
Working in Base ClearCase

Contents

Working in Base ClearCase

1. ClearCase Concepts ...1

1.1 Recommended Reading Paths..1

1.2 ClearCase Views...2

Snapshot Views and Dynamic Views ...2

1.3 Versions, Elements, and VOBs ...2

Selecting Elements and Versions ...3

Config Specs for Snapshot Views ...4

Config Specs for Dynamic Views ...5

Criteria for Selecting Versions...5

Version Labels in Version-Extended Pathnames5

Learning the Config Spec Syntax..6

View-Private Objects ...6

1.4 Parallel Development ..6

1.5 Extended Namespace for Elements, Branches, and Versions......................7

1.6 The Base ClearCase-ClearQuest Integration ..8

The Base ClearCase-ClearQuest Schema and User Databases8

ClearCase Triggers and ClearQuest Change Requests.................................9

Uses of the Base ClearCase-ClearQuest Integration9

2. Setting Up a View ...11

2.1 Choosing a Snapshot View or a Dynamic View..11

2.2 Choosing a Location and Name...12

Snapshot View: Choosing a Directory ..12

Under the Hood: A Snapshot View Storage Directory........................13

Locations for Snapshot View Storage Directories13

Choosing a View Name...14

Using the View-Tag ..14
Contents iii

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

Dynamic View: Choosing a Location for the View Storage

Directory ..14

Choosing Locations for Dynamic View Storage Directories...............15

2.3 Adjusting Your umask...16

The CCASE_BLD_UMASK Environment Variable..............................16

2.4 Creating the View with cleartool mkview ..17

To Create a Snapshot View ...17

Under the Hood: .ccase_svreg ...17

To Create a Dynamic View ...17

Under the Hood: The cleartool Command-Line Interface..........................18

2.5 Adding or Modifying Version-Selection Rules ..18

To Copy or Include Version-Selection Rules..19

2.6 Snapshot View: Adding or Modifying Load Rules20

Listing the VOB Namespace ...20

VOB Namespace..20

To List the VOB Namespace ..20

Adding or Modifying Load Rules..21

To Add or Modify Load Rules When Editing the Config Spec21

To Add Load Rules with update –add_loadrules22

Excluding Elements from Loading ..22

To Exclude Elements...23

Under the Hood: VOB Links...23

Symbolic Links and Hard Links in Dynamic Views23

Symbolic Links in Snapshot Views...24

Hard Links in Snapshot Views..24

Caution: Losing Data Because of VOB Hard Links..............................24

3. Working in a View ...27

3.1 Accessing Files ..27

In a Snapshot View...27

Accessing Someone Else’s Snapshot View ..28

In a Dynamic View...28

To Set a Dynamic View...28
iv Developing Software

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

To Mount VOBs...28

Accessing Someone Else’s Dynamic View ..29

3.2 Checking Out Elements...29

To Check Out an Element ...29

Reserved and Unreserved Checkouts ...30

To Change the Status of a Checked-Out Version31

Under the Hood: What Happens When You Check Out a File or

Directory..32

From a Snapshot View ...32

From a Dynamic View..33

Checking Out Elements in a VOB Enabled for ClearQuest34

Logging on to a ClearQuest User Database ..34

Using the Base ClearCase-ClearQuest Integration Interface34

Associating a Checkout with a ClearQuest Entity36

3.3 Working with Checkouts ..36

Viewing an Element’s History ...37

To View an Element’s History ..37

Comparing Versions of Elements ..37

To Compare with a Predecessor ...37

To Compare with a Version Other Than the Predecessor37

To Compare with a Version in a Dynamic View..................................38

Tracking Checked-Out Versions..39

Prototype Builds...39

3.4 Canceling Checkouts ...39

Under the Hood: Canceling Checkouts ..40

Canceling Directory Checkouts ..40

To Move and Delete Orphaned Elements ...41

3.5 Checking In Files ..42

To Check In Files ..42

Merging with the Latest Version ...43

To Merge with the Latest Version ..44

Under the Hood: Checking In Files ...44

From a Snapshot View ...44
Contents v

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

From a Dynamic View..45

Checking In Elements in a VOB Enabled for ClearQuest...........................45

View the Versions for a Change Request from ClearQuest46

4. Updating a Snapshot View ...47

4.1 Starting an Update Operation...47

Updating the View ...48

Updating Files and Directory Trees...49

4.2 Under the Hood: What Happens When You Update a View49

4.3 Unloading Elements...51

Unloading Files ...51

Unloading Directories..51

5. Working On a Team ...53

5.1 The Version Tree...54

Under the Hood: The Initial Version on a Subbranch.................................55

5.2 Working on Branches...56

The Version-Extended Pathname...58

5.3 Merging..59

Under the Hood: How ClearCase Merges Files and Directories...............59

File Merge Algorithm ...61

Determination of the Base Contributor..62

Recording of Merge Arrows ..63

Locating Versions with Merge Hyperlinks ...64

Directory Merge Algorithm ...64

Merging Directories ..64

Using ln and rmname in Diff Merge ..65

Scenario: Merging All Changes Made on a Subbranch65

Task Overview...65

Getting More Information..66

Scenario: Selective Merge from a Subbranch..67

Merging a Range of Versions...68

Task Overview...68
vi Developing Software

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

Getting More Information ...69

Scenario: Removing the Contributions of Some Versions69

Task Overview...70

Getting More Information ...70

Recording Merges That Occur Outside ClearCase......................................71

Getting More Information ...71

5.4 Sharing Control of a Branch with Developers at Other Sites71

To Request Mastership of a Branch and Wait for the Transfer73

To Check Out the Branch Before Mastership Is Transferred74

Troubleshooting ...75

6. Other Tasks ...77

6.1 Adding Files and Directories to Source Control..77

To Add Elements to Source Control..77

Under the Hood: What Happens When You Add a File or

Directory to Source Control..78

 File Types and Element Types ...79

Access Mode ..80

Conversion of View-Private Files to Elements80

Conversion of Nonshareable Derived Objects to Elements................81

Creation of Directory Elements...81

Auto-Make-Branch During Element Creation......................................81

Creation of Elements in Replicated VOBs...82

Element Object and Version References ..82

Storage Pools..83

Group Membership Restriction ..83

Importing Files ...83

6.2 Moving, Removing, and Renaming Elements ...84

Moving and Removing Elements ..84

To Move an Element Within a VOB ...84

To Move an Element to Another VOB ...85

To Remove an Element Name from a Directory85

Other Methods for Removing Elements..85
Contents vii

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

Renaming Elements..85

To Rename an Element ...86

6.3 Accessing Elements Not Loaded into a Snapshot View86

Listing All Elements in the VOB Namespace ...87

Viewing the Contents of a Nonloaded Version ...87

To Copy a Nonloaded Version with cleartool get87

6.4 Moving Views ...88

Changing the Physical Location of a Snapshot View..................................88

To Find the Location of the View Storage Directory............................88

Update After Moving..88

Moving a View Storage Directory..89

6.5 Regenerating a Snapshot View’s .view.dat File ...89

To Regenerate the .view.dat File ..89

6.6 Regenerating .ccase_svreg...90

6.7 Accessing Views and VOBs Across Platform Types90

Creating Views Across Platforms of Different Types91

Snapshot View Characteristics and Operating-System Type91

Accessing Views Across Platforms of Different Types91

Accessing UNIX Snapshot Views from Windows Hosts91

Accessing Windows Snapshot Views from UNIX Hosts92

Accessing UNIX Dynamic Views from Windows Hosts.....................92

Accessing Windows Dynamic Views from UNIX Hosts.....................92

Accessing VOBs Across Platforms of Different Types................................92

Developing Software Across Platforms of Different Types93

A. Working in a Snapshot View While Disconnected from the Network95

A.1 Setting Up a View for Your Hardware Configuration................................96

Under the Hood: Location of the View Storage Directory in

Disconnected-Use Configurations ...97

A.2 Preparing the View...97

A.3 Disconnecting the View...98

A.4 Working in the View ..98

Hijacking a File ...98
viii Developing Software

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

To Hijack a File ..99

Finding Modified Files While Disconnected..99

A.5 Reconnecting to the Network...99

A.6 Using the Update Tool ..99

Determining How to Handle Hijacked Files..100

To Find Hijacked Files..100

To Compare a Hijacked File to the Version in the VOB....................101

To Check Out a Hijacked File..101

Merging the Latest Version to a Hijacked File....................................102

To Undo a Hijack ..103

Under the Hood: How ClearCase Determines Whether a

File is Hijacked ..103

Other Ways to Handle Hijacked Files..103

Updating the View...103

Index ...105
Contents ix

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

x Developing Software

/vobs/doc/ccase/developer/cc_dev.uxTOC.fm — September 13, 2001 4:16 pm

Figures

Figure 1 A VOB Contains All Versions of an Element...3

Figure 2 Config Spec for Snapshot Views..4

Figure 3 Version Tree and Extended Namespace ..7

Figure 4 Resolution of Reserved and Unreserved Checkouts31

Figure 5 Selecting the Non-Latest Version of an Element...33

Figure 6 Merging with the Latest Version ...43

Figure 7 The Update Operation ..50

Figure 8 Linear Progression of Versions ..54

Figure 9 Version Tree of a File Element ...55

Figure 10 The Initial Version on a Subbranch...56

Figure 11 Elements Have Common Branches...57

Figure 12 Version-Extended Pathnames..58

Figure 13 Versions Involved in a Typical Merge..60

Figure 14 ClearCase Merge Algorithm ..61

Figure 15 Determination of the Base Contributor for a Merge.......................................63

Figure 16 Merging All Changes from a Subbranch..66

Figure 17 Selective Merge from a Subbranch..67

Figure 18 Removing the Contributions of Some Versions ..69

Figure 19 Creating an Element ..79

Figure 20 View on a Laptop...96

Figure 21 View On a Removable Storage Device ...96

Figure 22 Copy the View..97

Figure 23 Hijacked Files in the Update Window..101

Figure 24 Hijacked Version May Not Be the Latest Version...102
Figures xi

/vobs/doc/ccase/developer/cc_dev.uxLOF.fm — September 13, 2001 4:16 pm

xii Developing Software

/vobs/doc/ccase/developer/cc_dev.uxLOF.fm — September 13, 2001 4:16 pm

11 ClearCase Concepts

Rational ClearCase provides a flexible set of tools that your organization uses to implement its

development policies. To use these tools, you need to understand the following concepts:

➤ ClearCase views

➤ Versions, elements, and VOBs

➤ Parallel development

1.1 Recommended Reading Paths

Read this chapter first. Then, if you want to start working immediately, use online help to learn

as you go. Or, if you prefer a more structured approach, use the remainder of Working in Base
ClearCase as a guide through your organization’s development cycle. To start online help, type

this command:

hyperhelp cc_main.hlp

The sections titled Under the Hood provide detailed information and suggest ways to become an

advanced ClearCase user.
1 - ClearCase Concepts 1

1.2 ClearCase Views

To access files under ClearCase control, you set up and work in a view, which shows a directory

tree of specific versions of source files.

Snapshot Views and Dynamic Views

ClearCase includes two kinds of views:

➤ Snapshot views, which copy files from data repositories called VOBs (versioned object bases) to

your computer.

➤ Dynamic views, which use the ClearCase multiversion file system (MVFS) to provide

immediate, transparent access to the data in VOBs. (Dynamic views may not be available on

all platforms. For more information, see ClearCase online help.)

1.3 Versions, Elements, and VOBs

Each time you revise and check in a file or directory from a view, ClearCase creates a new version
of it. Files and directories under ClearCase control (and all of their constituent versions) are

called elements and are stored in VOBs. Figure 1 illustrates a VOB that contains the file elements

prog.c, util.h, msg.cat, and lib.c.
2 Developing Software

Figure 1 A VOB Contains All Versions of an Element

Depending on the size and complexity of your software development environment, ClearCase

elements may be distributed across more than one VOB. For example, the elements used by the

documentation group are stored in one VOB, while the elements contributing to software builds

are stored in a different VOB.

Selecting Elements and Versions

A set of rules called a configuration specification, or config spec, determines which files are in a

view.

RLS_1.2

VOB

Version 1 of prog.c used
to build release 1.2 of the
product

0

1

2

3

prog.c

0

1

util.h

0

1

2

3

msg.cat

0

1

2

3

4

lib.c

Version 2

Version 3, used to build
release 1.3 of the product

LATEST version, being
developed for release 1.4

RLS_1.3

/main /main /main /main
1 - ClearCase Concepts 3

Config Specs for Snapshot Views

Config specs for snapshot views contain two kinds of rules: load rules and version-selection rules.

Figure 2 illustrates how the rules in a config spec determine which files are in a view. In its

examples, this manual describes views created by a user named Pat, who is working on release

1.4 of a product called Cropcircle. For purposes of clarity, Pat’s snapshot view names end in _sv.

Figure 2 Config Spec for Snapshot Views

1. A load rule selects an element. load /guivob/prog.c

0

1

2

prog.c

2. A version-selection rule selects
 a version of the element. element * /main/LATEST

3. The load operation copies the
 version into your view as
 a standard file.

VOB

/main

-r--r--r-- 1 pat user 56320 Dec 15 10:30 prog.c
drwxrwxr-x 1 pat user 9 Mar 25 9:19 tmp

Loaded file

View

% Is -I ~/pat_v1.4_cropcircle_sv/guivob
4 Developing Software

Config Specs for Dynamic Views

Dynamic views use version-selection rules only (and ignore any load rules). A dynamic view

selects all elements in all mounted VOBs, and then uses the version-selection rules to select a

single version of each element. Instead of copying the version to your computer as a standard

file, the view uses the MVFS (multiversion file system) to arrange the data selected in the VOB

into a directory tree.

Criteria for Selecting Versions

The rules in the config spec constitute a powerful and flexible language for determining which

versions are in your view. For example, version-selection rules can specify the following criteria:

➤ The latest version.

➤ A version identified by a label.

A label is a text annotation that you can attach to a specific version of an element. Usually,

your project manager attaches a label to a set of versions that contributed to a specific build.

A typical config spec rule uses version labels to select versions:

element * BASELINE_1

For example, if your project manager attaches version label BASELINE_1 to a version of

element prog.c, any view configured with this rule selects the labeled version (unless some

rule earlier in the config spec matches another version of prog.c).For more information about

labels, see Managing Software Projects.

➤ A version identified by a time rule, that is, a version created before or after a specific time.

The version-selection rules are prioritized. For example, the view can try to select a version

identified by a label first, and if no such version exists, the view can select a version based on a

time rule.

Version Labels in Version-Extended Pathnames

In addition to affecting the way the element appears in views, labeling a version of an element

also provides a way to access the version with a version-extended pathname. Labeling a version

effectively adds a new hard link to the version in the extended namespace. If you attach version

label R4.1A to version /main/rls4/12 of element lib.c, these pathnames are equivalent:

lib.c@@/main/rls4/12
lib.c@@/main/rls4/R4.1A
1 - ClearCase Concepts 5

In addition, a third pathname is usually equivalent:

lib.c@@/R4.1A

This version-extended pathname is valid if it is unambiguous, that is, if no other version of lib.c
is currently labeled R4.1A. (This is usually the case because, by default, label types are restricted

to being used once per element. See the description of the –pbranch option in the mklbtype
reference page in the Command Reference.)

Learning the Config Spec Syntax

Usually only one or two members of your software team learn the syntax for these rules and

create config specs for everyone on the project to use. For more information, see Managing
Software Projects and the config_spec reference page in the Command Reference.

View-Private Objects

In addition to versions of source files, a view also contains file-system objects that are not under

ClearCase source control, such as temporary files that you create while developing your source

files. These non-ClearCase file system objects are called view-private objects.

1.4 Parallel Development

The combination of config spec rules, views, VOBs, and branches (described in Chapter 5,

Working On a Team) provide the basis for parallel development, a strategy in which an organization

can work on multiple versions of the same source file concurrently. For example, you’re working

on release 1.4 of a software product, and you want to experiment with the GUI as a result of

feedback from usability testing. You can create a view that isolates your modifications from the

rest of the release 1.4 development project. Although you work with the same set of files used in

the official builds, the versions of the files that you create from this view evolve separately from

the versions used in the official builds. When you’re satisfied with your usability modifications,

you can use ClearCase tools to merge your work with the files used in the official release 1.4

build.
6 Developing Software

1.5 Extended Namespace for Elements, Branches, and Versions

An element’s version tree has the same form as a standard directory tree (Figure 3), which

compares components of the version tree to components of a directory tree in extended

namespace.

As a component of the version tree, the element is the root of the directory tree in the extended

namespace. The element itself appears to be a directory, which contains a single subdirectory,

corresponding to the main branch. (It can also contain some version labels.)

A branch in the version tree appears as a subdirectory in the extended namespace. As a directory,

each branch can contain files (individual versions and version labels), directories (subbranches),

and links (version labels).

A version in the version tree is a leaf name of the directory tree in the extended namespace. Each

version of an element is a leaf of the directory tree. For a file element, the leaf contains text lines

or binary data. For a directory element, the leaf contains a directory structure.

Figure 3 Version Tree and Extended Namespace

main

branch2

branch1

main

branch1 branch2
1 - ClearCase Concepts 7

Accordingly, any location within an element’s version tree can be identified by a pathname in

this extended namespace:

1.6 The Base ClearCase-ClearQuest Integration

Rational ClearQuest is a change-request management system that can integrate with base

ClearCase projects to provide extended features. These features enable you to associate change

requests in a ClearQuest user database and versions of ClearCase elements on which you are

working.

