
Rational Software Corporation ®

RATIONAL ® CLEARCASE®

OMAKE GUIDE

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025066-000

WINDOWS EDITION

OMAKE Guide
Document Number 800-025066-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ...xv

About This Manual ..xv

ClearCase Documentation Roadmap.. xvi

Typographical Conventions .. xvii

Online Documentation .. xviii

Technical Support .. xviii

1. Introduction ...1

1.1 File Manifest..1

1.2 Configuring omake ..2

1.3 Notes on Using omake ..2

omake’s Configuration Management Features..2

Configuration Lookup..3

Derived Object Sharing ..3

Configuration Record Creation...3

Express Builds ...3

Command-Line Options ..3

Location of Temporary Files..4

Non-MVFS Dependencies ...4

Differences Between omake and Standard Make Tools4

Running omake ..5

Makefiles..5

Supporting Both omake and clearmake ..5

Parallel and Distributed Build Operations...6

Build Scripts and the rm Command..6

Pathnames in CRs ..6

1.4 Auditing 16-bit Tools...7
Contents iii

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

2. Overview of Using omake ..9

2.1 The omake Process ...9

2.2 Invoking omake from the Command Line ...10

2.3 Initialization Files and Makefiles ...11

The Initialization File ...11

The Makefile ..12

Continued Lines ..12

Comments...12

Contents of Initialization Files and Makefiles ..13

2.4 Rules ...13

2.5 Dependency Lines ..14

Explicit and Inferred Dependencies...14

Macros in Dependency Lines..15

The Make Process Is Recursive..15

Detected Dependencies ..16

Wildcards in Dependency Lines ..16

The Dependency Line Separator ..16

A Dependency Example ..17

2.6 Build Scripts ..18

Build Script Execution..19

Auto-Detection Mode ...19

Standard Execution Mode..20

Build-Script Line Exit Status ...20

2.7 Macros ..21

Macro Precedence...22

Defining Macros in the Makefile ..22

Read-Time Expansion of Macros ..23

Standard Macro Definition: name = [text] ...23

Conditional Macro Definition: name ?= [text]23

Expanded Macro Definition: name := [text] ..24

Appended Macro Definition: name += [text]......................................24

Case-Sensitivity of Macro Names ...24

The Location of Macro Definitions ...24
iv OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Indenting Macro Definitions ...24

Undefining Macros ...24

Example Macro Definitions ...25

Defining Macros on the Command Line ..25

Dynamic Macros...26

Macro Modifiers ...26

File Name Components..27

Tokenize ...27

Other Modifiers ...28

Environment Variables..28

Macro Expansion or Macro Referencing...28

Run-Time Expansion of Macros..29

Recursive Macro Definitions ...29

2.8 Inference Rules ...29

Defining Inference Rules...30

The General Inference Rule Definition ..31

The Target Inherits Build Scripts and Attributes31

Alternative (Suffix-Only) Form...31

Automatic Use of Inference Rules ...32

Inference Rules and Target Groups...32

Multiple-Step Inference Rules ..33

Chained Targets Are Deleted Automatically..33

Preventing Multiple-Step Rules..34

Inference Rule Search Order...34

Overriding the Rule Ordering...35

Rule Finding for Target Names with a Directory Component35

Common Operations on Inference Rules..35

Built-In Inference Rules...36

Compatibility with Suffix Rules (.SUFFIXES)..37

Handling of Suffix Rules and .SUFFIXES..37

2.9 Response Files...37

Inline Response Files ...38

2.10 Directives...38
Contents v

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

2.11 The Keep-Working Mode..39

3. omake Reference ..41

3.1 Command-Line Options..41

Initial Command-Line Parameters: OMAKEOPTS41

The Command-Line Options ..42

The Current Options ..46

3.2 Locating the Initialization File ..46

Disabling the Initialization File ..46

3.3 The Make Process ...47

Read Time ..47

Run Time..47

Run-Time Initialization and Deinitialization ..48

Updating the Time Stamp ...49

3.4 Targets ..49

Case-Sensitivity of Target Names ..49

A Target Has a Name and a Pathname ...49

Using the Path Separator in Names...50

The First Target in the Makefile Is the Default Target50

Targets May Appear on Several Dependency Lines50

Double-Colon Dependency Lines ..51

Mixing Single-Colon and Double-Colon Dependency Lines.....................51

Targets Without Dependencies ..51

Target Groups ...51

3.5 Macros ..52

Macro Modifiers..52

Filename Components ..53

Absolute Pathname ...53

Append and Prepend Strings ..54

Change Case...54

Expand Pathnames..54

Include File ...54

Include File with Regular Expression Matching...................................55
vi OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Member and Nonmember ...55

Select a Particular Element ..56

String Substitution ..56

Tokenize ...57

Wildcard Expand File and Directory Names..57

Regular Expressions...58

Configuring Regular Expressions...58

Regular Expressions for the M Modifier ...58

Regular Expressions for the S Modifier ...59

With Configuring .REGEX_CHAR and .REGEX_WILD.....................59

Predefined and Built-In Macros ...60

Predefined Macros: Run-Time Macros ...60

Run-Time Macros...60

Predefined Macros: General Macros ...62

Predefined Macros: State Macros...63

An Example Use of the State Macros ...66

Built-in Macros ...66

Compatibility with Other Make Utilities...68

3.6 Build-Script Line Prefixes ...69

Do Not Echo the Build-Script Line (Silent Operation)................................69

Ignore the Build-Script Line Exit Status..70

Override the –n Command-Line Option ..71

Select the Shell Program..71

Iterate the Build Script...71

Miscellaneous Prefixes ..72

Build Script Compatibility with Other Make Utilities................................72

3.7 Build-Script Problems: The cd and set commands......................................72

Using Multiple-Command Build-Script Lines...73

Using Directives: %chdir and %setenv ...74

3.8 Makefile Directives ..74

Percent Directives...74

Conditional Directives..75

Iteration Directives..75
Contents vii

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Other Percent Directives...76

Conditional Directives ..76

Conditional Directives and Continued Lines..77

Conditional Expressions..78

Simple Expressions ...78

Comparison Operators ...79

Functional Operators (Also Called Built-In Functions)80

File-Test Operators ..80

Command-Execution Operator ...81

Logical Operators ..82

Iteration Directives ...82

The %foreach Directive...82

The %while Directive..84

Effects of %foreach and %while when Using omake in a VOB..........84

Interrupting the Iteration ...85

Another Method of Iteration..85

A Sample Makefile ..85

Other Percent Directives..86

Compatibility with Other Make Utilities ...91

Dot Directives..91

Compatibility with Other Make Utilities ...101

3.9 Target Attributes...101

Using Attributes..102

Attributes and Inference Rules ...102

List of Attributes ...102

3.10 Special Targets ..105

Compatibility with Other Make Utilities ...106

3.11 Search Directories ...106

Implied Location of Missing Files...107

Search Directory Macros..107

The .PATH Macros..107

The VPATH Macros ..108

Search Directories and Run-Time Macros ..108
viii OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Search Directories and File Lookup...108

Search Directories and Inference Rules...109

Debugging the Search Directories ...110

Compatibility with Other Make Utilities...110

3.12 Response Files...110

Automatic Responses ..111

Adding Program Names..111

Response Class Parameters ...111

Defining or Modifying a Response Class ..112

Disabling a Response Class ...112

Response File Example #1..113

Response File Example #2..113

Using Automatic Responses...114

Generation of Automatic Responses..114

Deletion of Automatic Responses...114

Built-In Automatic Responses...115

Built-in Responses for Windows NT..115

Inline Response Files ...115

Deletion of Inline Response Files..116

Inline Response File Example ...116

Compatibility with Other Make Utilities...117

4. Debugging Makefiles ..119

4.1 Command-Line Options ...119

4.2 Read-Time Debugging ..120

Output Produced by –#1 ...121

Output Produced by –p...122

The Macro Definitions ...122

The Search Directories ...123

The Automatic Response Definitions..123

The Inference Rules..123

The Targets and Build Scripts ..125

The Final –p Output...125
Contents ix

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

A. Errors and Warnings ...127

A.1 Reducing Message Severity ..127

A.2 Error Messages and Explanations ..128

B. Exit Status Values ...135

C. Built-In Macros and Rules ...137

C.1 Macros ..137

Predefined General Macros...137

Predefined State Macros ..138

Built-In Macros..140

C.2 Macro Modifiers..141

C.3 Inference Rules..142

Compatibility with Other Make Utilities ..144

D. Compatibility and Emulation ..145

D.1 PM/CB (Intersolv Configuration Builder and PolyMake)145

System Macros ..145

Transformation Macros ...147

Built-In Functions ...148

Built-In Operations (Percent Directives) ...148

Directives ...148

Reserved Targets...151

Local Input Scripts..151

Operation-Line Modifiers..152

PM/CB Emulation..152

Emulation at Startup Time...153

Emulation After Startup Time...153

The Command Line ..153

The Emulation File (BUILTINS.CB)..153

The Initialization File (TOOLS.INI) ..154

The BUILTINS File ..154

The Makefile...154
x OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Makefile Contents ...154

Operation Lines (Build Scripts)...155

Unsupported PM/CB Features ..156

Unimplemented Directives and Reserved Targets156

Iteration Groups ..156

Suffix Dependencies ...157

Command-Line Flags ...157

Makefile Contents ...157

Shared Definitions ..157

Operation-Line Modifiers ..157

Built-In Operations ...157

D.2 Microsoft NMAKE Compatibility ...158

NMAKE Directives ..158

NMAKE Emulation..158

Emulation at Startup Time ..158

Emulation After Start-Up Time...159

The Command Line ..159

The Emulation File (BUILTINS.NM) ...159

The Initialization File (TOOLS.INI)..159

Makefile Contents ...159

Macros ..160

Build Scripts...161

Inline Response Files ..162

Unsupported NMAKE Features ..162

D.3 Opus Make v5.2x Compatibility and Emulation.......................................162

D.4 Borland Make Compatibility ..163

D.5 UNIX Make Compatibility..164

E. Regular Expressions ..167

E.1 Configuration of Regular Expressions ..167

Regular Expression Components...167

Referencing the Matched Expression ..169

E.2 Macro Modifiers in OMAKE ..169
Contents xi

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Regular Expressions for the M Modifier ...169

Regular Expressions for the S Modifier...170

Glossary ...171

Index ..175
xii OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeTOC.fm — September 16, 2001 3:36 pm

Tables

Table 1 Macro Modifiers...27

Table 2 omake Command-Line Options ..42

Table 3 General Macros ..62

Table 4 State Macros..64

Table 5 Built-in Macros ...67

Table 6 Conditional Directives ..75

Table 7 Iteration Directives ..75

Table 8 Other Percent Directives ...76

Table 9 Comparison Operators..79

Table 10 Functional Operators...80

Table 11 File-Test Operators ..81

Table 12 Command-Execution Operator ...81

Table 13 Logical Operators...82

Table 14 Other Percent Directives ...86

Table 15 omake Directives..92

Table 16 Attributes ..103

Table 17 Special Targets..106

Table 18 Response Class Parameters ..112

Table 19 Error Messages ...128

Table 20 Exit Status Values ..135

Table 21 General Macros ..137

Table 22 State Macros..139

Table 23 Built-In Macros...140

Table 24 Macro Modifiers...141

Table 25 PM/CB System Macros...145

Table 26 PM/CB Transformation Macros..147

Table 27 PM/CB Directives..149

Table 28 PM/CB Operation-Line Modifiers ..152

Table 29 Regular Expression Components ..168

Table 30 Examples of Regular Expressions ...170
xiii

/vobs/doc/ccase/omake/cc_omakeLOT.fm — September 16, 2001 3:36 pm

xiv OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeLOT.fm — September 16, 2001 3:36 pm

Preface

The ClearCase omake software build program provides compatibility with Windows NT-based

make tools.

About This Manual

This manual is for users who are new to the omake tool and who may have other experience with

make tools. It provides information on setting up omake, gives an overview of building

programs using omake, and describes omake usage. The appendices contain information on

error messages, macros and rules, compatibility, and regular expressions.

If you are already familiar with the build process and makefiles, the recommended sequence for

proceeding through the documentation is:

➤ Read Chapter 1, Introduction, for configuration and usage information

➤ Read the first section of Chapter 2, Overview of Using omake
➤ Refer to Chapter 3, omake Reference, for information on omake-specific features

➤ Read the remaining chapters of this book

If you are not familiar with the build process and makefiles, the recommended sequence for

proceeding through the documentation is:

➤ Read Chapter 2, Overview of Using omake
➤ Read Chapter 1, Introduction, for configuration and usage information

Building Software provides additional information about using the clearmake and omake build

tools.
Preface xv

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software
xvi OMAKE Guide

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xvii

Online Documentation

The ClearCase graphical interface includes a standard Windows help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help > Help Topics provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

> cleartool man (display the cleartool overview page)

> cleartool man man (display the cleartool man reference page)

> cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

> cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To

start the ClearCase Tutorial, choose Tutorial in the ClearCase folder off the Start menu.

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail
xviii OMAKE Guide

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
Preface xix

xx OMAKE Guide

11 Introduction

omake is a programming tool that helps you maintain programs, particularly those that are

constructed from several component files. omake controls the entire process of building your

program, whether it involves preprocessing files, compiling, linking, or other steps. It keeps

track of the project files, recompiling and relinking them only when required. Moreover, omake
maintains important information, such as compiler and linker options, in an editable text file

called a makefile. If you've ever returned to a project after a long absence, you know how hard

is to remember all the parameters that were used the last time the project was built. omake
remembers everything about the project for you.

Rational ClearCase includes two independent build programs: clearmake and omake. Both

incorporate the major ClearCase build-related features, including configuration lookup, derived
object sharing, and configuration record maintenance. The omake program’s strength lies primarily

in its support for users who require compatibility with other PC-based build programs,

including Borland® Make, Microsoft® NMAKE, PolyMake, and Opus Make.

NOTE: omake is intended for use in dynamic views. You can use omake in a snapshot view, but none

of the features that distinguish it from ordinary make programs — build avoidance, build

auditing, derived object sharing, and so on — works in snapshot views. The rest of the

information in this manual assumes you are using omake in a dynamic view.

1.1 File Manifest

omake includes the following files, which are installed in ccase-home-dir\bin:

builtins.* PVCS Configuration Builder and NMAKE emulation rules and macros

omhelp.* PVCS Configuration Builder and NMAKE help screens
1 - Introduction 1

1.2 Configuring omake

omake reads an initialization file, ccase-home-dir\bin\make.ini, which you can configure. The

default make.ini file gives you a minimal configuration. Installing a new version of ClearCase

replaces your make.ini file; if you have customized this file and want to maintain your changes

after upgrading to a new version of ClearCase, back up the file before installation and restore it

afterward from your backup copy.

One of the major features of omake is its ability to emulate either PolyMake/PVCS

Configuration Builder or Microsoft NMAKE. The emulation is enabled with a command-line

option. See PM/CB Emulation on page 152 and NMAKE Emulation on page 158 for more

information. Throughout this document, PM/CB refers to PolyMake/Configuration Builder,

and NMAKE refers to Microsoft NMAKE.

1.3 Notes on Using omake

The ClearCase omake utility is based on Opus Config Builder 6.10, from OPUS Software, and is

compatible with most of its makefiles. It has been extended to include the fundamental

ClearCase build features. This section describes the ClearCase extensions and offers some basic

usage guidelines. Other sources of help on omake:

➤ omake reference page (in the Command Reference)

➤ omake –h
➤ omake –EN –h (help on NMAKE compatibility mode)

➤ omake –EP –h (help on PolyMake compatibility mode)

For more information on the ClearCase build model, see Building Software and the clearmake
reference page.

omake’s Configuration Management Features

The features described here constitute the core of ClearCase build configuration management.

make.ini Sample omake initialization file

omake.exe omake executable
2 OMAKE Guide

Configuration Lookup

ClearCase omake uses a build-avoidance scheme based on configuration lookup that is more

sophisticated than the conventional make and Opus Make schemes, which are based on time

stamps of built objects. For example, the omake build-avoidance scheme guarantees correct

build behavior as C-language header files change, even if the header files are not listed as

dependencies in the makefile. By default, omake uses configuration lookup when you are

working in a view, and the target is located in the MVFS.

Derived Object Sharing

Developers working in different views can share the MVFS objects created by omake builds. See

the clearmake reference page for details.

Configuration Record Creation

omake audits the build operations, generating software bill-of-materials records, called

configuration records, that fully document a build. In the process, omake also performs automatic

dependency detection. By default, configurations records are created whenever you run omake
from a ClearCase view, and derived files are stored in the MVFS. See the clearmake and catcr
reference pages for details.

Express Builds

You can use either omake or clearmake during an express build, which is a build that creates

nonshareable derived objects. Express builds do not write DO information to the VOB, and

therefore enhance site-wide performance because they do not block other users’ access to the

VOB. For more information on express builds, see Building Software.

Command-Line Options

➤ The following options have been added to omake:

–L Disables configuration lookup and config record creation. See also clearmake –F.

–O Disables build script checking during configuration lookup.

–v Increases output verbosity during the build process (particularly with respect to

configuration lookup and config record creation).

NOTE: The Opus Make –V option, which prints the version string, has been

removed.

–W Disables shopping for derived objects to wink in. See also clearmake –V.

–T Examines sibling derived objects when determining whether a target object in a

VOB can be reused. See also clearmake –O.
1 - Introduction 3

Location of Temporary Files

The CCASE_AUDIT_TMPDIR environment variable controls the location of build audit temporary

files. By default, these files are stored in the directory named by the TMP environment variable.

If you do not set CCASE_AUDIT_TMPDIR, make sure that TMP is set to a valid temporary storage

directory on a FAT, NTFS, or LAN Manager file system. Note that setting CCASE_AUDIT_TMPDIR

to a location on a remote file system increases build times.

Non-MVFS Dependencies

omake supports local and remote non-MVFS dependencies:

➤ If the dependency resides on a local drive, you can use the local drive letter. However, to

share the applicable derived object, users on other hosts must access the dependency using

the same drive-specific pathname.

➤ If the dependency resides on a remote host, you must use UNC names. (If you use drive

letters, only users with identical network drive configurations can share the resultant DOs.)

Differences Between omake and Standard Make Tools

➤ $? means all dependencies, not just out-of date dependencies for targets for which

configuration lookup is used.

➤ Double-colon (::) rules. If any instance of a double-colon rule is out of date (based on

configuration lookup), all double-colon build scripts for the affected target are executed.

Conversely, if an error occurs during a build of the target of a double-colon rule, the target’s

remaining build scripts are not executed, and no config records or derived objects are

constructed. For example:

install::foo.exe
copy foo.exe \inst\bin

install::bar.exe
copy bar.exe \inst\bin

If foo.exe or bar.exe is out of date, both build scripts are executed. (Both programs are

copied.)
4 OMAKE Guide

Running omake

Typically, you run omake from a view using the following procedure:

1. Set a view context by assigning a drive to a view (with Tools > Map Network Drive in

Windows Explorer or the net use command) and changing to that view:

c:\> net use f: \\view\myview

c:\> f:

f:\>

2. Change to the appropriate directory and run omake:

f:\myvob\src> omake options

You are using a view context to prevent VOB pathnames from being dependent on the view

the build occurs in. From f:, you (and your makefiles) can access versioned objects with

non-view-extended, absolute VOB pathnames such as \vob2\src\main.c in either cleartool
commands or standard operating system commands.

If you work directly on M:, in view-extended namespace, full pathnames to VOB objects

include a view-specific prefix, which can affect configuration lookup so as to prevent DO

sharing between views.

Makefiles

There are several rules to follow when constructing, or converting, makefiles for use by omake
on a Windows NT host.

Supporting Both omake and clearmake

It is possible, but not trivial, to prepare makefiles that can be used with either omake or

clearmake. The general approach is to supply omake-specific macro definitions in the makefile,

and to supply clearmake-specific macro overrides in a build options specification (BOS) file;

clearmake reads the BOS file, but omake does not. When clearmake executes, it looks for macro

definitions in two locations:

f:\> cd myvob\src (`\myvob’ is the VOB-tag)
1 - Introduction 5

➤ %HOME%\.clearmake.options

➤ makefile.options, in the same directory as makefile (substitute the actual name of your

makefile, if it is not makefile)

BOS files at other locations can be passed to clearmake with the –A option.

Parallel and Distributed Build Operations

Each omake build executes serially on the local Windows NT host. Parallel and distributed build

operations are not available.

Build Scripts and the rm Command

It is common for a makefile to include a target whose build script invokes a command such as

rm to delete files. Some Windows NT installations include rm commands that do not actually

delete a file, but move it to a deleted directory instead. As a result, build script temporary files

become sibling DOs of the targets. To avoid this problem, use a remove command—del, for

example—that actually deletes files.

Pathnames in CRs

In a config record created on Windows NT, MVFS object pathnames begin with the VOB-tag and

do not include view-tag prefixes. For example:

...
---------------------------- MVFS objects: ----------------------------
\proj1\include\cmsg.h@@\main\nt3\39 <22-Jul-94.17:49:53>
\proj1\lib\fsutl.h@@\main\12 <22-Jun-94.12:07:24>
...

Pathnames in this format can be cut and copied, and applied elsewhere as is, if you are on a drive

assigned to a view (with Tools > Map Network Drive in Windows Explorer or the net use
command).
6 OMAKE Guide

1.4 Auditing 16-bit Tools

Compilers, linkers, and other tools written to run on MS-DOS or Windows (16-bit tools) require

special handling when used in audited builds with omake.

The program vdmaudit allows auditing of 16-bit tools. To use vdmaudit, you need to have

omake run vdmaudit and let it call the 16-bit tool. This involves either editing the makefile
where it calls the 16-bit tool, or if your makefile defines a macro for each 16-bit tool, redefining

the macros in the makefile or on the omake command line.

If the makefile defines a macro for each 16-bit tool, you can change the macros to call vdmaudit.
For example, if your makefile contains macros like

CPP=cl.exe
LINK=link.exe

change them as follows:

CPP=vdmaudit cl.exe
LINK=vdmaudit link.exe

You can redefine the macros on the omake command line like this:

omake –EN –f disptree.mak CPP="vdmaudit cl.exe" LINK="vdmaudit link.exe"

Call all 16-bit tools from vdmaudit; if you do not, omake does not audit all tools and the

configuration record is incomplete.

An alternative method for auditing 16-bit tools is to use the ClearCase Virtual Device Driver

(VDD). To install the VDD during ClearCase installation, select 16-bit build auditing on the

ClearCase Client Options or ClearCase Server Options page. The VDD runs any time a 16-bit

tool is run, whether during an audit or not. However, the VDD can cause 16-bit tools to fail to

display all output or to fail to clear the screen when done.
1 - Introduction 7

8 OMAKE Guide

22 Overview of Using omake

This chapter provides an overview of using omake to build and maintain programs. It describes

the process omake uses to build programs, the files you use to control omake’s operation, and

some selected features of omake.

2.1 The omake Process

omake works in two distinct phases:

➤ read time, when it reads the files (called makefiles) that provide it with a project description

➤ run time, when it builds the project

A project consists of one or more targets. A target is a thing that can be made, usually a file, such

as a source file, object file, or executable file. The target is said to exist if the file is present on disk.

The pathname to a target is its location on disk. The target’s configuration record (CR) is a software

bill of materials record that fully documents the build of the target and supports omake’s ability

to rebuild. The CR includes the following information:

➤ Which MVFS file system objects (and which versions of those objects) were used by the

build as input data

➤ The commands used to perform the build

➤ Which MVFS files were created as output

The target's time stamp is the time the target was last changed. This is usually the creation or

modification time of the file.
2 - Overview of Using omake 9

Reading the makefiles gives omake dependency information. A dependency is the relationship

between a target and the things needed to make it. For example, an executable file that is linked

from a set of object files must be relinked if any of the object files change; thus, the executable file

depends on the object files. One way to think of this dependency information is as a data tree,

which may be several levels deep. For example, an executable proj.exe may depend on main.obj
and io.obj, each of which depend on source files main.c and io.c, respectively.

The things a target depends on are its dependencies. In fact, dependencies are also targets because

they can be (and are) made.

To make or build a target means to bring it up to date. A build script (sometimes referred to as a

shell line) is a command that omake executes to bring a target up to date. For example, a link

command updates an executable file. The command returns an exit status, which lets omake
know whether it succeeded. If the command succeeds, omake generates and stores a

configuration record. This configuration record is attached to each file modified or created by

executing the build script. A file produced by the build and associated with a configuration

record is called a derived object (DO).

If the target (derived object) is located in the MVFS, omake uses configuration lookup to

determine whether it is necessary to rebuild a derived object by executing a build script or by

reusing an existing instance of the derived object. omake traverses the dependency tree and

compares the configuration record of each target to the build configuration of the current view

(the set of dependency versions, the current build script, and the current build options),

rebuilding the target if necessary. For each target, the tree is traversed to the bottom and back up.

If the target is not in a VOB, omake compares the time stamp of the target to those of its

dependencies. If the target is older than any of its dependencies, omake rebuilds it.

Note that if you are working in a snapshot view, omake does not perform configuration lookup

and it does not create derived objects or configuration records. For more information about

snapshot views, see Developing Software.

NOTE: In this chapter, the examples assume that the files are in a VOB.

2.2 Invoking omake from the Command Line

omake is invoked from the command line with:

omake [option | macro | target | @file] ...
10 OMAKE Guide

Each option is indicated by a – (dash) or / (slash) followed by a single letter, which is the option

name. Options can be grouped; that is, –k –v is the same as –kv. The case of the option name is

important. omake’s command-line options are described in Command-Line Options on page 41.

Each macro is a macro definition of the form name=[value]. Macros defined on the command line

take precedence over macros defined in the makefile. See Macros on page 21.

Each target is a target you want omake to build. If no targets are listed on the command line,

omake builds the makefile's default target.

Each @file directs omake to read file for additional options, macros, targets and @files. The @file is

treated as if the contents of file were on the command line except that each end-of-line character

in file is treated as a space.

You do not have to group options, macros, or targets on the command line; you can intermix

them. However, omake reads makefiles in order of their placement on the command line, and

builds targets in order as well. If the same macro or parameter is defined more than once on the

command line, the last definition is the one omake uses.

2.3 Initialization Files and Makefiles

omake reads its instructions from an initialization file, which holds instructions used to

customize the general operation of omake, and from a makefile, which has instructions for a

specific project.

The Initialization File

The initialization file contains instructions for all make programs and is used to customize the

operation of omake. omake reads the initialization file, ccase-home-dir\bin\make.ini, whenever

it starts up.

The initialization file contains targets, inference rules, and macro definitions that you do not

want to duplicate in every makefile, and it is used to customize the operation of omake. The

initialization file is processed like a makefile, with the following exceptions:

➤ The first target in the first makefile is the default target and is built if no command-line

targets are specified. There is no special significance to the first target in the initialization

file.
2 - Overview of Using omake 11

➤ Targets defined in the initialization file are redefined by targets of the same name that are

defined in the makefile. That is, these targets are available to all make programs, but they

can be redefined in the makefile.

The Makefile

The makefile has instructions for a specific project. The default name of the makefile is literally

makefile, but you can specify a different name with the –f option. The –f file command-line

option names the makefile, and several –f options can be given; each makefile is read in the order

it appears on the command line. If there are no –f command-line options, omake tries the file

named makefile. If it doesn't exist, omake tries makefile.mak.

Continued Lines

Lines in the makefile can be very long; the total makefile line length is limited only by available

memory. For easier reading, a long line can be broken up by typing \<ENTER> after part of the

line and typing the rest of the logical line on the next physical line of the makefile. For example,

the line

first_part_of_line second_part_of_line

is the same as

first_part_of_line \
second_part_of_line

To have the backslash (\) as the last character on the line, use \\<ENTER> or \<SPACE>,<ENTER>.

Comments

The simplest makefile statement is a comment, which begins with the comment character (#).
Everything on a makefile line after the # is ignored. Use \# for a literal # character. The following

large comment may appear in a makefile to describe its contents:

#
Makefile for omake
#
Compiler: Microsoft Visual C++ 5.0
Linker: Microsoft(R) 32-Bit Incremental Linker Version 5.00.7022a
#

12 OMAKE Guide

The comment character can also be used at the end of another makefile statement:

some makefile statement # a comment

If \<ENTER> appears on a commented line, the comment acts until the end of the line and the

following line is still continued. The following examples are equivalent:

line_one \
line_two # more_line_two \
line_three

line_one line_two line_three

Contents of Initialization Files and Makefiles

With a few exceptions, the initialization file holds the same kind of information as a makefile.

Both the initialization file and makefiles consist of these components:

➤ Rules

➤ Dependency lines

➤ Build scripts

➤ Macro definitions

➤ Inference rules

➤ Response files

➤ Directives

These components are described in the following sections.

2.4 Rules

A rule tells omake both when and how to make a file. For example, suppose your project

involves compiling source files main.c and io.c, and linking them to produce the executable

project.exe. The following makefile manages the task of making project.exe:
2 - Overview of Using omake 13

project.exe : main.obj io.obj
link /out:project.exe main.obj io.obj

main.obj : main.c
cl /c main.c

io.obj : io.c
cl /c io.c

This makefile shows three rules, one each to make project.exe, main.obj, and io.obj. These rules

are called explicit rules because they are supplied in the makefile. omake also has inference rules

that generalize the make process. Inference rules are discussed in Inference Rules on page 29.

2.5 Dependency Lines

Lines that include the colon (:) are called dependency lines. They specify a relationship between

targets and the files on which they depend. This is the general form of a dependency line:

target [target ...] [attribute ...] : [dependency ...]

To the left of the colon is the target of the dependency. To the right of the colon are the dependencies
needed to make the target. The target depends on the dependencies. For example, the following

line states that project.exe depends on main.obj and io.obj:

project.exe : main.obj io.obj

There can be one or more targets, optionally a list of target attributes, a colon, one or more space

or tab characters, and an optional list of dependencies. (Other make programs may call the

dependency a source, dependent, or prerequisite.) The first target name must start in the first

column of the makefile.

Dependency lines specify when to make the target. omake uses configuration lookup to

determine whether to build the target or reuse an existing derived object.

Explicit and Inferred Dependencies

The dependencies that are listed explicitly on dependency lines are called explicit dependencies.

For example, the line
14 OMAKE Guide

test.exe : main.obj sub.obj

declares that test.exe depends on main.obj and sub.obj. When omake builds test.exe, it uses

configuration lookup to compare test.exe with your current build configuration to see whether

it must be updated.

A dependency line can declare that several targets have several dependencies. In the following

line, both main.obj and sub.obj depend on both system.h and io.h:

main.obj sub.obj : system.h io.h

omake also has inference rules to infer a dependency of a particular target. Sources determined

using inference rules are called inferred dependencies. For a discussion of inference rules, see

Inference Rules on page 29.

Macros in Dependency Lines

The name of the target (and its root name) can be referenced in a dependency line through the

use of macros. For example:

main.obj sub.obj : $*.h io.h

omake processes the target main.obj first; the expression $* evaluates to the root of the target

name, main. The dependency line declares that main.obj depends on main.h and io.h. Next,

sub.obj is processed, with $* evaluating to sub. Thus, this line also declares that sub.obj depends

on sub.h and io.h.

