
Rational Software Corporation ®

RATIONAL ® CLEARCASE®

INTRODUCTION

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025069-000

UNIX/WINDOWS EDITION

Introduction
Document Number 800-025069-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents iii

/vobs/doc/ccase/intro/cc_introTOC.fm — September 16, 2001 7:39 pm

Contents

Preface ..ix

About This Manual ...ix

User Roles, the ClearCase Documentation Set, and This

Manual...ix

ClearCase Documentation Roadmap...xi

Typographical Conventions ...xii

Online Documentation .. xiii

Technical Support .. xiv

1. ClearCase, ClearQuest, and Unified Change Management1

1.1 ClearCase...1

1.2 ClearCase MultiSite ...3

1.3 ClearQuest...3

1.4 Unified Change Management ..4

2. Planning for and Installing ClearCase ...9

2.1 Planning Issues ...9

Using Unified Change Management or Base ClearCase10

Using ClearQuest ...10

Using ClearCase MultiSite ..11

2.2 ClearCase Site Preparation ...11

See READ ME FIRST ...11

Running ClearCase Site Preparation...12

2.3 Installing ClearCase on Individual Computers ...12

3. Setting Up a Software Project in ClearCase ...13

3.1 Creating a Project in UCM ..13

Creating a Project VOB..13

Organizing Directories and Files into VOBs and Components.................14

Creating a Project ...14

iv Introduction: Rational ClearCase

/vobs/doc/ccase/intro/cc_introTOC.fm — September 16, 2001 7:39 pm

Implementing Development Policies ..14

Creating and Assigning Activities ...15

Using the ClearQuest Integration ...15

3.2 Setting Up a Project in Base ClearCase..15

Importing Directories and Files into VOBs...15

Applying a Label to the Initial Configuration..16

Establishing a Branching and Merging Strategy..16

Creating Standard Config Specs...17

Using ClearCase Metadata to Implement Development Policy17

Using the ClearQuest-ClearCase Integration ...18

4. Developing and Building Software with ClearCase ..19

4.1 Developing Software Using UCM ...19

Joining a Project ..19

Shared and Private Work Areas..19

Working on Activities ..20

Finding or Creating an Activity for Your Work20

Modifying and Testing Source Files ...20

Delivering Activities ..21

Starting the Deliver Operation ..21

Testing Your Work ..21

Completing the Deliver Operation ...21

Delivering with MultiSite...21

Rebasing Your Work Area ..22

Starting the Rebase Operation...22

Testing Your Development Work Area ...22

Completing the Rebase Operation..22

4.2 Developing Software Using Base ClearCase ..22

Setting Up a View...23

Accessing and Modifying Files in Your View..23

Working on Branches...23

Using a Private Branch ...23

MultiSite Branch Mastership ...24

Contents v

/vobs/doc/ccase/intro/cc_introTOC.fm — September 16, 2001 7:39 pm

4.3 Using ClearCase Build Tools ..24

5. Managing Software Projects with ClearCase ...25

5.1 Managing Projects with UCM..25

Adding Components to Projects ..25

Integrating MultiSite Development Work into the Project26

Managing Baselines ...26

Creating New Baselines ...26

Recommending Baselines ..26

Tracking Projects ..27

Comparing Baselines ..27

Using ClearQuest to Track Work..27

Using the ClearCase Report Builder and Report Viewer

(Windows Only)..27

5.2 Managing Projects with Base ClearCase...28

Adding VOBs to Projects...28

Integrating Work Between Branches...28

Integrating MultiSite Development Work into the Project.................28

Glossary ...29

vi Introduction: Rational ClearCase

/vobs/doc/ccase/intro/cc_introTOC.fm — September 16, 2001 7:39 pm

Figures vii

/vobs/doc/ccase/intro/cc_introLOF.fm — September 16, 2001 7:38 pm

Figures

Figure 1 Accessing a VOB Using a View ...2

Figure 2 ClearCase MultiSite VOB Family ..3

Figure 3 An Activity..5

Figure 4 Using a ClearQuest To-Do List to Find UCM Activities..................................5

Figure 5 Elements, Components, and Baselines ...6

Figure 6 Delivering Activities from Development Streams to Integration

Streams ..7

Figure 7 Rebasing Development Streams..8

Figure 8 Branching Hierarchy in Base ClearCase...16

viii Introduction: Rational ClearCase

/vobs/doc/ccase/intro/cc_introLOF.fm — September 16, 2001 7:38 pm

Preface ix

Preface

Rational ClearCase and Rational ClearCase MultiSite provide a comprehensive solution for

software configuration management and distributed development.

Rational Unified Change Management (UCM) provides a best practices approach to

comprehensive change management, by tightly integrating ClearCase and ClearCase MultiSite

with Rational ClearQuest, a change request management product, and by providing an

out-of-the-box software development and change management process for using these products.

About This Manual

This manual provides basic descriptions of ClearCase, ClearCase MultiSite, ClearQuest, and

Unified Change Management. It also provides an overview of how to deploy these products in

an organization, from planning, site preparation, and installation through setting up, working

on, and managing software development projects. Where appropriate, the manual refers you to

specific locations in ClearCase, ClearCase MultiSite, and ClearQuest documentation for detailed

information about individual procedures and concepts.

User Roles, the ClearCase Documentation Set, and This Manual

The documentation for ClearCase consists of printed and online task-oriented information,

supporting ClearCase users acting in the following roles:

➤ Project manager — defines, implements, and manages the objects, policies, and processes

of a software development project

➤ Developer — makes changes to the software configuration (that is, the files and directories)

that belong to a software development project

x Introduction: Rational ClearCase

➤ Integrator (also called build engineer or release engineer) — builds and integrates the

products of a software development project

➤ Administrator — configures and maintains the ClearCase infrastructure, including

ClearCase VOBs, views, servers, and clients, for part or all of your organization

The information in this manual applies to these roles as follows:

➤ Chapter 1, ClearCase, ClearQuest, and Unified Change Management, contains information of

interest to all roles.

➤ Chapter 2, Planning for and Installing ClearCase, contains information of interest to

administrators and project managers; also, the instructions for installing ClearCase on your

computer apply to all users.

➤ Chapter 3, Setting Up a Software Project in ClearCase, contains information of interest to

project managers.

➤ Chapter 4, Developing and Building Software with ClearCase, contains information of interest

primarily to developers and integrators; also, the information about the development

process in ClearCase could be of interest to project managers.

➤ Chapter 5, Managing Software Projects with ClearCase, contains information of interest

primarily to project managers.

➤ The glossary that appears at the end of this manual contains information of interest to all

roles.

The ClearCase Documentation Roadmap that appears in the next section shows how the ClearCase

documentation set is organized to support these roles.

Preface xi

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software

xii Introduction: Rational ClearCase

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).

Preface xiii

Online Documentation

The ClearCase graphical interface includes an online help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help > Contents provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

cleartool man (display the cleartool overview page)

cleartool man man (display the cleartool man reference page)

cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Additionally, the online ClearCase Tutorial provides a step-by-step tour through ClearCase’s most

important features. To start the tutorial:

➤ On Windows, choose Tutorial in the appropriate ClearCase folder off the Start menu.

➤ On UNIX, type hyperhelp cc_tut.hlp.

xiv Introduction: Rational ClearCase

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com

1 - ClearCase, ClearQuest, and Unified Change Management 1

11 ClearCase, ClearQuest, and Unified
Change Management

This chapter contains short summaries of Rational ClearCase, Rational ClearCase MultiSite, and

Rational ClearQuest, and a description of how Rational Unified Change Management (UCM)

integrates these products to provide an out-of-the-box software development and change

management process.

1.1 ClearCase

Rational ClearCase is a configuration-management system designed to help software development

teams track the files and directories used to create software. ClearCase enables you to manage

the development and build process and to enforce your site-specific development policies.

ClearCase is specifically designed to support parallel development, whether you are simply

isolating the work of one developer from others on a small team, developing multiple releases in

parallel using different teams, or sharing a source code base between multiple teams at

geographically distributed sites.

ClearCase enables you to re-create the source base from which a software system was built,

allowing it to be rebuilt, debugged, and updated—all without interfering with other

development work.

In ClearCase, files and directories, or elements, are stored in a repository called a versioned object
base or VOB. A version is a particular revision of a file or directory element.

2 Introduction: Rational ClearCase

You access and change elements using a view. A VOB contains all versions of a particular set of

elements; a view selects a specific version of each element using a set of rules called a

configuration specification (or config spec). The result is that when accessed through a view, a

VOB looks just like an ordinary file system directory tree (Figure 1).

Figure 1 Accessing a VOB Using a View

Like many configuration management systems, ClearCase uses a checkout-edit-checkin model to
manage software changes. When you check out a file, ClearCase creates an editable copy, or

checked-out version, in your view. When you check in a file, ClearCase creates a new, permanent

version of the file in the VOB.

VOB

Config spec acts as
a filter, selecting one
version of an element.

Any user process can use a
view to access the version-controlled
data in any VOB, as if it were a
standard directory tree.

View

1 - ClearCase, ClearQuest, and Unified Change Management 3

1.2 ClearCase MultiSite

Rational ClearCase MultiSite extends ClearCase by supporting parallel software development

and software reuse across geographically distributed project teams.

ClearCase MultiSite enables developers at different locations to use the same VOB. Each site has

its own copy, or replica, of that VOB. The set of replicas for a particular VOB is called a VOB family.

At any time, a site can propagate the changes made in its own VOB replica to the other members

of the VOB family, using either an automatic or manual synchronization process.

Figure 2 ClearCase MultiSite VOB Family

This manual discusses ClearCase MultiSite only where it applies to a given ClearCase operation

or concept. See the Administrator’s Guide for Rational ClearCase MultiSite for details about

configuring, using, and administering ClearCase MultiSite.

1.3 ClearQuest

Rational ClearQuest is a change request management application that allows you to track change

requests for your products. Using ClearQuest, you can submit change requests, view and modify

Boston

San Francisco

Bangalore

peer-to-peer pattern

4 Introduction: Rational ClearCase

existing change requests, and create and run user- or site-specific queries and reports to

determine the current state of your project.

In ClearQuest, change requests are stored as records in a ClearQuest database. Each record

consists of all the data related to that record. ClearQuest supports different types of records for

different projects and uses. For example, you might have record types for enhancements, defects,

and activities, each with unique fields and data requirements.

