsequent changes are not propagated.)

Table 1 Data Propagated Among Replicas (Part 2 of 2)

Data propagated Data not propagated
4 Administrator’s Guide: Rational ClearCase MultiSite

➤ Changes to ownership and permissions are not propagated to other replicas. Ownership

and permissions changes made at ownership-preserving replicas are ignored at

non-ownership-preserving replicas.

Requirements for Ownership-Preserving Replicas

The sites of ownership-preserving replicas must support the same set of user and group accounts

(at least for the accounts that can be assigned to VOB elements). The user and group names and

numerical IDs must be the same across sites. For example, on UNIX, the sites must share the

same NIS map. On Windows, the replicas must be in the same Windows domain.

On UNIX, you can maintain separate but identical user/group databases across domains. On

Windows, ownership modes (UIDs and GIDs) are not consistent across domains.

Therefore, the entire set of replicas cannot be ownership-preserving in either of the following

cases:

➤ All replicas in a VOB family are not in the same Windows domain.

➤ Some replicas in a VOB family are located on UNIX machines, and others are located on

Windows machines.

You can maintain ownership preservation on a subset of replicas in a VOB family. For example:

➤ A VOB family consists of the replicas bangalore and tokyo, hosted on Windows, and the

replicas boston_hub, sanfran_hub, buenosaires, and sydney, hosted on UNIX. The VOB

hosts for boston_hub and sanfran_hub are in domains that have the same user/group

databases, so boston_hub and sanfran_hub are created as ownership-preserving replicas.

➤ A VOB family consists of five replicas on Windows: seattle, aloha, troy, boston, and

boston_backup. All replicas except boston and boston_backup are located in different

Windows domains. The replica boston_backup is used as a backup replica for boston, and

the hosts for these replicas are in the same Windows domain (but in different ClearCase

registry regions). boston and boston_backup are created as ownership-preserving replicas.

NOTE: There can be only one subset of ownership-preserving replicas in a VOB family, even if

some replicas do not exchange update packets with all other replicas in the family.
1 - Introduction to MultiSite 5

Synchronizing Replicas in a VOB Family

Because elements in a replicated VOB are developed concurrently at different sites, the contents

of each replica in a VOB family tend to diverge. In fact, a particular replica is rarely—and need

never be—in the same state as any other replica. To keep the replicas from diverging too much,

each site sends updates to one or more other sites. Updating a replica changes both its database

and its storage pools to reflect the development activity that has taken place in one or more other

replicas.

Replica information is sent in packets. A logical packet includes all the information required to

create a new VOB replica (replica-creation packet) or to update one or more existing VOB replicas

(update packet). For flexibility, and to accommodate limitations of data-transport facilities, each

logical packet can be created as a set of physical packets.

After a logical packet is sent to a site, it is processed at that site by a mkreplica or syncreplica
command invoked with the –import option. The changes that occurred originally at the sending

site (and perhaps some other sites, too) are added to the database and storage pools of the replica

at the receiving site. If the logical packet includes several physical packets, the import commands

always process the physical packets in the correct order. No error occurs if the same packet is

imported two or more times at a site, unless the imports occur simultaneously.

You can match the synchronization strategy for each VOB to its particular use patterns, your

organization’s needs, and the level of connectivity among the sites. For one VOB, you can update

replicas every hour, using a high-speed network; for another VOB, you can send updates only

once or twice a month, using electronic mail, magnetic tape (UNIX), or disk files as the delivery

mechanism. See MultiSite Use Model on page 38 for information about planning synchronization.

Chapter 6, Synchronizing Replicas, discusses the user-level facilities that create and synchronize

VOB replicas. VOB Operations and the Oplog on page 24 describes the underlying mechanism that

supports the user-level facilities.

MultiSite, Time, and Time Zones

In ClearCase and MultiSite, time stamps are stored in Universal Coordinated Time (UTC) and

are printed to reflect the local time. For example, if a developer in Bangalore checks in a version

of a file at 14:33 Bangalore time, the version-creation time is stored as 09:03UTC. When a

developer in San Francisco looks at the description of the version, the version-creation time is

displayed as 01:03 San Francisco time.
6 Administrator’s Guide: Rational ClearCase MultiSite

When you automate synchronization, you must adjust schedules for time zone differences. For

an example, see Designing an Update Strategy on page 87.

Time rules in config specs are not absolute. The version selected by a time rule can change after

an update packet is imported at your site. For example, your config spec has the following time

rule, which selects the latest version on the main branch as of July 10 at 7:00 P.M.:

element /vobs/dev/plan.txt /main/LATEST –time 10-Jul.19:00

When you put this rule in the config spec, the latest version on the main branch was 17. However,

a developer at another site created version 18 on July 10 at 6:00 P.M. your time, but this change

has not been propagated to your site. After the update packet that contains the change is

imported at your site, your time rule selects version 18.

1.2 Enabling Independent VOB Development: Mastership

Because changes to the VOB are made independently at multiple replicas, these changes may

conflict. This section describes the mechanism that prevents most conflicts, and Conflict
Resolution on page 21 describes the facilities for resolving the unavoidable conflicts.

If the development work done in different replicas were truly independent, the result would be

chaos. Suppose version 17 of file project.c is created on the main branch in three replicas at the

same time. Which is the real version 17, and what ought to happen to the other two versions?

An exclusive-right-to-modify scheme, called mastership, avoids such conflicts. Certain

VOB-database objects are assigned a master replica (or master). The initial master of an object is

the replica where the object is created, and mastership can be changed subsequently (see

Chapter 8, Managing Mastership). In general, an object can be modified or deleted only at its

master replica.

For example, this command fails because it is entered at the boston_hub replica, for a type object

mastered by the sanfran_hub replica:

SUSHI> cleartool rename lbtype:SF_V2.0 SANFRAN_V2.0
cleartool: Error: Unable to perform operation "rename type" in replica
"boston_hub" of VOB "/vobs/dev".
cleartool:Error:Master replica of label type "SF_V2.0" is "sanfran_hub".
cleartool:Error:Unable to rename type from "SF_V2.0" to "SANFRAN_V2.0".
1 - Introduction to MultiSite 7

Replica Mastership

When you create a new replica, its replica object (the VOB database object that records the

replica’s existence) is mastered by the creating replica. Therefore, you can modify or delete the

replica object only at the creating replica.

To facilitate replica maintenance, we recommend that each replica be self-mastering, which

means that it is the master of its own replica object. For more information, see Transferring
Mastership of a Replica Object on page 128.

NOTE: To perform certain procedures on a replica object, you must make the replica

self-mastering. This requirement is documented in those procedures.

Branch Mastership

Branch mastership is the scheme that supports independent development work at different sites.

By default, every branch type defined in a VOB (including the main branch type) is mastered by

one replica in a VOB family. By default, branches can be created and modified only at the replica

that masters the branch type. Checking out a version is considered a branch modification. (The

exception to the creation rule is the creation of the main branch; for more information, see

Creation of the main Branch of an Element on page 10.)

NOTE: Remember that a branch is an instance of a branch type. For example, main is a branch

type, and acc.c@@/main and resource.h@@\main are branches.

The branch mastership strategy works with the standard ClearCase strategy of using branches

to isolate changes for particular development tasks. (For example, fixing a defect may require

changes to 5 elements, where each change is made on a branch named v1.0_bugfix.) With

MultiSite, work on various tasks can be done at different sites, each using its own branch. The

work on different branches can be propagated among sites, and then merged, as often as

required by an organization’s development strategy. Because the branches of an element are

independent, changes made at different sites do not conflict.

Figure 1 illustrates branch mastership strategy: each replica masters a branch type and can create

versions only on the branch of that type.
8 Administrator’s Guide: Rational ClearCase MultiSite

Figure 1 Branch Mastership

Branch mastership is implemented at both the branch type level and the branch level:

➤ By default, the replica in which a branch type is created masters the branch type and all

instances of that branch type. For example, the sanfran_hub replica masters the branch type
object named v1.0_integration and owns the right to modify v1.0_integration branches in

all of the elements in the VOB.

➤ An administrator or developer can transfer the mastership of an individual branch (an

instance of a branch type) to another replica. This feature enables serial development. For

example, if a developer at the Boston site needs to work on the v1.0_integration branch for

the element main.c, the San Francisco administrator can transfer mastership of the branch

main.c@@/main/v1.0_integration to boston_hub, or the developer can request mastership

of the branch.

For more information on supporting serial development with MultiSite, see Supporting Serial
Development in Replicas on page 20.

main

v1.0_bugfix

sanfran_hub

v1.0_integration v1.0_integration

v1.0_bugfix

bangalore

main

v1.0_integration

v1.0_bugfix

main

boston_hub
1 - Introduction to MultiSite 9

Creation of the main Branch of an Element

There is an exception to the rule that a branch can be created only at the master replica of the

branch type. When you add a file to source control or create a new directory element, the main
branch is created even if your current replica does not master the main branch type. By default,

the main branch of a new element is mastered by the replica that masters the main branch type,

and you cannot create new versions on the branch. During element creation, you can specify an

option to have your current replica master all newly created branches. For more information, see

Assigning Branch Mastership During Element Creation on page 124.

Synchronizing Development on Different Branches

Development of an element with multiple branches can take place in different replicas

concurrently, with occasional synchronizations. (The more frequently you update, the easier it is

to track and reconcile the changes on different branches of elements. To reconcile changes, you

use the ClearCase version-comparison and merge facilities.)

For example, before the Boston site starts using MultiSite, the element cmdsyn.c has two

branches, main and v1.0_integration:

When the Boston site starts using MultiSite, the administrator creates a new replica for the San

Francisco site. Because integration for Version 1.0 will be done at the San Francisco site, the

sanfran_hub replica must master the v1.0_integration branch type. The administrator transfers

mastership of the v1.0_integration branch type to the sanfran_hub replica.

Developers in San Francisco can now create versions on the v1.0_integration branch of cmdsyn.c
and can create instances of the v1.0_integration branch type for other elements. Work continues

on the main branch in Boston:

main

v1.0_integration
10 Administrator’s Guide: Rational ClearCase MultiSite

The administrators at the Boston and San Francisco sites decide to merge some of the work on

the v1.0_integration branch with the work done on the main branch. The San Francisco

administrator sends an update packet to the boston_hub replica, and the Boston administrator

imports it:

main

boston_hub

v1.0_integration

main

sanfran_hub

v1.0_integration
1 - Introduction to MultiSite 11

The Boston administrator then merges from the v1.0_integration branch to the main branch by

checking out the latest version on the main branch, merging from the latest version on the

v1.0_integration branch, and checking in the result of the merge:

main

boston_hub

main

sanfran_hub

v1.0_integration v1.0_integration
12 Administrator’s Guide: Rational ClearCase MultiSite

Default and Explicit Branch Mastership

Branches can have default mastership or explicit mastership. When a branch is created, it is

mastered by the replica that masters the branch type (default mastership). When you transfer

mastership of a branch to another replica, that replica masters the branch explicitly. The output

of describe shows how a branch is mastered.

For example, the branch type v2.0_port was created at, and is mastered by, the sanfran_hub
replica. The test2.txt@@/main/v2.0_port branch has default mastership, as shown by the

(defaulted) annotation:

multitool describe test2.txt@@/main/v2.0_port
branch “test2.txt@@/main/v2.0_port”

created 18-Aug-00.10:50:34 by John Cole (jcole.user@goldengate)
branch type: v2.0_port
master replica: sanfran_hub@/vobs/dev (defaulted)

...

The administrator at the sanfran_hub replica transfers mastership of this branch to the

boston_hub replica:
1 - Introduction to MultiSite 13

multitool chmaster –nc boston_hub test2.txt@@/main/v2.0_port
Changed mastership of branch "/vobs/dev/test2.txt@@/main/v2.0_port" to
"boston_hub"

The output of describe shows that this branch is now mastered explicitly by the boston_hub
replica; the (defaulted) annotation is not present:

multitool describe test2.txt@@/main/v2.0_port
branch “test2.txt@@/main/v2.0_port”

created 18-Aug-00.10:50:34 by John Cole (jcole.user@goldengate)
branch type: v2.0_port
master replica: boston_hub@/vobs/dev

...

When you transfer mastership of a branch type, mastership is transferred for all branches of that

type with default mastership. Mastership of branches with explicit mastership is not transferred.

For more information, see the chmaster reference page and Transferring Mastership of a Branch on

page 132.

Type Object Mastership

By default, you can create an instance of a type only in the replica that masters the type object.

For example, if the sanfran_hub replica masters the TESTED_BY attribute type, you can create

a TESTED_BY attribute only in the sanfran_hub replica.

Often, however, developers at different sites must create instances of the same type. For example,

quality engineers at the bangalore replica may also use the TESTED_BY attribute. Therefore, the

mkattype, mkhltype, and mklbtype commands can create two kinds of type objects:

➤ Instances of an unshared type object can be created only in its master replica. (The instances

are propagated to and seen in all replicas.) Thus, there are no issues with conflicting

changes made in different replicas. By default, the mkattype, mkhltype, and mklbtype
commands create unshared type objects.

➤ Instances of a shared type object can be created in multiple replicas. To prevent cross-replica

conflicts, the following restrictions apply:

➣ The current replica must master the target object (the object to which the annotation is

being attached).
14 Administrator’s Guide: Rational ClearCase MultiSite

➣ The ClearCase-level instance restrictions (if any) on the type object must allow creation

of the instance.

NOTE: If a hyperlink type is shared, you can create a hyperlink of that type between any two

objects, at any replica.

ClearCase restrictions that prevent instance creation in an unreplicated VOB also prevent

instance creation in a replica; for example, if there is a lock on the type object, instance

creation fails. However, because locks are not replicated (except for locks created with

–obsolete), a lock on a shared type object in one replica does not prevent instance creation in

another replica.

An unshared type object can be converted to shared, but a shared type cannot be converted to

unshared. Instance restrictions (for example, once-per-branch use of a label type) for a shared type

object cannot be changed.

Figure 2 illustrates the restrictions on creating an instance of a shared type object. For all target

objects except versions and branches, the current replica must master the target object. This is

slightly different for versions and branches:

➤ For a version, the current replica must master the branch on which the version is located.

NOTE: When you apply a label whose instance restriction is one per branch, your current

replica must master the branch. When you apply a label whose instance restriction is one per

element, your current replica must master the element.

➤ For a branch with default mastership, the current replica must master the branch type.

➤ For a branch with explicit mastership, the current replica must master the branch object.
1 - Introduction to MultiSite 15

Figure 2 Creating an Instance of a Type

For example, the administrator at boston_hub creates an attribute type with the following

command:

cleartool mkattype –shared –vpbranch –nc TESTED

This attribute type is defined to be shared across replicas, with the restriction that at most one

instance can be created on each branch of an element. You can create an attribute of that type on

a version if both of the following are true:

➤ Your current replica masters that version’s branch.

➤ No attribute of that type already exists on a version on that branch (assuming no other

ClearCase restrictions).

You can
create an instance

(if no ClearCase-level
restrictions exist).

Can I create an instance?

NoIs the type
shared?

Do you
master the

type?

No

Yes

Yes

Do you
master the target

object?

Yes

You cannot create
an instance.

No

You can
create an instance

(if no ClearCase-level
restrictions exist).

You cannot create
an instance.
16 Administrator’s Guide: Rational ClearCase MultiSite

Additional mastership restrictions exist when you use administrative VOBs and global types. If

a global type is shared, ClearCase can create a local copy of the type only if the type is mastered

by the administrative VOB replica at the current site. If the shared global type is not mastered at

the current site, you can create instances of the type only if the client VOB replica contains a local

copy of the type. This restriction applies even if your current replica masters the object to which

you are attaching the instance. This mastership restriction prevents conflicting, simultaneous

creation of a given type with a given name at multiple sites. For more information, see

Administrator’s Guide for Rational ClearCase.

For more information about changing type mastership, see Chapter 8, Managing Mastership.

Mastership Restrictions

Table 2 describes the restrictions for VOB objects.

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master

Activity Change (chactivity)

Remove (rmactivity)

Set (setactivity)

Activity

Attribute Create (mkattr) Type (if the attribute’s type is unshared)

Object to which attribute is being applied (if the attribute’s

type is shared)

Remove (rmattr) Type (if the attribute’s type is unshared)

Object from which attribute is being removed (if the

attribute’s type is shared)

Baseline Create (mkbl) Stream where you make the baseline. For an imported

baseline created from a pre-UCM label, your current replica

must master the component and label type.

Label (mklabel) Stream’s branch type (in each VOB where you have made

changes)

Change (chbl)
Remove (rmbl)

Baseline
1 - Introduction to MultiSite 17

Branch Change type (chtype) New branch type and the branch you are changing

Create (mkbranch) Branch type

Remove (rmbranch) Branch

Checked-out

version

Reserve (reserve) Branch on which the version is checked out

Component Remove (rmcomp) Component

Element Check in (checkin) Branch on which you are checking in the version

Check out (checkout) Branch on which you are checking out the version (unless

you use –unreserved –nmaster)

Change type (chtype)

Relocate (relocate)

Remove (rmelem)

Element

Event record Change (chevent) For a version, the branch containing the version. For any

other object, the object.

Folder Change (chfolder)

Remove (rmfolder)

Folder

Hyperlink Create (mkhlink) Hyperlink type (for unshared types)

Remove (rmhlink) Hyperlink

Label Create (mklabel)
Remove (rmlabel)

If the label’s type is unshared, your current replica must

master the label type. If the label’s type is shared, the

following restrictions apply:

➤ If the label type is one per branch, your current replica

must master the branch containing the version.

➤ If the label type is one per element, your current replica

must master the version’s element.

Merge arrow Remove (rmmerge) Merge hyperlink

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
18 Administrator’s Guide: Rational ClearCase MultiSite

Object Change event (chevent)
Change mastership (chmaster)

Change name (rename)

Lock obsolete (lock –obsolete)

Unlock (unlock)

Object

Change protection (protect) Object (if current replica is ownership-preserving)

Project Change (chproject)
Remove (rmproject)

Project

Project VOB Change list of promotion levels

(setplevel)
PromotionLevel attribute type

Replica Change host (chreplica)

Change

ownership-preservation

properties (chreplica)

Enable requests for mastership

(reqmaster)

Remove (rmreplica)

Replica

Stream Change (chstream)

Rebase (rebase)

Remove (rmstream)

Stream

Symbolic link Remove (rmelem) Symbolic link

Type Copy (cptype) The replica containing the original type must master that

type.

Remove (rmtype)

Replace (mk**type –replace)

Type

Version Check in (checkin)

Check out (checkout)
Remove (rmver)

Branch

With checkout –unreserved –nmaster, there are no

mastership restrictions.

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
1 - Introduction to MultiSite 19

1.3 Supporting Serial Development in Replicas

The standard ClearCase development model is to use branches to develop software in parallel,

and the standard MultiSite model is to master different branch types at different replicas. These

models require you to merge changes from branch to branch.

However, sometimes sites must use serial development (for example, to make changes to

elements whose versions cannot be merged). To support serial development, there are two

models for changing mastership:

➤ Push Model

The developer who needs to work on a branch asks the administrator at the master replica’s

site to transfer mastership of the branch and send an update packet containing the change.

➤ Pull Model

The developer who needs to work on a branch requests mastership of the branch. This model

is not enabled by default, and it requires the MultiSite administrator to enable requests and

authorize developers to request mastership. However, after the setup is complete, the

administrator does not need to be involved in the mastership request process.

NOTE: The developer can also request mastership of branch types. For more information, see

Chapter 9, Implementing Requests for Mastership.

VOB Change feature level (chflevel) The replica to be changed must be self-mastering.

Change protection (protectvob) VOB (for ownership-preserving replicas)

Set up snapshots

(vob_snapshot_setup)

The replica must be self-mastering.

VOB family Change feature level (chflevel) VOB object

Table 2 Mastership Restrictions for VOB Objects

Object Action Object your current replica must master
20 Administrator’s Guide: Rational ClearCase MultiSite

There are two ways to use requests for mastership:

➣ If you cannot merge versions of the element, you must request mastership, and after

your current replica receives mastership, you can perform a reserved checkout and do

your work.

➣ If you can merge versions of the element, you can perform a nonmastered checkout of the

element and do your work. At any time, request mastership. When your current replica

receives mastership, merge your work (if required) and check in the file.

For more information about enabling requests for branch mastership, see Chapter 9,

Implementing Requests for Mastership. For more information about the use models for requesting

mastership, see Working On a Team in Developing Software.

1.4 Conflict Resolution

Mastership restrictions prevent most inconsistent changes in different VOB replicas, but some

inconsistent changes are unavoidable. For example, a label type named V3.0 can be created at

two or more replicas at the same time. (The actual times can be quite different: between updates,

while replicas evolve independently, a label type creation operation in one replica is logically

simultaneous with all label type creations in the other replicas.)

To avoid many naming conflicts, the ClearCase and MultiSite administrators for a VOB family

must create and enforce some naming and use rules for objects in VOBs. A ClearCase use model

that is used consistently across sites reduces the potential for conflicts. For example, the

administrators for a VOB family agree that all site-specific labels must include a site identifier,

and labels that will be used at multiple sites are created only at a certain site.

Resolving Conflicts Among Type Objects

Two objects of the same type in the same VOB cannot have identical names. Accordingly, the

syncreplica –import command detects a conflict when an update packet includes an operation

that would create a type object with the same name as an existing object at the current replica. It

resolves the conflict by creating the new type object with a different name.

For example, in Figure 3, two types created at two different replicas have the same name but are

different objects. When the type created at the boston_hub replica is imported at the bangalore
replica, it is not renamed because the bangalore replica does not contain a type with that name.
1 - Introduction to MultiSite 21

However, when the type created at the sanfran_hub replica is imported at the bangalore replica,

it is renamed because the bangalore replica already has a type with that name.

Figure 3 Resolving Conflicts in Names of Type Objects

syncreplica generates a warning message when it renames an object during import. To resolve

the conflict, the Bangalore administrator must inform the Boston and San Francisco

administrators of the name conflict, and they must take one of the following actions:

➤ Rename both label types. For example, at Boston:

multitool rename lbtype:V2.0 V2.0_boston_hub

At San Francisco:

multitool rename lbtype:V2.0 V2.0_sanfran_hub

The Boston and San Francisco administrators must then send updates to the bangalore
replica.

➤ Rename one of the label types. The administrator who renames the label type sends an

update to the other replicas.

For more information, see Automatic Renaming of Type Objects and Replica Objects on page 187.

V3.0 V3.0

replica: bangalore

replica: boston_hub replica: sanfran_hub

V3.0 sanfran_hub:V3.0
22 Administrator’s Guide: Rational ClearCase MultiSite

1.5 VOB Objects and Replica Objects

It is useful to distinguish these two kinds of objects in the VOB database:

➤ VOB object. The database has a single VOB object. This object’s UUID is listed as the VOB

family uuid in a lsvob –long listing.

➤ VOB-replica object. The database has a VOB-replica object for each of the VOB’s replicas.

This object’s UUID is listed as the VOB replica uuid in a lsvob –long listing.

For example:

Use describe vob: to list details about the VOB object; use describe replica: to list details about

the VOB-replica object (the replica).

All replicas of a VOB record the same VOB object and set of VOB-replica objects. (When a new

replica is created, it takes some time for the change—creation of a new VOB-replica object—to be

propagated to all the replica’s databases.)

cleartool lsvob –long /vobs/dev
Tag: /vobs/dev

Global path: /net/minuteman/vobstg/dev.vbs

Server host: minuteman

Access: public

Mount options:

Region: purpledoc_unix

Active: YES

Vob tag replica uuid: 87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7

Vob on host: minuteman

Vob server access path: /vobstg/dev.vbs

VOB family UUID Vob family uuid: 87f6265b.72d911d4.a5cd.00:01:80:c0:4b:e7

VOB replica
UUID

Vob replica uuid: 87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7
1 - Introduction to MultiSite 23

1.6 VOB Operations and the Oplog

This section describes the VOB database mechanism that supports replica synchronization. This

information is not required to use MultiSite, but is helpful when you want to deepen your

understanding of the error-recovery facilities described in Chapter 10, Troubleshooting MultiSite
Operations.

Most changes made to a VOB are recorded as event records in the VOB database. Each event

record describes a change. For a replicated VOB, operation log entries (oplogs) are created also.

These entries store all the information required to replay the changes in another replica:

➤ The identity of the replica where the change originally took place.

➤ The change to the VOB database; for example, creation of a new element, checkin of a new

version, attaching of an attribute, and so on.

➤ The change to the storage pool, if any; for example, the contents of a new version.

NOTE: Version information is not stored in the oplog. When version information is required

by syncreplica, it is retrieved from the pools.

➤ The event record generated for the change.

➤ An integer sequence number: 1 for the first change originating at a particular replica, 2 for

the next change, and so on. This is called the epoch number or oplog-ID of the oplog entry.

The exact kind and amount of information varies with the specific operation. For example, an

oplog entry for the removal of a label has different, and less, information than an oplog entry for

a checkout command.

NOTE: Oplog entries are created only for replicated VOBs. You can scrub a replica’s oplog entries

after they have been used to update other replicas. For more information, see Scrubbing
Parameters for VOB Replicas on page 47.
24 Administrator’s Guide: Rational ClearCase MultiSite

Tracking Operations for Each Replica

The history of an unreplicated VOB is a linear sequence of operations (Figure 4).

Figure 4 History of Changes to an Unreplicated VOB

For a replicated VOB, changes are tracked separately for each replica. (That is why an oplog entry

includes the identity of the replica where the operation originated.) Thus, the history of a

replicated VOB can be viewed as several stacks of oplog entries. Each stack is represented by a

linear sequence of epoch numbers for the operations originating in that replica.

Figure 5 shows the state of two replicas in a VOB family:

➤ Operations with epoch numbers 1–950 have occurred at replica boston_hub.

➤ Operations 1–702 have occurred at replica sanfran_hub.

Figure 5 State of a VOB Family

operation 3

operation 2

operation 1

changes to database

tim
e

sanfran_hubboston_hub

950

001

702

001
1 - Introduction to MultiSite 25

A replica has accurate data only about its own operations. Until it receives update packets, its

information about other replicas is out of date. For example, replica boston_hub records 950

local operations, but has received update packets for only 504 sanfran_hub operations. Similarly,

replica sanfran_hub records 702 local operations, but has no current data about the boston_hub
replica’s state.

Figure 6 illustrates this scenario, in which each replica is out of date with respect to the

operations originating at the other replica.

Figure 6 State of a Replicated VOB

Epoch Numbers

Picturing a replicated VOB as a set of oplog stacks, shown in Figure 6, makes it easy to

understand the synchronization process. For example, an update packet sent from replica

boston_hub to replica sanfran_hub consists of increments to the stack for replica boston_hub
(operations 792–950). Figure 7 shows the two increments. Because sanfran_hub knows its own

state, it needs updates only for other replicas. (In certain error-recovery situations, you must reset

a replica’s data about its own operations. See Chapter 10, Troubleshooting MultiSite Operations.)

sanfran_hubboston_hub

950

001

504

001

boston_hub replica

sanfran_hubboston_hub

791

001

702

001

sanfran_hub replica
26 Administrator’s Guide: Rational ClearCase MultiSite

Figure 7 Updates Between Two Replicas

NOTE: By the time the packet is imported at sanfran_hub, additional VOB-level changes may

have been made at boston_hub. These changes are not included in the update packet.

Optimization and the Epoch Number Matrix

The MultiSite synchronization scheme attempts to minimize the amount of data transmitted

among sites. Each replica keeps track of these epoch numbers:

1. Changes made in the current replica. The epoch number that indicates how many

operations originated at the current replica.

2. Changes at sibling replicas. When syncreplica writes an operation from an update packet

to the current replica, it increments the epoch number for the sibling replica at which the

operation originally occurred. This epoch number is the number of operations originating at

the sibling replica that have been imported at the current replica.

3. Current knowledge of the states of other replicas. For each other replica, an estimate of its

own changes and other replicas’ changes.

Figure 8 shows how these epoch numbers fall into an epoch number matrix. Each replica maintains

its own such matrix, revising its rows as work occurs locally and as it exchanges update packets

with other replicas:

sanfran_hubboston_hub

950

001

504

001

boston_hub replica

702

505

update received
from sanfran_hub

sanfran_hubboston_hub

791

001

702

001

sanfran_hub replica

950

792

 update received
from boston_hub
1 - Introduction to MultiSite 27

➤ When work occurs in the boston_hub replica, its own number of oplog IDs is incremented.

➤ When the boston_hub replica generates an update packet to be sent to sanfran_hub, it

revises the sanfran_hub row in its epoch number matrix.

Note that a syncreplica –export command updates epoch numbers immediately. It does not

wait for acknowledgment from the receiving site that the packet has been received and

applied correctly. During normal ClearCase and MultiSite processing, no manual

intervention is required to maintain the accuracy of the epoch number matrices for the

various replicas. However, failure to apply a packet may require manual intervention, as

described in Lost Update Packet on page 182.

➤ When the boston_hub replica receives an update from sanfran_hub, it revises its own row

(boston_hub) and the sanfran_hub row in its epoch number matrix.

Figure 8 Two-Row Epoch Number Matrix at Replica boston_hub

The contents of this matrix are reported by the multitool lsepoch command at the boston_hub
replica:

multitool lsepoch

A syncreplica –export command entered at boston_hub uses this matrix as follows to generate

an update destined for sanfran_hub:

For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Operations
originated at
sanfran_hub

Operations
originated at
boston_hub

504912

504950
boston_hub s record
of its own state

boston_hub s estimate
of sanfran_hub s state
28 Administrator’s Guide: Rational ClearCase MultiSite

1. At boston_hub, the number of local operations is 950 (number in upper-left corner of

matrix), and the estimate is that sanfran_hub has been updated only to epoch number 912

(number in lower-left corner).

2. The update packet that boston_hub sends to sanfran_hub includes boston_hub oplog

entries 913-950. After the Boston administrator invokes syncreplica –export, the

sanfran_hub row is updated:

multitool lsepoch

Indirect Synchronization

If there are more than two replicas in a VOB family, synchronization can occur indirectly. A

replica can include nonlocal changes in update packets. For example, if boston_hub exchanges

updates with replicas sanfran_hub and bangalore, it sends bangalore oplog entries that it has

received previously from sanfran_hub. These entries may or may not bring replica bangalore up

to date on sanfran_hub’s changes. (An update sent from sanfran_hub to bangalore does bring

bangalore up to date.)

NOTE: If a replica does not receive packets directly from some replicas in the VOB family, its rows

for those replicas may contain zeros. This is expected behavior.

Figure 9 shows replica boston_hub’s epoch number matrix.

For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)
1 - Introduction to MultiSite 29

Figure 9 Epoch Number Matrix at Replica boston_hub

The contents of this matrix are reported by the lsepoch command:

multitool lsepoch

A syncreplica –export command at Boston uses this matrix to export an update for bangalore:

1. At Boston, there are 950 local operations (number in upper-left corner of matrix), and the

estimate is that bangalore has been updated only to epoch number 709 (lower-left corner).

2. For operations that originated at sanfran_hub, boston_hub has been updated to epoch

number 504, and estimates that bangalore has been updated only to epoch number 221.

3. The update packet that boston_hub sends to bangalore includes boston_hub oplogs

710-950 and sanfran_hub oplogs 222-504. The output of a multitool lsepoch command at

Boston now looks like this:

For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "bangalore" (@ ramohalli):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=709 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=221 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Operations
originated at
sanfran_hub

Operations
originated at
bangalore

Operations
originated at
boston_hub

504

221

912

709

boston_hub s record
of its own state

boston_hub s record
of sanfran_hub s state

504950

653

653

653

boston_hub s record
of bangalore s state
30 Administrator’s Guide: Rational ClearCase MultiSite

multitool lsepoch

For VOB replica "/vobs/dev":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "bangalore" (@ sushi):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=912 (boston_hub)

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=653 (bangalore)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=504 (sanfran_hub)
1 - Introduction to MultiSite 31

32 Administrator’s Guide: Rational ClearCase MultiSite

22 Planning a MultiSite
Implementation

Before you install and use Rational ClearCase MultiSite, you need to plan your implementation.

The plan should include the following items:

➤ MultiSite installation

➤ MultiSite licensing

➤ ClearCase use model

➤ MultiSite use model

➤ Responsibilities of MultiSite administrators

This chapter describes these issues in more detail. We recommend that you document your plan

in writing and implement your design decisions in a set of test replicas before changing your

development environment.
2 - Planning a MultiSite Implementation 33

2.1 MultiSite Installation

For MultiSite installation instructions, see the Installation Guide for the ClearCase Product Family.

You must install MultiSite on all VOB server hosts where replicated VOBs will reside; replica

creation and synchronization imports must occur on the host where the replica resides. You do

not need to install MultiSite on your computer to manage mastership, because the MultiSite

object mastership commands are available in cleartool. However, you may want to install

MultiSite on your computer so you have convenient access to other MultiSite commands. You do

not need to install MultiSite on ClearCase client hosts or on server hosts that will not host

replicated VOBs.

Each VOB server host where replicas will reside must have enough disk space for the MultiSite

storage bay directories. The storage bays hold MultiSite packets, along with their corresponding

shipping order files. Table 3 describes the amount of available disk space needed on the disk

partition where the storage bay is located.

There is no specific formula for determining how large your update packets will be. The general

rule is that more frequent synchronization results in smaller packets. However, even if you

synchronize every hour, a large amount of development activity or release activity can occur in

an hour (for example, all of the executables for a release are checked in just before a build, or the

release engineer labels all the versions for a release) and can cause a large packet to be generated.

If you are not sure that the available disk space can accommodate an unexpectedly large packet,

you can configure MultiSite to limit the size of an update packet.

For more information on specifying storage bays, see the shipping.conf (UNIX) and MultiSite
Control Panel (Windows) reference pages.

Table 3 Disk Space Needed for Storage Bay

Type of packet Disk space needed

replica-creation Size of VOB database and VOB source pools.

update On Windows, twice the size of the largest packet to be stored

in bay. The reason is that there may be two instances of the

same packet in the bay at one time: one on its way to another

destination, and another waiting to be applied to the replica

on the current host.

On UNIX, the size of largest packet to be stored in bay.
34 Administrator’s Guide: Rational ClearCase MultiSite

2.2 MultiSite Licensing

A MultiSite license is required for any access to an object in a replicated VOB—by a MultiSite

command, a ClearCase command, or a standard operating system command. You can calculate

the number of MultiSite licenses your site needs by determining how many developers will

access replicated VOBs. If all of your developers will access replicated VOBs, you need the same

number of MultiSite licenses as ClearCase licenses. If not all developers will access replicated

VOBs, you can purchase fewer MultiSite licenses.

For example, a company has two sites, with 20 developers at site A and 5 developers at site B.

The company has three VOBs at site A; two of them will be replicated to site B and one will not

be replicated. Five of the developers at site A will access only the unreplicated VOB, and the

remaining 15 will work in all VOBs. Therefore, the company needs to purchase the following

numbers of licenses:

NOTE: This example assumes that you purchase a ClearCase license for each developer. If you

have fewer ClearCase licenses than developers, you can purchase a proportionate number of

MultiSite licenses. For example, if site B purchased three ClearCase licenses, they would also

purchase three MultiSite licenses.

For more information about MultiSite license allocation and purchasing licenses, see the

Installation Guide for the ClearCase Product Family.

2.3 ClearCase Use Model

Before development work is started in any VOB, the project manager and administrator must

define the ClearCase use model. For example, the project manager must specify the branches,

labels, and triggers that are used for development and integration work. The following sections

describe the ways in which MultiSite use affects this planning.

Site Number of ClearCase licenses Number of MultiSite licenses

A 20 15

B 5 5
2 - Planning a MultiSite Implementation 35

Branching and Mastership

Mastership restrictions affect the choices you make about branching and merging:

➤ A common branching strategy is to use a single release branch (or integration branch) and

multiple development branches. The project manager or developer merges changes from

the development branch to the integration branch. You can use this strategy with MultiSite,

but the merges to the integration branch must occur at the replica that masters the

integration branch.

You could also use a single release integration branch, multiple site integration branches, and

multiple developer branches. With this scenario, developers or project managers at a replica

merge to the site integration branch, and the project manager at the replica that masters the

release integration branch merges to that branch from the site integration branches.

You may need to allow developers to transfer and request mastership of branches and

branch types. Developers at different sites may have to use the same branch type (for

example, because an element’s versions can’t be merged, or because each site must merge its

own work to the integration branch). A branch or branch type’s mastership cannot be shared

by multiple replicas; instead, there are two models for transferring mastership between sites:

Model 1. Create a schedule that determines when each site masters the branch or branch

type. Create scripts to transfer mastership.

Model 2. Give the developers at the sites the ability to request mastership of the branch or

branch type. For more information about this model, see Chapter 9, Implementing Requests for
Mastership.

NOTE: Do not use mastership transfer models as substitutes for good branching and merging

rules. Enabling requests for mastership involves more planning and setup than

implementing a strategy for branching and merging. Also, if you can develop in parallel,

planned branching and merging is safer than allowing developers to request mastership and

merge their own work randomly.

➤ You can use auto-make-branch rules in config specs only if the current replica masters the

branch type in the rule. For example, if your current replica masters the v1.0_bugfix branch

type but not the v1.0 branch type, this config spec is incorrect because the v1.0 branch

cannot be created at this replica:

element * CHECKEDOUT
element * .../v1.0_bugfix/LATEST
element * .../v1.0/LATEST -mkbranch v1.0_bugfix
element * /main/LATEST -mkbranch v1.0
36 Administrator’s Guide: Rational ClearCase MultiSite

➤ By default, when you create an element in a replicated VOB, mastership of the branch main
is assigned to the replica that masters the branch type main. If this replica is not your

current replica, you cannot create new versions on the main branch. Also, if your config

spec contains mkbranch rules and your current replica does not master the branch types,

the branches cannot be created during element creation.

You can assign mastership of a new element’s main branch and other branches created

during element creation to your current replica. For more information, see Assigning Branch
Mastership During Element Creation on page 124.

Use of Metadata

Mastership restrictions affect the way you use ClearCase attributes, labels, or hyperlinks. You

need to decide whether these types must be shared. You can create instances of an unshared type

only in the replica that masters it. You can create instances of a shared type only in the replica

that masters the object to which you are attaching the instance. For more information, see Type
Object Mastership on page 14.

Trigger types and triggers are not replicated. If a trigger is in use at one replica and needs to be

used at other replicas, you must send the appropriate information (for example, the output of a

describe trtype: command and the contents of any associated scripts) to the administrators at the

other sites.

Text Mode for Replicas

When you create a new replica, it has the same text mode as the replica from which it was

exported. However, changes to a replica’s text mode are not propagated to the other replicas in

the family, so if you make a text mode change that needs to occur at all replicas in the family, you

and the other MultiSite administrators must change the text mode at each replica. For more

information about text modes, see the Administrator’s Guide for Rational ClearCase.
2 - Planning a MultiSite Implementation 37

Use of Administrative VOBs or UCM

If replicated VOBs use global types, the administrative VOBs must be replicated. For more

information on global types, see the Administrator’s Guide for Rational ClearCase.

NOTE: If a global type is shared, Rational ClearCase can create a local copy of the type only if the

type is mastered by the administrative VOB replica at the current site. If the shared global type

is not mastered at the current site, you can create instances of the type only if the client VOB

replica contains a local copy of the type. This restriction applies even if your current replica

masters the object to which you are attaching the instance. This mastership restriction prevents

conflicting, simultaneous creation of a given type with a given name at multiple sites. For more

information, see Administrator’s Guide for Rational ClearCase.

If you replicate a component VOB, you must replicate its PVOB.

When you use ClearCase UCM and MultiSite, some developer and project manager tasks are

different. A project’s integration stream is mastered by one of the replicas in the VOB family, and

developers at other replicas must do a remote deliver of their work to the stream. The project

manager at the master replica completes the deliver operations. The Developing Software and

Managing Software Projects manuals describe this scenario in more detail.

2.4 MultiSite Use Model

The following sections describe the different aspects of your MultiSite use model.

Type of Administration

While you are planning your implementation, you need to decide how much control the

individual sites will have over their replicas. Your choices are centralized administration,

individual administration, or some combination of the two.

➤ With centralized administration, there is a hub site. For each VOB family, all the replicas in

the family are mastered by a replica at the hub site. Administrators at the hub site maintain

all replicas and all synchronization patterns and schedules. These administrators have

permission to access the VOB replica servers at all sites.
38 Administrator’s Guide: Rational ClearCase MultiSite

Advantages of this scheme:

➣ Your company does not have to hire a MultiSite administrator for each site.

➣ It is easier to make sure schedules do not conflict with each other.

Disadvantages:

➣ Some administrative procedures require a replica to be self-mastering.

➣ If ClearCase administration is done at a local level, the MultiSite administrators must

have knowledge of all local administrative procedures (for example, backups and server

maintenance).

➣ Remote access to all sites is required.

➤ With individual administration, each replica is self-mastering and there is an administrator

at each site. Administrators are responsible for creating and maintaining replicas,

synchronization patterns, and synchronization schedules at their sites.

Advantages of this scheme:

➣ No mastership changes are required when an administrator needs to change replica

properties.

➣ Administrators can ensure that MultiSite administrative procedures do not conflict with

ClearCase administration.

Disadvantages:

➣ A MultiSite administrator is needed at each site.

➣ Communication among administrators can be difficult if the company has sites in

multiple time zones.

You can also have semi-centralized administration. For example, you may have MultiSite

administrators at sites with major development efforts and give these administrators control

over their MultiSite environment. The responsibility for administering smaller sites is

distributed among the MultiSite administrators.
2 - Planning a MultiSite Implementation 39

Mastership Strategy

The choices you make for your ClearCase use model and MultiSite administration model

determine your mastership strategy. Your plan should state which replicas will master branch

types, label types, elements, and other VOB objects. After you create the replicas in the VOB

family, you can change mastership of objects. For more information, see Enabling Independent
VOB Development: Mastership on page 7 and Changing Mastership on page 126.

Replica Permission Strategy

When you import a replica-creation packet, you must specify whether the new replica is

ownership-preserving or non-ownership-preserving. In most cases, your replicas must be

non-ownership-preserving. For information about the requirements for creating

ownership-preserving replicas, see Element Ownership and Ownership Preservation on page 4.

If you plan to create one or more ownership-preserving VOB replicas, follow these steps:

1. At the exporting site, gather the current VOB ownership and group information and send it

along with the packets created by mkreplica –export.

a. Get the name of the VOB owner and VOB groups, using the cleartool describe command

on the VOB object. For example:

b. Translate the symbolic names to numbers. On UNIX, become the VOB owner and issue

the id command. For example:

cleartool describe vob:/vobs/dev
versioned object base "/vobs/dev"

created 15-Aug-00.14:19:03 by CC Admin (ccadm.user@minuteman)
VOB family feature level: 1
VOB storage host:pathname "minuteman:/vobstg/dev.vbs"
VOB storage global pathname "/net/minuteman/vobstg/dev.vbs"
database schema version: 53
VOB ownership:

owner purpledoc.com/ccadm
group purpledoc.com/user

su ccadm
Password: xxxxxx
id
uid=1083(ccadm) gid=20(user)
40 Administrator’s Guide: Rational ClearCase MultiSite

2. At each importing site, ensure that the user ID, primary group, and secondary groups match

the information from the exporting site, in name and number.

If they do not match, you must modify the user and group information to prevent import

failures due to permissions problems, as described in Ownership Preservation on page 185.

If the names are the same and the numbers are different, you must create

non-ownership-preserving replicas.

Synchronization Method

There are multiple methods you can use to transport MultiSite packets. The method you choose

depends on how your sites are connected, how quickly you must transfer packets, and how

important security is. Table 4 lists the recommended methods for various situations.

Table 4 Choosing a Packet Transfer Method

Your situation Recommended methods Source of more information

Sites are connected with

high-speed lines

shipping_server Transferring Packets with
Store-and-Forward on page 90

shipping_server reference page

One or more sites have

firewalls

Tape, diskette, CD-ROM,

e-mail, ftp,

shipping_server

Using MultiSite through a Firewall
on page 96

syncreplica reference page

Must transfer packets

quickly

E-mail, ftp,

shipping_server
shipping_server reference page,

syncreplica reference page

No electronic connection

between sites

Tape, diskette, CD-ROM syncreplica reference page
2 - Planning a MultiSite Implementation 41

Synchronization Pattern

The synchronization pattern for a VOB family defines which replicas exchange update packets

and the direction of exchange. Your choice of pattern depends on the following factors:

➤ Bandwidth between sites

➤ Network topology

➤ Latency of changes: how quickly changes made at one replica need to be received at another

replica in the family

➤ Failure tolerance

The following sections describe unidirectional and bidirectional exchanges and the most

common synchronization patterns.

Directions of Exchange

Synchronization can be unidirectional or bidirectional, as shown in Figure 10.

Figure 10 Unidirectional and Bidirectional Updating

In most cases, you will use bidirectional updating. Unidirectional updates are suitable in

situations like these:

➤ You use a replica as a backup.

➤ Your company supplies source code to another site (or company) for read-only use.

replica1 replica2 replica3

replica1 replica2 replica3

unidirectional

bidirectional
42 Administrator’s Guide: Rational ClearCase MultiSite

➤ A high-security development project uses the same files as a more open project. In this case,

the open project sends updates to the high-security project, but no updates are sent in the

other direction.

However, unidirectional updates carry some risk. For example, an accidental change of

mastership cannot be fixed, and restoring from a replica that does not exchange updates directly

with the broken replica involves extra work. Also, you must ensure that no work is done

accidentally in a read-only replica; do this by creating triggers or locking the VOB to prevent

checkouts and creation of metadata.

One-to-One and Ring Synchronization

Figure 11 One-to-One Synchronization Pattern

Figure 12 Ring Synchronization Pattern

The simple one-to-one and ring (or round-robin) patterns are simple patterns that are most

suitable for small numbers of replicas. As the number of replicas grows larger, the amount of

time increases for a change made at one replica to be received at a replica at the other side of the

ring.
2 - Planning a MultiSite Implementation 43

One-to-Many Synchronization

Figure 13 Single-Hub Synchronization Pattern

Figure 14 Multiple-Hub Synchronization Pattern
44 Administrator’s Guide: Rational ClearCase MultiSite

Figure 15 Tree Synchronization Pattern

Advantages:

➤ More efficient for the spoke and branch replicas, which send to and receive from only one

other replica.

Disadvantages:

➤ If the hub or root site goes down, all spoke/branch sites must reconfigure their pattern to

keep communication going.

➤ If you change the synchronization pattern so that replicas that did not synchronize directly

now exchange packets, the first packets that are generated may be too large for the system.

To avoid this problem, you can run chepoch –actual regularly among the spoke or branch

replicas.
2 - Planning a MultiSite Implementation 45

Many-to-Many Synchronization

Figure 16 Many-to-Many Synchronization Pattern

Advantages:

➤ For companies with few sites, this pattern keeps each replica’s epoch table the most

accurate for all siblings.

➤ If one site is unavailable, the other sites do not have to change their patterns to continue

synchronizing.

Disadvantages:

➤ Each administrator must maintain more synchronization jobs and spend more time keeping

track of packets.

Synchronization Schedule

The synchronization schedule for a VOB family defines when replicas in the family send and

receive updates. The schedule is affected by many factors, including the rate of development at

different sites, the connections among sites, and whether you use MultiSite as a backup strategy.

Consider the following issues when planning your synchronization strategy:

➤ Rate of development.

If you schedule synchronizations frequently, merging is simpler because fewer changes have

taken place. Also, you lose less work if a replica is deleted accidentally and you must restore

it from backup.

Make sure that synchronizations do not overlap with VOB backups. VOBs must be locked

while they are being backed up, and the syncreplica command fails if the VOB is locked.
46 Administrator’s Guide: Rational ClearCase MultiSite

➤ Time zone differences. Be sure to take different time zones into account when you send an

update or set up automated updates. Figure 22 on page 89 illustrates synchronization

taking place among replicas in three time zones.

➤ Use of administrative VOBs. Because local type objects in a client VOB are linked to global

type objects in the administrative VOB, we recommend that you synchronize a client VOB

and its administrative VOB at the same time. If you do not, users may have trouble

accessing type objects.

For example, at the Boston site, the client VOB /vobs/dev is linked to administrative VOB

/vobs/admin, and both VOBs are replicated to San Francisco and Bangalore. You export

update packets to replicas sanfran_hub@/vobs/dev and sanfran_hub@/vobs/admin at 11:00

P.M. local time and export update packets to replicas bangalore@/vobs/dev and

bangalore@/vobs/admin at 5:00 A.M. local time. The administrator at San Francisco imports

both packets at the same time, as does the administrator at Bangalore.

➤ Use of ClearCase UCM. We recommend that you synchronize a component VOB and its

PVOB at the same time. If you do not, users may have trouble accessing baselines and

activities and the versions associated with those objects.

Use of MultiSite for Backups

You can use MultiSite as part of your VOB backup strategy. For more information, see

Chapter 11, Backing Up VOBs with MultiSite.

Scrubbing Parameters for VOB Replicas

When a ClearCase or MultiSite command makes a change to a replica, an oplog entry is recorded

in the replica’s database. (See VOB Operations and the Oplog on page 24 for more information on

this mechanism.) Also, when you export an update packet, an export_sync record is created for

each target replica. These records are stored in the VOB database and are used by the

recoverpacket command to reset a replica’s epoch number matrix.

You can scrub oplog entries and export_sync records to reclaim disk space and database records,

but you must keep them long enough to ensure that you can recover from replica failures and

packet losses. The following sections give guidelines for configuring scrubbing frequency.

For more information on VOB scrubbing, see the ClearCase vob_scrubber reference page.
2 - Planning a MultiSite Implementation 47

Oplog Scrubbing

Oplog entries must be kept in the database for a significant period. In the near term, they are

required when the replica generates update packets to be sent to all other replicas. Beyond that,

entries may be required to help other replicas recover from catastrophic failures. If no replica can

supply these entries, the replica being restored must be re-created. (See Restoring a Replica from
Backup on page 191.) Because of the need to use oplog entries during synchronization, your

synchronization strategy determines how often oplogs can be scrubbed.

By default, an oplog entry is never scrubbed. Do not change this setting until you establish the

synchronization pattern in the VOB family and verify that packets are being exported and

imported successfully.

When it is safe to delete oplog entries for a replica, follow these steps:

1. Coordinate with administrators at other sites to decide how long each site must keep oplog

entries.

Each site must keep entries for as long as necessary to allow restorereplica operations to

complete successfully. The frequency with which you scrub oplogs depends on the following

factors:

➣ The pattern of synchronization among replicas in the VOB family

➣ How often the replicas are synchronized

Frequency of synchronization refers both to how often updates are exported and to how

often they are imported at other sites. Also, consider setting up a verification scheme so

you can ensure that packets are processed successfully at other replicas before any oplog

entries are scrubbed.

➣ How often you back up the replicas

For example, if a VOB is backed up weekly at all sites and you want to be able to restore

to the backup from two weeks ago, each replica must keep three weeks of oplog entries.

If replicas synchronize weekly, you must assume that the weekly packet hasn’t been sent

to the other replica, and add another week. Finally, for extra security, add another

month. The result is a scrubbing time of two months.

2. Change the oplog scrubbing parameter for your replica:

a. Copy ccase-home-dir/config/vob/vob_scrubber_params (UNIX) or

ccase-home-dir\config\vob\vob_scrubber_params (Windows) to the VOB storage

directory of the replica. This creates a parameter file specific to the VOB.
48 Administrator’s Guide: Rational ClearCase MultiSite

b. Make this new file writable.

c. Edit the oplog line in this file. For example, to keep oplog entries for two months (62

days):

oplog –keep 62

CAUTION: If a replica’s oplog entries are scrubbed before they are included in an update packet,

you cannot export update packets from the replica. This is a serious error and compromises the

integrity of the entire VOB family.

export_sync Scrubbing

export_sync records are not necessary for normal synchronization operation. They are different

from export event records, which also record synchronization exports and are included in output

from the lshistory command and the History Browser.

export_sync records are date-based records used by the recoverpacket command to reset a

replica’s epoch number matrix. If you do not use this packet recovery method (because you use

chepoch –actual or lsepoch/chepoch), you can scrub these records aggressively. If you use the

recoverpacket command, you must keep export_sync records for the number of days that elapse

between VOB backups. (See Recovering from Lost Packets on page 182.)

By default, the vob_scrubber_params file has no entry for export_sync records, and these

records are scrubbed with the same frequency as oplog entries. If you want to scrub export_sync

records at a different frequency than oplog entries, you can set the export_sync parameter in the

vob_scrubber_params file. For more information, see the vob_scrubber reference page.

2.5 Responsibilities of MultiSite Administrators

A MultiSite administrator must do the following:

➤ Help determine and implement the ClearCase and MultiSite use models

When a new project is set up, the administrator works with project managers to determine

which replicas master various objects. The administrator also changes mastership when

necessary, schedules merges, copies triggers from replica to replica, and monitors label

creation.
2 - Planning a MultiSite Implementation 49

➤ Monitor MultiSite synchronization and replica creation

Administrators must check the storage bays to make sure that packets are not accumulating.