The Make Process Is Recursive

A basic feature of omake is to make a target's dependencies before the configuration lookup is

performed for the target. The following line instructs omake to make main.obj and io.obj before

performing configuration lookup for project.exe:

project.exe : main.obj io.obj

This line instructs omake to make main.c before performing configuration lookup for main.obj:

main.obj : main.c
2 - Overview of Using omake 15

Detected Dependencies

Unlike standard make variants, omake does not require you to declare source-file dependencies

in the makefile; omake detects dependencies automatically. This feature guarantees, for

example, correct build behavior as C-language header files change, even if the header files are

not listed as dependencies in the makefile. However, the list of dependencies must include

build-order dependencies, for example, object modules and libraries that must be built before

executables.

NOTE: You may want to include source-file dependencies in your makefile to ensure portability

to another group or company that is not using omake.

Wildcards in Dependency Lines

The dependency side of a dependency line can use a wildcard specification such as this:

main.exe : *.obj

omake provides this feature, but using it can cause problems if a required file is missing. For

example, the line

main.exe : *.obj
link /out:$(.TARGET) $(.SOURCES)

works fine until a required .obj file is accidentally deleted. omake works until the next update of

main.exe, when the link command isn’t called with all the required object names.

The Dependency Line Separator

The colon (:), which separates targets and dependencies on a dependency line, is also the

character used as the drive separator in Windows NT. To distinguish this colon from the drive

separator, you must put white space in front of it or put a space (target:<SPACE>), a tab

(target:<TAB>), a semicolon (target:;), another colon (target::), or nothing (target:<ENTER>) after it.

We suggest putting at least one space before and after it.
16 OMAKE Guide

A Dependency Example

Assume the program test.exe is linked from main.obj and sub.obj. These object modules are

compiled from source files main.c and sub.c, respectively. The makefile looks like this:

Line D-1 declares that test.exe depends on main.obj and sub.obj. Lines D-2 and D-3 declare that

main.obj depends on main.c and sub.obj depends on sub.c.

Assume that since the last build of test.exe, main.c has been changed and sub.c has not. Running

omake causes the first target in the makefile, test.exe, to be evaluated. test.exe depends on

main.obj, which depends on main.c. main.c doesn't depend on anything. Comparing the

configuration record of main.obj with the current view’s build configuration shows that

main.obj must be rebuilt using the selected version of main.c. This is done with the build script:

cl /c main.c

Next, sub.obj, which depends on sub.c, is evaluated. Configuration lookup shows that sub.obj
does not need updating.

Comparing the configuration record of test.exe with the current build configuration shows that

test.exe must be rebuilt with the selected version of main.obj. The following build script updates

test.exe:

link /out:test.exe main.obj sub.obj

Running the command omake again causes omake to display this message:

omake: 'test.exe' is up to date.

D-1 test.exe : main.obj sub.obj

link /out:test.exe main.obj sub.obj

D-2 main.obj : main.c

cl /c main.c

D-3 sub.obj : sub.c

cl /c sub.c
2 - Overview of Using omake 17

2.6 Build Scripts

All lines that immediately follow a dependency line and begin with white space are the target’s

build script. Each build script is a command or list of commands, such as compile or link, that

omake executes to update the target. The explicit rule for a target consists of the dependency line

plus the build scripts.

Build scripts appear in the following form:

target [target ...] [attribute ...] : [dependency ...]
build script

.

.

.

For example, the following makefile specifies that making project.exe requires running the

program link to link main.obj and io.obj. This build script is run only if omake determines that

project.exe needs to be rebuilt.

project.exe : main.obj io.obj
link /out:project.exe main.obj io.obj

A build script can appear on the dependency line by separating it from the last dependency by

a semicolon. For example, the following lines are equivalent:

test.exe : test.c ; cl /c test.c

test.exe : test.c
cl /c test.c

A target can have a build script with multiple lines, listed one after the other. For example:

project.exe : main.obj io.obj
echo Linking project.exe
link /out:project.exe main.obj io.obj >link.out

The first line shows that Windows NT command processor commands can be executed by

omake. The second line shows redirection of output, where the output of the link program is

redirected to the link.out file.
18 OMAKE Guide

Build Script Execution

omake executes build scripts in one of two ways:

➤ Direct execution of the shell-line command as an .exe file.

➤ By passing the build script to a shell program such as cmd.exe. This method is slower and

takes additional memory, but is necessary if the build script requires a feature that only the

shell program can provide.

Each build script runs in its own child process or subshell of omake, starting in the current

directory. This behavior has special consequences for commands that are supposed to have effect

between build scripts. For example, the build scripts

copy_to_tmp :
Comment and blank lines are allowed
chdir some_directory
copy *.* c:\temp

copy the files that match *.* in the current directory to c:\temp. This occurs because the copy
command starts in the current directory, irrespective of the chdir command executed before it.

See Using Multiple-Command Build-Script Lines on page 73 for the correct way to do this.

Auto-Detection Mode

By default, omake detects when to use the shell program (defined by the .SHELL directive; see

Table 15 on page 92) and when to use direct execution. The shell program is used when the

command is or does one of the following:

➤ A Windows internal command

break, call, cd, chdir, cls, copy, ctty, date, del, delete, dir, echo, erase, for, if, md, mkdir, path,

pause, prompt, rd, rem, ren, rename, rmdir, set, time, type, ver, verify, vol

To change the list of internal commands, use the SHELLCOMMANDS macro. See Table 5

on page 67.

➤ A batch file (a file with a .bat or $(SHELLSUFFIX) extension

➤ A multiple-command shell line

➤ Uses redirection of input or output
2 - Overview of Using omake 19

Standard Execution Mode

The standard execution mode is to use the shell program for every build script. For Windows NT,

the default shell program is named in the COMSPEC environment variable. If this EV is not

defined, cmd.exe is used.

omake can execute the build script without using the shell program if the command being run

is executable and the build script does not use I/O redirection. Use the colon (:) build-script

prefix to have omake execute the build-script line without using the shell program (see Select the
Shell Program on page 71).

Build-Script Line Exit Status

After it executes each build-script line, omake checks the command exit status. The exit status is

a number the program returns and is tested by omake. At the Windows NT command line, you

can check the exit status of the last executed program by using the if errorlevel command.

By convention, programs return a zero exit status when they finish without error and a nonzero

status when an error occurs. The first build-script line that returns a nonzero exit status causes

omake to display this message:

omake: shell line exit status exit_status. Stop.

This usually means that the program being executed failed. Immediately after displaying this

message omake does any necessary deinitialization and exits. You can control this behavior with

the –i or –k command-line options (see Command-Line Options on page 41), with build-script line

prefixes (see Build-Script Line Prefixes on page 69), or with target attributes (see Target Attributes
on page 101).

Some programs return a nonzero line exit status inappropriately; you can have omake ignore the

exit status by using a build-script prefix. Prefixes are characters that appear before the program

name and modify the way omake handles the command script. For example:

project.exe : main.obj io.obj
– link /out main.obj io.obj

The dash (–) prefix causes omake to ignore the exit status of that build-script line. If the exit status

is nonzero, omake displays the following message:

omake: Shell line exit status exit_status (ignored)
20 OMAKE Guide

See Build-Script Line Prefixes on page 69 for more information.

2.7 Macros

A macro is a makefile line that consists of a macro name, an equal sign (=), and a macro value. In

the makefile, a macro reference is an expression of the form $(name) or ${name}. The reference is

macro-expanded to produce value. When name is a single character, the () or { } around name are

optional; for example, $X, $(X), and ${X} all specify the value of macro X. The macro character ($),

always instructs omake to expand the macro that follows. When you need a dollar sign in your

makefile, you must use $$.

In the following makefile, the text main.obj io.obj occurs more than once. To reduce the

amount of repeated text, you can use a macro definition to assign a symbol to the text.

project.exe : main.obj io.obj
link /out main.obj io.obj

main.obj : main.c
cl /c main.c

io.obj : io.c
cl /c io.c

Here is the same makefile written with the introduction of four macros:

OBJS = main.obj io.obj
CC = cl
CFLAGS = /c

project.exe : $(OBJS)
link $(OBJS) /out : project.exe

main.obj : main.c
$(CC) $(CFLAGS) main.c

io.obj : io.c
$(CC) $(CFLAGS) io.c

The value of the OBJS macro is the list of object files to be compiled. The macro definitions for

CC and CFLAGS make it easier to change the name of the C compiler and its options.
2 - Overview of Using omake 21

omake imports environment variables as macros, so you can refer to things like $(COMSPEC) or

$(PATH) in your makefile without having to define them in the makefile.

Macro Precedence

Macros can be defined in makefiles, defined on the command line, or predefined by omake.

omake also accesses the values of environment variables as if they were macros.

Where a macro is defined determines its precedence. To redefine an existing macro, the new

definition must have at least as high a precedence. This is the order of precedence:

1. Macros predefined by omake

2. Command-line definition

3. Environment definition (with –e command-line option)

4. makefile (and make.ini) definition

5. Environment definition (default)

By default, the lowest precedence for a macro is the environment definition. The –e
command-line option gives the environment definition a higher precedence than the makefile

definition. With this option, a macro definition in a makefile does not redefine a macro from the

environment.

Defining Macros in the Makefile

Macros are defined at read time in a makefile with macro definition lines of the form

where name is the macro name starting in the first column of the makefile. The name can include

any characters except the equal sign (=), the colon (:), and white space. By convention, the name
is composed of uppercase letters, periods (.), and underscores (_). Any macro references in name
are expanded; if you want a literal dollar sign in name you must use $$.

name = [text] standard definition
name ?= [text] conditional definition
name := [text] expanded definition
name += [text] appended definition
22 OMAKE Guide

The text is arbitrary text and can reference the value of other macros with expressions of the form

$(other_macro). There are four forms of macro definition:

Read-Time Expansion of Macros

At read time, some parts of a makefile are macro-expanded; other parts are not expanded until

later.

For macro definitions, expansion depends on the separator between the macro name and the value:

The makefile can also contain conditional directives such as these:

%if condition
%elif condition

The condition is macro-expanded and evaluated only if the previous enclosing condition is true.

For example:

Standard Macro Definition: name = [text]

This definition defines macro name and sets its value to text. If text is not given, the value of the

macro is the null string, “”. White space before or after the = is ignored.

Conditional Macro Definition: name ?= [text]

This definition is like the standard macro definition, but the macro is defined only if it isn't

already defined. White space between name and ?= and between ?= and text is ignored.

= macro name is expanded; value is not expanded until referenced

(In NMAKE compatibility mode, value is expanded before assignments)

?= macro name is expanded; value is not expanded until referenced

+= macro name is expanded; value is not expanded until referenced

:= macro name is expanded; value is expanded

%if condition_1 (expanded & evaluated)
% if condition_2 (expanded & evaluated only if condition_1 is true)
% endif
%else
% if condition_3 (expanded & evaluated only if condition_1 is false)
% endif
%endif
2 - Overview of Using omake 23

Expanded Macro Definition: name := [text]

This definition defines macro name and sets its value to the macro-expansion of text. The text is

arbitrary text and can refer to the value of other macros with expressions of the form

$(other_macro), which are expanded. If text is not given, the value of the macro is the null string

(“”). White space between name and := and between := and text is ignored. Expanded macro

definitions are useful when the text is expensive to calculate (it may require reading a file, for

example).

Appended Macro Definition: name += [text]

This definition appends text to the current value of macro name. White space between name and

+= is ignored. If there is no white space between += and text, the new value is OLDVALUEtext.
Otherwise, the new value is OLDVALUE <SPACE> text (with one intervening space). If name is an

undefined macro, this definition is the same as a standard macro definition.

Case-Sensitivity of Macro Names

By default, for Windows NT omake macro names are case-insensitive. The .CASE_MACRO and

.NOCASE_MACRO directives turn case-sensitivity on and off.

The Location of Macro Definitions

By convention, macro definitions appear at the beginning of the makefile. Macros must be

defined before they are expanded; if they are not, their expanded value is the null string.

Indenting Macro Definitions

Usually name starts in the first column of the makefile line, but macro definitions can be indented

(for example, inside an %if...%endif conditional directive). Indenting is allowed only before the

first target in the makefile, or after a nonindented macro definition. This restriction is a

consequence of omake's use of indenting to indicate a target's build scripts.

Undefining Macros

Macros can be undefined with the %undef directive at read time:

%undef CFLAGS

Some macros that omake predefines cannot be undefined with this directive.
24 OMAKE Guide

Example Macro Definitions

➤ This defines the macro OBJS as main.obj sub.obj. $(OBJS) is main.obj sub.obj.

OBJS = main.obj sub.obj

➤ This defines PROJECT as $$/Make. $$ is a literal dollar sign. This means that $(PROJECT)
is $/Make.

PROJECT= $$/Make

➤ These define the macro DEBUG as 7 and the macro CFLAGS as –Z$(DEBUG). $(DEBUG)
is 7 and $(CFLAGS) is –Z7.

➤ This shows an appended macro definition inside a conditional directive. If the OPT macro

is defined, the CFLAGS macro's value has <SPACE>–Od appended to it. The new value of

CFLAGS is –Z$(DEBUG) –Od and $(CFLAGS) is –Z7 –Od.

%if defined(OPT)
 CFLAGS += –Od
%endif

➤ This defines macro OBJSLIST as project.lst and then defines OBJS. The := causes the right

side to be expanded. OBJSLIST is expanded, producing project.lst and the @ macro

modifier (see Macro Modifiers on page 52) reads the file project.lst. The contents of this file is

the value of OBJS. The expression := is useful here because reading the file is a relatively

slow process that you want done only once. If OBJS is defined with a standard macro

definition, each occurrence of $(OBJS) causes omake to read project.lst. By using :=,

project.lst is read only once, when OBJS is defined.

OBJSLIST = project.lst
OBJS := $(OBJSLIST,@)

Defining Macros on the Command Line

Macros can be defined on the command line, and the value of the command-line macro overrides

a makefile macro or environment definition with the same name. Only standard macro

definitions are allowed on the command line. A command-line macro that contains spaces must

DEBUG = 7 (defined as 7)
DEBUG ?= i (not redefined)
CFLAGS = –Z$(DEBUG)
2 - Overview of Using omake 25

be enclosed in double quotes. (To include a literal double quote, use \".) For example, the

command line

omake BSCFLAGS=/n "CFLAGS=-Zi -Od"

runs omake with BSCFLAGS defined with the value –n and CFLAGS defined with the value

–Zi –Od.

Dynamic Macros

omake defines some special macros whose values are dynamic. These run-time macros return

information about the current target being built. For example, the .TARGET macro is name of

the current target, the .SOURCE macro is the name of the inferred dependency (from an

inference rule) or the first of the explicit dependencies, and the .SOURCES macro is the list of all

dependencies.

Using run-time macros, the example can be written as follows:

OBJS = main.obj io.obj
CC = cl
CFLAGS =

project.exe : $(OBJS)
link /out:$(.TARGET) $(OBJS)

main.obj : main.c
$(CC) $(CFLAGS) –c $(.SOURCE)

io.obj : io.c
$(CC) $(CFLAGS) –c $(.SOURCE)

As you can see, the build scripts that update main.obj and io.obj are identical when dynamic

macros are used. Dynamic macros are important for generalizing the build process with

inference rules, as shown in Inference Rules on page 29.

Macro Modifiers

Macros can be used to reduce the amount of repeated text. They are also used at run time to

generalize the build process with inference rules. You often want to start with the value of a
26 OMAKE Guide

macro and modify it in some manner. For example, to get the list of source files from the OBJS
macro you can define this macro:

SRCS = $(OBJS,.obj=.c)

This definition uses the from=to macro modifier to replace the from text in the expansion of OBJS
with the to text. The result is that $(SRCS) is main.c io.c. In general, to modify a macro, expand

it with

$(name,modifier[,modifier ...])

Each modifier is applied in succession to the expanded value of name. Separate modifier with

comma.

File Name Components

There is a complete set of macro modifiers for accessing parts of file names. For example, with

this macro definition:

SRCS = \src\main.c parse.l

Table 1 lists some of the modifiers.

Tokenize

The Wstr modifier replaces white space between elements of the macro with str, a string. The str
can be a mix of regular characters and special sequences, the most important sequence being \n,

which represents a newline character (like pressing the <ENTER> key). For example:

$(OBJS,W +\n) is main.obj +
io.obj

Table 1 Macro Modifiers

Modifier and description Example Value

D, the directory $(SRCS,D) \src .

E, the extension (or suffix) $(SRCS,E) .c.l

F, the file name $(SRCS,F) main.c parse.l
2 - Overview of Using omake 27

Other Modifiers

Other modifiers include @ (include file contents), LC (lowercase), UC (uppercase), M (member),

and N (nonmember). The M and N modifiers and the S (substitute) modifier use regular

expressions for powerful and flexible pattern-matching. See Macro Modifiers on page 52 for more

information.

Environment Variables

Environment variables are placed into the environment with this command:

set name=value

NOTE: This example applies to cmd.exe; the command varies depending on the shell you use.

By default, omake preloads all environment variables as macros. The .NOENVMACROS
directive prevents this loading and hence prevents omake from accessing the value of any

environment variables.

Macro Expansion or Macro Referencing

Expanding a macro also expands any macro references recursively. For example:

CDEFS = –DDEBUG –DNT
COPTS = –Ot
CFLAGS = –Zi $(CDEFS) $(COPTS)

The expression $(CFLAGS) evaluates to –Zi –DDEBUG –DNT –Ot.

In a macro reference $(name), name can reference other macros. For example, given the definitions

SYS = NT
NTFLAGS = –DNT –UNT

the expression $($(SYS)FLAGS) evaluates to –DNT –UNT.
28 OMAKE Guide

Run-Time Expansion of Macros

Macros in build scripts are expanded immediately before the build scripts are executed. There

are several macros whose values change dynamically at run time. They are discussed in

Predefined Macros: Run-Time Macros on page 60.

Recursive Macro Definitions

NOTE: NMAKE supports recursive macro definitions as shown in this section. When omake is

emulating NMAKE, recursive macro definitions are supported.

A macro value may reference other macros. If the value circularly references itself, omake
displays a warning message when the macro is expanded. For example, the values

A = A $B
B = B1 $A B2
%echo $A

generate this message:

omake: file (line num): Recursive macro 'A = A $B' (warning).
A B1 B2

The expression $A expands to A expansion_of_B. In turn, the expansion of B is

B1 expansion_of_A B2. When omake tries to expand a macro that is already being expanded, it

displays the warning message and ignores the recursive expansion. The file and num depend on

where the example lines were defined.

You can make this kind of recursive reference by using the expanded macro definition:

B := B1 $A B2

This type of definition expands any references in the right side before the macro definition of B
occurs.

2.8 Inference Rules

Inference rules generalize the build process, which eliminates the need to give omake an explicit

rule for each target. For example, compiling C source (.c files) into object files (.obj files) is a

common occurrence. Rather than require a statement that each .obj file depends on a like-named
2 - Overview of Using omake 29

.c file, omake uses an inference rule to infer that dependency. The dependency determined by an

inference rule is called the inferred dependency.

Inference rules also provide build scripts to update the target from the inferred dependency. The

target inherits these build scripts if it does not have its own.

omake predefines several inference rules, and you can change their definitions or define your

own rules.

Defining Inference Rules

Inference rules (also called metarules) are identified by the use of the rule character (%) in the

dependency line. This character is a wildcard, matching zero or more characters. For example,

here is an inference rule for building .obj files from .c files:

%.obj : %.c
$(CC) $(CFLAGS) –c $(.SOURCE)

This rule states that a .obj file can be built from a corresponding .c file with the build-script line

$(CC) $(CFLAGS) –c $(.SOURCE). The .c and .obj files share the same root of the file name.

When the dependency and target have the same file name except for their extensions, this rule

can be specified in an alternative way:

.c.obj :
$(CC) $(CFLAGS) –c $(.SOURCE)

The alternative form is compatible with other make utilities.

omake predefines the %.obj : %.c inference rule as listed above so the example now becomes

much simpler:

OBJS = main.obj io.obj
CC = cc
CFLAGS = /Zi

project.exe : $(OBJS)
link /out:$(.TARGET) $(OBJS)
30 OMAKE Guide

The General Inference Rule Definition

[Tp] % [Ts] [attribute ...] : [Sp] % [Ss]
build script

.

.

.

On the target side of the dependency line is a pattern: a target prefix Tp, a %, and a target suffix

Ts. Any target attributes (see Target Attributes on page 101) appear next. On the dependency side

of the line is a dependency prefix Sp, a %, and a dependency suffix Ss. The prefixes can contain

any character except % and, in particular, can be a directory. The suffixes can contain any

character (including %, which is taken literally).

In order for a rule to match a target, Tp and Ts must match the first and last parts of the target

name, with % matching everything in between. The inferred dependency name is Sp followed

by the characters matched by %, followed by Ss.

The Target Inherits Build Scripts and Attributes

Following the dependency line are the build-script lines that update the target from the inferred

dependency. If a target doesn't have its own build scripts, it inherits the build scripts and

attributes of the inference rule. Target attributes take precedence over rule attributes.

Alternative (Suffix-Only) Form

Inference rules can also be defined in this form:

.source_extension.target_extension :
build script
.
.
.

The source_extension is the extension of the dependency. The target_extension is the extension of

the target. This alternative form is compatible with other make utilities and is discussed in

Compatibility with Suffix Rules (.SUFFIXES) on page 37. The suffix-only form is converted by

omake to the equivalent metarule form:
2 - Overview of Using omake 31

%.target_extension : %.source_extension
build script
.
.
.

Automatic Use of Inference Rules

omake uses inference rules when building a target that has no build scripts. Even when targets

have build scripts, you can cause omake to use inference rules by giving the target the .INFER
target attribute.

In either case, omake first builds the target's explicit dependencies (those listed on dependency

lines), and then uses its inference rules to search for an inferred dependency. The search proceeds

by finding all rules that match the target, building each possible inferred dependency name in

turn, and checking whether the inferred dependency exists as a file. If it exists, omake proceeds

as follows:

1. If the target has no build scripts, the target inherits the inference-rule build scripts and

attributes. When this is a conflict between the attributes, the target's attributes take

precedence.

2. The inferred dependency is added to the target as a dependency.

3. The inferred dependency is built.

Inference Rules and Target Groups

Inference rules can build several targets (a target group) from a single dependency. To do this put

the targets on the target side of the rule, with a plus sign (+) between them. (There must be white

space between the + and the target names.) When omake executes the rule's build scripts to

update any target in the group, all targets are updated.

For example, here is a rule for building both .c and .h files with a yacc program, which takes a .y
file as input:
32 OMAKE Guide

%.h + %.c : %.y
$(YACC) –d $(YFLAGS) $(.SOURCE)
copy y.tab.h $(.TARGET,1)
copy y.tab.c $(.TARGET,2)
del ytab.*

Note the use of $(.TARGET,num), which evaluates to the names of both the .h and .c files. The

num macro modifier selects the numth element of the macro. So, for example, $(.TARGET,1) is
parse.h when the inferred dependency is parse.y.

Multiple-Step Inference Rules

When omake tries to find the inferred dependency of a target, it first tries all rules that directly

produce the target. If the inferred dependency cannot be found with one rule, omake chains rules

into twos, threes, and so on. omake always chooses the smallest number of rules (the shortest

path) between a target and its inferred dependency.

If a multiple-rule path is found, omake creates the targets between the inferred dependency and

the target, and chains them. Chained targets have special properties:

➤ omake deletes chained targets as part of the build; as soon as it finishes running the build

scripts, it deletes any intermediate chained targets. A chained target is not considered a

sibling derived object.

➤ For the purposes of time stamp comparisons, a chained target is the same age as the target

that depends on it. This allows omake to compare the time stamp of the target at one end of

the chain with the time stamp of the inferred dependency at the other end and correctly

determine whether the target needs updating.

NOTE: Although the characters matched by % are the same within a single inference rule, the %
can match different characters for the different rules of a multiple-rule path.

Chained Targets Are Deleted Automatically

To illustrate how the deletion of chained targets works, here are rules for extracting a .obj file

from a .c file and for compiling the .obj file into a .exe file:

%.obj : %.c
$(CC) $(CFLAGS) -c $(.SOURCE)
2 - Overview of Using omake 33

%.exe : %.obj
$(LINK) /out:$(.TARGET) $(LINKFLAGS) $(.SOURCE)

Assume that omake is trying to build main.exe and that main.c exists, but main.obj does not.

omake finds the two-rule inference that uses the %.obj : %.c rule to produce main.obj, and the

%.exe : %.obj rule to produce main.exe. omake retrieves main.c and compiles it to produce

main.obj. It then links main.obj to produce main.exe. After running the %.exe and %.obj
build-script lines, omake deletes main.obj because it was marked as being chained.

To prevent this deletion, write a rule that combines the rules in the multiple-rule path but that

has a shorter path. A one-step rule between main.exe and main.c that leaves behind main.obj is

%.exe : %.c
$(CC) $(CFLAGS) -c $(.SOURCE)
$(LINK) /out:$(.TARGET) $(LINKFLAGS) $(.SOURCE)

A second way to prevent this deletion is to use the .PRECIOUS attribute. omake does not delete

targets with this attribute. Modify the %.obj : %.c rule as follows:

%.obj .PRECIOUS : %.c
$(CC) $(CFLAGS) -c $(.SOURCE)

Preventing Multiple-Step Rules

A target with the .NOCHAIN attribute instructs omake to try only the one-step paths for finding

the inferred dependency.

A rule with the .NOCHAIN attribute cannot be used in the middle of a multiple-step rule. That

is, it means this rule is terminal.

Inference Rule Search Order

To determine which inference rules to use, omake gathers all rules that can build the current

target and sorts them from best score to worst score. For each rule in this sorted list, omake
constructs the dependency name and tests whether it exists as a file. If so, omake chooses this

rule as the inference rule, and this file as the inferred dependency.

The score is defined as the number of characters in the target name that % matches; the best score

is zero. Often, many rules may have the same score (for example, all rules that build %.obj
targets), and omake puts these rules in creation order. For identical scoring rules, the rule created

first (usually built in to omake or in make.ini) is first on the list.
34 OMAKE Guide

Overriding the Rule Ordering

Sometimes the rule ordering is inappropriate. For example, you may have both video.c and

video.cpp that can be used to build video.obj, and you want omake to use video.c. By making

video.obj depend on video.c, omake chooses the %.obj : %.c rule to update video.obj:

video.obj : video.c

If you find yourself doing this, you can prevent omake from doing the inference rule search by

supplying your own build scripts. For example:

video.obj : video.c
$(CC) $(CFLAGS) –c $(.SOURCE)

One problem with supplying the build scripts explicitly is that they must change if the

%.obj : %.c rule changes. To avoid this problem, use the %do directive to execute the build

scripts of the %.obj : %.c rule:

video.obj : video.c
%do "%.obj : %.c"

Rule Finding for Target Names with a Directory Component

When the target name has a directory component (for example, objs\video.obj), omake uses the

following methods to find a rule:

1. The rules with directory components in their targets are matched against the complete target

name.

2. If no rules match in Step #1, the rules without directory components in their targets are

matched against the file name of the target, by default. The .UNIXPATHS directive changes

this behavior. When you use .UNIXPATHS, the rules without directory components are

matched against the full target name.

Common Operations on Inference Rules

These operations on inference rules are performed most often:

➤ Redefining an inference rule

Inference rules can be redefined any number of times. To redefine an inference rule, provide

a new definition in one of two places:
2 - Overview of Using omake 35

➣ In make.ini, to give every makefile access to the rule

➣ In your makefile, if you want a local variant

➤ Changing an inference rule's attributes

To change an inference rule's attributes, use a dependency line with the new attributes and

don't specify a build script. These attributes are combined with the current attributes.

➤ Disabling an inference rule

To disable an inference rule, use a dependency line with no attributes and no build script:

%.obj : %.c
...or...
.c.obj :

➤ Disabling the search for an inferred dependency

omake searches for an inferred dependency for targets that have no build script. You can

omit the inference search with the .NOINFER attribute. For example:

all .NOINFER : import test export

The all target only drives the build of its dependencies, so no inference search is needed.

➤ Using % in nonrules

A % on the target side of a dependency line indicates that this line is an inference rule. To use

a literal % without indicating a rule, give the target the .NORULE attribute:

percent%.obj .NORULE : percent%.c

➤ Changing the rule character

The .RULE_CHAR directive sets the rule character. For example, to change it to an asterisk:

.RULE_CHAR : *

Built-In Inference Rules

omake predefines several rules. You can reject them by using the –r (reject rules) command-line

option or the .REJECT_RULES directive. The built-in rules are listed in Inference Rules on

page 142.
36 OMAKE Guide

Compatibility with Suffix Rules (.SUFFIXES)

Many make utilities, such as PM/CB, NMAKE, and Borland Make, have a simple style of

inference rule, called suffix rules. These rules use only the suffix (extension) of the file name. Here

is a suffix rule:

.c.obj :
$(CC) $(CFLAGS) –c $<

Some make utilities also use a .SUFFIXES directive to control the search order of the suffix rules.

The .SUFFIXES directive lists the suffixes in the order that inference rules are to be attempted.

Each appearance of .SUFFIXES prepends to the current list of suffixes, but a .SUFFIXES directive

with nothing on the dependency side clears the list:

When looking for an inference rule to build a target, the list is traversed from left to right with

each extension being combined with the target extension to form the name of a suffix rule. If that

suffix rule exists, omake forms the name of the corresponding inferred dependency and, if it

exists, the inference search is complete.

Handling of Suffix Rules and .SUFFIXES

omake converts suffix rules into equivalent omake inference rules. If .SUFFIXES is used, omake
uses the suffixes order to sequence only its suffix rules. Nonsuffix rules are left in creation order.

By default, all inference rules are in creation order. Note that a .SUFFIXES directive with no

suffixes on the dependency side effectively disables all suffix rules, but nonsuffix rules remain

enabled.

2.9 Response Files

omake has two kinds of support for response files: automatic response files, where omake
determines when to build a response file, or inline response files, where statements that create

response file creating statements are written in the makefile.

.SUFFIXES : (clears list)

.SUFFIXES : .lib (list is: .for .lib)

.SUFFIXES : .exe .obj (list is: .exe .obj .lib)
2 - Overview of Using omake 37

Inline Response Files

Response files can also be coded inline in your makefile. For example:

project.dll:$(OBJS)
link @<<

$(OBJS)
/out:$(.TARGET)
$(.TARGET)
<<

The link program is invoked as link @response_file, where response_file is a name generated by

omake. The response_file contains:

main.obj io.obj /out:project.exe

2.10 Directives

Makefile directives control the makefile lines omake reads at read time. The following makefile

uses conditional directives (%if, %elif, %else, and %endif) to support both Borland and

Microsoft compilers. Comments have been added for documentation.

This makefile compiles for the configuration specified
in the CFG macro.

CFG = Release

OBJS = main.obj io.obj

Configuration-dependent section

%if $(CFG) == Release

CFLAGS = /O1

LINK_FLAGS =

%elif $(CFG) == Debug

CFLAGS = /Od /Zi

LINK_FLAGS = /debug

%else

%abort Unsupported configuration $(CFG)

%endif
38 OMAKE Guide

The layout of this makefile is fairly traditional; macros are defined first, and the primary target

follows the macros.

This example also uses the %abort directive to abort omake if the makefile does not support a

particular compiler. Directives can also be used at run time, to control the build scripts omake
executes. For more information, see Makefile Directives on page 74.