The Base ClearCase-ClearQuest Schema and User Databases

ClearQuest stores data in two databases: a schema repository and a user database. A schema

defines the types of records in the database and other attributes of the database. ClearQuest

stores all schemas in a schema repository. The user database stores your change-request data.

The ClearQuest schema package provides additional information in your ClearQuest records to

track associations with ClearCase versioned objects. To support associations between base

ClearCase and ClearQuest record types, the schema repository needs to have the schema

package applied to its record types and the user database used with the integration must be

updated to add the new fields provided by the package.

Your ClearQuest user database may include different record types for different purposes. The

record type used by the SAMPL database supplied with the base ClearCase-ClearQuest

integration is called a defect, but with the ClearCase schema package installed, any record type

can be used.

sort.c@@ (specifies an element)
sort.c@@/main (specifies a branch)
sort.c@@/main/branch1 (specifies a branch)
sort.c@@/main/branch1/2 (specifies a version)
doctn/.@@/main/3 (special case: extra component is required in VOB’s

top-level directory)
8 Developing Software

ClearCase Triggers and ClearQuest Change Requests

The base ClearCase-ClearQuest integration consists of ClearCase triggers that fire when you

check out an element, cancel a checkout, or check in an element. Your ClearCase administrator

installs the integration triggers into each target VOB. The integration associates one or more

ClearQuest change requests with one or more ClearCase versions stored in one of the target

VOBs.

➤ A single change request may be associated with more than one version. The set of versions

that implement the requested change is called the change set for that request.

➤ A single version may be associated with more than one change request. These change

requests are called the request set for that version.

Uses of the Base ClearCase-ClearQuest Integration

The integration provides a text-based user interface for users of the cleartool command-line

interface and a clearprompt pop-up window interface for users of the ClearCase GUIs such as

ClearCase Explorer and Windows Explorer (on Windows computers) and ClearCase File

Browser (on UNIX workstations).

The base ClearCase-ClearQuest integration has triggers on checkin, checkout, and cancel

checkout operations. As a ClearCase user, you can do the following:

➤ Associate a version with one or more change requests when you check out or check in the

element.

➤ List the request sets that are associated with a project over a period of time, list the change

requests associated with a specific version, and see the related hyperlinks.

As a ClearQuest user, you can do the following:

➤ View the change set for a change request.

➤ See the files that fix a specific problem.

ClearCase administrators can do the following:

➤ Install the related triggers in a VOB and set a policy for each VOB that determines the

conditions under which you are prompted to associate versions with change requests.
1 - ClearCase Concepts 9

➤ Specify that you are prompted on checking out a version, checking in a version, or both.

➤ Specify that prompting occurs only for some VOBs, branch types, or element types.

Associations of checked-in versions with change requests can be either optional or required.

A ClearQuest administrator adds the ClearCase schema package to a ClearQuest schema. The

administrator sets a policy for one or more VOBs that specifies the conditions under which you

are prompted to associate versions with change requests.
10 Developing Software

22 Setting Up a View

Usually you set up a separate view for each development project to which you contribute. Setting

up a view involves the following tasks:

➤ Choosing snapshot view or dynamic view

➤ Choosing a location and name

➤ Adjusting your umask
➤ Using the cleartool mkview command

➤ Adding or modifying version-selection rules

➤ Adding or modifying load rules in a snapshot view

2.1 Choosing a Snapshot View or a Dynamic View

Decide whether you want to work in a snapshot view or a dynamic view. As described in ClearCase
Views on page 2, snapshot views load elements onto your computer; dynamic views use the

MVFS to arrange VOB data into a directory tree. (Dynamic views may not be available on all

platforms. For more information, see ClearCase online help.)

Work in a snapshot view when any of these conditions is true:

➤ Your workstation does not support dynamic views.

➤ You want to work with source files under ClearCase control when you are disconnected

from the network that hosts the VOBs.

➤ You want to simplify accessing a view from a workstation that is not a ClearCase host.
2 - Setting Up a View 11

➤ Your development project doesn’t use the ClearCase build auditing and build avoidance
features.

Work in a dynamic view when any of these conditions is true:

➤ Your development project uses build auditing and build avoidance.

➤ You want to access elements in VOBs without copying them to your workstation.

➤ You want the view to reflect changes made by other team members at all times (without

requiring an update operation).

For more information, see the Administrator’s Guide for Rational ClearCase.

2.2 Choosing a Location and Name

Before creating the view, you must choose its location. For a dynamic view, you must also choose

a name. This section describes the following tasks:

➤ Choosing a location for a snapshot view

➤ Choosing a view name

➤ Choosing a location for a dynamic view storage directory

Snapshot View: Choosing a Directory

When creating a snapshot view, you must specify a directory into which ClearCase loads (copies)

files and directories. When choosing a directory for the view, consider these constraints:

➤ The view’s root directory must be located on a disk with enough space for the files loaded

into the view and any view-private files you add.

➤ Your organization may restrict where you can create a view. For example, you may be

required to use a disk that is part of a data-backup scheme.

➤ If you want to access the view from other workstations, it must be located in a directory that

is accessible to the other workstations; that is, choose a disk partition that is exported.
12 Developing Software

Under the Hood: A Snapshot View Storage Directory

Every snapshot view has a view storage directory in addition to the directory tree of source files

that it loads from VOBs. ClearCase uses the snapshot view storage directory to keep track of such

information as which files are loaded into your view and which versions are checked out to it.

The view storage directory is for ClearCase administrative purposes only. Do not modify

anything in it.

For every 1,000 elements loaded into the view, ClearCase uses about 400 KB of disk space for the

view storage directory.

Locations for Snapshot View Storage Directories

Usually, your ClearCase administrator sets up a storage location, which is a directory on a

ClearCase server host on UNIX or Windows. By default, ClearCase locates snapshot view

storage directories there. If your ClearCase administrator sets up more than one storage location,

ClearCase selects any one of these locations as the default when you create a view.

If your ClearCase administrator does not set up storage locations, by default, ClearCase software

locates the view storage directory under the root directory of the snapshot view.

You can override these defaults. If your administrator sets up multiple storage locations, you can

select one explicitly. You can place the view storage directory under the root directory of the

snapshot view.

If you place the view storage directory under the root directory of the view, be aware of the

following recommendations:

➤ Do not choose this configuration if you use the view when disconnected from the network.

You can corrupt the data in the view storage directory if you disconnect it from the network

while the view’s view_server process is running.

➤ Make sure that the view storage directory is accessible to any data backup schemes your

organization institutes.

NOTE: If you plan to work while disconnected from the network, your administrator must set up

storage locations.
2 - Setting Up a View 13

Choosing a View Name

Each view must have a descriptive name (called a view-tag) that is unique within a network

region. Choose a view name that helps you determine the owner and purpose of the view. Names

like myview or work do not describe the view’s owner or contents; if you work with more than

one view, such generic names can lead to confusion. Here are some suggested names:

A view’s name must be a simple name; that is, it must follow the format of a single file or

directory name with no special characters or spaces.

Using the View-Tag

The way you use the view-tag is different for each type of view:

➤ ClearCase provides a default view-tag for snapshot views based on the following

convention:

user-ID_leaf-of-view-pathname

You do not refer to the view-tag when performing most ClearCase operations. Instead you

usually refer to the view’s pathname.

The root directory of the snapshot view contains a file, .view.dat, which provides

information that ClearCase uses to perform operations on the files in the view. When

ClearCase finds the view’s .view.dat file, it can determine the view’s view-tag. (If you delete

the .view.dat file inadvertently, see Regenerating a Snapshot View’s .view.dat File on page 89.)

➤ For dynamic views, the view-tag is the only name you use when performing most

ClearCase operations. After setting (activating) a dynamic view, you use the view-tag to

refer to the root directory of the view’s directory tree. For more information, see Accessing
Files on page 27 and the pathnames_ccase reference page in the Command Reference.

Dynamic View: Choosing a Location for the View Storage Directory

When creating a dynamic view, you must choose a location for its view storage directory. ClearCase

uses this directory to keep track of which versions are checked out to your view and to store

pat_v1.4_cropcircle Personal view for a user named Pat to develop source files for

release 1.4 of the Cropcircle product

1.3_fix Shared view for use in a particular bug-fixing task
14 Developing Software

view-private objects. The view storage directory is for ClearCase administrative purposes only.

Do not modify anything in it.

The size of the view storage directory depends on the following factors:

➤ Whether you use the clearmake build auditing and build avoidance features

➤ The size and number of view-private files

For more information, see the Administrator’s Guide for Rational ClearCase and the clearmake
reference page in the Command Reference.

Choosing Locations for Dynamic View Storage Directories

Consider the following restrictions when choosing a dynamic view storage directory location:

➤ The directory must be located on a ClearCase host. View processes (specifically,

view_server processes) run on the computer that physically stores the view storage

directory, and only ClearCase hosts can run view processes.

➤ To maintain data integrity, the view storage directory must remain connected to the

network. For example, do not locate the view storage directory on a removable storage

device.

➤ If you locate the view storage directory on a laptop and then disconnect the laptop from the

network, all of the following restrictions apply:

➣ You cannot use the dynamic view.

➣ Team members who try to start your view from their hosts will receive error messages

from ClearCase.

➣ Any clearmake process that attempts to wink in a derived object from your view will

spend some amount of time trying to contact your view. If it cannot contact your view,

it will not consider derived objects in your view as winkin candidates for 60 minutes.

(You can change the amount of time by setting the CCASE_DNVW_RETRY environmental

variable.) For more information, see the clearmake reference page.

➤ If you use the view on several hosts, make sure that the location can be accessed by all those

hosts; that is, choose a disk partition that is exported.

➤ If your ClearCase administrator sets up storage locations (which are directories on

ClearCase server hosts), you can locate your dynamic view storage directory in a storage

location (with mkview –stgloc). However, for best performance, we recommend that you

locate dynamic view storage directories on your local host.
2 - Setting Up a View 15

We recommend that you make the view storage directory accessible to any data backup schemes

your organization institutes.

2.3 Adjusting Your umask

Your umask(1) setting at the time you create a view affects how accessible it will be to others. For

example:

➤ A umask of 002 is appropriate for a view that you share with other users in the same group.

Members of your group can create and modify view-private data; those outside your group

can read view-private data, but cannot modify it. To completely exclude nongroup

members, set your umask to 007.

➤ A umask of 022 produces a view in which only you can write data, but anyone can read

data.

➤ A umask of 077 is appropriate for a completely private view. No other user can read or

write view-private data.

Change your umask in the standard way. For example, enter this command from a shell:

umask 022

For more information, refer to a umask(1) man page.

The CCASE_BLD_UMASK Environment Variable

You can also use the CCASE_BLD_UMASK environment variable (EV) to set the umask(1) value for

files created from a clearmake build script. It may be advisable to have this EV be more

permissive than your standard umask—for example, CCASE_BLD_UMASK = 2, where umask is 22.

For more information on ClearCase EVs, see the env_ccase reference page in the Command
Reference.
16 Developing Software

2.4 Creating the View with cleartool mkview

After gathering information on names and locations, open a shell and enter the cleartool
mkview command as described in the following sections.

To Create a Snapshot View

Enter the following command:

cleartool mkview –snapshot pathname-for-view

Remember the pathname you enter; ClearCase creates your directory tree of source files at this

pathname.

For a complete list of mkview options, see the mkview reference page in the Command Reference.

For example, to create the pat_v1.4_cropcircle_sv view located under Pat’s home directory, enter

the following command:

cleartool mkview –snapshot ~/pat_v1.4_cropcircle_sv
Selected Server Storage Location "cropcircles_view_storage”.
Created view.
Host-local path:
BREAD:/storage/cropcircles_view_storage/pat_v1.4_cropcircle_sv.vws
Created snapshot view directory "~/pat_v1.4_cropcircle_sv".

Under the Hood: .ccase_svreg

When you create a snapshot view, ClearCase creates or modifies the file .ccase_svreg in your

home directory. Do not remove or relocate this file; some ClearCase operations require it.

If you inadvertently delete or corrupt this file, see Regenerating .ccase_svreg on page 90.

To Create a Dynamic View

Enter the following command:

cleartool mkview –tag dynamic-view-tag dynamic-view-storage-pname
2 - Setting Up a View 17

For a complete list of mkview options, see the mkview reference page in the Command Reference.

For example, create pat_v1.4_cropcircle as a dynamic view with the following command:

cleartool mkview –tag pat_v1.4_cropcircle ~/pat_v1.4_cropcircle.vws

Under the Hood: The cleartool Command-Line Interface

cleartool is the main command-line interface (CLI) to interact with ClearCase. It has a large set

of subcommands, which create, modify, and manage the information in VOBs and views.

You can use cleartool in either single-command mode or interactive mode. To use a single

cleartool subcommand from a shell, use this syntax:

cleartool subcommand [options-and-args]

When entering a series of subcommands, you may find it more convenient to type cleartool
without any arguments. This places you at the interactive-mode prompt:

cleartool>

You can then issue any number of commands, ending with quit to return to the original shell.

cleartool commands can be continued onto additional lines with backslash (\), as with UNIX

shells.

Command options may appear in any order, but all options must precede any nonoption

arguments (typically, names of files, versions, branches, and so on).

For more information, see the cleartool reference page in the Command Reference. For information

about input and output for cleartool commands, see pathnames_ccase and fmt_ccase in the

Command Reference.

2.5 Adding or Modifying Version-Selection Rules

ClearCase creates a set of default version-selection rules in your view’s initial config spec.

However, development projects often require team members to add specific version-selection

rules. This manual assumes that someone in your organization creates these rules, and you must

either copy them into your config spec or add an inclusion rule so that your config spec includes
18 Developing Software

them from a config spec available over the network. For information on creating

version-selection rules, see Managing Software Projects.

You can use the following procedure whenever you need to add, remove, or otherwise modify

your view’s version-selection rules.

To Copy or Include Version-Selection Rules

1. Do one of the following:

➣ If you’re working in a dynamic view, type the following command:

cleartool setview view-tag

➣ If you’re working in a snapshot view, change to the root directory of the view.

2. Type the following command:

cleartool edcs

ClearCase opens the view’s config spec in your default text editor. For information about

changing the default editor, see the env_ccase reference page in the Command Reference.

3. In your text editor, do any of the following:

➣ Copy or insert the project’s rules into the config spec. The rules may be available in a text

file accessible over the network, or even through e-mail. Verify with the author of the

shared config spec whether you need to include any rules other than the ones you paste.

➣ Type on its own line include path-to-shared-config-spec. Verify with the author of the

shared config spec whether you need to include any rules other than the include rule.

NOTE: Rather than create your own config spec with an include rule, you can use

cleartool setcs to use some other config spec directly. For more information, see the setcs
reference page in the Command Reference.

4. If you’re working in a snapshot view, create or modify load rules. (See Snapshot View: Adding
or Modifying Load Rules for more information.) If you’re working in a dynamic view, do the

following:

a. Save the config spec and exit the text editor.

b. In your shell, answer Yes at the ClearCase prompt for setting the config spec.
2 - Setting Up a View 19

2.6 Snapshot View: Adding or Modifying Load Rules

Load rules determine which elements are copied into the snapshot view. Any projectwide config

spec that you include in your view’s config spec may already contain a set of default load rules.

You can modify those rules or add your own by doing the following:

➤ Listing the VOB namespace

➤ Adding or modifying load rules

➤ Excluding elements from loading

Listing the VOB Namespace

To create load rules, you must know the names of the elements in the VOB namespace. Because

ClearCase loads directory elements recursively, you need to know only the names of parent

directory elements.

VOB Namespace

In its general sense, a namespace is a set of unique names. The namespace of a file system usually

consists of a hierarchical arrangement of files and directories. Each file and directory has a

unique name.

In a VOB, a simple file name is not sufficient to select a single, unique object. For example, prog.c
is ambiguous: does it refer to version 1 of prog.c or version 42 of prog.c?

A VOB namespace is the set of file and directory versions your config spec selects. For example,

the view pat_v1.4_cropcircle_sv sees a VOB namespace of the files and directories that

contribute to release 1.4 of a software product; the view pat_v1.3_cropcircle_sv sees a VOB

namespace of the files and directories that contribute to release 1.3 of the same product. Because

ClearCase tracks versions of directories, the VOB namespace varies depending on the versions

of directories you select.

To List the VOB Namespace

1. From a snapshot view, enter cleartool lsvob to see the list of VOBs at your site. For example:

cleartool lsvob –short
/guivob
/doc
20 Developing Software

2. To see the namespace in a VOB, enter the following command:

cleartool ls VOB-pathname [...]

To see further down a directory tree in the namespace, use cleartool ls recursively. For

example:

cleartool ls /guivob
drwxrwxrw- 1 pat user 9 Dec 15 10:30 batch
drwxrwxrw- 1 pat user 3 Dec 8 8:10 soup
cleartool ls /guivob/batch
-r--r--r-- 1 pat user 56320 Mar 25 9:15 prog.c
-r--r--r-- 1 pat user 45056 Mar 23 11:57 lib.c

Adding or Modifying Load Rules

You can add or modify load rules in any of the following ways:

➤ When editing the config spec. Any time you edit and modify a snapshot view’s config spec,

ClearCase updates the entire view. This is appropriate when you first create a view, or when

you modify a view’s version-selection rules, but it may be cumbersome if you only want to

add a few elements to the view.