On UNIX, include the administrator’s e-mail address in the ADMINISTRATOR entry in the

shipping.conf file. On Windows, include the administrator’s e-mail address in the MultiSite
Control Panel.

It is important to prevent two or more replicas of the same VOB from being mounted on the

same host—one host can belong to only one region and each region can contain only one

replica. Accordingly, do not assign public VOB-tags in the same ClearCase registry region to

multiple replicas of the same VOB.

See VOB Objects and Replica Objects on page 23 for information about how VOBs and VOB

replicas are listed in the ClearCase storage registry and Chapter 12, Using MultiSite for
Interoperability for information about using multiple replicas at one site.

➤ Monitor ClearCase and system log files

Error and status messages are written to the shipping_server_log file and (on Windows) the

Event Viewer. For more information about error logs, see Troubleshooting Tips on page 164.

➤ Install new versions of ClearCase and MultiSite and new patches

Patches and information about new versions are available on the Rational Software Web site.

Install the Mandatory and Recommended patches for your architecture.

Compatibility issues for versions of ClearCase and MultiSite are described in the Release
Notes for Rational ClearCase and ClearCase MultiSite.

➤ Coordinate issues with all other MultiSite administrators responsible for replicas in the

VOB family

After initial setup and synchronization of replicas, administrators also must coordinate

recovery efforts, which may involve exchanges of update packets, and changes of

mastership, which require the administrator at the master replica to transfer mastership to

the replica that needs to master the objects.

We recommend that you create a representation of your MultiSite deployment. For example,

Figure 17 shows information and the synchronization pattern for a VOB family.
50 Administrator’s Guide: Rational ClearCase MultiSite

Figure 17 VOB Family Information

➤ Ensure that VOB replicas receive any necessary special handling

Restoring a VOB replica’s storage directory from backup is a significant event in the life of a

VOB family. Failure to follow the procedure described in the section Restoring a Replica from
Backup on page 191 leads to irreparable inconsistencies among the VOB’s replicas.

There are no special requirements for backing up a VOB replica’s storage directory. Use the

instructions in the Administrator’s Guide for Rational ClearCase for backing up a VOB.

Other ClearCase administrative procedures require special steps for replicated VOBs. The

procedures in the Administrator’s Guide for Rational ClearCase describe these steps.

sanfran_hub
goldengate

John Cole
jcole, x1462

San Francisco
GMT-8

boston_hub
minuteman

Susan Goechs
susan, x3742

Boston
GMT-5

tokyo
shinjuku

Masako Ito
masako, x7761

Tokyo
GMT+9

Replica name
Replica host

Administrator
Email, phone number

Location
Time zone offset

sydney
taronga

Bruce Fife
bfife, x5080

Sydney
GMT+10

bangalore
ramohalli

Sonia Kumar
kumar, x2347

Bangalore
GMT+5:30

buenosaires
mardelplata

Fangio Erizo
fangio, x4300

Buenos Aires
GMT-3
2 - Planning a MultiSite Implementation 51

52 Administrator’s Guide: Rational ClearCase MultiSite

33 MultiSite Command Set

This chapter summarizes MultiSite commands and the ClearCase commands that display

MultiSite information. Reference pages for the MultiSite commands are available in Chapter 13,

MultiSite Reference Pages, and are also available online:

➤ On UNIX, the MultiSite multitool man command displays MultiSite reference pages in

either HyperHelp or ASCII format.

➤ On Windows, the MultiSite multitool man command displays reference pages in Windows

Help.

➤ On both platforms, the MultiSite Help file includes the MultiSite reference pages in this

manual.

3.1 Location of MultiSite Programs

The MultiSite installation places programs and configuration files in the ClearCase installation

area on a host. (ccase-home-dir refers to both the ClearCase and MultiSite installation directory).

On UNIX, MultiSite programs are located in the ccase-home-dir/bin, ccase-home-dir/etc, and

ccase-home-dir/config/scheduler/tasks directories. On Windows, MultiSite programs are located

in ccase-home-dir\bin and ccase-home-dir\config\scheduler\tasks.
3 - MultiSite Command Set 53

3.2 multitool Use

The multitool program is very similar to the ClearCase cleartool program:

➤ It has a set of subcommands that perform product functions, such as replica creation,

synchronization, and management; mastership of objects stored in VOB databases; and

failure recovery.

Some multitool subcommands are also available in cleartool.

➤ Command options can always be abbreviated to three characters and sometimes fewer, as

indicated in the reference pages.

➤ You can use multitool in single-command mode. For example:

multitool rename replica:original boston_hub

Also in interactive mode:

multitool
multitool> rename replica:original boston_hub
multitool> quit

➤ It has online help facilities. The help command displays syntax summaries, and the man
command displays reference pages:

multitool help chreplica
Usage: chreplica [-c comment | -cfile pname | -cq | -cqe | -nc]

[-host hostname]
[-preserve | -npreserve]
[-isconnected | -nconnected] replica-selector

multitool man chreplica
...on Windows, Windows Help displays the reference page

chreplica
==========
Changes the properties of a replica

APPLICABILITY
...
54 Administrator’s Guide: Rational ClearCase MultiSite

multitool Subcommands

The following sections describe the different kinds of multitool subcommands. The tables in

each section show whether the command has a cleartool equivalent and whether a view context

is required when you invoke the command.

Commands Copied from ClearCase

These commands were copied from cleartool and are documented only in the Command
Reference, except for apropos, which is also documented in this manual.

Replica Creation, Synchronization, and Management

multitool includes commands that set up new replicas of VOBs, change their characteristics, and

change their contents by importing update packets.

Table 5 multitool Subcommands Copied from ClearCase

Command
cleartool
equivalent

View context
required?

Description

apropos (UNIX) Yes No Displays multitool command information

cd Yes No Changes current working directory

describe Yes Yes

(file-system

objects)

Describes a replica’s VOB database object

help Yes No Displays multitool command syntax

man Yes No Displays a MultiSite reference page

pwd Yes No Prints working directory

quit Yes No Ends interactive multitool session

rename Yes No Renames a replica

shell Yes No Creates subprocess to run shell or program
3 - MultiSite Command Set 55

Object Mastership

To prevent conflicting changes from occurring at different replicas of a VOB, certain

VOB-database objects are assigned a master replica (master). The initial master of an object is the

replica where the object is created. For more information on mastership, see Enabling Independent
VOB Development: Mastership on page 7.

Table 6 Replica Creation, Synchronization, and Management Commands

Command
cleartool
equivalent

View context
required?

Description

chreplica No No Changes the properties of a replica

lspacket No No Lists one or more packet files created by

mkreplica or syncreplica

lsreplica Yes No Lists one or more of a VOB’s replicas

mkreplica No No Creates a new VOB replica

rename Yes No Renames a replica (command documented

in the Command Reference)

rmreplica No No Removes a replica

syncreplica No No Synchronizes the current replica with one

or more other replicas in its VOB family

Table 7 Object Mastership Commands

Command
cleartool
equivalent

View context
required?

Description

chmaster Yes Yes

(file-system

objects)

Transfers mastership of a ClearCase object

lsmaster Yes Yes Lists objects mastered by a replica

reqmaster Yes Yes Requests mastership or set access controls

for mastership requests
56 Administrator’s Guide: Rational ClearCase MultiSite

Failure Recovery

Each replica of a VOB uses an epoch number matrix to track its own state and the state of all other

replicas. (Because replicas are always changing, a replica knows what changes have been made

to itself; but it can have only an estimate of the states of other replicas.) Each time a replica sends

an update packet, it updates its own epoch number matrix, under the assumption that the packet

will be delivered to its destinations and applied to the appropriate replicas. For more

information, see VOB Operations and the Oplog on page 24.

multitool includes the following failure-recovery commands, for use when this assumption of

successful delivery does not hold true:

Table 8 Failure-Recovery Commands

Command
cleartool
equivalent

View context
required?

Description

chepoch No No Changes a replica’s epoch number matrix

lsepoch No No Lists a replica’s epoch number matrix

recoverpacket No No Resets epoch number matrix so lost packets

are resent (required when a packet is lost or

unusable)

restorereplica No No Restores VOB replica from backup. This

command places a replica in a special state,

in which it sends epoch number matrix

corrections to other replicas. The replica

cannot be used for normal development

work until it receives special updates that

inform it of the current states of other

replicas.
3 - MultiSite Command Set 57

3.3 View Contexts and VOB Mounts

The principal MultiSite commands do not require a view context or mounting of the VOB

replicas being processed. This facilitates use by administrators and automation of MultiSite

operations through the schedule command.

There are some advantages to running MultiSite commands in a view, with the VOB mounted:

➤ Simpler command syntax. If your current working directory is within a VOB, many

commands process that VOB, eliminating the need to use the @vob-selector suffix in

command arguments.

➤ Better diagnostics. If a syncreplica –import command fails when running in a view, it

produces diagnostics that include pathnames, which makes troubleshooting easier.

3.4 Specifying VOBs and Replicas in Commands

ClearCase commands use the vob: prefix to operate on the current VOB replica. ClearCase and

MultiSite commands use the @vob-selector suffix to specify the replica that is mounted at a

particular VOB-tag. This suffix indicates which replica’s database is to be used by the command.

The multitool mkreplica command uses the –vreplica option to specify a particular replica

within a VOB family.
58 Administrator’s Guide: Rational ClearCase MultiSite

3.5 Additional MultiSite Commands

The MultiSite commands that are not built in to multitool are listed in Table 9.

Table 9 Additional MultiSite Commands

Command Location under ccase-home-dir Description

epoch_watchdog config/scheduler/tasks (UNIX)

config\scheduler\tasks (Windows)

Checks whether a replica’s

epoch numbers have

rolled back when the

replica is not in restoration

mode; for use in schedule
commands.

mkorder etc (UNIX)

bin (Windows)

Creates shipping order for

use by store-and-forward.

notify bin Mail program for

store-and-forward.

shipping_server etc (UNIX)

bin (Windows)

Store-and-forward packet

transport server.

sync_export_list config/scheduler/tasks (UNIX)

config\scheduler\tasks (Windows)

Replica-update script

using store-and-forward; for

use in schedule
commands.

sync_receive config/scheduler/tasks (UNIX)

config\scheduler\tasks (Windows)

Replica-update script

using store-and-forward; for

use in schedule
commands and as the

receipt handler.
3 - MultiSite Command Set 59

3.6 ClearCase Commands Related to MultiSite

The ClearCase commands in Table 10 manage or display MultiSite information.

In general, all ClearCase commands obey MultiSite mastership restrictions in a replicated VOB.

In addition, the following commands work differently in replicated VOBs:

describe
Lists the master replica of an object. For replicas, branch types, and branches, lists the

mastership request setting.

describe vob:pname-in-vob
Lists the replica name and the VOB family feature level.

Table 10 ClearCase Commands Related to MultiSite

Command Description

checkout –unreserved –nmaster Performs a nonmastered checkout, which is an

unreserved checkout on a branch not mastered by your

current replica.

lscheckout –areplicas Lists checked-out versions across all replicas of a VOB

(Default: lists your current replica’s checkouts).

mkattype –shared
mkhltype –shared
mklbtype –shared

Creates a shared type object.

mkelem –master Assigns mastership of the main branch of the element

to the replica in which you create the element. Also, if

your config spec contains mkbranch rules and you do

not specify the –nco option with mkelem, mkelem
assigns mastership of these branches to the replica in

which you create the element.

vob_scrubber Scrubs oplog entries and export_sync records.
60 Administrator’s Guide: Rational ClearCase MultiSite

ln
mkelem
rmname

To change a directory, you must work in the master replica of the branch on which the

directory is checked out. Changes to directories include

mk**type –replace
If a type object is shared, you cannot change its instance restrictions. For example, you

cannot replace a one-per-element branch type with a one-per-branch branch type.

mkeltype –replace
You cannot change the definition of an element type in a replicated VOB.

rmtype eltype:type-name
You cannot delete an element type in a replicated VOB.

➤ Creating a VOB hard link or VOB symbolic link (ln)

➤ Creating a new element (mkelem)

➤ Removing a reference to an element or VOB symbolic link (rmname)
3 - MultiSite Command Set 61

62 Administrator’s Guide: Rational ClearCase MultiSite

Using MultiSite

44 Creating Replicas

This chapter describes how to plan and create VOB replicas. Before creating a replica, you must

make decisions about branching, mastership, ownership preservation, and method of packet

delivery. Be sure to read ClearCase Use Model on page 35 and MultiSite Use Model on page 38.

4.1 Overview of Replica Creation

You use this three-phase procedure to create new VOB replicas:

1. Export phase—At one site, enter a mkreplica –export command, which creates a new replica

object and a replica-creation packet.

2. Transport phase—Send the packet to one or more other sites.

3. Import phase—At the other sites, each administrator enters a mkreplica –import command,

which creates a new VOB replica.

The procedure is similar for different methods of packet delivery and for different platforms. The

example in this chapter assumes a high-speed connection between sites, and all replicas are

located on UNIX machines. The procedure is the same if all replicas are located on Windows

machines or if one replica is on a Windows machine; only the VOB-tags and pathnames are

different.

If some replicas in your VOB family will be located on UNIX machines and others will be on

Windows machines, be sure to read Replicating a VOB Between UNIX and Windows on page 77.
4 - Creating Replicas 65

4.2 Timing of Replica Creation

During the export phase of replica creation, the replica creation command locks the VOB and

dumps the VOB database. The VOB is locked for the entire length of time the command runs.

While the VOB is locked, read-only operations can occur in the VOB, but write operations

cannot. (For example, these operations fail: checkins and checkouts, chepoch –actual commands,

label creation, builds, imports of update packets, VOB snapshots, and scheduled backups.)

Therefore, you need to schedule the export phase of replica creation during nonbusiness hours

for your site. You must also cancel any scheduled exports, imports, VOB snapshots, and backups

for the duration of the export phase.

4.3 Notes on Different Transport Methods

If your sites have a high-speed connection, you can take advantage of the MultiSite

store-and-forward facility when you create a new replica. If your current site does not have IP

connectivity to the site of the new replica, you can use a file-based packet transfer method (for

example, ftp or email).

Store-and-Forward Method

The following sections describe issues you must consider when you use the store-and-forward

method.

Communication Between Replica Hosts

The hosts must be able to communicate with each other. If your network uses host names, the

sending host must be able to resolve the receiving host’s name to an IP address. To accomplish

this, you may have to update the hosts file, hosts NIS map, or Domain Name Service. Verify

TCP/IP access by using rcp on each host to access the other hosts.

NOTE: If hosts in your network are known only by their IP addresses, you can use the IP

addresses instead of host names, and no resolution is necessary.
66 Administrator’s Guide: Rational ClearCase MultiSite

Limiting the Size of a Packet

The mkreplica command fails if it tries to create a packet larger than the size supported by your

system. To prevent this problem and improve reliability, use the –maxsize option to divide the

replica-creation packet into multiple packets:

multitool mkreplica –export –maxsize 1g ...

For information about default packet size limits, see the mkreplica reference page.

Transport Options

When you enter the mkreplica –export command, you can use either the –fship option to send

the packet immediately, or the –ship option to store the packet in the outgoing shipping bay.

With –ship, you must invoke the shipping_server to send the packet.

The outgoing packet is stored in the outgoing subdirectory of a storage bay. By default,

mkreplica uses the default storage bay (ccase-home-dir/shipping/ms_ship on UNIX and

ccase-home-dir\var\shipping\ms_ship on Windows).

The incoming and outgoing subdirectories of storage bays contain packets waiting for transport

or processing. All shipping operations look for packets in these subdirectories. At the receiving

site, the incoming packet is stored in the incoming subdirectory of a storage bay.

Notes on Using Tape or a File-Based Transfer Method

When you use the –tape option (UNIX) or a file-based method for transport, you may need to

use the –maxsize option to prevent the tape from filling up or to make sure the file is a

manageable size. In this example, the administrator writes the replica-creation packet to tape,

using the –maxsize option. The mkreplica command prompts for additional tapes if necessary.
4 - Creating Replicas 67

MINUTEMAN%multitool mkreplica –export –work /usr/tmp/wk –tape /dev/tape \
–maxsize 75m goldengate:sanfran_hub@/vobs/dev
Enabling replication in VOB.
Comments for "sanfran_hub":
First time replication for dev VOB; Creating new replica, sanfran_hub, on host goldengate
.

Please insert a tape to hold packet number 1.
When ready, enter ‘proceed’ (proceed/abort) [proceed] <RETURN>
Generating packet number 1...
Dumping database...

. . .
Dumper done.

4.4 Replica-Creation Scenario

The replica-creation example in this section uses a fictional company whose software

development takes place in Boston, Massachusetts and in a new development office in San

Francisco, California. Work is about to begin on a new release.

Planning the Rules of the Road

The organization uses a common ClearCase software development strategy:

➤ Individual subprojects, and often individual developers, use separate subbranches. The

auto-make-branch facility is used in all config specs, to place changes on the appropriate

branches. For example:

element * CHECKEDOUT
element * .../sanfran_main/LATEST
element * SANFRAN_BASE -mkbranch sanfran_main
element * V1.0 -mkbranch sanfran_main
element * /main/0 -mkbranch sanfran_main

➤ The v2.0_integration branch is reserved for integration of the work done at the various

sites. To prepare for an internal baseline or an external release, the project manager merges

selected development subbranches into the v2.0_integration branch.
68 Administrator’s Guide: Rational ClearCase MultiSite

➤ When necessary, developers merge changes from the v2.0_integration branch to their

subbranches, to bring themselves up to date with changes occurring on the integration

branch.

With Rational ClearCase MultiSite, the organization can continue to use this strategy. The Boston

replica masters the v2.0_integration branch. The San Francisco replica masters a branch named

sanfran_main, as well as any additional subbranches of sanfran_main that may be needed to

organize the work there. The project manager at the Boston site merges changes from the

sanfran_main and boston_main branches into the v2.0_integration branch, so that the release

engineers can build the product using the latest changes.

Relevant characteristics of the two replicas:

Boston replica

Host name: minuteman (UNIX)

Replica name: boston_hub
VOB storage directory: /vobstg/dev.vbs
VOB-tag: /vobs/dev
Config spec for development: element * CHECKEDOUT

element * .../boston_main/LATEST
element * BOSTON_BASE -mkbranch boston_main
element * V1.0 -mkbranch boston_main
element * /main/0 -mkbranch boston_main

Config spec for integration: element * CHECKEDOUT
element * .../v2.0_integration/LATEST
element * BOSTON_BASE -mkbranch v2.0_integration
element * V1.0 -mkbranch v2.0_integration
element * /main/0 -mkbranch v2.0_integration

San Francisco replica

Host name: goldengate (UNIX)

Replica name: sanfran_hub
VOB storage directory: /vobstg/dev.vbs
VOB-tag: /vobs/dev
Config spec for development: element * CHECKEDOUT

element * .../sanfran_main/LATEST
element * SANFRAN_BASE -mkbranch sanfran_main
element * V1.0 -mkbranch sanfran_main
element * /main/0 -mkbranch sanfran_main
4 - Creating Replicas 69

The company has not yet merged its user/group databases, so the two replicas cannot be

ownership-preserving. There is IP connectivity between the two offices, so the Boston

administrator can use the MultiSite store-and-forward facility to create the new replica.

Prerequisites

Before you create a new replica, you must perform these steps at the original site:

1. Make sure MultiSite licenses are installed.

After you enter the mkreplica –export command, developers at the original site cannot

access the VOB without a MultiSite license (in addition to a ClearCase license).

clearlicense –product MultiSite
Licensing information for MultiSite.
License server on host "cclicense".
Running since Thursday 07/01/00 12:27:28.

LICENSES:
Max-Users Expires Password [status]
300 none 34ms5678.901234c5.67 [Valid]
...

2. Apply a version label, from which development work at the new replica will branch.

In the standard ClearCase manner, a consistent set of source versions (a baseline) is identified

by a version label. The VOB administrator creates label type SANFRAN_BASE and attaches

it to all the /main/LATEST versions in the original VOB. The changes at sanfran_hub are

made on sanfran_main branches; all these branches are created at SANFRAN_BASE
versions.

3. Rename the original replica appropriately.

Even though the original VOB has not yet been replicated, its VOB database still has a VOB
replica object, named original:

MINUTEMAN%cleartool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":
15-Aug.14:19 susan replica "original"
70 Administrator’s Guide: Rational ClearCase MultiSite

The administrator renames the VOB replica object to boston_hub:

MINUTEMAN%multitool rename replica:original boston_hub
Renamed replica from "original" to "boston_hub".

MINUTEMAN%cleartool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":
15-Aug.14:19 susan replica "boston_hub"

4. Make sure the VOB is not locked.

Step #6 locks the VOB; an error occurs if the VOB is already locked.

MINUTEMAN%cleartool lslock vob:/vobs/dev
MINUTEMAN% (null output indicates VOB is not locked)

5. Determine the size of the VOB database and source pools.

The directory you specify with the –workdir option must be on a partition that has enough

free space to hold the VOB database and the VOB source pools. You must have write

permission on its parent directory, and the directory you specify must not exist.

To determine the size of the VOB database and source pools, use cleartool space:

cleartool space /vobs/dev
Use(Mb) %Use Directory
...
1429.0 17% VOB database /vobstg/dev.vbs/db
...
189.5 2% source pool /vobstg/dev.vbs/s/sdft
...

In this example, the work directory must have at least 1.62 GB of free space.

Export Phase

These steps take place at the original site.

6. Enter the export form of the replica-creation command. See the mkreplica reference page for

information about restrictions on the command.

In this example, the administrator uses the –fship option to send the packet immediately.
4 - Creating Replicas 71

MINUTEMAN%multitool mkreplica –export –work /tmp/ms_wkdir \
–fship goldengate:sanfran_hub@/vobs/dev
Enabling replication in VOB.
Comments for "sanfran_hub":
First time replication for dev VOB
Creating new replica, sanfran_hub, on host goldengate
.
Generating replica creation packet
/usr/atria/shipping/ms_ship/outgoing/repl_boston_hub_16-Aug-00.09.49.36_14
075_1
- shipping order file is
/var/adm/atria/shipping/ms_ship/outgoing/sh_o_repl_boston_hub_16-Aug-00.09
.49.36_14075_1
Dumping database...
...
Dumper done.
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/repl_boston_hub_16-Aug-00.09.49.36_14
075_1

7. Back up the original VOB.

This backup records the fact that the VOB is replicated. If you have to restore a VOB replica

from a backup copy that was made before the VOB was replicated, the MultiSite replica

restoration procedure fails. (Although the restorereplica command may succeed, you will

not be able to import update packets from other replicas because the original VOB is marked

as unreplicated.)

8. (optional) Verify the replica-related changes.

These commands show the work you’ve done so far. The mkreplica command creates a new

replica object in the VOB database. This object is similar to the VOB object that represents the

entire VOB in the database, and its properties are listed by the lsreplica command.

MINUTEMAN%multitool lsreplica –invob /vobs/dev
For VOB replica "/vobs/dev":
15-Aug.14:19 susan replica "boston_hub"
16-Aug.09:49 susan replica "sanfran_hub"

MultiSite commands process replica objects similarly to the way that ClearCase commands

process type objects. The rename command renames a replica object, as described in Step #3.

The cleartool lshistory lists events associated with replica objects.
72 Administrator’s Guide: Rational ClearCase MultiSite

MINUTEMAN%cleartool lshistory replica:boston_hub@/vobs/dev
16-Aug.09:45 susan rename replica "boston_hub"
"Changed name of replica from "boston" to "boston_hub"."
15-Aug.14:24 susan rename replica "boston_hub"
"Changed name of replica from "original" to "boston"."
15-Aug.14:19 susan make attribute "FeatureLevel" on replica
"boston_hub"
"Added attribute "FeatureLevel" with value 2."
15-Aug.14:19 susan create replica "boston_hub"

CAUTION: Do not modify any properties of the new replica at this point. If you must change any

properties, you must first import the replica-creation packet at the new site, export an update

packet from the new replica, and import the packet at the original site.

Transport Phase

9. Send the replica-creation packet to the new site. This process differs depending on the

options you used in Step #6:

➣ If you used –fship in Step #6, the packet was sent to the new site immediately.

➣ If you used –ship, you must run shipping_server to send the packet to the new site. For

example:

MINUTEMAN%/usr/atria/etc/shipping_server –poll

➣ If you used –tape or wrote the packet to a file, you must transport the tape or file to the

new site.

Import Phase

Complete these steps at the new replica’s site.

10. Verify the packet’s arrival by entering the lspacket command on the receiving host.

By default, lspacket searches all the MultiSite storage bays for packets. For example, if host

goldengate is the receiving host:
4 - Creating Replicas 73

GOLDENGATE%multitool lspacket
Packet is:
/usr/atria/shipping/ms_ship/incoming/repl_boston_hub_16-Aug-00.09.49.36_14
075_1
Packet type: Replica Creation
VOB family identifier is: 12a3456b.78c901d2.e3ab.45:67:89:c0:1d:e2
Comment supplied at packet creation is:
Packet intended for the following targets:
sanfran_hub
The packet sequence number is 1

11. Enter the import form of the replica-creation command.

Notes on replica creation:

➣ This replica is not ownership-preserving, so the user who executes this command

becomes the owner of the new VOB replica and all elements in it. This user’s primary

group is the group for all elements. Typically, administration is easier if this user is not

the root user or a member of the ClearCase administrators group.

➣ As described in Step #5, the work directory must have at least 1.62 GB of free space.

➣ You can bypass the prompt step during replica creation by specifying the –vreplica
option with the new replica’s name. This example does not specify that option.

➣ You must specify the pathname of the incoming packet as listed by the lspacket
command.
74 Administrator’s Guide: Rational ClearCase MultiSite

GOLDENGATE%multitool mkreplica –import –npreserve –work /tmp/wk \
–tag /vobs/dev –public –password 1234xyz –vob /vobstg/dev.vbs \
/usr/atria/shipping/ms_ship/incoming/repl_boston_hub_16-Aug-00.09.49.36_14075_1
The packet can only be used to create replica "sanfran_hub"
- VOB family is 87f6265b.72d911d4.a5cd.00:01:80:c0:4b:e7
- replica OID is 0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7
Should I create this replica? [no] yes
Comments for "sanfran_hub":
replica of /vobs/dev from Boston
.
Processing packet
/usr/atria/shipping/ms_ship/incoming/repl_boston_hub_16-Aug-00.09.49.36_14
075_1...
Loading database...
Dumped schema version is 53
55 events loaded.
77 pass 2 actions performed.
Loader done.
Registering VOB mount tag "/vobs/dev"...
VOB replica successfully created.
Host-local path: goldengate:/vobstg/dev.vbs
Global path: /net/goldengate/vobstg/dev.vbs
VOB ownership:
owner purpledoc.com/jcole
group purpledoc.com/user

12. Delete the replica-creation packet. (Update packets are deleted automatically.)

13. (Only if new replica is ownership-preserving) Send an update packet to all other replicas in

the VOB family.

If you create an ownership-preserving replica, inform other replicas in the VOB family of this

property. For example, if sanfran_hub were ownership-preserving, you would enter this

command:

GOLDENGATE%multitool syncreplica –export –c "ownership-preserving" –fship
boston_hub
...

14. Make the new replica self-mastering. See Transferring Mastership of a Replica Object on

page 128 for the procedure.

You must complete this step before you can set the new replica’s feature level or enable

requests for branch mastership at the replica.
4 - Creating Replicas 75

15. Set the feature level of the new replica to the feature level of the version of Rational

ClearCase running on the replica host.

To determine the feature level of the version of ClearCase, enter the cleartool –ver command

on the replica host to display the ClearCase version. Then consult the Release Notes for the

feature level associated with the version.

To set the new replica’s feature level, enter a chflevel command on the replica host:

cleartool chflevel –replica feature-level replica-selector

For example:

cleartool chflevel –replica 2 sanfran_hub@/vobs/dev
Replica feature level raised to 2.

16. Send an update packet to all other replicas in the VOB family, to inform them of the new

replica’s feature level. For example:

GOLDENGATE%multitool syncreplica –export –c "new feature level" –fship boston_hub
...

17. Create a branch type for work in the new replica.

The San Francisco developers work on the sanfran_main branch type.

GOLDENGATE%cleartool mkbrtype sanfran_main
Comments for "sanfran_main":
sanfran branch for work on dev project
.
Created branch type "sanfran_main".

Subbranches named sanfran_main are created as necessary. The following config spec

automates the creation of the sanfran_main branches:

element * CHECKEDOUT
element * .../sanfran_main/LATEST
element * SANFRAN_BASE -mkbranch sanfran_main
element * V1.0 -mkbranch sanfran_main
element * /main/0 -mkbranch sanfran_main

This config spec is defined in terms of a branch type (sanfran_main) that is mastered by

replica sanfran_hub, and label type (SANFRAN_BASE and V1.0) that are mastered by

replica boston_hub. The San Francisco developers cannot make any changes in the

SANFRAN_BASE labels, but there is no reason for them to do so.
76 Administrator’s Guide: Rational ClearCase MultiSite

18. Verify the mastership of the new branch type.

GOLDENGATE%cleartool describe brtype:sanfran_main@/vobs/dev
branch type "sanfran_main"

created 16-Aug-00.18:12:23 by John Cole (jcole.user@goldengate)
"sanfran branch for work on dev project"
master replica: sanfran_hub@/vobs/dev

...

19. (For IP-connected replicas) At each site, mark any sibling replicas that have IP connectivity

to the current replica. For more information, see Setting the Connectivity Property on page 116.

At the boston_hub replica:

multitool chreplica –isconnected sanfran_hub@/vobs/dev
Updated replica information for "sanfran_hub".

At the sanfran_hub replica:

multitool chreplica –isconnected boston_hub@/vobs/dev
Updated replica information for "boston_hub".

20. Begin development.

Developers in San Francisco can access the new replica in the same way they would access

an unreplicated VOB.

4.5 Replicating a VOB Between UNIX and Windows

This section describes issues involved in setting up UNIX and Windows replicas at different

sites. If you plan to use MultiSite at a single location for interoperability between UNIX and

Windows, see Chapter 12, Using MultiSite for Interoperability.

If your sites do not have an IP connection, you must use electronic mail, CD-ROMs, tapes, or

diskettes to transfer packets. You may have to solve compatibility problems if you choose to use

tapes or diskettes. With electronic mail, you can use compatible encoding and compression

methods. However, differences between UNIX and Windows VOBs are handled automatically

during packet import.

The most important problems you must prevent are file names that differ only in how they are

capitalized, and differences in use of line terminators. If case-sensitive file names are used at one
4 - Creating Replicas 77

replica and case-insensitive file names are used at another replica, errors can occur during

synchronization. Differences in use of line terminators between UNIX and Windows editors

cause unexpected behavior during file comparisons and merges. Even if the contents of the files

are identical, different line terminators indicate differences in the files and require a merge.

The Administrator’s Guide for Rational ClearCase describes these problems and their solutions in

detail. Be sure to read it before setting up UNIX and Windows replicas.
78 Administrator’s Guide: Rational ClearCase MultiSite

55 ClearCase Feature Levels

This chapter describes ClearCase feature levels and how to raise the feature level of a replica and

a VOB family.

5.1 Overview of Feature Levels

Feature levels allow different replica hosts in a VOB family to run different versions of Rational

ClearCase. New versions of ClearCase may introduce features that are incompatible with old

versions, but administrators may not be able to upgrade all replica hosts at the same time.

Feature level control enables you to upgrade replica hosts at different times and to prevent

developers from using new ClearCase features that are not meaningful to replicas on hosts

running earlier versions.

Each version of ClearCase has a feature level. Each VOB family has a single feature level called

the family feature level. Each replica in the family has a feature level called the replica feature

level. Thus, each VOB family has one family feature level and possibly several replica feature

levels. The family feature level determines which ClearCase features can be used by all of the

replicas in the family. The following constraints are enforced:

➤ The replica feature level is less than or equal to the feature level of the version of ClearCase

installed on the replica’s server host.

Different replicas on the same server host can have different feature levels.

➤ The family feature level is less than or equal to the lowest replica feature level found among

replicas in the VOB family. Figure 18 shows an example.
5 - ClearCase Feature Levels 79

Figure 18 VOB Family Feature Levels

The general procedure for raising a family's feature level is as follows:

1. Install the new version of ClearCase on the server hosts of replicas in the VOB family.

2. Raise the feature level of each replica in the VOB family. See Raising the Replica Feature Level.

3. Raise the feature level of the VOB family. See Raising the VOB Family Feature Level on page 82.

You can complete these steps incrementally and over a period of days or weeks, if necessary.

Variations are possible; for example, if a VOB family has replicas R1 and R2 on servers S1 and

S2, respectively, you can install a new version of ClearCase on S1 and raise R1's replica feature

level before installing the new version on S2. However, you can complete Step #3 only after you

have raised all replicas in the family to the new feature level.

For information about the feature level associated with the current version of ClearCase, and the

list of features that are disabled until the VOB family feature level is raised, see the Release Notes
for Rational ClearCase and ClearCase MultiSite.

5.2 Raising the Replica Feature Level

There are two important rules related to raising a replica's feature level:

1. If the current family feature level is less than or equal to 1, the first replica in a VOB family

whose feature level is raised must be the replica that masters the VOB object.

2. The replica must be self-mastering.

boston_hub
FL=1

VOB Family Feature Level <=1 VOB Family Feature Level <=2

buenosaires
FL=1

bangalore
FL=2

sanfran_hub
FL=2

tokyo
FL=2

sydney
FL=2
80 Administrator’s Guide: Rational ClearCase MultiSite

To raise the replica feature level:

1. After installing the new version of ClearCase on a server host, determine which replica

masters the VOB object:

cleartool describe vob:vob-tag

If the replica whose feature level you want to raise first does not master the VOB object,

transfer mastership, and then export an update packet to the replica whose feature level you

want to raise:

multitool chmaster replica-name vob:vob-tag

multitool syncreplica –export –fship replica-name@vob-tag

At the receiving replica, import the packet:

multitool syncreplica –import –receive

2. Determine whether the replica is self-mastering:

cleartool describe replica:replica-name@vob-tag

3. If the replica is not self-mastering, convert it to a self-mastering replica. See Transferring
Mastership of a Replica Object on page 128.

4. Raise the feature level of the replica. Enter this command on the replica host:

cleartool chflevel –replica feature-level replica:replica-name@vob-tag

5. Export update packets to all other replicas in the VOB family.

6. (optional) Change mastership of the replica back to the original master replica.
5 - ClearCase Feature Levels 81

5.3 Raising the VOB Family Feature Level

There are two variants of the procedure for raising the family feature level:

➤ Raising the feature level of a VOB family in which all replicas send update packets

(bidirectional synchronization). See VOB Families with Bidirectional Synchronization on

page 82.

➤ Raising the feature level of a VOB family in which one or more replicas receive update

packets, but do not send them (unidirectional synchronization). See VOB Families with
Unidirectional Synchronization on page 82.

VOB Families with Bidirectional Synchronization

After raising the feature level of all replicas in the VOB family:

1. Raise the family feature level. Enter this command at the replica that masters the VOB object:

cleartool chflevel –family feature-level vob:vob-tag

2. Export update packets to all replicas in the family.

VOB Families with Unidirectional Synchronization

In some VOB families, one or more replicas may be one-way replicas. These replicas import

packets, but they do not export packets to any other replicas in the family, and therefore cannot

communicate changes in feature level. Because other replicas in the family do not know the

current feature level of the one-way replicas, the chflevel –family command fails.

For example, consider the case of two replicas, R1 and R2, that constitute a VOB family. R1 sends

update packets to R2, but R2 does not send update packets to R1.

R1 R2
82 Administrator’s Guide: Rational ClearCase MultiSite

R1 is at replica feature level 2, and R2 is at replica feature level 1. Therefore, the family feature

level is 1 and cannot be raised. Now suppose R2’s replica feature level is raised to 2. R2 cannot

communicate the change in feature level to R1 because it does not export update packets.

Because both replicas are now at feature level 2, the VOB family feature level can be raised to 2.

However, if the R1 administrator issues the command chflevel -family 2 vob-selector, the change

fails because R1 doesn’t know that the replica feature level at R2 has been raised.

In this case, the R2 administrator must inform the R1 administrator of the change in R2’s replica

feature level. The R1 administrator then uses a special form of the chflevel command to raise the

VOB family feature level. The general procedure is as follows:

1. The administrator of a one-way replica notifies other replica administrators in the VOB

family of a change in replica feature level at the one-way replica.

2. At the replica that masters the VOB object, the administrator enters the following command:

cleartool chflevel –force –override –family feature-level vob:vob-tag

CAUTION: This form of the chflevel command bypasses the constraint that the family feature

level is no higher than the lowest known feature level of the replicas in the VOB family. Use

it only when you are certain that all replicas in the VOB family are at the same feature level.

If you use this command inappropriately, synchronization will fail.

3. At the replica that masters the VOB object, export update packets to all replicas in the family.

5.4 Displaying Feature Levels

To display the feature level of a replica:

➤ Use the command cleartool describe replica:replica-name@vob-tag. For example:

cleartool describe replica:tokyo@\dev
replica "tokyo"

created 20-Aug-00.13:35:37 by John Cole (jcole@goldengate)
replica type: unfiltered
master replica: sanfran_hub@\dev

...
feature level: 2

...
5 - ClearCase Feature Levels 83

➤ On Windows, open the Properties Browser for the replica.

To display the feature level of a VOB family, use the command cleartool describe vob:vob-tag.

For example:

cleartool describe vob:/vobs/dev
versioned object base "/vobs/dev"

created 15-Aug-00.14:19:03 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev
replica name: boston_hub
VOB family feature level: 2

...

NOTE: Before you set the feature level for a newly created replica, its value is recorded as

unknown. For example, if you use the describe command to show the properties of a new

replica, the output looks like this:

cleartool describe replica:sanfran_hub@/vobs/dev
...

feature level: unknown

5.5 Feature Levels Error Message

The following error message is printed when a user attempts to use a feature that is not

meaningful to sibling replicas:

The feature level of the VOB family is not high enough to permit this
operation.
84 Administrator’s Guide: Rational ClearCase MultiSite

66 Synchronizing Replicas

This chapter describes the process of synchronization. Synchronization uses the same

export-transport-import procedure that is used during replica creation:

➤ Export phase—At one site, a syncreplica (synchronize replica) command is invoked with

the –export option. This creates a packet of data.

➤ Transport phase—The packet is sent to one or more other sites.

➤ Import phase—At the other sites, a syncreplica command is invoked with the –import
option. This applies the changes in the packet to an existing replica.

The syncreplica command is optimized for performance; it creates a packet that contains only

the information required to update the target replicas specified on the command line.

Figure 19 illustrates the MultiSite replica-synchronization scheme. At Site 1, a syncreplica
–export command places version data and records of operations from replica1 into a packet. The

packet is sent to Site 2. At Site 2, a syncreplica –import command imports the contents of the

packet into replica2. Note that each synchronization is one-way. If two replicas update each

other, two synchronizations are required.
6 - Synchronizing Replicas 85

Figure 19 Replica Synchronization

6.1 Synchronization Patterns

Figure 19 shows a simple case, involving one point-to-point update. All updates need not be

point to point, however, because they are cumulative. Suppose that the following updates take

place among three replicas:

Update 1: Replica 1 sends changes to Replica 2

Update 2: Replica 2 sends changes to Replica 3

There is no need for Replica 1 to update Replica 3 directly, because the changes from Update 1

are included in Update 2. This feature gives administrators flexibility in devising update

strategies and patterns. For efficiency, a single update can be targeted at multiple sites, for

example, all other replicas in the VOB family.

In general, you can implement any update topology, as dictated by organizational structures,

communications/transportation costs, and so on. Figure 20 shows a simple peer-to-peer

synchronization update pattern and Figure 21 shows a double-hub hierarchical pattern. See

Chapter 2, Planning a MultiSite Implementation, for more information.

Site 1

replica1
Export

outgoing
packet

Site 2

replica2
Import

incoming
packet

Transport
86 Administrator’s Guide: Rational ClearCase MultiSite

Figure 20 Peer-to-Peer Synchronization Pattern

Figure 21 Hierarchical Synchronization Pattern

Designing an Update Strategy

Site administrators must design a strategy for sending updates among the various replicas. They

must specify an update pattern for the VOB family and an update frequency for each replica.

MultiSite Use Model on page 38 gives planning guidelines.

Boston

San Francisco

Bangalore

Tokyo

Buenos Aires

Bangalore

Boston

San Francisco

Sydney
6 - Synchronizing Replicas 87

For example, the administrators for the VOB family in Figure 21 make the following decisions:

➤ The hub replicas, which undergo rapid development, synchronize every hour.

➤ Each hub replica synchronizes daily with its spoke replicas. Each spoke replica will send an

update packet to the hub replica, and then the hub replica will send update packets back to

the spoke replicas. Because these packets may be large and take a long time to import, the

synchronization must not take place during working hours or during VOB backups.

NOTE: Synchronization cannot overlap with VOB backup because VOBs must be locked

while they are being backed up, and the syncreplica command fails if the VOB is locked.

➤ All sites use receipt handlers to import packets as soon as they are received.

Figure 22 shows the synchronization timeline for the hub-spoke updates (but not the hub-to-hub

updates). This timeline accounts for time zone differences and includes extra time to make sure

that each synchronization phase completes before another begins.
88 Administrator’s Guide: Rational ClearCase MultiSite

Figure 22 A Synchronization Export Schedule

GMT 21:00 00:00 03:00 06:00 09:00 12:00
Monday Tuesday

Bangalore
GMT +5:30

Buenos Aires
GMT -3

Boston
GMT -5

San Francisco
GMT -8

Tokyo
GMT +9

Sydney
GMT +10

= work hours/
 backup hours

= Export = Import

Key
6 - Synchronizing Replicas 89

6.2 Assumption of Successful Synchronization

The export and import phases of synchronization always occur at different times. A sending

replica does not require acknowledgment from a sibling replica that a packet has been received

and processed successfully. Instead, the sending replica assumes success. This enables an

optimization: subsequent updates from a replica do not include the data sent in previous

updates.

If a failure does occur (for example, a packet is lost in transit or a CD-ROM is unreadable at the

sibling replica’s site), the sending site must adjust its records to enable the lost data to be resent.

For more on this topic, see Chapter 10, Troubleshooting MultiSite Operations.

6.3 Transferring Packets with Store-and-Forward

The MultiSite store-and-forward facility is a file-transfer service that automates the transport phase.

This facility can handle packets of any size, can route files through a series of MultiSite hosts, one

hop at a time, and includes support for handling data-communications failures. The major

components of the store-and-forward facility are illustrated in Figure 23 and described in the

following sections.

NOTE: To use store-and-forward, the sending host must be able to communicate with the

receiving hosts. To determine whether the hosts can communicate, use the rcp command on the

sending host to copy a file to the receiving host. If it fails, you may have to update the hosts file,

hosts NIS map, or Domain Name Service before using store-and-forward.
90 Administrator’s Guide: Rational ClearCase MultiSite

Figure 23 The Store-and-Forward Facility

Packet Storage During the Export and Import Phases

When a physical packet file is exported from a VOB replica and submitted to the store-and-forward
facility, it is accompanied by a shipping order file, which specifies delivery instructions. The packet

is stored in one of the storage bay directories on the VOB replica host.

Each storage bay directory contains two directories, incoming and outgoing, which hold the

incoming and outgoing packets and their corresponding shipping order files. Shipping

operations look in the incoming and outgoing directories for packets. A default storage bay,

ms_ship, is created on a host when Rational ClearCase MultiSite is installed there.

NOTE: On Windows, the amount of available space on the disk partition where the shipping bays

are located must be at least twice the size of the largest packet that will be stored in the shipping

bays. There may be two copies of the same packet in the bay at one time: one on its way to

another destination and another waiting to be applied to the replica on the host.

Return bays are similar to storage bays and provide “return-to-sender” storage for packets that

could not be delivered successfully. A default return bay, ms_rtn, is created on a host when

MultiSite is installed there. This bay has two subdirectories, incoming and outgoing, which hold

the incoming and outgoing packets. Shipping operations look in the subdirectories for packets.

Export Phase

Replica Replica Replica

shipping.conf or
MultiSite Control Panel

Storage bays

Packet

Shipping
order

Import Phase

Replica Replica

Storage bays

Packet

Shipping
order

Transport continues: When
shipping_server is invoked on this
host, it sends packet on next hop.

Transport
Phase
6 - Synchronizing Replicas 91

Packet Transport

The shipping_server program transfers packet files from a storage bay (or return bay) at one site

to the corresponding bay at another site.

An explicit command, manual or automated, invokes the shipping_server on the sending host.

The shipping_server process contacts the albd_server process on the receiving host, which in

turn invokes the shipping_server on the receiving host in receive mode. After a TCP/IP

connection has been established between the sending and receiving invocations of

shipping_server, the file is transferred.

Configuring the Store-and-Forward Facility

The settings for the store-and-forward facility are host-specific. You can specify locations of

storage and return bays, routing information to support multihop packet delivery, specifications

to handle failure-to-deliver situations, receipt handlers, and so on. For more information on

specifying settings, see the shipping.conf reference page on UNIX or the MultiSite Control
Panel reference page on Windows.

Submitting Packets to Store-and-Forward

When you generate a replica-creation or update packet, you can specify that the store-and-forward
facility must deliver it. Both syncreplica and mkreplica support the following options:

➤ The –fship option places the packet files and shipping order files in one of the host’s storage

bays, and runs shipping_server to send the packet files to their destination host or route

them to an intermediate host.

➤ The –ship option places the packet files and shipping order files in a storage bay, but does

not invoke shipping_server. The packet files are sent the next time the shipping_server
polls the appropriate bay. For information about setting up shipping_server to run

automatically, see Automated Synchronization on page 104.
92 Administrator’s Guide: Rational ClearCase MultiSite

Sending Files That Are Not Packets

You can send any file using the store-and-forward facility if you create a shipping order for the

file with the mkorder utility. You can send the file immediately or wait for the shipping_server
to send it.

➤ To send a file immediately, use the –fship option with mkorder:

/usr/atria/etc/mkorder –data /usr/rptgen/brdcst.0702 –fship –copy boston_hub tokyo

➤ To store the file in a shipping bay so that shipping_server will send the file the next time it

runs, use the –ship option:

/usr/atria/etc/mkorder –data /usr/rptgen/brdcst.0702 –ship –copy boston_hub tokyo

NOTE: The shipping order must be located in the same directory as the file.

After you invoke the mkorder command, you can delete the original file.

If a file with the same name already exists on the receiving host, the file you send is renamed to

filename_1. If you transmit another file with the same name, it is renamed to filename_2, and so on.

Setting Up an Indirect Shipping Route

The shipping order for a packet includes the host name of the packet’s final destination or several

such host names. By default, the store-and-forward facility sends the packet directly to its

destination host. You can specify that the packet must be sent to an intermediate host by

associating it with a routing hop in the shipping.conf file (UNIX) or in the MultiSite Control
Panel (Windows).

For example:

➤ On a UNIX host, the shipping.conf file includes this line:

ROUTE sydney_fw sanfran_hub boston_hub tokyo

➤ On a Windows host, the Routing Information section in the MultiSite Control Panel

specifies host sydney_fw in the Next Routing Hop box and hosts sanfran_hub,

boston_hub, and tokyo in the Destination Hostnames box.
6 - Synchronizing Replicas 93

Any packet whose final destination is host sanfran_hub, boston_hub, or tokyo is forwarded to

host sydney_fw. At this point, the local host has completed its task, and responsibility for

delivering the packet now belongs to sydney_fw. Host sydney_fw can transmit the packet to its

final destination directly, or send it to yet another intermediate host, depending on the settings

in its shipping.conf file or in the MultiSite Control Panel.

NOTE: In a multihop transmission, using the –fship option on the original host causes the first hop

to occur immediately. Subsequent hops occur when shipping_server is invoked on the

intermediate hosts, which may not be immediately after the packets are received.

Retries, Expirations, and Returned Data

The shipping_server makes one attempt to transmit a packet to another host. If the packet

cannot be transmitted (for example, because the receiving host is unavailable), shipping_server
generates an error message and log file entry and exits. Administrators can set up a retry scheme

to control its frequency:

➤ After successful transmission of a packet, shipping_server deletes the packet and its

shipping order. After a failure, the packet and shipping order remain in the storage bay.

➤ shipping_server –poll transmits all packets it finds in one or more storage bays. Thus, any

packets that remain after a transmission failure are sent (if possible) by the next invocation

of shipping_server –poll.

The following job definition performs this operation every hour:

Job.Begin
Job.Id: 16
Job.Name: "Shipping Server Poll"
Job.Description.Begin:

Every hour, run the shipping server to send out any outstanding orders.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.Schedule.StartTimeRestartFrequency: 01:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -poll

Job.End

See the cleartool schedule reference page in the Command Reference and Automated
Synchronization on page 104.
94 Administrator’s Guide: Rational ClearCase MultiSite

Attempts to transmit an undelivered packet can continue indefinitely, through repeated

invocations of shipping_server. However, administrators usually want to fix problems with

failed transmissions instead of letting the attempts continue. Accordingly, each shipping order

can include an expiration date-time, specified with one of the following:

➤ The command option –pexpire

➤ (UNIX) An EXPIRATION entry in the shipping.conf file

➤ (Windows) A Packet Expiration value in the MultiSite Control Panel at the sending host

By default, shipping orders expire 14 days after they are created.

When shipping_server encounters a shipping order that has expired, it does not attempt to

transmit the corresponding packet to its destination. Instead, it does the following:

➤ It modifies the shipping order to return the packet to the original sending host, where it is

placed in a special return bay.

➤ It sends an electronic mail message to one or more addresses on the original sending host.

(Another message is sent when the returned packet arrives at the original sending host.)

The return trip may involve multiple hops, as described in Setting Up an Indirect Shipping Route
on page 93. During such a trip, a packet is placed in the return bay of each intermediate host.

Each hop is handled by shipping_server –poll, which processes a host’s return bay in addition

to its storage bays. The expiration time for a packet’s return trip is 14 days; a packet that cannot

be returned in that interval is deleted.

Error Notification in a Mixed Environment

If a packet is delivered through a Windows host on which e-mail notification is not enabled, a

failure on that Windows host means that no notification message is sent by electronic mail.

Instead, a message is written to the event log; this message contains a request that the

appropriate users be informed of the failure. For information about enabling e-mail notification,

see the MultiSite Control Panel reference page.

Differentiating Packets with Storage Classes

You can configure the store-and-forward facility to handle updates for different VOBs in

different ways. Each packet can be assigned to a storage class, and each storage class can have its

own storage bay, return bay, and expiration period.
6 - Synchronizing Replicas 95

NOTE: On UNIX, a storage class can be assigned several storage bays; in this case,

shipping_server uses the size of the packet to select one of the bays. Conversely, several storage

classes can share one or more storage bays.

You can use multiple storage classes to segregate the packets for VOBs belonging to different

groups. By adjusting the operating system permissions on the storage bay directories, you can

protect the packets from unauthorized use. You can also use a separate storage class when you

use the store-and-forward facility to transfer non-MultiSite files between sites.

For more information on storage classes, see the shipping.conf and MultiSite Control Panel
reference pages.

6.4 Using MultiSite through a Firewall

The MultiSite store-and-forward facility cannot operate through a firewall unless you configure

MultiSite differently. Passing through a firewall is usually accomplished by granting access via

specific ports and IP addresses. Because store-and-forward picks any available port number on

each end to make the connection, there is no single port number (or even small range of port

numbers) to which special access can be granted.

This section describes several ways to use MultiSite through a firewall:

➤ Use an existing electronic mail mechanism as the transport.

➤ Use the standard ftp utility to transport packets.

➤ Use a custom TCP application.

➤ (UNIX) Install the store-and-forward software on a host that can communicate through the

firewall.

Using Electronic Mail

You can use an existing electronic mail mechanism as the transport. On the sending end,

compress and encode the update packet; then send the resulting data to a specific mail alias at

the receiving site. On the receiving end, redirect the mail alias to a script that decodes and

decompresses the incoming information. To ensure that a mail message is not too large to be

delivered, you can generate packets no larger than a specific size by using the –maxsize option,

the shipping.conf file (UNIX), or the MultiSite Control Panel (Windows).
96 Administrator’s Guide: Rational ClearCase MultiSite

Advantages:

➤ Transport mechanism is well understood and widely available.

➤ Little effort is required from the system administrator.

Disadvantages:

➤ No control over routing of data.

➤ Possibility that messages can be lost without notification.

➤ Messages can be intercepted easily.

➤ Less efficient than ftp or store-and-forward.

Notes:

➤ You can write scripts to automate e-mail transport. The sending script creates the update

packets, compresses and encodes them, and divides them into multiple small packets so

they are not too big for the e-mail process. The script must mark the multiple packets with

the correct sequencing. The script then sends the packets to an address at the target replica.

At the target replica, the account that receives the packets redirects or pipes the packets to a

process that reassembles, decodes, and uncompresses the packets, and then places them in

the replica’s storage bay.