2.11 The Keep-Working Mode

omake usually stops at the first build-script line that returns an error. This is the right behavior

for interactive work, but not for a long, unattended build such as an overnight build of your

entire system. The solution is to use the keep-working mode. This mode allows omake to do the

maximum amount of work consistent with any errors that occur during the build.

In the keep-working mode, a build script error while omake is updating a target causes omake
to stop working on the current target. The make process continues, with omake noting that the

current target was incompletely built. Future targets are updated only if they do not depend on

any incomplete targets.

Because omake does as much work as possible, you only have to fix the problem targets and start

omake again. The keep-working mode does the maximum amount of safe and correct work.

This mode is enabled with the .KEEPWORKING makefile directive (see Dot Directives on

page 91) or –k command-line option (see Command-Line Options on page 41).

project.exe: $(OBJS)

link /out:$(.TARGET) $(LINK_FLAGS) $(OBJS)

%.obj: %.c

cl $(CFLAGS) /c $(.SOURCE)
2 - Overview of Using omake 39

40 OMAKE Guide

33 omake Reference

This chapter contains reference information for omake.

3.1 Command-Line Options

Command-line options or flags are indicated by a dash (–) or slash (/) followed by a one-letter

option name. Some options take an argument and that argument follows the option name with

or without intervening space. Several options can be grouped together after a single dash, but

options that take an argument can only be at the end of the group. To signal the end of options,

a double dash (--) can be used in case a command-line target or macro has a dash as the first

character. Here are some examples:

omake –n –d –f project.mak –p
omake –ndpf project.mak
omake –f ../makefile -- –readme–

The first and second example are identical and show how options can be grouped. The third

example shows the use of the double dash to indicate the end of options. This is required to

prevent omake from interpreting –readme– as more options.

Initial Command-Line Parameters: OMAKEOPTS

Before parsing the command line, omake looks for the OMAKEOPTS environment variable and, if

it is found, parses its value. After reading the initialization file, omake also parses the value of

the MFLAGS macro for additional command-line parameters. MFLAGS can be defined on the
3 - omake Reference 41

command line, in make.ini or in the environment (but an MFLAGS definition in the makefile is

ineffective). Using the –z command-line option causes omake to ignore MFLAGS. Setting

MFLAGS in make.ini is strongly discouraged, because directives can be used instead. After the

OMAKEOPTS environment variable is parsed, the command line itself is parsed.

The Command-Line Options

The options in Table 2 are parameters for omake’s native mode. Many parameters are different

for NMAKE and PolyMake emulation modes.

Table 2 omake Command-Line Options (Part 1 of 4)

Option Meaning

–a Updates all targets whether or not they are out of date. If no targets are specified

on the command line, the default target is updated.

–A Uses automatic dependencies. This option is enabled only if you are not using

configuration lookup (because you are processing non-MVFS files or using the

–W option).

–b file Names file as the initialization (built-ins) file (The default is make.ini.) If file is

the empty string, no initialization file is read. You can specify this on the

command line with "–b<SPACE>", –b"<SPACE>" or –b<SPACE>"".

The value of the BUILTINS macro is set to the full pathname of file.

–d Run-time debugging mode. A run-time trace of omake operation displays

targets being made and rules being tried. See also the –p command-line option.

–D Keep-directory mode. The first access of the current directory or any search

directory to look for a file reads the directory into memory. Subsequent accesses

to the directory use the in-memory version and are much quicker.

–e Environment macro precedence. Macros defined from environment variables

have a higher precedence than makefile macros.

–EN Sets omake's emulation mode to NMAKE. Selecting this emulation causes the

rest of the command line to be interpreted as an NMAKE command line. See

Microsoft NMAKE Compatibility on page 158 for more information.

–EO Default emulation mode; that is, no emulation.
42 OMAKE Guide

–EP Sets omake's emulation mode to PM/CB. Selecting this mode causes the rest of

the command line to be interpreted as a PM/CB command line. See PM/CB
(Intersolv Configuration Builder and PolyMake) on page 145 for more information.

–E2 Sets omake's emulation to Opus Make v5.2x. See Opus Make v5.2x Compatibility
and Emulation on page 162 for more information.

–f file Specifies file as the makefile. More than one –f option may appear, and the files

are read in order. omake first tries to read file, but if file does not exist, omake
tries file.mak. If file is con or – the console is read for the makefile and

<CTRL+Z>,<ENTER> (<CTRL+D> for UNIX) as the last input finishes the input.

If no –f options are specified, omake tries makefile and then makefile.mak.

The value of the MAKEFILE macro is the file of the first –f option.

–G Restricts dependency checking to makefile dependencies only—those

dependencies declared explicitly in the makefile or inferred from an inference

rule. All detected dependencies are ignored. For safety, this option disables winkin

of DOs from other views; it is quite likely that other views select different

versions of detected dependencies.

For example, a derived object in your view may be reused even if it was built

with a different version of a header file than your view currently selects. This

option is mutually exclusive with –W.

–h Displays a help screen showing the command-line syntax and command-line

options. The current emulation mode determines the help that is displayed.

–i Ignores exit status, which causes the nonzero exit status from any build scripts

to be ignored. This option can be used to collect all errors into a single file

without stopping omake. See also the –k option.

Many compilers send their error messages to standard error. This

command-line option redirects standard error either into a file or to the

standard output. With it, the command

omake –i –x – > errs

collects all messages into the errs file. See the –x command-line option.

Table 2 omake Command-Line Options (Part 2 of 4)

Option Meaning
3 - omake Reference 43

–k Keep-working mode. Any errors when updating a target cause work on that

target to be stopped, but the make process continues. Because the target was

incompletely made, any other targets that depend on it are prevented from

being updated.

This mode is handy for long, unattended builds because it maximizes the

amount of making without completely ignoring the exit status as the –i
command-option does.

–L Disables configuration lookup and config record creation. See also clearmake
–F.

–M Makes makefile. omake makes the makefile before reading it. See the section

Makefile Directives on page 74.

–n No execute. Displays, but does not execute, the build scripts that update the

targets. This option is useful for debugging makefiles and for showing the work

that will be done. To override this option for a recursive make, use the .MAKE
target attribute (see Target Attributes on page 101) or & shell-line prefix (see

Build-Script Line Prefixes on page 69).

–O Disables build script checking during configuration lookup.

–p Prints debugging information to screen. Macros are listed with their location of

definition and value; search directories are indicated; inference rules are

displayed and targets, build scripts and attributes are printed. The

interpretation of the output is discussed in Chapter 4, Debugging Makefiles.

–r Rejects inference rules. omake ignores inference rules that are built in and that

are defined in the initialization file. Only inference rules defined in the makefile

are used.

–s Silent mode. Build scripts are usually displayed before they are executed. The

–s option prevents this display.

–T Examines sibling derived objects when determining whether a target object in a

VOB can be reused (is up to date). By default, when determining whether a

target can be reused, omake ignores modifications to objects created by the

same build rule that created the target (sibling derived objects). –T directs

omake to consider a target out of date if its siblings have been modified or

deleted. –T is equivalent to clearmake –R.

Table 2 omake Command-Line Options (Part 3 of 4)

Option Meaning
44 OMAKE Guide

Debugging features can be specified as a sum or as a comma-separated list. For example, both

–# 7 and –# 1,2,4 display makefile lines, warn about undefined macros, and warn about

unrecognized makefile lines). See also the description of the .DEBUG directive in the section Dot
Directives on page 91.

–v Increases output verbosity during the build process (particularly with respect to

configuration lookup and config record creation).

–W Disables shopping for derived objects to wink in. –W is equivalent to clearmake
–V.

–x file Redirects error messages into file. As a special case, if file is –, the error messages

are redirected to the standard output. For example:

omake –x make.err
omake –x – >> make.err

(errors go into make.err)
(errors are appended to make.err)

–z Ignores MFLAGS. The MFLAGS macro is not examined for additional options.

–#1 Debugging option—read-time debugging mode. A read-time trace of omake
operation displays makefiles being read and conditional directives being

interpreted. See Chapter 4, Debugging Makefiles for an interpretation of the –#1
output.

–#2 Debugging option—warns about undefined macros. When omake tries to

expand the value of a undefined macro, it displays a warning message. The

default action is to silently ignore undefined macros.

–#4 Debugging option—warns about unrecognized makefile lines. When omake
reads a line in a makefile it can't understand, it displays a warning message. The

default action is to silently ignore unrecognizable makefile lines.

–#8 Debugging option—leaves behind generated response files and batch files.

omake uses several temporary files, which are usually deleted before omake
quits. This option causes omake to leave them behind so they can be examined.

Table 2 omake Command-Line Options (Part 4 of 4)

Option Meaning
3 - omake Reference 45

The Current Options

After reading its initialization file, omake exports all command-line options except –b and –f into

the MFLAGS macro (unless you are using omake in an emulation mode). Also, the state of each

command-line option is kept in the macros listed in the section Predefined Macros: State Macros on

page 63 and in Appendix C, Built-In Macros and Rules.

3.2 Locating the Initialization File

omake locates the initialization file in the following manner:

1. If the –b file command-line option is used, omake uses file.

2. If the OMAKECFG environment variable exists, omake uses its value.

3. Otherwise, omake searches for make.ini in the following locations:

a. The current directory

b. The directory of the omake.exe file

c. Directories specified in the INIT environment variable

Here, we assume the initialization file is named make.ini.

When the initialization file is found, omake searches its directory for its ancillary files (omhelp.*
and builtins.*).

Disabling the Initialization File

omake does not look for the initialization file if you use the command-line option –b"<SPACE>"

or if you set the OMAKECFG environment variable to the empty string. To set the environment

variable:

set OMAKECFG=<SPACE><ENTER>
46 OMAKE Guide

3.3 The Make Process

This section describes the events that occur when you invoke omake.

Read Time

At read time, omake parses the command line, reads the initialization file, and reads one or more

makefiles. Steps in the start-up process:

1. If the OMAKEOPTS environment variable exists, it is parsed for command-line parameters.

2. The command line is parsed.

3. The initialization file is found and read.

4. If the MFLAGS macro is defined and the –z command-line option was not specified, the

macro is expanded and parsed as a command line.

5. Each makefile is read in the order it appears on the command line.

omake reads the initialization file and makefiles, collecting macro definitions, dependency lines,

rules, and build scripts. Dependency lines are built into a set of dependency trees, with each

target node connected by a dependency arc to each of its dependency nodes. Because each

dependency is itself a target, it is connected to its own dependencies. At the leaf nodes of the trees

are targets without any dependencies.

Run Time

At run time, omake makes the command-line targets or, if none are specified, the first normal

target in the first makefile. In this context, “normal” means not a directive, special target,

attribute, or inference rule. This first normal target is called the default target. Briefly, these are

the steps involved in making a target:

1. Locate the target.

Look for the target as a file on disk and, if found, record its location.

2. Make its dependencies.
3 - omake Reference 47

Make the target's explicit dependencies.

3. Locate its inferred dependency.

If the target has no build scripts, use inference rules to look for an inferred dependency. If the

inferred dependency is found, add it as a dependency of the target and add the rule's build

scripts to the target. Then, make the inferred dependency.

4. Compare and update the target.

omake's build avoidance scheme includes automatic dependency detection. By default,

omake uses configuration lookup to compare the configuration record of the target to your

build configuration and determine whether a build is required. If the targets are not in a

VOB, omake compares time stamps to determine whether a build is necessary. If the time

stamp of any target dependency is more recent than that of the target itself, the target is

updated by executing its build script. After the build scripts have been executed, the target

is made.

If the target was found in Step #1, omake assumes its location stays the same. If the target was

not found, omake makes a second attempt to locate it on disk. In either case, omake also updates

its internal copy of the target's time stamp.

The consequence of Step #2 and Step #3 is that omake makes a target's dependencies recursively.

omake goes as far as it can down the dependency tree and works back up, using configuration

record matching and build avoidance, as described in Step #4. If the target is not in a VOB, omake
checks the time stamp of the target against its dependencies. For targets that have at least one

newer dependency, the target's build scripts are executed to update the target.

The utility of Step #3 is that it generalizes the make process. Inference rules are akin to statements

such as “all .obj files can depend on like-named .c or .cpp files.”

An extensive example that shows the read-time steps in the make process is in Chapter 4,

Debugging Makefiles.

Run-Time Initialization and Deinitialization

Before making any targets, omake executes the build scripts of the .BEFORE special target if it is

defined.

Immediately before exiting, omake executes the build scripts of the .AFTER special target if it is

defined. omake then removes any temporary files it has created and exits.
48 OMAKE Guide

Updating the Time Stamp

If the target is not in a VOB, omake updates its internal copy of a target's time stamp after the

target has been made. The value the time stamp is set to is determined as follows:

➤ If the target has build scripts, the time stamp is set to the current system time after all build

scripts have been executed.

➤ If the target has no dependencies, the time stamp is set to the current system time.

➤ Otherwise, the time stamp is set to the most recent of the target's current time stamp and

those of all its dependencies.

3.4 Targets

This section provides general information about targets.

Case-Sensitivity of Target Names

By default, for Windows NT omake target names are case-insensitive. The .CASE_TARGET and

.NOCASE_TARGET directives turn case-sensitivity on and off.

A Target Has a Name and a Pathname

It is an important fact that a target has both a name (from the makefile) and a pathname (its

location on disk). Each name in the makefile specifies a unique target. The pathname is

determined when omake searches for the target on disk.

If name does not have a path component in it, omake may search multiple directories to locate

the target and the name and pathname may differ. If name has a path component, or if omake is

not instructed to search multiple directories, the name and pathname are the same. See Search
Directories on page 106.
3 - omake Reference 49

Using the Path Separator in Names

On Windows NT, you can use either a slash (/) or backslash (\) as the path separator inside of

omake makefiles. Windows NT accepts either character as the path separator when Make looks

in the file system directory.

We suggest you use the slash in your makefiles because the backslash can be used to modify the

meaning of the character that follows it. For example, \<ENTER> continues makefile lines and \#
is a literal #. If you use the backslash as the path separator, you must be aware of how omake
interprets this expression:

\the-following-character

The First Target in the Makefile Is the Default Target

If no targets are specified on the omake command line, the first normal target in the makefile is

made. In this context, a normal target is not a directive, special target, attribute, or inference rule.

It is a common practice to have the default target depend on other targets to be built. Consider

this makefile:

all : a.exe b.exe

a.exe : dependencies
build scripts

b.exe : dependencies
build scripts

Running omake without a command-line target causes all (a.exe and b.exe) to be made. The

target all is sometimes called a dummy target because it is used to drive the build of other (real)

targets.

Targets May Appear on Several Dependency Lines

A target may appear on the target side of more than one dependency line. The target depends on

all dependencies on all dependency lines that the target appears on, but the build script that

updates the target can be listed after only one of the dependency lines.
50 OMAKE Guide

Double-Colon Dependency Lines

When a double-colon (::) separates the target and its dependencies, build scripts can be specified

after each double-colon dependency line. If in the MVFS, all build scripts are executed if any

dependency on any dependency line is newer than the target. Double-colon dependencies are

rarely used. Here is a simple example:

backup :: a.exe
copy $(.SOURCE) c:\backup

backup :: b.exe
copy $(.SOURCE) c:\backup

If you were to execute the omake backup command, a.exe is built and then b.exe . Each target is

copied to c:\backup after it is built.

Mixing Single-Colon and Double-Colon Dependency Lines

A target cannot appear on the target side of both double- and single-colon dependency lines. If

it does, omake displays a warning and ignores the offending dependency line.

Targets Without Dependencies

A target that has no dependencies (neither explicit nor inferred) is up to date if it exists as a file;

if it doesn't exist, it is out of date and must be updated.

Target Groups

Several targets may be made simultaneously from a single dependency. This is called a target

group. Updating any target of the group (by running the target's build scripts) updates all the

targets.

To indicate a target group, put a plus sign (+) between each target on the dependency line. For

example, here is a rule to build parse.h and parse.c simultaneously from parse.y using the

program called yacc:
3 - omake Reference 51

parse.h + parse.c : parse.y
yacc –d parse.y # produce ytab.h & ytab.c
copy ytab.h parse.h # copy ytab.h to parse.h
copy ytab.c parse.c # copy ytab.c to parse.c
del ytab.* # remove the ytab files

Assume that parse.y was changed recently and that some other target depended on parse.h.

Making this other target causes parse.h to be made, which executes the build scripts. If parse.c
is evaluated later in the make process, omake recognizes that it is a member of the same target

group as parse.h, which has already been updated, and does not rerun the build scripts.

3.5 Macros

A macro definition associates a name and a value. The macro expansion of a macro name returns

the value. Macros are used at read time to organize names of files, compiler options, and so on.

At run time, macros provide information about the current target being built.

Macro Modifiers

When a macro is referenced, the expanded value can be modified through the use of macro

modifiers. To modify a macro, expand it with:

$(name,modifier[,modifier ...])

Everything between $(and) is expanded, the value of name is expanded, and then each modifier
is applied in succession to the expanded value. The separator between name and modifier can be

a comma or colon, but subsequent modifiers must follow a comma. A literal comma is available

by using \,. Some modifiers use regular expressions. The treatment of the backslash, can make it

awkward to use a modifier when a backslash also terminates its argument. You can work around

this by using two backslashes before a comma separator(\\,) or

if possible, move the awkward modifier to the end. If this not possible, use two modifications.

For example,

OBJS = $(SRCS,<obj\,R,>.obj)

does not work, but this pair of macro definitions does:

OBJS = $(SRCS,<obj\)
OBJS := $(OBJS,R,>.obj)
52 OMAKE Guide

Considering the macro value as a list of macro elements separated by white space, the first

modifier is applied to all elements, then the next modifier is applied, and the next, and so on. The

following list of modifiers is organized into functional groups. Examples of each modifier use the

following macro definition:

SRCS = \src\main.c \sys\sub.cpp io.cpp

Filename Components

Absolute Pathname

B The base name part of the element. This is the file name without an extension.

$(SRCS,B) is main sub io

D The directory part of the element. For X:\file, X:file, \file, or dir\file, the directory part is

X:\, X:, \, or dir, respectively. If there are no directory separators the directory part is

the current directory (.).

$(SRCS,D) is \src \sys .

E The extension (or suffix) of the element. This is “” if there is no extension.

$(SRCS,E) is .c .cpp .cpp

F The file name part of the element. The part after the last directory separator.

$(SRCS,F) is main.c sub.cpp io.cpp

P The path part of the element. This is similar to the D modifier, but includes the last

directory separator. So for X:\file, X:file, \file, dir\file, or file the path part is X:\, X:, \,

dir\ or “”, respectively.

$(SRCS,P) is \src \sys

R The root part of the element. The same as its full name minus its extension.

$(SRCS,R) is \src\main \sys\sub io

Z The drive letter part of the element (or the current drive), terminated by a colon

$(SRCS,Z) is V: V: V: (if “V” is the current drive)

A[sep] Convert the element to an absolute pathname. If the element is not already an

absolute path, this modifier prepends the current drive and working directory.

Then, the sep separator replaces the slash and backslash. Finally, .. and . directory

parts are removed. For example, if the current working directory is v:\stage,

then:
3 - omake Reference 53

Append and Prepend Strings

Change Case

Expand Pathnames

Include File

$(SRCS,A) is v:\src\main.c v:\sys\sub.cpp v:\stage\io.cpp

$(SRCS,A/) is v:/src/main.c v:/sys/sub.cpp v:/stage/io.cpp

If sep is missing, the backslash is used.

>string Appends string to each element of the macro.

 $(SRCS,B,>.obj) is main.obj sub.obj io.obj

<string Prepends string to each element of the macro.

LC Lowercase. Change the letters of the element to lowercase.

$(SRCS,Z,LC) is d: c: c:

UC Uppercase. Change the letters of the element to uppercase.

 $(SRCS,B,>.obj,UC) is MAIN.OBJ SUB.OBJ IO.OBJ

X This modifier expands elements into their pathnames. As an example:

.PATH.obj = objs

OBJS = 1.obj 2.obj

project.exe : $(OBJS)

link $(.TARGET), $(OBJS,X);

The .PATH.obj macro defines a search directory where .obj files are located. The X
modifier causes omake to search for each element in its search directories. Assuming

1.obj and 2.obj are in the objs directory:

$(OBJS) is 1.obj 2.obj

$(OBJS,X) is objs\1.obj objs\2.obj

@ If the macro's value names a file, the value of the macro modification is the contents of

the file with spaces, tabs, and newlines collapsed to single spaces.

This modifier is best used with the := expanded macro definition so the file or project is

read only once, when the macro definition occurs. For example:

FILE = link.rsp (response file)
OBJS := $(FILE,@) (read contents of link.rsp)
54 OMAKE Guide

Include File with Regular Expression Matching

Member and Nonmember

@d regex d subst d
Include file, with regular-expression matching. [A regular expression .
matches any single character; a regular expression \. is a literal period (or

dot). Several regular expression characters that omake uses are poor choices

when the regular expression is used to match file names. omake allows you

to redefine these characters with the .REGEX_CHAR and .REGEX_WILD
directives.]

The macro's value is the name of a file to be read. Each line in the file is

examined with the regular expression regex. If regex matches the line, the

matched part of the line is replaced with the substitution string subst. If regex
does not match, the line is skipped.

The d is a single-character delimiter that cannot appear in regex or subst and

cannot be a comma (usually a slash (/) or single quote (') is used).

Mregex The member selector. This selects elements matching regular expression

regex.

$(SRCS,M\.c$$) is \src\main.c

After macro expansion, \.c$$ is \.c$, a regular expression that matches .c at

the end of the element. This matches .c but not .cpp.

M"spec" The member selector, where spec is enclosed in double quotes and is a

Windows NT file specification, not a regular expression:

$(SRCS,M"\src\main.c") is \src\main.c

$(SRCS,M"*.cpp") is io.cpp

One use of this modifier is to determine whether the current target belongs to

some special list of names. For example:

SPEC_OBJS = objs\spawn.obj objs\sync.obj

%.obj : %.c

if '$(SPEC_OBJS,M"$(.TARGET)")'if $(.TARGET) is in SPEC_OBJS

special commands to handle special objects

endif

Nregex The nonmember selector. It selects elements that do not match regex.

$(SRCS,N\.c) is io.cpp

N"spec" The nonmember selector, where spec is a Windows NT file specification, not a

regular expression:

$(SRCS,N"\src\main.c") is \sys\sub.cpp io.cpp

$(SRCS,F,N"*.c") is \sys\sub.cpp io.cpp
3 - omake Reference 55

Select a Particular Element

String Substitution

Sd regex d subst d
The substitution modifier. The d is a single-character delimiter that is neither in regular

expression regex nor in substitution string subst and isn't a comma. If regex matches some

part of a macro element, the matched part of the element is replaced with subst. The

element is not changed if regex does not match it.

If regex is omitted, the last regular expression is reused. This is useful in combination

with the member modifier, M. For example, given that CFLAGS has the value

–AX –Ifoo –Ibar –DX=–IT:

$(CFLAGS,M^–I,S'^–I'') is foo bar
$(CFLAGS,M^–I,S''') is foo bar

The M modifier selects elements that start with –I, and the S operator substitutes the –I
with nothing. This is quite different from

$(CFLAGS,S'^–I'') is –AX foo bar –DX=–IT

Notice how the elements unmatched by regex ^–I are not changed.

from=to
This modifier replaces occurrences of from string with to string. If from does not appear

in a macro element, the element is not changed.

from and to can be simple strings or can use the percent sign (%) as a wildcard. If % is

used, the search for from is anchored to the end of the element.

$(SRCS,%.c=%.obj) is \src\main.obj \sys\sub.cpp io.cpp
$(SRCS,.c=.obj) is \src\main.\sys\obj sub.cpp io.cpp

The use of % anchors the search for %.c so it matches main.c but not sub.cpp. The simple

string substitution .c=.obj replaces any occurrence of .c with .obj so matches and

changes sub.cpp to sub.objpp.

number Selects the numberth element of this macro value. If the macro value doesn't

have this numberth element, the modified value is the empty string. This

modifier is particularly useful for inference rules that build multiple targets

from a single dependency.

$(SRCS,2) is \sub.cpp
56 OMAKE Guide

The delimiter between strings is the equal sign, but it is treated literally when prefixed

with a backslash (\=). If fromString ends with a backslash, you must use two (\\=) to

mean literal backslash followed by a delimiter. (Under PM/CB or NMAKE emulation,

the delimiter is not quotable. This means that \= is taken literally, and there is no need

to double the backslash).

For historical reasons, when fromString and toString are simple strings, this modifier

operates on the entire macro value rather than on its elements, and can be used to replace

the white space between elements. However, the W modifier is better suited for this task.

Tokenize

Wildcard Expand File and Directory Names

Wstr
This modifier replaces the white space that separates macro elements with str, where

str is treated literally except for the following special sequences:

\n
\r
\t
\\
\ddd
\xdd

A newline character

A return character

A tab character

A backslash

An octal character ddd (1 to 3 digits)

A hexadecimal character dd (1 or 2 digits)

This example can be used to prepare an inline response file with the OBJS definition

of the X modifier listed above:

$(OBJS,X,W+\n) is objs\1.obj+
objs\2.obj
project.exe;

* or *F The macro's value is a wildcard file specification used to match file names. The

value of the macro modification is the list of files that matches the specification.

This list includes any directory components. For example:

SPEC = obj*.obj (set up file spec)
OBJFILES := $(SPEC,*F) (get list of obj*.obj files)

*D Like the *F modifier but matches directory names. For example:

SPEC = * (set up directory spec)
SUBDIRS := $(SPEC,*D) (get list of subdirectories)
3 - omake Reference 57

Regular Expressions

The M, N, and S modifiers use pattern-matching strings known as regular expressions. The

regular expression (or regex) matches characters in strings, both literally and with wildcards, and

the match is case-sensitive.

Configuring Regular Expressions

Two directives control the special characters that appear in regular expressions:

➤ .REGEX_CHAR sets the character used to indicate special character sequences. The default

character is a backslash (\).

➤ .REGEX_WILD sets the wildcard character that matches any single character. The default

character is a period (.).

The backslash and period are standard characters in UNIX-styled regular expressions, but are

awkward to use in Windows NT because the backslash is the directory separator and the period

is the file extension separator. The .REGEX_CHAR and .REGEX_WILD directives can be used

to change these characters to some other characters.

The default characters are most problematic for the M and N modifiers when you are trying to

match a file name. For this case, use the M"spec" and N"spec" modifiers because the spec is a file

specification rather than a regular expression.

Regular Expressions for the M Modifier

Assume the following macro definitions:

SRCS = main.c sub.cpp io.cpp
CFLAGS = –AX –Ifoo –Ibar /Ibaz –DX=–IT xI.c yi.c

To select files whose names include .c:

$(SRCS,M\.c) is main.c sub.cpp

To select files that end in .c, the search can be anchored to the end with the regex character $. To

get $ to the regular expression, you need to use $$ in the makefile:

$(SRCS,M\.c$$) is main.c

You can also select .c files with the M"spec" modifier:
58 OMAKE Guide

$(SRCS,M"*.c") is main.c

Analogous to the $ anchor, the ^ regex character anchors the search to the front of the macro

element:

$(CFLAGS,M–I) is –Ifoo –Ibar –DX=–IT

$(CFLAGS,M^–I) is –Ifoo –Ibar

The [set] regex characters indicate a set of characters, where the set can be single characters ([aA@]
matches a, A or @), a range of characters ([a-z] matches a through z), or a mixture. For example:

$(CFLAGS,M^[–/]I) is –Ifoo –Ibar /Ibaz

Regular Expressions for the S Modifier

One powerful feature of regular expressions is that when used in substitutions, they can access

the matched parts of the string. The down side of the more powerful regular expressions is that

the expressions can be hard to read. For example, when DIR = NT_L , the expression

$(DIR,S/\(.*\)_.*/\1/) is NT.

The \(, \) pair surround a part of the regular expression that is referenced later. Inside the pair

is .*, which matches any character (.) repeated zero or more times (*). Taken together they instruct

omake to match any character, zero or more times, and attach a tag to it. The rest of the regular

expression is _ , which matches _, and .*, which matches any character repeated zero or more

times.

The expression \1 is the stuff matched in the first pair of \(\), so the substitution evaluates to

NT. Simple regular expressions are easy to read, but if you write more complicated expressions,

be sure to provide thorough comments.

With Configuring .REGEX_CHAR and .REGEX_WILD

If omake is configured for alternative regular expression characters, the following directives

appear in your make.ini:

.REGEX_CHAR : ~

.REGEX_WILD : ?

These examples are then easier to read:
3 - omake Reference 59

$(SRCS,M.c) is main.c sub.cpp
$(SRCS,M.c$$) is main.c
$(CFLAGS,M–I) is –Ifoo –Ibar –DX=–IT
$(CFLAGS,M^–I) is –Ifoo –Ibar
$(CFLAGS,M^[–/]I) is –Ifoo –Ibar /Ibaz
$(DIR,S/~(?*~)_?*/~1/) is NT

Predefined and Built-In Macros

omake defines several macros before it reads the initialization file and makefiles. These macros

come in two general types:

➤ Predefined macros cannot be changed or undefined. Important subsets of the predefined

macros are run-time macros, which change with the target being built, and state macros,

which hold the state of the command-line options and read-time directives.

➤ Built-in macros have the same precedence as normal makefile macros, and so can be

redefined in your makefiles or on the command line.

Predefined Macros: Run-Time Macros

The run-time macros are changed dynamically by omake according to the current target being

built. A key feature of the run-time macros is that their values are pathnames. A target's pathname

is the location the target was found on disk. The run-time macros evaluate to pathnames, which

is important for use on build scripts where the executed command needs the location of the

targets.

All run-time macros have names of the form .name, and several have one- or two-letter aliases

that you are likely to see in makefiles of other make utilities.

Run-Time Macros

.NEWSOURCES (alias is ?)

This run-time macro evaluates to the pathnames of all dependencies newer than the

current target. When configuration lookup is enabled, it evaluates to the pathnames of

all dependencies for the current target, unless that behavior is modified with the

.INCREMENTAL_TARGET directive (see the description in the section Dot Directives
60 OMAKE Guide

on page 91), in which case it evaluates to the pathnames of all dependencies different

from the previously recorded versions.

.SOURCE (alias is <)

This run-time macro evaluates to the pathname of the inferred dependency that satisfied

the inference rule, or the pathname of the first explicit dependency if no inferred

dependency was found. Here is a sample inference rule for updating an object file with

the Borland C compiler:

%.obj : %.c
cl –c $(.SOURCE)

Using an alias, the second line becomes

cl –c $<

.SOURCES (aliases are ^ or **)

This run-time macro evaluates to the pathnames of all dependencies of the current target.

Here is an example that updates an executable with all object files that are its

dependencies:

project.exe : main.obj io.obj
 link /out :$(.TARGET), $(.SOURCES);

Using an alias, the second line becomes

link /out : $@, $**;

NOTE: The ** macro is the exception to the rule that multicharacter macros need

parentheses or braces around them. The expression $** is the same as $(**).

.TARGET (alias is @)

This run-time macro evaluates to the pathname of the target currently being made. For

example:

%.obj : %.c
cl –o$(.TARGET) –c $(.SOURCE)

Using an alias, the second line becomes

cl –o$@ –c $<

This macro can also be used at read time on a dependency line and its value is the name

of the target currently getting dependencies. For example:
3 - omake Reference 61

main.obj io.obj : $(.TARGET,R).c io.h

Using an alias, the line becomes

main.obj io.obj : $(@,R).c io.h

The .TARGET macro value is set to the name of each target, in turn. The dependencies

are then macro-expanded and added to the target's list of dependencies. The R macro

modifier selects the root of the target name. The above dependency line is equivalent to

the two lines:

main.obj : main.c io.h
io.obj : io.c io.h

For compatibility with other Make utilities. omake treats $$@ on the dependency side of

a dependency line just like $(.TARGET).