➤ By using update –add_loadrules. The –add_loadrules option of cleartool update adds load

rules to your view’s config spec but updates only the portion of the view that is affected by

the new load rules.

To Add or Modify Load Rules When Editing the Config Spec

1. Open the view’s config spec for editing by doing the following:

a. Open a shell and change to a directory in the view.

b. Enter the following command:

cleartool edcs

ClearCase opens the view’s config spec in your default text editor.
2 - Setting Up a View 21

2. In your text editor, use the following syntax to create load rules:

load vob-tag/element-pathname [...]

For example, the rule load /guivob loads all files and directories in the VOB named /guivob.

The rule load /guivob/batch loads only the batch directory recursively.

3. Save the config spec and exit the text editor.

4. In your shell, answer Yes at the ClearCase prompt for setting the config spec.

To Add Load Rules with update –add_loadrules

Enter the following command:

cleartool update –add_loadrules element-pathname [...]

element-pname names an element in the VOB namespace at a pathname that is relative to a

snapshot view. For example, the following command loads all elements in a VOB named /guivob
into the view pat_v1.4_cropcircle_sv:

cleartool update –add_loadrules ~/pat_v1.4_cropcircle_sv/guivob

You can also use a relative pathname for the element-pathname argument. For example, these

commands load all elements in guivob:

cd ~/pat_v1.4_cropcircle_sv
cleartool update –add_loadrules guivob

These commands load only the batch directory recursively:

cd ~/pat_v1.4_cropcircle_sv
cleartool update –add_loadrules guivob/batch

Excluding Elements from Loading

ClearCase loads all directory elements recursively. To exclude some elements from loading, you

can use an element rule in the config spec that selects an element’s initial version. For all ClearCase

elements, the initial version contains no data.
22 Developing Software

To Exclude Elements

1. Open the view’s config spec for editing:

a. Open a shell and change to a directory in the view.

b. Enter this command:

cleartool edcs

2. In the text editor, create an element rule that specifies the initial version of the element you

want to exclude by using the following syntax:

element vob-tag/element-pathname /main/0

For example, the element rule element /guivob/interface /main/0 loads the empty version of

the interface directory in /guivob, preventing any of its child elements from loading.

3. Save the config spec and exit the text editor.

4. In your shell, answer Yes at the ClearCase prompt for setting the config spec.

Under the Hood: VOB Links

A VOB link makes a file element or directory element accessible from more than one location in

the VOB namespace. There are two kinds of VOB links: symbolic links, which are available for file

and directory elements, and hard links, which are available for file elements only. We recommend

that you use VOB symbolic links instead of VOB hard links whenever possible.

You use the cleartool ln command to create VOB links. For more information, see the ln reference

page in the Command Reference.

Symbolic Links and Hard Links in Dynamic Views

In dynamic views (which use the MVFS, or multiversion file system), VOB links behave similarly

to symbolic links or hard links in a UNIX file system: symbolic links point to a file or directory

element in a different location, and hard links are alternate names for a single file element.

You cannot check out a VOB symbolic link; you must check out the symbolic link target.

When you check out a hard-linked element from a given pathname, ClearCase considers other

pathnames for the element as “checked out but removed.” That is, to prevent you from
2 - Setting Up a View 23

modifying the element from multiple pathnames, ClearCase executes standard checkout

behavior at only one pathname (the one from which you entered the checkout command), but

does not create view-private files at other pathnames. For information about standard checkout

behavior, see the checkout reference page in the Command Reference.

Symbolic Links in Snapshot Views

Snapshot views created from a UNIX host maintain standard symbolic link behavior.

NOTE: When you create a snapshot view from a UNIX host, ClearCase assumes that the file

system that contains the view supports symbolic links. If your file system does not support

symbolic links, ClearCase reports errors if it encounters VOB links during the update operation.

If a load rule selects a symbolic link, ClearCase copies the link as well as the link target into the

snapshot view (regardless of whether a load rule selects the link target). As with dynamic views,

you cannot check out a symbolic link; you must check out the symbolic link target.

Hard Links in Snapshot Views

Instead of creating hard links in a snapshot view, each time a load rule selects a hard link,

ClearCase loads the element into the view as a standard file.

Caution: Losing Data Because of VOB Hard Links

If you load multiple instances of a hard-linked element into a snapshot view, you must be careful

to check out, modify, and check in only one instance of the file.When you check in a hard-linked

file, ClearCase updates all other instances in your view, which could result in loss of data if you

modified multiple copies of the same file. (Note that, when updating instances of files because of

a checkin, ClearCase renames any hijacked file to filename.keep before updating it.)

For example, the following sequence of events will lead to lost data:

1. You check out the hard-linked file src/util.h.

2. ClearCase removes the read-only permission from util.h in the src directory only (which is

the location from which you issued the checkout command).

3. You modify src/util.h but do not check it in.

4. Later, you lose track of which file you checked out. You then remove the read-only

permission and modify util.h in the temp directory.
24 Developing Software

5. You check in temp/util.h. Even though you checked out and modified src/util.h, ClearCase

does not prevent you from checking in temp/util.h; with a VOB hard link, temp/util.h is just

another name for src/util.h.

6. Any changes you made to src/util.h are lost upon checkin because ClearCase updates all

copies of duplicated files when you check in an element. Note that ClearCase does not

consider any copy of util.h to be hijacked (even if you change permissions), because you

checked out the element in the VOB.
2 - Setting Up a View 25

26 Developing Software

33 Working in a View

This chapter guides you through the everyday tasks of managing source files from Rational

ClearCase:

➤ Accessing files

➤ Checking out elements

➤ Working with checkouts

➤ Canceling checkouts

➤ Checking in elements

3.1 Accessing Files

Because snapshot views and dynamic views use different methods for creating directory trees,

the procedure for accessing source files differs for the two view types.

In a Snapshot View

Recall that when you create the view, ClearCase copies one version of each element specified by

a load rule into your view. To access the files loaded into a snapshot view, open a shell and change

to the root directory of the view.
3 - Working in a View 27

For example, if you use this command to create the view

cleartool mkview –tag pat_v1.4_cropcircle_sv –snapshot ~/pat_v1.4_cropcircle_sv

the view’s files are located in the ~/pat_v1.4_cropcircle_sv directory.

Accessing Someone Else’s Snapshot View

You can access someone else’s snapshot view as you would access any other directory on another

workstation. Assuming that you can access the other workstation and that the directory’s owner

has set up the proper permissions, use the cd command to access the view.

In a Dynamic View

Accessing source files from a dynamic view entails two procedures:

➤ Setting a view

➤ Mounting VOBs

To Set a Dynamic View

Type this command:

cleartool setview view-tag

For more information about setting a view, see the setview reference page in the Command
Reference.

To Mount VOBs

Type this command:

cleartool mount VOB-tag

Usually, ClearCase mounts VOBs that were created with a public VOB-tag when you start or

reboot your workstation. If public VOBs do not mount, type cleartool mount –all to mount them.

VOBs remain mounted until you reboot your workstation or unmount them with the cleartool
umount command. For more information about mounting VOBs, see the mount reference page

in the Command Reference.
28 Developing Software

Accessing Someone Else’s Dynamic View

Team members can access any dynamic view by starting it on their computers. If you are unable

to start or set a dynamic view that is on another host, check with your administrator to make sure

that you can access the view’s view storage directory. For more information, see the

Administrator’s Guide for Rational ClearCase.

3.2 Checking Out Elements

To modify files and directories under ClearCase control, you must check them out. (Placing files

and directories under source control is a separate procedure; see Adding Files and Directories to
Source Control on page 77.) If you work in an environment with the base ClearCase-ClearQuest

integration, you may have to perform additional steps (see Checking Out Elements in a VOB
Enabled for ClearQuest on page 34).

To Check Out an Element

1. In a view, enter this command:

cleartool checkout –query list-of-elements

ClearCase prompts you to enter a comment.

2. Describe the changes you plan to make.

3. To finish entering comments, press RETURN, and type a period or press CTRL+D on a blank

line.

You can cancel the checkout operation by entering a standard interrupt signal such as

CTRL+C before typing a period or pressing CTRL+D.

cleartool checkout includes several options. These are most commonly used:

–query
Detects potential problems in the checkout process caused by inappropriate config specs

or out-of-date snapshot views and prompts for action.

–nc
Prevents ClearCase from prompting for a comment.
3 - Working in a View 29

–cq
Prompts for and applies a comment to all elements in the list.

–unreserved
Makes the checkouts for the listed elements unreserved. For more information, see

Reserved and Unreserved Checkouts on page 30.

For a complete description of all checkout options, see the checkout reference page in the

Command Reference.

Reserved and Unreserved Checkouts

In some version-control systems, only one user at a time can reserve the right to create a new

version. In other systems, many users can compete to create the same new version. ClearCase

supports both models by allowing two kinds of checkouts: reserved and unreserved.

The view with a reserved checkout has the exclusive right to check in a new version for a given

development project. Many views can have unreserved checkouts. An unreserved checkout does

not guarantee the right to create the successor version. If several views have unreserved

checkouts, the first view to check in the element creates the successor; developers working in

other views must merge the checked-in changes into their own work before they can check in.

Your organization’s development policy may determine whether to check out reserved or

unreserved.

Figure 4 illustrates checked-out versions created by reserved and unreserved checkouts, and the

effects of subsequent checkins.
30 Developing Software

Figure 4 Resolution of Reserved and Unreserved Checkouts

Another kind of checkout is an unreserved, nonmastered checkout, which can be used only in a

replicated VOB (created with Rational ClearCase MultiSite). For more information about this

kind of checkout, see Sharing Control of a Branch with Developers at Other Sites on page 71.

To Change the Status of a Checked-Out Version

In the view, enter the reserve or unreserve command, as follows:

➤ cleartool reserve element-name
➤ cleartool unreserve element-name

For information on changing the status for checkouts in other views, and for more information

about these commands, see the reserve or unreserve reference pages in the Command Reference.

This checked-out version
cannot be checked in as
version 5 until it is merged
with contents of version 4

Reserved
checkout

3

3

4

3
Unreserved
checkout

Unreserved
checkout

Checking in
the version

Resolution of Reserved Checkout Resolution of Unreserved Checkout

3

4
Checking in
the version
3 - Working in a View 31

Under the Hood: What Happens When You Check Out a File or Directory

Because a snapshot view contains copies of files and directories, and a dynamic view provides

access to data in VOBs, ClearCase follows different procedures for checking out from the

different view types.

From a Snapshot View

When you check out a file or directory from a snapshot view, the ClearCase software handles the

request as follows:

1. It gathers the following information:

➣ The version currently loaded in the view

➣ The version selected by the config spec

➣ The latest version in the VOB

2. If the version in your view is not the latest in the VOB, ClearCase notifies you. If you use the

–query option when checking out a file, ClearCase asks you to specify which version to

check out. If you use the –query option when checking out a directory, ClearCase notifies

you, but requires you to check out the version of the directory currently loaded in your view.

The version in your view will not be the latest in the VOB if either of these conditions exist:

➣ Someone else has checked in a new version since you last updated your view.

➣ Your view’s config spec selects versions based on a label or a time rule, and the latest

version in the VOB falls outside those parameters (Figure 5).

3. If you check out a version other than the one currently loaded in your view, ClearCase loads

the checked-out version into your view.

4. ClearCase notifies the VOB which version of the element you checked out.

5. For files, ClearCase makes them writable. For directories, it allows you to use the mkelem
command to add new elements to source control.

For information on checking out VOB links in a snapshot view, see Under the Hood: VOB Links on

page 23.
32 Developing Software

Figure 5 Selecting the Non-Latest Version of an Element

From a Dynamic View

When you check out a file from a dynamic view, ClearCase handles the request as follows:

1. If your view’s version-selection rules do not select the latest version in the VOB and you use

the –query option with the checkout command, ClearCase prompts you to choose a version

to check out.

Your view may not select the latest version in the VOB if, for example, your config spec

selects versions based on labels or time rules (Figure 5).

If you do not use the –query option, ClearCase checks out the latest version without

notifying you. Use the –ver option of the checkout command to check out the version that

your view selects, even if it is not the latest in the VOB.

See Merging with the Latest Version on page 43 for information about checking in a nonlatest

version.

2. ClearCase notifies the VOB which version of the element you checked out.

3. For files, ClearCase creates in the view an editable view-private file, which is a copy of the

checked-out version. For directories, it allows you to use the mkelem command to add new

elements to source control.

Latest version in the VOB

Labeled version
your view selects

0

1

2

prog.c

3

/main

BL3
3 - Working in a View 33

Checking Out Elements in a VOB Enabled for ClearQuest

If the VOB in which you access versions is set up for the base ClearCase-ClearQuest integration,

you may have to associate the version on which you are working with a ClearQuest change

request record. For more information, see The Base ClearCase-ClearQuest Integration on page 8.

Logging on to a ClearQuest User Database

The first time that you attempt to check out an element from or check in an element to a VOB

enabled for the base ClearCase-ClearQuest integration, you are prompted to log in to

ClearQuest. Specify a ClearQuest user ID, password, and database name. ClearQuest keeps its

own database of user IDs and passwords. Make sure that your ClearQuest administrator has

added a user ID and password to the ClearQuest user database for you.

After you log in to ClearQuest, you can use the integration to complete your checkout and

checkin operations (see Using the Base ClearCase-ClearQuest Integration Interface). The integration

stores the user ID and an encoded version of the password in a file named .cqparams, which it

creates in platform-specific areas. On Windows computers:

<windows>\Profiles\<login>\Application Data\Rational\Cqcc\

On UNIX workstations, it is stored in the home directory.

Thereafter, the integration uses the user ID and password in .cqparams instead of prompting you

for them. If you change your password or connect to a different database, the next time you check

out or check in a version from that VOB, the integration displays an error message and prompts

you to reenter the user ID and password. The integration updates the .cqparams file with the

new information.

Using the Base ClearCase-ClearQuest Integration Interface

If you are logged in to a ClearQuest user database (see Logging on to a ClearQuest User Database
on page 34) and check out or check in an element, you see a different interface. You have the

options shown in Table 1.
34 Developing Software

If you use a cleartool command line interface (CLI), you see a numbered menu of the options

shown in Table 1. To select an option, type the number of the entry and press RETURN. Some

menus allow multiple choices, to which you can enter one or more number separated by a space

or a comma. To dismiss the menu without making a choice, simply press RETURN.

If you use File Browser, you see the ClearQuest Associations Menu provided by ClearPrompt.

The dialog box opens when you check out or check in a version of an element in a VOB enabled

for ClearQuest. In the dialog box, select an option from those shown in Table 1 and click Yes to

Table 1 Base ClearCase-ClearQuest Integration Options

Option Description

OK - commit associations Make the requested associations and exit.

CANCEL Exit without making any changes and cancel the related

ClearCase operation.

HELP Print this text.

REVIEW Associations Shows currently selected associations and allows you to

delete one or more items from the list.

QUERY - Select from

ClearQuest Query

Displays the contents of a query that your local

administrator defines to show defects that are appropriate.

Depending on your local policy, you select one or multiple

items.

TYPEIN - Enter Associations

from Keyboard

Allows you to enter one or more change-request IDs

directly.

DATABASE Shows the current database name; allows you to change to

a different database.

RECORD TYPE Shows the current record type with which you are

working; for example, a defect. Allows you to change to a

different record type if multiple entities are supported by

the current database.

PATHNAME Shows the full path for the version that you are checking

in or checking out. Select this item to see more

information.
3 - Working in a View 35

continue. If multiple choices are allowed, click multiple items. Clicking the same choice a second

time clears it as a choice. To close the dialog box without making a change, click Yes or Abort.

Both the CLI and GUI interfaces use the same text for the choices to associate a ClearCase version

with one or more ClearQuest change requests and to remove a version’s existing associations

with change requests.

Associating a Checkout with a ClearQuest Entity

If you are required to associate versions with change requests, use the options from Table 1 to

enter change-request IDs as follows:

➤ Use the QUERY option to see a list of all open change-request IDs currently assigned to you

and select one or more items from the list to make associations.

➤ Use the TYPEIN option to enter one or more change-request IDs with which to associate the

version that you are checking out.

➤ Use the REVIEW option to list and possibly delete current associations.

➤ If the association is optional and you do not want to specify a change request, enter the OK

option and click Yes (clearprompt) or press RETURN (text menu).

➤ To cancel the checkout operation, use the CANCEL option or click Abort.

➤ To display help text, use the HELP option.

After you specify your options, use the OK option to create or update the associations your

specified and complete the checkout operation.

3.3 Working with Checkouts

After you check out a version, you do not need to interact with ClearCase until you’re ready to

check in. However, some ClearCase tools can help you with the following tasks:

➤ Viewing an element’s history

➤ Comparing versions of elements

➤ Tracking checked-out versions
36 Developing Software

Some cleartool commands include a –graphical option, which starts a tool for completing the

task. This chapter presents the –graphical option whenever it is available.

Viewing an Element’s History

The History Browser displays the history of an element’s modifications, including

version-creation comments (entered when someone checks out or checks in an element).

To View an Element’s History

In a view, enter this command:

cleartool lshistory –graphical pathname

You can use this command from a snapshot view whether or not the element specified by

pathname is loaded into the view.

Comparing Versions of Elements

As you modify source files, you may want to compare versions to answer such questions as

these:

➤ What changes have I made in my checked-out version?

➤ How does my checked-out version differ from a particular historical version or from the

version being used by one of my team members?