A schema refers to all attributes that define a ClearQuest database. ClearQuest provides default

schemas and allows you to create customized schemas.

ClearQuest records move through a pattern, or lifecycle, from submission through resolution. In

ClearQuest, each stage in this lifecycle is called a state, and each movement from one state to

another is called a state transition.

This manual discusses ClearQuest only where it applies to a given ClearCase operation or

concept. See the ClearQuest documentation set for details about configuring, using, and

administering ClearQuest.

1.4 Unified Change Management

Rational Unified Change Management (UCM) combines ClearCase and ClearQuest to provide a

complete, out-of-the-box, activity-based change management process.

UCM combines ClearCase configuration management capabilities (such as version control,

parallel development, build management, and component-based management of directories and

files) with ClearQuest change request and activity management capabilities (such as task

management, state transition support, parent/child associations, policy enforcement rules, and

extensive querying and reporting).

In UCM, development work is organized into projects. A project is a ClearCase object that

contains the configuration information (for example, components, activities, policies) needed to

manage and track a significant development effort, such as a product release. Project managers

use a project to set the policies that govern how developers access and update the set of files and

directories used in the development effort.

An activity is a ClearCase object that records the set of files (change set) that a developer creates

or modifies to complete and deliver a development task, such as a bug fix (Figure 3).

1 - ClearCase, ClearQuest, and Unified Change Management 5

Figure 3 An Activity

You can associate ClearCase project and activity objects with ClearQuest records. This enables

you to attach ClearQuest information—such as states and state transitions, user assignments,

and parent/child associations—to ClearCase projects and activities. Developers can use

ClearQuest queries to determine which activities are assigned to them (Figure 4). Project

managers can use ClearQuest queries, reports, and charts to monitor the progress of software

development projects.

Figure 4 Using a ClearQuest To-Do List to Find UCM Activities

In UCM, a component is a group of related ClearCase directory and file elements that you

develop, integrate, and release as a unit. Components constitute parts of a project, and projects

often share components.

A baseline identifies one version of each element in a component that represents the integrated or

merged work of team members (Figure 5). It represents a version of a component at a particular

stage in project development, such as the first draft of a book, a beta release, or a final product

release. Throughout the project cycle, the project manager creates baselines and changes their

promotion level attributes to reflect project milestones.

HeadlineFixing bug 2144

prog.c, version 5
lib.c, version 4

Creator: pat Activity creator

Change set

6 Introduction: Rational ClearCase

Figure 5 Elements, Components, and Baselines

A UCM project includes a single integration stream, which configures ClearCase views that select

the latest versions of a project’s shared ClearCase elements. As a developer, when you join a

project, ClearCase creates a development stream for you in the project. Development streams

configure the ClearCase views that allow you to work on the project components in isolation

from the rest of the team.

When joining a project, you can populate your work area with the versions of directory and file

elements represented by the project’s recommended baseline. Alternatively, you can join the

project at a feature-specific development stream level, in which case you populate your work

area with the development stream’s recommended baselines. This practice ensures that all

members of the project team start with the same set of files.

If your project team works on multiple components, the project manager may want to use a

composite baseline. A composite baseline is a baseline that selects baselines in other components.

It provides a mechanism for holding together the recommended baselines of the project’s

components. By using a composite baseline in this manner, you can identify one baseline to

represent the entire project.

Element

Baseline
BL1

Version

Component

prog.c lib.c msg.cat util.h

1 - ClearCase, ClearQuest, and Unified Change Management 7

When you work on a particular activity, all changes to the files and directories in the components

are associated with that activity in a change set. After you complete an activity, and build and

test your work in your private work area, you share your work with the project team by delivering
the activity from your development stream to the project’s integration stream (Figure 6).

Figure 6 Delivering Activities from Development Streams to Integration Streams

Periodically, the project manager creates new baselines for the components used by the project.

The new baselines incorporate work that developers have delivered since the last baselines were

created.When the project manager recommends a particular baseline, you may choose to rebase
your development stream to use the new baseline (Figure 7).

Integration stream

Baseline BL1

Deliver

Development stream

8 Introduction: Rational ClearCase

Figure 7 Rebasing Development Streams

Note that using UCM or ClearQuest is optional. You can choose not to use ClearQuest for change

request and activity management and still take advantage of UCM process features. You can

choose not to use UCM process features and still associate ClearQuest records with ClearCase

versions. Or you can use ClearCase without UCM or ClearQuest.

This section provides only an overview of how UCM integrates ClearCase and ClearQuest. See

Developing Software, Managing Software Projects, and the ClearQuest documentation set for details

about the concepts and tasks summarized here.

Rebasing

Development
stream

Baseline BL1 Baseline BL2

2 - Planning for and Installing ClearCase 9

22 Planning for and Installing
ClearCase

This chapter summarizes the basic steps required to install Rational ClearCase, providing a

high-level understanding of the installation process. It is not intended to be a complete

installation guide. See the Installation Guide for the ClearCase Product Family for details about

installing ClearCase at your site.

If you are a ClearCase administrator, charged with installing ClearCase at your site, read this

chapter.

If you are a project manager, Planning Issues contains information about using UCM, Rational

ClearQuest, and Rational ClearCase MultiSite in your organization.

If you are concerned only with installing ClearCase on your client computer, start with Installing
ClearCase on Individual Computers on page 12.

2.1 Planning Issues

This section describes some of the significant decisions administrators or project managers must

make before you can begin installing ClearCase at your site.

10 Introduction: Rational ClearCase

Using Unified Change Management or Base ClearCase

UCM is an optional prescribed method of using ClearCase for version control and configuration

management. Because UCM is layered on base ClearCase, it is possible to work efficiently in

UCM without having to master the details of base ClearCase.

UCM provides the convenience of an out-of-the-box solution; base ClearCase offers the

flexibility to implement virtually any configuration management solution that you deem

appropriate for your environment.

By default, UCM functionality is included when you install ClearCase. However, this does not

prevent you from using base ClearCase functionality, because you can specify that your

configuration (specifically, your VOBs and views) not use UCM features.

Chapters 3, 4, and 5 of this manual provide an overview of the differences in configuring,

working in, and managing software development projects between base ClearCase and UCM.

However, for detailed information:

➤ See Managing Software Projects for information about creating and managing projects using

UCM or base ClearCase, including the details about what you must consider for each before

installing ClearCase.

➤ See Developing Software for information about how choosing UCM or base ClearCase affects

how developers do their work in ClearCase.

Using ClearQuest

In UCM, you can use ClearQuest to provide activity management for your UCM development

work, such as assigning and transitioning states for activities, and querying and reporting on

activities based on state, user assignment, project, and so on. See Managing Software Projects for

details about configuring ClearQuest and ClearCase to support UCM activity management.

If you are using base ClearCase functionality instead of UCM, you can associate ClearQuest

change requests with ClearCase versions. See the online documentation for the

ClearQuest-ClearCase Integration Configuration program for details about configuring this

integration.

2 - Planning for and Installing ClearCase 11

Using ClearCase MultiSite

Before installing ClearCase MultiSite, you must resolve planning issues, such as which

development artifacts to share across sites, how the various sites will access and change those

artifacts, how to synchronize sites, and so on.

See the Administrator’s Guide for Rational ClearCase MultiSite for details about planning for and

using ClearCase MultiSite.

2.2 ClearCase Site Preparation

The ClearCase administrator (possibly with advice from the ClearCase project manager) decides

how to configure the ClearCase installation for the site. The administrator creates a shared

release area from which users can install ClearCase on their individual computers. When

creating the shared release area, the administrator specifies default values for installation

parameters for the individual hosts based on the configuration decisions made for the site.

See READ ME FIRST

The READ ME FIRST chapter in the Release Notes for Rational ClearCase and ClearCase MultiSite

contains information you need to know before installing ClearCase at your site:

➤ Supported platforms and file systems (including Windows/UNIX file access)

➤ Hardware and software requirements

➤ Platform-specific information pertaining to installation, such as disk space required, OS

patches required, layered software packages required, and so on

➤ ClearCase and MultiSite patches incorporated into this release

➤ Issues with upgrading from a previous ClearCase release (both in general and pertaining to

this particular release)

➤ Known issues pertaining to installation

12 Introduction: Rational ClearCase

Running ClearCase Site Preparation

The ClearCase Site Preparation program prepares the shared release area from which users can

install ClearCase on their computers.

ClearCase Site Preparation configures the site-wide defaults that users see when installing

ClearCase on their computers. This simplifies site-wide installation because the ClearCase

administrator defines the ClearCase installation parameters for the site only once rather than

relying on everyone making the appropriate choices when they install. It also simplifies

installation, because users can accept the default values when prompted.

On Windows, running ClearCase Site Preparation requires at least local administrator privileges

and often also requires network administrator privileges. On UNIX, running ClearCase Site

Preparation requires root privileges.

See the Installation Guide for the ClearCase Product Family for detailed information about

running ClearCase Site Preparation.

2.3 Installing ClearCase on Individual Computers

To install ClearCase on your computer, go to the release area created by your ClearCase

administrator and run the ClearCase Installation program. (On Windows, this is setup.exe; on

UNIX, it is install_release.)

Typically, you should accept the default installation parameters. See your ClearCase

administrator before you override any default values.

See the Installation Guide for the ClearCase Product Family for detailed information about

installing ClearCase.

3 - Setting Up a Software Project in ClearCase 13

33 Setting Up a Software Project in
ClearCase

This chapter provides an overview of how a project manager sets up a software development

project in Rational ClearCase, using either UCM or base ClearCase.

Depending on the complexity of your organization and your software configuration, you may

need to create and organize many projects. This chapter describes the basic steps required to

create a single project. See Chapter 2 for an overview of the planning issues you need to consider

before creating a project in ClearCase.

See Managing Software Projects for detailed information about creating and configuring projects

in ClearCase, including how to plan for, create, and manage multiple projects.

3.1 Creating a Project in UCM

This section provides an overview of how to set up a project in UCM.

Creating a Project VOB

In UCM, each project must be associated with a project VOB, or PVOB. A PVOB is a special kind

of VOB that stores UCM objects, such as projects, activities, and change sets. A PVOB must exist

before you can create a project.

14 Introduction: Rational ClearCase

Organizing Directories and Files into VOBs and Components

As the number of files and directories in your system grows, you need a way to reduce the

complexity of managing them. Components are the UCM mechanism for simplifying the

organization of your files and directories. The elements that you group into a component

typically implement a reusable piece of your system architecture. By organizing related files and

directories into components, you can view your system as a small number of identifiable

components, rather than as one large set of directories and files.