MultiSite import commands handle out-of-sequence and missing packet problems, so your

scripts do not have to address these issues.

➤ Using ssh and scp (secure shell and secure copy) provides a secure way to move files

through firewalls.

➤ For security, you must encrypt the packets.

Using FTP

The ftp utility can transport packets. On the sending end, the MultiSite administrator or a script

creates and compresses the packet, and uses ftp to transfer the file to a location outside the

firewall. This location, or dropsite, must be accessible by MultiSite administrators at other sites.

Receiving sites poll the dropsite, looking for any new files. When new files arrive, the receiving

sites retrieve them via ftp, decompress them, and process them as usual.
6 - Synchronizing Replicas 97

Advantages:

➤ Transport mechanism is well understood and widely available.

➤ More reliable and efficient than electronic mail.

Disadvantages:

➤ Use of a dropsite is required.

➤ Polling of the dropsite is required.

➤ More complicated to implement, due to the interactive nature of the ftp utility.

➤ More administration is required because a third system (the dropsite) is used.

Using Custom Software

A custom TCP application can accept data and send it from one site to a waiting application at

another site. Guidelines for simple applications that send data are often described in the network

programming documentation provided by the vendor. If the sending and receiving applications

use a fixed port number, the administrator can configure the firewall to permit access.

Advantages:

➤ Efficient and reliable.

➤ No dropsites required.

➤ Electronic mail-capable network is not required.

➤ Data interception is more difficult.

Disadvantages:

➤ Custom coding is required.

➤ Not as flexible as electronic mail or FTP solutions.

Installing Store-and-Forward on a UNIX Firewall Host

NOTE: Because of security concerns, we recommend that you use this method only if other

methods are unsuitable for your site. This method is not available for Windows firewall hosts.

An alternative to using mail, ftp, or custom software is to install the store-and-forward software

on a “firewall host,” a host that can communicate through the firewall. MultiSite synchronization

commands can forward data intended for systems on the other side of the firewall to this host.
98 Administrator’s Guide: Rational ClearCase MultiSite

The software on this host then forwards packets through the firewall to the next hop. To specify

the range of port numbers to be used on the host, you can use the environment variables

CLEARCASE_MIN_PORT and CLEARCASE_MAX_PORT. In Figure 24, the hosts that communicate

through the firewall are the firewall hosts; they have the MultiSite store-and-forward software

installed on them, but not ClearCase software. The replica server hosts have Rational ClearCase

and MultiSite installed on them.

Figure 24 Store-and-Forward Configuration

This section describes issues you must consider before installing MultiSite on a firewall host and

gives instructions for installation.

replicaA replicaB

FIREWALL

Site A Site B
6 - Synchronizing Replicas 99

Firewall Issues

Before enabling shipping_server on a firewall host, consider the following issues:

➤ Shipping bays can be overfilled.

Using shipping_server on a firewall host enables anyone coming in from the network to fill

shipping bays on the local network, on any machine where a shipping_server is available.

To avoid full disks and the related problems:

➣ Ensure that all shipping bays in the local network are on partitions of their own, so that

filling the bays does not degrade system performance.

➣ Install shipping_server only on machines that need it: servers with replicated VOBs and

machines used by administrators.

➤ Packets are susceptible to snooping.

In normal update packets, version information is not encoded. Therefore, anyone shipping

packets across an unsecured network must encrypt the packets. Also, the format of a update

packet is not very complicated; a dedicated programmer could figure out the format and

create a packet with operations that damage a VOB. Encrypting the data makes this kind of

attack much more difficult.

➤ Other servers can be accessible.

Allowing shipping_server access also allows access to all servers created by the albd_server.
Because the albd_server assigns port numbers in the allowed range to other servers running

locally, programs from the outside network can connect to all of those servers. Therefore, the

firewall host that runs the shipping_server must not run other ClearCase servers.

If you can specify the ports to which programs can connect and the IP addresses that are

allowed to connect, we recommend that you do so. It further limits the possibility that

unauthorized machines can breach the firewall. (You specify ports during the firewall

configuration process.)

Installing shipping_server on a Firewall

On UNIX, the ClearCase Product Family installation includes an option to install only the

shipping_server software. Follow the instructions in the Installation Guide for the ClearCase

Product Family and select only the shipping_server-only option. Do not install ClearCase on the

firewall host.

On Windows, there is no installation option for installing only the shipping_server software.
100 Administrator’s Guide: Rational ClearCase MultiSite

Controlling Ports Used by albd_server and shipping_server

The environment variables CLEARCASE_MIN_PORT and CLEARCASE_MAX_PORT specify the range

of port numbers that the albd_server and shipping_server can allocate for communication

purposes. When the server needs to assign a port number, it starts with the value of

CLEARCASE_MIN_PORT and continues through the range until it reaches CLEARCASE_MAX_PORT. If

a port in the range cannot be allocated, the server sleeps and then tries the ports again.

When shipping_server detects that the port environment variables are set, it tries to use TCP to

make the connection with the albd_server on the receiving host. If this connection fails,

shipping_server tries UDP. Therefore, if you have TCP connectivity, you do not have to enable

UDP or open UDP ports on the firewall host.

Running an individual shipping_server does not require more than two ports at a time. When

there are multiple requests to be sent, shipping_server forks. Child processes handle individual

requests. The shipping_server starts no more than 10 child processes (and starts that many only

if there are 10 requests to process simultaneously), so the maximum range is 20 ports. If the range

is smaller, it may result in failed attempts, which can be retried later.

Guidelines for Setting Port Values

The value range for CLEARCASE_MIN_PORT is 1024 through 65534, and the value range for

CLEARCASE_MAX_PORT is 1025 through 65535. The value of CLEARCASE_MAX_PORT must be

greater than the value of CLEARCASE_MIN_PORT.

NOTE: We recommend that you use the range 49152 through 65535, which is the

Dynamic/Private Port Range. If you use a value within the Registered Ports range (1024 through

49151), the shipping.conf parser prints an informational message.

Specifying Port Values

To specify minimum and maximum port values, set the CLEARCASE_MIN_PORT and

CLEARCASE_MAX_PORT environment variables in the following places:

➤ The shipping.conf file on the firewall host. For more information, see the shipping.conf
reference page.
6 - Synchronizing Replicas 101

➤ The atria_start script:

a. On the firewall host, edit the file ccase-home-dir/etc/atria_start.

b. Add the following lines, replacing min-port and max-port with your minimum and

maximum port values. These lines must precede the section that starts the albd_server.

#
Set values for minimum and maximum port numbers
#
CLEARCASE_MIN_PORT=min-port
CLEARCASE_MAX_PORT=max-port
export CLEARCASE_MIN_PORT
export CLEARCASE_MAX_PORT

6.5 Manual Synchronization

This section describes how to synchronize replicas by entering explicit syncreplica commands.

Export Phase

1. Create an update packet. At the sending host, use the syncreplica –export command with

the appropriate transport option.

If your sites are connected electronically, you can use store-and-forward to send the packet

(–fship) or place it in a storage bay (–ship):

multitool syncreplica –export –maxsize 1m –fship boston_hub@\dev
Generating synchronization packet C:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_bangalore_30-Oct-00.14.35.49_2468_1

- shipping order file is C:\Program Files\Rational\ClearCase\var\shipping
\ms_ship\outgoing\sh_o_sync_bangalore_30-Oct-00.14.35.49_2468_1
Attempting to forward/deliver generated packets...

-- Forwarded/delivered packet C:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_bangalore_30-Oct-00.14.35.49_2468_1

This example uses the –out option to save the packet as an output file and includes the

–maxsize option to divide the logical packet into appropriately sized physical packets. The

packet files can then be sent by electronic mail or copied onto diskettes.
102 Administrator’s Guide: Rational ClearCase MultiSite

multitool syncreplica –export –maxsize 1m –out c:\packets\update1 boston_hub@\dev
Generating synchronization packet c:\packets\update1

Transport Phase

2. Send the packets. Use electronic mail, regular mail, or your preferred delivery method. If

you used syncreplica –export –ship, invoke shipping_server in either of the following ways:

shipping_server –poll
shipping_server shipping-order-pathname

Import Phase

3. (If you used diskettes, CD-ROM, tape, or electronic mail) Copy the packet files into a
directory.

4. Apply the packet. At the receiving replica, use the syncreplica –import command to apply

the changes in the packet to the replica.

This example specifies the –receive option; syncreplica imports any packets it finds in the

incoming shipping directories.

multitool syncreplica –import –receive

This example specifies a directory pathname as an argument. syncreplica –import looks in

this directory for update packets and applies them to the replica on the host.

multitool syncreplica –import c:\msite\packets
Applied sync. packet c:\msite\packets\update1 to VOB \\servo\vobs\dev.vbs
6 - Synchronizing Replicas 103

6.6 Automated Synchronization

You can use MultiSite scripts and utilities to automate all phases of synchronization:

➤ Export phase. A MultiSite export script sends update packets from one or more replicas at

the site to one or more siblings.

➤ Transport phase. The store-and-forward facility handles packets of any size. You can invoke

store-and-forward as part of the export phase, or automate packet transport separately.

➤ Import phase. A MultiSite receipt handler runs whenever a packet is received at a replica,

and you can also schedule import of packets to occur periodically.

Use scheduled jobs to automate the export and transport phases, and use receipt handlers or

scheduled jobs to automate the import phase. You can run the MultiSite scripts at any time and

with any frequency, and you can vary the strategy for different VOBs by using multiple jobs.

By default, the MultiSite synchronization scripts place packets and shipping orders in the

incoming and outgoing directories in the default storage bay, ccase-home-dir/shipping/ms_ship
(UNIX) or ccase-home-dir\var\shipping\ms_ship (Windows). This bay is defined in the

shipping.conf template file on UNIX and the MultiSite Control Panel on Windows.

The MultiSite scripts log their activity to files in the /var/adm/atria/log/sync_logs directory on

UNIX and the ccase-home-dir\var\log directory on Windows.

Using the ClearCase Scheduler

ClearCase installation adds three preconfigured jobs to the scheduler: Daily MultiSite Export,
Daily MultiSite Shipping Poll, and Daily MultiSite Receive. These jobs use the predefined

MultiSite tasks: MultiSite Sync Export and MultiSite Sync Receive.

These jobs are disabled; to enable them, use the schedule –edit –schedule command or the

graphical interface (Windows) and set the run times and other parameters appropriately:

➤ (Using cleartool schedule) Delete the line Job.Schedule.LastDate: StartDate and set

the value of Job.NotifyInfo.Recipients to the appropriate user names.

➤ (Using the scheduler graphical interface) On the Schedule tab, set the Run parameters to

the appropriate values. On the Settings tab, in the Notifications section, change the value of

Recipients to the appropriate user names.
104 Administrator’s Guide: Rational ClearCase MultiSite

NOTE: If you decide to use receipt handlers (see Import Phase on page 107), you do not need to

enable the Daily MultiSite Receive job.

For information about creating new tasks and jobs and the prerequisites for using the scheduler,

see the cleartool schedule reference page in the Command Reference and the Administrator’s Guide
for Rational ClearCase.

Export Phase

The script sync_export_list creates update packets. You can select the replicas to be updated,

configure the script to send the packets immediately or place them in storage bays, and set other

shipping options. For more information on the shipping options, see the sync_export_list
reference page.

This job runs sync_export_list to generate and send updates to all other replicas in the VOB

family at midnight local time:

Job.Begin
Job.Id: 17
Job.Name: "Sync Export Force ALL"
Job.Description.Begin:

Every midnight, for each replica on this host, export update packets to all
sibling replicas.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -all

Job.End

To put the packets in a storage bay, use the –ship option. Packets in storage bays are sent by the

shipping_server. For example, this job runs sync_export_list to generate an update every day at

21:00 local time:
6 - Synchronizing Replicas 105

Job.Begin
Job.Id: 18
Job.Name: "Sync Export Store ALL"
Job.Description.Begin:

Every night at 9PM, for each replica on this host, generate update packets for
all sibling replicas and store the packets in the storage bay.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 21:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -ship -all

Job.End

See Transport Phase for information about running shipping_server.

Transport Phase

If sync_export_list or syncreplica puts packets in storage bays (–ship option), you must run

shipping_server to process these packets. If you do not use –ship, but want to implement a

retry-on-failure capability, you must schedule regular invocations of shipping_server. The

shipping_server attempts to retransmit any outgoing packets that remain in any of the storage

bays because one or more previous attempts have failed.

With the –poll option, sync_export_list invokes shipping_server –poll to process shipping

orders located in all storage bays defined in the shipping.conf file (UNIX) or in the MultiSite
Control Panel (Windows).

For example, this job invokes shipping_server every day at 04:00 local time:

Job.Begin
Job.Id: 19
Job.Name: "Shipping Server Poll"
Job.Description.Begin:

Every night at 4AM, run the shipping server to send any outstanding orders.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -poll

Job.End
106 Administrator’s Guide: Rational ClearCase MultiSite

The following job implements a more aggressive retry-on-failure capability:

Job.Begin
Job.Id: 20
Job.Name: "Shipping Server Poll"
Job.Description.Begin:

Every half hour from midnight to 4AM, run the shipping server to send any
outstanding orders.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.Schedule.StartTimeRestartFrequency: 00:30:00
Job.Schedule.LastStartTime: 04:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 -poll

Job.End

Import Phase

To automate packet import, use one of the methods described in Table 11.

Table 11 Import Methods

Import method Description Advantages Disadvantages

Receipt handlers When a packet is received, the

receipt handler imports it.

Packets are imported

immediately.

Constant load on

VOB server.

Scheduled jobs When a packet is received at a

replica, it is stored in a shipping

bay. When the scheduled job runs,

the packet is imported.

You can schedule import to

minimize server load.

Changes are not

applied to the VOB

immediately.

Receipt handlers

and scheduled

jobs

See descriptions above. You can use scheduled jobs

to implement a

retry-on-failure capability.

For example, if packets are

delivered out of order and

the receipt handler cannot

import them, the job retries

the import.
6 - Synchronizing Replicas 107

Defining Receipt Handlers

On UNIX:

You can define receipt handlers in the shipping.conf file for different shipping classes. By

default, no receipt handler is defined, but you can specify the sync_receive script as a receipt

handler in the shipping.conf file:

RECEIPT-HANDLER -default /usr/atria/config/scheduler/tasks/sync_receive

For details about defining receipt handler entries, see the section RECEIPT HANDLER in the

shipping.conf reference page.

On Windows:

You can define receipt handlers in the MultiSite Control Panel for different shipping classes. By

default, no receipt handler is defined, but you can specify

ccase-home-dir\config\scheduler\tasks\sync_receive.bat in the MultiSite Control Panel. To

customize sync_receive.bat, copy it to a directory outside the ClearCase installation directory,

customize it, and specify it in the MultiSite Control Panel.

For details about defining receipt handler entries, see the section Receipt Handler Path in the

MultiSite Control Panel reference page.

Scheduling Import Jobs

The script sync_receive imports update packets. For more information on sync_receive options,

see the sync_receive reference page.

This job runs sync_receive to import all packets in the incoming shipping bays of the current host

at midnight local time:

Job.Begin
Job.Id: 15
Job.Name: "Sync Import ALL"
Job.Description.Begin:

Every midnight, import all update packets in incoming bays.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 00:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 14

Job.End
108 Administrator’s Guide: Rational ClearCase MultiSite

6.7 Listing Synchronization History

The lshistory command and the History Browser list the history of a replica, including

synchronization information. For more information, see Listing the Synchronization History of a
Replica on page 113.

6.8 Synchronizing More Efficiently

You can configure synchronization updates to send only the necessary operations to another

replica. Although sending an operation multiple times does no harm, packet creation and

transmission is more efficient if you exclude operations that have already been imported at the

receiving replica.

The chepoch –actual and sync_export_list –update commands contact a remote replica and

update your current replica’s record of the state of the remote replica. The primary use of these

commands is to resend lost packets, but you can also use them to increase synchronization

efficiency. However, depending on your synchronization pattern and schedule, these commands

can decrease efficiency. The following sections describe two examples: one in which efficiency is

increased, and one in which it is decreased.

Example of Increased Efficiency

You have three replicas in a VOB family, and a subset of the synchronization pattern and

schedule is shown in Figure 25. All replicas use receipt handlers, so incoming packets are

imported immediately. First, replica sanfran_hub sends a packet to replica boston_hub. Next,

replica boston_hub sends a packet to replica bangalore. This packet includes operations from

replica sanfran_hub.
6 - Synchronizing Replicas 109

Figure 25 Partial Synchronization Export Pattern and Schedule for Three Replicas

At 8:00 GMT, replica sanfran_hub sends a packet to replica bangalore. This packet contains

operations originating at replica sanfran_hub that bangalore has already received from replica

boston_hub. In this case, you should use the command chepoch –actual bangalore at replica

sanfran_hub before generating an update packet for bangalore. When you generate the packet,

the operations already imported at bangalore will be excluded from the packet.

Example of Decreased Efficiency

In this example, two replicas in a VOB family, sanfran_hub and sydney, exchange update

packets every fifteen minutes. At some point during the day, packets may start accumulating at

one of the replicas because the imports are taking a long time. For example, there is a lot of

development activity in the sydney VOB and there are four packets waiting to be imported.

In this case, if you run chepoch –actual at sanfran_hub before generating a packet for sydney,

the update packet will contain all the operations that are already in the packets waiting to be

imported at sydney.

sanfran_hub boston_hub

bangalore

8:00 GMT 7:00 GMT

6:00 GMT
110 Administrator’s Guide: Rational ClearCase MultiSite

77 Managing Replicas

This chapter describes how to manage existing replicas, including how to delete a replica. For

information about creating a replica, see Chapter 4, Creating Replicas. For information about

enabling requests for mastership in a replica, see Chapter 9, Implementing Requests for Mastership.

7.1 Displaying Properties of a Replica

The describe command, which is available in cleartool and multitool, displays the properties of

a replica. Use the –fmt option to customize the output from the command. See the fmt_ccase
reference page in the Command Reference.

For example, to display the name, master replica, and replica host of a replica:

cleartool describe –fmt "%n\t%[master]p\t%[replica_host]p\n" \
replica:boston_hub@/vobs/dev
boston_hub boston_hub@/vobs/dev minuteman

You can also display properties of a replica by using a replica-uuid-selector instead of a

replica-selector argument. For example (note that the replica-uuid-selector must be entered on a

single line):

cleartool describe –fmt "%n\n%[master]p\n%[replica_host]p\n" \
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7@replicauuid:87f6265f.72d911d4.a5cd.00:01:80:c0:
4b:e7
boston_hub
boston_hub@/vobs/dev
minuteman
7 - Managing Replicas 111

On Windows, the Properties Browser displays the properties of a replica. Open the Properties

Browser in one of the following ways:

➤ From Windows Explorer:

a. Navigate to the VOB.

b. Right-click the VOB and click ClearCase > Properties of VOB.

c. Click the Replicas tab.

d. Select the replica and click Replica Properties.

➤ From ClearCase Administration Console:

a. Navigate to All VOBs.

b. Click View > List.

c. Right-click the VOB and click Properties.

d. Click the Replicas tab.

e. Select the replica and click Replica Properties.

➤ From a command prompt:

cleardescribe replica:replica-selector

cleartool describe –graphical replica:replica-selector

For example:

cleardescribe replica:boston_hub@\dev

cleartool describe –graphical replica:sanfran_hub@\tests
112 Administrator’s Guide: Rational ClearCase MultiSite

7.2 Listing the Synchronization History of a Replica

The lshistory command and the History Browser (lshistory –graphical) list the synchronization

history of a replica. The output differs for your current replica and its sibling replicas:

➤ When you list the history of your current replica, the output includes import events.

➤ When you list the history of a sibling replica, the output includes export events from your

current replica to the sibling replica.

To list the import history of your current replica (boston_hub):

cleartool lshistory replica:boston_hub@/vobs/dev
17-Aug.11:05 susan import sync from replica "sanfran_hub" to replica
" boston_hub "

"Imported synchronization information from replica "sanfran_hub".
Row at import was: boston_hub=34 sanfran_hub=0"

To list all exports from your current replica to the sanfran_hub replica:

cleartool lshistory replica:sanfran_hub@/vobs/dev
17-Aug.11:11 susan export sync from replica "boston_hub" to replica
" sanfran_hub "

"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=34 sanfran_hub=10"

17-Aug.10:54 susan export sync from replica "boston_hub" to replica
" sanfran_hub "

"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=0 sanfran_hub=0"

16-Aug.09:49 susan create replica " sanfran_hub "

7.3 Changing the Host Name for a Replica

When you move a replica’s storage directory to a different host, or when you rename a replica’s

host, you must update the host name in the replica’s VOB database. The database keeps track of

the hosts on which the replicas in a VOB family reside so that the store-and-forward facility can

determine how to route updates to the replicas.

To change the host name, use the chreplica command or the Properties Browser (Windows). The

change is not propagated to other replicas in the VOB family until you export an update packet
7 - Managing Replicas 113

from the current replica and the packet is imported at the other replicas. For restrictions, see the

chreplica reference page.

To change a host name using the chreplica command:

multitool chreplica –host mardelplata buenosaires@/vobs/dev
Updated replica information for "buenosaires".

To change a host name using the Properties Browser:

1. Display properties of the replica. See Displaying Properties of a Replica on page 111.

2. On the General tab, type the new host name in the Host box.

3. Click OK or Apply.

7.4 Changing Ownership Preservation

Any subset of replicas in a VOB family can be ownership-preserving. Within this group of replicas,

the owner, group, and access mode of an object are kept the same across all the replicas. Adding

a replica to or deleting it from the group has no immediate effect on the replica’s objects.

However, future changes to object permissions are propagated among all of the

ownership-preserving replicas in the VOB family.

NOTE: On UNIX, maintaining ownership preservation across sites is possible only if all sites

support the same user-group accounts. On Windows, ownership modes (UIDs and GIDs) are not

consistent across domains. Therefore, if all replicas in a VOB family are not in the same Windows

domain, the entire set of replicas cannot be ownership-preserving. You can maintain ownership

preservation on a subset of replicas in the same domain. In a mixed environment, you cannot

maintain ownership preservation on the entire set of replicas. For more information, see Element
Ownership and Ownership Preservation on page 4.

The most common change is to convert a replica from ownership-preserving to

non-ownership-preserving. For example, if a replica was created incorrectly as

ownership-preserving, you may need to change it. You can change a replica from

non-ownership-preserving to ownership-preserving. The replica will receive future changes to

ownership information, but the original ownership information is not restored.
114 Administrator’s Guide: Rational ClearCase MultiSite

To change a replica’s ownership-preserving property:

1. At the master replica, change the replica property.

On UNIX or Windows, you can use the chreplica command to change this property:

➣ To change from non-preserving to preserving:

multitool chreplica –preserve boston_hub@/vobs/dev
Updated replica information for "boston_hub".

➣ To change from preserving to non-preserving:

multitool chreplica –npreserve boston_hub@/vobs/dev
Updated replica information for "boston_hub".

On Windows, you can use the Properties Browser to change this property:

a. Display properties of the replica. See Displaying Properties of a Replica on page 111.

b. To change from non-preserving to preserving, select the Ownership-preserving check

box. To change from preserving to non-preserving, clear the Ownership-preserving
check box.

c. Click OK or Apply.

See the chreplica reference page for restrictions.

2. If the changed replica is not self-mastering, export an update packet from the master replica

to the changed replica.

3. At the changed replica, import the update packet. If the import fails because the VOB group

lists are different, use the cleartool protectvob command to change the group list for the

importing VOB replica, and then try the import again.

If the import succeeds, you can use the protectvob command to delete the group you added.

4. (If the replica was changed to non-ownership-preserving) At the changed replica, use the

cleartool protect command to change the ownership of all elements in the replica to the VOB

owner at your site.

cleartool protect –chown vobowner –chgrp vobgrp –recurse /vobs/dev
7 - Managing Replicas 115

7.5 Setting the Connectivity Property

To indicate whether a sibling replica has IP connectivity to your current replica, use the chreplica
command with the –isconnected or –nconnected option. This property is stored locally and is

checked when you enter a command that requires connectivity to a sibling replica (for example,

lsepoch –actual or chepoch –actual). The command fails quickly if the sibling replica is marked

as not connected.

You can also use the Properties Browser on Windows. When you display properties of a sibling

replica, the General tab indicates whether the replica has IP connectivity to the current replica.

You can change this property by setting or clearing the check box.

To use the chreplica command to set the connectivity property to connected for the sanfran_hub
replica:

multitool chreplica –isconnected sanfran_hub
Updated replica information for "sanfran_hub".

multitool describe replica:sanfran_hub
replica " sanfran-hub "
...

connectivity: connected

For more information, see the chreplica reference page.

7.6 Renaming a Replica

To change the name of a replica, use the rename command or the Properties Browser (Windows).

When you rename a replica, the change is made immediately at the current replica. The change

is not propagated to other replicas in the VOB family until you export an update packet from the

current replica and the packet is imported at the other replicas.

You must make the change at the replica’s master replica. For other restrictions, see the rename
reference page in the Command Reference.

To rename a replica using the rename command:

multitool rename –c "site name" replica:original@/vobs/dev replica:boston_hub@/vobs/dev
Renamed replica from "original" to "boston_hub".
116 Administrator’s Guide: Rational ClearCase MultiSite

To rename a replica using the Properties Browser:

1. Display properties of the replica. See Displaying Properties of a Replica on page 111.

2. Enter a new value in the Name box.

3. Click OK or Apply.

7.7 Moving a Replica

See the information on moving a VOB in the Administrator’s Guide for Rational ClearCase.

There are some special considerations when you move a replicated VOB:

➤ Make sure Rational ClearCase MultiSite is installed on the new VOB server host.

➤ If you automated the synchronization process on the old host, you must set up

synchronization export and import scripts on the new VOB server host.

➤ After moving the VOB replica, change the host name associated with the replica by using

multitool chreplica –host. You must enter this command at the master replica of the replica

you moved.

➤ After moving the VOB replica, export update packets to all sibling replicas.

7.8 Changing Mastership of a Replica

When you create a new replica, its replica object is mastered by the replica at which you enter the

mkreplica –export command. Mastership of the replica object affects replica-modification

activities (renaming the replica, changing its properties, or deleting it). You must perform these

activities at the replica that masters the replica object.

A self-mastering replica masters its own replica object. A replica must be self-mastering for you

to perform some administrative operations on it (for example, raising the feature level). If each

site has its own MultiSite administrator, having self-mastering replicas simplifies replica

maintenance because each replica can be maintained at its own site. However, you may want to

master all replica objects at a hub replica. In this case, you can transfer mastership to individual
7 - Managing Replicas 117

sites at the request of the site administrator, and then transfer mastership back to the hub replica

after the administrative operation has been completed.

To transfer mastership of a replica object:

1. Determine which replica masters the replica object, and the host name of the replica’s VOB

server:

multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"
created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: boston_hub@/vobs/dev
owner: susan
group: user
host: "goldengate"
...

2. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster –c "make sanfran_hub replica self-mastering" \
sanfran_hub@/vobs/dev replica:sanfran_hub@/vobs/dev
Changed mastership of replica "sanfran_hub" to "sanfran_hub@/vobs/dev"

3. At the old master replica, export an update packet to the new master replica:

MINUTEMAN%multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_16-Aug-00.16.15.57_63
89_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_16-Aug-00.16.15.
57_6389_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_16-Aug-00.16.15.57_63
89_1

4. At the new master replica, import the packet:

GOLDENGATE%multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_boston_hub_16-Aug-00.16.15.57_63
89_1 to VOB /net/goldengate/vobstg/dev.vbs

5. At the new master replica, verify that mastership has been received:
118 Administrator’s Guide: Rational ClearCase MultiSite

GOLDENGATE%multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"
created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: sanfran_hub@/vobs/dev
...

7.9 Deleting a Replica

This section describes how to remove a replica. You must complete all steps; if you do not,

synchronization and mastership problems can occur in other replicas in the VOB family.

NOTE: If a VOB replica is deleted mistakenly and you want to restore it from backup, see Restoring
and Replacing Replicas on page 190. If a VOB replica’s storage directory is lost and there is no

backup, see Cleaning Up from Accidental Deletion of a Replica on page 196.

In this scenario, the replica tokyo in the VOB family \tests is being removed.

1. At the site of the replica to be removed, complete all development work in the replica and

use lscheckout or the Find Checkouts tool (Windows) to verify that all checkouts are

resolved in the replica to be removed:

SHINJUKU> cleartool lscheckout –all \tests
(no output means no checkouts)

2. Transfer mastership of all objects to another replica.

At the site of the replica to be removed, transfer mastership of all objects mastered by the

replica to another replica. If the replica to be removed is not self-mastering, transfer

mastership to its master replica. If the replica is self-mastering, you can choose any replica.

In this example, the administrator determines which replica masters tokyo, and then

transfers mastership to the master replica (in this example, sanfran_hub):

SHINJUKU> cleartool describe –fmt "%[master]p\n" replica:tokyo@\tests
sanfran_hub@\tests

SHINJUKU> multitool chmaster –all –long sanfran_hub@\tests
Changed mastership of versioned object base \tests
...
Changed mastership of all objects
7 - Managing Replicas 119

The replica that receives the mastership can later transfer mastership to other replicas.

If mastership is not transferred for all objects, you must fix the problem and reenter the

chmaster –all –long command. For an example, see Transferring Mastership of All Objects
Mastered by a Replica on page 135. If there are problems you cannot fix, another replica can

recover from the error by assuming mastership of the objects. For a description of this

procedure, see Cleaning Up from Accidental Deletion of a Replica on page 196.

3. Export and send an update packet from the replica to be removed.

The replica to be removed must send its final changes, including checkins and mastership

changes, to the replica receiving mastership. The replica to be removed can broadcast its final

changes to all other replicas, but it must update its master replica (sanfran_hub in this

example).

SHINJUKU> multitool syncreplica –export –fship sanfran_hub@\tests

4. Import the update packet at the replica that is (or will become) the master of the replica to be

removed.

GOLDENGATE%multitool syncreplica –import –receive

5. At the master replica, remove the replica.

GOLDENGATE%multitool rmreplica tokyo@/vobs/tests

6. At the master replica, export and send an update packet to the remaining replicas in the VOB

family.

This update packet notifies the other replicas of the replica removal.

GOLDENGATE%multitool syncreplica –export –fship <replica names>

7. At the removed replica, remove the VOB storage directory of the removed replica.

SHINJUKU> cleartool rmvob \\shinjuku\vobs\tests.vbs
Remove versioned object base "\\shinjuku\vobs\tests.vbs"? [no] yes
Removed versioned object base "\\shinjuku\vobs\tests.vbs".

If you decommission and remove all replicas, the one remaining VOB replica is a regular VOB,

and developers no longer need a MultiSite license to access it.
120 Administrator’s Guide: Rational ClearCase MultiSite

88 Managing Mastership

This chapter describes how to manage the mastership of ClearCase objects in a VOB replica,

using the following commands:

➤ describe
➤ lsmaster
➤ mkelem –master
➤ chmaster

The mkelem command is a cleartool subcommand. The other commands listed above are

cleartool and multitool subcommands. For more information on the commands, see their

reference pages in this manual or in the Command Reference.

On Windows, you can use the describe and chmaster commands or the Properties Browser to

display and change mastership.

The reqmaster command requests mastership of branches and branch types and sets controls for

mastership requests. On Windows, you can use the Request Mastership graphical interface and

the Properties Browser to request mastership and set controls. Use of these interfaces is described

in Chapter 9, Implementing Requests for Mastership.

NOTE: Before reading this chapter, you should read the information in Enabling Independent VOB
Development: Mastership on page 7.
8 - Managing Mastership 121

8.1 Listing an Object’s Master Replica

To list an object’s master replica, use one of the following methods:

Command examples:

➤ To list a replica object’s master replica:

cleartool describe replica:boston_hub@\dev
replica "boston_hub"
created 15-Aug-00.14:19:03 by susan.user
replica type: unfiltered
master replica: boston_hub@\dev
...

➤ To list an element’s master replica:

cleartool describe –fmt "%n\t%[master]p\n" cmdsyn.c@@
cmdsyn.c@@ bangalore@/vobs/dev

➤ To list a type object’s master replica:

cleartool describe lbtype:V1.0@/vobs/dev
label type "V1.0"

created 25-Aug-00.12:14:52 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev

...

➤ To list a branch’s master replica:

cleartool describe –fmt "%n\t%[master]p\n" cmdsyn.c@@\main\v3_bugfix
cmdsyn.c@@\main\v3_bugfix boston_hub@\dev

Mastership page in the Properties Browser (Windows) This page lists the object’s master

replica.

cleartool describe object-selector This command lists general

information about the object,

including its master replica.

cleartool describe –fmt "%[master]p\n" object-selector This command lists only the master

replica of the object. For more

information on using the –fmt
option, see the fmt_ccase reference

page in the Command Reference.
122 Administrator’s Guide: Rational ClearCase MultiSite

8.2 Listing Objects Mastered by a Replica

The lsmaster command lists the objects mastered by a replica. The command uses the

information at your current replica unless you use the –inreplicas option, which retrieves

information from sibling replicas.

➤ To list all objects mastered by the current replica (boston_hub):

multitool lsmaster boston_hub@/vobs/dev

➤ To list all label types mastered by replica sanfran_hub, using information in the current

replica:

multitool lsmaster –kind lbtype sanfran_hub@/vobs/dev

➤ To display information from all replicas in the VOB family about the objects mastered by

replica bangalore:

multitool lsmaster –inreplicas –all bangalore@\tests

For more information and examples, see the lsmaster reference page.

8.3 Listing the History of Mastership Changes for an Object

The lshistory –minor command and the History Browser (with the Include minor events toggle

selected) list mastership changes for an object. For example, to list the history of a replica:

cleartool lshistory –minor replica:bangalore@/vobs/dev
20-Sep.17:43 susan change master to "bangalore" of replica " bangalore "
"Changed master replica from "boston_hub" to "bangalore"."
8 - Managing Mastership 123

8.4 Displaying Mastership Request Settings

The mastership request setting controls whether developers at other sites can request mastership

of branches or branch types mastered by the replica. The describe command and (on Windows)

the Mastership page in the Properties Browser display mastership request settings for replicas,

branch types, and branches. For more information on mastership requests, see Chapter 9,

Implementing Requests for Mastership.

8.5 Assigning Branch Mastership During Element Creation

By default, when you create an element in a replicated VOB, mastership of the branch main is

assigned to the replica that masters the branch type main. If this replica is not your current

replica, you cannot create new versions on the main branch. Also, if your config spec contains

mkbranch rules and your current replica does not master the branch types, the branches cannot

be created during element creation.

To assign mastership of a new element’s main branch, and all other branches created during

element creation, to your current replica, do one of the following:

➤ Use the command cleartool mkelem –master.

➤ (Windows) In the Add to Source Control dialog box, select Make current replica the master
of all newly created branches.

For example, suppose your view has the following config spec:

element * CHECKEDOUT
element * .../v1.0_bugfix/LATEST
element * V1.0 -mkbranch v1.0_bugfix

Use the following procedure to assign mastership of new branches to your current replica:

1. Create a new element with mkelem –master and check out the file:

cleartool mkelem –master –c "adding comments" cmdsyn.c
Created element "cmdsyn.c" (type "text_file").
Created branch "v1.0_bugfix" from "cmdsyn.c" version "/main/0".
Note: Branch "v1.0_bugfix" explicitly mastered by replica "boston_hub".
Branch type "v1.0_bugfix" mastered by replica "sanfran_hub".
Checked out "cmdsyn.c" from version "/main/v1.0_bugfix/0".
124 Administrator’s Guide: Rational ClearCase MultiSite

2. Use the describe command to confirm that the new branches are mastered by your current

replica:

cleartool describe cmdsyn.c@@/main cmdsyn.c@@/main/v1.0_bugfix
branch "cmdsyn.c@@/main"

created 02-Sep-00.13:17:21 by Gail Smith (gail.user@boston30)
branch type: main
master replica: boston_hub@/vobs/dev

...
branch "cmdsyn.c@@/main/v1.0_bugfix"

created 02-Dec-00.13:17:21 by Gail Smith (gail.user@boston30)
branch type: v1.0_bugfix
master replica: boston_hub@/vobs/dev

...

If you make your current replica the master of newly created branches, but do not check out the

file (that is, you use the –nco option), only the main branch is mastered by your current replica,

because it is the only branch that is created. For example:

1. Create a new element with mkelem –nco –master:

cleartool mkelem –nco –master –c "adding comments" cmdsyn.c
cleartool: Warning: Moved private data from "cmdsyn.c" to "cmdsyn.c.keep"
so it won’t eclipse element.
Created element "cmdsyn.c" (type "text_file").

2. Use the describe command to confirm that the main branch is mastered by your current

replica:

cleartool describe cmdsyn.c@@/main
branch "cmdsyn.c@@/main"
created 02-Sep-00.13:21:21 by Gail Smith (gail.user@boston30)
branch type: main
master replica: boston_hub@/vobs/dev
...

3. List the element’s history to confirm that no other branches except main were created:

cleartool lshistory cmdsyn.c
02-Sep.13:21 gail create version "cmdsyn.c@@/main/0"
02-Sep.13:21 gail create branch "cmdsyn.c@@/main"
02-Sep.13:21 gail create file element "cmdsyn.c@@"
8 - Managing Mastership 125

8.6 Changing Mastership

When you create an object in a replicated VOB, your current replica is the new object’s master.

You can transfer mastership of the object to another replica, using the chmaster command or the

Properties Browser (Windows). Some examples of when this is appropriate:

➤ If responsibility for product integration is shifted to a different site, you must transfer

mastership of the integration branch types or branches to the new site.

➤ Before you decommission a replica, you must transfer mastership of each object mastered

by that replica to one of the remaining replicas. (See Deleting a Replica on page 119.)

Mastership changes are communicated among replicas by the standard synchronization

mechanism. The general procedure for changing mastership is as follows:

1. Change mastership of one or more objects to another replica or request mastership of a

branch or branch type.

2. Export and send an update packet from the old master replica to the new master replica. (The

reqmaster command does this automatically.)

3. Import the update packet at the new master replica.

Until the update packet containing the mastership change is imported at the new master replica,

mastership is “in the packet” and the replicas in the VOB family have different information about

which replica masters the object.

For example, the administrator at the sanfran_hub replica transfers mastership of the bugfix
branch to the bangalore replica, and then exports an update packet. At this point:

➤ The sanfran_hub replica considers the branch to be mastered by bangalore.

➤ The bangalore replica considers the branch to be mastered by sanfran_hub.

➤ No one can create new versions on the branch.

When you complete the mastership transfer by importing the update packet at bangalore,

developers at bangalore are able to create new versions on the branch.

Notes on mastership changes:

➤ The chmaster command requires a view context.

➤ If your VOB family includes any read-only or one-way replicas (replicas that import update

packets but do not export them), be careful about transferring mastership to these replicas.
126 Administrator’s Guide: Rational ClearCase MultiSite

After you give mastership of an object to a read-only or one-way replica, you cannot change

the object’s mastership again unless you change the VOB family’s synchronization pattern.

➤ You cannot undo a mastership change made at your site by making the opposite change at

your site. See Fixing an Accidental Mastership Change on page 137.

➤ You can use triggers to prevent developers from changing mastership of objects. For more

information, see Implementing Project Development Policies in Managing Software Projects.

The following sections describe how to change mastership of ClearCase objects. These

procedures use the command line. For information about using the Properties Browser on

Windows to transfer mastership of a ClearCase object, see the MultiSite online help:

1. Click Start > Programs > Rational ClearCase Administration > MultiSite Help.

2. On the Contents tab of the Help Contents Window, click Administrator Tasks > To change
mastership of a ClearCase object.

Transferring Mastership of a Type Object

When you create a type object, it is mastered by the replica where you create it. Except for

elements, instances of an unshared type can be created only at the master replica. Elements can

be created at any replica, regardless of which replica masters the element type. Instances of

shared types can be created at any replica (for more information, see Type Object Mastership on

page 14).

NOTE: If you transfer mastership of a branch type to another replica, mastership of explicitly

mastered branches of that type is not transferred, even if the same replica masters the branch

type and the branch. To give such branches default mastership, see the procedure in Removing
Explicit Mastership of a Branch on page 133.

To transfer mastership of a type object:

1. Determine which replica masters the type object:

multitool describe lbtype:TOKYO_BASE@/vobs/dev
label type "TOKYO_BASE"
created 15-Aug-00.14:20:26 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev
...
8 - Managing Mastership 127

2. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster –c "transfer to sanfran_hub" \
sanfran_hub@/vobs/dev lbtype:TOKYO_BASE@/vobs/dev
Changed mastership of label type "TOKYO_BASE" to "sanfran_hub@/vobs/dev"

3. At the old master replica, export an update packet to the new master replica’s site:

MINUTEMAN%multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_26-Aug-00.18.15.57_74
30_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_26-Aug-00.18.15.
57_7430_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_26-Aug-00.18.15.57_74
30_1

4. At the new master replica, import the packet:

BAGUETTE%multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_boston_hub_26-Aug-00.18.15.57_74
30_1 to VOB /net/goldengate/vobstg/dev.vbs

5. At the new master replica, verify that mastership has been received:

BAGUETTE%multitool describe lbtype:TOKYO_BASE@/vobs/dev
label type "TOKYO_BASE"
created 15-Aug-00.14:20:26 by Susan Goechs (susan.user@minuteman)
master replica: sanfran_hub@/vobs/dev
...

Transferring Mastership of a Replica Object

When you create a new replica, its replica object is mastered by the replica at which you enter the

mkreplica –export command. Mastership of the replica object affects replica-modification

activities (renaming the replica, changing its properties, or deleting it). You must perform these

activities at the replica that masters the replica object.
128 Administrator’s Guide: Rational ClearCase MultiSite

A self-mastering replica masters its own replica object. A replica must be self-mastering for you

to perform some administrative operations on it (for example, raising the feature level). If each

site has its own MultiSite administrator, having self-mastering replicas simplifies replica

maintenance because each replica can be maintained at its own site. However, you may want to

master all replica objects at a hub replica. In this case, you can transfer mastership to individual

sites at the request of the site administrator, and then transfer mastership back to the hub replica

after the administrative operation has been completed.

To transfer mastership of a replica object:

1. Determine which replica masters the replica object, and the host name of the replica’s VOB

server:

multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"
created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: boston_hub@/vobs/dev
owner: susan
group: user
host: "goldengate"
...

2. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster –c "make sanfran_hub replica self-mastering" \
sanfran_hub@/vobs/dev replica:sanfran_hub@/vobs/dev
Changed mastership of replica "sanfran_hub" to "sanfran_hub@/vobs/dev"

3. At the old master replica, export an update packet to the new master replica:

MINUTEMAN%multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_16-Aug-00.16.15.57_63
89_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_16-Aug-00.16.15.
57_6389_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_16-Aug-00.16.15.57_63
89_1

4. At the new master replica, import the packet:
8 - Managing Mastership 129

GOLDENGATE%multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_boston_hub_16-Aug-00.16.15.57_63
89_1 to VOB /net/goldengate/vobstg/dev.vbs

5. At the new master replica, verify that mastership has been received:

GOLDENGATE%multitool describe replica:sanfran_hub@/vobs/dev
replica "sanfran_hub"
created 16-Aug-00.09:49:36 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: sanfran_hub@/vobs/dev
...

Transferring Mastership of a VOB

When you replicate a VOB for the first time, the VOB is mastered by the original replica. You

must perform the following operations at the VOB’s master replica:

➤ Changing protections on the VOB (for ownership-preserving replicas).

➤ Locking the VOB with the obsolete option.

To transfer mastership of a VOB to another replica, follow these steps:

1. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster sanfran_hub vob:/vobs/dev
Changed mastership of versioned object base "/vobs/dev" to "sanfran_hub".

2. At the old master replica, export an update packet to the new master replica’s site:

MINUTEMAN%multitool syncreplica –export –fship sanfran_hub@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_20-Sep-00.17.35.45_22
513_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_20-Sep-00.17.35.
45_22513_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_20-Sep-00.17.35.45_22
513_1
130 Administrator’s Guide: Rational ClearCase MultiSite

3. At the new master replica, import the packet:

GOLDENGATE%multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_boston_hub_20-Sep-00.17.35.45_22
513_1 to VOB /net/goldengate/vobstg/dev.vbs

4. At the new master replica, verify that mastership has been received:

GOLDENGATE%multitool describe –fmt "%n\t%[master]p\n" vob:/vobs/dev
/vobs/dev sanfran_hub@/vobs/dev

Transferring Mastership of an Element

When you create a new element, it is mastered by the replica in which you create it. You must

perform the following element operations at the element’s master replica:

➤ Changing protections on the element (for ownership-preserving replicas).

➤ Locking the element with the obsolete option.

➤ Removing the element.

To transfer mastership of an element to another replica, follow these steps:

1. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster bangalore tests.txt@@
Changed mastership of file element "tests.txt@@" to "bangalore"

2. At the old master replica, export an update packet to the new master replica’s site:

MINUTEMAN%multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_07-Dec-00.18.15.57_59
78_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_07-Dec-00.18.15.
57_5978_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_07-Dec-00.18.15.57_59
78_1
8 - Managing Mastership 131

3. At the new master replica, import the packet:

RAMOHALLI> multitool syncreplica –import –receive
Applied sync. packet C:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\incoming\sync_boston_hub_07-
Dec-00.18.15.57_5978_1 to VOB \\ramohalli\vobs\dev.vbs

4. At the new master replica, verify that mastership has been received:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" tests.txt@@
tests.txt@@ bangalore@\dev

Transferring Mastership of a Branch

This section describes how to change mastership of a branch using the chmaster command. For

information about enabling use of the reqmaster command, see Chapter 9, Implementing Requests
for Mastership.

Transferring Branch Mastership

To transfer mastership of a branch to another replica:

1. At the master replica, enter a chmaster command:

MINUTEMAN%multitool chmaster –c "bugfix at bangalore" bangalore Makefile@@/main
Changed mastership of branch "Makefile@@/main" to "bangalore"

2. At the old master replica, export an update packet to the new master replica’s site:

MINUTEMAN%multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_10-Dec-00.18.15.57_30
56_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_10-Dec-00.18.15.
57_3056_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_10-Dec-00.18.15.57_30
56_1
132 Administrator’s Guide: Rational ClearCase MultiSite

3. At the new master replica, import the packet:

RAMOHALLI> multitool syncreplica –import –receive
Applied sync. packet C:\Program Files\Rational\ClearCase\var\shipping
\ms_ship\incoming\sync_boston_hub_10-Dec-00.18.15.57_3056_1 to VOB
\\ramohalli\vobs\dev.vbs

4. At the new master replica, verify that mastership has been received:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" Makefile@@\main
Makefile@@\main bangalore@\dev

Removing Explicit Mastership of a Branch

As described in Default and Explicit Branch Mastership on page 13, a branch can have default or

explicit mastership. After you follow the steps in Transferring Branch Mastership on page 132, the

branch has explicit mastership. When you transfer mastership of a branch type to another

replica, mastership is transferred for all branches with default mastership, but not for branches

with explicit mastership.

To return mastership of a branch to the replica that masters the branch type:

1. At the replica that masters the branch, enter a chmaster –default command:

RAMOHALLI> multitool chmaster –default Makefile@@\main
Changed mastership of branch "Makefile@@\main" to "default"

2. Determine which replica masters the branch type:

RAMOHALLI> multitool describe –fmt "%n\t%[master]p\n" brtype:main
main boston_hub@\dev

If your current replica masters the branch type, stop here. If another replica masters the

branch type, continue with Step #3.
8 - Managing Mastership 133

3. Export an update packet to the replica that masters the branch type:

RAMOHALLI> multitool syncreplica –export –fship boston_hub@\dev
Generating synchronization packet C:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sync_bangalore_11-D
ec-00.18.15.57_9476_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_bangalore_11-Dec-00.18.15.5
7_9476_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_bangalore_11-Dec-00.18.15.57_947
6_1

4. At the replica that masters the branch type, import the packet:

MINUTEMAN%multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_bangalore_11-Dec-00.18.15.57_947
6_1 to VOB /net/minuteman/vobstg/dev.vbs

5. At the replica that masters the branch type, verify that the branch has default mastership:

MINUTEMAN%multitool describe Makefile@@/main
branch "Makefile@@/main"

created 27-Aug-00.13:41:21 by Gail Smith (gail.user@boston20)
branch type: main
master replica: boston_hub@/vobs/dev (defaulted)

The other form of the chmaster –default command applies to branches that are explicitly

mastered by the replica that masters the branch type. To give these branches default mastership,

enter a chmaster –default command and specify the branch type:

MINUTEMAN%multitool chmaster –default brtype:main
Changed mastership of branch type "main" to "default"
134 Administrator’s Guide: Rational ClearCase MultiSite

Transferring Mastership of a Stream

The chmaster –stream command transfers mastership of a stream and its associated objects. For

example, to transfer mastership of the stream v2.1.bl5 and its associated objects to the

boston_hub replica:

multitool chmaster –stream boston_hub@/vobs/dev stream:v2.1.bl5@/vobs/dev

In some cases, you must manually change mastership of branch types or activities associated

with a stream. The output of the chmaster command includes a list of these objects. The output

may also include an instruction to run the chmaster –stream command with the –override
option. This option transfers mastership of objects whose mastership was not transferred during

the original invocation of the command.

CAUTION: Do not use –override unless the output of chmaster –stream indicates that you should

do so.

Transferring Mastership of All Objects Mastered by a Replica

Before removing a replica, you must transfer mastership of all objects mastered by that replica.

For detailed instructions, see Deleting a Replica on page 119.

The following example shows a partially successful chmaster –all command and describes how

to fix it. In this example, the administrator at replica bangalore is transferring mastership to

boston_hub.

RAMOHALLI> multitool chmaster –all –long boston_hub@\dev
Changed mastership of versioned object base \dev\
Changed mastership of directory element \dev\.@@
Changed mastership of directory element \dev\lost+found@@
...
multitool: Error: Branch type "bangalore_main" has branches (with default
mastership) that have outstanding checkouts.
Changed mastership of branch type v1.0_bugfix
...
multitool: Error: Lock on label type "V1.0_BUGFIX" prevents operation "change
master".
Changed mastership of label type BANGALORE_V2.0
...
Changed mastership of replica bangalore
multitool: Warning: Not all objects had mastership changed.
8 - Managing Mastership 135

These errors prevent the successful completion of this chmaster command:

➤ There are checkouts on the bangalore_main branch.

➤ There is a lock on a label type.

To fix these problems:

1. Find the checkouts and either check in the files or cancel the checkouts:

H:\dev> cleartool lscheckout –all
03-Jun.17:28 jk checkout version "\dev\cmdsyn.c" from
\main\bangalore_main\83 (unreserved)
08-Jun.12:45 singh checkout version "\dev\etc\util\tool.c" from
\main\bangalore_main\22 (unreserved)
...

See the checkin, checkout and uncheckout reference pages.

2. Unlock the type object.

cleartool unlock lbtype:V1.0_BUGFIX@\dev
Unlocked label type "V1.0_BUGFIX".

Alternatively, enter a lock –replace –nusers command and add yourself to the –nusers list.

cleartool lock –replace –nusers ms_admin lbtype:V1.0_BUGFIX@\dev
Locked label type "V1.0_BUGFIX".

3. Reenter the chmaster command.

RAMOHALLI> multitool chmaster –all –long boston_hub@\dev
Changed mastership of branch type bangalore_main
Changed mastership of label type V1.0_BUGFIX
Changed mastership of all objects.
136 Administrator’s Guide: Rational ClearCase MultiSite

Fixing an Accidental Mastership Change

If a mastership change is made in your replica by mistake, follow these steps to undo the change:

1. At your replica, complete the transfer by sending an update packet to the new master replica.

2. At the new master replica, complete these steps:

a. Import the packet.

b. Change mastership back to your replica.

c. Export an update packet to your replica.

3. At your replica, import the packet.

8.7 Working with Type Objects

When you create an attribute type, a hyperlink type, or a label type, you can make the type

shared or unshared. By default, the type is unshared, which means that instances of the type can

be created only at the replica that masters the type object. If you define the type object to be

shared, instances of the type can be created at any replica in the VOB family.

For more information about type objects, see Type Object Mastership on page 14.

Creating a Shared Type Object

To create a shared type object, use the –shared option with the mkattype, mkhltype, or

mklbtype command. For example, to create a shared attribute type:

cleartool mkattype –shared –c "testing status" TESTED
Created attribute type "TESTED".
8 - Managing Mastership 137

Listing Whether a Type Object Is Shared or Unshared

On Windows, the Properties Browser displays the kind of mastership on the Mastership tab.

The describe command includes the kind of mastership in its output:

cleartool describe attype:TESTED
attribute type "TESTED"
created 15-Aug-00.14:23:27 by Susan Goechs (susan.user@minuteman)
master replica: boston_hub@/vobs/dev
instance mastership: shared
...