To Compare with a Predecessor

In a view, enter this command:

cleartool diff –graphical –predecessor pathname

To Compare with a Version Other Than the Predecessor

1. In a shell, enter this command:

cleartool lsvtree –graphical pathname
3 - Working in a View 37

2. In the Version Tree Browser, select a version.

3. Click Version > Diff > Selected vs. Other.

4. In the Enter other versions dialog box, select other versions and click OK.

If you prefer to use the command line:

1. Use cleartool lsvtree to list an element’s versions.

2. Use the cleartool diff command with version-extended naming. For example, to compare the

current version of prog.c with version 4:

cleartool diff prog.c prog.c@@/main/4

You can use the lsvtree and diff commands from a snapshot view whether or not the element

specified by pathname is loaded into the view. For more information, see the diff and

pathnames_ccase reference pages in the Command Reference.

To Compare with a Version in a Dynamic View

NOTE: To use this procedure, your workstation must support dynamic views.

1. Use cleartool startview to start a dynamic view. For example, to compare a version in your

view with a version in a dynamic view named joe_v1.4_cropcircle, enter the following

command:

cleartool startview joe_v1.4_cropcircle

2. Use cleartool diff (or any other diff command) with view-extended naming. For example,

to compare /guivob/prog.c in your view with /guivob/prog.c in joe_v1.4_cropcircle, enter

the following command:

cleartool diff –graphical /guivob/prog.c /view/joe_v1.4_cropcircle/guivob/prog.c

Sometimes, the same element appears at different pathnames in different views. ClearCase can

track directory-level changes, from simple renamings to wholesale reorganizations. In such

situations, a team member may direct your attention to a particular element, using a pathname

that is not valid in your view. You can pass this pathname to a describe –cview command to

determine its pathname in your own view. For example:
38 Developing Software

cleartool describe –cview /view/joe_v1.4_cropcircle/project/include/lib.c@@
file element "/guivob/lib.c@@"
 created 20-May-93.14:46:00 by rick.devt@saturn
 .
 .

You can then compare your version of the element with your team member’s version as follows:

cleartool diff –graphical /guivob/lib.c /view/joe_v1.4_cropcircle/project/include/lib.c

Tracking Checked-Out Versions

Depending on how you work, you may forget exactly how many and which files are checked out.

To list all the files and directories you currently have checked out to your view, access the view

and use the lscheckout command with the following options:

cleartool lscheckout –cview –me –avobs

For more information, see the lscheckout reference page in the Command Reference or type

cleartool man lscheckout in a shell.

Prototype Builds

Typically, when you’re developing source files for a project, you want to perform prototype

builds to test your modifications. If your organization uses clearmake, you can use this

ClearCase build tool for your prototype builds; however, the build auditing and build avoidance
features are available only from dynamic views.

For more information, see Building Software and the clearmake reference page in the Command
Reference.

3.4 Canceling Checkouts

If you check out a file but don’t want to check in your changes or want to start with a fresh copy,

you can cancel the checkout as follows:
3 - Working in a View 39

1. In the view from which you checked out a file, enter this command:

cleartool uncheckout pathname

ClearCase prompts you to save your modifications in a view-private file with a .keep
extension.

2. To save the modifications in a view-private file, press RETURN. Otherwise, type no.

To avoid being prompted about saving modifications, use one of the following options with the

uncheckout command:

–keep
Saves modifications

–rm
Does not save modifications. Any changes you made to the checked-out version are lost.

Under the Hood: Canceling Checkouts

When you cancel the checkout of a file element, ClearCase handles the request as follows:

1. It prompts you to rename the file in your view to filename.keep.

2. It notifies the VOB that you no longer have the version checked out in your view.

3. In a snapshot view, it copies from the VOB the version that was in your view when you

performed the checkout operation.

In a dynamic view, it uses the config spec’s version-selection rules to select a version.

If you work in an environment with the base ClearCase-ClearQuest integration, any associations

with ClearQuest change requests you may have made at checkout (see Checking Out Elements in
a VOB Enabled for ClearQuest on page 34) are canceled if you cancel the checkout.

Canceling Directory Checkouts

When you cancel a directory checkout, ClearCase notifies the VOB that you no longer have the

version of the directory checked out to your view. ClearCase does not prompt you to rename a

canceled directory checkout to directory-name.keep.
40 Developing Software

If you cancel a directory checkout after changing its contents, any changes you made with

cleartool rmname, mv, and ln are lost. Any new elements you created (with mkelem or mkdir)

become orphaned. ClearCase moves orphaned elements (and any data that exists in the view at

the pathname of the new element) to the VOB’s lost+found directory under names of this form:

element-name.UUID

In such cases, uncheckout displays this message:

cleartool: Warning: Object "prog.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
"prog.c.5f6815a0a2ce11cca54708006906af65".

In a snapshot view, ClearCase does not remove view-private objects or start the update operation

for the directory in the view. To return the directory in your view to its state before you checked

it out, you must start the Update Tool. For information on starting the Update Tool, see ClearCase

online help.

In a dynamic view, ClearCase does not remove view-private objects, but it does revert the view

to its previous state.

To Move and Delete Orphaned Elements

To move an element from the lost+found directory to another directory within the VOB, use the

cleartool mv command. To move an element from the lost+found directory to another VOB, use

the relocate command. For more information about moving elements to another VOB, see the

relocate reference page in the Command Reference.

To permanently delete an element in the lost+found directory, take note of the orphaned

element’s name and use this command:

cleartool rmelem VOB-pathname/lost+found/orphaned-element-name

For example, from a dynamic view:

cleartool rmelem /guivob/lost+found/prog.c.5f6815a0a2ce11cca54708006906af65

From a snapshot view:

cd ~/pat_v1.4_cropcircle_sv
cleartool rmelem guivob/lost+found/prog.c.5f6815a0a2ce11cca54708006906af65
3 - Working in a View 41

NOTE: In a snapshot view, ClearCase treats the lost+found directory, which is located

immediately below the root directory of a VOB, as any other directory. To load the directory in

your view, you must use a load rule that specifies either the element’s parent directory or the

directory itself. However, as with any other directory in a snapshot view, you do not need to load

the lost+found directory to issue ClearCase commands for elements in the directory.

3.5 Checking In Files

Until you check in a file, ClearCase has no record of the work in your view. Checking in a file or

directory element creates a new version in the VOB, which becomes a permanent part of the

element’s history. We recommend that you check in a file or directory any time you want a record

of its current state.

Ideally, your organization’s development strategy isolates your checked-in work from official

builds and requires you to merge your work to official project versions at specified intervals.

To Check In Files

1. In a view, enter the following command:

cleartool checkin list-of-elements

ClearCase prompts you to append your checkout comments.

2. Type any additional comments, press RETURN, and type a period or press CTRL+D on a

blank line.

You may cancel the checkin operation by entering a standard interrupt signal such as

CTRL+C before typing a period or pressing CTRL+D.

cleartool checkin includes several options. Here is a description of the most commonly used

ones:

–nc
Prevents ClearCase from prompting for a comment.

–cq
Prompts for and appends a single additional comment to all elements in the list.
42 Developing Software

For a complete description of all checkout options, see the checkin reference page in the

Command Reference.

Merging with the Latest Version

If the version you checked out is not the latest version in the VOB and you try to check in your

modifications, ClearCase requires you to merge the changes in the latest version into the version

checked out in your view (Figure 6).

Figure 6 Merging with the Latest Version

In Figure 6, version 2 of prog.c is the one that you checked out. Before you check in your

modifications, someone else checks in version 3 of prog.c. When you check in your

modifications, ClearCase tells you that the version you checked out is not LATEST on the branch.

(The section Under the Hood: What Happens When You Check Out a File or Directory on page 32

describes the situations in which you may have to merge before checking in.) Note that the

reserve status of the checkout is not relevant to whether your modifications can be checked in.

You need to merge the latest version in the VOB (prog.c@@/main/LATEST) to the version in your

view before you can check in your modifications. This merge creates a version that reconciles

modifications made in the latest version with your modifications. Then, when you check in the

merge results, the system sees the merge arrow from version 3 to your checked-out version

containing the merge results. The checkin creates a version 3 successor, version 4 of prog.c.

Version you checked out

To create a new version, you must
merge version 3 into the version
you checked out and check in the
merge result, which is version 4

0

1

2

prog.c

3

4

Your modifications to
the checked-out version

/main
3 - Working in a View 43

To Merge with the Latest Version

To merge the latest version in the VOB to the version in your view, enter the following command:

cleartool merge –graphical –to file-or-directory-in-your-view \
file-or-directory-name@@/main/LATEST

NOTE: @@/main/LATEST is a version-extended pathname. For more information, refer to the

pathnames_ccase reference page in the Command Reference.

For example:

cleartool merge –graphical –to prog.c prog.c@@/main/LATEST

Using the –graphical option starts the Diff Merge tool. For information on using the Diff Merge

tool, see ClearCase online help. After merging, save the results and check in the version by

entering the cleartool checkin command from the view.

Under the Hood: Checking In Files

The steps ClearCase follows when you issue the checkin command vary depending on the kind

of view you use.

From a Snapshot View

When you issue a checkin command from a snapshot view, ClearCase handles the request as

follows:

1. It copies your modifications to the VOB as a new version.

The version you check in remains in the view, regardless of the view’s config spec.

2. It removes write permission for the file.

For any other instance of a hard-linked file loaded into a snapshot view, ClearCase copies the

new version from the VOB into your view. (If your load rules specify a hard-linked element that

appears in more than one VOB location, the element is copied into each of the appropriate

locations in your view’s directory tree.)
44 Developing Software

From a Dynamic View

When you issue the checkin command from a dynamic view, ClearCase handles the request as

follows:

1. It copies your modifications to the VOB as a new version.

2. It uses the config spec’s version-selection rules to select a version from the VOB. If the config

spec selects a version other than the one you checked in, ClearCase displays a message.

ClearCase may select another version if, for example, your view selects versions based on

labels or time rules.

3. It removes the view-private file and provides transparent access to the version checked in to

the VOB.

Checking In Elements in a VOB Enabled for ClearQuest

If you use the base ClearCase-ClearQuest integration (see Checking Out Elements in a VOB Enabled
for ClearQuest on page 34), the version you are checking in must be associated with at least one

change request; otherwise, the checkin cannot proceed. When you check in the version, the base

ClearCase-ClearQuest integration displays those change-request IDs whose associations you

made during checkout. Using the options in Table 1, you can do the following:

➤ Keep the same change-request IDs.

Use the QUERY option to see a list of all open change-request IDs currently assigned to you.

➤ Delete some or all of the change-request IDs.

Use the REVIEW option to list and possibly delete current associations.

➤ Add new change-request IDs.

Use the TYPEIN option to enter one or more change-request IDs with which to associate the

version that you are checking in.

If the associations are correct, use the OK option to continue the checkin.

The base ClearCase-ClearQuest integration creates associations for new change-request IDs that

you add, removes associations for change-request IDs that you delete, and updates information

on existing ones.
3 - Working in a View 45

View the Versions for a Change Request from ClearQuest

To view the ClearCase versions associated with a ClearQuest change request:

1. In ClearQuest, run a query to find the desired set of change requests.

2. In the query result set, select a change request to display its Record form.

3. On the Record form, click the ClearCase tab.

The ClearCase tab shows the last known names of the versions of ClearCase elements associated

with the change request.
46 Developing Software

44 Updating a Snapshot View

The rules in your view’s config spec are usually designed to select a discrete set of versions from

the VOB. For example, your view is usually intended to contain a set of versions that build

successfully. However, when other developers check in new versions from their views, a

snapshot view may become out of date or inconsistent with the versions in the VOB. To make

sure that your view contains the set of versions the config spec selects, you must update it.

This chapter explains

➤ Starting an update operation

➤ What happens when you update a view

➤ Unloading elements

An update operation copies versions of elements from a VOB to your view. Only the checkin

operation copies changes from your view back to a VOB.

4.1 Starting an Update Operation

You can start an update operation for

➤ The entire view

➤ At least one file or at least one directory tree
4 - Updating a Snapshot View 47

Updating the View

Update the entire view periodically to make sure you have the correct version of all loaded files

and directories.

To update the view, use cleartool update with any of the following options:

cleartool update [–print] [cti⋅me | –pti⋅me] snapshot-view-pathname

The snapshot-view-pathname argument is optional if you enter the update command from the root

directory of the view.

Use these command options as follows. (For a description of all available command options, see

the update reference page in the Command Reference.)

–print
Produces a preview of the update operation: instead of copying or removing files,

update prints a report to standard output of the actions it would take for each specified

element.

–cti⋅me
Sets the time stamp of a file element to the current time, that is, the time at which the

version is copied into the view. –ctime has no effect on directories (directories always use

the current time). The initial default for the time stamp is set by the mkview command.

Thereafter, the most recently used time scheme is retained as part of the view’s state and

is used as the default behavior for the next update.

–pti⋅me
Sets the time stamp of a file element to the time at which the version was checked in to

the VOB. –ptime has no effect on directories. (Directories always use the current time.)

For example:

cleartool update ~/pat_1.4_cropcircle_sv

NOTE: You can use the Update Tool to update the view instead of the command line. To start the

update GUI, enter the following command:

cleartool update –graphical snapshot-view-pathname
48 Developing Software

Updating Files and Directory Trees

To save time, you can update individual files or directories. (Rational ClearCase updates

directories recursively.) Updating only specific parts of your view may eventually cause the view

to contain an inconsistent set of versions.

Enter the following command:

cleartool update [–print] [cti⋅me | –pti⋅me] pathnames-of-loaded-elements

For information on these command options, see Updating the View on page 48. For a description

of all available command options, see the update reference page in the Command Reference.

NOTE: You cannot update a checked-out file. To undo changes to a checked-out file and start over

with the version in the VOB, cancel the checkout. See Canceling Checkouts on page 39.

4.2 Under the Hood: What Happens When You Update a View

When you start an update operation, ClearCase compares the version of the elements loaded in

the view with the version the config spec selects in the VOB. If the config spec selects a version

in the VOB that is different from the version loaded in your view, ClearCase copies the version

from the VOB into your view (Figure 7). ClearCase does not make this comparison or otherwise

modify versions currently checked out to the view.

The update operation takes into account the fact that changes may be occurring in the VOB

during the update. As ClearCase updates your view, other developers may check in new

versions of elements your view’s load rules select. To avoid loading an inconsistent set of

versions, the update operation ignores versions in the VOB that meet both of the following

conditions:

➤ The version was checked in after the moment the update began.

➤ The version is now selected by a config spec rule that involves the LATEST version label.

The update operation adjusts for the possibility that the system clocks on different hosts in a

network may be out of sync (clock skew).
4 - Updating a Snapshot View 49

Figure 7 The Update Operation

Version loaded in your view

Version the config spec
selects based on the
BUILD_1.4_BETA label

The update operation loads the
version your config spec selects

VOB

0

1

2

prog.c

3

/main

-r--r--r-- 1 pat user 56320 Dec 15 10:30 lib.c
-r--r--r-- 1 pat user 45056 Mar 23 13:22 msg.cat
-r--r--r-- 1 pat user 39936 Dec 5 11:57 prog.c
drwxrwxr-x 1 pat user 9 Mar 25 9:19 tmp
-r--r--r-- 1 pat user 56320 Dec 8 8:10 util.h

View

% Is -I ~/pat_v1.4_cropcircle_sv/guivob
50 Developing Software

4.3 Unloading Elements

If a view’s config spec no longer selects an element, ClearCase removes, or unloads, it from the

view. Unloading does not affect view-private files or view-private directories.

Updating can cause an element to be unloaded from a view in the following situations:

➤ You remove the load rule that specifies the element (or that specifies a directory element

somewhere above it). For information on removing load rules, see Adding or Modifying Load
Rules on page 21.

➤ The version-selection rules no longer select any version of the element. This can happen

when your config spec selects a version of the parent directory that no longer contains a

version of the file element.

Unloading Files

The action that ClearCase takes to unload a file depends on the file’s current state:

➤ For a file that is not checked out, ClearCase deletes the file from the view.

➤ For a hijacked file, ClearCase appends .unloaded to the file name, unless you use update
–overwrite to delete hijacked files.

➤ For a checked-out file, ClearCase appends .unloaded to the file name. The version remains

checked out to your view.

Unloading Directories

ClearCase unloads directories recursively. To unload a directory element, ClearCase unloads the

files in the directory. If any view-private objects, hijacked files, or checked-out files are in the

directory, or if the directory is currently in use (for example, if your current working directory is

in or below the directory) ClearCase appends .unloaded to the name of the directory. For

example, if the directory src contains view-private files, ClearCase renames the directory to

src.unloaded.
4 - Updating a Snapshot View 51

52 Developing Software

55 Working On a Team

The development cycle presented so far is a fairly simple one in which everyone in an

organization contributes to the same development project. But a software development cycle

often involves several concurrent development projects. For example:

➤ You may want to experiment with some changes to the GUI as a result of feedback from

usability testing, but are not yet sure whether to include your changes in official builds.

➤ Another team may try to optimize the database schema without upsetting the current one.

➤ Another group may need to get a head start on a feature for the next release of the product.

This chapter describes the functions that Rational ClearCase provides to support parallel

development, a style of working in which teams use the same set of source files for different,

concurrent development projects:

➤ Version trees

➤ Working on branches

➤ Merging

➤ Sharing control of a branch in an environment using Rational ClearCase MultiSite

(You do not need to read the section about sharing control of a branch with developers at other

sites unless your project manager or MultiSite administrator directs you.)
5 - Working On a Team 53

5.1 The Version Tree

Each time you revise and check in an element, ClearCase creates a new version of the element in

the VOB. Throughout this part of the book, this linear progression has been illustrated with a

graphic similar to Figure 8.