The directory and file elements of a component reside physically in a VOB. The component object

resides in a PVOB. Within a component, you organize directory and file elements into a directory

tree. You can convert existing VOBs or directory trees within VOBs into components, or you can

create a component from scratch. See Managing Software Projects for details.

Creating a Project

In UCM, a project is an object in a PVOB that contains the configuration information needed to

manage a development effort. A project defines how developers access and update the

components used in a particular development effort. For example:

➤ Which components and baselines are to be used for this project

➤ How developers are to work both independently of and in conjunction with each other

➤ How to group development changes into manageable pieces

➤ Whether to use the ClearQuest integration, and if so, which ClearQuest database to

associate with this project

Implementing Development Policies

UCM includes a set of policies that you can set on projects and streams to enforce development

practices among members of the project team. By setting policies, you can improve

communication among project team members and minimize the problems you may encounter

when integrating their work. For example, you can set a policy that requires developers to

update their work areas with the project’s latest recommended baseline before they deliver work

to the integration stream. This practice reduces the likelihood that developers will need to work

3 - Setting Up a Software Project in ClearCase 15

through complex merges when they deliver their work. For a description of all policies that you

can set in UCM, see Managing Software Projects.

In addition to the set of policies that UCM provides, you can create triggers on UCM operations

to enforce customized development policies. A trigger is a monitor that specifies one or more

standard programs or built-in actions to be executed whenever a certain ClearCase operation is

performed.

See Managing Software Projects for details about creating triggers.

Creating and Assigning Activities

In UCM, an activity is an object that tracks the work required to complete a particular

development task. As project manager, you decide whether to create activities and assign them

to developers as part of setting up your project, or to allow the developers to create their own

activities as they do their work.

Using the ClearQuest Integration

If your project uses the ClearQuest integration, UCM activities can be associated with

ClearQuest records, enabling you to attach project management information such as states and

state transitions, user assignments, policy enforcement rules, and parent/child associations to

ClearCase activities.

Developers can use a to-do list in ClearQuest to access activities that the project manager or other

team members assign to them.

3.2 Setting Up a Project in Base ClearCase

This section provides an overview of how to set up a project in base ClearCase.

Importing Directories and Files into VOBs

Before starting a project, the project manager or ClearCase administrator must import the files

and directories that constitute the existing system architecture into ClearCase VOBs. See the

16 Introduction: Rational ClearCase

Administrator’s Guide for Rational ClearCase for details about importing existing files and

directories into ClearCase VOBs.

Applying a Label to the Initial Configuration

A label is a user-defined name that can be attached to a version.

After importing the system configuration into ClearCase VOBs, you can apply a label to the

directories and files in those VOBs to define a starting point for your project configuration.

Establishing a Branching and Merging Strategy

Base ClearCase uses branches directly to implement parallel development. (UCM manages

branches for you.) A branch is an object that specifies a linear sequence of versions of an element.

Every element has one main branch, which represents the principal line of development, and may

have multiple subbranches, each of which represents a separate line of development. As shown in

Figure 8, a project team can use many branches concurrently. In this example, the main branch

represents new development work, an alpha_port subbranch is a port to a new platform, an

r1_bugs subbranch contains fixes for bugs found in the first release, and so on.

Figure 8 Branching Hierarchy in Base ClearCase

main

r1_bugs

alpha_port

bug102

install

3 - Setting Up a Software Project in ClearCase 17

To integrate work from one branch to another, you merge from the subbranch to the other branch.

In the example above, assume that all work must be merged to the main branch before it can be

included in a release for your product. After the fix on the bug102 branch is tested and deemed

ready for integration, you merge the work first to the r1_bugs branch. At some point, you test all

the bug-fixing work on the r1_bugs branch, and when that work is ready to be incorporated into

the main project, you merge from that branch to the main branch.

Of course, this is a very simple example of how you can define a branching strategy; the possible

branching and merging combinations are almost infinite.

Creating Standard Config Specs

As a project manager in an environment in which multiple branches are used, you must ensure

that developers are working on the correct branches. To do that, you must ensure that the views

they are using access and change the appropriate directory and file versions (that is, that they are

accessing the appropriate branch).

The rules in the view’s config spec determine which versions to select, and thus, which branch the

developer is using. To ensure that developer views are configured properly, you can create a

standard config spec and instruct all developers to use it.

Using ClearCase Metadata to Implement Development Policy

To enforce development policies in base ClearCase, a project manager or ClearCase

administrator can create metadata to preserve information about the status of versions. To

monitor the progress of the project, the project manager can generate a variety of reports from

this data and from the information that ClearCase captures in event records. ClearCase metadata

that a project manager can use to define project policy includes the following:

➤ Version labels

➤ Attributes

➤ Hyperlinks

➤ Triggers

➤ Locks

See Managing Software Projects for details about using ClearCase metadata.

18 Introduction: Rational ClearCase

Using the ClearQuest-ClearCase Integration

If your project uses the ClearQuest-ClearCase integration, ClearQuest records can be associated

with ClearCase versions, identifying which versions were created while making a particular

change.

See the online documentation for the ClearQuest-ClearCase Integration Configuration program

for details about this integration.

4 - Developing and Building Software with ClearCase 19

44 Developing and Building Software
with ClearCase

This chapter provides an overview of how developers create, change, and build software in

Rational ClearCase, using either UCM or base ClearCase.

See Developing Software for details about the development process and Building Software for

details about the build process.

4.1 Developing Software Using UCM

UCM structures the efforts of your software development team into a defined, repeatable

process. This section provides an overview of the workflow for developers in UCM.

Joining a Project

A developer starts work by joining a UCM project. When you join a project, you create your

private work area and populate it with the contents of the project’s baselines.

Shared and Private Work Areas

A work area consists of a view and a stream. A view is a directory tree that shows a single version

of each file in your project. A stream is a ClearCase object that maintains a list of activities and

baselines and determines which versions of elements appear in your view.

20 Introduction: Rational ClearCase

A project contains one integration stream, which records the project’s baselines and enables access

to shared versions of the project’s elements. The integration stream and a corresponding

integration view represent the project’s shared work area.

Each developer on the project has a private work area, which consists of a development stream

and a corresponding development view. The development stream maintains a list of the

developer’s activities and determines which versions of elements appear in the developer’s

view.

In the basic UCM process, the integration stream is the project’s only shared work area. The

project manager or lead developer may want to create additional shared work areas for

developers who are working together on specific parts of the project. You can accomplish this by

creating a hierarchy of development streams. For example, you can create a development stream

and designate it as the shared work area for developers working on a particular feature.

Developers then create their own development streams and views under the development

stream for this feature. The developers deliver work to and rebase their streams to recommended

baselines in the feature’s development stream. See Managing Software Projects for details on

development stream hierarchies.

Working on Activities

All work on your development stream takes place as part of a UCM activity. An activity is an

object that tracks the work required to complete a development task, such as fixing a bug.

Finding or Creating an Activity for Your Work

If your project uses Rational ClearQuest, you can use a to-do list in ClearQuest to access activities

that you, your project manager, or other team members assign to you.

You can also create and use activities when you check out files and directories.

Modifying and Testing Source Files

To modify source files, go into your development view and check them out. When you want to

keep a record of a file’s current state, check it in. Any work you check in from your development

view is not available to other team members until you deliver it.

Make sure the changes in your development view build and function properly before you deliver

them.

4 - Developing and Building Software with ClearCase 21

Delivering Activities

When you are ready to make one or more of your activities available to the project team, you

deliver them from your development stream to either the project’s integration stream or the

feature-specific development stream.

Starting the Deliver Operation

When you start a deliver operation, ClearCase integrates the changes from your development

work area to the integration work area or feature-specific development stream. At this point, the

files are checked out to your integration view.

Testing Your Work

You should build and test your work against the latest project work. To do this, use your

integration view to access both the versions you delivered from your development work area

and the latest versions delivered by the other developers working on the project.

Completing the Deliver Operation

When you are satisfied that your changes are compatible with the latest work for the project, you

complete the deliver operation. (If you are not satisfied, you can cancel it.)

The deliver operation checks in the files that were integrated from the development work area to

the integration work area or feature-specific development stream.

Delivering with MultiSite

If your project uses Rational ClearCase MultiSite to share source data with developers in other

geographical locations, you may use a different method for delivering activities.

If a different site is responsible for controlling your project’s source data, your organizational

policy may require that you notify the integrator or project manager at that site when you deliver

changes. That person merges your activities to the integration stream and tests your work.

22 Introduction: Rational ClearCase

Rebasing Your Work Area

Periodically, your project manager groups delivered activities into baselines, which are versions

of each component in the project. Some of these baselines constitute a stable and significant

source configuration; your project manager will recommend that you rebase your development

work area to the recommended configuration.

Starting the Rebase Operation

When you start the rebase operation, ClearCase integrates the versions specified by the

recommended baseline in either the project’s integration stream or the feature-specific

development stream into your development work area. At this point, the files are checked out to

your development view.

Testing Your Development Work Area

You should test your work against the latest project work. To do this, use your development view

to access both the versions you integrated from the integration stream or feature-specific

development stream and the latest (undelivered) versions in your development work area.

Completing the Rebase Operation

When you are satisfied that the recommended baseline is compatible with the work you have

done in your development stream, you complete the rebase operation. (If you are not satisfied,

you can cancel it.)

The rebase operation checks in the files that were integrated from the integration stream or

feature-specific development stream to the development work area.

4.2 Developing Software Using Base ClearCase

This section provides an overview of the workflow for developers using base ClearCase

functionality.

4 - Developing and Building Software with ClearCase 23

Setting Up a View

Typically, a project manager has defined the development policies for your project and has

implemented them using a configuration specification (or config spec).

To start working on a project, you create a ClearCase view and then change the config spec for

that view to match the project’s config spec.

Accessing and Modifying Files in Your View

To modify source files, go into the development view and check them out. When you want to

keep a record of a file’s current state, check it in.

Working on Branches

Typically, your project manager has defined a branching strategy for your project or

organization, and has provided a standard config spec to ensure that developers are working on

the branch appropriate for the project.

Using a Private Branch

Occasionally, you might want to isolate some short-term development effort from the project

branch. For example, you may want to experiment with some changes to the product, but are not

yet sure whether to include such experimental changes in official project builds. You can do this

by creating a private branch based on the project branch. To do this, you change the rules in the

config spec for your view.