You can also use the –fmt option to display the kind of mastership. For example, to list the

mastership kind of a single type object:

cleartool describe –fmt "%n\t%[type_mastership]p\n" attype:TESTED
TESTED shared

To list the mastership kind of all label types in a VOB replica:

cleartool lstype –fmt "%n\t%[type_mastership]p\n" –kind lbtype
BACKSTOP shared
BANGALORE_BASE unshared
BUENOSAIRES_BASE unshared
CHECKEDOUT shared
LATEST shared
BOSTON_BASE unshared
SANFRAN_BASE unshared
V1.0 unshared
V2.0 unshared

Converting an Unshared Type Object to a Shared Type Object

You can convert an unshared attribute type, hyperlink type, or label type to be shared. For

example, if a project manager at the San Francisco site creates an unshared attribute type called

TESTED_BY, but the Bangalore project manager also needs to use this type, you can convert the

type to shared so both project managers can create instances of the type.

NOTE: You cannot convert a shared type object to unshared. To restrict instance creation of a type

to one site, remove all instances of the type, remove the type, and create a new unshared type.
138 Administrator’s Guide: Rational ClearCase MultiSite

For information about using the Properties Browser on Windows to convert an unshared type

object to a shared type object, see the MultiSite online help:

1. Click Start > Programs > Rational ClearCase Administration > MultiSite Help.

2. On the Contents tab of the Help Contents Window, click Administrator Tasks > To change
a type to have shared mastership.

To use the command line to convert an unshared type object to a shared type object:

1. Determine which replica masters the type object:

cleartool describe attype:TESTED_BY@/vobs/stage
attribute type "TESTED_BY"

created 03-Oct-00.10:29:06 by John Cole (jcole.user@goldengate)
master replica: sanfran_hub@/vobs/dev
instance mastership: unshared

...

2. At the master replica, enter a mk**type –replace –shared command to replace the definition

of the type:

cleartool mkattype –replace –shared –c "needed at multiple sites" TESTED_BY
Replaced definition of attribute type "TESTED_BY".

3. Export an update packet to the other sites that must use the type:

multitool syncreplica –export –fship bangalore boston_hub
...

4. At the receiving sites, import the update packet:

multitool syncreplica –import –receive
...

5. At the receiving sites, confirm that the type object is shared:

cleartool describe –fmt "%n\t%[type_mastership]p\n" \
attype:TESTED_BY@/vobs/dev
TESTED_BY shared
8 - Managing Mastership 139

140 Administrator’s Guide: Rational ClearCase MultiSite

99 Implementing Requests for
Mastership

To support development of elements that cannot be merged, you can give developers the ability

to request mastership of branches and branch types. This chapter describes how these requests

work, the requirements and recommendations for enabling requests, the planning you must do,

and the procedure for enabling requests.

Before reading this chapter, read the information on branch mastership in Chapter 1, Introduction
to MultiSite, and Branching and Mastership on page 36.

9.1 Overview of a Request for Mastership

When a developer requests mastership of a branch, the branch’s mastership is transferred to the

developer’s current replica. When a developer requests mastership of a branch type, mastership

of the branch type, along with mastership of all the instances of the branch type that have default

mastership, is transferred to the developer’s current replica.

The procedure for requesting mastership is as follows:

1. A developer makes a request for mastership.

2. The developer’s client host determines which replica masters the branch or branch type, and

sends a request for mastership to that replica. This request is made directly to the VOB server,

not by sending an update packet.

3. Authorization checking occurs at the sibling replica. The checks are different for a branch

and a branch type.
9 - Implementing Requests for Mastership 141

For a request for mastership of a branch, authorization checking determines the following:

a. Whether the developer is allowed to request mastership.

b. Whether requests for mastership of the branch are allowed at the replica level, the

branch type level, and the branch level.

c. Whether the replica masters the branch. If the replica does not master the branch, the

mastership request fails.

The process in Step #2 uses the information available from the client host’s current

replica. If the sibling replica has transferred mastership of the branch to another replica,

but the current replica has not received an update packet with the change, the

information at the current replica is not up to date.

d. Whether the branch, its branch type, or VOB is locked. If one or more of these objects are

locked, the request fails.

e. Whether there are any checkouts on the branch, except for nonmastered checkouts. A

reserved or unreserved checkout on the branch causes the request to fail.

f. Whether the branch is associated with a stream. You cannot request mastership of a

branch associated with a stream.

For a request for mastership of a branch type, authorization checking determines the

following:

a. Whether the developer is allowed to request mastership.

b. Whether requests for mastership of the branch type are allowed at the replica level and

the branch type level. Also, whether requests are allowed for any of the branch type’s

instances that have default mastership.

c. Whether the replica masters the branch type. If the replica does not master the branch

type, the mastership request fails.

The process in Step #2 uses the information available from the client host’s current

replica. If the sibling replica has transferred mastership of the branch type to another

replica, but the current replica has not received an update packet with the change, the

information at the current replica is not up to date.

d. Whether any of the following objects are locked: the branch type, the VOB, or any of the

branch type’s instances that have default mastership. If one or more of these objects are

locked, the request fails.
142 Administrator’s Guide: Rational ClearCase MultiSite

e. Whether there are any checkouts (except for nonmastered checkouts) on any of the

branch type’s instances that have default mastership.

f. Whether the branch type is associated with a stream. You cannot request mastership of

a branch type associated with a stream.

If the request passes the authorization checks, the process continues with Step #4. (If the

developer requests mastership of multiple branches or branch types, error messages are

printed for the failures and processing continues.)

4. The server process for the sibling replica assigns mastership of the branch or branch type to

the developer’s current replica.

The event record for this operation includes the user name of the requesting developer as

part of the comment.

At this point, the sibling replica is the only replica in the VOB family that has information

about the mastership change. At all other replicas in the family, including the developer’s

current replica, the current mastership information shows that the sibling replica masters the

branch or branch type. The developer’s current replica is updated when the packet created

in Step #5 is imported. The other replicas in the family are not updated until they are

synchronized with either of the two replicas that has information about the change.

5. The server at the sibling replica starts an export process to create and send an update packet

containing the mastership change to the developer’s current replica.

This packet also contains other changes made since the last synchronization export.

6. The mastership request operation completes its processing.

After the update packet is imported successfully at the developer’s current replica, the branch or

branch type is mastered by the current replica and developers at the site can create new versions

on the branch or create new instances of the branch type.

NOTE: A request for mastership does not initiate a syncreplica –import command. If the replica’s

host uses a receipt handler (the recommended procedure), the import begins as soon as the

packet arrives. Otherwise, the import occurs at the scheduled import time at the site or when an

administrator imports the packet manually.
9 - Implementing Requests for Mastership 143

9.2 Requirements and Recommendations

To enable requests for mastership in one or more replicas, the following conditions must apply:

➤ The VOB family is at feature level 2 or higher. (All replicas in the VOB family must be at

feature level 2 or higher, even if you are not going to enable requests in all of the replicas.)

For more information on feature levels, see Chapter 5, ClearCase Feature Levels.

➤ The sites have high-speed connections (LAN, WAN, T1).

A request for mastership makes RPCs directly to remote servers and fails if the sites are not

connected. If a site has a firewall, developers at that site cannot request mastership from

replicas at other sites, and developers at other sites cannot request mastership of any

branches mastered at a site with a firewall.

➤ Each replica masters its own replica object. These replicas are called self-mastering.

If a replica does not master its own replica object, you cannot enable or disable mastership

requests at the replica level. For information about reassigning mastership of the replica

object, see Transferring Mastership of a Replica Object on page 128.

For mastership requests to work efficiently, the following conditions must apply:

➤ There is no contention for branches or branch types among the sites. That is, only one

person at a time requests mastership of a branch or branch type.

If two or more developers at different sites compete for mastership of objects, mastership

will always be in flux. In this situation, the project leaders and MultiSite administrators must

determine whether the branch sharing strategy needs to be changed. Using requests for

mastership is not a substitute for using good branching and merging practices.

➤ The sites exchange update packets frequently.

Each replica needs current information about object mastership. If a replica is not up to date,

requests for mastership from that site cannot determine which replica masters the requested

object. Also, if replicas exchange packets infrequently, a mastership request may cause the

generation of a large update packet, which will take longer to generate and import.)

➤ Each replica host uses a receipt handler to import packets.

You can schedule scripts to import packets regularly. However, to import a packet as soon as

it arrives at the replica host, you must use a receipt handler. For more information, see the

shipping.conf (UNIX) or MultiSite Control Panel (Windows) reference page.
144 Administrator’s Guide: Rational ClearCase MultiSite

9.3 Planning Your Implementation

Before enabling requests for mastership, the project managers and administrators at the different

sites must make these decisions:

➤ Which replicas must be enabled to allow requests for mastership. By default, a replica does

not allow requests for mastership. You can enable one replica, multiple replicas, or all

replicas in a VOB family.

➤ Which developers are authorized to request mastership. By default, no one is authorized.

You can authorize individual developers, everyone in a specific group, everyone in a

specific domain, or everyone in your network.

➤ The branch types and branches (if any) for which mastership requests are always denied.

By default, requests are allowed.

Although you can enable requests for mastership in components, you cannot request

mastership of a branch or branch type associated with a stream.

To Hide Request for Mastership Features

If you do not implement requests for mastership at particular sites, you can hide request for

mastership features in the ClearCase graphical interface on Windows. The display of these

features is controlled by the site-wide setting rfm_gui_visibility.

To use the setsite command to hide request for mastership features:

cleartool setsite rfm_gui_visibility=FALSE

To use ClearCase Administration Console to hide request for mastership features:

1. Navigate to the ClearCase Registry node in ClearCase Administration Console.

2. Click Action > Properties.

3. Click Help and follow the instructions in the online help.
9 - Implementing Requests for Mastership 145

9.4 Enabling Requests for Mastership

The procedures in this section use the command line. On Windows, you can use the ACL editor

and the Properties Browser. For more information, see the MultiSite online help:

1. Click Start > Programs > Rational ClearCase Administration > MultiSite Help.

2. On the Contents tab of the Help Contents Window, click Administrator Tasks > Enabling
Requests for Mastership > To enable requests for mastership.

Prerequisites

1. Ensure that the replica is self-mastering. See Transferring Mastership of a Replica Object on

page 128.

2. Ensure that the feature level of the replicas in the VOB family is the correct value, and that

the VOB family’s feature level is the correct value. For instructions, see Chapter 5, ClearCase
Feature Levels.

Adding Developers to the Access Control List

3. At each replica, add the appropriate people to the replica’s access control list.

multitool reqmaster –acl –edit vob-selector

A replica’s access control list (ACL) contains a list of users at other sites who are allowed to

request mastership of branches and branch types mastered by that replica. To modify this

file, you must be VOB owner, root (on UNIX), a member of the ClearCase administrators

group (on Windows), or have write permissions on the ACL.

The vob-selector specifies a VOB family, and the ACL for your current replica is changed.

An access control list contains lines of the following form:

identity-specification access-level,...

identity-specification is one of the following:

Everyone Everyone in all domains.

Domain:domain Everyone in the specified domain.
146 Administrator’s Guide: Rational ClearCase MultiSite

On Windows, domain is the name of a Windows domain (for example, purpledoc). On UNIX,

domain is an NIS domain name (for example, purpledoc.com). If someone who can request

mastership has user names in multiple domains, you must specify all the identities in the

ACL.

access-level is one or more of the following:

Separate multiple access levels with a comma, but do not include spaces between access

levels. The identity specification and associated access levels must appear on the same line.

For example, the following ACL specifies that susan can modify the ACL, and jcole and

kumar can request mastership:

User:purpledoc.com/susan Read,Write
User:purpledoc/susan Read,Write
User:purpledoc.com/jcole Change
User:purpledoc/jcole Change
User:purpledoc.com/kumar Change
User:purpledoc/kumar Change

The following ACL gives msadm full permissions and allows everyone to request

mastership:

User:purpledoc.com/msadm Full
User:purpledoc/msadm Full
Everyone Change

Group:domain/group Everyone in the specified group in domain. You can use a slash

(/) or backslash (\) between domain and group.

User:domain/username A specific user in a particular domain. You can use a slash

(/) or backslash (\) between domain and username.

Read Allow read access on ACL

Write Allow write access on ACL

Change Allow requests for mastership

Full Allow requests for mastership and read/write access on ACL
9 - Implementing Requests for Mastership 147

Deny Requests for Specific Objects

4. (optional) At each replica, deny requests for mastership of specific objects. By default,

requests are allowed for all branches and branch types.

For you to allow or deny mastership requests for a branch or branch type, your current

replica must master it. You can allow or deny mastership requests for all instances of a

branch type even if your current replica does not master the type.

If the branch type is a global type, its mastership request setting is stored in the

administrative VOB and applies to all local copies of the branch type.

Enable Requests at the Replica Level

5. At each replica, enable requests for mastership at the replica level.

multitool reqmaster –enable vob-selector

The vob-selector specifies a VOB family, and your current replica is enabled for mastership

requests. You must enter this command on the VOB server host.

To enable or disable permission at the replica level, you must be the VOB owner, root
(UNIX), or a member of the ClearCase administrators group (Windows). Also, the replica

must master its own replica object.

In an administrative VOB scenario, you enable requests for mastership in the client VOB

replicas. You do not have to enable requests in the administrative VOB replica unless it

contains elements that are developed serially.

multitool reqmaster –deny branch-pname Denies requests for

mastership of the specified

branch.

multitool reqmaster –deny branch-type-selector Denies requests for

mastership of the specified

branch type.

multitool reqmaster –deny –instances branch-type-selector Denies requests for

mastership of all instances

of the specified branch

type.
148 Administrator’s Guide: Rational ClearCase MultiSite

After you enable requests for mastership, inform the appropriate developers about mastership

requests and how and when to use them. Working On a Team in the Working in Base ClearCase part

of Developing Software describes the procedures developers must use to request mastership.

NOTE: The reqmaster command is a cleartool subcommand as well as a multitool subcommand,

so developers who will request mastership do not have to install MultiSite software on their

client hosts. On Windows, developers can request mastership from the Find Checkouts window,

the Merge Manager, and the Version Tree Browser.

9.5 Customizing Synchronization Updates for Mastership Requests

After a mastership request is processed at the master replica, sync_export_list is invoked to

export an update packet to the replica at the requester’s site. You can customize the export by

specifying one or more of the options and arguments that are valid for sync_export_list, except

for –replicas, which is always the replica at the requester’s site.

To specify options and arguments for the export:

1. On the VOB server host of the exporting replica, edit the file

/var/adm/atria/config/rfm_shipping.conf (UNIX) or

ccase-home-dir\var\config\rfm_shipping.conf (Windows).

2. Add the options and arguments to the following line:

RFM_OPTIONAL_ARGUMENTS =

For example, to compress update packets:

RFM_OPTIONAL_ARGUMENTS = -compress

To suppress informational messages, use a specific shipping class (in this example,

reqmaster) and compress update packets:

RFM_OPTIONAL_ARGUMENTS = -quiet 1 -compress -sclass reqmaster

On UNIX, MultiSite installation creates the file

ccase-home-dir/config/services/rfm_shipping.template. If

/var/adm/atria/config/rfm_shipping.conf does not exist, the installation creates it by copying the

template file. If /var/adm/atria/config/rfm_shipping.conf exists, a note is printed in the

installation log advising you to compare the existing file to the template and make any necessary

changes.
9 - Implementing Requests for Mastership 149

On Windows, MultiSite installation creates the file

ccase-home-dir\config\services\rfm_shipping.template. If

ccase-home-dir\var\config\rfm_shipping.conf does not exist, the installation creates it by

copying the template file. If ccase-home-dir\var\config\rfm_shipping.conf exists, you must

compare the existing file to the template and make any necessary changes.

9.6 Displaying Mastership Request Settings

To display the mastership request setting for a replica, branch type, or branch, use the describe
command or the Mastership tab in the Properties Browser (Windows). These settings are also

displayed in the Request Mastership dialog box on Windows.

By default, the output from describe shows the mastership request setting. You can also use the

–fmt option and specify %[reqmaster]p to display only the mastership request setting. For

example:

➤ To display a replica’s mastership request setting:

cleartool describe replica:boston_hub@/vobs/doc
replica "boston_hub"

created 15-Aug-00.14:19:03 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: boston_hub@/vobs/doc
request for mastership: enabled
owner: susan
group: user
host: "minuteman"
identities: preserved
feature level: 2
connectivity: connected
Attributes:

FeatureLevel = 2

cleartool describe –fmt "%[reqmaster]p\n" replica:sanfran_hub@/vobs/dev
disabled
150 Administrator’s Guide: Rational ClearCase MultiSite

➤ To display a branch type’s mastership request setting:

cleartool describe brtype:main@/vobs/doc
branch type "main"
created 15-Aug-00.14:19:03 by Susan Goechs (susan.user@minuteman)
"Predefined branch type used to represent the main branch of elements."
master replica: boston_hub@/vobs/doc
request for mastership: allowed for branch type
request for mastership: allowed for all instances
...

cleartool describe –fmt "%[reqmaster]p\n" brtype:boston_main@/vobs/dev
denied for all instances

➤ To display a branch’s mastership request setting:

cleartool describe /vobs/doc/admin/setup.doc@@/main
branch "/vobs/doc/admin/setup.doc@@/main"
...

request for mastership: allowed
...

cleartool describe –fmt "%[reqmaster]p\n" /vobs/doc/planning/plans.doc@@/main
denied

9.7 Troubleshooting

This section describes commands you can use to troubleshoot failed mastership requests, and

lists error messages and their meanings.

Troubleshooting Commands

To determine which replica masters a branch or branch type:

➤ Use the cleartool describe command. For example:

cleartool describe –fmt "%[master]p\n" file1.txt@@\main
boston_hub@\dev
9 - Implementing Requests for Mastership 151

cleartool describe –fmt "%[master]p\n" brtype:main@/vobs/doc
boston_hub@/vobs/doc

➤ (Windows) Display properties of the branch or branch type and click the Mastership tab.

To determine whether a mastership request will succeed:

➤ Use reqmaster –list (see Status Messages on page 152 for descriptions of the output):

multitool reqmaster –nc –list file1.txt@@/main
multitool: Error: The following errors will be encountered
multitool: Error: file1.txt@@/main
Request Mastership remote "reqmaster" operation (host "taronga") would
fail:
You do not have permission to request mastership from the sibling replica.

➤ (Windows) In the Request Mastership dialog box, click Preview Request for Mastership.

To list the event history of a branch or branch type and determine who has requested its

mastership, use the lshistory –minor –fmt command:

cleartool lshistory –min –fmt "%n\t%o\n%c" file.fm@@/main
file.fm@@/main chmaster
Reqmaster changed master replica from "boston_hub" to "buenosaires".
Requester: user "PURPLEDOC\fangio" in domain "PURPLEDOC" on host "mardelplata"
file.fm@@/main chmaster
Reqmaster changed master replica from "tokyo" to "boston_hub".
Requester: user "PURPLEDOC\susan" in domain "PURPLEDOC" on host "minuteman"
file.fm@@/main chmaster
Reqmaster changed master replica from "bangalore" to "tokyo".
Requester: user "PURPLEDOC\masako" in domain "PURPLEDOC" on host "shinjuku"
file.fm@@/main chmaster
Reqmaster changed master replica from "sanfran_hub" to "bangalore".
Requester: user "PURPLEDOC\kumar" in domain "PURPLEDOC" on host "ramohalli"
...

cleartool lshistory –min –fmt "%n\t%o\n%c" brtype:main@/vobs/doc

Status Messages

Table 12 describes error messages you may see when you enable or disable requests at the replica

level, work with the ACL, and allow or deny requests at the branch type or branch level. Table 13

describes error messages associated with mastership requests.
152 Administrator’s Guide: Rational ClearCase MultiSite

Errors that occur during the mastership request process, including errors that occur during the

synchronization export, are written to the msadm log file. To view it, use the cleartool getlog
command or the ClearCase Administration Console (Windows).

Table 12 Error Messages from Mastership Request Management Operations (Part 1 of 2)

Message Meaning of message and action to take

Could not check Request for
Mastership permissions.

The process that checks the ACL could not determine whether you have

read or write permissions on the ACL. Check the msadm and albd log files

on the client and server hosts and try the command again later.

Could not edit Request
Mastership ACL.

You do not have permission to edit the ACL.

To edit the ACL, you must be VOB owner, root (UNIX), a member of the

ClearCase administrators group (Windows), or have write permission on

the ACL.

Could not get Request
Mastership ACL.

Your client computer could not retrieve the ACL from the VOB server host.

There may be a network connection problem. Check the msadm and albd
log files on the client and server hosts and try the command again later.

Could not resolve object
' object-identifier'.

The command could not find the object. Check the spelling of the object

selector. In a dynamic view context, mount the VOB and try the command

again.

Object must be a branch or
branch type.

Specify a branch or branch type.

Examples of branch specifications:

/vobs/dev/acc.c@@/main (UNIX)

\doc\stage.pl@@\main\debug (Windows)

Examples of branch type specifications:

brtype:main
brtype:boston_main@/vobs/dev (UNIX)

brtype:v1.0_bugfix@\tests (Windows)

Request for mastership ACL
operations on multiple
replicas are not allowed.

Specify only one VOB selector.

The specified selector must
be a VOB selector.

Specify a VOB selector. For example:

vob:/vobs/dev (UNIX)

vob:\tests (Windows)Request for mastership ACL
operations require a
VOB-selector argument.
9 - Implementing Requests for Mastership 153

The VOB family feature level
is too low to enable
requests for mastership.

The VOB family feature level is less than 2.

If all replicas in the VOB family are at feature level 2 or greater, raise the

family feature level.

If any replica in the VOB family has a feature level less than 2, ask the

administrator of that replica to upgrade to a newer version of Rational

ClearCase (if necessary), raise the feature level of the replica, and send an

update packet to the sibling replicas. Raise the family feature level.

This replica does not master
its replica object.

A replica must be self-mastering for you to enable requests for mastership

in that replica. See Transferring Mastership of a Replica Object on page 128.

This replica does not master
the branch.

For you to allow or deny mastership requests for a branch, your current

replica must master the branch.

Determine which replica masters the branch and ask the administrator of

the replica to change mastership of the branch to your replica.

This replica does not master
the branch type.

For you to allow or deny mastership requests for a branch type, your

current replica must master the branch type.

Determine which replica masters the branch type and ask the

administrator of the replica to change mastership of the branch type to

your replica.

You cannot specify
-instances with the -enable
option.

To enable requests at the replica level, use the –enable option and specify

a VOB selector. To deny or allow requests for all instances of a branch type,

use the –deny or –allow option with the –instances option and specify a

branch type selector.

Table 12 Error Messages from Mastership Request Management Operations (Part 2 of 2)

Message Meaning of message and action to take
154 Administrator’s Guide: Rational ClearCase MultiSite

Table 13 Error Messages from Mastership Requests (Part 1 of 2)

Message Meaning of message and action to take

An error at the sibling
replica prevented the
request for mastership.

The error cannot be specified. Try the request again later. If the request

continues to fail, ask the administrator of the master replica to check the

ClearCase and MultiSite log files.

At least one checkout
prevents the request.

There is a blocking checkout on the branch being requested or on an

instance of the branch type being requested. Try the request again later. If

the request continues to fail, ask the user at the sibling replica to check in

the element.

Could not resolve object
' object-identifier'.

The command could not find the object. Check the spelling of the object

selector.

Locks at the sibling replica
prevented the request for
mastership.

A request for mastership fails if the branch or branch type is locked at the

master replica. Ask the administrator of the master replica to unlock the

branch or branch type.

Requests are denied for all
objects mastered by the
sibling replica.

Mastership requests are not enabled for the replica on host hostname. Ask

the administrator of the master replica of the branch or branch type to

enable mastership requests at the replica level.

Requests are denied for all
objects of the given type.

Mastership requests are denied for all instances of the branch type. Ask the

administrator of the master replica of the branch to use reqmaster –allow
–instances or the Properties Browser (Windows) to allow requests for all

instances.

Requests are denied for the
object.

Mastership requests are denied for the branch or branch type. Ask the

administrator of the master replica to use reqmaster –allow or the

Properties Browser (Windows) to allow requests for the branch or branch

type.

Requests for mastership can
be made only for branches
and branch types.

The user must specify a branch or branch type in the reqmaster command.

Examples of branch specifications:

/vobs/dev/acc.c@@/main (UNIX)

\doc\stage.pl@@\main\debug (Windows)

Examples of branch type specifications:

brtype:main
brtype:boston_main@/vobs/dev (UNIX)

brtype:v1.0_bugfix@\tests (Windows)

The object is not a branch
or a branch type.
9 - Implementing Requests for Mastership 155

The object is already
mastered by replica
' replica-selector'.

The user’s current replica already masters the requested object.

The object was not found at
the sibling replica. This
may indicate that the
replicas are not in sync.

The user’s current replica has more up-to-date information than other

replicas in the VOB family. Ask the administrator of the current replica to

do both of the following things:

➤ Verify that no update packets are waiting to be imported at other rep-

licas in the VOB family.

➤ Determine whether update packets must be sent more frequently. (Fre-

quent exchange of packets means that replicas have up-to-date infor-

mation about the state of other replicas.)

The sibling replica does not
master the object.

The user’s current replica has out-of-date information about the

mastership of the object. Ask the administrator of the current replica to do

both of the following things:

➤ Verify that no update packets are waiting to be imported at your cur-

rent replica or the sibling replica.

➤ Send update packets more frequently. (Frequent exchange of packets

means that replicas have up-to-date information about the state of

other replicas.)

You do not have permission
to request mastership from
the sibling replica.

The user requesting mastership is not included on the replica’s access

control list. Ask the administrator of the sibling replica to use reqmaster
–acl –get to display the access control list and check the following things:

➤ Spelling of user and domain names

➤ All variants of the domain name are included

➤ User’s access level

Table 13 Error Messages from Mastership Requests (Part 2 of 2)

Message Meaning of message and action to take
156 Administrator’s Guide: Rational ClearCase MultiSite

9.8 Serial Development Scenario

This section describes an example of serial development using requests for mastership.

Planning the Implementation

The company PurpleDoc develops documentation at three sites. There are two VOB families:

➤ /vobs/doc contains binary files. This VOB has three replicas: boston_hub, tokyo, and

sanfran_hub.

The writers working in /vobs/doc use serial development because the files are in binary

format. However, a team of writers at the Boston site needs control of a certain set of files at

all times.

➤ /vobs/html contains html files and scripts. This VOB has three replicas: boston_hub, tokyo,

and sanfran_hub.

The writers working on HTML files in /vobs/html use site-specific branch types:

boston_main, tokyo_main, and sanfran_main. Writers at a particular site cannot use branch

types mastered by the other sites.

The tool developers working on scripts use the main branch. Because the scripts can be

merged, the developers can use nonmastered checkouts to do their work.

Setting Up Access Controls

The administrators and project managers at the Boston, San Francisco, and Tokyo sites make the

following decisions:

➤ Writers are allowed to request mastership of all branches in /vobs/doc, except for the

branches plans.doc@@/main, schedule.doc@@/main, and roadmap.doc@@/main.

➤ Writers are not allowed to request mastership of any branches of type boston_main,

tokyo_main, or sanfran_main in /vobs/html.

➤ Tool developers are allowed to request mastership of all branches of type main in

/vobs/html.
9 - Implementing Requests for Mastership 157

Each administrator completes the following steps on the replica’s VOB server host. (This

example takes place at the Boston site.)

1. Add writers at other sites to the ACL for /vobs/doc.

a. Place the following lines in the file /tmp/doc_acl:

b. Use the file to set the replica’s ACL:

2. Add tool developers at other sites to the ACL for /vobs/html.

a. Place the following lines in the file /tmp/html_acl:

b. Use the file to set the replica’s ACL:

NOTE: After you set the ACL, you can delete the temporary ACL files you created.

3. Deny mastership requests for specific branches and branch types:

multitool reqmaster –deny /vobs/doc/planning/plans.doc@@/main \
/vobs/doc/planning/schedule.doc@@/main /vobs/doc/planning/roadmap.doc@@/main

multitool reqmaster –deny –instances brtype:boston_main@/vobs/html

multitool reqmaster –deny brtype:boston_main@/vobs/html

Replica boston_hub@/vobs/doc

Request for Mastership ACL:

User:boston.purpledoc.com/msadm Full

User:tokyo.purpledoc.com/masako Change

User:tokyo.purpledoc.com/sato Change

User:tokyo.purpledoc.com/ito Change

User:sf.purpledoc/jcole Change

User:sf.purpledoc/marni Change

User:sf.purpledoc/david Change

multitool reqmaster –acl –set /tmp/doc_acl vob:/vobs/doc

Replica boston_hub@/vobs/html

Request for Mastership ACL:

User:boston.purpledoc.com/ccadmin Full

User:tokyo.purpledoc.com/masako Change

User:sf.purpledoc/david Change

multitool reqmaster –acl –set /tmp/html_acl vob:/vobs/html
158 Administrator’s Guide: Rational ClearCase MultiSite

4. Enable requests for mastership at the replica level.

multitool reqmaster –enable vob:/vobs/doc vob:/vobs/html

Writing Config Specs

In this scenario, the writers use the config specs listed below. Each location has rules for creating

site-specific branches in /vobs/html and selecting the latest version on that branch. The

/main/LATEST rule is used in all the config specs for development in /vobs/doc and all other

VOBs.

Boston

element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/boston_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch boston_main
element * /main/LATEST

San Francisco

element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/sanfran_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch sanfran_main
element * /main/LATEST

Tokyo

element * CHECKEDOUT
element /vobs/html/scripts/... /main/LATEST
element /vobs/html/files/... /main/tokyo_main/LATEST
element /vobs/html/files/... /main/LATEST -mkbranch tokyo_main
element * /main/LATEST
9 - Implementing Requests for Mastership 159

Requesting Mastership

The following sections describe how the writers use mastership requests to do their work.

Serial Development of a File That Cannot Be Merged

1. Masako, in Tokyo, tries to check out the file \doc\ref\update.fm, but the checkout fails

because the Tokyo replica doesn’t master the main branch:

cleartool checkout –c "new command options" \doc\ref\update.fm
cleartool: Error: Unable to perform operation "checkout" in replica
"tokyo" of VOB "\doc".
cleartool: Error: Master replica of branch "\main" is "boston_hub".
cleartool: Error: Unable to check out "\doc\ref\update.fm".

2. She requests mastership of branch \doc\ref\update.fm@@\main:

cleartool reqmaster –c "Tokyo needs mastership" \doc\ref\update.fm@@\main

3. Periodically, she retries the checkout or displays properties of the branch to determine

whether mastership has been received.

cleartool checkout –c "new command options" \doc\ref\update.fm
cleartool: Error: Unable to perform operation "checkout" in replica
"tokyo" of VOB "\doc".
cleartool: Error: Master replica of branch "\main" is "boston_hub".
cleartool: Error: Unable to check out "\doc\ref\update.fm".

After mastership is received at her replica, the describe command shows that her replica

masters the branch and her checkout succeeds:

cleartool describe –fmt "%[master]p\n" \doc\ref\update.fm@@\main
tokyo@\doc

cleartool checkout –c "new command options" \doc\ref\update.fm
Checked out "\doc\ref\update.fm" from version "\main\30".
160 Administrator’s Guide: Rational ClearCase MultiSite

Serial Development of a File That Can Be Merged

1. John, in San Francisco, needs to change an HTML script. He can’t check out the file using a

reserved checkout because the branch is mastered by the Boston replica:

cleartool checkout –c "option to suppress status msgs" /vobs/html/scripts/conv_fm.pl
cleartool: Error: Unable to perform operation "checkout" in replica
"sanfran_hub" of VOB "/vobs/html".
cleartool: Error: Master replica of branch "/main" is "boston_hub".
cleartool: Error: Unable to check out "/vobs/html/scripts/conv_fm.pl".

2. He requests mastership of the branch:

cleartool reqmaster –c "SF: add new option" /vobs/html/scripts/conv_fm.pl@@/main

3. He checks out the file with the –unreserved and –nmaster options and proceeds to edit the

file:

cleartool checkout –c "option to suppress status msgs" –unreserved \
–nmaster /vobs/html/scripts/conv_fm.pl
Checked out "/vobs/html/scripts/conf_fm.pl" from version "/main/15".

4. Until mastership is received at the San Francisco replica, he cannot check in his changes:

cleartool checkin –nc conv_fm.pl
cleartool: Error: Unable to perform operation "checkin" in replica
"sanfran_hub" of VOB "/vobs/html".
cleartool: Error: Master replica of branch "/main" is "boston_hub".
cleartool: Error: Unable to check in "conv_fm.pl".

5. When mastership is received at the San Francisco replica, he attempts to check in the file, but

finds that he must perform a merge:

cleartool checkin –nc conv_fm.pl
cleartool: Error: The most recent version on branch "/main" is not the
predecessor of this version.
cleartool: Error: Unable to check in "conv_fm.pl".
9 - Implementing Requests for Mastership 161

6. He performs the merge, and checks in the file:

cleartool merge –to conv_fm.pl –c "merging from LATEST" –version /main/LATEST

<<< file 1: /vobs/html/conv_fm.pl@@/main/15
>>> file 2: /vobs/html/conv_fm.pl@@/main/16
>>> file 3: conv_fm.pl

. . .
Moved contributor "conv_fm.pl" to "conv_fm.pl.contrib".
Output of merge is in "conv_fm.pl".
Recorded merge of "conv_fm.pl".

cleartool checkin –nc conv_fm.pl
Checked in "conv_fm.pl" version "/main/17".
162 Administrator’s Guide: Rational ClearCase MultiSite

1010 Troubleshooting MultiSite
Operations

This chapter describes common situations in which running a MultiSite command produces an

unexpected result, sometimes accompanied by a warning or error message. The situations fall

into these categories:

➤ Expected conditions occur because certain inconsistent changes at different replicas cannot

be avoided. In many cases, a MultiSite operation resolves the inconsistency, so you need not

take any action.

➤ Recoverable errors are user errors, hardware glitches, and other problems that you resolve

by performing a recovery procedure.

➤ Serious errors are problems that may require assistance from Rational Technical Support.

The organization of the descriptions follows the general MultiSite data flow: from replica

creation through the phases of replica synchronization—export, transport, and import. This

chapter also describes replica restoration and replacement.

For information about changing mastership, see Chapter 8, Managing Mastership. For

information about mastership request errors, see Chapter 9, Implementing Requests for Mastership.
10 - Troubleshooting MultiSite Operations 163

10.1 Troubleshooting Tips

Use the following files and commands to help diagnose MultiSite problems:

➤ Log files. To view log files, use the cleartool getlog command or the ClearCase

Administration Console (Windows).

➣ MultiSite log files

➣ ClearCase log files. If ClearCase problems affect MultiSite operation (for example, a

MultiSite operation fails when the ClearCase db_server cannot process the VOB

database), useful information appears in these log files.

➤ Make sure you install the latest ClearCase and MultiSite patches.

➤ Most MultiSite commands do not require a view context or a mounted VOB replica. If a

command such as syncreplica –import fails, you can produce better diagnostics by

following the steps below.

On UNIX:

a. Set a dynamic view or change to a directory within a snapshot view.

b. Mount the VOB replica (dynamic view) or load a single file in the VOB (snapshot view).

c. Change into a directory in the replica. If you used a snapshot view, this must be the

directory containing the file you loaded.

d. Enter the command again.

On Windows:

a. Change to a directory within a snapshot view or to a view drive.

b. Mount the VOB replica (dynamic view) or load a single file in the VOB (snapshot view).

Export/import

problems

Files in directory /var/adm/atria/log/sync_logs (UNIX) or

ccase-home-dir\var\log (Windows)

Transport problems shipping
Mastership request

problems

msadm

Other errors Command window

Event Viewer (Windows)
164 Administrator’s Guide: Rational ClearCase MultiSite

c. Change into a directory below the root directory. If you used a snapshot view, this must

be the directory containing the file you loaded.

d. Enter the command again.

➤ The commands listed below provide valuable information, especially if you are sending

data to Rational Technical Support:

multitool –version
multitool lsreplica
multitool lsepoch
uname –a (UNIX)

cleartool –version

On Windows, look for applicable messages in the Event Viewer’s application log and system

log, and in the ClearCase MVFS log files (c:\mvfslogs).

10.2 Replica-Creation Problems

Problems with replica creation can occur during the export phase or the import phase.

Export Phase

If the mkreplica –export command finds that a replica with the specified name exists in the VOB

family (Replica replica-name already exists), select another name for the new replica, and

reenter the mkreplica –export command.

If mkreplica –export –fship fails while it is transporting the packet, it does not remove the new

replica’s replica object at the creating site. To complete the replica creation, use shipping_server
to transfer the replica-creation packet.
10 - Troubleshooting MultiSite Operations 165

Import Phase

A recoverable error occurs if the mkreplica –import command detects a conflict at the ClearCase

registry level—an entry exists in the VOB object registry or in the tags registry:

Replica replica-name already exists

Conflict in VOB Object Registry

A conflict in the registry can occur if a mkreplica –import commands fails and removes the VOB

storage directory but not the registry entry. Verify that cleartool lsvob does not report any VOB

storage directory at the location you specified with the –vob option. In this case, the VOB object
registry contains an entry with no corresponding VOB-tag. For example:

cleartool lsvob –storage /net/goldengate/vobstg/dev.vbs
cleartool: Error: Unable to access "/net/goldengate/vobstg/dev.vbs": No such
file or directory.
cleartool: Error: Versioned object base not found:
"/net/goldengate/vobstg/dev.vbs".
cleartool: Error: No vob tags found for vob "/net/goldengate/vobstg/dev.vbs".

Restore the registry to a consistent state by following these steps:

1. In the VOB object registry file, find the incorrect entry for the VOB storage directory

pathname you specified. This file is located on the network’s registry server host in

/var/adm/atria/rgy/vob_object on UNIX or ccase-home-dir\var\rgy\vob_object on

Windows.

2. Using the UUID in this entry, enter a cleartool unregister –vob –uuid command to remove

the incorrect entry.

CAUTION: Do not edit the information in the registry file directly.

3. With the registry restored to a consistent state, reenter the mkreplica –import command.

4. After the mkreplica command succeeds, delete the replica-creation packet from disk storage

(if appropriate).
166 Administrator’s Guide: Rational ClearCase MultiSite

Conflict in VOB-Tag Registry

mkreplica –import may be able to create and register the VOB storage directory, but may find

that the specified VOB-tag is already in use. In this case, create another VOB-tag for the new VOB

storage directory with a cleartool mktag command or with the ClearCase Administration

Console (available on Windows).

You do not have to reenter the mkreplica –import command in this case. You can delete the

replica-creation packet from disk storage (if appropriate).

10.3 Synchronization Export Problems

This section describes problems that can occur during the export phase of synchronization.

To list the exports from your current replica to a sibling replica, use the following command:

cleartool lshistory replica:sibling-replica-name@vob-selector

For example, to list exports from your current replica in VOB family /vobs/dev to the replica

sanfran_hub:

cleartool lshistory replica:sanfran_hub@/vobs/dev
12-Jul.16:13 root export sync from replica "boston_hub" to replica
"sanfran_hub"

"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=149 sanfran_hub=115"

29-Jun.16:19 smg change epoch of replica "sanfran_hub"
"Changed epoch row for replica
Old row was: boston_hub=152 sanfran_hub=115
New row is: boston_hub=149 sanfran_hub=115
epoch row set by special connected epoch tool."

29-Jun.10:12 smg export sync from replica "boston_hub" to replica
"sanfran_hub"

"Exported synchronization information for replica "sanfran_hub".
Row at export was: boston_hub=149 sanfran_hub=115"

...
10 - Troubleshooting MultiSite Operations 167

Cannot Find Oplog

syncreplica –export can fail with the following warning message:

Can not find oplog from replica replica-name with id oplog-ID
Gap in oplog entries may indicate missing oplog entries

(For more information on oplog entries, see VOB Operations and the Oplog on page 24 and

Scrubbing Parameters for VOB Replicas on page 47.)

This error occurs when the sending replica’s epoch number matrix does not match its set of oplog

entries. For example:

➤ Before sending an update from sydney to buenosaires, syncreplica checks the epoch

number matrix for sydney. It determines that the last sydney operation sent to buenosaires
was 3620.

➤ syncreplica finds that oplog scrubbing in the sydney database has removed some of the

operations that follow 3620. The earliest sydney operation remaining in the oplog is 5755.

This discrepancy may be an expected condition. For example, when a VOB family changes its

update topology, hosts that have not communicated with each other in the past start exchanging

update packets. Synchronizing two replicas (syncreplica –export followed by syncreplica
–import) updates epoch number matrix rows for the sending and receiving replicas, but it does

not revise the row for any other replica. If two replicas rarely (or never) send updates to each

other directly, the relevant rows in their epoch number matrices are out of date (possibly

consisting of all zeros). This is not a problem, as long as the replicas receive operations indirectly,

for example, through a hub replica.

In this case, you must inform sydney about the true state of buenosaires, information that it has

not received through the standard synchronization-update mechanism. This information

enables sydney to determine which oplog entries must be sent to buenosaires.

If the sites have an IP connection, use the procedure in Sites Have IP Connection. If the sites do not

have an IP connection, use the procedure in Sites Do Not Have IP Connection.

Sites Have IP Connection

At sydney, use the chepoch –actual command to contact buenosaires, retrieve its actual state,

and reset the epoch row for buenosaires.

multitool chepoch –actual replica:buenosaires@/vobs/tests
168 Administrator’s Guide: Rational ClearCase MultiSite

Sites Do Not Have IP Connection

Proceed as follows:

1. At buenosaires, use the lshistory command to determine when the last update packet was

processed successfully.

cleartool lshistory replica:buenosaires@/vobs/tests

01-Sep.01:00 garyf import sync from replica “sydney” to replica
“buenosaires”
“Imported synchronization information from replica “sydney”.
Row at import was: buenosaires=8 sydney=3 boston_hub=0”
01-Aug.07:05 garyf import sync from replica “boston_hub” to replica
“buenosaires”
“Imported synchronization information from replica “boston_hub”.
Row at import was: buenosaires=2 boston_hub=0”
01-Jul.15:55 garyf create replica “buenosaires”

2. At sydney, use this time in a recoverpacket command to reset the epoch row for

buenosaires. Assume that the sydney site is thirteen hours ahead of the buenosaires site.

multitool recoverpacket –since 01-Sep.14:00 buenosaires

If this command succeeds, proceed to Step #3.

If this command fails:

a. At buenosaires (destination site), run lsepoch to determine the actual state of

buenosaires:

multitool lsepoch buenosaires@/vobs/tests

b. Send the lsepoch command output back to the sending site, where the administrator of

sydney uses this data in a chepoch command to inform sydney about the actual state of

buenosaires.

cd /vobs/dev
multitool chepoch buenosaires
Enter specifications for epochs to change in row "buenosaires" (one per

line)
<output of lsepoch command>
.

10 - Troubleshooting MultiSite Operations 169

3. At sydney, enter the original syncreplica –export command.

➣ If the command fails, buenosaires is in jeopardy. Have other replicas in the VOB family

perform Step #1 through Step #3, taking the role of sydney to exchange update packets

with buenosaires. The hope is that some other replica has not yet scrubbed its copies of

the missing oplog entries. If no other replica has the missing oplog entries, you must

create a new replica. See Replacing an Existing Replica on page 192.

➣ If the command succeeds and the packet is imported successfully at buenosaires,

buenosaires is up to date.

NOTE: Have all sites review their oplog scrubbing procedures. You may have to change the oplog
–keep settings in one or more vob_scrubber_params files. See Scrubbing Parameters for VOB
Replicas on page 47.

Oplog Gap Detected During Creation of Update Packet

syncreplica –export can fail with the following warning message:

Gap in oplog detected for replica replica-name.
Wanted oplog id: oplog-ID. Got oplog id: oplog-ID.

This error message can indicate a serious error, involving an unrecoverable data loss. If the

procedures described in Cannot Find Oplog on page 168 do not work, contact Rational Technical

Support.

Export Failure During Version Construction

An export operation can fail with a message like the following:

multitool: Error: Type manager "z_text_file_delta" failed construct_version
operation.
multitool: Error: Could not get statistics of the version data file for this
operation.
multitool: Error: Synchronization update terminated prematurely due to error
-- aborting.

This situation can occur when an export operation tries to access an element that is being

modified by a user. In this case, retry the export.
170 Administrator’s Guide: Rational ClearCase MultiSite

Packets Accumulate in Outgoing Storage Bay

Problems with packet delivery are recoverable errors. In many cases, the MultiSite

automatic-retry capability recovers from errors.

A replica-creation or update packet submitted to the store-and-forward facility for transport to one

or more other hosts is accompanied by a shipping order file. (A logical packet can include multiple

physical packets, each with its own shipping order.) The shipping order typically has an

expiration time, determined by one of the following:

➤ A date-time specified with the –pexpire option in the syncreplica or mkreplica command

that generated the packet (or the mkorder command that submits an arbitrary file to the

store-and-forward facility)

➤ On UNIX, the EXPIRATION value in the store-and-forward configuration file

(shipping.conf) on the sending host

➤ On Windows, the Packet Expiration value specified in the MultiSite Control Panel on the

sending host

Any number of delivery attempts may take place before the shipping order expires.

Replica Cannot Update Itself

You can receive the following message during export if you specify the sending replica as a

destination:

A replica cannot update itself

If the sending replica is the only replica you specified, the syncreplica –export command fails. If

you specified other replicas, this message is printed as a warning, and the syncreplica –export
command continues its processing.
10 - Troubleshooting MultiSite Operations 171

10.4 Transport Problems

This section describes problems that can occur during the transport phase of synchronization.

Error Messages

The messages in Table 14 are generated by the mkorder, mkreplica, shipping_server, and

syncreplica commands.

Table 14 Shipping Error Messages (Part 1 of 2)

Error message Meaning

cannot find a storage bay for class
class-name: no such bay specified

No storage bay is assigned to storage class

class-name in the shipping.conf file or the

MultiSite Control Panel.

cannot find a storage bay for class
class-name: all applicable bays are
either inaccessible or do not contain
byte-count free bytes

Lack of permission or lack of free disk space

prevents use of storage bays for class

class-name.

cannot process potential order file
shipping-order-pname: user username (UID
uid) is not the owner (UNIX)

shipping_server is not running as root, and

username does not own the shipping order

file.

cyclic delivery route detected to
host hostname (via next-hop-hostname) for
order shipping-order-pname

Sending the file to the next-hop-hostname
specified in a ROUTE entry in the

shipping.conf file or in the Routing
Information section in the MultiSite
Control Panel yields a circular delivery

route.

file file-pname does not contain a valid
shipping order

shipping_server attempted to process a file

that is not a shipping order.

for security reasons, shipping order
shipping-order-pname cannot be processed:
data file file-pname must be in the same
directory as the shipping order

A shipping order and its associated packet

file must be in the same directory. This

security feature prevents transmission of

arbitrary files.
172 Administrator’s Guide: Rational ClearCase MultiSite

Invalid Destination

The local host’s hosts file, hosts NIS map, or Domain Name Service must list one of the following

hosts:

➤ Destination host

➤ Next-hop host corresponding to the destination host (on UNIX, defined in a ROUTE entry

in the host’s shipping.conf file; on Windows, defined in the Routing Information section in

the host’s MultiSite Control Panel.)

NOTE: If hosts in your network are known only by their IP addresses, you can use the IP

addresses instead of host names.

In the absence of such entries, shipping_server fails, because it cannot determine where to

deliver the packet. In this case, it writes error messages to its log file.

giving up trying to return order
shipping-order-pname to host hostname
(original data file was file-pname)

shipping_server cannot return a packet or

other file to its original sending host (for

example, because its shipping order

expired) and has deleted the shipping order

and data file.

ignoring shipping bay storage-bay-pname:
reason

The storage bay directory specified in the

shipping.conf file or MultiSite Control
Panel is inaccessible, doesn’t exist, and so

on.

shipping order shipping-order-pname not
found (perhaps previously sent?)

During receipt handler processing, the

shipping_server cannot find the shipping

order of a packet that is to be forwarded to

another host. A shipping_server –poll
invocation may have sent the packet

already. (If the packet is to be applied to

replicas on the host, the imports occur

before the packet is forwarded. This leaves a

window of opportunity for a scheduled

polling operation to send the packet.)

Table 14 Shipping Error Messages (Part 2 of 2)
10 - Troubleshooting MultiSite Operations 173

If the destination host name was misspelled, use the mkorder command to create a new shipping

order with the correct host name. If a host name is misspelled in a mkreplica –export command,

the incorrect host name is recorded in the VOB database. Verify the error with lsreplica –long,

and correct the spelling with chreplica.

In other cases, you may have to revise the host’s database of remote hosts. The sending host must

be able to communicate with the receiving hosts through TCP/IP channels. Use the rcp
command on the sending host to copy a file to the receiving host. If it fails, you have a setup or

networking problem with your host. If the command succeeds, contact Rational Technical

Support.

Delivery Fails

Each time shipping_server cannot deliver a packet to a valid destination host, it logs error

messages:

➤ (On UNIX) In file /var/adm/atria/log/shipping_server_log and writes a message to the

terminal device, if there is one.

➤ (On Windows) In the Windows event viewer. It writes log messages to file

ccase-home-dir\var\log\shipping_server_log.

If the problem is temporary (remote host is down, network connections are down, and so on), a

subsequent invocation of shipping_server –poll will transmit the packet successfully. If the

problem is not temporary, the shipping order may expire eventually.

Shipping Server Fails to Start or Connection Is Refused

If the shipping_server at the receiving site does not start or the connection is refused, check the

albd_server log on the receiving host for an explanation of the failure.

A syntax error in the shipping.conf file on UNIX can cause the connection to be refused. For

example, if there is an incorrect e-mail address in the file, the albd_server log displays an error

like this:

Error: shipping_server(9951): Error: syntax error in configuration file (line
60)
174 Administrator’s Guide: Rational ClearCase MultiSite

Shipping Order Expires

If the shipping_server finds that a shipping order has expired, it attempts to return the packet to

the originating host. Also, it sends a mail message to one or more administrators on the original

sending host, and sends another mail message when the packet is returned to the original

sending host. On Windows, if e-mail notification is not enabled, shipping_server writes a

message to the Windows event viewer and records the error in the

ccase-home-dir\var\log\shipping_server_log file.

Use the lspacket command to check the return bays on your host. The packet files may have been

returned by store-and-forward. If so, try again to deliver the packet:

➤ Fix the store-and-forward packet-delivery mechanism (for example, by fixing the network

connection). Then, use mkorder to create a new shipping order for each physical packet file

in the return bay.

➤ If you cannot fix the store-and-forward mechanism, deliver the packet by some other

means. For example, copy the packet file to a diskette, and mail the diskette to the remote

sites.

If the packet files are not in your host’s return bays, they may be in transit. Search for the files

immediately, because a packet that cannot be returned to its home host within 14 days is deleted.

10.5 Synchronization Import Problems

This section describes problems that can occur during the import phase of synchronization.

To list the imports at your current replica, use the following command:

cleartool lshistory replica:current-replica-name@vob-selector
10 - Troubleshooting MultiSite Operations 175

For example, to list imports at the replica boston_hub in VOB family /vobs/dev:

cleartool lshistory replica:boston_hub@/vobs/dev
25-Jun.11:46 smg import sync from replica "sanfran_hub" to replica
"boston_hub"

"Imported synchronization information from replica "sanfran_hub".
Row at import was: boston_hub=149 sanfran_hub=112"

10-Jun.12:36 smg import sync from replica "sanfran_hub" to replica
"boston_hub"

"Imported synchronization information from replica "sanfran_hub".
Row at import was: boston_hub=136 sanfran_hub=111"

10-Jun.12:01 smg import sync from replica "sanfran_hub" to replica
"boston_hub"

"Imported synchronization information from replica "sanfran_hub".
Row at import was: boston_hub=135 sanfran_hub=63"

Packets Accumulate in Incoming Storage Bay

A recoverable error occurs when an update packet is lost and is not applied at your site. These

are the symptoms:

➤ One or more replicas at your site are not being updated on their regular schedules.

➤ An lspacket command shows unprocessed packets accumulating in the storage bay. These

packets depend on the missing packet and cannot be processed.

Verify that a packet is missing and determine which operations are needed:

1. Enter a multitool syncreplica –import –receive command, which processes all incoming

packets in the storage bay in the correct order. If syncreplica refuses to process any of them,

a packet is missing.

2. Enter a syncreplica –import command that specifies the oldest packet in the storage bay:

multitool syncreplica –import packet-pathname
Sync. packet packet-pathname was not applied to VOB ...

- packet depends on changes not yet received
Packet requires changes up to 872; VOB has only 756 from replica:
sanfran_hub
Packet requires changes up to 605; VOB has only 500 from replica:
bangalore
176 Administrator’s Guide: Rational ClearCase MultiSite

In this example, one or more update packets are missing, containing operations 757–872

originally occurring at replica sanfran_hub and operations 501-605 from bangalore. In general,

a packet can contain operations from several replicas; the syncreplica –import command fails if

operations are missing from any replica.

