
Rational Software Corporation
Toolset Guide
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025116-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025116-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . i
Contents . i

Online Help. i
Activating the Online Help .i
What’s This Help .i
Extended Help . ii
Tutorials . ii

About the Help Viewer .ii
Getting More Out of Help . iii
To find a Help Topic . iii
To create a list of favorite help topics . iii
To copy a help topic . iv
To print the current help topic . iv
To get help in a dialog. iv
To find topics using the toolbar buttons . v
To hide or show the Navigation pane . v
Using accessibility shortcut keys in the Help Viewer . v
Using the shortcut menu commands . ix

About the Search tab . ix
Searching for help topics . x
Searching for words or phrases . xi
Defining search terms. .xii
Using nested expressions when searching . xiii
To search only the last group of topics you searched. xiv

Changing the Help Viewer . xiv
To customize the Help Viewer . xiv
To change formatting or styles for accessibility . xv
To view help topics grouped by information type . xv
To change the font size of a topic . xv
To change colors in the Topic pane of the Help Viewer xv

Related Documentation . xvi
Contents v

1 Overview of Rational Rose RealTime . 17
Contents. .17

Overview .17

Languages and Code Generation .18
Compilation. 18

Services Library .19

Capsules, Protocols, Ports, Capsule State and Structure Diagrams20
Capsules. 20
Protocols. 21
Ports . 21
State Diagrams . 22
Capsule Structure Diagrams . 22
Executable Models . 22

Constructing Models in Rational Rose RealTime .23
Modeling Elements . 23

Required Elements .23

Diagrams . 24

Development Process .26

Essential Workflows .27

2 User Interface Overview. 29
Contents. .29

Startup Screen .29

Create New Model Dialog .30

Application Window .31
Browsers .32
Toolbar .33
Diagrams. .33
Toolboxes .33
Menu bar .33

About Rose RealTime Dialog . 33

The toolbar .34

Menus .38
Menu bar . 38
File menu . 39

File menu operations. .39

Edit menu . 43
vi Contents

Parts menu. 48
View menu . 49
Browse menu . 50

Select Diagram dialog . 51
Browse menu operations . 51

Build menu . 54
Report menu . 57
Query menu . 59
Tools menu. 61

Layout . 61

Add-Ins menu. 67
Window menu . 68
Help menu . 69

Browsers .70
Model browser . 70

Model browser contents. 70
Tabs . 71
Navigating . 72
Displaying the Browser . 72
Refreshing the Browser . 73
Multiple Browsers. 73
Filtering . 73

Diagram Editors .73
Adding Icons to a Diagram. 74
Opening Specifications . 75
Popup menu. 75
Background Popup menu. 75
Scroll Bars . 76
Overview Navigator . 76

Toolboxes . 77

Specification Dialogs .78
Spreadsheet-type functionality for list controls within a specification dialog 79
Tabs . 80

Files tab . 80
Relations tab . 81
Components tab. 81
Attributes tab . 81
Operations tab . 82
Unit Information tab . 83
Scratch Pad Packages . 85
Contents vii

Searching and Sorting .86
Using Sort .86

Find dialog . 87
Replace dialog . 88

3 Wizards and Tools . 91
Component Wizard .91

Aggregation Tool .99

Attribute Tool .103

Operation Tool .108

Dependency Tool .112

4 Other Application Windows. 115
Contents. .115

Description Window .115
Displaying the Description Window . 115
Documentation Pane . 116
Code Pane . 116

Pulldown menu .117
Popup menu .117

Adding Documentation to Model Elements .118

Adding Code to Model Elements .118

Output Window .119
Log Tab . 119
Build Log tab. 119
Build Errors tab. 120

Unknown compiler message stream .121

Find Tab . 121
Watch Tab. 121

Refreshing the Watch Values .121

5 Printing . 123
Contents. .123

Print Specifications .123
General Tab. .124
Diagrams tab. .126
Specifications tab .126
Layout Tab. .128
viii Contents

Print Setup .128
Printer field. 129
Paper field . 129
Orientation field . 129

6 Opening and Saving Models . 131
Contents. .131

Unique Ids .131

Opening Models .135
Model Specification . 135

General tab . 135
Source Control tab . 136
Files tab . 136
Unit Information tab . 136

A Workspace . 136
User-specific Working Environment Settings (.rtusr and .rtwks) 137

Opening Models from ObjecTime Developer 5.2.1 138
Limitations and Restrictions . 138

Opening Models from Rational Rose .139
Limitations and Restrictions . 140

Importing Rational Rose Generated Code. .141
Limitations and Restrictions . 141

7 Use Case Diagrams. 143
Contents. .143

Creating a Use Case Diagram .143

Using the Use Case Diagram Editor .144
Usage Tips. 145

Use Case Diagram Toolbox . 146

8 Defining Use Cases and Actors. 147
Contents. .147

Creating a Use Case .147
Use Case Specification . 147

General tab . 148
Diagram tab . 148
Relations tab . 149
Files tab . 149

Creating an Actor .149
Actor specification . 149
Contents ix

9 Creating Class Diagrams. 151
Contents. .151

Creating a Class Diagram .151
Using the Class Diagram Editor . 152
Class Diagram Toolbox. 155

Creating Relationships .159

Creating Association Relationships .160
Association Properties .161

Association Specification . 161
General tab .161
Detail tab .162
End A and B General tabs .163
End A and B Detail tabs .164

Creating Aggregation Relationships .167

Creating an Association Class .167

Aggregation Specification .168

Creating Inheritance Relationships .168
Creating an Inheritance Tree. .168
Exclusions .168

Generalize Specification . 169
General tab .169

Inheritance in Rose RealTime . 170
Promoting and Demoting Elements .170
Potential Conflicts Caused by Promote/Demote .171
Excluding Elements .171
Reinheriting Excluded Elements .171
Rearranging inheritance hierarchies .172

Creating Dependency Relationships .172
Graphical Notation .173
Naming .173
Valid Applications .173
Add Class Dependencies Wizard .173

Dependency Specification . 173
General Tab. .174

Creating Reflexive Relationships .175

Changing the Directionality of an Association .175

Creating Package Relationships .175
x Contents

Creating Realize Relationships .176
Naming . 176
Valid applications . 176

Realize Relationship Specification . 176
General Tab . 176

Adding and Hiding Classes, and Filtering Class Relationships177

10 Creating Collaboration Diagrams . 179
Contents. .179

Creating Capsule Structure .179

Using the Structure Editor .180
UML Options . 181

Structure Diagram Toolbox. .182

Creating a Port .183
Creating a Non-Wired Port Using a System Protocol . 184

Port Specification .184
General Tab . 184
Files Tab. 187

Adding a Capsule Role .188

Capsule Role Specification .188
General Tab . 188

Connecting Ports on Capsule Roles Together .190

Connector Specification .190
General Tab . 190

Creating a Collaboration Diagram .191

Using the Collaboration Diagram Editor .191
Relationship Between Collaborations and Sequences . 192
Opening a Sequence Diagram. 192
Sequence Overlays . 192
Code Generation . 192

Collaboration Diagram Toolbox . 193
Classifier Role Specification. 194

General Tab . 195
Files tab . 195

Association Role Specification . 195
General Tab . 195
Files Tab. 196
Contents xi

11 Creating State Diagrams . 197
Contents. .197

Creating Capsule State Machines .197

Using the State Diagram Editor .198
State Diagram Toolbox . 200
State Specification . 202

General tab .202
Entry Actions / Exit Actions tabs .202

Aggregating and Decomposing State Machines .203

Transition Specification .203
General tab .203
Triggers Tab .203
Actions Tab .204
Files Tab .204

Choice Point Specification .204
General Tab. .204
Condition Tab .205
Files Tab .205

Initial State Specification .205
General Tab. .205
Files Tab .205

Junction Point Specification .206
General Tab. .206
Files Tab .206

Event Editor Dialog .207

Adding a State .207

Adding a Choice Point .208

Drawing Transitions Between States .208
Specifying the Transition .208

Drawing the Initial Transition .209

Defining State Transition Trigger Events .209
State Diagrams .209

Joining Transitions .210

Creating Nested States .211
xii Contents

12 Creating Sequence Diagrams . 213
Contents. .213

Creating a Sequence Diagram. .213
Creating a New Diagram . 213
From the Browser . 214
From the Structure Diagram Browser . 214
From the Collaboration or Structure Diagram . 214
Editing a Diagram . 214
Adding Instances . 215
Defining Messages . 216
Specifying Message Details. 216

Cloning a Sequence Diagram .216

Using the Sequence Diagram Editor .216
Opening Collaboration Diagrams. 217
Reorienting Messages . 217
Moving Messages . 218

Sequence Diagram Toolbox .218
Interaction Instance Specification . 221

General Tab . 221
Files Tab. 222

Interaction Specification . 222
General Tab . 222
Files Tab. 222

Local Action Specification . 222
General Tab . 223
Detail Tab. 223

Local State Specification . 223
General Tab . 223
Detail Tab. 223

Message Specification . 224
General Tab . 224
Detail Tab. 224
Port Detail Tab . 225

Sequence Validation Dialog . 225
Focus of Control . 227

Coloring Focus of Control . 228

13 Defining Capsules and Classes. 229
Contents. .229

Creating a Class. .229

Creating New Attributes .230
Contents xiii

Creating New Operations. .230

Class Specification. .231
Class Specification Content . 231
Class Specification - General tab . 231
Class Specification - Detail tab . 234
Class Specification - Operations tab . 236
Class Specification - Attributes tab. 238
Class Specification - Nested tab. 240
Class Specification - Components tab . 242
Class Specification - Relations tab . 243
Class Specification - Files tab . 244

Attribute Specification Dialog .244
General Tab. .245
Detail Tab .245

Operation Specification .246
General Tab. .246
Detail tab .247
Validation Tab .248
Semantics Tab. .250

Creating a Capsule Class .250

Capsule Diagrams .251
State Diagram .251
Structure Diagram .251
Undocking the Capsule Diagrams. .251

Capsule Specification .252
Capsule Specification - General tab . 253
Capsule Specification - Operations tab . 254
Capsule Specification - Attributes tab. 256
Capsule Specification - Capsule Roles tab . 258
Capsule Specification - Ports tab . 259
Capsule Specification - Connectors tab . 260
Capsule Specification - Relations tab . 261
Capsule Specification - Components tab . 262
Capsule Specification - Files tab . 263
xiv Contents

14 Defining Protocols . 265
Contents. .265

Protocol Specification. .265
Protocol Specification - General tab. 266
Protocol Specification - Signals tab . 267
Protocol Specification - Relations tab . 268
Protocol Specification - Components tab . 269
Protocol Specification - Files tab . 270

Signal Specification .270
Signal Specification - General Tab. 271
Signal Specification - Files Tab . 271

15 Defining Packages . 273
Contents. .273

Introduction to Packages .273

Creating a Package .273
Packages and Class Diagrams . 274

Package Specification .274
Package Specification - General tab . 275
Package Specification - Detail tab . 276
Package Specification - Relations tab . 277
Package Specification - Components tab . 278
Package Specification - Files tab . 279

Moving Model Elements. .279
Impact of Moving Classes or Diagrams on Configuration Management 280

16 Creating the Component and Deployment Views 281
Contents. .281

Using the Component Diagram Editor .281

Component Diagram Toolbox. .283

Using the Deployment Diagram Editor .284
Deployment Diagram Elements . 285

Deployment Diagram Toolbox .286

17 Importing and Exporting . 289
Contents. .289

Importing a File .289

Exporting a File .290
Contents xv

18 Naming Guidelines . 291
Contents. .291

Introduction to Naming Guidelines .291

Assigning Names .291

Special Case Notes .292

19 Building and Executing Models . 293
Contents. .293

Building and Running Models .293
Is Rose RealTime a Compiler?. 294
Real-Time Services (Services Library) . 294

Before you Start .294
Building .294
Executing .295

Building Basics. .295
Top-level Capsule . 295

Assigning an Active Component .296

Creating a Component. .296

Starting a Build .297

Reviewing the Build Results. .298

Build Menu .299

Build Settings Dialog .301
Active Component . 301
Active Component Instances List . 301

Build Log Tab .301

Build Errors Tab .302
Unknown Compiler Message Stream . 302

Component Specification .303
Specification Content . 303
Component Specification - General tab . 303
Component Specification - References Tab . 304
Component Specification - Relations Tab. 305
Component Specification - Files tab. 306

Component Dependencies .306
xvi Contents

20 Common Build Errors. 307
Contents. .307

Understanding Build Errors .307
Missing Class Dependencies . 308
Capsule Role Name Same as Capsule Name . 308
Linking Wrong Services Library Set. 308
Compiler Not Installed Correctly . 308

Compile a Simple Hello World Program . 309
Check Environment Variables . 309
Review Your Compiler Flag Settings . 309

System Does Not Understand the Make Command . 309
Check Environment Variables . 309
Ensure that Component has Correct Make Types Configured. 309

Name Conflicts. 310
Missing Header Files, Object Files, and Libraries . 310

Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0 311
Error Linking Capsule (“error from nmake”) . 311
Windows NT Compilation Command Line Limits. 311
Source File Compilation. 311
Linking . 312

21 Running and Debugging . 313
Contents. .313

Execution Basics .314

Creating a Component Instance .314

Running a Component Instance with Purify .315
Interpreting the Purify Log Reports . 317

Running a Component Instance without Purify .317

Observing a Running Component Instance .319

Rose RealTime Execution Interface. .320
Target Control Programs . 320
Overriding Target Control . 320
Observability Interface . 321

Overview of Observability Options .321

Component Instance Menu .322
Contents xvii

RTS Browser .323
Execution Control and Information Pane. .324
Capsule Instance Folder .325
Probes Folder .325

Monitors .326
Animation .326
Opening a Monitor .327
Probes. .327

Trace Windows. .328
Deleting Messages .328
Trace Configuration .328
Using Different Types of Traces. .329
Opening a Sequence Diagram .329

Probes .330

Inject Window. .331

Capsule Instance Trace .331
Trace Event Message Dialog .331
Creating a Sequence Diagram from a Message Trace .332
Dragging Capsule Instances into a Trace .332

Message Trace Configuration Dialog .332
Threshold Field. 332
Column Check Boxes . 333

Execution Watch Tab .333
Refreshing the Watch Values . 333

Run-time Exception While Running a Component Instance 333

Instance Browser .334

Source Code Debugging .335

Running from Outside the Toolset .337
Purify . 337
Observability Command Line Parameter . 337

Component Instance Menu .338

Using the Command Line .338
Command Line Arguments. 338
Application-Specific Command Line Arguments . 339

Loading and Running Component Instances on Embedded Targets.339
Utility Scripts . 339
xviii Contents

Component Instance Specification. .340
Component Instance Specification - General tab . 340
Component Instance Specification - Detail tab . 340
Overview of Observability Options. 342
Overview of Observability Options. 343

Processor Specification Dialog .344
Processor specification - General Tab . 345
Processor Specification - Detail tab . 345

Using Windows CE . 346
Using Debugger Modes . 350

Unloading a Debugger . 354

Device Specification. .354
General tab . 354
Detail tab . 355
Files Tab. 355

Connection Specification .355
General Tab . 355
Detail Tab. 356
Files Tab. 356

Probe Specification .356
Probe Specification - General tab . 356
Probe Specification - Files tab . 357
Probe Specification - Detail tab . 358
Creating Inject Messages . 358
Examples . 359
Injecting a Message. 360

22 Using Code Sync to Change Generated Code 363
Contents. .363

Code Sync Overview .363

Intended Code Sync Usage .364
Limitations . 364

Enabling and Disabling Code Sync .365

Identifying Code Sync Areas .365
Code Sync Identification Tags . 365
Designated Code Sync Areas . 366

Compiling Code Externally. .367

Invoking Code Sync from the toolset .367
Contents xix

Reconciling Changes in the Code Sync Summary 367
Accepting Changes . 369

Common Code Sync Errors .369
Error: Cannot code-sync; file I/O error on: <filename> .369
Error: Cannot code-sync <filename> beyond line <lineNum>.370
Error: Could not find trailing CodeSync tag for

[<LocationSpecifier>] .370
Warning: Use tabs for indenting code-sync regions .370

23 Generating Documentation . 371
Contents. .371

Linking External Files to Model Elements .371

Generate Documentation Dialog .372

Inserting a Diagram into an MS Word Document. .373
Option A .373
Option B .374

Using OLE .374
Creating a link. 374
Inserting a link . 375
Navigating. 375
Editing Diagrams . 375

24 Customizing the Toolset . 377
Contents. .377

Stereotypes .377
Creating a Custom Framework for Rose RealTime Models 377
Creating a New Stereotype for the Current Model . 378
Creating a New Stereotype Configuration File . 379
Creating a New Stereotype for all Rose RealTime Models 379
Creating Stereotypes for Classes . 381
Adding Stereotypes to the Diagram Toolbox . 381
Creating Stereotype Icons . 382
Creating a Diagram Icon. 382
Controlling the Display of Stereotypes . 383

Controlling Stereotype Display in the Browser .383
Controlling How Existing Stereotypes Display in a Diagram383
Controlling the Display of Stereotypes Added to Diagrams 383
xx Contents

Toolset Options .384
Options Dialog . 384

General Tab . 384
File tab . 386
Font/Color Tab . 387
Diagram Tab. 388
Filtering Tab . 391
Compartments Tab . 391
Browser Tab . 392
Editor Tab. 392
Toolbars Tab. 393
Language/Environment Tab . 393

Customizing the Diagram Toolbox . 394
Customize Toolbar Dialog . 394

Toolbar Button List . 394

Add-Ins. .394
Add-In Manager Dialog . 394

Managing Model Properties .395
Displaying or Modifying the Values of Model Properties 395
Removing an Overriding Item Level Model Property . 396
Making a Model Property Item Specific . 396
Reinstalling the State and Value of the Last Committed Change 396
Attaching a Model Property Set to a Single Element or a Collection of Elements .

396
Displaying or Editing a Specific Model Property Set . 397
Creating a New Model Property Set. 397
Deleting a Model Property Set . 397

25 Submitting Problem Reports, Feature Requests and Support
Requests . 399

Contents. .399

Submitting Problem Reports .399

Submitting Feature Requests. .400

Submitting Support Requests .401
Contents xxi

A 403Keyboard Shortcuts . 403
Contents. .403

General Shortcuts .403

Scripting Shortcuts. .405

Debugging Shortcuts .406
Build and RTS Shortcuts . 407
Specification Code Editor Shortcuts . 408
Browser Shortcuts . 408

Index . 411
xxii Contents

Preface
Contents

This chapter is organized as follows:

� Online Help on page i
� About the Help Viewer on page ii
� About the Search tab on page ix
� Changing the Help Viewer on page xiv
� Related Documentation on page xvi

This document captures important information you need to use the Rational Rose
RealTime toolset after it has been installed. It is available as part of the comprehensive
online help system and in hardcopy.

Online Help

Comprehensive online help is available in MS HTML Help format. As such, it
includes four navigation tabs: Contents, Index, Search, and Favorites. There are
numerous hyperlinks between related topics. As well, there are multimedia demos of
how to use specific features of the toolset.

Activating the Online Help

To activate the online help, select one of the items from the Help menu.

What’s This Help

Context sensitive help is available from the toolset. You can access this help three
ways:

� by clicking the Help Contents button

� by selecting the Context Sensitive Help to open help on particular topic

� by pressing Shift + F1
i

Extended Help

Extended Help leads you to information in the Rational Unified Process and other
sources about how to perform tasks using the current tool. The other sources can be
organization-specific, project-specific standards and guidelines, or almost any other
type of information that can be represented in a HTML document. The information
accessed from Extended Help depends on the context from which it is invoked. The
context varies from task to task.

Extended Help is driven by a set of databases that identify the context for each piece
of information (called the target). One database is delivered with the Rational Unified
Process and is registered upon installation. You may create and register any number
of databases, each containing different information and pointers to different HTML
pages. For example, you may have a database that contains pointers to pages that are
appropriate for all projects in your organization. You may have another one that is
specific to a project or project type. You might also decide to create a personal
database with pointers to information that is important to you.

Tutorials

The online help provides tutorials to help you learn to use the main features of
Rational Rose RealTime.

About the Help Viewer

The following topics describe most of the general features available in the Help
Viewer:

� Getting More Out of Help
� To find a Help Topic
� To create a list of favorite help topics
� To copy a help topic
� To print the current help topic
� To get help in a dialog
� To find topics using the toolbar buttons
� To hide or show the Navigation pane
� Using accessibility shortcut keys in the Help Viewer
� Using the shortcut menu commands
ii Toolset Guide - Rational Rose RealTime

Getting More Out of Help

Here are some tips on how to find more information when using the HTML Help
Viewer:

� To link to another topic, a Web page, a list of other topics, or a program, click the
colored, underlined words.

� To view topics that contain related information, click topic titles under the
headings “Related Topics,” “Related Tasks,” and “See Also,” which may appear at
the end of a topic.

� To see if a word or phrase contained in a topic is in the index, select the word, and
then press F1.

� If you are viewing content from the Web in the Topic pane, you can click Stop or
Refresh on the toolbar to interrupt a download or refresh a Web page.

� If you use a particular help topic often, you can add it to your favorites list.

� Right-click the Contents tab or Topic pane for shortcut menu commands.

To find a Help Topic

In the Navigation pane, click one of the following tabs:

� To browse through a table of contents, click the Contents tab. The table of contents
is an expandable list of important topics.

� To see a list of index entries, click the Index tab, and then type a word or scroll
through the list. Topics are often indexed under more than one entry.

� To locate every occurrence of a word or phrase that may be contained in a help file,
click the Search tab, and then type the word.

Notes

Click the contents entry, index entry, or search results entry to display the
corresponding topic.

To create a list of favorite help topics

1 Locate the help topic you want to make a favorite topic.

2 Click the Favorites tab, and then click Add.
Toolset Guide - Rational Rose RealTime iii

Notes

� To return to a favorite topic, click the Favorites tab, select the topic, and then click
Display.

� If you want to rename a topic, select the topic, and then type a new name in the
Current topic box.

� To remove a favorite topic, select the topic and then click Remove.

To copy a help topic

1 In the Topic pane, right-click the topic you want to copy, and then click Select All.

2 Right-click again, and then click Copy. This copies the topic to the Clipboard.

3 Open the document you want to copy the topic to.

4 Position your cursor where you want the information to appear.

5 On the Edit menu, click Paste.

Notes

If you want to copy only part of a topic, select the text you want to copy, right-click,
and then click Copy.

To print the current help topic
� Right-click a topic, and then click Print.

Notes

If you print from the Contents tab (by right-clicking an entry, and then clicking Print)
you will see options to print only the current topic, or the current topic and all
subtopics.

To get help in a dialog
� Click the question mark in the upper-right corner of the dialog, and then click an

item in the dialog.

Notes

� To close the pop-up window, click anywhere on the screen.

� If the dialog does not have the question mark, click Help or press F1.

� You can also get help on an item by right-clicking it.

� Not all dialogs include dialog help.
iv Toolset Guide - Rational Rose RealTime

To find topics using the toolbar buttons

There are five navigational buttons that can be located on the toolbar in the Help
Viewer. You can click these buttons to find help topics:

� Back displays the last topic you viewed.

� Forward displays the next topic in a previously displayed sequence of topics.

� Home displays the Home page topic for the help file you are viewing.

� Refresh updates Web content that is currently displayed in the Topic pane.

� Stop stops downloading file information. Click this button to stop a Web page from
downloading.

Notes

The toolbar in your Help Viewer may not contain all of these navigational buttons.

To hide or show the Navigation pane

On the toolbar, click Hide or Show to close or display the Navigation pane, which
contains the Contents, Index, Search, and Favorites tabs.

Notes

If you close the Help Viewer with the Navigation pane hidden, it will appear that way
when you open the Help Viewer again.

Using accessibility shortcut keys in the Help Viewer

The following keyboard shortcuts can be used for navigation in the HTML Help Viewer.
The help author who builds a compiled help (.chm) file can specify which buttons
appear on the Help Viewer toolbar, so some of these options may not be available in
your version of the viewer.
Toolset Guide - Rational Rose RealTime v

For the Help Viewer:

To Press

Close the Help Viewer. ALT+F4

Switch between the Help Viewer and other open
windows.

ALT+TAB

Display the Options menu. ALT+O

Change Microsoft Internet Explorer settings. The
Internet Options dialog box contains accessibility
settings. To change these settings click the
General tab, and then click Accessibility.

ALT+O, and then press I

Hide or show the Navigation pane. ALT+O, and then press T

Print a topic. ALT+O, and then press P, or
right-click in the

Move back to the previous topic. ALT+LEFT ARROW, or ALT+O,
and then press B

Move forward to the next topic (provided you have
viewed it just previously).

ALT+RIGHT ARROW, or
ALT+O, and then press F

Turn on or off search highlighting. ALT+O, and then press O

Refresh the topic that appears in the Topic pane
(this is useful if you have linked to a Web page).

F5, or ALT+O, and then press
R

Return to the home page (help authors can specify
a home page for a help system).

ALT+O, and then press H

Stop the viewer from opening a page (this is also
useful if you are linking to the Web and want to
stop a page from downloading).

ALT+O, and then press S

Jump to a predetermined topic or Web page. The
help author who builds a compiled help (.chm) file
can add two links, on the Options menu, to
important topics or Web pages. When you select a
Jump command you go to one of those topics or
Web pages.

ALT+O, and then press 1 or 2
vi Toolset Guide - Rational Rose RealTime

For the Contents tab:

For the Index tab:

For the Search tab:

Switch between the Navigation pane and the Topic
pane.

F6

Scroll through a topic. UP ARROW and DOWN
ARROW, or PAGE UP and
PAGE DOWN

Scroll through all the links in a topic or through
all the options on a Navigation pane tab.

TAB

To Press

Display the Contents tab. ALT+C

Open and close a book or folder. PLUS SIGN and MINUS SIGN, or LEFT ARROW
and RIGHT ARROW

Select a topic. DOWN ARROW and UP ARROW

Display the selected topic. ENTER

To Press

Display the Index tab. ALT+N

Type a keyword to search for. ALT+W, and then type the word

Select a keyword in the list. UP ARROW and DOWN ARROW

Display the associated topic. ALT+D

To Press

Display the Search tab. ALT+S

Type a keyword to search for. ALT+W, and then type the word

Start a search. ALT+L
Toolset Guide - Rational Rose RealTime vii

For the Favorites tab:

Notes

� There are also shortcut menu commands that can be accessed through the
keyboard.

� Shortcut keys also work in secondary and pop-up windows.

� Every time you use a shortcut key in the Navigation pane, you lose focus in the
Topic pane. To return to the Topic pane, press F6.

� The Match similar words check box, on the Search tab, will be selected if you used
it for your last search.

Select a topic in the results list. ALT+T, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D

The following options are only available if
full-text search is enabled.

Search for a keyword in the result list of a prior
search.

ALT+U

Search for words similar to the keyword. For
example, to find words like “running” and
“runs” for the keyword “run.”

ALT+M

Only search through topic titles. ALT+R

To Press

Display the Favorites tab. ALT+I

Add the currently displayed topic to the
Favorites list.

ALT+A

Select a topic in the Favorites list. ALT+P, and then UP ARROW and
DOWN ARROW

Display the selected topic. ALT+D

Remove the selected topic from the list. ALT+R
viii Toolset Guide - Rational Rose RealTime

Using the shortcut menu commands

There are several commands on the shortcut menu that you can use to display and
customize information.

Notes

� These commands can be accessed through the keyboard. You can click SHIFT+F10
to display the shortcut menu, and then click the appropriate shortcut keys. Or, you
can enable Mousekeys. Use a Mousekey combination to display the shortcut
menu, and then click the appropriate shortcut keys.

About the Search tab

The Search tab that allows you to search through every word in a help file to find a
match. For example, if you do a full-text search on the word “index,” every topic that
contains the word “index” will be listed.

To use full-text search

1 Click the Search tab, and then type the word or phrase you want to find.

2 Click List Topics, select the topic you want, and then click Display.

To highlight words in searched topics

When searching for words in help topics, you can have each occurrence of the word or
phrase highlighted in the topics that are found.

Command Description

Right-click in the table of
contents, and then click Open All.

Opens all books or folders in the table of
contents. This command only works if the
Contents tab is displayed.

Right-click in the table of
contents, and then click Close
All.

Closes all books or folders. This command only
works if the Contents tab is displayed.

Right-click, and then click Print. Prints the topic.

Right-click in the table of
contents, and then click
Customize

Opens the Customize Information Wizard,
which allows you to customize the
documentation. If the help file was built with
information types, you can use this wizard to
select a subset of topics to view. For example,
you could choose to see only overview topics.
Toolset Guide - Rational Rose RealTime ix

To highlight all instances of a search word or phrase, click Options on the toolbar, and
then click Search Highlight On.

Notes

� To turn off this option, click Options on the toolbar, and then click Search Highlight
Off.

� If you are viewing a long topic, only the first 500 instances of a search word or
phrase will be highlighted.

Searching for help topics

A basic search consists of the word or phrase you want to find. You can use wildcard
expressions, nested expressions, boolean operators, similar word matches, a previous
results list, or topic titles to further define your search.

The basic rules for formulating queries are as follows:

� Searches are not case-sensitive, so you can type your search in uppercase or
lowercase characters.

� You may search for any combination of letters (a-z) and numbers (0-9).

� Punctuation marks such as the period, colon, semicolon, comma, and hyphen are
ignored during a search.

� Group the elements of your search using double quotes or parentheses to set apart
each element. You cannot search for quotation marks.

Notes

If you are searching for a file name with an extension, you should group the entire
string in double quotes, (“filename.ext”). Otherwise, the period will break the file
name into two separate terms. The default operation between terms is AND, so you
will create the logical equivalent to “filename AND ext.”

To find information with advanced full-text search

1 Click the Search tab, and then type the word or phrase you want to find.

2 Click to add boolean operators to your search.

3 Click List Topics, select the topic you want, and then click Display.

4 To sort the topic list, click the Title, Location, or Rank column heading.
x Toolset Guide - Rational Rose RealTime

Notes

� You can precisely define a search by using wildcard expressions, nested
expressions, and boolean operators.

� You can request similar word matches, search only the topic titles, or search the
results of a previous search.

� You can set the Help Viewer to highlight all instances of search terms that are
found in topic files. Click the Options button, and then click Search Highlight On.
This feature only works with Internet Explorer 4.0 or later.

Searching for words or phrases

You can search for words or phrases and use wildcard expressions. Wildcard
expressions allow you to search for one or more characters using a question mark or
asterisk. The table below describes the results of these different kinds of searches.
Toolset Guide - Rational Rose RealTime xi

Notes

� Select the Match similar words check box to include minor grammatical variations
for the phrase you search.

Defining search terms

The AND, OR, NOT, and NEAR operators enable you to precisely define your search
by creating a relationship between search terms. The following table shows how you
can use each of these operators. If no operator is specified, AND is used. For example,
the query “spacing border printing” is equivalent to “spacing AND border AND
printing.”

Search for Example Results

A single word select Topics that contain the word “select.” (You will
also find its grammatical variations, such as
“selector” and “selection.”)

A phrase “new operator”
or
new operator

Topics that contain the literal phrase “new
operator” and all its grammatical variations.
Without the quotation marks, the query is
equivalent to specifying “new AND operator,”
which will find topics containing both of the
individual words, instead of the phrase.

Wildcard
expressions

esc*
or
80?86

Topics that contain the terms “ESC,” “escape,”
“escalation,” and so on. The asterisk cannot be
the only character in the term.
Topics that contain the terms “80186,”
“80286,” “80386,” and so on. The question
mark cannot be the only character in the term.

Search for Example Results

Both terms in the
same topic.

dib AND palette Topics containing both the words “dib”
and “palette.”

Either term in a
topic.

raster OR vector Topics containing either the word
“raster” or the word “vector” or both.

The first term
without the second
term.

ole NOT dde Topics containing the word “OLE,” but
not the word “DDE.”

Both terms in the
same topic, close
together.

user NEAR
kernel

Topics containing the word “user”
within eight words of the word “kernel.”
xii Toolset Guide - Rational Rose RealTime

Notes

� The |, &, and ! characters don't work as boolean operators (you must use OR,
AND, and NOT).

Using nested expressions when searching

Nested expressions allow you to create complex searches for information. For
example, “control AND ((active OR dde) NEAR window)” finds topics containing the
word “control” along with the words “active” and “window” close together, or
containing “control” along with the words “dde” and “window” close together.

The basic rules for searching help topics using nested expressions are as follows:

� You can use parentheses to nest expressions within a query. The expressions in
parentheses are evaluated before the rest of the query.

� If a query does not contain a nested expression, it is evaluated from left to right.
For example: “Control NOT active OR dde” finds topics containing the word
“control” without the word “active,” or topics containing the word “dde.” On the
other hand, “control NOT (active OR dde)” finds topics containing the word
“control” without either of the words “active” or “dde.”

� You cannot nest expressions more than five levels deep.

To search for words in the titles of HTML files

1 Click the Search tab, type the word or phrase you want to find, and then select the
Search titles only check box.

2 Click List Topics, select the topic you want, and then click Display.

Notes

� If you use this option, all HTML topic files will be searched, including any that are
not listed in the table of contents.

To find words similar to your search term

This feature enables you to include minor grammatical variations for the phrase you
search. For example, a search on the word “add” will find “add,” “adds,” and
“added.”

1 Click the Search tab, type the word or phrase you want to find, and then select the
Match similar words check box.

2 Click List Topics, select the topic you want, and then click Display.
Toolset Guide - Rational Rose RealTime xiii

Notes

� This feature only locates variations of the word with common suffixes. For
example, a search on the word “add” will find “added,” but it will not find
“additive.”

To search only the last group of topics you searched

This feature enables you to narrow a search that results in too many topics found. You
can search through your results list from previous search by using this option.

1 On the Search tab, select the Search previous results check box.

2 Click List Topics, select the topic you want, and then click Display.

Notes

� If you want to search through all of the files in a help system, this check box must
be cleared.

� The Search tab will open with this check box selected if you previously used this
feature.

Changing the Help Viewer

Users can make a variety of changes to the Help Viewer. These related topics describe
settings the user can specify.

To customize the Help Viewer

There are a few ways to easily change the size and position of the Help Viewer and the
panes in the viewer:

� To resize the Navigation or Topic pane, point to the divider between the two
panes. When the pointer changes to a double-headed arrow, drag the divider right
or left.

� To proportionately shrink or enlarge the whole Help Viewer, point to any corner of
the Help Viewer. When the pointer changes to a double-headed arrow, drag the
corner.

� To change the height or width of the Help Viewer, point to the top, bottom, left, or
right edge of the Help Viewer. When the pointer changes to a double-headed
arrow, drag the edge.

� To reposition the Help Viewer on your screen, click the title bar and drag the
Viewer to a new position.
xiv Toolset Guide - Rational Rose RealTime

Notes

� The Help Viewer will appear with the last size and position settings you specified
when it is opened again.

To change formatting or styles for accessibility

1 On the Options menu, click Internet Options, and then click Accessibility.

2 In the Accessibility dialog box, select the options you want, and then click OK.

Notes

� These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

� This will also change your accessibility settings for Internet Explorer 4.0.

To view help topics grouped by information type

You can customize your help system so that it includes only those help topics that are
relevant to you.

Suppose for example, that you have a help system for an educational software
program that includes topics aimed at administrators, teachers, and students. You can
customize your help so that it includes only the topics that are important to teachers
and students.

On the toolbar, click Options, and then click Customize.

To change the font size of a topic

On the Options menu, click Internet Options, and then click Fonts.

Notes

� These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

� This will also change your font settings for Internet Explorer.

To change colors in the Topic pane of the Help Viewer

1 In Microsoft Internet Explorer, on the View menu, click Internet Options.

2 On the General tab, click Colors.

3 In the Colors dialog box, select the options you want, and then click OK.

4 To apply the new color settings, in the Internet Options dialog box, click OK.
Toolset Guide - Rational Rose RealTime xv

Notes

� These changes do not apply to the Navigation pane or toolbar of the Help Viewer.

� This will also change your color settings for Internet Explorer 4.0.

Related Documentation

The following documents are related to the Rational Rose RealTime Toolset Guide:

� Installation Guide

� Modeling Language Guide

� Guide to Team Development Guide
xvi Toolset Guide - Rational Rose RealTime

1Overview of Rational
Rose RealTime
Contents

This chapter is organized as follows:

� Overview on page 17
� Languages and Code Generation on page 18
� Services Library on page 19
� Capsules, Protocols, Ports, Capsule State and Structure Diagrams on page 20
� Constructing Models in Rational Rose RealTime on page 23
� Development Process on page 26
� Essential Workflows on page 27

Overview

Rose RealTime is a software development environment tailored to the demands of
real-time software. Developers use Rose RealTime to create models of the software
system based on the Unified Modeling Language constructs, to generate the
implementation code, compile, then run and debug the application.

Rose RealTime can be used through all phases of the software development lifecycle,
from initial requirements analysis through design, implementation, test and final
deployment. It provides a single interface for model-based development that
integrates with other tools required during the different phases of development. For
example, developers work directly through Rose RealTime to generate and compile
the code that implements the model. The actual compilation is performed behind the
scenes by a compiler/linker outside of the toolset.

Using Rose RealTime, developers work at a higher level of abstraction specifying
behavior in state diagrams and communication relationships in collaboration
diagrams. This is a natural and logical evolution in computer languages. Just as third
generation language tools provided greater productivity than assembly language
coding, visual development tools provide significant productivity gains over current
third generation languages.
17

Rose RealTime includes features for:

� creating UML models using the elements and diagrams defined in the UML

� generating complete code implementations (applications) for those models

� executing, testing and debugging models at the modeling language level using
visual observation tools

� using Change Management systems for team development

The first three of these topics are covered in this guide; the last topic is covered in the
Guide to Team Development.

Languages and Code Generation

Code generation of models is provided by specialized language add-ins. The content
of the generated code, regardless of the language, is based on

� the specification of each model element

� the values of the model properties that are attached to model elements

Language add-ins provide custom properties that store language-specific information
for each model element. In addition to Rose, Rose RealTime add-ins also provide a
Services Library that provides support for specialized real-time services such as
concurrency, message passing, and timing services. The Services Library is shipped as
a library file and is linked into every executable created with Rose RealTime.

By providing both code generation and the specialized Services Libraries Rose
RealTime allows you to not only generate but also compile and run models.

Compilation

The compilation of models generated from Rose RealTime is done using commercial
compilers and linkers. Rose RealTime generates the code then calls the compiler and
linker to compile and link the generated source code with the pre-compiled Services
Library. Rose RealTime does NOT ship with a compiler/linker, these must be installed
before you can build and run a model.
18 Chapter 1 - Overview of Rational Rose RealTime

Services Library

In order to construct a functioning Rose RealTime model two major parts are required:

� the structure and behavior of the model

� the Rose RealTime Services Library

The relationship between these two parts is shown in Figure 1.

Figure 1 The services library is a framework for real-time systems

The services library is essentially a framework for real-time systems. It includes
functionality for controlling concurrent execution of finite state machines, for
delivering messages, and for providing timing and logging services. A framework is
like a library of classes and operations used by an application, but with an inversion
of control, meaning that the main control lies in the framework, and the framework
invokes functions in the application to pass control to application objects as required.
Application classes are subclassed from framework classes so that they inherit certain
operations.

There is no main() function in a Rose RealTime model. The main() function is
contained in the Services Library and takes care of creating the capsules in your
model and kicking off the execution of their state machines. All you need to do is
describe the capsules and define state machines for them and they will be
automatically created and executed by the services library. The capsule state machines
can, in turn, invoke operations on other classes (data classes), and send messages to
Services Library 19

other capsules. The Services Library is responsible for managing the creation and
destruction of capsules, and the delivery of messages between capsules (even across
threads).

The addition of these real-time notations to the UML concepts allows the toolset to
generate complete code for the model which is tied in to the services library. When
you generate code for and compile a model in Rose RealTime, the tool will link it with
a Services Library compiled for the language and particular platform you are
running on.

Capsules, Protocols, Ports, Capsule State and Structure
Diagrams

In addition to supporting the core UML constructs, Rose RealTime uses the
extensibility features of the UML to define some new constructs that are specialized
for real-time system development. These new constructs allow code generation of
elements that can use the services provided in the Services Library, such as concurrent
state machines, concurrency, message passing, and timing services.

In fact, many real-time projects must implement most of the above services. Using the
added modeling elements in Rose RealTime allows you to concentrate on
implementing the functionality of the system right away without having to hand-code
the common real-time services and concurrency support.

Capsules
� A capsule is a stereotype of a class.

Has much of the same properties as regular classes with added semantics for
modeling of communication relationships between capsules and modeling of its
event based behavior using a state diagram.

� Provides built-in support for light weight concurrent objects.

Because of the message based nature and high encapsulation of capsules, they can
be easily distributed to different physical threads of control without any change to
the capsule.
20 Chapter 1 - Overview of Rational Rose RealTime

� Highly encapsulated objects using message based communication to other
capsules via its port objects.

The advantage of the message-based interfaces is that a capsule has no knowledge
of its environment outside of these interfaces, making it a much more
distributable, reusable, and robust than regular objects.

� Capsule can aggregate other capsules.

Like classes, a capsules structure is defined by its attributes (encapsulation of
objects of other types of classes). But it can also be defined by attributes that are
other capsules, which we call capsule roles.

Protocols
� Defines the set of messages exchanged between a set of capsules.

� Messages are defined from the perspective of both the receiver and the sender.

There are therefore different perspectives of a protocol, which we call protocol
roles. Protocol roles represent the communication from the perspective of one
participant in the communication scenario.

� Messages that are sent between capsules contain a required signal name (which
identifies the message), an optional priority (relative importance of this message
compared to other unprocessed messages on the same thread), and optional
application data.

Ports
� Ports are objects whose purpose is to send and receive messages to and from

capsule instances.

� They are owned by the capsule instance in the sense that they are created along
with their capsule and destroyed when the capsule is destroyed.

� To specify which messages can be sent to and from a port, a port realizes a protocol
role. The protocol role is the specification of a set of the messages that can be
received (in) and sent (out) from the port. The protocol role essentially defines the
port type.
Capsules, Protocols, Ports, Capsule State and Structure Diagrams 21

State Diagrams
� Uses the same notation as defined in the UML.

� Are generated to source code and make up the behavior of capsules.

� All trigger events are defined by a port and signal pair. A capsule’s behavior is
therefore based on the receipt of messages.

� Final states are not allowed on capsule state diagrams.

� Junction points do not support the continuation kind attribute; that is, if a
transition is not continued, it defaults to history (except for internal transitions).

Capsule Structure Diagrams
� A new diagram has been introduced the specify the capsule's interface (ports) and

its internal composition (capsule roles). The diagram is called a capsule structure
diagram, and it is based on the UML 1.3 specification collaboration diagram.

� This is a specification type of diagram, and not an interaction diagram (object) as
collaboration diagrams in other versions of Rose are.

� Allow you to specify the communication relationships between capsules.

Executable Models

The addition of the capsule and the formal semantics surrounding the capsule
structure allows Rose RealTime to generate, compile and run a complete
implementation based on a model containing capsules.

The ability to execute models has a revolutionary impact on the software
development process. The results are higher quality software, and shorter and more
predictable delivery cycles. Executing models is the surest way to find problems and
issues that whiteboarding and document reviews do not find. Even high-level
architectural models can be executed.

Use model execution to better understand the problem, to detect errors and problems
in requirements and architecture specifications, to explore alternative designs quickly,
and to test design models continuously during the development process.

Process note: To make the best use of Rose RealTime, you should aim to get your
model running as often as possible. Making small, incremental changes and running
your model each day will bring much better results than making widespread changes
and working for weeks to get the model running again.
22 Chapter 1 - Overview of Rational Rose RealTime

Constructing Models in Rational Rose RealTime

This section describes:

� Modeling Elements

� Diagrams

� Development Process

� Essential Workflows

Modeling Elements

There are many different modeling elements supported in Rose RealTime, and it is not
easy for new users to know which elements to use to accomplish their goals. In
practice, there are only a few elements that are required to construct a running model.
The other elements provide greater flexibility and control over the expression of your
design model.

As you have already seen from the overview description of the Rose RealTime
services library, the services library is essentially a framework for executing capsules.
Capsules are the main initiators and controllers of activity in a Rose RealTime model.
You must define at least one capsule, but typically many more, in order to generate
and compile code for the model. The capsules in the model should contain other
classes, usually referred to as passive or data classes, because they must be invoked
from a capsule behavior before they can perform any action. Also, they are primarily
used by capsules to contain detail data, which is operated on within the capsule.

Required Elements

First of all, there are two elements that most developers will make use of at the start of
a project to understand the problem domain and begin the process of turning the
vague problem descriptions into detailed designs and implementations. These two
elements are use cases and actors. They are used together (along with use case
diagrams) for use case modeling, which helps architects, designers, testers, and others
involved in the project understand the original system requirements and relate those
requirements to elements in the design model. Use cases and actors are not strictly
required to create an executable model, but use case modeling is highly recommended
as an effective method in the overall analysis and design process.
Constructing Models in Rational Rose RealTime 23

Your model then must consist of capsule classes, and protocols, which specify the
messages that capsules use to communicate. Almost all models also contain some
data classes for capsules to use to store and operate on detailed data. Larger models
contain many hundreds or thousands of capsule, protocol and data classes. These
models should contain packages to organize the classes into related units.

A capsule must have a state machine defined for it in order to perform any useful
behavior. The state machine defines the set of valid inputs that can be processed by
the capsule. A complete code implementation is generated for capsule state machines,
and any user-defined code to be performed as actions on state transitions is
embedded in the generated code.

In any non-trivial model, some capsules will have structure defined for them that
describes the interfaces which capsules use to communicate with each other. These
interfaces are called ports. The structure also describes how capsules are contained by
other capsules to construct composite systems. When one capsule is contained by
another capsule, it is referred to as a capsule role.

Before you can compile a model you must create a component that describes which
classes should be compiled as a unit, and the various settings that should be used to
control the code generation, compilation and link processes.

Finally, in order to run your model, you must specify the deployment by adding a
processor to the deployment diagram. The processor specifies the processing node
(workstation or embedded target) on which your model will be executed. The
compiled component must be mapped as a component instance on the processor so
that the tool can load the compiled component onto the specified processor for
execution and observation.

Further Reading

These are all the model elements that are required in order to create an executable
model in Rose RealTime. Each of the possible elements in the model is described
further in the Modeling Language Guide.

Diagrams

Diagrams are an essential part of the model. Diagrams describe how the different
elements are combined together to make up the system. They also specify other forms
of relationships among the model elements.

There are eight diagrams supported in the Rose RealTime tool, not all of which are
required to create an executable model. Although not all diagrams are required, they
exist for a purpose: the combination of these diagrams provides an excellent
description of the total composition and behavior of the model.
24 Chapter 1 - Overview of Rational Rose RealTime

The supported diagrams are:

� use case diagrams

� class diagrams

� state diagrams

� collaboration diagrams

� capsule structure diagrams

� sequence diagrams

� component diagrams

� deployment diagrams

Of these eight diagrams, only class diagrams, state diagrams, and capsule structure
diagrams are essential in the development of an executable model.

The capsule structure diagrams describe the composition and connectivity of the
capsules in the model. This is essential in the creation of anything more than the most
trivial model. The generated code for the capsules reflects the information in the
capsule structure diagram.

State diagrams must be created for each capsule that has any significant functionality.
The tool will generate the implementation code for capsule state diagrams (no code is
generated for state diagrams for other classes), and the capsule state diagrams
provide the starting point for all behavior in the model. Class diagrams are used to
define inheritance relationships between classes (capsule, protocol and data classes
can all be subclassed). Class diagrams can also be used to show other associations
among classes. The class diagrams may result in code being generated to implement
the relationships defined in the diagrams, depending on the detailed settings for those
relationships.

Component diagrams are used to specify the parameters for compilation of the
model. In more complex systems, a hierarchy of components is compiled to make an
executable.

Deployment diagrams must also be used to get a model running. The deployment
diagram specifies how the model will be deployed on the destination hardware.

Further Reading

Each of these diagrams is explained in more detail in the Modeling Language Guide. The
instructions for creating the diagrams are contained in the individual chapters for the
diagrams in this guide.
Constructing Models in Rational Rose RealTime 25

Development Process

The Rose RealTime toolset is oriented to the use of an iterative, object-oriented
development process. However, detailed description of the development process is
beyond the scope of this document. We strongly recommend that you look at the
Rational Unified Process (RUP) to gain a better understanding of the iterative
object-oriented development process. See http://www.rational.com. At a more
detailed level, the process of creating an executable model in Rose RealTime can be
summarized as follows:

Use the use case modeling elements and use case diagram to develop a detailed,
semi-formal understanding of the problem. The use case elements can be associated
with design elements as the design model evolves to maintain traceability.

Create capsules, protocols, classes, use class diagrams, capsule structure diagrams,
and capsule state diagrams to develop the structure and behavior of the model. Add
detailed implementation code to the capsule state diagrams and to class operations.

In addition, use collaboration diagrams and sequence diagrams to capture the
intended behavior of the system for various use cases. Use Rose RealTime's execution
and debugging tools to validate the model behavior at run-time. Use collaboration
and sequence diagrams to help you in the design process by making the
communication patterns in the design evident. They will also help others understand
your design.

Once the design has stabilized, use state diagrams for classes and protocols to capture
the abstract design so that others can understand. This is particularly important for
protocols, where the state machine specifies how a capsule using that protocol must
behave.

Use the component diagram to specify the configuration of the model for compilation
purposes.

Use the deployment diagram to indicate how the components should be executed.
Also, the deployment diagram can be used to document the physical structure of the
target system.

Further Reading

An overview of the Rational Unified Process is available in the Online Help book:
Development process reference. The complete Rational Unified Process description is
available at http://www.rational.com.
26 Chapter 1 - Overview of Rational Rose RealTime

http://www.rational.com
http://www.rational.com
http://www.rational.com/products/rosert

Essential Workflows

The following chart describes the workflows and project phases defined in the
Rational Unified Process.

Figure 2 Workflows in the Rational Unified Process

Rose RealTime is not applicable to all of these workflows. The following workflows
are important in the context of Rose RealTime:

Requirements - are typically captured in text documents or databases outside of the
Rose RealTime toolset. Some analysis of the requirements is performed to develop a
more abstract model of the problem. The abstract model is called a use case model.
The Rose RealTime use case modeling tools are used in this worklow. In addition,
design model elements can be traced back to requirements in two ways: through
associations between use case model elements and design model elements captured in
class diagrams, and through linking external files (requirements specifications, for
example) to model elements.

Analysis & Design - is the primary workflow supported in the Rose RealTime toolset.
All of the Rose RealTime class and capsule modeling tools are used in the analysis and
design. There is no clear distinction between analysis and design in the Rose RealTime
toolset. They are part of the same process, which is the process of turning vague
problem descriptions into specifications of software-based solutions. The end goal of
this process is a design model, which in Rose RealTime is complete enough to be
executable. Execution of the design model is used as the basis for verifying whether
the design meets the requirements. Intermediate artifacts such as design documents
can be produced from the model.

Implementation - in a traditional development process without Rose RealTime, there
is typically a gulf between analysis & design and implementation. In implementation,
developers take the design specifications and produce code to implement those
Essential Workflows 27

specifications. The mapping is not always straightforward, and the design
specifications may be vague, incomplete or erroneous, leading to confusion, lost
productivity and time delays. With Rose RealTime, the implementation is
automatically produced directly from the model. Implementation details are still
necessary, but they are added directly within the model framework. Going
back-and-forth is not required to keep the model in sync with the implementation. It
is always in sync.

Test - testing in Rose RealTime involves compiling a model and running it. A number
of tools are provided in the run-time interface to assist with testing.

Configuration and Change Management - this workflow is ongoing, and is essential
for orderly development in a large team environment. Configuration and change
management involves putting the model and model elements under source control.
See the Guide to Team Development.

Further Reading

Each of these workflows and the impact of the tools in Rose RealTime on those
workflows is described in the Online Help.
28 Chapter 1 - Overview of Rational Rose RealTime

2User Interface Overview
Contents

This chapter is organized as follows:

� Startup Screen on page 29
� Create New Model Dialog on page 30
� Application Window on page 31
� The toolbar on page 34
� Menus on page 38
� Browsers on page 70
� Diagram Editors on page 73
� Specification Dialogs on page 78
� Searching and Sorting on page 86

Startup Screen

The Startup screen (see Startup screen on page 30) has direct links to

� What’s New? - to review out the new features of this release of Rose RealTime

� Tutorials - to review various tutorials tailored to your skill level and backgrounds

� Online Help - to access the Rational Rose RealTime help system
29

Figure 3 Startup screen

You have the option of always showing this screen on startup or bypassing it.

Create New Model Dialog

When you start Rose RealTime, the Create New Model dialog appears, with the
following frameworks:

� Empty - enables you to open a model without any shared package, which is useful
for pure modeling and /or use case development

� RTC - enables you to create a model in the C language

� RTC++ - enables you to create a model in the C++ language

� RTJava - enables you to create a model in the Java language
30 Chapter 2 - User Interface Overview

Additionally, any framework model that you create to be used as a template appears
in the dialog. For information on creating a framework, see Creating a Custom
Framework for Rose RealTime Models on page 377.

Note: The Empty framework is useful for creating use case designs but should not be
used for developing real-time applications.

If you want to open Rose RealTime without the Create New Model dialog box
automatically appearing, select File - New - Create New Model, then deselect Always show
this dialog on startup.

Application Window

The main elements of the Rose RealTime user interface are:

� The toolbar

� Menus

� Browsers

� Diagram Editors

� Specification Dialogs
Application Window 31

Figure 4 shows an RTC++ example of the application window as it appears when the
application is first started (with no model loaded).

Figure 4 Application window

Browsers

Model elements are created and viewed through browsers. The primary browser is
the Model browser, that provides access to all elements of the current model.
Browsers list the model elements - usually in a hierarchical way - allowing elements to
be expanded to show additional information. Also, most browser lists can be filtered
in various ways.

The containment view shows the containment hierarchy of the capsule classes in the
model.

The inheritance view shows the inheritance hierarchy of the capsule classes, data
classes, and protocols in the model.
32 Chapter 2 - User Interface Overview

Toolbar

There is a standard toolbar (see The toolbar on page 34) in the main application
window that contains icons for a standard set of tools, which can be invoked at any
time. This toolbar can be undocked and moved as a separate window.

Diagrams

Much of the model information is captured graphically in Diagram Editors.
Additional non-graphical information, such as detailed program code, can be entered
through Specification Dialogs. In many cases, information can be entered through a
diagram or specification dialog, or Code window.

Each diagram or specification that you open is displayed in a window within the
application window. These diagram and specification windows can be iconified. If the
active window displays a diagram, that diagram is referred to as the current diagram.
If the active window displays a specification, that specification is referred to as the
current specification.

Toolboxes

Every diagram has an associated toolbox (see Toolboxes on page 77), that contains
icons of tools that can be applied to that diagram. If the current diagram is
write-protected, the diagram toolbox is not displayed. The diagram toolbox is
dimmed when a diagram is displayed.

Menu bar

The menu bar lists commands available for operations in any diagram or specification
window. Depending on the kind of diagram or specification displayed in the active
window, some menu commands may not apply. These commands are dimmed. If the
current diagram is write-protected, additional commands are rendered inaccessible.

About Rose RealTime Dialog

The About Rose RealTime dialog shows product version information, support
contacts, and lists the add-ins.

To open the About dialog select:

Help > About...
Application Window 33

The toolbar

The standard toolbar is displayed directly below the menu bar along the top of the
application window. The visibility of the toolbar is set through the View menu. By
default, the standard toolbar is displayed. If you want to disable the standard toolbar
from the application window, select View > Toolbars > Standard. This switches the
visibility property of the toolbar.

Figure 5 Rose RealTime standard toolbar

Create New Model

Opens the Create New Model dialog. There are four frameworks listed: Empty, RTC,
RTC++, and RTJava. Additionally, any framework model that you create to be used as a
template, appears in the dialog.

To create a new Rose RealTime model containing all the classes required for
development for C, C++, or the Java language, click the framework for the specified
language. The Model browser appears with the packages and classes populated in the
Logical View and Component View.

If you have a model open when you select the create model, you are asked if you want
to save the current model. Selecting No discards all changes since your last save.
Selecting Yes saves your changes and opens a new model, or displays the Load Model
dialog automatically.

For information on creating a framework, see Creating a Custom Framework for Rose
RealTime Models on page 377.

Note: The Empty framework is useful for creating use case designs but should not be
used for developing RealTime applications.

Open Existing Model

Opens the Load Model dialog. If you have a model open when you select the open
model, you are asked if you want to save the current model. Selecting No discards all
changes since your last save. Selecting Yes saves your changes and opens a new
model. See Opening Models on page 135 for more information.
34 Chapter 2 - User Interface Overview

Save Model

Opens the Save Model to dialog. Enter a new filename. After the model is named and
saved, selecting this button automatically saves your changes to the current model
without displaying the dialog.

Print Diagram

Opens the Print Specification dialog, that allows you to specify how and where
diagrams are printed. To change printer setup select File > Print Setup.

Cut

Removes icons or relationships from your model. An item (or items) must be selected
to activate the icon. Cutting an element also cuts associated relationships. You can cut
multiple-selected items.