If you decide that your changes should be incorporated into the project, you can then merge the

changes on your private branch back to the project branch. If you decide to abandon your

changes, you simply do not merge the work. In either case, you change your config spec rules

back to the standard project config spec and resume your work on the project branch.

Developing Software contains more information about creating private branches for development

work and merging your work back to the project branch.

24 Introduction: Rational ClearCase

MultiSite Branch Mastership

If your organization uses ClearCase MultiSite to distribute development among multiple

geographical sites, you may have to consider issues about branch control (mastership) between

sites. See the Administrator’s Guide for Rational ClearCase MultiSite for details.

4.3 Using ClearCase Build Tools

ClearCase supports makefile-based building of software systems, and provides a software build

environment closely resembling that of the make program. The make program was developed

for UNIX systems, and has been ported to other operating systems. To build software, you can

use native make programs, third-party build utilities, your company’s own build programs, or

the ClearCase build tools clearmake, omake (Windows only), and clearaudit.

The ClearCase build tools, clearmake and omake, provide compatibility with other make
variants, along with powerful enhancements:

➤ Build auditing, with automatic detection of source dependencies, including header file

dependencies

➤ Automatic creation of permanent bill-of-materials documentation of the build process and

its results

➤ Sophisticated build-avoidance algorithms to guarantee correct results when building in a

parallel development environment

➤ Sharing of binaries among views, saving both time and disk storage

➤ Parallel building, applying the resources of multiple processors and/or multiple hosts to

builds of large software systems

The clearaudit build tool provides build auditing and creation of bill-of-materials

documentation.

See Building Software for details about using ClearCase build tools.

5 - Managing Software Projects with ClearCase 25

55 Managing Software Projects with
ClearCase

This chapter provides an overview of how project managers coordinate and track existing

projects in Rational ClearCase, using UCM and base ClearCase functionality.

See Managing Software Projects for detailed information about planning, creating, and managing

software projects using ClearCase.

5.1 Managing Projects with UCM

This section summarizes the capabilities provided by UCM for managing software projects.

Adding Components to Projects

Over time, as project manager, you may need to add components to a project’s integration

stream. You do this by creating a new baseline that contains the new components. When the

developers rebase their development work areas, the new components become visible.

26 Introduction: Rational ClearCase

Integrating MultiSite Development Work into the Project

In most cases, developers complete the deliver operations that they start. However, in a MultiSite

configuration where the project’s integration stream is mastered at a different replica than the

developer’s development stream, the developer cannot complete the deliver operations.

When ClearCase detects such a stream mastership situation, it makes the deliver operation a

remote deliver operation. ClearCase starts the deliver operation but leaves it in the posted state.

As project manager, you are responsible for finding and completing deliver operations in the

posted state.

NOTE: Developers who have deliver operations in the posted state cannot rebase their

development streams until the you complete or cancel their remote deliver operations.

See the Administrator’s Guide for Rational ClearCase MultiSite for details about MultiSite

mastership. See Managing Software Projects for details about using MultiSite with UCM, including

finding and completing posted deliveries.

Managing Baselines

This section summarizes how project managers create and recommend baselines.

Creating New Baselines

As developers deliver work to the integration stream, it is important that you, as the project

manager, frequently make new baselines that incorporate the changes. If the project uses

feature-specific development streams, you should perform this task on those streams as well as

on the integration stream. In some environments, the lead developer working on a feature may

assume the role of integrator for a feature-specific development stream. Developers can then

rebase to the new baselines and stay current with changes in the project.

Recommending Baselines

As work on the project progresses and the quality and stability of the components improve, you

can change a baseline’s promotion level attribute to reflect important milestones. The promotion

level attribute typically indicates a level of testing.

When a baseline passes the level of testing required to be considered stable, make it the

recommended baseline. Developers then rebase their development streams to the recommended

5 - Managing Software Projects with ClearCase 27

baseline. You can set a policy that requires developers to rebase their development streams to the

recommended baseline before they deliver work. This policy helps to ensure that developers

update their work areas whenever a baseline passes an acceptable level of testing.

Tracking Projects

UCM provides several tools to help project managers track the progress of projects.

Comparing Baselines

ClearCase enables you to display the differences between UCM baselines graphically. You can

compare baselines by the activities or versions in each baseline.

Using ClearQuest to Track Work

If you use the UCM-ClearQuest integration, developers and project managers can use

ClearQuest queries, reports, and charts to retrieve information about the state of the project. For

example:

➤ Which activities for a given project, stream, or developer are active

➤ Which activities are currently assigned to you (the to-do list)

➤ Detailed information for a particular activity, such as its state, owner, and changes made

➤ Trends in activity properties over time

You can also create custom ClearQuest queries, reports, and charts.

Using the ClearCase Report Builder and Report Viewer (Windows Only)

The ClearCase Report Builder and Report Viewer let you generate and view reports specific to

your project environment. The Report Builder provides a set of reports organized by ClearCase

object, such as project, stream, element, and view. In addition, you can customize the procedures

used to generate reports.

28 Introduction: Rational ClearCase

5.2 Managing Projects with Base ClearCase

This section summarizes the capabilities provided by base ClearCase for managing software

projects.

Adding VOBs to Projects

Over time, you may need to add VOBs to a project’s configuration. You should attach a

ClearCase label to the initial versions in the VOB to represent the initial configuration of the VOB

content.

Integrating Work Between Branches

As discussed in Establishing a Branching and Merging Strategy on page 16, base ClearCase

functionality uses branches to isolate parallel development efforts. At some point, as project

manager, you integrate the changes made on subbranches into a main product branch, which is

sometimes called the integration branch.

In the simplest parallel development model, the main branch is the integration branch and a

subbranch represents a separate development effort. After the work on the subbranch is deemed

ready for integration, you merge the work from that branch to the main branch.

See Managing Software Projects for details about integrating parallel development using base

ClearCase functionality.

Integrating MultiSite Development Work into the Project

In the standard MultiSite model, development at different sites occurs on branches of different

types, and each site-specific branch type is mastered by the replica at that site. Integration merges

occur only at the site whose replica masters the integration branch.

In a MultiSite configuration where the project’s integration branch is mastered at a different

replica than the developer’s branch, you must manage integrations from the developer branch

to the integration branch.

See the Administrator’s Guide for Rational ClearCase MultiSite for details about managing

projects and integrating development work in ClearCase MultiSite.

Glossary 29

0 Glossary

ABE (AUDITED BUILD EXECUTOR). A process invoked through the UNIX remote-shell facility, to

execute one or more build scripts on behalf of a remote clearmake.

ABSOLUTE VOB PATHNAME. (Windows platforms only) A pathname to a VOB object that begins

with the VOB-tag. The pathname does not specify a network drive or view. For example,

\myvob\src\test.c, where the VOB-tag is \myvob.

ACTIVITY. A ClearCase UCM object that tracks the work required to complete a development task.

An activity includes a text headline, which describes the task, and a change set, which

identifies all versions that you create or modify while working on the activity. When you work

on a version, you must associate that version with an activity. If your project is configured to

use the UCM-ClearQuest integration, a corresponding ClearQuest record stores additional

activity information, such as the state and owner of the activity.

ADMINISTRATIVE VOB. A VOB that contains global type objects, which are copied to client VOBs on

an as-needed basis when users want to create instances of the type objects in the client VOBs.

See also auto-make-type, global type, local copy.

ALBD _SERVER. Atria Location Broker Daemon. This master server runs on each ClearCase host; it

starts up, and dispatches messages to, the various ClearCase server programs (for example,

view_server, vob_server, db_server, vobrpc_server, and so on) as necessary.

ALL -ELEMENT TRIGGER TYPE. A trigger type that is associated with all elements in a VOB.

ANCESTOR. In an element’s version tree, a version that is on the line of descent of another version.

In other words, a version that has contributed to the contents of another version is considered

an ancestor to the latter version.

ATTACHED LIST. The names of trigger types maintained for directory elements and file elements to

control trigger firing. By default, a trigger type is added to the attached list when you attach a

trigger to an element. If a trigger type is in the attached list of an element, operations on that

element can cause that trigger to be fired. See also inheritance list.
ATTRIBUTE. A metadata annotation attached to an object, in the form of a name/value pair. Names

of attributes are specified by attribute types, which users define; users can set the values of

30 Introduction: Rational ClearCase

these attributes. Example: a project administrator creates an attribute type whose name is

QAed. A user then attaches the attribute QAed with the value "Yes" to versions of several

file elements.

ATTRIBUTE TYPE. An object that defines an attribute name for use within a VOB. It constrains the

attribute values that can be paired with the attribute name (for example, an integer in the

range 1–10).

AUTO-MAKE-BRANCH. The ClearCase facility, specified in a config spec rule, for creating one or more

branches when a checkout is performed.

AUTO-MAKE-TYPE. The ClearCase facility for copying type objects from an administrative VOB to a

client VOB, when a user attempts to make an instance of the type object in the client VOB. See

also global type, local copy.

BASE CONTRIBUTOR . In the comparison and merge tools, the contributor against which all other

contributors are compared when reporting differences.

BASELINE . A ClearCase UCM object that typically represents a stable configuration for one or

more components. A baseline identifies activities and one version of every element visible in

one or more components. You can create a development stream or rebase an existing

development stream from a baseline.

BOS FILE. A file containing rules that specify settings of make macros, which affect the way in

which a target rebuild proceeds.

BRANCH. An object that specifies a linear sequence of versions of an element. The entire set of

versions of an element is called a version tree; it always has a single main branch, and may also

have subbranches. Each branch is an instance of a branch type object.

BRANCH NAME . An instance of a branch type for use in an element’s version tree. By convention, all

letters in the names of branch types are lowercase.

BRANCH PATHNAME . A sequence of branch names, starting with main (the name of an element’s

starting branch). Examples: /main/motif on UNIX platforms; \main\maintenance\bug459
on Windows platforms.

BRANCH TYPE. A type object that is used to identify a parallel line of development for an element.

Each branch in an element’s version tree is an instance of a branch type that exists in that

element’s VOB. A branch type can appear in a version selector to identify the branch on which

a version resides.

BUILD. The process during which a ClearCase build program (clearmake, clearaudit, or omake)

produces one or more derived objects. This may involve actual translation of source files and

construction of binary files by compilers, linkers, text formatters, and so on. A system build

consists of a combination of actual target rebuilds and build avoidance. See also express build.