Locate the missing packets. They may be on a magnetic tape that you forgot to process or in

packet files that were not processed because your store-and-forward configuration (the

shipping.conf file on UNIX; the MultiSite Control Panel on Windows) specifies the wrong

storage bay. If you locate the missing packets:

1. Process the missing packets by naming them in a syncreplica –import command. (Multiple

packet files are imported in the correct order, regardless of the order of the command-line

arguments.)

2. Process all the update packets that have accumulated in the storage bay by entering a single

syncreplica –import –receive command.

If you cannot locate the missing packets, go to Recovering from Lost Packets on page 182.

Packet is Not Applicable to Any Local VOB Replicas

Import can fail with the following message:

multitool: Error: Sync. packet pathname is not applicable to any local VOB
replicas

This error can occur when a replica has been moved and the hostname property has not been

updated with the chreplica command. To verify that the hostname property is wrong, enter the

following command:

cleartool describe –fmt "%[replica_host]p\n" replica:importing-replica-name@VOB-tag

For example:

cleartool describe –fmt "%[replica_host]p\n" replica:newyork@/vobs/tests
manhattan

If the hostname is incorrect, use the chreplica command to change it. At the master replica of the

importing replica, enter this command:

multitool chreplica –c "comment" –host new-host replica:importing-replica-name@VOB-tag
10 - Troubleshooting MultiSite Operations 177

For example:

multitool chreplica –c "change hostname" –host brooklyn replica:newyork@/vobs/tests
Updated replica information for "newyork".

Send an update packet to the other replicas in the VOB family.

Read from Input Stream Fails

If a syncreplica –import command fails with a message like this one, the packet is corrupted:

multitool: Error: Read from input stream failed: No such file or directory

Delete the packet and ask the administrator at the sending site to re-create the packet and send

it again (see Recovering from Lost Packets on page 182). Then import it.

Element Changes During Operation

If a syncreplica –import command fails with one of the following messages, restart the import:

Element changed during operation
Element changed during checkin

The messages report that multitool was trying to import an operation for an element while

another process (for example, a developer using cleartool) was operating on the same element.

If possible, restart the syncreplica –import from within a view. If it fails again, you see more

information about what element it is failing on, and you can look through output from the

lshistory command to try to find the conflict.
178 Administrator’s Guide: Rational ClearCase MultiSite

rmreplica Operation Cannot be Imported

Import of an rmreplica operation fails if the importing replica thinks that the removed replica

still masters objects. The import fails with an error like the following:

multitool: Error: There are still objects mastered by this replica.
multitool: Error: Unable to replay oplog entry 565632: error detected by
ClearCase subsystem.
565632:
12 op= rmreplica
13 replica_oid= 48abc01d.123456a7.b890.06:00:08:c4:73:84 (boston_hub.mstr)
14 oplog_id= 23456
15 op_time= 08/07/00 12:35:46 create_time= 08/07/00 12:35:46
16 event comment= "Destroyed replica "boston_hub".

This situation can occur if two VOB replica hosts do not have the same patch level or if a

ClearCase upgrade had problems.

You can use the lsmaster command to determine which objects are believed to be mastered by

the removed replica. In this example, the administrator at importing replica sanfran_hub uses

the lsmaster command to list the objects replica sanfran_hub believes to be mastered by replica

boston_hub:

multitool lsmaster –view admin_view boston_hub@/vobs/dev
master replica: boston_hub@/vobs/dev "label type" V2.0
master replica: boston_hub@/vobs/dev "label type" V1.1

In this example, the administrator at replica sanfran_hub uses the lsmaster command to contact

all replicas in the VOB family and list the objects they believe to be mastered by replica

boston_hub:

multitool lsmaster –view admin_view –inreplicas –all boston_hub@/vobs/dev
In replica "bangalore"
master replica: boston_hub@/vobs/dev "label type" V2.0
In replica "sanfran_hub"
master replica: boston_hub@/vobs/dev "label type" V2.0
master replica: boston_hub@/vobs/dev "label type" V1.1

To resolve this problem, contact Rational Technical Support.
10 - Troubleshooting MultiSite Operations 179

Replica Incarnation is Old

The following error can occur during packet import:

multitool: Error: Replica incarnation for "REPLICA_NAME" is old: old-timestamp
should be new-timestamp

The replica incarnation is the last time the replica was restored (with the restorereplica
command). The incarnation is set to 0 when the replica is created and remains 0 until a

restoration occurs.

Each replica keeps a record of the incarnation of each other replica in the VOB family. During

packet export, the incarnations of the target replicas are recorded in the packet. The syncreplica
–import command at the importing replica checks the incarnation in the packet. If the

incarnation in the packet is earlier than the importing replica’s own record of its incarnation, the

packet is not imported.

If the incarnations are different, the exporting replica does not have a record of the importing

replica undergoing restoration. This situation may occur for the following reasons:

➤ The update packet was created before the restoration information arrived at the exporting

replica.

➤ The restoration information was not sent to the exporting replica. For example, consider the

following synchronization setup:

Replicas A and B synchronize every day, Replicas B and C synchronize once a week, and

Replicas A and C synchronize once a month.

Replica A is restored from backup and the administrator runs restorereplica. Because

Replica A’s last synchronization was with Replica B, the administrator optimizes the process

to require an update packet only from Replica B. After the packet is received from Replica B,

the restoration is complete and Replica A resumes normal synchronization.

Because neither Replica A nor Replica B synchronized with Replica C during the restoration

process, Replica C does not have any information about the restoration, and its record of

Replica A’s incarnation is not updated.

The next time Replica C sends an export packet to Replica A, the incarnation in the packet is

earlier than Replica A’s actual incarnation, and the import fails.
180 Administrator’s Guide: Rational ClearCase MultiSite

To determine which reason applies to your situation:

1. At the exporting replica, display the incarnation time for the importing replica.

cleartool dump replica:name-of-importing-replica@VOB-tag

In the output, look for a line beginning with incarnation= . This line displays the

incarnation time. For example:

cleartool dump replica:boston_hub@/vobs/dev
...
incarnation=01-Apr-99.22:40:54UTC
...

2. Compare this value to the value in the import error message.

➣ If the values are the same after you adjust for time zone differences, the packet was

created before the exporting replica received the restoration information. Delete the

packet and follow the instructions in Recovering from Lost Packets on page 182.

➣ If the values are different, contact Rational Technical Support.

Miscellaneous Problems

Processing of an incoming replica-creation or update packet may fail because of these conditions:

➤ Disk partition is full.

➤ Receiving replica is locked.

➤ ClearCase or MultiSite licensing failure.

➤ Multiple imports occur simultaneously.

Make sure that multiple syncreplica –import commands do not run in the same replica

simultaneously. Check the timing of schedule tasks, and adjust them if necessary. (An invocation

of the sync_receive script fails if another sync_receive process is running.)

In such cases, fix the problem and reenter the syncreplica –import command.
10 - Troubleshooting MultiSite Operations 181

Recovering from Lost Packets

There are several circumstances in which a replica-creation or update packet is generated but is

never applied at one or more of its destinations:

➤ The packet is stored on media that are destroyed or are not readable at the destination host.

➤ A packet file is lost when a hard disk fails.

➤ The packet is intact, but cannot be applied because another packet has been lost. (See

Packets Accumulate in Incoming Storage Bay on page 176.)

Lost Replica-Creation Packet

To recover a lost replica-creation packet:

1. At the replica where the mkreplica –export command was entered, remove the new replica

with rmreplica.

2. Reenter the mkreplica command.

Lost Update Packet

The syncreplica –export command assumes successful delivery of the update packet it

generates. For example, when replica boston_hub sends an update to replica sanfran_hub, the

syncreplica command assumes that the operations originating at boston_hub are imported to

the sanfran_hub replica. For simplicity, this example does not reflect the fact that the update

packet can also contain operations that originated at other replicas in the VOB family.

However, if the packet is lost, this assumption is invalid, and boston_hub must reset its estimate

of the state of replica sanfran_hub. After this correction is made, the next update packet sent

from boston_hub to sanfran_hub contains the operations sanfran_hub needs.

To reset the epoch row, use one of the methods described here.

Method 1

1. At the sending site, use sync_export_list –update or chepoch –actual to set the epoch row to

match the actual state of the receiving replica. These commands contact the receiving replica

and retrieve its epoch row (the receiving replica’s record of its own state). The

sync_export_list –update command sends an update packet after it updates the epoch row

in the sending replica. The sending and receiving sites must have an IP connection.
182 Administrator’s Guide: Rational ClearCase MultiSite

For example, use one of the following commands:

/usr/atria/config/scheduler/tasks/sync_export_list –update –replicas
sanfran_hub@/vobs/dev

multitool chepoch –actual sanfran_hub@/vobs/dev
Entry for bangalore changed from: 985 to 950
Entry for boston_hub changed from: 1400 to 1300
Entry for sanfran_hub changed from: 2562 to 2000

Method 2

1. At the receiving site, use the lsepoch command to display the replica’s epoch number matrix:

multitool lsepoch sanfran_hub@/vobs/dev

2. Use this output in a chepoch command at the sending site:

multitool chepoch sanfran_hub bangalore=950 boston_hub=1300 sanfran_hub=2000
Change oplog ID in row "sanfran_hub", column "bangalore" to 950 [no] yes
Change oplog ID in row "sanfran_hub", column "boston_hub" to 1300 [no] yes
Change oplog ID in row "sanfran_hub", column "sanfran_hub" to 2000 [no]
yes
Epoch row successfully set.

Method 3

1. At the sending site, use lshistory to determine the epoch numbers when the packet was

generated:

cleartool lshistory –long replica:sanfran_hub
30-Jul.14:42:50 Susan Goechs (susan.user@minuteman)

export sync from replica “boston_hub” to replica “sanfran_hub”
“Exported synchronization information for replica “sanfran_hub”.
Row at export was: bangalore=950 boston_hub=1300 sanfran_hub=2000”

23-Jul.17:36:46 Susan Goechs (susan.user@minuteman)
export sync from replica “boston_hub” to replica “sanfran_hub”
“Exported synchronization information for replica “sanfran_hub”.
Row at export was: bangalore=900 boston_hub=800 sanfran_hub=1500”

...

For VOB replica " /vobs/dev ":

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=950 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1300 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=2000 (sanfran_hub)
10 - Troubleshooting MultiSite Operations 183

2. At the sending site, use this output in a chepoch command:

multitool chepoch sanfran_hub bangalore=950 boston_hub=1300 sanfran_hub=2000
Change oplog ID in row "sanfran_hub", column "bangalore" to 950 [no] yes
Change oplog ID in row "sanfran_hub", column "boston_hub" to 1300 [no] yes
Change oplog ID in row "sanfran_hub", column "sanfran_hub" to 2000 [no]
yes
Epoch row successfully set.

Method 4

1. At the site that failed to apply the lost packet, use the lshistory command to determine the

time of the last successful import of an update packet from the site that sent the lost packet.

GOLDENGATE>cleartool lshistory replica:sanfran_hub
01-Aug.07:08 jcole import sync from replica “boston_hub” to replica
“sanfran_hub”
“Imported synchronization information from replica “boston_hub”.
Row at import was: sanfran_hub=2000 boston_hub=1300 bangalore=950”
...

2. At the sending site, use this time in a recoverpacket command. recoverpacket looks through

epoch rows to find an event that occurred prior to the specified time. When it finds a

matching row, it resets the epoch row for the receiving site.

susan@minuteman% multitool recoverpacket –since 01-Aug.01:00 sanfran_hub

NOTE: With this method, you must adjust the time from the lshistory output for time zone

differences and the amount of time elapsed between export and import.

If there are no saved epoch rows for the receiving replica that are as old as the time specified, you

must use one of the chepoch procedures.

Inconsistent Changes to Replica

A recoverable error occurs if syncreplica –import detects that an incoming change is inconsistent

with another change that has already been applied to the replica.

NOTE: In some cases, an inconsistency is resolved by syncreplica –import. For example, a replica

receives an update that deletes an element, then receives an update from another replica that

creates a new version on a branch of that element. The create-version operation in the second

update is discarded because the element no longer exists.
184 Administrator’s Guide: Rational ClearCase MultiSite

Ownership Preservation

If two replicas are ownership-preserving, the OS-level permissions of their individual elements

are synchronized. However, synchronizing the VOB group lists of the replicas is a manual task

that you perform using cleartool protectvob –add_group.

syncreplica –import generates the following ownership-related error messages:

Can't create object with group that is not in the VOB's group list
Can’t change to a group that is not in the VOB’s group list

These messages indicate that the sending replica added a group to its VOB group list, created a

new element in that group or reassigned an existing element to that group, and sent the

ownership change to a replica whose VOB group list has not been updated.

These messages may also indicate that the sending replica and/or receiving replica were created

incorrectly as ownership-preserving.

If the replicas are intended to be ownership-preserving, follow these steps to recover from this

kind of error:

1. (If necessary) Set a view, change to a directory within the replica, and reenter the syncreplica
–import command. This produces diagnostics that include pathnames within VOB

directories. For example:

elem_fstat= ino: 0; type: 2; mode: 0444; uid: 1037; gid: 20
.
.

name_p= "aux_util.c"
nsdir_ver_oid= ed2549e2.97f411cd.b3c8.08:00:69:06:4d:f6
 (/vobs/dev/src@@/main/ev2/CHECKEDOUT.572)

These lines indicate that the element’s pathname in the sending replica is

/vobs/dev/src/aux_util.c. Note also that its group-ID (GID) is 20.

2. Use the cleartool protectvob command to add the new group to your replica’s VOB group

list:

cleartool protectvob –add_group 20 /vobstg/dev.vbs
10 - Troubleshooting MultiSite Operations 185

3. Reenter the syncreplica –import command.

NOTE: If the administrators at the sites of ownership-preserving replicas have not informed one

another of changes in the shared user/group namespace, you may need to adjust the password

and group databases before entering the protectvob command.

If one or both of the replicas should not be ownership-preserving, follow these steps:

1. Use the multitool chreplica command to change the receiving replica to

non-ownership-preserving.

multitool chreplica –npreserve boston_hub@/vobs/dev
Updated replica information for "boston_hub".

2. Import the packet.

multitool syncreplica –import –receive
Applied sync. packet
/usr/atria/shipping/ms_ship/incoming/sync_sanfran_hub_18-Jan-00.16.54.14_3
86_1 to VOB /net/minuteman/vobstg/dev.vbs

3. Change the status of the replicas.

➣ If the sending replica should be non-ownership-preserving, change it to

non-ownership-preserving.

➣ If you want to retain ownership preservation in the receiving replica, change it back to

ownership-preserving.

4. Export update packets from the sending and receiving replicas to all other replicas in the

VOB family.

To avoid this problem in the future, use the procedure described in the section Replica Permission
Strategy on page 40.

Object Mastership

An object mastered by one replica can depend on an object mastered by another replica. For

example, an element and one of its subbranches are dependent objects, but these objects can be

mastered by different replicas. As a result, certain kinds of inconsistent changes can be made at

different replicas. The inconsistency is detected by syncreplica –import, causing it to fail with a

recoverable error.
186 Administrator’s Guide: Rational ClearCase MultiSite

For example, if a type object is deleted in another replica, the replica at your site may refuse to

import this change because a trigger type in the replica at your site depends on the deleted type

object. During import, the following error message is displayed:

Can’t delete attribute type type-name because of references to it in trigger
type restriction lists

1. If the trigger at your site is useful only with the deleted type object, use cleartool rmtype
trtype:type-name to delete the trigger type. Otherwise, replace the trigger type (cleartool
mktrtype –replace) with a revised definition that does not depend on the deleted type object.

2. Reenter the syncreplica –import command.

Automatic Renaming of Type Objects and Replica Objects

The syncreplica –import command resolves naming conflicts among type objects or replica

objects created at two or more replicas. For example, a branch type object named v1.0_bugfix is

created at two different replicas. At some point, an invocation of syncreplica –import detects the

conflict. (This may occur at one of the replicas that created the branch types, or at some other

replica.)

syncreplica –import resolves the conflict by renaming the incoming object. In this example,

branch type v1.0_bugfix is renamed to boston_hub:v1.0_bugfix, indicating that replica

boston_hub is the master of the incoming type. syncreplica –import displays the following

message:

multitool: Warning: To avoid name conflict,
generated name "boston_hub:v1.0_bugfix" ...

Intervention is not required at this point unless branch types or replicas are renamed. (Renaming

of branch types affects the validity of config specs, and renaming of replicas may affect

synchronization scripts.) However, if you do not rename the objects, different replicas have

different names for the same object. In this example, the boston_hub replica calls a branch type

v1.0_bugfix, but at least one other replica calls the same type object boston_hub:v1.0_bugfix.

The various sites involved in such a conflict must coordinate the renaming of all the objects

involved, to guarantee that all objects have the same name in all replicas. Here is a general

procedure:

1. The administrators at the sites decide how to rename the objects.
10 - Troubleshooting MultiSite Operations 187

2. At the master replica of each type object or replica object, the administrator renames the type

object or replica object.

a. The Boston administrator renames the branch type that was created at the boston_hub
replica:

b. The San Francisco administrator renames the branch type that was created at the

sanfran_hub replica:

c. The Bangalore administrator renames the branch type that was created at the bangalore
replica:

3. All sites exchange update packets to propagate the name changes.

NOTE: The name that caused the original conflict can be reused. One replica (and only one)

can change the name to its original value:

cleartool rename brtype:boston_hub:v1.0_bugfix v1.0_bugfix

When this change is propagated to other replicas, it undoes any previous conflict-avoidance

name changes, for example, by renaming boston_hub:v1.0_bugfix to v1.0_bugfix. (The

propagation of this change must wait until after the other rename commands have been run

in the other replicas and propagated throughout the VOB family, to make the name

v1.0_bugfix available again.)

10.6 Running epoch_watchdog

If a VOB replica is restored improperly from backup, divergence can occur in the VOB family.

When you restore a replica from backup, its epoch row is rolled back. If you do not run the

restorereplica command on the replica before resuming development in the replica, divergence

can occur.

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-boston_hub

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-sanfran_hub

cleartool rename brtype:v1.0_bugfix v1.0_bugfix-bangalore
188 Administrator’s Guide: Rational ClearCase MultiSite

For example, oplogs 1-700 are created in a replica and exported to sibling replicas. The replica is

then restored from backup and its epoch number becomes 600 (operations 601-700 occurred after

the backup copy was created). If the administrator does not run the restorereplica command,

development resumes and new oplogs are created starting with ID 601. These oplogs have the

same ID as the oplogs that were exported to other replicas before the restoration, but the

operations themselves are different. The restored replica has diverged from the other replicas.

The epoch_watchdog script checks whether a VOB replica’s epoch numbers have rolled back

without a restorereplica command being run. We recommend that you run this script regularly

as a scheduled job on all replica server hosts. For example, the following job runs

epoch_watchdog every three hours for all VOBs on the host:

Job.Begin
Job.Id: 20
Job.Name: "epoch_watchdog"
Job.Description.Begin:
Run epoch_watchdog for each replicated VOB on this host.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.StartDate: 3-Sep-2001
Job.Schedule.FirstStartTime: 20:00:00
Job.Schedule.StartTimeRestartFrequency: 03:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 105
Job.Args: -all
Job.NotifyInfo.OnEvents: JobEndOKWithMsgs,JobEndFail
Job.NotifyInfo.Using: email
Job.NotifyInfo.Recipients: ms_admin

Job.End

This job uses the MultiSite Epoch Watchdog task, which is defined as follows:

UNIX task:

Task.Begin
Task.Id: 105
Task.Name: "MultiSite Epoch Watchdog"
Task.Pathname: epoch_watchdog

Task.End
10 - Troubleshooting MultiSite Operations 189

Windows task:

Task.Begin
Task.Id: 105
Task.Name: "MultiSite Epoch Watchdog"
Task.Pathname: epoch_watchdog.bat

Task.End

For more information about creating tasks and scheduling jobs, see the schedule reference page

in Command Reference and the Administrator’s Guide for Rational ClearCase.

10.7 Restoring and Replacing Replicas

Occasionally, a VOB storage directory is lost. This can occur because of a hardware failure (for

example, disk crash), a software failure (for example, OS-level file-system corruption), or a

human error (for example, an rm –fr or del command). If an unreplicated VOB storage directory

is lost, you can restore a recent copy from backup and resume development work. The changes

made between the time of the backup and the time of the failure are not recoverable.

Similarly, if you lose the storage directory of a replicated VOB (that is, the storage for the replica

used by developers at your site), you can restore a recent copy from backup. But matters are more

complicated:

➤ Some of the work done between the time of the backup and the time of the failure may be

recoverable. If some of the operations were sent to other replicas in update packets, these

operations must be retrieved and imported.

➤ The restored copy of the replica is out of date. You must make this replica consistent with

the other replicas in the VOB family before development can proceed at your site. Failure to

reestablish consistency can lead to irreparable damage.

Because this procedure involves substantial effort, it is intended for situations where serious

damage has occurred. (For example, the disk containing a replica is unusable.)

The method you use to restore the replica depends on how you back it up:

➤ If you lock your primary replica to back it up, you must restore it from the backup medium

and perform the restorereplica procedure. See Restoring a Replica from Backup.

➤ If you never lock your primary replica and rely solely on a replica at your site as backup,

you must replace the replica completely. See Replacing an Existing Replica on page 192.
190 Administrator’s Guide: Rational ClearCase MultiSite

Restoring a Replica from Backup

To restore a replica from backup:

1. Follow the procedure in the Administrator’s Guide for Rational ClearCase to load the backup

copy of the VOB storage directory.

2. As the VOB owner, root user (on UNIX) or a member of the ClearCase administrators group

(on Windows), run the special MultiSite command to restore the replica:

multitool restorereplica –invob vob-selector

This places a special lock on the VOB object, which is in addition to the ClearCase lock

created during the backup process. Between this point and the completion of Step #7, the

syncreplica –import command adjusts the ClearCase lock temporarily to permit application

of the update, then restores the full lock. During this time, only syncreplica –import can

modify the replica.

3. Verify that all update packets have been processed at their destination replicas.

4. (Applicable only if the replica you’re restoring was used to create one or more new replicas

between the time of the backup and the time of the failure, and the other replicas in the

family do not have information about the new replicas) The new replicas are unknown to

your restored replica and all other replicas in the family, and lsreplica does not list them. If

this is the case:

a. At each new replica, set the estimated states of the siblings to their actual states. (Use

chepoch –actual or lsepoch/chepoch. See Recovering from Lost Packets on page 182.)

b. At each new replica, export update packets to all other replicas in the family except the

restored replica.

c. Import the packets exported in Step #b.

5. At the restored replica, generate update packets for all other replicas, and send the packets

to the sibling replicas.

You can send the packets using your standard synchronization method. To recover the

replica more quickly, create the packets with syncreplica –export –fship.

Because your replica is in the special restoration state, each outgoing update packet includes

a special request for a return acknowledgment. It also includes your replica’s old epoch
10 - Troubleshooting MultiSite Operations 191

numbers, which are now its current epoch numbers, by virtue of the restoration backup in

Step #1. Each destination replica uses these numbers to roll back its row for your replica.

6. Wait for each other replica in the VOB family to send an update packet to the restored replica.

As in Step #5, you can accelerate the creation and delivery of the update packets.

Collectively, these update packets include all the operations that occurred between the time

of the backup and the last update that your replica sent out before its storage was lost—even

operations that originated at your replica. (The packets also include more recent operations

that originated at other replicas.) In addition, each incoming packet includes the requested

return acknowledgment from the sending host.

7. Process the incoming update packets with syncreplica –import. When your replica has

received return acknowledgments from all other replicas in the VOB family, syncreplica
–import reports that restoration of the replica is complete:

VOB has completed restoration: ...

8. (Applicable only if you had to perform Step #4) At one of the replicas that did not have

information about the new replicas before the restoration procedure, export update packets

to all of the new replicas and import the packets at the new replicas. (Do not perform this

export from the restored replica.)

9. Unlock the VOB object in the restored replica.

cleartool unlock vob:pname-in-vob
Unlocked versioned object base "VOB-tag".

Development work in the replica can now resume.

Replacing an Existing Replica

If you must replace an existing replica, you can re-create it from one of the other replicas in the

VOB family. For example, if you use Rational ClearCase MultiSite as your only backup

mechanism and you must restore from a backup replica, you have to replace the working replica.

In this procedure, “backup replica” refers to the replica from which you restore the lost or deleted

replica. If you have multiple replicas in the VOB family and you use more than one as a backup,

use the replica that has most recently imported an update packet from the lost replica.

CAUTION: Do not use this procedure to fix import failures unless you have tried all other

solutions, and Rational Technical Support advises you to follow these steps.
192 Administrator’s Guide: Rational ClearCase MultiSite

To replace a replica, use the following procedure (assume boston_hub on host minuteman is to

be replaced, and sanfran_hub and bangalore are the other replicas in the VOB family):

1. For all views that use boston_hub, use the lsprivate command to list view-private and

checked-out files. (To list views for which the VOB holds objects, use the

cleartool describe vob: command.)

2. Check in all files (if possible) and save copies of view-private files out of the view. If you plan

to save the views, use the procedure in Saving Views from the Replaced Replica on page 195 at

this point.

3. If boston_hub can export update packets:

a. On host minuteman, send update packets to sanfran_hub and bangalore from

boston_hub:

b. On the hosts where sanfran_hub and bangalore physically reside, import the packet

from boston_hub:

4. Back up boston_hub’s VOB storage to a storage medium.

5. At sanfran_hub, create a new replica, boston_hub2.

multitool mkreplica –export –workdir /tmp/create –nc –fship minuteman:boston_hub2

6. If you did not use the –fship option in Step #5, transport the replica-creation packet to the

host minuteman.

7. Create the new replica. On host minuteman:

a. Unregister and remove the VOB-tag for boston_hub:

b. Import the packet you created in Step #5 (include any special options you need):

multitool mkreplica –import –workdir /tmp/ms_wkdir –tag /vobs/dev2 \
–vob /net/minuteman/vobstg/dev2.vbs –nc –preserve –vrep boston_hub2 \
/var/adm/atria/shipping/ms_ship/incoming/sh_o_repl_sanfran_hub_18-May-99.15:50:00_
1

multitool syncreplica –export –fship sanfran_hub bangalore

multitool syncreplica –import –receive

cleartool umount /vobs/dev
cleartool unregister –vob /net/minuteman/vobstg/dev.vbs
cleartool rmtag –vob /vobs/dev
10 - Troubleshooting MultiSite Operations 193

c. Mount dev2:

8. Make sure that boston_hub2 can synchronize successfully:

a. Set a view, change to a directory in /vobs/dev2, and generate a new label or attribute

type. (Use a new view, not an old one that may have been used in boston_hub.)

b. Create and send update packets to sanfran_hub and bangalore:

c. At sanfran_hub and bangalore, import the update packet:

d. At sanfran_hub and bangalore, list the new type created in Step #a:

9. Transfer mastership of all objects in boston_hub to boston_hub2.

a. Determine which replica masters boston_hub.

b. If boston_hub masters itself, run the following command at boston_hub2; if another

replica masters boston_hub, run the following command at that replica:

c. If boston_hub did not master itself, send an update packet from the master replica to

boston_hub2 and import it.

10. Make sure that sanfran_hub, bangalore, and boston_hub2 can export and import update

packets successfully.

11. At the site that masters boston_hub, remove the replica object for boston_hub:

multitool rmreplica boston_hub

12. Synchronize all replicas in the family.

13. Remove the physical storage for boston_hub with standard operating system commands.

14. Remove the views that were used in boston_hub. (If you want to keep these views, use the

procedure in Saving Views from the Replaced Replica.)

cleartool mount /vobs/dev2

multitool syncreplica –export –fship sanfran_hub bangalore

multitool syncreplica –import -receive

cleartool lstype type-selector

multitool chmaster –all –obsolete_replica boston_hub boston_hub2
194 Administrator’s Guide: Rational ClearCase MultiSite

Saving Views from the Replaced Replica

To save the views used in the replaced replica:

1. Move all view-private files into the view’s lost+found directory (replica-uuid is boston_hub’s

UUID):

cleartool recoverview –vob replica-uuid –tag view-tag

2. List view-private files in each of the views:

cleartool lsprivate –tag view-tag –invob vob-selector

3. Use the uncheckout command to cancel all checkouts in the replica to be replaced; use the

–keep option to save copies of the files.

4. Copy the .keep files to temporary directories outside the view. You can refer to these files

when the new replica is available and you’ve checked out the elements again.

5. Use the rmdo command to remove all derived objects associated with the VOB to be

replaced.

6. Remove all .cmake.state files.

7. Decide whether any valuable information is in any of the other view-private files associated

with the VOB to be replaced.

After the replacement replica is back online, complete these additional steps:

1. Rebuild all derived objects.

2. Reconcile view-private files.

Because view-private files are associated with a particular replica, restoration from backup

makes them inaccessible. To continue work on checkouts, you must determine all checkouts,

capture the related files, and place them in the correct location.

You can do this by implementing a view backup procedure for files that cannot be re-created

easily. For example, write a script that uses the lsprivate command to find all view-private

objects (except for derived objects) and back them up to a backup tree. If the structure of this

tree mirrors the VOB structure, it is easier to put the files back in their correct locations.

3. Run the recoverview command to free space associated with view-private files for the

replica you removed.
10 - Troubleshooting MultiSite Operations 195

An alternative method is based on recoverview. After letting recoverview move private files

to the view’s lost+found directory, the moved files are captured and placed into a location

appropriate for the new replica. The main problem with this method is that the file names

recoverview generates are leaf names; any directory structure is lost.

4. Redo changes to pool assignments.

Pool assignments are local to a replica, so re-creating the original replica may undo changes

made to them. Major changes to pool structure must be duplicated manually at the backup

replica.

10.8 Cleaning Up from Accidental Deletion of a Replica

This situation is a more catastrophic variation of the problem described in Restoring a Replica from
Backup on page 191: a replica’s storage directory is lost, and there is no backup to be restored. The

procedure for handling this situation is similar to that in Deleting a Replica on page 119.

Perform this procedure in the replica that is the master of the deleted replica. (If the replica was

its own master, perform this procedure in the replica that will assume mastership of the deleted

replica’s objects.) It is also important that the replica know about all the objects that were

mastered by the deleted replica.

1. Transfer mastership of all the objects that were mastered by the deleted replica. For example,

if replica tokyo is deleted, enter this command at replica sanfran_hub:

multitool chmaster –all –obsolete_replica tokyo@/vobs/dev –long sanfran_hub

CAUTION: Incorrect use of –all –obsolete_replica can lead to irreparable inconsistencies

among the replicas in a VOB family.

2. Remove the VOB-replica object for the deleted replica.

multitool rmreplica tokyo@/vobs/dev

3. Send an update packet to all other replicas in the VOB family, to inform them of the

mastership changes and the replica deletion.

multitool syncreplica –export ...
196 Administrator’s Guide: Rational ClearCase MultiSite

Using MultiSite for Backup and
Interoperability

1111 Backing Up VOBs with MultiSite

This chapter describes two ways to use Rational ClearCase MultiSite as a VOB backup strategy:

➤ Using a replica as a backup VOB to avoid locking a VOB

➤ Using multiple replicas to provide incremental backups

Using multiple replicas in a local area network may help with reliability, availability,

performance, and backup strategy. However, recovery issues limit how easily and rapidly clients

may be switched from one replica to another. The details of the recovery process are described in

Restoring and Replacing Replicas on page 190.

Using MultiSite for backups means that the backup replica needs to remain online so that it can

be updated frequently from the original. Almost twice as much disk space is required (you do

not need exactly twice as much space, because derived objects are not replicated and the cleartext

pool for the backup replica is smaller or nonexistent). Also, you need a MultiSite license as well

as a ClearCase license for each developer who accesses the replicated VOB.

11.1 Using a Backup Replica

To back up a VOB consistently, the ClearCase administrator must lock the VOB. However, many

sites cannot find convenient times to lock the VOB so that the lock does not interfere with

development work. One solution is to use MultiSite to create a replica of a VOB in the same local

area network as the original. Updates from the original VOB to the backup replica are scheduled

to match the recovery characteristics desired, that is, how much development work your site can

afford to lose. At backup time, the backup replica is locked and backed up, thereby not

interfering with development work at the original VOB.
11 - Backing Up VOBs with MultiSite 199

Handling Objects That Are Not Replicated

The most important thing to note is that a MultiSite replica is not a complete copy of a VOB; the

following objects are not replicated, and therefore are not restored from backup:

➤ Derived objects

After a recovery from backup, developers must rebuild derived objects associated with the

VOB. Checked-in derived objects are replicated, so they are backed up.

➤ Triggers

To make sure you can re-create triggers after a restoration from backup, you must record

information about all triggers in a VOB replica. For example, use the command lstype –kind
trtype to list all triggers in a VOB.

➤ Nonobsolete locks

As with triggers, you must record information about nonobsolete locks. You can write shell

scripts that capture and re-create the trigger and lock information.

Also, pool assignments are specific to a replica, so re-creating the replica from a backup replica

can undo changes made to them. If you make major changes to a VOB’s pool structure, use the

chpool command to duplicate these changes at the backup replica. (At replica creation, you can

also use the –pooltalk option with mkreplica –import to make pool assignments.)

Designing Synchronization Strategy

You must determine the frequency and direction of synchronization. Typically, synchronization

occurs in one direction only; that is, the backup replica never sends packets to the development

replica, except during restoration.

Frequency of synchronization depends on your development environment. Some sites

synchronize every 24 hours, but sites with rapid development may synchronize every 15

minutes.
200 Administrator’s Guide: Rational ClearCase MultiSite

11.2 Using Replicas with Incremental Backup

When you use a replica as an incremental backup of a VOB, you still back up the original VOB.

You set up a replica of the original VOB in the same local area network, and schedule frequent

unidirectional synchronizations. If you restore the original VOB from backup, the replica serves

as an incremental backup by supplying changes made since the last backup.

This strategy reduces the frequency of backups at the original replica. It avoids some of the

procedures described in Restoring a Replica from Backup on page 191, but still requires saving

information about triggers, locks, and major pool changes. It also has the same limitations as

unreplicated recovery from backup: a view and a VOB may not be consistent with each other

after ClearCase recovery. It can, however, reduce the frequency of backups enough to fit into

normal maintenance schedules.

The backup replica must be registered in its own region.

11.3 Restoring a Replica from Backup

Use the procedure described in Restoring a Replica from Backup on page 191.
11 - Backing Up VOBs with MultiSite 201

202 Administrator’s Guide: Rational ClearCase MultiSite

1212 Using MultiSite for Interoperability

You can use multiple replicas in local area networks to provide native access to VOBs in a

heterogeneous network. This chapter describes ClearCase and MultiSite support for multiple

replicas in a LAN and gives setup instructions.

12.1 Advantages and Disadvantages

Advantages of using Rational ClearCase MultiSite for interoperability:

➤ No purchase or maintenance of NFS or SMB software.

➤ Replicas can be used in backup strategies.

➤ User and group IDs do not have to match across platforms.

Disadvantages of using MultiSite for interoperability:

➤ You must configure and maintain MultiSite synchronization.

➤ VOB servers are needed on both UNIX and Windows systems.

➤ Each platform must master its own branch; alternatively, mastership can be transferred.

➤ Changes made on each platform must be imported and merged on the other.

➤ Replicas cannot preserve ownership.
12 - Using MultiSite for Interoperability 203

12.2 Restrictions on Multiple Replicas in a LAN

You must observe these restrictions when using multiple replicas in a local area network:

➤ Do not register multiple replicas of a VOB family in a single region.

This restriction prevents multiple replicas from being mounted on a host and prevents

developers from accessing multiple replicas of a VOB family with a single view.

➤ Locate cross-VOB symbolic links in branched directories.

NOTE: If the leaf name of the UNIX VOB-tag is the same as the Windows VOB-tag (for

example, /vobs/dev and \dev), this restriction does not apply.

Cross-VOB symbolic links point to particular replicas. To make it possible for clients to use

a different replica, you can branch the directory that contains the symbolic link. Branching

the directory may lead to partitioning replica use based on projects.

For example, assume a project uses the branch v2.0_integration as the integration branch

and the directory vob_links contains all the symbolic links that cross VOBs. The project

manager creates a v2.0_integration branch of the directory vob_links, and then adjusts any

symbolic links to point to the VOB-tag of the replica in use for that project. For example, on

UNIX:

ls –l
tests -> ../../tests
gui_src -> ../../gui_src
design -> ../../design

On Windows:

cleartool ls
tests -> ../../tests
gui_src -> ../../gui_src
design -> ../../design

The leaf name of the VOB-tag of the local replica is gui_src_replica2, so the project manager

adjusts the symbolic links as follows:

cleartool checkout –nc .
cleartool rmname gui_src
cleartool ln –s ../../gui_src_replica2 gui_src
cleartool checkin .
204 Administrator’s Guide: Rational ClearCase MultiSite

This ensures that the correct replica is referenced during a build of this project.

You can also use one symbolic link that refers to another VOB and have other symbolic links

refer to it. For example:

rational_install -> ../../vobs/rational/install
release_list -> rational_install/release_list

This limits the number of duplicate links that must be maintained. We also recommend that

you avoid cross-VOB symbolic links as much as possible.

➤ Make sure case-sensitivity and text mode settings are correct.

You must make sure that case-sensitivity and the text mode are handled properly. If there are

case conflicts among files at different replicas, errors occur during synchronization. The text

mode controls the use of line terminators in files; differences in use of line terminators

between UNIX and Windows editors cause unexpected behavior during file comparisons

and merges.

The Administrator’s Guide for Rational ClearCase describes how to handle case-sensitivity

and text mode setup. Be sure to read it carefully before creating UNIX and Windows replicas.

CAUTION: Do not use MultiSite to create multiple copies of a VOB in a single ClearCase region.

Because the VOB UUID is identical for all replicas in a VOB family and is stored in many

structures within a VOB, there is no way to make the copy of the VOB unique. Creating and using

multiple copies of a VOB in a single region causes clearmake and views to exhibit unpredictable

behavior, may cause data loss, and is not supported by Rational Software.

12.3 Setting Up Multiple Replicas at One Site

This section describes the process of creating replicas at one site.

Creating a replica of an existing VOB doesn’t split the storage. On the contrary, the new replica

requires additional disk space to accommodate another complete copy of the VOB’s database

and storage pools. For information about splitting a VOB, see the Administrator’s Guide for

Rational ClearCase.

If both replicas are on UNIX hosts or in the same Windows domain, they can be

ownership-preserving. Any change in the owner, group, or access mode of an element at one of the

replicas is propagated to the other replica.
12 - Using MultiSite for Interoperability 205

The following procedure creates a Windows replica from a UNIX replica:

1. On the UNIX host:

multitool mkreplica –export –work /tmp/ms_wkdir –fship \
–c "create replica for Windows use" aquarium:boston_windows
Generating replica creation packet <outgoing-packet-pathname>

- shipping order file is <shipping-order-pathname>
Dumping database...

. . .
Dumper done.
Attempting to forward/deliver generated packets...
 -- Forwarded/delivered packet <outgoing-packet-pathname>

2. On the Windows host:

multitool lspacket –short
c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_bos
ton_hub_21-Jul-00.18.42.01_1

multitool mkreplica –import –npreserve –work c:\tmp\msite ^
-tag \dev –public –vob \\aquarium\vobs\dev.vbs ^
c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_boston_
hub_21-Jul-00.18.42.01_1
The packet can only be used to create replica "boston_windows"
 - VOB family is ecf68c58.90fe11cd.a393.08:00:09:49:29:cd
 - replica OID is 9947c591.912d11cd.a4b1.08:00:09:49:29:cd
Should I create this replica? [no] yes
Comments for "boston_windows":
provide native Windows access to VOB
.
Processing packet
c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_bos
ton_hub_21-Jul-99.18.42.01_1
Loading database...

. . .
Loader done.
Vob tag registry password: <enter password>(password required to create public VOB)
Registering VOB mount tag "\dev"...
VOB replica successfully created.
Host-local path: aquarium:C:\vobs\dev.vbs
Global path: \\aquarium\vobs\dev.vbs
VOB ownership:

owner susan
group user
206 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Reference Pages

1313 MultiSite Reference Pages

This section of the Administrator’s Guide for Rational ClearCase MultiSite contains MultiSite

reference pages.
13 - MultiSite Reference Pages 209

210 Administrator’s Guide: Rational ClearCase MultiSite

apropos
apropos
Displays MultiSite command information or glossary terms

APPLICABILITY

SYNOPSIS

• Display command information:

apr⋅opos topic ...

• Display glossary terms:

apr⋅opos –glo⋅ssary [topic-args]

DESCRIPTION

This command displays information about MultiSite commands or ClearCase and MultiSite

glossary definitions. Use apropos as you use the standard UNIX whatis(1) or apropos(1)
command.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

Default: apropos uses the standard MultiSite whatis file, which contains information about

MultiSite commands.

topic ...
apropos searches for each topic character string in the standard MultiSite whatis file. The

string can occur anywhere within the line.

–glo⋅ssary [topic-args]

Combines all arguments into a single character string, and displays all definitions in the

ClearCase and MultiSite glossary whose glossary terms include this character string. To

display the entire glossary, omit the topic-args argument.

Product Command type

MultiSite multitool subcommand

Platform

UNIX
Rational ClearCase MultiSite Reference Pages 211

apropos
EXAMPLES

• Search for lines with the word “epoch” in the standard MultiSite whatis file.

multitool apropos epoch
chepoch Changes epoch numbers
epoch_watchdog Checks whether a replica’s epoch numbers have
rolled back when the replica is not in restoration mode
lsepoch Displays epoch information
recoverpacket Resets epoch row table so changes in lost packets
are resent

• Search for glossary terms that include the string “epoch”.

multitool apropos –glossary epoch
+++ epoch number
(MultiSite) An integer associated with a ClearCase operation performed at
a replica. Each replica records the epoch numbers of operations it has
performed and of operations it has received from other replicas.

+++ epoch number matrix
(MultiSite) A complete set of epoch numbers, indicating the current VOB
replica’s estimate of the state of all replicas in a VOB family. A
replica’s own epoch row within the matrix reflects its actual state.

• Search for glossary terms that include the phrase “update packet”.

multitool apropos –glossary update packet
+++ update packet
(MultiSite) A logical packet that contains data for synchronizing some or
all of the existing replicas in a VOB family.

FILES

ccase-home-dir/doc/man/ms_whatis
ccase-home-dir/doc/man/ms_whatis.aux

SEE ALSO

In the Command Reference: help, man
212 Administrator’s Guide: Rational ClearCase MultiSite

chepoch
chepoch
Changes epoch numbers

APPLICABILITY

SYNOPSIS
chepoch [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment]
{ [–f⋅orce] replica-selector [replica-selector=value ...] [oid=value ...]

| –actual [–raise_only] sibling-replica-selector ... }

DESCRIPTION

This command changes, in one replica, one or more of the epoch numbers that represent the

replica’s record of the states of other replicas. You cannot change a replica’s own row because

these epoch numbers record the actual state of the replica.

With –actual, chepoch contacts sibling replicas, retrieves their own epoch rows, and changes

their rows in the current replica’s epoch number matrix. This brings the current replica’s epoch

number matrix up to date with changes made at the sibling replicas. chepoch –actual works only

between sites that have IP connections. If chepoch cannot contact a sibling replica, it prints an

error and tries to contact the next replica you specified.

chepoch –actual detects whether the sibling replica or the current replica is missing oplog

entries. If oplog entries are missing, the command prints one of the following messages:

Your replica (" replica-name") has fewer oplog entries for itself than
" replica-selector" has for your replica.
To avoid permanent data loss, your VOB administrator must initiate the
documented replica restoration procedure.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 213

chepoch
The replica " replica-name" has more oplog entries for " replica-selector" than
" replica-selector" has for itself.
To avoid permanent data loss, its administrator must initiate the documented
replica restoration procedure.

For more information about epoch numbers, see VOB Operations and the Oplog on page 24. For

descriptions of scenarios using chepoch, see Cannot Find Oplog on page 168 and Lost Update
Packet on page 182.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SUPPRESSING INTERACTIVE PROMPTS. Default: Unless you specify –actual, you must confirm each

epoch number change.

–f⋅orce
Suppresses confirmation steps.

SPECIFYING THE ROW TO BE CHANGED. Default: None. You must specify a replica.

replica-selector
Specifies the replica whose epoch row is to be changed; that is, changes the current

replica’s estimate of the state of replica-selector. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
214 Administrator’s Guide: Rational ClearCase MultiSite

chepoch
SPECIFYING THE CHANGES. Default: chepoch reads a set of replica-selector=value or oid=value pairs,

one per line, from standard input. You can copy and paste lsepoch output, or type the data in the

format described below. Extra white space is allowed. To terminate input, type a period character

(.) and a carriage return (<CR>) at the beginning of a line.

replica-selector=value
oid=value

One or more arguments, where

SETTING A ROW USING THE REPLICA’S ACTUAL STATE. Default: None. You must specify a replica.

–actual [–raise_only] sibling-replica-selector ...

Contacts sibling-replica-selector, retrieves its actual state, and changes its row in the epoch

number matrix of the current replica. Specify sibling-replica-selector in the form

[replica:]replica-name[@vob-selector] (see the description of replica-selector).

With –raise_only, chepoch raises epoch numbers for the sibling replica but does not

lower any of them. This option optimizes synchronization when packets have been sent

from the current replica to the sibling replica but have not yet been imported.

For example, replica sanfran_hub has received but not imported a packet from replica

boston_hub. At replica boston_hub, the administrator uses chepoch –actual to reset the

epoch row for sanfran_hub and then sends another update packet to sanfran_hub. This

packet contains all the operations in the packet waiting to be imported at sanfran_hub,

plus any new operations. If the administrator uses chepoch –actual –raise_only instead,

the new packet includes only the new operations.

EXAMPLES

• Change two columns in the current replica’s row for the bangalore replica.

multitool chepoch bangalore boston_hub=950 sanfran_hub=2000
Change oplog ID in row "bangalore", column "boston_hub" to 950 [no] yes
Change oplog ID in row "bangalore", column "sanfran_hub" to 2000 [no] yes
Epoch row successfully set.

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

replica-selector Column of the epoch number matrix. This argument, along with the

preceding replica-selector argument, specifies a particular location in

the matrix.

oid Object identifier for the replica. lsepoch prints OIDs in its output.

value New epoch number to be entered at the specified matrix location.
Rational ClearCase MultiSite Reference Pages 215

chepoch
• Make the same change as in the preceding example, but bypass the confirmation steps.

multitool chepoch –force bangalore boston_hub=950 sanfran_hub=2000
Epoch row successfully set.

• Make the same change as in the preceding examples, specifying the changes as terminal

input instead of as command-line arguments.

multitool chepoch bangalore
Enter specifications for epochs to change in row "bangalore"
(one per line)
oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950
oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=2000
.
Change oplog ID in row "bangalore", column "boston_hub" to 950 [no] yes
Change oplog ID in row "bangalore", column "sanfran_hub" to 2000 [no] yes
Epoch row successfully set.

• Change an item in a replica’s estimate of the state of the sydney replica, specifying the VOB

family of the replica whose matrix is to be changed.

multitool chepoch –force sydney@\vob3 buenosaires=800
Epoch row successfully set.

• Set the current replica’s estimate of the state of the tokyo replica to its actual state.

multitool chepoch –actual tokyo@/vobs/tromba
Entry for boston_hub changed from: 1400 to 1300
Entry for sanfran_hub changed from: 985 to 950
Entry for tokyo changed from: 2562 to 2000

• Update the current replica’s epoch numbers for replicas boston_hub and sanfran_hub.

multitool chepoch –actual boston_hub@/vobs/dev sanfran_hub@/vobs/dev
Entry for boston_hub changed from: 1400 to 1300
Entry for sanfran_hub changed from: 985 to 1000

• Make the same change as in the previous example, but do not lower any of the numbers.

multitool chepoch –actual –raise_only boston_hub@/vobs/dev sanfran_hub@/vobs/dev
Entry for boston_hub unchanged from: 1400
Entry for sanfran_hub changed from: 985 to 1000

SEE ALSO

lsepoch, recoverpacket, restorereplica
216 Administrator’s Guide: Rational ClearCase MultiSite

chmaster
chmaster
Transfers mastership of VOB-database object

APPLICABILITY

SYNOPSIS
chmaster [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment]
{ master-replica-selector object-selector ...

| [–pname] master-replica-selector branch-or-element-pname ...

| –str⋅eam [–ove⋅rride] master-replica-selector stream-selector ...

| –def⋅ault [–pname] branch-pname ...

| –def⋅ault brtype-selector ...

| –all [–obsolete_replica old-replica-selector]

[–l⋅ong] [–vie⋅w view-tag] master-replica-selector
}

DESCRIPTION

This command transfers the mastership of one or more objects from one VOB replica to another.

Only the current replica is affected immediately; other replicas are notified of the mastership

transfers through the normal exchange of update packets.

To limit use of this command to a certain set of users, you can create triggers. For more

information, see Managing Software Projects.

SPECIFYING A VIEW CONTEXT

The chmaster command requires a view context. If you are not in a set view or working directory

view on UNIX or a view drive on Windows, you can specify a view on the command line, as

shown in the following table. If you specify a dynamic view, it must be active on your host.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 217

chmaster
NOTE: A view you specify in the chmaster command takes precedence over your current set view,

working directory view, or view drive.

RESTRICTIONS

Identities: For all UCM objects except baselines, no special identity is required. For baselines and

all other non-UCM objects, you must have one of the following identities:

• Object creator (except for replicas)

• Object owner (except for replicas)

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: Restrictions depend on the kind of object:

Argument How to specify a view

object-selector
brtype-selector

Use a view-extended pathname as the vob-selector portion of the

argument. For example:

lbtype:LABEL1@/view/jtg/vobs/dev
brtype:v1.0_bugfix@/view/jtg/vobs/dev
lbtype:LABEL1@s:\dev
brtype:v1.0_bugfix@s:\dev

branch-pname
element-pname

Specify branch-pname or element-pname as a view-extended

pathname. For example:

/view/jtg/vobs/dev/cmd.c@@
/view/jtg/vobs/dev/cmd.c@@/main
s:\dev\cmd.c@@
s:\dev\cmd.c@@\main

master-replica-selector (for

the chmaster –all variant)

Use the –view option or use a view-extended pathname as the

vob-selector portion of the argument. For example:

–view jtg replica:boston_hub@\dev
replica:boston_hub@/view/jtg/vobs/dev
replica:boston_hub@s:\dev

Object whose mastership is
changing

Locks on these objects cause the chmaster command to fail

Element Element, element type, VOB
218 Administrator’s Guide: Rational ClearCase MultiSite

chmaster
Mastership: Your current replica must master the object. Using both –all and –obsolete_replica
overrides this restriction, but you must not use the –obsolete_replica option except in special

circumstances. (See the description of the –all option.)

Other: You cannot transfer mastership of a branch if the branch is checked out reserved or if it is

checked out unreserved without the –nmaster option.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SPECIFYING THE OBJECTS. Default: None.

master-replica-selector object-selector ...

Transfers mastership of objects specified with object-selector to the VOB replica specified

with master-replica-selector. Specify master-replica-selector in the form

[replica:]replica-name[@vob-selector]

Branch Branch, branch type, VOB

Type object Type object, VOB

Hyperlink Hyperlink type, VOB

Baseline Baseline, VOB, replica, components associated with the

baseline

Stream Stream, activity

Component Component, VOB, replica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob

Object whose mastership is
changing

Locks on these objects cause the chmaster command to fail
Rational ClearCase MultiSite Reference Pages 219

chmaster
Specify object-selector in one of the following forms:

[–pname] master-replica-selector branch-or-element-pname ...

Transfers mastership of the specified branches or elements to the VOB replica specified

with master-replica-selector. A branch pathname takes the form element-name@@/branch...,

for example, cmdsyn.c@@/main/bugfix, and an element pathname takes the form

element-name@@, for example, cmdsyn.c@@. If branch-or-element-pname has the form of

an object selector, you must include the –pname option to indicate that pname is a

pathname.

–str⋅eam [–ove⋅rride] master-replica-selector stream-selector ...

Transfers mastership of the specified streams and their associated objects to the VOB

replica specified with master-replica-selector. Specify stream-selector in the following form:

Use the –override option only if the chmaster –stream command fails. With –override,

chmaster attempts to transfer mastership of objects whose mastership was not

transferred during the original invocation of the command. For more information, see

Managing Mastership in Administrator’s Guide for Rational ClearCase MultiSite.

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

vob-selector vob:pname-in-vob

where

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

attribute-type-selector [attype:]type-name[@vob-selector]

branch-type-selector [brtype:]type-name[@vob-selector]

element-type-selector [eltype:]type-name[@vob-selector]

hyperlink-type-selector [hltype:]type-name[@vob-selector]

label-type-selector [lbtype:]type-name[@vob-selector]

hlink-selector [hlink:]hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

replica-selector [replica:]replica-name[@vob-selector]

baseline-selector [baseline:]baseline-name[@vob-selector]

component-selector [component:]component-name[@vob-selector]

stream-selector [stream:]stream-name[@vob-selector]
220 Administrator’s Guide: Rational ClearCase MultiSite

chmaster
–a⋅ll [–obsolete_replica old-replica-selector] [–l⋅ong] [–vie⋅w view-tag] master-replica-selector
CAUTION: Incorrect use of the –obsolete_replica form of the command can lead to

divergence among the replicas in a VOB family.