.TARGETROOT (alias is *)

This run-time macro evaluates to the pathname of the target currently being made, minus

its extension. This macro can also be used at read time on the dependency side of a

dependency line. Here is the read-time example from the .TARGET macro rewritten

using this macro:

main.obj io.obj : $(.TARGETROOT).c io.h

Using an alias, the line becomes

main.obj io.obj : $*.c io.h

Predefined Macros: General Macros

The predefined macros in Table 3 give you information about the current make process. One of

the most important predefined macros is the status macro at the bottom of the table.

Table 3 General Macros (Part 1 of 2)

General Macro Value

$ When you need a literal dollar sign, you must use $$.

BUILTINS The name of the initialization (built-ins) file.
62 OMAKE Guide

Predefined Macros: State Macros

The state macros provide information about the state of command-line options and read-time

directives. Most command-line options have an equivalent directive, and the value of the state

macro is the same regardless of whether the option or directive was used.

CWD The current working directory (same as MAKEDIR).

FIRSTTARGET The first command-line target or, if one isn't given, the default

makefile target.

INPUTFILE The name of the current makefile. omake can read multiple

makefiles, either with multiple –f command-line options or

with %include directives. The INPUTFILE macro's value is the

current makefile being read.

MAKEARGS The command line with which omake was started, including

command-line options, macros, and targets.

MAKEDIR The current working directory (same as CWD).

MAKEMACROS The command-line macros with which omake was started. Any

macros that have spaces are enclosed in double quotes so they

can be used on a command line again.

MAKESTATUS The exit status of omake. This can be used in the .AFTER
special target to determine whether omake is exiting with an

error.

MAKETARGETS The list of command-line targets passed to omake.

MAKEVERSION The version number for omake. Its format is X.Y, where X and

Y are the major and minor release numbers.

OPUS Defined to the value 1. This can be used to test if you are

running omake or some other Make.

status The exit status of the last build script. It is used with conditional

directives to execute other build scripts. For historical reasons,

the name is lowercase.

Table 3 General Macros (Part 2 of 2)

General Macro Value
3 - omake Reference 63

In the list of macros in Table 4, the macro values that are the state of a directive or command-line

option mean the value is 1 if the directive or command-line option was used; otherwise the value

is 0.

NOTE: In terms of implementation, .ALWAYS, .IGNORE, and .SILENT are not directives; they

are target attributes. They look like directives when they appear in a makefile on the target side

of a dependency line when there are no dependencies. For example,

.IGNORE :

sets the .IGNORE attribute for every target created after the appearance of this line. The

.ALWAYS, .IGNORE, and .SILENT macros have the correct value, as if these attributes were

directives.

NOTE: Exactly one of $(.MS_NMAKE), $(.omake) or $(.POLY_MAKE) is 1.

Table 4 State Macros (Part 1 of 3)

State Macro Value

.ALWAYS The state of the .ALWAYS directive and –a command-line option.

[In terms of implementation, .ALWAYS, .IGNORE, and .SILENT
are not directives but target attributes. They look like directives

when they appear in a makefile on the target side of a dependency

line when there are no dependencies. For example,

.ALWAYS :

sets the .ALWAYS attribute for every target created after the

appearance of this line. The .ALWAYS, .IGNORE, and .SILENT
macros have the correct value, as if these attributes were directives.]

.CASE_MACRO The state of the .CASE_MACRO directive.

.CASE_TARGET The state of the .CASE_TARGET directive.

.DEBUG The debug options as set by the .DEBUG directive and –#
command-line option.

.DEBUG_PRINT The state of the .DEBUG_PRINT directive and –p command-line

option.

.DEBUG_RUN The state of the .DEBUG_RUN directive and –d command-line

option.

.ENVMACROS The state of the .ENVMACROS directive.
64 OMAKE Guide

.ENV_OVERRIDE The state of the .ENV_OVERRIDE directive and –e command-line

option.

.IGNORE The state of the .IGNORE directive and –i command-line option.

.IGNORE_MFLAGS The state of the –z command-line option.

.KEEPDIR The state of the .KEEPDIR directive and –D command-line option.

.KEEPWORKING The state of the .KEEPWORKING directive and –k command-line

option.

.MAKE_MAKEFILE The state of the .MAKE_MAKEFILE directive and –M
command-line option.

.MS_NMAKE The state of the .MS_NMAKE directive (exactly one of

$(.MS_NMAKE), $(.omake) or $(.POLY_MAKE) is 1) and –EN
command-line option.

.OPUS_52X The list of Opus Make v5.2x compatibility features, as set by the –E2
command-line option.

.omake The state of the .omake directive and –EO command-line option.

.POLY_MAKE The state of the .POLY_MAKE directive and –EP command-line

option.

.QUERY The state of the –q command-line option.

.REGEX_BACK The regular expression literal backslash (\). This is provided for

writing regular expressions that are independent of the value of

.REGEX_CHAR. If .REGEX_CHAR is \,its value is \\; otherwise,

its value is \.

.REGEX_CHAR The regular expression escape character set by the .REGEX_CHAR
directive.

.REGEX_DOT The regular expression literal dot (or period). If .REGEX_WILD is .
its value is ${REGEX_CHAR}.; otherwise its value is .

.REGEX_WILD The regular-expression wildcard character set by the

.REGEX_WILD directive.

Table 4 State Macros (Part 2 of 3)

State Macro Value
3 - omake Reference 65

An Example Use of the State Macros

Here is an example of how these macros can be used. Suppose you want to debug the contents

of your makefile with the –#1 command-line option. However, this also produces output that

comes from your make.ini file, which probably doesn't need debugging. Modify your make.ini
file with the following:

Built-in Macros

omake defines the built-in macros with a default value, but they have the same precedence as

normal makefile macros, so you can be redefine them.

.REJECT_RULES The state of the .REJECT_RULES directive and –r command-line

option.

.REREAD The state of the .REREAD directive.

.RULE_CHAR The regular expression character as set by the .RULE_CHAR
directive.

.SHELL The command to execute the shell program as set by the .SHELL
directive.

.SILENT The state of the .SILENT directive or –s command-line option.

.SUFFIXES The list of suffixes as set by the .SUFFIXES directive.

.UNIXPATHS The state of the .UNIXPATHS directive.

_OLD_DEBUG := $(.DEBUG) (get current state)
.NODEBUG : 1 (turn off “-#1” if set)
[Original make.ini goes here]

.DEBUG : $(_OLD_DEBUG) (restore state)

Table 4 State Macros (Part 3 of 3)

State Macro Value
66 OMAKE Guide

Table 5 Built-in Macros (Part 1 of 2)

Built-in Macro Definition

CC Used in the %.obj : %.c rule, the name of the C compiler. The default

value is cl, the name of the Microsoft C Compiler.

FC Used in the %.obj : %.for rule, the name of the FORTRAN compiler.

The default value is f77l, the name of the Lahey FORTRAN

Compiler.

LIBEXE Used in the %.lib : %.obj rule, the name of the object librarian. The

default value is lib, the name of the Microsoft Librarian.

LINK Used in the %.exe : %.obj rule, the name of the object linker. The

default value is link, the name of the Microsoft Linker.

MAKE The value is the full pathname of the omake executable.

The MAKE macro is special in that its appearance on a build script

overrides the –n (no execute) command-line option for that line.

This can be used in a recursive make, to have omake do the

recursion.

MAKE_TMP The name of the directory omake uses for temporary files (response

files under Windows NT).

Initially MAKE_TMP is undefined and omake uses the current

directory for temporary files. If you define MAKE_TMP its value

must be an absolute directory (such as D:\ or D:\tmp, preferably

on a RAM disk. As an example, the environment variable TMP

names the temporary directory some compiler vendors use. You

can put the following in make.ini:
MAKE_TMP = $(TMP)
3 - omake Reference 67

Compatibility with Other Make Utilities

Through emulation, omake supports all PM/CB and NMAKE macros.

MFLAGS After all makefiles have been read, omake defines MFLAGS with

all the command-line options. MFLAGS is useful for invoking

omake recursively, as shown in the definition of the MAKE macro.

NOTE: MFLAGS is a built-in macro only if you are using native

omake mode (that is, if you are not using an emulation mode). In

the emulation modes, it is not predefined by omake; however, you

can redefine it.

A second usage of MFLAGS is to pass initial options to omake. If

MFLAGS is defined in the environment or in make.ini its value

specifies additional command-line options. For example, the

following macro definition placed in make.ini turns on the

keep-directory mode (the –D command-line option):

MFLAGS = –D

Because there are directives for all command-line options, this

second usage of MFLAGS is discouraged, and you should use the

directives.

OS The operating system. Its value is NT.

RC Used in the %.res : %.rc rule, the name of the resource compiler. The

default value is rc, the name of the Microsoft Resource Compiler.

SHELLCOMMANDS Alphabetical list of commands known to need execution by the

shell program. If you define this macro, omake uses it to detect

when to use the shell program. This macro is not defined initially;

omake uses an internal list of commands. See Auto-Detection Mode
on page 19.

SHELLSUFFIX Suffix used by omake for the batch files it generates. The default

value is .bat.

Table 5 Built-in Macros (Part 2 of 2)

Built-in Macro Definition
68 OMAKE Guide

3.6 Build-Script Line Prefixes

Build-script line prefixes control some aspects of a build script's execution. The prefixes occur on

a build script before the program name. The first nonprefix character ends the prefixes. The bar

(|) prefix can also be used to mark the end explicitly. White space is allowed between prefixes,

and between the prefixes and the program name. Build-script lines are macro-expanded before

prefixes are detected, so you can use macros to define prefixes.

Do Not Echo the Build-Script Line (Silent Operation)

@
Usually omake echoes (displays) the build-script line to the screen before executing it.

The @ prefix prevents this display except when running omake –n.

Here is an example of its use:

ERRS = make.out

$(OBJS) : $(.TARGETROOT).c
 %do CCquiet

CCquiet :
 @ %echo –n Compiling $(.SOURCE) ...
 @ $(CC) $(CFLAGS) –c $(.SOURCE) >>$(ERRS) 2>&1
 @ %echo done.

Redirection by >>$(ERRS) 2>&1 means error messages from the compiler go into the

$(ERRS) file. The net effect is that a series of messages of the form:

Compiling file ... done.

are displayed and all output from the compiler is redirected into make.out.

See also the .SILENT target attribute to turn on silent mode for this target and the –s
command-line option to enable silent mode for all targets.

@@
The @@ prefix prevents display of the build script before execution, even when running

omake –n.
3 - omake Reference 69

Ignore the Build-Script Line Exit Status

–[num]

Normally a build-script line that returns a nonzero exit status causes omake to terminate

with this message:

omake: Shell line exit status exit_status. Stop

The dash (–) prefix causes omake to ignore the exit status returned from the build-script

line and to continue. The message now becomes

omake: Shell line exit status exit_status (ignored)

If num is given, omake ignores the exit status if it is no greater than num. For example,

the prefix –4 tells omake to ignore an exit status of 1, 2, 3, or 4. There must be at least one

space after num.

Importantly, the status macro is set to the exit status of the build-script line so it can be

tested later. See the -- prefix for an example.

See also the .IGNORE target attribute to turn on ignore mode for this target and the –i
command-line option to turn on ignore mode for all targets.

--[num]

Ignores the exit status and does not display the warning message.

If num is given, omake ignores the exit status if it is less than or equal to num.

For example, the CCquiet target of the previous example can be changed to this:

CCquiet :
 @ %echo –n Compiling $(.SOURCE) ...
 @– – $(CC) $(CFLAGS) –c $(.SOURCE) >>$(ERRS) 2>&1
%if $(status) != 0
 % abort FAILED! See $(ERRS) for errors.
 %endif
 @ %echo done.

Now a failed compile generates this message:

Compiling file ... FAILED! See make.out for errors.
70 OMAKE Guide

~[num]

Ignores the exit status and displays the warning, but the status macro retains its current

value and is not set to the exit status of this build script.

~~[num]

Ignores the exit status, does not display the warning, and retains status.

Override the –n Command-Line Option

&
Use & to override the –n command-line option for this build script. This prefix is useful

if you are using omake to call itself recursively.

It is usually better to use the .MAKE target attribute instead because it overrides the –q
and –t command-line options as well as –n.

Select the Shell Program

omake executes all build-script lines with the shell program. This default can be changed with

the .SHELL directive, which selects use of the shell program, and the .NOSHELL directive,

which selects direct execution.

The following prefixes override the general execution mode for the current build script:

Iterate the Build Script

!
Iterates the build-script line for each element of $? (i.e. $(.NEWSOURCES)) or $** (that

is, $(.SOURCES)), on the basis of which appears first on the build-script line. The

build-script line is executed once for each element of the original $? ($**) with the value

of $? ($**) taking on successive elements of the original $? ($**).

If neither $? nor $** appears on the build-script line, the build-script line is iterated once

for each element of $**.

: Executes the build script directly.

+ Executes build scripts by the shell program.
3 - omake Reference 71

omake performs iteration explicitly over any number of build scripts with its %foreach
directive, and the use of the ! prefix is discouraged.

Miscellaneous Prefixes

|
The bar (|) prefix can be used to mark the end of the prefixes. This is useful when the

command to be executed starts with one of the prefixes.

>
The right-angle bracket (>) prefix inserts an extra carriage return/linefeed after the build

script is executed. This prefix is supplied for PM/CB compatibility.

Build Script Compatibility with Other Make Utilities

For PM/CB compatibility, omake supports named prefixes such as (Silent) and (Ignore).

3.7 Build-Script Problems: The cd and set commands

Each build-script line is executed in a separate shell and each build-script line starts in omake's

current directory. This causes special problems for some commands. For example, suppose you

want to change directory to subdir and run omake recursively. If you use this line

recursion :
chdir subdir
omake $(MFLAGS)

omake $(MFLAGS) is executed from the current directory.

Similarly, setting environment variables does not work as expected because the environment

variable is set in one shell, the shell exits back to omake, and the next command is executed in a

new shell that doesn't have the variable set. For example, this line

setenv :

set USER=dgk (for UNIX: setenv USER dgk)
echo %USER% (for UNIX: echo $$USER)
72 OMAKE Guide

does not echo dgk .

NOTE: In NMAKE emulation mode, omake handles internally any commands that start by

setting an environment variable, rather than calling the shell.

Both of these problems can be avoided by using a multiple-command build-script line.

Using Multiple-Command Build-Script Lines

The syntax for executing more than one command in the same shell is

(command [& command] ...)

The build-script line is enclosed in parentheses, and the commands are separated by a semicolon

(;). (Use \; to specify a literal semicolon). In terms of implementation, omake writes each

command to a batch file and uses the shell program named by the .SHELL directive to execute

the batch file.

The recursion examples now become

recursion :
(chdir subdir & omake $(MFLAGS))

Simultaneous support of all operating systems is possible with a conditional macro definition

such as this:

%if $(OS) == NT
; = &$; is ”&”
%else
; = ;$; is “;”
%endif

The multiple-command build-script line is now written as

After the macros are expanded, the build-script line becomes

(chdir subdir $; omake $(MFLAGS)) (for all OSes)

(chdir subdir ; omake
command_line_flags)

(if OS is not Windows NT)

(chdir subdir & omake
command_line_flags)

(for Windows NT)
3 - omake Reference 73

Using Directives: %chdir and %setenv

Rather than use a multiple-command build script to work around the change-directory problem,

you can use a directive. The %chdir directory directive causes omake to change to directory, where

it stays until the next %chdir directive or until omake exits. The recursion example becomes

Likewise, to work around the environment-variable problem you can use a directive. The

%setenv name val directive sets environment variable NAME to the value val. Like %chdir,
%setenv has effect until the next %setenv or until omake exits. The setenv example becomes

For more information and recommendations on using the %setenv directive, see the %setenv
entry in Table 14 on page 90

3.8 Makefile Directives

Makefile directives provide additional control over omake. There are two directive types:

➤ Percent directives, which use a percent sign (%) as the first non-white-space character on

the makefile line.

➤ Dot directives, which look like dependency lines but use special target names.

Percent Directives

Percent directives (usually called directives) have names of the form %name, where the directive

character is the first non-white-space character on the makefile line. White space is allowed

between % and name.

recursion :

%chdir subdir (change to the subdirectory)
omake $(MFLAGS) (do the recursive Make)
%chdir $(MAKEDIR) (change the directory back)

setenv :

%setenv USER dgk

echo %USER% (for unix: echo $$USER)
74 OMAKE Guide

These directives work as read-time directives or run-time directives with indentation

determining whether they are interpreted at read time or at run time. If % is in the leftmost

column of the line, the directive is interpreted at read time. If white space precedes the %, the

directive is interpreted at run time.

Conditional Directives

The directives in Table 6 control the flow of the make process at read time and at run time.

Conditional and iteration directives can be nested up to 31 levels deep.

Iteration Directives

The directives in Table 7 provide iteration control. Iteration and conditional directives can be

nested up to 31 levels deep.

Table 6 Conditional Directives

Conditional Directives Action Applicable Time

% if condition Start a conditional block read/run

% ifdef macro Start a conditional block read/run

% ifndef macro Start a conditional block read/run

% elif / elseif condition Continue the conditional block read/run

% else Start the default conditional block read/run

% endif End the conditional block read/run

Table 7 Iteration Directives

Iteration Directives Action Applicable Time

% foreach name [in] list Loop for each name in list read/run

% while condition Loop while condition is true run

% end End the loop read/run

% break Interrupt and quit innermost loop run

% continue Interrupt and restart innermost loop run
3 - omake Reference 75

Other Percent Directives

Other directives behave like commands built into omake. At run time, these directives can be

preceded with build script prefixes, which must appear before the %. See Table 8.

Conditional Directives

Conditional directives control the makefile lines that omake reads at read time and control the

build scripts that are executed at run time. These directives take this form:

Table 8 Other Percent Directives

Other Directives Action Applicable Time

% abort [status] [message] Display message, exit with status read/run

% chdir directory Change current directory run

% do [target] [macros] Execute build scripts of target run

% echo [–n] message Display message read/run

% error [status] [message] Display message, return exit status read/run

% exec command Execute command line read

% include [<"] file [>"] Include contents of makefile read

% restart [flags] Start omake again read/run

% set name [+]= value Set macro name with value run

% setenv name [=] value Set environment variable NAME read/run

% undef name Undefine macro name read/run
76 OMAKE Guide

%if condition
[makefile line]
.
.
.

[%elif condition]
[makefile line]
.
.
.

[%else]
[makefile line]
.
.
.

%endif

Each %if must be matched with an %endif. There can be several %elif or %elseif clauses and at

most one %else. Lines between %if or %elif and the next %elif, %else, or %endif are a block. If

condition is true, the makefile lines are read or the build-script lines are executed. If none of the

conditions is true and there is a %else clause, the block between %else and %endif is read or

executed.

If the % of these directives is in the leftmost column of the makefile, the directive is evaluated at

read time; otherwise, the directive is evaluated at run time. There can be white space between %
and the name of the directive. No shell-line prefixes are allowed before the %.

There are two specialized version of %if:

%ifdef name
%ifndef name

%ifdef is true if macro name is defined. %ifndef is true if macro name is not defined.

Conditional Directives and Continued Lines

Directives can be used to conditionally select the continued makefile text. For example:

OBJS = main.obj parse.obj \ (the continuing line)
%ifdef Debugging

version.obj \ (continues here if Debugging defined)
mymalloc.obj
3 - omake Reference 77

If the Debugging macro is not defined, the OBJS macro value is main.obj parse.obj. If the macro

is defined, the value is main.obj parse.obj version.obj mymalloc.obj.

The way this example is written makes the blank line after the %endif necessary because the

continuing line is continued on the first line after the %endif if Debugging is undefined. Using

an %else clause instead is done like this:

Conditional Expressions

The %if, %elif, and %while directives use the same conditional expressions. These expressions

compare strings and numbers and combine the comparisons with logical operations. As well, the

status of macros, command-line targets, and files can be determined. All macro references in the

conditional expression are expanded before the expression is evaluated.

The conditional expressions here are organized by type. Some examples follow each type. For the

examples, the following macros are assumed to be defined:

DEBUG = 0
MODEL = S
NONE =
OBJS = 1.obj 2.obj

Simple Expressions

You can use any of the following simple expressions:

value
'value'
"value"

%endif

a blank line (continues here if Debugging undefined)

OBJS = main.obj parse.obj \ (the continuing line)
%ifdef Debugging

version.obj \ (continues here if Debugging defined)
mymalloc.obj

%else

(continues here if Debugging undefined)
%endif
78 OMAKE Guide

If value is zero, the condition is false; all other values indicate true. Single or double quotes must

be placed around value if it contains spaces or is null.

Some examples of simple expressions:

%if ASTRING value is true
%if 12 value is true
%if 0 value is false
%if $(MODEL) value is true
%if $(DEBUG) value is false
%if $(NONE) ERROR! $(NONE) is null
%if "$(NONE)" value is false

Comparison Operators

The operators in Table 9 make a numerical or alphabetical comparison of two values, returning

1 if the comparison is true and 0 if false.

If both values start with a digit, the comparison is done numerically; otherwise, it is done

alphabetically. If either value contains spaces or is null, it must be enclosed in quotes. The

case-sensitivity of the string comparison is the same as for target names and can be set with the

.CASE_TARGET and .NOCASE_TARGET directives.

Some examples of comparison operators:

Table 9 Comparison Operators

Comparison Operators Value

value1 = = value2 True if value1 is equal to value2.

value1 != value2 True if value1 is not equal to value2.

value1 < value2 True if value1 is less than value2.

value1 <= value2 True if value1 is less than or equal to value2.

value1 > value2 True if value1 is greater than value2.

value1 >= value2 True if value1 is greater than or equal to value2.
3 - omake Reference 79

%if $(MODEL) == S true
%if ABC > DEF false
%if $(DEBUG) != 0 false
%if $(XYZ) == 1 error! $(XYZ) is null
%if $(XYZ)x == 1x false
%if $(OBJS)x != x error! $(OBJS) has spaces
%if "$(OBJS)" != "" true

Functional Operators (Also Called Built-In Functions)

All function operators take one or more arguments and return a value that is false (0), true (1) or

some other number. See Table 10.

File-Test Operators

The file-test operators return the state of files and directories. Most of these operators have been

made obsolete by the equivalent functional operators. See Table 11.

Table 10 Functional Operators

Functional Operators Value

%defined(name) True if macro name is defined.

%dir(name) True if name is a directory.

%exists(name) True if name is a file or directory.

%file(name) True if name is a file.

%length(name) The number of characters in $(name).

%make(name) True if name is a command-line target.

%member(name, list) True if name appears exactly as an element of list.

%null(name) True if macro name is undefined or if its expansion is null.

%time(name) The on-disk time stamp of file name.

%writable(name) True if file name is writable
80 OMAKE Guide

One example of the file-test operators:

Command-Execution Operator

The command-execution operator executes a command using the shell program. See Table 12.

Here is an example that runs a hypothetical mkproto program that freshens the prototype files

for its source files:

%if [mkproto *.c]
% abort MKPROTO could not freshen the prototypes.
%endif

You can ignore the exit status of the executed command by using an %if ... %endif pair that

doesn't encapsulate anything. The following idiom is seen in VC++ makefiles:

Table 11 File-Test Operators

File-Test Operators Value

–d name Same as %dir(name).

–e name Same as %exists(name).

–f name Same as %file(name).

–r name Same as %file(name).

–w name Same as %writable(name).

–z name True if name is a zero-length file.

%if –e builtins.mak (true if builtins.mak exists)

Table 12 Command-Execution Operator

Execution Operator Value

[command]

where the brackets are literal.

The exit status of the command. By convention,

commands return 0 if they succeed.
3 - omake Reference 81

!if [if exist MSVC.BND del MSVC.BND]
!endif

Logical Operators

The logical operators are used to combine other expressions. Each expression is evaluated from

left to right, but parentheses can be used to order the evaluation. See Table 13.

Unlike the C programming language, the logical expressions do not short-circuit. That is, exp1
and exp2 are always evaluated. For example:

Iteration Directives

The %while and %foreach directives provide iteration capability. At run time, they allow build

scripts to be executed multiple times. %foreach can also be used at read time to replicate makefile

lines.

The %foreach Directive

The form of the %foreach directive:

Table 13 Logical Operators

Logical Operators Value

exp1 && exp2 True if both exp1 and exp2 are true.

exp1 | | exp2 True if either exp1 or exp2 are true.

! exp True if exp is false. False if exp is true.

(exp) The same state as exp.

%if %defined(NONE) && %null(NONE) (true)
%if %defined(XYZ) && %null(XYZ) (false)
%if ! (! –f file || –z file) (false if file is absent or is zero length)
82 OMAKE Guide

%foreach name [in] list_of_names
[makefile lines]
.
.
.

%end

The list_of_names is a set of names separated by white space. The value of macro name is set to the

first name in the list_of_names, and the makefile lines after this %foreach and before %end are

read (at read time) or executed (at run time).

If the % of these directives is in the leftmost column of the makefile, the directive is evaluated at

read time; otherwise, the directive is evaluated at run time. No shell-line prefixes are allowed

before %foreach or %end.

When %end is reached, name is set to the next name in list_of_names, and the loop is restarted.

When there are no more names, the loop is done and name returns to its previous value. For

PM/CB compatibility, the optional keyword in is supported and %endfor can be used in place

of %end.

If %foreach is used at read time, the makefile lines between %foreach and %end are parsed

multiple times with name taking on successive values from the list_of_names. As the lines are

parsed, all macro references to name are expanded.

The following example illustrates the use of %foreach at read time:

%foreach var in main sub io
macro_$(var) = $(value_$(var)) $(other_macro)
$(var).obj : $(var).c

cl –c $(.SOURCE)
%endfor

All $(var) references are replaced with the current value of var. omake treats the previous

%foreach loop as if it has read the following makefile lines:

macro_main = $(value_main) $(other_macro)
main.obj : main.c

cl –c $(.SOURCE)

macro_sub = $(value_sub) $(other_macro)
sub.obj : sub.c

cl –c $(.SOURCE)
3 - omake Reference 83

macro_io = $(value_io) $(other_macro)
io.obj : io.c

cl –c $(.SOURCE)

Here is an example run-time use of %foreach to build a linker response file using the inline

response file syntax (see Inline Response Files on page 115):

The %while Directive

The form of the %while directive:

%while condition
[build script and directives]
.
.
.

%end

While condition is true, the build script and directives are executed. When %end is reached the

loop is restarted at the top, condition is reexpanded (because it may contain macros) and retested.

This is repeated until condition is false. No shell-line prefixes are allowed before %while or %end.

Effects of %foreach and %while when Using omake in a VOB

When you use omake in a VOB, there is a side effect with the %foreach and %while directives:

the build script in the CR does not expand loop macros. For a makefile like this one,

all:
%foreach platform in i386,alpha

$(MAKE) -f makefile.$(platform)
%endfor

you may expect the configuration record to include the commands that were executed. For

example:

project.exe : $(OBJS)

link @<< (link @response_file)
%foreach x in $(.SOURCES)

$x (adds each .obj +)
%end

(adds a blank line)
$(.TARGET); (add the executable name)
<< (end the response file)
84 OMAKE Guide

omake -f makefile.i386
omake -f makefile.alpha

Instead, you get a copy of the build script:

%foreach platform in i386,alpha
omake.exe -f makefile.
%endfor

Note also that the platform macro has a value only while inside the loop, so the macro in the

configuration record is expanded to nothing.

Interrupting the Iteration

%break and %continue interrupt the iteration. %break stops the iteration immediately.

%continue restarts the iteration at the top. For %while, the condition is reexpanded and retested.

For %foreach the name is advanced to the next in the list_of_names.

Another Method of Iteration

The ! shell-line prefix iterates the build script for elements of either the .SOURCES (or **) or

.NEWSOURCES (or ?) macro, depending on which appears first on the build script. During

iteration, ${.SOURCES} (or $**) or ${.NEWSOURCES} (or $?) evaluates to each element, in turn,

of the macro value. We discourage the use of ! for iteration, preferring the explicit %foreach
directive.

A Sample Makefile

Here is a sample makefile that uses conditional and iteration directives:

%if defined(CV) (Read-time conditional)
CFLAGS = –Od –Zi

%else

CFLAGS = –Ox

%endif

io.obj : io.c

%while 1 (Loop forever)
 ––$(CC) $(CFLAGS) –c io.c >io.err

2>&1
(Compile and gather errors)

 %if $(status) == 0 (Run-time conditional)
%break (Quit if no compiler errors)
 %endif
3 - omake Reference 85

This example shows a compile-edit loop. The file io.c is compiled with all compiler messages

redirected into file io.err. The 2>&1 redirection is compatible with Windows NT and UNIX. It

means that standard error is redirected to standard output. The previous > io.err means standard

output is redirected into io.err. Together, they mean that standard error and standard output both

are redirected to io.err.

If the compile is successful, the %break directive breaks out of the %while 1 loop and erase the

io.err file.

Otherwise, notepad (the Notepad editor) is started and told to jump to the first error. After

Notepad finishes, check the time of the io.c file to see whether it is more recent than io.err,
indicating it has been changed. If it hasn't, omake breaks out of the compile-edit loop by calling

the %error directive. Otherwise, the loop restarts and the file is recompiled.

Other Percent Directives

Table 14 lists other percent directives, the times at which they are applicable, and their

descriptions.

 notepad –mnext_error io.c (Else edit the file)
 %if %time(io.c) < %time(io.err) (Was io.c written?)
%error Compile of $(.SOURCE) failed (No, exit with an error)
 %endif

%end

erase io.err (Remove the error file)

Table 14 Other Percent Directives (Part 1 of 6)

Directive
Appl.
Time

Description

%abort [status] [message] read,

run

At read time and run time, terminates omake with the

user-supplied exit status (1 if status is not supplied). If message is

supplied, omake prints it on the error output (standard error)

before terminating; otherwise, the termination is silent.

When you use %abort while running omake in a VOB, no

configuration records are written. Any output files created by the

build script before it executes %abort will not be derived objects.
86 OMAKE Guide

%chdir directory run Changes the current directory to directory. This is the directory in

which each subsequent build script starts. For example:

copyit:
%chdir subdir

omake $(MFLAGS)
%chdir ..

(change into subdir)
(do recursive Make)
(change back to parent)

The MAKEDIR macro is not affected by %chdir and its value is

always the directory omake started in.

%do [target] [macro[+]=value ...] run Executes the build scripts of the named target. The exit status of the

%do is the exit status of the last build script of target. If nothing

appears after the %do, this directive does nothing. If target does

not exist, omake issues a warning unless %do is preceded by the

@ shell-line prefix. During the %do, the attributes of target are the

combination of the attributes of the current target and of target,
with the current target having precedence.

macro=value is a macro definition that is in effect during this %do.

macro+=value appends value to the current value of macro. For

either form of redefinition, the old value is restored after the %do
is finished.