BUILD AUDIT. The process of recording which files and directories (and which versions of them)

are read or written by the operating system during the execution of one or more programs.

On a client host, the MVFS performs an audit during execution of a ClearCase build program:

clearmake, omake, clearaudit, or abe. When the build audit ends, the build program creates

one or more configuration records (CRs). An audited shell is a UNIX shell process created by

Glossary 31

clearaudit in which all file system accesses are audited and then recorded in a configuration

record when the shell exits.

BUILD AVOIDANCE . The ability of a ClearCase build program to fulfill a build request by using an

existing derived object instead of creating a new one by executing a build script. The build

program can reuse a derived object currently in the view or wink in a derived object that exists

in another view. The process by which the build program decides how to produce a derived

object is called configuration lookup.

BUILD CONFIGURATION . The set of source versions in a view, the current build script that would be

executed, and the current build options. See also configuration lookup.

BUILD HOSTS FILE . (UNIX platforms only) A file that lists hosts to be used in a parallel build.

BUILD REFERENCE TIME. The time at which a build session begins. Versions created after this time are

kept out of the build.

BUILD SCRIPT. The set of shell commands that a ClearCase build program or a standard make
program reads from a makefile when building a particular target.

BUILD SERVER CONTROL FILE . (UNIX platforms only) A file on a build host that controls its

availability as a build server.

BUILD SERVER HOST. (UNIX platforms only) A host used to execute build scripts during a

clearmake parallel build.

BUILD SESSION. A top-level invocation of a ClearCase build program; during the session, recursive

invocations of clearmake, omake, or clearaudit may start subsessions.

BUILD TARGET. A word, typically the name of an object module or program, that can be used as an

argument in a clearmake or omake command.The target must appear in a makefile, where it

is associated with one or more build scripts.

BUILT-IN RULES. The build rules defined in a file supplied by ClearCase or the operating system,

which supplement the explicit build rules in a user’s makefiles.

CHANGE SET. A list of related versions associated with a UCM activity. ClearCase records the

versions that you create while you work on an activity. An activity uses a change set to record

the versions of files that are delivered, integrated, and released together.

CHECKED-OUT VERSION. A placeholder object in a VOB database, created by the checkout
command. This object corresponds to the view-private object (file or directory) that you work

with after checking out the element.

CHECKOUT/CHECKIN. The two-part process that extends a branch of an element’s version tree with a

new version. The first part of the process, checkout, expresses your intent to create a new

version at the current end of a particular branch. (This is sometimes called checking out a

branch.) The second part, checkin, completes the process by creating the new version.

For file elements, the checkout process creates an editable version of the file in the view with

the same contents as the version at the end of the branch. Typically, a user edits this file, then

checks it back in.

32 Introduction: Rational ClearCase

For directory elements, the checkout process allows file elements, (sub)directory elements, and

VOB symbolic links to be created, renamed, moved, and deleted.

Performing a checkout of a branch does not necessarily guarantee you the right to perform a

subsequent checkin. Many users can checkout the same branch, as long as they are working

in different views. At most one of these can be a reserved checkout, which guarantees the

user’s right to check in a new version. An unreserved checkout does not. If several users have

unreserved checkouts on the same branch in different views, the first user to check in creates

the next version.

CLEARCASE ADMINISTRATORS GROUP. (Windows platforms only) A special group, usually created in

the Windows NT domain when ClearCase is installed. Only ClearCase administrative

accounts and the login account for the ALBD Service should be members of this group.

CLEARCASE REGISTRY. A set of files on the registry server host that map logical VOB and view

names (VOB-tags and view-tags) to physical storage locations (VOB storage directories and view
storage directories).

CLEARTEXT FILE . An ASCII text file that contains a whole copy of some version of an element,

having been extracted from a data container that is in compressed format or delta format. A

ClearCase type manager creates a cleartext container the first time it accesses the version.

Subsequent reads of that version access the cleartext file, for better performance.

CLEARTEXT POOL . A VOB storage pool, used as a cache for the ASCII text extracted from data
containers.

COMMON ANCESTOR. In an element’s version tree, a version that is on the line of descent of two (or

more) versions on different branches.

COMPONENT. A ClearCase object that you use to group a set of related directory and file elements

within a UCM project. Typically, you develop, integrate, and release the elements that make

up a component together. A project must contain at least one component, and it can contain

multiple components. Projects can share components.

COMPOSITE BASELINE . A baseline that selects baselines from other components. You create a

composite baseline by creating dependency relationships between the component that stores

the composite baseline and the components whose baselines are selected by the composite

baseline.

CONFIG SPEC. A set of configuration rules that specify which versions of VOB elements a view

selects. The config spec for a snapshot view also specifies which elements to load into the view.

See also scope, version selector, version-selection rule, and load rule.

CONFIGURATION LOOKUP. The process by which a ClearCase build program determines whether to

perform a target rebuild of a derived object (execute a build script) or reuse an existing instance

of the derived object. This involves comparing the configuration records of existing derived

objects with the build configuration of the current view.

CONFIGURATION MANAGEMENT. The discipline of tracking the individual objects and collections of

objects (and the versions thereof) that are used to build systems.

Glossary 33

CONFIGURATION RECORD (CR). A listing produced by a target rebuild, logically associated with each

derived object created during the rebuild. A configuration record is a bill of materials for a

derived object, indicating exactly which file system objects (and which specific versions of

those objects) were used by the rebuild as input data or as executable programs, and which

files were created as output. It also contains other aspects of the build configuration.

CONFIGURATION RECORD HIERARCHY. A tree structure of configuration records, which mirrors the

hierarchical structure of targets in the makefile.

CONTRIBUTOR. A file, directory, or version considered for a comparison or merge. Typically,

contributors are multiple versions of the same ClearCase file or directory element.

CROSS-VOB HYPERLINK. A hyperlink that connects two objects in different VOBs. The hyperlink

always appears in a describe listing of the from-object. It also appears in a listing of the

to-object, unless it was created as a unidirectional hyperlink.

CURRENT REPLICA. (MultiSite) The VOB replica in which you work. This is the replica in your

ClearCase registry region.

CURRENT WORKING DIRECTORY. The context in which relative pathnames are resolved by the

operating system. This can be a location in the ClearCase extended namespace.

DATA CONTAINER . 1) A file or directory that contains the data produced by a build script. A data

container and a configuration record are the essential constituents of a derived object. 2) A file in

a source pool or cleartext pool, containing the data for one or more versions of a file element.
DELIVER. A ClearCase operation that allows developers to share their work with the project team

by merging work from their own development streams to the project’s integration stream or a

feature-specific development stream. If required, the deliver operation invokes the Merge

Manager to merge versions.

DELTA. The incremental difference (or set of differences) between two versions of a file element.
Some type managers store all versions of an element in a single data container, as a series of

deltas.

DEPENDENCY. In a makefile, a word listed after the colon (:) on the same line as a target. A source

dependency of a target is a file whose version ID is taken into account in a configuration

lookup of the target. A build dependency is a derived object that must be built before the

target is built.

DERIVED OBJECT (DO). An MVFS file produced by a clearmake or omake build or a clearaudit
session. Each derived object is associated with the configuration record that is created by the

ClearCase build program to document the build. A shareable DO can be winked in by other

views. A nonshareable DO cannot be winked in by other views unless you explicitly make it

available.

DERIVED OBJECT STORAGE POOL . A storage pool for the data containers of a VOB’s derived objects. Only

those derived objects that have been winked in are stored in these pools. Data containers of

unshared and nonshareable derived objects are stored in view-private storage.

DEVELOPMENT STREAM. A ClearCase UCM object that determines which versions of elements

appear in your development view, and maintains a list of your activities. The development

34 Introduction: Rational ClearCase

stream configures your development view to select the versions associated with the

foundation baselines plus any activities and versions that you create after joining the project

or rebasing your development stream.

DEVELOPMENT VIEW. A view associated with a UCM development stream. A development view can

be either a dynamic view or a snapshot view.

DIRECTORY ELEMENT. An element whose versions catalog the names of file elements, other directory

elements, and VOB symbolic links.

DIRECTORY VERSION. A version of a directory element.

DISTRIBUTED BUILD. (UNIX platforms only) A parallel build in which execution takes place on

multiple hosts in a local area network.

DO-ID. A unique identifier for a derived object, including a time stamp and a numeric suffix to

guarantee uniqueness. Example: the substring beginning with @@ in

hello.o@@12-May.19:15.232.

DO VERSION. A derived object that has been checked in as a version of an element.

DYNAMIC VIEW. A view that is always current with the VOB (as specified by the config spec).

Dynamic views use the MVFS to create and maintain a directory tree that contains versions of

VOB elements and view-private files. Dynamic views are not supported on all ClearCase

platforms.

DYNAMIC-VIEWS DRIVE. (Windows platforms only) A drive (by default, drive M) that provides

access to the VOBs and dynamic views active on the current ClearCase host.

DYNAMIC-VIEWS ROOT DIRECTORY. The directory maintained by the MVFS in which view-tag entries

appear, allowing views to be accessed. On Windows, this directory is \\view or M:\; on

UNIX, it is /view. See also viewroot directory.

ECLIPSED. A VOB object that is not visible because another object with the same name is currently

selected by the view.

ELEMENT. An object that encompasses a set of versions, organized into a version tree.

ELEMENT TYPE. A class of versioned file or directory objects. ClearCase supports predefined

element types. Users can define additional types that are refinements of the predefined types.

When an element is created, it is assigned one of the currently defined element types in its

VOB. Each user-defined element type is implemented as a separate VOB object.

EPOCH NUMBER. (MultiSite) An integer associated with a ClearCase operation performed at a

replica. Each replica records the epoch numbers of operations it has performed and of

operations it has received from other replicas.

EPOCH NUMBER MATRIX. (MultiSite) A complete set of epoch numbers, which indicate the current

VOB replica’s estimate of the state of all replicas in a VOB family. A replica’s own epoch row

within the matrix reflects its actual state.

EVENT. A ClearCase operation that is recorded by an event record in a VOB’s event history.

EVENT RECORD. An item in a VOB database that contains information about an operation that

modified the VOB.

Glossary 35

EXCEPTION LIST. The set of users to whom a lock or trigger does not apply.

EXPIRATION PERIOD. (MultiSite) The interval after which the store-and-forward facility stops trying

to process a shipping order.
EXPORT VIEW. (UNIX platforms only) A view used to export a VOB to a non-ClearCase host.