Transfers to master-replica-selector mastership of all objects that are located in and

mastered by the current replica. (The chmaster command determines the current replica

by using the vob-selector you specify as part of master-replica-selector. If you do not include

a vob-selector, chmaster uses the replica containing the current working directory.)

If errors occur, the command continues. After finishing, it reports that not all mastership

changes succeeded.

With –long, chmaster lists the objects whose mastership is changing.

With –view, chmaster uses the specified view as the view context.

With –obsolete_replica, chmaster transfers mastership of all objects in the replica

specified with old-replica-selector. Also, chmaster associates nonmastered checkouts with

the new replica. Use this form of chmaster only when replica old-replica-selector is no

longer available (for example, was deleted accidentally). Before entering this command,

you must make sure that old-replica-selector masters itself or is mastered by the replica

that it last updated. Then, enter the chmaster command at the last-updated replica. You

must also send update packets from the last-updated replica to all other remaining

replicas in the VOB family. For more information, see the rmreplica reference page.

RETURNING MASTERSHIP OF BRANCHES TO DEFAULT STATE. Default: None.

–def⋅ault [–pname] branch-pname ...

Transfers mastership of branch-pname to the replica that masters the branch type. If

branch-pname has the form of an object selector, you must include the –pname option to

indicate that branch-pname is a pathname.

–def⋅ault brtype-selector ...

Removes explicit mastership of branches that are mastered explicitly by the current

replica and are instances of the type brtype.

NOTE: You can use this command only at the replica that masters the branch type.

EXAMPLES

• At replica boston_hub, transfer mastership of label type V1.0_BUGFIX to the sanfran_hub
replica.

multitool chmaster sanfran_hub lbtype:V1.0_BUGFIX
Changed mastership of "V1.0_BUGFIX" to "sanfran_hub"
Rational ClearCase MultiSite Reference Pages 221

chmaster
• At replica sanfran_hub, transfer mastership of element list.c to the sydney replica.

multitool chmaster sydney list.c@@
Changed mastership of "list.c" to "sydney"

• At replica sanfran_hub, transfer mastership of the stream v2.1.bl5 and its associated objects

to the boston_hub replica.

multitool chmaster –stream boston_hub@/vobs/dev stream:v2.1.bl5@/vobs/dev

• At the replica that is the master of replica sanfran_hub, make sanfran_hub self-mastering.

multitool chmaster sanfran_hub replica:sanfran_hub
Changed mastership of "sanfran_hub" to "sanfran_hub"

• At replica buenosaires, transfer mastership of branch cache.c@@/main/v3_dev to

boston_hub.

multitool chmaster boston_hub cache.c@@/main/v3_dev
Changed mastership of branch "/vobs/dev/cache.c@@/main/v3_dev" to
"boston_hub"

• For all objects mastered by the current replica, transfer mastership to sanfran_hub.

multitool chmaster –all sanfran_hub
Changed mastership of all objects

• Same as the preceding example, but have chmaster list each object whose mastership is

changing, and specify a view context.

multitool chmaster –all –long sanfran_hub@/view/jtg/vobs/dev
Changed mastership of branch type sydney_main
Changed mastership of label type SYDNEY_V2.0
Changed mastership of replica sydney
Changed mastership of all objects

• Return mastership of a branch to the replica that masters the branch type, and then remove

its explicit mastership.

At the replica that masters the branch:

multitool describe –fmt "%[master]p\n" brtype:v3_bugfix
boston_hub@\dev

multitool chmaster boston_hub@\dev \dev\acc.c@@\main\v3_bugfix
Changed mastership of branch "\dev\acc.c@@\main\v3_bugfix" to
"boston_hub@\dev"

multitool syncreplica –export –fship boston_hub@\dev
Generating synchronization packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_bangalore_19-Aug-00.09.33.02_3447_1
...
222 Administrator’s Guide: Rational ClearCase MultiSite

chmaster
At the replica that masters the branch type:

multitool syncreplica –import –receive
Applied sync. packet
/var/adm/atria/shipping/ms_ship/incoming/sync_bangalore_19-Aug-00.09.33.02
_3447_1
to VOB /net/minuteman/vobstg/dev.vbs

multitool chmaster –default brtype:v3_bugfix
Changed mastership of branch type "v3_bugfix" to "default"

SEE ALSO

reqmaster, syncreplica
Chapter 8, Managing Mastership in the Administrator’s Guide for Rational ClearCase MultiSite.
Rational ClearCase MultiSite Reference Pages 223

chreplica
chreplica
Changes the properties of a replica

APPLICABILITY

SYNOPSIS
chrep⋅lica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–hos⋅t hostname]

[–pre⋅serve | –npr⋅eserve]

[–isconn⋅ected | –nconn⋅ected] replica-selector

DESCRIPTION

This command changes the properties of a VOB replica. For more information, see Changing the
Host Name for a Replica on page 113 and Changing Ownership Preservation on page 114.

RESTRICTIONS

Identities: You must have one of the following identities:

• Creator of the replica where you enter the command

• Owner of the replica where you enter the command

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB object, replica object.

Mastership: With –isconnected and –nconnected, there are no mastership restrictions. With all

other options, your current replica must master the replica being changed.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
224 Administrator’s Guide: Rational ClearCase MultiSite

chreplica
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SPECIFYING THE CHANGE. Default: None. You must specify at least one of –host, –preserve,

–npreserve, –isconnected, or –nconnected.

–hos⋅t hostname
Changes the host name associated with the specified replica. hostname must be usable by

hosts in different domains.

hostname can be either the IP address of the host or the computer name, for example,

minuteman. You may have to append an IP domain name, for example,

minuteman.purpledoc.com.

On UNIX, use the uname –n command to display the computer name. On Windows NT,

the computer name is displayed in the Network Settings dialog box, which is accessible

from the Network icon in the Control Panel. On Windows 2000, the computer name is

displayed on the Network Identification tab in the System Properties dialog box, which

is accessible from the System icon in the Control Panel.

–pre⋅serve
Makes the specified replica ownership-preserving.

–npr⋅eserve
Removes the specified replica from the set of ownership-preserving replicas.

–isconn⋅ected | –nconn⋅ected
Indicates whether the replica has IP connectivity to the current replica. You must specify

a sibling replica; you cannot set this property for your current replica.

SPECIFYING THE REPLICA. Default: None.

replica-selector
Specifies the replica to be changed. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
Rational ClearCase MultiSite Reference Pages 225

chreplica
EXAMPLES

• Associate replica bangalore with host ramohalli in the database of the current replica.

multitool chreplica –host ramohalli bangalore
Updated replica information for "bangalore".

• Make replica tokyo a non-ownership-preserving replica.

multitool chreplica –npreserve tokyo
Updated replica information for "tokyo".

• Mark replica sydney as not connected.

multitool chreplica –nconnected sydney
Updated replica information for "sydney".

SEE ALSO

chmaster, syncreplica

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
226 Administrator’s Guide: Rational ClearCase MultiSite

epoch_watchdog
epoch_watchdog
Checks whether a replica’s epoch numbers have rolled back when the replica is not in restoration

mode

APPLICABILITY

SYNOPSIS

• Check for rollback of epoch numbers:

epoch_watchdog { –all | –vobs VOB-tag,... | list-file }

• Print help on command options:

epoch_watchdog –help

On UNIX, epoch_watchdog is located in ccase-home-dir/config/scheduler/tasks. On Windows,

epoch_watchdog is located in ccase-home-dir\config\scheduler\tasks.

DESCRIPTION

epoch_watchdog checks whether a VOB replica’s epoch numbers have rolled back without a

restorereplica command being run. If the epoch numbers have rolled back and the replica is not

in restoration mode, the VOB may have been improperly restored from backup. This script is

intended to be run regularly by the ClearCase scheduler. For more information, see the schedule
reference page in the Command Reference.

epoch_watchdog writes a replica’s epoch number to a log file in /var/adm/atria/log/epoch_logs
on UNIX or ccase-home-dir\var\log\epoch_logs on Windows. The next time the script is run, it

compares the current epoch number to the logged number. If epoch_watchdog finds that the

current number is lower than the logged number, it checks to see if the replica is in restore mode.

If the replica is not being restored, epoch_watchdog attempts to lock the affected VOB, and

optionally sends email notification (you must specify email addresses in the scheduled job). In

this situation, you must contact Rational Support before unlocking the VOB or attempting any

repair procedures.

Product Command Type

MultiSite MultiSite command

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 227

epoch_watchdog
NOTE: If the time window between scheduled jobs of epoch_watchdog is large enough, the

activity level in the replica can be high enough that a rollback can go undetected in the case

where restorereplica is not performed.

If an error occurs, epoch_watchdog creates an entry in /var/adm/atria/log/error_log on UNIX or

the Event Viewer on Windows. This entry references the epoch_logs file.

RESTRICTIONS

You must be root on UNIX or a member of the ClearCase administrators group on Windows.

OPTIONS AND ARGUMENTS

–h⋅elp
Prints help on command options.

–all
Checks all replicated VOBs on the current computer.

–vobs VOB-tag,...
VOB-tags of replicated VOBs to be checked. Specify multiple VOB-tags in a

comma-separated list with no white space.

list-file
Path to file containing a list of VOBs to check. Specify one VOB on each line, with no

white space, in the following form:

vob:VOB-tag

EXAMPLES

FILES

/var/adm/atria/log/epoch_logs (UNIX)

/var/adm/atria/log/error_log (UNIX)

ccase-home-dir\var\log\epoch_logs (Windows)

SEE ALSO

schedule (in the Command Reference)
228 Administrator’s Guide: Rational ClearCase MultiSite

lsepoch
lsepoch
Displays epoch information

APPLICABILITY

SYNOPSIS
lsepoch [–invob vob-selector | [–actual] replica-selector ...]

DESCRIPTION

By default, lsepoch displays the epoch number matrix of the VOB replica containing the current

working directory. The replica’s own epoch row represents its actual state. The other rows

represent the replica’s best estimate of other replicas’ states.

NOTE: lsepoch output includes rows for replicas that have been deleted, in addition to the rows

for replicas still in use. Oplog records for deleted replicas are saved in case a replica undergoing

restoration must receive oplogs from the deleted replica. (For example, a replica may be restored

from a backup created before the deleted replica was removed.)

With –actual, lsepoch contacts sibling replicas and retrieves their epoch rows. These epoch rows

reflect the replicas’ actual states. lsepoch –actual works only between sites with IP connections.

If lsepoch cannot contact a sibling replica, it prints an error and tries to contact the next replica

you specified. lsepoch –actual detects whether the sibling replica or the current replica is missing

oplog entries. If oplog entries are missing, the command prints one of the following messages:

Your replica (" replica-name") has fewer oplog entries for itself than
" replica-selector" has for your replica.
To avoid permanent data loss, your VOB administrator must initiate the
documented replica restoration procedure.

The replica " replica-name" has more oplog entries for " replica-selector" than
" replica-selector" has for itself.
To avoid permanent data loss, its administrator must initiate the documented
replica restoration procedure.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 229

lsepoch
RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

–invob vob-selector
Displays the epoch number matrix of the current replica in the VOB family specified by

vob-selector. Specify vob-selector in the form [vob:]pname-in-vob

–actual
Retrieves epoch rows from sibling replicas.

replica-selector ...
Without –actual, displays the current replica’s row for each specified replica. With

–actual, contacts each specified replica and displays the replica’s own epoch row. Specify

replica-selector in the form [replica:]replica-name[@vob-selector]

EXAMPLES

• Display the epoch number matrix for the current replica in the VOB family /vobs/dev.

cd /vobs/dev
multitool lsepoch

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

For VOB replica "/vobs/dev":

Oplog IDs for row "bangalore" (@ ramohalli):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=950 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=10 (sanfran_hub)

Oplog IDs for row "boston_hub" (@ minuteman):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=10 (sanfran_hub)
230 Administrator’s Guide: Rational ClearCase MultiSite

lsepoch
• Display the epoch number matrix for the current replica in the VOB family \doc.

multitool lsepoch –invob \doc

• List the current replica’s estimate of the state of replica sydney.

multitool lsepoch sydney@/vobs/dev

• List the actual state of the bangalore and buenosaires replicas.

multitool lsepoch –actual bangalore@/vobs/dev buenosaires@/vobs/dev

SEE ALSO

chepoch, recoverpacket, restorereplica

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=1 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=16 (sanfran_hub)

For VOB replica "\doc":

Oplog IDs for row "boston_hub" (@ minuteman):

oid:fb4d4850.093022d1.b033.00:50:98:97:24:76=836 (boston_hub)

oid:lw5b4639.039011d1.b083.00:60:97:98:42:69=580 (sanfran_hub)

Oplog IDs for row "sanfran_hub" (@ goldengate):

oid:fb4d4850.093022d1.b033.00:50:98:97:24:76=600 (boston_hub)

oid:lw5b4639.039011d1.b083.00:60:97:98:42:69=785 (sanfran_hub)

For VOB replica "/vobs/dev":

Oplog IDs for row "sydney" (@ sanfran_hub):

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=0 (boston_hub)

oid:0eaa6fc3.737d11d4.adbe.00:01:80:c0:4b:e7=1 (sanfran_hub)

oid:c6b8c9b0.038d11d1.b083.00:60:97:98:42:69=16 (sydney)

Contacting remote replica...

bangalore:

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=20 (boston_hub)

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=950 (buenosaires)

Contacting remote replica...

buenosaires:

oid:7ag3b0bc.defa11d0.ba57.00:01:72:73:3c:94=0 (bangalore)

oid:87f6265f.72d911d4.a5cd.00:01:80:c0:4b:e7=16 (boston_hub)

oid:ac93e6cf.14a311d5.bbcc.00:01:80:c0:4b:e7=950 (buenosaires)
Rational ClearCase MultiSite Reference Pages 231

lsmaster
lsmaster
Lists objects mastered by a replica

APPLICABILITY

SYNOPSIS

lsmaster [–kind object-selector-kind[,...]] [–fmt format-string] [–view view-tag]

[–inr⋅eplicas { –all | replica-name[,...] }] master-replica-selector ...

DESCRIPTION

This command lists objects mastered by a replica. By default, the command uses only the

information known to your current replica. If you list objects mastered by a sibling replica,

changes that have not been imported at your current replica are not included in the output. For

example, a label type is added at replica sanfran_hub, but replica boston_hub has not imported

the update packet containing the change. If you enter the command multitool lsmaster
sanfran_hub at the boston_hub replica’s site, the output does not include the new label type.

To retrieve information from a sibling replica, use –inreplicas. This form of the command

contacts the sibling replicas and works only between sites that have IP connections. If lsmaster
cannot contact a replica, it prints an error and tries to contact the next replica you specified.

Object Name Resolution

If you have a view context, lsmaster uses the view to resolve object identifiers (OIDs) of file

system objects to the names of the objects. If you do not have a view context, lsmaster prints

OIDs for file system objects. You can specify a view context with the –view option.

When you specify –inreplicas, lsmaster prints OIDs for objects whose creation operations have

not yet been imported at your current replica.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
232 Administrator’s Guide: Rational ClearCase MultiSite

lsmaster
RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE OBJECT KINDS. Default: lsmaster lists all objects mastered by the replica.

–kind object-selector-kind[,...]
Limits the listing to the specified object kinds. The list of object kinds must be

comma-separated, with no spaces. object-selector-kind can be one of the following values:

Values for ClearCase:

attype
branch
brtype
delem (directory element)

eltype
felem (file element)

hlink
hltype
lbtype
slink
vob

Values for ClearCase UCM:

activity
baseline
component
folder
project
stream

Values for MultiSite:

replica

REPORT FORMAT. Default: For file-system objects, the master replica, object kind, and OID of each

object are listed. For example:

master replica: boston_hub@/vobs/dev file element:oid:40e022a3.241d11ca ...

For non-file-system objects, the master replica, object kind, and name of each object are listed. For

example:

master replica: boston_hub@/vobs/dev brtype:main
Rational ClearCase MultiSite Reference Pages 233

lsmaster
–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this option.

SPECIFYING A VIEW CONTEXT. Default: The command uses your current view context.

–view view-tag
Specifies a view.

SPECIFYING THE REPLICA FROM WHICH TO RETRIEVE INFORMATION. Default: The command uses

the information in your current replica.

–inr⋅eplicas { –all | replica-name[,...] }
With –all, retrieves information from all replicas in the VOB family (except deleted

replicas). Otherwise, retrieves information from the sibling replicas you specify. The list

of replicas must be comma-separated, with no spaces.

SPECIFYING THE REPLICA WHOSE MASTERED OBJECTS ARE DISPLAYED. Default: No default; you

must specify a replica.

master-replica-selector ...

Lists objects mastered by the specified replica. Specify master-replica-selector in the form

[replica:]replica-name[@vob-selector]

EXAMPLES

• List all objects mastered by the replica sanfran_hub.

multitool lsmaster –view v4.1 –fmt "%m:%n\n" sanfran_hub@/vobs/dev
directory element:/vobs/dev.@@
...
file element:/vobs/dev/lib/file.c@@
...
symbolic link:/vobs/dev/doc
...
hyperlink:Merge@2@/vobs/dev
...

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
234 Administrator’s Guide: Rational ClearCase MultiSite

lsmaster
• List all label types mastered by the replica boston_hub.

cleartool lsmaster –fmt "%m:%n\n" –kind lbtype boston_hub@\doc
label type:LATEST
label type:CHECKEDOUT
label type:BACKSTOP
label type:REL1
...

• List all element types, label types, and branch types mastered by the replica sanfran_hub.

cleartool lsmaster –kind eltype,lbtype,brtype sanfran_hub
master replica: sanfran_hub@\dev "element type" file_system_object
master replica: sanfran_hub@\dev "element type" file
master replica: sanfran_hub@\dev "element type" directory
...
master replica: sanfran_hub@\dev "branch type" sanfran_main
master replica: sanfran_hub@\dev "branch type" v1.0_bugfix
...
master replica: sanfran_hub@\dev "label type" LATEST
master replica: sanfran_hub@\dev "label type" SANFRAN_V2.0
master replica: sanfran_hub@\dev "label type" V1.0_BUGFIX
master replica: sanfran_hub@\dev "label type" TOKYO_BASE
master replica: sanfran_hub@\dev "label type" SYDNEY_BASE
...

• List the name and creation comment of each element type mastered by the replica

boston_hub. Contact the boston_hub replica to retrieve the data.

multitool lsmaster –inreplicas boston_hub –fmt "%n\t%c\n" \
–kind eltype boston_hub@/vobs/dev
In replica "boston_hub"
binary_delta_file Predefined element type used to represent a file
in binary delta format.
...

• List information from all replicas in the VOB family about the objects mastered by the

replica sanfran_hub. Do not use a view context.

multitool lsmaster –inreplicas –all sanfran_hub@/vobs/dev
In replica "boston_hub"
master replica: sanfran_hub@/vobs/dev "versioned object base" /vobs/dev
master replica: sanfran_hub@/vobs/dev "directory element"
(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)
master replica: sanfran_hub@/vobs/dev "directory element"
(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)
...
Rational ClearCase MultiSite Reference Pages 235

lsmaster
Use a view context:

multitool lsmaster –view v4.1 –inreplicas –all sanfran_hub@/vobs/dev
In replica "boston_hub"
master replica: sanfran_hub@/vobs/dev "versioned object base" /vobs/dev
master replica: sanfran_hub@/vobs/dev "directory element"
/view/v4.1/vobs/dev/.@@
master replica: sanfran_hub@/vobs/dev "directory element"
/view/v4.1/vobs/dev/lib@@
...

• List information from the sanfran_hub replica about the objects mastered by the replica

boston_hub.

multitool lsmaster –view v4.1 –inreplicas sanfran_hub boston_hub@\doc

• List all projects, baselines, and streams mastered by the replica boston_hub. Contact the

boston_hub replica to retrieve the data.

multitool lsmaster –inreplicas boston_hub –kind project,baseline,stream \
boston_hub@/vobs/projects
In replica "boston_hub"
master replica: boston_hub@/vobs/projects "project" V4.5.BL3
master replica: boston_hub@/vobs/projects "project" doc_localize
master replica: boston_hub@/vobs/projects "stream" 4.5.bl2_int
master replica: boston_hub@/vobs/projects "project" V4.5.BL2
master replica: boston_hub@/vobs/projects "stream" 4.5.bl2
master replica: boston_hub@/vobs/projects "stream" stream000317.160434
master replica: boston_hub@/vobs/projects "stream" stream000317.173156
master replica: boston_hub@/vobs/projects "baseline" V4.5.BL2.011005.12820
master replica: boston_hub@/vobs/projects "baseline" V4.5.BL2.011005.12890
master replica: boston_hub@/vobs/projects "baseline" V4.5.BL2.011005.17408
master replica: boston_hub@/vobs/projects "baseline" V4.5.BL2.011005.17695
master replica: boston_hub@/vobs/projects "baseline" V4.5.BL2.011005.19614
...

SEE ALSO

chmaster, describe, reqmaster
Introduction to MultiSite and Managing Mastership in the Administrator’s Guide for Rational

ClearCase MultiSite.
236 Administrator’s Guide: Rational ClearCase MultiSite

lspacket
lspacket
Describes contents of packet

APPLICABILITY

SYNOPSIS
lspacket [–l⋅ong | –s⋅hort] [pname ...]

DESCRIPTION

This command lists a summary of the contents of one or more disk files that contain

replica-creation or update packets. By default, the lspacket output includes this information:

• Pathname of each packet

• Type of each packet (Replica Creation or Update)

• VOB family to which the packet applies

• Creation comment for the packet

• Replicas for which the packet is intended; if the VOB-tag is available, lspacket displays it.

An asterisk after a replica name indicates that the packet can be imported immediately

because it does not depend on any other packet. (This applies only for replicas listed in the

host’s ClearCase registry.)

For example, if there are two packets waiting to be imported at a replica, the first packet has

an asterisk and the second doesn’t (because the second packet depends on the first).

• Packet sequence number (for a disk file storing one part of a logical packet that has been

split into multiple physical packets)

RESTRICTIONS

None.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 237

lspacket
OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: Includes the information listed in the DESCRIPTION section.

–l⋅ong
In addition to the default information, lists the following information:

–s⋅hort
Lists only the pathname of a packet.

SPECIFYING THE PACKETS TO BE LISTED. Default: Lists all packets in all storage bays on the current

host.

pname ...

One or more pathnames of files and/or directories.

Each file you specify is listed if it contains a physical packet. For each directory you

specify, lspacket lists packets stored in that directory.

EXAMPLES

• List a single replica-creation packet.

multitool lspacket \
/usr/atria/shipping/ms_ship/incoming/repl_boston_15-Aug-00.17.07.20_7865_1
Packet is:
/usr/atria/shipping/ms_ship/incoming/repl_boston_15-Aug-00.17.07.20_7865_1
Packet type: Replica Creation
VOB family identifier is: 94be56a1.0dd611d1.a0df.00:01:80:7b:09:69
Comment supplied at packet creation is:
Packet intended for the following targets:

buenosaires
The packet sequence number is 1

• List a single update packet.

multitool lspacket /usr/tmp/packet1
Packet is: /usr/tmp/packet1
Packet type: Update
VOB family identifier is: c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7
Comment supplied at packet creation is:
Packet intended for the following targets:
 sanfran_hub [local to this network] tag: /vobs/tests
The packet sequence number is 1

• Name or OID of the replica where the packet was created

• Oplog IDs (epoch numbers) that indicate the contents of the packet

• Recovery incarnation of the sending replica (an internal value used by MultiSite)

• Major and minor packet versions, which are values for use by Rational Software
238 Administrator’s Guide: Rational ClearCase MultiSite

lspacket
• List all packets in all of the local host’s storage bays.

multitool lspacket
Packet is: c:\Program Files\Rational\ClearCase\var\shipping
\ms_ship\incoming\packet1
...
Packet is: c:\Program Files\Rational\ClearCase\var\shipping
\ms_ship\incoming\packet2

• List all packets in a specific storage bay.

multitool lspacket "c:\Program Files\Rational\ClearCase\var\shipping\to_boston"
Packet is: c:\Program Files\Rational\ClearCase\var\shipping
\to_boston\outgoing\packet1
Packet type: Update
...

• List an update packet in long format.

multitool lspacket –long /usr/tmp/packet1
Packet is: /usr/tmp/packet1
Packet type: Update
VOB family identifier is: c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7
Comment supplied at packet creation is:
Packet intended for the following targets:
 sanfran_hub [local to this network] * tag: /vobs/tests
Originating replica is: sydney
The following replicas are referenced by this packet:

f3b1cd51.04b111d3.b2f0.00:c0:4f:96:17:d8
first oplog id is 10
incarnation is 06/29/95 12:18:09

3f370590.04b211d3.b2f0.00:c0:4f:96:17:d8
first oplog id is 0
incarnation is 0

8b354320.04c218k3.b5r0.00:c0:4f:99:27:f7
first oplog id is 1
incarnation is 07/21/95 11:45:20

The major packet version is 2, the minor packet version is 0
The packet sequence number is 1

SEE ALSO

mkreplica, MultiSite Control Panel (Windows), syncreplica, shipping.conf (UNIX)
Rational ClearCase MultiSite Reference Pages 239

lsreplica
lsreplica
Lists VOB replicas

APPLICABILITY

SYNOPSIS
lsrep⋅lica [–l⋅ong | –s⋅hort | –fmt format]

[–sib⋅lings
| [–sib⋅lings] –invob vob-selector
| replica-selector ...

]

DESCRIPTION

This command lists information about all VOB-replica objects recorded in the VOB database of

the current replica (except for deleted replicas). Other replicas may exist, but the packets

containing their creation information have not yet been imported at the current replica.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: Includes creation event information for each replica.

–l⋅ong
Includes each replica’s creation information, master replica, mastership request setting,

ownership information, and host. If the current replica is in the process of restoration,

this option annotates the listings of other replicas from which restoration updates are

required. (See the restorereplica reference page.)

Product Command type

ClearCase cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows
240 Administrator’s Guide: Rational ClearCase MultiSite

lsreplica
–s⋅hort
Lists only replica names.

–fmt format
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

–sib⋅lings
Lists the VOB family members of the current replica, but does not list the current replica

itself. This option is useful when you are writing scripts that process only sibling

replicas.

SPECIFYING THE VOB FAMILY. Default: Lists VOB family members of the replica containing the

current working directory.

–invob vob-selector
Lists the replicas of the specified VOB family. Specify vob-selector in the form

[vob:]pname-in-vob

SPECIFYING THE REPLICA. Default: Lists all known replicas of the VOB family.

replica-selector ...

Restricts the listing to one or more replicas. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
Rational ClearCase MultiSite Reference Pages 241

lsreplica
EXAMPLES

• List the names of all replicas of the VOB containing the current working directory.

multitool lsreplica –short
bangalore
boston_hub
buenosaires
sanfran_hub

• List the names of all siblings of the VOB containing the current working directory.

multitool lsreplica –short –siblings
bangalore
buenosaires
sanfran_hub

• Display a long listing of the current VOB’s replicas.

multitool lsreplica –long
replica "bangalore"

15-Aug-00.15:48:39 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: boston_hub@/vobs/dev
request for mastership:enabled
owner: susan
group: user
host: "ramohalli"

replica "boston_hub"
19-May-99.15:47:13 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered
master replica: boston_hub@/vobs/dev
request for mastership:enabled
owner: susan
group: user
host: "minuteman"

replica "buenosaires"
242 Administrator’s Guide: Rational ClearCase MultiSite

lsreplica
15-Aug-00.15:48:44 by Susan Goechs (susan.user@minuteman)
replica type: unfiltered
master replica: boston_hub@/vobs/dev
request for mastership:enabled
owner: susan
group: user
host: "mardelplata"

replica "sanfran_hub"
19-May-99.15:49:46 by Susan Goechs (susan.user@minuteman)

replica type: unfiltered
master replica: sanfran_hub@/vobs/dev
request for mastership:enabled
owner: susan
group: user
host: "goldengate"

• List all replicas of the VOB whose VOB-tag is \doc.

multitool lsreplica –invob \doc

• List the name, master replica, and replica host of all replicas in the VOB family /vobs/doc.

cmd-context lsreplica –fmt \
"Name: %n\n\tMaster replica: %[master]p\n\tReplica host: %[replica_host]p\n" \
-invob /vobs/doc
Name: boston_hub

Master replica: boston@/vobs/doc
Replica host: minuteman

Name: sanfran_hub
Master replica: sanfran_hub@/vobs/doc
Replica host: goldengate

Name: tokyo
Master replica: sanfran_hub@/vobs/doc
Replica host: shinjuku

SEE ALSO

mkreplica

For VOB replica “\doc”:

11-Mar.13:42 jcole replica "boston_hub"

11-Mar.13:45 jcole replica "sanfran_hub"

11-Mar.13:48 jcole replica "tokyo"
Rational ClearCase MultiSite Reference Pages 243

mkorder
mkorder
Creates a shipping order for use by the store-and-forward facility

APPLICABILITY

SYNOPSIS
mkorder –dat⋅a packet-pname [–scl⋅ass storage-class-name]

[–pex⋅pire date-time] [–not⋅ify e-mail-address]

[–c⋅omment comment | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–shi⋅p –cop⋅y | –fsh⋅ip [–cop⋅y] | –out order-pname] destination ...

This command is located in ccase-home-dir/etc on UNIX and ccase-home-dir\bin on Windows.

DESCRIPTION

This command creates a shipping order file for an existing packet or any other file. The shipping

order is used by the shipping_server command to send the packet to one or more destinations.

mkorder submits to the store-and-forward facility a packet that was created with mkreplica –out
or syncreplica –out. You can also use mkorder to resubmit store-and-forward packets whose

shipping orders have expired, and to transfer other files among sites.

A shipping order must be located in the same directory as its associated packet or file.

NOTE: The store-and-forward facility deletes a packet after delivering it successfully (except

when the destination is the local host). If you use this command to process a file that must be

preserved at your site even after delivery to another site, you must specify the –copy option.

RESTRICTIONS

None.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
244 Administrator’s Guide: Rational ClearCase MultiSite

mkorder
OPTIONS AND ARGUMENTS

SPECIFYING THE PACKET FILE. Default: None.

–dat⋅a packet-pname
The pathname of the packet or file.

NOTE: If packet-pname contains a colon character (:), mkorder changes the colon to a

period character (.) during processing. This allows packets to be delivered to Windows

machines, which do not allow colons within file names.

SPECIFYING WHERE TO PLACE THE SHIPPING ORDER. Default: Creates a shipping order in the

directory where the packet-pname file is located.

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. If you also use –ship or

–fship, mkorder looks up the storage class in the store-and-forward configuration

settings (on Windows, in the MultiSite Control Panel; on UNIX, in the file

ccase-home-dir/config/services/shipping.conf) to determine the location of the storage

bay to use.

If you omit this option but use –ship or –fship, mkorder places the shipping order in the

storage bay location specified for the –default class in the MultiSite Control Panel or the

shipping.conf file.

–shi⋅p –cop⋅y
–fsh⋅ip [–cop⋅y]

Creates a shipping order for the packet-pname file. Using –fship (force ship) invokes

shipping_server to send the packet. Using –ship places the shipping order in a storage

bay. To send the packet, run shipping_server or set up invocations of sync_export_list
–poll with the schedule command. (See the schedule reference page in the Command
Reference.)

–copy is required with –ship, and optional with –fship:

• With –copy, mkorder copies the packet-pname file to one of the store-and-forward

facility’s storage bays, and places the shipping order in the bay. The copy is

deleted after it is delivered successfully to all the destinations specified in the

shipping order.

• Without –copy, mkorder does not copy packet-pname; mkorder places the

shipping order in the directory where the file is located. packet-pname is deleted

after it is delivered successfully to all the destinations specified in the shipping

order.
Rational ClearCase MultiSite Reference Pages 245

mkorder
–out order-pname
Places the shipping order in the specified file instead of in a storage bay. An error occurs

if the file already exists.

HANDLING PACKET-DELIVERY FAILURES. Default: If a packet cannot be delivered, it is sent through

the store-and-forward facility back to the administrator at the site of the originating replica. A

mail message is sent to the store-and-forward administrator. This occurs after repeated attempts

to deliver the packet have failed, and the allotted time has expired; it can also occur when the

destination host is unknown or a data file does not exist. The store-and-forward configuration

settings specify the expiration period and the e-mail address of the administrator.

–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops attempting to deliver the

packet and generates a failure mail message instead.

UNIX: This option overrides the storage class’s EXPIRATION specification in the

store-and-forward configuration file. See the shipping.conf reference page for a

discussion of this specification and of delivery retries in general.

Windows: This option overrides the storage class’s Packet Expiration specification in the

MultiSite Control Panel. See the MultiSite Control Panel reference page for a discussion

of this specification, and of delivery retries in general.

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default value is today. If you omit

the century, year, or a specific date, the most recent one is used. Specify UTC if you want

the time to be resolved to the same moment in time regardless of time zone. Use the plus

(+) or minus (-) operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets, the default setting is Greenwich Mean Time

(GMT). (Dates before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
246 Administrator’s Guide: Rational ClearCase MultiSite

mkorder
Examples:

22-November-1998
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification enabled, a

message appears in the Windows Event Viewer. The message includes the e-mail-address
value specified with this option and a note requesting that this user be informed of the

status of the operation. For information about enabling e-mail notification, see the

MultiSite Control Panel reference page.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page.

–c⋅omment comment | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with one of the MultiSite comment options.

SPECIFYING THE DESTINATION. Default: None.

destination ...
One or more host names (which must be usable by hosts in different domains) or IP

addresses. When sending a MultiSite packet, you must specify the host where the replica

actually resides or is to be created.

EXAMPLES

• Create a shipping order for file p1, which is located in the default storage bay. Store the

shipping order in the same storage bay as p1, and specify that the file is to be sent to host

goldengate. The lines are broken for readability. You must enter the command on a single

physical line.

mkorder –data "c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\p1"
–out "c:\Program Files\Rational\ClearCase\var\shipping\ms_ship\p1_order"
goldengate
Shipping order "c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\p1_order" generated.
Rational ClearCase MultiSite Reference Pages 247

mkorder
• Create a shipping order in the default storage bay for a specified file that is to be delivered

to host goldengate. Specify that admin must be notified if the file is not delivered

successfully.

/usr/atria/etc/mkorder –data /usr/tmp/to_goldengate –ship –copy –notify admin
goldengate
Shipping order "/var/adm/atria/shipping/ms_ship/sh_o_to_goldengate"
generated.

• Create a shipping order for the same file, but place it in the storage bay for a particular

storage class. Attempt immediate delivery (–fship), and allow delivery attempts to

continue until the beginning of May 18.

mkorder –data c:\tmp\to_goldengate –fship –copy –sclass ClassA –pexpire 18-May
goldengate
Shipping order "c:\tmp\sclass\ClassA\sh_o_to_goldengate" generated.
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet c:\tmp\sclass\ClassA\sh_o_to_goldengate

FILES

ccase-home-dir/config/services/shipping.conf

SEE ALSO

mkreplica, MultiSite Control Panel, shipping.conf, shipping_server, syncreplica
Chapter 10, Troubleshooting MultiSite Operations
248 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
mkreplica
Creates a VOB replica

APPLICABILITY

SYNOPSIS

• Duplicate an existing VOB replica, generating a replica-creation packet:

mkrep⋅lica –exp⋅ort –wor⋅kdir temp-dir-pname [–max⋅size size]

[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ { –sh⋅ip | –fshi⋅p } [–scl⋅ass storage-class] [–pex⋅pire date-time] [–not⋅ify e-mail-addr]

| –tape raw-device-pname
| –out packet-file-pname

}

hostname:replica-selector ...

NOTE: The –tape option is valid only on UNIX.

• Use a replica-creation packet to create a new VOB replica:

mkrep⋅lica –imp⋅ort –wor⋅kdir temp-dir-pname –tag vob-tag
{ –vob vob-stg-pname [–hos⋅t hostname –hpa⋅th host-stg-pname –gpa⋅th global-stg-pname]

| –stgloc { stgloc-name | –auto } }

{ –pre⋅serve | –npr⋅eserve }

[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [–nca⋅exported]

[–reg⋅ion region-name] [–opt⋅ions mount-options]

[–pub⋅lic [–pas⋅sword tag-registry-password]] [–ign⋅oreprot]
[–poo⋅ltalk] [–vre⋅plica replica-name]

{ –tap⋅e raw-device-pname | packet-file-pname [search-dir-pname ...] }

NOTE: The –ncaexported and –tape options are valid only on UNIX.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 249

mkreplica
DESCRIPTION

The creation of a new VOB replica is a two-phase process. Both phases require you to enter a

mkreplica command:

1. The mkreplica –export command duplicates the contents of the current VOB replica (the

originating replica). This generates a single logical replica-creation packet for transmission

to one or more other sites. As described in REPLICA-CREATION PACKETS on page 251, it

may be divided into multiple physical packets. (If you use –fship or –ship, mkreplica also

generates a shipping order file for each physical packet.)

This command also creates a new replica object in the VOB database.

The VOB is locked for the entire length of time the mkreplica –export command runs.

NOTE: Creating multiple replicas in one mkreplica –export command is more efficient than

using multiple mkreplica –export commands.

2. At another site, a mkreplica –import command uses the replica-creation packet to create a

new VOB replica. The user who enters this command becomes the VOB owner of the new

replica.

When a VOB is first replicated, creating a second replica, the VOB’s oplog (operation log) is

enabled. All ClearCase and MultiSite operations to be replicated are recorded in the oplog.

Logging of operations continues until all but one of the VOB’s replicas are deleted. Note that

creation of additional replicas is recorded in oplog entries. Existing replicas learn about a newly

created replica through the standard synchronization mechanism. (See the syncreplica reference

page.)

NOTE: Before entering a mkreplica –export command, make sure MultiSite licenses are installed

at the original site. After you enable replication in the original VOB, developers cannot access the

VOB without a MultiSite license (in addition to a ClearCase license).

OWNERSHIP PRESERVATION

When you enter a mkreplica –import command, you must choose whether to make the new

replica ownership-preserving or non-ownership-preserving. In either case, the user who enters

the mkreplica –import command becomes the owner of the new VOB replica. Ownership

preservation affects only element ownership and permissions. For more information on

ownership preservation, see Element Ownership and Ownership Preservation on page 4.

Restrictions:

• Creating an ownership-preserving replica is appropriate only if its site supports the same

user and group accounts as the originating site. On Windows, therefore, if replicas in a VOB

family are not all in the same Windows domain, the entire set of replicas cannot be

ownership-preserving. However, you can maintain ownership preservation on the subset of

replicas in the same domain.
250 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
• Windows: The primary group of the user who enters the mkreplica –import command

must be the same as the originating replica’s group assignment.

• UNIX: The user who enters the mkreplica –import command must belong to all the groups

on the originating replica’s group list.

NOTE: We recommend that you run syncreplica –export immediately after creating a new replica

with mkreplica –import –preserve, to inform other replicas in the VOB family that the new

replica is ownership-preserving.

REPLICA-CREATION PACKETS

Each invocation of mkreplica –export creates a single logical replica-creation packet. (This is true

even if you create several new replicas with one mkreplica command.) Each packet carries one

or more replica specifications, each of which indicates the host on which a new replica is to be

created, along with the new replica’s name.

The –maxsize option divides the single logical packet into multiple physical packets to conform

with limitations of the transfer medium.

Cleaning Up Used Packets

Replica-creation packets are not deleted after import. The VOB owner at the new replica site

must delete replica-creation packets after importing them with mkreplica –import.

REPLICATION OF VOBS LINKED TO ADMINISTRATIVE VOBS

If the VOB you are replicating is linked to an administrative VOB, mkreplica –export prints a

reminder that you must replicate all administrative VOBs in the hierarchy above the VOB you

are replicating. The output lists the administrative VOBs. The command does not check whether

these administrative VOBs are replicated, so you can ignore the message if you have already

replicated them.

RESTRICTIONS

Identities: For mkreplica –export, you must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

Other:

• You must execute mkreplica –export on the host where the VOB storage directory resides.

• You cannot replicate a VOB to a host running an earlier major version of MultiSite.

(However, you can replicate a VOB to a host running a later major version of MultiSite.)
Rational ClearCase MultiSite Reference Pages 251

mkreplica
OPTIONS AND ARGUMENTS — EXPORT PHASE

The following sections describe the options and arguments for use with mkreplica –export.

SPECIFYING TEMPORARY WORKSPACE. Default: None.

–wor⋅kdir temp-dir-pname
A directory for use by mkreplica as a temporary workspace; it is deleted when

mkreplica finishes. This directory must not already exist. You must specify a location in

a disk partition that has enough free space (at least the size of the VOB database directory

plus its source pools; use cleartool space to display VOB disk space use).

SPECIFYING THE REPLICA-CREATION PACKET SIZE. Default: When you do not specify –maxsize, the

default packet size depends on the shipping method you use:

• Packets created with –ship or –fship are no larger than the maximum packet size specified

in the shipping.conf file (UNIX) or the MultiSite Control Panel (Windows).

• Packets created with –out are no larger than 2 GB.

• Packets created with –tape have no default size limit.

The mkreplica command fails if it tries to create a packet larger than the size supported by your

system or by the tape.

–max⋅size size
The maximum size for a physical packet, expressed as a number followed by a single

letter; for example:

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –cqe). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment-string | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

DISPOSITION OF THE REPLICA-CREATION PACKET. Default: None. You must specify how the

replica-creation packet created by mkreplica –export is to be stored and/or transmitted to other

sites.

–shi⋅p
–fsh⋅ip

Stores the replica-creation packet in one or more files in a store-and-forward storage bay.

500k

20m

1.5g

500 kilobytes

20 megabytes

1.5 gigabytes
252 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
A separate shipping order file accompanies each physical packet, indicating how and

where it is to be delivered.

–fship (force ship) invokes shipping_server to send the replica-creation packet. –ship
places the packet in a storage bay. To send the packet, invoke shipping_server or set up

invocations of sync_export_list –poll with the schedule command. (See the schedule
reference page in the Command Reference.)

NOTE: The disk partition where the storage bay is located (on the sending host and the

receiving host) must have available space equal to or greater than the size of the VOB

database and source pools.

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. mkreplica looks up the

storage class in the store-and-forward configuration settings (on Windows, in the

MultiSite Control Panel; on UNIX, in the file

ccase-home-dir/config/services/shipping.conf) to determine the location of the storage

bay to use.

If you omit this option, mkreplica places the packet in the storage bay location specified

for the –default class.

–tap⋅e raw-device-pname (UNIX)

Writes the replica-creation packets to the specified tape device, which must be local to

the VOB server host. You are prompted to load a separate tape for each physical packet.

Use the –maxsize option to ensure that syncreplica does not exceed the capacity of the

tapes you are using. Only one physical packet can be placed on each tape, regardless of

packet size.

–out packet-file-pname
Places the first physical replica-creation packet in file packet-file-pname. Additional

packets are placed in files named packet-file-pname_2, packet-file-pname_3, and so on.

The replica-creation packets are not delivered automatically; use an appropriate

mechanism (for example, electronic mail, ftp, or postal service) to deliver them.

You can create a packet using –out, and subsequently deliver it using the

store-and-forward facility. See the mkorder reference page for details.

HANDLING PACKET-DELIVERY FAILURES. Default: If a packet cannot be delivered, it is sent through

the store-and-forward facility back to the administrator at the site of the originating replica. A

mail message is sent to the store-and-forward administrator. This occurs after repeated attempts

to deliver the packet have all failed, and the allotted time has expired; it can also occur when the

destination host is unknown or a data file does not exist. The store-and-forward configuration

settings specify the expiration period and the e-mail address of the administrator).
Rational ClearCase MultiSite Reference Pages 253

mkreplica
–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops trying to deliver the

packet and generates a failure mail message instead.

UNIX: This option overrides the storage class’s EXPIRATION specification in the

store-and-forward configuration file. See the shipping.conf reference page for a

discussion of this specification and of delivery retries in general.

Windows: This option overrides the storage class’s Packet Expiration specification in the

MultiSite Control Panel. See the MultiSite Control Panel reference page for a discussion

of this specification and of delivery retries in general.

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default value is today. If you omit

the century, year, or a specific date, the most recent one is used. Specify UTC if you want

the time to be resolved to the same moment in time regardless of time zone. Use the plus

(+) or minus (-) operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets, the default setting is Greenwich Mean Time

(GMT). (Dates before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-1998
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
254 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification enabled, a

message appears in the Windows Event Viewer. The message includes the e-mail-address
value specified with this option and a note requesting that this user be informed of the

status of the operation. For information about enabling e-mail notification, see the

MultiSite Control Panel reference page.

REPLICA SPECIFICATIONS. Default: None.

hostname:replica-selector...
One or more arguments, each of which indicates one new replica to be created from this

packet at another site.

Specify replica-selector in the form [replica:]replica-name[@vob-selector]

hostname Names the machine where the new replica’s storage directory will be

created. hostname must be usable by hosts in different domains. It is

used by the ClearCase store-and-forward mechanism to determine

how to route update packets to the replica. However, keep this

information accurate even if your site does not use

store-and-forward. (See the chreplica reference page.)

hostname can be either the IP address of the host or the computer

name, for example, minuteman. You may have to append an IP

domain name, for example, minuteman.purpledoc.com.

On UNIX, use the uname –n command to display the computer

name. On Windows NT, the computer name is displayed in the

Network Settings dialog box, which is accessible from the Network
icon in the Control Panel. On Windows 2000, the computer name is

displayed on the Network Identification tab in the System
Properties dialog box, which is accessible from the System icon in

the Control Panel.
Rational ClearCase MultiSite Reference Pages 255

mkreplica
OPTIONS AND ARGUMENTS — IMPORT PHASE

The following sections describe the options and arguments for use with mkreplica –import.

SPECIFYING TEMPORARY WORKSPACE. Default: None.

–wor⋅kdir temp-dir-pname
A directory for use by mkreplica as a temporary workspace; it is deleted when

mkreplica finishes. This directory must not already exist. Make sure to specify a location

in a disk partition that has enough free space. (See the description of –workdir in

OPTIONS AND ARGUMENTS — EXPORT PHASE.)

SPECIFYING VOB-CREATION PARAMETERS. Default: Because mkreplica –import executes a

cleartool mkvob command, you can use many of the options used with mkvob. The –tag option

is required, and one of –vob or –stgloc is required. See the mkvob reference page in the Command
Reference for detailed descriptions of these options.

–tag vob-tag
The VOB-tag (mount point) of the new VOB replica.

–vob vob-stg-pname
Location for the storage directory of the new VOB replica. On Windows, vob-stg-pname
must be a UNC name.

replica-name Name of the replica

You must compose the name according to these rules:

• It must contain only letters, digits, and the special

characters underscore (_), period (.), and hyphen (-). A

hyphen cannot be used as the first character of a name.

• It must not be a valid integer or real number. (Be careful

with names that begin with “0x”, “0X”, or “0”, the

standard prefixes for hexadecimal and octal integers.)

• It must not be one of the special names “ . “, “ .. “, or

“ ... “.

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
256 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
–hos⋅t hostname | –hpa⋅th host-stg-pname | –gpa⋅th global-stg-pname
Sets the new VOB replica’s registry information. In most cases, mkreplica derives this

information from the vob-storage-pname argument, but if your network topology is

unusual or the network interface is not standard, you may have to use these options. If

you have to use these options when creating a new VOB at the site, you have to use them

when importing a replica-creation packet.

–stgloc { stgloc-name | –auto }

Specifies the name of a storage location for the new replica’s VOB storage directory.

stgloc-name must be located on the same host on which you invoke mkreplica, and it

must be one of the registered storage locations. To list registered locations, use cleartool
lsstgloc. With –auto, mkreplica selects a location automatically.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Standard comment options.

–tco⋅mment tag-comment
A comment string to be included in the VOB-tag registry entry for the new replica.

–nca⋅exported (UNIX)

Marks the new VOB replica for NFS export.

–reg⋅ion region-name
Specifies an alternate registry region for the new replica’s VOB-tag.

–opt⋅ions mount-options
Mount options for the new VOB replica.

–pub⋅lic [–pas⋅sword tag-registry-password]

Creates a public VOB-tag for the new replica.

PROTECTION FAILURES ON CONTAINERS. Default: During import, if any data containers have a

group that is not the primary group of the VOB, a failure occurs when mkreplica tries to set the

protection of those containers. The import fails if protection failures occur.

–ign⋅oreprot
Completes the import even if protection failures occur. mkreplica prints a warning that

the protection problems may make the replica unusable. You must run checkvob to find

and fix any problems after creating a replica with this option.

NOTE: Instead of using this option, you can add the nonprimary groups to the group list

of the user importing the packet.
Rational ClearCase MultiSite Reference Pages 257

mkreplica
OWNERSHIP PRESERVATION. Default: None.

–pre⋅serve
Creates a replica that is ownership-preserving. The user who enters the mkreplica
–import command becomes the owner of the new VOB, and ownership and permissions

are preserved for all the elements in the new VOB.

–npr⋅eserve
Creates a replica that is not ownership-preserving. The user who enters the mkreplica
–import command becomes the owner of the new VOB and of all the elements in the new

VOB.

POOL CREATION FOR THE NEW REPLICA. Default: The new replica is created with the same set of

storage pools as the originating replica, and the assignments of elements to pools are preserved.

The new replica’s storage pools are created within its storage directory, even if some of the

originating replica’s pools are remote; the new pools have the default scrubbing parameters.

–poo⋅ltalk
Prompts you to specify locations and scrubbing specifications for the new replica’s

storage pools.

NAME OF VOB REPLICA. Default: If the replica-creation packet includes one replica specification,

you are prompted to confirm the replica name. If the packet includes multiple replica

specifications, you are prompted to select one of the replica names.

–vre⋅plica replica-name
Specifies the replica name, bypassing the prompt step.

SPECIFYING THE LOCATION OF THE REPLICA-CREATION PACKET. Default: None.

–tap⋅e raw-device-pname (UNIX)

Reads a replica-creation packet from the specified tape device, which must be local to the

host on which you enter the mkreplica –import command. Before entering the

command, place the tape in the tape drive. If a logical packet spans multiple tapes, you

can start with any of them in the drive. You are prompted to switch tapes.

packet-file-pname [search-dir-pname ...]

Specifies a pathname of a replica-creation packet created by mkreplica –export. For a

logical packet that spans multiple disk files, mkreplica scans the directory containing

packet-file-pname for related physical packets.

If you also specify one or more search-dir-pname arguments, mkreplica searches for

additional packets in these directories.
258 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
EXAMPLES

In these examples, the lines are broken for readability. You must enter each command on a single

physical line.

Exports

• Generate a replica-creation packet, which will be used at remote host goldengate to create a

new replica named sanfran_hub. Place the packet in a file in directory /tmp.

multitool mkreplica –export –workdir /tmp/ms_workdir
 –c "make a new replica for sanfran_hub" –out /tmp/sanfran_hub_packet
goldengate:sanfran_hub
Generating replica creation packet /tmp/sanfran_hub_packet
Dumping database...
...
Dumper done.

• Generate a replica-creation packet and place it in a storage bay.

multitool mkreplica –export –c "make a new replica for sanfran_hub"
–workdir /tmp/ms_workdir –ship goldengate:sanfran_hub
Generating replica creation packet
/var/adm/atria/shipping/ms_ship/outgoing/repl_boston_hub_18-May-99.15:50:00_1
 - shipping order file is
/var/adm/atria/shipping/ms_ship/outgoing/sh_o_repl_boston_hub_18-May-99.15:50:
00_1
Dumping database...
...
Dumper done.

• Generate a replica-creation packet that can be used to create two new replicas, bangalore
and buenosaires. Ship the packet to its destinations immediately, using store-and-forward.

multitool mkreplica –export –workdir /tmp/ms_workdir
–nc –fship ramohalli:bangalore mardelplata:buenosaires
Generating replica creation packet
/usr/atria/shipping/ms_ship/outgoing/repl_boston_hub_15-Aug-00.14.26.17_6011_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_repl_boston_hub_15-Aug-00.14.26.17_6
011_1
Dumping database...
...
Dumper done.
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/repl_boston_hub_15-Aug-00.14.26.17_6011_1
Rational ClearCase MultiSite Reference Pages 259

mkreplica
Imports

• Using a packet file in /tmp, create the storage directory for replica sanfran_hub. Make the

replica ownership-preserving, and immediately after creating the new replica, run

syncreplica –export to update the other replicas in the VOB family.

multitool mkreplica –import –workdir /tmp/ms_workdir
–tag /vobs/dev –vob /net/goldengate/vobstg/dev.vbs
–preserve –c "create sanfran_hub replica" /tmp/sanfran_hub_packet
The packet can only be used to create replica "sanfran_hub"
 - VOB family is c3f47cf3.71b111cd.a4f2.00:01:80:31:7a:a7
 - replica OID is 0c39c3b8.727b11cd.abb5.00:01:80:31:7a:a7
Should I create this replica? [no] yes
Processing packet /tmp/sanfran_hub_packet...
Loading database...
...
Loader done.
Registering VOB mount tag "/vobs/dev"...
VOB replica successfully created.
Host-local path: goldengate:/vobstg/dev.vbs
Global path: /net/goldengate/vobstg/dev.vbs
VOB ownership:
 owner ...
 group ...

multitool syncreplica –export –c "ownership-preserving" –fship boston_hub bangalore
buenosaires
...