Copy

Copies a component to a new location of the same model - or a new model - without
affecting the original component.

Paste

Pastes a component, that has previously been cut or copied to the clipboard, to
another location.

Undo

Undoes the last operation performed. Not all operations can be undone. If the Undo
tool is dimmed, the last operation cannot be undone.

Redo

Redoes the last operation that was undone.

Build Component

Initiates a model verification, generates the source code for the component, and
invokes the external compiler and linker to create an executable version of the
component. Only the model elements that have changed will be generated and
recompiled.

Stop Build

Stops a build in progress.
The toolbar 35

Load Process

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog and a Target observability Port number filled in, the execution
interface is displayed allowing you to control the execution of the model.

Run Component Instance

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

View Browser(s)

Displays or hides all existing browsers. Existing browsers are those that have been
created, but not closed.

View Description

Displays the Description Window, that contains the Documentation Pane and the
Code Pane.

View Output

Displays the Output window.

Browse Class Diagram

Opens a class diagram in the Class diagram editor (see Using the Class Diagram Editor
on page 152). Selecting this command opens a dialog allowing you to select from
available class diagrams to open.

Browse Use Case Diagram

Opens a Use Case diagram in the Use Case diagram editor (see Using the Use Case
Diagram Editor on page 144). Selecting this command opens a dialog allowing you to
select from available use case diagrams to open.

Browse Collaboration Diagram

Opens a collaboration diagram using either the Collaboration diagram editor (see
Using the Collaboration Diagram Editor on page 191) or the capsule structure Editor (see
Using the Structure Editor on page 180). Selecting this command opens a dialog
allowing you to select from available collaboration diagrams to open.
36 Chapter 2 - User Interface Overview

Browse Sequence Diagram

Opens a sequence diagram in the sequence diagram editor (see Using the Sequence
Diagram Editor on page 216). Selecting this command opens a dialog allowing you to
select from available sequence diagrams to open.

Browse Component Diagram

Opens the component diagram in the Component diagram editor (see Using the
Component Diagram Editor on page 281).

Browse Deployment Diagram

Opens the deployment diagram in the Deployment diagram editor (see Using the
Deployment Diagram Editor on page 284).

Browse Parent

Displays the "parent" of the selected diagram or specification. If you have a
specification selected, the specification for the parent of the “named” item is
displayed.

Browse Previous Diagram

Displays the last displayed diagram. To go more than one diagram back, you can click
the small down arrow next to the button, and then click a diagram on the list.

Fit in Window

Centers and displays any diagram within the limits of the window. This command
changes the zoom factor so that the entire diagram displays.

This command does not change the state of the diagram. Changes made after clicking
Fit In Window may require that you re-click Fit In Window to center and resize the
diagram again.

Undo Fit in Window

Reverts the diagram and window sizing back to its appearance prior to the Fit in
Window operation.

Scale to Fit

Scales the diagram to fit within the current diagram window geometry.
The toolbar 37

Help Contents

Activates the online help system.

Context Sensitive Help

Activates the online help system and opens the help about that particular topic.

Menus

This section provides information on the Rose RealTime menus.

Menu bar

The menu bar provides drop-down menus for all operations on models and model
elements.

Some menu items are context-sensitive, and only operate when certain types of model
elements are selected. Context-sensitive menu items are grayed-out when they are not
applicable.

Figure 6 Main menu bar

The menu bar contains the following menus:

� File menu
� Edit menu
� Parts menu
� View menu
� Browse menu
� Build menu
� Report menu
� Query menu
� Tools menu
� Add-Ins menu
� Window menu
� Help menu

Not all menus are displayed at all times. Some of these menus appear only in context
of particular diagrams. The Parts menu, for example, appears only when a capsule
structure diagram or state diagram is open.
38 Chapter 2 - User Interface Overview

File menu

The operations available on the File menu may vary according to the current active
window or the type of element selected.

File menu operations

New

Opens the Create New Model dialog. There are four frameworks listed: Empty, RTC,
RTC++, and RTJava. Additionally, any framework model that you create to be used as a
template, appears in the dialog.

To create a new Rose RealTime model containing all the classes required for
development for the C, C++, or Java language, click the framework for the specified
language. The Model browser appears with the packages and classes populated in the
Logical View and Component View.

For information on creating a framework, see Creating a Custom Framework for Rose
RealTime Models on page 377.

Note: The Empty framework is useful for creating use case designs but should not be
used for developing RealTime applications.

A new model is unnamed until it is saved by a Save or Save As command.

Any open models are closed before a new model is created. You are prompted to save
changes if necessary.

By default, a new model contains one empty class diagram - the main class diagram
for the top level of the new model. You should place packages and classes
representing your highest-level abstractions in this diagram. The new model is
automatically created as a controlled unit.

Open

Loads a model or model kernel from a model file. A file browser is opened to let you
to select a .rtmdl file. If there is an accompanying workspace (.rtwks) file, the tool asks
if you want to open it instead.

Any open models are closed before opening another model. You are prompted to save
changes if necessary.

If the selected model file's access control in the platform file system is read-only, the
application write-protects the associated model.
Menus 39

When opening the model, the tools checks whether the model’s saved character set is
the same as the current system default charSet. If not, a dialog displays the following
warning:

“Non system default character set in file.”

See Opening Models on page 135.

Open Workspace...

Opens an existing workspace. A file browser is opened allowing you to select a .rtwks
file.

Save Workspace

Saves the workspace. This action creates four files: a .rtwks file containing
configuration management settings; a .rtmdl file containing the representation of the
model itself; a .rtto file containing Target observability items, including probes and
inject messages; and a .rtusr file containing various application settings.

Save Workspace As...

Saves the workspace. This action creates four files: a .rtwks file containing
configuration management settings; a .rtmdl file containing the representation of the
model itself; a .rtto file containing Target observability items, including probes and
inject messages; and a .rtusr file containing various application settings. A file
browser is presented to specify the file name and location.

Save Model

Saves the model. Writes the model out as a .rtmdl file. If the model has not been saved
before, a file browser is presented to specify the file name and location.

If a destination model file's access control in the platform file system is read-only, an
ERROR! dialog is displayed indicating the software cannot write that file.

To control temporary and backup files created during a Save procedure, refer to the
Customizing the Diagram Toolbox in the Tools > Options dialog.

Save Model As...

Saves the model. Writes the model out as a .rtmdl file. A file browser is displayed to
specify the file name and location. This command displays the Save Model To dialog, in
which you can specify the new file name and the location where you want to save the
current model.
40 Chapter 2 - User Interface Overview

Import...

Imports a model file created by another tool. See Importing a File on page 289 for more
information.

This command displays the Read Petal dialog so you can specify the petal file you
want to import. Use this command to import the contents of a petal file into the
current model. This command requires the active window to contain a class or
component diagram.

When you import a petal file that contains elements, the diagram in your active
window is used to select a destination. If the active window is the top level diagram,
these elements are imported into the top level of the current model. Otherwise, these
elements are imported into the package that encloses the diagram in the active
window.

Each imported element is compared to the corresponding element in the current
model. If any of the elements in the petal file already exist in the current model, error
messages are sent to the log. If an imported package contains elements that already
exist in the current model, a dialog is displayed telling you that these elements have
not been imported. All diagrams in the model are appropriately updated, including
those imported from the petal file.

When you import a petal file that contains a complete model, that model is opened. If
a model is already open with unsaved changes, the Save Confirmation dialog is
displayed, prompting you to save your changes before closing the current model and
opening the model contained in the petal file.

Export Model...

Exports model files in alternative formats. Primarily used to exchange models with
other versions of Rational Rose and other Rational Rose tools.

This command displays the Write Petal dialog so that you can specify the name and
location of the petal file. Use this command to export selected items from the current
model to a petal file. The Export command displays the name of the element type
selected. If nothing is selected, Export Model is displayed. You can export

� the entire model
� Classes
� Logical Packages
� Component Packages
Menus 41

Begin by displaying diagrams containing the items you want to export. Select the
specific classes, logical and component packages to be exported, and pull down the
File menu. The Export command indicates the number of items selected. If no items
are selected, the entire model is exported. If any item not on the above list (such as a
relationship or adornment) is selected, the Export command is not executable.

When a logical or component package is exported, all diagrams it contains are also
exported. When individual classes are exported, however, only their state transition
diagrams are exported with them. Exporting the entire model does export all
diagrams contained within it.

Exporting to a petal file is useful when you want to transfer

� elements from one model to another

� a model or its elements between different computing platforms

� a model or its elements to a new software release

Print...

Prints the model. Printing on page 123

Print Setup...

Changes the print setup before printing.

Edit Path Map

Edits or creates pathmap variables. Opens the Virtual Path Map dialog. Using the
dialog, you can create an entry to represent a mapping between a virtual path symbol
and an actual pathname. This feature allows you to work with models moved or
copied among workspaces and archives by redefining the actual directory associated
with the user-defined symbol.

Recent Files

Opens recently edited models.

Recent Workspaces

Opens recently used workspaces.

Exit

Exits the application.
42 Chapter 2 - User Interface Overview

Edit menu

Undo

Undoes the last operation. Some operations may not be undone. If Undo is not
possible, the Undo menu item is grayed-out.

Redo

Redoes the last undone operation.

Cut

Removes the selected item and places it in the buffer. When you cut an item, all
relationships for that item are also cut. For example, if A is a generalization of B and
you cut A, the generalization is also cut.

This command works only on the graphic representation of a diagram. It does not
change the current model. Not all elements can be cut and pasted. If after selecting an
element or group of elements the Cut menu item is grayed-out, the cutting and pasting
of one or more of those elements is not supported; for example, you cannot cut and
paste multiple elements in a capsule state diagram.

Copy

Copies the selected item into the buffer. Use this command to copy the currently
selected item or items to the clipboard. From the clipboard, you can

� paste items into other diagrams

� paste items into documents you create with any standard word-processing
software

The Copy command provides a simple means of importing a class from one package
to another.

If a relationship is copied and your selection does not include the items at both ends of
that relationship, you cannot paste that relationship. In this circumstance a Warning
dialog appears, allowing you to cancel or continue. You can also disable subsequent
warnings for the remainder of your session.

This command works only on the graphic representation of a diagram. It does not
change the current model.

Paste

Pastes whatever is currently in the buffer into the selected destination (the active
window).
Menus 43

Delete

Deletes the currently selected item(s) from a diagram or specification.

When used in a diagram, the Delete command removes each selected icon from the
current diagram. The model is not changed unless the deleted icon is unnamed.

In all but the behavior diagrams of a capsule, delete never deletes the model object. In
the structure and behavior diagrams of a capsule delete always deletes the model
object.

When you delete an item, all relationships associated with that item are also deleted.

In collaboration and interaction diagrams, you are prevented from deleting an icon
representing a component or relationship if there are no other icons representing that
component or relationship in the active diagram. In a collaboration diagram, you are
prevented from deleting an icon representing an object if that object has one or more
links, and you are prevented from deleting a link if that link has one or more
messages. In all of these cases, you can use the Delete from Model command.

Duplicate

Duplicates a selected model item into the package that owns the diagram and
validates its name in the context.

Select All

Selects all elements on the current diagram or all text in the current editor.

This command is useful when you want to:

� generate reports on all the classes in a single diagram using commands on the
Report menu

� populate a class diagram with all of the information about those classes using
commands on the Query menu

� change the font size or characteristics for all of the text in a diagram using
commands on the Options menu

To deselect all items, click at a point on the diagram that is not already highlighted.

Note: The following two items are only available from Sequence diagrams.

Attach Text Label

Attaches Text Label to a graphic element.
44 Chapter 2 - User Interface Overview

Detach Text Label

Detaches Text Label from a graphic element.

Delete from Model

Deletes the selected item(s) from the model.

This command can be used from diagrams to delete items from the current model.
When you delete an item from the model, all icons representing that item are removed
from any diagrams in which they appear. The specification for the item is also deleted.

This command cannot be used in specifications. To delete an item from the model via
a specification, use the Delete command.

Relocate

As the analysis and design of an application proceeds, it is common to refine the
application's logical and/or physical architecture from one iteration to the next. Such
refinements can include:

� relocating a class or logical package from one logical package to another

� relocating a component or component package from one component package to
another

The Relocate command supports these refinements. It allows you to relocate a model
element (class, component, package, or association) to a new logical or component
package.

The component will now be contained by the component package containing the
current diagram. However, relocating a component or component package has no
effect on any diagram in the model.

Diagram Object Properties

Lets you customize various software features. The characteristics you set via this
menu item affect only the selected icon(s).

Line Attributes...

Lets you select between rectilinear or oblique line styles, and routing styles. You can
undo and redo any changes you make. Select Line Attributes > Edit... to edit the
properties of line attributes.
Menus 45

Find...

Use this command to find any item in the model. This command displays the Find
dialog so that you can type the search string.

The dialog provides a drop-down list of previous search strings. Select an existing
search string or type the name of the item to find. The search result is displayed in the
Find tab of the Output window (View > Output) in a three-column list, including the
name, type, and location. Optionally, you can choose to have the result displayed in
the Find 2 tab.

To search for groups of items or to search code, you can use the * wildcard character:

� A* matches any name beginning with the letter A

� *A matches any name ending with the letter A

� *A* matches any name containing the letter A

This command lists only the first 250 items that match a name containing a wildcard
character. To search for “*”, use “*”.

The * wildcard is especially useful for finding any classes or packages that were
automatically renamed in a model that was upgraded from a previous release. For
example, you can search for every model item that was renamed by typing: *#* (star
pound star). Every model item that has a # in its name is found.

This command searches for the named item and displays a list of diagrams in which
that item appears. You can double-click on an entry to display that diagram.

Replace...

Use this command to find and replace any item in the model. This command displays
the Replace dialog so that you can type the search string and the replace with string.

The dialog provides drop-down lists of previous search and replace strings. Select an
existing search or replace string or type the names of the item to find and replace. The
search result is displayed in the Find tab of the Output window (View > Output) in a
three-column list, including the name, type, and location. Optionally, you can choose
to have the results displayed in the Find 2 tab.

When you click Replace, a secondary dialog appears with options t o Find Next,
Replace, Replace All, and Cancel. After the replace operation has taken place, you can
query the Find tab in the Output window to view the results of the search and replace.
46 Chapter 2 - User Interface Overview

Reassign...

Each icon in a diagram represents an element in the current model. Use this command
to make a selected icon represent a model element other than the one it now
represents. For example, you can assign an existing class to a different diagram
element.

This feature is useful if you want to assign an element to use the same named item
from a different name space.

To make an icon represent another element, select the icon and then click Reassign
from the Edit menu. The dialog lists the packages in the model on the left and a list of
the valid elements to choose from on the right. Choose the model element that the
selected icon will represent. This affects only the selected icon. Other icons
representing the original model element (on all diagrams) maintain their original
representation.

Here is an example: Assume you have three classes named car, buggy and wagon.
With buggy selected, click Edit > Reassign. In the dialog select wagon. You are changing
the underlying model of the diagram element buggy to use wagon instead of buggy.
(Buggy may still exist in the model but you are given the option of deleting it.)
Additionally, if buggy had an inheritance relation drawn to car, then wagon adopts
that inheritance relation.

The Reassign command does not work within Capsule Collaboration (Structure)
diagrams.

Compartment...

Opens the Edits Compartments dialog. This dialog allows you to arrange how
attributes and operations are displayed within a class or package icon on a diagram.

Change Into

Changes the selected model element into another (related) kind of modeling element.

In the process of refining your model, you may find it necessary to change a model
element from one kind to another. For example, you may want to change a class into a
capsule once you have decided that the class has a state machine and a logical thread
of control.

You can use the commands on the Change Into submenu to change a model element
from one type to another. You can transform

� a class into another type of class

� a relationship into a different type of relationship
Menus 47

You can also transform an element as follows:

1 Choose the icon on the diagram toolbox.

2 Press the ALT or META key.

3 Click on the element you want to change.

This command changes the model element and updates all diagrams containing this
element.

When a relationship type is changed, this command removes the original relationship
from all diagrams, but does not automatically add the new relationship to these
diagrams. Use the Filter Relationships command to display the new relationship in
specific diagrams.

Parts menu
Note: The Parts menu is only available on capsule structure and state diagrams.

Edit Inside

Shows the internal composition of a contained state or capsule role's class. Allows you
to perform edits (with some limitations) on elements contained inside the selected
state or capsule role without having to open a new editor. This is most useful for
seeing the internal connections of transitions to substates and of relay ports to other
contained capsule roles.

Remove/Exclude

Removes a local or exclude an inherited element from the current class. For example,
if you are creating a subclass of an existing capsule class, and the superclass defines a
state that is not applicable in the subclass, you may remove it in the subclass diagram
using the Remove/Exclude command. Any excluded elements still appear in the
navigator area of the structure or behavior editor, but have the symbol x beside them
to indicate that they have been removed.

Inherit

Causes a previously excluded element to be reinherited. Reinherited elements are
added back to the diagram.
48 Chapter 2 - User Interface Overview

Aggregate

Applies only to states or capsule roles. For states, the aggregate command creates a
new composite state containing the selected states to be aggregated. For capsule roles,
the aggregate command creates a new capsule class to hold the capsule roles that are
being aggregated. This command also replaces the aggregated capsule roles in the
structure diagram where the command was executed with a single capsule role of the
newly-created capsule class.

Decompose

Applies only to composite states or capsule roles that are aggregates. Breaks the
selected state into its immediate substates, or breaks the selected capsule role into the
capsule roles contained within the aggregate capsule class.

Promote

Moves the selected element up in the class hierarchy. The element is moved into the
immediate superclass and is inherited by the subclasses (including the current class).
If there is any name conflict between this element and another element in the
superclass or in any of its subclasses, the promote command fails.

Demote

Moves the selected element down in the class hierarchy. The element is removed from
the current class, and is pushed down into all immediate subclasses, as if it had been
defined locally on the subclasses.

Lock Position(s)

Locks the element in position on the diagram. Once the element is locked it cannot be
moved around the diagram unless it is unlocked.

Unlock Position(s)

Allows the element to be moved around within the diagram.

View menu

Toolbars

Toggles the display of the The toolbar and Toolboxes.
Menus 49

Status Bar

Toggles the display of the status bar at the bottom of the window, which provides
textual information about selected items and current operations.

Browsers

Toggles the display of all application browsers, as well as create a new one.

Description

Toggles the display of the Description Window, which contains the Documentation
Pane and the Code Pane.

Output

Toggles the display of the output window.

Filter

Filters label information on diagrams.

Zoom

Zooms in on the current diagram. Select the zoom level.

Scale to Window

Scales the current diagram down to fit entirely within the current diagram window
border. Scales according to the outer boundaries of the diagram - for example, the
outer state border of the state diagram - and not simply the area around visible
diagram elements.

Page Breaks

Toggles the visual indication of where page breaks appear on diagrams when printed.
The printer specified in the Printer Setup determines the exact location of page breaks.
You can also change this setting through the rose.ini file.

Refresh

Redraws the current diagram.

Browse menu

Use commands on the Browse menu to navigate through the diagrams and
specifications that represent your model.
50 Chapter 2 - User Interface Overview

Select Diagram dialog

When you select a diagram type from the Browse menu, a dialog appears for that type
of diagram. For instance, when you select Browse > Class Diagram... the Select Class
Diagram dialog appears (see Figure 7).

Figure 7 Select Class Diagram dialog

Using commands from the dialog, you can display, rename, create, and delete
diagrams.

Browse menu operations

Class Diagram...

Opens a Select Class Diagram dialog, allowing you to select a diagram to open, or to
create a new diagram. The dialog also allows you to rename or delete diagrams.

Use Case Diagram...

Opens a Select Use Case Diagram dialog, allowing you to select a diagram to open, or
to create a new diagram. The dialog also allows you to rename or delete diagrams.

Collaboration Diagram...

Opens a Select Collaboration Diagram dialog, allowing you to select a diagram to
open, or to create a new diagram. The dialog also allows you to rename or delete
diagrams.

Sequence Diagram...

Opens a Select Sequence Diagram dialog, allowing you to select a diagram to open, or
to create a new diagram. The dialog also allows you to rename or delete diagrams.
Menus 51

Component Diagram...

Opens a Select Component Diagram dialog, allowing you to select a diagram to open,
or to create a new diagram. The dialog also allows you to rename or delete diagrams.

Deployment Diagram...

Opens a Select Deployment Diagram dialog, allowing you to select a diagram to open,
or to create a new diagram. The dialog also allows you to rename or delete diagrams.

State Diagram

This menu item is only activated when you have selected a capsule, class, or protocol
on a diagram. Use this command to display the state diagrams associated with the
selected class or protocol in a class diagram. You can also use this command from a
class specification to display the state diagram for that class. This operation also opens
a state diagram for the top-level of the selected capsule.

Structure Diagram

This menu item is only activated when you have selected a capsule on a diagram. This
operation opens a structure diagram for the selected capsule.

Open Superclass

Opens the corresponding diagram on the immediate superclass. Only applies when
the current diagram is a capsule collaboration diagram or a state diagram (capsule,
protocol, or data class).

Show Subclasses

Displays a list of subclasses in a Choose Capsule Role Dialog. Only applies to
capsules. Selecting a capsule from the displayed subclass list and clicking OK opens
the corresponding diagram for the selected capsule. Only applies when the current
diagram is a capsule structure diagram or a state diagram (capsule, protocol, or data
class).

Go Inside

Replaces the current diagram window contents with the corresponding diagram for
the selected capsule role (for capsule structure diagrams) or substate (for capsule state
diagrams). For example, selecting a substate on a capsule state diagram and choosing
Browse > Go Inside causes the substate's state diagram to replace the current state
diagram in the same window. Only applies when the current diagram is a capsule
structure diagram or a state diagram (capsule, protocol, or data class).
52 Chapter 2 - User Interface Overview

Go Outside

Replaces the current diagram window contents with the corresponding diagram for
the selected capsule role (for capsule collaboration diagrams) or substate (for capsule
state diagrams). For example, selecting a substate on a capsule state diagram and
choosing Browse > Go Outside causes the substate's state diagram to replace the current
state diagram in the same window. Only applies when the current diagram is a
capsule structure diagram or a state diagram (capsule, protocol, or data class).

Expand

Opens the subdiagram associated with an item. Packages/subsystems have a default
main diagram that you can expand to if you select a package or a subsystem in
another diagram.

Parent

Selecting Browse > Parent or clicking the Browse Parent icon on the toolbar displays the
“parent” of the selected diagram or specification. If you have a specification selected,
the specification for the parent of the “named” item is displayed. For example, if you
select a substate selected in a state diagram, choosing Browse >Parent opens a state
diagram on the parent state from a substate.

Specification...

Opens the specification dialog for selected item(s) on the current diagram.

Top Level

Use this command to display:

� the top level main class diagram

� the top level main component diagram

� the deployment diagram for your model

Current Diagram New Current Diagram

Class diagram the main top level class diagram

State diagram the main top level class diagram

Collaboration diagram the main top level class diagram

Sequence diagram the main top level class diagram

Component diagram the main top level component diagram
Menus 53

Referenced Item

Displays a diagram or specification referenced by the selected item. In particular, you
can

� display a diagram showing the class of which the selected object is an instance

� display the diagram where the class, use case, or package is actually defined

� display the operation specification for a message, provided that the message is tied
to an operation; note that you must select the message label before executing this
command

If the selected icon represents an object, this command finds the object's parent class
and displays a diagram in which that class appears. If the class appears in multiple
diagrams, the diagram in which the class was created is displayed.

If the selected icon represents a class that was created in a different logical package,
this command displays a diagram from the logical package in which the class
appears. If the class appears in multiple diagrams from that logical package, the
diagram in which the class was created is displayed.

Previous Diagram

Brings to front or opens the last diagram that was current.

Build menu

Build

Opens the Build dialog from which you can choose the Build Level.

Package specification the main top level class diagram

Class specification the main top level class diagram

Object specification the main top level class diagram

Component package
specification

the main top level component diagram

Component specification the main top level component diagram

Process specification the deployment diagram for your model

Device specification the deployment diagram for your model

Connection specification the deployment diagram for your model
54 Chapter 2 - User Interface Overview

Quick Build

Builds the component incrementally.

Rebuild

Forces a complete build of a component. All classes references by the component will
be verified, regenerated, compiled, and linked.

Clean

Removes all files from the output directory.

Stop Build

Stops the build in progress.

Run (F5)

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog and a Target observability Port number filled in, the Target
observability interface is displayed allowing you to control the execution of the
model.

Note: The following four items only apply when a Target Observability session is
running.

Start (F5)

Starts the execution of the component instances. If the component instances are in the
reset state, execution begins with all fixed capsules being initialized (initial transitions
fired). If the component instances are in the stop state, execution resumes.

Stop (Shift+F5)

Stops the execution of the component instances at the current point of execution and
remembers the state of all capsules. Execution is stopped as soon as each currently
running transition is finished. The stop button does not halt execution in the middle
of a transition action.
Menus 55

Step (F10)

Steps through the next deliverable message. Pressing the step button while in the
stopped state causes the next message of the highest available priority to be delivered.
Any associated transitions are executed. Execution stops again as soon as the last
transition segment for that message has finished executing.

Restart (Ctrl+Shift+F5)

Resets the component instances, resetting all fixed and destroying all dynamic
capsule instances. The running component instance is terminated and a new one is
run.

Load

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run. The Load command spawns
an external process in which the model executable runs. You will likely see an external
command window appear.

The Attach Target observability flag must be set on the Component Instance
Specification dialog, and a Target Observability Port number filled in for the model to
be loaded within the tool.

The execution interface will be displayed allowing you to control the execution of the
model. See Execution basics for more information on the execution tools.

Reload

Kills the existing model process and runs the model again. The execution interface
stays open.

Shutdown

Kills the existing model process and closes the execution interface.

Settings...

Displays the Build Settings Dialog. You must use this dialog to specify the active
component before you can build the component.

Add Class Dependencies...

Runs a script that checks for any missing dependencies between model elements and
adds them. The script checks dependencies found in attributes or operations. It does
not check for code-level dependencies.
56 Chapter 2 - User Interface Overview

Component Wizard...

Activates the Component Wizard to help you through the steps of creating and
deploying a component.

Report menu

Generates lists of diagrams in which the selected class is a supplier in a relationship,
or in which instances of the selected class appear. These lists can be used to navigate
to the diagrams they contain.

Show Usage...

Obtains a list of all the locations where the selected item is used (a supplier in a
relationship).

This command displays a list of diagrams in the Show Usage dialog. Double-click on
a diagram from the list to display the diagram.

Show Access Violations...

Obtains a list of access violations in the model. An access violation occurs when an
element in one package references an element in another package that is not visible to
it.

The rules for determining if an element B in package P2 is visible to an element A in
package P1 are as follows:

� P1 and P2 are the same package OR

� B has its visibility set to Public AND

� there is a dependency from P1 to P2 OR

� there is a dependency from P1 to a package that contains P2 OR

� there is a dependency from a package that contains P1 to P2 OR

� there is a dependency from a package that contains P1 to a package that contains
P2 OR

� P2 is marked as global (in the Detail tab of the Specification dialog)
Menus 57

The Show Access Violations menu item is available for class diagrams and component
diagrams.

To check for access violations in the Logical View:

1 Open a class diagram.

2 With nothing selected in the diagram, choose the Show Access Violations menu item.

3 If there are any access violations, they are listed in a dialog. You can open an editor
that shows the cause of a violation by selecting it in the dialog and clicking Browse
(or by double-clicking on the violation). The list of violations can be sorted by
clicking on either the Violator or the Supplier column headings.

To check for access violations in a specific set of classes, select those classes on the
class diagram before choosing the Show Access Violations menu item. Selecting a
package on a class diagram is equivalent to selecting each class in that package.

To check for access violations in the Component View:

1 Open a component diagram.

2 With nothing selected in the diagram, choose the Show Access Violations menu item.

3 If there are any access violations, they are listed in a dialog.

To check for access violations in a specific set of components, select those components
on the component diagram before choosing the Show Access Violations menu item.
Selecting a package on a component diagram is equivalent to selecting each
component in that package.

The access violations calculation examines the existing class or component
relationships in the model. For this reason you should ensure that the relationships
are complete by building the model.

Show Code Occurrences...

Shows code occurrences in the Find tab of the Output window.

Show References...

Opens a dialog listing all the references to the selected model element from other
model elements (either in non-documentation properties fields or in diagrams). Does
not show detailed code references (use Find).

Documentation Report

Generates a data dictionary from the model.
58 Chapter 2 - User Interface Overview

Show Part Of Ancestors

This option is only available when your current diagram is a structure diagram.
Opens a dialog listing all the capsules that contain this capsule as a capsule role.

Show Part Of Descendants

This option is only available when your current diagram is a structure diagram.
Opens a dialog listing all the contained capsule roles of this capsule.

Query menu

The Query menu provides commands that control which model elements appear in the
current diagram. Use case diagrams, class diagrams and component diagrams
support the Query menu functionality.

Add <element> commands

Some menu items are only available when certain diagrams are active.

Use these commands to populate the current diagram with icons representing one or
more of the selected elements from the model. You can use this command to populate
a new (empty diagram) or to add elements to an existing diagram. In either case, you
must create or display the diagram first.

If relationships exist among the elements you are adding, or if relationships exist
between added elements and any elements already appearing in the diagram, icons
representing these relationships and their adornments will also appear in the
diagram. Use the Filter Relationships command to directly control which kinds of
relationships appear in the diagram.

Add Classes...

Adds classes from the browser to the current diagram. Brings up a dialog with a list of
available classes to choose from. This menu item is only visible when a Use Case or
Class Diagram is open.

Add Capsules...

Adds capsule classes from the browser to the current diagram. Brings up a dialog
with a list of available capsule classes to choose from. This menu item is only visible
when a Use Case or Class Diagram is open.
Menus 59

Add Protocols...

Adds protocol classes from the browser to the current diagram. Brings up a dialog
with a list of available protocol classes to choose from. This menu item is only visible
when a Use Case or Class Diagram is open.

Add Use Cases...

Adds use cases from the browser to the current diagram. Brings up a dialog with a list
of available use cases to choose from. This menu item is only visible when a Use Case
or Class Diagram is open.

Add Components...

Adds components from the browser to the current diagram. Brings up a dialog with a
list of available components to choose from. This menu item is only visible when a
Component Diagram is open.

Add Interfaces...

Adds classes from the browser to the current diagram. Brings up a dialog with a list of
available classes to choose from. This menu item is only visible when a Component
Diagram is open.

Expand Selected Elements...

Allows you to specify relationship level and client/supplier criteria for choosing
additional elements. All settings in the dialog are remembered from the previous use.

Use this command to show additional model elements in the current diagram. This
command enables you to add icons to the current diagram elements having a
specified relationship with a selected element or set of elements. For example:

� All classes that inherit from a selected class
� The classes from which a selected class inherits
� The classes that a selected class associates to
� The classes that directly use a set of selected classes
� All components that a component uses
� All packages that a component uses
� All interfaces that a component uses
� All components that a package uses
� All packages that a package uses
� All interfaces that a package uses
� All interfaces that a component realizes
60 Chapter 2 - User Interface Overview

From the Expand Selected Elements dialog, you can display the Class Specification -
Relations tab on page 243 for class diagrams or for component diagrams to specify
relationship-kind and access-kind criteria for choosing additional elements.

Note: The level cannot be changed if you select Expand indefinitely.

Hide Selected Elements...

Specifies the elements whose icons are to be removed from the current diagram.

Use this command to remove icons representing components from the current
diagram. The components represented by these icons are not deleted from the model.

By default, this command removes only the components whose icons are
selected. You can optionally remove icons representing components that are
clients or suppliers of the selected components.

Filter Relationships

Displays the Relations tab from the class and use case diagrams, and the Visibility
Relations dialog from the component diagram. Both enable you to specify which
kinds of relationships can appear. The filter relationship dialog remembers the last set
of filter settings used. Use this command to control which kinds of relationships
appear in the current diagram.

Tools menu

Layout

Opens a submenu of options for rearranging the diagram:

Layout Diagram

Analyzes the location of all icons in the current diagram, determines the optimal
location for the icons, and redraws the diagram.

Align/Distribute...

Opens the Align and Distribute dialog. The selected objects are arranged according to
the choices made in the dialog. Alignment and distribution operations can be
performed in both horizontal and vertical arrangements.
Menus 61

Change View Spread

Creates space in a diagram for adding new views or creates a cleaner appearance.
There are a number of different ways the views can be spread out by specifying the
Spread Technique.

� Uniform - indicates that the views are spread out across the diagram uniformly by
the percentage. If a view is at location (100,100) and they specified a horizontal
percentage of 10% and a vertical percentage of -10%, the new location of the view
would be (110, 90). This affects all views in the diagram the same way.

� Constant Radial - indicates that the views spread outward/inward from a central
point. The preview displays a crosshair that specifies where the spread starts. It
can be moved around interactively in the preview window with the mouse. The
views spread out a constant distance based on the diagram size.

� Decreasing Radial - is similar to Constant Radial except that the views spread
progressively less far the farther away from the central point they are.

� Increasing Radial - is similar to the Constant Radial except that the views spread
progressively more the farther away from the central point they are.

The preview allows the user to play with the settings until the desired spread is
achieved.

Autosize All

Resizes all node views in the diagram to fit their labels.

Make Same Size

Makes two or more node views the same size in either height or width, or both. You
can choose from smallest, average, or largest of all the selected views to make the new
width and height. The dialog provides a preview screen.

Create

Opens a submenu of options for creating elements to place on the current diagram.
Use the commands on the Create menu to place the icons in the active diagram.

When you choose an item from the Create menu, the corresponding diagram toolbox
tool becomes active and the pointer changes to a cross (for a node) or an arrow (for a
relationship). You can then use the mouse to position the pointer and place the new
item.

The contents of the Create menu change to match the current diagram's toolbox.
62 Chapter 2 - User Interface Overview

Check Model

Provides a way of re-executing the model validation that happens at open time.

Check Model is designed to be used when you are saving your model to multiple
controlled units to ensure that all the units are consistent with one another. This is
especially useful when parallel development is going on in multiple controlled units,
since it is possible for different units to get out of sync with one another.

In a model, where one item holds a reference to another item, it is possible that a
reference exists, but there isn’t an item in the model of the right kind or with the right
name. In that instance, the reference is unresolved.

Check Model checks the reference:

� to the supplier of any kind of relationship, uses, instantiation, metaclass, logical
package import, module visibility, connection, and so forth

� from a view on a diagram to an item in the model

Import Code...

Opens a file browser allowing an external code file to be selected and imported. See
Importing Rational Rose Generated Code on page 141.

Model Properties

Use the commands on the Model Properties submenu to display or modify the model
properties associated with the model and its elements, or to display or modify model
property sets.

Edit

Opens the Options Dialog with the C++ Tab if nothing is selected. This tab is used to
display or modify model property values or model property sets.

Replace

Loads model property sets from the specified model property (.pty or .rtpty) file into
the current model. This command deletes all model property sets in the current
model, replacing them with the imported model property sets. A model component
attached to a model property set that is replaced becomes attached to the replacement
model property set. A model element attached to a model property set which is not
replaced becomes attached to its default model property set. To make the replaced
model properties a permanent part of the current model, you must save the model.
Menus 63

Export

Saves the current model's model property sets to a specified model property file (.pty
file). When you export model properties, all of the model property sets stored with the
model are written to a file that can be imported into another model.

This command displays a dialog in which you can specify the location and name of
the model property file to be exported.

Add

Adds new model properties from a model property set contained in a model property
file.

Update

Modifies the existing model properties in the current model by adding and/or
changing them to include the model properties in the update model property set. A
model element attached to a model property set that is updated becomes attached to
the updated model property set. A model element attached to a model property set
that is not updated becomes attached to its default model property set.

This command opens a File Browser so you can specify the location and name of the
model property file to be used to update the existing model properties.

To make the updated model properties a permanent part of the current model, you
must choose the Save command from the File menu.

Options...

Opens the Options Dialog, which provides control over many general model
properties. (See “Toolset Options” on page 384.)

Source Control

Opens a submenu of operations for interacting with a source control/configuration
management (CM) system. For information on Source Control options, see Source
Control Fundamentals in the Guide to Team Development for Rational Rose RealTime.

Configure...

Opens the Model Specification dialog on the Source Control tab, which allows you to
specify options relating to source control, to specify the source control system to use,
and to generate unique identifiers for all elements of the model.

Note: Generating unique identifiers affects the entire model. Review Unique Ids on
page 131 before setting this option.
64 Chapter 2 - User Interface Overview

Get Entire Model

Requests a given version of all files from the CM tool, and then loads the new files.

Synchronize Entire Model

Synchronizes the status of the model elements with the current source control tool
and reloads any files that have been changed outside of the toolset.

Refresh Status of Model

Synchronizes the status of model elements displayed in the model browser with the
status as reported by the CM tool.

Select Checked out Units in Browser

Selects all the units in the browser that are currently checked out.

Show Unit Versions

Shows a dialog containing a list box, which displays the version of each unit.

Submit All Changes to Source Control

Determines what changes have not yet been submitted to source control, then
prompts you to add/checkin these changes as appropriate.

Synchronize Model with File System...

Throws away any unsaved edits and reloads all files from the file system.

Open Script

Opens a file browser to select a Rose REI or RRTEI script to open for editing. See The
Script Editor Window in the Rational Rose
RealTime Extensibility Interface Reference.

New script

Opens the script editor to create a new Rose REI or RRTEI script. For more
information, see The Script Editor Window in the Rational Rose
RealTime Extensibility Interface Reference.

From the script editor, you can invoke several dialogs.
Menus 65

Add Watch

Use the Add Watch dialog to add a variable to the Script Editor's watch variable list.
For more information, see Adding Watch Variables in the Rational Rose
RealTime Extensibility Interface Reference.

Modify Variable

Use the Modify Variable dialog to change the value of a selected watch variable. For
more, information, see Adding Watch Variables in the Rational Rose
RealTime Extensibility Interface Reference.

Find

Use the Find dialog to locate instances of specified text quickly anywhere within your
script. For more information, see Finding Specified Text in the Rational Rose
RealTime Extensibility Interface Reference.

Replace

Use the Replace dialog to automatically replace either all instances or selected
instances of specified text. For more information, see Replacing Specified Text in the
Rational Rose
RealTime Extensibility Interface Reference.

Calls

Use the Calls dialog to determine the procedure calls by which you arrived at a point
in your script when you are stepping through a subroutine. For more, information,
see Displaying the Calls dialog in the Rational Rose RealTime Extensibility Interface
Reference.

Go To Line...

Use the Go To Line dialog to jump directly to a specified line in your script. For more
information, see Moving the Insertion Point to a Specified Line in Your Script in the
Rational Rose RealTime Extensibility Interface Reference.

Dialog Editor

Use the Dialog Editor to insert or edit a dialog in your script. For more information,
see Working with the Dialog Editor in the Rational Rose
RealTime Extensibility Interface Reference.
66 Chapter 2 - User Interface Overview

Aggregation Tool ...

Activates the Aggregation Tool to help you create and modify attributes. For more
information see Aggregation Tool.

Attribute Tool ...

Activates the Attribute Tool to help you create and modify attributes. For more
information see Attribute Tool.

Operations Tool ...

Activates the Operations Tool to help you create and modify attributes. For more
information see Operation Tool.

Model Integrator

Opens the Model Integrator tool.

Web Publisher

Opens the Web Publisher tool.

C++ Analyzer

Opens the C++ Analyzer tool.

Add-Ins menu

Add-In Manager

Opens the Add-In Manager dialog to activate or deactivate add-ins.

Several add-ins are shipped with the Rose RealTime product, including:

� C++ language code generators

� Component Wizard

� Add Dependencies

� Generate Documentation

� C language code generators

Other add-ins will be released through Rational RoseLink partners. See the Rational
Rose RealTime web site for links to RoseLink partner add-ins.
Menus 67

http://www.rational.com/products/rosert/index.jtmpl
http://www.rational.com/products/rosert/index.jtmpl

Window menu

The Window menu has commands for manipulating the windows within the Rose
RealTime environment, and a list of all the currently open windows. Use commands
from the Window menu to control the automatic placement of multiple diagram and
specification windows within the application window. You can also use commands on
the Window menu to redisplay windows that have been covered by other windows or
iconified.

To quickly bring a particular window to the forefront, select the name of the window
from the menu.

Cascade

Arranges all windows in an even-stepped arrangement. The windows are all sized to
a standard size, and the title bar of each window is visible while the body of each
window is covered by the next window in front. The most recently-viewed window is
completely visible.

Tile Horizontally

Arranges all windows horizontally within the Rose RealTime window. The
application window is divided into equal-size areas, with one diagram or
specification window in each area. The most recently visited window is placed in the
upper left corner. Less recently-visited windows are placed to the right of more
recently-visited windows.

Tile Vertically

Arranges all windows horizontally within the Rose RealTime window. The
application window is divided into equal-size areas, with one diagram or
specification window in each area. The most recently visited window is placed in the
upper left corner. Less recently-visited windows are placed below more
recently-visited windows.

Arrange Icons

Arranges collapsed windows evenly along the bottom of the Rose RealTime window.

Close

Closes the currently active window.
68 Chapter 2 - User Interface Overview

Close All

Closes all currently open windows.

Window Selectors

The open windows within your application are listed on the Window menu with a set
of numerical selectors. The windows are listed by title. Selecting one of these items
from the menu opens the specified window and brings it to the forefront.

Help menu

What’s This?

Opens the context-sensitive Help.

Contents

Opens the Help Table of Contents.

Search...

Opens the Help Search.

Index...

Opens the Help index.

Using Help

Opens a Help topic explaining how the Help system works.

Tutorials

Opens the Tutorials book from which you can choose tutorials based on your skill
level and background.

Example Models

Opens the Example Models book.

Keyboard Shortcuts

Opens a Help topic on keyboard shortcuts.
Menus 69

Welcome to Rational Rose RealTime

Opens the Startup Screen.

About Rational Rose RealTime

Opens the About Rose RealTime dialog, which shows information on the product
version, add-ins, support contacts, and so forth.

Browsers

Model elements are created and viewed through Browsers. The primary browser is
the Model browser, which provides access to all elements of the current model.
Browsers list the model elements - usually in a hierarchical way - allowing elements to
be expanded to show additional information. Also, most browser lists can be filtered
in various ways.

Model browser

The browser is an easy-to-use alternative to menus and toolbars for visualizing,
navigating, and manipulating items within your model.

The browser is a hierarchical navigational tool that lets you view the names and icons
representing use case, collaboration, deployment and class diagrams, as well as model
elements such as logical packages, classes, interfaces, associations and component
packages associated with the model.

Model browser contents

The model browser displays all of the elements of the model, organized into the four
main views: Use Case View, Logical View, Component View, and Deployment View.

Figure 8 shows the main application window with the model browser open.
70 Chapter 2 - User Interface Overview

Figure 8 Rose RealTime application window with model browser

Each of the views within the model is shown as a separate folder in the model
browser. All model elements created within a view are displayed as sub-elements of
that view folder. Views can be expanded and collapsed by clicking on them.

Tabs

There are three tabs on the bottom of the Model Browser:

� Model View tab - shows all the packages, classes and diagrams in the model.

� Containment View tab - shows the containment hierarchy of the capsule classes in
the model.

� Inheritance View tab - shows the inheritance hierarchy of the capsule classes, data
classes, and protocols in the model.
Browsers 71

A fourth tab - the RTS tab - appears when a component instance is run with Target
observability enabled. This tab provides a run-time view of the model, showing the
list of capsule incarnations, and providing buttons to control the model execution (see
Rose RealTime Execution Interface on page 320).

Navigating

The plus sign (+) sign next to an icon indicates the item is collapsed, and additional
information is located under the entry. Click on the + sign and the tree is expanded.
Conversely, a minus (-) sign indicates the entry is fully expanded.

Double-clicking on the diagram name or icon displays the diagram. Double-clicking
on any other item displays the associated specification.

Displaying the Browser

When the Browser is first displayed, it is docked along the left edge of the frame. To
move the window, click and drag on the border. The window outline indicates the
window state: a thin, crisp line indicates the window is docked, while a thicker,
hashmark-type border indicates it is floating.

To disable a browser, select it from View > Browsers. The check mark is removed along
with the display of the browser.

Characteristics unique to the browser state (docked or floating) are discussed below.

Docked:

� The window can be moved within the dockable region of the frame, but it remains
positioned along the border.

� The size remains fixed. The free side is resizable.

� A ToolTip displays the icon title when partially covered by the browser border.

� The window can be docked on any border.

Floating:

� The window can be moved to any location, and is always displayed on top of the
diagram.

� Size can be changed via click and drag along the border in a vertical or horizontal
direction.
72 Chapter 2 - User Interface Overview

Refreshing the Browser

With the mouse positioned inside the browser, click Refresh from the shortcut menu.

Multiple Browsers

You can have multiple versions of the same browser, and apply filtering that is
different between them. For instance, you could open up a second browser and set its
filter to show only protocols and their signals.

Filtering

You can filter various packages, diagrams, and model elements using the Filter dialog.

Figure 9 Filter dialog

Diagram Editors

There are several different kinds of diagrams that can be created and edited through
Rose RealTime. Each diagram allows you to specify or document a different aspect of
the model. Some diagrams are accessible in only one view, while other diagrams are
found in more than one view. Each icon on a diagram represents an element in the
Diagram Editors 73

model. Since diagrams are used to illustrate multiple views of a model, each model
element can appear in none, one, or several of a model's diagrams. This means you
can control which components and properties appear on each diagram.

The following is the complete list of diagrams available in Rose RealTime:

� Class diagram

� Use case diagram

� Collaboration diagram

� Sequence diagram

� Structure diagram

� State diagram

� Component diagram

� Deployment diagram

� Structure Monitor diagram

� State Monitor diagram

See the individual diagram topics for information on creating or modifying that
particular diagram.

Each editor is displayed in a separate window. The diagram editors all have
associated toolboxes.

Adding Icons to a Diagram

To create or add icons to a diagram, you can

� use tools on the toolbox

� use the drag and drop capabilities of the Model browser, which you can undo and
redo from the Edit menu

� invoke commands from the Query menu, which add icons representing specific
model elements

You can cut, copy, and paste icons between different diagram windows using
commands on the Edit menu. The Edit menu also provides commands that enable you
to select, find, and rename icons. The Browse menu provides commands to navigate
among diagrams, as well as create, rename, and delete them. Commands on the
Report menu provide additional diagram navigation capabilities. You can print
diagrams using the Print command (see Print Specifications on page 123).
74 Chapter 2 - User Interface Overview

Opening Specifications

Clicking the Specification command from the Browse menu displays the specification
for the model component represented by the selected icon.

Popup menu

Clicking the right mouse button on an icon activates the popup menu, which enables
you to modify properties (for icons that represent relationships) or select properties to
be displayed within the icon. Select the Open Specification command from the popup
menu to open the specification dialog.

Background Popup menu

The Background popup menu changes according to the diagram in which you click.
Following are some basic menu items:

Zoom

Zooms in on the current diagram. Select the zoom level.

Scale to Window

Enables the automatic resizing of icons to accommodate text.

Layout

Opens a submenu of options for rearranging the diagram:

Layout Diagram

Analyzes the location of all icons in the current diagram, determines the optimal
location for the icons, and redraws the diagram.

Align/Distribute

The selected objects are arranged according to the choices made in the dialog.
Alignment and distribution operations can be performed in both horizontal and
vertical arrangements.

Change View Spread

Creates space in a diagram for adding new views or creates a cleaner appearance.
There are a number of different ways the views can be spread out by specifying the
Spread Technique.
Diagram Editors 75

� Uniform - indicates that the views are spread out across the diagram uniformly by
the percentage. If a view is at location (100,100) and they specified a horizontal
percentage of 10% and a vertical percentage of -10%, the new location of the view
would be (110, 90). This affects all views in the diagram the same way.

� Constant Radial - indicates that the views spread outward/inward from a central
point. The preview displays a crosshair that specifies where the spread starts. It
can be moved around interactively in the preview window with the mouse. The
views spread out a constant distance based on the diagram size.

� Decreasing Radial - is similar to Constant Radial except that the views spread
progressively less far the farther away from the central point they are.

� Increasing Radial - is similar to the Constant Radial except that the views spread
progressively more the farther away from the central point they are.

The preview allows the user to play with the settings until the desired spread is
achieved.

Autosize All

Resizes all node views in the diagram to fit their labels.

Make Same Size

Makes two or more node views the same size in either height or width, or both. You
can choose from smallest, average, or largest of all the selected views to make the new
width and height. The dialog provides a preview screen.

Select in Browser

Selects an element from the diagram in the browser.

Filter

Use these options to filter information on diagrams.

Scroll Bars

Diagram windows provide vertical and horizontal scroll bars to pan across diagrams
larger than the window.

Overview Navigator

You can also use the Overview Navigator - the hand located in the bottom right-hand
corner of the diagram - to navigate around a diagram.
76 Chapter 2 - User Interface Overview

Toolboxes

Every diagram has an associated toolbox, which contains icons of tools that can be
applied to that diagram. If the current diagram is write-protected, the diagram
toolbox is not displayed. The diagram toolbox is also only available when a diagram
is displayed.

There are several tools that are common to every toolbox:

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text tool

Use to add text anywhere in the structure diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can also hyperlink to
diagrams or URLs.

Constraint tool

Use to add UML constraints to any diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor tool

Use to anchor a note to a particular element on the diagram. Allows notes to be
moved with the element they are anchored to.
Diagram Editors 77

Lock Selection tool

Use to make the tool selections stay locked. That is, if the lock is on, then the next tool
you select will stay selected after you've completed the operation. This allows you to
perform a number of operations with a particular tool without having to reselect the
tool after each operation.

You may also hold down the shift key to keep a tool selected. The last selected tool
stays active until you release the shift key.

These tools are available in the following toolboxes:

� Use Case Diagram Toolbox
� Class Diagram Toolbox
� Structure Diagram Toolbox
� State Diagram Toolbox
� Collaboration Diagram Toolbox
� Sequence Diagram Toolbox
� Component Diagram Toolbox
� Deployment Diagram Toolbox

Specification Dialogs

Specification dialogs are used to edit the properties of any element in the model. All
specification dialogs contain at least a Name and Documentation field. Some
specification dialogs contain many fields split across different tabs. The example
below shows a specification dialog with multiple tabs. All properties of a modeling
element are accessible through the specification dialog for that element. Many of the
properties on the specification dialog are also visible/editable through one or more
diagram editors.
78 Chapter 2 - User Interface Overview

Figure 10 Sample specification dialog for a capsule

Specification dialogs are resizable. The tab you are in is remembered so that the next
time you open the specification dialog you go to the same tab. The position and size of
specification dialogs are saved with the workspace.

Spreadsheet-type functionality for list controls within a
specification dialog

When the list control has focus, the following applies:

� F2 or Enter key puts the field in inline edit or drop down combination mode. Press
the Enter key again to accept the data and move to the next row in the column.

� The Tab key also accepts data (when editing a cell) and goes to the next column of
the same row. If you are in the last column, it moves to the first column of the next
row. If you are in the last column of the last row, it inserts a new row and begins
inline editing.

� When not editing a cell, the Shift + Tab combination works as the reverse of Tab;
that is, it moves to the previous column in the same row, or if you are in the first
column it moves to the last column of the previous row. If you are in the top-left
most cell, it does nothing.

Browse button

Clicking Browse displays four choices:
Specification Dialogs 79

� Select in Browser - highlights the selected element in the browser

� Browse Parent - opens the specification for the parent of the selected element.

� Browse Selection - opens the specification for the currently selected element.

� Show Usage - displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list which
shows the usage of a message.

OK button

Accepts any changes and close the dialog.

Cancel button

Ignores any changes that were made and close the dialog.

Apply button

Commits any changes that were made.

Help button (?)

Opens the online help for the current specification dialog.

Exit button (X)

Closes the specification dialog.

Tabs

Many dialogs include a number of tabs across the top for grouping different
specification information. The Files tab, Relations tab, Components tab, Attributes
tab, Operations tab, and Unit Information tab may be displayed for many different
model elements. Unit Information tab only appears if the model is being controlled as
units.

Files tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
80 Chapter 2 - User Interface Overview

Relations tab

The relations list displays relations between classes as specified in diagrams. Relations
can be inserted, deleted, and moved up and down in the list. Each relation has a
corresponding Association specification for editing the relation attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass.

Components tab

The components list displays a list of components to which this class has been
assigned. Components can be inserted, deleted, and moved up and down in the list.
Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component brings up the Components popup menu.

Attributes tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.

The descriptions for each field follow:

� Visibility Adornment (Unlabeled):

❑ Public - the attribute is publicly visible, and is accessible to all clients.

❑ Protected - the attribute may be accessed only by subclasses, friends, or by
operations of this class.

❑ Private - the attribute is accessible only by the class itself or by its friends.

❑ Implementation - the attribute is accessible only by other operations in this
class.

� Stereotype - displays the name of the stereotype.
Specification Dialogs 81

� Name - displays the name of the attribute.

� Class - identifies where the attribute is defined.

� Type - this can be a class or a traditional type, such as int.

� Initial - displays the initial value of an object.

The Attribute tab is active for all class types.

Show Inherited

Click this option to see attributes inherited from other classes. If there is no check
mark in this field, you can view only attributes associated with the selected class.

Note: Rose RealTime allows you to directly modify any attribute shown in the
attributes list by displaying the attribute specification dialog. You should be careful
when modifying base class attributes for it may have implications on other elements
in your model which reference or are subclassed from the base class.

Creating New attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Moving and copying attributes

To move an attribute from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an attribute from one Specification sheet to another, drag and drop it while
holding down the CTRL key. From the Edit menu of the main window, you can select
Undo and Redo.

Operations tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification.

The operations are listed with the following fields:

� Visibility Adornment (Unlabeled); the visibility of the operation is indicated with
an icon. Following are the visibility options:

❑ Public - the operation is accessible to all clients.
82 Chapter 2 - User Interface Overview

❑ Protected - the operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - the operation is accessible only to the class itself or to its friends.

❑ Implementation - the operation is accessible only by operations of this class.

� Stereotype - displays the name of the stereotype.

� Signature - displays the name of the operation.

� Class - identifies which class defines the operation.

� Return Type - identifies the type of value returned from the operation.

The Operation tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Click this option to see operations inherited from other classes. If there is no check
mark in this field, you can view only operations associated with the selected class.

Note: Rose RealTime allows you to directly modify any operation shown in the
operations list by displaying the operations specification dialog. You should be
careful when modifying base class operations for it may have implications on other
elements in your model which reference or are subclassed from the base class.

Creating New Operations

To enter an operation in the Class Specification, select Insert from the popup menu. A
new operation with a default name is added to the operations list.

Moving and copying Operations

To move an operation from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an operation from one Specification sheet to another, drag and drop it while
holding down the CTRL key. From the Edit menu of the main window, you can select
Undo and Redo.

Unit Information tab

The specification dialog for a controlled element includes a Unit Information tab.
Specification Dialogs 83

Figure 11 Unit Information tab

Owned by model

Indicates whether the unit is owned by this model or whether it is owned by another
model and shared into this model. This setting is not directly editable.

Under source control

Indicates whether this element has been added to source control. This setting is not
directly editable.

Control new child units

Controls whether newly created controllable elements in this package will be
individually controlled by default. This check box is only displayed in the Unit
Information tab for a package.

Disallow model-relative pathnames

Informs Rose RealTime to not use the implicit $@ virtual pathmap symbol when
saving units located anywhere within this package. This check box is only displayed
in the Unit Information tab for a package.
84 Chapter 2 - User Interface Overview

Scratchpad

Indicates that the package is a scratch pad. This check box is only enabled in the Unit
Information tab for a package that is not under source control.

Filename

Displays the name of the file that is used to save this controllable unit. This field is not
directly editable.

Version

Displays the version identifier for this controlled unit. If this information is not
known, then ‘<unknown>’ is displayed. The ability to extract this version information
depends on the source control tool being used. If a unit is not under source control,
then this field is not displayed.

Scratch Pad Packages

When working on a model in a team environment, it is common for a developer to
create temporary model elements that are not intended to be shared with the rest of
the team. For example, a developer may create a temporary component when unit
testing a change to a capsule class. If the model is under source control, then the
developer will also not want these temporary elements to be checked in with the other
changes they are making.

In order to support temporary work within a controlled model, Rose RealTime
supports scratch pad packages. A scratch pad package is a package that will never be
added to source control. Also, in a model that is under source control, changes can be
made to a scratch pad package without the toolset requiring that package be checked
out. This allows multiple team members to make temporary changes within the
scratch pad without encountering any contention issues.

Elements can be moved into or out of a scratch pad package by dragging them to
another package in the browser. Elements can also be copied into (or out of) a scratch
pad package using control-drag.

The controllable elements within a scratch pad package cannot be individually
controlled. If a controlled unit is moved into a scratch pad package, then it will no
longer be controlled.

To create a scratch pad package:

1 Create a package and give it a descriptive name, for example, ScratchPad.

2 Select the package in the browser and choose File > Control Unit.
Specification Dialogs 85

3 Open the Specification dialog for this package and change to the Unit Information
tab.

4 Select the Scratchpad and click OK.

5 Save the package containing the scratch pad. Optionally you can also save the
scratch pad. If the containing package is under source control, it should be checked
out and checked in.