Spaces in target or between the start of macro and the end of value
must be enclosed in double quotes. Up to 10 macro definitions are

allowed per %do, separating the definitions with spaces. For

example, the directive
sub.obj : sub.c

%do COMPILE.c CFLAGS="–Od –Zi" OUT= –Fo$(.TARGET)
COMPILE.c :
%echo Compiling ==== $(.SOURCE) =====
cl $(CFLAGS) $(OUT) –c $(.SOURCE)

%echo Done ==== $(.SOURCE) =====

produces the following build scripts when sub.obj is updated:
Compiling ==== sub.c =====
cl –Od –Zi –Fosub.obj –c sub.c
Done ==== sub.c =====

Table 14 Other Percent Directives (Part 2 of 6)

Directive
Appl.
Time

Description
3 - omake Reference 87

When you use %do while running omake in a VOB, the

commands from the other build script are not included in the

configuration record. For the following makefile, any changes to

the rules to build MakeCFile do not cause derived objects built

previously to be out of date even though the executed commands

have changed:
.c.obj: $<

%do MakeCFile

MakeCFile:
@echo Building an object from a .C source file
$(CC) /c $<

%echo [–n] message [>[>] file] read,

run

Prints message either to standard output, or to file if redirected. The

message is followed by a line feed unless –n is specified.

%error [status] [message] read,

run

At read time, omake terminates with the user-supplied exit status
(1 if status is not supplied). At run time, this returns the exit status
which is treated like any other build script exit status. If message is

supplied, omake prints this message to the error output (standard

error) before terminating or returning the exit status.

%exec command_line read Executes the command_line and sets the status macro to the exit

status.

Table 14 Other Percent Directives (Part 3 of 6)

Directive
Appl.
Time

Description
88 OMAKE Guide

%include [< or "]name[> or "] read Reads the contents of name into this makefile. omake looks in

different places depending on whether the file is specified as name,

"name", or <name>.

If name is an absolute pathname, it is only looked for there.

Otherwise, "name" is looked for in the directory of the including

file, then in the directory of make.ini. For Windows NT, omake
looks in the directory of omake.exe, then in directories of the INIT

environment variable, and finally in directories of the INCLUDE

environment variable.

<name> is looked for in the same manner as is "name", except the

directory of the including file is not used.

For example:

%include c:\home\make.ini
%include <c:\home\make.ini>
%include make.sub
%include "make.tpl"

(use the absolute path)
(use the absolute path)
(use dir. of including file)
(use the search scheme)

%restart [command_line] read,

run

Restarts the make process. If command_line is not supplied , omake
is restarted with the original command line. This calls omake
recursively; it can be done at read time, and you don't have to keep

track of the command line.

When you use %restart while running omake in a VOB, %restart
writes a configuration record before restarting. Note that if a target

with %restart in the build script is ever winked in, the %restart
doesn’t occur. Therefore, if your build script has a rule to rebuild

the makefile and then has %restart to re-read the updated makefile

and continue building, this won’t have the desired effect if the

makefile is winked in. omake winks in the makefile, but no restart

occurs, and the old makefile is used for the rest of the build. In this

case, use –M or .MAKE_MAKEFILES to build the makefile before

reading it. In all other cases, mark any target with %restart in it as

.NOWINK_IN.

Table 14 Other Percent Directives (Part 4 of 6)

Directive
Appl.
Time

Description
3 - omake Reference 89

%set name [+]= value read,

run

Sets macro name to value at run time, although it can be used at read

time. Use += to append to the current definition. As an example,

the build scripts of the following set_debug_flags target sets the

LDFLAGS value to /CO and appends –Od –Zi to the CFLAGS
value:
set_debug_flags :
 %set LDFLAGS = /CO
 %set CFLAGS += –Od –Zi

Any white space between = and value is ignored. Any white space

between += and value is condensed to a single space.

%setenv name [=] value read,

run

Sets environment variable NAME (converted to uppercase on

Windows NT) to value. The variable is available to omake and to

the build scripts executed by omake. If NAME is also a macro, the

macro value is also updated to value. After omake terminates, the

variable reverts to its previous value.

The main use of this directive is in the .BEFORE special target to

set up the environment for the makefile. For example:
.BEFORE .MAKE :
 %setenv INIT=$(MAKEDIR);$(INIT)

We recommend that you not use this command with configuration

records at run time. It can cause evaluation of environment

variables to differ from run to run and prevents shopping from

finding an appropriate derived object to wink in. For example, in

one build, target A is built and changes the value of an EV; target

B is then built and references the value of that EV. The next time

the build is run, B may be built first and because A hasn’t modified

the environment variable yet, it runs differently than it did the first

time.

Table 14 Other Percent Directives (Part 5 of 6)

Directive
Appl.
Time

Description
90 OMAKE Guide

Compatibility with Other Make Utilities

For PM/CB compatibility, omake supports the %exit directive and %status functional operators.

For Microsoft NMAKE compatibility, omake supports the !CMDSWITCHES and !message
directives. See Appendix D, Compatibility and Emulation, for details.

Dot Directives

Dot directives (usually called directives, also) appear on a dependency line where the target

name is a period followed by uppercase letters. Dot directives only work at read time.

At read time, dot directives modify the operation of omake from the point the directive is

encountered in the makefile. Most command-line options have an equivalent dot directive.

The current state of each dot directive is kept by omake in a state macro with the same name as

the directive. For example, the .DEBUG directive sets the debugging mode and the $(.DEBUG)
is the value of the debugging mode. (The state macros are described in Predefined Macros: State
Macros on page 63 and listed in condensed form in Table 22 on page 139.)

Directives that are effective on only some operating systems are noted.

Some directives accept lists of patterns as their dependents. Pattern lists may contain the pattern

character %. When evaluating whether a name matches a pattern, the tail of the prefix of the

name (subtracting directory names as appropriate) must match the part of the pattern before the

%; the suffix of the name must match the part of the pattern after the %. For example,

%undef name read,

run

Undefines the macro named name.

When you use %undef while running omake in a VOB, the

configuration record is stored as if the %undef were not executed.

The %undef runs when the build script is executed, but if the

macro is evaluated after the %undef, the macro is expanded in the

configuration record with the value of the macro when the target

build began, even though the build script ran with the macro

expanding to nothing after the %undef.

Table 14 Other Percent Directives (Part 6 of 6)

Directive
Appl.
Time

Description
3 - omake Reference 91

/dir/subdir/x.o matches the patterns %.o, x.o, subdir/%.o, and subdir/x.o, but does not match

/dir/subdir/otherdir/x.o.

The following omake directives accept pattern lists:

.DEPENDENCY_IGNORED_FOR_REUSE:

.DO_FOR_SIBLING:

.INCREMENTAL_REPOSITORY_SIBLING:

.INCREMENTAL_TARGET:

.SIBLING_IGNORED_FOR_REUSE:

.WINK_IN:

Table 15 lists omake directives, their equivalent command-line options (if applicable), and the

actions that the directives perform.

Table 15 omake Directives (Part 1 of 10)

Directive Flag Action

.CASE_MACRO : By default, omake treats macro names in a

case-insensitive fashion. For this reason, the makefile

lines
Case = mixed
CASE = upper

define only one macro. That is, both $(Case) and

$(CASE) evaluate to upper . The .CASE_MACRO
directive makes macro names case-sensitive. Now the

lines above define two macros, Case and CASE.

The .NOCASE_MACRO directive makes macro

names case-insensitive.

.CASE_TARGET : By default, omake treats target names as

case-insensitive, so main.obj and MAIN.OBJ are the

same target. The .CASE_TARGET directive causes the

case of target names to be considered.

The .NOCASE_TARGET directive makes target

names case-insensitive.
92 OMAKE Guide

.DEBUG : value –# Selects debugging actions, as listed below:

0 Turn off all warnings

1 Display makefile lines as they are read

2 Warn about undefined macros when they get

expanded

4 Warn about unrecognized lines in the makefile

8 Leave behind automatic response and batch files

The values can be summed to combine message types.

Also, each .DEBUG directive adds its value to the

current value, which is initially zero. The .NODEBUG
directive turns off listed values. Here are some makefile

examples:
.DEBUG : 4 (warn about unknown lines)
.DEBUG : 0 (no warnings)
.DEBUG : 6 (warn about unknown lines and undef’d macros)
.DEBUG : 1 (and display makefile lines)
.NODEBUG : 1 (now don't display makefile lines)

.DEBUG_GRAPHICS : Run-time debugging uses line-drawing characters.

.DEBUG_PRINT : –p Selects the print debugging information mode.

.DEBUG_RUN : –d Selects the run-time debugging mode.

Table 15 omake Directives (Part 2 of 10)

Directive Flag Action
3 - omake Reference 93

.DEPENDENCY_IGNORED_FOR_REUSE :
file ...

Ignores the files when omake determines whether a

target object in a VOB can be reused (is up to date). By

default, omake considers that a target cannot be reused

if its dependencies have been modified or deleted since

it was built. This directive applies only to reuse, not to

winkin. Also, it applies only to detected dependencies,

which are dependencies that do not appear in the

makefile.

You can specify the list of files with a tail-matching

pattern; for example, subdir/%.module.

Unlike the files listed in most directives, the files on this

list refer to the names of dependencies, not to the

names of targets. As such, the directive may apply to

the dependencies of many targets at once. This

directive is most useful when identifying a class of

dependencies found in a particular toolset for which

common behavior is desired across all targets that have

that dependency.

.DO_FOR_SIBLING : file ... This directive is intended to be used in its negative

form (.NODO_FOR_SIBLING).

.NODO_FOR_SIBLING disables the creation of a

derived object for any file listed if that file is created as

a sibling derived object (an object created by the same

build rule that created the target). These sibling

derived objects are left as view-private files.

You can specify the list of files with a tail-matching

pattern, for example, %.lock.

Unlike the files listed in most directives, the files on this

list refer to the names of sibling objects, not to the

names of targets. As such, the directive may apply to

the siblings of many targets at once. This directive is

most useful when identifying a class of siblings found

in a particular toolset for which common behavior is

desired across all targets that have that sibling.

Table 15 omake Directives (Part 3 of 10)

Directive Flag Action
94 OMAKE Guide

.ENV_OVERRIDE : –e Causes macro definitions from the environment to take

precedence over macros defined in the makefile. The

negation is .NOENV_OVERRIDE.

.ENVMACROS : Causes macro definitions to be made of each

environment variable. The negation is

.NOENVMACROS.

.INCLUDE : file ... The files are included at this point in the makefile. Each

file is treated as if %include file happened at this point.

.INCREMENTAL_REPOSITORY_SIBLING :
file ...

The sibling files listed are incremental repository files

created as siblings of a primary target. They may

contain incomplete configuration information, and

should prevent omake from winking in the primary

target. This is a very special-purpose directive, useful

when a toolset creates an incremental sibling object,

and the user wants more manual control over that

object.

You can specify the list of files with a tail-matching

pattern, for example, %.pdb.

Unlike the files listed in most directives, the files on this

list refer to the names of sibling objects and not the

names of targets. As such, the directive may apply to

the siblings of many targets at once. This directive is

most useful when identifying a class of siblings found

in a particular toolset for which common behavior is

desired across all targets that have that sibling.

.INCREMENTAL_TARGET : tgt ... Merges configuration record incrementally for the

listed targets. In other words, this directive combines

information from instances of this target generated

previously with the current build of this target. This

directive is most useful when building library archives,

because typically only some of the objects going into a

library are read each time the library is updated.

You can specify the list of files with a tail-matching

pattern, for example, %.a.

Table 15 omake Directives (Part 4 of 10)

Directive Flag Action
3 - omake Reference 95

.KEEPDIR : –D Enables keep-directory mode. The first access of the

current directory or any search directory (see Search
Directories on page 106) to look for a file results in the

directory being read into memory and kept.

Subsequent accesses to the directory use the

in-memory version and occur much quicker. The

negation is .NOKEEPDIR.

.KEEPWORKING : –k Enables the keep-working mode. Any errors when

updating a target cause work on that target to be

stopped, but the make process continues. Because the

target was incompletely made, any other targets that

depend on it are prevented from being updated.

This mode is handy for long, unattended builds

because it maximizes the amount of making without

ignoring the exit status as the –i command-option

does. The negation is .NOKEEPWORKING.

.MACRO_CHAR : char Selects char as the new macro character. It is best to put

this directive in make.ini. For example, to change from

the default $ to + use the following:
.MACRO_CHAR : +

These characters cannot be the macro character:

() { } , : = # ' @ * < &

Table 15 omake Directives (Part 5 of 10)

Directive Flag Action
96 OMAKE Guide

.MAKE_MAKEFILE : –M Tells omake to make each makefile before trying to

read it.

In terms of implementation of this feature, omake
reads make.ini and checks whether

.MAKE_MAKEFILE is selected. If it is, omake makes

the first makefile and reads it. It then makes the next

makefile (if any) and reads it.

The make.ini file must supply the rule for making the

makefile. The .MAKE_MAKEFILE directive turns on

makefile making. You can put this rule in make.ini:
.MAKE_MAKEFILE
makefile:
 imake -I \im\rules

Doing an omake target uses imake to create the

makefile. You can also define different search

directories for different extensions with the .PATH.ext
macro. See Search Directories on page 106 for more

information.

NOTE: Be aware that the makefile may contain

information (such as the imake directory) needed to

extract the makefile itself. You must provide some

means of determining the imake directory from

make.ini or you must give the imake directory to

omake with a command-line macro.

.MS_NMAKE : –EN Turns on fullest Microsoft NMAKE emulation. A

discussion of the extensive NMAKE emulation

capability is in the section Microsoft NMAKE
Compatibility on page 158.

The .MS_NMAKE, .omake, and .POLY_MAKE are

exclusive modes and only one of them is true. That is,

only one of $(.MS_NMAKE), $(.omake) or

$(.POLY_MAKE) is 1 at any one instance.

Table 15 omake Directives (Part 6 of 10)

Directive Flag Action
3 - omake Reference 97

.NOCMP_SCRIPT : tgt ... Builds the specified targets as if the –O option were

specified; build scripts are not compared during

configuration lookup. This is useful when different

makefiles (and, hence, different build scripts) are

regularly used to build the same target.

The list of targets may be specified with a tail-matching

pattern, for example, %.obj.

.omake : –EO omake is set to its native emulation mode.

.POLY_MAKE : –EP Selects PM/CB emulation. A discussion of the

extensive PM/CB emulation capability is in the section

PM/CB (Intersolv Configuration Builder and PolyMake) on

page 145.

.REGEX_CHAR : char Selects char as the character that indicates special

regular expression character sequences. It is best to put

this directive in make.ini. For example, to change from

\ (the default) to ~ use this directive:
.REGEX_CHAR : ~

.REGEX_WILD : char Selects char as the regular expression wildcard

character that matches any single character. For

example, to change from . (the default) to ? use this

directive:
.REGEX_WILD : ?

.REJECT_RULES : –r Rejects all rules defined prior to this directive's

appearance. Use this directive at the top of make.ini to

reject omake's predefined rules. Use it at the top of

your makefile to reject all rules defined prior to the

makefile.

The –r command-line option is equivalent to a

.REJECT_RULES directive at the end of make.ini.

.RESPONSE.XXX : [response definition] Controls automatic response files (see Response Files on

page 110).

Table 15 omake Directives (Part 7 of 10)

Directive Flag Action
98 OMAKE Guide

.RULE_CHAR : char Selects char as the new inference rule character. It is

best to put this directive in make.ini. To change from

the default of % to * use this directive:
.RULE_CHAR : *

.SHELL : [.AUTO | .NOMULTI
| .NOREDIR] ... [program flags]

Names both the shell program and its flags and specifies

that the shell program be used to execute every build

script. The .NOSHELL directive specifies that all build

scripts are executed directly, without using the shell

program. However, the + (use shell) and : (suppress

shell) shell-line prefixes override any .SHELL and

.NOSHELL directives.

The .AUTO keyword tells omake to determine when

to use the shell program. Without this keyword, the

.SHELL directive specifies that the shell program is

used for every shell line.

The .NOMULTI keyword tells omake not to do special

processing for multiple-command shell lines. By

default, omake turns the multiple-command shell line

into a batch file, which is executed.

The .NOREDIR keyword tells omake not to handle

redirection of I/O on the shell line. By default, omake
handles redirection except |. With this keyword, only

the shell program handles redirection. If .NOREDIR is

used with .AUTO, any redirection on the shell line

causes the command to be executed by the shell

program.

A .SHELL directive that is not given a program reverts

to the remembered shell program:
.SHELL :

to execute every build script. The initial value of

.SHELL:

.SHELL : $(COMSPEC) /C

To use the MKS shell, use the following syntax:
.SHELL : “$(ROOTDIR)\mksnt\sh”

or, alternatively for the MKS shell, you could use:
.SHELL : “$(ROOTDIR)\mksnt\sh -c”

Table 15 omake Directives (Part 8 of 10)

Directive Flag Action
3 - omake Reference 99

.SIBLING_IGNORED_FOR_REUSE : file ... Ignores files when omake determines whether a target

object in a VOB can be reused (is up to date). This is the

default behavior, but this directive can be useful in

conjunction with the .SIBLINGS_AFFECT_REUSE
directive or –t command-line option. This directive

applies only to reuse, not to winkin.

You can specify the list of files with a tail-matching

pattern, for example, %.lock.

Unlike the files listed in most directives, the files on this

list refer to the names of sibling objects, not to the

names of targets. As such, the directive may apply to

the siblings of many targets at once. This directive is

most useful when identifying a class of siblings found

in a particular toolset for which common behavior is

desired across all targets that have that sibling.

.SIBLINGS_AFFECT_REUSE : –t Examines sibling derived objects when determining

whether a target object in a VOB can be reused (is up to

date). By default, omake ignores modifications to

objects created by the same build rule that created the

target (sibling derived objects). This directive tells

omake to consider a target out of date if its siblings

have been modified or deleted.

.SUFFIXES : [extension ...] Limits and orders the inference rules. .SUFFIXES is

provided for compatibility with other make utilities

and its use is discussed in the section Compatibility with
Suffix Rules (.SUFFIXES) on page 37.

Table 15 omake Directives (Part 9 of 10)

Directive Flag Action
100 OMAKE Guide

Compatibility with Other Make Utilities

omake supports many other directives for NMAKE, PM/CB, and Borland Make compatibility.

See Appendix D, Compatibility and Emulation for details.

3.9 Target Attributes

Target attributes are properties given to targets. Attributes can be either positive or negative, for

example, .ATTRIBUTE and .NOATTRIBUTE.

.UNIXPATHS : Determines where omake looks for the inferred

dependency when the current target name has a

directory component. omake first tries matching the

pathed target name against pathed inference rules.

When the .UNIXPATHS directive is used, the second

step is to match the full target name against unpathed

inference rules, effectively causing omake to look for

the inferred dependency in the same directory as the

target.

The default behavior, and the behavior when the

.NOUNIXPATHS directive is used, is that the second

step matches the file name of the target name against

unpathed inference rules, causing omake to look for

the inferred dependency in the current directory and in

the search directories.

.WINK_IN : tgt ... –W This directive is intended to be used in its negative

form (.NOWINK_IN). .NOWINK_IN specifies that

the configuration lookup is restricted to the current

view for the listed targets.

The list of targets may be specified with a tail-matching

pattern; for example, %.obj.

Table 15 omake Directives (Part 10 of 10)

Directive Flag Action
3 - omake Reference 101

Using Attributes

Attributes are given to targets on dependency lines, but there are two forms:

target [...] [attribute ...] : [dependencies ...]
attribute [...] : [target ...]

Each form assigns the attributes to the indicated targets. The first form places the attributes after

the targets and before the colon, and each target is given all attributes.

The second form has attributes only to the left of the colon and targets to the right. Each target is
given all attributes. If no targets are listed, the attributes are given to all targets defined in the

makefile after this line. This is very useful. To give all targets in a makefile an attribute, put a line

of this form before any other dependency lines. This example that gives all targets defined after

this line the .PRECIOUS attribute:

Attributes and Inference Rules

Inference rules can have attributes, and the target being made with the inference rule inherits the

additional attributes of the rule.

A target's attributes have a higher precedence than a rule's attributes. If a target and a rule specify

an inconsistent attribute, the target's attribute is accepted.

List of Attributes

Table 16 lists attributes and their definitions.

.PRECIOUS : (near the top of the makefile)
102 OMAKE Guide

Table 16 Attributes (Part 1 of 3)

Attribute Definition

.ALWAYS Always rebuilds this target, regardless of the results

of configuration lookup or the time stamps of its

dependencies. The –a command-line option is

equivalent to an .ALWAYS attribute for each target

in the makefile.

.CHAIN Enables chaining of inference rules. (See

Multiple-Step Inference Rules on page 33.)

.NOCHAIN disables chaining, which may increase

processing speed slightly.

.DEFAULT When omake is run without specifying any targets

on the command line, the first target (the default

target) is built. The lack of user control of the default

target makes it difficult to write generalized

makefiles that can be included by other makefiles.

The .NODEFAULT attribute indicates that this

target is not the default target. Use .NODEFAULT
for all non-rule targets in included, generalized

makefiles. That way a makefile can include the

generalized makefile without having the first target

of the generalized makefile be the default target.

In the generalized makefile you can put

.NODEFAULT as the attribute of each target, or put

.NODEFAULT :

at the top of the generalized makefile and
.DEFAULT :

at the bottom.

Note that targets defined in make.ini or in makefiles

included from make.ini are never the default target.
3 - omake Reference 103

.IGNORE When making a target, a build script that returns a

nonzero status causes omake to terminate unless the

target has the .IGNORE attribute. The –i
command-line option is equivalent to a .IGNORE
attribute for all targets. The status of individual

build scripts can be ignored with the dash (–)

shell-line prefix.

.INFER omake uses inference rules to look for the inferred

dependency for targets that have no build scripts. To

omit, the inference rule check for targets without

build scripts, give them the .NOINFER attribute. To

force the inference rule check for targets with build

scripts, give them the .INFER attribute.

.MAKE Overrides the –n and –q command-line options. It is

useful when executing omake recursively. For

example:
nt .MAKE :
 (cd msdos.dir ; omake $(MFLAGS))

If you execute omake –n nt, omake changes

directory into nt.dir and executes omake –n.

Without this attribute, the result is to display
(cd nt.dir ; omake $(MFLAGS))

Similarly, omake –q nt changes directory and

execute of omake –q.

The .MAKE attribute differs from the & shell-line

prefix, which overrides only the –n command-line

option. The appearance of $(MAKE) on the build

script also overrides only –n.

.NOCMP_NON_MF_DEPS : tgt ... Builds the specified targets as if the –G option were

specified; for each specified target, any dependency

not explicitly declared in the makefile is not used in

configuration lookup.

Table 16 Attributes (Part 2 of 3)

Attribute Definition
104 OMAKE Guide

3.10 Special Targets

omake uses some special targets at special times. The build scripts associated with these special

targets are used at specific times as described in Table 17.

.NOCONFIG_REC : tgt ... Builds the specified targets as if the –L option were

specified; modification time is used for build

avoidance, and no CRs or derived objects are

created.

.PRECIOUS When a build script returns a nonzero status, omake
checks whether the current target has been written.

If it has, omake deletes the target, which prevents

corrupted files from being used. This attribute

prevents the deletion of the target itself and of

chained targets.

.RULE Is set when the percent sign appears on a

dependency line. You can use the .NORULE
attribute to allow a target with % in its name.

On rare occasions, you may want to use .RULE to

specify an inference rule that does not use %.

Because % is a wildcard character, a rule without it

matches exactly one target name.

.SILENT A target's build scripts are displayed before being

executed unless the target has the .SILENT attribute.

The –s command-line option is equivalent to a

.SILENT attribute for every target in the makefile.

The @ shell-line prefix also prevents display of the

build script.

Table 16 Attributes (Part 3 of 3)

Attribute Definition
3 - omake Reference 105

Compatibility with Other Make Utilities

For PM/CB compatibility, we support .DEINIT, .EPILOG, .INIT, and .PROLOG. See

Appendix D, Compatibility and Emulation.

3.11 Search Directories

When omake looks for a file that has no path component in its name, omake’s default behavior

is to search only the current directory. The search can be tailored to include other directories, a

useful feature when your project is spread over multiple directories.

With omake’s search directory support you write dependency lines, such as

main.obj : main.c io.h

and have omake figure out where main.c and io.h are actually located.

Table 17 Special Targets

Special Target Usage

.AFTER : [source ...] After omake builds its last target and immediately before it

exits, any sources to .AFTER are built, and the build scripts of

.AFTER are executed. To execute the build scripts even when

using omake –n, give .AFTER the .MAKE attribute.

.BEFORE : [source ...] Before omake builds its first target, any sources to .BEFORE
are built, and then the build scripts of .BEFORE are executed.

To execute the build scripts even when using omake –n, give

.BEFORE the .MAKE attribute.

.DEFAULT[.ext] : If omake needs to update a target that has no build scripts,

omake looks for an inference rule that matches the target

name and uses the build scripts of the matched inference

rule. Each .DEFAULT[.ext] target is converted into an %.ext :

inference rule.
106 OMAKE Guide

Implied Location of Missing Files

omake uses the search directories to locate files. It is clear that if the file exists, the location of the

file is the directory it was found in. What happens if the file is missing? In this case omake
assumes that the missing file is located in the first directory of the appropriate search directory,

or . (the current directory) if none is appropriate.

Search Directory Macros

Search directories are set up with macro definitions. omake supports .PATH macros and VPATH
macros, but issues a warning if you use both.

The .PATH Macros

The .PATH[.ext] macros define the directories omake uses to find files that don't have a path

component. The optional .ext makes the .PATH.ext macro extension-specific. That is, .PATH.ext
defines the search directories only for files with extension .ext. The .PATH macro (with no

extension) controls the search for all files that aren't handled by a specific .PATH.ext.

The value of the .PATH macros is a list of directory names separated by semicolons (;). Here are

two examples:

.PATH = .;..

.PATH.obj = ..\obj

The first definition tells omake that all files can be found in . (the current directory) or .. (the

parent directory). The second definition tells omake that files with extension .obj can be found

in directory ..\obj (and in no other directory). Note that we have defined both a nonspecific

.PATH and an extension-specific .PATH.obj. omake uses directories defined in .PATH.obj to
search for files with the .obj extension, and uses .PATH for all other files.

Here is an example of a makefile that uses search directories:

OBJS = main.obj sub.obj io.obj
.PATH.c = ..

project.exe : $(OBJS)
link $(.SOURCES), $(.TARGET), $(.TARGET,B);

The .c files are located only in the parent directory (..). Because no .PATH macro is defined,

omake searches for all other files only in the current directory.
3 - omake Reference 107

The VPATH Macros

The VPATH macros are similar to the .PATH macros with one major exception: the VPATH
macros specify search directories in addition to the current directory. That is, the VPATH macros

always have . as the first directory.

Search Directories and Run-Time Macros

Macros in omake usually serve as a simple text replacement. However, the run-time macros

(.TARGET, .SOURCE, .SOURCES, and so on) include the location the target or source was

found. For example,

.PATH.obj = objs

main.obj : main.c
%echo $(.TARGET)

displays objs\main.obj because the main.obj target is located in the objs directory, and the

value of the .TARGET macro is the pathname of the target.

Here is a %.obj : %.c rule for Borland C that uses two run-time macros:

%.obj : %.c
$(CC) $(CFLAGS) –o$(.TARGET) –c $(.SOURCE)

The –o option names the output object file. $(.TARGET) is the name of the .obj file to be created,

including its path component, according to where omake found the file. If the .obj file was not

found, .TARGET is the implied location, either the first directory in .PATH.obj, if defined.

Otherwise, it is the first directory in .PATH, if defined, or finally, in the current directory.

Search Directories and File Lookup

When omake searches for a file that has no directory component, it looks in the appropriate

search directories. After the file has been located, omake assumes the file's location is permanent.

Occasionally, this behavior is in error. For example, suppose a project's current .c and .obj files

reside in a remote directory that .PATH references. You want to change a local copy of the

project's main.c and then compile and link the resulting local main.obj with the remote .obj files,

to produce a local .exe file.
108 OMAKE Guide

Here is your makefile:

%.obj : %.c
$(CC) $(CFLAGS) –c $(.SOURCE)

OBJS = main.obj io.obj keyboard.obj
.PATH = .;c:\remote

project.exe : $(OBJS)
link $(.SOURCES), $(.TARGET);

You change the local copy of main.c. If there is a remote main.obj but no local main.obj, when

you run omake, these commands are executed:

cl –c main.c
link c:\remote\main.obj c:\remote\io.obj c:\remote\keyboard.obj, project.exe;

The compilation uses the local main.c to produce a local main.obj, but the link uses

c:\remote\main.obj rather than the local main.obj. This is because there was no main.obj in the

current directory when omake started, and omake found main.obj in the c:\remote directory.

This example illustrates a general problem with omake. For reasons of speed, omake looks for a

file (target) one time only. After that, omake assumes the location of the target is constant. As you

have seen, this assumption can be wrong.

You can use the .REREAD target attribute to change this behavior. After executing the build

scripts that update the target, omake searches again for any targets with the .REREAD attribute

on disk. In the example, the make works correctly if the inference rule is given the .REREAD
attribute:

%.obj .REREAD : %.c
$(CC) $(CFLAGS) –c $(.SOURCE)

The inference rule has the .REREAD attribute because main.obj inherits the build scripts and

attributes of the matched inference rule.

Search Directories and Inference Rules

When omake tries to find an inferred dependency for an inference rule, it constructs a particular

file name. If the file name has no path component, omake tries the file name in each search

directory in order. Because each search directory is searched for each possible inferred
3 - omake Reference 109

dependency, omake runs more slowly with a large number of search directories. The –D
command-line option (keep directory) speeds up this search.

Debugging the Search Directories

To debug your search directory choices, use the –p command-line option to print a section titled

Search directories .

Compatibility with Other Make Utilities

For PM/CB compatibility, we support the .SOURCE directive, which is an additional way to

specify search directories. The .SOURCE directive can specify the search directory for specific

files, rather than for file extensions only.

For NMAKE compatibility, we support their search paths for dependents. See Microsoft NMAKE
Compatibility on page 158.

3.12 Response Files

Many programs (for example, Microsoft link and lib, Gimpel lint, and omake) can receive their

input from a response file. A response file is needed when the length of the build script exceeds

the Windows NT command-line limit of 1024 bytes.

omake supports:

➤ Automatic response files and variables, where it generates a response file or places long

command lines into an environment variable.

➤ Inline response files, where you place response file syntax around your build scripts.

The advantage of automatic responses (both files and variables) is that you don't worry about the

command-line limit. When the build script exceeds the limit, a response file or variable is

generated and the command is executed, using the response file or variable. You set up

automatic responses once, for your linker, librarian, and so on. Thereafter, the build script for

those programs can be arbitrarily long.

Inline response files are supported by a variety of other make utility vendors and omake
supports the syntax they use.
110 OMAKE Guide

Automatic Responses

A response class is a generalization that describes how and when to generate a response file or

variable. When a response class has been defined, you tell omake which program names accept

that class of response. We predefine most popular response classes, so you need only give omake
the names of programs that accept these predefined responses.

To tell omake which programs accept response files or use environment variables, use the

.RESPONSE.xxx directive, where xxx is a name of a response class. For example, we predefine a

LINK response class that describes the response file acceptable by Microsoft Link.

The .RESPONSE.xxx directive is used to define or modify a response class and to add program

names to an existing response class:

.RESPONSE.xxx : [parameter ...] [program ...]