Figure 8 Linear Progression of Versions

ClearCase can organize the different versions of an element in a VOB into a version tree. Like any

tree, a version tree has branches. Each branch represents an independent line of development.

Changes on one branch do not affect other branches until you merge. In Figure 9, main,

pat_usability, and db_optimize are branches being used to develop different releases of the file

element prog.c concurrently.

0

1

2

prog.c

3

/main
54 Developing Software

Figure 9 Version Tree of a File Element

Under the Hood: The Initial Version on a Subbranch

When you create a subbranch for an element, which is any branch below the main branch, the

initial version contains the same data as the version from which you start the branch (Figure 10).

(The initial version on the main branch contains no data. For more information, see Excluding
Elements from Loading on page 22.)

REL1.3

0

1

2

3

prog.c

0

1

/db_optimize

0

1

2

REL1.4

4

5

merge

/main

/pat_usability
5 - Working On a Team 55

Figure 10 The Initial Version on a Subbranch

5.2 Working on Branches

Your organization’s policies may dictate that each development project use its own branch to

isolate its changes from other development projects. To adhere to this policy, each member of a

project team uses a view whose config spec specifies this information:

➤ The versions to select in the development project’s specific branch. As Figure 11 illustrates,

some or all source files for the project have at least one version on the specified branch. If an

element does not have a version on the specified branch, other rules in the config spec select

a version of the element. In Figure 11, because lib.c does not have a version on the

pat_usability branch, the view selects the version on the main branch.

➤ A special make branch rule. When this view checks out a version, the make-branch rule

creates the development project’s branch (if it doesn’t already exist).

For example, each member of the project team that is optimizing the database schema uses a

view that selects versions on the db_optimize branch and creates new versions on that branch.

REL1.3

0

1

2

3

prog.c
/main

0

/pat_usability

The initial version on the main branch,
which is always empty

These versions contain
the same data

The initial version
subbranch
56 Developing Software

Figure 11 Elements Have Common Branches

0

1

2

VOB

0

1

2

3

msg.cat

0

1

2

3

4

lib.c

0

1

0

1

2

0

1

2

3

prog.c

0

1

util.h

3

load /guivob/prog.c
load /guivob/util.h
load /guivob/msg.cat
load /guivob/lib.c

element * /main/pat_usability/LATEST
element * /main/LATEST -mkbranch pat_usability

Load rules

Version-selection
rules

/main /main /main /main

/pat_usability

/pat_usability

/pat_usability

-r--r--r-- 1 pat user 56320 Dec 15 10:30 prog.c
-r--r--r-- 1 pat user 45056 Mar 23 13:22 util.h
-r--r--r-- 1 pat user 39936 Dec 5 11:57 msg.cat
drwxrwxr-x 1 pat user 9 Mar 25 9:19 tmp
-r--r--r-- 1 pat user 56320 Dec 8 8:10 lib.c

View

% Is -I ~/pat_v1.4_cropcircle_sv/guivob
5 - Working On a Team 57

For more information about branches, see Managing Software Projects and the mkbranch
reference page in the Command Reference.

The Version-Extended Pathname

ClearCase commands and documentation use a notation to specify a version of an element on a

branch. For example, util.h@@/main/2 specifies version 2 of util.h on the main branch;

util.h@@/main/r1_bugs/bug404/1 specifies version 1 of util.h on the bug404 subbranch below

the r1_bugs subbranch, which is below the main branch (Figure 12).

Figure 12 Version-Extended Pathnames

From a command-line interface, you can use version-extended pathnames to access versions

other than the ones currently selected by your view. To view the contents of a version that is not

0

1

2

3

4

0

1

2

3

util.h

Version-extended pathname
util.h@@/main/r1_bugs/bug404/1 (UNIX)
util.h@@\main\r1_bugs\bug404\1 (Windows)

r1_bugs

main

0

1

bug404
58 Developing Software

currently in a snapshot view, you must use the cleartool get command in addition to

version-extended pathnames.

For a full description of the syntax for version-extended pathnames, see the pathnames_ccase
reference page in the Command Reference.

5.3 Merging

In a parallel development environment, the opposite of branching is merging. In the simplest

scenario, merging incorporates changes on a subbranch into the main branch. However, you can

merge work from any branch to any other branch. ClearCase includes automated merge facilities

for handling almost any scenario.

One of the most powerful of ClearCase features is versioning of directories. Each version of a

directory element catalogs a set of file elements, directory elements, and VOB symbolic links. In

a parallel development environment, directory-level changes may occur as frequently as

file-level changes. All the merge scenarios discussed in this chapter apply to both directory and

file elements.

This section describes the following merge scenarios:

➤ Merging all changes made on a single subbranch (see Scenario: Merging All Changes Made on
a Subbranch on page 65)

➤ Merging selectively from a single subbranch (see Scenario: Selective Merge from a Subbranch on

page 67)

➤ Removing the contributions of some versions on a single subbranch (see Scenario: Removing
the Contributions of Some Versions on page 69)

➤ Recording merges that occur outside ClearCase (see Recording Merges That Occur Outside
ClearCase on page 71)

ClearCase also supports merging work from many branches to a single branch; this is typically

a project manager’s or integrator’s task (see Managing Software Projects).

Under the Hood: How ClearCase Merges Files and Directories

A merge combines the contents of two or more files or directories into a new file or directory. The

ClearCase merge algorithm uses the following files during a merge (Figure 13):
5 - Working On a Team 59

Figure 13 Versions Involved in a Typical Merge

➤ Contributors, which are typically one version from each branch you are merging. (You can

merge up to 15 contributors.) You specify which versions are contributors.

➤ The base contributor, which is typically the closest common ancestor of the contributors.

(For selective merges, subtractive merges, and merges in an environment with complex

branch structures, the base contributor may not be the closest common ancestor.) If all the

contributors are versions of the same element, ClearCase determines which contributor is

the base contributor (but you can specify a different one). For more information about

determining a base contributor, see Determination of the Base Contributor on page 62.

➤ The target contributor, which is typically the latest version on the branch that will contain

the results of the merge. You determine which contributor is the target contributor.

4

5

6

7

/main

Contributor

8

4

5

6

0

1

2

3

Base contributor

Target contributor

Merge output
file

element: opt.c

merge

/r1_fix
60 Developing Software

➤ The merge output file, which contains the results of the merge and is usually checked in as a

successor to the target contributor. By default, the merge output file is the checked-out

version of the target contributor, but you can choose a different file to contain the merge

output.

To merge files and directories, ClearCase takes the following steps:

1. It identifies the base contributor.

2. It compares each contributor against the base contributor (Figure 14).

3. It copies any line that is unchanged between the base contributor and any other contributor

to the merge output file.

4. For any line that has changed between the base contributor and one other contributor,

ClearCase accepts the change in the contributor; depending on how you started the merge

operation, ClearCase may copy the change to the merge output file. However, you can

disable the automated merge capability for any given merge operation. If you disable this

capability, you must approve each change to the merge output file.

5. For any line that has changed between the base contributor and more than one other

contributor, ClearCase requires that you resolve the conflicting difference.

Figure 14 ClearCase Merge Algorithm

File Merge Algorithm

A merge is a straightforward extension of a file comparison. Instead of displaying the

differences, Diff Merge analyzes them (sometimes with your help) and copies sections of text to

the output file:

➤ Sections in which there are no differences among the contributors are copied to the output

file.

▲ (b, c1)

B

C1 C2

▲ (b, c2)

Destination version = B + ▲ (b, c1) + ▲ (b, c2)

Base
contributor

Source
contributors
5 - Working On a Team 61

➤ When one contributor differs from the base contributor, Diff Merge accepts the change and

copies the contributor’s modified section to the output file:

(You can turn off automatic acceptance of this kind of change.)

➤ When two or more contributors differ from the base contributor, Diff Merge detects the

conflict, and prompts you to resolve it. It displays all contributor differences and allows you

to accept or reject each one.

Be sure to verify that the changes you accept produce consistent merged output. For

example, after performing a merge involving file util.h, you can compare files util.h.contrib
(which contains its previous contents) and the new util.h (which contains the merge output).

Determination of the Base Contributor

If all the contributors are versions of the same element, Diff Merge determines the base

contributor automatically. It examines the element’s version tree, which includes all the merge

arrows created by previous merge operations. This examination reveals the relationships among

versions from the standpoint of their contents (which versions contributed their data to this

version?), rather than their creation order (which versions were created before this version?). Diff

Merge selects as the base contributor the closest common ancestor in this enhanced version tree.

Figure 15 illustrates common cases of merging. If no merges have been performed in the element,

the actual common ancestor (A) of the contributors (C) in the version tree is selected to be the

base contributor.

------------[changed 3-4]----|--------[changed to 3-4 file 2]---
now is the thyme | now is the time
for all good men | for all good people

 -|-
*** Automatic: Applying CHANGE from file 2 [lines 3-4]
============

[changed 10] | [changed to 10 file 2]---
cent | sent

-|-
[changed 10] | [changed to 10 file 3]---

cent | scent
|-

Do you want the CHANGE made in file 2? [yes] no
Do you want the CHANGE made in file 3? [yes] yes
Applying CHANGE from file 3 [line 10]
============
62 Developing Software

Figure 15 Determination of the Base Contributor for a Merge

If the contributors are not all versions of the same element, there is no common ancestor (or other

base contributor). In this case, ClearCase turns off automated merging, and you must resolve all

discrepancies among the contributors.

Recording of Merge Arrows

Under the following conditions, the merge is recorded by creating one or more merge arrows

(hyperlinks of type Merge):

➤ All contributor files must be versions of the same file element.

➤ One of the contributors must be a checked-out version, and you must specify this version as

the target to be overwritten with the merge output (the –to option in the merge command).

(Alternatively, you can optionally create merge arrows without performing a merge; in this

case, you do not need to check out any of the contributors.)

➤ You must not perform the merge but suppress creation of merge arrows.

bugfixbugfix

bugfix

C

C

C

C

C

C

C

A

A

A

A

C

test

windows

merge

ports

merge
merge

merge

.

.

.

.

.

.

.

.

.

.

.

.

5 - Working On a Team 63

➤ You must not use any of these options: selective merge, subtractive merge, or base

contributor specification (the –insert, –delete, and –base options in the merge command).

Diff Merge draws an arrow from each contributor version (except the base contributor) to the

target version. You can see merge arrows with the Version Tree Browser.

Locating Versions with Merge Hyperlinks

The find and lsvtree –merge commands can locate versions with Merge hyperlinks. The

describe command lists all of a version’s hyperlinks, including merge arrows:

cleartool describe util.h@@/main/3
version "util.h@@/main/3"
.
.
.
 Hyperlinks:
 Merge@278@/vob_3 /vob_3/src/util.h@@/main/rel2_bugfix/1
 -> /vob_3/src/util.h@@/main/3

Directory Merge Algorithm

Each version of a ClearCase directory element contains the names of certain file elements,

directory elements, and VOB symbolic links.Diff Merge can process two or more versions of the

same directory element, producing a directory version that reflects the contents of all

contributors. The algorithm is similar to that for a file merge. Diff Merge prompts for user

interaction only when two or more of the contributors are in conflict.

One of the directory versions—the merge target—must be checked out. (Typically, it is the

version in your view.) Diff Merge updates the checked-out directory by adding, removing, and

changing names of elements and links.

NOTE: A directory merge does not leave behind a .contrib file, with the pre-merge contents of the

target version.

Merging Directories

We recommend that you use this procedure when merging directories:

1. Ensure that all contributor versions of the directory are checked in.

2. Check out the target version of the directory.
64 Developing Software

3. Perform the directory merge immediately, without making any other changes to the

checked-out version.

If you follow this procedure, it easier to determine exactly what the merge accomplished. Enter

a diff –predecessor command on the checked-out version, which has just been updated by

merge.

Using ln and rmname in Diff Merge

ClearCase implements directory merges using VOB hard links. You can use the ln and rmname
commands to perform full or partial merges manually. See the ln and rmname reference pages

in the Command Reference.

Scenario: Merging All Changes Made on a Subbranch

Merging all changes made on a subbranch is the simplest and most common scenario (Figure 16).

Bug fixes for an element named opt.c are being made on branch r1_fix, which was created at the

baseline version RLS1.0 (/main/4). Now, all the changes made on the subbranch are to be

incorporated into main, where a few new versions have been created in the meantime.

Task Overview

Merging the changes from the r1_fix branch involves the following tasks:

1. Set a dynamic view or change directories to a snapshot view. The view must select the target

version, which in Figure 16 is opt.c@@/main/8.

2. If the target version is checked out to your view for other revisions, create a pre-merge

checkpoint by checking it in. To make it easier to find this checkpoint, consider labeling the

version.

3. Use the Merge Manager or cleartool findmerge –merge –gmerge to find elements with

versions on a specific subbranch and automatically merge any nonconflicting differences.

For example, in Figure 16, you find elements with versions on the r1_fix subbranch. To start

the Merge Manager, enter the following command:

clearmrgman

In your project, several elements might have versions on the r1_fix branch. With the Merge

Manager, you can choose for which elements you merge changes from one branch to another.
5 - Working On a Team 65

Figure 16 Merging All Changes from a Subbranch

4. Use Diff Merge to resolve any conflicting differences between merge contributors.

5. Test the merge results in the view you set in Step #1. Then check in the target version (which

contains the results of the merge).

Getting More Information

For detailed information about completing this task, see the findmerge reference page in the

Command Reference or ClearCase online help:

From a ClearCase host, type hyperhelp cc_main.hlp&

merge

4

5

6

7

8

4

5

6

0

1

2

3

RLS1.0

element: opt.c

Merge all changes
made on r1_fix
subbranch back
into main branch

/r1_fix

/main
66 Developing Software

Scenario: Selective Merge from a Subbranch

In the selective merge scenario, the project manager wants to incorporate into new development

several lines of code that were added in version /main/r1_fix/4 (Figure 17).

Figure 17 Selective Merge from a Subbranch

It’s critical that you merge only the lines of code as written in this version: it was used and

verified to fix a specific bug that prevents further development on the new project.

Selective merges can be tricky: versions you exclude as contributors to the merge may contain

needed revisions. For example, if the function you added in /main/r1_fix/4 relies on a variable

definition that was added in /main/r1_fix/2, you must include version 2 in the merge.

merge

4

5

6

7

8

4

5

6

0

1

2

3

element: opt.c

Exclude changes
in these versions
from merge

/r1_fix

Exclude changes
in these versions
from merge

Include changes
in this version onlyQA_APPROVED

/main
5 - Working On a Team 67

Merging a Range of Versions

You can also specify a single range of consecutive versions to contribute to the merge. For

example, if you need the variable definitions added in /main/r1_fix/2 as well as the code added

in /main/r1_fix/4, you can include versions 2 through 4 in the merge.

Task Overview

Merging selective versions from the r1_fix branch involves the following tasks:

1. Set a dynamic view or change directories to a snapshot view. The view must select the target

version, which in Figure 17 is opt.c@@/main/8.

2. If the target version is checked out to your view for other revisions, create a pre-merge

checkpoint by checking it in.

3. To determine which versions contain changes that you want to merge to the target version,

use the Version Tree Browser and the History Browser. In a snapshot view, use the cleartool
get command to see the contents of versions not loaded into your view.

4. To start the merge, check out the target version, and then issue the cleartool merge command

with the –insert –graphical arguments. (You cannot start a selective merge from Diff Merge.)

For example, the following commands merge only the changes in version 4 on the r1_fix
branch:

cleartool checkout opt.c
cleartool merge –graphical –to opt.c –insert –version /main/r1_fix/4

These commands merge only the changes in versions 2 through 4 on the r1_fix branch:

cleartool checkout opt.c
cleartool merge –graphical –to opt.c –insert –version /main/r1_fix/2 /main/r1_fix/4

5. In Diff Merge, complete the merge. Then save the results and exit. For information on using

Diff Merge, refer to the online help.

6. Test the merge results in the view you set in Step #1. Then check in the target version.

NOTE: In a selective merge, ClearCase does not create a merge arrow. A merge arrow indicates

that all of a version’s data has been merged, not parts of it.
68 Developing Software

Getting More Information

For detailed information about completing this task, see the merge and version_selector
reference pages in the Command Reference or ClearCase online help:

From a ClearCase host, type hyperhelp cc_main.hlp&

Scenario: Removing the Contributions of Some Versions

The project manager has decided that a new feature, implemented in versions 14 through 16 on

the main branch, will not be included in the product. You must perform a subtractive merge to

remove the changes made in those versions (Figure 18).

Figure 18 Removing the Contributions of Some Versions

17

18

13

14

15

16

element: opt.c

These versions
contributions to
be removed

/main
5 - Working On a Team 69

Task Overview

A subtractive merge is the opposite of a selective merge: it removes from the checked-out version

the changes made in one or more of its predecessors. Performing a subtractive merge involves

the following tasks:

1. Set a dynamic view or change directories to a snapshot view. The view must select the branch

from which you want to remove revisions.

2. If the target version is checked out to your view for other revisions, create a pre-merge

checkpoint by checking it in. In Figure 18, the target version is opt.c@@/main/18.

3. To determine which versions contain changes you want to remove, use the Version Tree

Browser and the History Browser. From a snapshot view, use the cleartool get command to

see the contents of versions not loaded into your view.