Searching and Sorting

Using Sort

Sorting in the Browser

Sorting in the browser enables you to arrange classes, attributes, operations, and
packages in alphabetical order.

Follow these steps to place items alphabetically in the browser:

1 Highlight a class or package icon.

2 Right-click on the icon.

3 Click Sort in the shortcut menu.

Note: The arranged items in the browser are not saved when you close the
application.

Right-clicking in an application browser displays the popup menu, in which Sort is an
item. Choose between Alphabetical Order and Internal Order. Sort settings are saved
for each browser in your workspace.

Sorting in the Class Specification

Sorting in class specification enables you to arrange attributes and operations three
ways.
86 Chapter 2 - User Interface Overview

Follow these steps to arrange items in class specification:

1 Highlight an attribute or operation.

2 Right-click on any Field Identifier bar located in class specification.

3 Click either Ascending, Descending, or No Sort from the shortcut menu options.

❑ Ascending - lists attributes and operations in case-sensitive alphabetical order.

❑ Descending - lists attributes and operations in reverse, case-sensitive
alphabetical order.

❑ No Sort - lists attributes and operations in the order they are specified in the
model.

Find dialog

You can use the Find dialog to search detail code segments or to search for model
elements by name. Results are displayed in the Find tab of the Output window (View >
Output) or optionally in the Find 2 tab of the Output window.

Searching code

Use the Find dialog to find all uses of a class in detail code or a class that is a property
of another class. For example, you could find attributes of a specific type or signal
data types of a specific name.

The Find dialog searches for the specified text in all detail level code in a model:
transitions, entry/exit code, choice points, guards, and operations. It also searches the
dimension and type property of all attributes, the data type of signals, documentation,
and language tab properties.
Searching and Sorting 87

Figure 12 Find dialog

Searching for model elements by name

You can also search the model for elements whose name matches the string specified
as the Item to find. Selective searching based on the type of element is also supported,
for example, search only capsules or state diagrams.

Once a search is complete, all matches are shown in the Find tab of the Output
window (View > Output). For most matches, you can either double-click or press the
Browse button to go directly to the specification dialog or diagram.

Selective searching

You can toggle several items at once by pressing the Shift key, then selecting a set of
elements types from the list, then using the SPACEBAR to toggle the check boxes on or
off.

Replace dialog

You can use the Replace dialog to search and replace detail code segments or to search
and replace for model elements by name. Results are displayed in the Find 2 tab of the
Output window (View > Output).
88 Chapter 2 - User Interface Overview

Searching code

Use the Replace dialog to find and replace all uses of a class in detail code or which is
a property of another class. For example, you could find and replace attributes of a
specific type or signal data types of a specific name.

The Replace dialog searches and replaces for the specified text in all detail level code
in a model: transitions, entry/exit code, choice points, guards, and operations. It also
searches the dimension and type property of all attributes, the data type of signals,
documentation, and language tab properties.

Figure 13 Replace dialog

Searching for Model Elements by Name

You can also search and replace the model for elements whose name matches the
string specified as the Item to find. Selective searching and replacing based on the
type of element is also supported, for example, search and replace only capsules or
state diagrams.

When you click Replace, a secondary dialog (Figure 14) appears with options t o Find
Next, Replace, Replace All, and Cancel. After the replace operation has taken place,
you can query the Find tab in the Output window to view the results of the search and
replace.
Searching and Sorting 89

Figure 14 Replace Fields dialog

Selective searching

You can toggle several items at once by pressing the SHIFT key, then selecting a set of
elements types from the list, then using the SPACEBAR to toggle the check boxes on or
off.
90 Chapter 2 - User Interface Overview

3Wizards and Tools
Component Wizard

To run your model, you must build it and then execute it on a processor. A component
describes how to build a set of capsules and classes. The Component Wizard helps
you to quickly create C++ and C Executable components. It allows you to configure
the following component properties:

� Language
� Top level capsule
� Output directory
� Executable name
� Target Configuration

The Component Wizard is available from the Build > Component Wizard menu item.

Note: You cannot create Libraries and External Libraries with the Component wizard.

To provide the initial information for a component:

1 From the Build menu, click Component Wizard.
91

2 Click Next to start.

3 Specify a meaningful name for the component.

4 Specify the location of the package in the Model View tab in the browser. The default
location is the Component View package.

5 Indicate whether this component is the active component.

If you find yourself building and running the same component and component
instances often, set this component as an active component. When a component is
configured as being active, the Toolbar build icons and menu items become
available for easy access to common build and run commands. In addition, you
can configure which component instances (executables) automatically run when
you click Run. You can set this option later by selecting the component from the
Model View tab in the browser, then right-click and select Set As Active.

6 Select the name of the diagram to add the component instance.

Adding the component instance to the diagram provides you with a graphical
representation of the components in your model.
92 Chapter 3 - Wizards and Tools

7 Click Next.

8 Select a language for the component.

9 Click Next.

10 Review the summary of specified settings.
Component Wizard 93

11 Click OK to proceed.

12 Click Next to customize the component (recommended).

Or . . .

Click Cancel to create the component without customization and to close the
Component Wizard.
94 Chapter 3 - Wizards and Tools

13 You can either set the top level capsule or leave it unspecified.

If you specify a top level capsule to compile for this component, the top capsule
will define the compilation closure for the component. All classes, including
capsule and protocol classes referenced directly or indirectly by the top capsule are
then compiled as part of the component.

14 Specify an Executable name.

You can specify the name, or a name with an absolute path, of the executable that
is created when the component is built. By default, the executable name is set to
the name of the component's top level capsule.

Note: If an absolute path is not used in the Executable name box, the location of the
executable will be in the following component build output directory:

<output_dir>/build

15 Specify any Default arguments.

Some platforms do not permit the passing of command line arguments to an
executable at load time. As a result, the Default arguments box provides a
mechanism for getting execution arguments into the executable. You can use
RTMain::argStrings() to retrieve any passed command line argument within
your model. Type a comma-separated list of quoted arguments into this box,
such as:

"134.434.344.4","barneyht","delay=98"

The Default arguments box is only for targets that cannot accept command line
arguments. Targets that can accept command line arguments ignore anything in
the Default arguments box.
Component Wizard 95

16 Click Next.

17 Specify the location for the build results.

18 Specify the name of the Code gen directory.

19 Provide a description that identifies the purpose of this component.

20 Click Next.
96 Chapter 3 - Wizards and Tools

21 Specify the location of the Services Library directories that contain the
configuration information, make files, libraries and include files.

Specify the path to the root directory for the specific Services Library desired. This
name must be specified as a full path to the root directory of the Services Library.

The Target Services directory contains all the scripts and programs to generate and
compile a component. If this directory is not configured correctly, you will not be
able to successfully generate or compile.

By default this field references the Services Library in your Rose RealTime home
directory $ROSERT_HOME/C++/TargetRTS. You can change this location to any
other directory that contains the C++ Services Library.

22 Select a Configuration.

This property uniquely identifies the configuration of the Services Library used to
compile and link the component. The configuration name is composed of three
parts: os.processor-compiler-version.

For example, the configuration for a Windows NT 4.0 multi-threaded platform
with an x86 processor built with Microsoft Visual C++ version 6.0 is:

NT40T.x86-VisualC++-6.0

To view the valid configuration names, examine the directories located in the \lib
subdirectory of the Services Library root. If you build different configurations of
the Services Library, the new configuration appear in this list.
Component Wizard 97

23 Click Finish.

Or . . .

Click Return to modify previous settings.

24 Review the contents of the Summary window.

25 Click OK to create the component.

26 Click OK and verify your component in the Model View tab in the browser.
98 Chapter 3 - Wizards and Tools

Aggregation Tool

The Aggregation Tool enables you to quickly create aggregate and composite
associations. An aggregation association is a special form of association that specifies
the whole-part relationship between an aggregate (whole) and the component (part).
There are many examples of aggregation relationships: within a Department there are
Employees, and a Computer is composed of a number of Devices.

Figure 15 Aggregation Association

An aggregation is just a special kind of association. Use the Aggregation Tool to create a
new aggregation, or modify an existing one. You can access the Aggregation Tool from
the following:

� Tools > Aggregation Tool . . .
� select an association in a class diagram, then right-click and select

Aggregation Tool . . .

� select two classes, then right-click and select Aggregation Tool . . .

Note: If you use the Aggregation Tool to create or modify an aggregation, the model
diagrams are not automatically updated. To update your model diagrams, you must
use Query > Filter Relationships.
Aggregation Tool 99

Figure 16 Aggregation Tool

Class Name

Specifies the name of a class included in the association.

Association Name

Specifies the name of the association. This name should describe the nature of the
relationship between the two classes.

Aggregation Association Type

Specifies the type for the association end. The end types are:

� - represents an aggregation

� - represents a composition

� - an association end (other end can be or)

� - an association end (other end will be)
100 Chapter 3 - Wizards and Tools

Name

Specifies the name for the association end. The end of each association is called an
association end or an end. You can label ends with an identifier that describes the role
that an associate class plays in the association. This name should describe the nature
of the end for the specific class.

Visibility

Specify the type of visibility for each end of an aggregation. There are four types of
visibility:

� Public - the attribute is visible to other classes.

� Protected - the attribute is visible only to subclasses and friend classes.

� Private - the attribute is not visible to other classes, except designated friend classes.

� Implementation - the attribute is never visible to other classes.

See the Equivalent output box in the Attribute Tool dialog to view an approximation of the
output for the specified Visibility.

Multiplicity

Specifies the number of instances that can exist for this end of the association at any
given time. You can either select a multiplicity from the drop-down list or specify
your own by typing directly into this box.

When you specify a multiplicity at one end of an association (near end), for each
object of the class at the opposite end (far end), there may be that many objects at the
other end (near end).

See the Equivalent output box in the Aggregation Tool dialog to view an approximation of
the output for the specified Visibility.

Scope

Specifies the target scope; whether there is only a single instance of the feature for all
instances of the classifier. There are two types of scope:

� Instance -the instances of the client own the supplier class. This means that each
instance of the classifier holds its own value.

� Classifier - the client class (not the client's instances) owns the supplier class. The
most common use of this type of scope is for private data members that must be
shared among a set of instances; no other instances have access to that attribute.

The result is that the data member is scoped to the classifier in the other end class.
Aggregation Tool 101

Generate Type Descriptor

Creates a type descriptor for the external types in order to describe the types to the
Services Library. A type descriptor is a unique string that represents the class. If a
descriptor is not generated, the Services Library will not be able to encode or decode
the attribute.

Association Class

Specifies the name of a class that defines the relationship between the two classes. Use
the association class to model properties of associations. The properties are stored in
the class and linked to the association relationship. Link Attributes are degenerate
association classes comprised only of attributes.

Equivalent Output

Displays a "best" approximation of the expected output for the options selected in the
Aggregation Tool dialog.

For a new aggregation, the Equivalent Output boxes display the following:

Insufficient Information For Output

This means that there are insufficient options specified for the selected or new
aggregation.

To view all of the Equivalent Output code in a single pane for the selected aggregation,
right-click inside the Equivalent Output box. The pop-up window resizes to contain all
of the code from the Equivalent Output box.

Note: You can copy code from the Equivalent Output box; however, the code within this
box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.

More/Less button

Click this button to expand or collapse the advanced area of the tool. This area
displays any association classes and additional options for this aggregation.

New

Click this button to add a new aggregation. Ensure that you click Save before you click
New to save any changes to the previous aggregation.

Save

Saves the settings for the current aggregation.
102 Chapter 3 - Wizards and Tools

More Help/Less Help button

Hides or displays a help pane which provides step-by-step instructions to create an
aggregation.

Step By Step Area

Provides step-by-step instructions to create an aggregation. For additional
information, see the Online Help.

Language Specific Options

The advanced area contains options for language-specific features. For information on
these options, refer to the Online Help.

Attribute Tool

The Attributes Tool enables you to quickly create and set options for an attribute. An
attribute is a named property of a class that defines the values that instances of the
property can hold.

Use the Attribute Tool to create a new attribute, or modify an existing attribute. You can
access the Attribute Tool from the following:

� class
� capsule
� class role
� capsule role
� interaction instance

Note: If you use the Attribute Tool to add an attribute, the model diagrams are not
automatically updated; however, the Model View tab in the browser updates
immediately and displays the new attribute. To update your model diagrams, you
must select the attributes from the Model View tab in the browser, then drag them to the
appropriate element in the model diagram.
Attribute Tool 103

Figure 17 Attribute Tool dialog

Name

A name for the attribute. Use the name box to:

� Specify a name for a new attribute
� Select an existing attribute from the drop-down list
� Change the name of an existing attribute
104 Chapter 3 - Wizards and Tools

Type

Attribute types can be classes or language-specific types. When the attribute is a data
value, the type is defined as a language-specific type. You can enter the type directly
in the Type box, or select a type from the drop-down list. Rational Rose RealTime
displays the type opposite the attribute name and updates the information in the
model (Figure 18).

See the Equivalent output box in the Attribute Tool dialog to view an approximation of the
output for the attribute when it is of the selected type.

Figure 18 Display of Attributes and corresponding types

Initial Value

Assign an initial value to your class attribute. Type directly in the Initial Value box.
Rational Rose RealTime displays the initial value opposite the attribute name and
updates the information in the model (Figure 19). If you select Constant, you must
specify a value in the Initial Value box.

See the Equivalent output box in the Attribute Tool dialog to view an approximation of the
output when you specify a value for Initial Value.

Figure 19 Display of Initial Values for Attributes
Attribute Tool 105

Visibility

Specify the type of visibility for an attribute. There are four types of visibility:

� Public - the attribute is visible to other classes.

� Protected - the attribute is visible only to subclasses and friend classes.

� Private - the attribute is not visible to other classes, except designated friend classes.

� Implementation - the attribute is never visible to other classes.

See the Equivalent output box in the Attribute Tool dialog to view an approximation of the
output for the specified Visibility.

Create any required dependencies

Specifies whether you want dependencies created for this attribute. If you select this
option, after you click Save, the Dependencies dialog displays. For additional
information on the Dependencies dialog, see Dependency Tool on page 112.

Class Scope

Specify the class scope for the attribute. Selecting this option means that there is a
single instance of the attribute for all instances of the class (for example, a static
member in C++). If this options is not selected, then each instance of the class has a
separate attribute instance.

See to the Equivalent output box in the Attribute Tool dialog to view an approximation of
the output when selecting Class Scope.

Constant

Specifies whether the attribute is a constant. This means that this attribute cannot take
on a new value. If you select Constant, you must specify a value in the Initial Value box.

See the Equivalent output box in the Attribute Tool dialog to view an approximation of the
output when selecting Constant.
106 Chapter 3 - Wizards and Tools

get Method

Generates an operation to retrieve the value of this attribute.

See the Expected output box in the Attribute Tool dialog to view an approximation of the
output when selecting get method.

set method

Generates an operation to assign a value to this attribute.

See the Expected output box in the Attribute Tool dialog to view an approximation of the
output when selecting set method.

Equivalent Output

Displays a "best" approximation of the expected output for the options selected in the
Attribute Tool dialog.

For a new attribute, the Equivalent Output box displays the following:

Insufficient Information For Output

This means that there is insufficient information specified for the selected or new
attribute.

To view all of the Equivalent Output code in a single pane for the selected attribute,
right-click inside the Equivalent Output box. The pop-up window resizes to contain all
of the code from the Equivalent Output box.

Note: You can copy code from the Equivalent Output box; however, the code within this
box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.

More/Less button

Click this button to expand or collapse the advanced attribute area. This area contains
additional language-specific options to set for an attribute.

New

Click this button to add a new attribute. Ensure that you click Save before you click
New to save any changes to the previous attribute.

Save

Saves the settings for the selected attribute.
Attribute Tool 107

Language Specific Options

The advanced area contains options for language-specific features. For information on
these options, refer to the Online Help.

Operation Tool

The Operation Tool enables you to quickly create and set options for an operation. An
operation is the implementation of a service requested from any object of the class that
affects its behavior.

Use the Operation Tool to create a new attribute, or modify an existing attribute. You
can access the Operation Tool from the following:

� class
� capsule
� class role
� capsule role
� interaction instance

Note: If you use the Operation Tool to add an operation, the model diagrams are not
automatically updated; however, the Model View tab in the browser updates
immediately and displays the new operation. To update your model diagrams, you
must select the new operations from the Model View tab in the browser, then drag them
to the appropriate element in the model diagram.

Note: The Operation Tool does not handle pointers to functions or templates; only
simple parameters.
108 Chapter 3 - Wizards and Tools

Figure 20 Operation Tool dialog

Declaration

Specifies the name and any parameters and functions for the operation. Each
parameter must have a valid type and name; a value is optional. For example, the
following declarations are valid:

myDec1(int foo)

and

myDec2(int foo = 55, bool barA = False)

and

myDec3(RTTime t)

Note: If you specify a variable type and variable name that is a class in a parameter,
you must also select Create any required dependencies. After you click Save on the
Operation Tool dialog, the Dependency dialog displays and you must generate the
required dependencies.
Operation Tool 109

Visibility

Specify the type of visibility for an operation. There are four types of visibility for
operations:

� Public - the operation is visible to other classes.

� Protected - the operation is visible only to subclasses and friend classes.

� Private - the operation is not visible to other classes, except designated friend
classes.

� Implementation - the operation is never visible to other classes.

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output for the specified Visibility.

Return Type

For operations that are functions, set this field to identify the class or type of the
function's result. You can specify a class name that does not yet exist in your model;
however, Clicking Save and closing the Operation Tool does not automatically create
the class.

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output when specifying a Return Type.

Query

When selected, it specifies that the operation is read-only and does not modify the
object's state.

Note: If the Return Type is set to a class, the Create any required dependencies box must be
set so that the Dependency Tool may generate the required dependencies

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output when selecting Query.
110 Chapter 3 - Wizards and Tools

Class Scope

Specifies class scope for the operation. Selecting this option means that the operation
behaves the same way regardless of the state of any individual object in the class.
Otherwise, the operation operates on individual class instances because its
calculations are based on the object state, or because it modifies the object state.

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output when selecting Class Scope.

Abstract

When selected, it indicates that the operation is an abstract definition that should be
overridden by specific implementations in subclasses.

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output when selecting Abstract.

Create any required dependencies

Specifies whether you want dependencies created for this operation. If you select this
option, after you click Save, the Dependencies dialog displays. If you specified a class
variable type and name, such as (RTTime t) in the Declaration box, or a Return Type that
is a class, you must select this option. After you click Save on the Operation Tool dialog,
the Dependency dialog displays and you must generate the required dependencies.

For additional information on the Dependencies dialog, see Dependency Tool on
page 112.

Polymorphic

When selected, it indicates that the operation should be inherited by all subclasses.

See the Equivalent output box in the Operation Tool dialog to view an approximation of
the output when selecting Polymorphic.

Open Specification dialog after close

Informs the Operation tool to open the Specification dialog of the current operation
after closing the tool. A Specification dialog opens for each operation that you set this
option.

Note: When opening the Operation Specification dialog, the tab that you selected last is
the tab that displays.
Operation Tool 111

Equivalent Output

Displays a "best" approximation of the expected output for the options selected in the
Attribute Tool dialog.

For a new operation, the Equivalent Output box displays the following:

Insufficient Information For Output

This means that there is insufficient information specified for the selected or new
operation.

To view all of the Equivalent Output code in a single pane for the selected operation,
right-click inside the Equivalent Output box. The pop-up window resizes to contain all
of the code from the Equivalent Output box.

Note: You can copy code from the Equivalent Output box; however, the code within this
box is only an approximation and may not represent the precise code segment.
Therefore, when copying from the Equivalent Output box, use caution.

More/Less button

Click this button to expand or collapse the advanced operation area. This area
contains additional language-specific options to set for an operation.

New

Click this button to add a new operation. Ensure that you click Save before you click
New to save any changes made to the previous operation.

Save

Saves the settings for the selected attribute.

Language Specific Options

The advanced area contains options for language-specific features. For information on
these options, refer to the Online Help.

Dependency Tool

The Dependencies dialog enables you to create any required dependencies for the
following:

� attributes (using the Attribute Tool)
� operations (using the Operation Tool)
112 Chapter 3 - Wizards and Tools

A dependency is a relationship that indicates that a change to one thing may affect
another thing that uses it.

You can access the Dependencies dialog by selecting Create any required dependencies
and then clicking Save on the Attribute Tool dialog or the Operation Tool dialog.

Figure 21 Dependencies dialog

Potential Dependency

Specifies the name of a possible dependency for the selected operation or attribute.
The drop-down list contains the names of the classes for which a dependency can be
created.

1. Choose whether the dependency should be generated:

Generate Dependency

Generates the dependency selected from in the Potential Dependency box. If this option
is not selected, a dependency will not be generated for the selected class. Use this
option to exclude the generation of dependencies, for example, select only those
potential dependencies for which you do not want a dependency, and then click this
option for each potential dependency so that it is set, the click Generate Chosen.
Dependency Tool 113

3. Choose possible classifiers (if more than one):

Specifies the name of the classifier for the selected dependency.

3. Set language specific options:

Header

Specifies the directive that is generated in the header file. When the C++ generator
produces code for an element (the client) that uses another element (the supplier),
the C++ generator produces either an include directive referencing the file that
contains the supplier class, or a forward reference to the supplier.

You can configure which directive (include statement or forward reference) is
generated in the header file (.h).

Implementation

Specifies the directive that is generated in the implementation file. When the C++
generator produces code for an element (the client) that uses another element (the
supplier), the C++ generator produces either an include directive referencing the
file that contains the supplier class, or a forward reference to the supplier.

You can configure which directive (include statement, forward reference, or none) is
generated in the implementation file (.cpp).

Set For ALL

Sets the specified Header and Implementation options for all dependencies, regardless of
what was previously specified for individual potential dependencies.

Generate All

Generates all dependencies, regardless of whether the Generate Dependency option
(Step 1) is set for each of the potential dependencies.

Generate Chosen

Generates only the potential dependencies in the Dependencies dialog for which the
Generate Dependency option (Step 1) was set.

Close

Closes this dialog without generating any dependencies, regardless of the options you
selected.
114 Chapter 3 - Wizards and Tools

4Other Application
Windows
Contents

This chapter is organized as follows:

� Description Window on page 115
� Adding Documentation to Model Elements on page 118
� Adding Code to Model Elements on page 118
� Output Window on page 119

This chapter describes other application windows, including the Description
Window, which contains the Documentation Pane and the Code Pane, and the Output
Window.

Description Window

The Description window contains the Documentation Pane and the Code Pane. You
can toggle between the two by clicking their tabs.

Displaying the Description Window

By default, the Description window is closed. To view the window, select View >
Description.

Only one Description window can be open at a time, but as you select different items,
the window is updated accordingly. If you select an item that has no documentation
or code associated with it, or you select multiple items, or you do not have an item
selected, you are notified accordingly.

When the window is first displayed, it is docked to the bottom left corner. To move the
window, click and drag on the border. The window outline indicates the window
state: a thin, crisp line indicates the window is docked, while a thicker, hashmark-type
border indicates it is floating.

Characteristics unique to the window state (docked or floating) are discussed below:
115

Docked

� The window can be moved within the dockable region of the application.

� The size can be changed using the splitter bars.

� The title can be displayed through a tool tip (simply place your cursor anywhere in
the window). There is no title available when the window is docked.

� The window can be docked at any time.

Floating

� The window can be moved to any location, and is always displayed on top of the
diagram.

� Size can be changed via click and drag along the border in a vertical or horizontal
direction.

The window title displays the description. The static text displays the name of the
element who’s code or documentation you are viewing.

Documentation Pane

You can use the Documentation pane (Figure 22) to edit or view the documentation
associated with the currently selected model element. Scroll bars are added when
necessary and word wrap is employed.

Figure 22 Documentation pane

Code Pane

You can use the Code pane (Figure 23) to edit or view the code associated with the
currently selected model element. Scroll bars are added when necessary and word
wrap is employed.
116 Chapter 4 - Other Application Windows

Figure 23 Code pane

Pulldown menu

Using the pulldown menu, you can move between different sections of code, for
example, between entry and exit code for a state. You can also add a trigger to a
transition.

Popup menu

Using the popup menu, you can

� import and export files containing code
� print the code
� select individual words, lines, or all of the code you are viewing
� specify the font
� use the Search feature to Find and Replace
� launch an external editor

Note: If you use an external editor that requires a console terminal, you must specify
an application, such as xterm, that provides the terminal, followed by the editor
command itself.

Note: Example on Solaris: /usr/openwin/bin/xterm -e /bin/vi

Note: Example on HPUX: /usr/bin/X11/xterm -e /bin/vi
Description Window 117

Adding Documentation to Model Elements

All model elements can have documentation associated with them.

To add documentation to a model element, you can use the Documentation
window or follow these steps:

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click on the General tab if it is not the tab currently displayed.

4 Enter the documentation for the element in the documentation area.

5 Close the Specification dialog by clicking OK.

For long, complex, or formatted documentation, you may want to link an external file
(such as an MS Word document) to a model element. See Inserting a Diagram into an
MS Word Document on page 373.

Note: If you add documentation from the Documentation pane, you must click Apply
button for it to take effect.

Adding Code to Model Elements

All model elements can have code associated with them.

To add code to a model element, you can use the code window or

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click on the language-specific tab if it is not the tab currently displayed.

4 Enter the code.

5 Close the Specification dialog by clicking OK.
118 Chapter 4 - Other Application Windows

Output Window

The Output window (see Figure 24) is a dockable window that contains the following
tabs:

� Log Tab
� Build Log tab
� Build Errors tab
� Find Tab
� Watch Tab (RTS only)

Figure 24 Output window

Log Tab

The Log tab is used by several commands to report progress, results, and errors.
Messages posted to the log are usually prefixed with a time stamp.

To display the Log tab, select View > Output. The application posts the messages to the
log window regardless of whether it is displayed.

You can save the contents of the log window to a file or you can choose to
automatically save messages to a file as they are posted. Both options are available
from the popup menu.

Double-clicking usually brings you to the error source.

Build Log tab

The Build Log tab stores the contents of the compilation and code generation log.
Select View > Output and click the Build Log tab to open it. Compilation or code
generation messages are posted to the Build Log tab regardless of whether it is visible.

You can save the contents of the Build log tab to a file. You can also choose to
automatically save messages to a file as they are posted.
Output Window 119

Figure 25 Build Log tab

The Build Log tab contains the raw output stream from the build. You can examine
the contents of this window to get a context on any error message displayed in the
build messages list.

Related Topics

Components

Related Tasks

Creating a Component

Assigning an Active Component

Starting a Build

Reviewing the Build Results

Build Errors tab

The Build Errors tab contains a parsed version of the output stream. It is important to
review the Build Log tab because some errors cannot parsed by the error parser.

The Build Errors tab contains a Location column that gives the class/code segment
name pair. The Context column provides the context of the problem. The Message
column gives a description of the problem. These messages are taken directly from the
compiler error stream and therefore reflect the accuracy of the compiler that you are
using. Further, errors within your code segments may lead to errors being reported in
system-generated files.

Double clicking on an error or warning in the Build Error tab brings you to the
location in the model of the problem that caused the error or warning. See Common
build errors for a short summary of common generic build errors.
120 Chapter 4 - Other Application Windows

Unknown compiler message stream

It is possible that the compiler being used reports errors in ways that are not
understood by Rose RealTime. There are no standards for error reporting by
compilers and linkers. Hence, the error parser is often targeted for a particular
compiler and linker. If you are using an unsupported compiler, Rose RealTime will
probably not be able to understand the error output from the parser and may
inaccurately report errors. You have to rely on the raw output stream to see the direct
output of the compiler, rather than going by the errors reported by the Build Errors
tab.

Find Tab

The Find tab works in conjunction with the Find dialog. See Find dialog on page 87.

Watch Tab

Capsule instance attributes can be inspected at run-time and modified from the Watch
tab of the Output window. The Watch tab has two columns: the name of the attribute
and its value.

To add an attribute instance, or variable, to the watch window, open a state monitor
and drag-and-drop the attribute from the Attributes folder into the watch window.

You can also edit the value of a variable by selecting the Value field then entering
another value for the variable.

Refreshing the Watch Values

The watch values are refreshed when a message is received by the state of the capsule
instance. If the state monitor the watch was created is closed, the watch value stops
being updated. If the state monitor is closed, you can manually force an update of a
watch value by right-clicking on the watch item and selecting Refresh from the popup
menu.

Output Window 121

5Printing
Contents

This chapter is organized as follows:

� Print Specifications on page 123
� Print Setup on page 128

This chapter describes how to print from the application using the Print Specifications
and Print Setup dialogs.

Print Specifications

The Print Specifications dialog lets you print diagrams. As well, you can adjust the
parameters of diagrams you want to print, including size, orientation, and layout.
123

Figure 26 Print Specifications dialog

The dialog has four tabs:
� General Tab
� Diagrams tab
� Specifications tab
� Layout Tab

All tabs contain the Print Preview button, which you can click to see how your diagram
will appear before you route it to a printer.

General Tab
The General tab contains three fields:
� Printer field
� Print Range field
� Copies field

Printer field

The Printer field lets you select the name of the printer you want to use from a
drop-down menu. You can check the Print to File option if you want to print a
diagram to a file, instead of routing it directly to a printer. You are prompted to
specify a filename and location.
124 Chapter 5 - Printing

As well, there is a Properties button.

Properties dialog

Clicking the Properties button opens the Properties dialog, which contains two tabs:
Page Setup and Advanced.

Figure 27 Properties dialog

The Page Setup tab lets you select:

� Paper Size
� Paper Source
� Copy Count
� Orientation
� Print on Both Sides
� Color Appearance

The Advanced tab lets you fine tune printing parameters, including Paper/Output,
Graphic, and Document Options.
Print Specifications 125

Print Range field

The Print Range field lets you select between the Current Diagram, Selected
Diagrams, and Selected Specifications. Current Diagram is the default. Clicking
Selected Diagrams and then Diagram Options opens the Diagrams tab. Clicking
Selected Specifications and then Specification Options opens the Specifications tab.

Copies field

The Copies field lets you specify the number of copies you want to print, and whether
you want multiple copies collated.

Diagrams tab

The Diagrams tab contains the options that you can choose from to generate a
printout of one or more diagrams. It contains five fields: Use case diagrams, Class
diagrams, Component diagrams, Deployment diagrams, and Interaction diagrams.

The first four fields contain the following buttons:

� Top Level - prints only the diagrams at the top level of the model.

� Entire Structure - prints all the diagrams.

� None - prints none of the diagrams.

Additionally, there is a checkbox, Include State Diagrams. The checkbox is not
applicable unless you have chosen Top Level or Entire Structure in the Use Case or
Class Diagrams fields.

The Interaction Diagrams List Control lets you select each object message or message
trace diagram containing objects whose specifications you want to print. The All
button selects all object and interaction diagrams in the list. The None button
deselects all object and interaction diagrams in the list.

Specifications tab

The Specifications tab contains the options that you can choose from to generate a
printout of one or more specifications. It contains six fields: Use case specifications,
Class specifications, Component specifications, Deployment specifications, Options,
and Interaction specifications.

The first three fields contain the following buttons:

� Current - prints only the specifications for the current diagram.

� Entire Structure - prints all the diagrams.

� None - prints none of the diagrams.
126 Chapter 5 - Printing

The Options field contains the following checkboxes:

� Selected classes only - is only applicable when you have chosen Current or Entire
structure in the Class diagrams field. When you check this box, only the
specifications for those classes that are currently surrounded by selection handles
in the indicated class diagrams are printed.

� Operation specifications - is only applicable when you have chosen Current or
Entire structure in the Class diagrams field. When you check this box, only the
operation specifications that are associated with the classes in the indicated
diagrams are printed.

� State specifications - is only applicable when you have chosen Current or Entire
structure in the Class diagrams field. When you check this box, all the
state-transition specifications for all the state diagrams that are associated with the
classes in the indicated diagrams are printed.

Note: This checkbox controls only the printing of use case specifications. You can
print the associated operation and state-transition specifications by checking the
Operations Specifications and State Transitions boxes.

� Selected associations only - is only applicable when you have chosen Current or
Entire structure in the Class diagrams field. When you check this box, only the
operation specifications for those associations with the classes in the indicated
diagrams are printed.

� Selected components only - is applicable only when you have chosen Current or
Entire structure in this field. When you check this box, only the specifications for
those components that are currently surrounded by selection handles in the
indicated component diagrams are printed.

� Selected devices only - is only applicable when you have chosen Current or Entire
structure in the Deployment specifications field. When you check this box, only the
specifications for the selected devices are printed.

� Selected processors only - is only applicable when you have chosen Current or
Entire structure in the Deployment specifications field. When you check this box,
only the specifications for the selected processors are printed.

The Interaction Diagrams List Control lets you select each object message or message
trace diagram containing objects whose specifications you want to print. The All
button selects all object and interaction diagrams in the list. The None button
deselects all object and interaction diagrams in the list.
Print Specifications 127

Layout Tab

The Layout tab contains the options that you can choose from to change the position
and size of the diagrams you want to print. If your print job is larger than the
available paper, you can tile your work so that it is spread across several pieces of
paper. Assemble the separate pages to create the whole image.

The Layout tab contains two fields: Positioning and Options.

Positioning field

The Positioning field contains the options that you can choose from to change the size
of the diagrams you want to print.

� As In Diagram - prints diagram as you see it on screen.

� Fit To Page - fits each diagram to one page.

� Tile - enables the Options field.

Options field

The Options field contains the following options:

� Overlap - lets you set the percentage of the images on each tile overlap on adjacent
tiles.

� Print Crop Marks - lets you align tiled printouts.

� Preserve Aspect Ratio- lets you maintain the diagram's proportions.

Related Topics

File menu

Print Setup

Related Tasks

Inserting a Diagram into an MS Word Document

Print Setup

The Print Setup dialog lets you set up print options, generally. The dialog contains
three areas: Printer, Paper, and Orientation. As well, there is a Network button.
Clicking this button opens the Connect to Printer dialog, which lists shared printers
on the network. Click on a particular printer to route your print jobs to it.
128 Chapter 5 - Printing

Figure 28 Print Setup dialog

Printer field

The Printer field lets you select the name of the printer you want to use from a
drop-down menu. You can also click the Properties button, which opens the Properties
dialog.

Paper field

The Paper field lets you specify the size and source of the paper you want to use to
print.

Orientation field

The Orientation field lets you choose between Portrait and Landscape orientations.

Related Topics

Printing

File menu
Print Setup 129

6Opening and Saving
Models
Contents

This chapter is organized as follows:

� Unique Ids on page 131
� Opening Models on page 135
� Opening Models from ObjecTime Developer 5.2.1 on page 138
� Opening Models from Rational Rose on page 139
� Importing Rational Rose Generated Code on page 141

Unique Ids

Unique ids are unique internal names associated with model elements. They are used
internally by Rational Rose RealTime, and not all model elements require unique ids.
Rational Rose RealTime includes a feature that helps Model Integrator by generating
unique ids for those model elements that would otherwise not require them, for
internal use. For Model Integrator, an element with a unique id is easier to merge.

RRTEI users will find traceability easier when they set this option. Unique ids
improve the traceability of model elements of other tool integrations that use RRTEI.

It is necessary to plan and choose when to incorporate the new unique ids into the
project model since virtually all controlled units will be modified implicitly.
Additionally, the generated new ids are dependent on time and location. For example,
generating unique ids for a given model at different times, or on different machines,
produces different ids.

The following model elements do not have unique ids, unless you set this option:

� Protocol In Signals ()
� Protocol Out Signals ()
� States (CompositeState)
� Capsule Roles (CapsuleRole)
� Ports (Port)
� Port Roles (PortRole)
� Capsule Structure diagram (CapsuleStructure)
131

� Classifier Role (ClassifierRole)
� Transitions (Transition)
� Junction Point (JunctionPoint)
� Choice Point (ChoicePoint)
� Connectors (Connector)
� (Guards)
� (Events)
� (EventGuards)
� Parameters ()
� Element hyperlinks (ExternalDocument)

Caution: We strongly recommend any team involved in parallel development use this
option.

Note: Setting this option creates unique ids for model elements that currently do not have
them. This typically affects most of the model, so you will be prompted to check out those parts
when setting this option.

When saving the model, the size of the affected file increases by approximately 20%,
and the time to load the model also increases.

Caution: Do not set this option for multiple streams as shown in Figure 29; otherwise,
objects with similar characteristics will be treated differently since their unique id’s
will differ.
132 Chapter 6 - Opening and Saving Models

Figure 29 Incorrect Merge Scenario

An example of when to set this option is shown in Figure 30.
Unique Ids 133

Figure 30 A Correct Merge Scenario

Note: This option must be set prior to branching.

For information on how to enable the Unique ids, see Model Specification on page 135.

To clear the unique id option, follow the same procedure in Figure 30.

Caution: If you clear this option, your merge results will not be as reliable.
134 Chapter 6 - Opening and Saving Models

Opening Models

To open an existing Rose RealTime, Rose, or ObjecTime Developer model, click on the
Open Model icon on the toolbar or select File > Open.

A dialog appears prompting for the model file name. You can select from among
different types of models to open through this dialog, including: Rose RealTime
models (.rtmdl), Rose models (.mdl) and ObjecTime Developer models stored as
linear form (.lf).

Note: Opening a model discards any existing model that you currently have open.
The tool prompts you to save changes first.

Note: In the NT version of the toolset, typing %ROSERT_HOME% in the file name takes
you to the directory that the environment variable holds. Use the same % notation on
Unix to specify environment variables.

Model Specification

A Model Specification enables you to display and modify the properties of the top
level element.

To display a Model Specification, right-click on the top level element and choose Open
Specification.

Specification Content

The Model Specification contains the following tabs:

� General tab
� Source Control tab
� Files tab
� Unit Information tab

General tab

Name

This field identifies the name of the model.

Generate unique identifiers for all elements

When this checkbox is selected, unique identifiers are generated for all elements in the
model.

Caution: Before setting this option, ensure that you have reviewed Unique Ids on page 131.
Opening Models 135

Documentation

This field contains information on this model.

Source Control tab

The Source Control tab provides options for interacting with a source control /
Configuration Management (CM) system.

Files tab

Provides a list of referenced files. The files list popup menu allows you to insert and
delete references to files or URLs.

You can link external files to models for documentation purposes.

Unit Information tab

File Name

This field lists the file name of the model.

Owned by model

This field indicates whether this model is owned by another model.

Under source control

This field

 indicates whether this model has been added to source control.

A Workspace

A workspace contains basic configuration information for working with a model. This
information includes the name of model being worked on, whether source control is
enabled, and settings related to how source control and file management will behave
when editing the model.

The workspace information is stored in a separate file (a .rtwks file). When a model is
opened and a workspace file of the same name exists in the directory, the toolset
prompts you to open the workspace instead. If you will be regularly working on a
model, it is recommended that you open the workspace corresponding to that model
rather than opening the model itself.
136 Chapter 6 - Opening and Saving Models

The following settings are stored in a workspace:

� the model being worked on

� the source control settings for this model as specified in the Specification dialog for
the model

� file management settings

If a model gets renamed, a workspace file that refers to the old model name will not
open correctly. You can edit the workspace file directly and change the path name
information, or open the model file without the workspace and do a save to create a
new workspace.

User-specific Working Environment Settings (.rtusr and .rtwks)

Rose RealTime preserves user-specific working environment settings between toolset
sessions. The user-specific working environment consists of:

� options specified in the Tools > Options dialog (for example, font size, default label
filtering)

� open windows, including their size and position

� active component

� active component instances

� target observability settings such as probes, monitors, inject messages and watch
variables

All of these settings are user-specific and are not intended to be shared between users.
Settings not related to target observability are saved in a .rtusr file with the same root
name as the current workspace. Target observability settings are saved in a .rtto file
with the same root name as the current workspace.

These files are saved whenever the current workspace is either saved or closed.
Opening Models 137

Opening Models from ObjecTime Developer 5.2.1

Rose RealTime can only import Linear Form files from ObjecTime Developer 5.2.1.
Other kinds of files, such as binary .update or .context files cannot be imported
directly into Rose RealTime.

Note: ObjecTime 5.2.1 users must apply a patch to their toolset in order to export
models from ObjecTime that can be read by Rose RealTime. See the ObjecTime
support website.

To open an ObjecTime Developer 5.2.1 model:

1 The ObjecTime Developer project file must be saved as a Linear Form file (.lf)

2 To open an ObjecTime Developer model from Rose RealTime, select
File > Open and choose Linear Form (.lf) from the Files of Type pull-down menu.

3 Select the file to open and click Open.

Files from versions of ObjecTime older than ObjecTime Developer 5.2 will have to be
opened in ObjecTime Developer 5.2 and saved as project files first.

Note: Opening a new model discards any existing model that you have. The tool
prompts you to save changes first.

Importing requirements

Requirements captured in ObjecTime Developer Models can be converted through a
requirements-specific patch for 5.2 and 5.2.1. An HTML file is generated that contains
the actual requirements from the OTD models. Links to these requirements are
converted when the actual model is imported into Rose RT. The HTML requirements
file is stored outside of the Rose RealTime toolset. Place the file in your configuration
management library for storage purposes.

See the ObjecTime Developer Conversion Guide for information on converting from
ObjecTime Developer.

Limitations and Restrictions

When an ObjecTime Developer model is opened in Rose RealTime, the following
elements may not be converted:

� dependencies - the dependencies list for classes in ObjecTime Developer is not
converted. Dependencies must be recreated using the Build > Add Class
Dependencies... command. This runs a script that checks the model elements for
dependencies and adds them. It does not, however, find references that exist only
in detailed code.
138 Chapter 6 - Opening and Saving Models

Opening Models from Rational Rose

Before starting

Rose RealTime can open files saved with Rational Rose 98 and 98i (.mdl files).

Fixing a Model

When importing a model from Rose 98/98i into Rose RealTime, you are encouraged
to resolve any model errors in Rose98 (Tools > Check Model) before trying to import the
model. In particular it is important to fix unresolved references. In general, Rose98 is
not concerned as much about unresolved references; however, they are very
important in Rose RealTime as they can result in incomplete code generation and
compilation errors.

Tasks

To open a Rational Rose model:

1 To open a Rational Rose model from Rose RealTime: Select
File > Open and choose Rose Model (.mdl) from the Files of Type pull-down menu.

2 Select the file to open and click Open.

Files from Rose versions older than Rose 98 have to be opened in Rose 98 and saved
first.

Note: Opening a new model discards any existing model that you have. The tool
prompts you to save changes first.

Import Log Messages

The following messages may appear in the Log after a Rose98 model as been
imported.

Message: Warning: Renamed elementClass "oldElementName" to
"newElementName".

Description: A loaded model element has been renamed to conform with Rose
RealTime's naming requirements. Double-clicking on the warning in the log may (or
may not) display the renamed element.

Message: Error: Unresolved reference from... to... by....

Description: The toolset was unable to resolve a reference between two model
elements. This is usually the result of loading an incomplete model, for instance when
the user has updated only part of a model from CM. The rest of the model needs to be
Opening Models from Rational Rose 139

loaded in order for the reference to be resolved. However, in some instances (where
toolset stability is an issue) the unresolved model element is removed from the model.
If this is the case, the deletion is also recorded in the log window.

Message: Error: Error reading file fileName at line lineNumber or Error message
detail.

Description: The error message detail may contain validation errors originating from
the internal meta-model, which are not covered here. Possible error message details
that originate from the petal reader are listed below.

Message: Invalid syntax.

Description: The file contents cannot be read by the toolset. The user should send the
file to customer support with a description of what they were doing when the file was
created.

Example

Imported a Rose98 model, made some changes to the Component View, now the file
won't reload in RoseRT.

Limitations and Restrictions

When a Rose model is opened in Rose RealTime, the following elements are not
converted:

� State diagrams

� Importing Rose98 models containing controllable units is not supported

If the Rose98 model file contains controllable units. The user should export the
model from Rose98 into a single .ptl petal file (File > Export Model) which can then be
opened with Rose RealTime (File > Open, and select All Files... in the combo box to
display .ptl files.)

� Three-tier class diagrams are not supported in Rose RealTime.

The Rose98 model file contains a three-tier class diagram, which are not supported
in Rose RealTime. The user should create a copy of the Rose98 model that does not
contain a three-tier diagram to import into Rose RealTime.
140 Chapter 6 - Opening and Saving Models

Importing Rational Rose Generated Code

Source code that has been generated from a Rose model and has been edited within
the preserved regions may be imported.

To import Rose generated code:

1 Verify that the Rose .mdl file is not newer than the generated code. If so, regenerate
the code.

2 Open the Rose model (see Opening Models from Rational Rose on page 139).

3 Select Tools > Import Code.

If code was generated from this model using Rational Rose and the model was
saved after the code generation was performed, a "Rose Code Import" window is
displayed. Otherwise, a "There are no cpp or h files available for import" message
is displayed.

The Rose Code Import Window lists all the .cpp and .h files that were generated
from the model and lets you select all or a subset of the files. It also displays the
classes that will be affected by each file that is selected. After a file has been
imported it will not be listed if code importation is repeated.

4 After you have completed importation and are satisfied with the results, save the
model.

Limitations and Restrictions
� No action is taken on empty preserved regions. As a result, constructors,

destructors, and operators that are generated by Rose, which have empty
preserved regions, are be added to the model.

� Use of the Code Name properties for classes and operations may cause
inconsistent naming in the generated code. The inconsistencies may cause compile
time errors that can be resolved manually.
Importing Rational Rose Generated Code 141

7Use Case Diagrams
Contents

This chapter is organized as follows:

� Creating a Use Case Diagram on page 143
� Using the Use Case Diagram Editor on page 144

Creating a Use Case Diagram

Use case diagrams are created in the Use Case View of the model browser. A Main use
case diagram is always present in the Use Case view. The Main use case diagram
should be used to describe the relationships between the primary actors and use cases
in the system. Other diagrams can be created as required.

To edit the Main use case diagram:

1 Double-click on the Main diagram in the Use Case View package in the Model
browser.

The Use Case diagram editor appears (see Using the Use Case Diagram Editor on
page 144).

2 Place actors and use cases in the diagram by dragging them from the model
browser, or by using the tools in the Use Case Diagram Toolbox.

3 Draw relationships among actors and use cases using the toolbox.

To create a new use case diagram:

1 Right-click on the Use Case View package (or any sub-package) in the model
browser.

2 Select New > Use Case Diagram from the popup menu.

3 Enter the name of the use case diagram.
143

Using the Use Case Diagram Editor

Use case diagrams present a high-level view of how a system is used as seen from an
outsider’s (or actor’s) perspective. These diagrams depict system behavior (also
known as use cases). A use case diagram may depict all or some of the use cases of a
system.

A use case diagram can contain:

� actors ("things" outside the system)
� use cases (system boundaries identifying what the system should do)
� interactions or relationships between actors and use cases in the system including

associations and generalizations

Use case diagrams can be used during analysis to capture the system requirements
and understand how the system should work.

The use case diagram editor is used to create a diagram showing use cases and the
relationships among use cases, actors and classes. The use case diagram consists of
two parts:

� the diagram area
� the Use Case Diagram Toolbox

The window title bar shows the full name of the class diagram.
144 Chapter 7 - Use Case Diagrams

Figure 31 Use case diagram editor

Usage Tips

Typically, you add a set of related use cases and actors to the diagram. Then, draw the
relationships among use cases and actors by selecting one of the relationship tools in
the toolbox, selecting one of the related elements and dragging on to the other related
element.

Although you have the full set of class diagram tools at your disposal in the Class
Diagram Toolbox, there are a limited number of relationships that should be applied
to use cases. Valid relationships between use cases are: includes, extends and
generalizes. However, there are no specific tools for includes and extends
relationships. These should be modeled as unidirectional associations with
stereotypes or stereotyped generalizations (UML 1.1).
Using the Use Case Diagram Editor 145

Relationships between actors and use cases should be modeled as associations or
directional associations.

Note: When naming actors, be aware that actors are stereotyped classes, and there is
only one name space for all classes in Rose RealTime. For example, if you name an
actor Server, you will not be able to create another class named Server in the Logical
View because there will be a name conflict. We suggest using a naming convention,
such as adding an ending like "_actor" to actor names.

Use Case Diagram Toolbox

The use case diagram toolbox is the same as the Class Diagram Toolbox.
146 Chapter 7 - Use Case Diagrams

8Defining Use Cases and
Actors
Contents

This chapter is organized as follows:

� Creating a Use Case on page 147
� Creating an Actor on page 149

Creating a Use Case

To create a new use case:

1 Right-click on the Use Case View in the Model View tab in the browser.

2 Select the New > Use Case menu option.

A new use case is created with a default name of NewUseCase1.

3 Begin typing to change the name.

You can also create new use cases using the use case tool in the use case diagram. The
use case can then be filled out using the Use Case Specification dialog. To access the
specification dialog, double-click on the use case in the model browser.

Use Case Specification

A Use Case Specification enables you to display and modify the properties and
relationships of a use case in the current model.

To display a Use Case Specification, double-click on any icon representing the use
case or right-click on the use case in the model browser and chose Open Specification
from the model browser.
147

Specification Content

The Use Case Specification contains the following tabs:

� General tab
� Diagram tab
� Relations tab
� Files tab

General tab

In addition to the elements found in standard Specification Dialogs, the General tab
contains:

Name

A use case name is often written as an informal text description of the external actors
and the sequences of events between elements that make up the transaction. Use-case
names often start with a verb. The name can be entered or changed on the
specification or directly on the diagram.

Package

This static field identifies the package to which the components belong.

Rank

The Rank field prioritizes use cases. For example, you can use the rank field to plan
what iteration in the development cycle a use case should be implemented.

Abstract

An abstract notation indicates a use case that exists to capture common functionality
between use cases (uses) and to describe extensions to a use case (extends).

Diagram tab

Diagrams

The Diagrams list box lists all the diagrams owned by the use case. The diagram list
consists of two columns. The first (unlabeled) column displays the diagram icon type
for the diagram. The second column displays the diagram name. To insert a new
diagram in the list, click one of the Insert choices in the popup menu that corresponds
to the diagram type.
148 Chapter 8 - Defining Use Cases and Actors

Relations tab

Relations

The Relations list box lists all the relationships associated with the selected use case.
The client and supplier names and type icons are displayed to the right of the relation
name. Double-clicking on any column in a row displays the element's specification.

Files tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Creating an Actor

Actors can be created in the Use Case View of the Model View tab in the browser.

To create a new actor:

1 Right-click on the Use Case View package in the Model browser.

2 Select the New >Actor menu option.

A new actor is created with a default name of NewClass1.

3 Click on the new actor to change its name.

Actors can also be created using the actor tool in the Use Case Diagram Editor or
Class Diagram Editor.

Note that an actor is simply a stereotype of a class. You can define many of the same
properties on an actor as you can on any other class. To add to the actor's definition,
double-click on the actor to open the Actor specification dialog.

Actor specification

An Actor Specification looks identical to a Class Specification, except that the
stereotype field is set to actor. However, some of the fields in the class specification are
not applicable to actors and are therefore disabled.
Creating an Actor 149

9Creating Class Diagrams
Contents

This chapter is organized as follows:

� Creating a Class Diagram on page 151
� Creating Relationships on page 159
� Creating Association Relationships on page 160
� Creating Aggregation Relationships on page 167
� Creating an Association Class on page 167
� Aggregation Specification on page 168
� Creating Inheritance Relationships on page 168
� Creating Dependency Relationships on page 172
� Creating Reflexive Relationships on page 175
� Changing the Directionality of an Association on page 175
� Creating Package Relationships on page 175
� Creating Realize Relationships on page 176
� Adding and Hiding Classes, and Filtering Class Relationships on page 177

This chapter describes Creating a Class Diagram, as well as creating various types of
relationships and associations.

Creating a Class Diagram

Class diagrams are created in the Logical View of the Model browser. A Main class
diagram is always present in the Logical view. The Main class diagram should be used
to describe the relationships between the primary packages and a layered system.
Other class diagrams can be created to communicate key relationships within
portions of the model.

To edit the Main class diagram:

1 Double-click on the Main diagram in the Logical View package in the Model View
tab in the browser.

The Class Diagram editor appears.
151

2 Place classes, packages, capsules, and protocols in the diagram by dragging them
from the model browser, or by using the tools in the toolbox.

3 Draw relationships and associations among the classes, packages, capsules, and
protocols using the toolbox.

To create a new class diagram:

1 Right-click on the Logical View package in the Model View tab in the browser.

2 Select New > Class Diagram from the menu.

3 Enter the name of the class diagram.

There are several additional topics on creating relationships between model elements
in the class diagram:

� Creating Association Relationships

� Creating Aggregation Relationships

� Creating Inheritance Relationships

� Creating Dependency Relationships

� Creating Reflexive Relationships

� Creating Package Relationships

� Defining multiplicity in relationships

Using the Class Diagram Editor

The class diagram editor is used to create a diagram showing classes and associations
among the classes. The class diagram consists of two parts:

� the diagram area

� the Class Diagram Toolbox

Elements of the class diagram, such as classes, capsules, use cases and associations,
are added using the toolbox.

The window title bar shows the full name of the class diagram.
152 Chapter 9 - Creating Class Diagrams

Figure 32 Class diagram editor

Class diagrams contain icons representing classes, capsules, protocols, packages,
interfaces, and their relationships. You can create one or more class diagrams to depict
the classes at the top level of the current model; such class diagrams are themselves
contained by the top level of the current model. You can also create one or more class
diagrams to depict classes contained by each package in your model; such class
diagrams are themselves contained by the package enclosing the classes they depict,
the icons representing logical packages and classes in class diagrams.

Every class is assigned to a logical package. When you create a class using a creation
tool from the class diagram toolbox, the class is assigned to the logical package
containing the class diagram.
Creating a Class Diagram 153

Diagram Entities

There are four types of entity that you can place on a class diagram:

� Classes

� Capsules

� Protocols

� Packages

Relationships

There are four basic kinds of relationship you can create through the class diagram.
Refer to the following topics:

� Creating Association Relationships on page 160
� Creating Aggregation Relationships on page 167
� Creating Dependency Relationships on page 172
� Creating Inheritance Relationships on page 168

Creating capsule and protocol aggregations on the class diagram

There are some things that you can do on both the class diagram and the capsule
structure diagram, including adding capsule ends and ports. Defining aggregation
between a container capsule and a contained capsule results in the creation of a
capsule end inside the container capsule. Defining aggregation between a capsule and
a protocol results in the creation of a port as part of the capsule. Capsule structure
changes made on the class diagram are automatically reflected in the structure editor.
Changes made on the structure editor are only reflected on a class diagram if the
model elements involved are placed on a class diagram.

Using the class diagram to visualize existing relationships

You can visualize the existing relationships among these entities. Dragging capsule
and protocol classes from a model browser onto a class diagram causes the tool to
draw any existing relationships between these elements. For example, if a capsule
aggregates another capsule, dragging the two capsule classes on to a class diagram
will draw the relationships bases on the filter options chosen in the Filter Relationship
menu command in the Query menu.
154 Chapter 9 - Creating Class Diagrams

Class Diagram Toolbox

The class diagram toolbox contains the following tools (they are not all displayed by
default):

Figure 33 Class diagram toolbox
Creating a Class Diagram 155

Selector

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the class diagram. Click on the tool and then click on
the part of the diagram you want to zoom in on.

Text tool

Use to add text to the class diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint tool

Use to add UML constraints to the class. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor tool

Use to anchor a note to a particular element on the class diagram. (See Using the Class
Diagram Editor on page 152.)

Class tool

Use to place a class on the class diagram. (See Using the Class Diagram Editor on
page 152.) Pops up a pick list allowing you to choose from an existing class or create a
new class.

Capsule tool

Use to place a capsule class on the class diagram. (See Using the Class Diagram Editor
on page 152.) Pops up a pick list allowing you to choose from an existing capsule class
or create a new capsule class.
156 Chapter 9 - Creating Class Diagrams

Protocol tool

Use to place a protocol class on the class diagram. (See Using the Class Diagram Editor
on page 152.) Pops up a pick list allowing you to choose from an existing protocol
class or create a new protocol class.

Parameterized Class tool

Use to place a parameterized class on the class diagram. (See Using the Class Diagram
Editor on page 152.) Displays a pick list allowing you to choose from an existing class
or create a new class. There is no code generation support for parameterized classes.

Class Utility tool

Use to place a utility class on the class diagram. (See Using the Class Diagram Editor on
page 152.) Displays a pick list allowing you to choose from an existing class or create a
new class.

Parameterized Class Utility tool

Use place a Parameterized class utility on the class diagram. (See Using the Class
Diagram Editor on page 152.) Displays a pick list allowing you to choose from an
existing class or create a new class. There is no code generation support for
parameterized class utilities.

Association tool

Use to draw an association between two classes on the class diagram. (See Using the
Class Diagram Editor on page 152.) Associations can be created between classes
(including class utility, parameterized class, and so forth), between capsule classes,
and from capsule classes to protocol classes.