EXPRESS BUILD. A build during which the ClearCase build program creates derived objects, but

does not write information about them into the VOB. Not writing information to the VOB

speeds up the build, but it also means that the DOs cannot be winked in by other views.

EXTENDED NAMESPACE. The ClearCase extension of the standard Windows or UNIX pathname

hierarchy. Each host has a view-extended namespace, which allows a pathname to access

VOB data using any view that is active on that host. Each VOB has a VOB-extended namespace,

which allows a pathname to access any version of any element, independently of (and

overriding) version selection by views. Derived objects also have extended pathnames, which

include DO-IDs.

EXTENDED PATHNAME. A VOB-extended pathname specifies a particular location in an element’s

version tree, or a particular derived object cataloged in that VOB. A pathname that specifies a

particular version is a version-extended pathname.

FEATURE LEVEL . An integer that Rational increments at each ClearCase release to introduce

features that affect compatibility across VOB replicas running earlier ClearCase releases.

FILE TYPE. The identifier returned by the file-typing subsystem, through a lookup in magic files
supplied by ClearCase and/or users. File types are used to select an element type for a new

element.

FIRE A TRIGGER. The process by which ClearCase verifies that the conditions defined in a trigger
are satisfied and causes the associated trigger actions to be performed.

FOUNDATION BASELINE . A property of a stream. Foundation baselines specify the versions and

activities that appear in your view. As part of a rebase operation, foundation baselines of the

target stream are replaced with the set of recommended baselines from the source stream.

FULL BASELINE . A baseline created by recording all versions below the component’s root directory.

Generally, full baselines take longer to create than incremental baselines; however, ClearCase

can look up the contents of a full baseline faster than it can look up the contents of an

incremental baseline.

GLOBAL PATHNAME . A networkwide pathname for a view storage directory or VOB storage directory.

Some global pathnames are valid only within a particular network region.

GLOBAL TYPE OBJECT . A type object, created with mkxxtype –global and located in an administrative
VOB. Such objects are used by the auto-make-type facility to create local copies in other VOBs

(client VOBs).

HIJACKED FILE . A version in a snapshot view that is modified but not checked out. By default, a

non-checked-out version in a snapshot view is given the file attribute of read-only. If you

change this attribute and modify the file, you have hijacked the file by taking it out of direct

ClearCase control.

36 Introduction: Rational ClearCase

HISTORY. Metadata in a VOB, consisting of event records for that VOB’s objects. The history of a file

element includes the creation event of the element itself, the creation event of each version of

the file, the creation event of each branch, the attributes assigned to the element and/or its

versions, the hyperlinks attached to the element and/or its versions, and so on.

HOST-LOCAL PATHNAME . For a view storage directory or VOB storage directory, a pathname that

specifies the directory’s location in its own host’s file system. This pathname need not be valid

on any other host. See also global pathname.

HYPERLINK. A logical pointer between two objects. A hyperlink is implemented as a VOB object;

it derives its name by referencing another VOB object, a hyperlink type. A hyperlink can have

a from-string and/or to-string, which are implemented as string-valued attributes on the

hyperlink object.

HYPERLINK INHERITANCE . The feature by which hyperlinks attached to a version can be detected in

a search for hyperlinks on a successor version.

HYPERLINK SELECTOR . A string that specifies a particular hyperlink. It consists of the name of a

hyperlink type object, followed by a (possibly abbreviated) hyperlink ID. Examples:

DesignFor@391@/usr/hw on UNIX and DesignFor@391@\hw_vob on Windows.

HYPERLINK TYPE. An object that defines a hyperlink name for use within a VOB.

INCREMENTAL BASELINE . A baseline created by recording the last full baseline and those versions that

have changed since the last full baseline was created. Generally, you can create incremental

baselines faster than full baselines; however, ClearCase can look up the contents of a full

baseline more quickly than it can look up the contents of an incremental baseline.

INCLUSION LIST. A list of type objects, defining the scope of a trigger type.

INHERIT, INHERITANCE LIST. The names of trigger types maintained for a directory element to control

trigger inheritance. By default, a trigger type is added to both the attached list and inheritance

list of a directory element when you attach a trigger to that element. If a trigger type is in the

inheritance list of a directory, newly created elements (but not existing elements) inherit that

trigger.

INTEGRATION BRANCH . A branch that contains versions available to all members of a team. A team

member often works on a private branch. To make private work available to others, the team

member merges versions on the private branch with versions on the integration branch.

INTEGRATION STREAM. A ClearCase UCM object that enables access to versions of the project’s

shared elements. A project contains only one integration stream, which maintains the project’s

baselines. The integration stream configures integration views to select the versions

associated with the foundation baselines plus any activities and versions that have been

delivered.

INTEGRATION VIEW. A view attached to a UCM project’s integration stream or a feature-specific

development stream. Use an integration view to build and test the latest work delivered to

the stream. An integration view can be either a dynamic view or a snapshot view.

LABEL . An instance of a label type object, supplying a user-defined name for a version. See also

object, metadata.

Glossary 37

LABEL TYPE . A type object that defines a version label for use within a VOB.

LOAD. To copy a version of an element to a snapshot view and keep track of the checkins, updates,

and other ClearCase operations that affect the element.

LOAD RULE . A statement in the config spec that specifies an element or subtree to load into a snapshot
view. Config specs can have more than one load rule. See also version-selection rule.

LOCAL COPY. The copy of a global type object that is created in a client VOB during an

auto-make-type operation.

LOCK. A mechanism that prevents a VOB object from being modified (file system objects) or

created (type objects).

LOCK MANAGER . A ClearCase server that arbitrates transaction requests to all VOB databases on

the local host. A lockmgr runs on each ClearCase host. On Windows NT hosts, the lockmgr
runs as a Windows NT service.

LOGICAL PACKET . (MultiSite) The complete set of data required either to create a new VOB replica

or to synchronize two or more existing replicas in a VOB family. A logical packet can

encompass several physical files. See also physical packet.
LOST+FOUND. A subdirectory of a VOB’s top-level directory, to which elements are moved if they

are no longer cataloged in any version of any directory element.

MAGIC FILE. A file used by the ClearCase file-typing subsystem to determine the type of an existing

file or for the name of a new file. A magic file consists of an ordered set of file-typing rules.

MAIN BRANCH . The starting branch of an element’s version tree. The default name for this branch is

main.

MAKE MACRO. A parameter in a makefile, which can be assigned a string value within the makefile

itself, in a BOS file, on the clearmake or omake command line, or by assuming the value of an

environment variable.

MAKEFILE . A text file, read by clearmake or omake, that associates build scripts, consisting of shell

commands (executable commands), with targets. Typically, executing a build script produces

one or more derived objects.

MASTER REPLICA . (MultiSite) The master replica of a ClearCase object is the only replica at which

the object can be modified or instances of the object can be created.

MASTERSHIP. (MultiSite) The ability to modify an object or to create instances of a type object.

MERGE. The combining of the contents of two or more files or directories into a single new file or

directory. Typically, when merging files, all the files involved are versions of a single file

element. When merging directories, all contributors must be versions of the same directory

element.

MERGE OUTPUT FILE OR DIRECTORY. The output of a merge operation. After you resolve any

conflicting differences between contributors, you can save the merged contents into the merge

output file or directory. Typically, the merge output file or directory is written to the

checked-out version of the contributor to which you are merging.

38 Introduction: Rational ClearCase

METADATA . The data associated with an object that supplements its file system data. Some of this

data is created by users; some of it is created during ClearCase operations on the object.

MSDOS-ENABLED MODE . An operating mode for a VOB, wherein the VOB database tracks the

number of lines in a text file, enabling correct file-size reporting on both UNIX and Windows

platforms.

MULTIVERSION FILE SYSTEM (MVFS). A directory tree that, when activated (mounted as a file system

of type MVFS), implements a VOB. To standard operating system commands, a VOB appears

to contain a directory hierarchy; ClearCase commands can also access the VOB’s metadata.

Also, MVFS file system refers to a file system extension to the operating system, which

provides access to VOB data. The MVFS file system is not supported on all ClearCase

platforms.

MVFS CACHE. An in-memory data structure that speeds MVFS performance. Data on several

kinds of file system resources are maintained, in separate caches.

MVFS OBJECT. A file or directory whose pathname is within a VOB. A non-MVFS object has a

pathname that is not within a VOB.

NETWORK REGION. A logical subset of a local area network, within which all hosts refer to VOB

storage directories and view storage directories with the same network pathnames.

NON-CLEARCASE ACCESS. (UNIX platforms only) Access to ClearCase data from a host on which

ClearCase has not been installed.

NONMASTERED CHECKOUT. An unreserved checkout performed on a branch that is not mastered by

your current replica.

NONSHAREABLE DERIVED OBJECT . A derived object that cannot be winked in by other views. If your

dynamic view is configured with the nonshareable DO property, the ClearCase build

programs create DOs in the view, but do not write shopping information into the VOB.

OBJECT. An item stored in a VOB. An object can be identified by an object-selector string, which

includes a prefix that indicates the kind of object, the object's name, and a suffix that indicates

the VOB in which the object resides. Examples: lbtype:REL1@/vobs/vega on UNIX and

lbtype:REL1@\vega on Windows

OBJECT REGISTRY. A networkwide database, which records the actual storage locations of all VOB

storage directories and all view storage directories. The mktag, rmtag, mkview, rmview,

mkvob, rmvob, register, and unregister commands add, delete, or modify registry file

entries.

OBSOLETE OBJECT. An object that has been locked with the command lock –obsolete. By default,

such objects are not listed by commands such as lstype and lslock.

OPLOG. (MultiSite) A list of all changes that have been made to a VOB’s database.

OPLOG ENTRY. (MultiSite) The record of a single change to a VOB. Each oplog entry includes the

identity of the originating replica and the epoch number of the operation.

ORDINARY TYPE OBJECT. A type object that is neither a global type object nor a local copy of one.

ORIGINATING REPLICA . (MultiSite) The replica at which an operation was first performed.

Glossary 39

ORPHANED ELEMENT. An element that is no longer cataloged in any version of any directory. Such

elements are moved to the VOB’s lost+found directory.

OWNER. The user who owns a VOB, a view, or an individual object. The user who creates an object

becomes its initial owner.

OWNERSHIP-PRESERVING. (MultiSite) The subset of replicas within a VOB family whose elements

share the same user and group identities. Only one such subset is allowed per VOB family.