4. To perform the merge, check out the target version, and then use the cleartool merge
command with the –delete –graphical arguments. (You cannot start a subtractive merge

from Diff Merge.)

For example, the following commands remove revisions to versions 14 through 16 on the

main branch:

cleartool checkout opt.c
cleartool merge –graphical –to opt.c –delete –version /main/14 /main/16

5. In Diff Merge, complete the merge. Then save the results and exit. For information on using

Diff Merge, refer to online help.

6. Test the merge results in your view. Then check in the target version (which contains the

results of the merge).

NOTE: In a subtractive merge, ClearCase does not create a merge arrow. A merge arrow indicates

that data has been merged, not removed.

Getting More Information

For detailed information about completing this task, see the merge and version_selector
reference pages in the Command Reference or ClearCase online help:

From a ClearCase host, type hyperhelp cc_main.hlp&
70 Developing Software

Recording Merges That Occur Outside ClearCase

You can merge versions of an element manually or with any available analysis and editing tools.

To update an element’s version tree with a merge that occurs outside ClearCase, check out the

target version, perform the merge with your own tools, and check it back in. Then record the

merge by drawing a merge arrow from the contributors to the new version that contains the

result of the merge. After you’ve drawn the merge arrow, your merge is indistinguishable from

one performed with ClearCase tools.

For example, use the following commands to merge a version of nextwhat.c on the enhance
branch to the branch currently selected by your view:

cleartool checkout nextwhat.c
Checkout comments for "nextwhat.c":
merge enhance branch
.
Checked out "nextwhat.c" from version "/main/1".

<use your own tools to merge data into checked-out version>

cleartool merge –to nextwhat.c –ndata –version .../enhance/LATEST
Recorded merge of "nextwhat.c".

The –ndata option suppresses the merge but creates merge arrows as if ClearCase had merged

the versions.

Getting More Information

For detailed information about completing this task, see the merge and version_selector
reference pages in the Command Reference or ClearCase online help:

From a ClearCase host, type hyperhelp cc_main.hlp&

5.4 Sharing Control of a Branch with Developers at Other Sites

NOTE: This section describes how to request control of a branch from another development site.

You do not need to read this section unless your project manager or MultiSite administrator

directs you to.
5 - Working On a Team 71

If your company uses MultiSite to distribute development among multiple geographical sites,

you may share source files with developers at other sites. Each site has its own replica of the VOB,

and developers work in their site-specific replica (known as the current replica). Each replica

controls (masters) a particular branch of an element, and only developers at that replica’s site can

work on that branch. In this scenario, MultiSite branch mastership does not affect you, and you

can do your work as usual.

However, sometimes elements cannot have multiple branches. For example, some file types

cannot be merged, so development must occur on a single branch. In this scenario, all developers

must work on a single branch (usually, the main branch). MultiSite allows only one replica to

master a branch at any given time. Therefore, if a developer at another site needs to work on the

element, she must request mastership of the branch.

NOTE: The developer can also request mastership of branch types. For more information, see the

Administrator’s Guide for Rational ClearCase MultiSite.

For example, the file doc_info.doc cannot be merged because it is a file type for which you do

not have a type manager, but developers at different sites need to make changes to it. If the branch

is mastered by your current replica, you can check out the file. If the branch is mastered by

another replica, you cannot check out the file. If you try to check out the file, ClearCase presents

an error message:

cleartool checkout –c "command changes" doc_info.doc
cleartool: Error: Cannot checkout branch "/main".
The branch is mastered by replica "raleigh".
Current replica is "lexington".
cleartool: Error: Unable to check out "doc_info.doc".

For you to check out the file reserved or to check in the file after a nonmastered checkout, your

current replica must master the branch. You can request mastership with a cleartool command.

If you have permission to request mastership from the master replica of the branch, if mastership

requests are enabled, and if there are no blocking conditions, then the mastership change is made

at the master replica, and a MultiSite update packet that contains the change is sent to your

current replica. When your current replica imports the packet, it receives mastership of the

branch and you can check out the file.

NOTE: Authorizing developers to request mastership and enabling mastership requests at a

replica are tasks performed by the MultiSite administrator. For more information, see the

Administrator’s Guide for Rational ClearCase MultiSite.

When you use mastership requests to transfer control of a branch, you can use either of two

methods to do your work:
72 Developing Software

➤ Request mastership of the branch and wait for mastership to be transferred to your current

replica; then perform a reserved checkout. You must use this method if you cannot or do

not want to merge versions of the element.

➤ Request mastership of the branch and check out the branch immediately, using a

nonmastered checkout. You may have to perform a merge before you can check in your

work.

The following sections describe both methods.

To Request Mastership of a Branch and Wait for the Transfer

1. At a command prompt, enter a cleartool reqmaster command for the branch you need to

check out.

cleartool reqmaster –c "add info re new operating systems" read_me_first.doc@@/main

2. Wait for mastership to be transferred to your current replica. To list the master replica of a

branch, use describe:

cleartool describe read_me_first.doc@@/main
branch "read_me_first.doc@@/main"

created 15-May-99.13:32:05 by sg.user
branch type: main
master replica: doc_lex@/doc

...

In this example, your current replica is lexington in the VOB family /doc. The output of the

describe command shows that lexington is the master replica of the branch, which means

that you can check out the branch as reserved.

3. Perform a reserved checkout, edit the file, and check in your work.
5 - Working On a Team 73

To Check Out the Branch Before Mastership Is Transferred

If you can merge versions of the element you need to check out, you can work on the file while

you wait for mastership to be transferred to your replica.

To use this method from the command line:

1. Enter a reqmaster command for the branch you need to check out.

cleartool reqmaster –c "fix bug #28386" prog.c@@/main/integ

2. Use cleartool checkout –unreserved –nmaster to perform a nonmastered checkout.

cleartool checkout –c "fix bug #28386" –unreserved –nmaster prog.c@@/main/integ

3. Make changes to the element.

4. Wait for mastership to be transferred to your current replica. To list the master replica of a

branch, use describe:

cleartool describe /vobs/lib/prog.c@@/main
branch "/vobs/lib/prog.c@@/main"

created 15-May-99.13:32:05 by nlg.user
branch type: main
master replica: lib_london@/vobs/lib

...

5. Check in the element. If the checkin succeeds, you are finished.

cleartool checkin –nc prog.c
Checked in "prog.c" version "/main/65".

If the checkin fails because you have to perform a merge, proceed to Step #6:

cleartool checkin –nc prog.c
cleartool: Error: The most recent version on branch "/main" is not the
predecessor of this version.
cleartool: Error: Unable to check in "prog.c".
74 Developing Software

6. Merge from the latest version on the branch to your checked-out version.

cleartool merge –to prog.c –version /main/LATEST
(if necessary, you are prompted to resolve conflicts)
Moved contributor "prog.c" to "prog.c.contrib".
Output of merge is in "prog.c".
Recorded merge of "prog.c".

7. Check in the element.

Troubleshooting

If the request for mastership fails because there are checkouts on the branch at the master replica,

try your request again later or ask the other developer to check in the file or directory and then

try again. If you receive other errors, contact your project manager or MultiSite administrator.
5 - Working On a Team 75

76 Developing Software

66 Other Tasks

Chapter 3, Working in a View, describes tasks you perform daily or weekly. You may need to

perform some of these tasks less often:

➤ Adding files and directories to source control

➤ Moving, removing, and renaming elements

➤ Accessing elements not loaded into a snapshot view

➤ Moving views

➤ Regenerating a snapshot view’s .view.dat file

➤ Regenerating .ccase_svreg
➤ Accessing views and VOBs across platform types

6.1 Adding Files and Directories to Source Control

You can add files or directories to source control at any time.

To Add Elements to Source Control

To add view-private files and directories to source control, or to make placeholders for

nonexistent files and directories:

1. Go to the view used for your development task.

Your view’s version-selection rules determine the element’s branch on which the first version

is created. Make sure your view creates versions on an appropriate branch.
6 - Other Tasks 77

2. Change to the parent directory under which you want to add files and directories to source

control.

For snapshot views, the path from which you add to source control does not need to be

loaded. However, it must match the VOB namespace.

3. Check out the parent directory element by entering cleartool checkout –nc directory-name.

We suggest using the –nc option because ClearCase appends appropriate comments when

you modify directory elements.

4. Do one of the following:

➣ To add a directory to source control, enter this command:

cleartool mkdir directory-name

➣ To add a file to source control, enter this command:

cleartool mkelem file-name

➣ To make placeholders for nonexistent objects, enter one of these commands:

cleartool mkdir directory-element-pathname
cleartool mkelem file-element-pathname

By default, when you add an element, it remains checked out. When you finish modifying the

new elements, check them in. Elements you add to a directory element are visible only in your

view until you check in the directory.

For more information about the mkelem command, see Under the Hood: What Happens When You
Add a File or Directory to Source Control and the mkelem reference page in the Command Reference.

Under the Hood: What Happens When You Add a File or Directory to Source
Control

The mkelem command always creates an element and initializes its version tree by creating a

single branch (named main) and a single, empty version (version 0) on that branch. The

following arguments for the mkelem command determine optional ClearCase behavior:

➤ Using mkelem with no arguments checks out the element. Any view-private data that

corresponds to the element pathname remains in your view only and is added to version 1

in the VOB when you check in (Figure 19).
78 Developing Software

➤ Using mkelem –ci checks in the element, using any existing view-private data that

corresponds to the element pathname as the content for version 1. Your view’s config spec

determines the branch on which ClearCase creates version 1.

➤ Using mkelem –nco suppresses automatic checkout; mkelem creates the new element,

along with the main branch and version/main/0, but does not check it out. If

element-pathname exists, it is moved aside to a .keep file.

➤ (Replicated VOBs only) Using mkelem –master assigns to your current replica mastership of

all branches created during element creation. You will be able to create new versions on the

branches.

Using mkelem without the –master option assigns mastership of a new branch to the VOB

replica that masters the associated branch type. If this replica is not your current replica, you

cannot create new versions on the branch.

Other views do not see the element until you check in the element’s parent directories and check

in the file or directory.

Figure 19 Creating an Element

File Types and Element Types

Each element is an instance of an element type. You can specify an element type with the –eltype
option. (The lstype –kind eltype command lists a VOB’s element types.) The element type must

already exist in the VOB in which you are creating the new element, or must exist in the Admin

VOB hierarchy associated with the VOB in which you are creating the new element. A mkelem
–eltype directory command is equivalent to a mkdir command.

If you do not specify an element type on the command line, mkelem determines one by using

the magic files to perform file-typing. This involves matching patterns in the new element’s

name (and examining the existing view-private file with that name, if one exists; see Conversion

The initial version on the main
branch, which is always empty0

prog.c

Checked-out version corresponding
to a view-private object

/main
6 - Other Tasks 79

of View-Private Files to Elements on page 80). If file-typing fails, an error occurs and no element is

created:

cleartool: Error: Can’t pick element type from rules in ...

For more information about file-typing, see cc.magic in the Command Reference.

Access Mode

Elements are controlled by ClearCase permissions, as described in the permissions reference

page in the Command Reference, not by the access modes for files and directories that are set by

the operating system. When your view selects a checked-in version of an element, all of its write

permissions are turned off. When you check out an element, write permissions are added to the

view-private copy. (See the checkout reference page in the Command Reference for details.)

Because file elements are read-only, the mode to which your umask is applied is 444 (not 666)

for a file element. When you convert a view-private file to an element (see Conversion of
View-Private Files to Elements on page 80), its read and execute rights become those of the new

element.

Conversion of View-Private Files to Elements

You can use the mkelem command to convert a view-private file to a file element with the same

name. There are several cases:

➤ By default, mkelem creates an empty version 0 of the new element, then checks out the new

element to your view. The view-private file becomes the checked-out version of the new

element.

➤ If you use the –ci option (check in), mkelem does all of the above, then proceeds to check in

version 1 of the new element. Thus, version 1 has the contents of the view-private file. With

–ptime, mkelem preserves the modification time of the file being checked in.

➤ If you use the –nco option (no check out), mkelem creates an empty version 0 of the new

element.

During the element-creation process, the view-private is renamed to prevent a name collision

that would affect other ClearCase tools (for example, triggers on the mkelem operation). If this

renaming fails, a warning message appears. There are two renaming procedures:

➤ If a new element is checked out, mkelem temporarily renames the view-private file, using a

.mkelem (or possibly, .mkelem.n) suffix. After the new element is created and checked out,
80 Developing Software

mkelem restores the original name. This action produces the intended effect: the data

formerly in a view-private file is now accessible through an element with the same name.

➤ If no checkout is performed on the new element, mkelem alerts you that the view-private

file has been renamed, using a .keep (or possibly, .keep.n) extension. Note that the

view-private file is not converted to an element; it is moved out of the way to allow creation

of an element in its place.

NOTE: If mkelem does not complete correctly, your view-private file may be left under the

.mkelem file name.

Conversion of Nonshareable Derived Objects to Elements

mkelem does not perform any special processing for a nonshareable DO. The process is the same

as for a shareable DO, as described in Conversion of View-Private Files to Elements on page 80.

However, when you check in version 1 of the new element, the checkin converts the

nonshareable DO to a shareable DO, then checks it in.

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Derived Objects and Configuration Records in Building Software.

Creation of Directory Elements

If you create a new directory element, you cannot use the same name as an existing view-private

file or directory, and you cannot use mkelem to convert an existing view-private directory

structure into directory and file elements. To accomplish this task, use the clearfsimport and

clearimport utilities.

Auto-Make-Branch During Element Creation

If your config spec has a /main/LATEST rule with a –mkbranch clause, mkelem checks out a

subbranch instead of the main branch. For example, suppose your view has this config spec:

element * CHECKEDOUT
element * .../gopher_port/LATEST
element * V1.0.1 -mkbranch gopher_port
element * /main/LATEST -mkbranch gopher_port

In this case, a gopher_port branch is created for the new element, and this branch is checked out

instead of main:

cleartool mkelem –c "new element for Gopher porting work" base.h
6 - Other Tasks 81

Created element "base.h" (type "text_file").
Created branch "gopher_port" from "base.h" version "\main\0".
Checked out "base.h" from version "\main\gopher_port\0".

The auto-make-branch facility is not invoked if you use the –nco option to suppress checkout of

the new element. For more about this facility, see the checkout and config_spec reference pages

in the Command Reference.

Creation of Elements in Replicated VOBs

By default, when you create an element in a replicated VOB, mkelem assigns mastership of the

element’s main branch to the VOB replica that masters the branch type main. If this replica is not

your current replica, you cannot create versions on the main branch. (You can create versions on

other branches if they are mastered by the current replica.)

To assign mastership of a new element’s main branch to the current replica, use the –master
option. The –master option also allows auto-make-branch during element creation, even if the

branch type specified in your config spec is not mastered by the current replica. In this case,

mkelem assigns mastership of newly created branches to the current replica. For example,

suppose your view has the following config spec:

element * CHECKEDOUT
element * .../gms_dev/LATEST
element * /main/LATEST -mkbranch gms_dev

When you create a new element with mkelem –master and do not use the –nco option, mkelem
creates the branches main and gms_dev and assigns their mastership to the current replica.

NOTE: If you use the –nco option with –master, only the main branch is mastered by the current

replica, because it is the only branch created by mkelem.

Element Object and Version References

You sometimes need to distinguish an element itself from the particular version of the element

that is selected by your view. In general:

➤ Appending the extended naming symbol (by default, @@) to an element’s name references

the element itself.

➤ A simple name (no extended naming symbol) is a reference to the version in the view.

For example, msg.c@@ references an element, whereas msg.c refers to a version of that element.

In many contexts (for example, checkin and lsvtree), you can ignore the distinction. But there are
82 Developing Software

ambiguous contexts in which you need to be careful. For example, you can attach attributes and

hyperlinks either to version objects or to element objects. Thus, these two commands are

different:

cleartool mkattr BugNum 403 msg.c (attaches attribute to version)
cleartool mkattr BugNum 403 msg.c@@ (attaches attribute to element)

The first command operates on the version of the element selected in your view, but the second

command operates on the element itself.

CAUTION: Do not create elements whose names end with the extended-naming symbol.

ClearCase software cannot handle such elements.

Storage Pools

Physical storage for an element’s versions (data containers) is allocated in the storage pools that

mkelem assigns. You can change pool assignments with the chpool command.

Group Membership Restriction

Each VOB has a group list. If your principal group is on this list, you can create an element in that

VOB. For more information about group lists, see the protectvob reference page in the Command
Reference. Your principal group is the first group listed when you enter the id(1) command.

Importing Files

If you’re adding a large number of files and directories to source control, use the clearfsimport
command (or clearexport commands) and clearimport command. For more information, see the

clearfsimport and clearimport reference pages in the Command Reference.
6 - Other Tasks 83

6.2 Moving, Removing, and Renaming Elements

This section explains how to move, remove, and rename elements.

Moving and Removing Elements

Because directories as well as files are under ClearCase control, you can move or remove

elements from specific versions of directories without affecting the element itself. Moving or

removing elements creates new versions of the parent directories to record the modifications.

For example, version 4 of /gui_vob/design contains an element named prog.c. If you remove

prog.c from the design directory, ClearCase creates version 5 of /gui_vob/design, which does not

contain the prog.c file element. The element prog.c itself is not modified.

cd pat_v1.4_cropcircle/gui_vob
cleartool ls design@@/main/4

prog.c@@/main/2
lib.c@@/main/10

cleartool checkout –nc design
Checked out “design” version “/main/4”

cleartool rmname prog.c
Removed “prog.c”

cleartool checkin –nc design
Checked in “design” version “/main/5”

cleartool ls design@@/main/5
lib.c@@/main/10

cleartool ls design@@/main/4
prog.c@@/main/2
lib.c@@/main/10

Before you move or remove an element name from a directory, verify with your project manager

that your changes will not adversely affect other team members or break project builds.