Aggregation tool

Use to draw an aggregation between two classes on the class diagram. (See Using the
Class Diagram Editor on page 152.) Associations can be created between classes
(including class utility, parameterized class, and so forth), between capsule classes,
and from capsule classes to protocol classes. See Creating Aggregation Relationships on
page 167 for more information.
Creating a Class Diagram 157

Unidirectional Association

Use to draw a unidirectional association between two classes on the class diagram. A
unidirectional association is simply an association with navigability limited to one
direction. Associations can be created between classes (including class utility,
parameterized class, and so forth), between capsule classes, and from capsule classes
to protocol classes. See Creating Relationships on page 159 for more information.

Unidirectional Aggregate Association

Use to create an association that is unidirectional in the direction it was drawn, with
an aggregation at the end. Any association between classes can be converted into this
through the specification dialog, as well.

Association Class

Use to link a class with an association between two other classes on a class diagram.
Use the Association Specification (by double-clicking on the association after it has
been drawn) to specify details of the association semantics. Using the link attribute
tool automatically sets the Link Element field on the association to be the class joined
to the association with the link attribute tool.

Generalization

Use to indicate that one element is a generalization of another. This is primarily used
to indicate a superclass/subclass relationship between classes. Draw the relationship
from the specializing element to the generalizing element (that is, from subclass to
superclass). Use the Generalize Specification (by double-clicking on the generalization
after it has been drawn) to specify details of the generalization semantics.

Adding a generalizes relationship between two classes (including capsule and
protocol classes) results in one class being generated as a subclass of the other at code
generation time.

Dependency or Instantiates

Use to indicate that one element is dependent on another. This is primarily used to
indicate a compilation dependency between classes. Draw the relationship from the
dependent element to the dependent-upon element. Use the Dependency
Specification (by double-clicking on the dependency after it has been drawn) to
specify details of the dependency semantics.

Adding a dependency relationship between two classes (including capsule and
protocol classes) results in the dependent class including the .h file of the
dependent-upon class.
158 Chapter 9 - Creating Class Diagrams

Package

Use to add a package to the diagram. The package is given a default name such as
'NewPackage1'.

Actor

Use to place an actor on a diagram. Displays a pick-list allowing you to select from
available classes or create a new class.

Use Case

Use to place a use case on a diagram. This creates a new use case with a default name
such as 'UseCase1'.

Interface

Use to place an interface on a diagram. Displays a pick list allowing you to select a
class or create a new class.

Realize

Use to indicate that a class realizes an interface or a use case. Draw the relationship
from the realizing element to the element being realized.

Instantiated Class

Use to place an Instantiated class on the class diagram. Displays a pick list allowing
you to choose from an existing class or create a new class. There is no code
generation support for instantiated classes.

Instantiated Class Utility

Use to place an Instantiated class utility on the class diagram. Displays a pick list
allowing you to choose from an existing class or create a new class. There is no code
generation support for instantiated class utilities.

Creating Relationships

Relationships among modeling elements take many forms. Most relationships imply
an interaction or a dependency between two model elements. The term 'class' in the
following descriptions includes capsule and protocol classes as well as "data" (or
passive) classes.
Creating Relationships 159

See the following topics for the type of relationship you are interested in creating:

� An association is a relationship between two classes (including capsule and
protocol classes). An association relationship may have a number of different
implications for the generated code, or it may not result in any generated code at
all, depending on the specific properties defined on the association. See Creating
Association Relationships on page 160.

� An aggregation is a more specific form of association that indicates that one class is
part of a larger, composite class. That is, one or more instances of one class are
considered to be owned by (and are created and destroyed under the control of) an
aggregate class. See Creating Aggregation Relationships on page 167.

� A dependency relationship indicates that the implementation of one class or
package depends on the existence of the definition of another class or package (or
some aspect of that class). See Creating Dependency Relationships on page 172.

� A generalization relationship indicates that one class inherits properties from (is a
subclass of) another class. See Creating Inheritance Relationships on page 168.

� A reflexive relationship is one in which an instance of a class may also have
associations with other instances of the same class. See Creating Reflexive
Relationships on page 175.

Creating Association Relationships

Association relationships indicate some form of interaction between two classes.
Typically, the association relationship indicates that instances of those classes
communicate with each other at run-time.

To create an association relationship in the class diagram editor:

1 Click on one of the two association icons in the class diagram toolbox: the
bi-directional association or the uni-directional association. (For more on
directionality, see Changing the Directionality of an Association on page 175).

2 Click on one of the two classes involved in the association.

3 Drag the association line on top of other class.

An association line appears between the two classes.
160 Chapter 9 - Creating Class Diagrams

Association Properties

After an association is created between two classes, each of those classes is said to
play an end in the association.

There are several properties surrounding the association, including properties of the
two ends involved in the association. These properties can be edited by
double-clicking on the association to bring up the Association Specification, or by
selecting the association and right-clicking. The right-click menu includes properties
specific to the end closest to where the mouse was clicked.

The class you terminated the association line on is referred to as End A. The class you
clicked on to start drawing the association end is referred to as End B. You can name
these ends explicitly through the Association Specification Dialog or via the
right-click menu.

Association Specification

An association represents a semantic relationship between two classes. To display the
association specification, double-click any association in a class diagram.

Specification Content

The Association Specification dialog consists of the following tabs: General tab, Detail
tab, End A and B General tabs, End A and B Detail tabs.

General tab

Name

A name for the association. The name label appears on the class diagram.

Effect on generated code: None.

Parent

The parent the component belongs to (its package) is displayed in this non-editable
field.
Creating Association Relationships 161

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself (that is, a type of modeling element). Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Effect on generated code: None.

End A / B

Use these fields to label the ends with names that denote the purpose or capacity
wherein one class associates with another. This field is the same as the End field on
the End A General and Detail and End B General and Detail tabs. See the End Detail
tab for more information.

Element A/B

The Element field specifies the classes of the two elements that this association
associates. This field cannot be edited.

Detail tab

Derived

This check box indicates whether the association is computed or implemented
directly. The element name for a derived element is adorned by a “/” in front of the
name.

Effect on generated code: No code is generated for derived associations.

Link Element

This field lists the attributed associations linked to the association. These attributed
associations apply to the association as a whole. Identifies a class representing the
association between the two elements.

Effect on generated code: Each of the end classes has a member generated to point
to or contain an instance of the link class, depending on the settings of the
containment property. The link class has members generated to point to or contain
each of the ends of the association.
162 Chapter 9 - Creating Class Diagrams

Name Direction

This field defines the direction of an end. There are three options listed in the
pull-down menu associated with the field: <non-directional>, End A and End B.

Effect on generated code: None.

Constraints

The constraint is an expression of some semantic condition that must be preserved
while the system is in a steady state. The constraint on the Detail tab applies to the
association as a whole, while the constraint on the Detail A or Detail B tab applies to a
particular end.

To apply a constraint, click in the Constraint field and enter the text. Constraints are
displayed notationally, surrounded by braces under the end for which it applies.

Effect on generated code: None.

End A and B General tabs

End A / B

Use this field to label the end with a name that denotes the purpose or capacity
wherein one class associates with another. This field is the same as the End A and End
B fields on the General tab.

Effect on generated code: The end name is generated as a member of the class at
the other end of the association. That is, if the class at End A is class A and the class
at End B is class B, and the name of End A is foo, then class B will have a member
named foo of type Class A.

Element

The Element field describes the two elements that this association associates. This
field cannot be edited.
Creating Association Relationships 163

Visibility

Specifies the visibility of the data member representing this end in the other class.
Visibility options are

� Public - visible to any class

� Protected - visible to this class, any subclasses of this class, and any designated
friend classes

� Private - visible only to this class and any designated friend classes

� Implementation - not visible to any other classes

Effect on code generation: If a data member is generated for this end in the other
class, the member will have the visibility specified here. The member is only
generated if the other field settings in the End A/B Detail tab are set appropriately.

End A and B Detail tabs

End

A label for the end. This label appears beside the end on the association in the
diagram. This field is the same as the End field on the General and End A and End B
General tabs. See the field description on the End A/B General tab for more
information.

Element

A non-editable field that specifies the classifier for this end.

Constraints

The constraint is an expression of some semantic condition that must be preserved
while the system is in a steady state. The constraint on the Detail tab applies to the
association as a whole, while the constraint on the Detail A or Detail B tab applies to a
particular end.

Effect on generated code: None.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
end of the association at any given time. See Multiplicity options for more
information.
164 Chapter 9 - Creating Class Diagrams

Effect on code generation: The data member for this end is declared as an array
with its size being the largest possible value declared in the multiplicity. If the
range is unspecified (e.g., 1..*), the containment value is forced to 'By reference'
and a warning is issued if the containment value was originally set to 'By value'.

Aggregation

The Aggregation field has three checkboxes: None, Aggregate, and Composite.

� None - the end is not an aggregate.

� Aggregate - the end is an aggregate; therefore, the other end is a part and must
have the aggregation value of none. The part may be contained in other
aggregates.

� Composite - the end is a composite; therefore, the other end is a part and must
have an aggregation value on none. The part is strongly owned by the composite
and cannot be part of any other composite.

Use the Aggregation field to set a direction to either all or part of the relationship
among instances of these classes. Only one end of the relationship can be aggregate or
composite.

To set the aggregate adornment, click on the Aggregate box in the Association
Specification or click Aggregate through the shortcut menu. The adornment is a
diamond on the relationship.

Effect on code generation: This affects how the other end is stored as a member of
this class. Checking the aggregate box allows you to select a containment setting to
control how the aggregation will actually be generated in code.

Target Scope

The Target Scope field has two checkboxes: Instance and Classifier.

� Instance - specifies that instances of the client own the supplier class.

� Classifier - specifies that the client class - not the client’s instances - owns the
supplier class.

You can set this field in the specification or through the shortcut menu.

Effect on code generation: The data member is scoped to the classifier in the other
end class.
Creating Association Relationships 165

Friend

The friend field designates that the supplier class has granted rights to a client class to
access its non-public parts.

Effect on code generation: This field currently has no effect on code generation. See
Designating friend classes for information on how to specify friends.

Navigable

The Navigable field indicates in which direction the association is traversed. By
default, ends are bidirectional and no navigation notation is provided.

To set an end's navigation, click on the Navigable box in the Association Specification
or click Navigable through the shortcut menu. The navigable arrowhead points in the
direction of the end, unless a containment adornment is displayed. Containment
adornments override navigable adornments.

Effect on code generation: If the navigation check box is not checked, it signifies
that the class at the other has no visibility of the class at this end of the association;
therefore, no member will be generated in the other end class.

Keys/Qualifiers

A key or qualifier is an attribute that uniquely identifies a single target object. The
attributes allow 1..n or n..n associations, and reduce the number of instances. The list
box displays all keys or qualifiers currently defined.

To enter a key or qualifier, click Insert from the popup menu or press the insert key. An
untitled entry is placed in the name and type field. To change the entry, select to
highlight and type in a new name.

Effect on generated code: The Keys/Qualifiers entries currently have no effect on
generated code.

for sending/receiving data.
166 Chapter 9 - Creating Class Diagrams

Creating Aggregation Relationships

Aggregation relationships are a form of association relationship that indicate one class
(the contained class) is a part-of another class (the container, or aggregate class).

To create an aggregation relationship in the class diagram editor:

1 Click on the aggregation icon in the class diagram toolbox.

2 Click on the container class that will contain the class in the diagram.

3 Drag the association line on top of the contained class.

An association line appears between the two classes, and a diamond (aggregate)
symbol appears beside the contained class.

Aggregation usually indicates specific run-time constraints that exist on the
relationship:

� An instance of the contained class cannot exist outside of an instance of the
aggregate class.

� The creation of an instance of the aggregate class usually results in the automatic
creation of an instance of the contained class.

� The destruction of an aggregate instance results in the automatic destruction of
any contained instances.

Implementation details of the aggregation, such as whether the contained object is
referenced by a pointer or embedded, can be specified through the End A and B
General tabs and End A and B Detail tabs.

Creating an Association Class

A relationship in itself may have state and identity distinct from the instances
involved in the relationship. In order to implement a relationship, it may be necessary
to define a class representing the relationship.

To create an association class:

1 In the class diagram editor, click on the class icon in the class diagram toolbox.

2 Click on the diagram to place a new class.
Creating Aggregation Relationships 167

3 Enter the name of the class.

4 Click on the link attribute icon in the class diagram toolbox.

5 Click on the association class and drag the link attribute line to the association it
modifies.

Aggregation Specification

An aggregation represents a special bidirectional semantic relationship between two
classes, wherein one or more instances of one class are contained within an instance of
the aggregating class.

The aggregation specification dialog is the same as the Association Specification with
the End A aggregate check-box turned on.

Creating Inheritance Relationships

To define an inheritance relationship:

1 Open the class diagram where you want the inheritance relationship to appear.

2 Click on the Generalization icon in the class diagram toolbox.

3 Click on the intended subclass.

4 Drag the generalization line over the intended relationship.

Creating an Inheritance Tree

To add other subclasses to the inheritance relationship to create an inheritance
tree:

1 Using the generalization tool, drag a generalization line from each intended
subclass to the inheritance triangle by the intended superclass.

Two separate inheritance relationships can be merged into a tree by moving one
inheritance triangle symbol on top of another.

Exclusions

When you create a new generalization between capsules or protocols, the Inheritance
Rearrangement dialog may appear prompting you to exclude new superclass
properties. This allows the subclass to not inherit certain properties (state machine,
capsule structure and protocol signals) defined in the superclass. This is helpful, for
168 Chapter 9 - Creating Class Diagrams

example, if your subclass has a state machine and you want to intelligently merge the
state machines rather than just blindly inherit the superclass state machine. You can
initially exclude the superclass elements, and then gradually re-inherit them as you
edit your state machine.

If you select Copy or Cut from the Edit menu, a dialog appears warning you that items
whose parents aren’t being cut or copied will not get pasted. You have the option of
checking the box, Don’t warn anymore this session.

See Inheritance for more information.

Generalize Specification

A generalize relationship between classes shows that one class shares the structure or
behavior defined in one or more other classes.

The Generalize Specification consists of the following tabs: General and Files.

General tab

Name

A name for the relationship.

Owner

A non-editable field indicating the name of the subclass.

Stereotype

Specify a stereotype to apply to the relationship.

Visibility

Specifies the visibility of the generalization. Visibility options are

� Public - visible to any class

� Protected - visible to this class, any subclasses of this class, and any designated
friend classes

� Private - visible only to this class and any designated friend classes

� Implementation - not visible to any other classes
Creating Inheritance Relationships 169

Friendship Required

Select the Friendship required check box to specify the supplier class has granted rights
to the client class to access its non-public members. In the case of a generalization, the
subclass is granted friend access right to superclass members.

Effect on code generation: This field currently has no effect on code generation.

Virtual Inheritance

Select the Virtual Inheritance check box to ensure that only one copy of the base class
will be inherited by descendants of the subclasses.

Inheritance in Rose RealTime

You can define generalization relationships between classes (including capsule and
protocol classes) in Rose RealTime. When a generalization relationship is defined, the
specializing class inherits the properties including all attributes, operations, state
machine, signals, etc.) of the generalizing class.

For capsule and passive (data) classes, all public and protected operations are
inherited, as well as all public and protected attributes.

For capsule classes, the structure elements (the ports and capsule roles) are also
inherited by the specializing class.

For protocol classes, the signals are inherited as well as the state machine, if defined.

Promoting and Demoting Elements

Capsule structure elements (ports, capsule roles and bindings), capsule and protocol
state machine elements, and protocol signals can all be promoted and demoted in the
class hierarchy.

For example, you can select a port from a capsule and demote it, such that it is
removed from the generalizing capsule class' structure and moved into each of its
subclasses. The port is no longer inherited, it becomes part of the subclass' structure
and is removed from the superclass.

As another example of promoting/demoting, you can select a state in a capsule
subclass and 'promote it' such that the state is moved into the superclass state
machine, and is inherited by all the capsule's subclasses.
170 Chapter 9 - Creating Class Diagrams

To promote an element from a subclass to its immediate superclass:

1 For state machine and capsule structure elements, select the element in the
diagram, and choose Parts > Promote or Parts > Demote.

2 For all capsule structure elements, capsule and protocol state machine elements,
and protocol signals, you can also right-click on the element and choose Promote or
Demote from the popup menu.

Potential Conflicts Caused by Promote/Demote

A promote or demote operation may fail if there is a name conflict in the subclass or
superclass. For example, if you try to promote a state named Ready from a capsule
subclass into its superclass, you will get an error if any other subclass of the superclass
also has a state named Ready.

Excluding Elements

In addition to promoting and demoting, you can also exclude certain inherited
elements (the same set that can be promoted/demoted) from a capsule subclass or
protocol subclass.

An excluded element is removed from the subclass diagram or properties. Note that
for structure elements (ports and capsule roles), the excluded element will still be
inherited in the code of the subclass, since these elements are generated as members of
the superclass and automatically inherited by the subclass. This means, you should
not reuse the name of any excluded element or you may cause a name conflict at
compile-time.

Reinheriting Excluded Elements

To exclude an inherited element, right-click on the element in the diagram or
properties editor and choose Remove/Exclude from the popup menu. If this menu entry
is not available, the element cannot be excluded. You can reinherit an excluded
element by right-clicking on it and selecting Inherit. In protocol classes, click the Show
Excluded check box on the Signals tab to see excluded signals. In a Structure Editor or
State Editor right-click on the diagram and select Filter > Excluded (turn off the
Exclusions filter) to see any excluded elements.
Creating Inheritance Relationships 171

Rearranging inheritance hierarchies

If you choose to make an generalization relationship between two capsules or
between two protocols, you will be prompted with a dialog allowing you to exclude
the properties of the new superclass. See Creating Inheritance Relationships on page 168
for more information.

If you break a generalization relationship between capsule or protocol classes, you
will be presented with a dialog option to Absorb all current superclass properties.
This allows you to essentially copy the elements that the subclass had previously
inherited from the superclass directly into the subclass definition and then break the
inheritance relationship between the two classes.

Creating Dependency Relationships

A dependency relationship is a vague form of relationship between two classes that
simply indicates that something in one class depends on the definition of something
in the other class.

To create a dependency relationship:

1 Click the dependency tool.

2 Click on the intended dependent class.

3 Drag and drop on to the class that is being depended upon.

Draw a dependency relationship between two classes, or between a class and an
interface, to show that the client class depends on the supplier class/interface to
provide certain services, such as:

� The client class accesses a value (constant or variable) defined in the supplier
class/interface.

� Operations of the client class invoke operations of the supplier class/interface.

� Operations of the client class have signatures whose return class or arguments are
instances of the supplier class/interface.
172 Chapter 9 - Creating Class Diagrams

Graphical Notation

A dependency relationship is a dotted line with an arrowhead at one end:

The arrowhead points to the supplier class. In this example, class A is dependent on
class B.

Naming

Use the relationship name to identify the type or purpose of the relationship.

Valid Applications

You can draw a dependency relationship between logical packages.

Add Class Dependencies Wizard

A wizard is supplied to automate the creation of dependencies between a large
number of classes (for example, after loading a Rose or ObjecTime Developer model).

See Add Class Dependencies.

Dependency Specification

The dependency relationship indicates that the client class depends on the supplier
class to provide certain services. One class may use another class in a variety of ways.
Typically, a dependency relationship indicates that the operations of the client access
members (operations or attributes) of the supplier. Dependencies can also be drawn
between packages.

You can change properties or relationships by modifying the icon on the diagram or
by editing the specification.

You can also view the specification by double-clicking on the name of the dependency
relationship in the Relations tab of the Class Specification.

The associated diagrams or specification are automatically updated.

The Dependency Specification contains the following tabs: General, Files.
Creating Dependency Relationships 173

General Tab

Name

A name for the dependency relationship.

Class

A non-editable field listing the client class.

Stereotype

Specifies a stereotype to attach to the dependency.

Friendship Required

A check box indicating whether the client class should be generated as a friend of the
supplier to provide access to non-public members on the supplier.

Effect on code generation: This field currently has no effect on code generation.

Export Control

Specifies the visibility of the dependency. Visibility options are

� Public - visible to any class

� Protected - visible to this class, any subclasses of this class, and any designated friend
classes

� Private - visible only to this class and any designated friend classes

� Implementation - not visible to any other classes

Effect on code generation: None.

Multiplicity from

Describe the multiplicity of the client side of the relationship.

Effect on code generation: None.

Multiplicity to

Describe the multiplicity of the supplier side of the relationship.

Effect on code generation: None.
174 Chapter 9 - Creating Class Diagrams

Creating Reflexive Relationships

An object may sometimes need to communicate with other objects of the same class.
In the class diagram, this appears as a class having a relationship with itself. This is
called a reflexive relationship.

To create a reflexive relationship in the class diagram editor:

1 Click on the association icon in the class diagram toolbox.

2 Click on the class with the intended reflexive relationship.

3 Drag the association line outside of the class border and then back over the class.

An association line appears drawn from the class back onto itself.

Changing the Directionality of an Association

There are two forms of association that can be created: bi-directional and
uni-directional. Bi-directional associations are highly unusual in practice in the
development of applications, as a bi-directional association suggests that
communication can be initiated in either direction. Most associations between classes
in an application are fundamentally uni-directional; that is, an instance of one class
always initiates communication to one or more instances of the other class.

To change the directionality of an association after it has been created:

1 Open the association specification dialog by double-clicking on the association in
the diagram.

2 Select the Navigable check box on the End A Detail or End B Detail tab to change the
directionality.

Creating Package Relationships

Relationships can be defined between packages. A relationship between two packages
indicates that one package is dependent on another. A dependency between packages
exists when one or more classes in one package initiates communication with a class
or classes in another package. The first package is dependent on the second package.
Creating Reflexive Relationships 175

To create a dependency relationship between two packages in the class
diagram editor:

1 Click on the dependency icon in the class diagram toolbox.

2 Click on the package that will be the dependent package in the diagram.

3 Drag the dependency line on top of the package being depended on.

A dependency association appears between the two packages, with an arrowhead
pointing from the dependent package to the package it depends upon.

Creating Realize Relationships

A realize relationship between classes and interfaces and between components and
interfaces shows that the class realizes the operations offered by the interface.

Naming

Use the relationship name to identify the type or purpose of the relationship.

Valid applications

You can draw a realize relationship between a ClassInterface and a Component
Interface. The relationship between a component and an interface can not be drawn
explicitly. It is created when an interface is assigned to a component through the
browser or a specification editor.

Realize Relationship Specification

General Tab

Name

A name for the Realize relationship

Documentation

Use to describe the Realize relationship.
176 Chapter 9 - Creating Class Diagrams

Adding and Hiding Classes, and Filtering Class Relationships

The commands on the Query menu provide powerful facilities for controlling which
model elements are represented by icons in the current diagram.

The options are as follows

� Add Classes - adds classes to the diagram by name.

� Expand Selected Classes - adds classes to the diagram based on their relationships
to selected classes.

� Hide Selected Classes - removes selected classes from the diagram and optionally
removes their clients or suppliers from the diagram.

� Filter Relationships - controls which kinds of relationships appear in the current
diagram.
Adding and Hiding Classes, and Filtering Class Relationships 177

10Creating Collaboration
Diagrams
Contents

This chapter is organized as follows:

� Creating Capsule Structure on page 179
� Using the Structure Editor on page 180
� Structure Diagram Toolbox on page 182
� Creating a Port on page 183
� Port Specification on page 184
� Adding a Capsule Role on page 188
� Capsule Role Specification on page 188
� Connecting Ports on Capsule Roles Together on page 190
� Connector Specification on page 190
� Creating a Collaboration Diagram on page 191
� Using the Collaboration Diagram Editor on page 191

Creating Capsule Structure

Capsules are one of the primary modeling elements in Rose RealTime. Complete
executable code implementations are generated by the toolset for capsules.

Capsule structure is defined through the Structure Diagram Editor.

There are three kinds of structural element that may be added to a capsule structure
diagram:

� Capsule roles

� Ports

� Connectors

None of these elements are required. A capsule does not have to have any structural
elements. To do anything useful, a capsule usually requires at least a port so that it can
communicate with other capsules.
179

Creating a complete capsule structure definition may consist of any of the following
basic steps:

� Adding a Capsule Role

� Creating a Port

� Connecting Ports on Capsule Roles Together

Using the Structure Editor

The structure editor is used to define the structure of a capsule class. That is, how
instances of that capsule class are composed of other capsule class instances and
protocol class instances (ports). The structure editor consists of three parts: the
structure diagram area, the structure browser, and the Structure Diagram Toolbox.

Structure elements, such as ports and capsule roles, can be created by dragging a
protocol or capsule on to the structure diagram from any browser (usually from the
model browser). Structure elements can also be added using the toolbox. The
structure browser can be used to navigate to, and open editors and specification
dialogs on contained structure elements.

Several standard diagram manipulations can be performed, including resizing,
scaling, and filtering.

You can use the popup menu to navigate between structure and state diagrams.

Figure 34shows a sample structure editor. The window title bar shows the full name
of the class. The left side of the window contains the structure browser. The right side
contains the structure diagram area. The structure toolbox is not shown. It is usually
anchored outside of the diagram window.
180 Chapter 10 - Creating Collaboration Diagrams

Figure 34 The Structure Editor

UML Options

You can use the popup menu to toggle the following UML options:

Base UML notation

Converts the structure diagram so that it uses base UML notation.

Show Classifier Name on Roles

Lets you turn off the classifier name portion of a role label.

Show Protocol Name on Ports

Lets you turn off the classifier name portion on ports.
Using the Structure Editor 181

Structure Diagram Toolbox

The structure toolbox contains tools for adding elements to the structure diagram.

Figure 35 Structure toolbox

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on or out from diagrams.

Text tool

Use to add text anywhere in the structure diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.
182 Chapter 10 - Creating Collaboration Diagrams

Note anchor tool

Use to anchor a note to a particular element on the diagram.

Capsule role tool

Use to add a capsule role to a capsule collaboration diagram. A pick-list is displayed
allowing you to select the class of the capsule role from the list of capsule classes. The
first entry in the pick-list menu is Create a New Capsule which creates a new capsule
class with a default name such as 'NewCapsule1'.

Port tool

Use to add new ports to the capsule class structure. Ports can be placed either in the
internal structure (inside the black interface boundary, which makes them protected,
or on the structure interface, which makes them public.

A popup menu appears on the capsule role allowing you to select the protocol class of
the port from the list of available protocol classes (that is, all protocol classes in the
model). The first entry in the popup menu is Create a New Protocol which creates a new
protocol class called ‘NewProtocol1’.

Protected ports are automatically created as end ports. Public ports are created as end
ports by default.

Connector tool

The connector tool is used to wire ports together. Usually connectors bind ports on
different contained capsule roles together within the container capsule class.
Connectors can also bind internal end ports of the container class to other ports.
Interface end ports can only be bound within the context of a container class.

Only compatible ports can be connected together. Compatible ports are usually two
ports of the same protocol class, one of which is conjugated.

Creating a Port

There are four different ways to add a port to a capsule:

� Drag and drop a protocol class name from the model browser onto the capsule
structure diagram.

� Draw an aggregation between a capsule class and a protocol class on a class
diagram.
Creating a Port 183

� Use the port tool on the capsule structure diagram toolbox. Select the tool and click
on the capsule boundary to add a public port. Click inside the boundary to add a
protected port.

� From the Navigator area of a capsule diagram editor (either the collaboration
diagram editor or the state editor), right-click on the Ports folder and select Add
New Port from the popup menu.

If you use the port tool, a pick-list appears on the resulting port allowing you to select
the protocol class to be used from a list of available protocol classes. The first entry in
the pick-list is Create a New Protocol which creates a new protocol class called
‘NewProtocol1’. If you choose to create a new protocol class it will be added to the
same package as the container capsule class.

Creating a Non-Wired Port Using a System Protocol

The easiest way to create a non-wired port to access one of the system services (a
Frame, Timing, Log or Exception port) is as follows:

1 Right-click on the Ports folder on the Navigator area of the capsule's state diagram
editor.

2 Select Add New Port from the popup menu.

3 Select one of the system services from the list that appears.

Port Specification

The Port Specification provides control over information about ports on capsules.

The Port Specification contains two tabs: the General Tab and the Files Tab.

General Tab

Name

The port is referenced by a name. The default name provided when the port is first
created is based on the protocol name. In addition to appearing on the structure
diagrams, the port name is used by the behavior of the capsule containing the port. To
send and receive messages, the capsule's behavior references the port name in
detailed code, and in transition trigger events.
184 Chapter 10 - Creating Collaboration Diagrams

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle brackets
(that is, <<stereotype>>). Stereotype Icon displays the graphical representation.

Protocol

Specifies the protocol class to be used for the port. The protocol class (together with
the Conjugation check-box) determines the set of messages that can be sent through
this port (the out set), and the set of messages that can be received (the in set). The
field has a pull-down menu to select from the available protocol classes in the model.
The pull-down list always includes the service protocols for communicating with the
target services library.

The Open button opens the Protocol Specification for the selected protocol class.

Cardinality

Specifies the number of instances of the port that will appear at run-time. The port is
implemented as a member variable of the containing capsule. The variable may be an
array of ports, connected to multiple ports on the other end of the connector. In this
case, the port name points to an array of port instances. The Cardinality specifies the
size of the array. Not all port instances in the array are necessarily connected.
Individual port instances are referenced by indexing into the array. See the message
send syntax in the Programmer’s Guide for details. The Cardinality can be specified
with an integer value or as the name of a constant defined within the model.

Conjugated

A conjugated port is one in which the standard protocol class definition of in and out
signals is reversed. That is, on a conjugated port the protocol class out signals become
the port's in signals, and the protocol class in signals become the port's out signals.
This enables two ports of the same protocol class to be connected together without
Port Specification 185

having to define a separate reverse protocol. A connection can be made between two
ports of the same protocol by conjugating one of the ports. This is the most common
way of establishing communicating between two ports.

End Port

Toggle this check box to make the port an End Port, capable of sending and receiving
messages. End Ports provide a connection between the behavior of the capsule
containing the end port and the outside world. If this check-box is not checked, then
the port is a relay port. Relay ports cannot be protected, they must be public.

In order to send messages, a capsule must have end ports. The end port's protocol
defines the set of messages that can be sent.

In order to receive messages and process them within the capsule's behavior, the
capsule must have end ports. The end port's protocol defines the set of messages that
can be received.

Messages received on relay ports are not visible to the behavior of the capsule
containing the port. Relay ports are intended to be connected to capsule roles
contained within the capsule. Relay ports take messages from outside of the capsule
and relay them through the capsule's encapsulation boundary to other capsules
contained inside.

Wired

Toggle this check box to make the port a wired port. Wired ports are connected to
other wired ports using connectors (via the Connector tool in the capsule structure
diagram). Non-wired ports are connected to other non-wired ports by name.

The connection of wired ports is done automatically based on the system structure.
Wired ports on fixed capsules are connected at initialization time. Wired ports on
optional and plug-in capsules are connected dynamically when the capsule is
instantiated or plugged-in.

The connection of non-wired ports may be done in two ways:

1 Automatically by name at the time the capsule is initialized (Automatic
Registration).

In this case, when the capsule is initialized, a non-wired protected port is
connected to any non-wired public port of the same name. See Rules for
Non-Wired Port Connection.

2 Dynamically by a name specified by the capsule's behavior (Application
Registration).
186 Chapter 10 - Creating Collaboration Diagrams

In this case, the port is not connected at initialization time, it is connected when the
capsule's behavior invokes a service function to register the port by a specified
name. The same port may in fact be registered under different names at different
points in the model execution.

This is determined by the registration method selected.

Protected

This check-box determines whether the port is visible outside of the capsule
boundary. If the port is not protected, it is public. Public ports are part of the capsule
interface and are visible to other capsules.

Notification

If this checkbox is selected, the port will receive rtBound and rtUnbound messages
from the services library when ports get connected and unconnected.

Publish

Determines whether the port is visible (SSP) or invisible (SAP) from outside.

Registration

This selection is only enabled for non-wired ports. Non-wired ports are registered by
name with a name service that performs the connection. Connections are made
between protected non-wired ports (service clients) and a single public non-wired
port (the service provider). There are two registration modes: Automatic and
Application.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to the specification for documentation purposes.
Port Specification 187

Adding a Capsule Role

Capsule roles may be added to a structure editor by dragging a class name from a
browser onto the structure diagram.

You can also use the Capsule role tool from the structure toolbox. A pick-list is
displayed on the capsule role allowing you to select the class of the capsule role from
the list of capsule classes. The first entry in the pick-list is Create a New Capsule which
creates a new capsule class called ‘NewCapsule1’. If you choose to create a new
capsule class it is added to the same package as the container capsule class.

The class specifies the “type” for the role. In the case of optional or plug-in roles,
instances of other classes may actually be incarnated or imported into the role at
execution time if they are of compatible types (that is, they have the same interfaces
and are subclasses of the specified capsule role class).

Capsule Role Specification

The Capsule Role Specification provides control over the properties of a capsule role
in a capsule structure diagram. Capsule roles are references to capsule classes.

The Capsule Role Specification Dialog is a standard Specification Dialog, with
additional fields controlling the properties of the capsule role.

General Tab

Name

The name of the capsule role within the container capsule structure. The capsule role
name may be used in the detailed code of the container capsule.

Class

The Class field defines the Capsule Class to be used in instantiating this role. If the
capsule role is an Optional role or a Plug-In role, then subclasses of the specified Class
may also be instantiated into this role, but only if the substitutable flag is checked.
188 Chapter 10 - Creating Collaboration Diagrams

Cardinality

The Cardinality field defines the maximum number of capsule instances that can exist
in this role at any given time. If the role is Fixed, then the number of instances of the
role instantiated at run-time will be exactly the number defined in the Cardinality
field. If the role is Optional, then up to <Cardinality> instances may be created at
run-time. See Cardinality options.

Substitutable

This check box indicates whether subclasses of the specified capsule role's class can be
instantiated into this role. This may happen in one of two ways:

1 If the capsule role is Optional, the container capsule may instantiate a subclass of
the specified capsule class into the capsule role.

2 A subclass of the container capsule may override the class of the inherited capsule
role.

Fixed

If the fixed check-box is checked, then a capsule of the specified class is automatically
instantiated into the role in every instance of the container capsule at run-time. A
number of instances equal to the specified cardinality will be created at initialization
time.

Optional

If the optional check-box is checked, then the capsule role is instantiated under the
program control of the container class. The container class must explicitly instantiate
the capsule role within the detailed code of the container capsule state machine. This
is done using the incarnate function of the Frame service.

Plug-In

If the Plug-In check-box is checked, then the capsule role is never directly instantiated,
but rather an already existing instantiation from another capsule decomposition is
imported into the role. That is, an existing capsule is dynamically “plugged in” to the
specified role under the program control of the container class. The container class
state machine must explicitly request the plug-in of a capsule at run-time within the
detailed code. This is done using the import function of the Frame service.
Capsule Role Specification 189

Connecting Ports on Capsule Roles Together

To enable communication between capsules, you must connect together the ports on
their interfaces.

You can only connect compatible ports together. For a port to be compatible, the out
signals on each side must be a subset of the in signals on the other side. Usually, this is
satisfied by connecting the base role and conjugate role of the same protocol together.

Connector Specification

The Connector Specification provides control over the properties of a connector in a
capsule structure diagram. Connectors connect ports together to enable
communication among capsules.

There are two tabs: General and Files.

General Tab

Name

The name of the connector. Connector names are not usually displayed on the
structure diagram and are not significant in the generated code.

Delay

Specifies a communication delay across a connector. This field is for documentation
purposes only. There is no validation or calculation of actual communication delays at
run-time.

Cardinality

Specifies the number of connectors indicated by a connector line. When a connector is
used to connect ports with cardinality > 1 or ports on capsule roles with cardinality >
1, the connector cardinality should match the cardinality of the port/capsule
combination on either side of the connection.
190 Chapter 10 - Creating Collaboration Diagrams

Creating a Collaboration Diagram

To create a new collaboration diagram:

1 Select a package, class, capsule, or use case in the Logical View or Use Case View
where you want to define the collaboration

2 Right-click on the element in the model browser.

3 Select New > Collaboration Diagram.

4 Enter the name for the collaboration diagram

Using the Collaboration Diagram Editor

The collaboration diagram editor is used to create a diagram showing associations
among object roles. An association between classifier roles is called an association
role. A collaboration diagram represents a particular object configuration at run-time.
The collaboration diagram consists of two parts: the diagram area and the
Collaboration Diagram Toolbox. Multiple Collaboration diagrams can exist in the
same model.

Elements of the collaboration diagram - such as classifier roles, capsule roles, and
association roles - are added using the toolbox.

The window title bar shows the full name of the collaboration diagram.

Figure 36 Collaboration diagram editor
Creating a Collaboration Diagram 191

Relationship Between Collaborations and Sequences

The collaboration diagram editor shows the general communication pattern among a
set of objects for a particular scenario at run-time. You can associate sequence
diagrams with a collaboration diagram. The relationship is that a sequence diagram
shows a particular execution of a given scenario. There may be many sequences
showing different alternative paths for the same scenario. They should all have the
same basic collaboration pattern, though.

In the example above, the scenario is a telephone call. There are three roles being
played by objects at run-time. A caller represents the object initiating the call. The
receiver represents the object receiving the call. The system represents the object that
makes the connection between them. Several sequence diagrams could be derived
from this collaboration. For example, one sequence diagram might show a completed
call where the receiver answers. Another sequence might show a call that is not
answered.

Opening a Sequence Diagram

To open a dialog listing all the Sequence diagrams associated with a particular
Collaboration diagram, select Open Sequence Diagrams from the popup menu.

Sequence Overlays

You can also overlay Message Flow Arrows from a Sequence diagram on top of the
Collaboration dialogs by selecting Sequence Overlays... from the popup menu. Only
"Request" actions - Call and Send - are shown. Create and Destroy messages are not.
Messages are only displayed when there is an existing Association Role or Connector
to bind them to. Messages To or From the Environment are not displayed.

Code Generation

There is no code generated from the collaboration diagram. It is for communication
purposes only. The capsule structure diagram is a specialized form of collaboration
diagram with specific constraints that enable code to be generated to implement the
communication patterns shown in the capsule structure.
192 Chapter 10 - Creating Collaboration Diagrams

Collaboration Diagram Toolbox

The collaboration diagram toolbox contains tools for adding elements to the
collaboration diagram.

Figure 37 Collaboration diagram toolbox:

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text tool

Use to add text anywhere in the structure diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.
Using the Collaboration Diagram Editor 193

Note anchor tool

Use to anchor a note to a particular element on the diagram.

Capsule Role tool

Use the Capsule Role tool to place a capsule role on the collaboration diagram. When
you place a capsule role, a pick-list is displayed allowing you to select from available
capsule classes, create a new capsule class, or leave the class unspecified. The class
specifies a type that must be satisfied by any instances in that role. In practice, this
usually means that subclasses of the specified capsule class can fill the role.

This tool also appears on the capsule Structure Diagram Toolbox. The tool performs
the same function in both diagrams.

Classifier Role tool

Use the Classifier Role tool to place a classifier role on the collaboration diagram.
When you place a classifier role, a pick-list is displayed allowing you to select from
available classifier classes, create a new class, or leave the class unspecified. The
classifier specifies a type that must be satisfied by any instances in that role. In
practice, this usually means that subclasses of the specified class can fill the role.

Association Role tool

Use the Association Role tool to draw a connection between two roles (capsule roles
or classifier roles). An association between roles is a form of association with more
explicit meaning than an association at the class level. It specifies that instances
satisfying the types specified for these roles have some form of direct communication
relating to the interaction specified for this collaboration.

Classifier Role Specification

The Classifier Role Specification provides control over the properties of a classifier
role in a collaboration diagram.

The Classifier Role Specification is a standard Specification dialog, with additional
fields controlling the properties of the classifier role.

There are two tabs: the General Tab and the Files tab.
194 Chapter 10 - Creating Collaboration Diagrams

General Tab

Name

The name of the classifier role within the collaboration.

Stereotype

A stereotype label for the association.

Classifier

Specifies a class to fill this role.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
role at any given time.

Documentation

Use to describe this classifier role.

Files tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Association Role Specification

The Association Role Specification provides control over the properties of an
association role in a collaboration diagram.

The Association Role Specification is a standard Specification dialog, with additional
fields controlling the properties of the classifier role.

There are two tabs: the General Tab and the Files tab.

General Tab

Name

The name of the association role within the collaboration.
Using the Collaboration Diagram Editor 195

Stereotype

A stereotype label for the association.

Association

Specifies a class to fill this role.

Multiplicity

The multiplicity field defines the maximum number of instances that can exist in this
role at any given time.

Documentation

Use to describe this association role.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
196 Chapter 10 - Creating Collaboration Diagrams

11Creating State Diagrams
Contents

This chapter is organized as follows:

� Event Editor Dialog on page 207
� Adding a State on page 207
� Adding a Choice Point on page 208
� Drawing Transitions Between States on page 208
� Drawing the Initial Transition on page 209
� Defining State Transition Trigger Events on page 209
� Joining Transitions on page 210
� Creating Nested States on page 211

Creating Capsule State Machines

Capsules are one of the primary modeling elements in Rose RealTime. Complete
executable code implementations are generated by the toolset for capsules.

Capsule behavior is defined through the State Diagram Editor.

There are three kinds of behavioral elements that may be added to a capsule behavior
diagram:

� States

� Transitions

� Choice points

None of these elements are required. A capsule does not have to have any states or
transitions. If the capsule has any interfaces (end ports) in its structure definition, then
it must have a state machine to deal with events arriving on its interfaces.

Creating a complete capsule state diagram definition can consist of any of the
following basic steps:

� Adding a State

� Adding a Choice Point
197

� Drawing Transitions Between States

� Defining State Transition Trigger Events

� Joining Transitions

� Creating Nested States

Using the State Diagram Editor

The state diagram editor is used to define the finite State machine for a class. The
utility of the state diagram depends on the type of element it is specifying:

� For capsule classes, the state diagram will result in a complete code
implementation generated for the class. The state diagram defines the majority of a
capsule class implementation. The capsule class may also have operations defined
on it, but the state diagram gives the capsule its asynchronous message processing
capability.

� For protocols, the state diagram specifies the expected operation of any capsules
that contain one of the protocol's roles. The protocol state diagram defines the
allowable sequence of message inputs and outputs with respect to the protocol
roles. There is no code generated for the protocol class behavior.

� For data classes, the state diagram captures the abstract behavior (often the
abstract modes of operation) for the class. This does not result in any code being
generated for the data class. The data class implementation is limited to the
definitions of any attributes and operations specified through the Class
Specification.

The state diagram consists of three parts: the diagram area, the navigator area, and the
toolbox. Multiple State diagrams can exist in the same model.

Behavior elements, such as states and transitions, are added using the toolbox.

The window title bar shows the full name of the class.
198 Chapter 11 - Creating State Diagrams

Figure 38 State diagram editor

State Diagram Elements

The state editor window has tabs on the bottom to allow quick navigation to any
nested states, and to the capsule structure editor. You can use the popup menu to
navigate between diagrams, as well.

The state diagram allows you to create or edit the following elements:

� States

� State Transitions

� Choice Points

� Initial point and initial transition

� Junction points

� Final States

The state machine can be nested, allowing you to create hierarchical state machines.
Hierarchical state machines maintain a state history. When a transition terminates on
a hierarchical state, the history mechanism may be triggered to determine which
substate becomes the active state.
Using the State Diagram Editor 199

Using the Navigator

The Navigator area lists the states in hierarchical order, as well as operations,
attributes, and ports (in state diagrams only).

Right-clicking on the items in the list provides a shortcut to many common
operations, such as adding operations, attributes, and ports.

State Diagram Toolbox

The state diagram toolbox contains tools for adding elements to the state diagram.
The toolbox is associated with the State Diagram Editor (see Using the State Diagram
Editor on page 198).

Figure 39 State diagram toolbox

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text tool

Use to add text anywhere in the structure diagram.
200 Chapter 11 - Creating State Diagrams

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor tool

Use to anchor a note to a particular element on the diagram.

State tool

Use to add a state to the diagram. Click on the diagram to place a new state at the
selected location.

States are given default names, such as 's1', when initially drawn. To change the name,
click on the state and hit the Backspace key to delete the default name, then type the
new name.

Final State tool

Use to add a terminal state to the diagram. Click on the diagram to place a new final
state at the selected location.

Transitions cannot be drawn initiating from a final state.

Capsule state diagrams cannot have a final state, so this tool is not displayed for
capsules.

State Transition tool

Use to draw Transitions from one state to another, from a state to a branch, from a
branch to a state, from a transition junction point on the superstate to a substate or to
a transition exit point on the superstate, or from the initial point to an initial state.
Using the State Diagram Editor 201

Transition to Self tool

Use to draw a transition from a state back to itself. This can include self transitions on
the outer state border, as well as on any substate.

Choice point tool

Used to add a branch point allowing a transition to branch to two alternate
destination states.

State Specification

The state specification allows you to enter details about the state.

The state specification dialog contains the following tabs: General, Entry Actions, Exit
Actions, Files.

Note: If this state is a top state, an initial point, or a final state on a data or protocol
class, then it will not contain any Entry Actions or Exit Actions tabs.

General tab

Name

The name of the state. The state name appears on the state diagram, and will be part
of the generated code for any capsule class. It will also be used in the verification of
any sequence diagrams involving the capsule if the sequence diagram used as the
specification contains state information.

Class

The class whose state machine this state is a part of.

Entry Actions / Exit Actions tabs

Code

A Code Editor used to enter the detail code that will be executed upon entry to or exit
from the state.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 363.
202 Chapter 11 - Creating State Diagrams

Aggregating and Decomposing State Machines

You can create new superstates by aggregating several states, transitions and choice
points. To aggregate several states into a new superstate, multiply select the states and
choose Parts > Aggregate. A new state is created containing the selected states.

A superstate can be decomposed into its immediate substates by selecting
Parts > Decompose.

Transition Specification

The transition specification is used to edit the properties of a state transition. There are
up to four tabs: General, Triggers, Actions, and Files.

If the transition is an initial transition, or is not the originating segment of a joined
transition, then the Triggers tab is not displayed.

General tab

Name

The name of the transition. If the transition is part of a capsule state diagram, the
transition name will appear in the generated code for a capsule.

Internal

This check box indicates that a self-transition should not cause an exit from the state
when triggered. The result is that when an internal transition is triggered, no exit or
entry code is run.

Triggers Tab

Triggers List

The triggers list is used for Defining State Transition Trigger Events. The triggers list
contains the list of individual trigger events. Each event consists of a port name, a
signal or set of signals, and an optional guard condition. The Transition Events tab
contains the list of events that can trigger the transition. The list is an ‘OR' list,
meaning that the receipt of any one of the signals in the event list will cause the
transition to fire. There is no ‘AND' definition of event triggers (since only one
message is processed at a time).
Aggregating and Decomposing State Machines 203

To add new trigger events, right-click in the list area and select Insert from the popup
menu. This brings up the Event Editor Dialog allowing you to select the port(s) and
signal(s) that will act as trigger events.

Filter checkboxes provides options to display Inherited values, Local values and
Excluded valuesT

Moving and Copying triggers

To move a trigger from one Specification sheet to another, drag and drop it. From the
Edit menu of the main window, you can select Undo and Redo.

To copy a trigger from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Actions Tab

Code

Contains a Code Editor for defining detailed action code.

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 363.

For capsules, the transition action code will be output as part of the generated code,
and the code will be executed when the transition is triggered at run-time.

Transition actions defined in state diagrams for protocols or regular (non-capsule)
classes is not generated or executed. It is for information purposes only.

Files Tab

The Files tab allows for linking external files to the transition.

Choice Point Specification

The Choice Point Specification contains three tabs: General, Condition, and Files.

General Tab

Contains standard specification dialog items.
204 Chapter 11 - Creating State Diagrams

Condition Tab

Contains a Code Editor for entering the code that determines which branch of the
transition will be taken. The code must return a true or false value (false is zero and
true is non-zero).

This field may also be modified from the generated code and captured into the model
using the Code Sync feature. For more information, see Using Code Sync to Change
Generated Code on page 363.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Initial State Specification

The Initial State Specification contains two tabs: General and Files.

General Tab

Name

The default name for the initial state is Initial and should not be changed.

Class

A non-editable field indicating the class whose state machine the initial state is part of.

Documentation

A description of the initial state.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
Initial State Specification 205

Junction Point Specification

The dialog shows information about the junction point. See the Modeling Language
Guide on junction points and history for more information on these selections.

There are only two tabs: General and Files.

General Tab

Name

A name for the junction point. Most junction points are given automatically generated
names.

Continuation

This selection specifies the semantics for how the state history will be used when there
is no continuing transition. There are three options:

� Default - specifies that the default (initial) transition should be run.

� History - specifies that the state should return to shallow history.

� Deep History - specifies that the state should return to deep history, meaning that
all substates also return to history. This is the behavior for all capsule state
machines, so it is automatically selected.

Note: The default for capsule state machines is to always go to deep history, so deep
history is automatically selected for capsule states, and the selections are grayed out.

Externally Visible

This check box indicates whether the junction point is visible on the outside of the
state boundary.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

206 Chapter 11 - Creating State Diagrams

Event Editor Dialog

The event editor dialog is used to define triggering events for transitions in capsule
state diagrams. The event editor is accessed from the Events tab of the transition
specification dialog.

The event editor contains:

� a ports list

� a signals list

� a guard code area

The ports list contains a list of end ports in the capsule's collaboration diagram. Only
end ports that have In signals are listed as they are the only ones capable of receiving
messages.

The guard code may also be modified from the generated code and captured into the
model using the Code Sync feature. For more information, see Using Code Sync to
Change Generated Code on page 363.

To specify the trigger event:

1 Select a port check box to display the list of signals that can be received on that
port.

Multiple ports from the ports list can be selected, but when selecting multiple
ports, the signals are only displayed if all ports share the same protocol.

The signals list displays signals that can be received by the currently selected end
port, as well as a default wild card selection indicated by a '*'.

2 Select one or more signals from the signal list.

Multiple signals from the signals list can be selected. Any one of the selected
signals will act as a trigger for the transition.

Adding a State

States can be added by clicking on the state tool in the state diagram toolbox, and then
clicking on the state diagram where you want to add a state.

Alternatively, you can add states through the navigator area of the state diagram
editor.
Event Editor Dialog 207

If you have state entry or exit actions to define, use the state specification dialog or
Code window.

Adding a Choice Point

To draw a choice point, click on the choice point tool from the state diagram toolbox
and then click on the diagram where you want the choice point added.

The choice point can be rotated by grabbing one of its handles and turning. The true
and false branches can be flipped using the popup menu.

Once you have added a choice point, you should define the condition for the choice
point.

Drawing Transitions Between States

The transition tool is used to draw transitions.

Transitions are drawn originating from states, transition join points or choice points
and terminating on those same elements.

To draw a transition, click on the transition tool, click on the originating element for
the transition and drag the transition on to the terminating element.

When a new transition is drawn, the transition does not usually have a triggering
event. Transitions with no trigger event are shown with a broken line:

Transitions containing code are shown with the arrowhead filled in black.

See Drawing the Initial Transition on page 209.

Specifying the Transition

Once you have drawn a transition, you can specify the transition details. The details
of a transition include the trigger event(s), and the action code. These are specified
through the Transition specification dialog.
208 Chapter 11 - Creating State Diagrams

The trigger event and action code for capsule state machines result in generated code
as part of the capsule implementation. No code is generated for the trigger event and
action for other class state machines.

Drawing the Initial Transition

To draw an initial transition in a state diagram editor:

1 Click on the transition tool in the state diagram toolbox.

2 Click on the initial point in the diagram and drag the transition on top of the target
state. The initial point is the black circle that appears in the top-left corner of the
diagram.

Figure 40 Initial transition

The initial transition has a default name of 'Initial'. You can change the name by
selecting the label and typing in it.

Defining State Transition Trigger Events

State Diagrams

To define a new state transition trigger event:

1 Open the State Transition Specification from the capsule State Diagram editor
(double-click on the state transition).

2 Select the Events tab.

3 Right-click in the event list area.
Drawing the Initial Transition 209

4 Select Insert from the popup menu.

The Event Editor Dialog appears.

To define a new event in a capsule:

1 Click on the check box for the port and signal items to be included in the event.

2 The chosen items have a check mark next to them. Deselecting the check box
removes items from the event definition.

Note: A state transition trigger event can have more than one signal selected on a
port, and can have more than one port selected, though the signals list only shows the
signals that are common in the protocols of the two ports in that case. To trigger a
transition on signals on different ports, use multiple trigger events. A wild card
trigger is available (*) in the signals list which triggers a transition if any of the valid
input signals of the currently selected ports is encountered.

To define a new event in a protocol:

1 Click on the check box for the signal items to be included in the event.

2 The chosen items have a check mark next to them. Deselecting the check box
removes items from the event definition.

Defining a new event in a data class

To define a new event in a data class, specify the name of the event.

Joining Transitions

Transitions terminating on a superstate can be joined to transitions inside the state to
terminate directly on a substate. Similarly, transitions inside a hierarchical state can be
joined to transitions leaving the superstate. The points where a transition begins or
ends are represented inside the state with join points. Join points may be dark circles
or light circles.

To connect a new transition to an existing transition, select the transition tool and
draw the transition starting from or terminating on a join point.

To join two existing transitions, select one of the transitions and move it so that the
end point lands on the beginning point of the other transition, or so that the beginning
point lands on the end point of the other transition.
210 Chapter 11 - Creating State Diagrams

Figure 41 Joined transitions

Creating Nested States

Nested states are created in one of two ways:

� During state creation, select the state icon from the diagram toolbox and place over
a targeted superstate.

� After a state has been placed on a diagram, use the drag and drop technique to
place it over a targeted superstate.

The border of the target superstate becomes bold as the nested state moves over it.
Once the nested state is dropped on the superstate, the boundaries of the superstate
may grow to accommodate the nested state. If the cursor is positioned over more than
one state at the same time, the state at the deepest level of nesting is considered the
target superstate. Multiple states can be selected and nested as a group.

When a hierarchical state is created using one of these methods, the target superstate
becomes see-through. The Edit Inside menu item from the state's popup menu is
toggled on.

Nesting is determined completely by cursor position. Once the cursor is moved
outside the target state, no nesting occurs. The bold display of the target state's border
serves as an indicator for nesting. States can overlap without nesting
Creating Nested States 211

12Creating Sequence
Diagrams
Contents

This chapter is organized as follows:

� Creating a Sequence Diagram on page 213
� Cloning a Sequence Diagram on page 216
� Using the Sequence Diagram Editor on page 216
� Sequence Diagram Toolbox on page 218

Creating a Sequence Diagram

Sequence diagrams can be created in both the Use Case View and the Logical View. A
Sequence diagram shows a particular interaction scenario among roles or instances in
the model. A Sequence diagram is created from a collaboration diagram, which shows
a general interaction pattern among roles or instances. (This includes capsule
structure diagrams.) That is, the collaboration diagram shows the general pattern of
associations among roles or instances, which is often created first and usually evolved
in parallel with the associated Sequence diagrams. The Sequence diagram shows a
specific sequence of interactions among roles or instances for a particular scenario.

Sequences can also be associated with protocols. Protocols, which are currently
always binary, do not show their collaboration because it is fixed.

Creating a New Diagram

There are four ways to create a new Sequence diagram: from the

� Model browser

� structure diagram browser

� structure or collaboration diagram

� trace window
213

From the Browser

To create a new Sequence diagram from the browser:

1 Select or create a collaboration diagram, capsule structure, protocol, package, use
case, or class.

2 Right-click on the element in the model browser.

3 Select New > Sequence Diagram from the popup menu.

4 Enter the name of the Sequence diagram.

From the Structure Diagram Browser

To create a Sequence diagram from the structure diagram browser:

1 Right-click on the Sequence Diagrams folder in the Structure diagram browser.

2 Select Add New Sequence Diagram.

From the Collaboration or Structure Diagram

To create a new Sequence diagram from the collaboration or structure diagram:

1 Select or create a collaboration diagram, capsule structure or protocol.

2 Multi-select the model elements from the diagram to pre-populate the Sequence
diagram.

3 Click in the diagram background and select New > Sequence Diagram from the popup
menu.

4 Enter the name of the Sequence diagram.

Editing a Diagram

To edit a Sequence diagram:

1 Double-click on the diagram in the model browser.

The Sequence Diagram editor appears.

You can also select the Open menu item in the context menu for the Sequence
diagram in the model browser.

2 Place capsules or class roles or instances in the diagram by dragging the class or
capsule from the model browser, or by using the tools in the Sequence diagram
toolbox.
214 Chapter 12 - Creating Sequence Diagrams

3 Sequence diagrams are by default empty when created, except when created from
protocols. Instances can be added to the Sequence diagram by dragging roles from
the roles navigator within the structure browser. An instance representing the
containing capsule class can also be added by dragging that class from the browser
into the Sequence diagram.

A Sequence diagram can also be pre-populated with instances by selecting the
desired set of roles in the structure or collaboration diagram and then selecting the
Create Sequence Diagram menu item from the background menu of the diagram.

For structure diagrams, you can also optionally select the border if you want to
show interactions between the capsule and its roles.

Note: There are no borders to select in collaboration diagrams.

4 Draw messages among instances using the toolbox.

Adding Instances

The instances or roles in the Sequence diagram should generally be drawn from the
instances or roles in the collaboration diagram. Collaboration and Sequence diagrams
can show interactions among object instances or among roles. In most cases, they are
more useful demonstrating interactions among roles, because a role demonstrates a
part played in the scenario, which could be played by more than one instance.