• Similar to preceding example, but create the replica as a public VOB and

non-ownership-preserving. Specify the VOB-tag password and mount options on the

command line.

multitool mkreplica –import –workdir /tmp/ms_workdir
–tag /vobs/dev –vob /net/goldengate/vobstg/dev.vbs
–npreserve –c "create sanfran_hub replica" –options rw,soft
–public –password xxxxxx –vreplica sanfran_hub /tmp/sanfran_hub_packet
Processing packet /tmp/sanfran_hub_packet...
...
Registering VOB mount tag "/vobs/dev"...
VOB replica successfully created.
...
260 Administrator’s Guide: Rational ClearCase MultiSite

mkreplica
• Create the storage directory for a new replica, using a packet that was generated by existing

replica boston_hub and sent through store-and-forward. Specify storage pool parameters

for the new replica.

multitool mkreplica –import –workdir c:\tmp\workdir –tag \dev
–vob \\ramohalli\vobs\dev.vbs –npreserve –c "create bangalore replica"
–pooltalk –vreplica bangalore "c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_boston_hub_15-Aug
-00.14.26.17_6011_1
Processing packet c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\incoming\repl_boston_hub_15-
Aug-00.14.26.17_6011_1
The initial storage pools that will be used in the replica are:
 source pool sdft
 derived pool ddft
 cleartext pool cdft
Configuration for pool "sdft" (source pool):
Full pathname of directory to which pool "sdft"
should be linked (none = not linked)? [none] <RETURN>

Configuration for pool "ddft" (derived pool):
Full pathname of directory to which pool "ddft"
should be linked (none = not linked)? [none] <RETURN>

Maximum size (in Kbytes) for the storage directory of pool "ddft"
 (0 = no maximum)? [0] <RETURN>
Space (in Kbytes) to reclaim from pool "ddft"
during scrubbing (0 = none)? [0] <RETURN>

Minimum age (in hours) of objects to scrub from pool "ddft"
(0 = none)? [0] 12
Command to invoke if scrubbing does not reduce pool "ddft"
below maximum size (none = no command)? [none] <RETURN>
Comment for pool "ddft" (none = none)? [none] <RETURN>

. . . (accept defaults for cleartext pool, cdft)

Max. Reclaim Min. Link To
Pool Name Kind Size Size Age Directory
--------- ---- ---- ---- --- ---------
sdft source pool n/a n/a n/a
ddft derived pool 0K 0K 12
cdft cleartext pool 0K 0K 96

Is this the correct configuration for the pools (yes/no/abort)? [no] yes
...
Registering VOB mount tag "\dev"...
...
Rational ClearCase MultiSite Reference Pages 261

mkreplica
SEE ALSO

chmaster, chreplica, lspacket, lsreplica, mkorder, MultiSite Control Panel, shipping.conf,

syncreplica, mkvob (in the Command Reference)

Chapter 10, Troubleshooting MultiSite Operations
262 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Control Panel
MultiSite Control Panel
Configures store-and-forward facility

APPLICABILITY

SYNOPSIS
%SystemRoot%\System32\ms.cpl
To open the MultiSite Control Panel, double-click the MultiSite icon in Control Panel.

DESCRIPTION

The MultiSite Control Panel controls operation of the MultiSite store-and-forward facility on

each host. MultiSite installation creates registry keys in which all these entries are defined. In

some cases, the corresponding store-and-forward operation fails if a parameter is not defined,

and in other cases there is a hard-coded default.

The MultiSite Control Panel provides controls for setting the configuration parameters described

in the following sections.

MAXIMUM PACKET SIZE

Controls the splitting of individual logical packets into multiple physical packets. This value

specifies the maximum size for a physical packet file. Limiting the size of physical packets can

improve the reliability of packet delivery in some networks. To specify no limit, use 0 (zero).

This value is used by the following commands (unless you also specify –maxsize):

• mkreplica –fship
• mkreplica –ship
• syncreplica –fship
• syncreplica –ship
• sync_export_list

When you invoke mkreplica or syncreplica with –out, this value is not used, and you must use

–maxsize to limit the packet size.

Default: 2097151KB

Product Command type

MultiSite Administrative tool

Platform

Windows
Rational ClearCase MultiSite Reference Pages 263

MultiSite Control Panel
ADMINISTRATOR E-MAIL

Specifies the electronic mail address of the user to be notified when any of these events occur:

• A packet (on the local host) that has expired is returned to its sending host.

• A packet that was not delivered to its next hop is returned to its sending host.

• syncreplica –import finds a replica-creation packet.

To enable e-mail notification:

1. Make sure the SMTP Host box in the ClearCase Control Panel specifies a valid host. (This

box is located on the Options tab.)

2. Enter an e-mail address in the Administrator Email box in the MultiSite Control Panel. You

can specify only one address.

Default: None.

STORAGE CLASSES

Storage Class Name

Specifies the name of a storage class. You can associate values for packet expiration, the storage

bay, the return bay, and the receipt handler with each storage class.

Default: ClearCase MultiSite installation sets up a default storage class (–default) with

predefined values. The –default class is used when you invoke the mkorder, mkreplica,

syncreplica, or sync_export_list command with the –fship or –ship option and do not specify a

storage class. You can change the values associated with the –default class.

NOTE: The name for the ClearQuest MultiSite storage class must be cq_default.

Packet Expiration

Specifies the expiration period (in days) for shipping orders generated in the associated storage

class. This period begins at the time the shipping order is generated. If a packet cannot be

delivered to all its specified destinations in the specified number of days, the packet is returned

to the original sending host and a message is sent to the address specified in the Administrator
Email box. If e-mail notification is not enabled, a message is written to the Windows Event

Viewer.

A value of 0 (zero) specifies no expiration; delivery is reattempted indefinitely.

This setting is overridden by the –pexpire option to syncreplica or mkreplica.

The shipping_server program does not retry delivery of packets. The Packet Expiration

specification is useful only if you set up a host to periodically attempt delivery of any

undelivered packets. To set up redelivery attempts, use the schedule command to invoke

sync_export_list –poll, which invokes shipping_server –poll. For more information, see the

schedule reference page in the Command Reference.
264 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Control Panel
Default: When the Use Default Expiration check box is selected, the storage class uses the packet

expiration value associated with the –default class. (This value is not shown in the Packet
Expiration box; you must display the –default class to determine the value.) When MultiSite is

installed for the first time, the Packet Expiration value for the –default class is set to 14 days.

Storage Bay Path

Defines the location of a storage bay, a directory that holds the outgoing and incoming update

packets and shipping orders of a particular storage class.

Packets placed in a storage bay on an NTFS file system inherit the Windows ACL on the storage

bay. Define ACLs on the storage and return bays to enable successful execution of MultiSite

commands to process the packets, and to guard against unauthorized access. (If you use the

schedule command to invoke sync_export_list –poll on shipping_server, the group ClearCase
must have read and write permissions on all storage directories.) Packets stored on FAT file

systems have no protections.

Before using the store-and-forward facility, make sure that the disk partition where the

ccase-home-dir\var\shipping directory is created has sufficient free space for anticipated

replica-creation and update packets. The amount of available space on the disk partition where

the shipping and return bays are located must be at least twice as big as the largest packet that

will be stored in the bays. This is because there may be two copies of the same packet in the bay

at one time: one on its way to another destination, and another waiting to be applied to the

replica on the host.

Default: When MultiSite is installed for the first time, the storage bay associated with the –default
storage class is ccase-home-dir\var\shipping\ms_ship. This bay contains subdirectories named

incoming and outgoing, which hold incoming and outgoing packets. Shipping operations look

for packets in these subdirectories.

NOTE: When you create a new storage class, the storage bay and return bay that you specify are

created, along with the incoming and outgoing directories within the bays.

Return Bay Path

Defines a return bay (directory) to hold incoming or outgoing packets in the process of being

returned to their origin because they could not be delivered to all specified destinations.

Packets placed in a return bay inherit the ACL on the directory.

Default: When MultiSite is installed for the first time, the return bay associated with the –default
storage class is ccase-home-dir\var\shipping\ms_rtn. This bay contains subdirectories named

incoming and outgoing, which hold incoming and outgoing packets. Shipping operations look

for packets in these subdirectories.
Rational ClearCase MultiSite Reference Pages 265

MultiSite Control Panel
Receipt Handler Path

Specifies a batch file or program for the shipping_server to run when a packet is received for the

storage class. You can use this instead of scheduling executions of sync_receive. By default, no

file is specified. We recommend that you specify

ccase-home-dir\config\scheduler\tasks\sync_receive in the Receipt Handler Path box.

For each packet that is received, shipping_server does the following:

1. Reads the entries in the MultiSite Control Panel to find the appropriate Receipt Handler
value for the packet.

• If the packet is associated with a storage class and there is a Receipt Handler value for

that storage class, shipping_server uses the specified batch file or program

• If the packet is not associated with a storage class and there is a Receipt Handler value

for the –default storage class, shipping_server uses the batch file or program specified

for –default

2. Invokes the receipt handler, as follows:

script-pname [–d⋅ata packet-file-pname] [–a⋅ctual shipping-order-pname]

[–s⋅class storage-class] –o⋅rigin hostname

where

NOTE: If a packet is destined for both the local host and another host, both the –data and

–actual parameters are used. The packet is imported at the replica on the host, then

forwarded to its next destination.

Default: None.

script-pname Script specified in the RECEIPT-HANDLER entry.

–d⋅ata packet-file-pname Location of the packet. This parameter is used only when

the packet is destined for this host.

–a⋅ctual shipping-order-pname Location of the shipping order. This parameter is used

only when the packet is destined for another host.

–s⋅class storage-class Storage class associated with the packet. This parameter

is used only if the packet was associated with a storage

class when it was created.

–o⋅rigin hostname Host name of the machine from which the packet was

first sent.
266 Administrator’s Guide: Rational ClearCase MultiSite

MultiSite Control Panel
ROUTING INFORMATION

The Routing Information settings control the network routing of packets.

Next Routing Hop

The host specified here is the next destination for packets whose final destination is any of the

host names specified in the Destination Hostnames list. This host is responsible for delivery of

the packet to its destinations. You can specify a host using either its host name (which must be

usable by hosts in different domains) or its numeric IP address.

Default: None.

Destination Host Names

Packets destined for any host listed in this field are sent to the host specified in the Next Routing
Hop box. The value –default as the Destination Hostname accommodates all hosts that are not

associated with a routing hop. You can specify a host using either its host name (which must be

usable by hosts in different domains) or its numeric IP address.

Default: None.
Rational ClearCase MultiSite Reference Pages 267

multitool
multitool
MultiSite user-level commands

APPLICABILITY

SYNOPSIS

• Single-command mode:

multitool subcommand [options/args]

• Interactive mode:

multitool [–e]

multitool> subcommand [options/args]
. . .

multitool> quit

• Status mode:

multitool –status

multitool 1> subcommand [options/args]
. . .

multitool 5> quit

• Display version information for multitool (and on UNIX, MultiSite):

multitool –ver⋅sion

• Display version information for multitool and the libraries used by multitool (and on

UNIX, MultiSite):

multitool –VerAll

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
268 Administrator’s Guide: Rational ClearCase MultiSite

multitool
DESCRIPTION

multitool is the principal program in MultiSite. Typically, you also use MultiSite extensions

incorporated into cleartool subcommands in ClearCase.

The different multitool subcommands are described in multitool Subcommands on page 55.

USING INTERACTIVE MODE AND STATUS MODE

With –e, multitool enters interactive mode. It exits if an error is returned by a command.

With –status, multitool enters interactive mode and returns the status (0 or 1) of each multitool
subcommand executed.

If you exit multitool by entering a quit command in interactive mode, the exit status is 0. The

exit status from single-command mode depends on whether the command succeeded (zero exit

status) or generated an error message (nonzero exit status).

SPECIFYING OBJECTS WITH OBJECT SELECTORS

In multitool commands, you specify non-file-system VOB objects (types, pools, hyperlinks, and

replicas) with object selectors.

Object selectors identify non-file-system VOB objects with a single string:

[prefix:]name[@vob-selector]

where

prefix
The kind of object. The prefix is optional if the context of the command implies the kind

of object. For example,

multitool lsreplica replica:buenosaires

is equivalent to

multitool lsreplica buenosaires

If a context does not imply any particular kind of object, multitool assumes that a name
argument with no prefix is a pathname. For example, the command multitool describe
buenosaires describes a file-system object named buenosaires, while multitool
describe replica:buenosaires describes the buenosaires replica object.

name
The name of the object. See the Object Names section for the rules about composing

names.

vob-selector
VOB pathname. If you omit vob-selector, the default is the current working directory
Rational ClearCase MultiSite Reference Pages 269

multitool
unless the reference page specifies otherwise. Specify vob-selector in the form

[vob:]pname-in-vob (for some commands, the vob: prefix is required)

Object Names

In object-creation commands, you must compose the object name according to these rules:

• It must contain only letters, digits, and the special characters underscore (_), period (.), and

hyphen (-). A hyphen cannot be used as the first character of a name.

• It must not be a valid integer or real number. (Be careful with names that begin with “0x”,

“0X”, or “0”, the standard prefixes for hexadecimal and octal integers.)

• It must not be one of the special names “ . “, “ .. “, or “ ... “.

EVENT RECORDS AND COMMENTS

Each change to a VOB is recorded in an event record in the VOB database. Many multitool
commands include options you can use to include a comment string in the event record created

by the command. Commands that display event record information (describe, lsepoch,

lspacket, lsreplica, lstype) show the comments. See the fmt_ccase reference page in the

Command Reference for a description of the report-writing facility built in to these commands.

All commands that accept comment strings recognize the same options:

–c⋅omment comment
Specifies a comment for all event records created by the command. The comment string

must be a single command-line token; typically, you must enclose it in double quotes.

–cfi⋅le comment-file-pname
Specifies a text file whose contents are to be placed in all event records created by the

command.

NOTE: A final line terminator in this file is included in the comment.

–cq⋅uery
Prompts for one comment, to be placed in all the event records created by the command.

–cqe⋅ach
For each object processed by the command, prompts for a comment to be placed in the

corresponding event record.

–nc⋅omment
(No additional comment) For each object processed by this command, creates an event

record with no comment string.

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
270 Administrator’s Guide: Rational ClearCase MultiSite

multitool
A –cq or –cqe comment string can span several lines. To end a comment, enter an EOF character

at the beginning of a line, by typing a period character (.) and pressing ENTER, by typing

CTRL+D on UNIX, or by typing CTRL+Z ENTER on Windows. For example:

cleartool checkout main.c
Checkout comments for "main.c":
This is my comment; the following line terminates the comment.
.
Checked out "main.c" from version "\main\3"

The cleartool chevent command revises the comment string in an existing event record. See the

events_ccase reference page in the Command Reference for more information about event records.

Specifying Comments Interactively

multitool can reuse a comment specified previously. If the environment variable

CLEARCASE_CMNT_PN specifies a file, that file is used as a comment cache:

• When a multitool subcommand prompts for a comment, it offers the current contents of file

$CLEARCASE_CMNT_PN (UNIX) or %CLEARCASE_CMNT_PN% (Windows) as the default

comment.

• When you specify a comment string interactively, the multitool subcommand updates the

contents of CLEARCASE_CMNT_PN with the new comment. (The comment cache file is

created if necessary.)

NOTE: A comment that is specified noninteractively (for example, with the command

mkreplica –export –c "new replica for buenosaires") does not update the comment cache

file.

The value of CLEARCASE_CMNT_PN can be any valid pathname. Using a simple file name (for

example, .msite_cmnt) implements a comment cache for the current working directory; different

directories can have different .msite_cmnt files. Using the full pathname %HOME%\.msite_cmnt
(on Windows) or $HOME/.msite_cmnt (on UNIX) implements a cache of the individual user’s

comments across all ClearCase VOBs.

Customizing Comment Handling

Each command that accepts a comment string has a comment default, which takes effect if you

enter the command without any comment option. For example, the restorereplica command’s

comment default is –cqe, so you are prompted to enter a comment for each replica being

restored. The rmreplica command’s comment default is –nc: remove the replica without

prompting for a comment.

You can define a default comment option for each multitool command with a user profile file,

.clearcase_profile, in your home directory. For example, you can establish –cqe as the comment

default for the chmaster command. See the comments and profile_ccase reference pages in the

Command Reference for details.
Rational ClearCase MultiSite Reference Pages 271

recoverpacket
recoverpacket
Resets epoch row table so changes in lost packets are resent

APPLICABILITY

SYNOPSIS
recoverpacket [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–sin⋅ce date-time] replica-selector ...

DESCRIPTION

The recoverpacket command resets the epoch row at a sending replica to reflect the last

synchronization sent to a receiving replica before a particular time. It scans through a list of

epoch rows saved at the time of each export, looking for an entry prior to the time specified.

When it finds an entry, it uses the associated row to reset the epoch row for the specified receiving

replica. The next time a packet is sent, it includes the changes that were in the lost packet.

Resetting Epoch Numbers Automatically

When you send an update packet to another replica, success of the transport and import phases

is assumed. Therefore, the sending replica’s epoch number matrix is updated to reflect that the

changes are made at the receiving replica. However, if the packet is lost before reaching the

receiving replica, the sending replica’s assumption that the receiving replica is up to date is

incorrect.

The updated epoch numbers must be returned to the values they had before the packet was sent.

Making these corrections to the sending replica’s epoch number matrix causes it to include the

same changes in the next update packet it sends to the receiving replica.

The administrator at the receiving replica must run an lshistory command to determine the time

of the last successful import. The administrator at the sending replica uses this time in the

recoverpacket command.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
272 Administrator’s Guide: Rational ClearCase MultiSite

recoverpacket
NOTE: If the two sites are not in the same time zone, or you do not send packets at the same time

you generate them (for example, you generate packets at midnight and send them at 6:00 A.M.),

you must adjust for the time difference.

Resetting Epoch Numbers Manually

If there are no saved epoch rows for the replica that are as old as the specified time, the

recoverpacket command fails. In this case, the administrator at the receiving site must use the

lsepoch command to determine the correct epoch number, and the administrator at the sending

site must run chepoch on the sending replica to reset the epoch row. See the chepoch reference

page for more information.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SPECIFYING THE TIME. Default: If the time is not specified, recoverpacket uses the current time

(and, therefore, resets the epoch row so that the changes in the most recent update packet are

resent).

–sin⋅ce date-time
Specifies the time of the last successful processing of a packet at the receiving site. The

date-time argument can have any of the following formats:

date.time | date | time | now
where:

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
Rational ClearCase MultiSite Reference Pages 273

recoverpacket
Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default value is today. If you omit

the century, year, or a specific date, the most recent one is used. Specify UTC if you want

the time to be resolved to the same moment in time regardless of time zone. Use the plus

(+) or minus (-) operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets, the default setting is Greenwich Mean Time

(GMT). (Dates before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-1990
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

SPECIFYING THE ROW TO BE MODIFIED. Default: None.

replica-selector
Specifies the replica for which the epoch row is reset. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

EXAMPLES

• Reset the epoch row for replica sanfran_hub so that changes sent since last Monday will be

included in the next packet that is sent.

multitool recoverpacket –nc –since Monday sanfran_hub

• Reset the epoch row for replica boston_hub so that the changes included in the most recent

update packet will be included in the next packet that is sent.

multitool recoverpacket –c "send latest packet" boston_hub@\dev

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
274 Administrator’s Guide: Rational ClearCase MultiSite

recoverpacket
• Determine the last successful import at replica bangalore, reset the epoch row at replica

boston_hub, and send an update packet.

At replica bangalore:

cleartool lshistory replica:bangalore@\dev
19-Oct.15:36 smg import sync from replica "boston_hub" to replica
"bangalore"
"Imported synchronization information from replica "boston_hub".
...

At replica boston_hub (remember to adjust for the time zone difference):

multitool recoverpacket –since 19-Oct.05:06 bangalore@/vobs/dev
Using epoch information from Monday 10/19/99 05:05:45
Epoch row for replica "bangalore" successfully reset.

multitool syncreplica –export –fship bangalore@/vobs/dev
Generating synchronization packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_22-Oct-99.15.44.28_48
96_1
- shipping order file is
/usr/atria/shipping/ms_ship/outgoing/sh_o_sync_boston_hub_22-Oct-99.15.44.
28_4896_1
Attempting to forward/deliver generated packets...
-- Forwarded/delivered packet
/usr/atria/shipping/ms_ship/outgoing/sync_boston_hub_22-Oct-99.15.44.28_48
96_1

SEE ALSO

chepoch, lsepoch, restorereplica
VOB Operations and the Oplog in Chapter 1, Introduction to MultiSite
Rational ClearCase MultiSite Reference Pages 275

reqmaster
reqmaster
Sets access controls for mastership requests or requests mastership of a branch or branch type

APPLICABILITY

SYNOPSIS

• Display or set the ACL for mastership requests:

reqmaster –acl [–edi⋅t | –set pname | –get] vob-selector

• Set access controls for the replica, branches, or branch types:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
{ { –enable | –dis⋅able } vob-selector
| { –den⋅y | –allow } [–inst⋅ances] branch-type-selector ...
| { –den⋅y | –allow } branch-pname ...
}

• Request mastership of a branch or branch type:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
[–lis⋅t] { [branch-pname ...] [branch-type-selector ...] }

DESCRIPTION

This command has three forms: two forms to configure access controls for mastership requests

and one form to request mastership of a branch or branch type from the replica that masters the

object. For more information, see Chapter 9, Implementing Requests for Mastership in the

Administrator’s Guide for Rational ClearCase MultiSite.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows
276 Administrator’s Guide: Rational ClearCase MultiSite

reqmaster
SETTING ACCESS CONTROLS

To allow requests for mastership, the MultiSite administrator must set access controls at each

replica:

• Add developers to the replica’s access control list (ACL). Use the –acl option with –edit or

–set to edit the ACL.

• Enable replica-level access. By default, replica-level access is not enabled. To enable it, use

the –enable option.

Also, the type and the object must allow mastership requests. By default, type-level and

object-level access are enabled. You can enable replica-level access, but deny requests for

mastership of specific branches, specific branch types, or all branches of a specific type. Even if

replica-level access is enabled, the reqmaster command fails if requests for mastership are

denied at the type level or object level. Use the –deny option to deny requests at the type and

object level.

REQUESTING MASTERSHIP OF A BRANCH OR BRANCH TYPE

This form of the reqmaster command contacts a sibling replica and requests that the replica

transfer mastership to the current replica. You can also use reqmaster to display information

about whether a mastership request will succeed.

If you specify multiple branches or branch types and the request fails for one or more items,

reqmaster prints error messages for the failures and continues processing the other items.

TROUBLESHOOTING

If the reqmaster command fails, the error message indicates whether the failure occurred at the

current replica or the sibling replica.

If the reqmaster command fails with the message can’t get handle , enter the command again.

If it continues to fail, ask the administrator of the sibling replica to check the status of the VOB

server.

When you request mastership, the reqmaster command may complete successfully, but the

mastership is not transferred to your current replica. In this case, verify that the synchronization

packet was sent from the sibling replica and that your current replica imported it successfully.

Errors that occur during the mastership request process, including errors occurring during the

synchronization export, are written to the msadm log file. To view this log, use the cleartool
getlog command or the ClearCase Administration Console (Windows).

For more information on error messages from the reqmaster command, see Chapter 9,

Implementing Requests for Mastership in the Administrator’s Guide for Rational ClearCase MultiSite.
Rational ClearCase MultiSite Reference Pages 277

reqmaster
RESTRICTIONS

Setting Access Controls

Identities: To set the ACL, you must have write permission on the ACL or have one of the

following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

To enable mastership requests at the replica level, you must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: No locks apply.

Mastership: The replica must be self-mastering. For you to allow or deny mastership requests for

a branch or branch type, your current replica must master the object.

Requesting Mastership of a Branch:

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked: branch, branch type, VOB.

Mastership: Your current replica must not master the branch.

Other: An error occurs in any of the following cases:

• Mastership requests are denied at any of the following levels: replica, type object, object.

• There are checkouts on the branch (except for unreserved, nonmastered checkouts).

• You specify a branch associated with a stream.

Requesting Mastership of a Branch Type:

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked: branch type, VOB, branch

instances that have default mastership.

Mastership: Your current replica must not master the branch type.

Other: An error occurs in any of the following cases:

• Mastership requests are denied at any of the following levels: replica, type object, any

branch type instances with default mastership.

• There are checkouts on any branch type instances with default mastership (except for

unreserved, nonmastered checkouts).

• You specify a branch type associated with a stream.
278 Administrator’s Guide: Rational ClearCase MultiSite

reqmaster
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See Customizing Comment
Handling in the multitool reference page. To edit a comment, use chevent.

–c⋅omment comment | –cq⋅uery | –nc⋅omment
Overrides the default with the specified comment option.

DISPLAYING OR SETTING ACCESS CONTROLS. Default: None. You must specify access controls.

Specifying –acl with no other option displays the ACL for the current replica in the VOB family

specified by vob-selector.

–acl [–edi⋅t | –set pname | –get] vob-selector
By default or with –get, displays the ACL for the current replica in the VOB family

specified by vob-selector. With –edit, opens the ACL for the current replica in the editor

specified by (in order) the WINEDITOR (UNIX), VISUAL, or EDITOR environment variable.

With –set, uses the contents of pname to set the ACL for the current replica.

Specify vob-selector in the form vob:pname-in-vob

–enable vob-selector
Allows mastership requests to be made to the current replica in the VOB family specified

by vob-selector.

–dis⋅able vob-selector
Denies all mastership requests made to the current replica in the VOB family specified

by vob-selector.

{ –deny | –allow } [–inst⋅ances] branch-type-selector ...

Denies or allows requests for mastership of the specified branch type. With –instances,

denies or allows requests for mastership of all branches of the specified type. Specify

branch-type-selector in the form brtype:type-name[@vob-selector]

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

type-name Name of the branch type

vob-selector VOB specifier; can be omitted if the current working

directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
Rational ClearCase MultiSite Reference Pages 279

reqmaster
{ –deny | –allow } branch-pname ...

Denies or allows requests for mastership of the specified branch object. Specify

branch-pname in the form file-pname@@branch. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

REQUESTING MASTERSHIP. Default: Sends a request for mastership to the master replica of the

object.

–lis⋅t
Does not request the mastership change; instead, displays information about whether a

request would succeed.

branch-pname
Branch whose mastership you are requesting. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

branch-type-selector
Branch type whose mastership you are requesting. For example:

brtype:v2.0_integration@vob:\tests

EXAMPLES

• Display the ACL for the current replica in the VOB family /vobs/dev, and then change it to

give full access to ccadmin and permission to request mastership to gail and paul.

multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
Everyone: Read

cat > /tmp/boston_hub_aclfile
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
User:purpledoc.com/ccadmin Full
User:purpledoc/ccadmin Full
User:purpledoc.com/gail Change
User:purpledoc/gail Change
User:purpledoc.com/paul Change
User:purpledoc/paul Change

multitool reqmaster –acl –set /tmp/boston_hub_aclfile vob:/vobs/dev
280 Administrator’s Guide: Rational ClearCase MultiSite

reqmaster
multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
User:purpledoc.com/ccadmin Full
User:purpledoc/ccadmin Full
User:purpledoc.com/gail Change
User:purpledoc/gail Change
User:purpledoc.com/paul Change
User:purpledoc/paul Change

• Allow requests for mastership for all branches and branch types mastered by the current

replica in VOB family \tests, except for the branch type v2.0_integration and all branches

of that type.

multitool reqmaster –enable vob:\tests
Requests for mastership enabled in the replica object for "vob:\tests"

multitool reqmaster –deny –instances brtype:v2.0_integration@vob:\tests
Requests for mastership denied for all instances of
"brtype:v2.0_integration@vob:\tests"

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for branch type
“brtype:v2.0_integration@vob:\tests”

• Allow requests for mastership for all branches and branch types mastered by the current

replica in VOB family \dev, except for the branch cmdsyn.m@@\main\v1.0_bugfix.

multitool reqmaster –enable vob:\dev
Requests for mastership enabled in the replica object for "vob:\dev"

multitool reqmaster –deny \dev\cmdsyn.m@@\main\v1.0_bugfix
Requests for mastership denied for branch
"\dev\cmdsyn.m@@\main\v1.0_bugfix"

• Deny requests for mastership for all branches and branch types mastered by the current

replica.

multitool reqmaster –disable vob:/vobs/dev
Requests for mastership disabled in the replica object for "vob:/vobs/dev"

• Deny requests for mastership of the branch type v2.0_integration.

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for branch type
“brtype:v2.0_integration@vob:\tests”

• Display mastership information about the branches include.h@@\main\integ and

acc.c@@\main.

multitool reqmaster –list include.h@@\main\integ acc.c@@\main
Rational ClearCase MultiSite Reference Pages 281

reqmaster
• Request mastership of the branch cmdsyn.m@@/main/v2.6_dev.

multitool reqmaster cmdsyn.m@@/main/v2.6_dev

• Request mastership of the branch type v2.0_integration.

multitool reqmaster brtype:v2.0_integration@vob:\tests

SEE ALSO

chmaster
282 Administrator’s Guide: Rational ClearCase MultiSite

restorereplica
restorereplica
Restores VOB replica from backup

APPLICABILITY

SYNOPSIS
restorereplica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–f⋅orce] [–override]

[–invob vob-selector | [–rep⋅lace] replica-selector ...]

DESCRIPTION

Execute this command IMMEDIATELY after restoring a VOB replica from backup. Proceeding with
normal development (and generating new changes) at a restored replica before executing this command can
lead to IRREPARABLE inconsistencies among the replicas in a VOB family.

restorereplica replaces missing changes in a VOB replica that has been restored from backup, as

follows:

1. Causes the current replica to create special update packets that contain update requests to

other replicas.

2. Locks the current replica’s VOB object and marks the replica as being in the process of

restoration.

3. Increments the recovery incarnation for the replica.

4. Causes lsreplica –long to indicate which replicas must send restoration updates to the

current replica.

The current replica remains in the restoration state until your site has received and applied (using

syncreplica –import) all the restoration updates needed to bring the replica up to date with the

state of the VOB family. Collectively, these updates include all the changes to the VOB family

since the backup was made, including changes made in the current replica before its failure.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 283

restorereplica
During the process of restoration, the lsreplica –long command annotates its listing to indicate

which replicas must send restoration updates to the replica.

For a description of the replica restoration procedure, see Restoring and Replacing Replicas on

page 190.

LOCKING OF THE REPLICA

restorereplica locks the current replica’s VOB object. This ensures that while restoration

proceeds through execution of syncreplica –import commands, no other changes are made to

the current replica.

When syncreplica applies the final required update, it displays a message indicating that the

restoration process is complete. At this point, use the cleartool unlock vob: command to unlock

the restored VOB replica, enabling normal development to proceed.

OPTIMIZING THE RESTORATION PROCESS

By default, restorereplica requires that the replica receive restoration updates from all other

replicas in its VOB family (either directly or indirectly). Only after all the updates are imported

does the syncreplica command display the message indicating that restoration is complete.

In some cases, you can relax this requirement without compromising the correctness of the

restoration process. The replica will be brought up to date if it receives a restoration update from

only one replica—the last one to which the replica sent an update before it was restored from the

backup version. You can specify the name of that last-updated replica (or a list of replicas, one of

which must be the last-updated one) to restorereplica. syncreplica displays the

restoration-completed message after receiving restoration updates from all the specified replicas.

CAUTION: Making a mistake in using this optimization can make the restored replica irreparably

inconsistent with other replicas.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: No locks apply.

Mastership: No mastership restrictions.
284 Administrator’s Guide: Rational ClearCase MultiSite

restorereplica
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –cqe). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment-string | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SUPPRESSING INTERACTIVE PROMPTS. Default: restorereplica prompts you for confirmation.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE VOB FAMILY. Default: Processes the replica that contains the current working

directory.

–invob vob-selector
Processes the current replica in the specified VOB family. Specify vob-selector in the form

[vob:]pname-in-vob

REDUCING THE NUMBER OF REQUIRED UPDATES. Default: The replica requires restoration updates

from all other members of its VOB family. The syncreplica command declares the VOB

to be restored completely only after all the updates have been processed.

CAUTION: Incorrect use of these options allows new changes to be made to the replica

before all missing changes are received from other replicas. This may place the entire

VOB family in an irreparably inconsistent state.

replica-selector ...

Specifies a subset of replicas from which updates are required before syncreplica
declares the VOB to be restored completely. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
Rational ClearCase MultiSite Reference Pages 285

restorereplica
–rep⋅lace replica-selector ...

Changes the subset of replicas from which restoration updates are required.

–override
Overrides normal restoration processing and declares the VOB to be restored

completely. The lsreplica –long command no longer annotates any replicas as needing

to provide updates, and you can use cleartool unlock vob: to place the replica back in

normal service.

When you specify this option, the command displays a list of replicas from which

updates have not been received and prompts you to cancel the operation or continue.

EXAMPLES

For an example of restoring a replica, see Restoring and Replacing Replicas on page 190.

SEE ALSO

chepoch, lsepoch, lsreplica, syncreplica
286 Administrator’s Guide: Rational ClearCase MultiSite

rmreplica
rmreplica
Deletes a VOB-replica object

APPLICABILITY

SYNOPSIS
rmreplica [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment] replica-selector

DESCRIPTION

CAUTION: To delete a replica, you must complete all steps described in Deleting a Replica on

page 119. If you do not complete all steps in the correct order, synchronization and mastership

problems can occur in other replicas in the VOB family.

This command deletes from the current replica’s database the VOB-replica object that records the

existence and identity of another replica. Typically, you use this command at your site to record

the fact that a replica at another site has been decommissioned and deleted.

NOTE: If executing this command makes the current replica the last remaining member of the

VOB family, rmreplica turns off operation logging for this VOB and removes all operation logs,

which may take a long time.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, replica.

Mastership: Your current replica must master the replica being removed.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 287

rmreplica
Other: The following restrictions apply:

• You cannot delete your current replica’s VOB-replica object.

• You cannot delete a replica if your current replica considers it to master one or more objects.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SPECIFYING THE REPLICA. Default: None.

replica-selector
Specifies the VOB-replica object to be deleted from the current replica’s database. Specify

replica-selector in the form [replica:]replica-name[@vob-selector]

EXAMPLES

• Remove the VOB-replica object that records the existence of replica tokyo from the database

of the current replica.

multitool rmreplica tokyo
Deleted replica "tokyo".

SEE ALSO

chmaster, mkreplica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
288 Administrator’s Guide: Rational ClearCase MultiSite

shipping.conf
shipping.conf
Store-and-forward configuration file

APPLICABILITY

SYNOPSIS
/var/adm/atria/config/shipping.conf

DESCRIPTION

This file controls the operation of the MultiSite store-and-forward facility on each host. The file

consists of comment lines (starting with #) and one or more configuration entries.

The shipping.conf file can contain the configuration entries described below. In some cases, the

corresponding store-and-forward operation fails if an entry is missing; in other cases, there is a

hard-coded default.

MultiSite installation creates the file ccase-home-dir/config/services/shipping.conf.template, in

which all these entries are defined. If /var/adm/atria/config/shipping.conf does not exist, the

installation creates it by copying the template file. If /var/adm/atria/config/shipping.conf exists,

the installation advises you to compare the existing file to the template and make any necessary

changes.

NOTE: If you do not install ClearCase and MultiSite in the default installation directory

(/usr/atria), you must edit the shipping.conf file and change /usr/atria to the pathname of your

installation directory.

PACKET SIZE

MAX-DATA-SIZE size [k | m | g]

Controls the splitting of individual logical packets into multiple physical packets. Limiting the

size of physical packets can improve the reliability of packet delivery in some networks. The size
integer (with the optional k, m, or g suffix) specifies the maximum size for a physical packet file.

k specifies KB (kilobytes); m specifies MB (megabytes); g specifies GB (gigabytes). Omitting the

suffix specifies KB. To specify no limit, use 0 (zero).

Product Command type

MultiSite MultiSite data structure

Platform

UNIX
Rational ClearCase MultiSite Reference Pages 289

shipping.conf
This value is used by the following commands (unless you also specify –maxsize):

• mkreplica –fship
• mkreplica –ship
• syncreplica –fship
• syncreplica –ship
• sync_export_list

When you invoke mkreplica or syncreplica with –out or –tape, this value is not used and you

must use –maxsize to limit the packet size.

Default: 2097151k

NOTIFICATION

NOTIFICATION-PROGRAM e-mail-program-pathname

The electronic mail program to be invoked in these circumstances:

The mail program is invoked as follows:

e-mail-program-pathname –s subject –f message-file addr ...

Default: /usr/atria/bin/notify. This program is also used if no NOTIFICATION-PROGRAM
entry exists.

ADMINISTRATOR ADDRESS

ADMINISTRATOR e-mail-address

The electronic mail address of the administrator who administers the store-and-forward facility

on the local host.

A mail message is sent to the specified address in the circumstances listed in NOTIFICATION.

The configuration file can contain multiple ADMINISTRATOR entries; messages are sent to all

the specified mail addresses.

Default: root

STORAGE BAY AND RETURN BAY

STORAGE-BAY storage-class directory-pathname
RETURN-BAY storage-class directory-pathname

• When shipping_server finds that a shipping order it is about to process has expired

• When an undeliverable packet is returned to the original sending host by another host’s

shipping_server (see the description of EXPIRATION)

• When syncreplica –import finds a replica-creation packet, which must be processed with

a mkreplica command
290 Administrator’s Guide: Rational ClearCase MultiSite

shipping.conf
These lines define storage bay and return bay directories. A storage bay holds the outgoing and

incoming update packets and shipping orders of a particular storage class. A return bay holds

incoming or outgoing packets in the process of being returned to their origin because they could

not be delivered to all specified destinations.

You can use multiple STORAGE-BAY and RETURN-BAY entries to define multiple bays for a

particular storage class. shipping_server selects one of the bays for each packet based on the

available disk space in the bays’ disk partitions. The order in which you specify storage bays

does not matter.

MultiSite installation establishes a default storage bay and return bay on the local host in the

/var/adm/atria/shipping directory. Each bay contains subdirectories named incoming and

outgoing, which hold incoming and outgoing packets. Shipping operations look for packets in

these subdirectories. Before using the store-and-forward facility, make sure that the disk

partition where the shipping directory is created has sufficient free space for anticipated

replica-creation and update packets.

You must create directory-pathname with a standard UNIX mkdir command. You must also create

the incoming and outgoing directories within the new bay. Packets placed in a bay are assigned

the same owner, groups, and read-write permissions as the bay itself. (Execute permission and

any special permissions on the bay are ignored.) Be sure to adjust these permissions (if necessary)

to enable successful execution of MultiSite commands to process the packets, and to guard

against unauthorized access.

NOTE: The incoming and outgoing directories must be on the same file system.

Default: The –default storage class is used for packets that are not assigned to any storage class,

and for packets whose storage class is not configured.

STORAGE-BAY –default /usr/atria/shipping/ms_ship

RETURN-BAY –default /usr/atria/shipping/ms_rtn

EXPIRATION PERIOD

EXPIRATION storage-class number-of-days
EXPIRATION –default number-of-days

Specifies the expiration period (in days) for shipping orders generated in the specified storage

class. This period begins at the time the shipping order is generated. If a packet cannot be

delivered to all of its specified destinations, the packet is returned to the original sending host

and one or more electronic mail messages are sent (see the descriptions in the sections

ADMINISTRATOR ADDRESS and NOTIFICATION).

Specifying –default as the storage class sets the expiration period for shipping orders that are not

assigned to any storage class, and for shipping orders whose storage class is not configured.

A zero EXPIRATION value specifies no expiration and delivery is reattempted indefinitely.
Rational ClearCase MultiSite Reference Pages 291

shipping.conf
This setting is overridden by the –pexpire option to syncreplica or mkreplica.

The shipping_server program does not retry delivery of a packet. The EXPIRATION
specification is useful only if you schedule periodic invocations of sync_export_list –poll to
attempt delivery of any undelivered packets.

Default: 14 days.

PACKET ROUTING

ROUTE next-hop host ...
ROUTE next-hop –default

Controls the network routing of packets. Packets whose final destination is any of the host
arguments are sent to the host named next-hop. This host is responsible for final delivery of the

packet to its destinations (or additional forwarding). next-hop and host can be host names (which

must be usable by hosts in different domains) or numeric IP addresses.

You can include multiple ROUTE entries in the configuration file. The special keyword –default
accommodates all hosts that are not specified in another ROUTE entry.

Default: None.

RECEIPT HANDLER

RECEIPT-HANDLER storage-class script-pathname

Specifies a script for the shipping_server to run for each packet received in a shipping bay. By

default, no script is specified. We recommend that you specify the sync_receive script as the

RECEIPT-HANDLER entry. For example:

RECEIPT-HANDLER -default /usr/atria/config/scheduler/tasks/sync_receive

For each packet that is received, shipping_server handles it as follows:

1. Reads the shipping.conf file to find the appropriate RECEIPT-HANDLER entry for the

packet.

• If the packet is associated with a storage class and there is a RECEIPT-HANDLER entry

for that storage class, shipping_server uses the script-pathname specified in that entry.

• If the packet is not associated with a storage class and there is a RECEIPT-HANDLER
value for the –default storage class, shipping_server uses the script specified for

–default.

2. Invokes the receipt handler as follows:

script-pname [–d⋅ata packet-file-pname] [–a⋅ctual shipping-order-pname]

[–s⋅class storage-class] –o⋅rigin hostname

where
292 Administrator’s Guide: Rational ClearCase MultiSite

shipping.conf
NOTE: If a packet is destined for both the local host and another host, both the –data and

–actual parameters are used. The packet is imported at the replica on the host, and then

forwarded to its next destination.

Default: None.

PORT NUMBERS

CLEARCASE_MIN_PORT port-number
CLEARCASE_MAX_PORT port-number

CAUTION: Set these entries only on hosts that can communicate through the firewall and have

been installed with the MultiSite shipping_server-only option.

These entries specify the range of ports for shipping_server to use on a firewall system, and they

are set as environment variables in the shipping_server environment.

Guidelines for setting the values:

• The value range for CLEARCASE_MIN_PORT is 1024 through 65534.

• The value range for CLEARCASE_MAX_PORT is 1025 through 65535.

• The value of CLEARCASE_MAX_PORT must be greater than the value of

CLEARCASE_MIN_PORT.

• We recommend that you use the range 49152 through 65535, which is the Dynamic/Private

Port Range. If you use a value within the Registered Ports range (1024 through 49151), the

shipping.conf parser prints an informational message.

NOTE: To use shipping_server on a firewall system, you must also set the CLEARCASE_MIN_PORT

and CLEARCASE_MAX_PORT environment variables in the atria_start script. For more information,

see Specifying Port Values on page 101.

Default: None.

script-pname Script specified in the RECEIPT-HANDLER entry.

–d⋅ata packet-file-pname Location of the packet. This parameter is used only when

the packet is destined for this host.

–a⋅ctual shipping-order-pname Location of the shipping order. This parameter is used

only when the packet is destined for another host.

–s⋅class storage-class Storage class associated with the packet. This parameter

is used only if the packet was associated with a storage

class when it was created.

–o⋅rigin hostname Host name of the machine from which the packet was

first sent.
Rational ClearCase MultiSite Reference Pages 293

shipping_server
shipping_server
Store-and-forward packet transport server

APPLICABILITY

SYNOPSIS
shipping_server [–scl⋅ass storage-class-name] { –pol⋅l | sources ... }

This command is located in ccase-home-dir/etc on UNIX and ccase-home-dir\bin on Windows.

DESCRIPTION

This command processes one or more shipping orders on the local host, causing the associated

packets or files to be sent to remote sites.

After delivering the data file specified in a shipping order to all its destinations, shipping_server
deletes the data file unless one of the destinations is the local host.

NOTE: When shipping_server starts processing a shipping order, it locks the order. This prevents

subsequent invocations of shipping_server from processing the order.

TCP/IP Connection

To transmit a file, shipping_server uses UDP to contact the albd_server process on the receiving

host, and albd_server invokes shipping_server in receive mode on the receiving host.

If you are sending packets through a firewall (that is, the CLEARCASE_MIN_PORT and

CLEARCASE_MAX_PORT environment variables are set), shipping_server tries to use TCP to

contact the remote albd_server. If that connection fails, shipping_server uses UDP. For more

information, see Installing Store-and-Forward on a UNIX Firewall Host on page 98.

On UNIX, shipping_server forks one subprocess for each packet that it needs to send. As many

as 10 separate shipping_server subprocesses, each trying to send a single packet, can be started

for each invocation of shipping_server. The same number of subprocesses are forked on the

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
294 Administrator’s Guide: Rational ClearCase MultiSite

shipping_server
receiving machine. As a subprocess finishes, another can be started, but only 10 can be active

simultaneously.

After a TCP connection is established between the two shipping_server processes, they transfer

the file. The receiving shipping_server selects a storage bay using the local store-and-forward

configuration settings. See shipping.conf (UNIX) or the MultiSite Control Panel (Windows). If

a storage class is assigned multiple storage bays, available disk space determines the selection of

a bay.

UNIX: The packet file is created with the same owner and group as the storage bay directory, and

its access mode is taken from the directory’s read and write permissions. (The execute

permission and special permissions, if any, are ignored.)

Windows: The packet file inherits permissions from the Windows ACL on the storage bay

directory.

Colon Characters in Packet Names

If a packet name contains a colon (:), shipping_server changes the colon to a period (.) during

processing. This change allows packets to be delivered to Windows machines, which do not

allow colons within file names.

Handling of File Name Conflicts

You can use the mkorder and shipping_server commands to transmit arbitrary files if the files

are located in the same directory as their associated shipping orders. If a file with the same name

already exists on the receiving host, the new file is renamed to filename_1 (if you send another file

with the same name, it is renamed to filename_2, and so on).

Log File

UNIX: shipping_server writes records of all packets sent and received, along with all errors, to

file /var/adm/atria/log/shipping_server_log.

Windows: shipping_server writes records of all packets sent and received, notification

messages, and all errors to the Windows event viewer. It writes log messages to file

ccase-home-dir\var\log\shipping_server_log.

RESTRICTIONS

Identities: You must have write and execute permissions on the directory containing the shipping

order. On UNIX, you must own the data file or be root.

Locks: No locks apply.

Mastership: No mastership restrictions.

Other: The shipping order and the data file it specifies must be located in the same directory.
Rational ClearCase MultiSite Reference Pages 295

shipping_server
OPTIONS AND ARGUMENTS

RESTRICTING PROCESSING TO A STORAGE CLASS. Default: Processes all shipping orders specified

or found in a search.

–scl⋅ass storage-class-name
Processes shipping orders for the specified storage class only.

SPECIFYING THE SHIPPING ORDERS. Default: None.

–pol⋅l
Processes shipping orders located in some (if you use –sclass) or all MultiSite storage

bays defined in the shipping.conf configuration file on UNIX or the MultiSite Control
Panel on Windows.

NOTE: shipping_server processes only shipping orders whose file names start with the

characters “sh_o_ ”. If you create shipping orders, name them according to this

convention, or omit the –poll option and specify the shipping order pathnames.

On UNIX, only shipping order files that you own are processed. (EXCEPTION: when root
runs this program, shipping order files are processed regardless of ownership.)

sources ...
One or more pathnames of files and/or directories. Each file you specify is processed if

it contains a valid shipping order. For each directory you specify, shipping_server
processes some (if you use –sclass) or all shipping orders stored in that directory.

EXAMPLES

• Process all shipping orders in all MultiSite storage bays.

shipping_server –poll

• Process a particular shipping order. Note that the pathname argument specifies the

shipping order file, not the data file to be transmitted.

/usr/atria/etc/shipping_server \
/var/adm/atria/shipping/ms_ship/sh_o_sync_sydney_19-May-99.09:48:45_7660_1

• Process all shipping order files in a specified directory.

shipping_server "c:\Program Files\Rational\ClearCase\var\shipping\ms_ship"

• Process all shipping orders in the storage bays of a specified storage class.

/usr/atria/etc/shipping_server –poll –sclass daily

SEE ALSO

mkorder, MultiSite Control Panel, shipping.conf, syncreplica, sync_export_list
Chapter 10, Troubleshooting MultiSite Operations
296 Administrator’s Guide: Rational ClearCase MultiSite

sync_export_list
sync_export_list
Generates and sends update packets

APPLICABILITY

SYNOPSIS

• Generate update packets:

sync_export_list [–c⋅ompress] [–lo⋅gdir log-directory]

[–f⋅ship | –sh⋅ip] [–lockwait minutes] [–q⋅uiet mode]

[–wo⋅rkdir directory] [–m⋅axsize max-packet-size]

[–sc⋅lass storage-class] [–u⋅pdate] [–li⋅mit num-packets]

[–t⋅race] [–p⋅oll] [–i⋅terate num-tries [–wa⋅it num-seconds]]

{ –a⋅ll | –r⋅eplicas replica-list [script-file] | script-file }

• Process shipping orders in the host’s storage bays:

sync_export_list –p⋅oll [–sc⋅lass storage-class]

• Print help on command options:

sync_export_list –h⋅elp

On UNIX, sync_export_list is located in ccase-home-dir/config/scheduler/tasks. On Windows,

sync_export_list is located in ccase-home-dir\config\scheduler\tasks.

DESCRIPTION

sync_export_list generates update packets for one or more VOB replicas. You can specify options

for packet generation and transport on the command line, in a script file, or by using a

combination of the command line and a script file.

You can run sync_export_list manually, or run it automatically with the schedule command. For

more information, see the schedule reference page in the Command Reference.

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 297

sync_export_list
RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED

By default, synchronization exports fail if the VOB is locked. To allow sync_export_list to retry

an export when it encounters a lock, use the –lockwait option, which specifies the amount of

time (in minutes) for sync_export_list to keep trying to write to the VOB. During that time,

sync_export_list retries the write operation every minute. If the time elapses and the VOB is still

locked, sync_export_list exits with an error.

The –lockwait option sets the CLEARCASE_VOBLOCKWAIT environment variable in the script’s

environment. If –lockwait is not used, sync_export_list ignores CLEARCASE_VOBLOCKWAIT if it

is set outside the script’s environment.

NOTE: sync_export_list waits only if it detects the lock before it starts processing oplogs. If an

administrator locks the VOB during oplog processing, sync_export_list exits with an error.

CONFIGURATION FILE

You can modify the behavior of the sync_export_list script by creating a file named

MSimport_export.conf and setting values in it. On UNIX, create the file in the directory

/var/adm/atria/config. On Windows, create the file in the directory ccase-home-dir\var\config.

The file can include the following export setting:

disable_export_locking = 1

Disables use of the export lockfile, allowing multiple exports from a single replica to run

simultaneously. Setting the value to 0 (default) enables use of the lockfile.

This setting and the –lockwait option are not related. This setting configures use of the

lock created by the sync_export_list process to prevent interference among export

processes, and the –lockwait option handles ClearCase VOB locks.

TROUBLESHOOTING

sync_export_list fails if there is another sync_export_list process exporting data from the same

replica, unless export locking is disabled (see CONFIGURATION FILE). This failure prevents

interference among export processes. To allow an invocation of sync_export_list to retry an

export, use the –iterate and –wait options.

To display informational messages, specify the –trace option on the command line.

To display all debugging print statements, set the TRACE_SUBSYS environment variable to the

value sync_export_list.

sync_export_list creates a log file during execution. This log file is deleted unless

sync_export_list fails or you use –trace or set TRACE_SUBSYS.

By default, the log files are stored in the /var/adm/atria/log/sync_logs directory on UNIX and the

ccase-home-dir\var\log directory on Windows. The name of a log file includes the process ID of

the sync_export_list command and the time (in UTC format) at which you ran the command.
298 Administrator’s Guide: Rational ClearCase MultiSite

sync_export_list
On UNIX, the Weekly Log Scrubbing job installed with ClearCase deletes send* and recv* log

files in /var/adm/atria/log/sync_logs that are more than 14 days old.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

With –poll, you must have write and execute permissions on the directory containing the

shipping orders, and on UNIX, you must own the shipping order files or be root.

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

OPTIONS AND ARGUMENTS

–h⋅elp
Prints help on command options.

–c⋅ompress
Compresses update packets using Gzip compression.

–lo⋅gdir log-directory
Writes log file to log-directory. You must have write access to log-directory.

–f⋅ship | –sh⋅ip
By default, sync_export_list ships packets immediately (–fship). To store packets in the

shipping bay, specify –ship.