The parameters describe the response class. Each program is either a base name (having neither

path nor extension) or a pathname. Normally, you use a base name only, but for special

circumstances you can use a pathname. If you use a pathname, you can have different response

classes based on the literal name of the shell-line program, the pathname to the shell-line

program, or the base name of the shell-line program.

Adding Program Names

To add program names to an existing response class, list them to the right of the directive. For

example, adding LINK-style automatic response file support for SLR Systems optlink and

Borland tlink is done as follows:

.RESPONSE.LINK : optlink tlink

The response classes are searched for program names in order from most recently defined to first

defined, so your use of a program name overrides any predefined usage.

Response Class Parameters

Table 18 shows the parameters, the meaning of each parameter and its default value, and

whether the parameter is used in response files and/or response variables.
3 - omake Reference 111

Defining or Modifying a Response Class

To define a new response class or to modify an existing response class, use a .RESPONSE.XXX
directive with only parameters. One of pre, suf, or env is required when defining or modifying

a response type.

If env is defined, the response uses an environment variable, otherwise a file is used.

Disabling a Response Class

A directive with neither parameters nor program names removes support for this response class.

For example, you can turn off all LINK response files with this directive:

.RESPONSE.LINK :

Table 18 Response Class Parameters

Parameter Meaning and Default
Used in
Files?

Used in
Variables?

pre=ppp ppp is the prefix before the response file. If ppp
contains white space it must be enclosed in

double quotes.

yes yes

suf=uuu uuu is the suffix (extension) of the response file. yes

env=eee 1 eee is the name of an environment variable. yes

in=num num is the shell-line length at which a response

file or variable should be generated. The default

is 1024 bytes.

yes yes

sep=s s is the character that separates the program's

logical lines on the command line.

yes

con=c c is the character that connects physical lines in

the response file into a single logical line.

yes

out=num num is the output line length of lines in the

response file. The default value is 76.

yes

1 The env parameter determines whether a response variable or response file is used. If env is

defined, an environment variable is used; otherwise, a response file is used.
112 OMAKE Guide

Response File Example #1

This directive defines response file support for Microsoft link:

.RESPONSE.LINK : pre=@ suf=.rsp sep=, con=+ link

This declares the LINK response class has a prefix of @, a suffix of .rsp, logical lines on the

command line are separated with commas, and physical lines in the response file are connected

into one logical line with +<ENTER>. This directive also declares that the program named link
accepts LINK-style response files. With this definition, the build script

link module1.obj module2.obj ... moduleN.obj, test.exe;

is executed as

link @tempfile.rsp

The prefix @ tells link that what follows is the name of a response file. tempfile is a unique name

of the form tempdir\MAKEnum, where num is a 5-digit number, and the response file suffix .rsp
appears as the extension of the name. The response file contents:

module1.obj module2.obj ... +
... +
... moduleN.obj
test.exe;

The first logical line module1.obj ... moduleN.obj is broken up in to several physical lines in the

response file, each line ending with +<ENTER>. The next logical line test.exe; appears as the next

physical line in the response file.

Response File Example #2

This directive adds response variable support for Microsoft CL:

.RESPONSE.CL : env=CL e:\c6\bin\cl.exe

The CL response class uses environment variable CL, and e:\c6\bin\cl.exe accepts this kind of

response. Because a pathname is used, the command line

cl /DRELEASE="Release 1.0" /DOS=nt /Ic:\local\include ...

becomes the command line

cl
3 - omake Reference 113

with environment variable CL having the value

/DRELEASE="Release 1.0" /DOS=nt /Ic:\local\include ..., but only if cl is found on the PATH

as e:\c6\bin\cl.exe!

Using Automatic Responses

Write the build script as if the length of the command line were unlimited. When the build script

gets too long, the automatic response is generated, a modified build script is executed, and the

automatic response is removed.

Generation of Automatic Responses

To generate an automatic response, omake determines whether the program name given on the

build script matches a .RESPONSE.xxx program name (the response names). To see whether

there is a match, omake does the following:

➤ If any response names have path components, it first compares the literal shell-line program

name with all response names. If there are no matches, it looks on disk for the pathname

that corresponds to the shell-line program name and compares the pathname to all

response names.

➤ If no match has been found yet, it compares the base name of the program and with the

response names.

The first match found determines the response class.

When the response class specifies a response file, the response file is generated if the build script

is longer than the in=num parameter.

When the response class specifies an environment variable and the build script is longer than the

in=num parameter, omake places the contents of the build script in the response environment

variable, appending to the value of the environment variable if it exists.

Deletion of Automatic Responses

Automatic response files are deleted after the build script that generated the response file is

executed, unless the –#8 command-line option was used. Each automatic response variable is

restored to its previous value after the build script that generated it executes.
114 OMAKE Guide

Built-In Automatic Responses

omake has built-in automatic response file support for Gimpel lint and Microsoft cl, lib & link.

Built-in Responses for Windows NT

.RESPONSE.STD: pre=@ suf=.rsp omake link link32 lib lib32 cl cl386

.RESPONSE.LINT : suf=.lnt lint

Inline Response Files

In addition to automatic response files, omake also supports response files coded inline in the

makefile. Here is the syntax for an inline response file:

target :
command [prolog] << [response_file]
[line copied to response file verbatim]
.
.
.
<< [epilog]

The first << introduces the response file; the last << terminates it. response_file names the file. If

the name is omitted, omake generates a unique name of the form tempdir\MAKEnum.rsp, where

num is a unique number. Everything between the pair of << is placed in the response file and the

command is invoked as

command prolog response_file epilog

The prolog and epilog are optional text. Usually, prolog is used to indicate that the following

argument is a response file, and @ is the most common prolog.

The epilog can be used for redirection or other text. There are three special words that can appear

in the epilog:

➤ KEEP specifies that the response file is not to be deleted

➤ NOKEEP pecifies that it is be deleted.

➤ ECHO specifies that the contents of the response file be displayed. omake also shows the

contents of the response file when the –n command-line option is used.
3 - omake Reference 115

Other build scripts can appear both before and after the inline response.

Deletion of Inline Response Files

Inline response files are deleted unless the –#8 command-line option is used, or the KEEP

keyword appears in the epilog. Response files named by omake are deleted after the build script

is executed. User-named response files are deleted immediately before omake exits.

Inline Response File Example

Here is an example of an inline response file for Microsoft LINK:

program.exe : $(OBJS)
link @<< $(MAKE_TMP)\link.rsp
$(OBJS,W+\n)
$(.TARGET)
$(.TARGET,B,>.map)
$(LIBS,W+\n)
$(.TARGET,B,>.def);
<< KEEP ECHO

Here, $(OBJS) and $(LIBS) are assumed to be strings separated by white space. The W macro

modifier replaces the white space with +<ENTER>, which is the appropriate line continuation for

Microsoft link. If OBJS has the value 1.obj 2.obj, and LIBS has the value 3.lib, these build scripts

evaluate to

link @$(MAKE_TMP)\link.rsp

where the contents of the response file are

1.obj+
2.obj
program.exe
program.map
3.lib
program.def;

The KEEP keyword has omake leave behind the response file. Otherwise, omake deletes it after

the build script finishes. The ECHO keyword tells omake to display the contents of the response

file after the link @$(MAKE_TMP)\link.rsp line is displayed. The default behavior is to display

the contents only when doing omake –n.
116 OMAKE Guide

Compatibility with Other Make Utilities

omake supports PM/CB local input scripts, NMAKE inline files and Borland Make's &&
redirection operator. See Appendix D, Compatibility and Emulation, for details.
3 - omake Reference 117

118 OMAKE Guide

44 Debugging Makefiles

This chapter describes the process of debugging omake makefiles.

4.1 Command-Line Options

The following options are useful for debugging makefiles that do not work correctly:

➤ The –#1 option displays each makefile line as it is parsed. Blank and comment lines are

removed, and conditional directives are shown in normal, expanded, and evaluated forms.

➤ The –p option displays omake's internal information. With this option, you can examine the

following:

➣ The values of all macros, to see where they were defined. Make sure they have the correct

values.

➣ All targets, their attributes, and their build scripts, to see where they were defined. This

list also shows which target is the default target.

➣ The inference rules, to see the rules known to omake.

➤ The –d option prints a run-time trace of omake. With this option, you can do the following:

➣ Ensure that the correct initialization file and makefile are being read.

➣ Watch omake use configuration lookup to compare the target to each dependency.
4 - Debugging Makefiles 119

➣ Watch omake search for inferred dependencies by using inference rules. Ensure that

omake attempts the inference rules you have defined. Cross-check with the –p flag.

For additional help with macros, the .DEBUG : 2 directive (–#2 option) causes omake to print a

warning if a macro is used without being defined.

Finally, the .DEBUG : 4 directive (–#4 option) warns about makefile lines that omake does not

know how to handle. This can catch misspellings of directives that you may have a hard time

detecting. This directive is especially useful if you are trying to use a makefile from some other

make utility.

4.2 Read-Time Debugging

To illustrate the process of debugging a makefile, the following command was executed:

omake –ndf demo –p –#1 CV=

This is the content of makefile demo:

List of modules, and target name.
#
TARGET = project.exe
OBJS = a.obj b.obj

The default target in the makefile
#
$(TARGET) : $(OBJS)

If CV is defined, compile for debug

#

%if defined(CV)

 CFLAGS = –Od –Z7 # compile for debug

 LINKFLAGS = -debug -debugtype:both

%else

 CFLAGS = –Ox # compile for size

 LINKFLAGS = # no special link flags

%endif
120 OMAKE Guide

Additional dependency informationyou think they should
#
b.obj : $(TARGET,B).h

PATH.h = .;C:\SRC\H

Output Produced by –#1

For the purposes of this example, an empty make.ini file was created. Here is the output, with

annotations in italics.

First, the initialization file make.ini is read:

Next, the makefile demo is read:

*** Read make.ini *** (Start reading the make.ini file)
*** Done make.ini *** (Done reading the make.ini file)

*** Read demo *** (Start reading the demo file)
 + ("+" if more than one blank or comment line was

skipped)

3: TARGET = project.exe ("num: " identifies current line number)
 4: OBJS = a.obj b.obj

+

 8: %if defined(CV) (Conditional directive is shown
 :---> true and evaluated)
 9: CFLAGS = –Od –Z7 (Conditional was true, so this line and
 10: LINKFLAGS = -debug -debugtype:both this line are processed)
 11: %else (End of first true conditional block)
 14: %endif (Lines are skipped until the "%endif")

+

 18: $(TARGET) : $(OBJS) (The default makefile target)

+

 21: b.obj : $(TARGET,B).h (An additional dependency)
 +

 23: .PATH.h = .;C:\SRC\H

*** Done demo *** (Done reading the "demo" file)
4 - Debugging Makefiles 121

Output Produced by –p

Following output by the –#1 option, –p prints out information internal to omake, including facts

about macros, targets, search directories, and inference rules. The output begins with this line:

The Macro Definitions

The first block of output is the macro definitions including the names and values of macros and

the location they were defined. The location is any of the following:

For brevity, most omake state macros have been omitted from this list:

*** Begin print out *** (Starts the -p printout)

built in Defined by omake, but changeable by you

predefined Defined by omake, but cannot be changed by you

command line Defined by you on the omake command line

file:number Defined by you in makefile file on line number

.DEBUG_PRINT = 1 # predefined (state macro: the
–p flag)

.omake = 1 # predefined (state macro:
emulation)

BUILTINS = C:\Program Files\Rational\ClearCase\bin\
make.ini

predefined (name of the
built-ins file)

CC = cl # built in (name of the C
compiler)

CFLAGS = –Od –Z7 # demo:9 (C compiler flags)
CV = # command line (command-line

macro)
IMPLIB = lib # built in

LINK = link # built in (name of linker)
LINKFLAGS = -debug -debugtype:both # demo:10 (linker flags)
MAKE = C:\Program Files\Rational\ClearCase\bin\

omake.EXE
built in (make location)

MAKEARGS = -ndf demo -p -#1 CV= # predefined (make command
line)

MAKEDIR = C:\SRC # predefined (make starting
directory)

MAKEFILE = demo # command line (name of the
makefile)

MAKEFLAGS = dnp -#1 # predefined
122 OMAKE Guide

The Search Directories

The search directories output lists both the extension-specific and nonspecific search directories.

The extension-specific directories are listed first:

*** Search directories ***
for .h : .\ C:\SRC\H\
all other files : .\

A .PATH macro is not defined, so all other files are searched for only in the current directory.

The Automatic Response Definitions

Following the search directories are all automatic response file definitions. Each line of output of

this section appears in exactly the form needed as if it were input to omake.

*** Automatic responses ***
.RESPONSE.WCC386: env=WCC386 pre=-u in=1024 wcc386
.RESPONSE.LINT: suf=.lnt out=76 in=1024 lint
.RESPONSE.STD: pre=@ suf=.rsp out=76 in=1024 wpp386 cl386 cl lib32 lib link32

The Inference Rules

Following the automatic response definitions is the list of inference rules:

MAKEMACROS = CV=“ “ # predefined

MAKEVERSION = 200 # predefined (make version)
MFLAGS = –dnp -#1 # predefined (command-line

flags)
OBJS = a.obj b.obj # demo:4

OPUS = 1 # predefined (you know this is
OPUS)

OS = NT # built in (name of OS)
TARGET = project.exe # demo:3
4 - Debugging Makefiles 123

*** Inference rules ***
* Suffix rules *
%.obj : %.c
 defined in: internal

$(CC) $(CFLAGS) -c $(.SOURCE)

%.obj : %.cpp
 defined in: internal

$(CPP) $(CPPFLAGS) –c $(.SOURCE)

%.obj : %.asm
 defined in: internal

$(AS) $(AFLAGS) $(.SOURCE);

%.obj : %.for
 defined in: internal

$(FC) $(.SOURCE) $(FFLAGS)

%.res : %.rc
 defined in: internal

$(RC) $(RFLAGS) -r $(.SOURCE);

%.exe : %.obj
 defined in: internal

%do %.exe

* Meta rules *
%.lib :
 defined in: internal

%if ! %null(.NEWSOURCES)
%if %exists(${.TARGET})
$(IMPLIB) -OUT:$(.TARGET) $(LIBFLAGS) $(.NEWSOURCES) $(.TARGET)
%else
$(IMPLIB) -OUT:$(.TARGET) $(LIBFLAGS) $(NEWSOURCES)
%endif
%endif

%.exe :
 defined in: internal

 $(LINK) -OUT:$(.TARGET) $(LINKFLAGS) $(.SOURCES) $(LINKLIBS)

The *Suffix rules* are rules that can be of the form .fromExt.toExt. The *Meta rules* are all

other inference rules.
124 OMAKE Guide

The Targets and Build Scripts

A list of the targets follows the inference rules. The default target is listed first.

The Final –p Output

Finally, after all –p output has appeared, you see this message:

*** Done print out ***

*** Targets and commands ***

>>> default target <<< (The first target in the makefile)
project.exe : a.obj b.obj (project.exe depends on a.obj & b.obj)
b.obj : project.h (b.obj depends on project.h)
4 - Debugging Makefiles 125

126 OMAKE Guide

AA Errors and Warnings

When omake encounters a problem, it produces an error, warning, or report:

➤ Errors are the most severe, causing omake to display a message followed by the word Stop .

omake does some deinitialization and quits.

➤ Warnings are less severe. A message followed by the text string (warning) is displayed and

omake continues.

➤ Reports are the least severe. A message is displayed and omake continues.

The diagnostic message uses either of these formats:

OMAKE: message.
OMAKE: file (line number): message.

In the second, number indicates the line in makefile file that produced the diagnostic. omake
displays the additional file and line information when possible.

A.1 Reducing Message Severity

When you use the –i command-line flag or dash (-) build-script prefix to ignore the exit status,

some error messages are downgraded to report messages. For example, if a build script returns

an exit status of 4, omake displays the following error message and quits:

OMAKE: Shell line exit status 4. Stop.

However, if the build script is prefixed with the dash, the report message is
A - Errors and Warnings 127

OMAKE: Shell line exit status 4 (ignored)

and omake continues.

A second common mode is omake's keep-working mode, specified with the –k command-line

flag or .KEEPWORKING directive. If omake is in this mode and encounters a problem when

executing a target's build scripts, it stops updating the target immediately. In this mode some

error messages are downgraded to report messages. For example, the previous error message is

now this:

OMAKE: Shell line exit status 4 (keep working)

A.2 Error Messages and Explanations

In Table 19, the diagnostic messages that are followed with the text

[(ignored) | (keep working)] are error messages that are downgraded to report messages if

either the ignore exit status or keep working mode is in effect.

NOTE: All messages that start with Test: are errors in the conditional expression tester.

Table 19 Error Messages (Part 1 of 6)

Message Severity Explanation

Bad foreach 'line' error The foreach line has an incorrect syntax. The correct

syntax is

%foreach name [in] list_of_values

Bad transformation macro error The PM/CB transformation macro had an incorrect

specification.

break/continue without while/foreach error A %break or %continue has occurred without a

preceding %while or %foreach.

Can't @include 'name' warning File cannot be read with the @ macro modifier.

Can't create lock in 'directory' error omake creates a lock file in the directory and bases the

name of its response, swap, and batch files on the name

of the lock file. The directory is either the value of the

MAKE_TMP macro (if defined) or the current

directory.
128 OMAKE Guide

Can't %do 'name' warning The %do directive specified a nonexistent target name.

Use @ as a shell-line prefix before the %do to inhibit this

warning.

Can't find 'program' on PATH

[(ignored) | (keep working)]

error or

report

omake cannot execute the current build script because

the program was not found in any of the directories

specified in the PATH environment variable.

Can't have : and :: dependencies for 'target' warning The target was given on the left side of a regular (single

colon) dependency and also on the left side of a

double-colon dependency. These cannot be mixed.

Can't have both .PATH.ext and VPATH.ext error Both .PATH.ext and VPATH.ext macros were specified,

but omake does not know which macro to use to

determine the search directories.

Can't open file report

or error

The version control or library file can’t be opened for

reading or writing.

Can't open batch file 'file' error When executing multiple commands (see Using
Multiple-Command Build-Script Lines on page 73) the

commands are written to a batch file and the batch file

is then executed. The probable cause of this error is that

the MAKE_TMP macro has not been set properly.

Can't open inline response file 'name' warning The inline response file name can’t be opened for

writing.

Can't open response file 'name' warning The automatic response file name can’t be opened for

writing.

Can't read makefile 'name' warning The makefile name can’t be read.

Can't read response file 'name' warning The response file indicated on the command line by

@name can’t be read.

Can't redirect 'file' error The redirection for file was specified incorrectly.

Can't undefine macro 'name' warning The macro name can’t be undefined because it is a

predefined macro.

Table 19 Error Messages (Part 2 of 6)

Message Severity Explanation
A - Errors and Warnings 129

COMSPEC not found error The COMSPEC environment variable, used to initialize

the name and flags of the shell program, was not found

in the environment.

Dependency-line wildcard 'spec' is null warning The wildcard specification spec didn’t expand to any file

names.

Device error

[(ignored) | (keep working)]

error or

report

Execution of the build script caused a device error.

Directive failed

[(ignored) | (keep working)]

error or

report

The directive on this build script failed.

Directive nesting too deep. Max 31 levels. error Only 31 levels of foreach, if, and while nesting are

supported, and your makefile has more than this.

%do macro missing '=' error A %do macro was missing the equal sign that is needed

for its definition. The most probable cause is that there

are spaces around it. If you need spaces, enclose them

(or the macro definition) in double quotes.

Don't know how to make 'target'
[(keep working)]

error or

report

omake has exhausted all means of making target. If
omake is in keep-working mode, it marks this target as

unusable and abandons work on it. Use the –d (debug)

and –p (print info) options to determine the cause.

else without if error An %else directive encountered without a preceding

%if.

elseif without if error An %elseif directive encountered without a preceding

%if.

end without while/foreach error An %end directive encountered without a preceding

%while or %foreach.

endif without if error An %endif directive encountered without a preceding

%if.

Exec 'command' failed error The %exec command directive cannot be executed.

Inline failed warning The current inline response file couldn’t be generated

correctly.

Table 19 Error Messages (Part 3 of 6)

Message Severity Explanation
130 OMAKE Guide

Internal error: number error Report the internal error number to Customer Support.

Invalid executable 'program'

[(ignored) | (keep working)]

error or

report

The specified program is not a valid executable.

Invalid SHELL 'program' warning The specified shell program was not found.

Macro 'name' has no value warning A run-time macro is used before its value was set.

Macro 'name' not found warning The macro called name is undefined. This message

appears only when the .DEBUG directive or –#
command line flag has been set to 2. When debugging

your makefiles, this helps catch misspellings.

Maketmp failed error The routine that generates temporary file names failed,

probably because the directory for the temporary files is

full.

Max 8 response files for 'cmd' error The multiple-command build script generated more

than eight (the maximum) response files.

Missing character in 'name' error omake was looking for character to mark the end of

macro name but came to the end of the line instead.

No targets on dependency line error The dependency line being processed had no targets on

the left side.

Not enough memory to exec 'name'

[(ignored) | (keep working)]

error or

report

There is not enough memory to execute the specified

program name.

Nothing to make error No target was specified on the command line, and no

default target exists in the makefiles.

Option 'letter' needs value error A required argument with the command-line option

–letter was not specified.

Out of memory error omake ran out of memory. Your makefile may be too

large, or omake may have installed a TSR.

Recursive macro 'name=value' warning The macro called name has a recursive value; the value of

the macro refers to itself. omake ignores the recursion.

Table 19 Error Messages (Part 4 of 6)

Message Severity Explanation
A - Errors and Warnings 131

Regex: message warning The regular expression cannot be interpreted correctly;

message describes the reason.

Removing target report The target is removed because it was modified when an

error occurred in one of the build scripts that updated

it. Removal prevents partially written files (such as

object files) from being left behind when a compilation

fails. Targets with the .PRECIOUS attribute are not

removed.

Shell line exit status number
[(ignored) | (keep working)]

error or

report

The most recently executed build script had a nonzero

exit status of number.

Shell line too long

[(ignored) | (keep working)]

error or

report

The build script exceeded the command-line limit. Use

a response file. See Response Files on page 110.

Shell line without target error There is no target to which this build script belongs.

Build scripts are indented from the left column by a tab

or space character.

Test: bad expression "exp" error The expression exp cannot be parsed.

Test: bad first operand "op" error In a comparison, the first argument op cannot be parsed.

Test: bad operator "op" error The op is not one of the acceptable logical operators:

&&, | |, and = =.

Test: bad second operand "op" error In a comparison, the second argument op cannot be

parsed.

Test: no operand before "text" error There was no argument in a previous functional

operator.

Test: unexpected "text" error The expression is finished logically, but there was more

text on the line.

Test: unmatched quote "text" error Pairs of single or double quotes delimit strings that

contain white space. A quote in text was not matched.

Test: unknown function "name" error An expression of the form name() has an unrecognized

name.

Test: unknown operator "op" error The operator op is not recognized.

Table 19 Error Messages (Part 5 of 6)

Message Severity Explanation
132 OMAKE Guide

Test: ')' expected; got "text" error A right parenthesis is expected, but text was found

instead.

Too many %do macros. Max of 10. error More than 10 macro definitions were specified for each

%do directive.

Too many shell lines for 'target' warning A target on a regular (single colon) dependency line can

be given build scripts one time only. The additional

build scripts are ignored.

Unexpected what error The what is either end or endif , and there is no previous

%foreach, %while, or %if directive.

Unknown option 'letter' Only the command-line options listed by omake –h are

acceptable.

Unknown status

[(ignored) | (keep working)]

error or

report

The build script returned an unknown status.

Unmade 'target' due to source errors warning The –k flag was used to do the maximum useful work.

One of target's dependencies was not made because of

an error, so the target cannot be made.

Unrecognized .RESPONSE keyword

'word'

warning The .RESPONSE directive does not accept the keyword

word.

Unrecognized line 'line' warning omake cannot parse this line.

Unterminated inline from line number error The inline response file was not terminated before the

end of the makefile.

Unterminated what from line number error The what of if , elif , or else that started on line number
was not balanced before the end of the makefile was

reached.

User interrupt error The user typed <CTRL-BREAK> or <CTRL-C> while omake
was executing a build script.

Table 19 Error Messages (Part 6 of 6)

Message Severity Explanation
A - Errors and Warnings 133

134 OMAKE Guide

BB Exit Status Values

omake controls the execution of other programs, and the memory that omake itself uses is

unavailable to these programs while omake is controlling them. When omake exits, it returns an

exit status indicating the termination reason. The exit status can be tested by the command shell

or, if you are doing a recursive make, by omake itself. The exit status can also be accessed in the

.AFTER special target with the MAKESTATUS macro. For example:

.AFTER :
%if $(MAKESTATUS) == 3
%echo omake: The final build script exited with status: $(status)
%endif

Table 20 lists exit values and their meanings.

Table 20 Exit Status Values (Part 1 of 2)

Exit Status Meaning

0 Normal exit with no errors.

1 General purpose error if no other explicit error is known.

2 There was an error in the makefile.

3 A build script had a nonzero status.

4 omake ran out of memory.

5 The program specified on the build script was not executable.

6 The build script was longer than the command processor allowed.
B - Exit Status Values 135

7 The program specified on the build script cannot be found.

8 There was not enough memory to execute the build script.

9 The build script produced a device error.

10 The program specified on the build script became resident.

11 The build script produced an unknown error.

16 The user typed <CTRL-C> or <CTRL-BREAK>.

Table 20 Exit Status Values (Part 2 of 2)

Exit Status Meaning
136 OMAKE Guide

CC Built-In Macros and Rules

This chapter describes the macros and rules that omake uses.

C.1 Macros

This section describes general macros, state macros, and built-in macros.

Predefined General Macros

Table 21 lists predefined general macros; these macros cannot be redefined.

Table 21 General Macros (Part 1 of 2)

Predefined Macro Value

.NEWSOURCES The list of target dependencies newer than the target; all

dependencies when configuration lookup is enabled and the target is

not marked as .INCREMENTAL_TARGET

.SOURCE The inferred dependency or, if none, the first explicit dependency

.SOURCES The complete list of dependencies for a target

.TARGET The name of the target being made

.TARGETROOT The root name of the target being made
C - Built-In Macros and Rules 137

Predefined State Macros

These predefined macros return the state of omake's command-line flags and directives. In

Table 22, when yes appears in the Directive column, the value of the named macro is the state of

the like-named directive. The Flag column shows the command-line flag that is the equivalent of

the directive (if any).

NOTE: .ALWAYS, .IGNORE, and .SILENT are actually target attributes. They look like directives

when they appear on the target side of a dependency line without any dependencies.

Nevertheless, the .ALWAYS, .IGNORE, and .SILENT macros have the correct value, as if these

attributes were directives.

BUILTINS The pathname of the built-ins file

CWD The current working directory (the directory in which omake starts)

FIRSTTARGET The first command-line target or the first makefile target

INPUTFILE The current makefile being processed

MAKEARGS All command-line arguments

MAKEDIR The directory in which omake starts (same as CWD)

MAKEMACROS All command-line macros

MAKESTATUS The exit status with which omake exits

MAKETARGETS All command-line targets

MAKEVERSION The version of this omake executable

status The exit status of the last build script executed

Table 21 General Macros (Part 2 of 2)

Predefined Macro Value
138 OMAKE Guide

Table 22 State Macros (Part 1 of 2)

State Macro Directive Flag Macro Value

.ALWAYS Yes –a 0 or 1

.CASE_MACRO Yes 0 or 1

.CASE_TARGET Yes 0 or 1

.DEBUG Yes –# The current debug options

.DEBUG_PRINT Yes –p 0 or 1

.DEBUG_RUN Yes –d 0 or 1

.ENV_OVERRIDE Yes –e 0 or 1

.ENVMACROS Yes 0 or 1

.GLOBAL_PATH Yes 0 or 1

.IGNORE Yes –i 0 or 1

.IGNORE_MFLAGS –z 0 or 1

.KEEPDIR Yes –D 0 or 1

.KEEPWORKING Yes –k 0 or 1

.MAKE_MAKEFILE Yes –M 0 or 1

.MS_NMAKE Yes 1 –EN 0 or 1

.OMAKE Yes 1 –EO 0 or 1

.OPUS_52X Yes –E2 The list of compatibility features

.POLY_MAKE Yes 1 –EP 0 or 1

.REGEX_BACK The regex literal backslash

.REGEX_CHAR Yes The regex escape character

.REGEX_DOT The regex literal dot

.REGEX_WILD Yes The regex “match any character”

.REJECT_RULES Yes –r 0 or 1
C - Built-In Macros and Rules 139

Built-In Macros

Table 23 lists macros that are defined by omake, but can be changed.

.RULE_CHAR Yes The rule character

.SHELL Yes The shell program and shell flags

.SILENT Yes –s 0 or 1

.SUFFIXES Yes The list of suffixes

.UNIXPATHS Yes 0 or 1

1. Exactly one of $(.MS_NMAKE), $(.OMAKE), or $(.POLY_MAKE) is 1.

Table 23 Built-In Macros

Built-In Macro Definition Default Value

AS Assembler masm

CC C compiler cl

FC FORTRAN compiler f77l

IMPLIB Windows NT object librarian lib

LINK Object linker link

MAKE Pathname to command-line name

MAKEFILE First makefile read

OS The operating system NT

RC Resource compiler program rc

SHELLCOMMANDS List of internal shell commands Not predefined

Table 22 State Macros (Part 2 of 2)

State Macro Directive Flag Macro Value
140 OMAKE Guide

C.2 Macro Modifiers

When a macro is referenced, the value can be modified through the use of macro modifiers. To

modify a macro, reference it as follows:

$(name,modifier[,modifier ...])

name is expanded, and each modifier is applied in order to the elements of the value.

Table 24 lists macro modifiers and the actions they perform.

Table 24 Macro Modifiers (Part 1 of 2)

Modifier Action

number Selects the numberth element of the value.

>string Appends string to each element.

<string Prepends string to each element.

from=to Substitutes occurrences of from with to. If from does not appear in an element,

the element is not changed.

*F or * Each element is a wildcard spec evaluating to a list of files.

*D Each element is a wildcard spec evaluating to a list of directories.

@ Includes element as a text file.

@/from/to/ Includes lines in text file, matching lines with regex from and replacing the

matched part of the line with regex to.

A/ Converts element to an absolute file name using path separator /.

A\ Converts element to an absolute file name using path separator \.

A Converts element to an absolute file name using the default path separator \.

B Selects the base part of the element.

D Selects the directory part of the element.

E Selects the extension part of the element.

F Selects the file part of the element.
C - Built-In Macros and Rules 141

C.3 Inference Rules

The following list of rules have been predefined in omake and are available unless you use the

–r command-line flag or .REJECT_RULES directive.

Notice how the rules make use of macros. For example, the %.obj : %.c rule invokes the program

$(CC) with the flags $(CFLAGS). In your makefile, set CFLAGS to the flags to be passed to the

compiler.

C source to object file, using the Microsoft C/C++ compiler:

LC Converts the element to lowercase.

Mregex Chooses elements that match regular expression regex.

M"spec" Chooses elements that match file specification spec.

Nregex Chooses elements that do not match regular expression regex.

N"spec" Chooses elements that do not match file specification spec.

P Selects the path part of the element.

R Selects the root part of the element

S/from/to/ Substitutes from (a regular expression) to to. If from does not match an

element, the element is not changed

UC Converts the element to uppercase.