Sequence diagrams are not automatically populated with instances. The instances
must be added, either by dragging classes from the model browser or by using the
instance tool from the toolbox.

Instances added using the instance tool are unspecified by default, which means that
the tool does not know what actual design element the instance corresponds to. You
can specify a role or create a new one using the drop-down model box that appears
when you create a new instance. The Sequence diagram is not a complete specification
until all instances are mapped to actual design elements. Use the Path field on the
interaction instance specification dialog to specify which design instance the sequence
instance maps to.

A Sequence diagram created under a protocol is pre-populated with two instances:
base and conjugate. These instances cannot be removed and other instances cannot be
added.
Creating a Sequence Diagram 215

Defining Messages

Messages are created between instances or between instances and the environment on
the diagram to show interaction. Messages can represent: asynchronous sends,
synchronous sends, function calls, instantiations, destructions, FOC (Focus of
Control) blocks, local states, local actions, and coregions. There is a separate message
tool for each of these.

Specifying Message Details

Sequence diagrams act as design specifications. A complete Sequence diagram within
a capsule structure can be verified by model execution. In order to verify a Sequence
diagram, the sequence instances must be mapped to design instances and the send
messages among capsule instances must be specified. The specification of the message
includes identifying the source and destination ports, signal names, and possibly data
types.

Cloning a Sequence Diagram

To clone a Sequence diagram:

1 In the browser, select the Sequence Diagram you want to clone.

2 Again in the browser, Control-drag it onto a Collaboration.

Note that you can select the same Collaboration that contains the original
Sequence Diagram.

A new Sequence Diagram is created for you under this Collaboration.

Using the Sequence Diagram Editor

A Sequence diagram is a graphical view of a scenario that shows an object interaction
in a time-based sequence. Sequence diagrams establish the roles of objects and help
provide essential information to determine class responsibilities and interfaces.

A Sequence diagram has two dimensions: vertical placement represents time and
horizontal placement represents different objects.

Elements of the Sequence diagram, such as instances and messages are added using
the toolbox.

The window title bar shows the full name of the Sequence diagram.
216 Chapter 12 - Creating Sequence Diagrams

The following specification dialogs can be accessed from elements on the Sequence
diagram:

� Instance Specification dialog
� Interaction Specification dialog
� Send Message Specification dialog
� Call Message Specification dialog
� Create Message Specification dialog
� Return Message Specification dialog
� Destroy Message Specification dialog
� Local State Specification dialog
� Coregion Specification dialog
� Local Action Specification dialog
� Reply Message Specification dialog

The popup menu for the Sequence diagram editor includes a validate command that
opens the validation dialog. It also contains an Auto-generate FOC entry, which controls
whether new send or call messages automatically get an FOC (Focus of Control) - and
a return message, if appropriate - when they are created.

Note: If you are not interested in message activation, turn the Auto-generate FOC entry
off. This simplifies the diagram display considerably.

Opening Collaboration Diagrams

To open the Collaboration diagram associated with a particular Sequence diagram,
select Open Collaboration Diagram from the popup menu for the background of the
Sequence diagram.

Reorienting Messages

You can reorient messages to make semantic changes in the diagram, for example, to
change the sender or receiver for a message.

Using the sender or receiver handles, you can change the sender or receiver. Using the
Re-order handle (Middle handle), you can change the order of this message on the
sender and receiver.
Using the Sequence Diagram Editor 217

Figure 42 Message handles

Moving Messages

You can move messages in a Sequence diagram to create more or less space between
them. Message movement is restricted to avoid accidentally altering the semantics of
the diagram. When moving a message, do not drag it using one of the handles.

Sequence Diagram Toolbox

The Sequence diagram toolbox contains tools for adding elements to the Sequence
diagram.
218 Chapter 12 - Creating Sequence Diagrams

Figure 43 Sequence diagram toolbox

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the zoom tool and then click on
the area of the diagram to zoom in on.

Text tool

Use to add text anywhere in the diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.
Sequence Diagram Toolbox 219

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool.

Note anchor tool

Use to anchor a note or constraint to a particular element on the diagram.

Interaction instance tool

Use to add an object instance to the diagram. Instances are added along the horizontal
axis at the top of the diagram.

Synchronous send message tool

Use to add a message between two instances. Synchronous send messages block the
sender waiting for a return (like a function call). This corresponds to the ‘invoke’
operation.

Asynchronous send message tool

Use to add a message between two instances. Asynchronous messages do not block
the sender.

Call message

Use to add a message between two instances. Call messages are like function calls, so
the sender is blocked waiting for a return.

Add FOC

Use to add an FOC (Focus of Control) block to the selected message. Select the tool
and click on the send or call message you want to add an FOC to.

Note: If the selected message can have a reply or return (that is, a synchronous send
or call), it is automatically generated.

Create message tool

Use to indicate that one instance creates another instance dynamically. The create
message indicates the moment of creation of the destination instance. The new
instance opens at the end of the create message.
220 Chapter 12 - Creating Sequence Diagrams

Destroy message tool

Use to indicate that one instance destroys (deletes) another instance dynamically. The
destroy message indicates the moment of destruction of the destination instance.

Local state tool

Use to indicate a state change in one of the instances. Click on one of the instances in
the diagram to place a new state at the selected location.

Local action tool

Use to indicate an action carried out by one of the instances. The action represents a
significant activity or operation being performed by the instance at that time.

Coregion tool

Use to indicate a set of events/messages whose ordering is undefined. That is,
although the messages appear in a particular order (as indicated by their vertical
placement on the instance line), the actual run-time ordering may vary.

Interaction Instance Specification

The interaction instance specification has information about an instance on a
Sequence diagram.

It contains two tabs: General and Files.

General Tab

Name

Specifies the name of this instance. Instances are unnamed by default. The name is
displayed as part of the instance label on the diagram.

Path

Identifies the role path for an instance in a collaboration. The pull-down menu allows
you to choose from the available roles in the immediate collaboration associated with
the Sequence diagram.

For Sequence diagrams under structure diagrams, it is also possible to show
interactions between the capsule and its roles. To do this, pick the capsule from the
path pull-down menu.
Sequence Diagram Toolbox 221

Stereotype

Specifies the (optional) stereotype of this instance.

Documentation

Use the Documentation field to describe this instance.

Files Tab

The Files tab allows for linking external files.

Interaction Specification

The Interaction Specification is used to describe interactions on a Sequence diagram.

It has two tabs: General and Files

General Tab

Name

Specifies the name of the interaction.

Stereotype

Specifies the (optional) stereotype of this instance.

Documentation

Use the Documentation field to describe this interaction.

Files Tab

The Files tab allows for linking external files.

Local Action Specification

The Local Action Specification is used to describe actions in Sequence
diagrams.

It contains General, Detail, and Files tabs.
222 Chapter 12 - Creating Sequence Diagrams

General Tab

Name

A name for the local action, which is displayed on the Sequence diagram.

Stereotype

Specify a stereotype for the local action.

Detail Tab

Sender

Non-editable field with the name of the instance where the local action is defined.

Receiver

Not applicable to a local action.

Time

Capture the time of the action.

Effect

A textual description of the effect of the local action.

Local State Specification

The Local State Specification contains General, Detail, and File tabs.

General Tab

Name

A name for the local state. The name is displayed on the Sequence diagram.

Stereotype

Specify a stereotype for the local state.

Detail Tab

Sender

Non-editable field with the name of the instance where the local state is defined.
Sequence Diagram Toolbox 223

Receiver

Not applicable for the local state

Time

Capture the time of the state change.

Message Specification

There are several different kinds of messages, but all have similar controls in the
Message Specification dialog.

The Message Specification dialog contains the following tabs: General, Detail, Port
Detail (only for Send messages), and Files.

General Tab

Name

A name for the message. The name is displayed on the Sequence diagram.

Stereotype

Specify a stereotype for the message.

Documentation

Use this field to enter documentation on this element.

Detail Tab

Sender

Non-editable field with the name of the instance where the message originated.

Receiver

Non-editable field with the name of the instance where the message ends.

Time

Capture the time that the message was sent.

Data

A textual description of the message data.
224 Chapter 12 - Creating Sequence Diagrams

Port Detail Tab

This tab is only significant for messages between capsule roles. The data on this tab
can be filled in by selecting from the pull-down menus, which include data from the
collaboration diagram.

If the fields on this tab are filled in for a Sequence diagram that acts as a behavior
specification, then the data can be compared to the actual data captured from a
run-time execution trace to verify the behavior at execution time against the
specification.

From Port

The name of the port on the sender capsule.

To Port

The name of the port on the receiver capsule.

Signal

The name of the signal from the ports' protocol.

Delivered

Capture the time the message was delivered to the receiver.

Priority

The priority at which the message is sent. (Applies only to an Asynchronous Send
Message.)

Sequence Validation Dialog

A Sequence diagram can be used as a specification of the interaction among object
roles and/or instances. Sequence diagrams are very useful as specifications of design
intent to be checked against actual model execution results.
Sequence Diagram Toolbox 225

Figure 44 Sequence Diagram Validation dialog

The Validation Dialog allows you to check the Sequence diagram specification for
missing elements. It provides control over what aspects of the Sequence diagram
should be checked for completeness.

A list of check boxes to control what is checked during verification.

� Instance - checks that the path of each instance in the interaction is defined.

� Sender port - checks that the sender port names in the sequence are defined and,
possibly, resolved to an existing port.

� Receiver port - checks that the receiver port names in the sequence are defined
and, possibly, resolved to an existing port.

� Signal/Operation - checks that the signal names for send or operation names for a
call are defined and, possibly, resolved to an existing signal.

� Data - checks that the data types of all messages in the sequence are defined.

� Validate button - performs the actual validation. Results of the validation appear
in the error log.
226 Chapter 12 - Creating Sequence Diagrams

Validation Error Log

Contains the results of the validation. Each item in the list indicates an undefined or
unresolved sequence element.

Focus of Control

Focus of Control (FOC) is an advanced notational technique that enhances Sequence
diagrams. This technique shows the period of time during which an object is
performing an action, either directly or through an underlying procedure.

FOC is portrayed through narrow rectangles that adorn lifelines (the vertical lines
descending from each object). The length of a FOC indicates the amount of time it
takes for a message to be performed. When you move a message vertically, each
dependent message moves vertically as well. Also, you can reorient a message
vertically off the source FOC to make it detached and independent.

Activators

Messages that originate from an FOC are said to have been activated by the message
that started that FOC.
Sequence Diagram Toolbox 227

A Sequence diagram with FOC notation and scripts follows:

Figure 45 Focus of Control Diagram Example

Coloring Focus of Control

To help distinguish a particular FOC from other items in a Sequence diagram, you can
fill a FOC with a color.

To color a FOC:

1 Select the FOC you want to color.

2 Click Diagram Object Properties from the Edit menu and then click Fill Color.

3 Click on the color you want to make the selected FOC.

4 Click OK.
228 Chapter 12 - Creating Sequence Diagrams

13Defining Capsules and
Classes
Contents

This chapter is organized as follows:

� Creating a Class on page 229
� Creating New Attributes on page 230
� Creating New Operations on page 230
� Class Specification on page 231
� Attribute Specification Dialog on page 244
� Operation Specification on page 246
� Creating a Capsule Class on page 250
� Capsule Diagrams on page 251
� Capsule Specification on page 252

Creating a Class

Classes can be created in either the Logical View or the Use Case View of the Model
browser.

To create a class:

1 Right-click on the Logical View package in the Model browser (or on the Use Case
View package).

2 Select New >Class from the menu.

A new class is created with a default name of 'NewClass1'.

3 Type over the name to change it.

229

Creating New Attributes

To create a new attribute on a class:

1 Right-click on the class in the model browser.

2 Select New > Attribute from the menu.

3 Double-click on the attribute to open the Attribute Specification Dialog to set the
name, class or type, code generation properties (for example, virtual), and so forth.

Alternatively:

1 Open the Class Specification.

2 Select the Attributes tab.

3 Right-click and select Insert from the popup menu.

You can reorder attributes in the Specification dialog using drag-and-drop. You can
undo and redo this action.

Creating New Operations

To create a new operation on a class:

1 Right-click on the class in the Model browser.

2 Select New > Operation from the menu.

3 Double-click on the operation to open the Operation Specification to set the name,
parameters, return values, and so forth.

Alternatively:

1 Open the Class Specification.

2 Select the Operations tab.

3 Right-click and select Insert from the popup menu.

4 Double-click on the new operation and use the Operation Specification to specify
the operation details.

You can reorder operations in the Specification dialog using drag-and-drop. You can
undo and redo this action.
230 Chapter 13 - Defining Capsules and Classes

Class Specification

The class specification is used to edit the properties of a class. The dialog provides
access to all member attributes and operations as well.

Class Specification Content

The class specification contains the following tabs:

� Class Specification - General tab
� Class Specification - Detail tab
� Class Specification - Operations tab
� Class Specification - Attributes tab
� Class Specification - Nested tab
� Class Specification - Components tab
� Class Specification - Relations tab
� Class Specification - Files tab

Class Specification - General tab

Figure 46 Class Specification - General tab
Class Specification 231

Name

The name of the class you opened the Specification for.

Parent

The parent the class belongs to (its package, or class in the case of a nested class) is
displayed in this static field.

Type

Your Type choices include:

� Class

� Parameterized class (no code generation available)

� Instantiated class (no code generation available)

� Utility class

� Parameterized utility class (no code generation available)

� Instantiated class utility (no code generation available)

� Metaclass (no code generation available)

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog box located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.

Language

Select the implementation language for the class from the available languages. The
analysis selection indicates that no code will be generated for the class.
232 Chapter 13 - Defining Capsules and Classes

Visibility

The Visibility field specifies how a class and its elements are viewed outside of the
defined package.

The Visibility field can be set only in the specification. No special annotation is related
to access control properties.

To change the visibility type for the class, click on the appropriate option in the
visibility field. You can display the implementation visibility in the component
compartment. You can display visibility in an icon through the shortcut menu.

Documentation

Use this field to enter documentation on this element.

Select: To Indicate:

Public The element is visible outside of the enclosing package and you
can import it to other portions of your model. Operations are
accessible to all clients.

Protected The element is accessible only to subclasses, friends, or the
class itself.

Private The element is accessible only to its friends or to the class
itself.

Implementation The element is visible only in the package in which it is defined.
An operation is part of the implementation of the class.
Class Specification 233

Class Specification - Detail tab

Figure 47 Class Specification - Detail tab

Multiplicity

The Multiplicity field specifies the number of expected instances of the class. In the
case of relationships, this field indicates the number of links between each instance of
the client class and the instance of the supplier. See Cardinality Options for more
information.

Space

Use the Space field to specify the amount of storage required by objects of the class
during execution.

Persistence

Persistence defines the lifetime of the instances of a class. A persistent element is
expected to have a life span beyond that of the program or one that is shared with
other threads of control or other processes.

The persistence of an element must be compatible with the persistence that you
specified for its class. If a class persistence is set to Persistent, then the object
persistence is either persistent, static or transient. If a class persistence is set to
Transient, then the object persistence is either static or transient.
234 Chapter 13 - Defining Capsules and Classes

You can set the persistence only through the specification. This field is inactive for
class utilities, parameterized class utilities, and instantiated class utilities.

To set the persistence, click on the applicable option in the Persistence field. You can
display the persistence in the diagram by selecting Show Persistence from the popup
menu.

Concurrency

This field denotes the semantics in the presence of multiple threads of control. The
Concurrency field shows the concurrency for the elements of a class. The concurrency
of an operation should be consistent with its class.

Type Description:

� Sequential (default) - The semantics of the class are guaranteed only in the
presence of a single thread of control. Only one thread of control can be executing
in the method at any one time.

� Guarded - The semantics of the class are guaranteed in the presence of multiple
threads of control. A guarded class requires collaboration among client threads to
achieve mutual exclusion.

� Active - The class has its own thread of control.

� Synchronous - The semantics of the class are guaranteed in the presence of
multiple threads of control; mutual exclusion is supplied by the class.

The Concurrency field is inactive for class utilities, parameterized class utilities, and
instantiated class utilities.

To change the concurrency, click on an applicable option button in the Concurrency
field. You can display the concurrency in the class diagram by selecting Show
Concurrency from the popup menu.

Abstract

The Abstract field identifies a class that serves as a base class. An abstract class defines
operations and states that will be inherited by subclasses. This field corresponds to
the abstract class adornment displayed inside the class icon.

To toggle the abstract adornment, click on its check box.

When you click Abstract, the abstract class adornment is displayed in the lower left
corner of the class icon. You can change the abstract class adornment only through the
specification.
Class Specification 235

The Abstract field is inactive for metaclasses, class utilities, parameterized class
utilities, and instantiated class utilities.

Formal Arguments

In the Parameterized Class or Parameterized Class Utility specification, the formal,
generic parameters declared by the class or class utility are listed.

In the Instantiated Class or Instantiated Class Utility specification, the actual
arguments that match the generic parameters of the class being instantiated are listed.

You can add, update, or delete parameters only through the Class specification. This
field applies only to parameterized classes, parameterized class utilities, instantiated
classes, and instantiated class utilities.

To define the parameters for a class, position the pointer within the Parameters field
and click Insert from the shortcut menu or press the insert key.

Parameters are displayed on class diagrams.

Class Specification - Operations tab

Figure 48 Class Specification - Operations tab
236 Chapter 13 - Defining Capsules and Classes

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification.

The operations are listed with the following fields:

� Visibility Adornment (Unlabeled); the visibility of the operation is indicated with
an icon. Following are the visibility options:

❑ Public - the operation is accessible to all clients.

❑ Protected - the operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - the operation is accessible only to the class itself or to its friends.

❑ Implementation - the operation is accessible only by operations of this class.

� Stereotype - displays the name of the stereotype.

� Signature - displays the name of the operation.

� Class - identifies which class defines the operation.

� Return Type - identifies the type of value returned from the operation.

The Operation tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Click this option to see operations inherited from other classes. If there is no check
mark in this field, you can view only operations associated with the selected class.

Note: Rose RealTime allows you to directly modify any operation shown in the
operations list by displaying the operations specification dialog. You should be
careful when modifying base class operations for it may have implications on other
elements in your model which reference or are subclassed from the base class.

Creating New Operations

To enter an operation in the Class Specification, select Insert from the popup menu. A
new operation with a default name is added to the operations list.

Moving and Copying Operations

To move an operation from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.
Class Specification 237

To copy an operation from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Class Specification - Attributes tab

Figure 49 Class Specification - Attributes tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification Dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.

The descriptions for each field follow:

� Visibility Adornment (Unlabeled):

❑ Public - the attribute is publicly visible, and is accessible to all clients.

❑ Protected - the attribute may be accessed only by subclasses, friends, or by
operations of this class.
238 Chapter 13 - Defining Capsules and Classes

❑ Private - the attribute is accessible only by the class itself or by its friends.

❑ Implementation - the attribute is accessible only by other operations in this
class.

� Stereotype - displays the name of the stereotype.

� Name - displays the name of the attribute.

� Class - identifies where the attribute is defined.

� Type - this can be a class or a traditional type, such as int.

� Initial - displays the initial value of an object.

The Attribute tab is active for all class types.

Show Inherited

Click this option to see attributes inherited from other classes. If there is no check
mark in this field, you can view only attributes associated with the selected class.

Note: Rose RealTime allows you to directly modify any attribute shown in the
attributes list by displaying the attribute specification dialog. You should be careful
when modifying base class attributes for it may have implications on other elements
in your model which reference or are subclassed from the base class.

Creating New Attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Moving and Copying Attributes

To move an attribute from one Specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy an attribute from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Class Specification 239

Class Specification - Nested tab

Figure 50 Class Specification - Nested tab

A nested class is a class that is enclosed within another class. Classes may contain
instances of, inherit from, or use a nested class.

Enclosing classes are referred to as parent classes, and a class that lies underneath the
parent class is called a nested class.

A nested class is typically used to implement functionality for the parent class. In
many designs, a nested class is closely coupled to the parent class and is often not
visible outside of the parent class. For example:

Think of your computer as a parent class and its power supply as a nested class. While
the power supply is not visible outside the computer, the task it completes is crucial
for the overall functionality of the computer.

Moving and Copying Nested Classes

To move a Nested class from one Specification sheet to another, drag and drop it.
From the Edit menu of the main window, you can select Undo and Redo.

To copy a Nested class from one Specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.
240 Chapter 13 - Defining Capsules and Classes

To add a Nested Class from a Class Specification:

1 Create and name a class.

2 Display the Class Specification.

3 Click on the Nested tab.

4 Right-click to display the shortcut menu, then click Insert.

A nested class entry with a default class name is inserted.

To display a nested class:

1 On the Query menu, select Add Classes.

2 Select the nested class and place it in the Selected Classes list box.

You can undo and redo the addition of nested classes.

To delete a Nested Class from a Class Specification:

1 Select the nested class from the Nested tab in the Class Specification.

2 Right-click on the class to display the popup menu.

3 From the popup menu, select Delete.

Or, use the following steps to delete a nested class:

1 Select the name of the nested class from the Nested Classes list on the Nested
Classes tab.

2 Press the Delete key.

If you delete a nested class that is also a parent to other nested classes, all the nested
classes are deleted.

You can undo and redo the deletion of nested classes.

Note: When you attempt to delete a nested class from a Class Specification, a warning
dialog appears to verify the deletion.

Relocating Nested Classes from the Browser to a Specification

Classes and Nested Classes can be moved from the browser to the Class Specification
Nested tab. If you move a class (NewClassA) from the browser and place it directly on
top of a class (NewClassB) on the Nested tab, NewClassA becomes nested underneath
NewClassB. However, only one level of class nesting appears on the Nested tab. You
can view all levels of nesting in the browser.
Class Specification 241

Moving Nested Classes between Class Specifications

Nested classes can be dragged and dropped between Class Specification Nested tabs.

Class Specification - Components tab

Figure 51 Class Specification - Components tab

Components List

The components list displays a list of components to which this class has been
assigned. Components can be inserted, deleted, and moved up and down in the list.
Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component brings up the Components popup menu.
242 Chapter 13 - Defining Capsules and Classes

Class Specification - Relations tab

Figure 52 Class specification - Relations tab

Relations List

The relations list displays relations between the class and other model classes as
specified in class diagrams. The relations list simply displays the relationships
involving this class that appear on class diagrams in the model.

Each relation has a corresponding Association Specification for editing the relation
attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.
Class Specification 243

Class Specification - Files tab

Figure 53 Class Specification - Files tab

A list of referenced files is provided here. You can link external files to model elements
for documentation purposes.

Attribute Specification Dialog

The Attribute Specification lets you display and modify the properties of a class or
capsule attribute in the current model.

To display an Attribute Specification, select the entry on the Attribute tab of the Class
or Capsule Specification and click Specification from the pop-up menu. Alternatively,
double-clicking on the entry displays the Attribute Specification.

Specification Content

The Attribute Specification consists of the following tabs: General, Detail, Files.
244 Chapter 13 - Defining Capsules and Classes

General Tab

Name

A name for the attribute. This name will be the name for the generated attribute.

Stereotype

A stereotype value.

Class

The class the attribute belongs to is displayed in this non-editable field.

Visibility

� Public - the attribute is visible to any other classes.

� Protected - the attribute is visible only to subclasses and friend classes.

� Private - the attribute is not visible to any other classes, except designated friend
classes.

� Implementation - the attribute is never visible to other classes.

Scope

� Class - there is a single instance of the attribute for all instances of the class (for
example a static member in C++ terminology).

� Instance - each instance of the class will have a separate attribute instance.

Detail Tab

Type

Attribute types can either be classes or language-specific types. When the attribute is a
data value, the type is defined as a language-specific type. You can enter the type in
the Type field of the Class Attribute Specification. Rational Rose RealTime displays
the type beside the attribute name in the class icon and updates the information in the
model.

Initial Value

You can assign an initial value to your class attribute through this field. Click in the
Initial Value field and enter the value.
Attribute Specification Dialog 245

Changeability

� Changeable - The attribute can be modified.

� Frozen - The attribute cannot be modified.

� Add-only - The attribute can only be updated in an additive way. This is not
enforceable in most programming languages.

Derived

The Derived check box indicates whether the element was computed or implemented
directly.

To define a element as derived, select the Derived check box. The element name is
adorned by a "/" in front of the name.

If the derived box is checked, no code is generated for the attribute.

Operation Specification

You should complete one Operation Specification for each operation that is a member
of a class.

If you change a class operations property by editing its specification, Rose RealTime
updates all class diagrams containing icons representing that class.

To access the Operation Specification, select an entry on the Operation tab of the Class
Specification and double-click the entry or click Insert from the popup menu. You can
also bring the specification up through the popup menu.

Specification Content

The Operation Specification consists of the following tabs: General, Detail,
Validations, Semantics, Files.

General Tab

Name

The name of the operation. The named operation will be generated as a member of the
containing class.

Stereotype

Specifies a stereotype for the operation.
246 Chapter 13 - Defining Capsules and Classes

Class

A non-editable field that displays the class to which the operation belongs.

Visibility

� Public - Indicates that the operation is visible to other classes.

� Protected - Indicates that the operation is not part of the public interface of the
class, but is visible to subclasses.

� Private - Indicates that the operation is not visible to other classes, including
subclasses. May be visible to specific classes designated as friend classes.

� Implementation - Indicates the operation is not visible to any other classes,
including subclasses and friends.

Options

� Polymorphic - Indicates that the operation should be inherited by all subclasses.

� Query - Indicates that the operation is read-only and does not modify the object's
state.

� Abstract - Indicates that the operation is an abstract definition that should be
overridden by specific implementations in subclasses.

Scope

� Instance - Indicates that the operation operates on individual class instances,
usually because its calculations are based on the object state, or because it modifies
the object state.

� Class - Indicates that the operation operates the same way regardless of the state of
any individual object in the class.

Detail tab

Return Type

For operations that are functions, set this field to identify the class or type of the
function's result. If show classes is set, the list box displays all the classes in the
package. If Show Classes is not set, only the predefined set of return class types is
displayed.

If you enter a class name and it does not exist in your model, the application does not
create one.
Operation Specification 247

Parameters

This field contains a list of the arguments of the operation. You may express these
arguments in your selected implementation language.

The argument list can be rearranged with the click and drag technique. Select an
argument from the list, drag it to the location, and release. The list reflects the new
order.

Argument Specification Dialog:

To open the Argument Specification dialog, double click a parameter. The dialog has
two tabs: General and Files.

The General tab contains fields for Name, Type, Default, and Documentation. It also
provides the name of the owner of the parameter, that is, the operation that the
parameter belongs to.

The Files tab provides a list of referenced files. You can link external files to model
elements for documentation purposes.

You can Undo and Redo any changes from the Edit menu.

Moving and Copying Parameters:

To move a parameter from one specification sheet to another, drag and drop it. From
the Edit menu of the main window, you can select Undo and Redo.

To copy a parameter from one specification sheet to another, drag and drop it while
holding down the Ctrl key. From the Edit menu of the main window, you can select
Undo and Redo.

Code

A code editor allowing you to enter the detailed implementation code for the
operation.

Validation Tab

Protocol

This field lists a set of operations that a client can perform on an object and the legal
orderings in which they might be invoked. The protocol of an operation has no
semantic impact.

Qualifications

This field identifies language-specific features that qualify the method.
248 Chapter 13 - Defining Capsules and Classes

Exceptions

This field contains a list of the exceptions that can be raised by the operation. Enter the
name of one or more classes identifying the exception.

Size

This field identifies the relative or absolute amount of storage consumed by the
invocation of the operation.

Time

This field contains a statement about the relative or absolute time required to
complete an operation. Use this field to budget time for the operation.

Concurrency

This field denotes the semantics in the presence of multiple threads of control. The
Concurrency field shows the concurrency for the elements of a class. The concurrency
of an operation should be consistent with its class.

Concurrency Field Options

You can set the concurrency of a class only through the Class Specification. The
Concurrency field is inactive for class utilities, parameterized class utilities, and
instantiated class utilities.

To change the concurrency, click on an applicable option in the Concurrency field. You
can display the concurrency in the class diagram by clicking Show Concurrency from
the shortcut menu.

Type Description

Sequential
(default)

The semantics of the operation are guaranteed only in the presence
of a single thread of control. Only one thread of control can be
executing in the method at any one time.

Guarded The semantics of the operation are guaranteed in the presence of
multiple threads of control. A guarded class requires collaboration
among client threads to achieve mutual exclusion.

Synchronous The semantics of the operation are guaranteed in the presence of
multiple threads of control; mutual exclusion is supplied by the
class.
Operation Specification 249

Semantics Tab

Preconditions

Invariants that are assumed by the operation (the entry behavior of an operation) are
listed.

Semantics

The action of the operation is shown in this area.

Postcondition

Invariants that are satisfied by the operation (the exit behavior of an operation) are
listed in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the appropriate
semantics. Selecting <New> brings up the New Interaction Diagram dialog, in which
you can specify the diagram type and title.

Creating a Capsule Class

Capsule classes are created in the Logical View of the Model browser.

To create a new capsule class:

1 Right-click on the Logical View package (or another package of your choice) in the
model browser.

2 Select the New > Capsule menu option. A new capsule class is created with a default
name of 'NewCapsule1'.

3 Type over the name to change it.

You can also create new capsule classes using the capsule tool in the class diagram.

Each capsule has an associated structure diagram and state diagram.
250 Chapter 13 - Defining Capsules and Classes

The capsule class attributes, operations and other properties can be modified through
the Capsule Specification. Open the specification dialog by double-clicking on the
capsule in the model browser.

Capsule Diagrams

There are two diagrams associated with capsules:

State Diagram

The state diagram captures the high-level behavior of the capsule.

Structure Diagram

The structure diagram captures the interface and internal structure of the capsule in
terms of its contained capsules and ports.

Undocking the Capsule Diagrams

These two diagrams can be docked together or viewed separately. To separate the
diagrams into separate windows, grab one of the diagram tabs at the bottom of the
window and drag it away to create a new window.
Capsule Diagrams 251

Capsule Specification

The capsule specification is used to edit the properties of a capsule.

Figure 54 Example specification dialog for a capsule

The capsule specification dialog contains the following tabs:

� Capsule Specification - General tab
� Capsule Specification - Operations tab
� Capsule Specification - Attributes tab
� Capsule Specification - Capsule Roles tab
� Capsule Specification - Ports tab
� Capsule Specification - Connectors tab
� Capsule Specification - Relations tab
� Capsule Specification - Components tab
� Capsule Specification - Files tab
252 Chapter 13 - Defining Capsules and Classes

Capsule Specification - General tab

Figure 55 Capsule Specification - General tab

Name

The name of the capsule class. The capsule class name may be referenced in the
detailed code of other capsule classes. One reason for this is for a container capsule to
instantiate an optional capsule role (see the Frame service incarnate function).

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.
Capsule Specification 253

Language

The language to be used for detailed coding and code generation.

Documentation

Use this field to enter documentation on this element.

Capsule Specification - Operations tab

Figure 56 Capsule Specification - Operations tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. The actual
definition of the operation is accessible from the Operation Specification.
254 Chapter 13 - Defining Capsules and Classes

The operations are listed with the following fields:

� Visibility Adornment (Unlabeled); the visibility of the operation is indicated with
an icon. These are the visibility options:

❑ Public - the operation is accessible to all clients.

❑ Protected - the operation is accessible only to subclasses, friends, or to the class
itself.

❑ Private - the operation is accessible only to the class itself or to its friends.

❑ Implementation - the operation is accessible only by the implementation of the
package containing the class.

� Stereotype - displays the name of the stereotype.

� Signature - displays the name of the operation.

� Class - identifies which class defines the operation.

� Return Type - identifies the type of value returned from the operation.

The Operation tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Click this option to see operations inherited from other classes. If there is no check
mark in this field, you can view only operations associated with the selected class.

Note: Rose RealTime allows you to directly modify any operation shown in the
operations list by displaying the operations specification dialog. You should be
careful when modifying base class operations for it may have implications on other
elements in your model which reference or are subclassed from the base class.

Creating New Operations

To enter an operation in the Class Specification, select Insert from the popup menu. A
new operation with a default name is added to the operations list.

Capsule Specification 255

Capsule Specification - Attributes tab

Figure 57 Capsule Specification - Attributes tab

The UML asserts that attributes are data values (string or integer) held by objects in a
class. Thus, the Attributes tab lists attributes defined for the class. The attribute
definition can be modified through the Attribute Specification Dialog.

Note: Attributes and relationships created using this technique are added to the
model, but do not automatically appear in any diagrams. That is, adding an attribute
affects the code generation for the class and a compilation dependency between the
class of the container and the class of the attribute, but these relationships are not
graphically visible in the model.

The descriptions for each field follow:

� Visibility Adornment (Unlabeled):

❑ Public - The attribute is publicly visible, and is accessible to all clients.

❑ Protected - The attribute may be accessed only by subclasses, friends, or by
operations of this class.

❑ Private - The attribute is accessible only by the class itself or by its friends.

❑ Implementation - the attribute is accessible only by operations in this class.

� Stereotype - displays the name of the stereotype.
256 Chapter 13 - Defining Capsules and Classes

� Name - displays the name of the attribute.

� Class - identifies where the attribute is defined.

� Type - this can be a class or a traditional type, such as int.

� Initial - displays the initial value of an object.

The Attribute tab is active for all class types.

Show Inherited

Click this option to see attributes inherited from other capsules. If there is no check
mark in this field, you can view only attributes associated with the selected capsule.

Note: Rose RealTime allows you to directly modify any attribute shown in the
attributes list by displaying the attribute specification dialog. You should be careful
when modifying base class attributes for it may have implications on other elements
in your model which reference or are subclassed from the base class.

Creating new attributes

You can add an attribute relationship by selecting Insert on the popup menu or by
pressing the insert key. A new attribute with a default name is added.

Capsule Specification 257

Capsule Specification - Capsule Roles tab

Figure 58 Capsule Specification - Capsule Roles tab

The capsule roles list displays all contained capsule roles within the immediate
capsule decomposition. Capsule roles can be inserted, deleted, and moved up and
down in the list. Each capsule role has a corresponding Capsule Role Specification for
editing the capsule role attributes.

Inserting Capsule Roles through the Capsule Roles list is the same as adding capsule
roles through the Structure diagram editor. When inserting a new capsule role, a
pick-list appears allowing you to select the class for the capsule role. The new capsule
role is given a default name, which can changed by double-clicking on it.

Three check-boxes provide filtering control over which capsule roles are displayed:

� Inherited Values - shows any elements inherited from a superclass protocol.

� Local Values - shows any elements defined within this capsule (not inherited).

� Excluded Values - shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a capsule role brings up the Capsule Role popup menu.
258 Chapter 13 - Defining Capsules and Classes

Capsule Specification - Ports tab

Figure 59 Capsule Specification - Ports tab

The ports list displays all contained ports within the immediate capsule
decomposition. Ports can be inserted, deleted, and moved up and down in the list.
Each port has a corresponding Port Specification for editing the port attributes.

Inserting ports through the list is the same as adding ports through the Structure
diagram editor. When inserting a new port, a pick-list appears allowing you to select
the protocol for the port. The new port is given a default name, which you can change
by double-clicking on it.

Three check-boxes provide filtering control over which ports are displayed:

� Inherited Values - shows any elements inherited from a superclass protocol.

� Local Values - shows any elements defined within this capsule (not inherited).

� Excluded Values - shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a signal displays the Port popup menu.
Capsule Specification 259

Capsule Specification - Connectors tab

Figure 60 Capsule Specification - Connectors tab

The connectors list displays all connectors contained within the immediate capsule
decomposition. Connectors can be deleted, and moved up and down in the list.
Connectors cannot be inserted through this list: they can only be defined through the
Capsule Collaboration Diagram Editor. Each connector has a corresponding
Connector Specification for editing the connector attributes.

Three check-boxes provide filtering control over which connectors are displayed:

� Inherited Values - shows any elements inherited from a superclass protocol.

� Local Values - shows any elements defined within this capsule (not inherited).

� Excluded Values - shows elements defined in the superclass and deleted from the
subclass.

Right-clicking on a signal brings up the Connector popup menu.
260 Chapter 13 - Defining Capsules and Classes

Capsule Specification - Relations tab

Figure 61 Capsule Specification - Relations tab

Relations List

The relations list displays relations between the class and other model classes as
specified in class diagrams. The relations list displays the relationships involving this
class that appear on class diagrams in the model.

Each relation has a corresponding Association Specification for editing the relation
attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.
Capsule Specification 261

Capsule Specification - Components tab

Figure 62 Capsule Specification - Components tab

Components List

The components list displays a list of components to which this class has been
assigned (a red check mark on the icon). Components can be inserted, deleted, and
moved up and down in the list. Each component has a corresponding Component
Specification for editing the component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays all the components in the model.

Right-clicking on a component brings up the Components popup menu.
262 Chapter 13 - Defining Capsules and Classes

Capsule Specification - Files tab

Figure 63 Capsule Specification - Files tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
Capsule Specification 263

14Defining Protocols
Contents

This chapter is organized as follows:

� Protocol Specification on page 265
� Signal Specification on page 270

Protocol Specification

The protocol specification provides control over the definition of a protocol class. The
dialog includes the following tabs:

� Protocol Specification - General tab
� Protocol Specification - Signals tab
� Protocol Specification - Relations tab
� Protocol Specification - Components tab
� Protocol Specification - Files tab
265

Protocol Specification - General tab

Figure 64 Protocol Specification - General tab

Name

The name of the Protocol Class.

Language

Select the implementation language for the class from the available languages. The
analysis selection indicates that no code will be generated for the class.

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself, that is, a type of modeling element. Some stereotypes are
already predefined, but you can also define your own to add new kinds of modeling
types.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog located under the Tools
menu. Refer to the Stereotype chapter for more information on stereotypes.
266 Chapter 14 - Defining Protocols

To show stereotypes on the diagrams, click Options from the shortcut menu and click
Stereotype Name or Stereotype Icon. Stereotype Name displays the name in angle
brackets (that is, <<stereotype>>). Stereotype Icon displays the graphical
representation.

Documentation

Use this field to enter documentation on this element.

Protocol Specification - Signals tab

Figure 65 Protocol Specification - Signals tab

This tab provides a list of signals that can be received (the In list) and sent (the Out
list) by ports using this protocol.

In/Out Signal List

The signal list allows signals to be inserted, deleted, and moved up and down in the
list. Each signal has a corresponding Signal Specification for editing the signal
attributes.
Protocol Specification 267

Three check-boxes provide filtering control over which signals are displayed:

� Show inherited - shows any signals inherited from a superclass protocol.

� Show local - shows signals defined within this protocol (not inherited).

� Show excluded - shows signals defined in the superclass protocol and deleted
from the subclass protocol.

Right-clicking on a signal brings up the Signal popup menu, allowing you to insert
new signals, delete signals, and promote/demote signals in the protocol class
hierarchy. As well, you can select Open Data Class Specification, which brings up the
Class Specification.

Copying signals

To copy a signal from one Specification sheet to another, drag and drop it. From the
Edit menu of the main window, you can select Undo and Redo.

Protocol Specification - Relations tab

Figure 66 Protocol Specification - Relations tab
268 Chapter 14 - Defining Protocols

Relations List

The relations list displays relations between the protocol class and other model classes
as specified in class diagrams. Relations can be inserted, deleted, and moved up and
down in the list. Each relation has a corresponding Association Specification for
editing the relation attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any relations inherited from a superclass protocol.

Right-clicking on a relation brings up the Relation popup menu.

Protocol Specification - Components tab

Figure 67 Protocol Specification - Components tab

Components List

The components list displays a list of components to which this class has been
assigned (a red check mark on the icon). Components can be inserted, deleted, and
moved up and down in the list. Each component has a corresponding Component
Specification for editing the component attributes.
Protocol Specification 269

A check-box provides filtering control over which components are displayed:

Show all components displays the list of components in the model.

Right-clicking on a component brings up the Components popup menu.

Protocol Specification - Files tab

Figure 68 Protocol Specification - Files tab

A list of referenced files is provided here. You can link external files to model elements
for documentation purposes.

Signal Specification

The dialog shows information about a signal in a protocol class. The signal
specification is opened from the Protocol Specification - Signals tab.

There are two tabs: General and Files.
270 Chapter 14 - Defining Protocols

Signal Specification - General Tab

Name

Specifies a name for the signal. The name is referenced in detail code when a capsule
sends a message through a port, and in the trigger event for transitions in the capsule
state diagram (through the Event Editor Dialog).

Data Class

Specifies the class of the data object that is expected as a payload of the message. The
data class field has a pull-down menu, which allows you to pick from the list of
available data classes and types in the model.

Signal Specification - Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.
Signal Specification 271

15Defining Packages
Contents

This chapter is organized as follows:

� Introduction to Packages on page 273
� Creating a Package on page 273
� Package Specification on page 274
� Moving Model Elements on page 279

Introduction to Packages

Packages are organize model elements in larger models. Packages break up large
models containing hundreds or thousands of elements into smaller, more manageable
conceptual units. When properly designed, packages usually represent units of work
for an individual or team, and units of reusability. That is, a package represents a set
of highly related (highly cohesive) model elements. In most cases when looking to
reuse portions of a model across software projects, entire packages would be reused
rather than individual classes.

Packages also define the directory structure of a stored model. When a model is stored
as controlled units, a subdirectory is created for each package, such that the
representation of the model on disk mirrors the packaging hierarchy of the model in
the tool.

Creating a Package

Packages can be created in the Use Case View, the Logical View or the Component
View of the Model browser. Packages can contain other packages. In fact, the four
main views in the model browser are themselves packages.
273

To create a package:

1 Right-click on the package in the model browser where you want the new package
to be created.

2 Select New >Package from the menu.

A new package will be created with a default name of ‘NewPackage1'.

3 Type over the name to change it.

New model elements can be created within the package by clicking on the package
and selecting the right-mouse button to access the popup menu.

Existing model elements can be moved across packages. See Moving Model Elements
on page 279.

Packages and Class Diagrams

Packages can be displayed in class diagrams to show dependencies among packages.
It is useful in large systems to construct top-level class diagrams that just show the
packages, and allow users to drill down into the individual packages for more
detailed class diagrams.

Package Specification

A Logical Package Specification enables you to display and modify the properties and
relationships of a logical package in the current model.

If you change a package's properties or relationships by editing its specification, the
application updates all class diagrams containing icons representing that logical
package. If you change a logical package's properties or relationships by editing a
diagram containing its icon, the application updates the logical package's
specification and any other diagrams containing its icon.

The package specification dialog provides control over the definition of a package.
The dialog includes the following tabs:

� Package Specification - General tab
� Package Specification - Detail tab
� Package Specification - Relations tab
� Package Specification - Files tab
274 Chapter 15 - Defining Packages

Package Specification - General tab

Figure 69 Package Specification—General tab

Name

The name of the package.

Parent

Displays the name of the parent package. If this is one of the top-level view packages,
the parent is the Model.

Stereotype

Displays the stereotype of the package. There are no pre-defined package stereotypes.

Documentation

Use this field to enter documentation on this element.
Package Specification 275

Package Specification - Detail tab

Figure 70 Package Specification - Detail tab

Global

The Global check-box indicates that all public classes in the logical package can be
used by any other logical package.

To switch the global adornment, click on the Global check-box. When you set the
global indicator, Rational Rose displays the word “global” in the lower left corner of
the logical package icon.

You can change the global adornment only through the specification.

Diagrams

This field lists the diagrams contained in the package. When you add a diagram to the
package, Rational Rose automatically updates this list.

The first column contains the diagram’s icon. The Title field is the title of the diagram
you entered (and can be modified).

To add a new diagram, use the shortcut menu and select the appropriate insert
diagram option.

The software displays the newly-created diagram.
276 Chapter 15 - Defining Packages

Package Specification - Relations tab

Figure 71 Package Specification - Relations tab

Relations List

The relations list displays relations between the package and other model classes and
packages as specified in class diagrams. Relations can be inserted, deleted, and moved
up and down in the list. Each relation has a corresponding Association Specification
for editing the relation attributes.

A check-box provides filtering control over which relations are displayed:

Show Inherited shows any elements inherited from a superpackage.

Right-clicking on a relation brings up the Relation popup menu.
Package Specification 277

Package Specification - Components tab

Figure 72 Package Specification - Components tab

Components List

The components list displays a list of components that reference this package (red
checkmark). Components can be inserted, deleted, and moved up and down in the
list. Each component has a corresponding Component Specification for editing the
component attributes.

A check-box provides filtering control over which components are displayed:

Show all components displays the list of all components in the model.

Right-clicking on a component brings up the Components popup menu.
278 Chapter 15 - Defining Packages

Package Specification - Files tab

Figure 73 Package Specification - Files tab

A list of referenced files is provided here. The files list popup menu allows you to
Insert and Delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Moving Model Elements

Classes and diagrams can be moved from one package into another package in the
Model browser.

To move a class:

1 Click on the class in the model browser.

2 Drag it over the destination package.

To move a diagram:

1 Click on the diagram in the model browser.

2 Drag it over the destination package.
Moving Model Elements 279

Impact of Moving Classes or Diagrams on Configuration
Management

Because classes are stored in the CM system under the package directory, moving a
class to another package causes a mismatch between the stored directory structure
and the in-tool model packaging. The classes in the stored model directory are not
automatically moved to new directories. The mismatch does not cause any problems
for the tool (Rose RealTime keeps track of what the stored file name is for the element
- see Unit Information tab), but it may cause confusion for users working directly with
the CM tool.
280 Chapter 15 - Defining Packages

16Creating the Component
and Deployment Views
Contents

This chapter is organized as follows:

� Using the Component Diagram Editor on page 281
� Component Diagram Toolbox on page 283
� Using the Deployment Diagram Editor on page 284
� Deployment Diagram Toolbox on page 286

Using the Component Diagram Editor

The component diagram editor is used to create a diagram showing the software as
releasable units, together with their interfaces and inter-dependencies. Multiple
Component diagrams can exist in the same model.

A component diagram shows the physical dependency relationships (mapping to a
file system) between components - main programs, subprograms, packages, and tasks
- and the arrangement of components into component packages.

Component diagrams are contained (owned) either at the top level of the model or by
a package, which means that the diagram depicts the components and packages
where the diagram is contained.

The component diagram consists of two parts:

� the diagram area

� the Component Diagram Toolbox

Elements of the component diagram, such as packages and components, are added
using the toolbox or by dragging them from the browser. You can undo and redo
moves from the Edit menu.

The window title bar shows the full name of the component diagram.
281

Figure 74 Component diagram

Component

Components can be added to the diagram using either the component tool from the
toolbox, or by selecting a component from the Model browser and dragging and
dropping it on to the diagram. Components may have dependency or aggregation
relationships with other components.

The component details are specified through the Component Specification.

Dependency

A dependency indicates a client and supplier relationship. The client depends on the
supplier to provide certain services. Use this relationship to indicate that the
operations of the client invoke operations of the supplier.
282 Chapter 16 - Creating the Component and Deployment Views

Component Diagram Toolbox

The component toolbox contains tools for adding elements to the component
diagram.

Figure 75 Component diagram toolbox

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text tool

Use to add text anywhere in the structure diagram.

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.
Component Diagram Toolbox 283

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor tool

Use to anchor a note to a particular element on the diagram.

Package tool

Use the Package Tool to add a package to the diagram. The package is given a default
name such as 'NewPackage1'.

Dependency tool

Use to indicate a dependency between packages or between components. A
dependency indicates that some element in one package depends on (uses) some
element in another package.

Component tool

Use to add a component to the diagram. The component is given a default name such
as 'NewComponent1'. See “Building Basics” on page 295 for more information on
creating and building components.

Using the Deployment Diagram Editor

The deployment diagram editor is used to create a diagram showing system
deployment across processing nodes. The deployment diagram shows the allocation
of processes to processors in the physical design of a system. A deployment diagram
may represent all or part of the process architecture of a system. Multiple deployment
diagrams can exist in the same model. The deployment diagram consists of two parts:

The diagram area, and the toolbox.

The window title bar shows the full name of the deployment diagram.
284 Chapter 16 - Creating the Component and Deployment Views

Figure 76 Deployment diagram editor

Deployment Diagram Elements

A deployment diagram shows the hardware configuration of the system under
construction, and the distribution of software across that configuration.

There are four types of elements that can be placed on the diagram:

� Two types of hardware node: processors and devices

� Connections between the hardware nodes

� Software component instances deployed on the hardware nodes

Processors

A processor is a hardware component capable of executing programs. You can further
define a processor by identifying its processes and specifying the type of process
scheduling it uses.

The Processor Specification Dialog dialog provides details on processor attributes.

Devices

A device is a hardware component with no computing power. Each device must have
a name. Device names can be generic, such as "modem" or "terminal."

The device specification dialog provides details on device attributes.

Connections

A connection represents some type of hardware coupling between two nodes. The
hardware coupling can be direct, such as an RS232 cable, or indirect, such as
satellite-to-ground communication. Connections are usually bi-directional.

The Connector Specification provides details on connection attributes.
Using the Deployment Diagram Editor 285

Components

Components can be placed on processors for control over the distribution of the
software for execution. The result is a component instance that can be specified
through the Processor Specification Dialog dialog.

Packages

Use to add a package to the diagram. The package is given a default name such as
'NewPackage1'.

Deployment Diagram Toolbox

The deployment diagram toolbox contains tools for adding elements to the
deployment diagram.

Figure 77 Deployment diagram toolbox

Selector tool

Use to select objects for moving, resizing, and so forth.

Zoom tool

Use to zoom in on a portion of the diagram. Click on the tool and then click on the
part of the diagram you want to zoom in on.

Text tool

Use to add text anywhere in the structure diagram.
286 Chapter 16 - Creating the Component and Deployment Views

Note tool

Use to annotate the diagram with textual notes. This is useful for marking up the
diagram with explanations, review comments, and so forth. You can drag and drop a
diagram or external document from the browser onto a note. Notice that the name of
the diagram or external document is underlined. If you double-click on the note, the
diagram or external document is opened. You can undo and redo this command.

Constraint tool

Use to add UML constraints to the diagram. A constraint can be anchored to a view
element by using the anchor tool. Currently, constraints do not have any semantic
meaning to the tool. There are RRTEI APIs to add or remove, and enumerate
constraints in a diagram.

Note anchor tool

Use to anchor a note to a particular element on the diagram.

Processor tool

Use to add a processor node to the diagram. Click on the diagram to place a new
processor at the selected location.

Processors are given default names, such as 'processor1', when initially drawn. To
change the name, click on the device and hit the backspace key to delete the default
name, then type the new name.

Device tool

Use to add a device node to the diagram. Click on the diagram to place a new device
at the selected location. Devices are given default names, such as 'device1', when
initially drawn.

Connection tool

Use to add a connection between two nodes on the diagram. Click on the first node on
the diagram and drag the connection to the second node.
Deployment Diagram Toolbox 287

17Importing and Exporting
Contents

This chapter is organized as follows:

� Importing a File on page 289

� Exporting a File on page 290

Importing a File

Several different kinds of files can be imported into Rose RealTime. These type of
files are:

� .rtptl (RRT petal file)

� .ptl (Rose petal file)

� .cat (Rose package file)

� .sub (Rose component package file)

To import an element into a Rose RealTime model:

1 Select File > Import

2 In the resulting dialog, select the type of file you want to import.

3 Select the file and click Open.
289

Exporting a File

Packages, classes, components, and use cases can be exported into .rtptl files. This
allows these types of files to be imported into other models.

To export an element in a model:

1 Select the element to be exported in the model browser.

2 Right-click and chose File > Export from the popup menu.

Note: Diagrams cannot be exported by themselves, as they belong to the package they
are defined in.

Note: Do not export Services Library shared packages. For more information, see
Exporting Controlled Element From Model To File in the Guide to Team Development -
Rational Rose RealTime
290 Chapter 17 - Importing and Exporting

18Naming Guidelines
Contents

This chapter is organized as follows:

� Introduction to Naming Guidelines on page 291
� Assigning Names on page 291
� Special Case Notes on page 292

Introduction to Naming Guidelines

Rose RealTime does not support name spaces, so there are a number of names that
will be part of the global name space. Be careful not to use the same names for any
elements that may conflict. Also, make sure you avoid using reserved names, such as
any names from the Rose RealTime Services Library, Language-reserved words (for
example, C++), names of common operating system functions or data structures.
Spaces in names should also be avoided because some targets do not handle them.

Assigning Names

Each unique model element must have a unique name, and each relationship can be
labeled with a word or phrase that denotes the semantics or purpose of the
relationship. You can type the name in the diagram or in the Name field in the
specification.

� If you type the name in the diagram, your entry is displayed in the Name field.

� If you type the name in the specification, the software displays the new name in
the element icon and updates the information in the model.
291

You can rename an element using one of the following methods:

� Change its name in the diagram.

� Change its name in the specification.

� Change its name in the browser.

For more information about renaming, see the topic Renaming a Model Element.

Special Case Notes

Special considerations for naming include the following:

� class attribute - each attribute must be unique within a class.

� operation - omit the function parenthesis when typing the operation name. The
software automatically displays the parenthesis when you display the operation in
the class compartment.

� connection - the name field is optional.

� state - state icons that have the same name are assumed to represent the same state
if they appear in the same context; otherwise, each state icon is assumed to
represent a distinct state. State icons that appear in different state diagrams
represent distinct states, even if they have identical names.

� use case actors, classes, capsules, protocols - these elements must all have names
that are unique. Class names are part of the generated code name space, and must
not conflict with each other or with other items in the global name space, for
example, global functions, signal names.
292 Chapter 18 - Naming Guidelines

19Building and Executing
Models
Contents

This chapter is organized as follows:

� Building and Running Models on page 293
� Before you Start on page 294
� Building Basics on page 295
� Assigning an Active Component on page 296
� Creating a Component on page 296
� Starting a Build on page 297
� Reviewing the Build Results on page 298
� Build Menu on page 299
� Build Settings Dialog on page 301
� Build Log Tab on page 301
� Build Errors Tab on page 302
� Component Specification on page 303
� Component Dependencies on page 306

Building and Running Models

The mapping from design - that is, classes and capsules - to source code and
executables is not an easy task. It is during this phase of the software development
process that the majority of errors are introduced into a system, especially when it is
done manually. There is always a risk that the implementation will diverge from the
original design, and in most cases that is exactly what happens. However, since the
UML has well-defined semantics, Rose RealTime can automatically generate a model
or design into a lower-level language and then compile it into an executable. With
automatic total source code generation of your design, the model becomes the system.
293

Is Rose RealTime a Compiler?

The answer is yes and no. Rose RealTime compiles models into a high-level language
representation. It generates source code, or complete implementations, of models
while the generated source code is compiled and linked into machine language using
an external compiler and linker. The result is an executable that can be run and
observed via the Rose RealTime toolset.

Real-Time Services (Services Library)

Behavior in a model is specified using a State machine, and communication patterns
are specified with capsule structure. When a model is built, these abstractions must be
converted to implementation. Normally, you would have to implement your own
state machine, inter-process communication, concurrency control, thread
management, timing, and debugging capabilities. However, Rose RealTime provides
a set of pre-compiled Services Libraries for different platforms, which provides this
functionality for you. In summary the facilities provided by the RealTime Services
Library are:

� The mechanisms that support the implementation of concurrent communicating
state machines

� Thread management and concurrency control
� Timing
� Inter-thread and inter-process communication
� Observability and debugging of a running model

Before you Start

To allow models to be built and executed on a variety of platforms with different tools
(for example, on Windows NT with Visual C++ 6.0 or on Solaris with gcc 2.8.1), Rose
RealTime allows build settings to be fully configurable. However, even though
complicated build and execution configurations can be setup, there are also default
settings that can be used to build and execute less complicated models.

To learn more about building and executing models select a basic or more advanced
topic from the list below:

Building
� Building Basics - helps you build your first model

� Creating a Component - using component aggregation
294 Chapter 19 - Building and Executing Models

Executing
� Execution Basics - helps you run and observe your first model

� Loading and Running Component Instances on Embedded Targets - target
loading, restarting, and resetting

� Overview of Observability Options - watches, traces, sequence diagrams, behavior
breakpoints, logging output, source code break points

� Running from Outside the Toolset - running a model without immediate
observation, attaching to a running model

Building Basics

Before trying to build a model, it is important to understand the role of components
for modeling the physical aspects of a system. The physical elements of a model refer
specifically to source code and executables.

A component is always created with a default configuration for your host machine.
This includes a default compiler, compiler flags, linker, and so forth. In many cases
these settings are sufficient for building simple sets of classes and capsules that do not
require integration with external source files, or libraries.

This section leads you through the steps of building a simple model that does not
require integration with external files (everything is defined with the toolset). This
will help you understand the build workflow without getting into specialized
configuration options. After you understand the basic build workflow refer to the
Component Wizard for more information on configuring components with advanced
build setting.

Top-level Capsule

Basically any capsule can be built and run. The capsule that you choose to build is
called the top-level capsule. It represents the highest scope of the executable that you
want to create. All classes and capsules referenced (contained or in a dependency
relationship) with the selected top-level capsule, directly or indirectly, will also be
compiled.
Building Basics 295

Note: Since any set of capsule and classes can be compiled, you are not required to
compile the whole model all the time. The capsule you decide to build may form only
a subset of the whole system. This allows for easier unit testing.