To Move an Element Within a VOB

1. Check out the parent directory and the destination directory.

2. Enter the following command:

cleartool mv element-name destination-directory
84 Developing Software

3. Check in the new parent directory and the source directory.

To Move an Element to Another VOB

Use the cleartool relocate command.

WARNING: The relocate command makes irreversible changes to at least two VOBs and their

event histories. We recommend that you not use it for minor adjustments. Furthermore, we

recommend that you stop VOB update activity before and during a relocate operation. Check

with your project manager and ClearCase administrator before using the relocate command.

To Remove an Element Name from a Directory

1. Check out the parent directory.

2. Enter the following command:

cleartool rmname element-name

3. Check in the parent directory.

Other Methods for Removing Elements

Removing an element from its parent directory does not affect the element itself, but two other

types of a removal operation do irrevocably affect an element, and we recommend that you be

very conservative in using these operations:

➤ Removing a version from an element’s version tree. For more information, see the rmver
reference page in the Command Reference.

➤ Removing an element from a VOB. For more information, see the rmelem reference page in

the Command Reference.

Renaming Elements

Renaming an element creates a new version of the parent directory to catalog the new element

name. The element uses its new name in subsequent versions of its parent directory, but previous

versions of the parent directory refer to the element by its previous name.
6 - Other Tasks 85

cd pat_v1.4_cropcircle/gui_vob
cleartool ls design@@/main/4

prog.c@@/main/2
lib.c@@/main/10

cleartool checkout –nc design
Checked out “design” version “/main/4”

cleartool mv prog.c msg.cat
Moved “prog.c” to “msg.cat”

cleartool checkin design
Default:
Added file element "msg.cat".

Removed file element "prog.c".
Checkin comments for ".": ("." to accept default)
.

Checked in “design” version “/main/5”
cleartool ls design@@/main/5

msg.cat@@/main/2
lib.c@@/main/10

cleartool ls design@@/main/4
prog.c@@/main/2
lib.c@@/main/10

Before you move or remove an element name from a directory, verify with your project manager

that your changes will not adversely affect other team members or break project builds.

To Rename an Element

1. Check out the parent directory.

2. Enter the following command:

cleartool mv pname target-pname

3. Check in the parent directory.

6.3 Accessing Elements Not Loaded into a Snapshot View

While working with source files in a snapshot view, you may need to see the contents of elements

that are not loaded into the view or see ClearCase information about these nonloaded elements.

For example, you may have chosen not to load a VOB that contains functional-specification

documents. However, you may want to check periodically whether the functional specifications

have been modified by reviewing the element’s ClearCase history.
86 Developing Software

Listing All Elements in the VOB Namespace

You can use the cleartool ls command to see all elements in the VOB namespace, even if they are

not loaded into your snapshot view. This command lists the names of elements cataloged in the

VOB namespace that your view’s config spec selects. The output of cleartool ls includes this

information:

➤ The version ID of the particular version the view selects

➤ The version-selection rule in the config spec that selects this version

To see all elements in a directory, enter this command:

cleartool ls pathname...

For more information, see the ls reference page in the Command Reference.

Viewing the Contents of a Nonloaded Version

To access a version of a file not loaded into your view, use the cleartool get command, which

copies the version you specify into your view.You can view nonloaded files or copy them into

your view for build purposes, but you cannot check them out. Only file elements that are loaded

into the view can be checked out.

NOTE: You cannot use cleartool get for directory elements.

To Copy a Nonloaded Version with cleartool get

To copy a nonloaded version of a file element into your view, type a command in this format:

cleartool get –to filename version-extended-pathname

For example:

cleartool get –to prog.c.previous.version prog.c@@/main/v3.1_fix/10

This command copies prog.c@@/main/v3.1_fix/10 into your view under the name of

prog.c.previous.version.
6 - Other Tasks 87

6.4 Moving Views

This section discusses the following tasks:

➤ Changing the physical location of a snapshot view’s directory tree

➤ Moving a view storage directory

For information about changing a view-tag, see the mktag reference page in the Command
Reference.

Changing the Physical Location of a Snapshot View

If the snapshot view storage directory is in a storage location, you can use the standard mv
command to move the snapshot view’s directory tree of loaded elements and view-private files.

You can move the view to a different workstation, but the workstation must run a UNIX

operating system.

CAUTION: If the view storage directory is located below the root directory of the view, do not use
the standard mv command to move the snapshot view. Instead, see Moving a View Storage
Directory on page 89.

To Find the Location of the View Storage Directory

Enter the following command:

cleartool lsview –long view-tag

The Global Path field displays the pathname for the view storage directory.

Update After Moving

After moving a snapshot view, you must use cleartool update (or cleartool update –print) to
modify .ccase_svreg in your home directory. Some ClearCase operations use information from

this file and will not succeed until you use update to modify it.
88 Developing Software

Moving a View Storage Directory

Each dynamic view and snapshot view includes a view storage directory, which ClearCase uses

to maintain the view. Do not use the standard mv command to move a view storage directory

for the following reasons:

➤ The view storage directory includes a database. Moving the database without first shutting

down the view’s view_server process can corrupt the database.

➤ ClearCase stores the location of view storage directories in its own set of registries. The

information in these registries must be correct for you to perform ClearCase operations in

your views. In a dynamic view, the location in ClearCase registries must be correct for you

to access any file or directory in the view.

We suggest that you ask your ClearCase administrator to move view storage directories because

it may affect other, potentially many other, ClearCase users at your site. For more information

about the procedure for moving view storage directories, see the Administrator’s Guide for

Rational ClearCase.

CAUTION: You will lose data (including view-private files in a dynamic view) if you move a view

storage directory without following the procedure described in the Administrator’s Guide for

Rational ClearCase.

6.5 Regenerating a Snapshot View’s .view.dat File

The root directory of a snapshot view contains a hidden file, .view.dat. If you delete this file

inadvertently, ClearCase no longer identifies the view as a ClearCase object, and you can no

longer perform ClearCase operations on files or directories loaded in the view.

To Regenerate the .view.dat File

1. Open a command shell.
6 - Other Tasks 89

2. Type this command:

Perl ccase-home-dir/etc/utils/regen_view_dot_dat.pl \
[–tag snapshot-view-tag] snapshot-view-pathname

For example:

Perl /usr/atria/etc/utils regen_view_dot_dat.pl \
–tag pat_v1.4_cropcircle_sv \
~/pat_v1.4_cropcircle_sv

If the view storage directory is under the root directory of the view, you do not need to use

the –tag snapshot-view-tag argument.

6.6 Regenerating .ccase_svreg

When you create a snapshot view, ClearCase creates or modifies the file .ccase_svreg in your

home directory. Some ClearCase operations use information from this file.

If you inadvertently delete or corrupt this file, you must regenerate information in .ccase_svreg
for each snapshot view that you use. To do so, update the view with either of the following

commands:

➤ cleartool update
➤ cleartool update –print

For more information, see Chapter 4, Updating a Snapshot View.

6.7 Accessing Views and VOBs Across Platform Types

ClearCase supports environments in which some ClearCase hosts use a Microsoft Windows

operating system and others use a UNIX operating system.

This section discusses the following topics:

➤ Creating views across platform types

➤ Accessing VOBs across platform types

➤ Developing software across platform types
90 Developing Software

Creating Views Across Platforms of Different Types

Your administrator can set up storage locations on Windows and UNIX server hosts. Any

snapshot view that you create can use one of these storage locations, regardless of the platform

type of the server host. For more information about storage locations, see the mkstgloc reference

page in the Command Reference.

For a dynamic view, the view storage directory must be located on a host of the same platform

type as the host from which you create the view. If you create a dynamic view from a UNIX host,

you must locate the view storage directory on a ClearCase host on UNIX; if you create a dynamic

view from a Windows host, you must locate the view storage directory on a Windows NT host

that is set up to store view storage directories. We recommend that you locate dynamic view

storage directories on the host from which you most often use the view.

Snapshot View Characteristics and Operating-System Type

For snapshot views, the operating system type from which you create the view determines view

characteristics; the operating system type that hosts the files and processes related to a snapshot

view do not affect the view’s behavior.

For example, it is possible to create a snapshot view from a Windows host and locate the view

directory tree and the view storage directory on a ClearCase host on UNIX (assuming that you

use third-party software to access UNIX file systems from Windows computers). Even though all

files related to the view are on a UNIX workstation, because you created the view from a

Windows host, the view behaves as if its files are located on a Windows computer: it does not

create symbolic links if the load rules encounter a VOB symbolic link, and you can issue

ClearCase commands for the view only from Windows hosts. (ClearCase hosts on UNIX do not

recognize the directory tree as a snapshot view.)

Accessing Views Across Platforms of Different Types

This section describes support for accessing a view residing on a platform that differs from the

platform from which it is being accessed.

Accessing UNIX Snapshot Views from Windows Hosts

ClearCase supports a set of third-party products for accessing UNIX file systems from Windows

computers. If your organization uses one of these products, you can access UNIX snapshot views
6 - Other Tasks 91

from Windows Explorer (or a command prompt) just as you would access any other directory

tree on a UNIX workstation.

You can access snapshot views across platforms, but you cannot issue ClearCase commands

across platforms. For example, you cannot check out files in UNIX snapshot views from

Windows hosts nor can you create shortcuts to UNIX snapshot views from ClearCase Explorer.

If, from a Windows host, you hijack a file in a UNIX snapshot view, ClearCase detects the hijack

when you update the view from a ClearCase host on UNIX.

Accessing Windows Snapshot Views from UNIX Hosts

ClearCase does not support accessing Windows file systems from UNIX workstations.

Accessing UNIX Dynamic Views from Windows Hosts

ClearCase supports a set of third-party products for accessing UNIX file systems from Windows

computers. If your organization uses one of these products, you can complete the following tasks

to access UNIX dynamic views from Windows computers:

1. Create the UNIX view with the proper text mode. For more information, see Developing
Software Across Platforms of Different Types on page 93.

2. Import the UNIX view’s view-tag into your Windows network region.

3. Start the dynamic view.

Accessing Windows Dynamic Views from UNIX Hosts

ClearCase does not support products for accessing Windows file systems from UNIX

workstations. You cannot access Windows views from UNIX hosts.

Accessing VOBs Across Platforms of Different Types

Your administrator sets up VOBs on Windows or UNIX hosts and creates VOB-tags in each

ClearCase network region that needs to access the VOBs. (For information about registering

UNIX VOB-tags in a Windows network region, see the Administrator’s Guide for Rational

ClearCase.) Then, from any ClearCase host on Windows or UNIX systems, you can create

snapshot views to load elements from VOBs that have tags in your network region.
92 Developing Software

From a ClearCase host on Windows that supports dynamic views, you can access VOBs on

Windows and UNIX from dynamic views as well as snapshot views. To access VOBs on UNIX

from Windows dynamic views, you must use third-party software that provides access to UNIX

file systems from Windows computers. From a ClearCase host on UNIX, you cannot access VOBs

on Windows from dynamic views. Table 2 summarizes your options for accessing VOBs across

platform types.

Developing Software Across Platforms of Different Types

If developers check in source files from views created on both Windows and UNIX hosts,

consider creating your views in interop (MS-DOS) text mode. The text modes change how a view

manages line terminator sequences. For more information about view text modes, see the

Administrator’s Guide for Rational ClearCase or ClearCase online help.

Table 2 Accessing ClearCase VOBs Across Platform Types

Platform of your ClearCase
host

Platform on which VOB is
located

View from which you can
access source files

Windows computer Windows computer or

UNIX workstation

Snapshot view or dynamic

view

UNIX workstation Windows computer Snapshot view

UNIX workstation UNIX workstation Snapshot view or dynamic

view
6 - Other Tasks 93

94 Developing Software

AA Working in a Snapshot View While
Disconnected from the Network

If you need to work with your source files from a computer that is disconnected from the

network of Rational ClearCase hosts and servers, you can set up a snapshot view for

disconnected use.

This chapter describes the following tasks:

➤ Setting up a view for your hardware configuration

➤ Preparing the view

➤ Disconnecting the view

➤ Working in the view

➤ Reconnecting to the network

➤ Using the Update Tool

NOTE: While disconnected from the network, you cannot access ClearCase information about the

files in your view or issue most ClearCase commands. If you want to work from a remote

location and continue to access ClearCase information and issue ClearCase commands, consider

using the ClearCase Web interface. Ask your ClearCase administrator whether the ClearCase

Web interface has been configured at your site and what URL you need to supply to your Web

browser to access it. For information about using the Web interface, see the Web interface online

help.
A - Working in a Snapshot View While Disconnected from the Network 95

A.1 Setting Up a View for Your Hardware Configuration

You can use one of several hardware configurations to work in a snapshot view that is

disconnected from the network.

This chapter describes the following recommended configurations:

➤ Creating and using the view on a laptop computer that periodically connects to the network

(Figure 20).

Figure 20 View on a Laptop

NOTE: The laptop computer must run a UNIX operating system.

➤ Creating and using the view on a removable storage device such as an external hard drive

or some other device (such as a Jaz drive) that provides satisfactory read/write

performance (Figure 21).

Figure 21 View On a Removable Storage Device

NOTE: The remote computer must run a UNIX operating system.

View

ClearCase host

Connect

ClearCase host Remote computer

Removable
storage device

ViewConnect
96 Developing Software

➤ Copying the view from a ClearCase host to a temporary, removable storage device such as a

diskette or a tape drive, which usually does not provide satisfactory read/write

performance, and then copying the view from the storage device to a computer that is

disconnected from the network (Figure 22).

Figure 22 Copy the View

NOTE: The remote computer must run a UNIX operating system.

Under the Hood: Location of the View Storage Directory in
Disconnected-Use Configurations

In all the configurations recommended for disconnected use, the snapshot view storage directory

is in a server storage location. We recommend this configuration because a view’s view_server
process runs on the host that contains the view storage directory. A view_server is a long-lived

process that manages activity for a specific view. If the view storage directory is in the root

directory of the snapshot view and you disconnect the view from the network while the

view_server process is writing to the storage directory, you can corrupt the data ClearCase uses

to maintain your view.

A.2 Preparing the View

Before you disconnect the view from the network, complete these tasks:

➤ Update the view to establish a checkpoint. (For information on updating the view, see

Updating the View on page 103.)

Copy

ClearCase host Remote computerRemovable
storage device

ViewCopy
ViewView
A - Working in a Snapshot View While Disconnected from the Network 97

➤ Check out the files you expect to modify. After you’re disconnected from the network, you

cannot check out files, although there are workarounds. (See Hijacking a File on page 98.)

When you are no longer connected to the network, you cannot use most ClearCase commands.

At this point, the disconnected computer does not distinguish a snapshot view directory from

any other directory in the file system.

A.3 Disconnecting the View

If the view is located on a laptop or removable storage device, disconnect the device from the

network; reconnect the removable media to a remote computer.

If you do not have a storage device with satisfactory read/write performance, use a standard

UNIX copy command to copy files from your view to the storage media and from the storage

media to the remote computer. To prevent ClearCase from identifying copied files as hijacked, use

copy command options to preserve file times. For example:

cp –Rp

A.4 Working in the View

You cannot use most ClearCase commands when disconnected from the network. Yet you may

need to work on files that you did not check out or locate files you have modified. This section

provides workarounds for these ClearCase operations.

Hijacking a File

If you need to modify a loaded file element that you have not checked out, you can hijack the file.

ClearCase considers a file hijacked when you modify it without checking it out. For more

information, see Under the Hood: How ClearCase Determines Whether a File is Hijacked on page 103.

When you reconnect to the network, you use the Update Tool to find the files you hijacked. You

can do the following with a hijacked file:
98 Developing Software

➤ Check out the file. You can then continue to modify it and, when you’re ready, check in your

changes.

➤ Undo the hijack. For more information, see To Undo a Hijack on page 103.

To Hijack a File

Use chmod to add the write permission and then modify the file. For example:

chmod +w prog.c

Finding Modified Files While Disconnected

To find all files that have been modified within a specified number of days, use the following

command:

find snapshot-view-pathname –mtime –number-of-days –ls –type f

For example, to find all files modified within the last two days, enter this command:

find ~/pat_v1.4_cropcircle –mtime -2 –ls –type f

For more information, see the find manpage.

A.5 Reconnecting to the Network

If the view is located on a laptop or removable storage device, connect the device to the LAN and

make sure that the view is accessible to the host on which the view storage directory is located.

If you copied the view onto removable media, use a standard UNIX copy command to copy files

back to the original location on the network computer.

A.6 Using the Update Tool

When you’re connected to the network, use the Update Tool for the following tasks:
A - Working in a Snapshot View While Disconnected from the Network 99

➤ Determine how to handle hijacked files

➤ Update the view

Determining How to Handle Hijacked Files

Handling hijacked files involves the following tasks:

➤ Finding hijacked files

➤ Comparing a hijacked file to the version in the VOB

➤ Checking out a hijacked file

➤ Merging changes to a hijacked file

➤ Undoing a hijack

➤ Choosing other ways to handle hijacked files

To Find Hijacked Files

1. Enter the following command:

cleartool update –graphical snapshot-view-pathname

2. In the Update dialog box, click Preview only. Then click OK.

3. If any hijacked files are in your view, the ClearCase Snapshot View Update window displays

a folder in the left pane titled Hijacked (Figure 23). Select No for the option asking whether

you want to check out the hijacked files now.
100 Developing Software

Figure 23 Hijacked Files in the Update Window

To Compare a Hijacked File to the Version in the VOB

You can use the Diff Merge tool to see how the hijacked file differs from the checked-in version

of the file:

1. In the right pane of the ClearCase Snapshot View Update window, click a hijacked file.

2. Click Tools > Compare with old. For information on using the Diff Merge tool, see the online

help.