Wstr Replaces white space between macro elements with str.

X Replaces element names with pathnames using the search directories.

Z Selects the drive part of the element.

CC = cl Windows NT
%.obj : %.c

$(CC) $(CFLAGS) –c $(.SOURCE)

Table 24 Macro Modifiers (Part 2 of 2)

Modifier Action
142 OMAKE Guide

C++ source to object file, using the Microsoft C/C++ compiler:

Assembler source to object file, using Microsoft MASM:

AS = masm
.%.obj : %.asm

$(AS) $(AFLAGS) $(.SOURCE);

FORTRAN source to object file, using Lahey FORTRAN:

FC = f77l
%.obj : %.for

$(FC) $(.SOURCE) $(FFLAGS)

Resource compiler script to resource file, using the Microsoft Resource Compiler:

RC = rc
%.res : %.rc

$(RC) $(RCFLAGS) –r $(.SOURCE)

Update an executable, using Microsoft link32 for Windows NT:

LINK = link
%.exe :

 $(LINK) –OUT:$(.TARGET) $(LINKFLAGS) $(.SOURCES) $(LINKLIBS)

Object file to executable, using the %.exe rule:

%.exe : %.obj
%do %.exe

Update a library, using Microsoft lib for Windows NT:

CPP = cl Windows NT
%.obj : %.cpp

$(CPP) $(CPPFLAGS) –c $(.SOURCE)
C - Built-In Macros and Rules 143

IMPLIB = lib
%.lib :

%if ! %null(.NEWSOURCES)
% if %file(${.TARGET})
$(IMPLIB) –OUT:$(.TARGET) $(LIBFLAGS) $(.TARGET) $(.NEWSOURCES)
% else
$(IMPLIB) –OUT:$(.TARGET) $(LIBFLAGS) $(.NEWSOURCES)
% endif
%endif

Compatibility with Other Make Utilities

The ccase-home-dir\builtins.cb and ccase-home-dir\builtins.nm files define the inference rules

used by PM/CB and NMAKE, respectively. omake reads these files when PM/CB or NMAKE

emulation is chosen; it searches for these files in the same manner in which it searches for the

make.ini file (see Locating the Initialization File on page 46).
144 OMAKE Guide

DD Compatibility and Emulation

omake achieves a great deal of compatibility with other make utilities, in that it understands the

makefiles and features of other makes. When a feature or operation of omake differs from that

of the other utilities, we provide emulation, so that omake operates like the other vendor’s make

utility.

D.1 PM/CB (Intersolv Configuration Builder and PolyMake)

omake is highly compatible with PolyMake up to v4.0PM/CB Compatibility and with Intersolv

PVCS Configuration Builder, to v5.1. omake supports all PM/CB macros and transformation

macros, library object modules, local input scripts, and most directives.

System Macros

omake supports the PolyMake/Configuration Builder system macros listed in Table 25:

Table 25 PM/CB System Macros (Part 1 of 2)

System Macro Value omake Macro

_Arguments The command-line arguments. MAKEARGS

_Cwd The current working directory. MAKEDIR

_Directory The current working directory. MAKEDIR
D - Compatibility and Emulation 145

_Exe The pathname of the omake program. MAKE

_FirstTarget The first command-line target or, if none, the

first makefile target.

FIRSTTARGET

_Flags The command-line flags. MAKEFLAGS

_FlagsMacros The command-line flags and macros.

_InputFile The current makefile. INPUTFILE

_Macros The command-line macros. MAKEMACROS

_PctStatus The status of last operation line. status

_Script The default or first-named makefile. MAKEFILE

_Source The source for current target. .SOURCE

_SourceRev Version control version of current target. .VERSION

_Sources The sources for current target. .SOURCES

_SysVer Operating system version: major.minor.

_TargRoot The root part of the current target name. .TARGETROOT

_Version The PM/CB version number. omake reports

v5.1.

M_ARGS See _MakeArgs above. MAKEARGS

MAKEARGS See _MakeArgs above. MAKEARGS

MAKEVER See _Version above.

PCTSTATUS See _PctStatus above. status

Table 25 PM/CB System Macros (Part 2 of 2)

System Macro Value omake Macro
146 OMAKE Guide

Transformation Macros

omake supports PM/CB v5.x, both long and one-letter names. When an omake equivalent

exists, it is listed in the right column of Table 26. Note that PM/CB macros work on text; omake
modifiers work on a macro, which is expanded into text and modified. To use the omake
equivalent, you need to define macro name with value text.

Table 26 PM/CB Transformation Macros (Part 1 of 2)

Trans. Macro Long name Result omake Equiv.

$[@,text] Include Include contents of file text. $(name,@)

$[c,str,begin,end] Clip Clip string str between begin
and end.

$[d,text] Directory Directory part of text. $(name,D)

$[e,text] Extension Extension part of text. $(name,E,.=)

$[f,path,list,ext] Filename Build file name from path, list
and ext.

$[l,text] Lower Convert text to lowercase. $(name,LC)

$[m,spec,text] Match Elements in text that match file

spec.

$(name,M"spec")

$[n,text] Normalize Normalize text as absolute file

name.

$(name,A)

$[p,text] Path Pathname of text. $(name,P)

$[r,text] Base Base name of text. $(name,B)

$[s,separator,text] Separators Replace text separators with

separator.
$(name,Wsep) 1

$[t,t1,t2,list] Translate Translate list mapping letters

t1 to t2.

$[u,text] Upper Convert text to uppercase. $(name,UC)

$[v,text] Drive Drive label of text.

$[w,text] FileList Wildcard expand file spec. text. $(name,*F)
D - Compatibility and Emulation 147

Built-In Functions

In conditional expressions omake accepts:

%status
This is the exit status of last build script. It is the same as $(status) in omake.

Built-In Operations (Percent Directives)

%exit [status]

This directive terminates the make process with exit status (0 if status isn't given). Before

terminating, the .DEINIT and .EPILOG special targets are run if they are defined.

.DEINIT is run only if .INIT was run.

Directives

omake supports most PM/CB directives. For read-time interpretation, the directive starts in the

first column of the makefile. For run-time interpretation, PM/CB emulation must be chosen and

the directive must be indented.

Table 27 provides short descriptions of the supported directives.

$[x,text] DirList Wildcard expand directory

spec. text.
$(name,*D)

none $[Root,text] Root name of text. $(name,R)

1. The separator can be enclosed in double quotes, which means that the separator must be
parsed for special character sequences. The sep is never enclosed in double quotes and
is always parsed for special characters.

Table 26 PM/CB Transformation Macros (Part 2 of 2)

Trans. Macro Long name Result omake Equiv.
148 OMAKE Guide

Table 27 PM/CB Directives (Part 1 of 3)

Directive
Applicable
Time

Description

.ExtraLine read time Causes an additional carriage return/linefeed to be

output after each build script is executed. The negation

is .NoExtraLine.

.Emulate [Builder | NMAKE] read time Sets the emulation mode to either Builder (PM/CB) or

NMAKE.

.Ignore read time Causes nonzero build-script status to be ignored.

.Include [=] file ... read time Reads each file. If PM/CB emulation is chosen, omake
looks for relative file names in the current directory. If

PM/CB emulation is not chosen, omake treats

.INCLUDE file the same as %include(file).

.KeepDir read time

run time

Same as the omake .KEEPDIR directive.

.KeepIntermediate read time

run time

Prevents intermediate files from being deleted.

.KeepWorking read time

run time

Same as the omake .KEEPWORKING directive.

.Keep_Lis read time

run time

Prevents local input scripts (inline response files) from

being deleted. The negative of this directive is

.NoKeep_Lis.

.KeepTemp read time

run time

Same as the .Keep_Lis directive.

.Lis_Comments read time Causes # in local input scripts to be considered literally,

rather than as a comment character. You can also use \#
to mean a literal #.

.Lis_File [=] [filename] read time

run time

Names the local input script file. Unlike PM/CB,

omake allows a blank filename to reenable automatic

generation of the local input script name.

.Logfile files read time Handled by omake as .PVCS_STORAGE : files
D - Compatibility and Emulation 149

.Ms_Nmake read time Same as the omake .MS_NMAKE directive.

.NoEnvMacros read time Same as the omake .NOENVMACROS directive.

.Order read time Same as the PM/CB .Suffixes : directive.

.Path.xxx [=] dir-1[;dir-2]... read time Treated as an omake .PATH.xxx = dir-1[;dir-2]... macro

definition.

.PermitComments read time Same as .Lis_Comments.

.Poly_Make read time

run time

Same as the omake .POLY_MAKE directive.

.Precious read time Same as the PM/CB .KeepIntermediate directive.

.RejectInitFile read time Same as the omake .REJECT_RULES directive.

.Remake read time Targets are fully made each time they are encountered

as sources.

.Shell [shell_program] read time

run time

Similar to the omake .SHELL directive, but without

automatic detection of when to use the shell program.

.Silent read time Build scripts are not displayed on the screen before

execution.

.Source [=] dir_list file_list read time Gives search directories to files. The dir_list is a

semicolon-separated list of directories. The file_list is a

space-separated list of filenames or file extensions.

When omake looks for a file, it sees whether the file

name or its extension is on any file_list; if it is, omake
searches for the file on the dir_list.

.Source [.ext] : [dir-1 dir-2 ...] read time This PM/CB .SOURCE dependency is identical to a

.PATH macro and is treated as an

.PATH.xxx = dir-1[;dir-2]... macro definition.

.Suffixes [:] read time Without a colon, this directive acts like omake's

.REJECT_RULES directive. With a colon, it acts like

the omake .SUFFIXES directive.

Table 27 PM/CB Directives (Part 2 of 3)

Directive
Applicable
Time

Description
150 OMAKE Guide

Reserved Targets

omake supports the following PM/CB reserved targets:

.DEINIT [:]
If the .INIT special target was used, the build scripts of the .DEINIT target are executed

immediately before the build scripts of .EPILOG are executed.

.EPILOG [:]
The same as the omake .AFTER special target. If emulating PM/CB, omake looks only

for .EPILOG. Otherwise, it looks for .AFTER, and then .EPILOG.

.INIT [:]
This target's build scripts are executed immediately before any other build scripts.

.PROLOG [:]
The same as the omake .BEFORE special target. If emulating PM/CB, omake looks only

for .PROLOG. Otherwise, it looks for .BEFORE, and then .PROLOG.

Local Input Scripts

omake accepts the PM/CB response file syntax:

target :
command [prolog] < X<[text]

build script
.
.
.
< [epilog]

.VolatileTargs read time Same as the PM/CB .Remake directive.

Table 27 PM/CB Directives (Part 3 of 3)

Directive
Applicable
Time

Description
D - Compatibility and Emulation 151

where X is a single character, usually @. If text is given, it is copied to the response file. Each build

script is then copied to the response file. The command syntax is

command prolog Xtempfile epilog

where tempfile is a temporary file with a name of the form makenum.rsp

Operation-Line Modifiers

omake supports all PM/CB operation-line modifiers, which are listed in Table 28.

PM/CB Emulation

omake is highly compatible with PM/CB, but there are differences in how they read makefiles

and in how they run. In PM/CB emulation mode,omake operates like PM/CB.

Table 28 PM/CB Operation-Line Modifiers

PM/CB operation-line modifier omake shell-line prefix

(Always) &

(ExtraLine) >

(Ignore)[status] - [status]

(Iterate) !

(NoShell) : (* if emulating PM/CB)

(Shell) +

(Silent) @

(TrackErrors) ~
152 OMAKE Guide

Emulation at Startup Time

If PM/CB emulation mode is selected at startup time, omake emulates the PM/CB command

line and selection of the built-ins file. Selection of PM/CB emulation at startup time is done with

the –EP flag, either on the command line or in the OMAKEOPTS environment variable.

To determine the startup emulation mode, omake examines the OMAKEOPTS environment

variable for –Ex flags. It then examines the command-line for –Ex flags. If the last –Ex flag is –EP,

omake starts up emulating PM/CB.

Emulation After Startup Time

The .POLY_MAKE directive turns on PM/CB emulation mode from the point it appears in the

initialization file or any makefile.

The Command Line

First the OMAKEOPTS environment variable is parsed for options. Then, if omake is emulating

PM/CB at startup, the MAKEOPTS and BUILD environment variables are parsed for options. Then

the command line is parsed. Parsing entails the following:

➤ Handling the case-insensitivity of the PM/CB command line.

➤ Mapping options into omake equivalents. The help screen switches to the options available

with our emulation of PolyMake v4.0 and Configuration Builder v5.x. The help screen's

contents are stored in the file omhelp.cb.

➤ Handling the long-named Configuration Builder v5.x options.

➤ Warning about unconvertible command-line options.

Without emulation at startup, the command line is as documented in the section Command-Line
Options on page 41.

The Emulation File (BUILTINS.CB)

If omake is emulating PM/CB at startup, omake reads its internal rules and macros. It then looks

for builtins.cb first in the directory of make.ini, in the directory of omake.exe, and along

directories of the INIT environment variable, in that order. If builtins.cb is found, it is read for

macros and rules that give more complete PM/CB emulation.
D - Compatibility and Emulation 153

The Initialization File (TOOLS.INI)

PM/CB distinguishes between an initialization file and a built-ins file. Both contain initialization

information. The initialization file is almost always the file named tools.ini. If omake is

emulating PM/CB at startup, omake searches for the initialization file and reads the first one it

finds :

1. Named by the –Init command-line option

2. Named tools.ini in the current directory

3. Named tools.ini in a directory named by the INIT environment variable

If omake finds the initialization file, it reads information in the file starting with the section

heading [PVCS.

The BUILTINS File

If omake is emulating PM/CB at startup, omake searches for the built-in file, and reads the first

one it finds:

1. Named by the –b command-line flag

2. Named builtins in the current directory

3. Named builtins.mak in the current directory

4. Named by the BUILTINS environment variable

If omake is not emulating PM/CB at startup, it uses the method documented in the section

Locating the Initialization File on page 46 to locate the initialization (built-ins) file.

The Makefile

If omake is emulating PM/CB at start up, omake looks for the default makefile in this order:

script.bld, script, makefile, makefile.mak. The first file found is read. When trying to read a

makefile file that doesn't have an extension, omake tries file, file.bld, and file.mak, in that order.

Makefile Contents

If omake is emulating PM/CB:

➤ The line continuation character sequence \<ENTER> is removed from the input.
154 OMAKE Guide

➤ The ^ character is used for quoting and produces the following effects:

➤ The PM/CB-compatible directives listed in the previous section can be used at run time as

well as read time.

➤ The %end directive is the same as %endif. Without emulation, %end terminates a

%foreach or %while directive.

➤ .INCLUDE file searches only the current directory.

➤ Makefile macro names are case-sensitive.

➤ The =+ macro (prepend) definition is supported.

➤ Environment variables override built-in macro definitions.

➤ The MFLAGS macro is the same as _FlagsMacros.

➤ The TMP, TEMP, and WORK environment variables are tried, in order, for the location of the

directory where temporary files are created. Without emulation, omake uses the value of

the MAKE_TMP macro.

➤ Duplicate entries in a target's dependencies are allowed. Without emulation, omake
removes duplicate dependencies.

Operation Lines (Build Scripts)

If omake is emulating PM/CB:

➤ The shell program is used for executing every build script. The * and (NoShell) prefixes

suppress execution of the shell program for this build script.

➤ The build scripts cd dir and chdir dir both change to directory dir and stay there until

changed back explicitly. Otherwise, omake starts each build script from the directory that

omake started in the $(MAKEDIR) directory.

Character Effect

^^ literal ^
^<ENTER> literal newline

^$ literal $
^\ literal \
^# literal #
D - Compatibility and Emulation 155

➤ The : modifier means swap out of memory and * means suppress shell. Without emulation,

* means swap out and : means suppress shell.

➤ The - shell-line prefix does not print the Error code ... (ignored) message.

Unsupported PM/CB Features

When running PM/CB makefiles with omake, be aware of the lack of support for some PM/CB

features. The list here provides a workaround, when it is available.

Unimplemented Directives and Reserved Targets

Iteration Groups

An iteration group does an implicit iteration over the $? macro. For example:

test.lib : test.obj chart.obj input.obj
{
lib contract.lib –add $? omake m2 noask
}

The %foreach directive can be used in its place:

test.lib : test.obj chart.obj input.obj
%foreach file in $?

lib contract.lib –add $(file) omake m2 noask
%endfor

.ArcFile Tells PM/CB about ARC compression files.

.ExamineCmt (also

known as .Examine_Cmt)
Checks comments for line continuation. Although this directive

is unsupported, omake handles line continuation inside

comments.

.Error[.xxx] Reserved target; supplies auxiliary instructions for building

targets when a build script returns a nonzero exit status. Use

conditional directives instead.

.FootPrint Directive; controls foot printing targets with an internal

comment record.

.Ms_Make Selects Microsoft MAKE emulation.

.NoEnvInherit Prevents the environment from being passed to child processes.

.Rebuild Directive; rebuilds previous versions of applications.

.ZipFile Directive; tells PM/CB about ZIP compression files.
156 OMAKE Guide

Suffix Dependencies

Suffix dependencies allow the specification of a set of suffixes to be tried when building a

particular target. This is not supported by omake.

Command-Line Flags

The following PM/CB command-line flags are not supported: –Batch, –C, –Compile,

–NoEnvInherit, or –Rebuild.

Makefile Contents

The ~ suffix on archive extensions to handle like-named files in different directories is not

supported. Instead, use a pattern-matching rule , such as this:

%.c : c:/apps/archives/%.c
get –q –w $(_SourceRev) $(_Source)($(_Target))

The _DefaultSuffixes system macro is not supported.

Shared Definitions

omake does not parse the PVCS Version Manager configuration file automatically.

Operation-Line Modifiers

For PM/CB, the (Always) operation-line modifier (Shell-Line Modifiers) overrides the –Touch
flag. This is not supported in omake. You can use the .MAKE attribute instead. For example:

PM/CB
recursive :

(Always)$(MAKE) $(MAKEFLAGS)

Omake
recursive .MAKE :

$(MAKE) $(MAKEFLAGS)

Built-In Operations

The built-in operations that handle foot printing are not supported. These operations are

%EAStamp, %ExeStamp, and %ObjStamp.
D - Compatibility and Emulation 157

D.2 Microsoft NMAKE Compatibility

omake is highly compatible with Microsoft NMAKE up to version 1.3 (the version supplied with

Visual C++). omake supports all NMAKE directives, macros, paths, and rules.

NMAKE Directives

omake supports the following NMAKE directives:

!CMDSWITCHES {+|– } opt

This read-time directive turns on (+) or off (–) one or more options, opt.

!message message

This read-time directive is the same as the %echo message directive.

NMAKE Emulation

omake is highly compatible with NMAKE, but there are differences in how they read makefiles

and in how they run. omake's NMAKE emulation mode causes omake to operate like NMAKE.

Emulation at Startup Time

If NMAKE emulation mode is selected at startup time, omake emulates the NMAKE command

line and selection of the initialization file. Selection of NMAKE emulation at startup time is done

with the –EN flag, either on the command line or in the OMAKEOPTS environment variable.

To determine the startup emulation mode, omake first examines the OMAKEOPTS environment

variable for –Ex flags, and then the command-line for –Ex flags. If the last –Ex flag is –EN, omake
starts up emulating NMAKE.

NOTE: If you want submakes (recursive invocations of omake) to inherit NMAKE emulation

mode, you must specify the –EN flag in the OMAKEOPTS environment variable.
158 OMAKE Guide

Emulation After Start-Up Time

The .MS_NMAKE directive turns on NMAKE emulation mode from the point it appears in the

initialization file or any makefile.

The Command Line

The OMAKEOPTS environment variable is parsed for options, and then the command line is

parsed. Parsing entails the following:

➤ Handling the case-insensitivity of the NMAKE command line.

➤ Handling all NMAKE command-line options.

➤ Switching the help screen to the options available with NMAKE v1.3. The help screen's

contents are stored in the file omhelp.nm.

Without emulation at startup, the command line is as documented in the section Command-Line
Options on page 41.

The Emulation File (BUILTINS.NM)

If omake is emulating NMAKE at startup, omake reads its internal rules and macros, and then

looks for builtins.nm in the directory of make.ini, in the directory of the omake.exe file, and

along directories of the INIT environment variable, in that order. If builtins.nm is found, it is read

for macros and rules that give more complete NMAKE emulation.

The Initialization File (TOOLS.INI)

If omake is emulating NMAKE at startup, omake reads the tools.ini file found in one of these

directories:

➤ In the current directory

➤ In a directory named by the INIT environment variable

If omake finds the initialization file, it reads information in the file starting with the section

heading [NMAKE.

Makefile Contents

If omake is emulating NMAKE:
D - Compatibility and Emulation 159

➤ The ^ character is used for quoting and produces the following effects:

➤ The !else if, !else ifdef, and !else ifndef directives are supported.

➤ Macro definitions of the form

VAR = ... $(VAR) ...

are supported and cause $(VAR) to be expanded before VAR is redefined. Other macro

references in the macro value are not expanded.

➤ Macro definitions of the form

ENVVAR = value

where ENVVAR is an environment variable, assign to the ENVVAR macro the value, which is

also exported to the environment. If the –E command-line flag is used, makefile macros

cannot override environment macros, and this macro redefinition is ignored.

➤ Search paths for dependents are supported. These look like this:

forward.exe : {\src\alpha;d:\proj}pass.obj ...

➤ Inference rule search paths are supported. These look like this:

➤ Inference rules for targets that have a directory component look for the inferred source in

the directory of the target.

➤ The !include file directive is supported. If file is an absolute pathname, it is used; otherwise,

omake looks for file in the current directory, and then in the directory of the including file. If

file appears inside angle brackets (for example, <file>), omake then looks along the

directories in the INCLUDE environment variable.

Macros

If omake is emulating NMAKE, the following macro features are supported:

Character Effect

^^ literal ^
^<ENTER> literal <ENTER>

^$ literal $
^\ literal \
^# literal #

{fromdir}.fromext{todir}.toext : (build script for inference rule)
160 OMAKE Guide

➤ Command-line macros are exported to the environment, and become available to recursive

makes.

➤ Environment variables override built-in macro definitions (see the section Macros on

page 52).

➤ The MAKEFLAGS macro is exported to the environment.

➤ Non-run-time macros are expanded at parse time.

Most other make programs expand macros when a build script is run, but NMAKE expands

macros when it parses the makefile. When the rule is parsed, it is defined with the expanded

value of the macro, rather than with a reference to the macro. (The reference would be

expanded at run time).

EXCEPTION: NMAKE evaluates run-time macros at run time, because the values to which

they are set are based on the target.

Therefore, the following makefile is evaluated differently by NMAKE and clearmake:

FOO=A
rule:

@echo $(FOO)
FOO=B

In NMAKE, $(FOO) is evaluated at parse time, so building rule echoes A. In clearmake,

$(FOO) is evaluated at run-time and its value after parsing is B, so building rule echoes B.

Build Scripts

If omake is emulating NMAKE, the following build-script features are supported:

➤ The shell program is used for executing every build script.

➤ The build scripts cd dir and chdir dir both change to directory dir and stay there until

changed back explicitly.

➤ A set var=val build script is treated specially and sets the environment variable VAR to the

value val. That is, this build script is treated exactly like the omake directive %setenv
var=val.

➤ The filename-parts syntax is supported. You can use this to get at the components of the

name of the first source file. The complete file name is represented with the %s syntax. Parts

of the file name are represented with this syntax: %| [parts] F , where parts is zero or more of
D - Compatibility and Emulation 161

the following letters: none, the complete name; d, drive; p, path; f, file base name; e, file

extension.

➤ Shell-line prefixes are limited to @, -, and !. The ^ prefix stops processing of prefixes.

➤ The # character is not treated as a comment in build scripts.

Inline Response Files

omake supports the NMAKE response file syntax, except that multiple inline response files on a

single build script are not support.

NMAKE and omake allow the keywords KEEP or NOKEEP in the epilog of the inline response

file. KEEP causes the response file to be kept (that is, not deleted). The default is NOKEEP.

Unsupported NMAKE Features

Multiple inline response files on a single build script are not supported.

Arithmetic operators are not supported in preprocessing expressions.

D.3 Opus Make v5.2x Compatibility and Emulation

omake is not entirely backward compatible with Opus Make 5.2x.

The –E2 command-line flag makes omake emulate Opus Make 5.2x.

omake has the following compatibility and emulation features:

comment v5.2x treated line continuation before comment detection, so a comment

character (#) in a continued line causes the rest of the continued line to be

ignored. omake treats # as a comment only until the end of the current physical

line.

do In v5.2x, macro definitions on the %do line were separated by a comma (,). In
omake, they are separated by white space and must be enclosed in double

quotes if they contain white space.
162 OMAKE Guide

D.4 Borland Make Compatibility

The following sections describe omake’s compatibility with Borland Make.

➤ Automatic dependencies

omake knows how to read the dependency information stored in object files created from the

Borland bcc compiler.

➤ Special targets

➤ Inline response files

omake accepts the inline response file syntax:

infer v5.2x searched for the inferred source unless explicitly told not to with the

.NOINFER attribute. omake searches for the inferred source only for targets

without build scripts but the .INFER attribute can force it to search.

noiterate The shell-line prefix ! means iterate this build script. Note that ! can also

indicate a directive; the rule is that it indicates a directive if it can; otherwise, it

is a prefix.

! echo $(.SOURCES) Does not iterate: !echo is a directive

!| echo $(.SOURCES) Iterates: | indicates the end of prefixes

! add $? to $@ Iterates: !add isn't a directive

@! echo $(.SOURCES) Does not iterate: !echo is a directive

!@ echo $(.SOURCES) Iterates: !@ is not a directive

The noiterate feature turns off any interpretation of ! as a shell-line prefix.

twopass Opus Make v5.2x used two passes to macro expand build scripts. The first pass

expanded all macros. The second pass tokenized the line and replaced any

found targets with the pathname to the target. omake does not do the second

pass unless you choose this feature. omake has a macro modifier, X, that allows

selective expansion of names into pathnames.

.SWAP : .SWAP should only be found in makefiles produced by the Borland

prj2mak program.
D - Compatibility and Emulation 163

target :
command [prolog]&& X
build script
.
.
.
X [epilog]

where prolog is usually @ and X is a single character (Borland uses ! in its examples). The

build scripts are placed in a response file and the command is invoked with the following

command, where tempfile is a unique filename:

command prolog tempfile epilog

➤ Borland Make emulation

There is no specific Borland Make emulation mode.

D.5 UNIX Make Compatibility

omake supports makefiles produced for SunOS (Solaris) Make. The following features are

supported:

➤ makefile syntax

The makefile expression

include filename

where include is in the leftmost column of the makefile includes filename at this point in the

makefile. The makefile expression

$(name: str1=str2)

is a macro modification with string substitution, with strings str1 and str2 both capable of

using the % character as a wildcard to match zero or more characters in the expansion of

name.

➤ Inference rules

omake supports the suffix rules and metarules of UNIX Make. Suffix rules are converted into

omake inference rules. The .SUFFIXES directive is also supported.
164 OMAKE Guide

➤ UNIX make emulation

There is no specific UNIX make emulation mode.
D - Compatibility and Emulation 165

166 OMAKE Guide

EE Regular Expressions

Regular expression matching is a scheme for string searching. A regular expression is a string of

characters, some normal, some special, that allows the specification of a pattern to be matched.

E.1 Configuration of Regular Expressions

The following directives control the special characters that appear in regular expressions:

Regular Expression Components

Table 29 lists the forms, or components, of a regular expression.

Directive Use Default Value

.REGEX_CHAR Sets the escape character used to indicate

special sequences

\ (backslash)

.REGEX_WILD Sets the wildcard character that matches any

single character

. (period)
E - Regular Expressions 167

Table 29 Regular Expression Components

Label Form Form Description

[1] character A normal character matches itself. Special characters: wild \ [] * +
^ $

[2] wild The wildcard character, wild, matches any character.

[3] \ The escape character makes special characters literal: \wild is

literal wild, \\ is literal \, \[is literal [, and so on. The only

exceptions are that \(and \) are special. See [7] below.

[4] [set] Matches one character in set. If the first character in set is ^, this

form matches characters not in set. A range start–end means

characters from start to end. The characters] and – aren't special if

they appear as the first characters in set. \t matches a tab character.

For example:

Set

[a-zA-Z@]

[^]–]

[^A–Z]

[<SPACE> \t]

Matches

Lowercase and uppercase alphabetic, or @

Neither] nor –

Not uppercase alphabetic

A space or tab (that is, white space)

[5] form* Any regular expression form labeled [1] to [4] followed by the

closure character * matches zero or more of the form.

[6] form+ + is like *, except it matches one or more of the form.

[7] \(form \) A regular expression in the form [1] to [10], enclosed as \(form \)
matches what form matches. The substring matched by form can be

referenced with a tag (see below).

[8] \1 ... \9 Matches a previously tagged regular expression (see [7]).

[9] form1form2 A composite regular expression form1form2, where form1 and form2
are in the form [1] to [9], matches the longest match of form1
followed by a match of form2.

[10] ^ and $ A regex starting with ^ and/or ending with $ restricts the regex to

the beginning of the line and/or the end of line. Elsewhere in the

regex, ^ and $ are ordinary characters.
168 OMAKE Guide

Referencing the Matched Expression

Once a regular expression has matched, you can reference the matched part:

➤ & refers to the entire matched string (but \& is a literal ampersand).

➤ If \(\) is used to delimit a part of the regular expression, the tag \1 refers to the first

delimited part of the matched substring. Successive pairs of \(\) are tagged \2, \3, ..., \9.

E.2 Macro Modifiers in OMAKE

The M, N, and S modifiers use regular expressions to match macro elements. The regular

expression is matched against each macro element individually. For the following examples,

assume the following macro definitions:

Regular Expressions for the M Modifier

To select files whose names include .c:

$(SRCS,M.c) is main.c sub.cpp

To select files that end in .c, anchor the search to the end with the regular expression character $.

To get $ to the regular expression, use $$ in the makefile:

$(SRCS,M.c$$) is main.c

The ^ regular expression character anchors the search to the front of the macro element:

$(CFLAGS,M–I) is –Ifoo –Ibar –DX=–IT
$(CFLAGS,M^–I) is –Ifoo –Ibar

The [set] regular expression characters indicate a set of characters, where set can be single

characters ([aA@] matches a, A, or @), a range of characters ([a-z] matches a through z), or a

mixture. For example:

SRCS = main.c sub.cpp io.cpp

CFLAGS = –AX –Ifoo –Ibar /Ibaz –DX=–IT xI.c yi.c
E - Regular Expressions 169

$(CFLAGS,M^[–/]I) is –Ifoo –Ibar /Ibaz

Regular Expressions for the S Modifier

One powerful feature of regular expressions is that when they are used in substitutions, they can

access the matched parts of the string. The S/rfrom/rto/ (substitution) modifier uses regular

expression rfrom to substitute the matched part of an element with the rto regular expression. For

example, when DIR = NT_L , the expression $(DIR,S/\(wild*\)_wild*/\1/) is NT

The \(\) pair surround part of the regular expression that can be referenced later. Inside the pair

is wild*, which matches any character repeated zero or more times. Taken together, they mean

instruct omake to match any character, zero or more times, and tag it. The rest of the regular

expression is _, which matches _ and wild*, which matches any character repeated zero or more

times.