1 Create a component.

2 Build the component.

3 Review the build results.

Assigning an Active Component

If you find yourself building and running the same component and component
instances often you should configure an active component. When a component is
configured as being active the toolbar build icons and menu items become available
for easy access to common build and run commands. In addition you can configure
which component instances (executables) should be automatically run when the run
button is pressed.

In the browser, select Set As Active from the popup menu

or

1 From the Build menu select the Settings item to open the Build Settings dialog.

2 From the Active Component combo box, choose a component that will be become the
active component.

3 For information on the other configurable build options shown, see Build Settings
Dialog.

4 Click OK.

Notice that the build toolbar icons are now enabled and so are items under the
Build Menu.

Creating a Component

In order to build an executable of a model you must first create a component that will
be used to manage the build configuration parameters. There are a couple of different
ways of creating a component and assigning a top-level capsule.

You can create the component first, then assign the top-level capsule to it later.
296 Chapter 19 - Building and Executing Models

To create a component:

1 Select the Component View folder, right-click and from the popup menu choose
New > Component.

A new component with the default settings for your platform is created.

2 Double-click on the default Component diagram, usually called Main, to open it.

3 Drag and drop the new component you just created onto the Component diagram.

4 Then drag and drop the top-level capsule onto the new component that was added
to the component diagram.

Note: You can also assign a capsule or class to a component by dragging and
dropping the capsule, class, or protocol from the model browser onto the
component in the model browser.

5 Open the components specification, switch to the References tab and set the
top-level capsule.

Alternatively, you can use the Component Wizard to help configure a component. To
run the Component Wizard, select Build > Component Wizard.

Starting a Build

When a component is built, there are actually quite a number of things that happen.
First the capsules referenced by the component are verified, then the model files are
written to disk, an external program is called to generate the source code from the
model files, the external compiler is invoked to compile, and lastly the linker is
invoked to create the final executable version of the component.

Each phase of the build process produces output that is used by the next phase, with
the final result being an executable.

To build a component from the browser:

1 Select the component from the model browser.

2 Right-click and select Build from the popup menu.

Note: If you are working on a UNIX-based platform, and are planning to run the
component with Purify, select Build > Link with Purify. For information on running a
component with Purify, see Running a Component Instance with Purify on page 315.
Starting a Build 297

3 After the elements have been saved to disk the build dialog appears and shows the
build progress.

The build results will be shown. You should review to see if there are any errors or
warnings.

Building a Component from the Build Menu or Toolbar

Instead of directly building a component from the browser, you can build the active
component directly from the Build menu or by selecting one of the active component
toolbar buttons to verify, generate, or build the active component.

Reviewing the Build Results

You can view the results of your build by selecting View > Output and clicking the Build
Log tab.

Figure 78 Build Log tab

Review any errors shown in the Build Errors tab, and correct before trying to rebuild.
You can jump to the error location in your model by double-clicking on any error
shown in the bottom part of the results window. As well, you should be familiar with
some of the most common build errors (Understanding Build Errors). They are
described briefly and should be used in conjunction with your compiler and linker
documentation.

The Build Log Tab contains stdout and stderr of all phases of generation, compilation,
and link. The Build Errors Tab contains a parsed version of the output stream.
298 Chapter 19 - Building and Executing Models

Build Menu

Build

Opens the Build dialog from which you can choose the Build Level.

Quick Build

Builds the component incrementally.

Rebuild

Forces a complete build of a component. All classes references by the component will
be verified, regenerated, compiled, and linked.

Clean

Removes all files from the output directory.

Code Sync

Invokes the mechanism to capture external changes made to the generated code back
into the model. For more information, see “Using Code Sync to Change Generated
Code” on page 363.

Stop Build

Stops the build (or the Code Sync) in progress.

Run

Loads the component instances specified in the Build Settings Dialog. The component
must be successfully built before it can run.

If the Attach Target observability flag was set on the Component Instance
Specification dialog, and a Target observability Port number filled in, then the
execution interface is displayed allowing you to control the execution of the model.

Start (F5)

Starts the execution of the component instances. If the component instances are in the
reset state, then execution begins with all fixed capsules being initialized (initial
transitions fired). If the component instances are in the stop state, then execution
resumes.
Build Menu 299

Stop (Shift+F5)

Stops the execution of the component instances at the current point of execution and
remembers the state of all capsules. Execution is stopped as soon as each currently
running transition is finished. The stop button does not halt execution in the middle
of a transition action.

Step (F10)

Steps through the next deliverable message. Pressing the step button while in the
stopped state causes the next message of the highest available priority to be delivered,
and any associated transitions are executed. Execution stops again as soon as the last
transition segment for that message has finished executing.

Restart (Ctrl+Shift+F5)

Resets the component instances, resetting all fixed and destroying all dynamic
capsule instances. The running component instance is terminated and a new one is
run.

Load

Loads the components instances specified in the Build Settings dialog. The
component must be successfully built before it can run. The Load command spawns
an external process in which the model executable runs. You will likely see an external
command window appear.

The Attach Target observability flag must be set on the Component Instance
Specification dialog, and a Target Observability Port number filled in for the model to
be loaded within the tool.

The execution interface is displayed allowing you to control the execution of the
model. See Execution basics for more information on the execution tools.

Reload

Kills the existing model process and runs the model again. The execution interface
stays open.

Shutdown

Kills the existing model process and closes the execution interface.

Settings...

Displays the Build Settings Dialog. You must use this dialog to specify the active
component before you can build the component.
300 Chapter 19 - Building and Executing Models

Add Class Dependencies...

Runs a script that checks for any missing dependencies between model elements and
add them. The script checks dependencies found in attributes or operations. It does
not check for code-level dependencies.

Component Wizard...

Activates the Component Wizard to help you through the steps of creating and
deploying a component.

Build Settings Dialog

The Build Settings dialog is used to select an active component for building and
component instances for running. The build settings are not saved as part of a model.
They are saved with the workspace.

Active Component

Used to select an active component. The combo box contains all components in your
model.

Active Component Instances List

This list is populated with all the component instances in the model. Component
instances that are selected in this list are automatically run when the active
component is run. You can select and de-select component instances by clicking in the
checkbox on the left-hand side of each component instance name. The order in which
the component instances are run is determined by the load order setting in the
Component instance specification.

Build Log Tab

The Build Log tab stores the contents of the compilation and code generation log.
Select View > Output and click the Build Log tab to open it. Compilation or code
generation messages are posted to the Build Log tab regardless of whether it is visible.

You can save the contents of the Build log tab to a file. You can also choose to
automatically save messages to a file as they are posted.
Build Settings Dialog 301

Figure 79 Build Log tab

The Build Log tab contains the raw output stream from the build. You can examine
the contents of this window to get a context on any error message displayed in the
build messages list.

Build Errors Tab

The Build Errors tab contains a parsed version of the output stream. It is important to
review the Build Log tab because some errors cannot be parsed by the error parser.

The Build Errors tab contains a Location column that gives the class/code segment
name pair. The Context column provides the context of the problem. The Message
column gives a description of the problem. These messages are taken directly from the
compiler error stream and therefore reflect the accuracy of the compiler that you are
using. Further, errors within your code segments may lead to errors being reported in
system-generated files.

Double clicking on an error or warning in the Build Error tab brings you to the
location in the model of the problem that caused the error or warning. See Common
Build Errors (Understanding Build Errors on page 307) for a short summary of common
generic build errors.

Unknown Compiler Message Stream

It is possible that the compiler being used reports errors in ways that are not
understood by Rose RealTime. There are no standards for error reporting by
compilers and linkers. Hence, the error parser is often targeted for a particular
compiler and linker. If you are using an unsupported compiler, Rose RealTime will
probably not be able to understand the error output from the parser, and may
inaccurately report errors. You have to rely on the raw output stream to see the direct
output of the compiler, rather than going by the errors reported by the Build Errors
tab.

See the Porting Guide.
302 Chapter 19 - Building and Executing Models

Component Specification

A Component Specification displays and modifies the properties and relationships of
each component in the current model. The same specification is used for all
component kinds.

Specification Content

The Component Specification consists of the following tabs:

� Component Specification - General tab

� Component Specification - References Tab

� Component Specification - Relations Tab

� Component Specification - Files tab

Component Specification - General tab

Figure 80 Component Specification - General tab

Name

The component name is referenced during the build process.
Component Specification 303

Parent

Specifies the parent component package.

Environment

Specifies the run-time system and code generator used in the build.

Type

Specifies what is being built, for example, an executable or a library.

Stereotype

A component stereotype represents the subclassification of an element. The most
common type of components are already predefined as stereotypes, including Main
Program, Package Body, Package Specification, Subprogram Body, Subprogram
Specification, Task Body and Task Specification. You can also define and add your
own kinds of stereotypes.

Component Specification - References Tab

Figure 81 Component Specification - References tab
304 Chapter 19 - Building and Executing Models

References List

The references list displays the list of packages (includes all elements in the package),
classes, capsules and protocols to be compiled with this component.

If during the dependency check elements that are not in this list are found to be
needed for the build, a dialog appears asking you to add them.

Component Specification - Relations Tab

Figure 82 Component Specification - Relations tab

Relations List

The relations list displays aggregation relations between the component and other
components in component diagrams.
Component Specification 305

Component Specification - Files tab

Figure 83 Component Specification - Files tab

A list of referenced files is provided here. The files list pop-up menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Component Dependencies

You can break up the system you are building into multiple components. Model the
build dependencies using the component dependencies.

See the Guide to Team Development - Rational Rose RealTime and language-specific
guides for more information.
306 Chapter 19 - Building and Executing Models

20Common Build Errors
Contents

This chapter is organized as follows:

� Understanding Build Errors on page 307

Understanding Build Errors

Often, the compilation details returned in the Build Results window gives you a
clearer picture of what the error is, but you must understand what the compilation
details are reporting. The compilation details are the direct results returned by the
compiler. They contain the names and line numbers from the actual generated code,
so you have to analyze the error message to determine where the error occurred. It is
often very useful to refer to the compilers documentation to understand the meaning
of certain reported errors or warnings.

Below is a small list of generic and common build symptoms with possible causes:

Unknown command, command not found, the name specified is not recognized

� Is your compiler installed correctly?

� Is your make program configured and installed correctly?

� Are you linking with the correct Services Libraries?

� Are the Rose RealTime environment variables set?

Redefinition of basic types or multiple declarations for X

� Do you have any name conflicts?

Unresolved symbol or undeclared identifier

� Have you configured the necessary inclusions, libraries, or object files?

� Are you missing dependencies between classes in your model?

� Does the Capsule role have the same name as the Capsule?
307

Missing Class Dependencies

Missing dependencies are a common source of compilation errors. You need to
identify which capsules and classes depend on other classes in your model. That way
when you compile a capsule or class, it will find the definition of the class you depend
upon. Also if that class's interface changes, the build process will automatically
rebuild all the capsules and classes that depend upon it.

To resolve these types of errors add the correct dependencies between classes using
the Build > Add Class Dependencies Wizard or by manually creating a dependency
relationship between classes.

Capsule Role Name Same as Capsule Name

An error of this type is generated when a capsule role instance has the same name as a
capsule.

To resolve the problem, give the capsule role a different name than the capsule class.
A good rule in situations like these is to always start capsule class name with an
uppercase letter, and capsule roles with lowercase letters.

Linking Wrong Services Library Set

If you find that the output stream has many undefined messages, you may be
accessing an inappropriate Services Library set.

Code generated with this release of Rose RealTime does not work with the Service
Libraries of previous releases (and vice versa).

The compiler must match the library set being used since most compilers do
name-mangling on variables. For example, if your compiler target is NT and your
compiler is MSVC++ 6.0, use the target NT40 and the x86-VisualC++-6.0 library entry.

Compiler Not Installed Correctly

If the CC environment variable is either undefined or the default compiler and linker
defined in libset.mk cannot be found, or CC is defined to something that either
cannot be found or is not a compiler, you will sometimes see the following in the raw
output field of the Build Results window if your make command is not found:

The name specified is not recognized as an internal or external
command, operable program or batch file.
308 Chapter 20 - Common Build Errors

Compile a Simple Hello World Program

To ensure that your compiler and linker are installed correctly, write and build a small
test program from outside of Rose RealTime. Ensure that it compiles and runs
successfully.

Check Environment Variables

You should be able to invoke your compiler and linker from outside of Rose RealTime
on the command line. If you cannot you should verify your PATH environment
variable and ensure that the directory that contains the tools for your platform is in
the path.

Review Your Compiler Flag Settings

You should review your compiler settings. Have you overridden the default compiler,
or have you added flags to the component specification compiler tab?

System Does Not Understand the Make Command

Your OS does not understand make or the make is being used is in some interesting
way different from what Rose RealTime expects. You will sometimes see the following
in the raw output field of the Build Results window if your make command is not
found:

The name specified is not recognized as an internal or external
command, operable program or batch file.

Check Environment Variables

You should be able to invoke make, gmake, or nmake from outside of Rose RealTime, for
example, on the command line. If you cannot you should verify your PATH
environment variable and ensure that the directory that contains the make utility for
your platform is in the path.

Ensure that Component has Correct Make Types Configured

Also, you should ensure that the make name and types defined in the component
specification compilation make and generation make tabs represent the correct type of
make installed on your system.
Understanding Build Errors 309

Name Conflicts

Odd compile errors can easily be caused by name conflicts, such as naming a capsule
role the same as a signal name. You must be aware of the name scoping of various
entities in your programming language to ensure that no conflicts occur.

In Rose RealTime, most named entities have capsule-level name scope. For example,
within a capsule class, the following are named entities, and any duplication among
the names of these entities may cause problems:

� capsule roles
� attributes
� ports
� operations

As well, symbols declared as extern, as in included .h files, are generally part of the
global name space, and must not conflict with any names of entities in your model.
There are several names that are reserved for the OS/Compiler, such as ‘return’ and
‘exit’. The list of known reserved words is listed in the section below

Some name conflicts are more insidious in that the conflicting names are actually
‘compile-time’ compatible, and slip by the compiler, resulting in a run-time error that
may be difficult to track down. Typically, this means that the elements actually have a
common superclass, or, if the error occurs in a function which takes a void *
parameter, it is because the entity that was passed as a parameter was not the
expected one.

Missing Header Files, Object Files, and Libraries

Most models make calls to external code libraries, even if it is just the basic system
calls (such as printf, scanf, cin, cout, and so forth). The include files that define these
calls must be specified prior to compilation, so that the compiler can resolve these
references. Likewise, the libraries or object modules that contain the actual compiled
definitions of these external classes and functions must be specified so that the linker
can resolve the symbol references.

You will likely see the following type of error message if you have not included the
correct header files:

'print_this' : undeclared identifier

You will likely see the following type of error message if you have not specified a
library or object files that should be linked into your model:

unresolved external symbol "int __cdecl print_this(void)"
fatal error XXXXXX: 1 unresolved externals
310 Chapter 20 - Common Build Errors

To resolve these types of errors add the correct files or search directories to the
component specification dialog under the inclusions or libraries tabs.

Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0

The $INCLUDE and $LIB environment variables may not be properly set. Ensure that
your compiler binaries are on the path and that the $INCLUDE and $LIB environment
variables are set (for example, they could be set for the user who installed VC++, but
not set for another user). Set the environment variables. Refer to the VC++
documentation for further details.

Error loading Capsule (“could not spawn process”)

If the executable (capsule1.exe) is stored on an NFS server then the NFS client must
be configured to have execute permission set.

Error Linking Capsule (“error from nmake”)

If the executable (capsule1.exe) is stored on an NFS server then the NFS client must be
configured to have execute permission set.

Windows NT Compilation Command Line Limits

If you encounter a compilation error message that complains about the command line
being too long, the cause may be that the length of your compile or linker has
exceeded a limit.

Windows NT compilation has command line limits in two areas: source compilation
and linking. Both limits have been explored for the Visual C++ 5.0, VRTX PPC
Microtec 1.4 and Tornado 1.0.1 PPC Cygnus 2.7.2 compilers.

Source File Compilation

The variables in source compilation are the update name, the $ROSERT_HOME path,
compilation options, the local working directory and include directories. The only
compiler that has a measurable limit is VRTX. The command line limit is 768
characters.

A workaround for the problem is to reduce the number of include directories by
combining include files. Other solutions are to shorten paths and names for the
variables listed in the previous paragraph.
Understanding Build Errors 311

Linking

The variables in linking are the update name, the $ROSERT_HOME path, the link
options, the number and name length of libraries, the library search paths and the
local working directory. The link limits are shown below:

� Visual C++ 5.0: more than 20875 characters

� VRTX PPC Microtec 1.4: 4147 characters

� Tornado 1.0.1 PPC Cygnus 2.7.2: 4150 characters

� HPUX 10.20: 16384 characters (make: couldn't load shell.stop)

A workaround for the problem is to shorten paths and names for the variables listed
in the previous paragraph.
312 Chapter 20 - Common Build Errors

21Running and Debugging
Contents

This chapter is organized as follows:

� Execution Basics on page 314
� Creating a Component Instance on page 314
� Running a Component Instance with Purify on page 315
� Running a Component Instance without Purify on page 317
� Observing a Running Component Instance on page 319
� Rose RealTime Execution Interface on page 320
� Overview of Observability Options on page 321
� Component Instance Menu on page 322
� RTS Browser on page 323
� Monitors on page 326
� Trace Windows on page 328
� Probes on page 330
� Inject Window on page 331
� Capsule Instance Trace on page 331
� Message Trace Configuration Dialog on page 332
� Execution Watch Tab on page 333
� Run-time Exception While Running a Component Instance on page 333
� Instance Browser on page 334
� Source Code Debugging on page 335
� Running from Outside the Toolset on page 337
� Using the Command Line on page 338
� Loading and Running Component Instances on Embedded Targets on page 339
� Component Instance Specification on page 340
� Processor Specification Dialog on page 344
� Device Specification on page 354
� Connection Specification on page 355
� Probe Specification on page 356

This chapter describes running and debugging Rose RealTime models.
313

Execution Basics

After a component has been built successfully, you can run the resulting executable. If
you have Purify installed, you can run the executable with Purify, to customize error
detection for each component in your program. After the component has been built,
see Running a Component Instance with Purify on page 315. If you do not have Purify
installed, see Running a Component Instance without Purify on page 317.

Rose RealTime provides an execution environment that can be used to execute and
observe component instances on a processor (a type of node).

While a component instance runs, you can control and observe its execution. This
functionality is very powerful: it allows a component instance to be observed at the
modeling language level, rather than at the source code level.

Tasks

1 Creating a component instance

2 Running a component instance with Purify

3 Running a component instance without Purify

4 Observing a running component instance

Creating a Component Instance

Before running a component that has been built, you must first assign an instance of
the component to a processor.

Tasks

1 Select the Deployment View folder, right-click and from the popup menu click
New > Processor.

2 A new processor with the default settings for your platform is created.

3 Double-click on the Deployment diagram to open it.

4 Drag and drop the processor onto the Deployment diagram.

5 Then drag and drop a component from the Component View model browser on to
the processor that was just added to the Deployment diagram.

Note: You can also create a component instance by dragging and dropping a
component from the model browser onto a processor in the model browser or to
the Processor Specification - Detail tab.
314 Chapter 21 - Running and Debugging

6 Open the processor’s specification dialog, and change to the Details tab. Under the
Component Instances list you should see the new component instance that was
created.

7 From the Model View browser you can also see the list of component instances
associated with their respective processor.

Running a Component Instance with Purify

If you do not have Purify installed on your system, see Running a Component Instance
without Purify on page 317.

After the component is built and a component instance has been created, the instance
can then be run and observed. Purify detects errors in your own code as well as the
components your software uses.

The Run with Purify item is only visible if you have Purify installed.

The processor must have the same operating system as the toolset, otherwise the Run
with Purify item will be grayed out. For example, a component instance with a Unix
processor must be running on a Unix operating system.

If you are using a UNIX operating system, ensure that you linked with Purify during
the build.

Tasks

If you have configured an active component, then once the build is complete, you can
use the execute icon from the toolbar (press F5), or select Build > Run with Purify from the
main menu to automatically run all the component instances selected in the Build
Settings dialog.

You can also run any component instance by selecting the component instance from
the model browser, right-clicking and selecting Run with Purify from the popup menu.

After you select Run with Purify, you will be prompted to select Yes if you haven’t got a
build. After you answer the prompt, it may take a minute or so before the toolset
finishes running the executable, especially for a large model.
Running a Component Instance with Purify 315

While a component instance runs with Purify, follow these steps to set up execution
control from the toolset:

1 A console window appears and you must ensure that the following is displayed
(for Windows NT users).

Note: A console window only appears on host-based targets. Other tools are
required to see console windows on targets.

If the observability line below is not shown in the console, ensure that the
observability check box and observability port have been configured in the
Component Instance specification.

Purify for Windows NT,

Copyright (C) 1993-2000 Rational Software

All rights reserved.

Version 2001.03.00 Early Access; Build: 3142;

WinNT 4.0 1381 Service Pack 5 Uniprocessor free

Instrumenting:

Compile.EXE 241726 bytes

Purify: while processing file
z:\versions\models\myfiles\build\Compile.EXE:

Note: Instrumentation repeating with 6 additional entry points.

Rational Rose RealTime C/C++ Target Run Time System
Release 6.20.B.03 (+c)
Copyright (c) 1993-2000 Rational Software
rosert: observability listening at tcp port 8978

2 Bring control back to the toolset by clicking on any part of the toolset. You will
notice a new tab called RTS has been added on you model browser. The browser
contained in this new window is called the RTS Browser. It is used to control the
execution of a running component instance. You can run and control multiple
component instances from within Rose RealTime, for each running instance there
is a separate RTS Browser tab.

3 Click on the new tab to show the RTS Browser.

4 The execution control buttons are at the top of the RTS browser. Press the Start
button to start the execution of the loaded component instance. Everything printed
from your model to stdout and stderr will be shown in the console window that
appeared when the component instance was loaded.
316 Chapter 21 - Running and Debugging

5 After you exit the RTS browser, the Purify window appears with the Purify results.
For information on how to interpret the results, see “Interpreting the Purify Log
Reports” on page 297. For information on how to save the Purify results to a file,
see “Running from outside the toolset” on page 318.

6 When you are finished running the component instance with Purify, press the
shutdown button. The component instance is killed and control is returned to Rose
RealTime.

Note: You can also control the execution of a component instance by using the entries
in the Build section of the main menu, or in the popup menu of a component instance.

Interpreting the Purify Log Reports

The Purify output is displayed in a tree control listing all exceptions in order of
occurrence. When running on a UNIX platform, each exception report consists of a
message. When running on a Windows platform, each exception report consists of a
message preceded by an icon, to indicate the severity.

� Messages preceded by a blue circle containing the letter i are for information only.

� Messages preceded by a red circle containing the letter i indicate that there is a
user error.

� Messages preceded by a yellow triangle containing an exclamation mark (!) are
warning messages. They usually indicate memory leaks.

If the message text is bold, it indicates that there is something in the model you can
see; usually a user error, such as a memory leak.

If several levels of message text are bold, you can scope down to the actual message
which points to the line of code changed by the user. You can double click on the bold
messages to see the section in the code that caused the message.

Running a Component Instance without Purify

After the component is built and a component instance has been created, the instance
can then be run and observed. There are two basic ways of running component
instances. They are both described below.

Tasks

If you have configured an active component, then once the build is complete you can
use the execute icon from the toolbar (press F5), or select Build > Run from the main
menu to automatically run all the component instances selected in the Build Settings
dialog.
Running a Component Instance without Purify 317

You can also run any component instance by selecting the component instance from
the model browser, right-clicking and selecting Run from the popup menu. If the Run
item is grayed out, it is probably because the target control scripts configuration is
pointing to the wrong directory in the Processor specification.

While a component instance runs, follow these steps to setup execution control from
the toolset:

1 A console window appears and you must ensure that the following is displayed.

Note: A console window only appears on host-based targets. Other tools are required
to see console windows on targets.

If the observability line highlighted below is not shown in the console, ensure that
the observability check box and observability port have been configured in the
Component Instance specification.

Rational Rose RealTime C/C++ Target Run Time System

Release 6.20.C.00 (+c)

Copyright (c) 1993-2001 Rational Software

rosert: observability listening not enabled

2 Bring control back to the toolset by clicking on any part of the toolset. You will
notice a new tab called RTS has been added on you model browser. The browser
contained in this new window is called the RTS Browser. It is used to control the
execution of a running component instance. You can run and control multiple
component instances from within Rose RealTime, for each running instance there
is a separate RTS Browser tab.

3 Click on the new tab to show the RTS Browser.

4 The execution control buttons are at the top of the RTS Browser. Press the Start
button to start the execution of the loaded component instance. Everything printed
from your model to stdout and stderr will be shown in the console window that
appeared when the component instance was loaded.

5 When you are finished running the component instance, press the shutdown
button. The component instance is killed and control is returned to Rose RealTime.

Note: You can also control the execution of a component instance by using the entries
in the Build section of the main menu, or in the popup menu of a component instance.
318 Chapter 21 - Running and Debugging

Observing a Running Component Instance

A very powerful feature of Rose RealTime is the ability to observe a running
component instance at the model level. This kind of high-level debugging is not what
most developers are used to. More conventionally, developers converted design
models to source code. When it was compiled and run, the only way to trace the
execution was at the source code level. The design model representation was of no
use.

In Rose RealTime you can see the triggered transitions, active states in the state
monitors, and watch the dynamic structure animated in the structure monitor. In
addition, you can use probes to trace the messages being passed in the system.

Tasks

Observe a running capsule instance by opening monitors and message traces:

1 Once you have followed the steps to run your component instance, change to the
RTS browser tab and press the Start button.

2 Expand the top-level capsule folder and select a leaf capsule instance. Non-leaf
capsules instances represent the class of the instances.

3 Right-click on a capsule instance, and from the popup menu select Open State
Monitor.

A monitor window appears, and you should be able to see the state machine of
this capsule instance. The current state is highlighted in black. In addition the last
transition fired is drawn in black.

4 Select the Probes tool from the monitor toolbox. Place a probe onto a state by
moving the probe cursor over the state then clicking the left mouse button to apply
the probe to the state.
Select the probe that you have just applied to a state, and from the popup menu
choose Open Trace Window.

5 The opened trace window shows all messages that occur in this state. Follow
similar steps for adding probes to ports, and junction points.

6 Notice that any new probe that is added to a monitor is also added to the Probes
folder in the RTS Browser. You can perform common operations on probes by
using the popup menu from the Probes folder.
Observing a Running Component Instance 319

Rose RealTime Execution Interface

The execution control of component instances is separated into two main functions:
the target control of the component instance and the observability of a component
instance. The target control interface provides an interface for automating the tasks
related to running, loading, and terminating component instances. The observability
interface provides the ability for the Rose RealTime toolset to connect to a running
component instance and provides a visual view of the running instance.

Target Control Programs

In order to allow control of component instances on different platforms, easy
customization, and support for other targets, the target control utilities are
implemented as a set of external executables and scripts that are invoked from the
toolset to perform the various target control tasks.

These scripts and executables for target control are located in the following directory:

$Target_scripts = $ROSERT_HOME/bin/tc/”host”

Below the tc directory (tc for target control) is a list of the hosts on which Rose
RealTime can run. And within each of these directories is a list of platforms for which
there are control utilities. For example, in the $ROSERT_HOME/tc/win32 directory
there are other directories, for example, win32, tornado, and tornada2. This shows
that for a toolset running on a Windows platform the toolset can control component
instances for Windows and Tornado platforms, meaning that they can be run, loaded,
terminated automatically by Rose RealTime.

The Processor specification dialog must be told in which directory to look for the
control utilities for the platform that the processor represents. The control options on
the component instance menu (run, load ...) are enabled or disabled depending on the
control utilities that are found in the directory specified for that processor. For each
utility program that the toolset finds in the target control directories, the appropriate
menu item is enabled, indicating that the toolset supports the control function for that
platform.

Note: You can always manually run, load, etc., a component instance from outside the
toolset.

Overriding Target Control

The Operation mode field on a Component Instance specification dialog specifies
whether the controls utilities should be used or the component instance will be loaded
manually. In the latter case, most of the component instance control menu items are
disabled.
320 Chapter 21 - Running and Debugging

Observability Interface

Once a component instance is running (it must be listening to a specified tcp/ip port
using the -obslisten command line parameter) the observability interface can connect
to the running component instance, and control and animate its execution.

You can observe (connect to) any component instance that was started with
observability enabled (listening to the tcp/ip port specified in the component instance
spec dialog) even though it was not started with the target control utilities. Use the
Attach Target option in the component instance to observe a running component
instance.

Overview of Observability Options

After you become familiar with building and running within the toolset, you can start
debugging your models. There are several options that are available from within
execution environment. You should read the details about each option to become
more familiar with the following options.

Observability option Explanation

Watches Use watches to inspect and modify the values of capsule
attributes.

Traces Use traces to see the messages that are being sent within
the system.

Injecting messages Inject test messages into a model to unit test capsules.

Probe break points Use probe breakpoints to stop a running model when a
specified event is received.

Sequence diagrams Create and save sequence diagrams of message traces
between capsule instances.

Command line debugger Debug a model without the use of the toolset.

Source code debugging Debug detail code problems using a source code
debugger.
Overview of Observability Options 321

Component Instance Menu

The component instance menu provides commands that are used to control the
execution of a component instance.

Load

Loads or downloads a component instance to a target platform. The load does not
start the execution of the loaded component instance. Use Run once it is loaded. This is
only used with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled.

Unload

Use only with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled.

Run

Starts the execution of the component instance. If observability is configured to attach
at start-up the RTS browser appears. When observability is attached at start-up the
component instance is paused, or does not start processing messages, until the start
button is pressed on the RTS Browser.

Run with Purify

Starts the execution of the component instance and tests for different aspects,
including memory leaks. This menu item appears only if Purify is installed.

Shutdown

Kills the running component instance, closing the RTS Browser if necessary.

Restart

Kills the running component instance and runs another instance. If the instance is
running on an target board, the component is reloaded before a new instance is run.

Reload

Used only with target platforms that require loading of modules before they are run.
For platforms that do not require loading of modules, this menu item is disabled. This
unloads then loads the component without resetting the target board.
322 Chapter 21 - Running and Debugging

Attach Target

Enabled only if a component instance has been run without observability at startup.
You can attach observability to a running process at any time, if that the process was
started with observability enabled. This menu item can only be used with Detach
Target.

Detach Target

Detaches observability, meaning that the toolset no longer communicates with the
running component instance. This menu item can only be used with Attach Target.

Attach Console

Attaches a console window to the executing target model to interact with the
command line model debugger, and so forth.

RTS Browser

The RTS Browser appears as an additional tab on the model browser. It provides an
execution interface for controlling the running instance. There is always one RTS
Browser for each component instance that is running with observability. The browser
is composed of three main parts: an execution control and information pane, a capsule
instance browser, and a probes browser.
RTS Browser 323

Figure 84 RTS Browser

Execution Control and Information Pane

This area shows the name of the component instance, the execution status, and the
execution buttons.

� Start - runs the component instance, allowing all messages to be delivered. The
button can be pressed after the component instance has been initialized or is
stopped.

� Stop - pauses the execution of the component instance. Execution is only paused
after the currently executing transition is finished. The button does not halt
execution in the middle of a transition. The stop button can be pressed when the
model is running.

� Step - allows one message to be delivered in the component instance. Pressing step
while the component instance is running allows the current executing transition to
finish, then delivers the next message, then pauses or stops. The step button can
also be pressed when a component instance is stopped or paused.

� Restart - causes the current component instance to terminate and starts a new
component instance. This button can be pressed at any time; however, it is
disabled when you are in manual mode. (Reloads when target is loadable.)
324 Chapter 21 - Running and Debugging

� Refresh - updates the status of the capsule instances and probes shown in the
browser tree.

� Shutdown - terminates the current component instance and effectively stops the
execution environment. All execution monitor windows, watches, traces, and any
other execution environment windows are closed.

Capsule Instance Folder

This list shows all the capsule instances. All the capsule instances are located in the
folder named after the top-level capsule. Instances that have not been created yet, for
example, optional or plug-in instances, are shown in the browser but with a red 'X' in
front of the capsule instance name.

By default only the capsule instances are shown in the folder. The name shown
contains the replication index of the instance within the capsule role, the capsule role
name into which the instance was created, and the capsule class name of the instance.
For example:

0/echo1:Echo1

You can also view the capsule roles—the roles into which the capsule instances are
created—by right-clicking in the RTS Browser main window and selecting
Filter > Show Roles. Capsule roles are shown in the list with the name and replication
factor of the role, and with the capsule instances created in that role as subentries in
the tree browser. For example:

o/echo1:Echo1

0/echo2:Echo2

0/Rep1:ReplyHiSub

0/Rep2:ReplyHiSub

0/replyReady:ReplyHiSub

0/dummySlot:DummySubClass

Probes Folder

The probes list lists the probes. The popup menu on probe entries in the list allows
quick access to the common operations that can be performed with probes.
RTS Browser 325

Monitors

Monitors are read-only views of capsule instances state machine and structure
(capsule collaboration) during the execution of the instance. None of the structure or
state elements can be modified or moved from the monitor view. The monitor view
shows the state and structure components displayed in a lighter shade to emphasize
the read-only nature of their parts. Multiple monitor diagrams can exist in the same
model.

You can right-click on an element and select Open Specification... to open the element’s
specification. As well, on Composites states, transitions, and choice points, you can
select Show Source Code Location, which opens a dialog that indicates the location of the
code for the action associated with the element.

Animation

To allow observation of state and structure, monitors provide visual clues during
execution. The structure monitor shows changes in the dynamic structure by showing
optional capsule roles that have not been created with the traditional shading. Once
they are created, they are shown as fixed capsule roles. Also, current cardinalities of
capsule instances are shown. In order to find specific instances of a replicated capsule
role as shown in the structure monitor, you can use the cardinality browser tool.

In the State, or state diagram monitor, the current state is highlighted. In addition, if
the state diagram shows hierarchical states, the last active state remains highlighted.
When a transition is taken, the state monitor highlights the transition.
326 Chapter 21 - Running and Debugging

Figure 85 Capsule state and structure monitors and browsers

Opening a Monitor

Select a capsule instance from the RTS browser, and from its popup menu, select
either Open Structure Monitor or Open State Monitor.

Probes

From within a monitor, you can place probes on ports, junction points, and states by
using the Probes tool.
Monitors 327

Trace Windows

Trace windows are used to log messages sent or triggering events in a running
system. Trace windows show lists of messages, including local state, incarnate and
destroy, and import and deport messages. Each row in the list corresponds to one
message. Rows can be divided into multiple columns, where each column is used to
display different details regarding the message in that row.

You can trace without having the Trace window open. Tracing is turned on by
opening a Trace window. However, after tracing is started, closing the window does
not stop the tracing. Messages are buffered internally in the probe. Tracing is only
stopped by deleting the probe.

There are three different types of trace windows. Each type of trace window shows
sets of messages captured at different scopes in the system.

Deleting Messages

Any message can be deleted from the trace by right-clicking on a message in the list
then selecting Delete from the popup menu.

Trace Configuration

You can configure the information displayed in the trace window by right-clicking in
the trace window and selecting Configure... from the popup menu. The Trace
Configuration dialog appears.

Type of
trace

Scope of message
capture

Default columns
shown

Opened by...

Capsule
instance
trace

Shows messages
exchanged
between capsule
instances

Time, capsule
instances, message
signal, optional data

Selecting capsule instances
in the RTS browser and
choosing Open Trace
Window from the popup
menu.

Port
trace

Shows messages
coming in or out of
a specific port

Time, direction (I/O),
priority, signal, data

Creating a probe on a port,
then selecting Open Trace
from the Probes popup
menu.

State
trace

Shows messages
that trigger and
event in the state
machine

Time, port, priority,
signal, data

Creating a probe on a
junction point or state,
then selecting Open Trace
from the Probes popup
menu.
328 Chapter 21 - Running and Debugging

Figure 86 Trace Configuration dialog

You can enable Relay Port Tracing by selecting the Relay Port Tracing check box. If this
check box is selected, all messages between capsule instances, including instances
being received through relay ports, appear in a trace. For messages relayed to
sub-capsules within a capsule, the trace shows through which ports these messages
were passed.

To observe the message passing, convert the trace to a sequence diagram.

Using Different Types of Traces

Typically when a message fails to flow through a set of capsules as expected, it is
important to see where the message flow was first in error. To debug these kinds of
errors, first use Capsule instance traces to look at the messages originating and
terminating from the capsules in the message flow. If the messages are incorrect and
the fault origination cannot be identified, place Probes on specific ports in a composite
capsule. Based on whether the messages are still faulty, you can narrow down the
cause of the error by further subdivision. Once the faulty capsule has been identified,
it is valuable to place traces and message breakpoints on the state machine.

Opening a Sequence Diagram

Selecting this popup menu item opens a dialog that lets you choose the capsule where
the generated sequence diagram is saved.
Trace Windows 329

Probes

Probes are used to monitor messages passing through ports and events that trigger
transitions in a running capsule instance. They are attached to states, junction points,
or ports by using the probe tool, which is available when viewing a state diagram or
structure monitor of a capsule instance.

Probes can be placed on instances that have not yet been created, for example, even
before the component instance is running. Probes are associated with component
instances and are stored with them, such that they do not have to be redefined each
time the component instance is run. A component instance’s probes are listed in the
RTS browser, inside the probes folder.

Use the Probe Specification dialog to configure a probe. You can also use a probe’s
context menu to quickly open the probe trace window, the Inject window, and activate
or deactivate a probe.

Placing Probes on Replicated Ports

If a port is replicated you can place a probe on all instances of the ports by closing the
'*' from the port instance browser. This results in a probe that monitors and injects on
all instances of the port. You can also place a probe on a particular instance of a port
by selecting a particular instance number from the port Instance browser, then placing
the probe on the port.

Probe type Can be created on... Description

port probe ports, replicated ports Port probes allow tracing messages
passing through the port, or in the case of
replicated ports, messages passing
through all instances of the port. They also
allow you to inject messages to a port.

state probe junction points, states State probes placed on junction points
allow tracing of events that trigger the
associated transition. Probes on states
trace all messages that occur in that state.
State probes do not allow message
injection. They can, however, be used as
state break points to stop the execution of
the system when a particular probe has
been reached.
330 Chapter 21 - Running and Debugging

Inject Window

On a port probe specification sheet the Probe Specification—Detail tab allows you to
define messages and send them in or out of the port on which the probe is attached.

Inject messages also appear under the owning port probe in both state and structure
monitor diagram browsers. The inject message context menu lets you inject, modify,
or delete an inject message. Double-clicking the inject message injects the message.

Capsule Instance Trace

A capsule trace window is a type of message trace that shows capsule instances with
messages listed in separate columns for recording message flow between instances.
The left column displays the time at which the event occurred, the subsequent
columns display the source and destination ports, the signal name, optional data, and
the capsule instances.

Trace Event Message Dialog

You can right-click on a capsule trace window and select Open Specification to open the
Trace Event Message dialog (see Figure 78), which contains information about an
event message.

Figure 87 Trace Event Message dialog
Inject Window 331

Creating a Sequence Diagram from a Message Trace

You can take a snapshot of a message trace at any time and create a Sequence
Diagram. Each interaction in the resulting Sequence Diagram is labeled with the
signal name. Message lines can cross one another indicating message overtaking.
Since the Sequence Diagram is a snapshot of the trace, it is not updated dynamically.

To create a run-time sequence diagram:

1 Open a capsule instance trace.

2 Right mouse click in the message trace window and select Open Sequence Diagram.

A sequence diagram is created from the message trace.

Note: Only the messages shown in the trace window will appear in the sequence
diagram; therefore, if you want to create a sequence diagram with less messages
you can pause the running component instance, delete messages from the trace,
then create the sequence diagram.

3 You can select a saved sequence diagram and select Open Trace to reopen another
capsule instance trace.

Dragging Capsule Instances into a Trace

Additional capsule instances can be added to a trace window by dragging and
dropping them from the RTS Browser to the trace window. This is useful for
configuring the order of instances already in the window, as well as for adding
optional instances that were not created at the time the trace was started.

Message Trace Configuration Dialog

This dialog configures a Trace window.

Threshold Field

An integer value used to specify the maximum number of events displayed in the
trace window before discarding on a first-in first-out basis. The default threshold
is 25.

Note: Messages are also buffered in the running component instance. The larger the
threshold, the more memory is allocated in the running component instance. This can
be set in the Probe specification threshold.
332 Chapter 21 - Running and Debugging

Column Check Boxes

These correspond to the list columns in the trace window. You can specify which
columns are displayed. Each type of trace has its own default columns that are shown.
See the trace window help for details on the default columns for the different types of
traces.

Execution Watch Tab

Capsule instance attributes can be inspected at run-time and modified from the Watch
tab of the Output window. The watch tab has two columns: the name of the attribute
and its value.

To add an attribute instance or variable to the watch window, open a state monitor
and drag-and-drop the attribute from the Attributes folder into the watch window.

You can also edit the value of a variable by selecting the Value field then entering
another value for the variable.

Refreshing the Watch Values

The watch values are refreshed when a message is received by the state of the capsule
instance. If the state monitor from where the watch was created is closed, the watch
value stops being updated. If the state monitor is closed, you can manually force an
update of a watch value by right-clicking on the watch item and selecting Refresh from
the popup menu.

Run-time Exception While Running a Component Instance

A running component instance can crash suddenly with a run-time exception that
could be due to either design errors (sending an inappropriate signal through a port,
for example) or coding errors (illegal memory references, for example). Rose RealTime
will detect that the process is no longer running and display an information dialog
warning that the RTS system will be shutdown.
Execution Watch Tab 333

If Purify is installed on your system, and if a component instance running with Purify
crashes, the results appear on the Purify output window.

Rose RealTime can help you resolve design errors. For example, problems with state
machine logic can be found with a state monitor and message sequencing problems
can be found with traces. However, when your model contains detail level coding
errors that cause exceptions, the best tool for resolving these problems is your source
level debugger. You can add source breakpoints from within a state monitor to
automatically launch a source code debugger to help you resolve detail level coding
errors.

Instance Browser

The instance browser tool is useful for selecting and examining a particular instance
of a replicated port or replicated capsule role in a structure monitor.

To use the instance browser:

1 Open a structure monitor that shows either replicated ports or replicated capsule
roles.

2 Move the cursor over the cardinality field. The cardinality field is shown at the end
of a capsule role name or port name in square brackets. Notice that two black
arrows appear, one above the cardinality field and another below.

3 Select the top or bottom arrow to select a particular instance. For ports you can
select the '*' entry in the instances list to select all port instances.

Note: As you change the cardinality you may notice the capsules border and shading
change to reflect the state of the instance you are viewing.
334 Chapter 21 - Running and Debugging

Source Code Debugging

In addition to the observability debugging tools, you can also use the native
debugging facilities at your disposal. Occasionally you have to step through your
code to really find out what is happening. Rose RealTime can be configured to
automatically start up an external source code debugger when a breakpoint is
reached.

Using the breakpoint tool from the state monitor toolbox, you can place source code
break points on any element in your state monitor that contains detail level code,
including

� Transitions
� State entry/exit actions
� Branches

Note: Actions map directly to an operation in the source code so that when the
external source debugger hits a breakpoint the breakpoint will always be at the
beginning of the operation.

To set source code breakpoints when running a component instance, follow
these steps:

1 Rose RealTime must know that a component instance is to be loaded with the
source debugger. The component instances specification (Details tab) controls the
selection of the source debugger to use, which is one of the options that is available
for target control.
Source Code Debugging 335

The appropriate debugger must be chosen from the Operation mode field in the
component instance specification dialog.

2 Load the source debugger and component instance by choosing Load from the
component instance right-click menu or the load button from the toolbar.

At this point the source debugger should be loaded and initialized. The
component instance has not run yet, hence the RTS Browser is not visible.

Note: Do not forget to configure the component to generate debugging
information when compiled. Refer to your compiler and linker documentation for
the specific flags that should be used to include debug info into an executable. If
the component instance is loaded into the source debugger without debug
symbols the source debugger will usually inform you of this.

3 Run the component instance (see Running a Component Instance with Purify on
page 315 or Running a Component Instance without Purify on page 317).

The RTS browser appears.

4 Start the component instance, and use the breakpoint tool to add breakpoints on
transitions, states (you are prompted for entry or exit breakpoint), and choice
points.
336 Chapter 21 - Running and Debugging

5 When the breakpoint is hit the debugger pops to the front and displays the source
code corresponding to the breakpoint. You can now use the debugger and Rose
RealTime to debug your running component instance. Remember, however, that
once a breakpoint is hit, you must use the debugger to continue execution of the
component instance.

After the source debugger has been loaded, it remains loaded until the Unload
command on the component instance is chosen. This means that the source debugger
can remain open while the component instance is run and restarted multiple times.

Running from Outside the Toolset

Binary files or executables built from Rose RealTime do not necessarily have to be run
from within the toolset. In some cases it is necessary to run, or even download to
another machine (usually a RTOS), the executable manually. For example, this is
useful if you are using a target for which the target control scripts and programs are
not available.

Purify

You can run Purify from outside the toolset and import the Purify results into the Rose
RealTime.

1 When using Purify outside the toolset, run the results.

2 Save the results as plain text.

3 Import the results into Rose RealTime by going to the Purify pane and selecting
Import from the context menu.

If the purify output matches a line of code in the model, then the corresponding line of
code in Purify appears bold.

Observability Command Line Parameter

Although the executable is run from outside the toolset, it can still be observed using
the observability interface provided by the toolset. If you ensure that the observability
command line parameter is passed to the executable before it is run, the toolset can
connect to the running model at any time, as well as disconnect. For example, this is
how you would start your component instance from outside the toolset:

%myProgram -obslisten=30123
Running from Outside the Toolset 337

You can add the following if you want to start running the model immediately:

-URTS_DEBUG=go

From within the toolset, ensure that in the component instance specification the Target
observability port is set to 30123. Now, whenever is required, you can use the Attach
Target option in the component instance popup menu to attach to the running
instance.

Component Instance Menu

To connect to a running process, select a component instance for the correct type of
instance that has been run manually. Set the Observability Port in the Component
Instance specification dialog to the same value that was specified as a command line
argument. Then use the Attach Target menu option from the component instance
popup menu to connect to the running instance.

Using the Command Line

The result of a successful build of a component is an executable module. You can
execute this module directly from the command line if the target environment is the
workstation itself; otherwise, you have to download it to the target platform.

You can also start the model, or component instance, automatically using the target
control capability.

Command Line Arguments

There are only two Services Library predefined command line parameters that can be
used.

-obslisten=<tcpip_port>

This parameter is to instruct your component instance to listen at the specified tcp/ip
port for observability connections from the toolset.
338 Chapter 21 - Running and Debugging

For example:
%myProgram -obslisten=67887 -URTS_DEBUG=<a valid debugger command>

Use this to pass commands to the Services Library command line debugger, which
runs automatically when the component instance is started. For example, the
following will quit the debugger automatically and allow the process to run freely.

%myProgram -URTS_DEBUG=quit

Note: Remember that command line parameters with spaces need quotes.

-oblisten -URTS_DEBUG=go

Allows you to start running the target and make TO connections at a later time.

Application-Specific Command Line Arguments

You can supply additional command line arguments for use by your component
instance model, as you would for any other application. If the component instance is
run from the toolset, you can specify command line arguments in the Component
Instance specification dialog. The arguments are passed on the command line after the
name of the executable, for example:

%myTopActor foo 99

See accessing command line arguments from within a model for more information.

Loading and Running Component Instances on Embedded
Targets

The requirements for running a process on a host platform and on an embedded
platform are somewhat different. For clarification, the term host platform refers to the
platform on which Rose RealTime is running. Embedded platform refers to a platform
that is not running the toolset. For example, before anything can be run on an
embedded target, it must first be loaded or downloaded to the target. This step is not
required when simply running on a host platform. It is also common to restart the
target board, meaning that a soft reboot is performed.

Utility Scripts

For the reasons mentioned above, the execution options are different when running
on a host platform or on a target platform In order to support loading, resetting,
restarting, and running of component instances on several different target platforms,
a set of scripts and executables are invoked from the toolset. Rose RealTime comes
with a set of supported target control utilities.
Loading and Running Component Instances on Embedded Targets 339

Component Instance Specification

The Component Instance specification dialog contains settings that control the way in
which the component instance are run or loaded.

Specification Contents

The Component Instance specification dialog contains the following tabs: General,
Detail, Purify (if installed) and Files.

Component Instance Specification - General tab

Name

The name of the component instance.

Note: This is not the name of the actual executable that was created from the build.

Component Instance Specification - Detail tab

Figure 88 Component Instance Specification - Detail tab
340 Chapter 21 - Running and Debugging

Parameters

Text in this field represents command line arguments that are passed on the command
line when the component instance is loaded. The content of this field is passed as is.

Operation Mode

The operation mode specifies the target control configuration for the component
instance. The Basic option configures the component instance to use the target control
utilities to load and run the component instance. The Manual option instructs the
toolset not to attempt to load the component instance.

In addition, if you are setting source level break points Probes, you will have to select
the debugger that will be loaded by the target control scripts for your platform. Basic
mode is implied when one of the debugger options is not selected.

The options are:

� Basic - Use the target control utilities to automatically load and run the component
instance.

� Debugger MSDEV - Use the Microsoft Visual Studio debugger to load and run the
component instance, as well as for setting, clearing, and displaying breakpoints.
For more information, see To configure MSDEV Debugger mode: on page 351.

� Debugger Tornado - Use the target control utilities to load and run the component
instance with. Use the Tornado debugger for setting, clearing, and displaying
breakpoints. For more information, see To configure Tornado for Debugger mode: on
page 351.

� Debugger Tornado 2- Use the target control utilities to load and run the component
instance with. Use the Tornado 2 debugger for setting, clearing, and displaying
breakpoints. For more information, see To configure Tornado for Debugger mode: on
page 351.

� Debugger xxgdb1 - Use the GNU xxgdb debugger to load and run the component
instance, as well as for setting, clearing, and displaying breakpoints. (UNIX only).
For more information, see To configure xxgdb Debugger mode: on page 353.

� Manual - The toolset does not attempt to load the executable. The user must
manually load the executable.

� EMVT- Use EMVT (Embedded Microsoft Visual Tools) to load and run the
WIndows CE component instance. For additional information on using the
Windows CE option, see To configure a conponent instance for Windows CE, follow
these tasks: on page 347.
Component Instance Specification 341

Overview of Observability Options

Attach Target Observability on Start-up

Check this item if you would like the toolset to automatically observe a component
instance when it is run by the target control scripts. You can always connect the toolset
to the process at some later time.

Target Observability Port

Specify a TCP/IP port number to use for connecting the toolset's execution
environment to the target executable. The port number must not already be in use by
another process.

Load/Run

� Order - An integer value representing the relative order in which this component
instance is loaded, or run, in relation to other component instances listed and
selections in the Build Settings dialog. Lower numbers are run first.

� Delay - An integer value representing the number of seconds to delay before the
component instance is loaded or run. This is useful when simultaneously running
multiple component instances specified in the Build Settings dialog. If you want to

1. The xxgdb integration works differently from the MSDEV and Tornado. Follow these steps:

1.Build the desired component with the appropriate debug options, for
example, -g.

2.In the component instance specification, select Debugger-xxgdb for Operation
Mode.

3.Start TO.

4.Open the desired State Monitors. You may need to “step” to get access to them.

5.Set breakpoints on the appropriate elements within the desired State Monitor.

6.Restart Target Observability.

Breakpoints are now enabled.

7.Run the model.

8.Remember to continue in the debugger when you hit a breakpoint. The toolset
gets no indication that a breakpoint was hit.

9.If you remove breakpoints, they will not take effect until you restart the model
again.
342 Chapter 21 - Running and Debugging

Ensure that one component instance has time to start correctly before running the
other - for example, if they need to communicate - you can specify a run delay for
the second component.

Overview of Observability Options

Component Instance Specification - Purify tab

Figure 89 Component Instance Specification - Purify tab

Error Call Stack Length

� The maximum number of call stack levels which you want Purify to record for
error locations in the program.

� This setting affects whether two errors are considered identical (those with the
same message type and error location call stack) and displayed as one message
with a count of repeated occurrences, or considered different and displayed as
separate messages.

� Purify uses the error location call stack to determine whether a message is a
unique or repeat occurrence. Specifying a larger number gives Purify more call
stack levels to compare and increases the chances that Purify will display a
message as a unique occurrence.
Component Instance Specification 343

Connection Delay

� An integer value representing the number of seconds to delay before attempting to
connect to the target. This allows Purify time to instrument the executable as
necessary. For a large module, you will need to adjust the connection delay to be
more than the default of 60 seconds.

Default Instrumentation Type

� The level of error checking and coverage monitoring on a per module basis. Select
one of the following:

❑ precise (default) - provides full run-time error detection and precisely pinpoints
problems in any component in the program.

❑ minimal - provides quick instrumentation for modules whose errors are of less
interest.

❑ exclude - excludes DLL’s which may cause your program to malfunction when
SetWindowsHook() is called.

Display

� First occurrence only - displays only the first occurrence of a message with a count of
repeated, identical occurrences, for all Purify sessions

� Handles in use at exit - displays the handles that are in use when you exit a program,
for all Purify sessions

� Memory in use at exit - displays allocated blocks of memory, to which there are still
pointers, at exit. This allows you to fix large amounts of memory in use in long
running programs, to avoid out-of-memory problems

� Memory leaks at exit -displays memory leaks (allocated blocks of memory to which
there are no pointers) found when you exit a program, for all Purify sessions

See the Purify documentation for more information and details on Purify, and for
descriptions of possible error messages.

Processor Specification Dialog

This dialog allows configuration of the type of processor that this element represents,
in addition to the processes (component instances) that will run on the processor.

Specification Contents

The processor specification dialog contains the following tabs: General, Detail, Files.
344 Chapter 21 - Running and Debugging

Processor specification - General Tab

Name

A name for the processor. The name appears on the deployment diagram, but the
name is not used for execution purposes. The actual target id is specified using the
address field on the Detail tab.

Processor Specification - Detail tab

Figure 90 Processor Specification - Detail tab

CPU

Name of the type of central processing unit for this processor element.

OS

Name of the operating system running on this processor.

Address

Network address for the processor. This field can contain a hostname or an IP address.
For example jhostl or 145.34.5.6.

Note: For systems not connected to a network, you must use 127.0.0.1 in this field.
Processor Specification Dialog 345

Server

In some environments there is a server that handles loading and executing of a
component instance for the target RTOS. This is the name or the address of this server.

Load script

Path to the target control utility directory that contains the scripts and programs that
are responsible for loading and unloading processes on that processor. If this field
does not point to a valid script directory you will not be able to execute component
instances from within the toolset.

Component Instances

This is the list of component instances that will run on this processor. You can add a
component instance to this list by dragging and dropping a component instance from
the model browser to this list. Dropping a component instance on a processor results
in the creation of a process. You can also right click and select Insert. The Create
Component Instance dialog appears in which you can select a component to create an
instance from and give it a name. See the Processor specification dialog for process
details.

Browse

When you click the Browse button, the Select Directory dialog appears from which you
can locate the Target Scripts directories.

Using Windows CE

To allow control of component instances for the Windows CE platform, the target
control utilities are implemented as a set of external executables and scripts that are
invoked from the toolset to perform the various target control tasks.

These scripts and executables for target control are located in the following directory:

$Target_scripts = $ROSERT_HOME\bin\tc\win32\wince

For a toolset running on a Windows platform, the toolset can control component
instances for a Windows CE target platform; a component instance can be run, loaded,
and terminated automatically by Rose RealTime.
346 Chapter 21 - Running and Debugging

To configure a conponent instance for Windows CE, follow these tasks:

� To specify the Windows CE target control configuration for the component instance: on
page 347

� To configure the Windows CE component instance: on page 349

� To run and load the Windows CE component instance: on page 350

� To unload the Windows CE component instance: on page 350

To specify the Windows CE target control configuration for the component
instance:

1 Establish an ActiveSync connection between your Desktop and the Windows CE
device.

For information on establishing an ActiveSync connection, see your Windows CE
documentation.

2 Configure for your Windows CE envirement.

Microsoft Embedded Tools includes batch files to configure your environment for
different processors. For example in /EVC/WCE300/bin, there is a batch file
called WCESH3.bat that sets up an environment for an sh3 target. Batch files for
other targets are available in the same directory.

Note: Ensure that the environment variables are configured for your target
processor for your specific CPU.

The operation mode specifies the target control configuration for the component
instance. For Windows CE, you can specify either Basic or Debugger modes. The Basic
option configures the component instance to use the target control utilities to load and
run the component instance. If you want to set source level breakpoint, you can
specify a debugger that is loaded by the target control scripts for your Windows CE
platform.

For instructions on setting Debugger mode, see To configure Windows CE for Debugger
mode: on page 352.

3 Optional: To use Basic mode, prior to starting Rational Rose RealTime, type the
following at the Command Prompt:

Set RRT_WINCE_TARGET_DIR=\<directory_name>\

where <directory_name> is the name of the location of download the model
executable and the TCKill agent for your target. If the directory name is not set, the
model executable and the TCKill agent are downloaded to the root directory on
the target.
Processor Specification Dialog 347

4 Start Rational Rose RealTime.

5 Open an existing model, or create a new model.

6 In the Model View tab in the browser, right-click on Deployment View and click
New > Processor.

The Processor Specification dialog must be told in which directory to look for the
control utilities for the Windows CE platform. The control options on the
component instance menu (such as Run and Load) are enabled or disabled
depending on the control utilities found in the directory specified for that
processor.