PAIRWISE DIFFERENCE. How the command-line output of cleartool commands (such as diff,

cleardiff, merge, and findmerge) represents differences between contributors to the

comparison or merge.

PARALLEL BUILD . (UNIX platforms only) A build process in which multiple build scripts are

executed concurrently. See also distributed build.

PARALLEL DEVELOPMENT . The concurrent creation of versions on two or more branches of an

element.

PERSISTENT VOB / PERSISTENT VIEW. (Windows platforms only) A VOB or view that is activated

each time you log in.

PHYSICAL PACKET. (MultiSite) A file that contains one part of a logical packet.
POST-OPERATION TRIGGER. A trigger that fires after the associated operation.

PRE-OPERATION TRIGGER. A trigger that fires before the associated operation, possibly canceling the

operation itself.

PREDECESSOR VERSION / SUCCESSOR VERSION. A version of an element that immediately precedes

another version in the element’s version tree. If version X is the predecessor of version Y, then

Y is the successor of X. If a chain of predecessors link two versions, one is called an ancestor of

the other.

PRIVATE BRANCH . A branch on which a developer works in isolation from the project team. The

branch is usually created at a stable version identified by a label. The developer makes private

work available to the team by merging versions on the private branch with versions on an

integration branch.

PRIVATE STORAGE AREA . The directory tree (.s) in which view-private files, directories, and links are

stored. By default, this is a subtree of the view storage directory, but ClearCase supports

creation of remote private storage areas.

PROJECT. A ClearCase UCM object that contains the configuration information needed to manage

a significant development effort, such as a product release. A project includes one integration
stream, which configures views that select the latest versions of the project’s shared elements,

and typically multiple development streams, which configure views that allow developers to

work in isolation from the rest of the project team.

PROJECT VOB (PVOB). A VOB that stores UCM objects, such as projects, streams, activities, and

change sets. Every UCM project must have a PVOB. Multiple projects can share the same

PVOB.

PROMOTION. The migration of a derived object from view storage (unshared or nonshareable) to

VOB storage (shared).

40 Introduction: Rational ClearCase

PROMOTION LEVEL. A property of a UCM baseline that can be used to indicate the quality or degree

of completeness of the activities and versions represented by that baseline.

PUBLIC VOB-TAG. All VOBs with public VOB-tags are mounted automatically by the cleartool
mount -all command. (On UNIX, the standard ClearCase scripts run this command as part

of the boot process that starts ClearCase and so all public VOBs are typically always

mounted.) Creating a VOB with a public VOB-tag requires that you know the VOB-tag

password. (See also VOB-tag password file.)

On UNIX platforms, any user can mount or unmount a public VOB by naming it explicitly

using the cleartool mount or umount command. If a VOB’s VOB-tag is private, only the

VOB’s owner or the root user can mount or unmount the VOB.

On Windows platforms, any user can mount or unmount any VOB, public or private, by

naming it explicitly using the cleartool mount or unmount command. The private designation

means only that the VOB must be mounted explicitly by name.

REBASE. A ClearCase operation that makes your development work area current with the set of

versions represented by a more recent baseline in another stream, which is usually the project’s

integration stream or a feature-specific development stream.

RECOMMENDED BASELINE . The set of baselines that the project team uses to rebase their development
streams. In addition, when developers join a project, their development work areas are

initialized with the recommended baselines.

The recommended baselines represent a system configuration, or set of components, that has

achieved a specified promotion level. A baseline becomes part of the set of recommended

baselines when the project manager promotes it to a certain promotion level, for example,

TESTED.

REFERENCE COUNT. The number of references to a derived object from multiple views. During

scrubbing, the reference count is evaluated to determine whether to delete the derived object

to free storage space.

REGISTER. To create an entry in the tags registry and/or the object registry, for a view or a VOB.

REGISTRY SERVER HOST. The host on which all ClearCase data storage areas (all VOBs and views)

in a local area network are registered. remote deliver

A variation of the UCM deliver operation. UCM uses remote deliver in a ClearCase MultiSite

configuration when the project’s integration stream and individual development stream are

mastered in different replicas. When these conditions exist, a developer starts the deliver

operation at the remote site but leaves it in a posted state. The project manager must complete

the deliver operation at the integration stream’s replica site.

REPLICA. (MultiSite) An instance of a VOB, located at a particular site. A replica consists of the

VOB’s database, along with all of the VOB’s data containers.

REPLICA-CREATION PACKET. (MultiSite) A logical packet that contains the data for creating one or

more new replicas within a VOB family.

Glossary 41

REPLICA OBJECT. (MultiSite) The VOB database object that records the existence, name, site

location, and other details of a particular VOB replica.

REPLICATED VOB. (MultiSite) A VOB for which two or more replicas currently exist.

RESTRICTION LIST. A specification of which type objects are to be associated with a trigger type.

RETURN BAY. (MultiSite) A directory that holds incoming or outgoing packets that are in the

process of being returned to their origin because they could not be delivered to all specified

destinations.

SCOPE. The part of a config spec rule that restricts it to a particular kind of file system object. See

also config spec, version selector.
SCRUBBING. The removal of objects that are no longer used to free storage space:

➤ The scrubber utility discards data container files from cleartext pools and derived object
storage pools.

➤ The vob_scrubber utility discards event records and MultiSite oplog entries from a VOB
database.

➤ The view_scrubber utility removes derived object containers from the view storage
directory.

SELECTIVE MERGE. A merge that includes the changes contained in only a specified subset of

ancestors.

SELF-MASTERING REPLICA . (MultiSite) A replica that masters its own replica object.
SET VIEW. (noun) (UNIX platforms only) The view context of a process, established by using the

setview command. Setting a view creates a process in which all standard pathnames are

resolved in the context of a particular view. See also working directory view.

SHAREABLE DERIVED OBJECT . A derived object that can be winked in by other views.

SHARED DERIVED OBJECT. A derived object whose data container is located in a VOB’s derived object
storage pool. The DO may be referenced by multiple views.

SHARED TYPE OBJECT. (MultiSite) A type object whose instances can be managed at any replica.

Creation of a new instance is controlled by the mastership of the object to which the new

instance will be attached.

SHIPPING ORDER. (MultiSite) A file that contains information for use by the store-and-forward
facility to deliver an update packet.

SIBLING. 1) During a build, a derived object created by the same build script as another derived

object. 2) In MultiSite, the replicas in a VOB family.

SITE. (MultiSite) A location where one replica in a VOB family resides.

SNAPSHOT VIEW. A view that contains copies of ClearCase elements and other file system objects in

a directory tree. You use an update tool to keep the view current with the VOB (as specified

by the config spec).

42 Introduction: Rational ClearCase

SNAPSHOT VIEW UPDATE. A ClearCase operation that you invoke to ensure that the versions in the

view are the same versions in the VOB selected by the config spec. When necessary, an update

operation copies files and directories from the VOB or removes or renames files and

directories in the view.

SOURCE POOL. A storage pool for the data containers that store versions of file elements.

STORAGE BAY. (MultiSite) A directory that holds packets and shipping orders for use by the

store-and-forward facility.

STORAGE CLASS . (MultiSite) A user-specified name that is associated with certain

information-delivery parameters by the store-and-forward facility. For example, each storage

class is associated with a particular storage bay (or set of bays) and a particular expiration period.

STORAGE POOL. A source pool, derived object pool (also referred to as derived object storage pool), or

cleartext pool. If it resides on a different host than the VOB database, it is a remote storage pool.

STORE-AND-FORWARD. (MultiSite) The facility for transferring packets (or other files) among sites,

either directly or through intermediate hops.

STREAM. A ClearCase UCM object that determines which versions of elements appear in any

view configured by that stream. Streams maintain a list of baselines and activities. A project

contains one integration stream and typically multiple development streams.

SUBTARGET. In a hierarchical build, a makefile target upon which a higher level target depends.

Subtargets must be built, reused, or winked in before higher-level targets.

TAGS REGISTRY. A networkwide database, which records the globally valid access paths to all VOB

storage directories (or all view storage directories), along with the VOB-tags (or view-tags)

with which users access them.

TARGET REBUILD. The execution of a build script associated with a particular target in a makefile.

Each target rebuild produces derived objects along with a configuration record, which includes

an audit of the files involved.

TEXT MODE. A view is assigned a text mode when it is created. The text mode determines how the

view handles line termination sequences

TIME RULE. 1) A separate config spec rule that specifies a time to which the special version label

LATEST should evaluate in all subsequent rules; 2) A clause that sets the LATEST time within

an individual rule.

TRANSLATION FILE . A file that controls the mapping of symbols, branch names, and label names to

ClearCase branch and label names during export of ClearCase, PVCS, RCS, SCCS, or

SourceSafe data. Use this file to enforce naming consistency over multiple invocations of the

exporter program.

TRIGGER. A monitor that specifies one or more standard programs or built-in actions to be

executed whenever a certain ClearCase operation is performed. See also pre-operation trigger,
post-operation trigger, trigger type.

TRIGGER INHERITANCE. The process by which triggers in the inheritance list of a directory element are

attached to new elements created within the directory.

Glossary 43

TRIGGER TYPE. An object through which triggers are defined. Instances of an “element” trigger

type can be attached to one or more individual elements (“attached trigger”). An

“all-element” trigger type is implicitly attached to all elements in a VOB. A “type” trigger

type is attached to a specified collection of type objects.

TRIVIAL MERGE. A merge in which the base contributor and the contributor to which you are merging

are the same.

TYPE. An object that defines a ClearCase data structure. Users can create instances of these

structures: metadata annotations are placed on objects by creating instances of label types,

attribute types, and hyperlink types. Each file and directory is an instance of an element type;

each branch is an instance of a branch type.

TYPE MANAGER. A set of routines that stores and retrieves versions of file elements from disk

storage. Some type managers include methods for other operations, such as comparison,

merging, and annotation.

TYPE OBJECT. An object that defines the characteristics of an entire category, or class, of data items.

TYPE TRIGGER TYPE. A trigger type that is associated with (and thus, monitors changes to and usage

of) one or more type objects.

UNC NAME. (Windows platforms only) A convention for naming shared resources. The UNC

name for a shared resource (file, directory, printer, and so on) has the following form:

\\hostname\sharename\rest-of-path

Use UNC names to specify VOB and view storage directories in mkvob, mkview, and mktag
commands.