The substitution replaces the matched part of the element with the expression \1, which is the

stuff matched in the first pair of \(\). The entire element was matched, so the substitution

produces NT. Table 30 shows other expressions.

Table 30 Examples of Regular Expressions

Expression Result

$(DIR,S/wild*_\(wild*\)/\1/) L

$(DIR,S/wild*_\(wild*\)/&/) NT_L

$(DIR,S/\(wild*\)_ /\1/) NTL

$(DIR,S/_ //) NTL

$(DIR,S/does not match/xyzzy/) NT_L
170 OMAKE Guide

Glossary

ATTRIBUTES. Properties that can be associated with targets. They include .MAKE, .REREAD,

.SILENT and others.

BASE NAME . A file name without any directory components or extension.

BUILD. To bring a target up to date (make it current).

BUILD AVOIDANCE . The ability to fulfill a build request by using an existing derived object, instead

of creating a new derived object by executing a build script.

BUILD SCRIPT. A command executed by omake or passed to the shell program for execution. Build

scripts are used to update targets.

COMSPEC. This environment variable names the program that is the operating system

command processor or shell program. For Windows NT, this is usually cmd.exe.

CONFIGURATION LOOKUP . The process by which omake determines whether to produce a derived

object by performing a target rebuild (executing a build script) or by reusing an existing

instance of the derived object. This involves comparing the configuration records of existing

derived objects with the build configuration of the current view: its set of source versions, the

current build script that would be executed, and the current build options.

DEFAULT TARGET . The first normal target defined in the first makefile. A normal target is not a

directive, special target, attribute, or inference rule. It is the target that is made when omake
is run without any command-line targets.

DEPENDENCY. Anything a target depends on. Dependencies are themselves targets because they

can be made.

DEPENDENCY LINE. The line in a build script that indicates the dependence of a target on its

dependencies. For example,

test.exe : main.obj sub.obj

declares that test.exe depends on main.obj and sub.obj.
DIRECTIVE. The instructions that control how omake proceeds. There are run-time directives and

read-time directives, and some work both at read and run time. Directives are indicated by
Glossary 171

the appearance of either % or ! as the first non-white-space character on a makefile line,

followed by the directive name. If the % (or !) is in the leftmost column of the makefile, the

directive is interpreted at read time; otherwise, it is interpreted at run time.

DIRECTORY SEPARATOR. The character in a pathname that separates directory names and the file

name. For Windows NT, the separator is either \ or /. omake uses either character as the

directory separator.

DOT DIRECTIVES. A read-time directive that modifies the operation of omake from the point at

which it is encountered in the makefile.

EXIT STATUS. A number returned by an executed program and testable by omake. At the

command line, you can check the exit status of the last executed program by using the if
errorlevel command.

By convention, programs return a zero exit status when they finish without error and nonzero

when an error occurs.

EXPLICIT RULE. A dependency line and build scripts that are used to make a target, in this form:

target : dependencies
build script
.
.
.

EXPLICIT DEPENDENCY. A dependency declared in a dependency line. For example, def.h is an

explicit dependency of main.obj in the following:

main.obj : def.h

EXTENSION. The suffix part of the file name, usually used to denote the type of file. The extension

consists of the characters that follow the last period in the file name to the end of the name.

FILE NAME. The part of the pathname after the last directory separator.

HEADER FILE. A file, containing source code, that is included into the body of a source file.

INCLUDE FILE. See header file.

INFERENCE RULE. A rule that generalizes the build process so that you do not have to specify how

to build each target. For example, here is the built-in inference rule for making an .obj file

from a .c file:

%.obj : %.c
$(CC) $(CFLAGS) –c $.SOURCE

INFERRED DEPENDENCY. The dependency determined with an inference rule. For example, if

main.obj is being built and the inference rule %.obj : %.c is used, main.c is an inferred

dependency of main.obj.
INIT. An environment variable whose value is a semicolon-separated list of directory names. For

example:

INIT = c:\home;c:\msc
172 OMAKE Guide

KEEP WORKING. An operating mode of omake. While updating a target, if an executed build script

returns a nonzero exit status, omake stops updating this target immediately. Any other

targets that depend on this target as a source are not updated. This mode maximizes the

amount of safe making and is ideal for running unattended builds (for example, rebuilding a

large project overnight).

MACRO. The association of a name and a value. The macro expansion of macro name returns the

value. Macros are used at read time as a means of organizing names of files, compiler options,

and so on. At run time, macros also allow you to refer to the current target being built.

MAKEFILE . A file from which omake reads its instructions. An initialization file is read first,

followed by one or more makefiles. The initialization file holds instructions for all make

programs and is used to customize the operation of omake. The makefile has instructions for

a specific project.

MODULE. A single file, such as a source or object file, that is combined with other files to build a

project, such as an executable.

NULL STRING. A string with no characters.

PATH. The environment variable used to indicate the order in which directories are searched for

executable files. For example, with a PATH of c:\bin;c:\utils, the program searches for

executables in the current directory, in directory c:\bin, and in directory c:\utils in that order.

PATHNAME. The location of a target or file on disk, including any directory components.

READ TIME. The phase of omake in which it reads the makefiles.

READ-TIME DIRECTIVE. A directive that appears in the makefile with the directive character % or !

in the leftmost column. Read-time directives are interpreted while the makefile is being read.

REGULAR EXPRESSION. A string of characters (some normal, some special) that allows the

specification of a pattern to be matched.

RECURSION, RECURSIVE MAKE. The act of calling a program (or function) from itself. The usual

context is in the expression “call omake recursively.” This means a running copy of omake
uses a build script to call a second copy of omake. Recursive makes are often used for projects

that are split into multiple directories.

RESPONSE FILE. A text file used to hold long command lines. For many programs, the

command-line option @file indicates that the program is to read its command line from the file
response file.

ROOT NAME. For a target, its pathname minus its file name extension. This pathname includes any

directory components.

RUN TIME. The phase of omake when it builds targets.

RUN-TIME DIRECTIVE. A directive that appears as a target's build script (the directive character %or

! is indented from the leftmost column). Run-time directives are interpreted when the target's

build scripts are executed.

SHELL LINE . See build script.
SOURCE. See dependency.
Glossary 173

SOURCE FILE. A file containing source code that can be compiled into object code.

SPECIAL TARGET . A target whose name is of the form .NAME and that has special meaning to

omake.

STANDARD ERROR/OUTPUT. The two output streams (or file descriptors) that write to the console.

Standard output is usually used to output general messages. Standard error is usually used

to output error messages.

TARGET. Something that can be made. A target is usually a file, such as a source, object, or

executable. The target is said to exist if the file is present on disk.

TARGET ATTRIBUTE . Properties assigned to targets.

TIME STAMP. The time stamp of a target is the time and date that a target was last changed. It is

usually the creation or modification time of the file, as stored by the operating system.

UPDATE (A TARGET) . To execute a target’s build scripts. This brings the target up to date.

UP TO DATE TARGET. A target that is current; that is, it has been compiled, linked, and so on, and is

newer than all its dependencies.

WHITE SPACE. One or more space or tab characters.

WILDCARD CHARACTER . Characters used to match ambiguous part of a file name. Windows NT

treats ? as a wildcard character that matches any single character and * as a wildcard character

that matches any number of characters in a file name or file name extension.
174 OMAKE Guide

Index

– – shell-line prefix 70

– shell-line prefix 70, 104

! directive character 163, 172

! logical operator (not) 82

! shell-line prefix 71, 85, 163

!= comparison operator 79

!CMDSWITCHES directive 91, 158

!message directive 91, 158

"" double quotes 25

comment character 12

$ macro character 21

$$@ predefined macro 62

$[any transformation macros] 147

% directive character 172

% rule character 30, 36

%abort directive 39, 76, 86

%break directive 75, 85–86

%chdir directive 76, 87

%continue directive 75, 85

%defined() operator 80

%dir() operator 80

%do directive 35, 76, 87

%echo directive 76, 88, 158

%elif directive 75, 77

%else directive 75, 77

%elseif directive 75, 77

%end directive 75, 83, 155

%endfor directive 83

%endif directive 75, 77

%error directive 76, 86, 88

%exec directive 76, 88

%exists() operator 80

%exit directive 91, 148

%file() operator 80

%foreach directive 75, 82

%if directive 75, 77

%ifdef directive 75, 77
Index

/vobs/doc/ccase/omake/cc_omakeIX.
%ifndef directive 75, 77

%include directive 76, 89, 95

%length() operator 80

%make() operator 80

%member() operator 80

%null() operator 80

%restart directive 76, 89

%set directive 76, 90

%setenv directive 76, 90

%status function 91, 148

%time() operator 80, 86

%undef directive 24, 76, 91

%while directive 75, 84–86

%writable() operator 80

& shell-line prefix 71, 104

&& logical operator (and) 82

'' double quotes 63, 79, 87, 162

() logical operator (order evaluation) 82

* shell-line prefix 156

** run-time macro 61, 71, 85

+ shell-line prefix 71, 99

+ target-group character 32, 51

+= appended macro definition 24–25

.AUTO keyword 99

.NOMULTI keyword 99

.NOREDIR keyword 99

.RULE_CHAR directive 36

: drive separator 16

: shell-line prefix 71, 99, 156

:= expanded macro definition 24–25, 54

; multiple-command separator 73

< comparison operator 79

< run-time macro 61

<= comparison operator 79

= = comparison operator 79

= standard macro definition 23

> comparison operator 79
175

fm — September 16, 2001 3:36 pm

> shell-line prefix 72

>= comparison operator 79

? run-time macro 60, 71, 85

?= conditional macro definition 23

@ response file prefix 113, 115

@ run-time macro 61

@ shell-line prefix 69, 87, 105

@@ shell-line prefix 69

[command] command-execution operator 81

\& literal "&" (in regex) 169

\; literal ";" (in multiple-command shell lines) 73

\= literal "—" (in string substitution macro modifier) 57

\ENTER line continuation 12, 154

^ run-time macro 61

| shell-line prefix 72, 163

|| logical operator (or) 82

~ ~ shell-line prefix 71

~ shell-line prefix 71

A

.AFTER special target 48, 106

.ALWAYS attribute 64, 103

(Always) shell-line prefix 152

.ALWAYS state macro 64

attache-home-dir directory xvii

attributes 31, 102

.AUTO keyword 99

auto-detection mode 19

automatic response files 110

B

base name 53, 171

.BEFORE special target 48, 90, 106

Borland Make 37, 163

BUILD environment variable 153

build scripts 10, 18
executing 19
inheriting 31–32
prefixes 20

builds 10, 171

built-in macros 60, 140

BUILTINS environment variable 154

BUILTINS predefined macro 62

C

case sensitivity 24, 58, 79

.CASE_MACRO directive 24, 64, 92

.CASE_MACRO state macro 64

.CASE_TARGET directive 49, 64, 79, 92

.CASE_TARGET state macro 64

CC built-in macro 67

ccase-home-dir directory xvii

.CHAIN attribute 103

chained targets 33

changing directory 72, 74, 87

command line
BUILD environment variable 153
MAKEOPTS environment variable 153
MFLAGS environment variable 47
OMAKEOPTS environment variable 47, 153

command line flags
–# debug options 64, 93
–#1 read-time debug 119, 121
–#2 undefined macro 120
–#4 unknown line 120
–#8 leave temporaries 116
–a all targets 64, 103
–b file 42, 46
–D keep directory 65, 96, 110
–d run-time debug 64, 93, 119
–e environment override 65, 95
–E2 emulate OMAKE v5.2x 65
–EN emulate NMAKE 65, 97, 158
–EO emulate OMAKE 65, 98
–EP emulate PolyMake 65, 98, 153
–f file 12, 43
–h help 43
–i ignore errors 20, 65, 70, 104
–k keep working 20, 39, 65, 96
–M make makefile 65, 97
–n no execute, overriding 67, 104
–p print debug info 64, 93, 119, 122
–q query 65
–q query, overriding 104
–r reject rules 66, 98, 142
–s silent 66, 105
–x redirect error messages 45
–z ignore MFLAGS 47, 65

comments 12–13, 162

compatibility 145
Borland Make 163
Configuration Builder 145
NMAKE 97, 158
OMAKE v5.2x 162
PM/CB 145
PolyMake 145
UNIX Make 164
176 OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

COMSPEC environment variable 20, 171

conditional directives 23, 76–77

conditional expressions 78

configuration 2

continued lines 12–13, 77

conventions, typographical xvii

CWD predefined macro 63

D

–d file-test operator 81

.DEBUG directive 64, 93

.DEBUG state macro 64, 66

.DEBUG_GRAPHICS directive 93

.DEBUG_PRINT directive 64, 93

.DEBUG_PRINT state macro 64

.DEBUG_RUN directive 64, 93

.DEBUG_RUN state macro 64

.DEFAULT attribute 103

.DEFAULT special target 106

default targets 47, 50

deinitialization 20, 48, 106, 127

dependencies 10, 14
explicit 14
inferred 48

dependency lines 14
double colon 51
wildcards 16

.DEPENDENCY_IGNORED_FOR_REUSE directive 94

directives 38
! character 163, 172
% character 172
.NOCMP_SCRIPT 98
conditional 75–76
dot 91
iteration 75, 85
other 76
read-time 75, 173
run-time 75, 173
target 91

directory separator 172

.DO_FOR_SIBLING directive 94

documentation
online help description xviii

double-colon dependency lines 51

dummy target 50

E

–e file-test operator 81

ECHO inline response file keyword 115

emulation 145
Configuration Builder 152
NMAKE 2, 158
OMAKE v5.2x 162
PM/CB 2, 152–153
PolyMake 152

.ENV_OVERRIDE directive 65, 95

.ENV_OVERRIDE state macro 65

environment variables
accessing 28
BUILD 153
BUILTINS 154
COMSPEC 20
giving higher precedence 95
INIT 89
MAKEOPTS 153
OMAKECFG 46
OMAKEOPTS 47, 153
setting 90

.ENVMACROS directive 64, 95

.ENVMACROS state macro 64

exit status 10, 20, 135, 172
MAKESTATUS macro 63, 135
non-zero 20

explicit dependencies 14

explicit rules 14, 18

explicit sources 48

extensions 172

(ExtraLine) shell-line prefix 152

F

–f file-test operator 81

FC built-in macro 67

file names 53, 172

FIRSTTARGET predefined macro 63

H

header files 172

help 43

I

I/O redirection 45
Index 177

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

.IGNORE attribute 65, 70, 104

ignore mode 70

(Ignore) shell-line prefix 152

.IGNORE state macro 65

.IGNORE_MFLAGS state macro 65

.INCLUDE directive 95, 149

include file 89, 95, 172

.INCREMENTAL_REPOSITORY_SIBLING directive 95

.INFER attribute 32, 104, 163

inference rules 14, 29, 48
attributes 36
built-in 36, 142
debugging 123
defining 30
disabling 36, 98
disabling search 36
multiple-step 33–34
redefining 35
rejecting 36, 98
search order 34
suffix-only form 31
target groups 32, 56
using 32

inferred dependency 30

INIT environment variable 89, 172

initialization 48, 106

initialization file 11, 42, 46

inline response files 38, 110, 115, 162–163

INPUTFILE predefined macro 63

(Iterate) shell-line prefix 152

iteration 71, 85, 156, 163

K

KEEP inline response file keyword 115

.KEEPDIR directive 65, 96

.KEEPDIR state macro 65

keep-directory mode 96

.KEEPWORKING directive 39, 65, 96, 128

keep-working mode 39, 96, 173

.KEEPWORKING state macro 65

L

LIBEXE built-in macro 67

line continuation 12, 154
and comments 13
and conditional directives 77

LINK built-in macro 67

local input scripts 115, 117

M

macro modifiers 26, 52, 141
*D wild-card expand directory 57
*F wild-card expand file 57
< prepend string 54
= string substitution 27, 56
> append string 54
@ include 54
A absolute pathname 53
B base name 53, 107
D directory 27, 53
E extension 27, 53
F file name 27, 53
LC lowercase 54
M member 55, 58, 169
N non-member 55, 58, 169
num numbered element 33, 56
R root name 25, 53, 62
S regex substitution 56, 59, 170
UC uppercase 54
W tokenize 27, 57, 116
X expand to pathname 54, 57, 163
Z drive 53

.MACRO_CHAR directive 96

macros 21, 52
built-in 60, 140
character 21, 96
definition

+= appended 24–25
:= expanded 24–25, 54
= standard 23, 25
?= conditional 23
accessing environment variables 28
at read time 22
in the makefile 22
indenting 24
location 24
on the command line 25
precedence 22

expansion 21, 28–29
precedence 22
predefined 60, 137
reference 21
run-time 26, 60
state 63, 138
transformation 147
undefining 24

make 10

.MAKE attribute 71, 104

MAKE built-in macro 67, 104

.MAKE_MAKEFILE directive 65, 97
178 OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

.MAKE_MAKEFILE state macro 65

MAKE_TMP built-in macro 67, 116, 128

MAKEARGS predefined macro 63

MAKEDIR predefined macro 63, 87

MAKEFILE macro 43

makefiles 9, 12
debugging 119
line continuation 12
line length 12
making before reading 97

MAKEMACROS predefined macro 63

MAKEOPTS environment variable 153

MAKESTATUS predefined macro 63, 135

MAKETARGETS predefined macro 63

MAKEVERSION predefined macro 63

making the makefile 97

meta rules 30

MFLAGS built-in macro 68

.MS_NMAKE directive 65, 97, 159

.MS_NMAKE state macro 65

multiple-command shell lines
; command separator 73
\; literal ";" 73

N

.NEWSOURCES run-time macro 60, 71, 85

NMAKE 37
compatibility 62, 91, 158
directives 158
emulation 2, 29, 68, 158–159

.NOCASE_MACRO directive 24, 92

.NOCASE_TARGET directive 49, 79, 92

.NOCHAIN attribute 34, 103

.NOCMP_NON_MF_DEPS attribute 104

.NOCMP_SCRIPT directive 98

.NOCONFIG_REC attribute 105

.NODEBUG directive 66, 93

.NODEFAULT attribute 103

.NOENV_OVERRIDE directive 95

.NOENVMACROS directive 28, 95

.NOINFER attribute 36, 104, 163

NOKEEP inline response file keyword 115

.NOKEEPDIR directive 96

.NOKEEPWORKING directive 96

.NOMULTI keyword 99

.NOREDIR keyword 99

.NORULE attribute 36, 105

.NOSHELL directive 71, 99

(NoShell) shell-line prefix 152

.NOUNIXPATHS directive 101

.NOWINK_IN directive 101

O

.OMAKE directive 65, 98

.OMAKE state macro 65

OMAKE v5.2x
emulation 162
incompatibilities 162

OMAKECFG environment variable 46

online help, accessing xviii

OPUS predefined macro 63

.OPUS_52X state macro 65

OS built-in macro 68

P

.PATH macro 54, 107

path separator 50

.PATH.obj macro 54, 108

pathnames 9, 49, 173

PM/CB 2, 37
command-line flags 157
compatibility 72, 83, 91, 98, 106, 110, 145
directives 148
emulation 2, 68, 153
iteration groups 156
macros 145
operation-line modifiers 157
reserved targets 151
suffix dependencies 157
transformation macros 147
unimplemented features 156

.POLY_MAKE directive 65, 98, 153

.POLY_MAKE state macro 65

PolyMake 145

.PRECIOUS attribute 34, 105, 132

predefined macros 60, 137

PVCS 145, 149

Q

.QUERY state macro 65
Index 179

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

R

–r file-test operator 81

RC built-in macro 68

read-time 9, 47, 173

read-time directives 75, 173

recursive macro 29, 131

recursive make 67, 104, 173

redirection of I/O 45

.REGEX_BACK state macro 65

.REGEX_CHAR directive 59, 65, 98

.REGEX_CHAR state macro 65

.REGEX_DOT state macro 65

.REGEX_WILD directive 59, 65, 98

.REGEX_WILD state macro 65

regular expressions 52, 55–56, 58, 167
configuration 58, 167
for the "M" modifier 58, 169
for the "S" modifier 59, 170
referencing matched expression 169

.REJECT_RULES directive 36, 66, 98, 142

.REJECT_RULES state macro 66

.REREAD attribute 66, 109

.REREAD state macro 66

.RESPONSE directive 98, 111

response files 37, 110
automatic 110, 114–115, 123
inline 36, 38, 110, 115, 162–163

root name 53, 173

.RULE attribute 105

rule character 36, 99, 105

.RULE_CHAR directive 66, 99

.RULE_CHAR state macro 66

rules 13
explicit 14
suffix 37

run-time 9, 47, 173
directives 75, 173

S

search directories 54, 106
.PATH macro 54, 107
debugging 110, 123
location of 107
run-time macros 108
target names 49
VPATH macro 108

setting environment variables 90

.SHELL directive 66, 71, 99, 150

shell lines
multiple-command 72
prefixes

– – really ignore 70
– ignore 70, 104
! iterate 71, 85, 163
& override –n 71, 104
(Always) 152
(ExtraLine) 152
(Ignore) 152
(Iterate) 152
(NoShell) 152
(Shell) 152
(Silent) 152
(TrackErrors) 152
+ use shell 71, 99
: suppress shell 71, 99
> extra line 72
@ silent 69, 87, 105
@@ really silent 69
| end of prefixes 72, 163
~ ~ really ignore, keep status 71
~ ignore, keep status 71
PM/CB compatible 152

(Shell) shell-line prefix 152

.SHELL state macro 66

SHELLCOMMANDS built-in macro 19, 68

SHELLSUFFIX built-in macro 19, 68

.SIBLINGS_AFFECT_REUSE directive 100

.SILENT attribute 66, 69, 105

silent mode 69

(Silent) shell-line prefix 152

.SILENT state macro 66

.SOURCE directive 110, 150

.SOURCE run-time macro 26, 61

sources
explicit 48

.SOURCES run-time macro 26, 61, 71, 85

special targets 48, 105

state macros 63, 138

status predefined macro 63, 85, 88

suffix rules 37, 124

.SUFFIXES directive 37, 66, 100, 150

.SUFFIXES state macro 66

T

target groups 51
inference rules 32, 56

.TARGET run-time macro 26, 61
180 OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

.TARGETROOT run-time macro 62

targets 9
default 47, 50
dummy 50
existence 9

targets attributes 101

technical support xviii

timestamps 9, 174

(TrackErrors) shell-line prefix 152

transformation macros 147

typographical conventions xvii

U

.UNIXPATHS directive 35, 66, 101

.UNIXPATHS state macro 66

updating targets 48, 174

up-to-date targets 10, 171, 174

V

VPATH macro 108

W

–w file-test operator 81

whitespace 174

wildcards 16, 57, 174

.WINK_IN directive 101

Z

–z file-test operator 81
Index 181

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

182 OMAKE Guide

/vobs/doc/ccase/omake/cc_omakeIX.fm — September 16, 2001 3:36 pm

	OMAKE Guide
	Contents
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	Introduction
	1.1 File Manifest
	1.2 Configuring omake
	1.3 Notes on Using omake
	omake’s Configuration Management Features
	Configuration Lookup
	Derived Object Sharing
	Configuration Record Creation
	Express Builds
	Command-Line Options
	Location of Temporary Files
	Non-MVFS Dependencies

	Differences Between omake and Standard Make Tools
	Running omake
	Makefiles
	Supporting Both omake and clearmake

	Parallel and Distributed Build Operations
	Build Scripts and the rm Command
	Pathnames in CRs

	1.4 Auditing 16-bit Tools

	Overview of Using omake
	2.1 The omake Process
	2.2 Invoking omake from the Command Line
	2.3 Initialization Files and Makefiles
	The Initialization File
	The Makefile
	Continued Lines
	Comments

	Contents of Initialization Files and Makefiles

	2.4 Rules
	2.5 Dependency Lines
	Explicit and Inferred Dependencies
	Macros in Dependency Lines
	The Make Process Is Recursive
	Detected Dependencies

	Wildcards in Dependency Lines
	The Dependency Line Separator
	A Dependency Example

	2.6 Build Scripts
	Build Script Execution
	Auto-Detection Mode
	Standard Execution Mode

	Build-Script Line Exit Status

	2.7 Macros
	Macro Precedence
	Defining Macros in the Makefile
	Read-Time Expansion of Macros
	Standard Macro Definition: name = [text]
	Conditional Macro Definition: name ?= [text]
	Expanded Macro Definition: name := [text]
	Appended Macro Definition: name += [text]
	Case-Sensitivity of Macro Names
	The Location of Macro Definitions
	Indenting Macro Definitions
	Undefining Macros
	Example Macro Definitions

	Defining Macros on the Command Line
	Dynamic Macros
	Macro Modifiers
	File Name Components
	Tokenize
	Other Modifiers

	Environment Variables
	Macro Expansion or Macro Referencing
	Run-Time Expansion of Macros
	Recursive Macro Definitions

	2.8 Inference Rules
	Defining Inference Rules
	The General Inference Rule Definition
	The Target Inherits Build Scripts and Attributes
	Alternative (Suffix-Only) Form

	Automatic Use of Inference Rules
	Inference Rules and Target Groups
	Multiple-Step Inference Rules
	Chained Targets Are Deleted Automatically
	Preventing Multiple-Step Rules

	Inference Rule Search Order
	Overriding the Rule Ordering
	Rule Finding for Target Names with a Directory Component

	Common Operations on Inference Rules
	Built-In Inference Rules
	Compatibility with Suffix Rules (.SUFFIXES)
	Handling of Suffix Rules and .SUFFIXES

	2.9 Response Files
	Inline Response Files

	2.10 Directives
	2.11 The Keep-Working Mode

	omake Reference
	3.1 Command-Line Options
	Initial Command-Line Parameters: OMAKEOPTS
	The Command-Line Options
	The Current Options

	3.2 Locating the Initialization File
	Disabling the Initialization File

	3.3 The Make Process
	Read Time
	Run Time
	Run-Time Initialization and Deinitialization

	Updating the Time Stamp

	3.4 Targets
	Case-Sensitivity of Target Names
	A Target Has a Name and a Pathname
	Using the Path Separator in Names
	The First Target in the Makefile Is the Default Target
	Targets May Appear on Several Dependency Lines
	Double-Colon Dependency Lines
	Mixing Single-Colon and Double-Colon Dependency Lines
	Targets Without Dependencies
	Target Groups

	3.5 Macros
	Macro Modifiers
	Filename Components
	Absolute Pathname
	Append and Prepend Strings
	Change Case
	Expand Pathnames
	Include File
	Include File with Regular Expression Matching
	Member and Nonmember
	Select a Particular Element
	String Substitution
	Tokenize
	Wildcard Expand File and Directory Names

	Regular Expressions
	Configuring Regular Expressions
	Regular Expressions for the M Modifier
	Regular Expressions for the S Modifier
	With Configuring .REGEX_CHAR and .REGEX_WILD

	Predefined and Built-In Macros
	Predefined Macros: Run-Time Macros
	Run-Time Macros
	Predefined Macros: General Macros
	Predefined Macros: State Macros
	An Example Use of the State Macros

	Built-in Macros
	Compatibility with Other Make Utilities

	3.6 Build-Script Line Prefixes
	Do Not Echo the Build-Script Line (Silent Operation)
	Ignore the Build-Script Line Exit Status
	Override the –n Command-Line Option
	Select the Shell Program
	Iterate the Build Script
	Miscellaneous Prefixes
	Build Script Compatibility with Other Make Utilities

	3.7 Build-Script Problems: The cd and set commands
	Using Multiple-Command Build-Script Lines
	Using Directives: %chdir and %setenv

	3.8 Makefile Directives
	Percent Directives
	Conditional Directives
	Iteration Directives
	Other Percent Directives
	Conditional Directives
	Conditional Directives and Continued Lines

	Conditional Expressions
	Simple Expressions
	Comparison Operators
	Functional Operators (Also Called Built-In Functions)
	File-Test Operators
	Command-Execution Operator
	Logical Operators

	Iteration Directives
	The %foreach Directive
	The %while Directive
	Effects of %foreach and %while when Using omake in a VOB
	Interrupting the Iteration
	Another Method of Iteration
	A Sample Makefile

	Other Percent Directives
	Compatibility with Other Make Utilities

	Dot Directives
	Compatibility with Other Make Utilities

	3.9 Target Attributes
	Using Attributes
	Attributes and Inference Rules
	List of Attributes

	3.10 Special Targets
	Compatibility with Other Make Utilities

	3.11 Search Directories
	Implied Location of Missing Files
	Search Directory Macros
	The .PATH Macros
	The VPATH Macros

	Search Directories and Run-Time Macros
	Search Directories and File Lookup
	Search Directories and Inference Rules
	Debugging the Search Directories
	Compatibility with Other Make Utilities

	3.12 Response Files
	Automatic Responses
	Adding Program Names
	Response Class Parameters
	Defining or Modifying a Response Class
	Disabling a Response Class
	Response File Example #1
	Response File Example #2

	Using Automatic Responses
	Generation of Automatic Responses
	Deletion of Automatic Responses
	Built-In Automatic Responses
	Built-in Responses for Windows NT

	Inline Response Files
	Deletion of Inline Response Files
	Inline Response File Example
	Compatibility with Other Make Utilities

	Debugging Makefiles
	4.1 Command-Line Options
	4.2 Read-Time Debugging
	Output Produced by –#1
	Output Produced by –p
	The Macro Definitions
	The Search Directories
	The Automatic Response Definitions
	The Inference Rules
	The Targets and Build Scripts
	The Final –p Output

	Errors and Warnings
	A.1 Reducing Message Severity
	A.2 Error Messages and Explanations

	Exit Status Values
	Built-In Macros and Rules
	C.1 Macros
	Predefined General Macros
	Predefined State Macros
	Built-In Macros

	C.2 Macro Modifiers
	C.3 Inference Rules
	Compatibility with Other Make Utilities

	Compatibility and Emulation
	D.1 PM/CB (Intersolv Configuration Builder and PolyMake)
	System Macros
	Transformation Macros
	Built-In Functions
	Built-In Operations (Percent Directives)
	Directives
	Reserved Targets
	Local Input Scripts
	Operation-Line Modifiers
	PM/CB Emulation
	Emulation at Startup Time
	Emulation After Startup Time
	The Command Line
	The Emulation File (BUILTINS.CB)
	The Initialization File (TOOLS.INI)
	The BUILTINS File
	The Makefile
	Makefile Contents
	Operation Lines (Build Scripts)

	Unsupported PM/CB Features
	Unimplemented Directives and Reserved Targets
	Iteration Groups
	Suffix Dependencies
	Command-Line Flags
	Makefile Contents
	Shared Definitions
	Operation-Line Modifiers
	Built-In Operations

	D.2 Microsoft NMAKE Compatibility
	NMAKE Directives
	NMAKE Emulation
	Emulation at Startup Time
	Emulation After Start-Up Time
	The Command Line
	The Emulation File (BUILTINS.NM)
	The Initialization File (TOOLS.INI)
	Makefile Contents
	Macros
	Build Scripts
	Inline Response Files

	Unsupported NMAKE Features

	D.3 Opus Make v5.2x Compatibility and Emulation
	D.4 Borland Make Compatibility
	D.5 UNIX Make Compatibility

	Regular Expressions
	E.1 Configuration of Regular Expressions
	Regular Expression Components
	Referencing the Matched Expression

	E.2 Macro Modifiers in OMAKE
	Regular Expressions for the M Modifier
	Regular Expressions for the S Modifier

	Glossary
	Index