7 In the CPU box, select the appropriate CPU for your target processor.

8 In the OS box, select Windows-CE.

9 In the Address box, specify the network address for the processor.

This field can contain a hostname or an IP address. For example jhostl or
145.34.5.6.

10 Leave the Server box blank.

11 In the Load Script box, type the following:

C:\Program Files\Rational\Rose RealTime\bin\tc\win32\wince

Note: The path to the target control utility directory that contains the scripts and
programs responsible for loading and unloading processes on that processor. You
must specify the fully-qualified path. If this field does not contain a valid script
directory, you cannot execute component instances from within the toolset.
348 Chapter 21 - Running and Debugging

Your Processor Specification dialog will look similar to following:

12 Click OK.

To configure the Windows CE component instance:

1 In the Model View tab in the browser, drag a component from the Component View
folder to your Windows CE processor to create a new component instance.

2 Select the new component instance.

3 Right-click and click Open specification.

4 Click the Detail tab.

5 In the Connection delay box, specify an interger, (the time in seconds) that specifies
how long the toolset waits before listening for a connection from the target.

6 In the Target timeout box, specify an interger, (the time in seconds) that specifies
how long the toolset listens for the connection from the model running on the
target.

7 In the Operation mode box, select Basic.

8 Click OK.
Processor Specification Dialog 349

To run and load the Windows CE component instance:

1 In the Model View tab in the the browser, select the new component instance from
the Deployment View folder.

2 Right-click and click Load.

The component instance is loaded onto the Windows CE target.

The component must be successfully built before it can run. If the Attach Target
observability option was set on the Component Instance Specification dialog and a
Target observability Port number specified, the execution interface displays to allow
you to control the execution of the model.

3 Right-click the component instance and click Run.

On your Windows CE device, the model runs, but it is controlled from the toolset on
the Desktop. You can now step through your model and observe its progress in the
State Machine.

To unload the Windows CE component instance:

Because the component instance was loaded onto the Windows CE target, it must be
unloaded later.

1 In the Model View tab in the the browser, select the new component instance from
the Deployment View folder.

2 Right-click and click Unload.

Note: For Basic mode, the executable on the Windows CE target device is deleted; the
TCKill agent remains on the target. If you wish to remove the TCKill agent, on the
Windows CE target, you must manually delete the TCKill agent for your target.

Using Debugger Modes

You can specify any of the following debugger modes:

� MSDEV - (Microsoft Visual Studio - Windows only)
� Tornado
� Tornado 2
� EMVT - (Microsoft Embedded Visual Tools - Windows only)
� xxgdb - (GNU - UNIX only)
350 Chapter 21 - Running and Debugging

To configure MSDEV Debugger mode:

To set source level breakpoint probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

1 In the Model View tab in the browser, select the processor from the Deployment View
folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-MSDEV.

5 Click OK.

6 In the Model View tab in the browser, select the component instance.

7 Right-click and click Load.

8 Righ-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

To configure Tornado for Debugger mode:

To set source level breakpoint probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

If you set the operation mode to Debugger-Tornado or Debugger-Tornado2, you can set
break points and debug your model.

Note: Before starting Rose RealTime, you must configure the Tornado environment.

1 In the Model View tab in the browser, select the processor from the Deployment View
folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-Tornado or Debugger-Tornado2.

5 In the Server box, you must specify the name of server that will be the target server.

6 Click OK.
Processor Specification Dialog 351

7 In the Model View tab in the browser, select the component instance.

8 Right-click and click Load.

9 Righ-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

To configure Windows CE for Debugger mode:

To set source level break point probes, you must select a debugger that will be loaded
by the target control scripts for your platform.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

If you set the operation mode to Debugger-EMVT for the Windows CE target, you can
set break points and debug your model.

1 In the Model View tab in the browser, select a component from the Component View
folder.

2 Right-click and click Open Specification.

3 Click the C++ Executable tab.

4 In the Default Arguments box, you must specify an argument that instructs the
executable on how it will comminicate with the toolset. Type the following:

-obslisten=<port_on_target_instance>

where port_on_target_instance is the target observability port.

5 Click OK.

6 In the Model View tab in the browser, select the Windows CE component instance
from the Deployment View folder.

7 Right-click and click Open Specification.

8 Click the Detail tab.

9 In the Connection delay box, specify an interger, (the time in seconds) that specifies
how long the toolset waits before listening for a connection from the target.

Note: The default value for Connection delay is 1 and is not sufficient for this
purpose. If you specify 60 in the Connection delay box, this time should be quite
sufficient.
352 Chapter 21 - Running and Debugging

10 In the Target timeout box, specify an interger, (the time in seconds) that specifies
how long the toolset listens for the connection from the model running on the
target.

Note: If you specify 120 in the Target timeout box, this time should be quite
sufficient. Depending on the size of your model, you may need to increase this
value further.

11 In the Operation mode box, select Debugger-EMVT.

12 Click OK.

13 In the Model View tab in the browser, select the component instance.

14 Right-click and click Load.

15 Righ-click and click Run. If prompted to build the component instance, click Yes.

After the source debugger is loaded, it remains loaded until the Unload command for
the component instance is selected. This means that the source debugger can remain
open while the component instance runs and restarts multiple times.

On the target Windows CE device, it loads the TCKill agent for your specific target.

Now, you can set breakpoints and debug your model.

Note: For Windows CE, the EMVT debugger mode does not use the TCKill agent.

To configure xxgdb Debugger mode:

Use the GNU xxgdb debugger to load and run the component instance, as well as for
setting, clearing, and displaying breakpoints.

Note: Basic mode (the default) is implied when one of the debugger options is not
selected.

1 In the Model View tab in the browser, select the processor from the Deployment View
folder.

2 Right-click and click Open Specification.

3 Click the Detail tab.

4 In the Operation mode box, select Debugger-xxgdb.

5 Click OK.

6 In the Model View tab in the browser, select the component instance.
Processor Specification Dialog 353

7 Right-click and click Load.

8 Righ-click and click Run. If prompted to build the component instance, click Yes.

Now, you can set breakpoints and debug your model.

Unloading a Debugger

To unload the debugger:

You have to unload target platforms that require loading of modules before they are
run.

1 In the Model View tab in the browser, select the component instance from the
Deployment View folder.

2 Right-click and click Unload.

Device Specification

The Device specification dialog contains three tabs: the General tab, the Detail tab,
and the Files tab:

General tab

Name

The name of the device.

Stereotype

A stereotype label for the device.

Documentation

Use this field to describe the device.
354 Chapter 21 - Running and Debugging

Detail tab

Characteristics

Use the Characteristics text field to specify a physical description of the hardware
component. For example, you can describe the kind and bandwidth of a connection,
the manufacturer, model, memory, and disks of a machine, or the kind and size of a
device. You can set this field only through the specification. This information is not
displayed in the deployment diagram.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Connection Specification

The Connection specification contains three tabs: the General tab, the Detail tab, and
the Files tab.

General Tab

Name

The name of the connection.

Stereotype

A stereotype label for the connection.

Documentation

Use this field to describe the connection.
Connection Specification 355

Detail Tab

Characteristics

Use the Characteristics text field to specify a physical description of the hardware
component. For example, you can describe the kind and bandwidth of a connection,
the manufacturer, model, memory, and disks of a machine, or the kind and size of a
device. You can set this field only through the specification. This information is not
displayed in the deployment diagram.

Files Tab

A list of referenced files is provided here. The files list popup menu allows you to
insert and delete references to files or URLs.

You can link external files to model elements for documentation purposes.

Probe Specification

The Probe Specification dialog contains two tabs: General and Files.

Probe Specification - General tab

Figure 91 Probe Specification - General tab
356 Chapter 21 - Running and Debugging

Name

The name of the probe, which you can edit if you choose.

Activated

Enables the probe.

Halt

Halts the execution at the point of the probe when it detects a message.

Trace

Opens the Trace window.

Threshold

Sets the size of the message buffer on the target.

Documentation

Use to describe this probe.

Probe Specification - Files tab

Allows for linking of external files.
Probe Specification 357

Probe Specification - Detail tab

Figure 92 Probe Specification - Detail tab

This tab is only available on port probes. It is used to specify and inject messages into
the port on which the probe is attached.

Message list

This tab contains the list of messages that can be injected into the port. The list shows
the direction (in/out), priority, signal name, and data of each message.

Creating Inject Messages

To create an inject message:

1 Right-click in the list and select Insert or press the Insert key.

2 A message editor appears in which you can configure the message that you want
to send into or out of the port.

Note: You can only choose from the defined signals in the protocol associated with
port instance on which the probe is attached.

3 Once the message has been defined, press OK.

The message appears in the inject list.
358 Chapter 21 - Running and Debugging

Injected Data Format

The Data area of the inject message is a string representation of the data to be injected
with the message. The format of the string depends on the encoding and decoding
scheme used by the data type that is being injected.

Therefore, the format of the inject data is linked directly to the encoding and decoding
functions. If the encode and decode functions have not been overridden on a data
type, the Services Library provides a default ASCII encoder/decoder.

In most cases you will be injecting data using the default ASCII decoder. If this is the
case you can use the following syntax to specify the Data area of a message:

Note: You do not have to enclose the expression in double quotes.

Default ASCII encoding syntax

<type> ::= <type name>{ <attributes> }

<attributes> ::= <attribute name>{ <attributes> } |

<basic attribute><basic type>,<attributes> |

<basic attribute><basic type>

<basic type> ::= <value> | <basic type>,<value>

where

<attribute name> is an attribute of a composite type (e.g., a
type composed of other attributes - for example another class)

<basic attribute> is the name of an attribute of a basic type
(int, long, short, char, enum, double, float, string)

<value> is the value of an attribute of a basic type

Examples

Basic types

If a signal has a basic type that is a data class

int -> int 5

char -> char'a'
Probe Specification 359

Classes

Here are two examples of what should be entered into the Data area of an inject
message to inject data of the following types. Do not enclose the data in double
quotes. The string below each class diagram would be entered as is into the Data area
of the inject message.

ControlData{tasks 43,load 3.22,name"NodeManager",int_array
0,0,0,0,0}

TestData{result
1,test_identifier'A',node{connects{name'\0','\0','\0','\0','\0'
, hostid 0},{name'\0','\0','\0','\0','\0',hostid
0},{name'\0','\0','\0','\0','\0', hostid
0},{name'\0','\0','\0','\0','\0',hostid 0}}}

Note: To help determine the format of data types remember that the inject data format
will always be the same as you would see the data displayed in a trace window.

Injecting a Message

To inject a message that shows in the inject list, select the message and from the popup
menu choose Inject.

If an error occurs parsing the Data area of the inject message, an error will not be
returned to the toolset. The message will simply not get injected. The best method of
determining whether a message was injected successfully is to open a trace window
on the port into which the message is being injected. If the inject is successful you will
see the message in the trace.
360 Chapter 21 - Running and Debugging

Inject messages can also be injected, modified, or deleted in the State monitor browser.
They are child elements of port probes.
Probe Specification 361

22Using Code Sync to
Change Generated Code
Contents

This chapter is organized as follows:

� Code Sync Overview on page 363
� Intended Code Sync Usage on page 364
� Enabling and Disabling Code Sync on page 365
� Identifying Code Sync Areas on page 365
� Compiling Code Externally on page 367
� Invoking Code Sync from the toolset on page 367
� Reconciling Changes in the Code Sync Summary on page 367
� Common Code Sync Errors on page 369

This chapter describes how you can use Code Sync to make changes to the generated
code from outside a model within an IDE (Integrated Development Environment) or
editor of your choice, and recapture the changes back into the model.

Code Sync Overview

The purpose of the Code Sync feature is to provide a facility to capture users’ changes
made to generated code, back into the model. This allows you to externally modify
and debug the generated code outside of the toolset.

Modifying generated code helps to reduce the debug cycle on some RTOS’s (Real
Time Operating Systems), and allows you to make changes using a third-party IDE.
Using Code Sync, changes to the generated code can be reconciled and re-integrated
back into the “master copy” of the model files.

For the purposes of this feature description, “externally” means “outside the toolset”.
363

Intended Code Sync Usage

The intended usage of Code Sync is as follows:

1 Build the model from the toolset. See Starting a Build on page 297. There must be
generated code before Code Sync can function.

2 Browse the generated code using a third-party editor or IDE.

3 Modify the generated code in designated areas only. See “Identifying Code Sync
Areas” on page 365.

4 Compile the code externally. See Compiling Code Externally on page 367.

5 Run the executable externally to test your changes. For more information, see
Running from Outside the Toolset on page 337. Return to Step 3 above, until the
external debugging cycle is complete.

6 From the toolset, invoke Code Sync. See Invoking Code Sync from the toolset on
page 367.

7 From the toolset’s Code Sync Summary dialog box, accept the desired changes. See
Reconciling Changes in the Code Sync Summary on page 367.

Limitations

Code Sync cannot be used to create, delete or rename model elements, or to otherwise
make structural changes to the model. Such changes must be made using the toolset.

After the generated code has been modified externally, the toolset should not be used
to run the externally-built executable until all code Sync changes have been
reconciled. For example, although state transitions could be observed and animated
by the toolset, the toolset will still show the old transition action code which may be
misleading during debugging.

Once the generated code has been modified manually, Clearmake cannot provide
complete traceability back to model files, and Clearmake cannot provide wink-in. In
Clearmake terms, generated code that has been manually modified is no longer
considered a derived object, but rather a view-private file.
364 Chapter 22 - Using Code Sync to Change Generated Code

Enabling and Disabling Code Sync

In order for the correct Makefile pattern to be generated for Code Sync, Code Sync
must be enabled before the code is initially generated from the toolset.

By factory default, Code Sync is enabled on new components. Code Sync can be
disabled from the CodeSyncEnabled flag on the Generation tab of each component, if
necessary to accommodate a particular make utility or to accommodate local coding
conventions.

Components that are dependent on a component with Code Sync enabled, do not
necessarily need to have Code Sync enabled.

Identifying Code Sync Areas

The generated code can only be modified in certain designated areas. For
convenience, these designated areas are tagged using language-specific comments.

Code Sync Identification Tags

You should only modify code that is delimited by the Code Sync identification tags.

Designated areas for Code Sync are identified in the generated C++ code with the
following tags:

// {{{USR capsuleClass 'NewCapsule1' tool 'OT::Cpp' property
'HeaderPreface'

<insert or modify code here>

// }}}USR capsuleClass 'NewCapsule1' tool 'OT::Cpp' property
'HeaderPreface'

Designated areas for Code Sync are identified in the generated C code with the
following tags:

/* {{{USR capsuleClass 'NewCapsule1' tool 'OT::C' property
'HeaderPreface' */

<insert or modify code here>

/* }}}USR capsuleClass 'NewCapsule1' tool 'OT::C' property
'HeaderPreface' */

Other similar tags (RME tags) are generated for tracing compilation error messages
back to the applicable model element. These tags are irrelevant to Code Sync. Code
Sync only recognizes code delimited by the Code Sync identification tags.
Enabling and Disabling Code Sync 365

Designated Code Sync Areas

The following areas are designated as available for Code Sync users:

� Action code for transitions in capsules

� Action code for operation implementations in capsules and data classes

� The HeaderPreface, HeaderEnding, ImplementationPreface and
ImplementationEnding fields for data classes and capsules

� The CommonPreface field for components

� Guard code for the event triggers on capsule transitions

� Choice-point condition code for capsules

� Entry Action and Exit Action code for capsule states

� The PublicDeclarations, Protected Declarations, and Private Declarations fields for
C++ data classes

� The InitFunctionBody, CopyFunctionbody, DecodeFunctionBody,
EncodeFunctionBody and DestroyFunctionBody fields for data classes

� The NumElementsFunctionBody field for capsule attributes

� The ConstructorInitializer field for C++ capsule constructor operations

In some cases where a field is omitted or left as its default, the code generator may
generate an optimized code pattern that does not provide the empty Code Sync areas
or its identification tags. If you wish to use Code Sync area for an area which has been
optimized out, you must provide a non-default value for the field (such as a
comment) within the model, then re-generate before you can modify that Code Sync
area.
366 Chapter 22 - Using Code Sync to Change Generated Code

Compiling Code Externally

Building a model externally is discussed in the Guide to Team Development - Rational
Rose RealTime. However, since the code will already be generated and manually
modified, it is normally sufficient to compile without generating, as shown in the
following example:

cd /MyHome/OutputDirectory

cd build

make -f Makefile RTcompile

In a multi-component model, it is safer to build from the Component Makefile and
iterated through each dependent component’s compilation. This is particularly true if
a header file was manually modified.

cd /MyHome/OutputDirectory

make -f Makefile RTcompile

Note that this will check for any required generation for each component, then
compile each component. If the model has changed, your manual modifications may
be lost (overwritten during generation). Consequently, it is recommended that you do
not modify the model while you are modifying the generated code.

Invoking Code Sync from the toolset

To propagate the changes into the model, you need to invoke Code Sync and then
decide which changes you want to accept.

Select CodeSync from the component’s drop down menu. Alternatively, if the
component is set as active, click Build > CodeSync from the Rose Real Time menu.

Any pending changes to the model-files are written to the file-system. It is not
advisable to make further changes at this time, since they will be overwritten upon
reconciliation.

If you wish to abort a CodeSync, click the Stop-Build icon from the standard toolbar.

Reconciling Changes in the Code Sync Summary

After Code Sync examines the generated code, a Code Sync Summary dialog appears.

This summarizes the differences, for designated code sync areas, between the
generated code and the corresponding elements in the model.
Compiling Code Externally 367

Figure 93 Code Sync Summary dialog

Location

The location within the model element, of the code that was changed by the user.

Context

The location within the model of the model element, where the changes were made by
the user.

Old code block

The appearance of an element of code within the model. If there is no action code, this
block will be empty.

New code block

The appearance of an element of code from the generated code that has been modified
(appears different from the model). If there is no action code, this block will be empty.
368 Chapter 22 - Using Code Sync to Change Generated Code

Accepting Changes

To accept changes:

1 From the Code Sync Summary dialog, double-click each location you wish to view.
The old code block and new code block appears for the selected location.

You can right-click on a change to bring up its context within the toolset. Be sure to
return to the Code Sync Summary before modifying the model.

2 To reject changes that you do not wish to propagate into the model, deselect the
check box(es). These rejected changes may include debug information placed in
the Code Sync area while debugging within your IDE.

3 Ensure that you have not rejected any code that is required for the model. Click OK
to accept the selected changes.

Model files are checked out of version control as necessary once the changes are
accepted.

Common Code Sync Errors

It is possible to change the model within the toolset before Code Sync is invoked,
however, this is not advised. The changed model will be saved when Code Sync is
invoked and used during the Code Sync comparison. This can result in either a fatal
Code Sync error (if the model changed outside of designated areas), or the model
changes may be interpreted as "old code" in the Code Sync Summary dialog (this may
be confusing while reconciling changes, and result in the model changes being
overwritten). It is recommended not to change the model before invoking Code Sync.

It is possible to change the model within the toolset after Code Sync is invoked, while
the Code Sync Summary dialog is visible; this is also not advised. Code Sync
reconciliation is based on the unchanged model, and changes to the model may result
in reconciliation results getting lost. You may need to view the model while
reconciling Code Sync changes, however, you should not modify the model until the
Code Sync Summary dialog has been dismissed (by cancel or accept).

Error: Cannot code-sync; file I/O error on: <filename>

This occurs if the code generator cannot open the expected file during Code Sync, for
example, if you have started a Code Sync without a previous code generation.
Common Code Sync Errors 369

Error: Cannot code-sync <filename> beyond line <lineNum>

This usually indicates that:

� you have modified the code outside the Code Sync identification tags, or

� you have changed the model (for example, changed the CommonPreface) since it
was last generated.

Error: Could not find trailing CodeSync tag for
[<LocationSpecifier>]

This usually indicates that a starting Code Sync tag does not have a corresponding
trailing CodeSync tag, for example, if the trailing tag has been accidentally modified.
The Location Specifier (location of modified code, such as ImplementationPreface)
and the format of the entire line (including spacing) must match exactly in the two
Code Sync tags.

Warning: Use tabs for indenting code-sync regions

The code-generator indents many code-sync regions by one or more tab stops. This
warning will appear in the Build Log if, after modification, any line in a code-sync
region (including newly-added lines of code) is missing this indentation or is
indented with spaces. The region will appear (and continue to reappear) in the Code
Sync Summary even if there are no changes to the region. The white-space difference
can be resolved by properly indenting the region manually, or by generating the code.

It is recommended that you use an editor which indents with tabs. Furthermore,
while the tab-width rarely affects the appearance of the generated code, the
code-generator assumes a tab-width of eight characters.
370 Chapter 22 - Using Code Sync to Change Generated Code

23Generating
Documentation
Contents

This chapter is organized as follows:

� Linking External Files to Model Elements on page 371
� Generate Documentation Dialog on page 372
� Inserting a Diagram into an MS Word Document on page 373
� Using OLE on page 374

Linking External Files to Model Elements

All model elements can have external files linked to them for maintaining
documentation or linking requirements.

To link an external file to a model element:

1 Right-click on the model element in the model browser or in a diagram.

2 Select Open Specification from the selected item's menu.

3 Click on the Files tab in the Specification Dialog.

4 Right-click under the Filename header.

5 Select Insert File from the menu.

6 Use the File Browser to select the appropriate file to link to.

7 Click Open.

8 Close the Specification Dialog by clicking OK.

The link is stored in the model as a relative path. If the file is moved, or the model is
relocated, the link may be broken. You can undo and redo the action of adding a link.
371

Generate Documentation Dialog

The Generate Documentation dialog shows options for creating documentation from
the model.

Figure 94 Generate Documentation dialog

Report File Name

The name for the report file to be created. A File Browser can be used to select the
location by selecting the Browse... button.

Report Title

Give the report a title.

Report Type

Select the type of document to generate from the following options:

� Logical View Report - generates documentation only for elements in the logical
view.

� Component View Report - generates documentation only for elements in the
component view
372 Chapter 23 - Generating Documentation

Attributes and Operations Syntax

� Use Unified Modeling Language Syntax

� Use C++ Syntax

Report Options

� Include Operations - includes all class operations in the document.

� Include Attributes - includes all class attributes in the document.

� Sort - specifies that the reports appear in alphabetical order

� Public Operations and Attributes Only - includes only publicly visible class
operations and attributes in the document.

� Include Documentation - includes user-specified documentation entered in
specification dialogs in the document.

Generate Selected

Generate documentation for only selected model elements.

Generate

Generate documentation for all model elements.

Cancel

Cancel the operation.

Inserting a Diagram into an MS Word Document

There are two ways to print a diagram into a Microsoft Word document.

Option A

1 Click on the diagram you want to put into your document and select Edit >Select
All.

2 Copy the diagram to the clipboard using Edit > Copy.

3 Position the cursor in the word document where you want the diagram to be
placed and select Edit > Paste.
Inserting a Diagram into an MS Word Document 373

Option B

1 Click on the diagram you want to put into your document and select Edit >Select
All.

2 From the File > Print and then click Options.

3 Check Print to file.

The Print to File dialog appears.

4 Choose the directory in which you want to save the file.

5 Type a file name in the File name: field.

6 Click Save.

7 Open Word.

8 Select Insert > Picture > From File...

9 Select the file you just saved.

Note: You won't see the actual diagram in your Word document; only a postscript
reference is displayed.

Clicking the Print icon displays the Print Specifications dialog.

Using OLE

OLE is an object-oriented technology, designed for creating, managing and accessing
object-based components across process and machine boundaries.

You can create a link between a diagram in your model (the source) and another
application such as Microsoft Word. By creating this link, any changes you make to
your diagrams are automatically reflected in the document containing the link (the
container).

Creating a link

After creating and saving your model, copy the contents of a diagram, either by CTRL
+ C or Edit > Copy.

Note: If the model is new, it must first be saved for this operation to work.
374 Chapter 23 - Generating Documentation

Inserting a link

In an OLE container, for example a Microsoft Word document:

1 Select Edit > Paste Special.

2 Click the Picture option and Paste Link.

3 Click OK.

If you select just Paste you will get a meta file picture inserted into the container. This
meta file is not navigable and becomes native data in the container.

Navigating

To navigate from your OLE container (for example, your Microsoft Word document)
to the application, use the steps for opening OLE linked objects, typically, double-click
or Open from the Edit Object menu. The application opens the diagram independent of
the Load of Units setting.

Note: Moving your linked files may break the link. It does not, however, affect the
object in the container. If the link breaks, you can manually reestablish it from most
OLE containers with the Change Source option from the Links dialog.

Editing Diagrams

Unless the unit is read-only, you can edit your linked (source) diagram. When you
modify your diagram, the link is updated to reflect the new state. Depending on the
application containing the diagram, you may have to do a manual update to see your
changes. Refer to your application manual for details.
Using OLE 375

24Customizing the Toolset
Contents

This chapter is organized as follows:

� Stereotypes on page 377
� Toolset Options on page 384
� Add-Ins on page 394
� Managing Model Properties on page 395

Stereotypes

This topic describes the following:

� Creating a Custom Framework for Rose RealTime Models on page 377
� Creating a New Stereotype for the Current Model on page 378
� Creating a New Stereotype Configuration File on page 379
� Creating a New Stereotype for all Rose RealTime Models on page 379
� Creating Stereotypes for Classes on page 381
� Adding Stereotypes to the Diagram Toolbox on page 381
� Creating Stereotype Icons on page 382
� Creating a Diagram Icon on page 382
� Controlling the Display of Stereotypes on page 383

Creating a Custom Framework for Rose RealTime Models

You can create a custom framework from a Rose RealTime model. The contents of the
framework define the template to be used when creating new models. For example, if
several models with similar characteristics are required, you can create a framework
with these characteristics to be used as a template.
377

To create a custom framework:

1 If you do not have a model file that defines the contents of the framework, create a
framework model. You create the framework model in the same way as you would
create any other model in Rational Rose Realtime. See Building Basics on page 295.

2 Optionally, you may create the following files for the model:

❑ a documentation file (.TXT) that contains a description of the framework.

❑ an icon file (.ICO) that contains the icon to be used as a symbol for the new
framework in the Create New Model dialog.

3 Select File > New. The Create New Model dialog appears.

4 Select New Framework to enter the Framework wizard.

5 When prompted by the wizard, enter the following information:

❑ Framework Name - this name will appear as a label for your framework in the
Create New Model dialog.

❑ Model file - the name of your framework model file (.rtmdl)

❑ Documentation file (optional)

❑ Icon file, if created (optional)

6 Follow the prompts and click Finish to exit the wizard.

Creating a New Stereotype for the Current Model

You can create a new stereotype by typing a new name in the Stereotype field of a
model element’s specification. The new stereotype is then available in the Stereotype
field for all model elements of that type (which are assigned the same language) in the
current model.

If you want the stereotype to be available in all Rose RealTime models, see Creating a
New Stereotype Configuration File on page 379. If you already have a stereotype
configuration file, skip to Creating a New Stereotype for all Rose RealTime Models on
page 379.
378 Chapter 24 - Customizing the Toolset

Creating a New Stereotype Configuration File

The stereotypes in Rose RealTime must be defined in a stereotype configuration file.
Rose RealTime is delivered with a default stereotype configuration file, called
DefaultStereotypes.ini. If possible, add your stereotypes to that file. If you do not
want to use that file, follow these steps to create a new stereotype configuration file:

1 Quit Rose RealTime.

2 Create a text file (called, for example, MyStereotypes.ini) using Notepad or
another text editor, and save it in the Rose RealTime installation folder.

3 Edit the new stereotype configuration file. For information on how to create a new
stereotype and add it to a stereotype configuration file, see “Creating a New
Stereotype for all Rose RealTime Models” on page 379.

4 Run the Windows Registry Editor (regedit.exe) by selecting Run from the Start
menu. Type “regedit” and click OK.

5 Locate and select the section entitled
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose
RealTime\6.3\StereotypeCfgFiles] in the registry list.

6 On the Edit menu, select New and click String Value. Give the new registry key the
name “file#”, where # is the next consecutive number (1, 2, or 3, etc.).

7 Double-click the new key, and enter the name of your configuration file (for
example, MyStereotypes.ini).

Close the registry. Next time you open a model in Rose RealTime, the stereotypes
defined in your new stereotype configuration file will be available in the model.

Creating a New Stereotype for all Rose RealTime Models

You can quickly create a new stereotype by typing a new name in the Stereotype field
of a model element’s specification. The new stereotype is then available in the
Stereotype field for all model elements of that type and language, but only in the
current model.

To create a new stereotype and make it available in all models in Rose
RealTime:

1 Quit Rose RealTime.

2 Optionally, create icons for the stereotype to be used in diagrams, lists, and
diagram toolboxes. See “Controlling the Display of Stereotypes” on page 383.
Stereotypes 379

3 Open the default stereotype configuration file, DefaultStereotypes.ini in
%ROSERT_HOME%.

4 In the stereotype configuration file, add a line for the new stereotype in the section
called [Stereotyped Items]. For example, to add the class stereotype Controller to
an existing configuration file, add a corresponding line as follows:

[Stereotype Items]

Class:Model

Class:View

Class:Controller

5 Create a section for the new stereotype, named exactly as the line you added in the
[Stereotype Items] section, for example:

[Class:Controller]

Item=Class

Stereotype=Controller

6 If you have created a diagram icon for the stereotype, specify the name of that file
(Metafile). Note that you can use “&” instead of the folder of the stereotype
configuration file. For example:

Metafile=&MyStereotypeIconscontroller.emf

7 If you want to create a diagram toolbox button for this stereotype, specify the
name of the file where you created the corresponding small toolbox icon
(SmallPaletteImages) and the location of the icon in that file (SmallPaletteIndex).
You can also specify the name of the file where the corresponding large toolbox
icon is defined (MediumPaletteImages) and the location of the icon in that file
(MediumPaletteIndex). For example:

SmallPaletteImages=&\MyStereotypeIcons\small_palette_icons.bmp

SmallPaletteIndex=3

MediumPaletteImages=&\MyStereotypeIcons\medium_palette_icons.bmp

MediumPaletteIndex=3

8 If you want to graphically display this stereotype in specification lists or in the
browser, specify the name of the file where you created its list icon (ListImages)
and the location of the icon in that file (ListIndex). For example:

ListImages=&\MyStereotypeIcons\list_icons.bmp

ListIndex=2
380 Chapter 24 - Customizing the Toolset

9 Add any other setting needed to define the new stereotype. For a list of all
available settings, information on the meaning of each setting, the possible values,
and the default values, please refer to the “Stereotype Configuration File” topic in
the online help. Note, however, that you only have to include settings for which
you want to give other values than their default values.

10 Save your changes to the stereotype configuration file.

11 Run Rose RealTime. View the Log tab to ensure there were no problems loading
your icons.

12 If you created a diagram toolbox icon for the new stereotype, and want to add it as
a button on a diagram toolbox, please see “Adding Stereotypes to the Diagram
Toolbox” on page 381.

The new stereotype is now available in Rose RealTime. For information on how to
control the display of the new stereotype in diagrams and in the browser, see
“Controlling the Display of Stereotypes” on page 383

For detailed samples on user-defined stereotypes, please refer to
http://www.rational.com/products/rosert/

Creating Stereotypes for Classes

To create a stereotype for a class:

1 Double-click on the class in the model browser to open the Class Specification.

2 Select the General tab.

3 In the Stereotype field, type the name of the stereotype for the class, or select it
from the pull-down menu beside the field.

You can use any label for the stereotype. It does not have to be one of the built-in
stereotype labels.

4 Click OK to close the specification dialog.

Adding Stereotypes to the Diagram Toolbox

To make a stereotype available as a button on a diagram toolbox:

1 The stereotype and a corresponding diagram toolbox icon have to be created and
made available in Rational Rose RealTime. For information on how to do that, see
Creating a New Stereotype for all Rose RealTime Models on page 379.

2 Select Tools > Options, to open the Options Dialog.
Stereotypes 381

http://www.rational.com/products/rosert/

3 Select the Toolbars tab. Under Customize Toolbars, click on the diagram type you
want to change the toolbar for.
or in an open diagram, right-click in the diagram toolbar and click Customize.

The Customize Toolbar dialog is displayed. The left-most column provides the list
of available icons.

4 Select the icon you want to appear on the diagram toolbar and click Add.

Creating Stereotype Icons

For each stereotype, four different icons may be supplied:

� A diagram icon (to customize the appearance of model elements with this
stereotype in diagrams).

� A small and a large diagram toolbox icon (to be able to add a button for this
stereotype to the diagram toolbox). Two different sizes correspond to the Use
Large Buttons option on the Toolbars tab of the Options dialog.

� A list view icon (to graphically display the stereotype for model elements in
specification lists and in the browser).

Creating a Diagram Icon

Diagram icons have to be in Windows Metafile format (.wmf) or Enhanced Metafile
format (.emf) . You can download drawing packages that support these formats at
various shareware sites on the Internet. Enhanced Metafiles are recommended if
possible.

1 Using a vector-based (as opposed to bitmap) drawing application, draw your icon
the size you want it to appear in Rose RealTime. It is best not to use a drawing
application that forces the icon to fit a certain area, such as a page, as is the case
with PowerPoint.

2 Consider the following: Make sure that the scaling factor is set to 100% when
deciding on the icon’s size. Use colors if you like. If you want the name of the
model element to appear within the stereotype icon, leave some blank space for it.

Select the icon and export it in either the Windows Metafile format or the Enhanced
Metafile format. If you use CorelDraw, make sure the Include header option is checked
if you save your selection as a Windows Metafile.
382 Chapter 24 - Customizing the Toolset

Controlling the Display of Stereotypes

As stereotypes are refined model element types, it is important to be able to
distinguish them in the model. The stereotype can be indicated in several different
ways in the browser and in diagrams. See “Stereotype Display” on page 389 for more
information.

Controlling Stereotype Display in the Browser

To control how stereotypes are displayed in the browser:

1 On the Tools menu, click Options, and click the Browser tab.

2 Clicking Show Stereotype Name displays the stereotype name and icon of stereotypes
in the browser. Also clicking Hide stereotype name if there is an icon for it hides the
name and displays only the icon.

Controlling How Existing Stereotypes Display in a Diagram

To control how existing stereotypes are displayed in a diagram:

1 Select the model element in the diagram.

2 Click Diagram Object Properties from the Edit menu, or use the context menu.

3 To control the display of relationship stereotypes, use the Stereotype Label option.

4 To control the display of, for example, a class, a device, or a component, click
Stereotype Display and select the appropriate option from the displayed menu.

5 To control the display of operation and attribute stereotypes in the class
compartment, use the Show compartment stereotypes option.

Controlling the Display of Stereotypes Added to Diagrams

To control how stereotypes that are added to diagrams hereafter are displayed:

1 Select Tools > Options > Diagram tab.

2 To control the display of relationship stereotypes, use the Show labels on relations
and associations option under Stereotype display.

3 To control the display of, for example, class, device, or component stereotypes, use
the None, Label, Decoration and Label, Label Only or Icon options under Stereotype
display.
Stereotypes 383

4 To control the display of operation and attribute stereotypes in class
compartments, use the Show stereotypes option under Compartments.

Note: For user-defined stereotypes, the stereotype display may be controlled by the
settings in the stereotype configuration file where the stereotype is defined. Any such
settings override the settings on the Diagram tab of the Options dialog.

Toolset Options

This section describes the Options Dialog, Customizing the Diagram Toolbox, and the
Customize Toolbar Dialog.

Options Dialog

The Options dialog provides control over many general properties of the model.

The Options dialog contains the following tabs: General Tab, File tab, Font/Color Tab,
Diagram Tab, Filtering Tab, Compartments Tab, Browser Tab, Toolbars Tab, Editor
Tab, and Language/Environment Tab.

General Tab

At Startup options

Reload last workspace

Automatically loads the last workspace (and corresponding model) that were in use
when the tool was last shut down.

Show splash screen

Toggles whether the splash screen at appears at startup. The default is set to true.

Emulate REI

When enabled, Rose RealTime emulates Rose 2000 from a COM server perspective at
startup. This lets you use Rose 2000 Add-Ins with Rose RealTime. Rose 2000 and Rose
RealTime are both REI servers. Which one is used to serve a request depends on the
specific launched/shutdown sequence of Rose 2000 and Rose RealTime instances that
occurred on the server system. Regardless of whether it emulates REI, Rose RealTime
always serves as an RRTEI server.
384 Chapter 24 - Customizing the Toolset

The option can be overridden by the following command line arguments:

� -emulateREI: Emulates REI, regardless of the default specified in the option dialog.

� -noEmulateREI: Does NOT emulate REI, regardless of the default specified in the
option dialog.

Picklists

Show Classes

The ShowClassesInPickLists setting works with selection lists to provide a defined set
of types to choose from. The picklists are used to define such things as return types
and argument types. You can also change this setting directly in the rose.ini file.

Error Log

Log size

Sets the number of lines in the error log.

Log warnings

Enables warnings to be sent to the log. The default is set to true.

Log commands

Sends a description of executed commands to the log. The default is set to true.

Undo

Undo level

Sets the number of undo levels supported. A higher number consumes more memory.

Technical Support

Email address

Sets the email address to which error files are automatically sent if the tool crashes.
These error files contain only internal callstack information from the tool. They do not
contain any model-specific information.

Test button

Tests the given email address to ensure its validity.
Toolset Options 385

File tab

Save options

Use Temporary File

Enable this option to write to a temporary file whose name is derived from the
destination file. Once the temporary file has been completely written, the temporary
file is copied or renamed to the destination file.

Create Backup File

Enable this option to create a backup file.

If Create Backup Files is true and Use Temporary Files is false, and the destination file
already exists, the destination file is copied or renamed to the backup file before the
Petal file is written to the destination file.

If Create Backup Files and Use Temporary Files are both true, then once the
temporary file has been written successfully, the original destination file, if it exists, is
copied or renamed to the backup file. The temporary file is then copied or renamed to
the destination file.

Keep Two Backup Files

Enables Rational Rose to maintain two backup files: the most recent and the baseline
copy. If Create Backup Files is true when writing a backup file, the most-recent
generated name for the backup file is deleted. The newly created backup file is
assigned the most-recent generated name for backup files. The oldest copy of the file
is saved and remains untouched. The oldest version of the file is retained as a baseline
copy.

If a backup file does not already exist, a backup file is created and assigned the
most-recent generated name.

Update by Copy

Enable this option to manipulate files by copying. The temporary file is copied to the
destination and the destination is copied to the backup. If this option is false,
manipulation of the files is done by renaming.

Save Settings on Exit

Use this command to save the arrangement of diagram and specification windows
and icons when you exit. The next time you open the model, the arrangement that
was last saved is displayed.
386 Chapter 24 - Customizing the Toolset

Use spaces in generated file names

Toggles whether spaces are removed from generated filenames.

Always use generated file names

Use this option to always use generated file names, rather than being queried every
time.

Load

When set, the toolset does not query you for missing scratch pad files.

Font/Color Tab

Default font

Invokes the Font dialog, through which you can specify font characteristics.

Documentation window font

Invokes the Font Dialog, through which you can specify font characteristics to be
applied to the documentation window.

Code font

Specify a default font for code boxes.

Line Color...

Changes the color of any lines used on diagrams.

Fill Color...

Changes the color of any element fills used on diagrams.

Background color...

Changes the background color for diagrams.

Use Fill Color

You must select the checkbox to see the icons displayed in the colors set in the Line or
Fill Color selection. (If it is not checked, a color is defined, but not applied.)
Toolset Options 387

Use background color

Toggles whether to use background color. If not checked, system defaults are used;
otherwise, the color specified in Background color... is used.

Diagram Tab

Display

Unresolved Adornments

Enables adornment of icons representing components not currently loaded in the
model. The unresolved view adornment is a small octagon containing the letter “M”
with a slash through it.

Collaboration Numbering

Enables the display of message sequence numbers on Collaboration diagrams.

Sequence Numbering

Enables the display of message sequence numbers on Sequence diagrams.

Focus Of Control

The DefaultViewFocusOfControl setting is an advanced notational technique that
enhances sequence diagrams. Focus of Control is portrayed through narrow
rectangles that adorn the vertical lines that descend from each object. You can also
change this setting (DefaultViewFocusOfControl) directly in the rose.ini file. The
DefaultViewFocusOfControl default setting is Yes.

Default line attributes...

Opens the Line Attributes dialog, which let you define line styles, routing, smoothing,
and intersecting links.

� Line style - lets you decide whether line styles are oblique or rectilinear. Note that
if you choose Rectilinear, Smoothing is grayed out.

� Routing - lets you decide whether routing is normal, closest distance, or avoids
obstructions. Note that if you choose Closest distance, Smoothing is grayed out.

� Smoothing - lets you choose how smooth lines are.

� Intersecting links - let you choose whether to jump links and specify the type of
jump. As well, you can choose whether to reverse jump links.
388 Chapter 24 - Customizing the Toolset

Miscellaneous

Double-click to diagram

The DoubleClick setting specifies what action will occur when you double click on an
icon representing a logical package or component package. A checkmark indicates a
main diagram will be displayed when you double click on the icon. An unchecked
box indicates the specification of a logical or component package will be displayed
when you double click on the icon.

Automatic Resizing

Enables the automatic resizing of icons to accommodate text.

Class Name Completion

Activates a popup box listing all current class names. You can select one of these
names by double-clicking or by hitting the Enter or Tab key when you highlight the
correct name.

Auto-adjust transitions

Enables auto-adjusting transitions on creation. The default is set to true.

Show Diagram Browsers

If not enabled, diagram browsers are not created the first time a diagram is opened.

Note: Once a diagram is opened, its state is saved in the workspace, so this option has
no effect.

Stereotype Display

Use the options to control the display of stereotypes in diagrams. The selection is
applied to new model elements (except relationships) that are added to diagrams
hereafter.

� None - The stereotype is not indicated for new model elements.

� Label - The stereotype name is displayed for new model elements. The stereotype
name appears inside angle brackets, << >>.

� Decoration and Label - The stereotype icon (if it exists) is displayed as a decoration
in the upper right hand corner of the view. The label is displayed just under the
decoration centered above the name.

� Decoration Only - The stereotype icon (if it exists) is displayed as a decoration in
the upper right hand corner of the view. No label is displayed.
Toolset Options 389

� Icon - The stereotype icon (if it exists) is displayed for new model elements.

� Show labels on relations - enables the display of stereotype labels on new
relationships. The stereotype names appear inside angle brackets, << >>. The
selection is applied to new relationships that are added to diagrams.

If you want to display/hide the stereotype name of a previously created relationship
in a specific diagram, select the relationship in that diagram. Select Edit > Diagram
Object Properties > Stereotype Display. On the displayed menu, select the appropriate
option. You can also use the same option on the shortcut menus.

If you want to change the display of previously created stereotypes in a specific
diagram, select the stereotype in that diagram. Select Edit > Diagram Object Properties >
Stereotype Display. On the displayed menu, select the appropriate option. You can also
use the same options on the popup menus.

Grid

Grid Size

Use this command to specify the grid pitch in pixels. The value that you enter in the
Grid Size edit box is saved to the GridSizeX and Y settings.

Snap to Grid

A check mark in the checkbox indicates that new or moved icons will align with a grid
whose pitch is specified by the grid size.

UML Options

Aggregation whole to part

Controls which way an aggregation can be drawn. Aggregates can be drawn whole
(client) to part (supplier) or vice versa. The default is set to true.

Classifier name on roles

Lets you turn off the classifier name portion of a role label.

Protocol name on ports

Lets you turn off the classifier name portion on ports.

Base UML notation

Converts the structure diagram so that it uses only UML base notation.
390 Chapter 24 - Customizing the Toolset

Target Observability

Animation timeout

Set a delay for displaying animation of events (state changes) in the state monitor. The
delay value is in 1/100ths of a second, i.e., a value of 100 will delay event animation
for 1 second. This provides the ability to slow down the animation of a model to make
state changes more observable.

Filtering Tab

Class Diagram

Use these options to filter information on the class diagram.

State Diagram

Use these options to filter information on the state diagram.

Structure/Collaboration Diagrams

Use these options to filter information on Structure/Collaboration diagrams.

Compartments Tab

Class

Use these options to display/hide information in the compartments of a class on the
class diagram.

Capsule

Use these options to display/hide information in the compartments of a class on the
class diagram.

Protocol

Use these options to display/hide information in the compartments of a class on the
class diagram.
Toolset Options 391

Browser Tab

Stereotypes

Show stereotype names

Use this option to enable or disable viewing of stereotype names of model elements in
the browser.

To display only stereotype icons (if any), select the Hide Stereotype name if there is an icon
for it option.

To display both stereotype icons (if any) and stereotype names, clear the Hide
Stereotype name if there is an icon for it option.

Hide stereotype name if there is an icon for it

The StereotypeBitmapsOnly setting enables or disables stereotype icons, but not
stereotype names, of model elements in the browser. This setting can also be changed
in the rose.ini file.

Class and package name display

Show related components

Use this option to toggle whether to decorate referenced components in the browser.

Editor Tab

External editor

Specify an external editor to be launched when editing detailed code.

Note: If you use an external editor that requires a console terminal, you must specify
an application, such as xterm, that provides the terminal, followed by the editor
command itself.

Example on Solaris: /usr/openwin/bin/xterm -e /bin/vi

Example on HPUX: /usr/bin/X11/xterm -e /bin/vi
392 Chapter 24 - Customizing the Toolset

Toolbars Tab

The standard toolbar and diagram toolbox properties can be set on the Toolbar tab.
The choices are grouped as follows:

� Standard toolbar

❑ Show Standard Toolbar - toggles whether the standard toolbar is visible.

❑ Enable docking - toggles whether to allow the toolbar to be docked.

❑ Use large buttons - toggles whether to display small buttons or large buttons on
the toolbar.

� Diagram toolbar

❑ Show Diagram toolbar - toggles whether the diagram toolbox is visible.

❑ Enable docking - toggles whether to allow the toolbox to be docked.

❑ Lock selection - toggles whether to lock the current toolbox selections.

❑ Use large buttons - toggles whether to display small buttons or large buttons on
the toolbox.

❑ Auto show - toggle whether the toolbox is displayed for read-only diagrams.

� Customize toolbars - provides a list of toolbars whose layout can be customized.
Click on a toolbar button to bring up the Customize Toolbar Dialog for that
particular toolbar.

Language/Environment Tab

Default Language

Select the language from the available installed language add-ins. When a new class is
created, this selection determines which:

� language property tab is displayed for classes
� set of fundamental types is used for picklists
� set of predefined stereotypes is used

When a new component is created, the language is set using this default.

If you do not have any language add-ins, the default language is set to Analysis,
which is equivalent to having no default language. If this is the case, analysis types
are shown in the picklists and no language property tabs are available.

Default Environment

Sets the default environment on new components.
Toolset Options 393

Customizing the Diagram Toolbox

You can access the Customize Toolbar dialog using any of the following:

� Right click anywhere on the toolbox and then click Customize from the shortcut
menu.

� Double click anywhere on the toolbox not occupied by a button.

� From the View menu, point to Toolbars and click Configure.

With the exception of the Separator button, only one instance of any tool can be placed
on the toolbox. Since multiple instances of the Separator button are allowed on the
toolbox, this button is always available regardless of the number of times it is added
to the Toolbox buttons list.

Customize Toolbar Dialog

The customize toolbar dialog (opened from the Options Dialog), allows you to change
the arrangement of buttons on various toolbars.

Toolbar Button List

The Toolbar buttons list contains the ordered list of all the buttons that will appear on
the diagram toolbox. Once buttons are moved onto this list they can be moved to any
position.

Add-Ins

Add-In Manager Dialog

The Add-In Manager dialog is used to view, activate or deactivate Rose RealTime
Add-Ins.

The dialog shows the add-ins currently loaded, with check boxes beside the add-ins
showing which ones are currently activated.
394 Chapter 24 - Customizing the Toolset

Managing Model Properties

Each Rational Rose RealTime model has its own default properties. These default
properties are defined in a property file and are grouped into sets based on:

� Type of model element - Class, component, relation, attributes, operations, etc -
the objects that make up the model

� Tool - Corresponds to a tab in the property specification; a tool can be a
programming language tool, such as Java or C++; a database tool, such as Oracle8;
a user-defined add-in to Rational Rose, or some other tool.

� Properties - The actual properties and property values defined in the set; these
must be appropriate to the model element and tool for which they are being
defined.

Note: You can define multiple sets of default properties for the same tool and model
element. For example, you might want one set of properties for a class with a
stereotype of Actor and a different set of properties for a class with a stereotype of
Interface. Both of these sets are still considered default properties in that they are
predefined for the model. Defining multiple sets saves you work by minimizing the
need to override properties as you go.

Displaying or Modifying the Values of Model Properties

1 Display a diagram that contains an icon representing the model element.

2 Select the model element in the diagram.

3 Open the model element's specification. To do so, double-click on an element in a
diagram, or click on the element and select Browse > Specification.

4 Select the Code Generation tab. The model property set attached to the element is
displayed in the Set field. The model properties related to the model element are
displayed in the Model Properties List.

5 To edit a model property value, select it and click on it a second time. This places
the model property in edit mode.

6 Select your choice from the drop down menu. If no drop down menu is available,
you may type in your changes.

7 To complete the edit, click outside the edit box.

8 Click OK or Apply to commit the changes to the item.
Managing Model Properties 395

Model properties that are specified explicitly by the item, and hence override the
attached model property set value, are drawn in normal text. Model properties that
have been changed since the last apply are indicated by an asterisk in the left column.

Removing an Overriding Item Level Model Property

Editing a model property automatically makes it an overriding item-level model
property.

To remove the overriding value from the item and once again inherit from the
attached model property set:

1 Select one or more model properties and click Default.

2 Click OK or Apply to commit the changes to the item.

Making a Model Property Item Specific

1 Select the model property(s) and click Override.

2 Click OK or Apply to commit the changes to the item.

Reinstalling the State and Value of the Last Committed Change

Select the model property(s) and click Revert.

Attaching a Model Property Set to a Single Element or a Collection of
Elements

1 Display a diagram that contains an icon representing a model element.

2 Select the model element in the diagram.

3 Open the model element's specification. To do so, double-click on an item in a
diagram, select a diagram item and execute the Specification command in the
Browse menu, or select the specification from the shortcut menu.

4 Select the Code Generation tab. The model property set attached to the item is
displayed in the Set field. The model properties related to the model item are
displayed in the Model Properties List.

5 Select a different model property set from the Set combo box.

6 Commits are made as you move from page to page. Also, as you move from set to
set or type to type within the set-level model property page, any changes you have
made to the currently displayed set are committed.
396 Chapter 24 - Customizing the Toolset

Displaying or Editing a Specific Model Property Set

1 Select the element from the diagram. If you are selecting a collection of elements,
ensure that all the elements are of the same type. Selecting different model
elements will result in a warning.

2 From the Tools menu, select Model Properties > Edit. The code generator displays the
Code Generation tab of the Options dialog. The kind of model item chosen is
displayed in the Type field.

3 Select the model property set name in the Set combo box. All the model properties
and values will be displayed.

4 Modify model property set values by following instructions to edit a specific
model property set, as listed above.

5 Click Apply or OK to accept your changes.

Note: Changes made to a model property are accepted whenever you activate ANY
control in the editor. For example, after editing a model property, you may select
another model property to both accept the changes to the original model property and
begin editing the newly selected model property.

Creating a New Model Property Set

1 Select a model property set from the Set combo box to base your new model
property set off of.

2 Click Clone.

3 Type the new model property set name in the dialog and click OK. A new model
property set is created as a copy of the current model property set.

4 Modify model property set values by following instructions to edit a specific
model property set, as listed above.

Deleting a Model Property Set

1 Select a model property set from the Set combo box.

2 Click Remove. The model property set is deleted from the model. An attempt will
be made to find all the elements in the model that reference that set and change
those elements to reference the default model property set.
Managing Model Properties 397

25Submitting Problem
Reports, Feature
Requests and Support
Requests
Contents

This chapter is organized as follows:

� Submitting Problem Reports on page 399
� Submitting Feature Requests on page 400
� Submitting Support Requests on page 401

This section describes how to submit problem reports, feature requests and support
requests to Rational Technical Support.

Submitting Problem Reports

With Rational Rose RealTime, you can email problem reports to the Rational Software
Technical Support department that services your location. When you email a problem
report directly from the Rose RealTime application, a wizard guides you through the
process, ensuring that you provide the correct information to the Rational Technical
Support team. This information includes contact and location information, and a
detailed description of the problem that you are reporting.

To submit a problem report:

1 From the Help menu, click Email Technical Support.

2 A submenu appears, providing you with three options.

3 Click Problem Report.

4 The General Information dialog appears.

5 Type your contact and location information in the text areas provided and click
Next.

6 The Problem Report - Additional Information dialog appears.

7 In the Defect Title text area, type a detailed name for the problem that your are
reporting.

8 Select the type of problem that you are reporting from the appropriate list boxes.
399

9 Describe the problem, using the categories provided in the Details area.

10 Click Next.

11 The Email Summary dialog appears.

12 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
choosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the e-mail address.

13 If you want to save or print a copy of the email, click the appropriate button.

14 Click the Send Email button to send your email.

Submitting Feature Requests

With Rational Rose RealTime, you can email feature requests to the Rational Software
Technical Support department that services your location. When you email a feature
request directly from the Rose RealTime application, a wizard guides your through
the process, ensuring that you provide the correct information to the Rational
Software Technical Support department. This information includes contact and
location information, and a detailed description of the feature that your are
requesting.

To submit a feature request:

1 From the Help menu, click Email Technical Support.

A submenu appears, providing you with three options.

2 Click Feature Request.

The General Information dialog appears.

3 Type your contact and location information in the text areas provided and click
Next.

The Feature Request - Additional Information dialog appears.

4 In the Request Title text area, type a detailed name for the Feature that you are
requesting.

5 Select the level of urgency for the feature that you are requesting.

6 Describe the feature, using the categories provided in the Details area.
400 Chapter 25 - Submitting Problem Reports, Feature Requests and Support Requests

7 Click Next.

The Email Summary dialog appears.

8 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
choosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the e-mail address.

9 If you want to save or print a copy of the email, click the appropriate button.

10 Click Send Email to send your email.

Submitting Support Requests

With Rational Rose RealTime, you can email Support requests to the Rational
Software Technical Support department that services your location. When you email a
Support request directly from the Rose RealTime application, a wizard guides you
through the process, ensuring that you provide the correct information to Rational
Software Technical Support department. This information includes contact and
location information, and a detailed description of the support request that you are
submitting.

To submit a support request:

1 From the Help menu, click Email Technical Support.

A submenu appears, providing you with three options.

2 Click Support Request.

The General Information dialog appears.

3 Type your contact and location information in the text areas provided and click
Next.

The Support Request - Additional Information dialog appears.

4 In the Request Title text area, type a detailed name for the request that you require.

5 Select the level of urgency for the question with which you need help.

6 Type your question in the Question text area.

7 Click Next.

The Email Summary dialog appears.
Submitting Support Requests 401

8 Ensure that the information that appears in the Email Summary dialog is accurate.

Note: The email information displayed in the Technical Support Email Address is
choosen based on the location information that you provided in the General
Information dialog. It is not recommended that you edit the e-mail address.

9 If you want to save or print a copy of the email, click the appropriate button.

10 Click Send Email to send your email.
402 Chapter 25 - Submitting Problem Reports, Feature Requests and Support Requests

AKeyboard Shortcuts
Contents

This chapter is organized as follows:

� General Shortcuts on page 403
� Scripting Shortcuts on page 405
� Debugging Shortcuts on page 406

General Shortcuts

Table 1 General desktop navigation

Table 2 General shortcuts

Key Name(s) Description

CTRL+TAB Move between windows

ALT or META + key Display the contents of a menu—in combination with the
underlined letter in the menu's name

ESCAPE Close an open menu

ESCAPE Cancel a dialog

ENTER Perform the action in a dialog

TAB or SHIFT+TAB Move between areas of a dialog

SPACE BAR Select an item in a dialog

Key Name(s) Description

CTRL + + Go Inside

CTRL + - Go Outside

CTRL + A Select All
403

CTRL + B Browse specification

CTRL + C Copy

CTRL + E Expand

CTRL + F Find — displays the Find dialog

CTRL + I Zoom in

CTRL + SHIFT + R Relocate

CTRL + L Change line attribute

CTRL + M Zoom to selected

CTRL + N New — opens the Create New Model dialog

CTRL + P Print

CTRL + O Open

CTRL + R Browse referenced items

CTRL + S Save

CTRL + T Browse capsule state diagram

CTRL + SHIFT + T Browse capsule structure diagram

CTRL + U Zoom out

CTRL + V Paste

CTRL + W Fit to window

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

DEL Delete

ESC Cancel

F1 Context-sensitive help

SHIFT + F1 Context help cursor

F2 Refresh

F3 Browse previous diagram

Key Name(s) Description
404 Appexdix A

Scripting Shortcuts

Table 3 Scripting Shortcuts

F4 Browse parent

CTRL + F6 Browse next pane

CTRL + SHIFT + F6 Browse previous pane

SHIFT + F6 Browse class diagram

SHIFT + F7 Browse use case diagram

F8 Edit inline

SHIFT + F8 Browse collaboration diagram

SHIFT + F9 Browse sequence diagram

SHIFT + F10 Browse component diagram

SHIFT + F11 Browse deployment diagram

F12 Options

Key Name(s) Description

Key Name(s): Description

UP ARROW Moves the insertion point up one line.