To Check Out a Hijacked File

To keep the modifications in a hijacked file, check out the file:

1. In the right pane of the ClearCase Snapshot View Update window, click a hijacked file.

2. Click Tools > Checkout.

3. ClearCase treats a checked-out hijacked file as it does any other checkout.

When you’re ready, you can check in the file.

Hijacked folder
A - Working in a Snapshot View While Disconnected from the Network 101

Merging the Latest Version to a Hijacked File

If you’re working with a shared set of versions and someone has checked in a newer version of

the file while it was hijacked in your view (Figure 24), ClearCase prevents you from checking in

the file.

Figure 24 Hijacked Version May Not Be the Latest Version

You have to merge the latest version in the VOB with the checked-out file before ClearCase

allows the checkin.

To merge the latest version in the VOB to the checked-out version in your view, enter the

following command:

cleartool merge –graphical –to file-or-directory-in-your-view \
file-or-directory-name@@/main/LATEST

NOTE: @@/main/LATEST is a version-extended pathname. For more information, see the

pathnames_ccase reference page in the Command Reference.

For example:

% cleartool merge –graphical –to prog.c prog.c@@/main/LATEST

Using the –graphical option starts the Diff Merge tool. For information about using the Diff

Merge tool, see the ClearCase online help. After merging, save the results and check in the

version by entering the cleartool checkin command from the view.

Latest version in the VOB

Version you hijacked

0

1

2

prog.c

3

/main
102 Developing Software

To Undo a Hijack

If, for specific hijacked files, you want to discard your changes and get a fresh copy of the version

from the VOB, you can undo the hijack.

1. In the right pane of the ClearCase Snapshot View Update window, select one or more

hijacked files.

2. Click the selected files, and click Tools > Undo hijacked file.

ClearCase overwrites the hijacked file with the version that was loaded in the view. If you want

to overwrite hijacked files with the versions the config spec selects in the VOB, see Step #2 in

Updating the View on page 103.

Under the Hood: How ClearCase Determines Whether a File is Hijacked

To keep track of file modifications in a snapshot view, ClearCase stores a loaded file’s size and

last-modified time stamp (as reported by the UNIX file system). ClearCase updates these values

each time you check out a file, check in a file, or load a new version into the view.

To determine whether a file is hijacked, ClearCase compares the current size and last-modified

time stamp of a non-checked-out file with the size and time stamp recorded in the view database.

If either value is different from the value in the view database, ClearCase considers the file

hijacked.

Changing a non-checked-out file’s read-only permission alone does not necessarily mean

ClearCase considers the file hijacked.

Other Ways to Handle Hijacked Files

While updating the view, you can handle hijacked files in any of the following ways:

➤ Leave hijacked files in place

➤ Rename the hijacked files and load the version from the VOB

➤ Overwrite hijacked files with the version the config selects in the VOB

See Updating the View for more information.

Updating the View

1. Enter the following command:
A - Working in a Snapshot View While Disconnected from the Network 103

cleartool update –graphical snapshot-view-pathname

2. To configure the Update Tool for handling hijacked files, in the Update dialog box click the

Advanced tab and select a method for handling the remaining hijacked files. You have these

choices:

➣ Leave hijacked files in place

➣ Rename the hijacked files and load the selected version from the VOB

➣ Delete hijacked files and load the selected version from the VOB

3. To start the update, click OK.
104 Developing Software

Index

.ccase_svreg file 90

.keep files, canceled checkouts 39

.unloaded files, how created 51

@@ extended naming symbol 82

@@ notation 58

A

access mode 80

adding files to source control 77–78

B

backslash (\), continuing command lines 18

branches
about 54
how used 56
mastership issues in MultiSite 72
mastership request procedures 74
merging and mastership 74
merging parts of subbranches 67
merging subbranches 65
merging, tools for 59

build auditing and build avoidance 39

building software
ClearCase build tools 39

C

checking in
about 42
compared to update operation 47
effect of on VOB links 24
how it works 44
merging with latest version 43
procedure for 42

checking out
before transfer of mastership 74
for remote use 98
hijacked files 101
Index

/vobs/doc/ccase/developer/cc_dev.uxIX
how handled 32
non-latest version 43
nonloaded files 87
procedure 29
when disconnected from network 98

checkouts
about 30
how cancellation is handled 40

clearexport and clearimport commands 83

cleartool
about 18

comparing versions
hijacked files 101
procedures 37

config specs
about 3
adding or changing load rules 21
creating 6
for snapshot views 4
role in snapshot view checkouts 32
role in update operation 49
use in branches 56

copying
nonloaded versions into views 87
snapshot views to removable storage devices 98
views from removable storage devices 99

D

describe command, -cview option 38

development policy
on checkouts 30
on snapshot view location 12

development tasks
use of branches 56

directories
adding to source control 77
canceling checkouts 40
comparing and merging versions 59
finding checkouts from 39
importing directory trees to source control 83
listing nonloaded files 87
merge algorithm 64
105

.fm — September 13, 2001 4:16 pm

merge procedure 64
remote use 96
removing element names 85
unloading 51

disk space requirements
snapshot views 12

dynamic views
accessing across network 29
behavior of VOB links 23
build tools 39
creating 17
handling checkouts 33
starting work in 28
view storage directory location 15
when to use 12

E

element types 79

elements
about 2
access mode 80
auto-make-branch during creation 81
conversion of nonshareable DOs to 81
creation in replicated VOBs 82
directory creation 81
history of changes 37
moving and removing 84
nonloaded, accessing 86
object and version references 82
renaming 85
selecting for view 3
unloading from snapshot views 51
updating in snapshot views 49

extended naming symbol (@@) 82

F

file attributes
removing Read-Only 32

file types 79

files
accessing 27
adding to existing directory tree 77
adding to source control 77
checking out 29
finding checked-out 39
listing nonloaded 87
unloading from snapshot view 51
VOB link 24

G

get command 87

group membership 83

H

hard links 23

hardware configurations for remote use 96

help, starting online 1

hidden file 89

hijacked files
about 98
checking out 101
comparing to version on VOB 101
finding 100
handling 100
how determined 103
merging 102
undoing hijack 103
unloading from snapshot view 51

History Browser 37

I

importing directories to source control 83

interoperation on Windows and UNIX 90–92

L

laptops
configuration for remote use 96

line continuation character (\) 18

load rules
adding or changing 21
excluding elements 22
illustration 4

ls command 87

M

Merge Manager 59

merging directories
algorithm 64
procedure 64

merging files
at checkin 43
branch mastership in MultiSite 72
directory versions 59
106 Developing Software

/vobs/doc/ccase/developer/cc_dev.uxIX.fm — September 13, 2001 4:16 pm

hijacked files 102
how it works 59
non-ClearCase tools 71
removing merged changes 69
tools for 59

mkview command 17

MultiSite
branch mastership issues 72

N

namespace
resolving differences between views 38

P

parallel development 6, 53

pathnames
invalid, resolving 38
version-extended 58

R

read/write performance of remote storage devices 96

relocate command 85

reserved checkouts 30

S

shortcut menus, deactivated 89

snapshot views
See also updating snapshot views
access to nonloaded elements 86
adding or changing load rules 20
behavior of and operating system 91
behavior of symbolic links 24
choosing locations for 12
config specs 4
copying nonloaded versions to 87
copying to removable storage devices 98
creating 17
excluding elements 22
handling checkouts 32
hardware configurations for remote use 96
loading 27
location of storage directory 13
moving 88
transferring to laptop 98
view.dat file 89
when to use 11

storage devices, removable
disconnecting from network 98
performance of views copied to 96

storage pools 83

symbolic links 23

U

umask
setting at view creation time 16

under the hood
.ccase_svreg file 17
adding files to source control 78
canceling checkouts 40
checking in files 44
checking out files 32
hijacked files, how determined 103
how merging works 59
initial version on a branch 55
updating snapshot views 49

unloading files and directories
causes in update operation 51

unreserved checkouts 30

Update Tool
about 99
detecting hijacked files 98
handling hijacked files 104

updating snapshot views
canceled directory checkout 41
compared to checkin 47
files and directory trees 49
handling hijacked files 104
how it works 49
moving the view 88
procedure 48
remote use of view 97
scope 47
unloading elements 51
VOB links 24

V

version IDs, viewing 87

version trees
about 54

version-extended pathnames 58

versions
about 2
copying nonloaded into views 87
initial on branches 55
merging all changes to one element 65
merging directories 59
merging outside ClearCase 71
Index 107

/vobs/doc/ccase/developer/cc_dev.uxIX.fm — September 13, 2001 4:16 pm

merging specific on branch 67
removing merged changes 69
reserving right to create 30

version-selection rules
about 5
adding or modifying 18
illustration 4
listing for elements 87
on branches 56
unloaded elements 51
update operations 49

view storage directories
about 13
disk space required 13
location for dynamic views 15
location for remote use 97
moving 89

view.dat file
about 14
regenerating 89

view-private files 6

views
about 2
creating on Windows and UNIX 91
naming 14
types of 2

view-tags
about 14

VOB namespace
about 20
listing elements in 87

VOBs
about 2
activating for dynamic view 28
using multiple 3

W

working from a remote location
about 95
hardware configurations 96
removable storage devices 96
updating view 97
108 Developing Software

/vobs/doc/ccase/developer/cc_dev.uxIX.fm — September 13, 2001 4:16 pm

	Working in Base ClearCase
	Contents
	Figures
	ClearCase Concepts
	1.1 Recommended Reading Paths
	1.2 ClearCase Views
	Snapshot Views and Dynamic Views

	1.3 Versions, Elements, and VOBs
	Selecting Elements and Versions
	Config Specs for Snapshot Views
	Config Specs for Dynamic Views
	Criteria for Selecting Versions
	Version Labels in Version-Extended Pathnames
	Learning the Config Spec Syntax

	View-Private Objects

	1.4 Parallel Development
	1.5 Extended Namespace for Elements, Branches, and Versions
	1.6 The Base ClearCase-ClearQuest Integration
	The Base ClearCase-ClearQuest Schema and User Databases
	ClearCase Triggers and ClearQuest Change Requests
	Uses of the Base ClearCase-ClearQuest Integration

	Setting Up a View
	2.1 Choosing a Snapshot View or a Dynamic View
	2.2 Choosing a Location and Name
	Snapshot View: Choosing a Directory
	Under the Hood: A Snapshot View Storage Directory
	Locations for Snapshot View Storage Directories

	Choosing a View Name
	Using the View-Tag

	Dynamic View: Choosing a Location for the View Storage Directory
	Choosing Locations for Dynamic View Storage Directories

	2.3 Adjusting Your umask
	The CCASE_BLD_UMASK Environment Variable

	2.4 Creating the View with cleartool mkview
	To Create a Snapshot View
	Under the Hood: .ccase_svreg

	To Create a Dynamic View
	Under the Hood: The cleartool Command-Line Interface

	2.5 Adding or Modifying Version-Selection Rules
	To Copy or Include Version-Selection Rules

	2.6 Snapshot View: Adding or Modifying Load Rules
	Listing the VOB Namespace
	VOB Namespace
	To List the VOB Namespace

	Adding or Modifying Load Rules
	To Add or Modify Load Rules When Editing the Config Spec
	To Add Load Rules with update –add_loadrules

	Excluding Elements from Loading
	To Exclude Elements

	Under the Hood: VOB Links
	Symbolic Links and Hard Links in Dynamic Views
	Symbolic Links in Snapshot Views
	Hard Links in Snapshot Views
	Caution: Losing Data Because of VOB Hard Links

	Working in a View
	3.1 Accessing Files
	In a Snapshot View
	Accessing Someone Else’s Snapshot View

	In a Dynamic View
	To Set a Dynamic View
	To Mount VOBs
	Accessing Someone Else’s Dynamic View

	3.2 Checking Out Elements
	To Check Out an Element
	Reserved and Unreserved Checkouts
	To Change the Status of a Checked-Out Version

	Under the Hood: What Happens When You Check Out a File or Directory
	From a Snapshot View
	From a Dynamic View

	Checking Out Elements in a VOB Enabled for ClearQuest
	Logging on to a ClearQuest User Database
	Using the Base ClearCase-ClearQuest Integration Interface
	Associating a Checkout with a ClearQuest Entity

	3.3 Working with Checkouts
	Viewing an Element’s History
	To View an Element’s History

	Comparing Versions of Elements
	To Compare with a Predecessor
	To Compare with a Version Other Than the Predecessor
	To Compare with a Version in a Dynamic View

	Tracking Checked-Out Versions
	Prototype Builds

	3.4 Canceling Checkouts
	Under the Hood: Canceling Checkouts
	Canceling Directory Checkouts
	To Move and Delete Orphaned Elements

	3.5 Checking In Files
	To Check In Files
	Merging with the Latest Version
	To Merge with the Latest Version

	Under the Hood: Checking In Files
	From a Snapshot View
	From a Dynamic View

	Checking In Elements in a VOB Enabled for ClearQuest
	View the Versions for a Change Request from ClearQuest

	Updating a Snapshot View
	4.1 Starting an Update Operation
	Updating the View
	Updating Files and Directory Trees

	4.2 Under the Hood: What Happens When You Update a View
	4.3 Unloading Elements
	Unloading Files
	Unloading Directories

	Working On a Team
	5.1 The Version Tree
	Under the Hood: The Initial Version on a Subbranch

	5.2 Working on Branches
	The Version-Extended Pathname

	5.3 Merging
	Under the Hood: How ClearCase Merges Files and Directories
	File Merge Algorithm
	Determination of the Base Contributor
	Recording of Merge Arrows
	Locating Versions with Merge Hyperlinks
	Directory Merge Algorithm
	Merging Directories
	Using ln and rmname in Diff Merge

	Scenario: Merging All Changes Made on a Subbranch
	Task Overview
	Getting More Information

	Scenario: Selective Merge from a Subbranch
	Merging a Range of Versions
	Task Overview
	Getting More Information

	Scenario: Removing the Contributions of Some Versions
	Task Overview
	Getting More Information

	Recording Merges That Occur Outside ClearCase
	Getting More Information

	5.4 Sharing Control of a Branch with Developers at Other Sites
	To Request Mastership of a Branch and Wait for the Transfer
	To Check Out the Branch Before Mastership Is Transferred
	Troubleshooting

	Other Tasks
	6.1 Adding Files and Directories to Source Control
	To Add Elements to Source Control
	Under the Hood: What Happens When You Add a File or Directory to Source Control
	File Types and Element Types
	Access Mode
	Conversion of View-Private Files to Elements
	Conversion of Nonshareable Derived Objects to Elements
	Creation of Directory Elements
	Auto-Make-Branch During Element Creation
	Creation of Elements in Replicated VOBs
	Element Object and Version References
	Storage Pools
	Group Membership Restriction

	Importing Files

	6.2 Moving, Removing, and Renaming Elements
	Moving and Removing Elements
	To Move an Element Within a VOB
	To Move an Element to Another VOB
	To Remove an Element Name from a Directory
	Other Methods for Removing Elements

	Renaming Elements
	To Rename an Element

	6.3 Accessing Elements Not Loaded into a Snapshot View
	Listing All Elements in the VOB Namespace
	Viewing the Contents of a Nonloaded Version
	To Copy a Nonloaded Version with cleartool get

	6.4 Moving Views
	Changing the Physical Location of a Snapshot View
	To Find the Location of the View Storage Directory
	Update After Moving

	Moving a View Storage Directory

	6.5 Regenerating a Snapshot View’s .view.dat File
	To Regenerate the .view.dat File

	6.6 Regenerating .ccase_svreg
	6.7 Accessing Views and VOBs Across Platform Types
	Creating Views Across Platforms of Different Types
	Snapshot View Characteristics and Operating-System Type

	Accessing Views Across Platforms of Different Types
	Accessing UNIX Snapshot Views from Windows Hosts
	Accessing Windows Snapshot Views from UNIX Hosts
	Accessing UNIX Dynamic Views from Windows Hosts
	Accessing Windows Dynamic Views from UNIX Hosts

	Accessing VOBs Across Platforms of Different Types
	Developing Software Across Platforms of Different Types

	Working in a Snapshot View While Disconnected from the Network
	A.1 Setting Up a View for Your Hardware Configuration
	Under the Hood: Location of the View Storage Directory in Disconnected-Use Configurations

	A.2 Preparing the View
	A.3 Disconnecting the View
	A.4 Working in the View
	Hijacking a File
	To Hijack a File

	Finding Modified Files While Disconnected

	A.5 Reconnecting to the Network
	A.6 Using the Update Tool
	Determining How to Handle Hijacked Files
	To Find Hijacked Files
	To Compare a Hijacked File to the Version in the VOB
	To Check Out a Hijacked File
	Merging the Latest Version to a Hijacked File
	To Undo a Hijack
	Under the Hood: How ClearCase Determines Whether a File is Hijacked
	Other Ways to Handle Hijacked Files

	Updating the View

	Index