–lockwait minutes
Number of minutes for the script to keep retrying to write to the VOB, if the VOB is

locked.

–q⋅uiet mode
Suppresses messages sent to STDOUT. mode can have the following values:

–wo⋅rkdir directory
Writes temporary files to directory. directory must exist and be writable by the user who

enters the sync_export_list command.

0 (default) Prints errors, warnings, and informational messages

1 Prints errors and warnings

2 Suppresses all messages
Rational ClearCase MultiSite Reference Pages 299

sync_export_list
–m⋅axsize max-packet-size
Maximum size for a physical packet, expressed as a number followed by a single letter.

For example:

If you do not specify –maxsize, sync_export_list uses the value specified in the

shipping.conf file (UNIX) or MultiSite Control Panel (Windows). To specify no size

limit, use –maxsize 0.

–sc⋅lass storage-class
Uses the shipping parameters associated with storage-class. If you do not specify –sclass,

sync_export_list uses the parameters for the default storage class. You can create or

modify storage classes in the shipping.conf file on UNIX or the MultiSite Control Panel
on Windows.

–u⋅pdate
For each current replica, queries the sibling replicas for their actual states and updates

the current replica’s epoch table accordingly, then generates update packets. The sites

must have IP connections.

–li⋅mit num-packets
Limits the number of packets syncreplica generates. If you also specify –maxsize, each

packet is no larger than max-packet-size; otherwise, each packet is no larger than the value

specified in the shipping.conf file (UNIX) or MultiSite Control Panel (Windows). Use

this option when the disk space for your shipping bay or staging area is limited, or when

you are creating packets to be placed on magnetic tape (UNIX) or diskettes.

–t⋅race
Lists command-line options you specified, displays commands as they are executed,

displays a success or failure message, and forces sync_export_list to keep its log file.

–p⋅oll
Executes shipping_server –poll before exporting any data. If you also specify –sclass,

shipping_server –poll processes only the shipping orders for the specified storage class.

–i⋅terate num-tries –wa⋅it num-seconds
Maximum number of tries to make all exports complete successfully, and the number of

seconds to wait between tries. By default, sync_export_list does not retry failed exports

(–iterate 1). If you specify –iterate without –wait, sync_export_list waits 30 seconds

between tries.

500k 500 kilobytes

20m 20 megabytes

1.5g 1.5 gigabytes
300 Administrator’s Guide: Rational ClearCase MultiSite

sync_export_list
–a⋅ll
Generates update packets from all replicas on the current host to all sibling replicas in

their respective VOB families.

–r⋅eplicas replica-list
Generates update packets for the replicas you specify in replica-list. You can specify

replica-list in any of the following forms:

Examples:

You can specify only one VOB family with –replicas. To specify multiple VOB families,

use multiple replicas: lines in a script-file. You must specify at least one replica, either on

the command line, or in a script-file.

script-file
Path to file containing directives for sync_export_list. You must specify this argument

last on the command line. You can include the following directives in script-file:

replica-name@VOB-tag Generates a packet for a replica

replica-name@VOB-tag,replica-name,replica-name,... Generates packets for two or

more replicas in a VOB family

VOB-tag Generates update packets for all

sibling replicas in a VOB family

rep1@/vobs/dev (generate an update packet for a single replica)

"rep1@\dev,rep2,rep3" (generate update packets for multiple replicas in a VOB family)
\tromba (generate update packets for all replicas in a family)

compress
nocompress

Compresses or does not compress packet.

fship Ships packets immediately.

ship Stores packets in shipping bay.

maxsize:max-packet-size Sets maximum packet size.

sclass:storage-class Sets a different storage class. To unset the storage class,

do not specify a storage-class value.

update
noupdate

Controls whether epoch table is updated before export.

limit:num-packets Sets maximum number of packets to generate per

replica.
Rational ClearCase MultiSite Reference Pages 301

sync_export_list
sync_export_list processes all directives in the order listed in script-file. Rules for

directives:

For example, in the following script file the directives sclass:daily and limit:10 apply to

both replicas directives.

compress
ship
maxsize:2g
sclass:daily
update
limit:10
replicas:rep1@\myvob
nocompress
fship
maxsize:1g
noupdate
replicas:rep2@\myvob,rep3

EXAMPLES

• Send update packets from all replicas on the host to all their siblings.

/usr/atria/config/scheduler/tasks/sync_export_list –all

SUCCESSFUL COMPLETION: log file removed.

lockwait:minutes Number of minutes to wait for VOB locks.

replicas:replica-list Exports packets from specified replicas. Specify

replica-list as described in the –replicas option.

• You can include multiple replicas directives in script-file.

• Each replicas directive can have different shipping directives (a shipping

directive is any directive except replicas).

• Shipping directives must precede the replicas directive to which they apply.

• A shipping directive remains in effect for all subsequent replicas directives unless

you override it.

• sync_export_list creates and exports packets for replicas specified on the

command line, and then creates and exports packets for replicas specified in the

script file.
302 Administrator’s Guide: Rational ClearCase MultiSite

sync_export_list
• Generate update packets for replicas in the VOB family /vobs/dev. Store the packets in the

shipping bay, limit the size of the packets to 500KB, and display messages during

processing.

/usr/atria/config/scheduler/tasks/sync_export_list –ship –maxsize 500k –trace \
–replicas /vobs/dev
command options specified or defaulted:

compress: 0
logdir:
storage-class:
workdir:
maxpacket: 500k
limit: 0
all: 0
fship: 0
ship: 1
poll: 0
lockwait: 0 minutes
retries: 1 times, wait 30 seconds
script:

CMD: bin/cleartool lsvob /vobs/dev > /dev/null
vob: /vobs/dev
replicas: bangalore buenosaires

CMD: bin/multitool syncreplica -export -maxsize 500k -ship
replica:bangalore@/vobs/dev >&2
CMD: bin/multitool syncreplica -export -maxsize 500k -ship
replica:buenosaires@/vobs/dev >&2

SUCCESSFUL COMPLETION: see log file at:
"/var/adm/atria/log/sync_logs/send-000815-183301Z-6043_log".

• Create a script file for the VOB families \tests and \dev. Create a job that runs

sync_export_list every night at 1:00 A.M.

Script file:

compress
fship
sclass:tests
noupdate
replicas:sanfran_hub@\tests,sydney
sclass:dev
update
replicas:\dev
Rational ClearCase MultiSite Reference Pages 303

sync_export_list
Job definition:

Job.Begin
Job.Id: 25
Job.Name: "Sync Export tests dev"
Job.Description.Begin:

Every midnight, export update packets to replicas in VOB families \tests
and \dev.

Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.FirstStartTime: 01:00:00
Job.DeleteWhenCompleted: FALSE
Job.Task: 13
Job.Args: -quiet 1 \\shinjuku\scripts\sync_export_tests_dev

Job.End

FILES

UNIX

/var/adm/atria/log/sync_logs
/var/adm/atria/config/shipping.conf
ccase-home-dir/config/scheduler/multisite.schedule

Windows

ccase-home-dir\var\log

SEE ALSO

mkorder, MultiSite Control Panel, shipping.conf, shipping_server, sync_receive, syncreplica
304 Administrator’s Guide: Rational ClearCase MultiSite

sync_receive
sync_receive
Imports update packets

APPLICABILITY

SYNOPSIS

• Import update packets:

sync_receive [–v⋅ob pattern] [–wo⋅rkdir directory] [–lo⋅gdir log-directory]

[–lockwait minutes] [–t⋅race] [–q⋅uiet mode] [–d⋅ata [packet-file-pname | dir]]

[–a⋅ctual shipping-order-pname] [–s⋅class storage-class] [–o⋅rigin hostname]

• Print help on command options:

sync_receive –h⋅elp

On UNIX, sync_receive is located in ccase-home-dir/config/scheduler/tasks. On Windows,

sync_receive is located in ccase-home-dir\config\scheduler\tasks.

DESCRIPTION

sync_receive imports update packets in the local host’s incoming storage bays. You can run

sync_receive from the command line, or run it with the schedule command (see the schedule
reference page in the Command Reference). For information about using sync_receive as a receipt

handler, see the shipping.conf and MultiSite Control Panel reference pages.

If files in the incoming shipping bays have names ending with .gz , sync_receive uncompresses

the files, determines whether they are packets, and then imports the packets.

RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED

By default, synchronization imports fail if the VOB is locked. To allow sync_receive to retry an

import when it encounters a lock, use the –lockwait option, which specifies the amount of time

(in minutes) for sync_receive to keep trying to write to the VOB. During that time, sync_receive

Product Command type

MultiSite MultiSite command

Platform

UNIX

Windows
Rational ClearCase MultiSite Reference Pages 305

sync_receive
retries the write operation every minute. If the time elapses and the VOB is still locked,

sync_receive exits with an error.

The –lockwait option sets the CLEARCASE_VOBLOCKWAIT environment variable in the script’s

environment. If –lockwait is not used, sync_receive ignores CLEARCASE_VOBLOCKWAIT if it is set

outside the script’s environment.

NOTE: sync_receive waits only if it detects the lock before it starts processing oplogs. If an

administrator locks the VOB during oplog processing, sync_receive exits with an error.

CONFIGURATION FILE

You can modify the behavior of the sync_receive script by creating a file named

MSimport_export.conf and setting values in it. On UNIX, create the file in the directory

/var/adm/atria/config. On Windows, create the file in the directory ccase-home-dir\var\config.

The file can include the following import settings:

disable_import_locking = 1

Disables use of the import lockfile, allowing multiple imports to a single replica to run

simultaneously. Setting the value to 0 (default) enables use of the lockfile.

NOTE: By default, sync_receive fails if there is another sync_receive process importing a

packet into the same replica. This failure prevents interference among import processes.

Disabling import locking may cause import failures due to collisions. We recommend

that you leave locking enabled unless there is a large amount of lockfile contention.

This setting and the –lockwait option are not related. This setting configures use of the

lock created by the sync_receive process to prevent interference among import

processes, and the –lockwait option handles ClearCase VOB locks.

proactive_receipt_handler = 1

Causes an active receipt handler to look for other packets that can be imported and

attempt to import them. By default, a receipt handler imports only the packet for which

it was invoked. Under high load conditions, or when packet have been split because of

maximum size restrictions, packets may arrive before a preceding packet has been

completely processed. Enabling proactive mode causes the receipt handler to import

packets that may otherwise be stranded due to premature or out-of-order delivery.

TROUBLESHOOTING

To display informational messages, specify the –trace option on the command line.

To display all debugging print statements, set the TRACE_SUBSYS environment variable to the

value sync_receive.

sync_receive creates a log file during execution. This log file is deleted unless sync_receive fails

or you use –trace or TRACE_SUBSYS.
306 Administrator’s Guide: Rational ClearCase MultiSite

sync_receive
By default, the log files are stored in the /var/adm/atria/log/sync_logs directory (UNIX) or the

ccase-home-dir\var\log directory (Windows). The name of a log file is based on the process ID of

the sync_export_list command and the time at which you ran the command.

On UNIX, the Weekly Log Scrubbing job installed with ClearCase deletes send* and recv* log

files in /var/adm/atria/log/sync_logs that are more than 14 days old.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

OPTIONS AND ARGUMENTS

–h⋅elp
Prints help on command options.

–v⋅ob pattern
VOBs to which update packets are applied. By default, sync_receive applies packets to

all VOBs listed in the packet. Specify pattern as a VOB-tag or as a string that can match

multiple VOB names. You cannot include wildcard characters in pattern. For example:

–wo⋅rkdir directory
Writes temporary files to directory. directory must exist and be writable by the user who

enters the sync_receive command.

–lo⋅gdir log-directory
Writes log file to log-directory. You must have write access to log-directory. By default, log

files are stored in the /var/adm/atria/log/sync_logs directory on UNIX and the

ccase-home-dir\var\log directory on Windows.

–lockwait minutes
Number of minutes for the script to keep retrying to write to a locked VOB.

–t⋅race
Lists command-line options you specified, displays commands as they are executed,

displays a success or failure message, and forces sync_receive to keep its log file.

–vob /vobs/dev (apply packets to /vobs/dev and any VOB whose tag contains ‘/vobs/dev’)
–vob dev (apply packets to any VOB whose tag contains the string ‘dev’)
Rational ClearCase MultiSite Reference Pages 307

sync_receive
–q⋅uiet mode
Suppresses messages sent to STDOUT. mode can have the following values:

When sync_receive is invoked as a receipt handler, mode is set to 1.

When sync_receive is invoked as a receipt handler, the following parameters are passed in

automatically. You can use –sclass, –data, and –actual from the command line.

–s⋅class storage-class
Imports packets in the incoming bays associated with storage-class. If storage-class does

not have incoming bays or you do not specify –sclass, sync_receive imports packets

from the shipping bay for the default storage class.You can create and modify storage

classes in the shipping.conf file on UNIX or the MultiSite Control Panel on Windows.

–d⋅ata [packet-file-pname | dir]

Full pathname of an update packet or a storage bay. To import only a specific packet, use

–data file. To import all packets in a bay, use –data dir. You can use –data with –vob to

import packets to specific VOBs. This parameter is used only when the packet is destined

for replicas on the current host.

–a⋅ctual shipping-order-pname
Location of the shipping order; used only when the packet is destined for another host.

If a packet is destined for both the local host and another host, both the –data and –actual
parameters are used. The packet is imported at the replica on the local host, and then

forwarded to its next destination.

NOTE: This option is not related to the –actual option for chepoch and lsepoch.

–o⋅rigin hostname
Originating host.

EXAMPLES

• Import packets in the incoming storage bays for the daily storage class.

/usr/atria/config/scheduler/tasks/sync_receive –sclass daily

• Import a specific packet and apply it to all VOBs whose tags include the pattern lib. The

lines are broken for readability. You must enter the command on a single physical line.

"c:\Program Files\Rational\ClearCase\config\scheduler\tasks\sync_receive.bat" –vob lib –d
"c:\Program Files\Rational\ClearCase\var\shipping\daily\incoming\sync_orig_09-Dec-98.18.17.54_6587_1"

0 (default when sync_receive is used on the command line) Prints

errors, warnings, and informational messages

1 (default when sync_receive is used as a receipt handler) Prints errors

and warnings

2 Suppresses all messages
308 Administrator’s Guide: Rational ClearCase MultiSite

sync_receive
• On UNIX, specify sync_receive as the receipt handler for the daily storage class.

cp /usr/atria/config/scheduler/tasks/sync_receive* /var/adm/atria/scheduler/tasks

Edit the shipping.conf file and add a receipt handler entry:

RECEIPT-HANDLER daily /var/adm/atria/scheduler/tasks/sync_receive

• On Windows, specify sync_receive as the receipt handler for the daily storage class.

a. Copy the script into a directory outside the ClearCase installation area. For example:

copy "c:\Program Files\Rational\ClearCase\config\scheduler\tasks\sync_receive.bat" c:\scripts

b. Edit the script as appropriate.

c. In the MultiSite Control Panel, select the daily class in the Storage Class list.

d. Click Modify Class.

e. In the Receipt Handler Path box, enter the path to the script. For example:

c:\scripts\sync_receive.bat

f. Click OK.

FILES

UNIX

/var/adm/atria/log/sync_logs
/var/adm/atria/config/shipping.conf
ccase-home-dir/config/scheduler/multisite.schedule

Windows

ccase-home-dir\var\log

SEE ALSO

mkorder, MultiSite Control Panel, shipping.conf, shipping_server, sync_export_list,
syncreplica
Rational ClearCase MultiSite Reference Pages 309

syncreplica
syncreplica
Generates or applies update packets

APPLICABILITY

SYNOPSIS

• Export an update packet:

sync⋅replica –exp⋅ort [–max⋅size max-packet-size [–lim⋅it num-packets]]

[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

{

{ –sh⋅ip | –fsh⋅ip } [–scl⋅ass storage-class]

[–pex⋅pire date] [–not⋅ify e-mail-addr]

| –tape raw-device-pname
| –out packet-file-pname

}

replica-selector ...

NOTE: The –tape option is valid only on UNIX.

• Import an update packet:

sync⋅replica –imp⋅ort [–invob VOB-selector]

[–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ –rec⋅eive [–scl⋅ass storage-class]

| –tape raw-device-pname
| { packet-file-pname | staging-area-pname } ...

}

NOTE: The –tape option is valid only on UNIX.

Product Command type

MultiSite multitool subcommand

Platform

UNIX

Windows
310 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
DESCRIPTION

Synchronization of an existing VOB replica with one or more replicas at other sites is a two-phase

process:

1. At one site, a syncreplica –export command creates an update packet that contains changes

that have occurred in the VOB replica at that site (and perhaps other replicas, as well).

2. At another site, a syncreplica –import command applies the changes in the update packet to

its replica of the same VOB.

Step #2 occurs at all sites that receive the packet.

Contents of an update packet:

• All changes that have occurred in the current VOB replica since the last update generated

for the destination replicas. (Changes already sent to the destination replicas are excluded

from the packet).

• Changes that have occurred in other replicas, which the current replica has received in

previous update packets from those replicas, but has not already passed on to the

destination replicas.

In all cases, syncreplica –export creates a single logical update packet for use at all the specified

destinations; the packet can be used to update only those particular replicas.

NOTES ON THE EXPORT PHASE

MultiSite is designed for efficient updating of replicas. syncreplica –export attempts to exclude

from an update packet operations that have been sent previously. (However, there is no harm in

sending an operation multiple times to the same replica; the first operation is imported and

subsequent identical operations are ignored.)

The VOB replica is not locked during the export phase; in fact, the syncreplica –export command

fails if the VOB is locked. Therefore, you must not schedule synchronizations during VOB

backups (when the VOB must be locked). See also RETRYING SYNCHRONIZATION WHEN
THE VOB IS LOCKED on page 313.

Specifying a Directory for Temporary Files

syncreplica –export stores temporary files in the directory specified by the TMPDIR environment

variable on UNIX and the TMP environment variable on Windows. If you use the

sync_export_list script to export update packets, you can use the –workdir option to specify the

directory.

NOTES ON THE IMPORT PHASE

An update packet is applied to the appropriate replica on the host on which you import it, unless

you restrict processing with the –invob argument. syncreplica consults the VOB registry in the
Rational ClearCase MultiSite Reference Pages 311

syncreplica
current region to determine the locations of these replicas’ storage directories. Thus, you do not

have to specify particular replicas or storage locations.

The import process applies update packets in the correct order. Therefore, you can specify

packets in any order on the command line.

The VOB replica is not locked during the import phase. Synchronization fails if the VOB is

locked. See also RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED on page 313.

Specifying a Directory for Temporary Files

syncreplica –import stores temporary files in the directory specified by the TMPDIR environment

variable on UNIX and the TMP environment variable on Windows. If you use the sync_receive
script to import update packets, you can use the –workdir option to specify the directory.

Skipping Packets

syncreplica –import refuses to process an update packet in the following situations:

• The update packet contains changes that depend on other changes that have not yet been

applied to this replica. This usually means that an update packet destined for this replica

has not been sent or was lost during transport.

• Problems were encountered processing an earlier physical packet in a multiple-part logical

packet.

In any of these cases, syncreplica –import displays an explanatory message.

Update Failures / Replaying Packets

In some cases, syncreplica –import begins to apply operations to a replica, but fails with an error

message. For example, another process may have locked the VOB, causing the import to fail.

After the VOB is unlocked, you can run syncreplica –import to process the entire update packet

again.

There is no harm in importing update packets that have already been processed successfully; the

same change will not be made twice. Thus, even importing an entire update packet multiple

times causes no error and does no harm.

For more information about update failures, see Chapter 10, Troubleshooting MultiSite Operations.

Deletion of Update Packets

If a single invocation of syncreplica –import applies a packet successfully to all target replicas

on the host, the update packet is deleted when the command completes its work. If the packet is

processed with multiple syncreplica –import –invob commands, it is not deleted.
312 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
Ownership Preservation

If a VOB replica is ownership-preserving, syncreplica –import maintains the consistency of

ownership and permissions information for elements mastered by the VOB family’s

ownership-preserving replicas. For each such element, an error occurs if the element’s group is

not on the group list of the importing replica (on UNIX) or is not the same as the group of the

importing replica (on Windows).

If a VOB replica is not ownership-preserving, changes to ownership and permissions of existing

elements are ignored during import. New elements are assigned to the owner of the VOB at the

current site, and the group of all new elements is the primary group of the owner of the VOB.

(This is true even if the root user or a member of the ClearCase administrators group imports the

packet.) Permissions set when the element is created are preserved, but subsequent permissions

changes are ignored. Ownership and permissions changes made at non-ownership-preserving

replicas are not propagated to other replicas.

Storage Pools

Data containers from the update packets are placed in storage pools according to the standard

element assignments. If the pool assignment for a new element cannot be determined, the

element is assigned to the VOB’s default source pool.

Trigger Firing

ClearCase triggers do not fire in response to changes made during packet import.

Handling Naming Conflicts

syncreplica resolves naming conflicts among type objects created at different replicas. For more

information, see Conflict Resolution on page 21.

Delayed View Updates

syncreplica does not inform any views (not even the view from which you enter the command)

of the updates to replicas. All active views see updates within a few seconds, through their

normal VOB-polling routines. You can force a view to recognize VOB updates by entering a

cleartool setcs –current command.

RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED

By default, synchronization exports and imports fail if the VOB is locked. To allow syncreplica
to retry a synchronization when it encounters a lock, set the CLEARCASE_VOBLOCKWAIT

environment variable to the amount of time (in minutes) for syncreplica to keep trying to write

to the VOB. During that time, syncreplica retries the write operation every minute. If the time

elapses and the VOB is still locked, syncreplica exits with an error.

NOTE: The syncreplica command waits only if it detects the lock before it starts processing

oplogs. If an administrator locks the VOB during oplog processing, syncreplica exits with an

error.
Rational ClearCase MultiSite Reference Pages 313

syncreplica
RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: No mastership restrictions.

OPTIONS AND ARGUMENTS — EXPORT PHASE

The following sections describe the options and arguments for use with syncreplica –export.

SPECIFYING THE UPDATE PACKET SIZE. Default: When you do not specify –maxsize, the default

packet size depends on the shipping method you use:

• Packets created with –ship or –fship are no larger than the maximum packet size specified

in the shipping.conf file (UNIX) or the MultiSite Control Panel (Windows).

• Packets created with –out are no larger than 2 GB.

• Packets created with –tape have no default size limit.

–max⋅size max-packet-size [–lim⋅it num-packets]

The maximum size for a physical packet, expressed as a number followed by a single

letter. For example:

The –limit option limits the number of packets syncreplica generates; each packet is no

larger than max-packet-size. Use this option when the disk space for your shipping bay or

staging area is limited.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

DISPOSITION OF THE UPDATE PACKET. Default: None. You must specify how the update packets

created by syncreplica –export are to be stored and/or transmitted to other sites.

500k 500 kilobytes

20m 20 megabytes

1.5g 1.5 gigabytes
314 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
–shi⋅p
–fsh⋅ip

Stores the update packet in one or more files in a store-and-forward storage bay;

syncreplica creates a separate shipping order for each physical packet, indicating how

and where it is to be delivered. The destinations are the host names associated in the

VOB database with the replica-name arguments. (Replica-name/host-name associations

are created with mkreplica –export and can be changed with chreplica.)

Using –fship (force ship) invokes the shipping_server to send the update packet

immediately. Using –ship does not invoke this server. To run shipping_server to send

packets in storage bays, schedule sync_export_list –poll with the schedule command.

(See the schedule reference page in the Command Reference.)

–scl⋅ass class-name
Specifies the storage class of the packet and shipping order. syncreplica looks up the

storage class in the shipping.conf file on UNIX or the MultiSite Control Panel on

Windows to determine the location of the storage bay to use.

If you omit this option, syncreplica places the packet in the storage bay location

specified for the –default class in the shipping.conf file or MultiSite Control Panel. By

default, this location is /var/adm/atria/shipping/ms_ship on UNIX and

ccase-home-dir\var\shipping\ms_ship on Windows.

–tap⋅e raw-device-pname (UNIX)

Writes the update packets to the specified tape device, which must be local to the host

on which you enter the syncreplica command. You are prompted to load a separate tape

for each physical packet. Use the –maxsize option to ensure that syncreplica does not

exceed the capacity of the tapes you are using. Only one physical packet can be placed

on each tape, regardless of packet size.

CAUTION: Be sure to deliver a packet created with –out or –tape to its specified

destinations promptly. If a replica has not yet received and applied this packet, it may

not accept any subsequently generated packets from your site until the first packet is

received and processed.

–out packet-file-pname
Places the first update packet in file packet-file-pname. Additional physical packets, if any,

are placed in files named packet-file-pname_2, packet-file-pname_3, and so on.

The update packets are not delivered automatically; use an appropriate mechanism

(electronic mail, ftp, postal service, and so on) to deliver them.

You can create a packet using –out, and deliver it using the store-and-forward facility.

See the mkorder reference page.
Rational ClearCase MultiSite Reference Pages 315

syncreplica
HANDLING PACKET-DELIVERY FAILURES. Default: If a packet cannot be delivered, it is sent through

the store-and-forward facility back to the administrator at the site of the originating replica. A

mail message is sent to the store-and-forward administrator. This occurs after repeated attempts

to deliver the packet have all failed, and the allotted time has expired; it can also occur when the

destination host is unknown or a data file does not exist. The store-and-forward configuration

settings specify the expiration period and the e-mail address of the administrator.

–pex⋅pire date-time
Specifies the time at which the store-and-forward facility stops attempting to deliver the

packet and generates a failure mail message instead.

UNIX: This option overrides the storage class’s EXPIRATION specification in the

store-and-forward configuration file. See the shipping.conf reference page for a

description of this specification, and of delivery retries in general.

Windows: This option overrides the storage class’s Packet Expiration specification in the

MultiSite Control Panel. See the MultiSite Control Panel reference page for a

description of this specification, and of delivery retries in general.

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default value is today. If you omit

the century, year, or a specific date, the most recent one is used. Specify UTC if you want

the time to be resolved to the same moment in time regardless of time zone. Use the plus

(+) or minus (-) operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets, the default setting is Greenwich Mean Time

(GMT). (Dates before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
316 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
Examples:

22-November-1998
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–not⋅ify e-mail-address
The delivery-failure message is sent to the specified e-mail address.

If a failure occurs on a Windows host that does not have e-mail notification enabled, a

message appears in the Windows Event Viewer. The message includes the e-mail-address
value specified with this option and a note requesting that this user be informed of the

status of the operation. For information about enabling e-mail notification, see the

MultiSite Control Panel reference page.

SPECIFYING THE DESTINATION REPLICAS. Default: None.

replica-selector ...

Prepares an update packet to be sent to the specified replicas, which must be in the same

VOB family. Specify replica-selector in the form [replica:]replica-name[@vob-selector]

OPTIONS AND ARGUMENTS — IMPORT PHASE

The following sections describe the options and arguments for use with syncreplica –import.

RESTRICTING THE UPDATE TO A PARTICULAR VOB. Default: Updates all replicas that are on the

current host and are specified in the update packets. With –tape, you must specify a VOB replica

to be updated.

–invob vob-selector
Updates the replica in the VOB family specified by vob-selector; all other replicas

specified in the update packets are ignored. Specify vob-selector in the form

[vob:]pname-in-vob

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
Rational ClearCase MultiSite Reference Pages 317

syncreplica
EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See EVENT RECORDS AND
COMMENTS in the multitool reference page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the specified comment option.

SPECIFYING THE LOCATION OF THE UPDATE PACKETS. Default: None.

–rec⋅eive [–scl⋅ass storage-class]

Scans one or more of the current host’s storage bays. Any unprocessed update packets

intended for this host are applied to the appropriate replicas on the host. Using the

–sclass option restricts processing to the storage bays of the specified storage class.

If syncreplica finds any replica-creation packets, it sends mail to the store-and-forward

administrator. (If the current host is a Windows host and there is no valid host specified

in the SMTP Host box in the ClearCase Control Panel, a message appears in the

Windows Event Viewer.) Use mkreplica to import these replica-creation packets.

–tap⋅e raw-device-pname (UNIX)

Reads a single packet from the tape device, and applies it to the replica of the VOB

specified with –invob. The tape device must be local to the importing host.

packet-file-pname | staging-area-pname ...

Processes each packet-file-pname as an update packet. For each staging-area-pname
specified, locates all previously unprocessed update packets in the directory and applies

them to the appropriate replicas.

EXAMPLES

Exports

• Generate an update packet to be sent to replica boston_hub. Store the packet in a file in

directory c:\tmp.

multitool syncreplica –export –out c:\tmp\boston_hub_packet1 boston_hub@\dev
Generating synchronization packet c:\tmp\boston_hub_packet1

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
318 Administrator’s Guide: Rational ClearCase MultiSite

syncreplica
• Similar to preceding example, but place the packet file in a storage bay, for shipping at some

later time by the store-and-forward facility.

multitool syncreplica –export –ship boston_hub@\dev
Generating synchronization packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_bangalore_19-May-99.09.33.02_3447_1
 - shipping order file is c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sh_o_sync_bangalore
_19-May-99.09.33.02_3447_1

• Similar to preceding example, but ship the packet immediately.

multitool syncreplica –export –fship boston_hub@\vob2
Generating synchronization packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_bangalore_19-May-99.09.33.02_3447_1
 - shipping order file is c:\Program
Files\Rational\ClearCase\var\shipping\ms_ship\outgoing\sh_o_sync_bangalore
_19-May-99.09.33.02_3447_1
Attempting to forward/deliver generated packets...
 -- Forwarded/delivered packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\sync_bangalore_19-May-99.09.33.02_3447_1

Imports

• Process an incoming update packet in directory /usr/tmp.

multitool syncreplica –import /usr/tmp/boston_hub_packet1
Applied sync. packet /usr/tmp/boston_hub_packet1 to VOB
/net/minuteman/vobstg/dev.vbs

• Process all incoming update packets in the current host’s storage bays.

multitool syncreplica –import –receive
Applied sync. packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\incoming\sync_boston_hub_19-May-99.09.45.01_7634_1
to VOB \\ramohalli\vobs\dev.vbs

SEE ALSO

mkorder, mkreplica, MultiSite Control Panel, shipping.conf, sync_export_list
Chapter 10, Troubleshooting MultiSite Operations
Rational ClearCase MultiSite Reference Pages 319

syncreplica
320 Administrator’s Guide: Rational ClearCase MultiSite

Index

/usr/atria/bin directory 53

/usr/atria/config/services/shipping.conf file, See shipping.conf file
/usr/atria/etc directory 53

/var/adm/atria/log directory 164

/var/adm/atria/log/shipping_server_log file 164

A

ACLs
mastership requests 277
storage bays 265

administration
backup requirements 51
disk space for storage bays 34
list of responsibilities 49
scrubbing 47
storage registries 50

albd_server, control of ports used 101

apropos command 211

asterisks in packet listings 237

attache-home-dir directory xix

B

backup
incremental 201
nonreplicated objects 200
replica as mechanism for 199
requirements 51
synchronization schedule 88

bays, See return bays; storage bays
bidirectional synchronization

about 42
feature levels 82

branch mastership
See also mastership
about 8
assigning when creating elements 37, 124
conditions for enabling requests 144
creating type objects 15
default vs. explicit 13
Index

/vobs/multisite_doc/manual/ms_manua
displaying request settings 124, 150
how used 10
implementation planning issues 145
models for serial development 20
planning scenario 69
removing explicit 133
request mechanism, setup procedure 146
request mechanisms 141
request procedure 141
scope 9
serial development scenario 157
strategy for branching and merging 36
transfer models 36
transfer procedure 132

branch types, transferring mastership of 127

branches
requesting mastership of 276

C

ccase-home-dir directory xix

ccase-home-dir\bin directory 53

ccase-home-dir\config\scheduler\tasks directory 53

ccase-home-dir\var\log directory 164

ccase-home-dir\var\log\shipping_server_log file 164

chepoch command 213

chreplica command 224

ClearCase commands, use with replicas 60

ClearCase scheduler, synchronization jobs 104

CLEARCASE_MAX_PORT environment variable 101

CLEARCASE_MIN_PORT environment variable 101

.clearcase_profile file 271

cleartool and multitool commands 55

commands for MultiSite
about 53
ClearCase 60
multitool 54
non-multitool 59
when view context is useful 58

connectivity property
changing 224
321

lIX.fm — September 11, 2001 4:03 pm

conventions, typographical xix

creating replicas
about 65
command for 249
common problems 165
export procedure 71
import procedure 74
in mixed environment 77
scenario 68
when to schedule 66
with store-and-forward facility 66

D

directories
/usr/atria/bin 53
/usr/atria/etc 53
ccase-home-dir\bin 53
ccase-home-dir\config\scheduler\tasks 53
changing in replicas 61

disk space
for backup replica 199
replica-creation directory 71
storage bays 34

documentation
MultiSite online help description xx

E

element types, deleting 61

elements
assignment of mastership 124
preservation of ownership 4
transfer of mastership 131

e-mail and firewalls 96

encryption of update packets 100

environment variables 101

epoch number matrix
about 27
listing contents of 28, 229
zeros in 29

epoch numbers
about 24
changing, commands for 213, 272
changing, methods for 169, 182
checking 227
gap detected during packet creation 170
gaps in 168
role in updates 26

epoch_watchdog command 227

error messages
See also troubleshooting
Gap in oplog detected for replica 170

Gap in oplog entries 168
Replica already exists 165
transport operations, list of 172

event records
about 24
comments in 270

export operations
automating for synchronization 105
creating update packets 297
element is checked out 170
gap in epoch numbers 170
packets accumulate in storage bay 171
replica creation 66, 71
replica-creation packets, recovering lost 182
resending lost packets 272
synchronization problems 167
synchronization procedure, manual 102
update packet delivery patterns 86

export_sync records, scrubbing 49

F

feature levels
about 79
displaying 83
raising for replica 80
raising for VOB family 82
requests for branch mastership 144

firewalls
shipping_server on 98
synchronization and 96

ftp and firewalls 97

H

help xx

host name
changing for a replica 224

host name of replica, changing 113

hyperlink types, shared 15

I

import operations
assumption of success 90
automating for synchronization 107–108
common synchronization problems 175
conflicts in registry 166
corrupted packet symptoms 178
failure of and replica replacement 192
failures, possible causes 181
lost packets 176, 182
322 Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualIX.fm — September 11, 2001 4:03 pm

replica creation 74
synchronization command 305
synchronization procedure, manual 103
when to restart 178

installation and licensing 34

interoperability 203

L

licenses needed for ClearCase and MultiSite 34

local-area networks, interoperability 203

log files, locations of 164

lsepoch command 229

lspacket command 237

M

man command 53–54

master replica, setting access control for 276

mastership
 See also branch mastership
about 7
changing 217
creating type objects 137
displaying request settings 124
elements, transferring 131
fixing accidental change in 137
management of 121
objects in removed replicas 119
of replica object 8
request failed 151
restrictions for VOB objects 17
transferring 126
transferring, replica removal 135
troubleshooting for type objects 186
type objects 14, 127
VOBs, transferring 130

mkorder command 244

mkreplica command 249

MultiSite Control Panel 92, 263

multitool commands
about 54
summary 55
syntax for 268

O

object selectors for multitool commands 269

objects
See type objects; VOB objects

online help xx

oplogs (operation logs)
about 24
gaps in epoch numbers 168
scrubbing 47

ownership-preserving replicas
about 4
behavior of syncreplica -import 313
changing properties of 114, 224
creating 40, 250
requirements 5
troubleshooting on UNIX 185
UNIX and Windows interoperability 205

P

packets
See also replica-creation packets; update packets
about 6
listing contents of 237
logical and physical 6
processing imported 6
redelivering 264, 291
routing 267, 292
splitting logical into physical 263, 289
submitting to store-and-forward facility 92

planning issues
about 33
branch mastership 145
design documentation 33
firewalls 100
licensing 34
synchronization strategy 46
time zones and synchronization strategy 88

ports, control of for servers 101

privileges, See mastership

R

receipt handlers, paths 266, 292

recoverpacket command 272

replica objects
about 2
deleting 287
mastership 8
transferring mastership of 117, 128

replica-creation packets
contents and cleanup 251
how to split 67

replicas
See also creating replicas; ownership-preserving replicas;

synchronizing replicas
about 2
Index 323

/vobs/multisite_doc/manual/ms_manualIX.fm — September 11, 2001 4:03 pm

accidental deletion, recovery 196
as backup mechanism 199
backing up 51
changing connectivity property 224
changing hosts or host names 113, 224
checking epoch number 227
displaying details of 23
displaying properties of 111
feature levels 79–80
history of changes, how tracked 25
listing 240
listing objects mastered by 232
master, of VOB and type objects, displaying 122
moving 117
multiple at one site 205
names 2
removal procedure 119
renaming 116
replacing 192
resolving name conflicts 21
restoring from backup 190–191
scrubbing oplogs 47
self-mastering 8, 117, 128
site differences 2
transferring mastership of objects in 135
UNIX and Windows interoperability 203
where mounted 50

reqmaster command, status messages 152

restorereplica command 283

return bays
See also storage bays
about 91
ACLs 265
handling packets in 175
paths 265, 290

rmreplica command 287

S

scrubbing 47

serial development
branch mastership models 20
branch mastership scenario 157

shipping orders
about 91
creating 244
expiration date, specifying 264, 291
expired 95, 175
processing 294, 297

shipping.conf file
about 92
modifying contents of 289

shipping_server
about 92, 294

error handling mechanisms 94
installing on firewall 98
log file 295
troubleshooting scenarios 171

sites
about 1
differences among 2
documentation of design 33
multiple replicas at single 205

storage bays
See also return bays
about 91
ACLs 265
disk space requirements 34
packets in 171, 176
paths 265, 290

storage classes
naming 264
use in synchronization 95

storage directories, restoring lost 190

storage registries, where mounted 50

store-and-forward facility
about 90
configuring 289
creating replicas 66
creating shipping orders 244
customizing 263
deliveries attempted 94
firewalls 98
indirect shipping routes 93
notification mechanisms 290
reliability of and packet size 67
sending files with 93
storage classes 95
submitting packets 92
use with firewalls 96

sync_export_list command 297

sync_receive command 305

synchronizing replicas
about 6, 85
assumption of success 90
automating 104
command for 310
common export problems 167
data included and excluded 3
deliveries attempted 94
delivery patterns 86
direction of, and feature levels 82
firewalls, methods for handling 96
history 113
inconsistent changes 184
indirect routes 29
manual procedure 102
planning issues 46
risks of scrubbing oplogs 49
324 Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualIX.fm — September 11, 2001 4:03 pm

risks of unidirectional scheme 43
role of epoch numbers 26
schedule for 87
unidirectional vs. bidirectional 42
VOB database mechanism 24

syncreplica command 310
examples 102

T

TCP applications and firewalls 98

technical support xx

time stamps, interpretation of format 6

time zones, issues for synchronization strategies 88

topology for update packets 86

transport operations
automating for synchronization 106
common problems 172
delivery failure 174
delivery mechanisms 6
firewalls 96
in mixed environment 77
indirect routes 93
invalid destinations 173
recommended methods 41
replica creation 73
shipping order expired 175
shipping_server 294
store-and-forward facility 90
synchronization procedure, manual 103

triggers
firing during synchronization 313
propagating 3

troubleshooting
about 163
accidental transfer of mastership 137
conflicts in registry entries 166
deliveries, reattempting 94
delivery failed 174
diagnostic tips 164
expired shipping order 175
export of checked-out element 170
export of update packets 167
gap in oplog entries 168
import failed 181
import failure and replica replacement 192
import problems 175
incoming packets accumulate 176
invalid destinations 173
log files 164
lost packets 182
names of type objects conflict 187
object mastership problems 186
ownership-preserving replicas 185

packet size for store-and-forward facility 67
recovery from VOB server crash 191
replica already exists 165
replica deleted 196
replica-creation problems 165
requests for mastership 151
shipping_server log files 295
shipping_server problems 171
storage registries 50
success of synchronization 90
synchronization and scrubbed oplogs 49
synchronization log files 104
tracing exported update packets 298
tracing imported update packets 306
transport problems 172
update packet creation 168

type objects
conversion of, restrictions 15
converting unshared to shared 138
creating instances 137
creating instances of shared 61
creating shared 137
creating shared and unshared 14
displaying master replica 122
displaying mastership status 138
identical names and types 21
mastership 14
mastership problems 186
renaming 187
transferring mastership 127

typographical conventions xix

U

unidirectional synchronization
about 42
feature levels 82
risks 43

update packets
automating creation of 105
automating import of 108
contents of 311
creating manually 102
deleting 312
encryption 100
error notification in mixed environments 95
storage classes 95

user profile file 271
Index 325

/vobs/multisite_doc/manual/ms_manualIX.fm — September 11, 2001 4:03 pm

V

var\log directory 164

var\log\shipping_server_log file 164

version information, displaying for MultiSite 268

views
data in, synchronizing 3
saving from replaced replica 195
updating with replica changes 313
use in troubleshooting 164

VOB database, mechanism for replica synchronization 24

VOB families
about 2
feature level for branch mastership request 144
feature levels 79, 82
ownership-preserving replicas in 5
preserving element ownership 4

VOB objects
displaying master replica 122
mastership restrictions 17
non-file-system 269
syntax for names 270

VOBs
transfer of mastership 130

VOBs, structure of 2

VOB-tags
assigning public 50
duplicate 167
replica names and 2
326 Administrator’s Guide: Rational ClearCase MultiSite

/vobs/multisite_doc/manual/ms_manualIX.fm — September 11, 2001 4:03 pm

	Administrator’s Guide
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	MultiSite Overview
	Introduction to MultiSite
	1.1 VOBs and VOB Replicas
	Replica Names, Replica Objects, and Host Assignments
	Differences Among Sites
	Element Ownership and Ownership Preservation
	Requirements for Ownership-Preserving Replicas

	Synchronizing Replicas in a VOB Family
	MultiSite, Time, and Time Zones

	1.2 Enabling Independent VOB Development: Mastership
	Replica Mastership
	Branch Mastership
	Creation of the main Branch of an Element
	Synchronizing Development on Different Branches
	Default and Explicit Branch Mastership

	Type Object Mastership
	Mastership Restrictions

	1.3 Supporting Serial Development in Replicas
	1.4 Conflict Resolution
	Resolving Conflicts Among Type Objects

	1.5 VOB Objects and Replica Objects
	1.6 VOB Operations and the Oplog
	Tracking Operations for Each Replica
	Epoch Numbers
	Optimization and the Epoch Number Matrix
	Indirect Synchronization

	Planning a MultiSite Implementation
	2.1 MultiSite Installation
	2.2 MultiSite Licensing
	2.3 ClearCase Use Model
	Branching and Mastership
	Use of Metadata
	Text Mode for Replicas
	Use of Administrative VOBs or UCM

	2.4 MultiSite Use Model
	Type of Administration
	Mastership Strategy
	Replica Permission Strategy
	Synchronization Method
	Synchronization Pattern
	Directions of Exchange
	One-to-One and Ring Synchronization
	One-to-Many Synchronization
	Many-to-Many Synchronization

	Synchronization Schedule
	Use of MultiSite for Backups
	Scrubbing Parameters for VOB Replicas
	Oplog Scrubbing
	export_sync Scrubbing

	2.5 Responsibilities of MultiSite Administrators

	MultiSite Command Set
	3.1 Location of MultiSite Programs
	3.2 multitool Use
	multitool Subcommands
	Commands Copied from ClearCase
	Replica Creation, Synchronization, and Management
	Object Mastership
	Failure Recovery

	3.3 View Contexts and VOB Mounts
	3.4 Specifying VOBs and Replicas in Commands
	3.5 Additional MultiSite Commands
	3.6 ClearCase Commands Related to MultiSite

	Using MultiSite
	Creating Replicas
	4.1 Overview of Replica Creation
	4.2 Timing of Replica Creation
	4.3 Notes on Different Transport Methods
	Store-and-Forward Method
	Communication Between Replica Hosts
	Limiting the Size of a Packet
	Transport Options

	Notes on Using Tape or a File-Based Transfer Method

	4.4 Replica-Creation Scenario
	Planning the Rules of the Road
	Prerequisites
	Export Phase
	Transport Phase
	Import Phase

	4.5 Replicating a VOB Between UNIX and Windows

	ClearCase Feature Levels
	5.1 Overview of Feature Levels
	5.2 Raising the Replica Feature Level
	5.3 Raising the VOB Family Feature Level
	VOB Families with Bidirectional Synchronization
	VOB Families with Unidirectional Synchronization

	5.4 Displaying Feature Levels
	5.5 Feature Levels Error Message

	Synchronizing Replicas
	6.1 Synchronization Patterns
	Designing an Update Strategy

	6.2 Assumption of Successful Synchronization
	6.3 Transferring Packets with Store-and-Forward
	Packet Storage During the Export and Import Phases
	Packet Transport
	Configuring the Store-and-Forward Facility
	Submitting Packets to Store-and-Forward
	Sending Files That Are Not Packets
	Setting Up an Indirect Shipping Route
	Retries, Expirations, and Returned Data
	Error Notification in a Mixed Environment

	Differentiating Packets with Storage Classes

	6.4 Using MultiSite through a Firewall
	Using Electronic Mail
	Using FTP
	Using Custom Software
	Installing Store-and-Forward on a UNIX Firewall Host
	Firewall Issues
	Installing shipping_server on a Firewall
	Controlling Ports Used by albd_server and shipping_server
	Guidelines for Setting Port Values
	Specifying Port Values

	6.5 Manual Synchronization
	Export Phase
	Transport Phase
	Import Phase

	6.6 Automated Synchronization
	Using the ClearCase Scheduler
	Export Phase
	Transport Phase
	Import Phase
	Defining Receipt Handlers
	Scheduling Import Jobs

	6.7 Listing Synchronization History
	6.8 Synchronizing More Efficiently
	Example of Increased Efficiency
	Example of Decreased Efficiency

	Managing Replicas
	7.1 Displaying Properties of a Replica
	7.2 Listing the Synchronization History of a Replica
	7.3 Changing the Host Name for a Replica
	7.4 Changing Ownership Preservation
	7.5 Setting the Connectivity Property
	7.6 Renaming a Replica
	7.7 Moving a Replica
	7.8 Changing Mastership of a Replica
	7.9 Deleting a Replica

	Managing Mastership
	8.1 Listing an Object’s Master Replica
	8.2 Listing Objects Mastered by a Replica
	8.3 Listing the History of Mastership Changes for an Object
	8.4 Displaying Mastership Request Settings
	8.5 Assigning Branch Mastership During Element Creation
	8.6 Changing Mastership
	Transferring Mastership of a Type Object
	Transferring Mastership of a Replica Object
	Transferring Mastership of a VOB
	Transferring Mastership of an Element
	Transferring Mastership of a Branch
	Transferring Branch Mastership
	Removing Explicit Mastership of a Branch

	Transferring Mastership of a Stream
	Transferring Mastership of All Objects Mastered by a Replica
	Fixing an Accidental Mastership Change

	8.7 Working with Type Objects
	Creating a Shared Type Object
	Listing Whether a Type Object Is Shared or Unshared
	Converting an Unshared Type Object to a Shared Type Object

	Implementing Requests for Mastership
	9.1 Overview of a Request for Mastership
	9.2 Requirements and Recommendations
	9.3 Planning Your Implementation
	To Hide Request for Mastership Features

	9.4 Enabling Requests for Mastership
	Prerequisites
	Adding Developers to the Access Control List
	Deny Requests for Specific Objects
	Enable Requests at the Replica Level

	9.5 Customizing Synchronization Updates for Mastership Requests
	9.6 Displaying Mastership Request Settings
	9.7 Troubleshooting
	Troubleshooting Commands
	Status Messages

	9.8 Serial Development Scenario
	Planning the Implementation
	Setting Up Access Controls
	Writing Config Specs
	Boston
	San Francisco
	Tokyo

	Requesting Mastership
	Serial Development of a File That Cannot Be Merged
	Serial Development of a File That Can Be Merged

	Troubleshooting MultiSite Operations
	10.1 Troubleshooting Tips
	10.2 Replica-Creation Problems
	Export Phase
	Import Phase
	Conflict in VOB Object Registry
	Conflict in VOB-Tag Registry

	10.3 Synchronization Export Problems
	Cannot Find Oplog
	Sites Have IP Connection
	Sites Do Not Have IP Connection

	Oplog Gap Detected During Creation of Update Packet
	Export Failure During Version Construction
	Packets Accumulate in Outgoing Storage Bay
	Replica Cannot Update Itself

	10.4 Transport Problems
	Error Messages
	Invalid Destination
	Delivery Fails
	Shipping Server Fails to Start or Connection Is Refused
	Shipping Order Expires

	10.5 Synchronization Import Problems
	Packets Accumulate in Incoming Storage Bay
	Packet is Not Applicable to Any Local VOB Replicas
	Read from Input Stream Fails
	Element Changes During Operation
	rmreplica Operation Cannot be Imported
	Replica Incarnation is Old
	Miscellaneous Problems
	Recovering from Lost Packets
	Lost Replica-Creation Packet
	Lost Update Packet

	Inconsistent Changes to Replica
	Ownership Preservation
	Object Mastership

	Automatic Renaming of Type Objects and Replica Objects

	10.6 Running epoch_watchdog
	10.7 Restoring and Replacing Replicas
	Restoring a Replica from Backup
	Replacing an Existing Replica
	Saving Views from the Replaced Replica

	10.8 Cleaning Up from Accidental Deletion of a Replica

	Using MultiSite for Backup and Interoperability
	Backing Up VOBs with MultiSite
	11.1 Using a Backup Replica
	Handling Objects That Are Not Replicated
	Designing Synchronization Strategy

	11.2 Using Replicas with Incremental Backup
	11.3 Restoring a Replica from Backup

	Using MultiSite for Interoperability
	12.1 Advantages and Disadvantages
	12.2 Restrictions on Multiple Replicas in a LAN
	12.3 Setting Up Multiple Replicas at One Site

	MultiSite Reference Pages
	MultiSite Reference Pages
	apropos
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	chepoch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SPECIFYING A VIEW CONTEXT
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	epoch_watchdog
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	lsepoch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Object Name Resolution

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lspacket
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkorder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	mkreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OWNERSHIP PRESERVATION
	REPLICA-CREATION PACKETS
	Cleaning Up Used Packets

	REPLICATION OF VOBS LINKED TO ADMINISTRATIVE VOBS
	RESTRICTIONS
	OPTIONS AND ARGUMENTS — EXPORT PHASE
	OPTIONS AND ARGUMENTS — IMPORT PHASE
	EXAMPLES
	Exports
	Imports

	SEE ALSO

	MultiSite Control Panel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	MAXIMUM PACKET SIZE
	ADMINISTRATOR E-MAIL
	STORAGE CLASSES
	Storage Class Name
	Packet Expiration
	Storage Bay Path
	Return Bay Path
	Receipt Handler Path
	ROUTING INFORMATION
	Next Routing Hop
	Destination Host Names

	multitool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	USING INTERACTIVE MODE AND STATUS MODE
	SPECIFYING OBJECTS WITH OBJECT SELECTORS
	Object Names

	EVENT RECORDS AND COMMENTS
	Specifying Comments Interactively
	Customizing Comment Handling

	recoverpacket
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Resetting Epoch Numbers Automatically
	Resetting Epoch Numbers Manually

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reqmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SETTING ACCESS CONTROLS
	REQUESTING MASTERSHIP OF A BRANCH OR BRANCH TYPE
	TROUBLESHOOTING
	RESTRICTIONS
	Setting Access Controls
	Requesting Mastership of a Branch:
	Requesting Mastership of a Branch Type:

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	restorereplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	LOCKING OF THE REPLICA
	OPTIMIZING THE RESTORATION PROCESS
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	shipping.conf
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PACKET SIZE
	NOTIFICATION
	ADMINISTRATOR ADDRESS
	STORAGE BAY AND RETURN BAY
	EXPIRATION PERIOD
	PACKET ROUTING
	RECEIPT HANDLER
	PORT NUMBERS

	shipping_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	TCP/IP Connection
	Colon Characters in Packet Names
	Handling of File Name Conflicts
	Log File

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	sync_export_list
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED
	CONFIGURATION FILE
	TROUBLESHOOTING
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	UNIX
	Windows

	SEE ALSO

	sync_receive
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED
	CONFIGURATION FILE
	TROUBLESHOOTING
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	UNIX
	Windows

	SEE ALSO

	syncreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	NOTES ON THE EXPORT PHASE
	Specifying a Directory for Temporary Files

	NOTES ON THE IMPORT PHASE
	Specifying a Directory for Temporary Files
	Skipping Packets
	Update Failures / Replaying Packets
	Deletion of Update Packets
	Ownership Preservation
	Storage Pools
	Trigger Firing
	Handling Naming Conflicts
	Delayed View Updates

	RETRYING SYNCHRONIZATION WHEN THE VOB IS LOCKED
	RESTRICTIONS
	OPTIONS AND ARGUMENTS — EXPORT PHASE
	OPTIONS AND ARGUMENTS — IMPORT PHASE
	EXAMPLES
	Exports
	Imports

	SEE ALSO

	Index