DOWN ARROW Moves the insertion point down one line.

LEFT ARROW Moves the insertion point left by one character position.

RIGHT ARROW Moves the insertion point right by one character position.

PAGE UP Moves the insertion point up by one window.

PAGE DOWN Moves the insertion point down by one window.

CTRL + PAGE UP Scrolls the insertion point left by one window.

CTRL + PAGE DOWN Scrolls the insertion point right by one window.

CTRL + LEFT ARROW Moves the insertion point to the start of the next word to the
left.

CTRL + RIGHT
ARROW

Moves the insertion point to the start of the next word to the
right.
Appendix A 405

Debugging Shortcuts

Table 4 Debugging Shortcuts

HOME Places the insertion point before the first character in the line.

END Places the insertion point after the last character in the line.

CTRL + HOME Places the insertion point before the first character in the
script.

CTRL + END Places the insertion point after the last character in the script.

Key Name(s): Description

Key Name(s): Description:

CTRL + A Select all

CTRL + C Copy

CTRL + F Find

CTRL + G Go to line

CTRL + H Replace

CTRL + N New script

CTRL + O Open script

CTRL + P Print

CTRL + SHIFT + P Edit path map

CTRL + R Replace

CTRL + V Paste

CTRL + X Cut

CTRL + Y Redo

CTRL + Z Undo

DEL Delete

ENTER or F2 Displays the Modify Variable dialog for the selected watch
variable, which enables you to modify the value of that
variable.
406 Appexdix A

Build and RTS Shortcuts

Table 5 Build and RTS Shortcuts

F5 Runs the current script.

SHIFT + F5 Stops script execution

CTRL + SHIFT + F5 Restarts the current script beginning with the line at which it
was stopped using the Break command.

F7 Compiles the current script without executing it

F6 If the watch pane is open, switches the insertion point
between the watch pane and the edit pane.

F9 Sets or removes a breakpoint on the line containing the
insertion point.

SHIFT + F9 Displays the Add Watch dialog, in which you can specify the
name of a BasicScript variable. The Script Editor then
displays the value of that variable, if any, in the watch pane
of its application window.

F10 Steps through the script code line by line without tracing into
called procedures.

F11 Steps through the script code line by line, tracing into called
procedures.

CTRL + BREAK Suspends execution of an executing script and places the
instruction pointer on the next line to be executed.

Key Name(s): Description:

Key Name(s): Description:

F5 Runs the selected component instances

SHIFT + F5 Build/Run

CTRL + SHIFT + F5 Restart

F7 Build

F10 Step
Appendix A 407

Specification Code Editor Shortcuts

Table 6 Specification Code Editor Shortcuts

Browser Shortcuts

Table 7 Browser Shortcuts

Key Name(s): Description:

CTRL + A Select all

CTRL + C Copy

CTRL + E Clear

CTRL + F Find

F3 Find again

CTRL + H Launch external editor

CTRL + I Import

CTRL + L Select line

CTRL + P Print

CTRL + R Replace

CTRL + T Font

F4 Replace again

CTRL + V Paste

CTRL + W Select word

CTRL + X Cut

CTRL + Z Undo

Key Name(s): Description:

CTRL + B Browse specifications

CTRL + D Delete from model

CTRL + SHIFT + G Get latest
408 Appexdix A

CTRL + SHIFT + I Check in

CTRL + SHIFT + O Check out

CTRL + SHIFT + U Undo checkout

Key Name(s): Description:
Appendix A 409

Index
A
A Workspace 136
About Rose RealTime dialog 33
Abstract 148
Actions tab 204
Activating the online help i
Active Component 301
active component 301
Active Component Instances list 301
active component, assigning an 296
actor

creating 149
specification 149

Actor specification 149
actor, creating an 149
Add commands 59
Add Capsule command 59
Add Class Dependencies wizard 173
Add Classes command 59
Add Components command 60
Add Interfaces command 60
Add Protocols command 60
Add Use Cases command 60
Add Watch command 66
Add-In Manager 67
Add-In Manager dialog 394
adding

capsule role 188
choice point 208
class dependencies 56, 301
code to model elements

model elements
adding code 118

color to an FOC 228
documentation to model elements 118
FOC 220
Focus of Control 220
icons to a diagram 74

instance to sequence diagram 215
states 207
stereotypes to Diagram Toolbox 381

Adding a capsule role 188
Adding a choice point 208
Adding a state 207
Adding and hiding classes, and filtering class

relationships 176
adding classes

class
adding 177

Adding code to model elements 118
Adding documentation to model elements 118
Adding Icons to a Diagram 74
Adding instances 215
Adding stereotypes to the diagram toolbox 381
Add-ins 394
Add-ins menu 67
Aggregating and decomposing state

machines 203
aggregating state machines 203
aggregation 165

association class 102
creating relationships 167
end types 100
multiplicity 101
scope 101
tool for creating 99
type descriptor 102
visibility 101

aggregation relationships, creating 167
Aggregation Specification 168
Aggregation Tool 99
Aggregation tool 157
analysis and design 27
Animation 326
Application window 31

browsers 32
diagrams 33
menu bar 33
Index 411

Toolbar 33
toolboxes 33

Application-specific command line
arguments 339

Assigning an active component 296
assigning an active component 296
association

changing direction 175
properties 161

association class 158
creating 167

association class, creating an 167
Association Properties 161
association relationships, creating 160
association role

association 196
multiplicity 196
stereotype 196

Association Role Specification 195
Association Role tool 194
Association specification 161
Association tool 157
association, changing the directionality of an 175
associations

creating relationships 160
asynchronous send message tool 220
attach console 323
attach target 323
Attach Target option 321
Attaching a Model Property Set to a Single Ele-

ment or a Collection of Elements 396
attribute

class scope 106
constant 106
creating required dependencies 106
dependencies 106
get method 107
implementation 106
initial value 105
name 104
private 106
protected 106
public 106
set method 107
tool for creating 103

type 105
visibility 106

Attribute Specification 244
Attribute Tool 103
attributes

changeability 246
copying 82
creating 82, 230
derived 246
initial value 245
moving 82
naming 292
specification 244
types 245
visibility 245

Attributes tab 81
attributes, creating new 230

B
Background Popup menu 75
basic mode

Windows CE 347
Browse menu 50
Browse menu operations 51
Browser Shortcuts 408
browser shortcuts 408
Browser tab 392
Browser, displaying the 72
Browsers 32, 70

RTS 323
browsers 32
browsers, multiple 73
Build and RTS Shortcuts 407
Build basics 295
build errors 120, 307

Capsule Role name same as Capsule
name 308

Check Environment Variables 309
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 311
Compiler not installed correctly 308
Ensure that Component has correct Make

types configured 309
412 Index

Error Linking Capsule (“error from
nmake”) 311

Linking 312
Linking wrong Services Library set 308
Missing Class Dependencies 308
Missing Header Files, Object Files, and

Libraries 310
name conflicts 310
Redefinition of basic types or multiple decla-

rations for X 307
Review your compiler flag settings 309
Source File Compilation 311
System does not understand the make

command 309
understanding 307
Unknown command, command not found,

the name specified is not
recognized 307

unknown compiler message stream 302
Unresolved symbol or undeclared

identifier 307
Windows NT Compilation Command Line

Limits 311
Build Errors tab 120, 302
Build log 119
build log 301
Build Log tab 119, 301
Build menu 54, 299
build results, reviewing 298
Build Settings dialog 301
build shortcuts 407
build, starting a 297
Building 294
building

add class dependencies 301
assigning an active component 296
basics 295
Component wizard 301
errors 302
Load command 300
log 301
models 293
rebuild 299
Reload command 300
Restart command 300

reviewing results 298
run 299
settings 301
Shutdown command 300
Start command 299
starting 297
Stop command 300
top-level capsule 295

Building and running models 293

C
call message 220
Calls command 66
capsule

attributes
attributes

capsule 256
definition of 20
naming 292
operations 254
ports 259
stereotype 253
use 20

capsule class
creating 250

Capsule class, creating a 250
capsule connectors 260
capsule diagram

undocking 251
Capsule diagrams 251
capsule diagrams, undocking 251
capsule instance

dragging into a trace 332
Capsule instance folder 325
capsule instance folder 325
Capsule Instance trace 328
Capsule instance trace 331
capsule instance trace 331
capsule instances, dragging into a trace 332
capsule role

adding 188
cardinality 189
class 188
Index 413

fixed 189
name 188
plug-in 189
specification 188
substitutable 189

Capsule Role Specification 188
Capsule Role tool 183
capsule role tool 194
capsule role, adding a 188
capsule roles 258
capsule roles, connecting ports together 190
Capsule specification 252
Capsule Specification—Attributes tab 256
Capsule Specification—Capsule Roles tab 258
Capsule Specification—Components tab 262
Capsule Specification—Connectors tab 260
Capsule Specification—Files tab 263
Capsule Specification—General tab 253
Capsule Specification—Operations tab 254
Capsule Specification—Ports tab 259
Capsule Specification—Relations tab 261
capsule state diagram

creating 197
capsule state machines, creating 197
capsule structure 179
capsule structure diagrams 22
capsule structure, creating 179
Capsules 20
capsules

components 262
relations 261

Capsules, protocols, ports, capsule state and
structure diagrams 20

cardinality 190
capsule role 189
port 185

Cascade command 68
change management 28
Change View Spread

Constant Radial 62
Decreasing Radial 62
Increasing Radial 62
Uniform 62

Change View Spread command 62
changing association direction 175

Changing the directionality of an association 175
Check environment variables 309
Check Model command 63
choice point

adding 208
conditions 205
specification 204

Choice Point Specification 204
Choice Point tool 202
choice point, adding a 208
class

attributes 238
capsule role 188
creating 229
creating stereotypes 381
hiding 177
multiplicity 234
naming 292
nested 240

class dependencies, missing 308
Class diagram editor, using the 152
Class diagram toolbox 155
Class diagram, creating a 151
class operations

implementation 237
private 237
protected 237
public 237
show inherited 237
stereotype 237
visibility 237

class scope
operation 111

class scope (attribute) 106
Class Specification 231
class specification

abstract 235
concurrency 235
formal arguments 236
implementation 233
language 232
private 233
protected 233
public 233
stereotype 232
414 Index

type 232
visibility 233

Class Specification content 231
Class Specification—Attributes tab 238
Class Specification—Components tab 242
Class Specification—Detail tab 234
Class Specification—Files tab 244
Class Specification—General tab 231
Class Specification—Nested tab 240
Class Specification—Operations tab 236
Class Specification—Relations tab 243
class, creating a 229
classes or diagrams, impact of moving on config-

uration management 280
classes, adding and hiding and filtering

relationships 176
classifier role

classifier 195
specification 194
stereotype 195

Classifier Role Specification 194
Classifier Role tool 194
Cloning a Sequence diagram 216
cloning a sequence diagram 216
code editor shortcuts 408
Code generation 192
code genertion 192
Code pane 116
code sync

designated areas 366
disabling 365
enabling 365
identification tags 365
limitations 364
overview 363
using 364

Code window 116
code, adding to model elements 118
collaboration diagram

creating 191
editor 191
toolbox 193

Collaboration diagram editor, using the 191
Collaboration diagram toolbox 193
collaboration diagram, creating a 191

Collaboration diagrams, opening 217
collaboration relationships 192
collaborations and sequences, relationship

between 192
Coloring Focus of Control 228
Column check boxes 333
command line

application-specific arguments 339
arguments 338
using 338

Command line arguments 338
command line arguments,

application-specific 339
command line parameter 337
common build errors, overview 307
Compartments tab 391
Compilation 18
Compilation Command Line Limits, Windows

NT 311
Compile a simple Hello World program 309
Compile fails on valid C++ models with VC++ 5.0

or VC++ 6.0 311
compiling

code externally 367
Component

step 56
component

assigning for building 296
dependencies 306
load 56
rebuild 55
reload 56
run 55
settings 56
shutdown 56
start execution 55
stereotype 304
stop execution 55
tool for creating 91

Component Dependencies 306
component diagram

dependency 282
editor 281
toolbox 283

Component diagram editor, using the 281
Index 415

Component diagram toolbox 283
component instance

attach console 323
attach target 323
creating 314
detach target 323
error call stack length 343
load 322
operation mode 341
parameters 341
reload 322
restart 322
run 322
run with Purify 322
running with Purify 315
running without Purify 317
runtime exception 333
shutdown 322
unload 322
utility scripts 339

Component instance menu 322, 338
component instance menu 322, 338
component instance options

basic 341
Debugger MSDEV 341
Debugger Tornado 341
Debugger xxgdb 341
Manual 341
Windows CE 341

Component Instance specification 340
Component Instance Specification—Detail

tab 340, 343
Component Instance Specification—General

tab 340
component instance, creating a 314
component instance, observing a running 319
component instance, running a 317
component instance, run-time exception while

running a 333
component instances, loading and running on

embedded targets 339
Component Specification 303
Component Specification—Files tab 306
Component Specification—General tab 303
Component Specification—References tab 304

Component Specification—Relations tab 305
Component Wizard 91
Component wizard 91
component, creating a 296
Components tab 81
concurrenty

class 235
Condition tab 205
configuration 28
configuration management

impact on moving classes or diagrams 280
Configure command 64
configuring

Tornado 2 for debugger mode 351, 353
Tornado for debugger mode 351, 353

conflicts when demoting 171
conflicts when promoting 171
conjugated

port 185
connecting

ports on capsule roles 190
Connecting ports on capsule roles together 190
connection

characteristics 356
connection delay 344
Connector Specification 190
connector specification 190

cardinality 190
delay 190

Connector tool 183
connectors

capsules 260
constant

attribute 106
Constraint tool 77, 156, 182, 193, 201, 220
Constructing Models in Rational Rose

RealTime 23
continuation junction point 206
Controlling how existing stereotypes are dis-

played in a diagram 383
Controlling how stereotypes are displayed in the

browser 383
Controlling how stereotypes that are added to

diagrams hereafter are displayed 383
Controlling the display of stereotypes 383
416 Index

copying
operations 83

copying attributes 82
copying signals 268
copying triggers 204
co-region tool 221
Create 30
Create New Model 34, 39
Create New Model dialog 30
Creating

ports 183
creating

actors 149
association class 167
association relationships 160
attributes 230
capsule and protocol aggregations 154
capsule class 250
capsule state diagram 197
capsule structure 179
classes 229
collaboration diagram 191
component

component
creating 296

component instance 314
component instance tasks 314
custome framework (stereotypes) 378
dependency relationships 172
inheritance relationships 168
inheritance tree 168
inject messages 358
model property set 397
nested states 211
new attributes 82
new operations 237
non-wired port using a system protocol 184
operations 83

operations
creating 230

package relationships 175
packages 273

realize relationships
realize relationships

creating 176
reflexive relationships 175
relationships 159
scratch pad packages 85
sequence diagram 213
sequence diagram from message trace

traces
creating sequence diagram

from message
trace 332

stereotype (new) 378
stereotype configuration file 379
stereotype for all Rose RealTime models 379
stereotype icons 382
stereotypes 377
stereotypes for Classes 381
use case 147
use case diagram 143

Creating a Capsule class 250
Creating a class 229
Creating a Class diagram 151
Creating a collaboration diagram 191
Creating a component 296
Creating a component instance 314
Creating a custom framework 377
Creating a diagram icon 382
Creating a link 374
Creating a new diagram 213
Creating a New Model Property Set 397
Creating a new stereotype configuration file 379
Creating a new stereotype for all Rose RealTime

models 379
Creating a new stereotype for the current

model 378
Creating a non-wired port using one of the sys-

tem protocols 184
Creating a package 273
Creating a port 183
Creating a Sequence diagram 213
Creating a sequence diagram from a message

trace 332
Creating a use case 147
Index 417

Creating a use case diagram 143
Creating aggregation relationships 167
creating aggregation relationships 167
Creating an actor 149
Creating an association class 167
Creating an inheritance tree 168
Creating association relationships 160
Creating capsule state machines 197
Creating capsule structure 179
Creating dependency relationships 172
Creating inheritance relationships 168
Creating nested states 211
Creating new attributes 230
Creating new operations 230
Creating package relationships 175
Creating reflexive relationships 175
Creating relationships 159
creating sequence diagram

from browser 214
from collaboration diagram 214
from structure diagram 214
from structure diagram browser 214

Creating sequence diagrams
from the browser 214
from the collaboration or structure

diagram 214
from the Structure diagram browser 214

Creating stereotype icons 382
Creating stereotypes for classes 381
Customize Toolbar dialog 394
Customizing the diagram toolbox 394

D
daigrams 33
debugger

unloading 354
debugger mode

Tornado 351, 353
Tornado 2 351, 353
Windows CE 351, 352
xxgdb (Unix only) 353

debugger modes 350

debugging
source code 335

Debugging Shortcuts 406
decomposing state machines 203
Defining messages 216
defining messages in a sequence diagram 216
Defining state transition trigger events 209
delay for connector specification 190
deleting

messages from trace 328
Deleting a Model Property Set 397
Deleting messages 328
demote

conflicts 171
demoting elements 170
dependencies

component 306
dependency relationships

creating 172
dependency relationships, creating 172
Dependency Specification 173
deployment diagram

components 286
connections 285
devices 285
editor 284
elements 285
packages 286
processors 285
toolbox 286

Deployment diagram editor, using the 284
Deployment diagram elements 285
Deployment diagram toolbox 286
Description window 115
Description window, displaying the 115
designated code sync areas 366
destroy message tool 221
detach target 323
Development process 26
development process 26
Device specification 346
device specification

characteristics 355
Diagram editors 73
diagram icon, creating a 382
418 Index

Diagram tab 148, 388
diagram toolbox, customizing the 394
diagram types

class 51
collaboration 51
component 52
deployment 52
sequence 51
state 52
structure 52
use case 51

diagram, inserting into an MS Word
document 373

Diagrams 24, 33
Capsule 251
State 251

Diagrams tab 126
Dialogs

Build Settings 301
Customize Toolbar 394
Event Editor 207
Find 87
Generate Documentation 372
Options 384
Replace 88
Select Diagram 51
Sequence Validation 225

disabling
code sync 365

display a nested class 241
Displaying or Editing a Specific Model Property

Set 397
Displaying or Modifying the Values of Model

Properties 395
Displaying the Browser 72
Displaying the Calls dialog 66
Displaying the Description window 115
docking 72, 116
documentation

linking 371
Documentation pane 116
Documentation Report command 58
Documentation window 116
documenting

model elements 118

Dragging capsule instances into a trace 332
Drawing the initial transition 209
Drawing transitions between states 208

E
Edit menu 43
Editing a diagram 214
Editing diagrams 375
Editor tab 392
elements 170

demoting 170
deployment diagram 285
exporting 290

elements, required 23
embedded targets 339
enabling

code sync 365
End A and B Detail tabs 164
End A and B General tabs 163
end port 186
Ensure that component has correct make types

configured 309
Entry Actions / Exit Actions 202
entry actions (state diagram) 202
environment settings 137
error

call stack length 343
Error linking Capsule (“error from nmake”) 311
error log

validation 227
errors 307

Cannot code-sync 369
Cannot code-sync beyond line 370
Capsule Role name same as Capsule

name 308
Check Environment Variables 309
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 311
Compiler not installed correctly 308
Could not find trailing CodeSync tag for 370
Index 419

Ensure that Component has correct Make
types configured 309

Error Linking Capsule (“error from
nmake”) 311

Linking 312
Linking wrong Services Library set 308
Missing Class Dependencies 308
Missing Header Files, Object Files, and

Libraries 310
name conflicts 310
Redefinition of basic types or multiple decla-

rations for X 307
Review your compiler flag settings 309
Source File Compilation 311
System does not understand the make

command 309
Unknown command, command not found,

the name specified is not
recognized 307

Unresolved symbol or undeclared
identifier 307

Warning
Use tabs for indenting code-sync

regions 370
Windows NT Compilation Command Line

Limits 311
Essential workflows 27
Event Editor dialog 207
Exclusions 168
Executable models 22
executable models 22
executaion overview 314
Executing 295
Execution basics 314
execution control 324
Execution control and information pane 324
execution watch 333
Execution Watch tab 333
exit actions (state diagram) 202
Expand Selected Elements command 60
Export command 64
export control 174
exporting

elements 290
files 290

Exporting a file 290
externally visible junction point 206

F
file I/O error on

369
File menu 39
File menu operations 39
file, importing a 289
files

importing 289
Files tab 80
Filter Relationships command 61
filtering 73
filtering class relationships

class relationships
filtering 177

Filtering tab 391
Final State tool 201
Find dialog 87
Find tab 121
finding

procedure calls 66
Finding Specified Text 66
fixed capsule role 189
fixing a model 139
floating 72, 116
FOC 220

activators 227
adding color 228
definition 227

Focus of Control 227
adding 220
definition 227

Focus of Control, coloring 228
Font/Color tab 387
friend 166
functions

main() 19
Further reading 24, 25, 26, 28
420 Index

G
General Shortcuts 403
generalization 158
Generalize Specification 169
Generate Documentation dialog 372
generate type descriptor 102
generateing

documentation 371
generating documentation

inserting diagram into MS Word
document 373

OLE 374
report options 373

Get Entire Model command 65
get method

attribute 107
global packages 276
Go To Line command 66
Graphical notation 173
guarded operation 249

H
Help menu 69
Hide Selected Elements command 61
hiding classes 177

I
icons, adding to a diagram 74
identification tags for code sync 365
IDH_EVENT_EDITOR_DIALOG 207
Impact of moving classes or diagrams on configu-

ration management 280
implementation

attribute 106
implementation of workflow 27
Import Code command 63
import log messages 139
importing

elements 289
files 289
Rational Rose Generated Code 141

Rose generated code (Limitations and
Restrictions) 141

Importing a file 289
Importing Rational Rose generated code 141
importing requirements (ObjecTime

Developer) 138
in signal 267
Inheritance

Rose RealTime 170
inheritance

demoting 170
excluding elements 171
promoting 170
rearranging hierarchies 172
reinheriting excluded elements 171
virtual 170

Inheritance in Rose RealTime 170
inheritance relationship

creating 168
inheritance relationships, creating 168
inheritance tree 168
inheritance tree, creating an 168
initial state

specification 205
Initial State Specification 205
initial transition

drawing 209
initial transition, drawing the 209
initial value (attribute) 105
inject

creating messages 358
inject data format

basic types 359
classes 360

inject messages
creating 358

Inject window 331
inject window 331
injected data format 359
injecting a message 360
inserting

diagram into MS Word document 373
Inserting a diagram into an MS Word

document 373
Inserting a link 375
Index 421

Instance browser 334
instance browser 334
instances, adding 215
instantiated class 159
instantiated class utility 159
interaction

specification 222
stereotype 222

interaction instance
path 221
specification 221
stereotype 222

Interaction Instance Specification 221
interaction instance tool 220
Interaction Specification 222
internal transition 203
Introduction to Naming Guidelines 291
Introduction to packages 273
Is Rose RealTime a compiler? 294

J
Joining transitions 210
joining transitions 210
junction point

continuation 206
externally visible 206
specification 206

Junction Point Specification 206

K
keys 166

L
Language/Environment tab 393
Languages and code generation 18
Layout tab 128
Limitations and restrictions of importing Rational

Rose generated code 141
Limitations and restrictions of opening models

from ObjecTime Developer 5.2.1 138

Limitations and restrictions of opening models
from Rational Rose 140

link element 162
link, creating a 374
link, inserting a 375
Linking 312
linking

external files to model elements 371
Linking external files to model elements 371
Load command 300
load component instance 322
loading

component instance on embedded
targets 339

Loading and running component instances on
embedded targets 339

local action
receiver 223
sender 223
stereotype 223

Local Action Specification 222
local state

receiver 224
sender 223
stereotype 223

Local State Specification 223
Lock Selection tool 78
log reports

interpreting for Purify 317
Log tab 119

M
main() function 19
Making a Model Property Item Specific 396
Managing model properties 395
managing model properties 395
Menu bar 33, 38
menu bar 33
Menus 38

add-ins 67
Browse 50
Build 54, 299
Component instance 322, 338
422 Index

Edit 43
File 39
Help 69
Popup 75, 117
Pulldown 117
Query 59
Report 57
Tools 61
View 49
Window 68

menus
Background Popup 75

message
receiver 224
sender 224

message details, specifying 216
Message Specification 224
Message trace configuration dialog 332
messages reorienting 217
messages, defining 216
messages, deleting 328
messages, moving 218
Missing class dependencies 308
Missing header files, object files, and

libraries 310
mode

debugger 350
xxgdb for debugging 353

Model
specification 135

model
opening 135
properties 395
unique Id 131
unique ids 131

Model browser 70
Model browser contents 70
model elements

moving 279
model elements, adding documentation to 118
model elements, moving 279
model properties

managing
model

managing properties 395

Model Properties, displaying or modifying the
values of 395

model properties, managing 395
Model Property Item, making one specific 396
Model Property Set, creating a new 397
Model Property Set, deleting 397
Model Property Set, displaying or editing a spe-

cific one 397
modeling

elements 23
required elements 23

Modeling elements 23
models

building 293
creating stereotypes 379
ececutable 22
running 293

models, building and running 293
models, constructing in Rose RealTime 23
Modify Variable command 66
Monitors 326
monitors

animation 326
monitors, opening 327
moving attributes 82
moving classes

impact on configuration management 280
moving diagrams

impact on configuration management 280
Moving messages 218
Moving model elements 279
moving model elements 279
moving operations 83
Moving the Insertion Point to a Specified Line in

Your Script 66
moving triggers 204
Multiple Browsers 73
multiplicity 164

aggregation association 101
association role 196
class 234

multiplicity from 174
multiplicity to 174
Index 423

N
Name 291
Name conflicts 310
name direction 163
names

assigning 291
guidelines 291
special case notes 292

Naming 173
naming

considerations 292
naming guidelines 291
naming guidelines, introduction to 291
navigable 166
Navigating 72, 375
navigating 72
nested class 240

deleting 241
displaying 241
relocating 241

nested states
creating 211

nested states, creating 211
new diagram, creating a 213
New script command 65
non-wired port, creating one using one of the sys-

tem protocols 184
Note anchor tool 77, 183, 194, 201
Note tool 182, 193, 219
notification

port 187

O
ObjecTime Developer 5.2.1, opening models

from 138
observability 337
Observability command line parameter 337
observability command line parameter 337
Observability interface 321
observability interface 321
observability options 321

attach target observability on startup 342
delay 342

load 342
order 342
run 342
target observability port 342

observability options, overview of 321
Observing a running component instance 319
OLE

creating a link 374
inserting a link 375
using 374

OLE, using 374
Online Help i
online help, activating i
Open Script command 65
Opening

ObjecTime Developer model (limitations and
restrictions) 138

Rose models (Limitations and
Restrictions) 140

opening
models 135
models from ObjecTime Developer 138
models from Rational Rose 139
resolving model errors 139
Sequence Diagram 329

Opening a Sequence diagram 192
Opening Collaboration diagrams 217
Opening models from ObjecTime Developer

5.2.1 138
Opening models from Rational Rose 139
Opening Sequence Diagram 329
Opening Specifications 75
operation

abstract 111
class scope 111
creating required dependencies 111
dependencies 111
implementation 110
private 110
protected 110
public 110
query 110
visibility 110

operation mode (component instance) 341
Operation Specification 246
424 Index

Operation Tool 108
operations

capsule 254
class 247
concurrency 249
copying 83, 237
creating 83
exceptions 249
instance 247
moving 83, 237
naming 292
options 247
parameters 248
protocol 248
return type 247
scope 247
specification 246
visibility 247

Operations tab 82
operations, creating new 230
Options dialog 384
Orientation field 129
out signal 267
Output window 119
Overriding target control 320
overriding target control 320
Overview Navigator 76
Overview of common build errors 307
Overview of observability options 321

P
Package 148
package

components 278
creating relationships 175
global 276
moving model elements 279
relations 277
relationships 175
specification 274

package relationships, creating 175
Package Specification 274
Package Specification—Components tab 278

Package Specification—Detail tab 276
Package Specification—Files tab 279
Package Specification—General tab 275
Package Specification—Relations tab 277
package, creating a 273
packages

creating 273
creating scratch pad 85
overview 273

Packages and class diagrams 274
packages, introduction to 273
Paper field 129
Parameterized Class tool 157
parent diagram 53
Parts menu

Menus
Parts 48

persistance
class specification 234

polymorphic operation 247
Popup menu 75, 117
port

cardinality 185
conjugated 185
creating 183
definition of 21
end port 186
name 184
notification 187
protected 187
protocol 185
publish 187
registration 187
specification 184
stereotype 185
unwired 184
use 21
wired 186

Port Detail 225
Port specification 184
Port tool 183
Port trace 328
port, creating a 183
Ports 21
Index 425

ports
capsule 259
connecting to capsule roles 190

print range 126
Print setup 128
Print Specifications 123
Printer field 129
printing

range 126
setup 128
specifications 123

private
attribute 106
class specification 233
operation 110

probe
placing on replicated ports 330
types 330
usage 330

Probe Specification 356
Probe Specification—Detail tab 358
Probe Specification—Files tab 357
Probe Specification—General tab 356
probe types

port 330
state 330

Probes 327, 330
Probes folder 325
probes folder 325
problem reports

submitting 399
procedure calls, finding 66
processor

address 345
component instances 346
CPU 345
load script 346
OS 345
server 346

Processor specification 344
Processor specification—General tab 345
processors

deployment diagram 285
project phases 27

promote
conflicts 171

promoting 170
promoting elements 170
protected

attribute 106
class specification 233
operation 110
port 187

protocol 267
port 185
specification 265
stereotype 266

Protocol specification dialog 265
Protocol Specification—Components tab 269
Protocol Specification—Files tab 270
Protocol Specification—General tab 266
Protocol Specification—Relations tab 268
Protocol Specification—Signals tab 267
Protocols 21
protocols

definition of 21
naming 292
use 21

public
attribute 106
operation 110

public class specification 233
publish

port 187
Pulldown menu 117
Purify 315

log reports 317
running component instance without 317

Q
qualifiers 166
query

operation 110
Query menu 59
query operation 247
426 Index

R
Rank 148
Rational Rose generated code, importing 141
Rational Rose, opening models from 139
Real-Time services (Services Library) 294
RealTime Services Library 294
rebuild 299
rebuild component 55
referenced item 54
reflexive relationships 175
reflexive relationships, creating 175
refresh execution 325
Refresh Status of Model command 65
Refreshing the Browser 73
Refreshing the watch values 121, 333
refreshing watch values 121, 333
registration

port 187
reinheriting excluded elements 171
Reinstalling the State and Value of the Last Com-

mitted Change 396
Related Documentation ii
Relations 149
Relations tab 81, 149
Relationship between collaborations and

sequences 192
relationships

between collaborations and Sequences 192
relationships, creating 159
reload 322
Removing an Overriding Item Level Model

Property 396
Reorienting messages 217
Replace command 63
Replace dialog 88
replicated ports

placing probes 330
Report menu 57

Show Usage 57
report options

generating documentation 373
Required elements 23
requirements 27
restart 322

restart execution 324
Review your compiler flag settings 309
Reviewing the build results 298
Rose RealTime dialog, About 33
Rose RealTime execution interface 320
RTS browser 323
RTS shortcuts 407
Run command 299
run component 55
run component instance 322
running

component instance 319
component instance on embedded

targets 339
component instance with Purify 315
component instance without Purify 317
models 293
outside the Toolset 337
Purify from outside the Toolset 337
with Purify 322

Running a component instance 317
running component instance 315
Running from outside the toolset 337
Run-time exception while running a component

instance 333

S
Scratch Pad Packages 85
scratch pad packages

creating 85
Scratchpad 85
Scripting Shortcuts 405
scripting shortcuts 405
Scroll Bars 76
Searching and sorting 86
Searching code 89
Searching for model elements by name 88, 89
Select Checked out Units in Browser

command 65
Select Diagram dialog 51
Selective searching 88, 90
Selector tool 77, 156
Semantics tab 250
Index 427

send
asynchronous message tool 220
synchronous message tool 220

sequence diagram
add FOC 220
adding instances 215
asynchronous send message tool 220
call message 220
cloning 216
constraint tool 220
co-region 221
create message tool 220
creating 213
creating from browser 214
creating from collaboration diagram 214
creating from message trace 332
creating from structure diagram 214
creating from structure diagram browser 214
defining messages 216
destroy message tool 221
editing 214
Focus of Control 220
interaction instance tool 220
local action tool 221
local state tool 221
moving messages 218
Note tool 219
reorienting messages 217
specifying message details 216
synchronous send message tool 220
toolbox 218
using the editor 216

Sequence diagram editor, using the 216
Sequence diagram toolbox 218
sequence diagram, creating a 213
sequence diagram, creating one from a

message 332
Sequence diagrams, opening 192
Sequence Overlays 192
sequence overlays 192
Sequence relationships 192
Sequence Validation dialog 225
sequential operation 249
Services Library 19, 294

set method
attribute 107

shortcuts 403
browser 408
build 407
code editor 408
debugging

debugging shortcuts 406
general 403
RTS 407
scripting 405

shortcuts, debugging 406
Show Access Violations command 57
Show Code Occurrences command 58
Show Inherited command 82
Show Part Of Ancestors command 59
Show Part Of Descendants command 59
Show References command 58
Show Unit Versions command 65
Show Usage command 57
shutdown 322
shutdown execution 325
Signal Specification 270
Signal Specification—Files tab 271
Signal Specification—General tab 271
signals 267

data class 271
protocol 267

singals
copying 268

Sorting in the browser 86
Sorting in the class specification 86
Source code debugging 335
source code debugging 335
Source Control command 64
Source File Compilation 311
Special Case Notes 292
Specification Code Editor Shortcuts 408
Specification Content 303
Specification dialogs 78
Specifications tab 126
Specifications, opening 75
specify event 207
Specifying message details 216
Specifying the transition 208
428 Index

Spreadsheet-type functionality for list controls
within a specification dialog 79

Start command 299
start execution 324
Starting a build 297
startup options 384
Startup screen 29
state

adding 207
drawing transitions between 208
naming 292

State Diagram 251
state diagram

aggregating 203
choice point tool 202
constraint tool 201
decomposing 203
editor 198
elements 199
entry actions 202
exit actions 202
final state tool 201
Note anchor tool 201
Note tool 201
specification 202
state tool 201
state transition tool 201
toolbox 200
transition to self tool 202
using the navigator 200

State diagram editor, using the 198
State diagram toolbox

Toolboxes
State diagram 200

State diagrams 22, 209
state machines, adding and decomposing 203
State Specification 202
State tool 201
State trace 328
State Transition tool 201
state transition trigger events, defining 209
state, adding a 207
states

creating nested states 211
step through execution 324

stereotype 162
association role 196
capsule 253
class operations 237
class specification 232
classifier role 195
component 304
configuration file 379
creating a new configuration file 379
creating icons 382
display 389
icons (creating) 382
interaction 222
interaction instance 222
local action 223
local state 223
message 224
port 185
protocol 266

stereotype icons, creating 382
stereotype, creating a new 379
stereotype, creating a new one for all Rose Real-

Time models 379
stereotype, creating a new one for the current

model 378
Stereotypes 377

controlling display 383
stereotypes

adding to Diagram Toolbox 381
creating 378
creating a custom framework for models 377
creating for all Rose RealTime models 379
creating for classes 381
details 377

stereotypes for classes, creating 381
stereotypes, controlling how existing ones are dis-

played in diagrams 383
stereotypes, controlling how those that are added

to diagrams hereafter are
displayed 383

stereotypes, controlling the display of 383
stereotypes, controlling their display in the

browser 383
Stop command 300
stop execution 324
Index 429

Structure Diagram
Diagrams

Structure 251
Structure Diagram toolbox 182
Structure diagram toolbox 182
Structure Editor 180
Structure editor, using the 180
Submit All Changes to Source Control

command 65
submitting

feature requests
feature requests 400

problem reports 399
support requests 401

substitutable capsule role 189
support requests 401
Synchronize Entire Model command 65
Synchronize Model with File System

command 65
synchronous operation 249
synchronous send message tool 220

T
Tabs 71, 80
target

connection delay 344
default instrumentation type 344

target control
overriding 320

Target control programs 320
target control programs 320, 346
target diaplay

first occurrence only 344
handles in use at exit 344
memory in use at exit 344
memory leaks at exit 344

target scope 165
targets

loading and running 339
tasks

creating a component instance 314
debugging source code 335
observing a running component instance 319

running a component instance with
Purify 315

running component instance without
Purify 317

Text tool 77
The Script Editor Window 65, 66
The toolbar 34
Threshold field 332
threshold field 332
Tile Horizontally command 68
Tile Vertically command 68
To open a monitor 327
Toolbar 33
toolbar 34

create new model 34
open existing model 34

Toolbar button list 394
Toolbars tab 393
Toolboxes 33, 77

Class diagram 155
Collaboration diagram 193
Component diagram 283
Deployment diagram 286
Sequence diagram 218
Structure diagram 182
Use case diagram 146

tools
constraint 77
lock selection 78
note 77
note anchor 77
selector 77
text 77
zoom 77

Tools menu 61
Toolset options 384
Top-level capsule 295
top-level capsule

capsule
top-level 295

Tornado
debugger mode for 351, 353
unloading debugger 351, 353
430 Index

Tornado 2
debugger mode for 351, 353
unloading debugger 351, 353

Trace configuration 328
trace configuration 328
Trace window 328

types 328
Trace windows 328
traces

capsule instance 328, 331
dragging capsule instances 332
event message 331
messages 328
port 328
state 328
types 328, 329
using different types 329

traces, when to use the different kinds of 329
transition

internal 203
specification 203

Transition Specification 203
Transition to Self tool 202
transition trigger event

define a new event in a protocol 210
defining a new event in a capsule 210
defining a new event in a data class 210
defining a new state 209

transition, specifying the 208
transitions

drawing an initial transition 209
drawing between states 208
joining 210
specifying 208

transitions, drawing between states 208
transitions, joining 210
trigger 207
triggers

copying 204
list 203
moving 204

Triggers tab 203
troubleshooting

build errors 307
Cannot code-sync 369

Cannot code-sync beyond line 370
Capsule Role name same as Capsule

name 308
Check Environment Variables 309
Compile Fails on Valid C++ Models with

VC++ 5.0 or VC++ 6.0 311
Compiler not installed correctly 308
Could not find trailing CodeSync tag for 370
Ensure that Component has correct Make

types configured 309
Error Linking Capsule (“error from

nmake”) 311
Linking 312
Linking wrong Services Library set 308
Missing Class Dependencies 308
Missing Header Files, Object Files, and

Libraries 310
name conflicts 310
Redefinition of basic types or multiple decla-

rations for X 307
Review your compiler flag settings 309
Source File Compilation 311
System does not understand the make

command 309
Unknown command, command not found,

the name specified is not
recognized 307

Unresolved symbol or undeclared
identifier 307

Warning
Use tabs for indenting code-sync

regions 370
Windows NT Compilation Command Line

Limits 311
Tutorials ii
type descriptor 102

U
UML Options 181
UML options 181

Base UML notation 181
Show Classifier Name on Roles 181
Show Protocol Name on Ports 181
Index 431

Undocking the capsule diagrams 251
unidirectional aggregate association 158
unidirectional association 158
unique Id’s 131
unique ids 131

cautions 132
correct merge scenario 133, 134
incorrect merge scenario 133

uniqueids
model elements not having 131

Unit Information tab 83
Unknown compiler message stream 121, 302
unload

Windows CE component instance 350
unloading

debugger 354
unwired port

create using a system protocol 184
Usage tips 145
use case

creating 147
specification 147

Use case diagram editor, using the 144
Use case diagram toolbox 146
use case diagram, creating a 143
Use case specification 147
use case, creating a 147
User-specific Working Environment Settings

(.rtusr and .rtwks) 137
Using OLE 374
Using sort 86
Using the Class diagram editor 152
Using the collaboration diagram editor 191
Using the Component diagram editor 281
Using the Deployment diagram editor 284
Using the Sequence diagram editor 216
Using the state diagram editor 198
Using the structure editor 180
Using the use case diagram editor 144
Utility scripts 339
utility scripts 339

V
Valid Applications 173
validation error log 227
Validation tab 248
View menu 49
virtual inheritance 170
visibility

aggregation 101
operations 110

visibility (types) 106, 110

W
Watch tab 121
watch values

refreshing 333
watches

refreshing values 121
WCESH3.bat for Windows CE 347
What’s This Help i
When to use the different kinds of traces 329
Where to start 294
Window menu 68
Window Selectors command 69
Windows CE

Basic Mode 347
configuring a component instance 347
connection delay 349, 352
debugger mode 351, 352
location of script 348
RRT_WINCE_TARGET_DIR 347
Target Timeout 349, 353
tasks to configure component instance 347
unload 350
WCESH3.bat 347

Windows CE operation for component
instance 341

Windows NT Compilation Command Line
Limits 311

wired port 186
wizard

component 91

wizards
432 Index

Aggregation Tool 99
Attribute Tool 103
Component 91
Operation Tool 108

workflow 27
analysis and design 27
change management 28
configuration 28
implementation 27
testing 28

workflows 27
working environment settings 137
Working with the Dialog Editor 66
workspace

definition of 136

X
xxdgb

debugger mode 353

Z
Zoom tool 77
Index 433

	Toolset Guide
	Preface
	Contents
	Online Help
	Activating the Online Help
	What’s This Help
	Extended Help
	Tutorials

	About the Help Viewer
	Getting More Out of Help
	To find a Help Topic
	To create a list of favorite help topics
	To copy a help topic
	To print the current help topic
	To get help in a dialog
	To find topics using the toolbar buttons
	To hide or show the Navigation pane
	Using accessibility shortcut keys in the Help Viewer
	Using the shortcut menu commands

	About the Search tab
	Searching for help topics
	Searching for words or phrases
	Defining search terms
	Using nested expressions when searching
	To search only the last group of topics you searched

	Changing the Help Viewer
	To customize the Help Viewer
	To change formatting or styles for accessibility
	To view help topics grouped by information type
	To change the font size of a topic
	To change colors in the Topic pane of the Help Viewer

	Related Documentation

	Overview of Rational Rose RealTime
	Contents
	Overview
	Languages and Code Generation
	Compilation

	Services Library
	Capsules, Protocols, Ports, Capsule State and Structure Diagrams
	Capsules
	Protocols
	Ports
	State Diagrams
	Capsule Structure Diagrams
	Executable Models

	Constructing Models in Rational Rose RealTime
	Modeling Elements
	Required Elements

	Diagrams

	Development Process
	Essential Workflows

	User Interface Overview
	Contents
	Startup Screen
	Create New Model Dialog
	Application Window
	Browsers
	Toolbar
	Diagrams
	Toolboxes
	Menu bar
	About Rose RealTime Dialog

	The toolbar
	Menus
	Menu bar
	File menu
	File menu operations

	Edit menu
	Parts menu
	View menu
	Browse menu
	Select Diagram dialog
	Browse menu operations

	Build menu
	Report menu
	Query menu
	Tools menu
	Layout

	Add-Ins menu
	Window menu
	Help menu

	Browsers
	Model browser
	Model browser contents
	Tabs
	Navigating
	Displaying the Browser
	Refreshing the Browser
	Multiple Browsers
	Filtering

	Diagram Editors
	Adding Icons to a Diagram
	Opening Specifications
	Popup menu
	Background Popup menu
	Scroll Bars
	Overview Navigator
	Toolboxes

	Specification Dialogs
	Spreadsheet-type functionality for list controls within a specification dialog
	Tabs
	Files tab
	Relations tab
	Components tab
	Attributes tab
	Operations tab
	Unit Information tab
	Scratch Pad Packages

	Searching and Sorting
	Using Sort
	Find dialog
	Replace dialog

	Wizards and Tools
	Component Wizard
	Aggregation Tool
	Attribute Tool
	Operation Tool
	Dependency Tool

	Other Application Windows
	Contents
	Description Window
	Displaying the Description Window
	Documentation Pane
	Code Pane
	Pulldown menu
	Popup menu

	Adding Documentation to Model Elements
	Adding Code to Model Elements
	Output Window
	Log Tab
	Build Log tab
	Build Errors tab
	Unknown compiler message stream

	Find Tab
	Watch Tab
	Refreshing the Watch Values

	Printing
	Contents
	Print Specifications
	General Tab
	Diagrams tab
	Specifications tab
	Layout Tab

	Print Setup
	Printer field
	Paper field
	Orientation field

	Opening and Saving Models
	Contents
	Unique Ids
	Opening Models
	Model Specification
	General tab
	Source Control tab
	Files tab
	Unit Information tab

	A Workspace
	User-specific Working Environment Settings (.rtusr and .rtwks)

	Opening Models from ObjecTime Developer 5.2.1
	Limitations and Restrictions

	Opening Models from Rational Rose
	Limitations and Restrictions

	Importing Rational Rose Generated Code
	Limitations and Restrictions

	Use Case Diagrams
	Contents
	Creating a Use Case Diagram
	Using the Use Case Diagram Editor
	Usage Tips
	Use Case Diagram Toolbox

	Defining Use Cases and Actors
	Contents
	Creating a Use Case
	Use Case Specification
	General tab
	Diagram tab
	Relations tab
	Files tab

	Creating an Actor
	Actor specification

	Creating Class Diagrams
	Contents
	Creating a Class Diagram
	Using the Class Diagram Editor
	Class Diagram Toolbox

	Creating Relationships
	Creating Association Relationships
	Association Properties
	Association Specification
	General tab
	Detail tab
	End A and B General tabs
	End A and B Detail tabs

	Creating Aggregation Relationships
	Creating an Association Class
	Aggregation Specification
	Creating Inheritance Relationships
	Creating an Inheritance Tree
	Exclusions
	Generalize Specification
	General tab

	Inheritance in Rose RealTime
	Promoting and Demoting Elements
	Potential Conflicts Caused by Promote/Demote
	Excluding Elements
	Reinheriting Excluded Elements
	Rearranging inheritance hierarchies

	Creating Dependency Relationships
	Graphical Notation
	Naming
	Valid Applications
	Add Class Dependencies Wizard
	Dependency Specification
	General Tab

	Creating Reflexive Relationships
	Changing the Directionality of an Association
	Creating Package Relationships
	Creating Realize Relationships
	Naming
	Valid applications
	Realize Relationship Specification
	General Tab

	Adding and Hiding Classes, and Filtering Class Relationships

	Creating Collaboration Diagrams
	Contents
	Creating Capsule Structure
	Using the Structure Editor
	UML Options

	Structure Diagram Toolbox
	Creating a Port
	Creating a Non-Wired Port Using a System Protocol

	Port Specification
	General Tab
	Files Tab

	Adding a Capsule Role
	Capsule Role Specification
	General Tab

	Connecting Ports on Capsule Roles Together
	Connector Specification
	General Tab

	Creating a Collaboration Diagram
	Using the Collaboration Diagram Editor
	Relationship Between Collaborations and Sequences
	Opening a Sequence Diagram
	Sequence Overlays
	Code Generation
	Collaboration Diagram Toolbox
	Classifier Role Specification
	General Tab
	Files tab

	Association Role Specification
	General Tab
	Files Tab

	Creating State Diagrams
	Contents
	Creating Capsule State Machines
	Using the State Diagram Editor
	State Diagram Toolbox
	State Specification
	General tab
	Entry Actions / Exit Actions tabs

	Aggregating and Decomposing State Machines
	Transition Specification
	General tab
	Triggers Tab
	Actions Tab
	Files Tab

	Choice Point Specification
	General Tab
	Condition Tab
	Files Tab

	Initial State Specification
	General Tab
	Files Tab

	Junction Point Specification
	General Tab
	Files Tab

	Event Editor Dialog
	Adding a State
	Adding a Choice Point
	Drawing Transitions Between States
	Specifying the Transition

	Drawing the Initial Transition
	Defining State Transition Trigger Events
	State Diagrams

	Joining Transitions
	Creating Nested States

	Creating Sequence Diagrams
	Contents
	Creating a Sequence Diagram
	Creating a New Diagram
	From the Browser
	From the Structure Diagram Browser
	From the Collaboration or Structure Diagram
	Editing a Diagram
	Adding Instances
	Defining Messages
	Specifying Message Details

	Cloning a Sequence Diagram
	Using the Sequence Diagram Editor
	Opening Collaboration Diagrams
	Reorienting Messages
	Moving Messages

	Sequence Diagram Toolbox
	Interaction Instance Specification
	General Tab
	Files Tab

	Interaction Specification
	General Tab
	Files Tab

	Local Action Specification
	General Tab
	Detail Tab

	Local State Specification
	General Tab
	Detail Tab

	Message Specification
	General Tab
	Detail Tab
	Port Detail Tab

	Sequence Validation Dialog
	Focus of Control
	Coloring Focus of Control

	Defining Capsules and Classes
	Contents
	Creating a Class
	Creating New Attributes
	Creating New Operations
	Class Specification
	Class Specification Content
	Class Specification - General tab
	Class Specification - Detail tab
	Class Specification - Operations tab
	Class Specification - Attributes tab
	Class Specification - Nested tab
	Class Specification - Components tab
	Class Specification - Relations tab
	Class Specification - Files tab

	Attribute Specification Dialog
	General Tab
	Detail Tab

	Operation Specification
	General Tab
	Detail tab
	Validation Tab
	Semantics Tab

	Creating a Capsule Class
	Capsule Diagrams
	State Diagram
	Structure Diagram
	Undocking the Capsule Diagrams

	Capsule Specification
	Capsule Specification - General tab
	Capsule Specification - Operations tab
	Capsule Specification - Attributes tab
	Capsule Specification - Capsule Roles tab
	Capsule Specification - Ports tab
	Capsule Specification - Connectors tab
	Capsule Specification - Relations tab
	Capsule Specification - Components tab
	Capsule Specification - Files tab

	Defining Protocols
	Contents
	Protocol Specification
	Protocol Specification - General tab
	Protocol Specification - Signals tab
	Protocol Specification - Relations tab
	Protocol Specification - Components tab
	Protocol Specification - Files tab

	Signal Specification
	Signal Specification - General Tab
	Signal Specification - Files Tab

	Defining Packages
	Contents
	Introduction to Packages
	Creating a Package
	Packages and Class Diagrams

	Package Specification
	Package Specification - General tab
	Package Specification - Detail tab
	Package Specification - Relations tab
	Package Specification - Components tab
	Package Specification - Files tab

	Moving Model Elements
	Impact of Moving Classes or Diagrams on Configuration Management

	Creating the Component and Deployment Views
	Contents
	Using the Component Diagram Editor
	Component Diagram Toolbox
	Using the Deployment Diagram Editor
	Deployment Diagram Elements

	Deployment Diagram Toolbox

	Importing and Exporting
	Contents
	Importing a File
	Exporting a File

	Naming Guidelines
	Contents
	Introduction to Naming Guidelines
	Assigning Names
	Special Case Notes

	Building and Executing Models
	Contents
	Building and Running Models
	Is Rose RealTime a Compiler?
	Real-Time Services (Services Library)

	Before you Start
	Building
	Executing

	Building Basics
	Top-level Capsule

	Assigning an Active Component
	Creating a Component
	Starting a Build
	Reviewing the Build Results
	Build Menu
	Build Settings Dialog
	Active Component
	Active Component Instances List

	Build Log Tab
	Build Errors Tab
	Unknown Compiler Message Stream

	Component Specification
	Specification Content
	Component Specification - General tab
	Component Specification - References Tab
	Component Specification - Relations Tab
	Component Specification - Files tab

	Component Dependencies

	Common Build Errors
	Contents
	Understanding Build Errors
	Missing Class Dependencies
	Capsule Role Name Same as Capsule Name
	Linking Wrong Services Library Set
	Compiler Not Installed Correctly
	Compile a Simple Hello World Program
	Check Environment Variables
	Review Your Compiler Flag Settings

	System Does Not Understand the Make Command
	Check Environment Variables
	Ensure that Component has Correct Make Types Configured

	Name Conflicts
	Missing Header Files, Object Files, and Libraries
	Compile Fails on Valid C++ Models with VC++ 5.0 or VC++ 6.0
	Error Linking Capsule (“error from nmake”)
	Windows NT Compilation Command Line Limits
	Source File Compilation
	Linking

	Running and Debugging
	Contents
	Execution Basics
	Creating a Component Instance
	Running a Component Instance with Purify
	Interpreting the Purify Log Reports

	Running a Component Instance without Purify
	Observing a Running Component Instance
	Rose RealTime Execution Interface
	Target Control Programs
	Overriding Target Control
	Observability Interface

	Overview of Observability Options
	Component Instance Menu
	RTS Browser
	Execution Control and Information Pane
	Capsule Instance Folder
	Probes Folder

	Monitors
	Animation
	Opening a Monitor
	Probes

	Trace Windows
	Deleting Messages
	Trace Configuration
	Using Different Types of Traces
	Opening a Sequence Diagram

	Probes
	Inject Window
	Capsule Instance Trace
	Trace Event Message Dialog
	Creating a Sequence Diagram from a Message Trace
	Dragging Capsule Instances into a Trace

	Message Trace Configuration Dialog
	Threshold Field
	Column Check Boxes

	Execution Watch Tab
	Refreshing the Watch Values

	Run-time Exception While Running a Component Instance
	Instance Browser
	Source Code Debugging
	Running from Outside the Toolset
	Purify
	Observability Command Line Parameter
	Component Instance Menu

	Using the Command Line
	Command Line Arguments
	Application-Specific Command Line Arguments

	Loading and Running Component Instances on Embedded Targets
	Utility Scripts

	Component Instance Specification
	Component Instance Specification - General tab
	Component Instance Specification - Detail tab
	Overview of Observability Options
	Overview of Observability Options

	Processor Specification Dialog
	Processor specification - General Tab
	Processor Specification - Detail tab
	Using Windows CE
	Using Debugger Modes
	Unloading a Debugger

	Device Specification
	General tab
	Detail tab
	Files Tab

	Connection Specification
	General Tab
	Detail Tab
	Files Tab

	Probe Specification
	Probe Specification - General tab
	Probe Specification - Files tab
	Probe Specification - Detail tab
	Creating Inject Messages
	Examples
	Injecting a Message

	Using Code Sync to Change Generated Code
	Contents
	Code Sync Overview
	Intended Code Sync Usage
	Limitations

	Enabling and Disabling Code Sync
	Identifying Code Sync Areas
	Code Sync Identification Tags
	Designated Code Sync Areas

	Compiling Code Externally
	Invoking Code Sync from the toolset
	Reconciling Changes in the Code Sync Summary
	Accepting Changes

	Common Code Sync Errors
	Error: Cannot code-sync; file I/O error on: <filename>
	Error: Cannot code-sync <filename> beyond line <lineNum>
	Error: Could not find trailing CodeSync tag for [<LocationSpecifier>]
	Warning: Use tabs for indenting code-sync regions

	Generating Documentation
	Contents
	Linking External Files to Model Elements
	Generate Documentation Dialog
	Inserting a Diagram into an MS Word Document
	Option A
	Option B

	Using OLE
	Creating a link
	Inserting a link
	Navigating
	Editing Diagrams

	Customizing the Toolset
	Contents
	Stereotypes
	Creating a Custom Framework for Rose RealTime Models
	Creating a New Stereotype for the Current Model
	Creating a New Stereotype Configuration File
	Creating a New Stereotype for all Rose RealTime Models
	Creating Stereotypes for Classes
	Adding Stereotypes to the Diagram Toolbox
	Creating Stereotype Icons
	Creating a Diagram Icon
	Controlling the Display of Stereotypes
	Controlling Stereotype Display in the Browser
	Controlling How Existing Stereotypes Display in a Diagram
	Controlling the Display of Stereotypes Added to Diagrams

	Toolset Options
	Options Dialog
	General Tab
	File tab
	Font/Color Tab
	Diagram Tab
	Filtering Tab
	Compartments Tab
	Browser Tab
	Editor Tab
	Toolbars Tab
	Language/Environment Tab

	Customizing the Diagram Toolbox
	Customize Toolbar Dialog
	Toolbar Button List

	Add-Ins
	Add-In Manager Dialog

	Managing Model Properties
	Displaying or Modifying the Values of Model Properties
	Removing an Overriding Item Level Model Property
	Making a Model Property Item Specific
	Reinstalling the State and Value of the Last Committed Change
	Attaching a Model Property Set to a Single Element or a Collection of Elements
	Displaying or Editing a Specific Model Property Set
	Creating a New Model Property Set
	Deleting a Model Property Set

	Submitting Problem Reports, Feature Requests and Support Requests
	Contents
	Submitting Problem Reports
	Submitting Feature Requests
	Submitting Support Requests

	Keyboard Shortcuts
	Contents
	General Shortcuts
	Scripting Shortcuts
	Debugging Shortcuts
	Build and RTS Shortcuts
	Specification Code Editor Shortcuts
	Browser Shortcuts

	Index