UNIFIED CHANGE MANAGEMENT (UCM). An out-of-the-box process, layered on base ClearCase and

ClearQuest functionality, for organizing software development teams and their work

products. Members of a project team use activities and components to organize their work.

UNLOAD. To remove information about an element from a snapshot view and delete the version

from the view.

UNSHARED DERIVED OBJECT. A derived object that has never been winked in to another view.

UNSHARED TYPE OBJECT. (MultiSite) A type object whose instances can be created and managed

only at its master replica.

UPDATE PACKET. (MultiSite) A logical packet that contains data for synchronizing some or all of the

existing replicas in a VOB family.

USER PROFILE. A file that stores specifications for comment handling by individual cleartool
commands.

VERSION. An object that implements a particular revision of an element. The versions of an element

are organized into a version tree structure. Also: checked-out version can refer to the

view-private file that corresponds to the object created in a VOB database by the checkout
command.

44 Introduction: Rational ClearCase

VERSION 0. The original version on a branch. It is created when the branch is created and has the

same contents as the version at the branch point. Version 0 on the main branch is defined to

be empty.

VERSION CONTROL. The discipline of tracking the version evolution of a file or directory.

VERSION-EXTENDED PATHNAME. A pathname that explicitly specifies a version of an element (or

versions of several elements), rather than allowing version selection to be performed by a

view.

VERSION ID. A branch pathname and version number, which indicate a version’s exact location in its

version tree.

VERSION LABEL . See label.
VERSION-NUMBER. The assigned integer that identifies the position of a version on its branch.

VERSION SELECTION. The process of choosing a specific version from an element’s version tree. A

view has several mechanisms that perform version selection. Users can select versions with

version-extended pathnames and with the ClearCase query language.

VERSION-SELECTION RULE. A statement in the config spec that specifies a version of an element to be

selected by the view. See also load rule.

VERSION SELECTOR. A specification that identifies particular versions of one or more elements. See

also version selection, scope, and configuration specification.

VERSION TREE. The hierarchical structure in which all the versions of an element are (logically)

organized. The version tree display also shows merge operations.

VIEW. A ClearCase object that provides a work area for one or more users. For each element in a

VOB, a view’s config spec selects one version from the element’s version tree. Each view can also

store view-private files and view-private directories, which do not appear in other views. There

are two kinds of views: snapshot views and dynamic views.

VIEW CONTEXT. The view (if any) that will be used to resolve a pathname to a particular version of

an element.
VIEW DATABASE . The database that tracks objects in a view.

VIEW-EXTENDED PATHNAME. A pathname that begins with a view prefix (for example, /view/alpha
on UNIX, or M:\alpha on Windows) and specifies the view to be used for resolving element

names to particular versions.

VIEW HOST. A host on which one or more view storage directories reside.

VIEW LOG. A log file, located on a particular host, that records errors in accessing the view storage

areas on that host.

VIEW OBJECT. An object stored in a view: a checked-out version of a file, an unshared derived object, a
nonshareable derived object, or a view-private file, directory, or link. No historical information is

retained for view objects.

VIEW-PRIVATE DIRECTORY. A directory that exists only in a particular view, having been created with

the standard mkdir command. A view-private directory is not version controlled, except

insofar as it is separate from private directories in other views.

Glossary 45

VIEW-PRIVATE FILE. A file that exists only in a particular view. A private file is not version controlled,

except insofar as it is separate from private files in other views.

VIEW-PRIVATE OBJECT. A file or directory that exists only in a particular view. View-private objects

are not version controlled.

VIEW REGISTRY. See view storage registry, object registry, tags registry.

VIEW_SERVER. The daemon process that interprets a view’s config spec, mapping element names

into versions, and performs workspace management for the view.

VIEW STORAGE DIRECTORY. The directory tree used to maintain internal information about a view.

Along with other files and directories, the view storage directory contains the config spec and

the view database.

VIEW STORAGE REGISTRY. A file on the network’s registry server host that records the view storage
directory of every view in the network.

VIEW-TAG. The name with which users reference a view.

VIEWROOT DIRECTORY. The portion of an absolute path to an element that precedes the view-tag of a

snapshot view. See also dynamic-views root directory.

VOB (VERSIONED OBJECT BASE). A repository that stores versions of file elements, directory elements,

derived objects, and metadata associated with these objects. With MultiSite, a VOB can have

multiple replicas, at different sites.

VOB BROWSER. A graphical application that administrators use to create, maintain, and control

access to the VOBs in a local area network.

VOB DATABASE . The part of a VOB storage directory in which ClearCase metadata and VOB objects

are stored. This area is managed by the database management software embedded in

ClearCase. The actual file system data, by contrast, is stored in the VOB’s storage pools.

VOB DATABASE SNAPSHOT . A copy of a VOB database, made by the vob_snapshot utility, which

enables a VOB storage directory to be backed up without locking the VOB.

VOB-EXTENDED NAMESPACE. An extension to the operating system’s file-naming scheme, which

allows any historical version of an element to be accessed directly by any program. The

extension also provides access to the metadata (but not the file system data) of all of a VOB’s

existing derived objects.

VOB FAMILY. (MultiSite) The set of all replicas of a particular VOB. All the replicas share the same

VOB family UUID; each replica has its own VOB replica UUID.

VOB HARD LINK . A name, cataloged in a directory element, for an element. Typically, the first such

link is called the element’s name; the term VOB hard link is used to refer to any additional

names for the element.

VOB HOST. A host on which one or more VOB storage directories reside.

VOB MOUNT POINT. The directory on which a VOB storage directory is mounted. All UNIX

commands, and most ClearCase commands, access a VOB through its mount point. (NOTE:

For Windows platforms, see VOB-tag.)

46 Introduction: Rational ClearCase

VOB OBJECT. 1) An object stored in a VOB. 2) The object in a VOB database that records the

existence and identity of the VOB itself.

VOB OWNER. Initially, the user who created a VOB with the mkvob command. The ownership of

a VOB can be changed subsequently, with the protectvob command. Replicas at different sites

may or may not have the same owner.

VOB REGISTRY. See VOB storage registry, object registry, tags registry.

VOB ROOT DIRECTORY. The top-level directory of a VOB, accessed through the pathname of its

mount point (for example, /vobs/project_x) on UNIX platforms or through the pathname of

its VOB-tag (for example, \proj_vob) on Windows platforms.

VOB_SERVER. The process that provides access to the data containers that store versions’ file

system data.

VOB STORAGE DIRECTORY. The directory tree in which a VOB’s data is stored: elements, versions,

derived objects, CRs, event history, hyperlinks, attributes, and other metadata.

VOB STORAGE REGISTRY. A file on the network’s registry server host that records the actual storage

locations of all the VOBs in the network.

VOB SYMBOLIC LINK . An object, cataloged in a (version of a) directory element, whose contents is a

pathname. ClearCase does not maintain a version history for a VOB symbolic link.

VOB-TAG. For UNIX platforms, the full pathname at which users access a VOB. The VOB storage

directory is activated by mounting it as a file system of type MVFS at the location specified by

its VOB-tag.

For Windows platforms, the VOB’s registered name and also its root directory—the pathname

at which users access VOB data. A VOB-tag has a single component and begins with the

backslash (\). For example, \myvob and \vob_project2 are valid VOB-tags.

VOB-TAG PASSWORD. The password required to create a public VOB-tag. The password is

maintained on the ClearCase registry server host. (On Windows, the password is maintained in

the Windows NT Registry on the registry server host.)

VOB-TAG PASSWORD FILE . A file used to validate the password entered by a user when creating a

public VOB-tag.

WINK IN. 1) To cause a shareable derived object to appear in a view, even though its file system data

is actually located in a VOB’s derived object storage pool. 2) To convert a nonshareable derived

object to a shared derived object.

WORKING DIRECTORY VIEW. The view context of a process, established by using the cd command to

change the current working directory to a view-extended pathname or a snapshot view. On UNIX

platforms, see set view.

	Introduction
	Contents
	Figures
	Preface
	About This Manual
	User Roles, the ClearCase Documentation Set, and This Manual

	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	ClearCase, ClearQuest, and Unified Change Management
	1.1 ClearCase
	1.2 ClearCase MultiSite
	1.3 ClearQuest
	1.4 Unified Change Management

	Planning for and Installing ClearCase
	2.1 Planning Issues
	Using Unified Change Management or Base ClearCase
	Using ClearQuest
	Using ClearCase MultiSite

	2.2 ClearCase Site Preparation
	See READ ME FIRST
	Running ClearCase Site Preparation

	2.3 Installing ClearCase on Individual Computers

	Setting Up a Software Project in ClearCase
	3.1 Creating a Project in UCM
	Creating a Project VOB
	Organizing Directories and Files into VOBs and Components
	Creating a Project
	Implementing Development Policies
	Creating and Assigning Activities
	Using the ClearQuest Integration

	3.2 Setting Up a Project in Base ClearCase
	Importing Directories and Files into VOBs
	Applying a Label to the Initial Configuration
	Establishing a Branching and Merging Strategy
	Creating Standard Config Specs
	Using ClearCase Metadata to Implement Development Policy
	Using the ClearQuest-ClearCase Integration

	Developing and Building Software with ClearCase
	4.1 Developing Software Using UCM
	Joining a Project
	Shared and Private Work Areas

	Working on Activities
	Finding or Creating an Activity for Your Work
	Modifying and Testing Source Files

	Delivering Activities
	Starting the Deliver Operation
	Testing Your Work
	Completing the Deliver Operation
	Delivering with MultiSite

	Rebasing Your Work Area
	Starting the Rebase Operation
	Testing Your Development Work Area
	Completing the Rebase Operation

	4.2 Developing Software Using Base ClearCase
	Setting Up a View
	Accessing and Modifying Files in Your View
	Working on Branches
	Using a Private Branch
	MultiSite Branch Mastership

	4.3 Using ClearCase Build Tools

	Managing Software Projects with ClearCase
	5.1 Managing Projects with UCM
	Adding Components to Projects
	Integrating MultiSite Development Work into the Project
	Managing Baselines
	Creating New Baselines
	Recommending Baselines

	Tracking Projects
	Comparing Baselines
	Using ClearQuest to Track Work
	Using the ClearCase Report Builder and Report Viewer (Windows Only)

	5.2 Managing Projects with Base ClearCase
	Adding VOBs to Projects
	Integrating Work Between Branches
	Integrating MultiSite Development Work into the Project

	Glossary

